
[image: Oracle Corporation]

Oracle® Data Guard

Concepts and Administration

10g Release 2 (10.2)

B14239-05

August 2008

Oracle Data Guard Concepts and Administration, 10g Release 2 (10.2)

B14239-05

Copyright © 1999, 2008, Oracle. All rights reserved.

Primary Author: Vivian Schupmann

Contributors: Andy Adams, Beldalker Anand, Rick Anderson, Andrew Babb, Pam Bantis, Tammy Bednar, Barbara Benton, Chipper Brown, Larry Carpenter, George Claborn, Laurence Clarke, Jay Davison, Jeff Detjen, Ray Dutcher, B.G. Garin, Mahesh Girkar, Yosuke Goto, Ray Guzman, Susan Hillson, Mark Johnson, Rajeev Jain, Joydip Kundu, J. William Lee, Steve Lee, Steve Lim, Nitin Karkhanis, Steve McGee, Bob McGuirk, Joe Meeks, Steve Moriarty, Muthu Olagappan, Deborah Owens, Ashish Ray, Antonio Romero, Mike Schloss, Mike Smith, Vinay Srihali, Morris Tao, Lawrence To, Doug Utzig, Ric Van Dyke, Doug Voss, Ron Weiss, Jingming Zhang

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Data Guard?

Part I Concepts and Administration

1 Introduction to Oracle Data Guard

	1.1 Data Guard Configurations
	1.1.1 Primary Database
	1.1.2 Standby Databases
	1.1.3 Configuration Example

	1.2 Data Guard Services
	1.2.1 Redo Transport Services
	1.2.2 Log Apply Services
	1.2.3 Role Transitions

	1.3 Data Guard Broker
	1.3.1 Using Oracle Enterprise Manager
	1.3.2 Using the Data Guard Command-Line Interface

	1.4 Data Guard Protection Modes
	1.5 Data Guard and Complementary Technologies
	1.6 Summary of Data Guard Benefits

2 Getting Started with Data Guard

	2.1 Standby Database Types
	2.1.1 Physical Standby Databases
	2.1.2 Logical Standby Databases

	2.2 User Interfaces for Administering Data Guard Configurations
	2.3 Data Guard Operational Prerequisites
	2.3.1 Hardware and Operating System Requirements
	2.3.2 Oracle Software Requirements

	2.4 Standby Database Directory Structure Considerations
	2.5 Online Redo Logs, Archived Redo Logs, and Standby Redo Logs
	2.5.1 Online Redo Logs and Archived Redo Logs
	2.5.2 Standby Redo Logs

3 Creating a Physical Standby Database

	3.1 Preparing the Primary Database for Standby Database Creation
	3.1.1 Enable Forced Logging
	3.1.2 Create a Password File
	3.1.3 Configure a Standby Redo Log
	3.1.4 Set Primary Database Initialization Parameters
	3.1.5 Enable Archiving

	3.2 Step-by-Step Instructions for Creating a Physical Standby Database
	3.2.1 Create a Backup Copy of the Primary Database Datafiles
	3.2.2 Create a Control File for the Standby Database
	3.2.3 Prepare an Initialization Parameter File for the Standby Database
	3.2.4 Copy Files from the Primary System to the Standby System
	3.2.5 Set Up the Environment to Support the Standby Database
	3.2.6 Start the Physical Standby Database
	3.2.7 Verify the Physical Standby Database Is Performing Properly

	3.3 Post-Creation Steps

4 Creating a Logical Standby Database

	4.1 Prerequisite Conditions for Creating a Logical Standby Database
	4.1.1 Determine Support for Data Types and Storage Attributes for Tables
	4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

	4.2 Step-by-Step Instructions for Creating a Logical Standby Database
	4.2.1 Create a Physical Standby Database
	4.2.2 Stop Redo Apply on the Physical Standby Database
	4.2.3 Prepare the Primary Database to Support a Logical Standby Database
	4.2.3.1 Prepare the Primary Database for Role Transitions
	4.2.3.2 Build a Dictionary in the Redo Data

	4.2.4 Transition to a Logical Standby Database
	4.2.4.1 Convert to a Logical Standby Database
	4.2.4.2 Create a New Password File
	4.2.4.3 Adjust Initialization Parameters for the Logical Standby Database

	4.2.5 Open the Logical Standby Database
	4.2.6 Verify the Logical Standby Database Is Performing Properly

	4.3 Post-Creation Steps

5 Redo Transport Services

	5.1 Introduction to Redo Transport Services
	5.2 Where to Send Redo Data
	5.2.1 Destination Types
	5.2.2 Configuring Destinations with the LOG_ARCHIVE_DEST_n Parameter
	5.2.2.1 Changing Destination Attributes
	5.2.2.2 Viewing Attribute with V$ARCHIVE_DEST

	5.2.3 Setting Up Flash Recovery Areas
	5.2.3.1 Using the LOG_ARCHIVE_DEST_10 Destination
	5.2.3.2 Using Other LOG_ARCHIVE_DEST_n Destinations
	5.2.3.3 Using the STANDBY_ARCHIVE_DEST Destination
	5.2.3.4 Sharing a Flash Recovery Area Between Primary and Standby Databases

	5.3 How to Send Redo Data
	5.3.1 Using Archiver Processes (ARCn) to Archive Redo Data
	5.3.1.1 Initialization Parameters That Control ARCn Archival Behavior
	5.3.1.2 ARCn Archival Processing

	5.3.2 Using the Log Writer Process (LGWR) to Archive Redo Data
	5.3.2.1 LOG_ARCHIVE_DEST_n Attributes for LGWR Archival Processing
	5.3.2.2 LGWR SYNC Archival Processing
	5.3.2.3 LGWR ASYNC Archival Processing

	5.3.3 Providing for Secure Redo Data Transmission

	5.4 When Redo Data Should Be Sent
	5.4.1 Specifying Role-Based Destinations with the VALID_FOR Attribute
	5.4.2 Specify Unique Names for Primary and Standby Databases

	5.5 What to Do If Errors Occur
	5.5.1 Retrying the Archival Operation
	5.5.2 Using an Alternate Destination
	5.5.3 Controlling the Number of Retry Attempts

	5.6 Setting Up a Data Protection Mode
	5.6.1 Choosing a Data Protection Mode
	5.6.1.1 Maximum Protection Mode
	5.6.1.2 Maximum Availability Mode
	5.6.1.3 Maximum Performance Mode

	5.6.2 Setting the Data Protection Mode of a Data Guard Configuration

	5.7 Managing Log Files
	5.7.1 Specifying Alternate Directory Locations for Archived Redo Log Files
	5.7.2 Reusing Online Redo Log Files
	5.7.3 Managing Standby Redo Log Files
	5.7.3.1 Determining If a Standby Redo Log File Group Configuration Is Adequate
	5.7.3.2 Adding Standby Redo Log Members to an Existing Group

	5.7.4 Planning for Growth and Reuse of the Control Files
	5.7.4.1 Sizing the Disk Volumes that Contain the Control Files
	5.7.4.2 Specifying the Reuse of Records in the Control File

	5.7.5 Sharing a Log File Destination Among Multiple Standby Databases

	5.8 Managing Archive Gaps
	5.8.1 When Is an Archive Gap Discovered?
	5.8.2 How Is a Gap Resolved?
	5.8.3 Using the Fetch Archive Log (FAL) to Resolve Archive Gaps
	5.8.4 Manually Determining and Resolving Archive Gaps

	5.9 Verification
	5.9.1 Monitoring Log File Archival Information
	5.9.2 Monitoring the Performance of Redo Transport Services
	5.9.2.1 ARCn Process Wait Events
	5.9.2.2 LGWR SYNC Wait Events
	5.9.2.3 LGWR ASYNC Wait Events

6 Log Apply Services

	6.1 Introduction to Log Apply Services
	6.2 Log Apply Services Configuration Options
	6.2.1 Using Real-Time Apply to Apply Redo Data Immediately
	6.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files
	6.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay

	6.3 Applying Redo Data to Physical Standby Databases
	6.3.1 Starting Redo Apply
	6.3.2 Stopping Redo Apply
	6.3.3 Monitoring Redo Apply on Physical Standby Databases

	6.4 Applying Redo Data to Logical Standby Databases
	6.4.1 Starting SQL Apply
	6.4.2 Stopping SQL Apply on a Logical Standby Database
	6.4.3 Monitoring SQL Apply on Logical Standby Databases

7 Role Transitions

	7.1 Introduction to Role Transitions
	7.1.1 Preparing for a Role Transition (Failover or Switchover)
	7.1.2 Choosing a Target Standby Database for a Role Transition
	7.1.3 Switchovers
	7.1.4 Failovers

	7.2 Role Transitions Involving Physical Standby Databases
	7.2.1 Switchovers Involving a Physical Standby Database
	7.2.2 Failovers Involving a Physical Standby Database

	7.3 Role Transitions Involving Logical Standby Databases
	7.3.1 Switchovers Involving a Logical Standby Database
	7.3.2 Failovers Involving a Logical Standby Database

	7.4 Using Flashback Database After a Role Transition
	7.4.1 Using Flashback Database After a Switchover
	7.4.2 Using Flashback Database After a Failover

8 Managing a Physical Standby Database

	8.1 Starting Up and Shutting Down a Physical Standby Database
	8.1.1 Starting Up a Physical Standby Database
	8.1.2 Shutting Down a Physical Standby Database

	8.2 Opening a Standby Database for Read-Only or Read/Write Access
	8.2.1 Assessing Whether or Not to Open a Standby Database
	8.2.2 Opening a Physical Standby Database for Read-Only Access

	8.3 Managing Primary Database Events That Affect the Standby Database
	8.3.1 Adding a Datafile or Creating a Tablespace
	8.3.1.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO
	8.3.1.2 When STANDBY_FILE_MANAGEMENT Is Set to MANUAL

	8.3.2 Dropping Tablespaces and Deleting Datafiles
	8.3.2.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO or MANUAL
	8.3.2.2 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES

	8.3.3 Using Transportable Tablespaces with a Physical Standby Database
	8.3.4 Renaming a Datafile in the Primary Database
	8.3.5 Adding or Dropping Online Redo Log Files
	8.3.6 NOLOGGING or Unrecoverable Operations

	8.4 Recovering Through the OPEN RESETLOGS Statement
	8.5 Monitoring the Primary and Standby Databases
	8.5.1 Alert Log
	8.5.2 Dynamic Performance Views (Fixed Views)
	8.5.3 Monitoring Recovery Progress
	8.5.3.1 Monitoring the Process Activities
	8.5.3.2 Determining the Progress of Redo Apply
	8.5.3.3 Determining the Location and Creator of the Archived Redo Log Files
	8.5.3.4 Viewing Database Incarnations Before and After OPEN RESETLOGS
	8.5.3.5 Viewing the Archived Redo Log History
	8.5.3.6 Determining Which Log Files Were Applied to the Standby Database
	8.5.3.7 Determining Which Log Files Were Not Received by the Standby Site

	8.5.4 Monitoring Log Apply Services on Physical Standby Databases
	8.5.4.1 Accessing the V$DATABASE View
	8.5.4.2 Accessing the V$MANAGED_STANDBY Fixed View
	8.5.4.3 Accessing the V$ARCHIVE_DEST_STATUS Fixed View
	8.5.4.4 Accessing the V$ARCHIVED_LOG Fixed View
	8.5.4.5 Accessing the V$LOG_HISTORY Fixed View
	8.5.4.6 Accessing the V$DATAGUARD_STATUS Fixed View

	8.6 Tuning the Log Apply Rate for a Physical Standby Database

9 Managing a Logical Standby Database

	9.1 Overview of the SQL Apply Architecture
	9.1.1 Various Considerations for SQL Apply
	9.1.1.1 Transaction Size Considerations
	9.1.1.2 Pageout Considerations
	9.1.1.3 Restart Considerations
	9.1.1.4 DML Apply Considerations
	9.1.1.5 DDL Apply Considerations

	9.2 Views Related to Managing and Monitoring a Logical Standby Database
	9.2.1 DBA_LOGSTDBY_EVENTS View
	9.2.2 DBA_LOGSTDBY_LOG View
	9.2.3 V$LOGSTDBY_STATS View
	9.2.4 V$LOGSTDBY_PROCESS View
	9.2.5 V$LOGSTDBY_PROGRESS View
	9.2.6 V$LOGSTDBY_STATE View
	9.2.7 V$LOGSTDBY_STATS View

	9.3 Monitoring a Logical Standby Database
	9.3.1 Monitoring SQL Apply Progress
	9.3.2 Automatic Deletion of Log Files

	9.4 Customizing a Logical Standby Database
	9.4.1 Using Real-Time Apply On the Logical Standby Database
	9.4.2 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
	9.4.3 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
	9.4.4 Setting up a Skip Handler for a DDL Statement
	9.4.5 Modifying a Logical Standby Database
	9.4.5.1 Performing DDL on a Logical Standby Database
	9.4.5.2 Modifying Tables That Are Not Maintained by SQL Apply

	9.4.6 Adding or Re-Creating Tables On a Logical Standby Database

	9.5 Managing Specific Workloads In the Context of a Logical Standby Database
	9.5.1 Importing a Transportable Tablespace to the Primary Database
	9.5.2 Using Materialized Views
	9.5.3 How Triggers and Constraints Are Handled on a Logical Standby Database
	9.5.4 Recovering Through the OPEN RESETLOGS Statement

	9.6 Tuning a Logical Standby Database
	9.6.1 Create a Primary Key RELY Constraint
	9.6.2 Gather Statistics for the Cost-Based Optimizer
	9.6.3 Adjust the Number of Processes
	9.6.3.1 Adjusting the Number of APPLIER Processes
	9.6.3.2 Adjusting the Number of PREPARER Processes

	9.6.4 Adjust the Memory Used for LCR Cache
	9.6.5 Adjust How Transactions are Applied On the Logical Standby Database

10 Using RMAN to Back Up and Restore Files

	10.1 Backup Procedure
	10.1.1 Using Disk as Cache for Tape Backup
	10.1.2 Performing Backups Directly to Tape

	10.2 Effect of Switchovers, Failovers, and Control File Creation on Backups
	10.2.1 Recovery from Loss of Datafiles on the Primary Database
	10.2.2 Recovery from Loss of Datafiles on the Standby Database
	10.2.3 Recovery from the Loss of a Standby Control File
	10.2.4 Recovery from the Loss of the Primary Control File
	10.2.5 Recovery from the Loss of an Online Redo Log File
	10.2.6 Incomplete Recovery of the Database

	10.3 Additional Backup Situations
	10.3.1 Standby Databases Too Geographically Distant to Share Backups
	10.3.2 Standby Database Does Not Contain Datafiles, Used as a FAL Server
	10.3.3 Standby Database File Names Are Different than Primary Database
	10.3.4 Deletion Policy for Archived Redo Log Files In Flash Recovery Areas
	10.3.4.1 Reconfiguring the Deletion Policy After a Role Transition
	10.3.4.2 Viewing the Current Deletion Policy

11 Using SQL Apply to Upgrade the Oracle Database

	11.1 Benefits of a Rolling Upgrade Using SQL Apply
	11.2 Requirements to Perform a Rolling Upgrade Using SQL Apply
	11.3 Figures and Conventions Used in the Upgrade Instructions
	11.4 Prepare to Upgrade
	11.5 Upgrade the Databases

12 Data Guard Scenarios

	12.1 Setting Up and Verifying Archival Destinations
	12.1.1 Configuring a Primary Database and a Physical Standby Database
	12.1.2 Configuring a Primary Database and a Logical Standby Database
	12.1.3 Configuring Both Physical and Logical Standby Databases
	12.1.4 Verifying the Current VALID_FOR Attribute Settings for Each Destination

	12.2 Choosing the Best Available Standby Database for a Role Transition
	12.2.1 Example: Best Physical Standby Database for a Failover
	12.2.2 Example: Best Logical Standby Database for a Failover

	12.3 Configuring a Logical Standby Database to Support a New Primary Database
	12.3.1 When the New Primary Database Was Formerly a Physical Standby Database
	12.3.2 When the New Primary Database Was Formerly a Logical Standby Database

	12.4 Using Flashback Database After a Failover
	12.4.1 Flashing Back a Failed Primary Database into a Physical Standby Database
	12.4.2 Flashing Back a Failed Primary Database into a Logical Standby Database
	12.4.3 Flashing Back a Logical Standby Database to a Specific Applied SCN

	12.5 Using Flashback Database After Issuing an Open Resetlogs Statement
	12.5.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time
	12.5.2 Flash Back a Logical Standby Database After Flashing Back the Primary

	12.6 Using a Physical Standby Database for Read/Write Testing and Reporting
	12.7 Using RMAN Incremental Backups to Roll Forward a Physical Standby Database
	12.7.1 Physical Standby Database Lags Far Behind the Primary Database
	12.7.2 Physical Standby Database Has Nologging Changes On a Subset of Datafiles
	12.7.3 Physical Standby Database Has Widespread Nologging Changes

	12.8 Using a Physical Standby Database with a Time Lag
	12.8.1 Establishing a Time Lag on a Physical Standby Database
	12.8.2 Failing Over to a Physical Standby Database with a Time Lag
	12.8.3 Switching Over to a Physical Standby Database with a Time Lag

	12.9 Recovering From a Network Failure
	12.10 Recovering After the NOLOGGING Clause Is Specified
	12.10.1 Recovery Steps for Logical Standby Databases
	12.10.2 Recovery Steps for Physical Standby Databases
	12.10.3 Determining If a Backup Is Required After Unrecoverable Operations

	12.11 Resolving Archive Gaps Manually
	12.11.1 What Causes Archive Gaps?
	12.11.1.1 Creation of the Standby Database
	12.11.1.2 Shutdown of the Standby Database When the Primary Database Is Open
	12.11.1.3 Network Failure Prevents Transmission of Redo

	12.11.2 Determining If an Archive Gap Exists
	12.11.3 Manually Transmitting Log Files in the Archive Gap to the Standby Site
	12.11.4 Manually Applying Log Files in the Archive Gap to the Standby Database

	12.12 Creating a Standby Database That Uses OMF or ASM

Part II Reference

13 Initialization Parameters

14 LOG_ARCHIVE_DEST_n Parameter Attributes

	AFFIRM and NOAFFIRM
	ALTERNATE
	ARCH and LGWR
	DB_UNIQUE_NAME
	DELAY
	DEPENDENCY
	LOCATION and SERVICE
	MANDATORY and OPTIONAL
	MAX_CONNECTIONS
	MAX_FAILURE
	NET_TIMEOUT
	NOREGISTER
	REOPEN
	SYNC and ASYNC
	TEMPLATE
	VALID_FOR
	VERIFY

15 SQL Statements Relevant to Data Guard

	15.1 ALTER DATABASE Statements
	15.2 ALTER SESSION Statements

16 Views Relevant to Oracle Data Guard

Part III Appendixes

A Troubleshooting Data Guard

	A.1 Common Problems
	A.1.1 Standby Archive Destination Is Not Defined Properly
	A.1.2 Renaming Datafiles with the ALTER DATABASE Statement
	A.1.3 Standby Database Does Not Receive Redo Data from the Primary Database
	A.1.4 You Cannot Mount the Physical Standby Database

	A.2 Log File Destination Failures
	A.3 Handling Logical Standby Database Failures
	A.4 Problems Switching Over to a Standby Database
	A.4.1 Switchover Fails Because Redo Data Was Not Transmitted
	A.4.2 Switchover Fails Because SQL Sessions Are Still Active
	A.4.3 Switchover Fails Because User Sessions Are Still Active
	A.4.4 Switchover Fails with the ORA-01102 Error
	A.4.5 Redo Data Is Not Applied After Switchover
	A.4.6 Roll Back After Unsuccessful Switchover and Start Over

	A.5 What to Do If SQL Apply Stops
	A.6 Network Tuning for Redo Data Transmission
	A.7 Slow Disk Performance on Standby Databases
	A.8 Log Files Must Match to Avoid Primary Database Shutdown
	A.9 Troubleshooting a Logical Standby Database
	A.9.1 Recovering from Errors
	A.9.1.1 DDL Transactions Containing File Specifications
	A.9.1.2 Recovering from DML Failures

	A.9.2 Troubleshooting SQL*Loader Sessions
	A.9.3 Troubleshooting Long-Running Transactions
	A.9.4 Troubleshooting ORA-1403 Errors with Flashback Transactions

B Upgrading Databases in a Data Guard Configuration

	B.1 Before You Upgrade the Oracle Database Software
	B.2 Upgrading Oracle Database with a Physical Standby Database In Place
	B.3 Upgrading Oracle Database with a Logical Standby Database In Place

C Data Type and DDL Support on a Logical Standby Database

	C.1 Data Type Considerations
	C.1.1 Supported Data Types in a Logical Standby Database
	C.1.2 Unsupported Data Types in a Logical Standby Database

	C.2 Storage Type Considerations
	C.2.1 Support Storage Types
	C.2.2 Unsupported Storage Type

	C.3 PL/SQL Supplied Packages Considerations
	C.3.1 Supported PL/SQL Supplied Packages
	C.3.2 Unsupported PL/SQL Supplied Packages

	C.4 Unsupported Tables, Sequences, and Views
	C.5 Skipped SQL Statements on a Logical Standby Database
	C.6 DDL Statements Supported by a Logical Standby Database

D Data Guard and Real Application Clusters

	D.1 Configuring Standby Databases in a Real Application Clusters Environment
	D.1.1 Setting Up a Multi-Instance Primary with a Single-Instance Standby
	D.1.2 Setting Up a Multi-Instance Primary with a Multi-Instance Standby

	D.2 Configuration Considerations in a Real Application Clusters Environment
	D.2.1 Format for Archived Redo Log Filenames
	D.2.2 Archive Destination Quotas
	D.2.3 Data Protection Modes
	D.2.4 Role Transitions
	D.2.4.1 Switchovers
	D.2.4.2 Failovers

	D.3 Troubleshooting
	D.3.1 Switchover Fails in a Real Application Clusters Configuration
	D.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage

E Cascaded Destinations

	E.1 Configuring Cascaded Destinations
	E.1.1 Configuring Cascaded Destinations for Physical Standby Databases
	E.1.2 Configuring Cascaded Destinations for Logical Standby Databases

	E.2 Role Transitions with Cascaded Destinations
	E.2.1 Standby Databases Receiving Redo Data from a Physical Standby Database
	E.2.2 Standby Databases Receiving Redo Data from a Logical Standby Database

	E.3 Examples of Cascaded Destinations
	E.3.1 Local Physical Standby and Cascaded Remote Physical Standby
	E.3.2 Local Physical Standby and Cascaded Remote Logical Standby
	E.3.3 Local and Remote Physical Standby and Cascaded Local Logical Standby
	E.3.4 Consolidated Reporting with Cascaded Logical Standby Destinations
	E.3.5 Temporary Use of Cascaded Destinations During Network Upgrades

F Creating a Standby Database with Recovery Manager

	F.1 Preparing to Use RMAN to Create a Standby Database
	F.1.1 About Standby Database Preparation Using RMAN
	F.1.2 Creating the Standby Control File with RMAN
	F.1.3 Naming the Standby Database Datafiles When Using RMAN
	F.1.4 Naming the Standby Database Log Files When Using RMAN

	F.2 Creating a Standby Database with RMAN: Overview
	F.2.1 RMAN Standby Creation Without Recovery
	F.2.2 RMAN Standby Creation with Recovery

	F.3 Setting Up the Standby Database
	F.3.1 Setting Up a Standby Database When Files Are Not Oracle Managed Files
	F.3.2 Setting Up a Standby Database When All Files Are Oracle Managed Files
	F.3.3 Setting Up a Standby Databases When a Subset of Files Are Oracle Managed Files

	F.4 Creating a Standby Database with the Same Directory Structure
	F.4.1 Creating the Standby Database Without Performing Recovery
	F.4.2 Creating the Standby Database and Performing Recovery

	F.5 Creating a Standby Database with a Different Directory Structure
	F.5.1 Naming Standby Database Files with DB_FILE_NAME_CONVERT
	F.5.1.1 Creating the Standby Database Without Performing Recovery
	F.5.1.2 Creating the Standby Database and Performing Recovery

	F.5.2 Naming Standby Database Files with SET NEWNAME
	F.5.2.1 Creating the Standby Database Without Performing Recovery
	F.5.2.2 Creating the Standby Database and Performing Recovery

	F.5.3 Naming Standby Database Files with CONFIGURE AUXNAME
	F.5.3.1 Creating the Standby Database Without Performing Recovery
	F.5.3.2 Creating the Standby Database and Performing Recovery

	F.6 Creating a Standby Database on the Local Host
	F.7 Creating a Standby Database with Image Copies
	F.7.1 Overview
	F.7.2 When Copies and Datafiles Use the Same Names
	F.7.3 When Copies and Datafiles Use Different Names
	F.7.3.1 Creating the Standby Database Without Performing Recovery
	F.7.3.2 Creating the Standby Database and Performing Recovery

	F.8 Usage Scenario

G Setting Archive Tracing

	G.1 LOG_ARCHIVE_TRACE Initialization Parameter
	G.2 Determining the Location of the Trace Files
	G.2.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter
	G.2.2 Choosing an Integer Value

Index

List of Examples

	3-1 Adding a Standby Redo Log File Group to a Specific Thread
	3-2 Adding a Standby Redo Log File Group to a Specific Group Number
	3-3 Primary Database: Primary Role Initialization Parameters
	3-4 Primary Database: Standby Role Initialization Parameters
	3-5 Modifying Initialization Parameters for a Physical Standby Database
	4-1 Primary Database: Logical Standby Role Initialization Parameters
	4-2 Modifying Initialization Parameters for a Logical Standby Database
	5-1 Specifying a Local Archiving Destination
	5-2 Specifying a Remote Archiving Destination
	5-3 Primary Database Initialization Parameters for a Shared Recovery Area
	5-4 Standby Database Initialization Parameters for a Shared Recovery Area
	5-5 Initialization Parameters for LGWR Synchronous Archival
	5-6 Initialization Parameters for LGWR Asynchronous Archiving
	5-7 Setting a Retry Time and Limit
	5-8 Setting a Mandatory Archiving Destination
	11-1 Monitoring Events with DBA_LOGSTDBY_EVENTS
	12-1 Finding VALID_FOR Information in the V$ARCHIVE_DEST View
	14-1 Automatically Failing Over to an Alternate Destination
	14-2 Defining an Alternate Oracle Net Service Name to the Same Standby Database
	A-1 Setting a Retry Time and Limit
	A-2 Specifying an Alternate Destination
	A-3 Warning Messages Reported for ITL Pressure

List of Figures

	1-1 Typical Data Guard Configuration
	1-2 Automatic Updating of a Physical Standby Database
	1-3 Automatic Updating of a Logical Standby Database
	1-4 Data Guard Overview Page in Oracle Enterprise Manager
	2-1 Possible Standby Configurations
	5-1 Transmitting Redo Data
	5-2 Primary Database Archiving When There Is No Standby Database
	5-3 Archiving to Local Destinations Before Archiving to Remote Destinations
	5-4 LGWR SYNC Archival to a Remote Destination with Standby Redo Log Files
	5-5 LGWR ASYNC Archival with Network Server (LNSn) Processes
	5-6 Archival Operation to an Alternate Destination Device
	5-7 Data Guard Configuration with Dependent Destinations
	6-1 Applying Redo Data to a Standby Destination Using Real-Time Apply
	7-1 Data Guard Configuration Before Switchover
	7-2 Standby Databases Before Switchover to the New Primary Database
	7-3 Data Guard Environment After Switchover
	7-4 Failover to a Standby Database
	8-1 Standby Database Open for Read-Only Access
	9-1 SQL Apply Processing
	9-2 Progress States During SQL Apply Processing
	11-1 Data Guard Configuration Before Upgrade
	11-2 Upgrade the Logical Standby Database Release
	11-3 Running Mixed Releases
	11-4 After a Switchover
	11-5 Both Databases Upgraded
	12-1 Primary and Physical Standby Databases Before a Role Transition
	12-2 Primary and Physical Standby Databases After a Role Transition
	12-3 Configuring Destinations for a Primary Database and a Logical Standby Database
	12-4 Primary and Logical Standby Databases After a Role Transition
	12-5 Configuring a Primary Database with Physical and Logical Standby Databases
	12-6 Primary, Physical, and Logical Standby Databases After a Role Transition
	12-7 Using a Physical Standby Database As a Testing and Reporting Database
	12-8 Manual Recovery of Archived Redo Log Files in an Archive Gap
	D-1 Transmitting Redo Data from a Multi-Instance Primary Database
	D-2 Standby Database in Real Application Clusters
	E-1 Cascaded Destination Configuration Example

List of Tables

	2-1 Standby Database Location and Directory Options
	3-1 Preparing the Primary Database for Physical Standby Database Creation
	3-2 Creating a Physical Standby Database
	4-1 Preparing the Primary Database for Logical Standby Database Creation
	4-2 Creating a Logical Standby Database
	5-1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Attributes
	5-2 Minimum Requirements for Data Protection Modes
	5-3 Wait Events for Destinations Configured with the ARCH Attribute
	5-4 Wait Events for Destinations Configured with the LGWR SYNC Attributes
	5-5 Wait Events for Destinations Configured with the LGWR ASYNC Attributes
	8-1 Actions Required on a Standby Database After Changes to a Primary Database
	8-2 Location Where Common Actions on the Primary Database Can Be Monitored
	11-1 Step-by-Step Procedure to Upgrade Oracle Database Software
	12-1 Data Guard Scenarios
	12-2 Initialization Parameter Settings for Primary and Physical Standby Databases
	12-3 Initialization Parameter Settings for Primary and Logical Standby Databases
	12-4 Initialization Parameters for Primary, Physical, and Logical Standby Databases
	12-5 Identifiers for the Physical Standby Database Example
	12-6 Identifiers for Logical Standby Database Example
	13-1 Initialization Parameters for Instances in a Data Guard Configuration
	14-1 Directives for the TEMPLATE Attribute
	14-2 VALID_FOR Attribute Values
	15-1 ALTER DATABASE Statements Used in Data Guard Environments
	15-2 ALTER SESSION Statement Used in Data Guard Environments
	16-1 Views That Are Pertinent to Data Guard Configurations
	A-1 Common Processes That Prevent Switchover
	A-2 Fixing Typical SQL Apply Errors
	C-1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure
	C-2 Statement Options for Skipping SQL DDL Statements
	D-1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter
	E-1 Initialization Parameters for Primary, Physical, and Logical Standby Databases
	F-1 Standby Database Preparation Using RMAN
	F-2 Order of Precedence for Naming Datafiles in Standby Database
	F-3 Using Image Copies to Create a Standby Database: Scenario

Preface

Oracle Data Guard is the most effective solution available today to protect the core asset of any enterprise—its data, and make it available on a 24x7 basis even in the face of disasters and other calamities. This guide describes Oracle Data Guard technology and concepts, and helps you configure and implement standby databases.

Audience

Oracle Data Guard Concepts and Administration is intended for database administrators (DBAs) who administer the backup, restoration, and recovery operations of an Oracle database system.

To use this document, you should be familiar with relational database concepts and basic backup and recovery administration. You should also be familiar with the operating system environment under which you are running Oracle software.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents

Readers of Oracle Data Guard Concepts and Administration should also read:

	
The beginning of Oracle Database Concepts, that provides an overview of the concepts and terminology related to the Oracle database and serves as a foundation for the more detailed information in this guide.

	
The chapters in the Oracle Database Administrator's Guide that deal with managing the control files, online redo log files, and archived redo log files.

	
The chapter in the Oracle Database Utilities that discusses LogMiner technology.

	
Oracle Data Guard Broker that describes the graphical user interface and command-line interface for automating and centralizing the creation, maintenance, and monitoring of Data Guard configurations.

	
Oracle Enterprise Manager online Help system

Discussions in this book also refer you to the following guides:

	
Oracle Database SQL Reference

	
Oracle Database Reference

	
Oracle Database Backup and Recovery Basics

	
Oracle Database Backup and Recovery Advanced User's Guide

	
Oracle Database Net Services Administrator's Guide

	
SQL*Plus User's Guide and Reference

	
Oracle Database High Availability Overview

Also, see Oracle Streams Concepts and Administration for information about Oracle Streams and the Streams Downstream Capture Database. The Streams downstream capture process uses the Oracle Data Guard redo transport services to transfer redo data to log files on a remote database where a Streams capture process captures changes in the archived redo log files at the remote destination.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Data Guard?

This preface describes the new features added to Oracle Data Guard in release 10.2 and provides links to additional information. The features and enhancements described in this preface were added to Oracle Data Guard in 10g Release 2 (10.2). The new features are described under the following main areas:

	
New Features Common to Redo Apply and SQL Apply

	
New Features Specific to Redo Apply and Physical Standby Databases

	
New Features Specific to SQL Apply and Logical Standby Databases

New Features Common to Redo Apply and SQL Apply

The following enhancements to Oracle Data Guard in 10g Release 2 (10.2) improve ease-of-use, manageability, performance, and include innovations that improve disaster-recovery capabilities:

	
Fast-start failover

Fast-start failover provides the ability to automatically, quickly, and reliably fail over to a designated, synchronized standby database in the event of loss of the primary database, without requiring that you perform complex manual steps to invoke the failover.

Also, after a fast-start failover occurs, the old primary database is automatically reconfigured as a new standby database upon reconnection to the configuration. This enables Data Guard to restore disaster protection in the configuration easily, without complex manual steps, improving the robustness of the disaster-recovery features of Data Guard, as well as improving Data Guard manageability.

These new capabilities allow you to maintain uptime and increase the availability, as well the robustness of disaster recovery. Plus, there is less need for manual intervention, thereby reducing management costs.

	
See Also:

Oracle Data Guard Broker

	
Flashback Database across Data Guard switchovers

It is now possible to flash back the primary and standby databases to an SCN or a point in time prior to a switchover operation. When you use this feature of Flashback Database on a physical standby database, the standby role is preserved. On a logical standby database, the role of the standby database is changed to what it was at the target SCN or time.

This feature extends the flashback window, providing more flexibility to detect and correct human errors.

	
See Also:

Section 7.4, "Using Flashback Database After a Role Transition"

	
Asynchronous Redo Transmission

Asynchronous redo transmission using the log writer process (LGWR ASYNC) has been improved to reduce the performance impact on the primary database. During asynchronous redo transmission, the network server (LNSn) process transmits redo data out of the online redo log files on the primary database and no longer interacts directly with the log writer process.

This change in behavior allows the log writer process to write redo data to the current online redo log file and continue processing the next request without waiting for interprocess communication or network I/O to complete.

	
See Also:

Section 5.3.2.3, "LGWR ASYNC Archival Processing" and the SYNC and ASYNC attributes in Chapter 14

	
New MAX_CONNECTIONS attribute on the LOG_ARCHIVE_DEST_n parameter

This attribute specifies how the archiver (ARCn) processes on the primary database coordinate when sending redo data to standby databases. If the MAX_CONNECTIONS attribute is set to a nonzero value, redo transport services use multiple network connections to transmit redo data using archiver processes.

	
See Also:

"MAX_CONNECTIONS" attribute

	
Data Guard enhancements in Oracle Enterprise Manager

If you use the Data Guard broker to manage your Data Guard configuration, you can take advantage of the following enhancements in Oracle Enterprise Manager.

	
Estimated Failover Time (seconds)

The approximate number of seconds required to fail over to this standby database. This accounts for the startup time (if necessary) plus the remaining time it would require to apply all the available redo data on the standby database. If it is not necessary to start the database, this metric shows only the remaining apply time.

	
Apply Lag (seconds)

The number of seconds that the standby database is behind the primary database in applying redo data.

	
Redo Generation Rate (KB/second)

Displays the amount of redo generation rate in KB/second on the primary database.

	
Redo Apply Rate (KB/second)

Displays the Redo Apply Rate in KB/second on this standby database.

	
Transport Lag (seconds)

The approximate number of seconds of redo data not yet available on this standby database. This may be because the redo has not yet been shipped or there may be a gap.

	
Data Guard Status

Use the Data Guard Status metric to check the status of each database in the Data Guard configuration.By default, a critical and warning threshold value was set for this metric column. Alerts will be generated when threshold values are reached. You can edit the value for a threshold, as required.

	
Fast-Start Failover Occurred

When fast-start failover is enabled, this metric generates a critical alert on the new primary database (old standby database) if a fast-start failover occurs. The fast-start failover SCN must be initialized to a value before the metric will alert. This usually takes one collection interval. Once a fast-start failover occurs and the new primary database is ready, the fast-start failover alert is generated. The alert is cleared after one collection interval. A critical alert is configured by default.

	
Both primary and standby databases must be configured with SYSDBA monitoring access.

	
Shows the time when a fast-start failover occurred: the value is zero if fast-start failover has not occurred and one if fast-start failover occurred.

	
Fast-Start Failover SCN

When fast-start failover is enabled, this metric generates a critical alert on the new primary database (old standby database) if a fast-start failover occurs. The fast-start failover SCN must be initialized to a value before the metric will alert. This usually takes one collection interval. Once a fast-start failover occurs and the new primary database is ready, the fast-start failover alert is generated. The alert is cleared after one collection interval. A critical alert is configured by default.

	
Both primary and standby databases must be configured with SYSDBA monitoring access.

	
Any value indicates the metric is ready to trigger.

	
Fast-Start Failover Time

When fast-start failover is enabled, this metric will generate a critical alert on the new primary database (old standby database) if a fast-start failover occurs. The fast-start failover SCN must be initialized to a value before the metric will create an alert. This usually takes one collection interval. Once a fast-start failover occurs and the new primary database is ready, the fast-start failover alert fires. It then clears after one collection interval. A critical alert is configured by default.

	
Both primary and standby databases must be configured with SYSDBA monitoring access.

	
A time stamp displays if fast-start failover occurred.

	
See Also:

Oracle Enterprise Manager online Help system

	
New support for Change Data Capture and Streams:

	
Distributed (heterogeneous) Asynchronous Change Data Capture

	
Downstream Capture Hot Mining

	
See Also:

Oracle Streams Concepts and Administration and Oracle Database Data Warehousing Guide (for Change Data Capture information)

New Features Specific to Redo Apply and Physical Standby Databases

The following list summarizes the new features that are specific to Redo Apply and physical standby databases in Oracle Database 10g Release 2 (10.2):

	
Faster Redo Apply failover

Allows you to transition a physical standby database to the primary database role without doing a database restart, as long as the standby database has not been opened read-only since the last time it was started.

This enables faster recovery from a failure or outage, increasing the availability of the system.

	
See Also:

Section 7.2.2, "Failovers Involving a Physical Standby Database"

	
Easy conversion of a physical standby database to a reporting database

A physical standby database can be activated as a primary database, opened read/write for reporting purposes, and then flashed back to a point in the past to be easily converted back to a physical standby database. At this point, Data Guard automatically synchronizes the standby database with the primary database. This allows the physical standby database to be utilized for reporting and read/write cloning activities.

	
See Also:

Section 12.6, "Using a Physical Standby Database for Read/Write Testing and Reporting"

	
New FORCE keyword on RECOVER MANAGED STANDBY DATABASE FINISH

The new FORCE option on the ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH statement stops active RFS processes on the target standby database so the failover will proceed immediately, as soon as the logs have been applied.

	
See Also:

Section 7.2.2, "Failovers Involving a Physical Standby Database" and the ALTER DATABASE syntax in Oracle Database SQL Reference

	
RMAN automatically re-creates tempfiles after recovery

Temporary datafiles that belong to locally managed temporary tablespaces are automatically created during the recovery operation by RMAN, thus it is no longer necessary to create and associate a tempfile with a temporary tablespace on a physical standby database.

	
Miscellaneous changes improve usage and manageability

By deprecating unnecessary initialization parameters and certain SQL statement clauses and keywords, the usage and manageability of physical standby databases has been improved.

	
See Also:

The SQL statements relevant to Data Guard in Oracle Database SQL Reference and the LOG_ARCHIVE_DEST_n initialization parameter in Oracle Database Reference

New Features Specific to SQL Apply and Logical Standby Databases

The following list summarizes the new features for SQL Apply and logical standby databases in Oracle Database 10g Release 2 (10.2):

	
Faster SQL Apply failover

Failover to a logical standby database can now be completed much faster because it is no longer necessary to restart SQL Apply as a part of the failover operation. This enables the Data Guard configuration to recover from a failure or outage much faster, increasing the availability of the system.

	
See Also:

Section 7.3.2, "Failovers Involving a Logical Standby Database"

	
Additional datatype support for Index Organized Tables

SQL Apply now supports mining of redo records generated by index organized tables containing LOB columns and overflow segments.

	
See Also:

Section 4.1.1, "Determine Support for Data Types and Storage Attributes for Tables"

	
Automatic deletion of applied archived redo log files

Archived log files, once they are applied on the logical standby database, will be automatically deleted by SQL Apply. This reduces storage consumption on the logical standby database and improves Data Guard manageability.

	
See Also:

Section 9.3.2, "Automatic Deletion of Log Files"

	
Optimized creation of logical standby database

Creation of a logical standby database no longer requires the creation of a specialized logical standby control file, which could not be used by RMAN. Logical standby databases can now be created easily from a physical standby database. This reduces the specialized manual operations for creating a logical standby database and improves Data Guard manageability.

	
See Also:

Section 4.2, "Step-by-Step Instructions for Creating a Logical Standby Database"

	
Added several enhancements for managing logical standby databases:

	
New views:

	
V$LOGSTDBY_PROCESS (replaces the deprecated V$LOGSTDBY view)

	
V$LOGSTDBY_STATE

	
V$LOGSTDBY_PROGRESS

	
V$LOGSTDBY_TRANSACTION

	
V$DATAGUARD_STATS

	
New DBMS_LOGSTDBY.REBUILD() subprogram on the DBMS_LOGSTDBY PL/SQL package

	
Tracing

	
See Also:

Chapter 9, "Managing a Logical Standby Database"

Part I

Concepts and Administration

This part contains the following chapters:

	
Chapter 1, "Introduction to Oracle Data Guard"

	
Chapter 2, "Getting Started with Data Guard"

	
Chapter 3, "Creating a Physical Standby Database"

	
Chapter 4, "Creating a Logical Standby Database"

	
Chapter 5, "Redo Transport Services"

	
Chapter 6, "Log Apply Services"

	
Chapter 7, "Role Transitions"

	
Chapter 8, "Managing a Physical Standby Database"

	
Chapter 9, "Managing a Logical Standby Database"

	
Chapter 10, "Using RMAN to Back Up and Restore Files"

	
Chapter 11, "Using SQL Apply to Upgrade the Oracle Database"

	
Chapter 12, "Data Guard Scenarios"

1 Introduction to Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery for enterprise data. Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive disasters and data corruptions. Data Guard maintains these standby databases as transactionally consistent copies of the production database. Then, if the production database becomes unavailable because of a planned or an unplanned outage, Data Guard can switch any standby database to the production role, minimizing the downtime associated with the outage. Data Guard can be used with traditional backup, restoration, and cluster techniques to provide a high level of data protection and data availability.

With Data Guard, administrators can optionally improve production database performance by offloading resource-intensive backup and reporting operations to standby systems.

This chapter includes the following topics that describe the highlights of Oracle Data Guard:

	
Data Guard Configurations

	
Data Guard Services

	
Data Guard Broker

	
Data Guard Protection Modes

	
Data Guard and Complementary Technologies

	
Summary of Data Guard Benefits

1.1 Data Guard Configurations

A Data Guard configuration consists of one production database and one or more standby databases. The databases in a Data Guard configuration are connected by Oracle Net and may be dispersed geographically. There are no restrictions on where the databases are located, provided they can communicate with each other. For example, you can have a standby database on the same system as the production database, along with two standby databases on other systems at remote locations.

You can manage primary and standby databases using the SQL command-line interfaces or the Data Guard broker interfaces, including a command-line interface (DGMGRL) and a graphical user interface that is integrated in Oracle Enterprise Manager.

1.1.1 Primary Database

A Data Guard configuration contains one production database, also referred to as the primary database, that functions in the primary role. This is the database that is accessed by most of your applications.

The primary database can be either a single-instance Oracle database or an Oracle Real Application Clusters database.

1.1.2 Standby Databases

A standby database is a transactionally consistent copy of the primary database. Using a backup copy of the primary database, you can create up to nine standby databases and incorporate them in a Data Guard configuration. Once created, Data Guard automatically maintains each standby database by transmitting redo data from the primary database and then applying the redo to the standby database.

Similar to a primary database, a standby database can be either a single-instance Oracle database or an Oracle Real Application Clusters database.

A standby database can be either a physical standby database or a logical standby database:

	
Physical standby database

Provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, are the same. A physical standby database is kept synchronized with the primary database, though Redo Apply, which recovers the redo data received from the primary database and applies the redo to the physical standby database.

A physical standby database can be used for business purposes other than disaster recovery on a limited basis.

	
Logical standby database

Contains the same logical information as the production database, although the physical organization and structure of the data can be different. The logical standby database is kept synchronized with the primary database though SQL Apply, which transforms the data in the redo received from the primary database into SQL statements and then executing the SQL statements on the standby database.

A logical standby database can be used for other business purposes in addition to disaster recovery requirements. This allows users to access a logical standby database for queries and reporting purposes at any time. Also, using a logical standby database, you can upgrade Oracle Database software and patch sets with almost no downtime. Thus, a logical standby database can be used concurrently for data protection, reporting, and database upgrades.

1.1.3 Configuration Example

Figure 1-1 shows a typical Data Guard configuration that contains a primary database that transmits redo data to a standby database. The standby database is remotely located from the primary database for disaster recovery and backup operations. You can configure the standby database at the same location as the primary database. However, for disaster recovery purposes, Oracle recommends you configure standby databases at remote locations.

Figure 1-1 shows a typical Data Guard configuration in which redo is being applied out of standby redo log files to a standby database.

Figure 1-1 Typical Data Guard Configuration

[image: Description of Figure 1-1 follows]

1.2 Data Guard Services

The following sections explain how Data Guard manages the transmission of redo data, the application of redo data, and changes to the database roles:

	
Redo Transport Services

Control the automated transfer of redo data from the production database to one or more archival destinations.

	
Log Apply Services

Apply redo data on the standby database to maintain transactional synchronization with the primary database. Redo data can be applied either from archived redo log files, or, if real-time apply is enabled, directly from the standby redo log files as they are being filled, without requiring the redo data to be archived first at the standby database.

	
Role Transitions

Change the role of a database from a standby database to a primary database, or from a primary database to a standby database using either a switchover or a failover operation.

1.2.1 Redo Transport Services

Redo transport services control the automated transfer of redo data from the production database to one or more archival destinations.

Redo transport services perform the following tasks:

	
Transmit redo data from the primary system to the standby systems in the configuration

	
Manage the process of resolving any gaps in the archived redo log files due to a network failure

	
Enforce the database protection modes (described in Section 1.4)

	
Automatically detect missing or corrupted archived redo log files on a standby system and automatically retrieve replacement archived redo log files from the primary database or another standby database

1.2.2 Log Apply Services

The redo data transmitted from the primary database is written on the standby system into standby redo log files, if configured, and then archived into archived redo log files. Log apply services automatically apply the redo data on the standby database to maintain consistency with the primary database. It also allows read-only access to the data.

The main difference between physical and logical standby databases is the manner in which log apply services apply the archived redo data:

	
For physical standby databases, Data Guard uses Redo Apply technology, which applies redo data on the standby database using standard recovery techniques of an Oracle database, as shown in Figure 1-2.

Figure 1-2 Automatic Updating of a Physical Standby Database

[image: Description of Figure 1-2 follows]

	
For logical standby databases, Data Guard uses SQL Apply technology, which first transforms the received redo data into SQL statements and then executes the generated SQL statements on the logical standby database, as shown in Figure 1-3.

Figure 1-3 Automatic Updating of a Logical Standby Database

[image: Description of Figure 1-3 follows]

1.2.3 Role Transitions

An Oracle database operates in one of two roles: primary or standby. Using Data Guard, you can change the role of a database using either a switchover or a failover operation.

A switchover is a role reversal between the primary database and one of its standby databases. A switchover ensures no data loss. This is typically done for planned maintenance of the primary system. During a switchover, the primary database transitions to a standby role, and the standby database transitions to the primary role. The transition occurs without having to re-create either database.

A failover is when the primary database is unavailable. Failover is performed only in the event of a catastrophic failure of the primary database, and the failover results in a transition of a standby database to the primary role. The database administrator can configure Data Guard to ensure no data loss.

The role transitions described in this documentation are invoked manually using SQL statements. You can also use the Oracle Data Guard broker to simplify role transitions and automate failovers using Oracle Enterprise Manager or the DGMGRL command-line interface, as described in Section 1.3.

1.3 Data Guard Broker

The Data Guard broker is a distributed management framework that automates the creation, maintenance, and monitoring of Data Guard configurations. You can use either the Oracle Enterprise Manager graphical user interface (GUI) or the Data Guard command-line interface (DGMGRL) to:

	
Create and enable Data Guard configurations, including setting up redo transport services and log apply services

	
Manage an entire Data Guard configuration from any system in the configuration

	
Manage and monitor Data Guard configurations that contain Real Application Clusters primary or standby databases

	
Simplify switchovers and failovers by allowing you to invoke them using either a single key click in Oracle Enterprise Manager or a single command in the DGMGRL command-line interface.

	
Enable fast-start failover to fail over automatically when the primary database becomes unavailable. When fast-start failover is enabled, the Data Guard broker determines if a failover is necessary and initiates the failover to the specified target standby database automatically, with no need for DBA intervention and with no loss of data.

In addition, Oracle Enterprise Manager automates and simplifies:

	
Creating a physical or logical standby database from a backup copy of the primary database

	
Adding new or existing standby databases to an existing Data Guard configuration

	
Monitoring log apply rates, capturing diagnostic information, and detecting problems quickly with centralized monitoring, testing, and performance tools

	
See Also:

Oracle Data Guard Broker for more information

1.3.1 Using Oracle Enterprise Manager

Oracle Enterprise Manager, also referred to as Enterprise Manager, provides a web-based interface for viewing, monitoring, and administering primary and standby databases in a Data Guard configuration. Enterprise Manager's easy-to-use interfaces combined with the broker's centralized management and monitoring of the Data Guard configuration enhance the Data Guard solution for high availability, site protection, and data protection of an enterprise.

From the Enterprise Manager Central Console, all management operations can be performed locally or remotely. You can view home pages for Oracle databases, including primary and standby databases and instances, create or add existing standby databases, start and stop instances, monitor instance performance, view events, schedule jobs, and perform backup and recovery operations. See Oracle Data Guard Broker and the Oracle Enterprise Manager online help system.

Figure 1-4 shows the Data Guard management overview page in Enterprise Manager.

Figure 1-4 Data Guard Overview Page in Oracle Enterprise Manager

[image: Description of Figure 1-4 follows]

1.3.2 Using the Data Guard Command-Line Interface

The Data Guard command-line interface (DGMGRL) enables you to control and monitor a Data Guard configuration from the DGMGRL prompt or within scripts. You can perform most of the activities required to manage and monitor the databases in the configuration using DGMGRL. See Oracle Data Guard Broker for complete DGMGRL reference information and examples.

1.4 Data Guard Protection Modes

In some situations, a business cannot afford to lose data. In other situations, the availability of the database may be more important than the loss of data. Some applications require maximum database performance and can tolerate some small amount of data loss. The following descriptions summarize the three distinct modes of data protection.

Maximum protection This protection mode ensures that no data loss will occur if the primary database fails. To provide this level of protection, the redo data needed to recover each transaction must be written to both the local online redo log and to the standby redo log on at least one standby database before the transaction commits. To ensure data loss cannot occur, the primary database shuts down if a fault prevents it from writing its redo stream to the standby redo log of at least one transactionally consistent standby database.

Maximum availability This protection mode provides the highest level of data protection that is possible without compromising the availability of the primary database. Like maximum protection mode, a transaction will not commit until the redo needed to recover that transaction is written to the local online redo log and to the standby redo log of at least one transactionally consistent standby database. Unlike maximum protection mode, the primary database does not shut down if a fault prevents it from writing its redo stream to a remote standby redo log. Instead, the primary database operates in maximum performance mode until the fault is corrected, and all gaps in redo log files are resolved. When all gaps are resolved, the primary database automatically resumes operating in maximum availability mode.

This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.

Maximum performance This protection mode (the default) provides the highest level of data protection that is possible without affecting the performance of the primary database. This is accomplished by allowing a transaction to commit as soon as the redo data needed to recover that transaction is written to the local online redo log. The primary database's redo data stream is also written to at least one standby database, but that redo stream is written asynchronously with respect to the transactions that create the redo data.

When network links with sufficient bandwidth are used, this mode provides a level of data protection that approaches that of maximum availability mode with minimal impact on primary database performance.

The maximum protection and maximum availability modes require that standby redo log files are configured on at least one standby database in the configuration. All three protection modes require that specific log transport attributes be specified on the LOG_ARCHIVE_DEST_n initialization parameter to send redo data to at least one standby database. See Section 5.6 for complete information about the data protection modes.

1.5 Data Guard and Complementary Technologies

Oracle Database provides several unique technologies that complement Data Guard to help keep business critical systems running with greater levels of availability and data protection than when using any one solution by itself. The following list summarizes some Oracle high-availability technologies:

	
Oracle Real Application Clusters (RAC)

RAC enables multiple independent servers that are linked by an interconnect to share access to an Oracle database, providing high availability, scalability, and redundancy during failures. RAC and Data Guard together provide the benefits of both system-level, site-level, and data-level protection, resulting in high levels of availability and disaster recovery without loss of data:

	
RAC addresses system failures by providing rapid and automatic recovery from failures, such as node failures and instance crashes. It also provides increased scalability for applications.

	
Data Guard addresses site failures and data protection through transactionally consistent primary and standby databases that do not share disks, enabling recovery from site disasters and data corruption.

Many different architectures using RAC and Data Guard are possible depending on the use of local and remote sites and the use of nodes and a combination of logical and physical standby databases. See Appendix D, "Data Guard and Real Application Clusters" and Oracle Database High Availability Overview for RAC and Data Guard integration.

	
Flashback Database

The Flashback Database feature provides fast recovery from logical data corruption and user errors. By allowing you to flash back in time, previous versions of business information that might have been erroneously changed or deleted can be accessed once again. This feature:

	
Eliminates the need to restore a backup and roll forward changes up to the time of the error or corruption. Instead, Flashback Database can roll back an Oracle database to a previous point-in-time, without restoring datafiles.

	
Provides an alternative to delaying the application of redo to protect against user errors or logical corruptions. Therefore, standby databases can be more closely synchronized with the primary database, thus reducing failover and switchover times.

	
Avoids the need to completely re-create the original primary database after a failover. The failed primary database can be flashed back to a point in time before the failover and converted to be a standby database for the new primary database.

See Oracle Database Backup and Recovery Advanced User's Guide for information about Flashback Database, and Section 6.2.2 for information delaying the application of redo data.

	
Recovery Manager (RMAN)

RMAN is an Oracle utility that simplifies backing up, restoring, and recovering database files. Like Data Guard, RMAN is a feature of the Oracle database and does not require separate installation. Data Guard is well integrated with RMAN, allowing you to:

	
Use the Recovery Manager DUPLICATE command to create a standby database from backups of your primary database.

	
Take backups on a physical standby database instead of the production database, relieving the load on the production database and enabling efficient use of system resources on the standby site. Moreover, backups can be taken while the physical standby database is applying redo.

	
Help manage archived redo log files by automatically deleting the archived redo log files used for input after performing a backup.

See Appendix F, "Creating a Standby Database with Recovery Manager" and Oracle Database Backup and Recovery Basics.

1.6 Summary of Data Guard Benefits

Data Guard offers these benefits:

	
Disaster recovery, data protection, and high availability

Data Guard provides an efficient and comprehensive disaster recovery and high availability solution. Easy-to-manage switchover and failover capabilities allow role reversals between primary and standby databases, minimizing the downtime of the primary database for planned and unplanned outages.

	
Complete data protection

Data Guard can ensure no data loss, even in the face of unforeseen disasters. A standby database provides a safeguard against data corruption and user errors. Storage level physical corruptions on the primary database do not propagate to the standby database. Similarly, logical corruptions or user errors that cause the primary database to be permanently damaged can be resolved. Finally, the redo data is validated when it is applied to the standby database.

	
Efficient use of system resources

The standby database tables that are updated with redo data received from the primary database can be used for other tasks such as backups, reporting, summations, and queries, thereby reducing the primary database workload necessary to perform these tasks, saving valuable CPU and I/O cycles. With a logical standby database, users can perform normal data manipulation on tables in schemas that are not updated from the primary database. A logical standby database can remain open while the tables are updated from the primary database, and the tables are simultaneously available for read-only access. Finally, additional indexes and materialized views can be created on the maintained tables for better query performance and to suit specific business requirements.

	
Flexibility in data protection to balance availability against performance requirements

Oracle Data Guard offers maximum protection, maximum availability, and maximum performance modes to help enterprises balance data availability against system performance requirements.

	
Automatic gap detection and resolution

If connectivity is lost between the primary and one or more standby databases (for example, due to network problems), redo data being generated on the primary database cannot be sent to those standby databases. Once a connection is reestablished, the missing archived redo log files (referred to as a gap) are automatically detected by Data Guard, which then automatically transmits the missing archived redo log files to the standby databases. The standby databases are synchronized with the primary database, without manual intervention by the DBA.

	
Centralized and simple management

The Data Guard broker provides a graphical user interface and a command-line interface to automate management and operational tasks across multiple databases in a Data Guard configuration. The broker also monitors all of the systems within a single Data Guard configuration.

	
Integration with Oracle Database

Data Guard is a feature of Oracle Database Enterprise Edition and does not require separate installation.

	
Automatic role transitions

When fast-start failover is enabled, the Data Guard broker automatically fails over to a synchronized standby site in the event of a disaster at the primary site, requiring no intervention by the DBA. In addition, applications are automatically notified of the role transition.

2 Getting Started with Data Guard

A Data Guard configuration contains a primary database and up to nine associated standby databases. This chapter describes the following considerations for getting started with Data Guard:

	
Standby Database Types

	
User Interfaces for Administering Data Guard Configurations

	
Data Guard Operational Prerequisites

	
Standby Database Directory Structure Considerations

	
Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

2.1 Standby Database Types

A standby database is a transactionally consistent copy of an Oracle production database that is initially created from a backup copy of the primary database. Once the standby database is created and configured, Data Guard automatically maintains the standby database by transmitting primary database redo data to the standby system, where the redo data is applied to the standby database.

A standby database can be one of two types: a physical standby database or a logical standby database. If needed, either type of standby database can assume the role of the primary database and take over production processing. A Data Guard configuration can include physical standby databases, logical standby databases, or a combination of both types.

2.1.1 Physical Standby Databases

A physical standby database is physically identical to the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, are identical.

Data Guard maintains a physical standby database by performing Redo Apply. When it is not performing recovery, a physical standby database can be open in read-only mode, or it can be opened temporarily in read/write mode if Flashback Database is enabled.

	
Redo Apply

The physical standby database is maintained by applying redo data from the archived redo log files or directly from standby redo log files on the standby system using the Oracle recovery mechanism. The recovery operation applies changes in redo blocks to data block using the data-block address. The database cannot be opened while redo is being applied.

	
Open read-only

A physical standby database can be open in read-only mode so that you can execute queries on the database. While opened in read-only mode, the standby database can continue to receive redo data, but application of the redo data from the log files is deferred until the database resumes Redo Apply.

Although the physical standby database cannot perform both Redo Apply and be opened in read-only mode at the same time, you can switch between them. For example, you can perform Redo Apply, then open it in read-only mode for applications to run reports, and then change it back to perform Redo Apply to apply any outstanding archived redo log files. You can repeat this cycle, alternating between Redo Apply and read-only, as necessary.

The physical standby database is available to perform backups. Furthermore, the physical standby database will continue to receive redo data even if archived redo log files or standby redo log files are not being applied at that moment.

	
Open read/write

A physical standby database can also be opened for read/write access for purposes such as creating a clone database or for read/write reporting. While opened in read/write mode, the standby database does not receive redo data from the primary database and cannot provide disaster protection.

The physical standby database can be opened temporarily in read/write mode for development, reporting, or testing purposes, and then flashed back to a point in the past to be reverted back to a physical standby database. When the database is flashed back, Data Guard automatically synchronizes the standby database with the primary database, without the need to re-create the physical standby database from a backup copy of the primary database.

	
See Also:

Section 12.6 for usage examples

Benefits of a Physical Standby Database

A physical standby database provides the following benefits:

	
Disaster recovery and high availability

A physical standby database enables a robust and efficient disaster recovery and high availability solution. Easy-to-manage switchover and failover capabilities allow easy role reversals between primary and physical standby databases, minimizing the downtime of the primary database for planned and unplanned outages.

	
Data protection

Using a physical standby database, Data Guard can ensure no data loss, even in the face of unforeseen disasters. A physical standby database supports all datatypes, and all DDL and DML operations that the primary database can support. It also provides a safeguard against data corruptions and user errors. Storage level physical corruptions on the primary database do not propagate to the standby database. Similarly, logical corruptions or user errors that cause the primary database to be permanently damaged can be resolved. Finally, the redo data is validated when it is applied to the standby database.

	
Reduction in primary database workload

Oracle Recovery Manager (RMAN) can use physical standby databases to off-load backups from the primary database saving valuable CPU and I/O cycles. The physical standby database can also be opened in read-only mode for reporting and queries.

	
Performance

The Redo Apply technology used by the physical standby database applies changes using low-level recovery mechanisms, which bypass all SQL level code layers; therefore, it is the most efficient mechanism for applying high volumes of redo data.

2.1.2 Logical Standby Databases

A logical standby database is initially created as an identical copy of the primary database, but it later can be altered to have a different structure. The logical standby database is updated by executing SQL statements. This allows users to access the standby database for queries and reporting at any time. Thus, the logical standby database can be used concurrently for data protection and reporting operations.

Data Guard automatically applies information from the archived redo log file or standby redo log file to the logical standby database by transforming the data in the log files into SQL statements and then executing the SQL statements on the logical standby database. Because the logical standby database is updated using SQL statements, it must remain open. Although the logical standby database is opened in read/write mode, its target tables for the regenerated SQL are available only for read-only operations. While those tables are being updated, they can be used simultaneously for other tasks such as reporting, summations, and queries. Moreover, these tasks can be optimized by creating additional indexes and materialized views on the maintained tables.

A logical standby database has some restrictions on datatypes, types of tables, and types of DDL and DML operations. Section 4.1.1 describes the unsupported datatypes and storage attributes for tables.

Benefits of a Logical Standby Database

A logical standby database provides similar disaster recovery, high availability, and data protection benefits as a physical standby database. It also provides the following specialized benefits:

	
Efficient use of standby hardware resources

A logical standby database can be used for other business purposes in addition to disaster recovery requirements. It can host additional database schemas beyond the ones that are protected in a Data Guard configuration, and users can perform normal DDL or DML operations on those schemas any time. Because the logical standby tables that are protected by Data Guard can be stored in a different physical layout than on the primary database, additional indexes and materialized views can be created to improve query performance and suit specific business requirements.

	
Reduction in primary database workload

A logical standby database can remain open at the same time its tables are updated from the primary database, and those tables are simultaneously available for read access. This makes a logical standby database an excellent choice to do queries, summations, and reporting activities, thereby off-loading the primary database from those tasks and saving valuable CPU and I/O cycles.

2.2 User Interfaces for Administering Data Guard Configurations

You can use the following interfaces to configure, implement, and manage a Data Guard configuration:

	
Oracle Enterprise Manager

Enterprise Manager provides a GUI interface for the Data Guard broker that automates many of the tasks involved in creating, configuring, and monitoring a Data Guard environment. See Oracle Data Guard Broker and the Oracle Enterprise Manager online Help for information about the GUI and its wizards.

	
SQL*Plus Command-line interface

Several SQL*Plus statements use the STANDBY keyword to specify operations on a standby database. Other SQL statements do not include standby-specific syntax, but they are useful for performing operations on a standby database. See Chapter 15 for a list of the relevant statements.

	
Initialization parameters

Several initialization parameters are used to define the Data Guard environment. See Chapter 13 for a list of the relevant initialization parameters.

	
Data Guard broker command-line interface (DGMGRL)

The DGMGRL command-line interface is an alternative to using Oracle Enterprise Manager. The DGMGRL command-line interface is useful if you want to use the broker to manage a Data Guard configuration from batch programs or scripts. See Oracle Data Guard Broker for complete information.

2.3 Data Guard Operational Prerequisites

The following sections describe operational requirements for using Data Guard:

	
Hardware and Operating System Requirements

	
Oracle Software Requirements

2.3.1 Hardware and Operating System Requirements

The following list describes hardware and operating system requirements for using Data Guard:

	
All members of a Data Guard configuration must run an Oracle image that is built for the same platform.

For example, this means a Data Guard configuration with a primary database on a 32-bit Linux on Intel system can have a standby database that is configured on a 32-bit Linux on Intel system. However, a primary database on a 64-bit HP-UX system can also be configured with a standby database on a 32-bit HP-UX system, as long as both servers are running 32-bit images.

	
The hardware (for example, the number of CPUs, memory size, storage configuration) can be different between the primary and standby systems.

If the standby system is smaller than the primary system, you may have to restrict the work that can be done on the standby system after a switchover or failover. The standby system must have enough resources available to receive and apply all redo data from the primary database. The logical standby database requires additional resources to translate the redo data into SQL statements and then execute the SQL on the logical standby database.

	
The operating system running on the primary and standby locations must be the same, but the operating system release does not need to be the same. In addition, the standby database can use a different directory structure from the primary database.

2.3.2 Oracle Software Requirements

The following list describes Oracle software requirements for using Data Guard:

	
Oracle Data Guard is available only as a feature of Oracle Database Enterprise Edition. It is not available with Oracle Database Standard Edition. This means the same release of Oracle Database Enterprise Edition must be installed on the primary database and all standby databases in a Data Guard configuration.

	
Note:

It is possible to simulate a standby database environment with databases running Oracle Database Standard Edition. You can do this by manually transferring archived redo log files using an operating system copy utility or using custom scripts that periodically send archived redo log files from one database to the other. The consequence is that this configuration does not provide the ease-of-use, manageability, performance, and disaster-recovery capabilities available with Data Guard.

	
Using Data Guard SQL Apply, you will be able to perform a rolling upgrade of the Oracle database software from patch set release n (minimally, this must be release 10.1.0.3) to the next database 10.1.0.(n+1) patch set release. During a rolling upgrade, you can run different releases of the Oracle database on the primary and logical standby databases while you upgrade them, one at a time. For complete information, see Chapter 11, "Using SQL Apply to Upgrade the Oracle Database" and the ReadMe file for the applicable Oracle Database 10g patch set release.

	
The COMPATIBLE initialization parameter must be set to the same value on all databases in a Data Guard configuration.

	
If you are currently running Oracle Data Guard on Oracle8i database software, see Oracle Database Upgrade Guide for complete information about upgrading to Oracle Data Guard.

	
The primary database must run in ARCHIVELOG mode. See Oracle Database Administrator's Guide for more information.

	
The primary database can be a single instance database or a multi-instance Real Application Clusters database. The standby databases can be single instance databases or multi-instance Real Application Clusters (RAC) databases, and these standby databases can be a mix of both physical and logical types. See Oracle Database High Availability Overview for more information about configuring and using Oracle Data Guard with RAC.

	
Each primary database and standby database must have its own control file.

	
If a standby database is located on the same system as the primary database, the archival directories for the standby database must use a different directory structure than the primary database. Otherwise, the standby database may overwrite the primary database files.

	
To protect against unlogged direct writes in the primary database that cannot be propagated to the standby database, turn on FORCE LOGGING at the primary database before performing datafile backups for standby creation. Keep the database in FORCE LOGGING mode as long as the standby database is required.

	
The user accounts you use to manage the primary and standby database instances must have SYSDBA system privileges.

	
Oracle recommends that when you set up Oracle Automatic Storage Management (ASM) and Oracle Managed Files (OMF) in a Data Guard configuration, set it up symmetrically on the primary and standby database. That is, if any database in the Data Guard configuration uses ASM, OMF, or both, then every database in the configuration should use ASM, OMF, or both, respectively. See the scenario in Section 12.12 for more information.

	
Note:

Because some applications that perform updates involving time-based data cannot handle data entered from multiple time zones, consider setting the time zone for the primary and remote standby systems to be the same to ensure the chronological ordering of records is maintained after a role transition.

2.4 Standby Database Directory Structure Considerations

The directory structure of the various standby databases is important because it determines the path names for the standby datafiles, archived redo log files, and standby redo log files. If possible, the datafiles, log files, and control files on the primary and standby systems should have the same names and path names and use Optimal Flexible Architecture (OFA) naming conventions. The archival directories on the standby database should also be identical between sites, including size and structure. This strategy allows other operations such as backups, switchovers, and failovers to execute the same set of steps, reducing the maintenance complexity.

Otherwise, you must set the filename conversion parameters (as shown in Table 2-1) or rename the datafile. Nevertheless, if you need to use a system with a different directory structure or place the standby and primary databases on the same system, you can do so with a minimum of extra administration.

The three basic configuration options are illustrated in Figure 2-1. These include:

	
A standby database on the same system as the primary database that uses a different directory structure than the primary system. This is illustrated in Figure 2-1 as Standby1.

If you have a standby database on the same system as the primary database, you must use a different directory structure. Otherwise, the standby database attempts to overwrite the primary database files.

	
A standby database on a separate system that uses the same directory structure as the primary system. This is illustrated in Figure 2-1 as Standby2. This is the recommended method.

	
A standby database on a separate system that uses a different directory structure than the primary system. This is illustrated in Figure 2-1 as Standby3.

	
Note:

if any database in the Data Guard configuration uses ASM, OMF, or both, then every database in the configuration should use ASM, OMF, or both, respectively. See Chapter 12 for a scenario describing how to set up OMF in a Data Guard configuration.

Figure 2-1 Possible Standby Configurations

[image: Description of Figure 2-1 follows]

Table 2-1 describes possible configurations of primary and standby databases and the consequences of each. In the table, note that the service name defaults to the concatenation of the DB_UNIQUE_NAME and DB_DOMAIN initialization parameters. You must specify a unique value for the DB_UNIQUE_NAME initialization parameter when more than one member of a Data Guard configuration resides on the same system. Oracle recommends that the value of the DB_UNIQUE_NAME initialization parameter always be unique, even if each database is located on a separate system.

Table 2-1 Standby Database Location and Directory Options

	Standby System	Directory Structure	Consequences
	
Same as primary system

	
Different than primary system (required)

	
	
You must set the DB_UNIQUE_NAME initialization parameter.

	
You can either manually rename files or set up the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters on the standby database to automatically update the path names for primary database datafiles and archived redo log files and standby redo log files in the standby database control file. (See Section 3.1.4.)

	
The standby database does not protect against disasters that destroy the system on which the primary and standby databases reside, but it does provide switchover capabilities for planned maintenance.

	
Separate system

	
Same as primary system

	
	
You do not need to rename primary database files, archived redo log files, and standby redo log files in the standby database control file, although you can still do so if you want a new naming scheme (for example, to spread the files among different disks).

	
By locating the standby database on separate physical media, you safeguard the data on the primary database against disasters that destroy the primary system.

	
Separate system

	
Different than primary system

	
	
You can either manually rename files or set up the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters on the standby database to automatically rename the datafiles (see Section 3.1.4).

	
By locating the standby database on separate physical media, you safeguard the data on the primary database against disasters that destroy the primary system.

2.5 Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

The most crucial structures for Data Guard recovery operations are online redo logs, archived redo logs, and standby redo logs. Redo data transmitted from the primary database is received by the remote file server (RFS) process on the standby system where the RFS process writes the redo data to archived log files or standby redo log files. Redo data can be applied either after the redo is written to the archived redo log file or standby redo log file, or, if real-time apply is enabled, directly from the standby redo log file as it is being filled.

This documentation assumes that you already understand the concepts behind online redo logs and archived redo logs. Section 2.5.1 supplements the basic concepts by providing information that is specific to Data Guard configurations. Section 2.5.2 provides detailed information about using standby redo log files.

See Oracle Database Administrator's Guide for more information about redo logs and archive logs, and Section 6.2.1 for information about real-time apply.

2.5.1 Online Redo Logs and Archived Redo Logs

The transmission of redo is integral to maintaining the transactional consistency of the primary and standby databases. Both online redo logs and archived redo logs are required in a Data Guard environment:

	
Online redo logs

Every instance of an Oracle primary database and logical standby database has an online redo log to protect the database in case of an instance failure. Physical standby databases do not use an online redo log, because physical standby databases are not opened for read/write I/O. Changes are not made to the physical standby database and new redo data is not generated.

	
Archived redo logs

An archived redo log is required because archiving is the method used to keep standby databases transactionally consistent with the primary database. Primary databases, and both physical and logical standby databases all use an archived redo log. Oracle databases are set up, by default, to run in ARCHIVELOG mode so that the archiver (ARCn) process automatically copies each filled online redo log file to one or more archived redo log files.

Unlike physical standby databases, logical standby databases are open databases that generate redo data and have multiple log files, including online redo log files, archived redo log files, and standby redo log files (if configured).

Both the size of the online redo log files and the frequency with which a log switch occurs can affect the generation of the archived redo log files at the primary site. The Oracle Database High Availability Overview provides recommendations for log group sizing.

An Oracle database will attempt a checkpoint at each log switch. Therefore, if the size of the online redo log file is too small, frequent log switches lead to frequent checkpointing and negatively affect system performance on the standby database.

	
See Also:

Oracle Database Administrator's Guide for more details about configuring redo logs, archive logs, and log groups

2.5.2 Standby Redo Logs

A standby redo log is similar to an online redo log, except that a standby redo log is used to store redo data received from another database.

A standby redo log is required if you want to implement:

	
The maximum protection and maximum availability levels of data protection (described in Section 1.4 and in more detail in Section 5.6)

	
Real-time apply (described in Section 6.2)

	
Cascaded destinations (described in Appendix E)

A standby redo log provides a number of advantages:

	
Standby redo log files can reside on raw devices, which may be important if either or both the primary and standby databases reside in a Real Application Clusters environment.

	
Standby redo log files can be multiplexed using multiple members, improving reliability over archived log files.

	
During a failover, Data Guard can recover and apply more redo data from standby redo log files than from the archived log files alone.

	
The archiver (ARCn) process or the log writer (LGWR) process on the primary database can transmit redo data directly to remote standby redo log files, potentially eliminating the need to register a partial archived log file (for example, to recover after a standby database crashes). See Chapter 5 for more information.

Section 3.1.3 describes how to configure standby redo log files.

3 Creating a Physical Standby Database

This chapter steps you through the process of creating a physical standby database. It includes the following main topics:

	
Preparing the Primary Database for Standby Database Creation

	
Step-by-Step Instructions for Creating a Physical Standby Database

	
Post-Creation Steps

The steps described in this chapter configure the standby database for maximum performance mode, which is the default data protection mode. Chapter 5 provides information about configuring the different data protection modes. The discussions in this chapter assume that you specify initialization parameters in a server parameter file (SPFILE), instead of a text initialization parameter file (PFILE).

See also:

	
Oracle Database Administrator's Guide for information about creating and using server parameter files

	
Oracle Data Guard Broker and the Enterprise Manager online help system for information about using the graphical user interface to automatically create a physical standby database

3.1 Preparing the Primary Database for Standby Database Creation

Before you create a standby database you must first ensure the primary database is properly configured.

Table 3-1 provides a checklist of the tasks that you perform on the primary database to prepare for physical standby database creation. There is also a reference to the section that describes the task in more detail.

Table 3-1 Preparing the Primary Database for Physical Standby Database Creation

	Reference	Task
	
Section 3.1.1

	
Enable Forced Logging

	
Section 3.1.2

	
Create a Password File

	
Section 3.1.3

	
Configure a Standby Redo Log

	
Section 3.1.4

	
Set Primary Database Initialization Parameters

	
Section 3.1.5

	
Enable Archiving

	
Note:

Perform these preparatory tasks only once. After you complete these steps, the database is prepared to serve as the primary database for one or more standby databases.

3.1.1 Enable Forced Logging

Place the primary database in FORCE LOGGING mode after database creation using the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement can take a considerable amount of time to complete, because it waits for all unlogged direct write I/O to finish.

3.1.2 Create a Password File

Create a password file if one does not already exist. Every database in a Data Guard configuration must use a password file, and the password for the SYS user must be identical on every system for redo data transmission to succeed. See Oracle Database Administrator's Guide.

3.1.3 Configure a Standby Redo Log

A standby redo log is required for the maximum protection and maximum availability modes and the LGWR ASYNC transport mode is recommended for all databases. Data Guard can recover and apply more redo data from a standby redo log than from archived redo log files alone.

You should plan the standby redo log configuration and create all required log groups and group members when you create the standby database. For increased availability, consider multiplexing the standby redo log files, similar to the way that online redo log files are multiplexed.

Perform the following steps to configure the standby redo log.

Step 1 Ensure log file sizes are identical on the primary and standby databases.

The size of the current standby redo log files must exactly match the size of the current primary database online redo log files. For example, if the primary database uses two online redo log groups whose log files are 200K, then the standby redo log groups should also have log file sizes of 200K.

Step 2 Determine the appropriate number of standby redo log file groups.

Minimally, the configuration should have one more standby redo log file group than the number of online redo log file groups on the primary database. However, the recommended number of standby redo log file groups is dependent on the number of threads on the primary database. Use the following equation to determine an appropriate number of standby redo log file groups:

(maximum number of logfiles for each thread + 1) * maximum number of threads

Using this equation reduces the likelihood that the primary instance's log writer (LGWR) process will be blocked because a standby redo log file cannot be allocated on the standby database. For example, if the primary database has 2 log files for each thread and 2 threads, then 6 standby redo log file groups are needed on the standby database.

	
Note:

Logical standby databases may require more standby redo log files (or additional ARCn processes) depending on the workload. This is because logical standby databases also write to online redo log files, which take precedence over standby redo log files. Thus, the standby redo log files may not be archived as quickly as the online redo log files. Also, see Section 5.7.3.1.

Step 3 Verify related database parameters and settings.

Verify the values used for the MAXLOGFILES and MAXLOGMEMBERS clauses on the SQL CREATE DATABASE statement will not limit the number of standby redo log file groups and members that you can add. The only way to override the limits specified by the MAXLOGFILES and MAXLOGMEMBERS clauses is to re-create the primary database or control file.

See Oracle Database SQL Reference and your operating system specific Oracle documentation for the default and legal values of the MAXLOGFILES and MAXLOGMEMBERS clauses.

Step 4 Create standby redo log file groups.

To create new standby redo log file groups and members, you must have the ALTER DATABASE system privilege. The standby database begins using the newly created standby redo data the next time there is a log switch on the primary database. Example 3-1 and Example 3-2 show how to create a new standby redo log file group using the ALTER DATABASE statement with variations of the ADD STANDBY LOGFILE GROUP clause.

Example 3-1 Adding a Standby Redo Log File Group to a Specific Thread

The following statement adds a new standby redo log file group to a standby database and assigns it to THREAD 5:

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 5
 2> ('/oracle/dbs/log1c.rdo','/oracle/dbs/log2c.rdo') SIZE 500M;

The THREAD clause is required only if you want to add one or more standby redo log file groups to a specific primary database thread. If you do not include the THREAD clause and the configuration uses Real Application Clusters (RAC), Data Guard will automatically assign standby redo log file groups to threads at runtime as they are needed by the various RAC instances.

Example 3-2 Adding a Standby Redo Log File Group to a Specific Group Number

You can also specify a number that identifies the group using the GROUP clause:

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 10
 2> ('/oracle/dbs/log1c.rdo','/oracle/dbs/log2c.rdo') SIZE 500M;

Using group numbers can make administering standby redo log file groups easier. However, the group number must be between 1 and the value of the MAXLOGFILES clause. Do not skip log file group numbers (that is, do not number groups 10, 20, 30, and so on), or you will use additional space in the standby database control file.

	
Note:

Although the standby redo log is only used when the database is running in the standby role, Oracle recommends that you create a standby redo log on the primary database so that the primary database can switch over quickly to the standby role without the need for additional DBA intervention. Consider using Oracle Enterprise Manager to automatically configure standby redo log on both your primary and standby databases.

Step 5 Verify the standby redo log file groups were created.

To verify the standby redo log file groups are created and running correctly, invoke a log switch on the primary database, and then query either the V$STANDBY_LOG view or the V$LOGFILE view on the standby database once it has been created. For example:

SQL> SELECT GROUP#,THREAD#,SEQUENCE#,ARCHIVED,STATUS FROM V$STANDBY_LOG;

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 1 16 NO ACTIVE
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

3.1.4 Set Primary Database Initialization Parameters

On the primary database, you define initialization parameters that control redo transport services while the database is in the primary role. There are additional parameters you need to add that control the receipt of the redo data and log apply services when the primary database is transitioned to the standby role.

Example 3-3 shows the primary role initialization parameters that you maintain on the primary database. This example represents a Data Guard configuration with a primary database located in Chicago and one physical standby database located in Boston. The parameters shown in Example 3-3 are valid for the Chicago database when it is running in either the primary or the standby database role. The configuration examples use the names shown in the following table:

	Database	DB_UNIQUE_NAME	Oracle Net Service Name
	Primary	chicago	chicago
	Physical standby	boston	boston

Example 3-3 Primary Database: Primary Role Initialization Parameters

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30

These parameters control how redo transport services transmit redo data to the standby system and the archiving of redo data on the local file system. Note that the example specifies the LGWR process and asynchronous (ASYNC) network transmission to transmit redo data on the LOG_ARCHIVE_DEST_2 initialization parameter. These are the recommended settings and require standby redo log files (see Section 3.1.3, "Configure a Standby Redo Log").

Example 3-4 shows the additional standby role initialization parameters on the primary database. These parameters take effect when the primary database is transitioned to the standby role.

Example 3-4 Primary Database: Standby Role Initialization Parameters

FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT=
 '/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown in Example 3-4 sets up the primary database to resolve gaps, converts new datafile and log file path names from a new primary database, and archives the incoming redo data when this database is in the standby role. With the initialization parameters for both the primary and standby roles set as described, none of the parameters need to change after a role transition.

The following table provides a brief explanation about each parameter setting shown in Example 3-3 and Example 3-4.

	Parameter	Recommended Setting
	DB_NAME	Specify an 8-character name. Use the same name for all standby databases.
	DB_UNIQUE_NAME	Specify a unique name for each database. This name stays with the database and does not change, even if the primary and standby databases reverse roles.
	LOG_ARCHIVE_CONFIG	Specify the DG_CONFIG attribute on this parameter to list the DB_UNIQUE_NAME of the primary and standby databases in the Data Guard configuration; this enables the dynamic addition of a standby database to a Data Guard configuration that has a Real Application Clusters primary database running in either maximum protection or maximum availability mode. By default, the LOG_ARCHIVE_CONFIG parameter enables the database to send and receive redo; after a role transition, you may need to specify these settings again using the SEND, NOSEND, RECEIVE, or NORECEIVE keywords.
	CONTROL_FILES	Specify the path name for the control files on the primary database. Example 3-3 shows how to do this for two control files. It is recommended that a second copy of the control file is available so an instance can be easily restarted after copying the good control file to the location of the bad control file.
	LOG_ARCHIVE_DEST_n	Specify where the redo data is to be archived on the primary and standby systems. In Example 3-3:
	
LOG_ARCHIVE_DEST_1 archives redo data generated by the primary database from the local online redo log files to the local archived redo log files in /arch1/chicago/.

	
LOG_ARCHIVE_DEST_2 is valid only for the primary role. This destination transmits redo data to the remote physical standby destination boston.

Note: If a flash recovery area was configured (with the DB_RECOVERY_FILE_DEST initialization parameter) and you have not explicitly configured a local archiving destination with the LOCATION attribute, Data Guard automatically uses the LOG_ARCHIVE_DEST_10 initialization parameter as the default destination for local archiving. See Section 5.2.3 for more information. Also, see Chapter 14 for complete LOG_ARCHIVE_DEST_n information.

	LOG_ARCHIVE_DEST_STATE_n	Specify ENABLE to allow redo transport services to transmit redo data to the specified destination.
	REMOTE_LOGIN_PASSWORDFILE	Set the same password for SYS on both the primary and standby databases. The recommended setting is either EXCLUSIVE or SHARED.
	LOG_ARCHIVE_FORMAT	Specify the format for the archived redo log files using a thread (%t), sequence number (%s), and resetlogs ID (%r). See Section 5.7.1 for another example.
	LOG_ARCHIVE_MAX_PROCESSES =integer	Specify the maximum number (from 1 to 30) of archiver (ARCn) processes you want Oracle software to invoke initially. The default value is 4. See Section 5.3.1.2 for more information about ARCn processing.
	FAL_SERVER	Specify the Oracle Net service name of the FAL server (typically this is the database running in the primary role). When the Chicago database is running in the standby role, it uses the Boston database as the FAL server from which to fetch (request) missing archived redo log files if Boston is unable to automatically send the missing log files. See Section 5.8.
	FAL_CLIENT	Specify the Oracle Net service name of the Chicago database. The FAL server (Boston) copies missing archived redo log files to the Chicago standby database. See Section 5.8.
	DB_FILE_NAME_CONVERT	Specify the path name and filename location of the primary database datafiles followed by the standby location. This parameter converts the path names of the primary database datafiles to the standby datafile path names. If the standby database is on the same system as the primary database or if the directory structure where the datafiles are located on the standby site is different from the primary site, then this parameter is required. Note that this parameter is used only to convert path names for physical standby databases. Multiple pairs of paths may be specified by this parameter.
	LOG_FILE_NAME_CONVERT	Specify the location of the primary database online redo log files followed by the standby location. This parameter converts the path names of the primary database log files to the path names on the standby database. If the standby database is on the same system as the primary database or if the directory structure where the log files are located on the standby system is different from the primary system, then this parameter is required. Multiple pairs of paths may be specified by this parameter.
	STANDBY_FILE_MANAGEMENT	Set to AUTO so when datafiles are added to or dropped from the primary database, corresponding changes are made automatically to the standby database.

	
Caution:

Review the initialization parameter file for additional parameters that may need to be modified. For example, you may need to modify the dump destination parameters (BACKGROUND_DUMP_DEST, CORE_DUMP_DEST, USER_DUMP_DEST) if the directory location on the standby database is different from those specified on the primary database. In addition, you may have to create directories on the standby system if they do not already exist.

3.1.5 Enable Archiving

If archiving is not enabled, issue the following statements to put the primary database in ARCHIVELOG mode and enable automatic archiving:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN;

See Oracle Database Administrator's Guide for information about archiving.

3.2 Step-by-Step Instructions for Creating a Physical Standby Database

This section describes the tasks you perform to create a physical standby database.

Table 3-2 provides a checklist of the tasks that you perform to create a physical standby database and the database or databases on which you perform each task. There is also a reference to the section that describes the task in more detail.

Table 3-2 Creating a Physical Standby Database

	Reference	Task	Database
	
Section 3.2.1

	
Create a Backup Copy of the Primary Database Datafiles

	
Primary

	
Section 3.2.2

	
Create a Control File for the Standby Database

	
Primary

	
Section 3.2.3

	
Prepare an Initialization Parameter File for the Standby Database

	
Primary

	
Section 3.2.4

	
Copy Files from the Primary System to the Standby System

	
Primary

	
Section 3.2.5

	
Set Up the Environment to Support the Standby Database

	
Standby

	
Section 3.2.6

	
Start the Physical Standby Database

	
Standby

	
Section 3.2.7

	
Verify the Physical Standby Database Is Performing Properly

	
Standby

3.2.1 Create a Backup Copy of the Primary Database Datafiles

You can use any backup copy of the primary database to create the physical standby database, as long as you have the necessary archived redo log files to completely recover the database. Oracle recommends that you use the Recovery Manager utility (RMAN).

See Oracle High Availability Architecture and Best Practices for backup recommendations and Oracle Database Backup and Recovery Advanced User's Guide to perform an RMAN backup operation.

3.2.2 Create a Control File for the Standby Database

If the backup procedure required you to shut down the primary database, issue the following SQL*Plus statement to start the primary database:

SQL> STARTUP MOUNT;

Then, create the control file for the standby database, and open the primary database to user access, as shown in the following example:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/boston.ctl';
SQL> ALTER DATABASE OPEN;

	
Note:

You cannot use a single control file for both the primary and standby databases.

3.2.3 Prepare an Initialization Parameter File for the Standby Database

Perform the following steps to create a standby initialization parameter file.

Step 1 Copy the primary database parameter file to the standby database.

Create a text initialization parameter file (PFILE) from the server parameter file (SPFILE) used by the primary database; a text initialization parameter file can be copied to the standby location and modified. For example:

SQL> CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;

Later, in Section 3.2.5, you will convert this file back to a server parameter file after it is modified to contain the parameter values appropriate for use with the physical standby database.

Step 2 Set initialization parameters on the physical standby database.

Although most of the initialization parameter settings in the text initialization parameter file that you copied from the primary system are also appropriate for the physical standby database, some modifications need to be made.

Example 3-5 shows the portion of the standby initialization parameter file where values were modified for the physical standby database. Parameter values that are different from Example 3-3 and Example 3-4 are shown in bold typeface. The parameters shown in Example 3-5 are valid for the Boston database when it is running in either the primary or the standby database role.

Example 3-5 Modifying Initialization Parameters for a Physical Standby Database

.
.
.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='chicago','boston'
LOG_FILE_NAME_CONVERT=
 '/arch1/chicago/','/arch1/boston/','/arch2/chicago/','/arch2/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
FAL_CLIENT=boston
.
.
.

Note that the example assumes the use of the LGWR process to transmit redo data to both the local and remote destinations on the LOG_ARCHIVE_DEST_2 initialization parameter.

In addition, ensure the COMPATIBLE initialization parameter is set to the same value on both the primary and standby databases. If the values differ, redo transport services may be unable to transmit redo data from the primary database to the standby databases. In a Data Guard configuration, COMPATIBLE must be set to a minimum of 9.2.0.1.0. However, if you want to take advantage of new Oracle Database 10g features, set the COMPATIBLE parameter to 10.2.0.0 or higher.

It is always a good practice to use the SHOW PARAMETERS command to verify no other parameters need to be changed.

The following table provides a brief explanation about the parameter settings shown in Example 3-5 that have different settings from the primary database.

	Parameter	Recommended Setting
	DB_UNIQUE_NAME	Specify a unique name for this database. This name stays with the database and does not change even if the primary and standby databases reverse roles.
	CONTROL_FILES	Specify the path name for the control files on the standby database. Example 3-5 shows how to do this for two control files. It is recommended that a second copy of the control file is available so an instance can be easily restarted after copying the good control file to the location of the bad control file.
	DB_FILE_NAME_CONVERT	Specify the path name and filename location of the primary database datafiles followed by the standby location. This parameter converts the path names of the primary database datafiles to the standby datafile path names. If the standby database is on the same system as the primary database or if the directory structure where the datafiles are located on the standby site is different from the primary site, then this parameter is required.
	LOG_FILE_NAME_CONVERT	Specify the location of the primary database online redo log files followed by the standby location. This parameter converts the path names of the primary database log files to the path names on the standby database. If the standby database is on the same system as the primary database or if the directory structure where the log files are located on the standby system is different from the primary system, then this parameter is required.
	LOG_ARCHIVE_DEST_n	Specify where the redo data is to be archived. In Example 3-5:
	
LOG_ARCHIVE_DEST_1 archives redo data received from the primary database to archived redo log files in /arch1/boston/.

	
LOG_ARCHIVE_DEST_2 is currently ignored because this destination is valid only for the primary role. If a switchover occurs and this instance becomes the primary database, then it will transmit redo data to the remote Chicago destination.

Note: If a flash recovery area was configured (with the DB_RECOVERY_FILE_DEST initialization parameter) and you have not explicitly configured a local archiving destination with the LOCATION attribute, Data Guard automatically uses the LOG_ARCHIVE_DEST_10 initialization parameter as the default destination for local archiving. See Section 5.2.3 for more information. Also, see Chapter 14 for complete information about LOG_ARCHIVE_DEST_n.

	FAL_SERVER	Specify the Oracle Net service name of the FAL server (typically this is the database running in the primary role). When the Boston database is running in the standby role, it uses the Chicago database as the FAL server from which to fetch (request) missing archived redo log files if Chicago is unable to automatically send the missing log files. See Section 5.8.
	FAL_CLIENT	Specify the Oracle Net service name of the Boston database. The FAL server (Chicago) copies missing archived redo log files to the Boston standby database. See Section 5.8.

	
Caution:

Review the initialization parameter file for additional parameters that may need to be modified. For example, you may need to modify the dump destination parameters (BACKGROUND_DUMP_DEST, CORE_DUMP_DEST, USER_DUMP_DEST) if the directory location on the standby database is different from those specified on the primary database. In addition, you may have to create directories on the standby system if they do not already exist.

3.2.4 Copy Files from the Primary System to the Standby System

Use an operating system copy utility to copy the following binary files from the primary system to the standby system:

	
Backup datafiles created in Section 3.2.1

	
Standby control file created in Section 3.2.2

	
Initialization parameter file created in Section 3.2.3

3.2.5 Set Up the Environment to Support the Standby Database

Perform the following steps to create a Windows-based service, create a password file, set up the Oracle Net environment, and create a SPFILE.

Step 1 Create a Windows-based service.

If the standby system is running on a Windows-based system, use the ORADIM utility to create a Windows Service and password file. For example:

WINNT> oradim -NEW -SID boston -INTPWD password -STARTMODE manual

See Oracle Database Platform Guide for Microsoft Windows (32-Bit) for more information about using the ORADIM utility.

Step 2 Create a password file.

On platforms other than Windows, create a password file, and set the password for the SYS user to the same password used by the SYS user on the primary database. The password for the SYS user on every database in a Data Guard configuration must be identical for redo transmission to succeed. See Oracle Database Administrator's Guide.

Step 3 Configure listeners for the primary and standby databases.

On both the primary and standby sites, use Oracle Net Manager to configure a listener for the respective databases.

To restart the listeners (to pick up the new definitions), enter the following LSNRCTL utility commands on both the primary and standby systems:

% lsnrctl stop
% lsnrctl start

See Oracle Database Net Services Administrator's Guide.

Step 4 Create Oracle Net service names.

On both the primary and standby systems, use Oracle Net Manager to create a network service name for the primary and standby databases that will be used by redo transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the same protocol, host address, port, and service that you specified when you configured the listeners for the primary and standby databases. The connect descriptor must also specify that a dedicated server be used.

See the Oracle Database Net Services Administrator's Guide and the Oracle Database Administrator's Guide.

Step 5 Create a server parameter file for the standby database.

On an idle standby database, use the SQL CREATE statement to create a server parameter file for the standby database from the text initialization parameter file that was edited in Step 2. For example:

SQL> CREATE SPFILE FROM PFILE='initboston.ora';

3.2.6 Start the Physical Standby Database

Perform the following steps to start the physical standby database and Redo Apply.

Step 1 Start the physical standby database.

On the standby database, issue the following SQL statement to start and mount the database:

SQL> STARTUP MOUNT;

Step 2 Start Redo Apply.

On the standby database, issue the following command to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

The statement includes the DISCONNECT FROM SESSION option so that Redo Apply runs in a background session. See Section 6.3, "Applying Redo Data to Physical Standby Databases" for more information.

Step 3 Test archival operations to the physical standby database.

In this example, the transmission of redo data to the remote standby location does not occur until after a log switch. A log switch occurs, by default, when an online redo log file becomes full. To force a log switch so that redo data is transmitted immediately, use the following ALTER SYSTEM statement on the primary database. For example:

SQL> ALTER SYSTEM SWITCH LOGFILE;

3.2.7 Verify the Physical Standby Database Is Performing Properly

Once you create the physical standby database and set up redo transport services, you may want to verify database modifications are being successfully transmitted from the primary database to the standby database.

To see that redo data is being received on the standby database, you should first identify the existing archived redo log files on the standby database, force a log switch and archive a few online redo log files on the primary database, and then check the standby database again. The following steps show how to perform these tasks.

Step 1 Identify the existing archived redo log files.

On the standby database, query the V$ARCHIVED_LOG view to identify existing files in the archived redo log. For example:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2 FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03

3 rows selected.

Step 2 Force a log switch to archive the current online redo log file.

On the primary database, issue the ALTER SYSTEM SWITCH LOGFILE statement to force a log switch and archive the current online redo log file group:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Step 3 Verify the new redo data was archived on the standby database.

On the standby database, query the V$ARCHIVED_LOG view to verify the redo data was received and archived on the standby database:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2> FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03
 11 11-JUL-02 17:51:03 11-JUL-02 18:34:11
4 rows selected.

The archived redo log files are now available to be applied to the physical standby database.

Step 4 Verify new archived redo log files were applied.

On the standby database, query the V$ARCHIVED_LOG view to verify the archived redo log files were applied.

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG
 2 ORDER BY SEQUENCE#;

SEQUENCE# APP
--------- ---
 8 YES
 9 YES
 10 YES
 11 YES

4 rows selected.

See Section 5.9.1, "Monitoring Log File Archival Information" and Section 8.5.4, "Monitoring Log Apply Services on Physical Standby Databases" to verify redo transport services and log apply services are working correctly.

3.3 Post-Creation Steps

At this point, the physical standby database is running and can provide the maximum performance level of data protection. The following list describes additional preparations you can take on the physical standby database:

	
Upgrade the data protection mode

The Data Guard configuration is initially set up in the maximum performance mode (the default). See Section 5.6 for information about the data protection modes and how to upgrade or downgrade the current protection mode.

	
Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a failover. Flashback Database enables you to return a database to its state at a time in the recent past much faster than traditional point-in-time recovery, because it does not require restoring datafiles from backup nor the extensive application of redo data. You can enable Flashback Database on the primary database, the standby database, or both. See Section 12.4 and Section 12.5 for scenarios showing how to use Flashback Database in a Data Guard environment. Also, see Oracle Database Backup and Recovery Advanced User's Guide for more information about Flashback Database.

4 Creating a Logical Standby Database

This chapter steps you through the process of creating a logical standby database. It includes the following main topics:

	
Prerequisite Conditions for Creating a Logical Standby Database

	
Step-by-Step Instructions for Creating a Logical Standby Database

	
Post-Creation Steps

	
See Also:

	
Oracle Database Administrator's Guide for information about creating and using server parameter files

	
Oracle Data Guard Broker and the Oracle Enterprise Manager online help system for information about using the graphical user interface to automatically create a logical standby database

4.1 Prerequisite Conditions for Creating a Logical Standby Database

Before you create a logical standby database, you must first ensure the primary database is properly configured. Table 4-1 provides a checklist of the tasks that you perform on the primary database to prepare for logical standby database creation. There is also a reference to the section that describes the task in more detail.

Table 4-1 Preparing the Primary Database for Logical Standby Database Creation

	Reference	Task
	
Section 4.1.1

	
Determine Support for Data Types and Storage Attributes for Tables

	
Section 4.1.2

	
Ensure Table Rows in the Primary Database Can Be Uniquely Identified

4.1.1 Determine Support for Data Types and Storage Attributes for Tables

Before setting up a logical standby database, ensure the logical standby database can maintain the data types and tables in your primary database. See Appendix C for a complete list of data type and storage type considerations.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

The physical organization in a logical standby database is different from that of the primary database, even though the logical standby database is created from a backup copy of the primary database. Thus, ROWIDs contained in the redo records generated by the primary database cannot be used to identify the corresponding row in the logical standby database.

Oracle uses primary-key or unique-constraint/index supplemental logging to logically identify a modified row in the logical standby database. When database-wide primary-key and unique-constraint/index supplemental logging is enabled, each UPDATE statement also writes the column values necessary in the redo log to uniquely identify the modified row in the logical standby database.

	
If a table has a primary key defined, then the primary key is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

	
In the absence of a primary key, the shortest nonnull unique-constraint/index is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

	
In the absence of both a primary key and a nonnull unique constraint/index, all columns of bounded size are logged as part of the UPDATE statement to identify the modified row. In other words, all columns except those with the following types are logged: LONG, LOB, LONG RAW, object type, and collections.

Oracle recommends that you add a primary key or a nonnull unique index to tables in the primary database, whenever possible, to ensure that SQL Apply can efficiently apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each table being replicated in the logical standby database.

Step 1 Find tables without unique logical identifier in the primary database.

Query the DBA_LOGSTDBY_NOT_UNIQUE view to display a list of tables that SQL Apply may not be able to uniquely identify. For example:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 2> WHERE (OWNER, TABLE_NAME) NOT IN
 3> (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED)
 4> AND BAD_COLLUMN = 'Y'

Step 2 Add a disabled primary-key RELY constraint.

If your application ensures the rows in a table are unique, you can create a disabled primary key RELY constraint on the table. This avoids the overhead of maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER TABLE statement with a RELY DISABLE clause. The following example creates a disabled RELY constraint on a table named mytab, for which rows can be uniquely identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

When you specify the RELY constraint, the system will assume that rows are unique. Because you are telling the system to rely on the information, but are not validating it on every modification done to the table, you must be careful to select columns for the disabled RELY constraint that will uniquely identify each row in the table. If such uniqueness is not present, then SQL Apply will not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the columns to identify the row on the logical standby database. Failure to do so results in full table scans during UPDATE or DELETE statements carried out on the table by SQL Apply.

	
See Also:

	
See Oracle Database Reference for information about the DBA_LOGSTDBY_NOT_UNIQUE view

	
Oracle Database SQL Reference for information about the ALTER TABLE statement syntax and creating RELY constraints

	
Section 9.6.1, "Create a Primary Key RELY Constraint" for information about RELY constraints and actions you can take to increase performance on a logical standby database

4.2 Step-by-Step Instructions for Creating a Logical Standby Database

This section describes the tasks you perform to create a logical standby database.

Table 4-2 provides a checklist of the tasks that you perform to create a logical standby database and specifies on which database you perform each task. There is also a reference to the section that describes the task in more detail.

Table 4-2 Creating a Logical Standby Database

	Reference	Task	Database
	
Section 4.2.1

	
Create a Physical Standby Database

	
Primary

	
Section 4.2.2

	
Stop Redo Apply on the Physical Standby Database

	
Standby

	
Section 4.2.3

	
Prepare the Primary Database to Support a Logical Standby Database

	
Primary

	
Section 4.2.4

	
Transition to a Logical Standby Database

	
Standby

	
Section 4.2.5

	
Open the Logical Standby Database

	
Standby

	
Section 4.2.6

	
Verify the Logical Standby Database Is Performing Properly

	
Standby

4.2.1 Create a Physical Standby Database

You create a logical standby database by first creating a physical standby database and then transitioning it to a logical standby database. Follow the instructions in Chapter 3, "Creating a Physical Standby Database" to create a physical standby database.

4.2.2 Stop Redo Apply on the Physical Standby Database

You can run Redo Apply on the new physical standby database for any length of time before converting it to a logical standby database. However, before converting to a logical standby database, stop Redo Apply on the physical standby database. Stopping Redo Apply is necessary to avoid applying changes past the redo that contains the LogMiner dictionary (described in Section 4.2.3.2, "Build a Dictionary in the Redo Data").

To stop Redo Apply, issue the following statement on the physical standby database. If the database is a RAC database comprised of multiple instances, then you must first stop all RAC instances except one before issuing this statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Prepare the Primary Database to Support a Logical Standby Database

This section contains the following topics:

	
Prepare the Primary Database for Role Transitions

	
Build a Dictionary in the Redo Data

4.2.3.1 Prepare the Primary Database for Role Transitions

In Section 3.1.4, "Set Primary Database Initialization Parameters", you set up several standby role initialization parameters to take effect when the primary database is transitioned to the physical standby role. If you plan to transition the primary database to the logical standby role, then you must also include a LOG_ARCHIVE_DEST_3 destination on the primary database, as shown in Example 4-1, so that no parameters need to change after a role transition. This parameter only takes effect when the primary database is transitioned to the standby role.

Example 4-1 Primary Database: Logical Standby Role Initialization Parameters

LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/chicago/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

To dynamically set the LOG_ARCHIVE_DEST_3 parameter, use the SQL ALTER SYSTEM SET statement and include the SCOPE=BOTH clause so that the change takes effect immediately and persists after the database is shut down and started up again.

The following table describes the archival processing defined by the initialization parameters shown in Example 4-1.

	
	When the Chicago Database Is Running in the Primary Role	When the Chicago Database Is Running in the Logical Standby Role
	LOG_ARCHIVE_DEST_3	Is ignored; LOG_ARCHIVE_DEST_3 is valid only when chicago is running in the standby role.	Archives redo data received from the primary database to the local archived redo log files in /arch2/chicago/.

4.2.3.2 Build a Dictionary in the Redo Data

A LogMiner dictionary must be built into the redo data so that the LogMiner component of SQL Apply can properly interpret changes it sees in the redo. As part of building LogMiner Multiversioned Data Dictionary, supplemental logging is automatically set up to log primary key and unique-constraint/index columns. The supplemental logging information ensures each update contains enough information to logically identify each row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

The DBMS_LOGSTDBY.BUILD procedure waits for all existing transactions to complete. Long-running transactions executed on the primary database will affect the timeliness of this command.

The DBMS_LOGSTDBY.BUILD procedure uses Flashback Query to obtain a consistent snapshot of the data dictionary that is then logged in the redo stream. Oracle recommends setting the UNDO_RETENTION initialization parameter to 3600 on both the primary and logical standby databases.

	
See Also:

The DBMS_LOGSTDBY.BUILD PL/SQL package in Oracle Database PL/SQL Packages and Types Reference and the UNDO_RETENTION initialization parameter in Oracle Database Reference

4.2.4 Transition to a Logical Standby