Extensibility Guide
10g Release 5 (10.2.0.5)
B40007-03
June 2011
Oracle Enterprise Manager Extensibility Guide, 10g Release 5 (10.2.0.5)
B40007-03
Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual covers Enterprise Manager framework extensibility and related reference information.
Note that more recent versions of this and other Enterprise Manager books may be available on the Oracle Technology Network:
http://www.oracle.com/technology/documentation/oem.html
This guide is written for developers or administrators needing to extend Enterprise Manager's monitoring capability by defining custom target types. You should already be familiar with Enterprise Manager administrative tasks you want to perform.You should also have a working knowledge of XML and DTDs, as well as being familiar with the operation of your specific UNIX or Windows system. Refer to your platform-specific documentation, if necessary.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following manuals in the Oracle Enterprise Manager 10g Release 5 documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section of the guide provides intruction on extending the Enterprise Manager framework.	
Part I contains the following chapters:	
Out-of-box, Enterprise Manager can monitor the most common hardware and applications (target types) used in enterprise environments. Because it is not possible to anticipate all possible target types that may exist in your IT environment, Enterprise Manager provides a modular way to extend monitoring capabilities called Management Plug-ins.	
A Management Plug-in lets you create custom target types that allow you to monitor applications or hardware unique to your enterprise directly from the Enterprise Manager console. You simply deploy the Management Plug-in to Management Agents throughout your enterprise.	
This chapter covers the following topics:	
Using Management Plug-ins to define custom target types to be monitored by Enterprise Manager, you are able to centralize all of your management information in the console. By default, Enterprise Manager management and monitoring functionality is automatically extended to target instances of the type defined by your Management Plug-in. For example:	
These and other features allow you to better diagnose availability and performance problems by allowing you to correlate problems across your enterprise.	
Each target instance added to Enterprise Manager is automatically provided with a comprehensive target type-specific home page. No coding is required. The default target home page provides a consolidated view of target availability and alerts. Links to related monitoring information such as Monitoring Configuration, Metric and Policy Settings, and Alert History are also included. Figure 1-1 shows the default target home page for a Microsoft SQL Server database.	
Figure 1-1 Microsoft SQL Server Home Page	
A Management Plug-in is a group of target definition files that has been added to a Management Plug-in Archive using the Enterprise Manager Command Line Interface (EM CLI). Only when the target definition files have been added to an archive are they officially a Management Plug-in. A Management Plug-in Archive file (.jar file) associates the target definition files together as a true Management Plug-in and may consist of multiple Management Plug-ins.	
A Management Plug-in consists of several types of files that serve specific functions at different tiers within the Enterprise Manager framework. The target type metadata file is an integral part of defining a new target type and is required by the EM CLI, in addition to a default collection file, to create a new Management Plug-in within the Management Plug-in Archive. The target metadata and collection file, at a minimum, are required to create a new Management Plug-in. There are, however, other supported file types that may be needed for target type-specific monitoring and reporting functions.	
Ready-to-use Management Plug-ins are available from the Oracle Technology Network (OTN) at the Oracle Enterprise Manager 10g Grid Control Extensions Exchange located at:	
http://www.oracle.com/technology/products/oem/extensions/index.html	
This site is your central information source for all Enterprise Manager extensibility information. In addition to tutorials and the latest documentation, you can download ready-to-use Management Plug-ins developed by Oracle as well as third-party integrators.	
Management Plug-ins that are currently available include:	
Because this list is continually being updated, you should check the Extensions Exchange site regularly.	
As with any custom code implementation, a Management Plug-in has two distinct lifecycles: Development and Deployment.	
The development lifecycle, which is the primary focus of this guide, consists of four stages:	
The deployment lifecycle is managed from the Enterprise Manager console and consists of the following four stages:	
Note: See Enterprise Manager online help for information on Management Plug-ins and the deployment lifecycle.	
Figure 1-2 shows the complete Management Plug-in lifecycle.	
Figure 1-2 Management Plug-in Lifecycle: Combined Development and Deployment	
The Extensibility guide assumes you have sufficient familiarity with the Enterprise Manager Grid Control framework, its components, and functionality. In addition, familiarity with XML and PL/SQL is assumed. For more information about Enterprise Manager Grid Control, see the Enterprise Manager Concepts guide and the Enterprise Manager Grid Control online help. Additional information is available from the Enterprise Manager documentation area on OTN as well as the Extensions Exchange.	
HTTP://www.oracle.com/technology/products/oem/extensions/index.html	
The Extensibility guide is divided into two sections. The first section provides detailed instructions for creating your Management Plug-in and the second provides reference information that may be required when developing your Management Plug-in. The remaining chapters of this guide consist of the following:	
Each Management Plug-in defines a new type of target that can be monitored by Enterprise Manager. A target, or more specifically, a target instance, can be defined as any monitorable entity within an enterprise. A monitorable entity can be an application running on a server, the server itself, the network or any of its constituent parts. Enterprise Manager makes managing target instances simple by allowing you to add new target instances to the management framework from the Enterprise Manager Grid Control console, at which point you can take advantage of Enterprise Manager's monitoring and administrative functionality.	
Enterprise Manager relies on a series of XML files that define a new target type to the system. A Management Plug-in consists of all files required to monitor a specific target from within Enterprise Manager.	
Once a Management Plug-in has been defined, you add it to a Management Plug-in Archive that is imported into Enterprise Manager. An archive encapsulates the one or more Management Plug-ins within a single jar file.	
Creating a Management Plug-in consists of five stages:	
Before creating actual plug-in files, you need to define what parameters of the target type are required to accurately monitor and manage your new component. This involves:	
Once you have determined how a particular type of target should be monitored, you are ready to begin creating the Management Plug-in files that define this particular target type to Enterprise Manager. To create a target type is to define to Enterprise Manager not only what a target is, but more importantly what should be monitored (metrics), and how monitoring should be performed.	
File Locations	
The following table lists the key files used by Enterprise Manager for system configuration and extensibility. When a Management Plug-in is deployed to an Agent, the requisite files are copied to their respective directory locations.	
Table 2-1 Configuration File Locations	
Name	Directory Location
---	---
target_type.xml (Required to define a target type.)	AGENT_HOME/sysman/admin/metadata/
target_collections.xml(Required to define a target type.)	AGENT_HOME/sysman/admin/default_collection/
targets.xml	AGENT_HOME/sysman/emd/
DTD files associated with the XML configuration files can be found at the locations specified in Table 2-2.	
Table 2-2 Document Type Declaration Files	
Name	Directory Location
---	---
AGENT_HOME/sysman/admin/dtds/	Documentation Type Declaration (DTD) file associated with the target_type.xml file.
AGENT_HOME/sysman/admin/dtds/	DTD associated with the targets.xml file.
TargetCollection.dtd	AGENT_HOME/sysman/admin/dtds/
When you deploy a Management Plug-in, Enterprise Manager automatically copies all plug-in files to the appropriate locations. Conversely, when you are ready to update or remove a Management Plug-in, appropriate files are replaced in the case of a plug-in upgrade, or removed if a plug-in is undeployed.	
Important: The Management Plug-in deployment mechanism does not permit overwriting of Oracle-supplied metadata files.	
Adding a target type to the Enterprise Manager framework makes it possible for any instance of that target type to be monitored by an Oracle Management Agent once the target instance has been added to the framework from the Enterprise Manager Grid Control console. Every target type within the Enterprise Manager Grid Control framework must be unique. Defining a target type and making this information available to an Oracle Management Agent involves creating two XML files:	
The definition of a target type is composed primarily of the metrics you wish to expose. The file contains a list of all metrics collected for a particular target type, along with specifics on how to compute each metric.	
Target Type Default Collections File	
Whether you want to regularly upload metric values to the Management Repository or check these values against specific conditions, you will need to define default collection intervals for each of the target metrics. This is also the file where you specify alert thresholds for each metric, enabling events to be triggered when violations occur. Users will be allowed to override the defaults, but the original collections file must be provided by the target provider.	
The following steps take you through the process of creating the target type metadata and collection files, registering them with the Enterprise Manager framework, and finally adding instances of the new target type to the Enterprise Manager Grid Control console for monitoring.	
Target type metadata consists of the metrics you want to expose and the methods used to retrieve and compute those metrics. The target type metadata file tells the Oracle Management Agent what data to retrieve and how to obtain that data for this particular target type. Users can add a new target type by creating a new target metadata XML file and placing it under $AGENT_HOME/sysman/admin/metadata/.	
Note: Manually placing the target metadata XML file in the AGENT_HOME metadata directory is for development purposes only. The target metadata file is automatically placed in the metadata directory when the Management Plug-in is deployed to the Agent.	
Target Type Metadata File Naming Conventions	
Although you can specify any name for a target type metadata file, Oracle recommends that users adding new target types adhere to Enterprise Manager naming conventions. This naming convention allows for file naming consistency in environments where similar products from multiple vendors are used. The target naming convention follows the form <vendor>_<product category>. For example:	
To account for cases where one product category contains multiple product offerings from a single vendor, Oracle recommends that you use the following file naming convention:	
For example:	
Enterprise Manager ships with a wide array of predefined target type metadata files that cover the most common target types. In situations where the predefined target metadata files do not fit exactly the types of targets you wish to monitor, you can either create a new target metadata file from scratch, or use one of the predefined metadata files as a template for defining a new target type, and then repackage them as a new Management Plug-in. The pre-defined metadata files are located in the $AGENT_HOME/sysman/admin/metadata directory.	
Anatomy of a Target Type Metadata File	
At the highest definition level, the target type metadata file is composed of four primary XML elements:	
Although this section briefly introduces XML elements and some of tag options used to define target metadata, for explicit definitions and other important usage information, see the TargetMetadata.dtd file located in the $AGENT_HOME/sysman/admin/dtds directory.	
The following example shows the primary XML elements of the Net App Filer target type metadata file.	
Example 2-1 Target Type Metadata File	
From the target metadata file excerpt, you can see that the file consists of the following functional areas where you define your target metadata:	
TargetMetadata and Display	
The first lines after the header of the target definition file identify the target type. The following example is an excerpt from the Net App Filer target definition file.	
Example 2-2 TargetMetadata and Display XML Elements	
These lines define the basic specifications: metadata version (META_VER="2.2"), target type (TYPE="netapp_filer"), the target's NLS Identifier (NLSID="netapp_filer") and display name text ("Network Appliance Filer"). Metadata versioning allows different versions of the same target type metadata to exist concurrently within the managed environment (one metadata version per Management Agent).You should change the metadata version each time you update the target metadata file. Typically a target type consists of the company name followed by the product name. The "Display" element is used internally by Oracle for translation purposes and is not required when defining new target types. "Display" elements are used with various elements in the target metadata for both readability and internationalization.	
The content of the target type metadata file is devoted primarily to metric definitions. As a matter of practice, Oracle recommends that you specify at least two metrics for any target type:	
For target availability to show up correctly on the default target home page, Oracle requires the target metadata file to define a metric with NAME="Response" that contains a column with NAME="Status" and the default collection file must define a critical condition on the "Status" column that represents the target being up or down.	
Shown in the example below, the Response metric, which monitors target availability, is required for all target types. The Load metric is used to determine a target's performance level.	
The following example shows the "Response" metric definition for a Network Appliance Filer target type.	
Example 2-3 Response Metric	
Because the "Response" metric is of type "TABLE", it requires a "TableDescriptor" and associated "ColumnDescriptor". Note that all levels of the metric, which includes table and column definitions, are given names, types, and display labels. As mentioned earlier, these elements and usage instructions can be found in the TargetMetadata.dtd file.	
For each metric, you must also specify how to obtain the data to fill this structure. This is accomplished using fetchlets—mechanisms that take parameters, query a specified target, and then return some values from the target. Enterprise Manager provides a wide array of fetchlets to meet most data retrieval needs. See Chapter 10, "Fetchlets" and Chapter 7, "Monitoring Using Web Services and JMX" for more information on fetchlets and available fetchlet types.	
A fetchlet associated with the metric is declared through the "QueryDescriptor" tag. The following example shows the QueryDescriptor used for the Microsoft SQL Server Response metric.	
Example 2-4 Query Descriptor Usage	
The "FETCHLET_ID" label is used to specify which fetchlet to use for data retrieval. In the example above, the "Response" metric uses the "OSLineToken" fetchlet. What follows are the definition of required system parameters used by the fetchlet.	
The "oraTclHome", "perlBin", and "scriptsDir" properties enable the correct bindings in the "command" property. The remaining properties are "OSLineToken" fetchlet input parameters. See Chapter 10, "Fetchlets" for information on parameters used by each fetchlet.	
The "scope" property defines where the property value is to be obtained. The following scope options are available:	
The "InstanceProperties" descriptor is a required top-level specification that defines what properties an administrator must specify in the Enterprise Manager Grid Control console when adding a new target instance of this particular target type.	
Although the InstanceProperties section can be defined at various locations within the target type metadata file, Oracle recommends defining this section at the very end of the file for consistency. Instance properties defined in the target type metadata file are resolved to values specified for these instance properties in the targets.xml file. Shown below are some of the instance properties for a Microsoft SQL Server target type.	
Example 2-5 Instance Properties	
As an example, when an Oracle Database Instance target type is added to the Enterprise Manager framework, specific information about that target instance is added to the targets.xml file. In the example below, we can see that the InstanceProperty labels such as OracleHome, Port, SID defined in the Oracle Database Instance target type metadata file are resolved to instance-specific values in the targets.xml file.	
Example 2-6 Target Instance Information for an Oracle Database	
It is always a good idea to test your new target type definitions using the metric browser. The metric browser is a development utility that is an integral part of the Oracle Management Agent. As a subsystem of the Agent, it allows you to quickly access the metric values for targets monitored by the Agent without the overhead of a Management Repository or other components of the Enterprise Manager framework.	
To configure the Oracle Management Agent's metric browser for debugging metrics without the Enterprise Manager Grid Control console:	
$AGENT_HOME/sysman/config/emd.properties file:	
change to	
It will have the following format:	
Adding a Target Instance to the targets.xml File	
Before you can view your target metrics in the metric browser, you need to add an actual instance of your new target type to the targets.xml file without re synchronizing the Management Agent with the Management Service. To do this:	
Example 2-7 target2add.xml File	
Add the contents of your new target information file to the targets.xml file.	
Example:	
Verify that your target information was added correctly:	
Example:	
Reload the modified target information.This operation is required in order for the new target instance to appear in the metric browser.	
Looking at Your Metrics	
Once the target instance has been added to the targets.xml file and the new information has been reloaded, you can view available targets and metrics through the metric browser. Access the following URL using any web browser	
To find the port number used by the Management Agent, open the emd.properties file and search for the EMD_URL line.	
Defining your target type metrics allows you to view the data belonging to that target instance at any time. However, you may also wish to collect the values of some of your metrics to analyze the variations over some period of time. You set up metric collection intervals for your target instances by defining a default collections file for the specific target type.	
Note: Full definitions and usage instructions for descriptor tags used in the collection file can be found in the $AGENT_HOME/sysman/admin/dtds/TargetCollection.dtd file.	
Located in $AGENT_HOME/sysman/admin/default_collection, the default collection file (XML) for a target type specifies the metrics to be collected and sent to the Management Repository, as well the frequency of these scheduled collections. Although you can use any name for a default collections file, it is recommended that you use a naming convention that makes it easy to associate the collection file with the corresponding target type metadata filename, such as using a filename identical to the target type metadata filename.	
The following example is an excerpt from the Microsoft SQL Server default collections file.	
Example 2-8 Microsoft SQL Server Default Collections File	
For every target instance, the data collection intervals for the four metrics would be as follows:	
If the threshold is not set in the collection file, administrators will not be able to edit/add the column threshold value from the Enterprise Manager console at a later point. To allow an administrator to change a threshold that does not have a default value, you can add a "NotDefined" entry for a specific threshold. For example:	
Under certain circumstances, you may not want to have all target instances use the same collection schedule. To specify that different instances of a target type have different collection schedules, you can add additional collections files (for specific target instances) to $AGENT_HOME/sysman/emd/collections.	
The following example shows a situation where we want two specific target instances ("Simple Server Alpha" and "Simple Server Beta") to have different "Response" and "Load" collection schedules. The two collection files to be added to the collections directory would contain the following:	
Example 2-9 Default Collection File for Simple Server Alpha	
Example 2-10 Default Collection File for Simple Server Beta	
Here we are collecting results from Simple Server Alpha's "Response" every 10 minutes and Simple Server Beta's "Load" every 30 minutes.	
Developing a Management Plug-in allows you to add new SYSTEM reports that are associated with the target type(s) defined by your Management Plug-in. SYSTEM reports cannot be edited or deleted from the Enterprise Manager console. All out-of-box reports supplied with Information Publisher are SYSTEM reports.	
To add report definitions to your Management Plug-in, you simply create a report definition file for inclusion with the plug-in. A report definition file consists of a conventional PL/SQL block that specifies pertinent information to extract from the Management Repository and the report elements used to format and display that data. You may define multiple reports for a given target type. For more information on the Information Publisher PL/SQL API and creating a plug-in report definition file, see Chapter 6, "Adding Reports".	
If reports are defined as part of a Management Plug-in, and at least one of the reports is registered to be shown in the context of the target default home page (it is registered using the “add_report” PL*SQL function) then one or more related links may be added to the target default home page using the process described in this section.	
Related Links are defined as dynamic instance properties in the target metadata file using the “DynamicProperties” tag with the following parameters: :	
Also, a “QueryDescriptor” tag block that retrieves the number of “Name/Dest” pairs listed in PROP_LIST is required. The “RelatedLink_Name_#” appears as the hyperlinked text. The “RelatedLink_Dest_#” is the link destination (URL or Javascript).	
Example 2-11 is an excerpt from a target metadata file that contains a “DynamicProperties” block defining three related links that will appear on the default target home page.	
Example 2-11 Related Links	
Note that in Example 2-11 the Perl script “getLinks.pl” is used to return the three links. The content of this script is shown in Example 2-12.	
Example 2-12 Script getLinks.pl	
Because "getLinks.pl" is a support script, you add it to the Management Plug-in as a separate file using the EM CLI "add_mp_to_mpa" verb with the argument:	
Be very careful with the “javascript” syntax you use. Only some of the syntax is common to the popular browsers. For example, the second argument to “window.open” is a window name used for internal reference to the window and it must not contain any spaces.	
In addition to the target metadata, collection, and report definition files, you may also include specialized scripts and/or binary files that are used to include obtain status or metric data from your custom targets. An example is the Perl script "getLinks.pl" mentioned in the previous section.	
Successfully creating target type metadata and collection files requires valid XML code. To assist with writing valid XML, Enterprise Manager provides ILINT, a development tool you can use to validate the XML used to define your code as you develop your Management Plug-in. For more information on ILINT, see Chapter 4, "Validating XML".	
When developing target type definition files for new Management Plug-ins, special consideration must be paid to the way in which you want a particular target type to be monitored. How a target type is monitored can greatly affect Enterprise Manager performance. General guidelines for defining target metadata and collections should be followed in order to optimize system performance.	
Metadata is data about data. Generically, the term refers to any data used to aid in the identification, description and location of a network entity. Target metadata for an Enterprise Manager target consists of the metrics a user wants to expose and the methods used to compute those metrics.	
Whenever the target metadata changes, the metadata version (meta_ver) should be incremented.	
Performance metrics can be classified into metrics that need to be computed to track performance trends and others that are more useful to drill down to get the details at a particular point in time. Real-time only metrics include those that need contextual information to return detailed information about a particular subset of the system, e.g., a specific tablespace to diagnose further.	
A key column in a metric is used in the management repository to trend performance data on an axis, e.g., the tablespace usage per database tablespace. An inappropriately chosen key column can result in too much collected data within the management repository. For instance, using the process ID in a Processes metric to upload to the repository.	
You can have no key columns, but the query descriptor must return a single row.	
In some cases, metric columns can be used to compute the values of other more interesting metric columns. In the cases where the original columns are not interesting for trending, these can be marked transient so that they are not uploaded to the repository and waste space.	
When creating metrics for custom targets, it is important to take into account the cost (CPU usage) of creating additional operating system (OS) processes. This is especially true for systems running Microsoft Windows where process creation is much more CPU intensive compared to UNIX-based systems such as Linux or Solaris. The percentage CPU utilization increases linearly with creation of child processes. To minimize process creation, avoid executing OS programs or commands from metric collection scripts. For example, when writing Perl scripts, avoid using the system function or backticks (``) to execute an OS command.	
Target properties are named values that can be used for computing the metrics of the target, or for display in the home page of the target. The list of target properties is specified in the metadata to allow data driven user interfaces to register targets, and for the Oracle Management Agent to validate that a target instance is complete.	
Use of dynamic properties reduces the work involved in configuring a target by allowing certain properties to be computed rather than requiring the user to correctly specify their values (for example, the "Version" property of a database can be reliably computed given addressing information).	
The Oracle Management Agent allows for the fact that the target needs to be up for the successful computation of these dynamic properties by recomputing the properties each time a target bounce is detected (each time the target status changes to "Up").	
The metric concept, as it pertains to the Oracle Management Agent, can be used to denote configuration and performance information.	
A required metric for all targets is the "Response" metric consisting of a "Status" column with a condition on it. This metric is used to track the availability of the target.	
The conventions used in naming your metrics are extremely important because many areas of the Enterprise Manager user-interface are data-driven. For example, actual metric column labels and key values can be part of the page title, instruction text, or column headings. Specifically, these elements would appear on the Metric Details page, Edit Metric Threshold page, Notification Rules page, and other pages of the Enterprise Manager user-interface. For this reason, Oracle recommends the following metric naming conventions.	
Example: Tablespace Usage (%)	
Example: Table Space Used (%)	
Example: all (tablespace) objects	
Collections are the mechanism by which the Oracle Management Agent periodically computes the metrics of a target and uploads the data to the Management Repository. The most important thing to keep in mind when creating the collections for a target type is to avoid overburdening the Management Repository with excess data. In a large enterprise with hundreds of Oracle Management Agents and thousands of targets, the key to scalability is to limit the amount of data collected about a target that is uploaded to the repository. This is especially important since raw data is maintained for 24 hours - rollup benefits only accrue beyond that point.	
Alert messages tell the user when something is wrong. These messages should also assist the user in solving the problem. We recommend following these content guidelines when writing alert messages:	
It is important to pay attention to metric evaluation order so as to avoid metric collection failures. For example, the Response metric should be evaluated first in order to prevent a collection failure when a target is down. The Oracle Management Agent will evaluate metrics based on the order they are listed in the collection XML file.	
Note: Programmatic logic of the Oracle Management Agent distributes the metric evaluations so that each evaluation is separated by approximately 10 seconds.	
In general, there is almost never a good reason to collect information at intervals smaller than 5 minutes. In the rare case where data variations occur at a smaller granularity and administrators need to be notified sooner, the Oracle Management Agent provides the capability to use a small collection interval to compute the metrics and threshold information while still only uploading data once in every n computation cycles.	
Some metrics can result in the creation of a large number of rows in a Management Repository table. In some cases, only a subset of these rows may need to be uploaded to the repository. The Oracle Management Agent allows the specification of filter conditions that can be used to find rows to skip uploading. Also, a "limit_to" clause can be used on metrics that return sorted metric data to upload only the first n rows to the repository.	
Once you have created the Management Plug-in files, the next step is to create a Management Plug-in Archive (MPA). The MPA plays an important role at various stages of the Management Plug-in lifecycle. It serves the following functions:	
A Management Plug-in is created by adding the files previously discussed to an MPA using the Enterprise Manager Command Line Interface (EM CLI). Each call to the EM CLI adds another unique Management Plug-in to the MPA. For each Management Plug-in, the EM CLI allows you to specify a base version of the Management Agent that the plug-in is expected to work against and a base version that the Oracle Management Service must be for the plug-in to be imported into the Management Repository. To create a MPA, perform the following	
Example 2-13 Using the EM CLI to Create a Management Plug-in Archive	
Briefly, the verb options are:	
The name of the Management Plug-in Archive where the Management Plug-in is to be added.	
The version of the Management Plug-in to be created. The Management Plug-in version should be incremented whenever any of the files in the management Plug-in are changed.	
The explicit path of the target type metadata file.	
The explicit path of the default collection file.	
The minimum OMS version that is compatible with this Management Plug-in.	
The type and path of the other Management Plug-in files to be added. The following types are supported:	
The functional description for the Management Plug-in. This description appears in the Enterprise Manager console once the plug-in has been imported.	
The Requirements description of the Management Plug-in. This description appears in the Enterprise Manager console and specifies any plug-in deployment requirements.	
After using the EM CLI to create the Management Plug-in Archive, you are ready to upload the Management Plug-in Archive file to Enterprise Manager. Uploading the archive allows you to view all available plug-ins contained in the archive. You can then select which plug-ins you want to import into Enterprise Manager. You must have Super Administrator privileges in order to add Management Plug-ins to the system.	
To upload a Management Plug-in Archive:	
Figure 2-1 Import Management Plug-ins Page	
Upon successful import, the plug-in appears in the Management Plug-in list.	
At this point, the Management Plug-ins have been extracted from the archive file and imported into the Management Repository. The Management Plug-in is now ready to be deployed to Management Agents within your Enterprise Manager environment. To deploy your plug-in, click the Deploy icon. Enterprise Manager guides you through a simple deployment process.	
After a Management Plug-in has been deployed to an Agent, you are ready to add new target instances of the type defined by your Management Plug-in. When you add a target instance, monitoring and administrative functionality is automatically extended to that target. To add a target instance:	
A default target home page is provided that supplies requisite information about the target as shown in Figure 2-3.	
From a default target home page, a user can drill down to specific metrics that have been defined for the target type.	
The following figure shows a target home page for a Microsoft SQL Server instance.	
Figure 2-3 Microsoft Commerce Server Target Home Page	
Because report definitions were included with this Management Plug-in, an additional Reports subtab appears with the home page. As shown in the next figure, adding reports can greatly improve the monitoring capabilities of your Management Plug-in. For more information about creating Management Plug-in report definitions, see Chapter 6, "Adding Reports".	
Figure 2-4 Microsoft SQL Server Reports Subtab	
On occasion, you may encounter errors when when managing Management Plug-ins. The most common problems are as follows:	
Ensure that the Management Agent is up and running.	
Log in as "root" and execute the root.sh script at the Management Agent.	
Ensure that the Management Agent is up and running.	
The Management Plug-in must be undeployed from ALL Agents to which it was previously deployed. Note that this includes any Agents that are currently down.	
Depending on the collection interval settings, it may take time for the Agent to collect the metric data for the target. Management views used by the reports can also determine when data is available, as would be the case if queries against the Management Repository are performed against rolled up data.	
Enterprise Manager provides a Plug-in Development Kit (PDK) containing command line tools that help you develop and test Management Plug-ins with ease and efficiency. These tools include the following:	
check_mp	
-- verifies that a Management Plug-in contains correct XML syntax in all metadata files and validates them against DTD files. Additionally, the tool performs semantic checks to determine possible problems. collect_mp_stats	
-- collects metric data defined by the Management Plug-in metadata and generates an HTML-based report that can help you evaluate the Management Plug-in's performance impact on the Agent. To download the PDK directly from the Enterprise Manager console:	
Once a Management Plug-in is deployed and a target instance created, a basic default target home page is automatically generated. The Management Plug-in framework lets you increase the utility of this page allowing you to display performance and configuration data using charts (pie, bar, and time series). By adding charts to a target home page, you can present key monitoring information about the target in an intuitive, easy-to-read format. This allows administrators to monitor and manage target instances with ease. In some cases, adding charts may eliminate the need for creating specialized reports See "Adding Reports" for more information about Information Publisher.	
This chapter covers the following topics:	
The default target home page provides basic information regarding target status such as Availability, Up/Down status, and Alerts. Depending on what level of monitoring support the Management Plug-in provides, there may be additional sections. Most all information is in tabular format.	
Figure 3-1 Default Target Home Page without Charts	
Adding charts to the target home page makes key graphical information normally found in Enterprise Manager reports readily available on the target home page.	
Figure 3-2 Default Target Home Page with Charts	
By adding a chart definition XML file to your Management Plug-in Archive, you will be able to specify any number of charts (pie, bar, and time series) on the target home page.	
Like other Management Plug-in files, the XML used to define a home page chart file is straightforward and relatively compact. This file defines the metadata used to render charts using metric or SQL data sources for the target.	
Home Page Chart File Structure	
From the examples, you can see that the basic structure of the home page charts definition file is organized according to chart location on the target home page. One chart may be placed on the top of the page and to the right of the General Information Region (TopPane). Any number of charts may be placed in a row that renders just below this area (MiddlePane).	
Figure 3-3 TopPane and MiddlePane Locations within the Target Home Page	
Although there is no technical limit to the number of charts you can add, in practice, at most 3 - 4 charts will fit comfortably in the MiddlePane.	
The home page charts file must begin and end with a HomepageCharts tag to identify the XML file as a chart definition file for the plug-in. As shown in the following sample, the opening HomepageCharts tag requires that you specify a TARGET_TYPE property, which is the target type defined by the TYPE parameter of the TargetMetadata tag found in the Management Plug-in's target type metadata file. See "Target Definition Files" for more information about the target type metadata file.	
Between the opening and closing HomepageCharts tags you define the charts and optionally when they should appear on the target home page using the ChartSet tag. The ChartSet tag functions as a container for all charts that are to rendered on the target home page. You can define multiple ChartSet containers within the home page chart definition file. By using the optional META_VER parameter, you can specify different sets of charts (or no charts at all) be rendered on the target home page for specific versions of the Management Plug-in target type. Shown below are the three acceptable implementations of the ChartSet tag:	
In the example, each implementation of the ChartSet tag operates as follows:	
<ChartSet META_VER="1.0">	
Charts defined in this set appear on target home pages for version 1.0 Management Plug-in target types.	
<ChartSet>	
Charts defined in this set appear on target home pages for all Management Plug-in target types that are not version 1.0 or 2.0 (charts displayed by default).	
<ChartSet META_VER="2.0" />	
No charts will appear on the target home pages for version 2.0 Management Plug-in target types.	
Each ChartSet block gives you the option to define charts in two locations: TopPane and MiddlePane. The TopPane refers to the top right of the target home page, next to the General Metrics section. This area can accommodate a single chart. The MiddlePane refers to the row immediately below this area. You can define charts for either or both areas.	
Once you have decided the when and where the charts should appear, you need to define the actual charts. Within each pane, you use the Chart tag to specify the type of chart to be rendered, chart attributes, as well as any data acquisition methods required to render the chart.	
As shown in the example, each Chart tag must specify one of the following TYPE properties that define the type of chart (pie, time series, bar) to be rendered on the target home page:	
The following example demonstrates chart implementation for a VMware target type. As shown in Figure 3-5, both bar and time series charts have been created, making use of a variety of optional chart properties, such as stacked, timeGranularity, shadowEffect, xAxisLabel, yAxisLabel. The code used to define the charts is shown in Example 3-1.	
Example 3-1 Home Page Charts XML for VMware	
Between the beginning and ending Chart tags, you define how the chart should be rendered by specifying chart properties using ChartProperty tags. For example:	
You may specify as many ChartProperty tags a necessary to render the exact type of chart you want to appear. For example:	
The following table lists chart properties that apply to all chart types.	
Important: ChartProperty values are case-sensitive	
Table 3-1 Chart Properties	
Option	Required
---	---
chartType	Yes
width	No
height	No
timeGranularity	No
legendPosition	No
For Time Series/Bar Charts	
default	Controls the location of the chart.
legendVisible	No
legendWidthFraction	No
legendHeightFraction	No
title	No
titleVisible	No
subtitle	No
orientation	No
shadowEffect	No
The default setting for bar charts is "none" and the default for pie charts is "3d".	
noDataMessage	No
sql	No
Note: If the SQL text contains any XML syntax characters, then the SQL text should be embedded in a CDATA block. Also, if the target instance GUID is needed in the SQL query, HC_TARGET_GUID can be used.	
axisMin	No
axisMax	No
xAxisLabel	No
showXAxisLabels	No
yAxisLabel	No
yAxisVisible	No
destination	No
reportTitle	No
fill	No
When using the fill property, ensure that there is no confusion for users as to whether the data in the chart is cumulative or absolute	
Chart Type-Specific Properties	
The following tables list chart properties that are specific to each of the three chart types (pie, time series, and bar).	
Table 3-2 Time Series Chart Properties	
Option	Required
---	---
metric	Yes
column	Yes
yAxisWidth	No
Table 3-3 Pie Chart Properties	
Option	Required
---	---
pieValuesInLegend	No
pieSlicesFromColumn	No
showSlicePercentLabels	No
showSliceValueLabels	No
hideZeroSlices	No
Table 3-4 Bar Chart Properties	
Option	Required
---	---
barLegendLabel#	Yes
stacked	No
Any chart appearing on the target home page can be linked to another destination that provides more information/greater detail. This provides users with easy 'drill-down' access to pertinent information.	
You make a chart linkable by setting the destination	
chart property. The Management Plug-in framework allows you to link a chart to one of three destinations:	
The following example implements a time series chart that is linked to the Response Metric Detail page.	
Required Chart Property Values for Destinations	
Depending on the destination type, linked charts require that certain chart properties be included with the chart definition.	
metricDetail and keyedMetricDetail	
To link a chart to either a Metric Detail page or a Metric Detail page for keys, the required chart properties are column, metric, and timeGranularity.	
If both metric and column properties have already been defined, those values will be used to generate a link for that metric. All that is required is to specify the appropriate destination type (metricDetail or keyedMetricDetail). Implementing links in this way makes it possible to create a chart that can link to a Metric Detail page via custom SQL queries (when metric and column properties would normally not be specified).	
The timeGranularity property will default to HOUR if it is not explicitly defined as part of the chart definition. However, if this property had already been specified in the chart definition, it will be used for the link as well.	
reportTab	
To link a chart to a report, the reportTitle chart property is required.	
Once you have defined your home page charts file, you use the Enterprise Manager Command Line Interface (EMCLI) verb add_mp_to_mpa	
to add the new home page chart definition file to a Management Plug-in Archive. As shown in the following example, you specify HOMEPAGE_DEFINITION as the file type to add a home page chart definition file to the plug-in archive.	
Example 3-2 Using EMCLI to Create a Management Plug-in Archive	
At this point, you are now ready to use Enterprise Manager to import and deploy the new Management Plug-in. Once you add a target instance of the plug-in target type, your newly defined charts will appear on the target home page.	
Successfully defining new Management Plug-in target definition files relies on accurate XML: It is essential that your Management Plug-in's target metadata and collection files be syntactically and structurally correct. To assist you with developing your XML files, Enterprise Manager supplies an XML verification tool called ILINT. This chapter covers the following topics:	
Integrator LINT (ILINT) is a tool that helps you validate target metadata while defining new target types: You can perform real-time validation for the XML you write for target, instance, and collection metadata while you are writing the target metadata. ILINT also allows you to test runtime data collection for a new target type to validate data correctness.	
This tool can also be used as an integrator certification tool to ensure that target type metadata conforms to acceptable standards.	
ILINT allows you to perform two types of validation: static, which checks the correctness of your XML and dynamic, which checks the correctness of the data collected. ILINT validates for proper XML syntax by comparing target type metadata files against their respective DTD's ($AGENT_HOME/sysman/admin/dtds) and management agent semantics.	
ILINT performs a static XML validation by performing heuristic checks, checking Management Repository constraints, and validating XML syntax on the following files:	
Directory Location: $AGENT_HOME/sysman/admin/metadata	
Directory Location: $AGENT_HOME/sysman/admin/default_collection	
Directory Location: $AGENT_HOME/sysman/emd	
Note: In general, the targets.xml file should not be edited manually. However, when developing new metadata files, you may need to add specific target instance information to the target instance file for testing purposes. The targets.xml file must be structurally and syntactically correct because the Management Agent relies on the instance-specific information contained within the file.	
Specifically, ILINT validates the metadata and, if it exists, the default collection for a specific target type using a validating parser. ILINT uses all target properties (both static and dynamic) as defined in the targets.xml file.	
Heuristic Constraint Checks'	
Target Metadata Limitations Based on Management Repository Constraints	
Dynamic validation involves running specific metrics through the fetchlets to validate correctness and view output.	
Dynamic validation allows you to check the correctness of the data collected for a target type. ILINT performs dynamic XML validation by executing all metrics defined for the new target and displaying viewable output in much the same way as the metric browser. For more information about the metric browser, see "Validate your new target type definitions.".	
While performing dynamic validation, ILINT executes the specified metric and checks for errors using all properties (dynamic and static). ILINT then generates an output table containing:	
In order for the Enterprise Manager Grid Control console to display metrics for a specific target type, syntactic rules must be followed. ILINT can also be used to verify that the current version of a metadata file is compatible with an earlier version of the same metadata file. This compatibility check is stringent: Two target metadata files being compared by ILINT must be syntactically identical.	
ILINT generates two types of messages, each directed to different output file streams: STDOUT and STDERR.	
Message Types	
Informational and Warning messages are printed to STDOUT.	
Error messages are printed to STDERR.	
Specifying Separate Output Files	
You can specify separate STDOUT and STDERR output files when running ILINT. File specification may differ depending on the operating system and/or shell used for your environment.	
Example 4-1 Specifying STDOUT and STDERR (ksh, bash, and sh)	
Example 4-2 Specifying STDOUT and STDERR (csh and tcsh)	
Generating Syntactically Formatted XML Output	
ILINT optionally allows you to generate a syntactically consistent view of a metadata file. For more information on ILINT options and generating valid XML, see "Generating Syntactically Correct XML".	
In order to validate an XML file, ILINT needs to know the location of the DTD (Document Type Declaration) associated with the XML file being validated. Make sure that the DOCTYPE directive specifying the relative path to the appropriate DTD is included in each XML file.	
The following DTDs are used within the Enterprise Manager framework:	
The following example shows a DOCTYPE declaration that should be used when testing a target collection XML file located in the $AGENT_HOME/sysman/admin/default_collection directory or an instance specific collection file in the $AGENT_HOME/sysman/admin/collection directory.	
Example 4-3 DOCTYPE Declaration	
Private external DTDs (DTDs shared between multiple documents and intended for use by a single author or group of authors) are identified by the keyword SYSTEM. In this case, anyone having the appropriate OS privileges to the machine running the Management Agent is considered an author.	
ILINT is part of the Enterprise Manager command line utility and is accessed as an emctl option. ILINT uses the following syntax:	
emctl ilint [-o <test_name> [-p]] -m <target_metadata.xml> [-m2 <compare_metadata.xml][-c <target_collection.xml>] [-i <target_instance.xml>] [-t <target_name>] [-r <metric_name>] [-d <0	1
Table 4-1 ILINT Options	
Option	Description
---	---
-o <test_name>	Automatically locates the metadata directory, default collection directory and collection file, and the targets.xml file. When the "-o" option is specified, the following applies:
-p	Generate syntactically formatted XML for the metadata file. This option can only be used if the -o option is specified.
-m <target_metadata.xml>	Full path and file name of the metadata file to be checked. Note: If the -o option is specified, the value must be just a file name--the full path must be omitted. This is the only required option to ILINT.
-m2 <compare_metadata.xml>	Full path and file name of a second metadata file to be compared against the target metadata file specified by the -m option. This option can be used to check version compatibility between metadata files. Note: If the -o option is specified, the value must be just a file name--the full path must be omitted.
-c <target_collection.xml>	Full path and file name of the target collection file. Note: If the -o option is specified, the value must be just a file name--the full path must be omitted.
-i <target_instance.xml>	Full path and file name of the target instance file. Note: If the -o option is specified, the value must be just a file name--the full path must be omitted.
-t <target_name>	Name of the target (as specified in the targets.xml file) to be validated.
-r <metric_name>	Name of the metric to be executed.
-d (0-3)	Sets the debug level (default value is 1). This option specifies the type of information supplied by ILINT.
The following examples demonstrate common ILINT usage scenarios discussed previously.	
Usage	
Example 4-4 Validating a Target Metadata File	
The metadata directory and file (-m my_database.xml) is located automatically and associated with the test name "meta_test" (-o meta_test). The metadata file is validated against the database "my_database3" (-t my_database3) which is defined in the targets.xml file. Only error messages are returned (-d 0).	
Example 4-5 Validating a Target Collection File	
The collection directory and file (-c my_collection.xml) is located automatically and associated with the test name "collect_test" (-o collect_test). Because this validation is run in full debug mode (-d 3), all error, warning, and informational messages are returned.	
Example 4-6 Limited Metadata Validation (target type metadata file validation only)	
As shown in this example, you can perform a limited target type metadata file XML validation by specifying a non-existent targets.xml file and a non-existent target. Limited validation quickly checks XML syntax used in the target metadata file as well as any limitations in metadata due to repository constraints.	
Usage	
Example 4-7 Validating a Metric	
In this example, ILINT validates the database metric "Database_Resource_Usage." The metadata directory and file (-m database.xml) is located automatically and associated with the test name "test_dynamic" (-o test_dynamic). This metric is validated against the target database named "payroll_db" (-t payroll_db) which is defined in the targets.xml file. Only error messages are returned (-d 0).	
Usage	
Example 4-8 Validating Target Metadata Versions	
In this example, ILINT compares two versions of the target type metadata file "database.xml." Because the -o option is used, ILINT looks for the most recent version of "database.xml" in $AGENT_HOME/sysman/admin/metadata and the older version of this file in $AGENT_HOME/sysman/admin/metadata/old.	
Note: If you do not want to use the default directory locations, omit the -o <test_name> option and specify absolute pathnames for -m and -m2.	
Usage	
XML output is sent to a file named <test_name>.xml.tmp1	
Example 4-9 Generating Syntactically Correct XML	
The XML output from this example is sent automatically to the file "test_generate.xml.tmp1." If the "-m2" option is specified, the XML output for the second target metadata file is sent to "test_generate.xml.tmp2"	
By defining new job types, you can extend the utility and flexibility of the Enterprise Manager job system. Adding new job types also allows you to enhance Corrective Actions. This chapter assumes that you are already familiar with the Enterprise Manager job system. This chapter covers the following:	
Enterprise Manager allows you to define jobs of different types that can be executed using the Enterprise Manager job system, thus extending the number and complexity of tasks you can automate.	
By definition, a job type is a specific category of job that carries out a well-defined unit of work. A job type is uniquely identified by a string. For example, OSCommand may be a job type that executes a remote command. You define a job type by using an XML specification that defines the steps in a job, the work (command) that each step performs, and the relationships between the steps	
The following table shows some of the Enterprise Manager job types and their functions.	
Table 5-1 Examples of Job Types	
Job Type	Purpose
---	---
Backup	Backs up a database
Backup Management	Performs management functions such as crosschecks and deletions on selected backup copies, backup sets, or files.
CloneHome	Clones an Oracle Home directory
DBClone	Clones an Oracle database instance
DBConfig	Configure monitoring for database releases prior to 10g.
Export	Exports database contents/objects within an Enterprise Manager user's schemas and tables.
GatherStats	Generate and modify optimizer statistics.
OSCommand	Runs an operating system command or script.
HostComparison	Compares the configurations of multiple hosts
Import	Imports the content of objects and tables.
Load	Loads data from a non-Oracle database into an Oracle database
Move Occupant	Moves occupants of the SYSAUX tablespace to another tablespace.
Patch	Patches an Oracle product.
Recovery	Restores or recovers a database, tablespaces, datafiles, or archived logs.
RefreshFromMetalink	Allows Enterprise Manager to download patches and critical patch advisory information from the OracleMetaLink support site.
Reorganize	Rebuilds fragmented database indexes or tables, moves objects to a different tablespace, or optimizes the storage attributes of specified objects.
Multi-Task	Runs a composite job consisting of multiple tasks. See About Multi-Task Jobs.
SQLScript	Runs a SQL or PL/SQL script.
An Enterprise Manager job consists of a set of steps. Each step executes a command or script. The job type defines how the steps are assembled. For example, which steps execute serially, which ones execute in parallel, step order and dependencies. You can express a job type, the steps and commands in XML (see Specifying a New Job Type in XML), and the job system will then construct an execution plan from the XML specification which will allow it to execute steps in the specified order.	
A new job type is specified in XML. The job type specification provides information to the job system about:	
The XML job type specification is then added to a Management Plug-in archive. Once the Management Plug-in is added to Enterprise Manager, the job system will have enough information to schedule the steps of the job, as well as what to execute in each step.	
Example 5-1, "Job Type DTD" shows the DTD that defines the XML that will be used to specify a job type.	
Example 5-1 Job Type DTD	
Depending on how a specific job type performs tasks on targets to which it is applied, a job type will fall into one of the following categories :	
Note: Iterative stepsets may be used for multi-node and combination job types to repeat the same activity over multiple targets.	
An Agent-bound job type is one whose jobs cannot be run unless the Agent of one or more targets in the target list is functional and responding. A job type that fits this category must declare itself to be Agent-bound by setting the agentBound	
attribute of the jobType	
XML tag to true. If a job type is Agent-bound, the job system does not schedule any executions for the job type if one or more of the Agents corresponding to the targets in the target list of the job execution are down (or not responding); the job (and all its scheduled steps) are set to a special state called Suspended/Agent down. The job is kept in this state until the Enterprise Manager repository tier detects that the emd has come back up. At this point the job (and it's steps) are set to scheduled status again, and the job can now execute. By declaring their job types to be Agent-bound, a job-type writer can ensure that the job system will not schedule the job when it has detected that the Agent is down.	
Note: Single-node job types are Agent-bound by default while multi-node job types are not.	
If an Agent-bound job has multiple targets in its target list, it is marked as suspended even if one of the Agents goes down.	
A good example of an Agent-bound job type would be the OSCommand	
job type, which executes an OSCommand	
using the Agent of a specified target. Note, however, that not all job types are Agent-bound: a job type that executes SQL in the repository is not Agent-bound.	
Oracle Enterprise Manager has a heartbeat mechanism which enables the repository tier to quickly determine when a remote emd goes down. Once an emd is marked as "down", all Agent-bound job executions that have that emd as one of the targets in their target list are marked "Suspended/Agent Down". There is, however, still a possibility that the job system might try to dispatch some remote operations between when the emd went down and when the repository detects the fact. In such cases, when the step executes, if the Agent cannot be contacted, then the step is set back to SCHEDULED state, and is retried by the job system. The series of retries continues until the heartbeat mechanism marks the node as down, at which point the job is suspended.	
Once a job is marked as Suspended/Agent Down, by default the job system keeps the job in that state until the emd comes back up. There is a parameter called the execution timeout, which if defined, can override this behavior. The execution timeout is the maximum amount of time (in hours) that the job will be kept in suspended state; if the Agent is not back up within this interval, the job (and it's suspended steps) are all set to ABORTED state. Note that the execution timeout is an attribute of a job, not a job type. The execution timeout can be set by using one of the flavors of submit_job in the Commands section.	
Note that the only way for a job execution that is in Suspended/Agent down state to resume is for the Agent(s) to come back up. The resume_execution()	
APIs cannot be used to resume the job.	
The unit of execution in a job is called a step. A step has a command, which determines what work the step will be doing. Each command has a java class, called a command executor, that implements the command. A command also has a set of parameters, which will be interpreted by the command executor. The job system will offer a fixed set of pre-built commands, such as the remote operation command (which executes a command remotely), the file transfer command that transfers a file between two Agents, and a get file command that streams a log file produced on the Agent tier into the Management Repository).	
Steps are grouped into sets called stepsets. Stepsets can contain steps, or other stepsets and can be categorized into the following types:	
Serial Stepsets: Serial stepsets are step sets whose steps execute serially, one after another. Steps in a serial stepset can have dependencies on their execution. For example, a job can specify that step S2 executes only if step S1 completes successfully, or that step S3 executes only if S1 fails. Steps in a serial stepset can have dependencies only on other steps or stepsets within the same stepset. By default, a serial stepset is considered to complete successfully if the last step in the stepset completed successfully. It is considered to have aborted/failed if the last step in the stepset was aborted. This behavior may be overridden by using the stepsetStatus	
attribute. Overriding is allowed only when the step is not a dependency on another (no successOf	
/failureOf	
/abortOf	
attribute).	
Parallel Stepsets: Parallel step sets are stepsets whose steps execute in parallel (execute simultaneously). Steps in a parallel stepset cannot have dependencies. A parallel stepset is considered to have succeeded if all the parallel steps in it have completed successfully. It is considered to have aborted if any step within it was aborted. By default, a parallel stepset is considered to have failed if one or more of its constituent steps failed, and no steps were aborted. By default, a parallel stepset is considered to have failed if one or more of its constituent steps failed, and no steps were aborted. This behavior can be overridden by using the stepsetStatus attribute..	
Iterative Stepsets: Iterative stepsets are special stepsets that iterate over a vector parameter. The target list of the job is a special case of a vector parameter, called job_target_names	
. An iterative stepset "iterates" over the target list or vector parameter (as the case may be), and essentially executes the stepset N times, once for each value of the target list or vector parameter. Iterative stepsets can execute in parallel (N stepset instances execute at simultaneously), or serially (N stepset instances are scheduled serially, one after another). An iterative stepset is said to have succeeded if all its N instances have succeeded. Otherwise, it is said to have aborted if at least one of the N stepsets aborted. It is said to have failed if at least one of the N stepsets failed and none were aborted. Steps within each iterative stepset instance execute serially, and can have serial dependencies, similar to those within serial stepsets. Iterative serial stepsets have an attribute called iterateHaltOnFailure	
. If this is set to true, the stepset halts at the first failed or aborted child iteration. By default, all iterations of an iterative serial stepset execute, even if some of them fail (iterateHaltOnFailure=false	
).	
Switch Stepsets: Switch stepsets are stepsets where only one of the steps in the stepset is executed based on the value of a specified job parameter. A switch stepset has an attribute called switchVarName	
, which is a job (scalar) parameter whose value will be examined by the job system to determine which of the steps in the stepset should be executed. Each step in a switch stepset has an attribute called switchCaseVal	
, which is one of the possible values the parameter specified by switchVarName	
can have. The step in the switch stepset that is executed is the one whose swithCaseVal	
parameter value matches the value of the switchVarName	
parameter of the switch stepset. Only the selected step in the switch stepset is executed. Steps in a switch stepset cannot have dependencies with other steps or stepsets within the same stepset or outside. By default, a switch stepset is considered to complete successfully if the selected step in the stepset completed successfully. It is considered to have aborted/failed if the selected step in the stepset was aborted/failed. Also, a switch stepset will succeed if no step in the stepset was selected. For example, there is a switch stepset with two steps, S1 and S2. One can specify that switchVarName	
is "sendEmail" and specify switchCaseVal	
for S1 to be true and for S2 to be false. If the job is submitted with the job parameter sendEmail	
set to true, then S1 will be executed. If the job is submitted with the job parameter sendEmail	
set to false , then S2 will be executed. If the value of sendEmail	
is anything else, the stepset would still succeed but instead do nothing.	
Nested Jobs: One of the steps in a stepset may itself be a reference to another job type. A job type can therefore include other job types within itself. However, a job type cannot reference itself. Nested jobs are a convenient way to reuse blocks of functionality. For example, performing a database backup could be a job in its own right, with a complicated sequence of steps; however, other job types (such as patch and clone) might use the backup facility as a nested job. With nested jobs, the job type writer can choose to pass all the targets of the containing job to the nested job, or only a subset of the targets. Likewise, the job type can specify whether the containing job should pass all its parameters to the nested job, or whether the nested job has it's own set of parameters (derived from the parent job's parameters). Please see the examples section for examples on how to use nested job types. The status of a nested job is determined by the status of the individual steps and stepsets (and possibly other nested jobs) within the nested job.	
Affecting the Status of a Stepset	
The default algorithm by which the status of a stepset is computed from the status of its steps can be altered by the job type, using the stepsetStatus	
attribute of a stepset. By setting stepsetStatus	
to the name (ID) of a step/stepset/job contained within it, a stepset can indicate that the status of the stepset depends on the status of the specific step/stepset/job named in the stepStatus	
attribute. This feature is useful if the author of a job type wishes a stepset to succeed even if certain steps within it fail. A good example would be a step that runs as the final step in a stepset in a job that sends e-mail about the status of the job to a list of administrators. The actual status of the job should be set to the status of the step (or steps) that actually did the work, not the status of the step that sent email. Note that only steps that are unconditionally executed can be named in the stepsetStatus	
attribute: a step/stepset/job that is executed as a successOf	
or failureOf	
dependency cannot be named in the stepsetStatus	
attribute.	
Passing Job Parameters	
The parameters of the job can be passed to steps by enclosing the parameter name in %: these are called placeholders. for example, %patchNo%	
would represent the value of a parameter named patchNo	
. The job system will substitute the value of this parameter when it is passed to the command executor of a step. Placeholders can be defined for vector parameters as well, by using the [] notation: For example, the first value of a vector parameter called patchList	
would be referenced as %patchList%[1]	
, the second would be %patchList%[2]	
, and so on.	
The job system provides a pre-defined set of placeholders that can be used. These are always prefixed by job_	
. The following placelholders are provided:	
In addition to the above placeholders, the following target-related placeholders are also supported:	
The above placeholders are not interpreted by the job system, but by the Agent. For example, when %emd_root%	
is used in the remoteCommand	
or args	
parameters of the remoteOp	
command, or in any of the file names in the putFile	
, getFile	
and transferFile	
commands, the Agent substitutes the actual value of the Agent root location for this placeholder.	
Job Step Output and Errors	
A step consists of a status (which indicates whether it succeeded, failed, or aborted); some output, which is the log of the step; and an error message. If a step failed, the command executed by the step could indicate the error in the error message column. By default, the standard output and standard error of a asynchronous remote operation is set to be the output of the step that requested the remote operation. A step can choose to insert error messages by either using the getErrorWriter()	
method in CommandManager	
(synchronous), or by using the insert_step_error_message	
API in the mgmt_jobs	
package (typically, this would be called by a remotely executing script in a command channel).	
This section describes available commands and associated parameters. Note that targets of any type can be provided for the target name and target type parameters below: The job system will automatically identify and contact the Agent that is monitoring the specified targets.	
The remote operation command has the identifier "remoteOp	
". It takes the following parameters:	
executeSynchronous	
is set to true. executeSynchronous	
is set to true. outputType	
specifies what kind of output the remote command is expected to generate. This can have two values, normal (the default) or command. Normal output is output that is stored in the log corresponding to this step and is not interpreted in any way. Command output is output that could contain one or more "command blocks", command-blocks are XML sequences that map to pre-registered SQL procedure calls. By using the command output option, a remote command can generate command blocks that can be directly loaded into schema in the Enterprise Manager repository database. The standard output generated by the executed command is stored by the job system as the output corresponding to this step.	
The file transfer command has the identifier fileTransfer	
. It transfers a file from one Agent to another. It can also execute a command on the source Agent and transfer its standard output as a file to the destination Agent, or as standard input to a command on the destination Agent. The fileTransfer	
command is always asynchronous. It takes the following parameters:	
sourceFile	
and sourceCommand	
cannot both be specified. sourceCommand	
. destFile	
and destCommand	
cannot both be specified. The fileTransfer	
command succeeds (and returns a status code of 0) if the file was successfully transferred between the Agents. If there was an error, it returns error codes appropriate to the reason for failure.	
The putFile	
command has the identifier putFile	
. It provides the capability to transfer large amounts of data from the Enterprise Manager repository to a file on the Agent. The data transferred could come from a blob in the repository, or a file on the file system, or could be embedded in the specification (inline).	
If a file is being transferred, the location of the file must be accessible from the repository installation. If a blob in a database is being transferred, it must be in a table in the repository database that is accessible to the repository schema user (typically mgmt_rep).	
The putFile	
command requires the following parameters:	
sourceType	
is set to "fileSystem". This must be a file that is accessible to the repository installation. sourceType	
is set to "sql"). Valid values are CLOB, BLOB. sourceType	
is set to "sql"). For example, " select output from my_output_table	
where blob_id=%blobid%" The putFile	
command succeeds if the file was transferred successfully, and the status code is set to 0. On failure, the status code is set to an integer appropriate to the reason for failure.	
The getFile	
command has the identifier "getFile". It transfers a file from an Agent to the repository. The file is stored as the output of the step that executed this command.	
The getFile	
command has the following parameters:	
The getFile	
command succeeds if the file was transferred successfully, and the status code is set to 0. On failure, the status code is set to an integer appropriate to the reason for failure.	
The remoteOp	
, putFile	
, fileTransfer	
and getFile	
commands return the following error codes. In the messages below, "command process" refers to a process that the Agent executes that actually execs the specified remote command, and grabs the standard output and standard error of the executed command. On a Unix install, this process is called nmo, and lives in $EMD_ROOT/bin. It must be SETUID to root before it can be used successfully. This does not pose a security risk since nmo will not execute any command unless it has a valid username and password).	
0: No error	
1: Could not initialize core module. Most likely, something is wrong with the install or environment of the Agent.	
2: The Agent ran out of memory.	
3: The Agent could not read information from its input stream.	
4: The size of the input parameters was too large for the Agent to handle.	
5: The command process was not setuid	
to root. (Every Unix Agent install has an executable called nmo, which must be setuid	
root)	
6: The specified user does not exist on this system.	
7: The password was incorrect.	
8: Could not run as the specified user.	
9: Failed to fork the command process (nmo).	
10: Failed to execute the specified process.	
11: Could not obtain the exit status of the launched process.	
12: The command process was interrupted before exit.	
13: Failed to redirect the standard error stream to standard output.	
The job system allows integrators to write commands that perform their work at the Management Service level. For example, a command that reads two LOBs from the database and performs various transformations on them, and writes them back. The job system expects such commands to implement an (empty) interface called LongRunningCommand	
, which is an indication that the command executes synchronously on the middle tier, and could potentially execute for a long time. This will allow a component of the job system called the dispatcher to schedule the long-running command as efficiently as possible, in such as way as to not degrade the throughput of the system.	
Configuring the Job Dispatcher to Handle Long-Running Commands	
The dispatcher is a component of the job system that executes the various steps of a job when they are ready to execute. The command class associated with each step is called, and any asynchronous operations requested by it are dispatched, a process referred to as dispatching a step. The dispatcher uses thread-pools to execute steps. A thread-pool is a collection of a specified number of worker threads, any one of which can dispatch a step. The job system dispatcher uses two thread-pools: a short-command pool for dispatching asynchronous steps and short synchronous steps, and a long-command pool for dispatching steps that have long-running commands. Typically, the short-command pool will have a larger number of threads (say, 25) compared to the long-running pool (say, 10). The theory is that long-running middle-tier steps will be few compared to more numerous, short-running commands. However, the sizes of the two pools will be fully configurable in the dispatcher to suit the job mix at a particular site. Since multiple dispatchers can be run on different nodes, the site administrator will be able to even dedicate a dispatcher to only dispatch long-running or short-running steps.	
By default, the job system expects the integrators to provide values for all job parameters either when the job is submitted, or at execution time (by adding/updating parameters dynamically). Typically, an application would supply these parameters in one of three-ways:	
The job system offers the concept of parameter sources so that integrators can simplify the amount of application-specific code they have to write to fetch and populate job or step parameters (such as the second category above). A parameter source is a mechanism that the job system uses to fetch a set of parameters either when a job is submitted, or when it is about to start executing. The job system supports SQL (a PL/SQL procedure to fetch a set of parameters), credential (retrieval of username and password information from the Enterprise Manager credentials table) and user. Integrators can use these pre-built sources to fetch a wide variety of parameters. When the job system has been configured to fetch one or more parameters using a parameter source, the parameter(s) need not be specified in the parameter list to the job when a job is submitted: the job system will automatically fetch the parameters and add them to the parameter list of the job.	
A job type can embed information about the parameters it needs fetched by having an optional paramInfo	
section in its XML specification. The following is a snippet of a job type that executes a SQL query on an application-specific table called name_value_pair_table	
to fetch three parameters, a, b and c.	
As can be seen from the example, a paramInfo	
section consists one or more paramSource	
tags. Each paramSource	
tag references a parameter source that can be used to fetch one or more parameters. The paramNames	
attribute is a comma-separated set of parameter names that the parameter source is expected to fetch. The sourceType attribute indicates the source that will be used to fetch the parameters (one of sql, credential or user). The overrideUser	
attribute, if set to true, indicates that this parameter-fetching mechanism will always be used to fetch the value of the parameter(s), even if the parameter was specified by the user (or application) at the time the job was submitted. The default for the overrideUser	
attribute is false: the parameter source mechanism will be disabled if the parameter was already specified when the job was submitted. A parameter source could have additional source-specific properties that describe the fetching mechanism in greater detail: these will be described in the following sections.	
The SQL parameter source allows the integrator to specify a SQL query or a PL/SQL procedure that will fetch a set of parameters.	
By default, all parameters specified in the paramNames	
attribute of the paramSource	
tag are assumed to be scalar. Scalar parameters can be fetched by an arbitrary SQL query. The SQL query should generate a cursor that has exactly two columns: the first column should reference the parameter name, and the second column should reference the parameter value. In the example below, the following query fetches from an application-specific table called name_value_pair_table	
. The table is assumed to have two columns, 'name' and 'value', that hold the names and values of needed application parameters, respectively.	
Assume you have a table called parameter_values	
that holds both scalar and vector parameter values, one value to a row, as shown below:	
Table 5-2 Example Table Containing Scalar and Vector Parameter Values	
Parameter_Name	Parameter_Value
---	---
vector1	pv1
vector1	pv2
vector1	pv3
scalar1	s1
scalar2	s2
The above table holds a vector parameter called vector1 that has three values (pv1, pv2, pv3), and two scalar parameters, scalar1 and scalar2. For vector parameters, the parameter_index column imposes an ordering on the parameters. The following block fetches the parameters using one single query. The source parameters scalarParams	
and vectorParams	
specify which of the parameters are scalar or vector, respectively. In the example below, they tell the job system that the parameter vector1 is a vector parameter, and that the parameters scalar1 and scalar2 are scalar parameters. This allows the job system to appropriately construct the parameters. Note that if a parameter is not specifically included in a scalar or vector directive, it is assumed to be scalar.	
The above table holds a vector parameter called vector1 that has three values (pv1, pv2, pv3), and two scalar parameters, scalar1 and scalar2. For vector parameters, the parameter_index column imposes an ordering on the parameters. The following block fetches the parameters using one single query. The source parameters scalarParams and vectorParams specify which of the parameters are scalar or vector, respectively. In the example below, they tell the job system that the parameter vector1 is a vector parameter, and that the parameters scalar1 and scalar2 are scalar parameters. This allows the job system to appropriately construct the parameters. Note that if a parameter is not specifically included in a scalar or vector directive, it is assumed to be scalar.	
You can also write a PL/SQL procedure that will fetch parameters. The PL/SQL procedure can have any number of parameters, but it must have one special input and one special output parameter reserved for the job system. The input parameter must be of the type SMP_Agent_STRING_ARRAY: it is an array of varchar2 values, which are the names of the parameters to fetch. The output parameter must be either a cursor or a MGMT_JOB_PARAM_LIST. The "special" input and output parameters must be the first and second bind parameters in the call to the procedure (see example below). Also, the outProc	
source parameter must be set to 1 and the type of the output parameter must be specified using the source parameter sqloutparamtype	
. This must be set to "cursor" (the output parameter is a cursor) or "paramList" (the output parameter is a MGMT_JOB_PARAM_LIST).	
Let us illustrate these concepts with a couple of examples. Let us assume that you wrote a PL/SQL procedure that had the following signature:	
The "special" input and output parameters required by the job system are at the first and second bind parameter positions, respectively. The following XML block shows how you would configure the job system to fetch parameters using this procedure. Note that the job system binds the values of the input parameters and extracts the output parameter.	
Next, let us assume that there exists a PL/SQL procedure that returns a cursor having two columns specifying the name and value of parameters:	
The following XML block shows how you would use this procedure to fetch a set of parameters:	
Please see the examples section for more examples on specifying job parameters.	
The Enterprise Manager credentials table provides a convenient storage mechanism for credentials that an application needs to perform its tasks. Credentials are a set of name value pairs. For example, node credentials include two name-value pairs: one for the username, and another for the password. Database credentials might have three name-value pairs, one each for username, password and role. The conceptual structure of the credentials table is given below:	
Target	Credential Column Name
o815.dlsun966	node_username
o815.dlsun966	node_password
o815.dlsun966	patch_node_username
o815.dlsun966	patch_node_password
o815.dlsun966	patch_db_username
o815.dlsun966	patch_db_password
o815.dlsun966	patch_db_role
In the table above, the columns "node_username" and "node_password" are used to store node credentials for the target o815.dlsun966 for user USER1. The set of credentials columns with the "patch" prefix (such as patch_node_username, patch_node_password) are together used to store a set of credentials that a user would need to patch a database.	
Two types of credentials can be stored: user-specific and system credentials. Typically, system-specific credentials are associated with a privilege (for example, "Patch"). They apply to all users that carry out a specific operation (in this case, patching a database). User-specific credentials are associated with specific users and are typically user preferences.	
Notice that credentials could have several rows associated with them. For example, the "Patch" credential for a database consists of a set of node credentials, as well as a set of database credentials (the credential columns are all prefixed with "patch_")	
Some credentials may also be optionally associated with a "container location". A container location conceptually corresponds to the pathname of the appltop or Oracle home where a specific database (or application) is installed. If credentials are not associated with a container location (in general, other than application credentials, most credentials will not be), the container location can be set to null.	
If an application stores the credentials it needs in the Enterprise Manager credentials table, the job system provides a parameter source that can be used to pull out values of specific credentials from the credential table. The following XML block specifies how the node username and password could be pulled out of the credentials table for a specific target, using the patch credentials. Typically, when parameters are pulled out of the credentials table, the job type author would want to set overrideUser	
to true to avoid a user from submitting a job using a different set of credentials.	
In the XML above, the credential_columns	
parameter is a comma-separated list of columns that must be fetched. Note that they have a one-to-one correspondence with the parameters username and password specified in the paramNames	
attribute. The job system will fetch the node_username	
value into the username parameter, and the node_password	
value into the password	
parameter.	
Note: The credential source always fetches into vector parameters. In the example above, the credential source would fetch into two vector parameters, username and password, each having one value.	
The credential_scope	
parameter specifies whether the credentials are "system" credentials or "user" credentials. If set to "user", credentials corresponding to the user that submitted the job are pulled out. If set to "system", the system credentials are used. Note that it is not possible for the submitter of a job to use some other user's credentials.	
A set of credentials can also be fetched into a set of vector parameters. In the example below, the targetNames	
, targetTypes	
and containerPaths	
attributes are comma-separated. The containerPaths	
attribute is optional; if it is not specified, the container location is not considered while fetching the credentials. If it is specified, it must have valid values for all the targets.	
Finally, the target names and target types can be specified using vector parameters as well. The example below uses the targetNamesParam	
and targetTypesParam	
to specify two vector parameters that are used to provide the target names and values while fetching the credentials, which will be put into the vector parameters vec_usernames	
and vec_passwords	
, respectively. Also note the use of the containerPathsParam	
parameter. This is a job parameter that is expected to contain the corresponding container locations for each target. If a containerPathsParam	
is specified, it must have non-null values for all targets.	
The job system also offers a special parameter source called "user" which indicates that a set of parameters must be supplied when a job of that type is submitted. If a parameter is declared to be of source "user" and the "required" attribute is set to "true", the job system will validate that all specified parameters in the source are provided when a job is submitted.	
The user source can be evaluated at job submission time or job execution time. When evaluated at submission time, it causes an exception to be thrown if any required parameters are missing. When evaluated at execution time, it causes the execution to abort if there are any missing required parameters.	
The user source can also be used to indicate that a pair of parameters are target parameters. For example,	
The above block indicates that parameters (a,d), (b,e), (c,f) are parameters that hold target information. Parameter "a " holds target names, and "d" holds the corresponding target types. Similarly with parameters "b" and "e", and "c" and "f". For each parameter that holds target names, there must be a corresponding parameter that holds target types. The parameters may be either scalar or vector.	
The inline parameter source allows job types to define parameters in terms of other parameters. It is a convenient mechanism to construct parameters that can be reused in other parts of the job type. For example, the section below creates a parameter called filename based on the job execution id, presumably for use in other parts of the job type.	
The following example sets a vector parameter called vparam	
to be a vector of the values v1, v2, v3 and v4. Only one vector parameter at a time can be set using the inline source.	
The checkValue	
parameter source allows job types to have the job system check that a specified set of parameters have a specified set of values. If a parameter does not have the specified value, the job system will either abort or suspend the job.	
The following example checks whether a vector parameter v has the values v1,v2,v3, and v4. Only one vector parameter at a time can be specified in a checkValue parameter source. If the vector parameter does not have those values, in that order, then the job is aborted.	
The properties parameter source fetches a named set of target properties for each of a specified set of targets and stores each set of property values in a vector parameter.	
The example below fetches the properties "OracleHome" and "OracleSID" for the specified set of targets (dlsun966 and ap952sun), into the vector parameters ohomes	
and osids	
, respectively. The first vector value in the ohomes	
parameter will contain the OracleHome property for dlsun966, and the second will contain the OracleHome property for ap952sun. Likewise with the OracleSID property.	
As with the credentials source, vector parameter names can be provided for the target names and types.	
Parameter sources are applied in the order they are specified. Parameter substitution (of the form %param%) can be used inside sourceParam	
tags, but the parameter that is being substituted must exist when the parameter source is evaluated. Otherwise, the job system will substitute an empty string in its place.	
The job system offers the facility of storing specified parameters in encrypted form. Parameters that contain sensitive information, such as passwords, must be stored encrypted. A job type can indicate that parameters fetched through a parameter source be encrypted by setting the encrypted attribute to true in a parameter source. For example:	
A job type can also specify that parameters supplied by the user be stored encrypted:	
Typically, a job type will tend to perform actions that may be considered to be "privileged", for example, patching a production database, or affecting the software installed in an Oracle home or appltop. Accordingly, such job types should only be submitted by Enterprise Manager users that have the appropriate level of privileges to perform these actions. The job system provides a section called securityInfo	
, which the author of a job type can use to specify the minimum level of privileges (system, target) the submitter of a job of that type must have. For more information about the Enterprise Manager user model and system and target privileges, see Enterprise Manager online help.	
Having a securityInfo	
section allows the author of a job type to encapsulate the security requirements associated with submitting a job in the job type itself; no further code need to be written to enforce security. Also, it ensures that Enterprise Manager users cannot directly submit jobs of a specific type (using the job system APIs and bypassing the application) unless they have the set of privileges defined by the job type author.	
The following shows what a typical securityInfo section looks like. Suppose you are writing a job type that clones a database. This job type will require two targets; let us say the first is a source database and the other is a destination node on which the destination database will be created. This job type will probably require that a user that submits a clone job have a CLONE FROM privilege on the source (database) and a MAINTAIN privilege on the destination (node). In addition, the user will require the CREATE TARGET system privilege in order to be able to introduce a new target into the system. Let us assume that the job type is written so that the first target in the target list is the source and the second target in the target list is the destination. The security requirements for such a job type could be addressed as shown below:	
The securityInfo	
section is a set of <privilege>	
tags. Each privilege could be a system or target privilege, as indicated by the type attribute of the <privilege> tag. If the privilege is a target privilege, the targets that the privilege is attached to should be explicitly enumerated, or the target_names_param	
and target_types_param	
attributes should be used (as shown in the second example, below). The usual %param% notation can be used to indicate job parameter and target placeholders.	
By default, all <privilege>	
directives in the securityInfo	
section are evaluated at job submission time, after all submit-time parameter sources have been evaluated. The job system throws an exception if the user does not have any of the privileges specified in the securityInfo	
section. Note that execution-time parameter sources will not have been evaluated at job submission time, so care should be taken to not use job parameters that may not have been evaluated yet. You could also direct the job system to evaluate a privilege directive at job execution time by setting the evaluateAtSubmission	
parameter to false (as in the second and third privilege tags in the example above): The only reason one might want to do this is if the exact set of targets that the job is operating on is unknown until job execution time (for example, it is computed via an execution-time parameter source). Execution-time privilege directives are evaluated after all execution-time parameter sources are evaluated.	
As a second example, suppose you are writing a job type that requires MODIFY privilege on each one of its targets, but the exact number of targets is unknown at the time of writing. The target_names_param	
and target_types_param	
attributes could be used for this purpose. These specify vector parameters that the job system will get the target names and the corresponding target types from. These could be any vector parameters; this example uses the job target list (job_target_names	
and job_target_types	
).	
Often, executing jobs will need to acquire resources. For example, a job applying a patch to a database may need a mechanism to ensure that other jobs (submitted by other users in the system) on the database are prevented from running while the patch is being applied. In other words, it may wish to acquire a lock on the database target so that other jobs that try to acquire the same lock block (or abort). This will allow a patch job, once it starts, to perform its work without disruption. Sometimes, locks could be at more than one level: A "hot" backup of a database, for example, can allow other hot backups to proceed (since they do not bring down the database), but cannot allow "cold" backups or database shutdown jobs to proceed (since they will end up shutting down the database, thereby causing the backup to fail). A job execution can indicate that it is reserving a resource on a target by acquiring a lock on the target. A lock is really a proxy for reserving some part of the functionality of a target. When an execution acquires a lock, it will block other executions that try to acquire the same lock on the target. A lock is identified by a name, and a type.A lock can be of the following types	
Locks that a job type wishes to acquire can be obtained by specifying a lockInfo	
section in the job type. This section lists the locks that the job is to acquire, their types, as well as the target(s) that it wishes to acquire the locks on. Consider the section below:	
The section above shows a job type that acquires a target-exclusive lock on a database target whose name is given by the job parameter backup_db.	
It also acquires a named target lock named "LOCK1" on three targets: the database whose name is stored in the job parameter backup_db,	
and the first two targets in the target list of the job. Finally, it acquires a global lock named "GLOBALLOCK1". The "action" attribute specifies what the job system should do to the execution if any of the locks in the section cannot be obtained (presumably because some other execution is holding them). Possible values are suspend	
(all locks are released and the execution state changes to "Suspended:Lock") and abort	
(the execution aborts). The following points can be made about executions and locks:	
Locks and nested jobs: When jobs that have the lockInfo	
section are nested inside each other, the nested job's locks are obtained when the nested job first executes, not when an execution starts. If the locks are not available, the parent execution could be suspended/aborted, possibly after a few steps have executed.	
lockInfo Examples	
(1) Let us consider two job types called HOTBACKUP and COLDBACKUP. They perform hot backups and cold backups, respectively, on the database. The difference is that the cold backup brings the database down, but the hot backup leaves it up. Only one hot backup can execute at a time; it should keep out other hot backups as well as cold backups. When a cold backup is executing, no other job type can execute (since it shuts down the database as part of its execution). Let us consider a third job type called SQLANALYZE. It performs scheduled maintenance activity that results in modifications to database tuning parameters; two SQLANALYZE jobs cannot run at the same time. The chart below shows the incompatibilities between the job types; An 'X' indicates that the job types are incompatible. An 'OK' indicates that the job types are compatible.	
Job Type	HOTBACKUP
HOTBACKUP	X
COLDBACKUP	X
SQLANALYZE	OK
The lockInfo sections for the three job types are shown below. The cold backup obtains an exclusive target lock on the database. The hot backup job does not obtain an exclusive lock, but only the named lock "BACKUP_LOCK". Likewise, the SQLANALYZE job obtains a named target lock called "SQLANALYZE_LOCK". Let us assume that the database that the jobs operate on is the first target in the target list of the job. The lock sections of the two jobs would look as follows:	
Since a named target locks blocks all target exclusive locks, executing hot backups will suspend cold backups but not analyze jobs (since they try to acquire different named locks). Executing sql analyze jobs will abort other sql analyze jobs and suspend cold backups but not hot backups. Executing cold backups will suspend hot backups and abort SQL analyze jobs.	
(2) Let us consider a job type called PATCHCHECK that periodically checks a patch stage area and downloads information about newly staged patches into the Enterprise Manager repository. Two such jobs cannot run at the same time; however, the job is not really associated with any target. The solution is for the job type to attempt to grab a global lock:	
(3) Let us consider a job type that nests the SQLANALYZE type within itself, as shown below. Note that the nested job executes after the first step, S1 executes.	
In the example above, the nested job tries to acquire locks when it executes (since the SQLANALYZE has a lockInfo section). If the locks are currently held by other executions, then the nested job aborts (as specified in the lockInfo), which will in turn end up aborting the parent job.	
"Suspended" is a special state that indicates that steps in the job will not be considered for scheduling and execution. A step in an executing job can suspend the job, through the suspend_job	
PL/SQL API. This suspends both the currently executing step, as well as the job itself.	
Suspending a job has the following semantics: all steps in the job that are currently in "scheduled" state will be marked as "suspended", and will thereafter not be scheduled or executed. All currently executing steps (this could happen, for example, in parallel stepsets) will continue to execute. However, when any currently executing step completes, the next step(s) in the job (if any) will not be scheduled: they will be put in suspended state. When a job is suspended on submission, the above applies to the first step(s) in the job that would have been scheduled.	
Suspended jobs may be restarted at any time by calling the restart_job()	
PL/SQL API. However, jobs that are suspended because of serialization (locking) rules are not restartable manually; the job system will restart such jobs automatically when currently executing jobs of that job type complete. Restarting a job will effectively change the state of all suspended steps to scheduled: job execution will proceed normally thereafter.	
If a job has been suspended, failed or aborted, it is possible to restart it from any given step (typically, the stepset that contains a failed or aborted step). For failed or aborted jobs, what steps actually get scheduled again when a job is restarted depends on which step the job is restarted from.	
If a step in a job is resubmitted, it means that it executes regardless of whether the original execution of the step completed or failed. If a stepset is resubmitted, then the first step/stepset/job in the stepset is resubmitted, recursively. When a job is resubmitted, therefore, the entire job is executed again, by recursively resubmitting its initial stepset. The parameters and targets used are the same that were used when the job was first submitted. Other than that, the job executes as if it were submitted for the first time with the specified set of parameters and targets. A job can be resubmitted by using the resubmit_job	
API in the mgmt_jobs	
package. Note that jobs can be resubmitted even if the earlier executions completed successfully.	
Job executions that were aborted or failed can be restarted. Restarting a job generally refers to resuming job execution from the last failed step (although the job type can control this behavior using the restartMode	
attribute of steps/stepsets/jobs; see below). In the common case, steps from the failed job execution that actually succeeded are not re-executed. A failed/aborted job can be restarted by calling the restart_job	
API in the mgmt_jobs	
package. A job that completed successfully cannot be restarted.	
Restarting a job creates a new execution called the restart execution. The original, failed execution of the job is called the source execution. All parameters and targets are copied over from the source execution to the restart execution. Parameter sources are not re-evaluated, unless the original job aborted because of a parameter source failure.	
To restart a serial (or iterative stepset), the job system first examines the status of the serial stepset. If the status of the serial stepset is "Completed", then all the entries for its constituent steps are copied over from the source execution to the restart execution. If the status of the stepset is "Failed" or "Aborted", then the job system starts top down from the first step in the stepset. If the step previously completed successfully in the source execution, it is copied to the restart execution. If the step previously failed or aborted, it is rescheduled for execution in the restart execution. After such a step has finished executing, the job system determines the next step(s) to execute. These could be successOf	
or failureOf	
dependencies, or simply steps/stepsets/jobs that execute after the current step. If the subsequent step completed successfully in the source execution, then it will not be scheduled for execution again; the job system merely copies the source execution status to the restart execution for that step. It continues in this fashion until it reaches the end of the stepset. It then recomputes the status of the stepset based on the new execution(s).	
To restart a parallel stepset, the job system first examines the status of the parallel stepset, as before. If the status of the stepset is "Completed", then all the entries for its constituent steps are copied over from the source execution to the restart execution. If the status of the stepset is "Failed" or "Aborted", the job system copies over all successful steps in the steps from the source to the restart execution. It reschedules all steps that failed or aborted in the source execution, in parallel. After these steps have finished executing, the status of the stepset is recomputed.	
To restart a nested job, the restart algorithm is applied recursively to the first (outer) stepset of the nested job.	
Note that in the above paragraphs, if one of the entities being considered is a stepset or a nested job, the restart mechanism is applied recursively to the stepset or job. When entries for steps are copied over to the restart execution, the child execution entries point to the same output CLOB entries as the parent execution.	
A job type can affect the restart behavior of each step/stepset/job within it by the use of the restartMode	
attribute. This can be set to "failure" (the default) or "always". When set to failure, when the top-down copying process described in the previous section occurs, the step/stepset/job is copied without being re-executed if it succeeded in the source execution. If it failed or aborted in the source execution, it is restarted recursively at the last point of failure.	
When the restartMode	
attribute is set to "always" for a step, the step is always re-executed in a restart, regardless of whether it succeeded or failed in the source execution. The use of this attribute is useful when certain steps in a job must always be re-executed in a restart (for example, a step that shuts down a database prior to backing it up)	
For a stepset or nested job, if the restartMode	
attribute is set to "always", then all steps in the stepset/nested job are restarted, even if they completed successfully in the source execution. If it is set to "failure", then restart is attempted only if the status of the stepset or nested job was set to Failed or Aborted in the source execution. Note that individual steps inside a stepset or nested job may have their restartMode	
set to "always"; such steps are always re-executed.	
Restart Examples	
Example 1	
Consider the serial stepset with the sequence of steps below:	
In the above stepset, let us assume the source execution had S1 execute successfully and step S2 and S3 (the failure dependency of S2) fail. When the job is restarted, steps S1 is copied to the restart execution from the source execution without being re-executed (since it successfully completed in the source execution). Step S2, which failed in the source execution, is rescheduled and executed. If S2 completes successfully, then S4, its success dependency (which never executed in the source execution) is scheduled and executed. The status of the stepset (and the job) is the status of S4. On the other hand, if S2 fails, then its failure dependency, S3, is rescheduled and executed (since it had failed in the source execution), and the status of the stepset (and the job) is the status of S3.	
Now let us assume that steps S1 succeeded but S2 failed, and S3 (its failure dependency) succeeded in the source execution. As a result the stepset (and therefore the job execution) succeeded. This execution cannot be restarted, since the execution completed successfully although one of its steps failed.	
Finally, let us assume that steps S1 and S2 succeed, but S4 (S2's success dependency) failed. Note that S3 is not scheduled in this situation. When the execution is restarted, the job system copies over the executions of S1 and S2 from the source to the restart execution, and reschedules and executes S4. The job succeeds if S4 succeeds.	
Example 2	
Consider the following:	
In the example above, assume that step S1 completes and S2 fails. S3 executes (since it does not have a dependency on S2) and succeeds. The job, however, fails, since the stepset main has its stepsetStatus set to S2. When the job is restarted, S1 is executed all over again, although it completed the first time, since the restartMode of S1 was set to "always". Step S2 is rescheduled and executed, since it failed in the source execution. After S2 executes, step S3 is not rescheduled for execution again, since it executed successfully in the source execution. If the intention is that S3 must execute in the restart execution, its restartMode must be set to "always".	
If, in the above example, S1 and S2 succeeded and S3 failed, the stepset main would still succeed (since S2 determines the status of the stepset). In this case, the job would succeed, and cannot be restarted.	
Example 3	
Consider the following example:	
In the above example, let us assume that steps S1 and S2 succeeded (and therefore, stepset SS1 completed successfully). Thereafter, the parallel stepset PS1 was scheduled, and let us assume that P1 completed, but P2 and P3 failed. As a result, the stepset "main" (and the job) failed. When the execution is restarted, the steps S1 and S2 (and therefore the stepset SS1) will be copied over without execution. In the parallel stepset PS1, both the steps that failed (P2 and P3) will be rescheduled and executed.	
Now assume that S1 completed and S2 failed in the source execution. Note that stepset SS1 still completed successfully since the status of the stepset is determined by S1, not S2 (because of the stepsetStatus directive). Now, assume that PS1 was scheduled and P1 failed, and P2 and P3 executed successfully. When this job is rescheduled, the step S2 will not be re-executed (since the stepset SS1 completed successfully). The step P1 will be rescheduled and executed.	
(4) Consider a slightly modified version of the XML in example (3):	
In the above example, let us assume that S1 and S2 succeeded (and therefore, stepset SS1 completed successfully). Thereafter, the parallel stepset PS1 was scheduled, and let us assume that P1 completed, but P2 and P3 failed. When the job is restarted, the entire stepset SS1 is restarted (since the restartMode is set to "always"). This means that steps S1 and S2 are successively scheduled and executed. Now the stepset PS1 is restarted, and since the restartMode is not specified (it is always "failure" by default), it is restarted at the point of failure, which in this case means that the failed steps P2 and P3 are re-executed, but not P1.	
In order to make a new job type accessible from the Enterprise Manager console Job Activity and/or Job Library page, you need to modify specific XML tag attributes. To display the job type on Job Activity page, set useDefaultCreateUI to "true" as shown in the following example.	
<displayInfo useDefaultCreateUI="true"/>	
To display the job type on the Job Library page, in addition to setting useDefaultCreateUI attribute, you must also set the jobtype editable attribute to "true."	
<jobtype name="jobType1" editable="true">	
If only useDefaultCreateUI="true" and editable="false", then the job type will only be displayed on the Job Activity page and not on Job Library page. Also the job definition will be not editable .	
As shown it Figure 5-1, setting the useDefaultCreateUI attribute to true allows users creating a job to select the newly added job type from the Create Job menu.	
Figure 5-1 Available Job Types from the Job Activity Page	
Making the job type available from the Job Activity page also permits access to the default Create Job user interface when a user attempts to create a job using the newly added job type.	
Figure 5-2 Default Create Job User Interface	
Adding the displayInfo Tag	
The displayInfo tag can be added to the job definition file at any point after the </stepset> tag and before the </jobtype> tag at the end of the job definition file, as shown in the following example.	
To make the job type available from the Job Library page, you must also set the jobType tag's editable attribute to "true" in addition to adding the displayInfo tag, As shown it Figure 5-3, this makes the newly added job type a selectable option from the Create Library Job menu.	
Figure 5-3 Job Type in the Job Library Page	
Making the Job Type Editable	
The editable attribute of the jobtype tag is set at the beginning of the job definition file, as shown in the following example.	
Example 1	
The following XML describes a job type called jobType1 that defines four steps, S1, S2, S3, and S4. It executes S1 and S2 serially, one after another. It executes step S3 only if step S2 succeeds, and step S4 only if S2 fails. Note that all the steps execute within an iterative subset, so these actions are performed in parallel on all targets in the job target list of type database. Note also, the use of % signs to indicate parameters, %patchno%, %username%, %password%, and %job_target_name%. The job system will substitute the value of a job parameter named "patchno" in place of the %patchno%. Likewise, it will substitute the values of the corresponding parameters for %username% and %password%. %job_target_name% and %job_target_type% are "pre-built" placeholders that will substitute the name of the target that the step is currently executing against.	
The steps S2, S3 and S4 illustrate how the remoteOp command can be used to execute a SQL*Plus script on the Agent.	
The status of job is failed if any of the following occurs:	
Note that since S2 executes after S1 (regardless of whether S1 succeeds or fails), the status of S1 does not affect the status of the job in any way.	
Defining new target types in Enterprise Manager via Management Plug-ins also provides you with the opportunity to add new report definitions. Plug-ins allow you to add permanent (SYSTEM) target type-specific report definitions to Enterprise Manager using the Information Publisher PL/SQL API.	
This chapter covers the following:	
Note: You must have a working knowledge of SQL and PL/SQL before using this API. Refer to the Oracle Database PL/SQL User's Guide and Reference for more information.	
Adding report definitions via Management Plug-in creates target type-specific SYSTEM reports. SYSTEM report definitions are handled differently than definitions created through the Information Publisher user interface. SYSTEM reports are permanent and cannot be deleted or edited by Enterprise Manager administrators. You can add multiple report definitions to a Management Plug-in, thus allowing you to associate multiple reports with a specific target type.	
Adding SYSTEM report definitions using Management Plug-ins and the Information Publisher API allows users to access reports from two areas of the Enterprise Manager console:	
In the report definition file, you can specify whether or not a report is available from the Reports page of the target home page. Report definitions you add to the Reports page are available from the View Report drop-down menu list. The following figure shows the Reports page for a Microsoft SQL Server target.	
Figure 6-1 Microsoft SQL Server Reports Page	
Regardless of whether you specify that a report appear in the Reports page, all report definitions added via Management Plug-ins are available from Information Publisher's Report Definitions page. As with out-of-box SYSTEM report definitions, those added via Management Plug-ins are organized according to report category and subcategory. SYSTEM report definitions cannot be deleted from the Enterprise Manager console. Figure 6-2, "Report Definitions Page" shows available report definitions for Microsoft SQL Server target types.	
A report definition file is structured as a conventional PL/SQL block and contains code to extract pertinent information from the Management Repository and the report elements used to format and display that data. The Information Publisher PL/SQL API allows you specify the report elements and parameters that you normally specify interactively when creating a report definition from the Enterprise Manager console.	
The following example shows the Reports page for an "oracle_orgchart" target type that was added as a Management Plug-in. A single report titled "Org breakdown by title (oracle_orgchart)" is shown in Figure 6-3. This report consists of three major areas: a pie chart showing the percentage distribution of people by title, a bar chart showing the top five managers having the most people reporting to them, and a table listing all managers in the organization the total number of direct reports.	
The report definition used for this example utilizes two report element types: Chart from SQL (pie and bar), and Table from SQL. In general, these two report elements will meet most reporting needs.	
Management Plug-ins allow you to define as many report definition files as is required for a particular target type. The content of a report definition file consists of a PL/SQL block that uses the Information Publisher PL/SQL API (part of the MGMT_IP package) to construct a report.	
The process of developing a valid report definition file involves three steps:	
Define SQL or PL/SQL queries used to extract information from the Management Repository.	
The first step in creating your report definition is to create the SQL or PL/SQL queries used to extract the requisite report information from the Management Repository. Enterprise Manager provides management views with which you can safely extract data from the Management Repository without reading from the base tables. Using repository views protects your queries from changes to the repository schema that may occur in future releases and ensures your SYSTEM report definitions remain functional. A complete listing of repository views can be found in Chapter 9, "Management Repository Views".	
The following query was used to extract repository information about the distribution of employee classifications within an Oracle organization. The query uses the MGMT$METRIC_CURRENT repository view.	
When an administrator views a report from the Enterprise Manager console that contains this SQL query string, Information Publisher automatically binds the unique identifier for the selected target to the ??EMIP_BIND_TARGET_GUID?? placeholder in the SQL query string. The documentation for Chart from SQL and Table from SQL parameters provide information on this bind variable placeholder as well as others you can include in your SQL query string.	
The data returned from the SQL query is then used by the Chart from SQL report element to render the pie chart shown in the Reports page of an oracle_orgchart target home page as shown in Figure 6-3.	
Create a test report interactively from the Enterprise Manager console.	
Once you have written and tested the SQL or PL/SQL query, you can use the Enterprise Manager console to generate a version of your report interactively using the Chart from SQL and Table from SQL report elements. By using the Information Publisher user-interface, you can easily prototype reports without having to create a report definition file and import Management Plug-in Archives. You can also use this method of interactive prototyping to refine your queries and ensure that the data extracted from the Management Repository and how that information is rendered in your report meets your reporting requirements. See Enterprise Manager online help for the Chart from SQL and Table from SQL 'Set Parameters' function for information and examples on how to format your queries.	
Use the PL/SQL API to create a report definition file.	
Once you are satisfied with the way your report is being rendered by Information Publisher, you are ready to create the report definition file. As previously mentioned, the report definition file consists of a PL/SQL block defining the report elements and the SQL or PL/SQL queries used by the elements to extract repository information and render the report. Example 6-1 shows the content of the report definition file associated with the oracle_orgchart target type.	
Example 6-1 Oracle Organization Report Definition File	
With the ability to add report definitions to Enterprise Manager comes the responsibility of maintaining and updating the report definitions. Familiarity with the way in which Enterprise Manager handles report definitions will allow you to anticipate system behavior and plan for backwards compatibility.	
When report definitions are deployed via Management Plug-in, Enterprise Manager only allows newer versions of the report definitions to be installed. Older report definitions are deleted and deregistered so as not to appear on the Reports subtab of a target home page. These actions eliminate potential version conflicts by ensuring that updated report definitions are deployed to clean systems. Enterprise Manager will not install older versions of a report definition.	
Report definitions, as with Management Plug-ins in general, should be designed with backwards compatibility in mind. Future versions of report definitions should support previous versions of the target type metadata. Report definition-metadata version incompatibility will be most apparent in the following situations:	
The Information Publisher PL/SQL API allows you to create a report definition file.	
Use the following PL/SQL methods to create and/or manipulate report definitions when creating report definition files.	
Call this method to create a new report definition. Once a report definition is created, elements can be added. The create_report_definition method is part of the MGMT_IP PL/SQL package.	
Note: All of the Management Plug-in reports should set p_system_report to 1. This parameter defines the report definition as a SYSTEM report, which cannot be deleted or edited by Enterprise Manager administrators. p_owner should be set to mgmt_user.get_repository_owner for all Management Plug-in reports.The p_component_name must be set to the target type of the management plug-in.	
Input	
Parameter	Description
---	---
p_title_nlsid	report title.
p_description_nlsid	description
p_owner	owner name (should be the value returned from mgmt_user.get_repository_owner for Plug-In reports)
p_category_nlsid	category name
p_sub_category_nlsid	subcategory name
p_late_binding_target_types	target type for late binding, or null if not late binding
p_show_table_of_contents	1=show 0=hide
p_system_report	1=system report, 0=end user report. This must be set to 1 for Management Plug-in reports.
p_show_navigation	Show navigation headers in report (tabs, etc) 1=show, 0=hide
p_product_name	Product name, 'EM'(default)
p_component_name	Product component. This must be set to the Management Plug-in target type.
p_version	Version, '10.2' (default)
p_parameters	Parameters for this report definition
Output	
Returns the GUID for this report definition.	
Code	
Call this method to add a new report element to an existing report definition. The add_element_to_report_def method is part of the MGMT_IP PL/SQL package.	
Input	
Parameter	Description
---	---
p_report_guid	GUID to identify the report definition.
p_element_name_nlsid	The element name.
p_element_type_nlsid	The element type name.
p_header_nlslid	The element header or null.
p_element_order	The order of this element, 1 based.
p_element_row	The row for this element, 1 based.
p_parameters	The parameters for this element.
Output	
Returns the GUID for this element instance.	
Code	
Call this method to register a report for display in the Reports subtab on the target home page for a report. The add_report method is part of the MGMT_MP_HOMEPAGE PL/SQL package.	
The input parameters p_target_type, p_report_title, and p_report_owner MUST be identical to the report definition being registered.	
IMPORTANT: The value returned from mgmt_user.get_repository_owner must be specified as the report owner in order for the report to appear on the Reports subtab of a target home page.	
Input	
Parameter	Description
---	---
p_target_type	The target type.
p_report_title	The report title.
p_report_owner	The report owner.
p_order	The order the report shows up in the homepage.
Output	
None.	
Code	
Call this function to convert the time zone of v_date_in	
from the v_from_tz	
time zone to the v_to_tz	
time zone.	
Input	
Parameter	Description
---	---
v_date_in	Date to be converted to a different time zone
v_from_tz	time zone of date being converted.
v_to_tz	time zone into which date will be converted.
Output	
Returns the adjusted date in the new time zone.	
Code	
Three PL/SQL types are required to use the PL/SQL methods documented in PL/SQL Methods for Creating Report Definitions . The definitions for these types are shown below.	
Use MGMT_IP_TARGET_TYPES type to pass the target type your report definition supports to the create_report_definition API as the p_late_binding_target_types parameter.	
Example 6-2 MGMT_IP_TARGET_TYPES	
MGMT_IP_PARAM_VALUE_LIST and MGMT_IP_PARAM_VALUE_RECORD	
Use the MGMT_IP_PARAM_VALUE_LIST type to pass parameter values to the create_report_definition API as the p_parameters parameter and to the add_element_to_report_def API as the p_paremeters parameter.	
Use the MGMT_IP_PARAM_VALUE_RECORD type to create a named parameter value pair to add to an object of type MGMT_IP_PARAM_VALUE_LIST.	
Example 6-3 MGMT_IP_PARAM_VALUE_RECORD and MGMT_IP_PARAM_VALUE_LIST	
Parameters used by some report elements dictate the operational behavior of those elements. This section lists the parameters associated with specific report elements.	
The Table Element is used to show a tabular view of query results. The queries must be made against management views.	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TimePeriodParam"
Required	No
Default Value	Null
Valid Values	"0:0" for last 24 Hours "0:1" for last 7 Days "0:2" for last 31 Days
Summary	Encoded time period.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.initialSortColumn"
Required	No
Default Value	The first column in result set.
Valid Values	Any valid column name.
Summary	If this parameter is set, the sort column indicator will be shown for the column with this column name. If not set, the sort column indicator is shown on the first column. The SQL query should include an 'order by' clause that sorts by this column.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.initialSortOrder"
Required	No
Default Value	"ascending"
Valid Values	"ascending" or "descending"
Summary	If this parameter is set, the sort column indicator will be shown either as ascending or descending, according to the value. If not set, the sort column indicator is shown as ascending.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.nameValueDisplay"
Required	No
Default Value	
Valid Values	Positive integer value.
Summary	If this parameter is set and only one row is returned from the query, the results are displayed in a vertical list of name-value pairs. This value should be set to the number of name/value columns that should be displayed, normally "1".
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.numRowsToShow"
Required	No
Default Value	"10"
Valid Values	Positive integer value.
Summary	Number of rows to display at one time in the generated table. The user can scroll through additional rows using the UI controls..
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.sqlStatementIsPlSql"
Required	No
Default Value	"false"
Valid Values	"true" or "false"
Summary	Whether a SQL statement is PL/SQL.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.sqlStatement"
Required	No
Default Value	<None>
Valid Values	Any valid SQL SELECT statement.
Summary	SQL statement can optionally bind values for targets, locale information, and start/end date. The format of the SQL statement should include a bind variable placeholders for the options to be bound. Bind Placeholders
There should be no semi-colon (;) appended to the end of the SQL statement unless it is a PL/SQL statement.	
Example 6-4 Specifying an anonymous PL/SQL block as a parameter to an element definition	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.maxNumberOfRowsAllowed"
Required	No
Default Value	"2000"
Valid Values	Any scalar numeric value.
Summary	Set the maximum number of rows retrieved for display in the table. For example, show the top 10 xyz's element would set the value to "10".
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.nullDataStringSubstitue"
Required	No
Default Value	""
Valid Values	A string.
Summary	A string that will be substituted for null values returned.
Split Table into Multiple Tables by Column	
Attribute	Description
---	---
Parameter Name	TableRenderBean.TABLE_SPLIT_COLUMN
Parameter String	"oracle.sysman.eml.ip.render.elem.TableRender.tableSplitColumn"
Required	No
Default Value	null
Valid Values	Any valid column name.
Summary	If this parameter is set, the table will be split into separate tables with subheaders as the value in this column changes. The data should be ordered by this column.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnGroupHeader"n
Required	No
Default Value	null
Valid Values	Header string to use for a column group.
Summary	This parameter provides a column header string. This column group header will span columns between the columns specified in "oracle.sysman.eml.ip.render.elem.TableRender.columnGroupStart Col"n and oracle.sysman.eml.ip.render.elem.TableRender.columnGroupEndCol"n. The n suffix is a numeric value starting with 1 for the first column group, sequentially ascending for subsequent column groups.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnGroupStartCol"n
Required	No
Default Value	null
Valid Values	Any valid column name.
Summary	Specifies the first column for a given column group. The n suffix is a numeric value starting with 1 for the first column group, sequentially ascending for subsequent column groups.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnGroupEndCol"n
Required	No
Default Value	null
Valid Values	Any valid column name.
Summary	Specifies the last column for a given column group. The n suffix is a numeric value starting with 1 for the first column group, sequentially ascending for subsequent column groups.
Use Separate Rows for Values within a Cell	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.useSeparateRowsColumns"
Required	No
Default Value	null
Valid Values	Comma separated list of valid column names.
Summary	If this parameter is set, the delimited values of the column with the given name specified will be displayed on separate rows within a containing row cell. More than one column can be designated for this treatment by adding comma-separated column names.
Use Separate Rows as Delimiters	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.useSeparateRowsDelimiter"
Required	No
Default Value	, (comma)
Valid Values	Any string.
Summary	A character used to delimit tokens within a string.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.severityColumn"
Required	No
Default Value	null
Valid Values	Any valid column names.
Summary	A severity icon will be substituted for valid severity values returned. To omit an icon, your result set can contain null values in this column.
Availability Status Icon in Column	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.availabilityStatusColumn"
Required	No
Default Value	null
Valid Values	Any valid column names.
Summary	An availability status icon will be substituted for valid values returned. To omit an icon your result set can contains null values in this column.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.imageFilenameColumns"
Required	No
Default Value	null
Valid Values	Comma separated list of column names.
Summary	Optional parameter to display the given image filename in the indicated columns. Indicate for which columns the given image should be rendered. Specify a comma separated list of column names. The image filename returned should contain a relative path starting with '/images' such as '/images/xyz.gif'. Normally, a SQL decode function would be used to translate a numeric value into the appropriate image filename.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.targetTypeColumns"
Required	No
Default Value	null
Valid Values	Comma separated list of column names.
Summary	Optional parameter to indicate for which columns the value returned should be used as an internal target type to be translated into a display string for that type. Specify a comma separated list of column names.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterNames"
Required	Yes
Default Value	null
Valid Values	Comma separated list of filter names.
Summary	Defines filter names in a comma-separated list. This parameter also defines the ordering of filter elements.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterPrompt<name>"
Required	Yes
Default Value	null
Valid Values	CF
Summary	Defines the prompt used in the Reports page for the filter name. The filter value is accessed from the report element's SQL statement via
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterSql<name>"
Required	No
Default Value	null
Valid Values	Any valid SQL SELECT statement.
Summary	Defines the SQL query used to populate a list of values for a filter name that is presented in the UI as a drill-down menu instead of the text input field.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterList<name>"
Required	No
Default Value	null
Valid Values	Comma-separated list of values.
Summary	Defines a list of values for a filter name which is displayed in the UI as a drill-down menu.
Translate List of Filter Names	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterTranslateValues<name>"
Required	No
Default Value	no
Valid Values	yes or no
Summary	Defines whether the values provided by
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterTip<name> "
Required	No
Default Value	null
Valid Values	Alpha-numeric text.
Summary	Defines the text for a tool tip shown if the user moves the mouse over the filter UI elements.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterDefault<name>"
Required	No
Default Value	%
Valid Values	Alpha-numeric text string.
Summary	Defines a default value for filter name. If no default value is given, '%' is used instead.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterDefaultsToNull<name>"
Required	No
Default Value	null
Valid Values	yes or no
Summary	When this defines the default value to be NULL instead of '%'.
Global Filter Elements	
The following parameters act globally on the filter system.	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterStartEmpty"
Required	No
Default Value	
Valid Values	'yes or no
Summary	If the value of this parameter is 'yes', then the report initially displays an empty table. The table is populated when the user clicks on the filter button in the UI.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableHeaders"
Required	No
Default Value	null
Valid Values	comma-separated list of table headers
Summary	Defines the table headers used when starting with an empty table.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableHeaderTypes"
Required	No
Default Value	VARCHAR
Valid Values	Comma-separated list of column types.
Summary	This defines the table header types (column types) used if when starting with an empty table. This is a comma-separated list. If no header types are specified, the table header types default to VARCHAR.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterHeaderText"
Required	No
Default Value	Search Filter
Valid Values	Comma separated list of column names.
Summary	Overwrites the default filter section header text.
Overwrite Default Filter Description	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterDescriptionText"
Required	No
Default Value	Enter values to filter what is shown in the table.
Valid Values	Alpha-numeric text string.
Summary	Overwrites the default filter section description text. .
Overwrite Default Filter Tip Text	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterTipText"
Required	No
Default Value	The search filter is case sensitive. Use '%' as a wildcard.
Valid Values	Alpha-numeric text string.
Summary	Overwrites the default filter section tip text.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterButtonText"
Required	No
Default Value	OK
Valid Values	Alpha-numeric text string.
Summary	Overwrites the default filter button text. .
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableText"
Required	No
Default Value	(No rows returned)
Valid Values	Alpha-numeric text string.
Summary	Specifies the text to be shown in an empty table before the filter is run.
The following parameters are used to implement hyperlinks within tables and incorporate improved link navigation between manster/detail views. These hyperlinks link directly to Reports tab on the target homepage (bypassing the target selector page). This method is an alternative to using oracle.sysman.eml.ip.render.elem.TableRender.columnDestReportTitle<num>	
, which first takes the user to the target selector page.	
Link to Report	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnDestHomepageReportTitle<num>"
Required	No
Default Value	null
Valid Values	Report definition link.
Summary	Same as oracle.sysman.eml.ip.render.elem.TableRender.columnDestReportTitle<num> except that a link to a report definition on the target homepage is created.
Display Number of Columns	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.numberOfColumnsShowed"
Required	No
Default Value	Number of columns in the SQL.
Valid Values	Number
Summary	Defines the number of columns from the element SQL to be displayed in the UI. Additional columns from the SQL query are hidden but can be used to create the hyperlinks to expose data in the detail report.
Display Target Name	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnDestTargetIndex<num>"
Required	No
Default Value	null
Valid Values	
Summary	Specifies the column (which may be hidden) that contains the target name. The target name is used in the link to populate the target selection on late binding reports.
Display Target Type	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnDestTypeIndex<num>"
Required	No
Default Value	null
Valid Values	
Summary	Specifies the column (which may be hidden) that contains the target type. The target type is used in the link to populate the target selection on late binding reports.
Display URL	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TableRender.columnDestURLIndex<num>"
Required	No
Default Value	null
Valid Values	
Summary	Specifies the column (which may be hidden) that contains an arbitrary URL for a given table element.
Example 6-5 Report definition defining a master report that allows you to drill down via a link to a detail report.	
The Chart Element is used to show a graphical view of query results. The queries must be made against Management Repository views.	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.chartType"
Required	No
Default Value	"pieChart"
Valid Values	"barChart" or "lineChart" or "pieChart" or "timeSeriesChart" "timeSeriesBarChart"
Summary	Chart type to display.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TimePeriodParam"
Required	No
Default Value	Null
Valid Values	"0:0" for last 24 Hours "0:1" for last 7 Days "0:2" for last 31 Days
Summary	Encoded time period.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.fill"
Required	No
Default Value	"none"
Valid Values	"none", "absolute", or "cumulative"
Summary	Indicates if a line chart should fill the area under the lines. "none": no fill under lines. "absolute": lines are identical to "none" setting but with the area under the lines filled. "cumulative": causes the values for the lines to be added or stacked, then the areas underneath the lines are filled. Use caution when using the fill attribute to ensure there is no confusion for the report user as to whether the data in the chart is cumulative or absolute.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.height"
Required	No
Default Value	"200"
Valid Values	n, where n is any String that will correctly parse to a positive integer.
Summary	Sets the display height of the chart in pixels.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.visualOrientation"
Required	No
Default Value	"horizontal"
Valid Values	"horizontal" or "vertical"
Summary	Visual orientation of the chart. This attribute is only valid with the chartType attribute set to barChart or timeSeriesChart. The attribute does not affect the pieChart.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.legendPosition"
Required	No
Default Value	"east"
Valid Values	"default", "east", "south"
Summary	Specifies where the legend should be placed relative to the chart.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.sqlStatementIsPlSql"
Required	No
Default Value	"false"
Valid Values	"true" or "false"
Summary	Set to "true" to indicate that the SQL statement is a PL/SQL statement.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.sqlStatement"
Required	No
Default Value	<None>
Valid Values	Any valid SQL SELECT statement or PL/SQL block.
Summary	SQL or PL/SQL statement can optionally bind values for targets, locale information, and start/end date. The format of the statement should include a bind variable placeholders for the options to be bound. Bind Placeholders
There should be no semi-colon (;) appended to the end of the SQL statement unless it is a PL/SQL statement.	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.stacked"
Required	No
Default Value	"false"
Valid Values	"true" or "false"
Summary	Indicates if a bar chart should be stacked.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.title"
Required	No
Default Value	<None>
Valid Values	
Summary	Chart title to identify chart for Americans with Disabilities Act compliance.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.width"
Required	No
Default Value	"400"
Valid Values	n, where n is any String that will correctly parse to a positive integer.
Summary	Specifies the display width of the element in pixels.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.yAxisLabel"
Required	No
Default Value	<None>
Valid Values	String
Summary	If this parameter is supplied, it is used as the y-axis label for charts that have an y-axis.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.pieShowSlicePercentLabels"
Required	No
Default Value	<None>
Valid Values	"true" or "false"
Summary	If this parameter is supplied, it controls whether each slice is labeled with a percentage value. This attribute is ignored for chartTypes other than pieChart.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.ChartParamController.pieValuesInLegend"
Required	No
Default Value	"value"
Valid Values	"percent", "value" or "none"
Summary	For pie charts, this parameter specifies whether values for pie slices are included in the legend along with the label for the pie slice. The default value for this attributes is "value". If specified as either "percent" or "value" then the numeric value is displayed along with the pie slice label in the form, "pie slice label (numeric value)". If "percent" is specified, then the percentage out of the total of all slice values is calculated and displayed, otherwise, the raw value of the slice is displayed. To omit a value in the legend, specify "none" as a value for this parameter. This attribute is ignored for chartTypes other than pieChart.
oracle.sysman.eml.ip.render.elem	
package. This element also accesses parameter-related constants defined in the oracle.sysman.emSDK.eml.EmlConstants	
class.Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetInternalTargetType"
Required	No
Default Value	"oracle_database"
Valid Values	Any valid internal target type name.
Summary	The type of target to be shown in the graph.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetSelectedMetric"
Required	Yes
Default Value	
Valid Values	Valid metric name according to target type selected.
Summary	Metric to be graphed.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetSelectedMetricColumn"
Required	Yes
Default Value	
Valid Values	Valid column name according to the metric and target type selected.
Summary	Column of metric to be graphed.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TimePeriodParam"
Required	No
Default Value	null
Valid Values	"0:0" for last 24 Hours "0:1" for last 7 Days "0:2" for last 31 Days
Summary	Encoded time period.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetWidth"
Required	No
Default Value	300
Valid Values	n, where n is any String that will correctly parse to a positive integer.
Summary	Width of the image in pixels.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetHeight"
Required	No
Default Value	300
Valid Values	n, where n is any String that will correctly parse to a positive integer.
Summary	Height of the image in pixels.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.MetDetLegendPosition"
Required	No
Default Value	
Valid Values	"south" (default), "east"
Summary	Position of the legend relative to the chart.
The Text Element is used to display any message text you wish to provide for your report.	
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TextParamBean.textMessage"
Required	No
Default Value	"" (empty String)
Valid Values	Any message.
Summary	Set the message to display in the report.
Attribute	Description
---	---
Parameter Name	"oracle.sysman.eml.ip.render.elem.TextParamBean.textStyleClass"
Required	No
Default Value	"OraInstructionText"
Valid Values	"OraInstructionText" "OraTipText"
Summary	Specifies the style class for the message text to adopt when displayed.
Attribute	Description
---	---
Parameter Name	"oracle.sysmn.eml.ip.render.elem.TextParamBean.textDestination"
Required	No
Default Value	None
Valid Values	Any URI.
Summary	Specifies an optional link destination for this text element.
The following parameters apply to all reporting elements within the report definition.	
You can provide a dynamic time period selector for your report definition that allows the report user to choose a specific time period with which to view the report. The dynamic time period option is available only when viewing reports from the Reports tab, is not available on a target home page report. The time period used on a target home page report is the default time period set for the report definition. To specify this using the PL/SQL API when creating your report definition file, set the following parameters for your report definition.	
Example 6-6 Dynamic Time Selector Report Definition Parameters	
Pass l_param values	
to mgmt_ip.create_report_definition	
as the p_parameters	
argument.	
If you are using Table from SQL or Chart from SQL report elements, you can structure your SQL statement such that the start and end dates will be bound automatically for you by Information Publisher. You achieve this by inserting placeholders (for example, ??EMIP_BIND_START_DATE??	
) for the start and end date values as shown in Example 6-7.	
Example 6-7 Automatic Binding of Start and End Dates	
See the online help documentation for Table from SQL or Chart from SQL for detailed information.	
Oracle recommends adhering to the following guidelines when defining the PL/SQL for a report definition file:	
Report definitions should be created using the PL/SQL API rather than non-standard coding constructs. Using the PL/SQL API insulates your code from any Management Repository schema changes.	
Each call to the create_report_definition	
method must pass p_system_report => 1	
. SYSTEM report definitions are handled differently in the Enterprise Manager console. For example, SYSTEM report definitions cannot be deleted or edited by administrators.	
You must specify the value returned from mgmt_user.get_repository_owner	
as the owner for each report definition. Report definitions specifying any owner other than mgmt_user.get_repository_owner	
will not appear in the Reports subtab of the target home page. These report definitions will, however, appear in the Information Publisher Report Definitions page.	
The component name must be set to the target type in order for Enterprise Manager to associate specific report definitions with a particular Management Plug-in. For example,	
When Using Chart from SQL and Table from SQL elements	
oracle.sysman.eml.ip.render.elem.adjustTimes	
parameter on your element to 'true'	
. When this parameter is set, the start and end dates bound to your SQL query will be adjusted from the report time zone to the target time zone. Conversely, dates returned from the query will be adjusted from the target time zone to the report time zone.??EMIP_BIND_TIMEZONE_REGION??	
bind variable. In order for the report viewer to understand the dates shown, dates displayed in a report must either conform to the report time zone or explicitly display the time zone associated with each date. The following examples illustrate common use cases.Example 6-8 Adjusting a date returned in your select statement from the time zone of a given target to the report time zone.	
Example 6-9 Adjusting a report time period start and end dates used in the WHERE clause of your SELECT statement from the report time zone to your targets time zone	
Recommended Coding Practice	
When calling the PL/SQL API methods, you should use named notation rather than positional notation. If you have =>	
in your call, you are using named notation. For example,	
Using named notation insulates your report definition from any code changes to future releases of the PL/SQL API and also helps make your code self-documenting.	
You can extend Enterprise Manager Grid Control to monitor Web Services and JMX-instrumented applications for critical events, performance problems, error conditions, and statistics.	
Enterprise Manager's ability to monitor WSDL and JMX-enabled targets enables you to consolidate monitoring and management operations. When added to the Enterprise Manager framework, Enterprise Manager functionality, such as notifications, jobs, and reporting, is automatically extended to these targets.	
This chapter covers the following topics:	
Note: This chapter assumes knowledge of Management Plug-ins and the requisite target definition files. For information on Management Plug-in concepts, or developing and deploying Management Plug-ins, see Chapter 1, "Extending Monitoring" and Chapter 2, "Developing a Management Plug-in".	
Using Enterprise Manager to monitor targets that expose a Web Services management interface, JMX-instrumented applications and servers, and standalone Java Virtual Machine (JVM) targets entails defining a new target type via Management Plug-ins.	
Creating a new Management Plug-in consists of four basic steps:	
Procedural information for the monitoring targets can be found in the following sections:	
Monitoring JMX Applications Deployed on Oracle Application Servers and Monitoring a Standalone JMX-instrumented Java Application or Java Virtual Machine (JVM) Target explain how to generate metadata and default collection files for your custom JMX-enabled application by guiding you through the MBeans for which you are interested in collecting data, and helping you define the MBeans as metrics in Enterprise Manager. Even if your standalone Java application is not instrumented through JMX, you can still monitor the JVMs it is running on by directly creating the built-in JVM target instances as defined in Section 7.8.3.	
After the metadata and default collection files are created, you can follow the normal Management Plug-in mechanism to deploy your plug-in and create target instances of your Java application target type as discussed in Section 7.5 through Section 7.8.	
Web Services are loosely coupled software components that expose an external interface via the Web Service Definition Language (WSDL). These components communicate across a network using a standard messaging protocol called Simple Object Access Protocol (SOAP). The Management Agent's JMX/SOAP fetchlet supports SOAP communication.	
Note: For more information about the Web Services standard, see the World Wide Web Consortium (W3C) website:	
Prerequisites	
Defining a target type to be monitored via a Web Services interface entails creating the requisite target definition files, which are required to collect metrics from resources that support the WSDL interface:	
Enterprise Manager provides an easy-to-use Web Services wsperfcli command-line tool that simplifies creating new Management Plug-ins by automatically generating these requisite files. Information retrieval is achieved via the SOAP/JMX fetchlet that is integrated with the Management Agent.	
The command-line tool works by parsing a specified WSDL file for all operations, and enables you to select one or more operations to be invoked. If multiple port types are specified in the WSDL file, the tool prompts you to select one of them. Operations are listed along with their parameters. A Web Service operation can be one of four types:	
The Request Response operation type is particularly useful: The selected operation could have primitive or complex parameters and results. The result of Web Service invocation is displayed in a table (the tool prompts you to provide labels for the table columns). You can also filter result attributes by specifying an Xpath expression (see the columnOrder	
property in the generated target metadata, Example 7-3). Filter attributes can be useful for complex return types from which only few attributes are interesting.	
The Web Services command-line tool supports Web Services with the following binding and encoding styles:	
The Web Services command-line tool syntax is as follows:	
The wsperfcli	
command accepts the following options:	
The command-line tool optionally accepts a WSDL file name or URL to locate the WSDL for a Web Service. For example, for a card-service Web Service, a WSDL URL would be as follows:	
The command tool script requires access to the Enterprise Manager home directory (EM_HOME) to run. The tool defaults to ORACLE_HOME. The home directory setting can be set using the command-line argument -DEM_HOME	
. For example, -DEM_HOME=/myEMHome	
. Other optional arguments are -DSOAP11	
and -DuseSSL	
, which allow metadata to be generated to use an older version of the SOAP protocol and SSL for communication with the Web Service. The option -useWSIF	
is used for WSDL that use the old SOAP-style arrays (rpc/encoded Web Services).	
The tool parses specified WSDL for all the port types and binding (supported protocols such as HTTP get/post, SOAP) to list all the operations. If there are multiple port types in WSDL, you will first be prompted to choose a port type.	
The command-line tool does not invoke the Web Service; it generates metadata required by Enterprise Manager for target monitoring purposes via the WSDL file. When you run this tool, you only need read permission on the WSDL file or URL and permission to save generated files to the appropriate directory.	
Example 7–1 shows a sample WSDL file passed to the command-line tool to generate the target metadata and collection files.	
Example 7-1 Sample WSDL File TargetWithWSMgmtInterface	
Example 7–2 uses the WSDL file shown in Example 7-1. First, the tool parses the WSDL for all port types and bindings (supported protocols such as HTTP get/post or SOAP) to list all the operations. If there are multiple port types in the WSDL, the tool first prompts you to select a port type.	
Example 7-2 Sample Web Services Command-Line Tool Session	
Next, the tool prompts you to select attributes from the return type to add to the metric.	
The command-line tool generates the metadata required to monitor the target type TargetWithWSMgmtInterface	
as shown in Example 7-3.	
Example 7-3 TargetWithWSMgmtInterface Target Metadata File	
Though Enterprise Manager provides a number of out-of-box policies, you may need to define additional policies to meet your monitoring needs. Enterprise Manager provides this capability in the form of the MGMT_USER_DEFINED_POLICY package.	
Using the MGMT_USER_DEFINED_POLICY package, you can create and delete policies, as well as add policies to, and remove policies from, targets.	
See Also:	
This chapter includes the following:	
Note: This chapter assumes that you are familiar with PL/SQL packages and Enterprise Manager policies.	
A policy defines the desired behavior of systems and is associated with one or more targets or groups. A policy rule is a conditional expression that test values from a target against a condition, for example, verifying that database profile limits are set as expected.	
A policy tests data retrieved from a query performed against the Oracle Management Repository. A policy is said to be compliant if it is determined that the managed targets do, in fact, meet the desired state; that is, the test of the policy failed to identify any violations. Otherwise, a policy is said to be non-compliant when it has one or more policy violations.	
As an extension of the out-of-box policies, Enterprise Manager provides the MGMT_USER_DEFINED_POLICY package which supports user-defined policies in the context of subprograms.	
To use these subprograms, use SQL*Plus to connect to the Management Repository database as the Management Repository owner. The default Management Repository owner is SYSMAN.	
The following subprograms make up the MGMT_USER_DEFINED_POLICY package:	
Subprogram	Description
---	---
CREATE_POLICY	Creates a user-defined policy.
DELETE_POLICY	Deletes a user-defined policy.
ADD_POLICY_TO_TARGET	Adds a policy to an existing target.
REMOVE_POLICY_FROM_TARGET	Removes a policy from an existing target.
Descriptions of the constants and data types used in the subprograms follow.	
The following constants are defined by the MGMT_USER_DEFINED_POLICY package and can be used when calling the supplied subprograms. See Table 8-1.	
Table 8-1 Constants Used in the MGMT_USER_DEFINED_POLICY Package	
Constant	Description
---	---
Categories	Different types of policies
G_CATEGORY_FAULT	Breakdown in a component or occurrence of an error that indicates some component or user is unable to successfully complete processing, for example, database down
G_CATEGORY_WORKLOAD_VOL	Workload on a system induced in proportion to the users or batch jobs running against the system, for example, number of user calls
G_CATEGORY_WORKLOAD_TYPE	Type of workload on a system independent of demand, for example, CPU usage
G_CATEGORY_PERFORMANCE	Performance of a system, for example, response time
G_CATEGORY_CAPACITY	Usage of a fixed resource, for example, tablespace usage
G_CATEGORY_CONFIGURATION	Configuration of a target against recommended "best practice" configurations, for example, insufficient number of control files
G_CATEGORY_SECURITY	Security settings and issues, for example, open ports
G_CATEGORY_STORAGE	Storage, for example, permanent and temporary tablespaces
G_CATEGORY_UNCLASSIFIED	Default category to be used if a policy does not fall into a particular category
Severity Levels for Violation	Seriousness of violation
G_SEVERITY_INFORMATIONAL	Provides facts about the violation.
G_SEVERITY_WARNING	Forewarns of serious consequences if the violation is not dealt with in a timely manner.
G_SEVERITY_CRITICAL	Requires immediate attention to the violation.
Parameter Data Types	Data types for policy-related parameters
G_PARAM_TYPE_NUMBER	Number
G_PARAM_TYPE_STRING	String
Target Types	Entities monitored by Enterprise Manager
G_HOST_TARGET_TYPE	Host
G_DATABASE_TARGET_TYPE	Oracle Database Instance
G_LISTENER_TARGET_TYPE	Oracle Listener
G_CLUSTER_TARGET_TYPE	Group of independent servers
G_RAC_DATABASE_TARGET_TYPE	Real Application Cluster (RAC) Database Instance
G_REDUNDANCY_GROUP_TARGET_TYPE	Group containing members of the same type that function collectively as a unit
G_COMPOSITE_TARGET_TYPE	Number of targets grouped together for a purpose, for example, a business function
G_HOST_GROUP_TARGET_TYPE	Group consisting of many hosts
G_DATABASE_GROUP_TARGET_TYPE	Group consisting of many Oracle database instances
G_IAS_TARGET_TYPE	Oracle Application Server
G_WEBSITE_TARGET_TYPE	Web Application
G_FORMSAPP_TARGET_TYPE	Oracle Forms
G_HTTP_SERVER_TARGET_TYPE	Oracle HTTP Server
G_WEBCACHE_TARGET_TYPE	OracleAS Web Cache
G_OC4J_TARGET_TYPE	Oracle Application Server Containers for J2EE
G_BC4J_TARGET_TYPE	ADF Business Components for Java
G_LDAP_TARGET_TYPE	Lightweight Directory Access Protocol (LDAP)
G_PORTAL_TARGET_TYPE	OracleAS Portal
G_APPLICATION_TARGET_TYPE	Oracle Application
G_APPS_SYSTEM_TARGET_TYPE	Oracle Application System
G_ASM_TARGET_TYPE	Automatic Storage Management
Condition Operators	Used when manipulating thresholds which are boundary values against which monitored metric values are compared
G_THRESHOLD_EQ	Equal to (=)
G_THRESHOLD_LT	Less than (<)
G_THRESHOLD_GT	Greater than (>)
G_THRESHOLD_LE	Less than or equal to (< =)
G_THRESHOLD_GE	Greater than or equal to (> =)
G_THRESHOLD_NE	Not equal to (¼)
G_THRESHOLD_CONTAINS	Contains at least
G_THRESHOLD_MATCH	Exact match
The MGMT_USER_DEFINED_POLICY subprograms use the data types described in Table 8-2.	
Table 8-2 Data Types Used in the MGMT_USER_DEFINED_POLICY Package	
Type	Description
---	---
UDP_PARAMETERS	Represents a collection of parameters used in the user-defined policy (UDP).
UDP_PARAMETER	Represents a single parameter.
When creating a user-defined policy, parameter information is passed using the UDP_PARAMETERS object.	
Use these PL/SQL types to represent the list of parameters used by a user-defined policy.	
Syntax	
Parameters	
Parameter	Description
---	---
param_name	Name of the parameter to be created
param_type	Type of parameter Example: G_PARAM_TYPE_NUMBER G_PARAM_TYPE_STRING
threshold_value	Default value of parameter
As part of creating a user-defined policy, you specify the SQL to use to extract the information to be tested from the Management Repository. Enterprise Manager provides management views with which you can safely extract data from the Management Repository without reading from the base tables.	
By using Management Repository views, you:	
A complete listing of the Management Repository views can be found in Chapter 9, "Management Repository Views".	
The CREATE_POLICY procedure creates a user-defined policy. As part of a policy, one must identify the:	
Once the script is run, the policy is automatically stored in the Policy Library and is available for viewing.	
Tests Supported by CREATE_POLICY Procedure	
The following types of tests are supported in the CREATE_POLICY procedure:	
The value from a single selected column is tested using a specified test operator	
A SQL expression that can contain references to literals, selected columns and policy parameters, where the latter two are named as bind variables. In addition, any built-in SQL functions can be used. For example, the following uses the SQL function (length), as well as the selected column (PASSWORD), and policy parameter (MIN_PWD_LENGTH):	
length(:PASSWORD) <= :MIN_PWD_LENGTH	
The following syntax describes the procedure used to create a policy. If the policy is not created, an error message is raised using the RAISE_APPLICATION_ERROR procedure. The error number and message can be trapped like any Oracle error for processing.	
Syntax	
Threshold or simple condition	
SQL expression	
Parameters	
Parameter	Description
---	---
p_policy_name	Name of the policy to be created
p_target_type	Type of target to which this policy is applicable Example: G_HOST_TARGET_TYPE (Host) G_DATABASE_TARGET_TYPE (Oracle Database Instance)
p_sql_text	SQL used to retrieve data to be tested from the Management Repository The specified SQL needs to satisfy the following requirements:
p_column_name	Name of the column from the select list against which to compare the p_threshold_value
p_test_operator	Type of comparison to be performed. Valid values are: G_THRESHOLD_EQ G_THRESHOLD_NE G_THRESHOLD_LT G_THRESHOLD_LE G_THRESHOLD_GT G_THRESHOLD_GE G_THRESHOLD_CONTAINS G_THRESHOLD_MATCH
p_threshold_value	Value against which comparison is performed
p_threshold_data_type	Data type of the threshold value. Valid values are: G_PARAM_TYPE_NUMBER G_PARAM_TYPE_STRING
p_test	Test to apply to the rows returned by p_sql_text for identifying violations of the policy. The test can be any valid SQL expression. It can also reference columns in the select list from p_sql_text and/or parameters specified in p_parameters. To reference columns in the select column list or a parameter, prefix the name with a colon (:).
p_parameters	Tuples containing a list of parameters and the default value to be used when evaluating the policy
p_num_keys	Number of columns in the select list that are key columns; that is, they uniquely identify a row returned by p_sql_text
p_description	Contains descriptive text for the policy.
p_impact	Provides text that states why this policy is important.
p_recommendation	Contains information regarding how to bring a target back into compliance with the policy.
p_severity_level	Severity level for a violation. Valid values include: G_SEVERITY_INFORMATIONAL G_SEVERITY_WARNING G_SEVERITY_CRITICAL
p_category	Policy category. Valid values are: G_CATEGORY_FAULT G_CATEGORY_WORKLOAD_VOL G_CATEGORY_WORKLOAD_TYPE G_CATEGORY_PERFORMANCE G_CATEGORY_CAPACITY G_CATEGORY_CONFIGURATION G_CATEGORY_SECURITY G_CATEGORY_STORAGE G_CATEGORY_UNCLASSIFIED
p_url_link	URL to be used for additional detailed information regarding this policy
p_violation_message	Message recorded along with the violation. Used for notifications, such as e-mails and paging, that happen as a result of a detection of a new violation. The message can reference columns in the select list from p_sql_text and/or parameters specified in p_parameters. To reference columns in the select column list or a parameter, enclose the name with percent signs (%).
p_clear_message	Message recorded with the clearing of a violation. Used for notifications, such as e-mails and paging, that happen as a result of a detection of a new violation. The message can reference columns in the select list from p_sql_text and/or parameters specified in p_parameters. To reference columns in the select column list or a parameter, enclose the name with percent signs (%).
p_eval_interval	Evaluation interval expression in number of hours
Examples	
The following examples depict how to create a policy.	
Example 8-1 Sufficient Control Files Threshold	
Example 8-2 Sufficient Control Files Using UDP Parameters	
Example 8-3 Data Dictionary Protected SQL Expression	
There are a number of ways to add a user-defined policy to existing targets. These methods include:	
To quickly add a user-defined policy to existing targets, use the Metric and Policy Settings UI pages.	
The following procedure associates an existing user-defined policy with a target that already exists in the Management Repository. If the association is not created, an error message is raised using the RAISE_APPLICATION_ERROR procedure. The error number and message can be trapped like any Oracle error for processing.	
Syntax	
Parameters	
Parameter	Description
---	---
p_policy_name	Name of the policy to be added
p_target_type	Type of target to which this policy is applicable Examples: G_HOST_TARGET_TYPE (Host) G_DATABASE_TARGET_TYPE (Oracle Database Instance)
p_target_name	Name of the target
Examples	
The following examples depict how to add policies to targets.	
Example 8-4 Add a Policy to One Target	
Example 8-5 Add a Policy to All Existing Targets	
Another way to add a user-defined policy to existing targets is to:	
This procedure deletes an existing user-defined policy. As part of deleting a user-defined policy:	
If the policy is not deleted, an error message is raised using the RAISE_APPLICATION_ERROR procedure. The error number and message can be trapped like any Oracle error for processing.	
The Management Repository owner has the permission to delete the policy.	
Syntax	
Parameters	
Parameter	Description
---	---
p_policy_name	Name of the policy to be deleted
p_target_type	Type of target to which this policy is applicable Examples: G_HOST_TARGET_TYPE (Host) G_DATABASE_TARGET_TYPE (Oracle Database Instance)
Example	
The following example depicts how to delete a policy.	
Example 8-6 Deleting a User-Defined Policy	
There are two ways to remove a user-defined policy from existing targets:	
To quickly remove a user-defined policy from existing targets, use the Metric and Policy Settings UI pages.	
The following procedure is used to remove an existing user-defined policy from a target that exists in the Management Repository. If the association is not removed, an error message is raised using the RAISE_APPLICATION_ERROR procedure. The error number and message can be trapped like any Oracle error for processing.	
Syntax	
Parameters	
Parameter	Description
---	---
p_policy_name	Name of the policy to be removed
p_target_type	Type of target to which this policy is applicable Example: G_HOST_TARGET_TYPE (Host) G_DATABASE_TARGET_TYPE (Oracle Database Instance)
p_target_name	Name of the target
Example	
The following example depicts how to remove a user-defined policy from existing targets.	
Example 8-7 Remove a Policy from an Existing Target	
This section of the guide provides reference information to be used while developing Management Plug-ins.	
Part II contains the following chapters:	
Enterprise Manager repository views are used to access information in the Management Repository for further processing and/or presentation.	
Important: Views supplied with Enterprise Manager 10g release 10.2 are provisional. Provisional views, although fully supported for the current release of Enterprise Manager 10g, may change in subsequent releases. Backward compatibility is not guaranteed for provisional views.	
This chapter covers the following:	
The Enterprise Manager Management Repository views provide access to target, metric, and monitoring information stored in the Management Repository. Accessing the repository will allow you to perform the following:	
The Management Repository is the comprehensive source for all the management information for Enterprise Manager, with the key to extensibility being the repository's open schema. This open architecture allows users to customize how the information in the repository is used if Enterprise Manager's standard configuration does not meet their requirements. To facilitate easy access to information stored in the repository, Enterprise Manager supplies a comprehensive set of views rather than forcing the user to access repository base tables directly. Views buffer custom applications from any underlying changes to the repository schema and ensures up-stream applications will not break when the repository schema changes via patching or new releases.	
Using Repository Views	
Because the views are simple queries to a database, users can imbed these queries within any application code used to return information for further processing and/or display in the Enterprise Manager Grid Control console.	
As shown in Example 9-1, "View Usage", the Java code uses Enterprise Manager views to query the Management Repository rather than accessing the repository tables directly. For each of four time windows, there are four SQL statements with questions marks ('?') as placeholders for the parameters.	
Example 9-1 View Usage	
MGMT$METRIC_ERROR_HISTORY displays the history of metric collection errors that have occurred in last 3 months.	
Table 9-1 MGMT$METRIC_ERROR_HISTORY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLL_NAME	VARCHAR2(256)
COLLECTION_TIMESTAMP	DATE
ERROR_TYPE	NUMBER
ERROR_MESSAGE	VARCHAR2(4000)
Usage Notes	
List the history of metric errors for a given target.	
List the history of metric errors for a given target and metric.	
Queries using this view would use index if target_name and target_type were specified.	
MGMT$METRIC_ERROR_CURRENT displays the metric collections that are currently generating errors.	
Table 9-2 MGMT$METRIC_ERROR_CURRENT	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLL_NAME	VARCHAR2(256)
COLLECTION_TIMESTAMP	DATE
ERROR_TYPE	NUMBER
ERROR_MESSAGE	VARCHAR2(4000)
Usage Notes	
List the current metric errors for a given target.	
List the current metric errors for a given target and metric.	
Queries using this view would use index if target_name and target_type were specified.	
MGMT$TARGET_COMPONENTS displays information about the software components that are associated with a managed target as well as details about where the software components have been installed.	
Table 9-3 MGMT$TARGET_COMPONENTS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
HOST_NAME	VARCHAR2(64)
HOME_NAME	VARCHAR2(64)
HOME_TYPE	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
COMPONENT_NAME	VARCHAR2(128)
COMPONENT_ EXTERNAL_NAME	VARCHAR2(128)
COMPONENT_VERSION	VARCHAR2(64)
COMPONENT_BASE_ VERSION	VARCHAR2(64)
SNAPSHOT_GUID	RAW(16)
Usage Notes	
This view can be used to identify the software components that are part of a specific managed target.	
Access to this view will use an index if the query references the target name and target type, the home location, or the host name.	
MGMT$BLACKOUT_HISTORY displays a historical log of changes in the blackout state for a managed target. In addition, the view can be used to generate a list of targets that were in a blackout period for a specific period of time.	
Table 9-4 MGMT$BLACKOUT_HISTORY	
Column	Datatype
---	---
BLACKOUT_NAME	VARCHAR(64)
CREATED_BY	VARCHAR(256)
BLACKOUT_GUID	RAW(16)
START_TIME	DATE
END_TIME	DATE
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
STATUS	NUMBER(2)
Usage Notes	
Queries using this view will use an index if they reference the target_name, target_ type, start_timestamp, or end_timestamp.	
Typically, blackout history information retrieved using this view will be ordered by target_name, target_type, and start_timestamp.	
MGMT$BLACKOUTS displays all blackout definition information along with current schedules.	
Table 9-5 MGMT$BLACKOUTS	
Column	Datatype
---	---
BLACKOUT_NAME	VARCHAR(64)
BLACKOUT_GUID	RAW(16)
REASON	VARCHAR(64)
DESCRIPTION	VARCHAR2(2000)
STATUS	NUMBER(2)
CREATED_BY	VARCHAR(256)
LAST_START_TIME	DATE
LAST_END_TIME	DATE
SCHEDULED_TIME	NUMBER
SCHEDULE_START_TIME	DATE
SCHEDULE_END_TIME	DATE
DURATION	NUMBER
MGMT$ALERT_ANNOTATIONS displays a summary of alert annotations.	
Table 9-6 MGMT$	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
MESSAGE	VARCHAR2(4000)
ALERT_STATE	VARCHAR2(20)
COLLECTION_ TIMESTAMP	DATE
ANNOTATION_MESSAGE	VARCHAR2(4000)
ANNOTATION_TIMESTAMP	DATE
ANNOTATED_BY	VARCHAR2(64)
SOURCE_OBJ_GUID	RAW(16)
MGMT$ALERT_NOTIF_LOG displays a summary of alert notifications.	
Table 9-7 MGMT$MGMT$ALERT_NOTIF_LOG	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
MESSAGE	VARCHAR2(4000)
ALERT_STATE	VARCHAR2(20)
COLLECTION_ TIMESTAMP	DATE
DELIVERY_MESSAGE	VARCHAR2(1024)
DELIVERY_TIMESTAMP	DATE
SOURCE_OBJ_GUID	RAW(16)
MGMT$TARGET_METRIC_COLLECTIONS displays information about the metric collections.	
Table 9-8 MGMT$TARGET_METRIC_COLLECTIONS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_GUID	RAW(16)
COLLECTION_NAME	VARCHAR2(64)
IS_ENABLED	NUMBER(1)
IS_REPOSITORY	NUMBER(1)
FREQUENCY_CODE	NUMBER
COLLECTION_FREQUENCY	VARCHAR2
UPLOAD_POLICY	NUMBER
Usage Notes	
List the metric collections for a given target.	
MGMT$TARGET_METRIC_SETTINGS displays information about the current metric setting stored for all targets in the Management Repository. This view provides information for both Agent-side and repository-side metrics.	
Table 9-9 MGMT$TARGET_METRIC_SETTINGS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_GUID	RAW(16)
COLLECTION_NAME	VARCHAR2(64)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
KEY_OPERATOR	NUMBER
HAS_ACTIVE_BASELINE	NUMBER(1)
PREVENT_OVERRIDE	NUMBER(1)
WARNING_OPERATOR	NUMBER
WARNING_THRESHOLD	VARCHAR2(256)
CRITICAL_OPERATOR	NUMBER
CRITICAL_THRESHOLD	VARCHAR2(256)
OCCURRENCE_COUNT	NUMBER
WARNING_ACTION_TYPE	VARCHAR2(32)
WARNING_ACTION_JOB_OWNER	VARCHAR2(256)
WARNING_ACTION_JOB_NAME	VARCHAR2(64)
CRITICAL_ACTION_TYPE	VARCHAR2(17)
CRITICAL_ACTION_JOB_TYPE	VARCHAR2(32)
CRITICAL_ACTION_JOB_OWNER	VARCHAR2(256)
CRITICAL_ACTION_JOB_NAME	VARCHAR2(64)
Usage Notes	
List all the metric setting for a given target.	
List the metric settings for a given target and metric.	
List the corrective actions assigned for a given target-metric.	
MGMT$AVAILABILITY_CURRENT displays information about the most recent target availability information stored in the Management Repository.	
Table 9-10 MGMT$AVAILABILITY_CURRENT	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
START_TIMESTAMP	DATE
AVAILABILITY_STATUS	VARCHAR(15)
Usage Notes	
Get the current availability status of a given target.	
MGMT$AVAILABILITY_HISTORY displays detailed historical information about changes in the availability status for a target over time.	
Table 9-11 MGMT$AVAILABILITY_HISTORY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
START_TIMESTAMP	DATE
END_TIMESTAMP	DATE
AVAILABILITY_STATUS	VARCHAR2(10)
Usage Notes	
Access to this view will use an index if the query references the member TARGET_ NAME, TARGET_TYPE and the START_TIMESTAMP.	
MGMT$ALERT_CURRENT displays current information for any alerts that are logged in the Management Repository that are in a non-clear state. Only the most recent open alert in a non-clear status for a given metric will be displayed through this view.	
Table 9-12 MGMT$	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
VIOLATION_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
COLLECTION_ TIMESTAMP	DATE
ALERT_STATE	VARCHAR2(20)
VIOLATION_TYPE	VARCHAR2(19)
MESSAGE	VARCHAR2(1024)
MESSAGE_NLSID	VARCHAR2(64)
MESSAGE_PARAMS	VARCHAR2(4000)
ACTION_MESSAGE	VARCHAR2(4000)
ACTION_MESSAGE_NLSID	VARCHAR2(64)
ACTION_MESSAGE_PARAMS	VARCHAR2(4000)
TYPE_DISPLAY_NAME	VARCHAR2(128)
Usage Notes	
List the current alerts that are in a non-clear state for a metric, set of metrics, or for a managed target. If the user is only interested in non-clear alerts, counts or selects, using this view provide better performance than using the MGMT$ALERT_DETAILS view.	
Access to this view will use an index if the query references the member target name, target type, metric name, and metric column or a subset of these columns if they are included as listed above from left to right.	
MGMT$ALERT_HISTORY displays historical information for any alerts that are logged in the Management Repository.	
Table 9-13 MGMT$ALERT_HISTORY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
VIOLATION_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
COLLECTION_ TIMESTAMP	DATE
ALERT_STATE	VARCHAR2(20)
ALERT_DURATION	NUMBER
MESSAGE	VARCHAR2(1024)
MESSAGE_NLSID	VARCHAR2(64)
MESSAGE_PARAMS	VARCHAR2(4000)
ACTION_MESSAGE	VARCHAR2(4000)
ACTION_MESSAGE_NLSID	VARCHAR2(64)
ACTION_MESSAGE_PARAMS	VARCHAR2(4000)
VIOLATION_TYPE	VARCHAR2(19)
TYPE_DISPLAY_NAME	VARCHAR2(128)
Usage Notes	
List the historical details of alerts for a managed target or a specific metric ordered by time.	
Determine the notification status for a specific alert or set of alerts.	
Generate statistical reports on alert frequency using criteria such as by target, by metric, by groups of metrics.	
Custom implementation of event filtering or causal analysis.	
Custom aggregation (grouping) of alert information into categories.	
Custom alert status queries or aggregations for specific time periods. i.e. What was my most problematic metric for target x last week? How many times did alert y occur between times w and x?	
Generating time based histograms of alerts.	
The view does not force any specific order on the rows returned. The assumption is that if the user wants to order the alert records that are returned in a specific way, they will add an order by clause to their select query.	
Access to this view will use an index if the query references the member target name, target type, metric name, and metric column or a subset of these columns if they are included as listed above from left to right.	
Queries that use the collection_timestamp or that query using the alert_state will also be indexed.	
MGMT$METRIC_DETAILS displays a rolling 25 hour window of individual metric samples. These are the metric values for the most recent sample that has been loaded into the Management Repository plus any earlier samples that have not been aggregated into hourly statistics.	
Table 9-14 MGMT$METRIC_DETAILS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_TYPE	VARCHAR2(20)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
COLLECTION_ TIMESTAMP	DATE
VALUE	VARCHAR2(4000)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
Usage Notes	
Show the individual values for a metric over time.	
Identify time periods when abnormal samples for metric were collected.	
Calculate the correlation coefficient between two or more metrics.	
Provide metric values that are associated with an alert.	
Queries using this view will use an index if the queries use the target name, the target type, metric name. metric column, and key value, or if they are based upon the collection_timestamp.	
MGMT$METRIC_CURRENT displays information on the most recent metric values that have been loaded into the Management Repository.	
Table 9-15 MGMT$METRIC_CURRENT	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_TYPE	VARCHAR2(20)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
COLLECTION_ TIMESTAMP	DATE
VALUE	VARCHAR2(4000)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
Usage Notes	
Retrieve the most recent value for a metric that is stored in the Management Repository.	
Retrieve the latest metrics for a target or metric for a specific time period.	
Queries using this view will use an index if the queries use target name, the target type, metric name. metric column, and key value, or if they are based upon the collection_timestamp.	
MGMT$METRIC_HOURLY displays metric statistics information that have been aggregated from the individual metric samples into hourly time periods. For example, if a metric is collected every 15 minutes, the 1 hour rollup would aggregate the 4 samples into a single hourly value by averaging the 4 individual samples together. The current hour of statistics may not be immediately available from this view. The timeliness of the information provided from this view is dependent on when the query against the view was executed and when the hourly rollup table was last refreshed.	
Table 9-16 MGMT$METRIC_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
ROLLUP_TIMESTAMP	DATE
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
Usage Notes	
This view provides the best level of granularity to show changes in a metric's value over the course of a day.	
Identify hourly time periods when a metric or sets of metrics are maximized.	
Understand how the variability of a metric over a one hour time period.	
Identify the values of the collected metrics for a target when a particular hour has been identified as problematic.	
Queries using this view will use an index if the queries use the target_name, the metric_name, or if they are based upon the rollup_timestamp.	
MGMT$METRIC_DAILY displays metric statistics that have been aggregated from the samples collected over the previous twenty-four hour time period. The timeliness of the information provided from this view is dependent on when the query against the view was executed and when the hourly rollup table was last refreshed.	
Table 9-17 MGMT$METRIC_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
ROLLUP_TIMESTAMP	DATE
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
Usage Notes	
View provides the best granularity to show changes in a metric's value over the course of a week or month.	
Understand trends in metric values.	
Queries using this view will use an index if the queries use the target_name, the metric_name, or if they are based upon the rollup_timestamp.	
MGMT$TARGET displays information about the managed targets that are known to the Management Repository. These targets may or may not be actively monitored.	
Table 9-18 MGMT$TARGET	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
TYPE_VERSION	VARCHAR2(8)
TYPE_QUALIFIER1-5	VARCHAR2(64)
EMD_URL	VARCHAR2(2000)
TIMEZONE_REGION	VARCHAR2(64)
DISPLAY_NAME	VARCHAR2(64)
HOST_NAME	VARCHAR2(128)
LAST_METRIC_LOAD_TIME	TIMESTAMP
TYPE_DISPLAY_NAME	VARCHAR2(128)
Usage Notes	
Display a list of the targets known to the Management Repository.	
Display administration and monitoring information in the context of a managed target.	
Order the targets by last load time for customers to get a sense on how recent the information is for a target in the Management Repository. To access this information in an ordered way, customers should use the appropriate ORDER BY clause with the view.	
Access to this view will use an index if the query references the target name and target type.	
There is an implicit assumption that customers will not use this view to identify the targets that are owned by a Management Agent or the targets that reside on a specific host.	
MGMT$TARGET_TYPE displays metric descriptions for a given target name and target type. This information is available for the metrics for the managed targets that have been loaded into the Management Repository. Metrics are specific to the target type.	
Table 9-19 MGMT$TARGET_TYPE	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
TYPE_VERSION	VARCHAR2(8)
TYPE_QUALIFIER1-5	VARCHAR2(64)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
KEY_COLUMN	VARCHAR2(64)
METRIC_TYPE	VARCHAR2(20)
METRIC_LABEL	VARCHAR2(64)
COLUMN_LABEL	VARCHAR2(64)
DESCRIPTION	VARCHAR2(128)
DESCRIPTION_NLSID	VARCHAR2(64)
UNIT	VARCHAR2(32)
UNIT_NLSID	VARCHAR2(64)
SHORT_NAME	VARCHAR2(40)
SHORT_NAME_NLSID	VARCHAR2(64)
Usage Notes	
List the set of metrics that have been defined for a target type.	
Display intuitive metric names and associated attributes such as unit in a general way during portal, web application, or custom 4GL report generation.	
Access to this view will use an index if the query references the metric name, metric column. The query should also qualify the target name and target type in order to restrict the amount of information returned.	
MGMT$TARGET_TYPE_DEF displays definition information for a target type.	
Table 9-20 MGMT$TARGET_TYPE_DEF	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
TYPE_DISPLAY_NAME	VARCHAR2(128)
TARGET_TYPE_GUID	RAW(16)
MAX_TYPE_META_VER	VARCHAR2(8)
MGMT$TARGET_ASSOCIATIONS displays the various associations between targets. This view can be used to find all types of associations for a given target.	
Table 9-21 MGMT$TARGET_ASSOCIATIONS	
Column	Datatype
---	---
ASSOC_DEF_NAME	VARCHAR2(64)
SOURCE_TARGET_NAME	VARCHAR2(256)
SOURCE_TARGET_TYPE	VARCHAR2(64)
ASSOC_TARGET_NAME	VARCHAR2(256)
ASSOC_TARGET_TYPE	VARCHAR2(64)
SCOPE_TARGET_NAME	VARCHAR2(256)
SCOPE_TARGET_TYPE	VARCHAR2(64)
ASSOCIATION_TYPE	VARCHAR2(64)
Usage Notes	
Can be used to list the associations defined for a specific target.	
Queries using this view will use an index if either (source_target_name, source_target_type) or (assoc_target_name, assoc_target_type) is specified.	
MGMT$TARGET_MEMBERS displays the list of direct members for a target.	
Table 9-22 MGMT$TARGET_MEMBERS	
Column	Datatype
---	---
AGGREGATE_TARGET_NAME	VARCHAR2(256)
AGGREGATE_TARGET_TYPE	VARCHAR2(64)
AGGREGATE_TARGET_GUID	RAW(16)
MEMBER_TARGET_NAME	VARCHAR2(256)
MEMBER_TARGET_TYPE	VARCHAR2(64)
MEMBER_TARGET_GUID	RAW(16)
Usage Notes	
Find the members for a aggregate target.	
Find the aggregate targets for which a given target is a direct member.	
Queries, which specify values for (AGGREGATE_TARGET_NAME, AGGREGATE_TARGET_TYPE) or (MEMBER_TARGET_NAME, MEMBER_TARGET_TYPE) will use index.	
Joins using AGGREGATE_TARGET_GUID and MEMBER_TARGET_GUID will be efficient.	
MGMT$TARGET_FLAT_MEMBERS displays the list of all direct and indirect members of the target.	
Table 9-23 MGMT$TARGET_FLAT_MEMBERS	
Column	Datatype
---	---
AGGREGATE_TARGET_NAME	VARCHAR2(256)
AGGREGATE_TARGET_TYPE	VARCHAR2(64)
AGGREGATE_TARGET_GUID	RAW(16)
MEMBER_TARGET_NAME	VARCHAR2(256)
MEMBER_TARGET_TYPE	VARCHAR2(64)
MEMBER_TARGET_GUID	RAW(16)
Usage Notes	
Find the members for a aggregate target.	
Find the aggregate targets for which a given target is a member either directly or indirectly.	
Queries, which specify values for (AGGREGATE_TARGET_NAME, AGGREGATE_TARGET_TYPE) or (MEMBER_TARGET_NAME, MEMBER_TARGET_TYPE) will use index.	
Joins using AGGREGATE_TARGET_GUID and MEMBER_TARGET_GUID will be the most efficient on this view.	
MGMT$TARGET_TYPE_PROPERTIES displays the default list of properties that are applicable to the target based on the target type to which the target belongs.	
Table 9-24 MGMT$TARGET_TYPE_PROPERTIES	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
PROPERTY_NAME	VARCHAR2(64)
PROPERTY_VALUE	VARCHAR2(1024)
Usage Notes	
List the properties applicable to the target and the default values.	
MGMT$TARGET_PROPERTIES displays detailed target properties.	
Table 9-25 MGMT$	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
PROPERTY_NAME	VARCHAR2(64)
PROPERTY_VALUE	VARCHAR2(1024)
PROPERTY_TYPE	VARCHAR2(64)
MGMT$METRIC_CATEGORIES displays the list of classes and categories to which the metric belongs. This view can be used to classify the metric based on the class (Example: Service, Functional) and category within the class (Example: security/configuration under functional class or usage/performance under service class).	
Table 9-26 MGMT$METRIC_CATEGORIES	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
TYPE_VERSION	VARCHAR2(8)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_CLASS_NAME	VARCHAR2(64)
METRIC_CATEGORY_NAME	VARCHAR2(64)
METRIC_CATEGORY_NLSID	VARCHAR2(64)
Usage Notes	
Classify the metrics into different buckets based on Class and category.	
MGMT$POLICIES displays the list of policies defined in the Management Repository.	
Table 9-27 MGMT$POLICIES	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
METRIC_NAME	VARCHAR2(64)
POLICY_NAME	VARCHAR2(128)
POLICY_LABEL_NLSID	VARCHAR2(64)
POLICY_GUID	RAW(16)
AUTHOR	VARCHAR2(256)
DESCRIPTION	VARCHAR2(256)
DESCRIPTION_NLSID	VARCHAR2(64)
IMPACT	VARCHAR2(500)
IMPACT_NLSID	VARCHAR2(64)
RECOMMENDATION	VARCHAR2(500)
RECOMMENDATION_NLSID	VARCHAR2(64)
VIOLATION_LEVEL	VARCHAR2(13)
CONDITION_TYPE	NUMBER(1)
CONDITION	VARCHAR2(4000)
CONDITION_OPERATOR	NUMBER
OWNER	VARCHAR2(256)
AUTO_ENABLED	NUMBER(1)
CATEGORY	VARCHAR2(64)
CATEGORY_NLSID	VARCHAR2(64)
MGMT$POLICY_PARAMETERS displays detailed information about a policy.	
Table 9-28 MGMT$POLICY_PARAMETERS	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
METRIC_NAME	VARCHAR2(64)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
PARAMETER_NAME	VARCHAR2(64)
PARAMETER_NAME_NLSID	VARCHAR2(64)
PARAMETER_TYPE	VARCHAR2(7)
MGMT$POLICY_VIOLATION_CTXT displays the policy violation context.	
Table 9-29 MGMT$POLICY_VIOLATION_CTXT	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
METRIC_NAME	VARCHAR2(64)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
COLUMN_NAME	VARCHAR2(64)
IS_HIDDEN	NUMBER(1)
URL_LINK_TYPE	VARCHAR2(7)
URL_LINK_TEMPLATE	VARCHAR2(4000)
MGMT$TARGET_POLICY_EVAL_SUMM displays the policy violation summary for a target.	
Table 9-30 MGMT$TARGET_POLICY_EVAL_SUMM	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
COLL_NAME	VARCHAR2(64)
LAST_EVALUATION_DATE	DATE
TOTAL_VIOLATIONS	NUMBER
NON_SUPPRESS_VIOLATIONS	NUMBER
COMPLIANCE_SCORE	NUMBER
MGMT$POLICY_VIOL_ANNOTATIONS displays a summary of policy violation annotations.	
Table 9-31 MGMT$POLICY_VIOL_ANNOTATIONS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
DESCRIPTION	VARCHAR2(256)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
MESSAGE	VARCHAR2(4000)
VIOLATION_LEVEL	VARCHAR2(40)
COLLECTION_TIMESTAMP	DATE
ANNOTATION_MESSAGE	VARCHAR2(4000)
ANNOTATION_TIMESTAMP	DATE
ANNOTATED_BY	VARCHAR2(256)
MGMT$POLICY_VIOL_NOTIF_LOG displays details of notification deliveries for policy violations.	
Table 9-32 MGMT$POLICY_VIOL_NOTIF_LOG	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
VIOLATION_MESSAGE	VARCHAR2(4000)
VIOLATION_LEVEL	VARCHAR2(40)
COLLECTION_TIMESTAMP	DATE
DELIVERY_MESSAGE	VARCHAR2(1024)
DELIVERY_TIMESTAMP	DATE
MGMT$TARGET_POLICIES displays target policy information.	
Table 9-33 MGMT$TARGET_POLICIES	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
IS_ENABLED	NUMBER(1)
MGMT$TARGET_POLICY_SETTINGS displays policy settings for a target.	
Table 9-34 MGMT$TARGET_POLICY_SETTINGS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
KEY_OPERATOR	NUMBER
PARAMETER_NAME	VARCHAR2(64)
PREVENT_OVERRIDE	NUMBER(1)
POLICY_THRESHOLD	VARCHAR2(256)
ACTION_TYPE	VARCHAR2(17)
ACTION_JOB_TYPE	VARCHAR2(32)
ACTION_JOB_NAME	VARCHAR2(64)
ACTION_JOB_OWNER	VARCHAR2(256)
MGMT$POLICY_VIOLATION_CURRENT displays current information for any policy violations that are logged in the Management Repository that are in a non-clear state. Only the most recent open violation in a non-clear status for a given policy will be provided through this view.	
Table 9-35 MGMT$POLICY_VIOLATION_CURRENT	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TYPE_DISPLAY_NAME	VARCHAR2(128)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
COLLECTION_TIMESTAMP	DATE
VIOLATION_LEVEL	NUMBER
MESSAGE	VARCHAR2(4000)
MESSAGE_NLSID	VARCHAR2(64)
MESSAGE_PARAMS	VARCHAR2(4000)
SUPPRESS_CODE	NUMBER
SUPPRESS_UNTIL	DATE
SUPPRESS_BY	VARCHAR2(256)
MGMT$POLICY_VIOLATION_HISTORY displays historical information for any policies that are logged in the Management Repository.	
Table 9-36 MGMT$POLICY_VIOLATION_HISTORY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TYPE_DISPLAY_NAME	VARCHAR2(128)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
COLLECTION_TIMESTAMP	DATE
VIOLATION_LEVEL	NUMBER
VIOLATION_DURATION	NUMBER
MESSAGE	VARCHAR2(4000)
MESSAGE_NLSID	VARCHAR2(64)
MESSAGE_PARAMS	VARCHAR2(4000)
MGMT$POLICY_VIOLATION_CONTEXT displays policy violation context.	
Table 9-37 MGMT$POLICY_VIOLATION_CONTEXT	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TYPE_DISPLAY_NAME	VARCHAR2(128)
TARGET_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
COLLECTION_TIMESTAMP	DATE
COLUMN_NAME	VARCHAR2(64)
COLUMN_VALUE	VARCHAR2(4000)
MGMT$TEMPLATES displays details of all the management templates stored in the Management Repository.	
Table 9-38 MGMT$TEMPLATES	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
TEMPLATE_NAME	VARCHAR2(64)
TEMPLATE_GUID	RAW(16)
DESCRIPTION	VARCHAR2(1024)
OWNER	VARCHAR2(256)
IS_PUBLIC	NUMBER(1)
CREATED_DATE	DATE
LAST_UPDATED_DATE	DATE
LAST_UPDATED_BY	VARCHAR2(256)
MGMT$TEMPLATE_POLICY_SETTINGS displays policy settings for management templates.	
Table 9-39 MGMT$TEMPLATE_POLICY_SETTINGS	
Column	Datatype
---	---
TARGET_TYPE	VARCHAR2(64)
TEMPLATE_NAME	VARCHAR2(64)
TEMPLATE_GUID	RAW(16)
POLICY_NAME	VARCHAR2(128)
POLICY_GUID	RAW(16)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
KEY_OPERATOR	NUMBER
PARAMETER_NAME	VARCHAR2(64)
PREVENT_OVERRIDE	NUMBER(1)
POLICY_THRESHOLD	VARCHAR2(256)
ACTION_TYPE	VARCHAR2(17)
ACTION_JOB_TYPE	VARCHAR2(32)
ACTION_JOB_NAME	VARCHAR2(64)
ACTION_JOB_OWNER	VARCHAR2(256)
MGMT$TEMPLATE_METRICCOLLECTIONS displays information on the metric collections defined for a template.	
Table 9-40 MGMT$TEMPLATE_METRICCOLLECTION	
Column	Datatype
---	---
TEMPLATE_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TEMPLATE_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_GUID	RAW(16)
COLLECTION_NAME	VARCHAR2(64)
IS_REPOSITORY	NUMBER(1)
FREQUENCY_CODE	VARCHAR2(9)
COLLECTION_FREQUENCY	VARCHAR2(81)
UPLOAD_POLICY	NUMBER
MGMT$TEMPLATE_METRIC_SETTINGS displays management template settings.	
Table 9-41 MGMT$TEMPLATE_METRIC_SETTINGS	
Column	Datatype
---	---
TEMPLATE_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
TEMPLATE_GUID	RAW(16)
METRIC_NAME	VARCHAR2(64)
METRIC_COLUMN	VARCHAR2(64)
METRIC_GUID	RAW(16)
COLLECTION_NAME	VARCHAR2(64)
CATEGORY	VARCHAR2(64)
KEY_VALUE	VARCHAR2(256)
KEY_VALUE2	VARCHAR2(256)
KEY_VALUE3	VARCHAR2(256)
KEY_VALUE4	VARCHAR2(256)
KEY_VALUE5	VARCHAR2(256)
KEY_OPERATOR	NUMBER
PREVENT_OVERRIDE	NUMBER(1)
WARNING_OPERATOR	NUMBER
WARNING_THRESHOLD	VARCHAR2(256)
CRITICAL_OPERATOR	NUMBER
CRITICAL_THRESHOLD	VARCHAR2(256)
OCCURRENCE_COUNT	NUMBER
WARNING_ACTION_TYPE	VARCHAR2(17)
WARNING_ACTION_JOB_TYPE	VARCHAR2(32)
WARNING_ACTION_JOB_OWNER	VARCHAR2(256)
WARNING_ACTION_JOB_NAME	VARCHAR2(64)
CRITICAL_ACTION_TYPE	VARCHAR2(17)
CRITICAL_ACTION_JOB_TYPE	VARCHAR2(32)
CRITICAL_ACTION_JOB_OWNER	VARCHAR2(256)
CRITICAL_ACTION_JOB_NAME	VARCHAR2(64)
MGMT$JOBS displays information about a job including the job's schedule.	
Table 9-42 MGMT$JOBS	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_ID	RAW(16)
JOB_OWNER	VARCHAR2(256)
JOB_DESCRIPTION	VARCHAR2(4000)
JOB_TYPE	VARCHAR2(32)
TARGET_TYPE	VARCHAR2()
IS_LIBRARY	NUMBER(1)
IS_RESTARTABLE	NUMBER(1)
START_TIME	DATE
END_TIME	DATE
TIMEZONE_TYPE	Possible values are 1 - Repository timezone 2- Target timezone 4 - Specified timezone region
TIMEZONE_REGION	VARCHAR2(64)
SCHEDULE_TYPE	Possible values are: 0 - Immediate schedule 1 - Run once at specified time 2 - Run on interval 3 - Run daily 4 - Run on specified days of the week 5 - Run on specified days of the month 6 - Run on specified days of the year
INTERVAL	NUMBER
EXECUTION_HOURS	NUMBER(3)
EXECUTION_MINUTES	NUMBER(3)
MONTHS	Integer Array
DAYS	Integer Array
MGMT$JOB_TARGETS displays the target(s) the job was submitted against.	
Table 9-43 MGMT$JOB_TARGETS	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_OWNER	VARCHAR2(256)
JOB_TYPE	VARCHAR2(32)
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2()
TARGET_GUID	RAW(16)
MGMT$JOB_EXECUTION_HISTORY displays a summary of job executions along with their status and targets for each execution.	
Table 9-44 MGMT$JOB_EXECUTION_HISTORY	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_OWNER	VARCHAR2(256)
JOB_ID	RAW(16)
JOB_TYPE	VARCHAR2(32)
EXECUTION_ID	RAW(16)
SCHEDULED_TIME	DATE
START_TIME	DATE
END_TIME	DATE
STATUS	VARCHAR2(40)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
MGMT$JOB_STEP_HISTORY displays step-level details of job executions.	
Table 9-45 MGMT$JOB_STEP_HISTORY	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_OWNER	VARCHAR2(256)
JOB_ID	RAW(16)
EXECUTION_ID	RAW(16)
STEP_NAME	VARCHAR2(64)
START_TIME	DATE
END_TIME	DATE
STATUS	VARCHAR2(40)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
OUTPUT	CLOB
MGMT$JOB_ANNOTATIONS displays a summary of annotations for changes in job status.	
Table 9-46 MGMT$JOB_ANNOTATIONS	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_OWNER	VARCHAR2(256)
JOB_STATUS	NUMBER(2)
OCCURRENCE_TIMESTAMP	DATE
ANNOTATION_MESSAGE	VARCHAR2(4000)
ANNOTATION_TIMESTAMP	DATE
ANNOTATED_BY	VARCHAR2(256)
MGMT$JOB_NOTIFICATION_LOG displays details of notification deliveries for changes in job status.	
Table 9-47 MGMT$JOB_NOTIFICATION_LOG	
Column	Datatype
---	---
JOB_NAME	VARCHAR2(64)
JOB_OWNER	VARCHAR2(256)
JOB_STATUS	NUMBER(2)
OCCURRENCE_TIMESTAMP	DATE
DELIVERY_MESSAGE	VARCHAR2(1024)
DELIVERY_TIMESTAMP	DATE
MGMT$CSM_REGION displays a list of regions and their member targets.	
Table 9-48 MGMT$CSM_REGION	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
REGION_NAME	VARCHAR2(128)
DESCRIPTION	VARCHAR2(256)
REGION_MEMBER	VARCHAR2(256)
REGION_MEMBER_TYPE	VARCHAR2(16)
Usage Notes	
List the regions with detailed information.	
List the regions of which a target is a member.	
List the targets that belong to a region	
MGMT$CSM_WATCHLIST displays a list of URLs defined as part of a website target's watchlist. These URLs are periodically visited to monitor the website.	
Table 9-49 MGMT$CSM_WATCHLIST	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
DISPLAY_NAME	VARCHAR2(128)
URL	VARCHAR2(512)
DESCRIPTION	VARCHAR2(256)
Usage Notes	
List the URL watchlist for a given target	
MGMT$CSM_METRIC_DETAILS displays detailed information on each individual HTTP request for composite targets (for example, a website target) that has one or more Web Cache targets.	
Table 9-50 MGMT$CSM_METRIC_DETAILS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
COLLECTION_ TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
URL	VARCHAR2(1024)
VISITOR_IP	VARCHAR2(32)
VISITOR_NODE	VARCHAR2(1024)
VISITOR_DOMAIN	VARCHAR2(1024)
VISITOR_SUBNET	VARCHAR2(32)
Usage Notes	
Analyze HTTP request patterns over time with regards to visitor information (IP, subnet, domain, region) or URLs (most requested, least requested) for composite targets.	
Analyze HTTP request response times over time with regards to visitor information (IP, subnet, domain, region) and URLs for composite targets.	
MGMT$CSM_MT_METRIC_DETAILS displays detailed information on each individual HTTP request for Web Cache targets (i.e. member targets). If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-51 MGMT$CSM_MT_METRIC_DETAILS	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
COLLECTION_ TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
URL	VARCHAR2(1024)
VISITOR_IP	VARCHAR2(32)
VISITOR_NODE	VARCHAR2(1024)
VISITOR_DOMAIN	VARCHAR2(1024)
VISITOR_SUBNET	VARCHAR2(32)
Usage Notes	
Analyze HTTP requests patterns over time with regards to visitor information (IP, subnet, domain, region) or URLs (most requested, least requested) for a particular Web Cache member target of a composite target, or for Web Cache targets that are not a member of any composite targets.	
Analyze HTTP request response times over time with regards to visitor information (IP, subnet, domain, region) and URLs for a particular Web Cache member target of a composite target, or for Web Cache targets that are not a member of any composite targets.	
MGMT$CSM_URL_HOURLY displays statistical information about the HTTP requests for a given composite target, aggregated by URL in hourly time periods.	
Table 9-52 MGMT$CSM_URL_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given URL of a composite target. (For example, what was the average response time experienced when accessing URL HTTP://my.oracle.com/home.html of the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_URL_DAILY displays statistical information about the HTTP requests for a given composite target, aggregated by URL in daily time periods.	
Table 9-53 MGMT$CSM_URL_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given URL of a composite target. (For example, what was the avg response time experienced when accessing URL HTTP://my.oracle.com/home.html of the website my.oracle.com last Monday).	
MGMT$CSM_URL_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a URL of a composite target. The data is aggregated in hourly time periods.	
Table 9-54 MGMT$CSM_URL_DIST_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a URL of a composite target during a specific hour of the day (For example, compare the percentage of requests which response time was longer than 5 seconds at 8am and at 5pm).	
MGMT$CSM_URL_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a URL of a composite target. The data is aggregated in daily time periods.	
Table 9-55 MGMT$CSM_URL_DIST_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a given URL of a composite target during a specific day (For example, compare the percentage of requests which response time was longer than 5 seconds on Monday and on Saturday).	
MGMT$CSM_MT_URL_HOURLY displays statistical information about the HTTP requests for a given Web Cache target of a composite target, aggregated by URL in hourly time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-56 MGMT$CSM_MT_URL_HOURLY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given URL of a Web Cache target and optionally of a composite target (For example, what was the avg response time experienced when accessing URL HTTP://my.oracle.com/home.html at Web Cache WEB5 of the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_MT_URL_DAILY displays statistical information about the HTTP requests for a given Web Cache target of a composite target, aggregated by URL in daily time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-57 MGMT$CSM_MT_URL_DAILY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given URL of a Web Cache target and optionally of a composite target. target (For example, what was the avg response time experienced when accessing URL HTTP://my.oracle.com/home.html at Web Cache WEB5 of the website my.oracle.com last Monday).	
MGMT$CSM_MT_URL_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a URL of a given Web Cache target of a composite target. The data is aggregated in hourly time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-58 MGMT$CSM_MT_URL_DIST_HOURLY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a URL of a Web Cache target of a composite target during a specific hour of the day (For example, how many requests for URL HTTP://my.oracle.com/home.html at Web Cache WEB5 of the website my.oracle.com took longer than 5 seconds between 8 and 9 this morning).	
MGMT$CSM_MT_URL_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a URL of a given Web Cache target of a composite target. The data is aggregated in daily time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-59 MGMT$CSM_MT_URL_DIST_DAILY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
URL	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a URL of a Web Cache target of a composite target during a specific day (For example, how many requests for URL HTTP://my.oracle.com/home.html at Web Cache WEB5 of the website my.oracle.com took longer than 5 seconds last Monday).	
MGMT$CSM_IP_HOURLY displays statistical information about the HTTP requests for a given composite target, aggregated by the visitor IP address in hourly time periods.	
Table 9-60 MGMT$CSM_IP_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP address of a composite target (For example, what was the avg response time experienced from IP address 192.168.1.1 when accessing the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_IP_DAILY displays statistical information about the HTTP requests for a given composite target, aggregated by visitor IP address in daily time periods.	
Table 9-61 MGMT$CSM_IP_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP address of a composite target (For example, what was the avg response time experienced from IP address 192.168.1.1 when accessing the website my.oracle.com last Monday).	
MGMT$CSM_IP_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a visitor IP address of a composite target. The data is aggregated in hourly time periods.	
Table 9-62 MGMT$CSM_IP_DIST_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	NUMBER
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a visitor IP address of a composite target during a specific hour of the day (For example, how many requests from IP address 192.168.1.1 to the website my.oracle.com took longer than 5 seconds between 8 and 9 this morning).	
MGMT$CSM_IP_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a visitor IP address of a composite target. The data is aggregated in daily time periods.	
Table 9-63 MGMT$CSM_IP_DIST_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	NUMBER
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a given visitor IP address of a composite target during a specific day (For example, how many requests from IP address 192.168.1.1 to the website my.oracle.com took longer than 5 seconds last Monday).	
MGMT$CSM_MT_IP_HOURLY displays statistical information about the HTTP requests for a given Web Cache target of a composite target, aggregated by visitor IP address in hourly time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-64 MGMT$CSM_MT_IP_HOURLY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP address of a Web Cache target and optionally of a composite target (For example, what was the avg response time experienced from IP address 192.168.1.1 when accessing Web Cache WEB5 of the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_MT_IP_DAILY displays statistical information about the HTTP requests for a given Web Cache target of a composite target, aggregated by visitor IP address in daily time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-65 MGMT$CSM_MT_IP_DAILY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP address of a Web Cache target and optionally of a composite target (For example, what was the avg response time experienced from IP address 192.168.1.1 when accessing Web Cache WEB5 of the website my.oracle.com last Monday).	
MGMT$CSM_MT_IP_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a visitor IP address of a given Web Cache target of a composite target. The data is aggregated in hourly time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-66 MGMT$CSM_MT_IP_DIST_HOURLY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a visitor IP address of a Web Cache target of a composite target during a specific hour of the day (For example, how many requests from IP address 192.168.1.1 to Web Cache WEB5 of the website my.oracle.com took longer than 5 seconds between 8 and 9 this morning).	
MGMT$CSM_MT_IP_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a visitor IP address of a given Web Cache target of a composite target. The data is aggregated in daily time periods. If a Web Cache target is not a member of any composite targets, the composite target columns are presented as NULL. If a Web Cache target is a member of multiple composite targets, a row for each composite target is presented.	
Table 9-67 MGMT$CSM_MT_IP_DIST_DAILY	
Column	Datatype
---	---
MEMBER_TARGET_ NAME	VARCHAR2(64)
MEMBER_TARGET_TYPE	VARCHAR2(64)
COMPOSITE_TARGET_ NAME	VARCHAR2(64)
COMPOSITE_TARGET_ TYPE	VARCHAR2(64)
VISITOR	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a visitor IP address of a Web Cache target of a composite target during a specific day (For example, how many requests from IP address 192.168.1.1 to Web Cache WEB5 of the website my.oracle.com took longer than 5 seconds last Monday).	
MGMT$CSM_DOMAIN_HOURLY displays statistical information about the HTTP requests for a given composite target, aggregated by the visitor IP domain in hourly time periods.	
Table 9-68 MGMT$CSM_DOMAIN_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_DOMAIN	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP domain of a composite target (For example, what was the avg response time experienced from users of the domain oracle.co.uk when accessing the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_DOMAIN_DAILY displays statistical information about the HTTP requests for a given composite target, aggregated by visitor IP domain in daily time periods.	
Table 9-69 MGMT$CSM_DOMAIN_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_DOMAIN	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP domain of a composite target (For example, what was the avg response time experienced from users of the domain oracle.co.uk when accessing the website my.oracle.com last Monday).	
MGMT$CSM_DOMAIN_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a visitor IP domain of a composite target. The data is aggregated in hourly time periods.	
Table 9-70 MGMT$CSM_DOMAIN_DIST_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_DOMAIN	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a visitor IP domain of a composite target during a specific hour of the day (For example, how many requests from users of the domain oracle.co.uk to the website my.oracle.com took longer than 5 seconds between 8 and 9 this morning).	
MGMT$CSM_DOMAIN_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a visitor IP domain of a composite target. The data is aggregated in daily time periods.	
Table 9-71 MGMT$CSM_DOMAIN_DIST_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_DOMAIN	VARCHAR2(1024)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a given visitor IP domain of a composite target during a specific day (For example, how many requests from users of the domain oracle.co.uk to the website my.oracle.com took longer than 5 seconds last Monday).	
MGMT$CSM_SUBNET_HOURLY displays statistical information about the HTTP requests for a given composite target, aggregated by the visitor IP subnet in hourly time periods.	
Table 9-72 MGMT$CSM_SUBNET_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_SUBNET	VARCHAR2(32)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze hourly HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP subnet of a composite target (For example, what was the avg response time experienced from users of the subnet 192.168.1 when accessing the website my.oracle.com between 8 and 9 this morning).	
MGMT$CSM_SUBNET_DAILYdisplays statistical information about the HTTP requests for a given composite target, aggregated by visitor IP subnet in daily time periods.	
Table 9-73 MGMT$CSM_SUBNET_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_SUBNET	VARCHAR2(32)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
SAMPLE_COUNT	NUMBER
AVERAGE	NUMBER
MINIMUM	NUMBER
MAXIMUM	NUMBER
STANDARD_DEVIATION	NUMBER
VARIANCE	NUMBER
Usage Notes	
Analyze daily HTTP response time patterns and statistical (min, max, avg, stddev) information for a given visitor IP subnet of a composite target (For example, what was the avg response time experienced from users of the subnet 192.168.1 when accessing the website my.oracle.com last Monday).	
MGMT$CSM_SUBNET_DIST_HOURLY displays the distribution of the HTTP request response times, in seconds, for a visitor IP subnet of a composite target. The data is aggregated in hourly time periods.	
Table 9-74 MGMT$CSM_SUBNET_DIST_HOURLY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_SUBNET	VARCHAR2(32)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a visitor IP subnet of a composite target during a specific hour of the day (For example, how many requests from users of the subnet 192.168.1 to the website my.oracle.com took longer than 5 seconds between 8 and 9 this morning).	
MGMT$CSM_SUBNET_DIST_DAILY displays the distribution of the HTTP request response times, in seconds, for a visitor IP subnet of a composite target. The data is aggregated in daily time periods.	
Table 9-75 MGMT$CSM_SUBNET_DIST_DAILY	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(64)
TARGET_TYPE	VARCHAR2(64)
VISITOR_SUBNET	VARCHAR2(32)
ROLLUP_TIMESTAMP	DATE
METRIC_NAME	VARCHAR2(64)
METRIC_VALUE	NUMBER
SAMPLE_COUNT	NUMBER
Usage Notes	
Analyze the distribution of the HTTP response times for a given visitor IP subnet of a composite target during a specific day (For example, how many requests from users of the subnet 192.168.1 to the website my.oracle.com took longer than 5 seconds last Monday).	
MGMT$E2E_1DAY displays the E2E data where rollup time spans from 7 days to 31 days.	
Table 9-76 MGMT$E2E_1DAY	
Column	Datatype
---	---
URI	VARCHAR2(2000)
HITS	NUMBER(8)
TOTAL_HIT_TIME	NUMBER(10)
SERVLET_COUNT	NUMBER(8)
SERVLET_TIME	NUMBER(10)
JSP_COUNT	NUMBER(8)
JSP_TIME	NUMBER(10)
EJB_COUNT	NUMBER(8)
EJB_TIME	NUMBER(10)
JDBC_TIME	NUMBER(10)
TARGET_GUID	RAW(16)
ROLLUP_TIMESTAMP	DATE
MGMT$E2E_HOURLY displays E2E data where rollup time spans from 24 hours to last 7 days.	
Table 9-77 MGMT$E2E_HOURLY	
Column	Datatype
---	---
URI	VARCHAR2(2000)
HITS	NUMBER(8)
TOTAL_HIT_TIME	NUMBER(10)
SERVLET_COUNT	NUMBER(8)
SERVLET_TIME	NUMBER(10)
JSP_COUNT	NUMBER(8)
JSP_TIME	NUMBER(10)
EJB_COUNT	NUMBER(8)
EJB_TIME	NUMBER(10)
JDBC_TIME	NUMBER(10)
TARGET_GUID	RAW(16)
ROLLUP_TIMESTAMP	DATE
MGMT$E2E_RAW displays E2E data where rollup time is less than 24 hours.	
Table 9-78 MGMT$E2E_RAW	
Column	Datatype
---	---
URI	VARCHAR2(2000)
HITS	NUMBER(8)
TOTAL_HIT_TIME	NUMBER(10)
SERVLET_COUNT	NUMBER(8)
SERVLET_TIME	NUMBER(10)
JSP_COUNT	NUMBER(8)
JSP_TIME	NUMBER(10)
EJB_COUNT	NUMBER(8)
EJB_TIME	NUMBER(10)
JDBC_TIME	NUMBER(10)
TARGET_GUID	RAW(16)
ROLLUP_TIMESTAMP	DATE
MGMT$DB_TABLESPACES displays configuration settings for tablespaces. Tablespace settings are collected from the sys.dba_tablespaces, dba_free_space, dba_data_files, dba_temp_files, and v$temp_extent_pool tables..	
Table 9-79 MGMT$DB_TABLESPACES	
Column	Datatype
---	---
HOST	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
TABLESPACE_NAME	VARCHAR2(30)
CONTENTS	VARCHAR2(9)
STATUS	VARCHAR2(10),
EXTENT_MANAGEMENT	VARCHAR2(10),
ALLOCATION_TYPE	VARCHAR2(10),
LOGGING	VARCHAR2(10),
TABLESPACE_SIZE	NUMBER
INITIAL_EXT_SIZE	NUMBER
NEXT_EXTENT	NUMBER
INCREMENT_BY	NUMBER
MAX_EXTENTS	NUMBER
TABLESPACE_USED_SIZE	NUMBER
SEGMENT_SPACE_MANAGEMENT	VARCHAR2(6)
BLOCK_SIZE	NUMBER
MIN_EXTENTS	NUMBER
MIN_EXTLEN	NUMBER
BIGFILE	VARCHAR2(3)
Usage Notes	
Obtain control file configuration settings across all managed database targets.	
MGMT$DB_DATAFILES displays the configuration settings for datafiles. The datafile settings are collected from sources such as sys.dba_data_files, v$datafile, sys.dba_free_space, sys.dba_tablespaces, sys.dba_ temp_files, v$tempfile.	
Table 9-80 MGMT$DB_DATAFILES	
Column	Datatype
---	---
HOST	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
FILE_NAME	VARCHAR2(512)
TABLESPACE_NAME	VARCHAR2(30)
STATUS	VARCHAR2(10)
FILE_SIZE	NUMBER
AUTOEXTENSIBLE	VARCHAR2(3)
INCREMENT_BY	NUMBER
MAX_FILE_SIZE	NUMBER
OS_STORAGE_ENTITY	VARCHAR2(512)
MGMT$DB_CONTROLFILES displays the configuration settings for database control files.	
Table 9-81 MGMT$DB_CONTROLFILES	
Column	Datatype
---	---
HOST	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
FILE_NAME	VARCHAR2(512)
STATUS	VARCHAR2(10),
CREATION_DATE	DATE
SEQUENCE_NUM	NUMBER
CHANGE_NUM	NUMBER
MOD_DATE	DATE
OS_STORAGE_ENTITY	VARCHAR2(512)
MGMT$DB_DBNINSTANCEINFO displays general information about database instance. The instance information is collected from v$database, v$version, v$instance, global_name, database_properties and v$nls_parameters.	
Table 9-82 MGMT$DB_DBNINSTANCEINFO	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
DATABASE_NAME	VARCHAR2(9)
GLOBAL_NAME	VARCHAR2(4000)
BANNER	VARCHAR2(64)
HOST	VARCHAR2(64)
INSTANCE_NAME	VARCHAR2(16)
STARTUP_TIME	DATE
LOGINS	VARCHAR2(10)
LOG_MODE	VARCHAR2(12)
OPEN_MODE	VARCHAR2(10)
DEFAULT_TEMP_TABLESPACE	VARCHAR2(30)
CHARACTERSET	VARCHAR2(64)
NATIONAL_CHARACTERSET	VARCHAR2(64)
Usage Notes	
Obtain general instance information across all database targets.	
MGMT$DB_FEATUREUSAGE displays information about database feature usage.	
Table 9-83 MGMT$DB_FEATUREUSAGE	
Column	Datatype
---	---
HOST	VARCHAR2(256)
DATABASE_NAME	VARCHAR2(256)
INSTANCE_NAME	VARCHAR2(16)
TARGET_TYPE	VARCHAR2(64)
DBID	NUMBER
NAME	VARCHAR2(64)
CURRENTLY_USED	VARCHAR2(5)
DETECTED_USAGES	NUMBER
FIRST_USAGE_DATE	DATE
LAST_USAGE_DATE	DATE
VERSION	VARCHAR2(17)
LAST_SAMPLE_DATE	DATE
LAST_SAMPLE_PERIOD	NUMBER
SAMPLE_INTERVAL	NUMBER
TOTAL_SAMPLES	NUMBER
AUX_COUNT	NUMBER
DESCRIPTION	VARCHAR2(128)
Usage Notes	
This view can be used to gain an enterprise-wide view of database feature usage across all Oracle databases.	
MGMT$DB_INIT_PARAMS displays initialization parameter settings for the database. Initialization parameter settings are collected from v$parameter.	
Table 9-84 MGMT$DB_INIT_PARAMS	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
NAME	VARCHAR2(64)
ISDEFAULT	VARCHAR2(6)
VALUE	VARCHAR2(512)
DATATYPE	VARCHAR2
Usage Notes	
Obtain initialization parameter settings across all database targets.	
MGMT$DB_LICENSE displays database license configuration settings. Database license configuration settings are collected from v$license.	
Table 9-85 MGMT$DB_LICENSE	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
SESSIONS_MAX	NUMBER
SESSIONS_WARNING	NUMBER
SESSIONS_CURRENT	NUMBER
SESSIONS_HIGHWATER	NUMBER
USERS_MAX	NUMBER
Usage Notes	
This view can be used to obtain database license configuration settings across all database targets.	
MGMT$DB_REDOLOGS displays redo log configuration settings for the database. Redo log configuration settings are collected from the v$log and v$logfile tables.	
Table 9-86 MGMT$DB_REDOLOGS	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
GROUP_NUM	NUMBER
STATUS	VARCHAR2(16),
MEMBERS	NUMBER
FILE_NAME	VARCHAR2(513),
ARCHIVED	VARCHAR2(3),
LOGSIZE	NUMBER
SEQUENCE_NUM	NUMBER
FIRST_CHANGE_SCN	NUMBER
OS_STORAGE_ENTITY	VARCHAR2(512)
THREAD_NUM	NUMBER
Usage Notes	
Obtain redo log group / file configuration settings across all database targets.	
MGMT$DB_ROLLBACK_SEGS displays rollback segments configuration settings for the database. Rollback segments configuration settings are collected from the sys.dba_rollback_segs and v$rollstat tables.	
Table 9-87 MGMT$DB_ROLLBACK_SEGS	
Column	Datatype
---	---
HOST_NAME	VARCHAR2
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
ROLLNAME	VARCHAR2(64))
STATUS	VARCHAR2(10)
TABLESPACE_NAME	VARCHAR2(30)
EXTENTS	NUMBER
ROLLSIZE	NUMBER
INITIAL_SIZE	NUMBER
NEXT_SIZE	NUMBER
MAXIMUM_EXTENTS	NUMBER
MINIMUM_EXTENTS	NUMBER
PCT_INCREASE	NUMBER
OPTSIZE	NUMBER
AVEACTIVE	NUMBER
WRAPS	NUMBER
SHRINKS	NUMBER
AVESHRINK	NUMBER
HWMSIZE	NUMBER
Usage Notes	
Obtain rollback segments configuration settings across all database targets.	
MGMT$DB_SGA displays System Global Area (SGA) configuration settings. SGA settings are collected from the v$sga and v$sgastat tables.	
Table 9-88 MGMT$DB_SGA	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
SGANAME	VARCHAR2(64)
SGASIZE	NUMBER
Usage Notes	
Obtain System Global Area configuration settings across all database targets.	
MGMT$DB_TABLESPACES displays configuration settings for tablespaces. Tablespace settings are collected from the sys.dba_tablespaces, dba_free_space, dba_data_files, dba_temp_files, and v$temp_extent_pool tables.	
Table 9-89 MGMT$DB_TABLESPACES	
Column	Datatype
---	---
HOST	VARCHAR2(256)
TARGET_NAME	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
TABLESPACE_NAME	VARCHAR2(30)
CONTENTS	VARCHAR2(9)
STATUS	VARCHAR2(10),
EXTENT_MANAGEMENT	VARCHAR2(10),
ALLOCATION_TYPE	VARCHAR2(10),
LOGGING	VARCHAR2(10),
TABLESPACE_SIZE	NUMBER
INITIAL_EXT_SIZE	NUMBER
INCREMENT_BY	NUMBER
MAX_EXTENTS	NUMBER
Usage Notes	
Obtain tablespace configuration settings across all database targets.	
MGMT$DB_OPTIONS displays whether or not the option is currently LOADED and ACTIVE, or either the option does not exist or is NOT LOADED or INACTIVE. Options settings are collected by checking user name and status in the sys.dba_users and dba_registry tables.	
Table 9-90 MGMT$DB_OPTIONS	
Column	Datatype
---	---
HOST	VARCHAR2(256)
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TARGET_GUID	RAW(16)
COLLECTION_ TIMESTAMP	DATE
NAME	VARCHAR2(30)
SELECTED	VARCHAR2(5)
Usage Notes	
Obtain tablespace configuration settings across all database targets.	
MGMT$EM_HOMES_PLATFORM displays the platform information about the Homes. If the home does not have an ARU platform id, then the platform of the Operating System is considered as the Platform of the home.	
Table 9-91 MGMT$EM_HOMES_PLATFORM	
Column	Datatype
---	---
HOME_ID	RAW(16)
PLATFORM_ID	NUMBER(10)
PLATFORM	VARCHAR2(1024)
MGMT$HOMES_AFFECTED displays the list of homes, vulnerable to bugs, which are fixed by the critical patches released. The number of alerts which are applicable to the home are calculated.	
Table 9-92 MGMT$HOMES_AFFECTED	
Column	Datatype
---	---
HOST	VARCHAR2(1024))
HOME_DIRECTORY	VARCHAR2(1024)
TARGET_GUID	RAW(16)
ALERTS	NUMBER
MGMT$APPL_PATCH_AND_PATCHSET displays the list of interim patches and patchsets that are applicable to the Homes.	
Table 9-93 MGMT$APPL_PATCH_AND_PATCHSET	
Column	Datatype
---	---
PATCH_ID	NUMBER
TYPE	VARCHAR2(32)
PRODUCT	VARCHAR2(50)
PATCH_RELEASE	VARCHAR2(30)
PLATFORM	VARCHAR2(40)
ADVISORY	VARCHAR2(256)
HOST_NAME	VARCHAR2(256)
HOME_LOCATION	VARCHAR2(128)
PATCH_GUID	RAW(16)
TARGET_GUID	RAW(16)
MGMT$APPLIED_PATCHES displays the list of patches that have been applied on the homes along with the installation time. Each patch can fix more than one bug. The bugs are listed in a comma-separated string.	
Table 9-94 MGMT$APPLIED_PATCHES	
Column	Datatype
---	---
PATCH	VARCHAR2(128)
BUGS	VARCHAR2(256)
INSTALLATION_TIME	DATE
HOST	VARCHAR2(256)
HOME_LOCATION	VARCHAR2(128)
HOME_NAME	VARCHAR2(64)
CONTAINER_GUID	RAW(16)
TARGET_GUID	RAW(16)
MGMT$APPLIED_PATCHSETS displays the list of patchsets that have been applied on the Homes along with the installation time.	
Table 9-95 MGMT$APPLIED_PATCHSETS	
Column	Datatype
---	---
VERSION	VARCHAR2(64)
NAME	VARCHAR2(128)
TIMESTAMP	DATE
HOST	VARCHAR2(256)
HOME_LOCATION	VARCHAR2(128)
HOME_NAME	VARCHAR2(64)
CONTAINER_GUID	RAW(16)
TARGET_GUID	RAW(16)
MGMT$HOSTPATCH_HOSTS displays information required to generate compliance reports.	
Table 9-96 MGMT$HOSTPATCH_HOSTS	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
GROUP_NAME	VARCHAR2(256)
OUT_OF_DATE_PACKAGES	NUMBER(6)
ROGUE_PACKAGES	NUMBER(6)
MGMT$HOSTPATCH_GROUPS displays additional information about a group, the maturity level which is set by the administrator and the packages which need the host to be rebooted on application.	
Table 9-97 MGMT$HOSTPATCH_GROUPS	
Column	Datatype
---	---
GROUP_NAME	VARCHAR2(256)
MATURITY_LEVEL	VARCHAR2(32)
NEED_REBOOT_PKGS	VARCHAR2(256)
MGMT$HOSTPATCH_GRP_COMPL_HIST displays information required to generate compliance history reports.	
Table 9-98 MGMT$HOSTPATCH_GRP_COMPL_HIST	
Column	Datatype
---	---
GROUP_NAME	VARCHAR2(256)
TOTAL_HOSTS	NUMBER(6)
COMPLIANT_HOSTS	NUMBER(6)
LAST_CHECKED_ON	DATE
MGMT$HOSTPATCH_HOST_COMPL displays information required to generate advisory reports.	
Table 9-99 MGMT$HOSTPATCH_HOST_COMPL	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
PKG_NAME	VARCHAR2(256)
VERSION	VARCHAR2(64)
IS_OUT_OF_DATE	NUMBER(1)
IS_ROGUE	NUMBER(1)
MGMT$ESA_ALL_PRIVS_REPORT displays a table containing users and roles that have the 'GRANT ANY' privilege in database security reports.	
Table 9-100 MGMT$ESA_ALL_PRIVS_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_ANY_DICT_REPORT displays a table and a chart containing users and roles with access to any dictionary in database security reports.	
Table 9-101 MGMT$ESA_ANY_DICT_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_ANY_PRIV_REPORT displays a table and a chart containing users with 'ANY' in some privilege granted to them in database security reports.	
Table 9-102 MGMT$ESA_ANY_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_AUDIT_SYSTEM_REPORT displays a table containing users and roles with the 'AUDIT SYSTEM' privilege in database security reports.	
Table 9-103 MGMT$ESA_AUDIT_SYSTEM_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_BECOME_USER_REPORT displays a table containing users and roles with the 'BECOME USER' privilege in database security reports.	
Table 9-104 MGMT$ESA_BECOME_USER_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_CATALOG_REPORT displays a table and a chart containing all the users that have a role such as '%CATALOG%' in database security reports.	
Table 9-105 MGMT$ESA_CATALOG_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_CONN_PRIV_REPORT displays a table and a chart containing users and roles with the CONNECT or RESOURCE role in database security reports.	
Table 9-106 MGMT$ESA_CONN_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_CREATE_PRIV_REPORT displays a table and a chart containing users and roles with the CREATE privilege in database security reports.	
Table 9-107 MGMT$ESA_CREATE_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_DBA_GROUP_REPORT displays a table containing members of the operating system user group DBA in database security reports.	
Table 9-108 MGMT$ESA_DBA_GROUP_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_DBA_ROLE_REPORT displays a table containing users and roles with the DBA role granted to them in database security reports.	
Table 9-109 MGMT$ESA_DBA_ROLE_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_DIRECT_PRIV_REPORT displays a table and a chart containing privileges granted directly in database security reports.	
Table 9-110 MGMT$ESA_DIRECT_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_EXMPT_ACCESS_REPORT displays a table containing users and roles with the EXEMPT ACCESS POLICY privilege in database security reports.	
Table 9-111 MGMT$ESA_EXMPT_ACCESS_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_KEY_OBJECTS_REPORT displays a table and a chart containing users and roles with access to key objects in database security reports.	
Table 9-112 MGMT$ESA_KEY_OBJECTS_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
USER	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(23)
PRIVILEGE	VARCHAR2(512)
MGMT$ESA_OH_OWNERSHIP_REPORT displays a table containing file ownership by Oracle Home in database security reports.	
Table 9-113 MGMT$ESA_OH_OWNERSHIP_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_OH_PERMISSION_REPORT displays a table containing file permissions by Oracle Home in database security reports.	
Table 9-114 MGMT$ESA_OH_PERMISSION_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_POWER_PRIV_REPORT displays a table and a chart containing all the users and roles with ALTER SESSION, ALTER SYSTEM, CREATE PROCEDURE or CREATE LIBRARY privileges in database security reports.	
Table 9-115 MGMT$ESA_POWER_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_PUB_PRIV_REPORT displays a table and a chart containing privileges granted to PUBLIC in database security reports.	
Table 9-116 MGMT$ESA_PUB_PRIV_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_SYS_PUB_PKG_REPORT displays a table containing system packages with public execute privileges in database security reports.	
Table 9-117 MGMT$ESA_SYS_PUB_PKG_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_TABSP_OWNERS_REPORT displays a table containing tablespaces and their owners in database security reports.	
Table 9-118 MGMT$ESA_TABSP_OWNERS_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_TRC_AUD_PERM_REPORT displays a table containing trace and audit files permissions in database security reports.	
Table 9-119 MGMT$ESA_TRC_AUD_PERM_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
PERMISSION	VARCHAR2(512)
MGMT$ESA_WITH_ADMIN_REPORT displays a table and a chart containing users and roles having some privileges granted to them with the WITH ADMIN option in database security reports.	
Table 9-120 MGMT$ESA_WITH_ADMIN_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$ESA_WITH_GRANT_REPORT displays a table and a chart containing users and roles having some privileges granted to them with 'WITH GRANT' option in database security reports.	
Table 9-121 MGMT$ESA_WITH_GRANT_REPORT	
Column	Datatype
---	---
TARGET_GUID	RAW(16)
TARGET_NAME	VARCHAR2(256)
PRINCIPAL	VARCHAR2(512)
OBJECT_NAME	VARCHAR2(512)
MGMT$CSA_COLLECTIONS displays top-level information about all client configurations.	
Table 9-122 MGMT$CSA_COLLECTIONS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
CSACLIENT	VARCHAR2(4000)
COLLECTION_TIMESTAMP	DATE
NET_IP	VARCHAR2(20)
NET_EFFECTIVE_IP	VARCHAR2(20)
COLLECTION_MESSAGE	VARCHAR2(4000)
OS_USER_NAME	VARCHAR2(500)
HOSTNAME	VARCHAR2(128)
DOMAIN	VARCHAR2(500)
BOOT_DISK_VOLUME_SERIAL_NUM	VARCHAR2(629)
COMPLIANCE	NUMBER
APPID	VARCHAR2(128)
NET_SUBNET	VARCHAR2(20)
NET_LATENCY_IN_MS	NUMBER
NET_BANDWIDTH_IN_KBITPS	NUMBER
BROWSER_TYPE	VARCHAR2(100)
BROWSER_VERSION	VARCHAR2(20)
BROWSER	VARCHAR2(121)
BROWSER_JVM_VENDOR	VARCHAR2(20)
BROWSER_JVM_VERSION	VARCHAR2(20)
BROWSER_PROXY_SERVER	VARCHAR2(4000)
BROWSER_PROXY_EXCEPTIONS	VARCHAR2(4000)
BROWSER_CACHE_SIZE_IN_MB	NUMBER
BROWSER_CACHE_UPATE_FRQ	VARCAHR2(200)
BROWSER_HTTP1_1_SUPPORT	VARCHAR2(1)
REFERRING_URL_HEADER	VARCHAR2(4000)
REFERRING_URL_PARAMS	VARCHAR2(4000)
REFURL	VARCHAR2(4000)
CSA_URL_HEADER	VARCHAR2(4000)
CSA_URL_PARAMS	VARCHAR2(4000)
CSAURL	VARCHAR2(4000)
DESTINAION_URL_HEADER	VARCHAR2(4000)
DESTINATION_URL_PARAMS	VARCHAR2(4000)
DESTURL	VARCHAR2(4000)
CONNECTION_TYPE	NUMBER
IS_WINDOWS_ADMIN	VARCHAR2(1)
WINDOWS_DOMAIN	VARCHAR2(100)
BROWSER_PROXY_ENABLED	VARCHAR2(1)
AUTO_CONFIG_URL	VARCHAR2(4000)
NUMBER_OF_COOKIES	NUMBER
NUMBER_OF_CUSTOM_VALUES	NUMBER
HARDWARE	VARCHAR2(4000)
HARDWARE_VENDOR_NAME	VARCHAR2(128)
SYSTEM_CONFIG	VARCHAR2(4000)
MACHINE_ARCHITECTURE	VARCHAR2(500)
BUS_FREQ_IN_MHZ	NUMBER
MEMORY_SIZE_IN_MB	NUMBER
AVAIL_MEMORY_SIZE_IN_MB	NUMBER
LOCAL_DISK_SPACE_IN_GB	NUMBER
AVAIL_LOCAL_DISK_SPACE_IN_GB	NUMBER
CPU_COUNT	NUMBER(8)
SYSTEM_SERIAL_NUMBER	VARCAHR2(100)
MIN_CPU_SPEED_IN_MHZ	NUMBER
MAX_CPU_SPEED_IN_MHZ	NUMBER
CPU	VARCHAR2(673)
CPU_BOARD_COUNT	NUMBER(8)
IOCARD_COUNT	NUMBER(8)
NIC_COUNT	NUMBER
FAN_COUNT	NUMBER(8)
POWER_SUPPLY_COUNT	NUMBER(8)
SYSTEM_BIOS	VARCHAR2(100)
OPERATINGSYSTEM	VARCHAR2(453)
OS_NAME	VARCHAR2(128)
OS_VENDOR_NAME	VARCHAR2(128)
OS_BASE_VERSION	VARCAR2(100)
OS_UPDATE_LEVEL	VARCHAR2(100)
OS_DISTRIBUTOR_VERSION	VARCHAR2(100)
MAX_SWAP_SPACE_IN_MB	NUMBER
OS_ADDRESS_LENGTH_IN_BITS	VARCHAR2(20)
MAX_PROCESS_VIRTUAL_MEMORY	NUMBER
TIMEZONE	VARCHAR2(64)
TIMEZONE_REGION	VARCHAR2(64)
TIMEZONE_DELTA	NUMBER
NUMBER_OF_OS_PROPERTIES	NUMBER
NUMBER_OF_OS_PATCHES	NUMBER
NUMBER_OF_OS_FILESYSTEMS	NUMBER
NUMBER_OF_OS_REGISTERED_SW	NUMBER
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
INTERNAL_TARGET_NAME	VARCHAR2(264)
INTERNAL_TARGET_TYPE	VARCHAR2(64)
COLLECTION_DURATION	NUMBER(16)
LOADED_TIMESTAMP	DATE
APPLET_VERSION	VARCHAR2(20)
TARGET_ID_METHOD	VARCHAR2(100)
CUSTOM_CLASS	VARCHAR2(1000)
CUSTOM_CLASS_VERSION	VARCHAR2(1000)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
KEY3	VARCHAR2(4000)
PROXY_TARGET_NAME	VARCHAR2(256)
PROXY_TARGET_DISPLAY_NAME	VARCHAR2(256)
PROXY_TARGET_ID	RAW(16)
RULES_COUNT	NUMBER
RULES_NA_COUNT	NUMBER
RULES_PASSED_COUNT	NUMBER
RULES_INFO_COUNT	NUMBER
RULES_WARNING_COUNT	NUMBER
RULES_CRITICAL_COUNT	NUMBER
MGMT$CSA_FAILED displays all failed collections.	
Table 9-123 MGMT$CSA_FAILED	
Column	Datatype
---	---
ID	RAW(16)
TIMESTAMP	DATE
TIMEZONE_DELTA	NUMBER
SAVED_TIMESTAMP	DATE
EFFECTIVE_IP	VARCHAR2(20)
APPID	VARCHAR2(128)
REFERRING_URL_HEADER	VARCHAR2(4000)
REFERRING_URL_PARAMS	VARCHAR2(4000)
CSA_URL_HEADER	VARCHAR2(4000)
CSA_URL_PARAMS	VARCHAR2(4000)
DESTINATION_URL_HEADER	VARCHAR2(4000)
DESTINATION_URL_PARAMS	VARCHAR2(4000)
BROWSER_TYPE	VARCHAR2(100)
BROWSER_VERSION	VARCHAR2(20)
BROWSER_JVM_VENDOR	VARCHAR(100)
BROWSER_JVM_VERSION	VARCHAR2(20)
OS_ARCH	VARCHAR2(100)
OS_NAME	VARCHAR2(100)
HTTP_REQUEST_USER_AGENT	VARCHAR2(100)
ERROR_CODE	VARCHAR2(1)
ERROR_TEXT	VARCHAR2(1024)
MGMT$CSA_HOST_OS_COMPONENTS displays all OS components find on CSA client machines.	
Table 9-124 MGMT$CSA_HOST_OS_COMPONENTS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
TYPE	VARCHAR2(100)
NAME	VARCHAR2(128)
VERSION	VARCHAR2(100)
DESCRIPTION	VARCHAR2(2000)
ISNTALLATION_DATE	DATE
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_SW displays all OS-registered software found on CSA hosts.	
Table 9-125 MGMT$CSA_HOST_SW	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
NAME	VARCHAR2(128)
VENDOR_NAME	VARCHAR2(128)
VERSION	VARCHAR2(100)
INSTALLATION_DATE	DATE
INSTALLED_LOCATION	VARCHAR2(1024)
DESCRIPTION	VARCHAR2(2000)
VENDOR_SW_SPECIFIC_INFO	VARCHAR2(4000)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_COOKIES displays the cookies collected with client configurations.	
Table 9-126 MGMT$CSA_HOST_COOKIES	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
NAME	VARCHAR2(4000)
VALUE	VARCHAR2(4000)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_CUSTOM displays the custom properties collected with client configurations.	
Table 9-127 MGMT$CSA_HOST_CUSTOM	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
TYPE	VARCHAR2(512)
NAME	VARCHAR2(512)
TYPE_UI	VARCHAR2(4000)
NAME_UI	VARCHAR2(4000)
VALUE	VARCHAR2(4000)
DISPLAY_UI	VARCHAR2(1)
HISTORY_TRACKING	VARCHAR2(1)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_RULES displays the rules that were evaluated with each client configuration.	
Table 9-128 MGMT$CSA_HOST_RULES	
Column	Datatype
---	---
SNAPSHOT_ID	RAW(16)
NAME	VARCHAR2(128)
DESCRIPTION	VARCHAR2(256)
STATUS	NUMBER
MOREINFO	VARCHAR2(1024)
MGMT$CSA_HOST_CPUS displays information about the CPUs of CSA hosts. CSA assumes that in a multi-CPU host, all CPUs are identical.	
Table 9-129 MGMT$CSA_HOST_CPUS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
VENDOR_NAME	VARCHAR2(128)
FREQ_IN_MHZ	NUMBER
ECACHE_IN_MB	NUMBER
IMPL	VARCAHR2(500)
REVISION	VARCHAR2(2000)
MASK	VARCHAR2(500)
NUMBER_OF_CPUS	NUMBER
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_IOCARDS displays all IO cards collected from client configurations.	
Table 9-130 MGMT$CSA_HOST_IOCARDS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
VENDOR_NAME	VARCHAR2(128)
NAME	VARCHAR2(128)
FREQ_IN_MHZ	NUMBER
BUS	VARCHAR2(500)
REVISION	VARCHAR2(2000)
NUMBER_OF_IOCARDS	NUMBER
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_NICS displays all network interface cards collected from client configurations.	
Table 9-131 MGMT$CSA_HOST_NICS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
NAME	VARCHAR2(128)
DESCRIPTION	VARCHAR2(500)
FLAGS	VARCHAR2(1024)
MAX_TRANSFER_UNIT	NUMBER
INET_ADDRESS	VARCHAR2(20)
MASK	VARCHAR2(20)
BROADCAST_ADDRESS	VARCHAR2(20)
MAC_ADDRESS	VARCHAR2(20)
HOSTNAME_ALIASES	VARCHAR2(4000)
DEFAULT_GATEWAY	VARCHAR2(20)
DHCP_ENABLED	VARCHAR2(1)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_OS_PROPERTIES displays all OS properties, such as environment variables, found on CSA hosts.	
Table 9-132 MGMT$CSA_HOST_OS_PROPERTIES	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
SOURCE	VARHCAR2(128)
NAME	VARCHAR2(128)
VALUE	VARCHAR2(2000)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$CSA_HOST_OS_FILESYSEMS displays all filesystems found on CSA hosts.	
Table 9-133 MGMT$CSA_HOST_OS_FILESYSEMS	
Column	Datatype
---	---
DISPLAY_TARGET_NAME	VARCHAR2(256)
RESOURCE_NAME	VARCHAR2(128)
MOUNT_LOCATION	VARCHAR2(1024)
TYPE	VARCHAR2(100)
DISK_SPACE_IN_GB	NUMBER
AVAIL_DISK_SPACE_IN_GB	NUMBER
LOCAL_DRIVE	VARCHAR2(1)
MOUNT_OPTIONS	VARCHAR2(1024)
SNAPSHOT_ID	RAW(16)
TARGET_ID	RAW(16)
COLLECTION_TIMESTAMP	DATE
MGMT$ECM_CONFIG_HISTORY displays the data needed for generic categories.	
Table 9-134 MGMT$ECM_CONFIG_HISTORY	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
ROWGUID	RAW(16)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY1 displays the data needed for specific categories.	
Table 9-135 MGMT$ECM_CONFIG_HISTORY_KEY1	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY2 displays the data needed for specific categories.	
Table 9-136 MGMT$ECM_CONFIG_HISTORY_KEY2	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY3 displays the data needed for specific categories.	
Table 9-137 MGMT$ECM_CONFIG_HISTORY_KEY3	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
KEY3	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY4 displays the data needed for specific categories.	
Table 9-138 MGMT$ECM_CONFIG_HISTORY_KEY4	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
KEY3	VARCHAR2(4000)
KEY4	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY5 displays the data needed for specific categories.	
Table 9-139 MGMT$ECM_CONFIG_HISTORY_KEY5	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
KEY3	VARCHAR2(4000)
KEY4	VARCHAR2(4000)
KEY5	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$ECM_CONFIG_HISTORY_KEY6 displays the data needed for specific categories.	
Table 9-140 MGMT$ECM_CONFIG_HISTORY_KEY6	
Column	Datatype
---	---
DELTATIME	DATE
DELTAGUID	RAW(16)
TIMEZONE	VARCHAR2(64)
TARGET_NAME	VARCHAR2(256)
HOSTNAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
SNAPSHOTTYPE	VARCHAR2(64)
COLLECTIONTYPE	VARCHAR2(64)
TABLE_PATH	VARCHAR2(1000)
CATEGORY	VARCHAR2(1132)
OPERATION	VARCHAR2(10)
KEY1	VARCHAR2(4000)
KEY2	VARCHAR2(4000)
KEY3	VARCHAR2(4000)
KEY4	VARCHAR2(4000)
KEY5	VARCHAR2(4000)
KEY6	VARCHAR2(4000)
ATTRIBUTE	VARCHAR2(64)
NEWVALUE	VARCHAR2(4000)
OLDVALUE	VARCHAR2(4000)
MGMT$HW_NIC displays performance information for host hardware network cards.	
Table 9-141 MGMT$HW_NIC	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
NAME	VARCHAR2(128)
INET_ADDRESS	VARCHAR2(20)
MAX_TRANSFER_UNIT	NUMBER
BROADCAST_ADDRESS	VARCHAR2(20
MASK	VARCHAR2(20)
FLAGS	VARCHAR2(1024)
MAC_ADDRESS	VARCHAR2(20)
HOST_ALIASES	VARCHAR2(4000)
SNAPSHOT_GUID	RAW(16)
MGMT$OS_COMPONENTS displays performance information for host OS components.	
Table 9-142 MGMT$OS_COMPONENTS	
Column	Datatype
---	---
HOST	VARCHAR2(256)
NAME	VARCHAR2(128)
TYPE	VARCHAR2(100)
VERSION	VARCHAR2(100)
DESCRIPTION	VARCHAR2(2000)
INSTALLATION_DATE	DATE
SNAPSHOT_GUID	RAW(16)
MGMT$OS_FS_MOUNT displays performance information for mounted filesystems.	
Table 9-143 MGMT$OS_FS_MOUNT	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
RESOURCE_NAME	VARCHAR2(128)
TYPE	VARCHAR2(100)
MOUNT_LOCATION	VARCHAR2(1024)
MOUNT_OPTIONS	VARCHAR2(1024)
SNAPSHOT_GUID	RAW(16)
MGMT$OS_HW_SUMMARY displays summary information for both operating systems and hardware.	
Table 9-144 MGMT$OS_HW_SUMMARY	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
DOMAIN	VARCHAR2(500)
OS_SUMMARY	VARCHAR2(352)
SYSTEM_CONFIG	VARCHAR2(4000)
MA	VARCHAR2(500)
FREQ	NUMBER
MEM	NUMBER
DISK	NUMBER
CPU_COUNT	NUMBER
VENDOR_NAME	VARCHAR2(128)
OS_VENDOR	VARCHAR2(128)
DISTRIBUTOR_VERSION	VARCHAR2(100)
SNAPSHOT_GUID	RAW(16)
MGMT$OS_KERNEL_PARAMS displays performance information for OS kernel parameters.	
Table 9-145 MGMT$OS_KERNEL_PARAMS	
Column	Datatype
---	---
HOST	VARCHAR2(256)
SOURCE	VARCHAR2(128)
NAME	VARCHAR2(128)
VALUE	VARCHAR2(2000)
DATATYPE	VARCHAR2(4000)
SNAPSHOT_GUID	RAW(16)
MGMT$OS_PATCHES displays performance information for OS patches.	
Table 9-146 MGMT$OS_PATCHES	
Column	Datatype
---	---
HOST	VARCHAR2(256)
OS_EXTENDED	VARCHAR2(352)
OS	VARCHAR2(229)
PATCH	VARCHAR2(128)
MGMT$OS_SUMMARY displays operating system summary information.	
Table 9-147 MGMT$OS_SUMMARY	
Column	Datatype
---	---
HOST	VARCHAR2(256)
NAME	VARCHAR2(128)
VENDOR_NAME	VARCHAR2(128)
BASE_VERSION	VARCHAR2(100)
UPDATE_LEVEL	VARCHAR2(100)
DISTRIBUTOR_VERSION	VARCHAR2(100)
MAX_SWAP_SPACE_IN_MB	NUMBER
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_COMP_PATCHSET displays information on components and patchsets.	
Table 9-148 MGMT$SOFTWARE_COMP_PATCHSET	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
COMPONENT_NAME	VARCHAR2(128)
COMPONENT_BASE_VERSION	VARCHAR2(64)
COMPONENT_VERSION	VARCHAR2(64)
PATCHSET_NAME	VARCHAR2(128)
PATCHSET_VERSION	VARCHAR2(64)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_COMPONENT_ONEOFF displays information on oneoff patches.	
Table 9-149 MGMT$SOFTWARE_COMPONENT_ONEOFF	
Column	Datatype
---	---
HOST_NAME	VARCHAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
COMPONENT_NAME	VARCHAR2(128)
COMPONENT_EXTERNAL_NAME	VARCHAR2(128)
COMPONENT_BASE_VERSION	VARCHAR2(64)
COMPONENT_VERSION	VARCHAR2(64)
PATCH_ID	VARCHAR2(128)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_COMPONENTS displays information on components.	
Table 9-150 MGMT$SOFTWARE_COMPONENTS	
Column	Datatype
---	---
NAME	VARCHAR2(128)
EXTERNAL_NAME	VARCHAR2(128)
BASE_VERSION	VARCHAR2(64)
PATCHSETS_IN_HOME	VARCHAR2(4000)
VERSION	VARCHAR2(64)
HOST_NAME	VARCHAR2(256)
HOME_LOCATION	VARCHAR2(128)
HOME_NAME	VARCHAR2(64)
DESCRIPTION	VARCHAR2(1024)
INSTALLER_VERSION	VARCHAR2(64)
MIN_DEINSTALLER_VERSION	VARCHAR2(64)
INSTALL_TIMESTAMP	DATE
IS_TOP_LEVEL	VARCHAR2(1)
INTERIM_PATCHES_IN_HOME	VARCHAR2(4000)
BUGS_FIXED_BY_INTERM_INPATCEHS	VARCHAR2(4000)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_COMPONENTS displays information on components.	
Table 9-151 MGMT$SOFTWARE_DEPENDENCIES	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
REFERENCER_HOME_NAME	VARCHAR2(64)
REFERENCER_HOME_LOCATION	VARCHAR2(128)
REFERENCER_NAME	VARCHAR2(128)
REFERNCER_BASE_VERSION	VARCHAR2(64)
REFERENCED_HOME_NAME	VARCHAR2(64)
REFERENCED_HOME_LOCATION	VARCHAR2(128)
REFERENCED_NAME	VARCHAR2(128)
REFERENCED_BASE_VERSION	VARCHAR2(64)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_HOMES displays information about Oracle Homes.	
Table 9-152 MGMT$SOFTWARE_HOMES	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_TYPE	VARCHAR2(11)
HOME_LOCATION	VARCHAR2(128)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_ONEOFF_PATCHES displays information on oneoff patches applied in Oracle Homes.	
Table 9-153 MGMT$SOFTWARE_ONEOFF_PATCHES	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
PATCH_ID	VARCHAR2(128)
INSTALL_TIMESTAMP	DATE
DESCRIPTION	VARCHAR2(1024)
IS_ROLLBACKABLE	VARCHAR2(1)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_OTHERS displays information on other software installed on hosts.	
Table 9-154 MGMT$SOFTWARE_OTHERS	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
SOFTWARE_NAME	VARCHAR2(128)
SOFTWARE_VENDOR	VARCHAR2(128)
SOFTWARE_VERSION	VARCHAR2(128)
INSTALLATION_DATE	DATE
INSTALLATION_LOCATION	VARCHAR2(1024)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_PATCHES_IN_HOMES displays information on software patches in Oracle Homes.	
Table 9-155 MGMT$SOFTWARE_PATCHES_IN_HOMES	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
PATCH_ID	VARCHAR2(128)
BUGS_FIXED	VARCHAR2(4000)
SNAPSHOT_GUID	RAW(16)
MGMT$SOFTWARE_PATCHSETS displays information on patchsets installed in Oracle Homes.	
Table 9-156 MGMT$SOFTWARE_PATCHSETS	
Column	Datatype
---	---
HOST_NAME	VARHCAR2(256)
HOME_NAME	VARCHAR2(64)
HOME_LOCATION	VARCHAR2(128)
NAME	VARCHAR2(128)
VERSION	VARCHAR2(64)
DESCRIPTION	VARCHAR2(1024)
INSTALLER_VERSION	VARCHAR2(64)
MIN_DEINSTALLER_VERSION	VARCHAR2(64)
INSTALL_TIMESTAMP	DATE
SNAPSHOT_GUID	RAW(16)
MGMT$CLUSTER_INTERCONNECTS displays statistics of network interfaces on the hosts in clusters.	
Table 9-157 MGMT$CLUSTER_INTERCONNECTS	
Column	Datatype
---	---
CLUSTER_NAME	VARCHAR2(256)
HOST_NAME	VARCHAR2(256)
IF_NAME	VARCHAR2(256)
IF_SUBNET	VARCHAR2(16)
IF_PUBLIC	VARCHAR2(10)
TOTRATE_5MIN	NUMBER
TOTERR_5MIN	NUMBER
INRATE_5MIN	NUMBER
CURR_WARNING	NUMBER
CURR_CRITICAL	NUMBER
LATEST_COLLECTION_TIMESTAMP	DATE
MGMT$RACDB_INTERCONNECTS displays statistics of the inter-instance traffic of cluster databases.	
Table 9-158 MGMT$RACDB_INTERCONNECTS	
Column	Datatype
---	---
CLUSTER_NAME	VARCHAR2(1024)
DB_TARGET	VARCHAR2(256)
INSTANCE_TARGET	NUMBER
INSTANCE_STATUS	NUMBER
DB_NAME	VARCHAR2(1024)
SID	VARCHAR2(1024)
IF_NAME	VARCHAR2(50)
HOST_NAME	VARCHAR2(256)
IF_IP	VARCHAR2(16)
IF_PUBLIC	VARCHAR2(10)
IF_SOURCE	VARCHAR2(100)
XFERRATE_5MIN	NUMBER
CURR_WARNING	NUMBER
CURR_CRITICAL	NUMBER
LATEST_COLLECTION_TIMESTAMP	DATE
MGMT$HA_BACKUP displays details of the latest backup of the databases.	
Table 9-159 MGMT$HA_BACKUP	
Column	Datatype
---	---
HOST	VARCHAR2(256)
DATABASE_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
DISPLAY_NAME	VARCHAR2(256)
TARGET_GUID	RAW(16)
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
COMMAND_ID	VARCHAR2(33)
STATUS	VARCHAR2(23)
START_TIME	DATE
END_TIME	DATE
TIME_TAKEN_DISPLAY	VARCHAR2(4000)
INPUT_TYPE	VARCHAR2(13)
OUTPUT_DEVICE_TYPE	VARCHAR2(17)
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_PER_SEC_DISPLAY	VARCHAR2(4000)
MGMT$STORAGE_REPORT_DATA displays the Storage Data metric attributes which are common across all instrumented Storage Entities.	
Table 9-160 MGMT$STORAGE_REPORT_DATA	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
KEY_VALUE	RAW(20)
GLOBAL_UNIQUE_ID	RAW(20)
NAME	VARCHAR2(256)
STORAGE_LAYER	VARCHAR2(32)
ENTITY_TYPE	VARCHAR2(64)
RAWSIZEB	NUMBER
SIZEB	NUMBER
USEDB	NUMBER
FREEB	NUMBER
MGMT$STORAGE_REPORT_KEYS displays the relationship between instrumented Storage Entities.	
Table 9-161 MGMT$STORAGE_REPORT_KEYS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
KEY_VALUE	RAW(20)
PARENT_KEY_VALUE	RAW(20)
MGMT$STORAGE_REPORT_PATHS displays the OS paths for all instrumented storage Entities.	
Table 9-162 MGMT$STORAGE_REPORT_PATHS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
KEY_VALUE	RAW(20)
NAME	VARCHAR2(256)
PATH	VARCHAR2(256)
FILE_TYPE	VARCHAR2(256)
STORAGE_LAYER	VARCHAR2(32)
ENTITY_TYPE	VARCHAR2(64)
MGMT$STORAGE_REPORT_ISSUES displays the consistency issues encountered when analyzing the instrumented storage metrics.	
Table 9-163 MGMT$STORAGE_REPORT_ISSUES	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
TYPE	VARCHAR2(32)
MESSAGE_COUNT	NUMBER
MGMT$STORAGE_REPORT_DISK displays Additional Storage Data Metric Attributes for all Physical Disk Device Storage Entities.	
Table 9-164 MGMT$STORAGE_REPORT_DISK	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
ENTITY_TYPE	VARCHAR2(64)
USED_PATH	VARCHAR2(256)
FILE_TYPE	VARCHAR2(256)
SIZEB	NUMBER
USEDB	NUMBER
FREEB	NUMBER
VENDOR	VARCHAR2(256)
PRODUCT	VARCHAR2(256)
MGMT$STORAGE_REPORT_VOLUME displays Additional Storage Data Metric attributes for all Volume Manager Storage Entities.	
Table 9-165 MGMT$STORAGE_REPORT_VOLUME	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
VENDOR	VARCHAR2(256)
PRODUCT	VARCHAR2(256)
TYPE	VARCHAR2(64)
DISK_GROUP	VARCHAR2(256)
NAME	VARCHAR2(256)
USED_PATH	VARCHAR2(256)
FILE_TYPE	VARCHAR2(256)
RAWSIZEB	NUMBER
SIZEB	NUMBER
USEDB	NUMBER
FREEB	NUMBER
CONFIGURATION	VARCHAR2(256)
MGMT$STORAGE_REPORT_LOCALFS displays Additional Storage Data Metric attributes for all Local Filesystem Storage Entities.	
Table 9-166 MGMT$STORAGE_REPORT_LOCALFS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
FILESYSTEM_TYPE	VARCHAR2(256)
FILESYSTEM	VARCHAR2(256)
MOUNTPOINT	VARCHAR2(256)
SIZEB	NUMBER
USEDB	NUMBER
FREEB	NUMBER
MGMT$STORAGE_REPORT_NFS displays Additional Storage Data Metric attributes for all Network Filesystems.	
Table 9-167 MGMT$STORAGE_REPORT_NFS	
Column	Datatype
---	---
TARGET_NAME	VARCHAR2(256)
TARGET_TYPE	VARCHAR2(64)
FILESYSTEM	VARCHAR2(256)
MOUNTPOINT	VARCHAR2(256)
SIZEB	NUMBER
USEDB	NUMBER
FREEB	NUMBER
NFS_SERVER	VARCHAR2(256)
NFS_SERVER_IP_ADDRESS	VARCHAR2(256)
NFS_VENDOR	VARCHAR2(256)
MOUNT_PRIVILEGE	VARCHAR2(256)
Enterprise Manager data retrieval is handled through predefined "fetchlets." A fetchlet is a parametrized data access mechanism that takes arguments (For example, a script, a SQL statement, a target instance's properties) as input and returns formatted data. Each fetchlet handles a specific type of data access. The fetchlets supplied with Enterprise Manager provide data retrieval capability for the most common data access methods, such as SQL, SNMP (Simple Network Management Protocol), HTTP, and DMS (Dynamic Monitoring Service). To handle more complex data access requirements, Enterprise Manager also provides an OS command fetchlet that allows developers to implement custom metric collection methods.	
The following fetchlets are supplied with Enterprise Manager:	
The operating system (OS) command fetchlets allow you to obtain metric data by executing OS commands (either individually or from scripts) that return a standard out (stdout) data stream.	
Three OS command fetchlets are available:	
The OS Fetchlet executes a given OS command and returns the command's output in a single cell table.	
Input Parameters	
Table 10-1 OS Fetchlet Input Parameters	
Parameter	Type
---	---
command	string
ENVname	string
errStartsWith	String
script	string
args	string
separateErrorStream	boolean
em_metric_timeout	integer
Example	
You want to obtain metric data by executing the UNIX echo command.	
Executing the command from the shell environment, you would enter:	
The echo command produces the following standard output:	
Using the OS Fetchlet with the given example command.	
The fetchlet returns the following 1 x 1 table:	
Figure 10-1 Table Returned by the OS Fetchlet	
The raw output of the OS command is returned. Any standard error output is appended to the standard output.	
Error Handling	
Any problems encountered launching the command (For example, the command program no longer exists) results in an oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a java.io.IOException. If the command exits with a non-zero exit value, the fetchlet throws an oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping an oracle.sysmand.emd.fetchlets.CommandFailedException.	
Notes	
Commands are NOT executed as if they are being run in a shell. This means that common shell symbols do not work, including piping, output redirection, and backgrounding.	
Commands cannot read from standard input.	
The fetchlet blocks and waits for the command to finish.	
The OS Lines Fetchlet executes a given OS command and tokenizes the OS command's output. The output is tokenized by lines. The fetchlet returns the tokens in a single column table. The nth row in the table represents the nth line in the OS command's output.	
To get the raw, untokenized output of an OS command, use the OS Fetchlet. To get the output of an OS command tokenized by lines and each line tokenized by a given delimiter, see the OS Line Token Fetchlet.	
Input Parameters	
Table 10-2 OSLines Fetchlet Input Parameters	
Parameter	Type
---	---
command	string
startsWith	string
ENVname	string
errStartsWith	string
script	string
args	string
separateErrorStream	boolean
em_metric_timeout	integer
Example	
Let's take the following Unix command:	
It produces the following output:	
Running OSLinesFetchlet with the given example command produces the following single column table.	
Figure 10-2 Table Returned by the OS LINES Fetchlet	
Note that without content, "\n" results in a blank line inserted between Line 2 and Line 4.	
Notes: Commands are NOT executed as if they are being run in a shell. This means that common shell symbols do not work, including piping, output redirection, and backgrounding. Commands cannot read from standard input. The fetchlet blocks and waits for the command to finish. The standard output of the command is captured and the standard error is captured and appended to the standard output. Lines are tokenized using "\n".	
The OS Line Token Fetchlet executes a given OS command and tokenizes the OS command's output. The output is tokenized first by lines, and then each line is tokenized by a given delimiter set. The fetchlet returns the tokens in a table. The nth row in the table represents the nth line in the OS command's output. The nth column in the table represents the nth token in a line as determined by the given delimiter set.	
To get the raw, untokenized output of an OS command, see the OS Fetchlet.	
Input Parameters	
Table 10-3 OSLineToken Fetchlet Input Parameters	
Parameter	Type
---	---
command	string
delimiter	string
startsWith	string
ENVname	string
errStartsWith	String
script	string
args	string
separateErrorStream	boolean
em_metric_timeout	integer
Example	
Let's take the following Unix command:	
It produces the following output:	
Running OSLineTokenFetchlet with the given example command and a single character "	" for the delimiter generates the following table:
Figure 10-3 Table Returned by the OS Token Lines Fetchlet	
Error Handling	
Any problem launching the command (unable to find the command program) results in a oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a java.io.IOException.	
If the command exits with a non-zero exit value, the fetchlet throws a oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a oracle.sysmand.emd.fetchlets.CommandFailedException.	
Notes	
Commands are NOT executed as if they are being run in a shell. This means that common shell symbols do not work, including piping, output redirection, and backgrounding.	
The fetchlet promptly closes the input stream to the running command.	
The fetchlet blocks and waits for the command to finish.	
Lines are tokenized using "\n".	
The delimiter can be a single character or a set of characters. For example, it can be "	+_", if the line should be broken up by pipes, pluses, and underscores. If two or more delimiters are together in the output text, such as "
In order to express non-printable characters in the delimiter set (such as tabs) in XML, use "&#xHH;" where H is the hexadecimal identifier for the character.	
The SQL Fetchlet executes a given SQL statement on a given database as a given user and returns the table result.	
Input Parameters	
Table 10-4 SQL Fetchlet Input Parameters	
Parameter	Type
---	---
Connection Information	
MachineName	string
Port	integer
SID	string
ServiceName	string
OidRepSchemaName	string
OracleHome	string
Credential Information	
UserName	string
password	string
Role	string
General	
STATEMENT	string
FILENAME	string
NUMROWS	integer
Bind Parameters	
SQLINPARAM<position>	string
SQLOUTPARAMPOS	integer
SQLOUTPARAMTYPE	string
transpose	TRUE/FALE
Notes	
The SQL Fetchlet uses the Oracle Call Interface (OCI) from libclntsh.so.	
The SQL statement or PL/SQL block can be specified either through the STATEMENT property, or via a file whose name is provided through the FILENAME property.	
The SQL fetchlet supports input parameters. Input and output parameters are indicated in the SQL/PLSQL text in the usual way, by using ":<number>". Input parameters can be used to bind values to both SQL queries and PL/SQL blocks.	
Input parameter values are specified as properties of the form SQLINPARAM<position>. There can be any number of input parameters. The input parameters need to be scalar: input parameters of type ARRAY and STRUCT are not supported.	
The SQL fetchlet supports the execution of anonymous PL/SQL blocks (which may call other functions or procedures) to retrieve data. When executing a block of PL/SQL, data is returned to the fetchlet by means of an OUT parameter. There can be exactly one out parameter. It must be of type SQL_CURSOR (a PL/SQL REF CURSOR), or it must be a named type that represents an array of objects. In the latter case, each field of the object represents one column of the table; and each object instance in the array represents one complete row in the table. The OUT parameter position and type are specified by means of the properties SQLOUTPARAMPOS and SQLOUTPARAMTYPE. If an OUT parameter is specified, then the fetchlet assumes it is executing PL/SQL and treats the STATEMENT property as an anonymous PL/SQL block.	
Note: When using a SQLOUTPARAMTYPE of type 'ARRAY', you must identify the array as follows:	
If no OUT parameter is specified, the fetchlet assumes that it is executing a SQL query.	
Note that all input parameters to the SQL fetchlet are strings. This means that all other datatypes will have to be converted to strings. This is straightforward for datatypes such as numbers, but not, for example, dates and timestamps. You can pass an absolute date or timestamp by passing a character representation of the value (using a DateFormat class). There is no way currently to pass in a date function, such as SYSDATE or SYSDATE+1. In such case, you could embed the date argument directly in the SQL, for example:	
The other caveat is passing null arguments to a procedure. Consider the following SQL:	
Assume that the first argument is intended to be a varchar2. By parameterizing it and passing 'null' as the first argument, what we are really doing is passing the *string* 'null' to the argument, and not a null value. If you intend to pass a null value, do the following:	
Examples	
The following properties execute a query (get all users) with no parameters:	
The following properties execute a query (get the first few objects of a specified type owned by a specified user) with input parameters:	
The following example executes a PL/SQL procedure that returns a cursor and has input parameters:	
The following example specifies a PL/SQL procedure that returns an array of strings:	
The following example specifies a PL/SQL package that returns an array of structures:	
The PL/SQL used in the examples above is provided below for reference:	
An object identifier (OID) corresponds to either a MIB variable instance or a MIB variable with multiple instances. Given a list of (OIDs), the SNMP Fetchlet polls an SNMP agent on a given host for corresponding instances.	
Input Parameters	
Table 10-5 SNMP Fetchlet Input Parameters	
Parameter	Type
---	---
hostname	string
PORT	string
COMMUNITY	string
TIMEOUT	STRING
OIDS	string
DELIM	string
TABLE	string
Error Handling	
MissingParameterException is thrown if either hostname or OIDS is not given. FetchletException is thrown if TABLE is not equal to either TRUE or FALSE, an I/O error occurs while sending/receiving SNMP messages to/from the agent, or the agent responds with an SNMP error.	
Notes	
The table returned by the fetchlet will contain a column for every OID in OIDS. If input OIDs correspond to single variable instances, the table will have just one row with those instances. On the other hand, if the OIDs correspond to variables with multiple instances, each column in the table will contain instances for its OID and each row will correspond to a different subidentifier. (A subidentifier is an OID extension that uniquely identifies a particular variable instance for some MIB variable.) OIDS must contain either all OIDs with subidentifiers or all OIDs without the subidentifiers.	
For example, to request the variable instances for the three OIDs: sysDescr, sysUpTime, and sysName, OIDS would have to be "1.3.6.1.2.1.2.1.1.1.0 1.3.6.1.2.1.2.1.1.3.0 1.3.6.1.2.1.2.1.1.5.0". In this case, all OIDs contain the instance subidentifier, ".0". The return table would appear as follows (the actual values may be different):	
Alternatively, assume that some MIB contains the following 3 columns and 4 instances:	
Figure 10-5 SNMP Fetchlet: Columns 3 and 4 Content	
To construct a table with 3 columns corresponding to ifDescr, ifInOctets, and ifOutOctets, OIDS would have to be defined as follows	
"1.3.6.1.2.1.2.1.2.2.1.2 1.3.6.1.2.1.2.1.2.2.1.10 1.3.6.1.2.1.2.1.2.2.1.16"	
The fetchlet would return:	
Figure 10-6 SNMP Fetchlet:ifDescr, ifInOctets, and ifOutOctets OIDS	
The rows correspond to subidentifiers 1,2,3,4 respectively.	
Any OID in OIDS can be appended with another placement OID. The variable instances for the placement OID do not appear in the returned table. Instead, they determine the place for the variable instances of the original OID within a column. In particular, for every variable instance I with subidentifier S in the set of instances for the original OID, (a) there must exist a variable instance X with subidentifier S in the set of instances corresponding to the placement OID, and (b) X is used as the subidentifier for the instance I.	
For example, consider a MIB containing the following 3 columns, each with 4 variable instances:	
Figure 10-7 SNMP Fetchlet: MIB Content with 4 Variable Instances	
To construct a table containing ifDescr and ipAdEntNetMask, OID of ipAdEntIfIndex would have to be used as the placement OID to "align" the columns. Thus, the OIDS input to the fetchlet would be "1.3.6.1.2.1.2.1.2.2.1.2 1.3.6.1.2.1.2.1.4.20.1.3*1.3.6.1.2.1.2.1.4.20.1.2". The fetchlet output will be as follows:	
Figure 10-8 SNMP Fetchlet: Table Containing ifDescr and ipAdEntNetMask	
If OIDS were "1.3.6.1.2.1.2.1.2.2.1.2 1.3.6.1.2.1.2.1.4.20.1.3" for the previous example, the output would be as follows:	
The URL Timing Fetchlet gets the contents of a given URL, timing not only the base page source but any frames or images in the page as well.	
Input Parameters	
Table 10-6 URL Timing Fetchlet Input Parameters	
Parameter	Description
---	---
url#	URL(s) to download. "url0" is required but any number of URLs can be specified beyond url0 that following the convention: url0, url1, url2, url3.
proxy_host	Proxy host used to make a URL connection.
proxy_port	Port used by the proxy host used make the URL connection.
dont_proxy_for	Domains for which the proxy will not be used.
use_proxy	When used in conjunction with the proxy override input parameters, use_proxy specifies a proxy to be used in lieu of the original proxy. When set to false without the proxy override parameters set, no proxy is used.
proxy_host_override	Alternate proxy host used to make the URL connection.
proxy_port_override	Alternate proxy port used to make the URL connection.
dont_proxy_override	Do not use the proxy for domains.
internet_cert_loc	Path pointing to the location of a certificate to be used to access a secure (HTTPS) URL.
auth_realm	Realm for the Basic Authentication log on. If the realm is not specified for the authentication, authentication does not occur and the download of the page fails with a 401 response code.
auth_user	Username for Basic Authentication.
auth_password	Password for Basic Authentication.
retries	Number of times to retry the url if it initially fails.
connection_timeout	Wait time (in milliseconds) allowed to establish a connection to a server. This time also includes time required for name resolution.
read_timeout	Idle time in the read waiting for the server to respond. For example, if no data is received from the server during the specified timeout period, the operation is considered failure.
timeout	Number of milliseconds after which the page download is considered a failure. This will detect if the site is functional but is extremely slow.
status_comparator	When collating the rows to make a single row, the status_comparator parameter will indicate whether all URLs should have been a success (and) or any URLs should have been a success (or).
cache	Indicates whether to use a cache when accessing an URL. Set the parameter to "n" to specify that no cache be used.
output_format	Specifies the output format to be used: summary, detailed, repeat_column. For more information on output formats, see Metric Columns and Output Modes.
metrics	Specifies which metric columns need to be returned. For more information on metrics columns returned for each output format, see Table 10-8, "URLTIMING Fetchlet: Metric Columns"
Metric Columns and Output Modes	
The format of information and specific metric information returned are controlled by the "output_format" and "metrics" input parameters. The following table lists the format categories and the metrics (columns) returned by each. For a description of available metric columns, see Table 10-8, "URLTIMING Fetchlet: Metric Columns"	
Table 10-7 URLTIMING Fetchlet: Output Formats	
Output Format	Description
---	---
summary	Returns a default set of metrics in a single row for all URLs If the metrics input parameter is specified, then only the columns specified will be returned.
detailed	Returns a default set of metrics for each url. If the metrics input parameter is specified, then only the columns specified will be returned.
repeat_column	Returns a single row of metrics with timing for each of the URLs. If the metrics input parameter is specified, then those columns will be returned for each url followed by overall status and status_description. (Note the output will always be single row).
Metric Columns	
The following table shows the metric columns returned by the URLTIMING fetchlet.	
Table 10-8 URLTIMING Fetchlet: Metric Columns	
Column Name	Description
---	---
status	The overall status of all URLs. By default AND is used to compute overall status but this can be changed using the status_comparator input parameter.
connect_time	The time to connect to the server and send the request.
first_byte_time	Time taken between sending the request and reading the first byte from the response.
total_response_time	Time taken for fetching ALL urls and associated content (gif, css, javascript etc).
max_response_time	Also referred as Slowest page time. This the time taken by the slowest URL.
avg_response_time	Average response time for URL. Computed as total response time / number of pages (urls).
rate	Kilo Bytes per second. This is computed by total bytes received / total time taken to receive them.
html_time	Total time taken to download the html part of all pages. This time excludes time to fetch images and other contents. (Includes time to fetch frame html).
content_time	Time taken to download the page content (gif, javascripts, css etc.).
redirect_time	Total time taken for all redirects occurring while fetching the set of urls specified.
redirect_count	Number of redirects.
total_bytes	Total number of bytes.
html_bytes	Total number of HTML bytes. (Includes bytes for frame html).
content_bytes	Total number of content bytes.
status_description	This is present only when the status is down. Corresponds to HTTP Status description.
request_count	Number of request made. (Includes all html as well as content requests).
broken_count	Number errors while fetching images or other content elements.
broken_details	List of images or other content elements that could not be fetched. This has format of url[broken list], url[broken list...
computed_response_time	This time approximates the time it would have taken for a client (like browser) to fetch all the pages in the transaction. This number is computed as if the contents of every page (gifs, css etc) were fetched using multiple threads.
avg_connect_time	Total connect_time / total number of connections made.
avg_first_byte_time	Total First Byte Time / Number of requests made (either to fetch HTML or content).
dns_time	Time to resolve host name (not implemented, always returns zero).
url	Returns the url, can only be used in 'detailed' output_format.
Example	
Let's take the following URL:	
With the input parameter output_format=summary, the fetchlet returns the following table (minus the headers on the columns):	
With output_format = summary and metrics = total_response_time, status, status_description the fetchlet returns the following table (minus the headers on the columns):	
Figure 10-11 Summary Output Format with Specified Metric Columns	
With output_format = summary and metrics = total_response_time, status, status_description the fetchlet returns the following table (minus the headers on the columns) and the server is giving error:	
Figure 10-12 Summary Output Format with Specified Metric Columns and Internal Server Error	
Let's take the following URL:	
With the output_format=summary, the fetchlet returns the following table (minus the headers on the columns). Here the numbers are time taken for fetching both the urls.	
Figure 10-13 Summary Output Format for Two URLs	
With the output_format=detailed, the fetchlet returns the following table (minus the headers on the columns):	
With the output_format=repeat_column, the fetchlet returns the following table (minus the headers on the columns):	
Error Handling	
Metric error if the URL parameter is missing, malformed, or if the metric cannot be computed.	
Notes	
The time required to perform a retry will be added on to the total time of the page. For example, if two retries are performed and then a success occurs, the total page time will be the time of the page that succeeded plus the time it took for the two retries to fail.	
Proposed usage:	
Use url0=<URL to be monitored> , output_mode=summary and specify metrics=status, computed_response_time, status_description	
Use url0=<url to be monitored> , output_mode=summary	
The Dynamic Monitoring Service (DMS) fetchlet contacts an Application Server (AS) and then collects the metrics instrumented by the DMS.	
The DMS allows application and system developers to measure and export customized, component-specific performance metrics. The Oracle Management Agent allows software components to import runtime performance data into Oracle Enterprise Manager Grid Control.	
The DMS Fetchlet is an Oracle Management Agent plug-in module that allows the Management Agent to import the performance data that is exported by the DMS. Using the DMS fetchlet, any component that is instrumented using DMS API calls may share its performance data with Enterprise Manager Grid Control.	
With DMS, a component can insulate itself from the operational details of the Management Agent. A component would not need to deploy (or maintain) its own fetchlet or deploy (or maintain) a Tcl script or shell script to plug into one of the existing fetchlets. A component would not need to devise its own new way of measuring or exporting performance metrics. Performance metrics can be measured and reported in a consistent way across components. The DMS fetchlet contacts the remote DMS runtime directly with no need for forking shell scripts or Tcl scripts. Most importantly, DMS automatically produces the long, complicated metadata document for you and thereby saves many hours of tedious and error-prone hand editing.	
Input Parameters	
Table 10-9 DMS Fetchlet Input Parameters	
Name	Type
---	---
oraclehome	String
version	String
opmnport	Integer
httpport	Integer
machine	String
metric	String
columnOrder	String
usecache	String
proxyHost	String
proxyPort	Integer
dontProxyFor	String
useDefaultProxy	String
proxyHostOverride	String
proxyPortOverride	Integer
authrealm	String
authuser	String
authpwd	String
Error Handling	
DMS Fetchlet throws MissingParameterException if any of the properties "oraclehome", "metric", "columnOrder", "opmnport", or "httpport" is missing. It throws FetchletException if any of the ports given is not valid.	
Notes	
The first four columns of the metric table returned are always column "name", "fullname", "host" and "process". Therefore, do not include them in columnOrder string. Property "machine" should be specified together with either properties "opmnport" or "httpport". In this case, the property "oraclehome" is ignored.	
DMS has been used in several components (such as Apache, JServ, OSE, and Portal) to provide a consistent performance monitoring infrastructure for Oracle 9i Application Server. The Sensors are easy to use and save most of the work related to performance measurement because they hide most of the details related to timing, counting, and categorization. Finally, DMS hides many Management Agent details from component developers and much of the Management Agent integration effort.	
As mentioned earlier, DMS allows application and system developers to measure and export customized, component-specific performance metrics. The Oracle Management Agent enables software components to import runtime performance data into Enterprise Manager Grid Control. This section describes how to integrate DMS performance metrics with the Management Agent.	
Step 1: Install AS	
Step 2: Install Enterprise Manager Grid Control	
Step 3: Instrument your Component with DMS	
To enable DMS metrics for Enterprise Manager Grid Control, you must follow two additional rules:	
For example, the following Java snippet shows how to create typed Nouns that contain a consistent set of Sensors. DMS will automatically convert these into a repository table named "MyType":	
For this example, the "MyType" table will contain three rows and four columns. Besides the columns corresponding to the two Sensors, there will be a "name" column and a "path" column that will contain the DMS path name including the process name and "/myExample/myCom...".	
If these Nouns/Sensors are created in several servlet engines within the AS site, then the AggreSpy will find each of the servlet engines and will aggregate all of the Nouns/Sensors into a single MyType table.	
Step 4: Generate your Target Metadata Document	
You can generate the Target Metadata Document using your browser. Point your browser to your AS site that you want to monitor using the following URL:	
You should use the actual host, port and servlet path of your AS installation in the above URL. The servlet path usually defaults to "servlet". The XML document you get is the Target Metadata Document for your AS site. The first comment of the XML document explains where you can obtain the Target Metadata Document and instructions telling you what needs to be done to this document.	
Step 5: Install the Target Metadata Document	
Follow the steps described in the first comment of the XML document. Save the XML document to a file called "oracle_dms.xml" under the "metadata" directory of your Enterprise Manager installation (OMS_ORACLE_HOME/sysman/admin/metadata/). If you want to monitor a subset of the metrics or merge the metrics with the ones in the existing "oracle_dms.xml" file, you should save this new defintion to a separate file called target_name.xml. You will also need to change the Target Type entry in the generated metadata document.	
Next, you should add the target instance information of your AS site to your "targets.xml" file residing under the top directory of your Enterprise Manager installation. You can find a block of XML tags in the comment you read. They look like:	
Copy this block and paste it to the "targets.xml" file between <targets> and </targets> tags.	
Finally, to add the new target metadata file and target instance information from the targets.xml file to Enterprise Manager Grid Control, you must run the following command:	
Step 6: View your metrics	
You are ready to view your metrics using Enterprise Manager's Metric Browser. See "Activating the Metric Browser" for information on setting up the Metric Browser. First, make sure that AS and your component are still running. Next, restart the Oracle Management Agent. Finally, point your browser to your Management Agent installation using the following URL:	
The Management Agent port information can be found in the $AGENT_HOME/sysman/config/emd.properties file at the EMD_URL line.	
You should use the actual host and port of your Management Agent installation in the above URL. You will find your AS site listed as the target "DMS_YOUR-AS-HOST_YOUR-AS-PORT". If you click on the link, you will see a list of metric IDs. You can browse your metrics by clicking on the respective metric IDs.	
The HTTP data fetchlets obtain the contents of a URL and returns the contents of the URL as data. Three fetchlets are available:	
The URL Fetchlet gets the contents of a given URL and returns the contents of the URL in a single cell table.	
To get the output of a URL tokenized by lines and each line tokenized by a given delimiter, see the URL Line Token Fetchlet.	
Input Parameters	
Table 10-10 URL Fetchlet Input Parameters	
Name	Description
---	---
url	URL to retrieve the contents of
proxyHost	proxy host through which to make the URL connection.
proxyPort	proxy port through which to make the URL connection.
Example	
Let's take the following URL:	
It has the following contents:	
Line 1: Nashua, Keene,	
Line 2: Concord	
Line 3: , Conway, Manchester, Milford, Brookline,	
Line 4:	
Line 5: Hollis, Meredith	
Now let's run the URL Fetchlet with the given URL. The fetchlet returns the following one-by-one table:	
The raw contents of the URL is returned.	
Error Handling	
MissingParameterException if URL parameter is missing. FetchletException if the URL is malformed or an I/O error occurs in retrieving the content of the URL.	
The URL Fetchlet gets the contents of a given URL and tokenizes the contents of the URL. The output is tokenized by lines. The fetchlet returns the tokens in a single column table. The nth row in the table represents the nth line of the URL contents.	
Note: To get the raw, untokenized contents of a URL, see the URL Fetchlet. To get the contents of a URL tokenized by lines and each line tokenized by a given delimiter, see the URL Line Token Fetchlet.	
Table 10-11 URL Lines Fetchlet Input Parameters	
Name	Description
---	---
url	URL to retrieve the contents of
proxyHost	proxy host through which to make the URL connection.
proxyPort	proxy port through which to make the URL connection.
startsWith	only lines starting with this string are included in the result
Example	
Let's take the following URL:	
It has the following contents:	
Line 1: Nashua, Keene,	
Line 2: Concord	
Line 3: , Conway, Manchester, Milford, Brookline,	
Line 4:	
Line 5: Hollis, Meredith	
Now let's run the URL Fetchlet with the given URL.	
The fetchlet returns the following table:	
Error Handling	
MissingParameterException if URL parameter is missing.	
FetchletException if the URL is malformed or an I/O error occurs in retrieving the content of the URL.	
Notes	
Lines are tokenized using "\n".	
The URL Fetchlet gets the contents of a given URL and tokenizes the contents of the URL. The output is tokenized first by lines, and then each line is tokenized by a given delimiter set. The fetchlet returns the tokens in a table. The nth row in the table represents the nth line of the URL content. The nth column in the table represents the nth token in a line as determined by the given delimiter set.	
To get the raw, untokenized contents of a URL, see the URL Fetchlet.	
Table 10-12 URL Line Token Fetchlet Input Parameters	
Name	Description
---	---
url	URL to retrieve the contents of
delimiter	set of characters that act as delimiters to tokenize the lines
proxyHost	proxy host through which to make the URL connection.
proxyPort	proxy port through which to make the URL connection.
startsWith	only lines starting with this string are included in the result
Example	
Let's take the following URL:	
It has the following contents:	
Line 1: Nashua, Keene,	
Line 2: Concord	
Line 3: , Conway, Manchester, Milford, Brookline,	
Line 4:	
Line 5: Hollis, Meredith	
Now let's run the URL Fetchlet with the given URL and a single character "," for the delimiter.	
The fetchlet returns the following table:	
Error Handling	
MissingParameterException if URL parameter is missing.	
FetchletException if the URL is malformed or an I/O error occurs in retrieving the content of the URL.	
Notes	
Lines are tokenized using "\n".	
The delimiter can be a single character or a set of characters. For example, it can be "	+_", if the line should be broken up by pipes, pluses, and underscores. If two or more delimiters are together in the output text, such as "
In order to express non-printable characters in the delimiter set (such as tabs) in XML, use "&#xHH;" where H is the hexadecimal identifier for the character.	
The URL XML Fetchlet obtains the XML content of a given URL, and extracts information based on a given pattern. A pattern is a list of "chunks" of XML to match against. The return table is a table with a column for each grabber (*) in the pattern in order and a row each time the pattern chunk matches in the XML content.	
Input Parameters	
Table 10-13 URLXML Fetchlet Input Parameters	
Name	Description
---	---
url	URL to retrieve the contents of
pattern	The pattern used to extract information from XML; this is a list of XML chunks that that is compared against the XML content of the URL. Each chunk contains one or more "grabbers" (*) in the text portion of the elements that define what should the flattened into text and extracted.
proxyHost	The proxy host through which to make the URL connection.
proxyPort	The proxy port through which to make the URL connection.
ignoreDtd	If set to TRUE, specifies that the DTD file referenced by the content XML should be ignored. This is useful in cases where the DTD file cannot be accessed.
generateKey	If set to true, a unique key will be generated for each row. The key will occupy the first column of the result, and will be numeric.
throwConnException	If set to TRUE, a java.net.ConnectException will be thrown. Otherwise, it will be caught and an empty result set will be returned. Setting this property to FALSE provides behavior which is consistent with the DMSFetchlet.
Example	
Let's take the following URL:	
It has the following content:	
Running the URL XML Fetchlet with the given URL and the pattern:	
returns the following table:	
Error Handling	
MissingParameterException if URL or pattern parameters are missing.	
A FetchletException is generated if:	
Notes	
Setting the proxy host and/or port changes these settings for the java.net package for the whole Java environment and is not thread-safe if the proxy settings are changing.	
The WBEM fetchlet accesses a CIMOM and retrieves requested information using the specified CIM class. The CIM class is mapped to a Management Repository table metric. The name of the CIM class is the name of the table metric that is returned, and the properties defined for the CIM class are used to name the table columns for the metric. The properties of interest must be specified during metric definition.	
The fetchlet returns the instances that have been instantiated for the CIM class as rows of the Management Repository table metric.	
Input Parameters	
Table 10-14 WBEM Fetchlet Input Parameters	
Name	Type
---	---
hostname	String
port	Integer
namespace	String
username	String
password	String
CIMclassname	String
operation	String
properties	String
Error Handling	
The following types of errors have been identified for the WBEM fetchlet.	
MissingParameterException occurs when:	
Fetchlet exception occurs when:	
Notes	
Ports: Some CIMOM client interfaces expose the port that the CIMOM is listening on while some clients do not. To cover both cases, the port is exposed as an optional input parameter that defaults to port 5988. This is the default Pegasus CIMOM listener port. The Java API that is provided through Sun's Wbem Services does not expose the CIMOM port.	
Protocols: Most CIMOMs support either an RMI or HTTP protocol for communicating with the CIMOM. The testing that has been done shows that the HTTP protocol is not as stable, and in some cases, not fully implemented in the CIMOM. Because of this, the protocol currently defaults to RMI. The actual parameters for the WBEM Services CIMOM for the protocol are: CIMClient.CIM_RMI or CIMClient.CIM_XML.	
Fetchlet Operations: The WBEM APIs are very flexible at allowing clients to traverse the class hierarchies that are defined and their associations. At this point in time, the options on accessing CIM data from an EMD are restricted to counting, getting the properties of classes, and CIMOM status. These are the more important operations that need to be performed for monitoring. As additional requirements come in, we can add new operations to support them if necessary. For the prototype, only the count operation has been implemented.	
Authentication: Most CIMOMs provide APIs to support authentication through a user identity mechanism. The majority of the CIMOMs have not implemented the API, so this capability is really a no-op. In any case, we've supplied the capability in the fetchlet so that as CIMOM implementations catch up with the standard, we'll have the necessary support in place.	
Examples	
The Wbem fetchlet supports three basic operations. At this point, the fetchlet only handles one operation at a time, so you cannot mix count, status, and value operations within a single fetchlet call. The following example shows how to write the metadata for a COUNT operation:	
Example 10-1 COUNT Operation Metadata	
The FETCHLET_ID is identified as Wbem. Property names are passed to the fetchlet for the required parameters username, password, and CIMClassname. The operation is identified as COUNT.	
The following example shows how to implement a Response Status metric to determine whether the CIMOM is running or not. It returns a value of 1 if the connection to the CIMOM is successful, otherwise 0.	
Example 10-2 Response Status Metric	
The default operation is the VALUES operation. It is used to fetch the values of a class that is defined in the CIMOM.	
In the final example, the EX_Teacher class is accessed and fetches the name column. Name is the key of the class and of the new metric being defined, so the IS_KEY property is set to true. The CIM class properties will be mapped to the Enterprise Manager columns in the order that they are specified in the properties property. In this case, there is only 1 property - Name.	
Example 10-3 Single Property Fetched for a Class	
If multiple properties are fetched for a class, semi-colons should separate them. The properties should be provided in the order that the column descriptors are specified for the metric table definition.	
Example 10-4 Multiple Properties Fetched for a Class	
Call-level interfaces such as JDBC permit external access to SQL database manipulation and update commands. The Java Database Connectivity (JDBC) fetchlet allows you to execute common JDBC commands and obtain their response time for any type of database.	
Input Parameters	
Table 10-15 JDBC Fetchlet Input Parameters	
Name	Description
---	---
Transaction Name	(Standard)
Beacon Name	(Standard)
Connect String	Connection string provided by the user. The Connect String must comply with the URL format specified by the vendor of the database to which the user is trying to connect. Examples: Format required by Oracle: jdbc:oracle:thin:@hostname:port Format required by MySQL: jdbc:mysql://hostname:port
Class Name String	The driver class name to be used for connections. Example: oracle.jdbc.driver.OracleDriver You have two options for configuring the Agent to use the .jar file containing the driver:
Required.	
Username | Username to be used when connecting to the database. | Required. |
Password | Password to be used when connecting to the database. | Required. |
Role | User Role | Required. |
Statement | SQL statement to be executed. Use of PL/SQL is possible by using prepareCall() API. | Required. |
Table 10-16 Metric Columns Collected
Column | Description |
---|---|
Status | Status of the test. Status is 'down' if there is a SQLException generated by the fetchlet. |
Total Time | Time required for the fetchlet to execute the test. |
Connect Time | Time required for DriverManager.getConnection() to complete. |
Prepare Time | Time required for conn.prepareStatement() to complete. |
Execute Time | Time required for stmt.executeQuery() to complete. |
Fetch Time | Time required for while(rs.next()) { rs.getRow() } to complete. |
Close Time | Time required for closing resultset, statement, connection to complete. |
Number of rows | Number of rows fetched. |
Total time per row | |
Fetch time per row |
The OJMX fetchlet communicates with the JMX agent on the managed J2EE server and performs the specified operations.
Input Parameters
Table 10-17 JMX Fetchlet Input Parameters
Name | Type | Description |
---|---|---|
metricType | String | Tells the fetchlet that this metric is of type Web Service (GWS). |
requestBodyElement | String | Provides the name of the Web Service operation as used in the Web Service request body. |
documentType | String | Specifies SOAP encoding. For example: rpc/encoded or doc/literal. |
soapVersion | String | Version of SOAP that the fetchlet should use to communicate with the Web Service (default is 1.2) |
targetNamespace | String | Target namespace of Web Service. |
ColumnOrder | String [] | Comma separated list of XPaths to pick the column for a resultant Web Service response. |
rowData | String [] | Comma separated list of XPath prefixes which, when appended to corresponding columnOrder Xpaths, provide the value of the metric column for each row when arrays are returned in the response from a Web Service. |
URI | String | URI of Web Service. |
soapAction | String | SOAP action for web service from WSDL. |
returnType | String | Type of web service invocation return value. |
arguments | XML | Values to pass to the Web Service invocation. |
Output
The OJMX fetchlet returns an object of type MetricResult that contains the information retrieved.
Receivelet is a library that allows Enterprise Manager to receive external notifications sent by third-party network elements. These are notifications that are asynchronously sent and without any requests from Oracle Management Agent.
Usually, Oracle Management Agent data retrieval mechanism is based on a polling model, that is, modular libraries, called Fetchlets. Fetchlets collect values of various metrics from their managed targets on a regular basis. Oracle Management Agent then compares the gathered data with user-defined thresholds and generates events when the thresholds were met.
Receivelets are a more efficient way of dealing with these metrics. It depends on the ability of the managed target to detect the condition for its own events, and then communicate with Enterprise Manager only when an event occurs. When this communication happens, Oracle Management Agent uses receivelets to receive the information.
You can use Receivelets as a quicker way to get alerts on data that will be eventually collected via Fetchlets. You can also use Receivelets as a way to send both alerts and data, or just alerts for cases where there is no real data chart associated with the alert.
Receivelet is not a substitute for Fetchlet, but it is another way of collecting data. It is more for immediacy of notification compared to periodic polling that Fetchlet offers. Therefore, if you can fetch data, then use Fetchlets to get that data. However, if your server is capable of sending you events or data at a cost lower than that associated with Fetchlets, then use Receivelets.
A receivelet may be tightly coupled to a particular type of managed target, or may be useful to a broad range of potential targets.
The following receivelets are offered with Enterprise Manager:
SNMP Receivelets allow you to receive SNMP Traps notifications from third-party network elements, and translate them into a form compatible with Oracle Management Service.
While monitoring third-party entities in your managed environment, if the status of a third-party network element turns unavailable or if its metric severity conditions (metric thresholds) are met or exceeded, the SNMP Agent of that third-party network element sends a notification to Oracle Management Agent. These notifications may be in the form of SNMP Traps that get triggered asynchronously and without any requests from Oracle Management Agent.
Since these traps are based on SNMP, Oracle Management Agent uses SNMP Receivelets to receive and translate these SNMP Traps into a form compatible with Oracle Management Service.
Once the SNMP Traps are received, the SNMP Receivelet extracts information pertaining to only those object identifiers (OIDs) that are defined in the push descriptor section of the metadata.xml configuration file (that is, only for those third-party network elements that need to be monitored by Enterprise Manager). For information about the locations of configuration file and Document Type Declaration (DTD) files, see Chapter 2: 2 Developing a Management Plug-In of this guide.
Whenever an SNMP Trap is sent by the SNMP agent, the SNMP Receivelet receives those traps based on the SNMP Agent configuration, translates them to an Enterprise Manager understandable format (like event or datapoint based on the push descriptor information), and stores that information (in XML files) in the upload directory. The Upload Manager checks for such new files in the upload directory, and then uploads those files onto Oracle Management Service. Enterprise Manager, then, accesses the Oracle Management Service to extract the collected information and display it to the user.
Configuration Required for Receiving SNMP Traps
To receive SNMP traps, you have to make some configuration settings at Oracle Management Agent side and at SNMP target agent side.
This will enable the SNMP targets to send SNMP traps to Oracle Management Agent's SNMP Receivelet. Once the SNMP traps is received, the SNMP Receivelet uses the Push Descriptor properties, such as MatchAgentAddr, MatchEnterprise, and so on, to identify the target and metric for which the traps belongs. Then the SNMP Receivelet uses the Push Descriptor properties, such as Event<metric-column> or Event<metric-column>OID, SeverityCode, and so on, to convert the traps into an event. Once this happens, the SNMP Receivelet uploads the converted event to the Management Repository and in turn is displayed in the console.
Configuration Settings Required at Oracle Management Agent Side
$ORACLE_HOME/sysman/emd/targets.xml
file.By default, the SNMP Receivelet listens over UDP on the same port as that of Oracle Management Agent. However, if you want to use a different listening port for the SNMP Receivelet, then add the SnmpRecvletListenNIC(=8002)
in the emd.properties
file.
Configuration Settings Required at SNMP Target Agent Side
Manager host name is the name of the computer where Oracle Management Agent is running. Manager port is the port on which SNMP Receivelet receives SNMP traps.
Input Parameters
Table 11-1 SNMP Receivelet Input Parameters
Parameter | Type | Description | Use |
---|---|---|---|
MatchEnterprise | String | OID used to define the trap being sent. | Required |
MatchGenericTrap | String | Code for a generic SNMP trap. | Required |
MatchSpecificTrap | String | Trap defined in a MIB (not one of the generic traps), the ID assigned in that MIB. | Required |
MatchAgentAddr | String | IP address of the generating SNMP agent, as sent in the trap. | Required |
Event<metric-column> | String | Specifies that, on receiving this trap, the recvlet should generate a severity on this metric column. The value of the metric-column should be the value of this parameter. (This case is useful where the expected values of the EM metric are not the same as the triggering SNMP variable.) | Required, if events have to be generated. However, if Event<metric-column>OID is provided, then this is not required. |
Event<metric-column>OID | String | Specifies that, on receiving this trap, the recvlet should generate a severity on this metric column. The value of the metric column should be taken from the varbind in the trap with OID equal to the value of this parameter. | Required, if events have to be generated. However, if Event<metric-column> is provided, then this is not required. |
SeverityCode | String | Specifies the level at which the severity should be generated. The value of this parameter should be one of 'CRITICAL', 'WARNING', or 'CLEAR'. | Required. However, if SeverityCodeOID is provided, then this is not required. |
SeverityCodeOID | String | Specifies the level at which the severity should be generated. If the varbind in the trap with OID equal to the value of this parameter is one of the strings 'CRITICAL', 'WARNING', or 'CLEAR', the severity should be generated at that level; otherwise, no severity should be generated. (This parameter would only be used if the integrator were designing a trap exclusively for use with EM, but may be useful in this case.) | Required. However, if SeverityCode is provided, then this is not required. |
Data<metric-column>OID | String | Specifies that, on receiving this trap, the recvlet should generate a datapoint on the metric, for which the value of this metric column should be taken from the varbind in the trap with OID equal to the value of this parameter. (An SNMP Push Descriptor may have many Data* parameters, in which case a single row will be returned, with all specified columns populated from the appropriate varbind in the trap. An SNMP PushDescriptor may not have both a Data* parameter and a Severity* one, nor may it have multiple Severity* parameters.) | Required, if datapoints have to be generated. |
Key<metric-column>OID | String | Severity or datapoint generated by this PushDescriptor should contain a key-value for this metric column. The key-value should be taken from the varbind in the trap with OID equal to the value of this parameter. For every key-column in the metric definition, there must be a Key* parameter in the PushDescriptor. | Optional |
Context<metric-column>OID | String | If the PushDescriptor generates a severity, the severity should contain a value for this metric column in its event context. The value should be take from the varbind in the trap with OID equal to the value of this parameter. If the PushDescriptor generates a datapoint, this parameter is ignored. | Optional. This can be used only for datapoints. |
Example
Example 11-1 shows how a trap from a vendor-specific router looks like.
Example 11-1 Trap from a Vendor-Specific Router
Example 11-2 show how the trap will be received by Oracle Management Agent. Note that <x> in this example is the value of ifIndex that identifies the particular interface that's having problems.
Example 11-2 Trap Received by Oracle Management Agent
Example 11-3 shows how the metric can be defined in the metadata.xml file.
Example 11-3 Metric Defined in the metadata.xml File
Example 11-4 shows how the push descriptor can be defined in the metadata.xml file to trigger a severity.
Example 11-4 Push Descriptor in the metadata.xml File For Triggering a Severity
Example 11-5 show how the push descriptor can be defined in the metadata.xml file to trigger a datapoint, which would specify the reporting of data on the same trap, with ifName as the key-column and the other three as data columns.
Example 11-5 Push Descriptor in the metadata.xml File For Triggering a Datapoint
Error Handling
There are no exceptions thrown from SNMP Receivelets.
Notes
Advanced Queue Receivelets allow you to receive notifications from Oracle Databases, and translate them into a form compatible with Oracle Management Service.
Oracle Databases allow you to monitor and apply thresholds to many of its own performance metrics internally; this Advanced Queue Receivelet is dedicated to receiving notifications of these metrics. Therefore, Advanced Queue Receivelets apply only to Oracle Database targets.
While monitoring Oracle Databases, every time one of its performance metrics exceeds its threshold, the database posts an alert to the Advanced Queue. When Oracle Management Agent connects to an Oracle Database, it registers itself as a subscriber to the Advanced Queue; thereafter, a copy of each threshold alert is preserved for Oracle Management Agent in the queue.
If Oracle Management Agent is running and connected to the database at the time the alert is enqueued, then the alert is immediately available and passed on to the repository tier. However, if Oracle Management Agent is not running, then the alert is preserved and made available to the receivelet only when they connect to the database next time.
For the Advanced Queue Receivelet to receive notifications, the oracle_database.xml file must be updated to include push descriptor definitions for different metrics. The oracle_database.xml file can be found at $EMDROOT/sysman/admin/metadata/. You can retain the query descriptors defined in this file to ensure that the SQL Fetchlets continue to collect regular data, while the Advanced Queue Receivelets receive immediate notification of alerts as they are generated by Oracle Databases.
The push descriptors in the Advanced Queue Receivelet contain the properties such as QueueName (defined to the constant GLOBAL string 'ALERT_QUE'), MachineName, Port, SID, UserName, and password. The push descriptors may also define a KeyField property, the value of this property names the field in the Advanced Queue alert whose value should be used as the keyvalue parameter in any call to nmercm_RecvletManager_reportEvent().
Input Parameters
Table 11-2 AQ Receivelet Input Parameters
Parameter | Type | Description | Use |
---|---|---|---|
QueueName | String | Name of the advanced queue. | Required. |
MachineName | String | Database host. | Required. |
Port | Integer | Database port. | Required |
SID | String | Database SID. | Required |
UserName | String | User name. | Required |
password | String | User password. | Optional; default is "" |
Example
Example 11-6 shows how the push descriptor can be defined in the oracle_database.xml file for the wait_bottlenecks metric that does not have a key value.
Example 11-6 Push Descriptor in the oracle_database.xml File for a Metric without Key Value
Example 11-7 shows how the push descriptor can be defined in the oracle_database.xml file for the tbspFull metric that has a key value. The key value is the name column. The value, which is the name of the tablespace an alert applies to, will be sent in the OBJECT_NAME field of the alert.
Example 11-7 Push Descriptor in the oracle_database.xml File for a Metric with Key Value
Error Handling
There are no exceptions thrown from Advanced Queue Receivelets.
HTTP Receivelets function much like other receivelets, except that they are designed to receive notifications from targets that communicate over HTTP or HTTPS protocol.
For example, application servers running in your environment. These application server may have built-in mechanism to trigger notifications every time a threshold is reached or the status is down. HTTP Receivelets allow you to receive these notifications and store that information (in XML files) in the upload directory.
The following are the parameters used when data information is sent as a notification:
The following are the parameters used when alert information is sent as a notification:
Example 11-8 shows how a notification (without an access key) from an HTTP-based targets looks. These notifications do not need any translation, and the information passed is simply captured and stored as is in the XML files. Example 11-9 shows how a simple push descriptor can be defined in the metadata.xml file to receive this information.
However, you may choose to generate access keys that can be used for authenticating the metric information coming from an HTTP-based target. This is to ensure that notifications are parsed only if they are from authorized targets.
In general, communications to the Management Agent should be protected to avoid problems of spoofing and denial of service attacks. Understandably, one option is to use HTTPS protocol as the communication mechanism to encrypt the channel, and the other option is to keep the communication restricted to targets that are authorized by the Management Agent. This authorization mechanism involves generation of access keys.
Authorization or access keys can be generated on demand by the Management Agent and passed on to the HTTP-based targets so that they can use them while connecting to the HTTP Receivelet. The Management Agent stores these generated keys in its memory and verifies if every notification has a valid key. If the key has already been generated for a request string, then that value is returned. Example 11-10 shows how a complex push descriptor can be defined in the metadata.xml file to generate access keys.
Note: securing your communication is only an option. You can also receive notifications without authenticating the information. |
Once the access keys are generated, they need to be sent to the HTTP-based targets so that they can use them while connecting to the HTTP Receivelet. This can be done using one of the following methods:
Input Parameters
Table 11-3 HTTP Receivelet Input Parameters
Parameter | Type | Description | Use |
---|---|---|---|
command | String | Name of the perl script used that will generate the access key for the metric information received from a particular server. | Optional. Used only when authentication using access keys is required. |
STDIN | String | Controls the value that is passed on the stdin to the launched command. The value is used inside the launched command file for access key generation logic. | Optional |
ENV | String | Controls the value that is passed via the environment. (Note that if security is not a concern, then integrators can also use a ENV prefix to request a value to be passed in the environment to the launched command). The value is used inside the launched command file for access key generation logic. | Optional |
Example
Example 11-8 shows how a notification without an access key from an HTTP-based targets looks:
Example 11-8 Notification without an Access Key
Example 11-9 shows how a simple push descriptor in the metadata.xml file looks:
Example 11-9 Simple Push Descriptor in the metadata.xml File
Example 11-10 shows how a complex push descriptor in the metadata.xml file looks, and how the generated access keys can be sent back to the HTTP-based target:
Example 11-10 Complex Push Descriptor in the metadata.xml File
This results in the startHRClient.pl script being run and the following values being sent to stdin.
The STDIN method of passing values helps to keep sensitive data out of the command line or in the process environment.
Example 11-11 Polling Method to Send Back the Generated Access Keys
Error Handling
There are no exceptions thrown from HTTP Receivelets.
A DTD provides the grammar for the XML files, thus describing what content is expected in each of its related XML files. When creating a new XML file, you need to carefully study its DTD to understand what content needs to be present in that file.
This chapter to provides a lookup of DTD elements to facilitate integration with Oracle Server Technology products.
This chapter provides a lookup of DTD elements to facilitate integration with Oracle Server Technology products. Most of the examples in the document are snippets of an XML file.
Target: Target is a managed entity. A managed entity can be a hardware device or a software resource. Examples of a target are: host system, Oracle database, SMTP, or service.
Associated Target: Targets whose data depend on each other.
Metric: Collectable data.
Mid Tier: OMS - Oracle Management Server
Container: A container is a home that houses an Oracle installation. Currently 2 kinds of containers are possible - Oracle Home (database, Enterprise Manager, Application Server installs) and ApplTop (application installs).
This section defines DTD elements used by Enterprise Manager.
The TargetMetadata describes the metadata for a target type. Metadata for a target describes its measurable characteristics, format of the collected data and the mechanism to collect or compute that data.
Note: The maximum length allowed for the various attributes mentioned in the file must be mentioend in tagsize.properties. This will be used to truncate the length of the attributes in the metadata file while loading the metadata information into the repository. |
META_VER: Describes the version of metadata.
TYPE: Specifies the Target type.
HELPID: Not used.
CATEGORY_PROPERTIES: Semicolon separated list of properties, used as properties for ValidIf. Currently, each target type can have up to 5 properties used as category property. EMAgent evaluates the values of the category properties and makes it available within the metadata.
RESOURCE_BUNDLE_PACKAGE:
Attributes introduced in Enterprise Manager Version 10.2:
REQUIRED_AGENT_VERSION: This attribute indicates the minimum agent version for the metadata. TargetMetadata marked with this attribute will be valid on Agent versions greater than or equal to the specified version.
HELP: Not used.
TypeProperties (First introduced in Enterprise Manager version 10.2.)
DiscoveryHelper (First introduced in Enterprise Manager version 10.2.)
MetricClass (First introduced in Enterprise Manager version 10.2.)
The Metadata in the above example has REQUIRED_AGENT_VERSION attribute set to "10.2.0.1.0". This metadata will be valid only on agent versions 10.2.0.1.0 and higher.
This is a very simple example that describes a Target type, 'example1' having data () that needs to be collected in the following format. The quoted values are evaluated by the 'OS' Fetchlet in accordance with the scoping rules defined in.
Table 12-1 Metric Prop
Name | Value |
Host Name | NAME |
This sample illustrates the use of InstanceProperties
. The InstanceProperties
element associates 'accessPort' to be associated with the target instance. The metric 'perf' is collected as shown below. The quoted values are evaluated by the 'OSLineToken' Fetchlet in accordance with the scoping rules defined in Property.
Table 12-2 Metric: perf
Char | Value |
---|---|
Command | '%perlBin%/perl %scriptsDir%/example1/perf.pl %port%' |
Delimiter | = |
Port | 'accessPort' |
This sample uses a DynamicProperties element to return OS, OracleHome and Version properties. The scripts return results that are parsed to return the properties listed in the PROP_LIST attribute.
Specifies the information to be used by the Grid Control Console for displaying the element that has this tag.
FOR_SUMMARY_UI: Indicates whether a column is visible in the condensed UI. Condensed view is necessary when all the columns cannot fit in one UI page. In a condensed view, only columns whose FOR_SUMMARY_UI=TRUE will be displayed.
TRUE | FALSE (default)
Display element must contain a Label element. The elements ShortName, Icon, Description and Unit are optional. If ValidIf element(s) are present then all the conditions in the ValidIf elements must be satisfied for the element to be displayed.
This example describes the display characteristics for the element that includes it. The 'FOR_SUMMARY_UI' set to TRUE forces the UI to display the element in the condensed view also.
This sample describes the display characteristics for an element that are valid only for 'SunOS' OS.
The TypeProperties holds TypeProperty elements for the target type. This element is introduced in Enterprise Manager version 10.2.
The property name-value pair, a_name,a_value, would apply to the target type.
TypeProperty element contains the property name-value pair for a target type. This element is introduced in Enterprise Manager Version 10.2.
PROPERTY_NAME: Name of the target type property.
PROPERTY_VALUE: Value of the target type property.
The AssocTarget describes how two targets are related to each other. Targets may be associated for a number of reasons some of them being: rendering topology maps, root cause analysis, determining availability of targets, minimizing redundancy in data collection and transmission and determining order for data collection or job execution amongst others. For instance, if a fault occurs on a target, its associated target might be affected too. This information would be valuable in root cause analysis.
ASSOC_TARGET: The name of the associated target.
TYPE: The target type of the associated target.
Attributes introduced in Enterprise Manager version 10.2:
ASSOCIATION_NAME: Deprecates ASSOC_TARGET. Specifies the name of the association.
ASSOC_TARGET_TYPE: Deprecates TYPE. Specifies the target type that is associated with this target. 'ANY' can be used to indicate that the association target could be any target type.
NAME_NLSID: NLSID for association name.
DESCRIPTION: Description
DESCRIPTION_NLSID: NLSID for description string.
SOURCE_TARGET_TYPE: If association starts from a target, other than the target itself, the target type of the source target is specified in this attribute. 'ANY' can be used to indicate that the source could be any target type.
CARDINALITY: Specifies the cardinality of the associated targets.
Supported values are:
a) OPTIONAL_SINGLE_CARDINAL: Zero or one targets as associated.
b) REQUIRED_SINGLE_CARDINAL: Exactly one associated target.
c) OPTIONAL_MULTI_CARDINAL: Zero or several associated targets.
d) REQUIRED_MULTI_CARDINAL: One or more associated targets.
ASSOC_TYPE: Describes the relation of the associated targets.
Supported values are:
a) RELATES_TO (default): Implies "some" generic relationship.
b) DEPENDS_ON: Dependency on associated target.
c) CONNECTS_TO: Source target connects to associated target.
d) SERVICE_ACCESS_POINT
e) RUNS_ON: Source target runs on (installed on) associated target.
f) CONTAINS: Source target contains associated target.
g) HOSTED_BY: Similar to runs on.
h) MONITORED_BY: Source target is monitored by associated target (Agent).
i) OPTIONALLY_CONNECTS_TO
AssocTarget element for versions prior to 10.2 MUST have the following attributes:
a) ASSOC_TARGET
b) TYPE
AssocTarget element for versions 10.2 and later MUST use the following attributes at least.
a) ASSOCIATION_NAME instead of ASSOC_TARGET
b) ASSOC_TARGET_TYPE instead of TYPE.
This element would be defined in 'oracle_email' and would represent the following relation:
Oracle_email -----DependsOn----à oracle_im
The AssocPropDef describe the properties for an association. This element is not supported in Enterprise Manager version 10.2.
NAME: Name of the property.
REQUIRED: Indicates whether the property is required.
TRUE | FALSE
The DiscoveryHelper helps the agent in its process of discovering the target type. This element is introduced in Enterprise Manager version 10.2.
CATEGORYNAME: name of the category in discover.lst which discovers targets for a given type.
OUI_BASED: boolean value to indicate if this discovery used OUI inventory info.
TRUE (default) | FALSE
The DiscoveryHint allows users to specify any hint which can be a guide to discovery. This element is introduced in Enterprise Manager version 10.2.
MetricClass provides a means for classifying Metrics into categories. Metrics can be classified into categories based on multiple characteristics such as Function (Perf, Load, Config), EvaluationCost (Cheap, Medium, Expensive) and Applicability (Typical, Esoteric). This element was first introduced in Enterprise Manager version 10.2.
NAME: Is the name of the class (e.g. Functional)
NLSID: Is the translation ID. The naming convention is metric_class_<classname>
The example describes adding a 'EvaluationCost' MetricClass for a Target type 'example3'. EvaluationCost has 3 categories: CHEAP, MEDIUM, and EXPENSIVE. Metric, 'metric1' is a CHEAP metric to evaluate.
Please refer to the explanations of CategoryValue, Metric for more details.
A MetricCategory element lists each choice within a classification of metrics. This element was first introduced in Enterprise Manager version 10.2.
NAME: The name of the category (e.g. Security)
NLSID: The NLSID of the category. The naming convention here is metric_cat_<category_name>
A metric element is used to declare the different measurable characteristics (performance, load, configuration etc.) of a target. The metric element describes the structure of the collected data as well as how to compute the information.
Note: Oracle EM recommends that every target type have a special metric named "Response". This metric should have a column called "Status". The type creator should also set up a collection of this metric and set up a condition (see TargetCollection.dtd) on the Status column. The availability system (target up/down status over time) uses alerts on this metric column to provide up/down statistics over time. |
QueryDescriptor, ExecutionDescriptor, PushDescriptor is optional only for REPOSITORY_TABLE, REPOSITORY_STRING, REPOSITORY_NUMBER and REPOSITORY_EVENT metric types. For all other metric types they are required.
NAME: Specifies Metric name, it uniquely identifies it within the scope of its target type.
TYPE: Specifies the data type.
Supported metric types are
a) NUMBER (default): Deprecated - Instead please use a table with 1 column of type NUMBER.
b) STRING: Deprecated - Instead please use a table with 1 column of type STRING
c) TABLE: Tabular data
d) RAW: Tabular data
c) EXTERNAL: Data not parsed/fronted by EMD.
e) REPOSITORY_TABLE: computed elsewhere
f) REPOSITORY_NUMBER: computed elsewhere
g) REPOSITORY_STRING: computed elsewhere
h) REPOSITORY_EVENT: First introduced only in Enterprise Manager version 10.2.
REPOS_PLSQL: If type is REPOSITORY_TABLE, REPOSITORY_NUMBER or REPOSITORY_STRING, this attribute specifies the name of the PL/SQL proc to execute at the repository to evaluate the metric.
USAGE_TYPE: This defines the purpose of the metric.
Supported types are:
a) VIEW_COLLECT (default): These are metrics that are both viewable and collected.
b) REALTIME_ONLY: These are metrics that cannot be collected. The rules on key uniqueness are not applied to these metrics.
c) HIDDEN: Metrics are tagged hidden when they shouldn't be collected nor visible from the console. The data is not uploaded either. These are "temporary" metrics used to compute other metrics.
Values introduced in Enterprise Manager version 10.2:
d) HIDDEN_COLLECT: Metric can be collected. It will not be viewable. The data is not uploaded. It is similar to HIDDEN, but can have collection on it.
e) COLLECT_UPLOAD: Metric can be collected and uploaded, Metadata is uploaded to MGMT_METRICS but it is not viewable in 'All' metric page.
Mapping of old USAGE_TYPE values
DISPLAY_ONLY: REALTIME_ONLY
MULTI_KEY: VIEW_COLLECT
COLLECT_ONLY: VIEW_COLLECT
The metric browser automatically decides which metrics to not display.
KEYS_FROM_MULT_COLLS: If TRUE, the attribute indicates that there are multiple key columns. The combination of key columns uniquely identifies a row. If the value is TRUE only then can the metric be collected in multiple collection items.
TRUE | FALSE (default)
IS_TEST_METRIC: The agent can check some metrics to determine if a target has been correctly specified with valid instance properties. This attribute marks this metric as one of the test metrics.
TRUE or FALSE (default)
HELP: Help text - This attribute is not used.
KEYS_ONLY: It is used to tag special metrics that have only key columns. Note that in general, such metrics are not useful in collections (since no data is uploaded), but there may be special cases where the metric is used to just retrieve a set of keys.
TRUE or FALSE (default)
IS_METRIC_LONG_RUNNING: IF true, the metric is long running. This gives the metric engine, a hint that this query will take relatively longer to finish. A special property EM_IS_METRIC_LONG_RUNNING will be passed to fetchlet automatically.
TRUE or FALSE (default)
CONFIG: This is a special designation for CONFIG metrics that are uploaded differently by the EM framework.
TRUE or FALSE (default)
Attributes introduced in Enterprise Manager version 10.2:
REMOTE: It is used to tag metrics that can be evaluated from a remote location. These metrics could be evaluated from "beacon" nodes
IS_TRANSPOSED: It is used to tag metrics that generate data as name value pairs and the UI treats the names as "column headers". These are useful when the number of rows (or data categories) is not known at design time.
FORCE_CACHE: For collected metrics, this is a strong hint to the agent to cache the results of a metric collection. In the absence of this hint, the agent may only start caching the result of a metric after it realizes that someone will try to use the cached value.
ValidMidTierVersions (First introduced in Enterprise Manager version 10.2.)Display
CategoryValue(First introduced in Enterprise Manager version 10.2.)
This is the most common form of a metric definition. The statement declares the metric, 'example1', to contain tabular data.
If a metric has a "TABLE" type, the value will be returned as a set of rows each containing a set of values (columns). A list will be a special case of the Table. A Table Metric must have a TableDescriptor defined.
This example declares 'Inventory' as EXTERNAL which implies that the metric will be evaluated in the correct format and will be placed in the upload directory. The EMAgent will not parse the metric result. The ValidIf element ensures that the metric will be evaluated only for 'SunOS' OS.
The contents would be similar to a TABLE metric
In this example, the agent is forced to cache the results for the AddressMap metric.
The contents would be similar to a TABLE metric
'ICMPPing' is identified as a test metric. The agent will use its value to verify that the target identified by the instance properties is correct. Since the purpose of this metric is for INTERNAL use only, it is marked as 'HIDDEN'.
USAGE_TYPE Summary:
USAGE_TYPE | KEY_UNIQUE_CHECK | COLLECTABLE | MGMT_METRICS_RAW | MGMT_METRICS | VIEWABLE |
---|---|---|---|---|---|
VIEW_COLLECT | Y | Y | Y | Y | Y |
REALTIME_ONLY | N | N | N | Y | N |
HIDDEN | Y | N | N | Y | N |
HIDDEN_COLLECT | Y | Y | N | Y | N |
COLLECT_UPLOAD | Y | Y | Y | Y | Y |
The contents would be similar to a TABLE metric
'http_raw' metric can be evaluated from a remote location and therefore is tagged as 'REMOTE'.
'openPorts' is defined as a CONFIG metric. Since the type is RAW, EMAgent expects the values in the correct format.
The contents would be similar to a RAW metric
This specifies that storage_reporting_data takes a long time to execute.
The ValidIf element is used to create type definitions that apply to multiple flavors of a target. To do this, certain properties of the target (up to a max of 5) can be marked as category properties, and ValidIf elements can be placed in portions of the metadata to indicate that they are only applicable if the target's property values match the specified values. The CategoryProp elements within a ValidIf should all match for the containing element to be evaluated. A containing element may include multiple ValidIfs to indicate its applicability for different sets of conditions.
This example indicates that the category properties, 'OS' and 'Version' must have values, 'SunOS' and '5.9' for the metric, 'prop' to be evaluated. EMAgent allows the definition of upto 5 category properties which can be used in ValidIfs elements.
The CategoryProp element is used to list the allowed values for a property for the ValidIf to match.
NAME: Specifies the name of the category property.
CHOICES: Specifies the values the property can have. This may contain values separated by ";".
If the Example described in the ValidIf statement is modified such that the 'Version' CategoryProperty now has two choices 5.8 and 5.9, the metric would be evaluated for 'SunOS' versions 5.8 and 5.9.
A metric that has ValidIfs as shown above, would be evaluated if OS is either SunOS or AIX.
Note: If ValidIfs are used to differentiate between multiple definitions of the same metric, there should be no cases where multiple definitions of the metric get validated. |
The above example demonstrates how NOT to use ValidIfs.
This element was first introduced in Enterprise Manager version 10.2. The ValidMidTierVersions element is used in the mid tier based versioning support in the agent, introduced in Enterprise Manager version 10.2.
This element can be used either under a Metric or within a CustomTableMapper element. When present, it indicates to the agent that a Metric definition or a CustomTableMapper definition only applies for a certain set of mid-tier versions.
PLUG_IN: Optional attribute that allows a particular mid tier plug in to be referenced. If not specified, this tag applies to the core OMS version.
START_VER: Starting version (inclusive, optional) the element is applied from.
END_VER: Ending version (exclusion, optional) that the element is applicable to.
Every ValidMidTierVersions element needs to have at least one of START_VER or END_VER specified.
The CustomTableMapper element mapping 'metric1' to repository table, 'table1' is applicable only for DB Plugin versions between 10.1 (inclusive) and 10.3 (not inclusive).
This element if present in a Metric or CustomTableMapper would indicate to the EMAgent that the Metric or the CustomTableMapper is applicable only to OMS versions 10.1.0.1 and higher.
This element if present in a Metric or CustomTableMapper would indicate to the EMAgent that the Metric or the CustomTableMapper is applicable only to OMS versions less than (not including) 10.2.
TableDescriptor describes the structure of the data for the metric of type TABLE.
Note: SKIP_COLLTIME_PK attribute is deprecated. This attribute specifies that the collection timestamp should not be a part of the primary key. This was used to indicate that the latest row should override any previous rows with the same primary key. Since this can now be done by simply altering the table definition in the repository, SKIP_COLLTIME_PK is not useful any more. |
TABLE_NAME: This attribute specifies the repository database table into which the collected data will be loaded to. Note: Only RAW metrics can define this attribute.If a TableDescriptor contains CustomTableMapper elements, it should not contain a TABLE_NAME attribute.
SKIP_TARGET_COLUMN: This attribute is applicable for a RAW metric only. If set to TRUE, Target GUID column will not be generated.
TRUE | FALSE (default)
SKIP_METRIC_COLUMN: This attribute is applicable for a RAW metric only. If set to TRUE, the Metric Name column will not be generated.
TRUE | FALSE (default)
SKIP_COLLTIME_PK: Deprecated in Enterprise Manager version 10.2.The SKIP_COLLTIME_PK option can be used if the collection timestamp needs to be generated, but not added as a primary key.
TRUE | FALSE (default)
A Table Metric must have a TableDescriptor defined. It describes columns of the table.
This is the most common usage for the TableDescriptor element that represents a metric of TYPE=TABLE. For mid-tier versioning support please refer to the example for CustomTableMapper.
This declaration is valid only for a RAW metric. This element contains the description of esm_collection table within a RAW metric.
The SKIP attributes may be applied only to RAW metrics. The EMAgent automatically generates TARGET_GUID, METRIC_NAME and COLLECTION_TIMESTAMP columns for a raw metric unless explicitly indicated by setting SKIP attributes to TRUE. The TableDescriptor, in this sample explicitly requests the omission of the default columns.
The ColumnDescriptor elements describe each column in a table. The agent also supports one level of nesting of tables for RAQ metrics. This allows metrics to return a table of data in place of a column which is uploaded in the context of the containing row. For example: In a metric that returns a list of expensive SQL statements in a database, a column that returns the multi-row explain plan for the SQL statement could be returned in a nested raw metric column.
NAME: This is the metric column name.
TYPE: Specifies the data type.
Supported types are:
a) NUMBER (default)
b) STRING.
c) RAW: This is for nested table support. A column may be defined as RAW to indicate it is a nested-table. Note: Only 1 level of nested table is allowed.
Values introduced in Enterprise Manager version 10.2.
d) CLOB: CLOB holds large character data such as a log file.
e) BLOB: BLOB holds binary data (.zip files, .tar, files, etc.).
IS_KEY: is set to true if this column is the primary key (uniquely identifies the row in the returned rows). For any two rows returned, the value of the key column cannot be the same, else there will be a primary key violation. Note: Upto 5 columns can be marked with IS_KEY=TRUE. If no column is defined as key, the default value for the key is null (therefore should only return 1 row at a time)
TRUE | FALSE (default)
TRANSIENT: This will not be uploaded to repository. Only used to calculate rate data.
TRUE | FALSE (default)
COMPUTE_EXPR: This attribute specifies the formula for calculating the value of the column. Columns previously defined in the Table descriptor can participate in the calculation. Attaching a '_' prefix to a column name denotes previous value of a column. Support for string expressions is introduced in Enterprise Manager version 10.2. Please refer to the example for details about the expression grammar and usage.
Predefined special values:
a) __interval: collect interval.
b) __sysdate: current system time.
c) __GMTdate: current GMT time.
d) __contains: tests a given string expression for presence of a string expression.
e) __beginswith: tests whether a given string expression begins with a specified string expression.
f) __endswith: testw whether a given string expression ends with the specified string expression.
g) __matches: tests whether a given string expression matches a specified string expression.
h) __delta: computes the difference between the current value and the previous value.
i) __leadingchars: returns the leading characters in the specified string.
j) __trailingchars: returns the trailing characters in the specified string.
k) __substringpos: returns the position of the occurrence of the pattern within a specified string.
l) __is_null: tests whether the expression is NULL
m) __length: returns the length of the string expression.
n) __to_upper: converts the string to upper case.
o) __to_lower: converst the string to lower_case.
p) __ceil: returns the smallest integral value not less than identifier.
q) __floor: returns the largest integral value not greater than the identifier.
r) __round: rounds to nearest integer, away from zero.
COLUMN_NAME: This value will be used if the metric type is RAW to identify the database column.
IS_LONG_TEXT: This value will only be used when the metric is RAW and the column will be in digested form. The agent has support for metrics that expect to return the same long string repeatedly in metric results. If a column is marked with IS_LONG_TEXT="TRUE", the agent sends a row mapping the string to a digest into the MGMT_LONG_TEXT table and thereafter only sends the digested value as the data to the repository.
TRUE | FALSE (default)
IS_DATE: This value will only be used when the metric is RAW and the column is date type.
TRUE | FALSE (default)
STATELESS_ALERTS: This attribute if set to TRUE indicates to EM that alerts on this column will not have corresponding clears. This allows the UI to decide whether to allow users to manually clear alerts on this column.
TRUE | FALSE (default)
IS_TIMESTAMP: The value in this column will be used as the collection time for this row. If set to true, the values for this column should be specified in the yyyy-MM-dd HH:mm:ss z format (For example: "2003-07-30 08:41:05 PST"). The list of valid time zones is listed in the$ORACLE_HOME/sysman/emd/supportedtzs.lst file.
HELP: Not used.
Attributes introduced in Enterprise Manager version 10.2.
IS_FILENAME: When set to TRUE, it indicates that the column value is a file name that contains the real content that needs to be sent. IS_FILENAME attribute is valid only for CLOB/BLOB column types.
NON_THRESHOLDED_ALERTS: This attribute is used to indicate that there might be alerts for the metric column without there being a thresholded condition for it (eg: through server generated alerts).
TRUE | FALSE (default)
KEYONLY_THRESHOLDS: If this attribute is set to TRUE, conditions cannot apply to all metric rows and all Condition elements for the column need a KeyColumn element.
TRUE | FALSE (default)
RENDERABLE: A FALSE value for this attribute indicates that the value for this column maybe generated by the engine and may be cryptic or random enough to be of any use to the user. The UI would not display this value and would not allow the user to set thresholds for this value.
TRUE (default) | FALSE
Each column must specify the name and the data type for the column. The column can also be tagged as a key column. These column values qualify the value returned in the non-key columns.
For example: In a metric for top 10 processes, the process name will be the key column while the residence memory size, cpu, time used will be the value columns.
This is the most common usage of the ColumnDescriptor element. 'ciscoMemoryPoolName' is a key column in a metric. The values of this column are of type, 'STRING'. The optional Display element when included in the ColumnDescriptor, associates a UI Label with the Column.
The attribute, 'TRANSIENT' indicates that the column is used for internal calculations only and should not be uploaded to the repository.
The 'COLUMN_NAME' attribute will be used in RAW metrics to identify a database column.
'IS_LONG_TEXT' attribute, when set to TRUE, is an indication to the EMAgent to expect long values.
This example defines a column 'load_timestamp' for a RAW metric with values in the date format.
This definition indicates that the alerts on the column, 'log_file_match_count' will not have corresponding clears. The UI can provide the users the option to manually clear alerts for this data.
The example for TableDescriptor describes a table metric with ColumnDescriptor elements.
Note: It is invalid for a ColumnDescriptor to both be a key and a timestamp column. CLOB/BLOB is only valid inside RAW metrics. When TYPE is set to CLOB or BLOB, the ColumnDescriptor can also have IS_FILENAME attribute set to TRUE, in which case, the column value is the name of the file whose content should be sent rather than the column value itself. For CLOB/BLOB columns, the destination columns in the repository table should also be of CLOB/BLOB type. |
Compute Expression support:
Supported Grammar:
Usage:
The value of the column is calculated using the given compute expression. The value of the column is calculated using the present value of the 'pgScan' column, the previous value of the same column ('_pgScan') and the collect interval. Note: 'pgScan' column should be defined before any column can use its value in the COMPUTE_EXPR.
The value of the column, 'full_path' is "<baseDir>/httpd/egs/log/" where <baseDir> is the value of the column baseDir.
If the value of Col, in the above metric, is "Sunday", the outcome of the COMPUTE_EXPR will be as follows:
value1 = 1
value2 = 0
value3 = 1
value4 = 1
The sample TableDescriptor describes a simple method for extracting a substring from a a given string. If the data represented by "parse_str" is of the form:
#A1 10
#B1 20
#C1 30
#D1 40
#E1 50
#F1 60
The "result_str" has the value "#D1=40".
A CategoryValue element indicates the category for a metric, column or condition under a particular classification. If a CategoryValue is defined for a Metric element, it is valid for all the ColumnDescriptors in that Metric. If it is defined for a ColumnDescriptor, that column will have a category value that overrides the union of what it has and what is defined for the Metric.
The following MetricCategories are predefined for the MetricClass, 'FUNCTIONAL':
a) FAULT: metrics that can be used to indicate a breakdown in a component or occurrence of an error that indicates some component or user is unable to successfully complete processing. Example: AlertLog - Archiver hung
b) WORKLOAD_VOLUME: metrics that capture the workload on a system induced in proportion to the user's or batch jobs running against the system. It usually is an indication of how much work is done. Example: User calls (per second)
c) WORKLOAD_TYPE: metrics that capture the type of workload on a system independent of demand. It usually is an indication of what kind of work is done. Example: Logical Reads (per transaction)
d) PERFORMANCE: metrics that can be classified to measure the performance of a system. It usually is an indication of how well the system is doing. Example: Database response (per second)
e) CAPACITY: metrics that measure the usage of a fixed resource. Example: CPU Usage (per second)
f) CONFIGURATION: metrics that check the configuration of a target against a recommended best-practice configuration.
g) SECURITY: metrics that relate to the security aspects of the system.
This example illustrates the use of CategoryValue for a Metric. "metric1" is "CHEAP" to evaluate.
In this sample, the column, "totalSpace" has a CategoryValue, "CAPACITY" which overrides the CategoryValue, "WORKLOAD_VOLUME" associated with the metric.
The CustomTableMapper element was first introduced in Enterprise Manager version 10.2 and is part of the mid tier based versioning project that allows custom (RAW) metrics to change their destination tables based on the version of the mid tier.
The TableDescriptor for a RAW metric can have multiple CustomTableMapper elements - one per set of mid tier versions - with each CustomTableMapper providing repository table and column mappings for the TableDescriptor's Columns.
REP_TABLE_NAME: Indicates the table name that the content of the metric should be uploaded to.
This sample illustrates Mid-tier based versioning. TableDescriptor element must not contain the TABLE_NAME attribute. The sample describes a mapping of the metric to the repository table, 'table1' for Mid-tier versions between 10.1 (inclusive) and 10.3 (not inclusive). Metric column, 'col1' maps to 'col1_rep' in the repository table, 'table1'.
Please refer to the example for ValidMidTierVersions also.
The ColumnMapper element was first introduced in Enterprise Manager version 10.2 and is part of a CustomTableMapper element and describes the mapping between the ColumnDescriptor and the repository column its data should end up in.
The presence of a ColumnMapper provides the mapping for the column in a particular repository table, and indicates that the column is required in the table. To indicate that a column should not be uploaded to a particular version of the repository, there should not be a ColumnMapper for that column
METRIC_COLUMN: Name of the ColumnDescriptor this applies to
REP_TABLE_COLUMN: The database table column name this data should end up in.
The query descriptor allows the framework to find the fetchlet as well as pass on the query information for obtaining performance data values from the target. The fetchlet can be identified by a well known id that is known to the EMAgent. It may also contain properties that will be passed to the fetchlet.
FETCHLET_ID: Specifies the ID of the fetchlet to use that is known to the EMAgent. This attribute must point to an element from the $ORACLE_HOME/lib/fetchlets.reg file.
NEED_CHARSET_CONVERT: If the metric result is in correct "UTF8" encoding, this flag should be set to "FALSE" so that EMAgent will not do any character conversion.
TRUE (default) | FALSE
The query descriptor associated will contain the metadata that can be used to collect the value of the metric. For example: SQL Query.
This simple example describes a query descriptor that is used in a Metric and relies on the 'OS' fetchlet to return the property 'hostname'.
This example illustrates the use of a QueryDescriptor to evaluate a DynamicProperties element.
Describes the information to be passed to the fetchlets.
Property values are resolved as follows:
1. The value is looked up in the specified scope
2. For each potential instantiation (ie %<varname>%) in the looked up value, varname is looked up as follows:
a. In the property values itself (ie in one of the earlier properties).
b. In the instance properties
c. In the systemglobal scope (emd.properties)
d. The value is checked for automatic property.
The following Automatic Properties are defined for a target:
1. NAME - substitutes Target Name
2. TYPE - substitutes Target type
3. DISPLAY_NAME - substitutes display name for the target
4. TYPE_DISPLAY_NAME - substitutes display name for the type
5. GUID - substitutes the guid
Note: All lookups are case-sensitive.
NAME: Name of the property.
SCOPE: Defines how the value of the property is to be resolved.
Supported values for Scope are:
a) GLOBAL (default): The property needs to be resolved in the Target Type Definition XML file.
b) INSTANCE: The property will be resolved by discovery. The PCDATA in that case should be the NAME of the property set in the discovery XML file.
c) USER: The property will be resolved by the caller(collector or the interactive end-user). The PCDATA in that case should be the name of the Property to be used when prompting the caller (in the case of interactive user).
d) SYSTEMGLOBAL: Use emd.properties to resolve the property.
e) ENV: Use environment variable to resolve the property.
f) HOST: The property must be resolved as an instance variable of the 'host' target on that EMAgent. For example, the OS property
g) CACHE: The value must be obtained from the previous evaluation of the metric. Any column returned in the previous evaluation can be specified, and this is only applicable to single row OR non-key metrics.
OPTIONAL: is meant to call out those properties that need NOT be available when provided to the fetchlet. The EMAgent will validate that it can find valid values for all non-optional properties before calling through to a fetchlet.
TRUE | FALSE (default)
'perlBin' Property has 'SYSTEMGLOBAL' scope which implies that emd.properties file is used to resolve the property
'delimiter' property has 'GLOBAL' scope.
'hostname' has 'INSTANCE' scope which implies that the value will be resolved by discovery. The value 'NAME' must match the field in the discovery XML file.
This property will be resolved by the caller. 'SNAPSHOT_TYPE' is the name of the property when prompting the caller.
The property, 'ENVNMUPM_TIMEOUT' is identified as an OPTIONAL property. All properties that are not OPTIONAL have to be validated by the EMAgent before the fetchlet is called.
Use of the property elements is illustrated in the following examples:
QueryDescriptor, ValidIf, TargetMetadata.
This represents the Label that will be displayed in UI.
This element must be present in the Display element.
This element is defined in a Display element and represents the label to display.
Please refer to the example for Display.
ShortName is the short representation of the Metric Display name it should be less than 12 characters in length.
This holds the description of the displayed entity.
This holds the Unit information for the displayed data.
There are some standard units and unit nls ids that are supported. Please use the appropriate nls ids and display names for these standard units mentioned below. The translation for these system supported units (nls ids that start with "em__sys__"), is done at the system level and does not need to be translated on a per target type basis.
Supported Units:
Standard Percent: used for metrics who values are between 0 and 100%
NLSID: "em__sys__standard_percent"
Display: "%"
Usage: <Unit NLSID="em__sys__standard_percent">%</Unit>
Generic Percent: used for metrics who values can be in +ve and -ve percentages as well - like -50% or 200%
NLSID: "em__sys__generic_percent"
Display: "%"
Usage: <Unit NLSID="em__sys__generic_percent">%</Unit>
MonitoringMode element indicates the mediator for data collection. Presence of this element in TargetMetadata element, indicates that the target is of cluster type. Mediation is required for a cluster type target to provide data collection consistency across all cluster type target agents. Cluster targets can be OMS mediated or Agent mediated. MEDIATOR attribute specifies the mediation. CLUSTERDESCRIPTOR attribute points to the shared library that implements the cluster interfaces needed by the agent. This is applicable only for AgentMediated clusters.
MEDIATOR: Specifies the mediator to use.
Supported values are:
a) AgentMediated
b) OMSMediated
CLUSTERDESCRIPTOR: Describes the type of the cluster. This is applicable for Agent mediation only.
This example indicates the target, 'example1' is of cluster type and is OMS Mediated only for the OSVersions 5.8 and 5.9. For the other versions it acts like a normal target. All the agents would monitor the target. Absence of this element makes the target a normal target.
The agent has logic to skip evaluation of metrics for targets that are known to be down to reduce generation of metric errors due to connection failures. Metrics are skipped whenever there is an error in evaluating the Response metric or there is a non-clear severity on the Response, Status condition. If a target needs to have its metric evaluation stop on a condition other than the Response, Status column, this can be specified by creating an AltSkipCondition element.
METRIC: Name of the result metric
COLUMN: Name of the column
ASSOC_TARGET: may be used to point to the conditions in an associated target.
This example describes a target whose metric evaluation will be skipped whenever there is an error in evaluating the Response metric or there is a non-clear severity on the Response Status column. In addition to that, metric evaluation will be skipped if errors or non-clear severity are encountered on the Status column of the 'metric1' metric as well.
If the 'example1' target type in the above example was associated with another target type. The AltSkipCondition can be used to skip evaluating example1's metric based on Response metric's 'State' column in the other target type.
The association 't2' has to be defined in the targets.xml file for example1.
Credential types are metadata for sets of credentials. It describes the components of the credential (CredentialTypeColumn s), which is the key etc. In some cases, CredentialTypes may be composed of existing CredentialTypes (in this or other target types)
CredentialSets are the instances of CredentialTypes that apply to a particular target. Of particular importance are the monitoring credential sets whose values are mapped to the instance properties of the target.
<TargetMetadata TYPE="example1" META_VER="2.0">
. . .
CredentialInfo may have CredentialType and CredentialSet elements. This is illustrated in this example. Target type, 'example1' is associated with 'DBCreds', 'DBCredsMonitoring' and 'DBCredsSysdba' credentials.
CredentialType elements contain the description of a type as composed of component columns (one of which may be the key) or as a composite of other predefined credential types.
CredentialType may contain an optional Display element specifying the display characteristics for the CrendentialType and one or more of either the CredentialTypeColumn or the CredentialTypeRef.
In this sample 'HostCreds' is declared as a CredentialType. Please refer to a more detailed in CredentialInfo.
CredentialType is defined as a set of Credential Columns. Each CredentialTypeColumn may provide a list of values that are the only allowed values for this column.
NAME: Name of the column
IS_KEY: If multiple sets are created of this credential type, is this the column by which one set is differentiated from another.
TRUE | FALSE (default)
CredentialTypeColumn may contain an optional Display element specifying the display characteristics for the CredentialTypeColumn and optional CredentialTypeColumnValue element(s).
The HostUserName column is the key in a (username,password) credential type. This column would be displayed in a condensed version of the UI and the label associated with this is 'UserName'. Please refer to a more detailed in CredentialInfo.
CredentialTypeColumnValue holds the allowed values for a CredentialTypeColumn.
IS_DEFAULT: Is set to true if this is the default value in the list.
TRUE | FALSE (default)
The 'DBRole' column in 'DBCreds' credential type may have the following values:
1. normal (default value)
2. sysdba
Please refer to the in CredentialInfo. The example shows the context for the CredentialType element
This element allows a credential type to refer to other predefined credential types. It contains mapping of the columns in the original credential type to columns of the credential type being defined.
REF_NAME: Specifies the name for this CredentialTypeRef.
REF_TYPE: Credential type referred to.
REF_TARGETTYPE: The target type that contains the original credential type. Specify Null if this is the same target type.
ASSOCIATION: Refers to the association of this target with the other target for whom credentials are maintained here. Note that this value needs to be one of the AssocTarget elements above.
FMCreds defines a credential type whose columns FMUserName1, Fmpassword1 and FMRole are mapped to DBCred's DBUsername, DBPassword and DBRole columns respectively.
Please refer to the example in CredentialInfo. The example shows the context for the CredentialType element
This element maps the columns in the referred credential type to this credential type's columns.
NAME: Name of column in this credential type.
REF_TYPECOLUMN: Name of the column in the referred credential type
This element defines a set of elements that form a named credential set for this target type. A credential set provides values for one of the credential types defined for this target type. The credential set may contain credentials for one of 3 usages: monitoring, preferred credentials or app specific functionality.
NAME: Name of the credential set
CREDENTIAL_TYPE: The credential type that this set provides values for.
USAGE: Is this credential set used for monitoring, as preferred credentials or for app specific stuff?
Supported values are:
a) MONITORING (default): Specifies credentials that management applications can use to connect directly to the target.
b) PREFERRED_CRED: Specifies a user's preferred credentials
c) SYSTEM: Specifies a fixed set of credentials that are used by certain specialized applications (patching, cloning etc.)
Attributes introduced in Enterprise Manager version 10.2:
CONTEXT_TYPE: Specifies what kind of entity, the set pertains to.
Supported values are:
a) TARGET (default): These are the stored credentials for a target that could be used by applications such as job system, patch etc.
b) CONTAINER: These are the stored credentials for a container. These are always host credentials.
c) COLLECTION: These are credentials associated with user-defined metrics.
CONTEXT: Specifies the metric that this set is for. Refers to collection credentials only.
CredentialSet contains an optional Display element that specifies the display characteristics for the CredentialSet element and at least 1 CredentialSetColumn.
HostSystemCreds is an example of a System credential type.
Please refer to the example in CredentialInfo. The example shows the context for the CredentialType element
Credential set columns map the columns of a credential type to the source of their values. In the case of monitoring credential sets, the source is instance properties of the target. This element was first introduced in Enterprise Manager version 10.2.
CredentialSetColumn contains an optional Display element that specifies the display characteristics for the CredentialSetColumn element and optional CredentialSetColumnValue element(s).Please refer to the example for CredentialSet.
This element holds the allowed values for a CredentialSetColumn. This was introduced in Enterprise Manager version 10.2.
IS_DEFAULT: Set this attribute to true if the element represents the default value in the list.
The InstanceProperties element declares the "properties" of a target type. Some properties are obtained from the targets.xml file, and may be optional or required, and others can be computed using DynamicProperties elements using the values of other properties. The agent uses the information in the InstanceProperties element to determine when a target has not been sufficiently configured, and to compute the dynamic properties for the target. The console UIs use the information about the properties to create UIs where a target can be created from scratch or an existing target's properties are modified.
InstanceProperties holds target InstanceProperty(s) and DynamicProperties elements.
An InstanceProperty element contains the definition of an instance property.
NAME: Name of the property
OPTIONAL: Is a value for the property required
TRUE | FALSE (default)
CREDENTIAL: Is the property sensitive in nature. Such properties are usually saved obfuscated in targets.xml
TRUE | FALSE (default)
READONLY: Marks this element as ReadOnly.
TRUE | FALSE (default)
NEED_REENTER: If TRUE, will require user to enter the value twice at command line.
TRUE | FALSE (default)
HIDE_ENTRY: If TRUE, will show the character user typed as '*'.
TRUE (default) | FALSE
CHECK_ORIGINAL: If TRUE, before modify, user need to type the original value.
Attributes introduced in Enterprise Manager version 10.2:
IS_COMPUTED: If TRUE, indicates that it describes a dynamic property.
If InstanceProperty element contains ValidIf elements, all the conditions must be met for the property to be evaluated. InstanceProperty also optionally contains either Display elements or character data.
Example: for an oracle_database target one InstanceProperty has the NAME "password", which is not OPTIONAL and which is a "CREDENTIAL".
Please refer to additional example for InstanceProperty described in TargetMetadata.
DynamicProperties elements allow a target to specify a query that will return a set of values corresponding to the instance properties of the target. The values are turned into target properties and are accessible to other query descriptors from the INSTANCE scope.
Note: If CategoryProperties are instantiated through DynamicProperty evaluation, such a failed DynamicProperty evaluation would cause the agent to reject the target unless the value of the category property is available in targets.xml. |
NAME: attribute simply identifies the property collector, for error tracing etc.
PROP_LIST: Contains ';' separated values that specify a list of names of properties that can be returned by the query descriptor. The result MUST contain the properties listed here.
OPT_PROP_LIST: Contains ';' separated values that specify a list of names of properties that can be returned by the query descriptor. The result MAY contain the properties listed here.
FORMAT: Specifies the format for the return data.
Supported values are:
a) TABLE (default): If the FORMAT is "TABLE" (the default), the return value must be a table of instance property values. The table returned must be a two-column (NAME, VALUE) table.
b) ROW: If the FORMAT is "ROW", the contents of the one row are taken as the values of the properties in the same order they are listed in the PROP_LIST, and then in the OPT_PROP_LIST lists.
If DynamicProperties element contains ValidIf elements, all the conditions must be met for the property to be evaluated. In addition to this it must also include at least 1 instance of either QueryDescriptor or ExecutionDescriptor.
The property names in the PROP_LIST and OPT_PROP_LIST are used in conjunction with InstanceProperty declarations while validating target type metadata.
DynamicProperties, 'VersionAndLocation' has a ROW format and returns 'OS', 'OracleHome', 'Version' as properties.
Note that if a query descriptor returns a property value that is already available, the property is ignored. If multiple DynamicProperties queries return a property, the value from the first one is used.
The example in TargetMetadata includes the context for DynamicProperties element.
ExecutionDescriptor specifies the execution plan for evaluating a metric. EMAgent executes each statement of the plan, in the order it is defined, to produce a Metric Result. The Metric Result generated as result of the evaluation of the last statement of the execution plan will be returned.
If ExecutionDescriptor element contains ValidIf elements, all the conditions must be met for the element to be evaluated. In addition to this it must also include 0 or more instances of either 1 of the following elements: GetTable, GetView, GroupBy, Union, JoinTables
ExecutionDescriptor is used to compute aggregation metric.
This ExecutionDescriptor in this sample generates the following intermediate Metric results after executing each statement:
§ GetTable: The metric result, 'DiskActivity' contains all the columns of 'DiskActivity' metric. The result of this operation is similar to the SQL statement,
"Select * from DiskActivity"
§ GetView: The metric result, 'AvgSrvcTimeView' contains only 'DiskActivityavserv' column of 'DiskActivity' metric.
§ GroupBy: Metric result, 'DA_MaxAvServ' is a grouping of the 'AvgSrvcTimeView' based on the 'longestServ' which is the max value of the 'DiskActivityavserv' column.
§ GetTable: Metric result, '_LoadInternal' contains all the columns of the '_LoadInternal' metric.
§ JoinTable: 'Load' metric contains a join of the '_LoadInternal' and 'DA_MaxAvServ' metrics.
The last metric is returned as the result for the 'Load' metric.
This element is used within an ExecutionDescriptor element and is equivalent to the following SQL operation:
Select * from T
T is a metric.
NAME: Name of the metric.
ASSOC_TARGET: Target from which data is collected. This attribute is optional and when omitted, the METRIC_NAME points at a metric in the same target.
METRIC_NAME: Name of the metric that originates the request. If omitted, attribute NAME is used as METRIC_NAME.
USE_CACHE: Specifies whether the data can be fetched from the cache.
TRUE | FALSE (default) | TRUE_IF_COLLECT
This statement gets all the columns of the 'DiskActivity' metric.
Please refer to the examples in ExecutionDescriptor.
GetView creates a sub-table from a table. The newly created table is identified by the NAME attribute. It must be unique in the ExecutionDescriptor. This element is equivalent to the following SQL statement:
Select column1, column2,. . . from T
T is a metric
GetView may contain 0 or more instances of either 'ComputeColumn' or 'Column' elements and 0 or more instances of either 'Filter' or 'In' elements.
This is equivalent to the following SQL statement:
create view AvgSrvcTimeView as
select DiskActivityavserv from DiskActivity.
If no Column elements are present in GetView, all columns in the table are included.
Please refer to the example in ExecutionDescriptor.
Specifies the filter criteria. Filter is used to determine whether a row will be included in the new table. If a row does not satisfy any Filter criteria, it will be excluded.
COLUMN_NAME: Column name on which the filter criteria is to be applied.
SCOPE:
Supported values are:
a) GLOBAL (default)
b) INSTANCE
c) SYSTEMGLOBAL
OPERATOR: Specifies the operation to perform.
Supported operators are:
a) EQ (default): Equal
b) LT: Less than
c) GT: Greater than
d) LE: Less than or equal to
e) GE: Greater than or equal to
f) NE: Not equals
g) CONTAINS: contains
h) MATCH: matches
i) ISNULL: is NULL
j) ISNOTNULL: is not NULL
The result of the ExecutionDescriptor is the metric 'result' that has totalRequests1 > 0
Represents a column to include in the new table.
NAME: Specifies the name of the column of a metric
COLUMN_NAME: Specifies the name of the column. It can be omitted if it is same as NAME.
TABLE_NAME: Specifies the name of the metric. If Column is a part of the GetView element, this attribute must be excluded.
Column, 'responseTime' from 'groupbyapps' metric is selected for the operation.
Please refer to the example in ExecutionDescriptor.
This element describes how to compute the values of a column.
NAME: Name of the column
EXPR: Expression that is evaluated to calculate the value. Support for string expressions is introduced in Enterprise Manager version 10.2. Please refer to the example of ColumnDescriptor for details about the expression grammar and usage.
IS_VALUE: If set to TRUE, the EXPR points to the actual string value else EXPR is the expression used to calculate the column.
TRUE | FALSE (default)
DEFAULT_WHEN_EMPTY:
TRUE | FALSE (default)
DEFAULT_VALUE: Default value for the column. If not specified the default value will be set to "0"
Please refer to the example of ColumnDescriptor for details about the expression grammar and additional examples of expressions that are acceptable in the EXPR attribute.
This element is equivalent of the SQL Statement
select * from from_table where
column_name in (select in_column_name from in_table_name)
COLUMN_NAME: Column name to search for.
IN_TABLE_NAME: Table in which to search for.
IN_COLUMN_NAME: Column name of the table specified in IN_TABLE_NAME attribute.
GroupBy will perform aggregation operation on a table/view to create a new table. This element is equivalent to the SQL statement
Select sum(column_name) from table_name
This element may include 0 or more elements of 'By' and 0 or more elements of either AggregateColumn or ComputeColumn.
<GroupBy NAME="DA_MaxAvServ" FROM_TABLE="AvgSrvcTimeView">
This statement results in DA_MaxAvServ containing the result of the groupby operation applied to the AvgSrvcTimeView metric.
Please refer to the example in ExecutionDescriptor.
'By' element defines a column that constitutes a GroupBy clause.
Each 'By' element will be added to the result table as a column.
NAME must be unique within the new table. If COLUMN_NAME is not given, will be the same as NAME
This element describes an operation to be performed on a column.
NAME: Specifies the name of the AggregateColumn
COLUMN_NAME: Specifies the column name of the metric on which the operation is to be performed.
OPERATOR: Specifies the operation to be performed.
Supported operators are:
a) MAX
b) MIN
c) SUM (default)
d) AVG
e) COUNT
This operation results in the calculation of the Maximum value from the 'DiskActivityavserv' column.
Please refer to the example in ExecutionDescriptor.
Union element describes an operation to combine/merge two or more tables. Only tables with the same number of columns can be unioned together. This element is equivalent of the SQL statement:
Select * from T1 Union
Select * from T2
NAME: Specifies the name for the union.
DISTINCT: If TRUE, any row that is exactly the same as previous row will be discarded.
TRUE | FALSE (default)
Union element must include atleast 1 Table element.
'result4' will be a union of the 4 Tables. The resulting table will have the same column name list as first table.
Note: Only tables with the same number of columns can be unioned together. The newly created table is identified by NAME. It must be unique in the ExecutionDescriptor. |
This element describes the metrics that can take part in Table operations like Union and JoinTables.
This example describes 'result' as a metric that can participate in Table operations.
Please refer to the example of Union.
This element describes the join operation. It is equivalent of the SQL statement:
Select C1, C2 where . . .
NAME: Specifies the name of the join.
OUTER: If true, specifies an OUTER join.
TRUE | FALSE (default).
BOTH_SIDE: If true, specifies BOTH_SIDE. The results would contain the same number of rows as a UNION.
TRUE | FALSE(default)
JoinTables must include atleast 2 'Table' elements, 0 or more elements of either 'Column' or 'ComputeColumn' and 0 ore more elements of 'Where' element.
This example defines 'Load' as a join of '_LoadInterval' and 'DA_MaxAvServ' metrics.
Please refer to the example in ExecutionDescriptor.
FROM_TABLE:
FROM_KEY:
OPERATOR: Specifies the operator in the where clause.
Supported operators are:
a) EQ (default): Equals
b) GT: Greater than
c) GE: Greater than or equal to
d) LE: Less than or equal to
e) LT: Less than
f) NE: Not equals
g) CONTAINS: Contains
h) MATCH: matches
JOIN_TABLE:
JOIN_KEY:
The push descriptor identifies a recvlet that is responsible for supplying data and/or events for a metric, and specifies data to be passed to that recvlet for each target. The name used for the recvlet here should match the recvlet name used in recvlets.reg.
RECVLET_ID: Specifies the ID of the recvlet to use that is known to the EMAgent. This attribute must point to an element from the $ORACLE_HOME/lib/recvlets.reg file.
PushDescriptor may include 0 or more elements of 'ValidIf' and 'Property'.
The properties included in the PushDescriptor are passed to the 'AQMetrics' recvlet. This recvlet provides data and/or events for the metric.
Target Collection drives the background collection of metrics for the purposes of uploading their values in a central repository and/or the check of their values against specified conditions.
Note that the XML files conforming to this DDT will be generated by the system (Could be generated from Servlet Frontend or collector).
EMAgent can have more than one collection files each containing metrics that need to be collected for a particular target.
It can have 0 or more CollectionItem and CollectionLevel elements. The CollectionLevel element applies only to the default collections.
TYPE: Specifies the target type.
NAME: Specifies the name of the target. If this is the top-level element, NAME must not be null. If this file is included, it could be null. This attribute applies only to instance specific collections.
LEVEL: Specifies the collection level. The default will be the minimum. This attribute applies only to instance specific collections.
INCLUDE_DEFAULT: If set to TRUE, will include default collection with the same target TYPE. This attribute applies only to instance specific collections.
TRUE (default) | FALSE
This example illustrates the preferred method of declaring CollectionItems. One collection item specifies multiple metrics with their own filter criteria and Condition elements defined.
This example describes a default collection for 'network' target type. The metric is provided as the NAME attribute for the CollectionItem. This method of providing metric NAME in the CollectionItem is for backward compatibility only. Please use the example with MetricColls instead.
TargetCollection includes optional 'CollectionLevel' element(s) and 'CollectionItem' element(s)
This is a typical usage for TargetCollection element. It describes TargetCollection for 'oracle_beacon'.
NAME attribute implies that this might not be in the default_collections.
This element represents Collection Level List. It applies only to the default collections. The order implies the 'contains' relationship.
The order for the collection level implies that LEVEL2 contains LEVEL1 collection items and LEVEL3 would include both LEVEL2 and LEVEL1 items.
Once the levels are declared using this element, the LEVEL attributes would refer to these levels.
A CollectionItem defines the collection of one or more metrics. It has a schedule.
NAME: Specifies the name of the collection.
LEVEL: The collection level.
UPLOAD: This attribute, if not specified, will be deemed as YES. NUMBER indicates how often the CollectionItem is uploaded. (Upload every 'n' collections).
YES (default) | NO | NUMERIC
UPLOAD_ON_FETCH: Collection Items marked as UPLOAD_ON_FETCH will have the same behavior as ATOMIC_UPLOAD with 1 difference - the upload occurs immediately.
TRUE | FALSE (default)
COLLECT_WHEN_DOWN: The default behavior is that the collection stops if the Response metric (if present for the target) indicates that the status of the target is down. The exception being the Response metric itself. But the behavior of not collecting when target is down can be overridden by setting this attribute to TRUE.
TRUE | FALSE (default)
COLLECT_WHEN_ALTSKIP: The default behavior is that the collection of metrics stops if an AltSkipCondition has been defined and there is a severity on the condition. Setting this attribute to TRUE allows collections to proceed even when this is the case. Note that a severity on the Response/Status condition is only overcome by using the COLLECT_WHEN_DOWN attribute.
TRUE | FALSE (default)
PROXY_TARGET_NAME: Used for proxy collection support, specifies Name of target data and severities should be uploaded for
PROXY_TARGET_TYPE: Used for proxy collection support, specifies Type.
PROXY_TARGET_TZ_REGION: Used for proxy collection support, specifies Timezone Region String (Eg "US/Pacific")
PROXY_TARGET_TZ: Used for proxy collection support, specifies Timezone (minutes from GMT: eg -420)
TIMEOUT: This is the time by which the metric evaluation is expected to finish. The time is provided in seconds. If the evaluation takes more than this time, the agent aborts the metric evaluation and returns a TIMEOUT exception. If this attribute is not provided or a value of zero, the agent defaults to twice the frequency of this metric evaluation in the collection file. Users can provide a time of less than zero to avoid any sort of timeout. A value less than 0 will force the agent to wait until the metric is evaluated completely.
POSTLOAD_PROC: Only applicable in UPLOAD_ON_FETCH situations. This attribute specifies an optional pl/sql procedures that the receiver should invoke when it receives the file with the contents of this collection.
PRELOAD_PROC: Only applicable in UPLOAD_ON_FETCH situations. This attribute specifies an optional pl/sql procedures that the receiver should invoke when it receives the file with the contents of this collection.
CONFIG: This attribute is used to tag collections of CONFIG metrics - these are handled specially by the EM framework. Note: Collection Items for CONFIG Metrics cannot specify ATOMIC_UPLOAD as FALSE. TRUE | FALSE (default)
INITIAL_UPLOADS: Defaults to 2, but can be set to a different number if more initial uploads need to be sent up before skipping uploads based on the UPLOAD parameter.
Attributes introduced in Enterprise Manager version 10.2:
ATOMIC_UPLOAD: Collection Items marked as ATOMIC_UPLOAD will be bundled into a single file which will be uploaded in the regular upload interval (5 minutes).
TRUE | FALSE (default)
CONFIG_METADATA_VERSION: This attribute is used to specify version of CONFIG metrics.
COMBINE_WITH_OTHER_COLLECTION: Agent typically combines collections and executes them in a single thread sequentially to save on threads based on the interval. This can cause some delay in the metric execution if a previous one is taking some time. However some metrics would require to be executed on time. Setting this flag to FALSE would ensure that this metric is executed in its own thread.
TRUE (default) | FALSE
DISABLED: If set to TRUE, the agent will ignore this collection item.
REQUIRED: If set to TRUE, the console will disallow users from disabling this item.
CollectionItem may contain 'ValidIf' element(s) which must all be satisfied for the CollectionItem to be evaluated. It may contain an optional 'Schedule' element and either a 'MetricColl' element or either 'ItemProperty', 'Filter', 'LimitRows' or 'Condition' elements.
For backward compatibility, a single metric can be specified using the NAME attribute, and its properties, filters and conditions can be provided as child elements.
The NEW preferred DTD has one or more Metric elements within a CollectionItem each indicating a metric to collect, and the filters, thresholds, etc. to associate with it.
This is an example of a simplest form of this element. 'ProgramResourceUtilization is a CollectionItem.
In this sample, 'general_collection' will be uploaded 4 times (number dictated by INITIAL_UPLOADS) initially and after that it will be uploaded once every 12 times (number dictated by UPLOAD attribute).
'Inventory' collection item will be uploaded when the metrics are collected. Timeout specified is 1 hour.
'oracle_security' in this sample, involves collecting CONFIG metrics and should be indicated as such to the EMAgent.
The UPLOAD attribute can take a 'Yes', 'No' or a numeric value. 'UserResourceUsage' collection will be attempted even when the response metric indicates that the target is down.
The PROXY_TARGET_TZ_REGION takes precedence over PROXY_TARGET_TZ if both are specified
Please refer to the example in TargetCollection.
The MetricColl element refers to a metric that is being collected within a collection item.
NAME: This is the name of the metric to collect. Attributes introduced in version 10.2.TRANSIENT: If this attribute is set to TRUE would indicate that the data of this metric should be uploaded or is collected to refresh the cache used in the evaluation of other metrics.UPLOAD_IF_SEVERITY: Only effective when UPLOAD=NO and UPLOAD=N>1Supported values are:a) CHANGE_ONLY (default): Upload data when there is severity change.c) WARNING: Upload data when there is severity change and when any condition is in WARNING or CRITICALd) CRITICAL: Upload data when there is severity change and when any condition is in CRITICAL
MetricColl may include optional ItemProperty element(s), Filter element(s), a single optional LimitRows element and optional Condition element(s).
This is the typical usage for MetricColl. 'WebServicesService' metric is associated with a CollectionItem.
Please refer to the examples in TargetCollection.
LimitRows is a filtering mechanism that can be applied to the collected data, before the data is sent to the repository via the Upload Manager. It limits the number of rows hat are uploaded.
COLUMN_NAME:
SORT_ORDER:
Supported values are:
a) ASCEND:
b) DESCEND:
c) NO_ORDER (default):
LIMIT_TO: Specifies the limit for the number of rows in the collection.
This element describes a name value pair for a property.
NAME: Name of the Item property
ENCRYPTED: Indicates whether the property value will be encrypted.
The following values are defined for the attribute:
NA (default): Encryption is not available. The agent will not attempt to encrypt the value.
FALSE: Encryption is available. The agent will attempt to encrypt the value.
TRUE: Encryption is available. The agent has encrypted the value.
'prop1', ItemProperty will be utilized to compute the value of 'prop1' property defined in 'USER' scope in 'metric1' in TargetMetadata for target type 'example2'.
Filter defines a filtering mechanism that can be applied to the collected data before the data is sent to the repository via the Upload manager. If filtering is not applied, all the data that is collected through a Fetchlet is sent to the repository. As a result the repository can get filled quickly when uploading certain metrics. To alleviate this problem, filtering mechanism is applied to the data before uploading. The filter criteria are specified in collection xml.
Note: Filter elements for TargetCollection and TargetMetadata are different. |
COLUMN_NAME: Name of the column in the metric to filter on.
OPERATOR: Specifies the operation
EQ (default): Equals
LT: Less than
GT: Greater than
LE: Less than or equal to
GE: Greater than or equal to
NE: Not equals
CONTAINS: Contains
MATCH: Matches
AFTER_SECURITY_CHECKING: If TRUE, filter will be applied after severity checking.
TRUE | FALSE (default)
The result will include only those rows where 'total_connections' not equal to 0.
Condition element defines when a severity will be triggered.
If it is Table Metric, MetricColumn is used to define which column and key to use to identify the row and column.
If KEYONLY_THRESHOLDS is set to TRUE for a Metric column, the Condition element must include a KeyColumn element.
CRITICAL: Threshold. A special value, "NotDefined" for the threshold ensures that the result of the operation specified by the OPERATOR will fail.
WARNING: Threshold. "NotDefined" may also be applied to WARNING.
OPERATOR: Specifies the operation to evaluate the condition.
EQ: Equals
LT: Less than
GT (default): Greater than
LE: Less than or equal to
GE: Greater than or equal to
NE: Not equals
CONTAINS: Contains
MATCH: Matches
OCCURRENCES: The default value is 1.
NO_CLEAR_ON_NULL: This attribute is used to control severity clearing when a null value is returned for a metric column. It defaults to FALSE with the behavior that a null value ends up clearing previous alert severities. With a TRUE value for this attribute, null values will be skipped in severity evaluations without clearing the severity.
MESSAGE: The message attribute is a message template that will be used to generate message(s)to be sent along with the event occurrence. This message can contain the following place holders.
a) %value%: The value of the metric (or column of metric)
b) %target%: name of the target
c) %metric_id%: metric id
d) %column_name% This will be the value of any column this can include value columns as well as key columns
e) %warning_threshold%: the warning threshold of the condition
f) %critical_threshold%: the critical threshold of the condition
g) %num_of_occur%: number of occurrences
MESSAGE_NLSID: Specifies the String ID of the ResourceBundle for the message.
COLUMN_NAME: For table metric, COLUMN_NAME defines which column will be checked. KeyColumn will be used to identify a row.
PUSH: This attribute is used to distinguish conditions created for push-based alerts from conditions that are evaluated over the collected data. The agent does not evaluate PUSH="TRUE" conditions.
TRUE | FALSE (default)
GENERATE_INIT_CLEAR: This attribute can be used to override the agent's behavior of not generating a severity the very first time a CLEAR is generated. Set this to TRUE if you do want the initial CLEAR.
TRUE | FALSE (default)
Attributes introduced in Enterprise Manager version 10.2:
ALERT_CONTEXT: This attribute will be used to pass the related alert context. This new attribute may contain a list of column names separated by ";".
CLEAR_MESSAGE: Specifies a different message when an alert is cleared. If this attribute is missing then the MESSAGE attribute is used when alerts are cleared.
CLEAR_MESSAGE_NLSID: Specifies the NLSID for the clear message. If absent, the MESSAGE_NLSID is used when alerts are cleared.
Condition element may include optional CategoryValue element(s), KeyColumn element(s) and an optional FixitJob element.
If the result after the keys are applied contains more than one row, the event occurrence generated will have content/message for each row that has crossed the threshold.
MATCH is used for regular expression.
For example:
OPERATIOR="MATCH" CRITICAL=".*ORA.*ERR.*"
This statement will match a string containing both ORA and ERR such as "ORA-ERR 345".
CategoryValue sub tags are used to classify the Condition along two axis, CLASS and CATEGORY. For e.g. CLASS=Fruits, CATEGORY=RedFruits Categorization of Conditions is useful for Root Cause Analysis among other things.
These are examples of the Condition element.
This sample gives the context for the Condition element.
For additional examples please refer to TargetCollection.
The KeyColumn element is used to specify the key column for a table. It identifies a row of a table. This element must be present in a Condition element if KEYONLY_THRESHOLDS attribute is set for a Metric column.
COLUMN_NAME: Specifies name of the key column
Attributes introduced in Enterprise Manager version 10.2:
OPERATOR:
Supported values are:
a) EQ (default): Equals
b) LIKE: like
This element describes the action to be taken in response to an alert.
This example illustrates a simple FixitJob that deletes files in response to a condition. The COMMAND property specifies the command that is executed when the value in col2 of the metric triggers the condition.
 Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved. |