
Oracle® Configurator
Extensions and Interface Object Developer’s Guide

Release 11i
Part No. B13607-03

May 2005
This document describes Configurator Extensions, which
augment the functionality of a runtime Oracle Configurator,
and the Oracle Configuration Interface Object (CIO), which is
used by Configurator Extensions to access the runtime
Oracle Configurator.

Oracle Configurator Extensions and Interface Object Developer’s Guide, Release 11i

Part No. B13607-03

Copyright © 1999, 2005, Oracle. All rights reserved.

Primary Author: Mark Sawtelle

Contributors: Raju Addala, Brent Benson, Ivan Lazarov, David Lee, Anupam Miharia, Janet Page, Marty
Plotkin, Brian Ross

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xi

Preface ... xiii

Intended Audience.. xiii
Documentation Accessibility ... xiii
Structure ... xiv
Related Documents ... xv
Conventions ... xv
Product Support .. xvi

Part I Configurator Extensions

1 Configurator Extension Basics
1.1 What are Configurator Extensions? ... 1-1
1.2 Prerequisite Skills for Developing Configurator Extensions.. 1-2
1.3 Important Facts About Configurator Extensions ... 1-2
1.4 Requirements and Restrictions for Configurator Extensions... 1-3
1.4.1 Requirements for Configurator Extensions ... 1-3
1.4.2 Restrictions for Configurator Extensions ... 1-4
1.5 Configurator Extensions and the CIO.. 1-4
1.6 Installation Requirements for Configurator Extensions ... 1-4
1.6.1 Installation Requirements for Developing Configurator Extensions........................... 1-4
1.6.2 Installation Requirements for Compiling Configurator Extensions 1-5
1.6.3 Installation Requirements for Testing Configurator Extensions 1-5

2 Building Configurator Extensions
2.1 Overview of Building Configurator Extensions... 2-1
2.1.1 Implementing Behavior with Java Classes .. 2-3
2.1.2 Incorporating Behavior into Configuration Models... 2-3
2.2 Developing Java Classes and Archives.. 2-4
2.3 Example of Configurator Extension Development.. 2-5
2.3.1 Example of Configurator Extension Coding ... 2-5
2.3.2 Example of Configurator Extension Modeling ... 2-6
2.4 Suggested Development Practices.. 2-7
2.4.1 Observing Project Requirements ... 2-7

iv

2.4.2 Avoiding Common Errors.. 2-8
2.4.3 Handling Exceptions Properly... 2-8
2.4.4 Avoiding Circularity and Recursion... 2-9
2.4.5 Taking Advantage of Argument Binding ... 2-10
2.4.6 Sharing Class Instances.. 2-10
2.4.7 Disabling Configurator Extensions .. 2-10
2.4.8 Testing for a Null User Interface .. 2-11
2.4.9 Using Logging to Examine Problems .. 2-11
2.4.10 Checking for Deleted or Discontinued Nodes ... 2-12

3 Uses for Configurator Extensions
3.1 Types of Configuration Events ... 3-1
3.2 Generating Custom Output... 3-2
3.3 Filtering for Connectivity... 3-4
3.3.1 Defining a Connection Filter Configurator Extension ... 3-4
3.3.2 Behavior of Connection Filter Configurator Extensions.. 3-5
3.3.3 Example of a Connection Filter Configurator Extension ... 3-5

Part II The Configuration Interface Object (CIO)

4 CIO Basics
4.1 Background.. 4-1
4.1.1 What is the CIO? .. 4-1
4.1.2 The CIO and Configurator Extensions ... 4-2
4.2 The CIO’s Runtime Node Interfaces .. 4-2
4.3 Initializing the CIO ... 4-4

5 Working with Configurations
5.1 Overview.. 5-1
5.2 Creating Configurations .. 5-2
5.3 Removing Runtime Configurations ... 5-4
5.4 Saving Configurations.. 5-5
5.5 Monitoring Changes to Configurations... 5-5
5.5.1 How the CIO Monitors Changes to Configurations... 5-5
5.5.2 How You Can Monitor Changes to Configurations... 5-6
5.6 Restoring Configurations... 5-6
5.7 Restarting Configurations.. 5-8
5.8 Automatic Behavior for Configurations .. 5-8
5.9 Access to Configuration Parameters .. 5-9
5.10 Sharing a Configuration Session.. 5-10

6 Working with Model Entities
6.1 Opportunities for Modifying the Configuration.. 6-1
6.2 Accessing Components .. 6-2
6.2.1 Adding and Deleting Instantiable Components ... 6-2
6.2.2 Renaming Instances of Components .. 6-3

v

6.3 Accessing Features.. 6-4
6.4 Getting and Setting Logic States ... 6-5
6.5 Getting and Setting Numeric Values ... 6-7
6.5.1 Working with Decimal Quantities .. 6-8
6.6 Accessing Properties... 6-9
6.7 Access to Options.. 6-9
6.8 Introspection through IRuntimeNode .. 6-10

7 Using Logic Transactions

8 Contradictions, Exceptions, and Validation
8.1 Validating Configurations ... 8-1
8.2 Handling Logical Contradictions ... 8-3
8.2.1 Generating Error Messages from Contradictions ... 8-4
8.2.2 Overriding Contradictions ... 8-4
8.3 Handling Exceptions .. 8-5
8.3.1 Handling Types of Exceptions... 8-5
8.3.2 Raising Fatal Exceptions ... 8-6
8.3.3 Presenting Messages for Exceptions ... 8-7
8.3.4 Compatibility of Certain Deprecated Exceptions ... 8-7

9 Using Requests
9.1 About Requests ... 9-1
9.2 Getting Information about Requests .. 9-1
9.3 User Requests .. 9-2
9.4 Nonoverridable Requests .. 9-2
9.4.1 Usage Notes on Nonoverridable Requests .. 9-3
9.4.2 Limitations on Nonoverridable Requests .. 9-4
9.5 Failed Requests.. 9-4

10 Configuration Session Change Tracking
10.1 Overview... 10-1
10.2 How It Works ... 10-2
10.2.1 Relationship of the Classes.. 10-3
10.2.2 Role of the DeltaManager .. 10-3
10.2.3 Role of DeltaRegions .. 10-4
10.2.4 Role of DeltaValidators.. 10-4
10.2.5 Role of the IValidatorChange Interface ... 10-5
10.3 Starting a Session ... 10-5
10.3.1 Creating a Configuration Object... 10-5
10.3.2 Associating a DeltaManager ... 10-6
10.3.3 Specifying DeltaValidators.. 10-6
10.3.4 Registering DeltaRegions .. 10-6
10.4 Tracking Session Changes .. 10-7
10.5 Updating a Region ... 10-8
10.6 Handling Screen Changes... 10-9

vi

10.7 Creating a Custom DeltaValidator .. 10-10
10.8 Unified Code Example .. 10-11

11 Logging Through the CIO
11.1 Overview of Logging... 11-1
11.2 Enabling Logging Scope ... 11-1
11.3 Creating Entries in the Log... 11-3
11.3.1 Testing Whether Logging Is Enabled .. 11-3
11.3.2 Writing Log Entries .. 11-4
11.4 Recommended Practices for Logging ... 11-4
11.5 Example of Logging... 11-5

Part III Appendixes

A Reference Documentation for the CIO

B Code Examples
B.1 Generating Output Related to Model Structure.. B-1
B.2 Using Requests ... B-3
B.2.1 Setting Nonoverridable Requests... B-3
B.2.2 Getting a List of Failed Requests .. B-5
B.3 Sharing a Configuration Session in a Child Window... B-6
B.4 Tracking Configuration Session Changes .. B-8

C Java Parameter Types for Configurator Extensions

Glossary

Index

vii

List of Examples
2–1 Sample Java Code for Configurator Extension (InstanceNameChange.java).................... 2-6
2–2 Empty Catch Block.. 2-8
2–3 Catch Block That Handles an Exception.. 2-9
2–4 Inadvertent Recursion (RecursionExample.java) ... 2-9
2–5 Testing for a Null User Interface ... 2-11
3–1 Generating Custom Output (HelloWorldCX.java) .. 3-3
3–2 Filtering for Connectivity (TargetFilter.java).. 3-5
5–1 Creating a Configuration Object (MyConfigCreator.java) ... 5-3
6–1 Getting the Configuration from a Runtime Node.. 6-1
6–2 Adding and Selecting an Instance of a BOM Model.. 6-3
6–3 Renaming an Instance of a Component... 6-4
6–4 Getting the State of a Node.. 6-6
6–5 Setting the State of a Node... 6-6
6–6 Setting a Numeric Value .. 6-7
6–7 Testing Whether an Option Is Selected... 6-10
6–8 Getting a Child Node by Name ... 6-11
6–9 Collecting All Child Nodes by Type ... 6-11
7–1 Using a Logic Transaction with a Deletion ... 7-2
8–1 Returning a List of Validation Failures.. 8-3
8–2 Handling and Overriding Logical Exceptions.. 8-5
8–3 Raising a Fatal Exception ... 8-6
8–4 Presenting an Informational Message.. 8-7
9–1 Using Nonoverridable Requests... 9-3
10–1 Change-Detection Methods for the Configuration Object ... 10-2
10–2 Creating a Configuration Object.. 10-5
10–3 Associating a DeltaManager with a Configuration .. 10-6
10–4 Specifying DeltaValidators ... 10-6
10–5 Registering a DeltaRegion: All Nodes .. 10-7
10–6 Registering a DeltaRegion: Subset of Nodes.. 10-7
10–7 Custom Method to Update a Region .. 10-9
10–8 Updating Watched Nodes: Screen Format Unchanged .. 10-9
10–9 Updating Watched Nodes: Screen Format Changed Significantly 10-10
11–1 Logging Through the CIO .. 11-5
11–2 Log File Entry When AFLOG_MODULE Includes cz% .. 11-6
11–3 Log File Entry When AFLOG_MODULE Includes acme% ... 11-6
B–1 Generating Output with a Configurator Extension (ShowStructureCX.java) B-2
B–2 Setting Nonoverridable Requests (NonOverridableTest.java).. B-3
B–3 Getting a List of Failed Requests (OverrideTest.java) .. B-5
B–4 Sharing a Configuration Session in a Child Window (TestChildWin.jsp) B-7
B–5 Tracking Session Changes (DeltaExample.java) ... B-8
C–1 Valid Java Types for Parameters ... C-1

viii

List of Figures
2–1 Overview of Configurator Extension Development.. 2-2
2–2 Configurator Extension Binding... 2-4
10–1 Example Class Relationships in the Configuration Delta API .. 10-3

ix

 List of Tables

1–1 Required Software for Configurator Extensions ... 1-5
3–1 Types of Configuration Events .. 3-1
4–1 Important Runtime Node Interfaces for the CIO .. 4-3
5–1 Typical Methods of the Configuration Object ... 5-1
5–2 Correspondence of Configuration Parameters to Initialization Parameters..................... 5-3
5–3 Events for Processing Configurations... 5-9
5–4 UI Specifications for Invoking Child Window ... 5-10
6–1 Feature Types, Value Types, and Interfaces .. 6-4
6–2 Input Logic States... 6-5
6–3 Output Logic States ... 6-5
6–4 Methods for Getting and Setting State.. 6-6
6–5 Methods for Integer and Decimal Nodes ... 6-8
6–6 Methods of the Interface IOption ... 6-10
6–7 Important Methods of the Interface IRuntimeNode.. 6-10
8–1 Methods for Validating Configurations ... 8-1
8–2 Life Cycle of StatusInfo Objects ... 8-2
9–1 Methods Typically Used to Make Requests... 9-1
9–2 Type Methods of the Class Request .. 9-2
10–1 Classes and Interfaces for the Configuration Delta API ... 10-2
10–2 Default Change Types and Their Change Objects ... 10-4
11–1 Values for AFLOG_MODULE .. 11-2
11–2 Values for AFLOG_LEVEL.. 11-2
11–3 Parameters for isCXLogEnabled() .. 11-3
11–4 Parameters for writeCXLogEntry() .. 11-4
11–5 Values for the logLevel Parameter ... 11-5

x

xi

Send Us Your Comments

Oracle Configurator Extensions and Interface Object Developer’s Guide, Release
11i
Part No. B13607-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: czdoc_us@oracle.com

■ FAX: 781-238-9898. Attn: Oracle Configurator Documentation

■ Postal service:

Oracle Corporation
Oracle Configurator Documentation
10 Van de Graaff Drive
Burlington, MA 01803-5146
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xii

xiii

Preface

You can use Configurator Extensions to augment the functionality of your runtime
Oracle Configurator beyond what is provided by Oracle Configurator Developer. You
create Configurator Extension classes, which use the Configuration Interface Object
(CIO) to perform various tasks, including accessing the Model, setting and getting
logic states, and adding instantiable components. You can also use the CIO in your
own applications, to interact with the Model.

Intended Audience
This manual is intended primarily for software developers writing Configurator
Extensions. The language required for developing Configurator Extensions is Java.

This manual assumes that you are an experienced Java programmer.

This manual also provides background on the CIO. This information is needed by
developers of applications that have customized user interfaces that access the runtime
Oracle Configurator.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation Screen readers may not always
correctly read the code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line; however, some

Note: Be sure to check Section 1.2, "Prerequisite Skills for
Developing Configurator Extensions" on page 1-2, which describes
the Java development skills required for success with Configurator
Extensions.

xiv

screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

TTY Access to Oracle Support Services Oracle provides dedicated Text Telephone
(TTY) access to Oracle Support Services within the United States of America 24 hours a
day, seven days a week. For TTY support, call 800.446.2398.

Structure
This book contains a table of contents, lists of examples, tables, and figures, a reader
comment form, a preface, the chapters listed below, appendixes, a glossary, and an
index.

Configurator Extension Basics
Provides essential information about implementing Configurator Extensions. Explains
what Configurator Extensions are, and the different types available. Explains the
relationship of Configurator Extensions and the CIO.

Building Configurator Extensions
Describes how to code Configurator Extensions, including suggestions for effective
development practices and avoiding common mistakes.

Uses for Configurator Extensions
Collects instructions on how to use Configurator Extensions for specific tasks, such as
generating custom output and filtering for connectivity.

CIO Basics
Explains the basics of the Oracle Configuration Interface Object (CIO) and how to use
it.

Working with Configurations
Explains how to work with runtime configuration instances.

Working with Model Entities
Explains how to work with nodes of the runtime Model. such as Components and
Features.

Using Logic Transactions
Explains how to use logic transactions to safely structure a configuration session.

Contradictions, Exceptions, and Validation
Explains how to validate configurations and handle contradictions.

Using Requests
Describes requests, which are programmatic attempts to modify a configuration

xv

Configuration Session Change Tracking
Describes the Configuration Delta API, which enables you to track changes made to
regions of your user interface during a configuration session.

Logging Through the CIO
Describes how you can use the Oracle Applications Logging Framework with Oracle
Configurator and the Oracle Configuration Interface Object to provide a convenient
and uniform interface for logging their activity.

Reference Documentation for the CIO
Explains how to access the reference documentation for the CIO, which is generated in
Javadoc format.

Code Examples
Collects complete code examples related to topics covered elsewhere in this document.

Java Parameter Types for Configurator Extensions
Lists the Java classes that you can use for Configurator Extension method parameters
when creating event bindings.

Glossary
Contains a glossary of terms and acronyms used throughout the Oracle Configurator
documentation set.

Related Documents
The following documents are also included in the Oracle Configurator documentation
set on the Oracle Configurator Developer compact disc:

■ About Oracle Configurator documentation

■ Oracle Configurator Implementation Guide

■ Oracle Configurator Installation Guide

■ Oracle Configurator Developer User’s Guide

■ Oracle Configurator Methodologies

■ Oracle Configurator Performance Guide

■ Oracle Configurator Modeling Guide

The following documents may also be useful:

■ Oracle8i JDBC Developer's Guide and Reference

Conventions
In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

xvi

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and Oracle
Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using Metalink, Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

Log in to your Metalink account and navigate to the Configurator TAR template:

1. Choose the TARs link in the left menu.

2. Click on Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

a. Choose Product: Oracle Configurator or Oracle Configurator Developer

b. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using
Metalink.

For a complete listing of available Oracle Support Services and phone numbers, see:

www.oracle.com/support/

Convention Meaning

 .

 .

 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a new term, a term defined in the
glossary, specific keys, and labels of user interface objects. Boldface
type also indicates a menu, command, or option, especially within
procedures

italics Italic type in text, tables, or code examples indicates user-supplied
text. Replace these placeholders with a specific value or string.

[] Brackets enclose optional clauses from which you can choose one or
none.

> The left bracket alone represents the MS DOS prompt.

$ The dollar sign represents the DIGITAL Command Language
prompt in Windows and the Bourne shell prompt in Digital UNIX.

% The percent sign alone represents the UNIX prompt.

name() In text other than code examples, the names of programming
language methods and functions are shown with trailing
parentheses. The parentheses are always shown as empty. For the
actual argument or parameter list, see the reference documentation.
This convention is not used in code examples.

xvii

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For general information about the logging options available when working in
Configurator Developer, see the Oracle Configurator Developer User’s Guide.

For details about the logging methods available in Configurator Developer and a
runtime Oracle Configurator, see:

■ The Oracle Applications System Administrator’s Guide for descriptions of the Oracle
Applications Manager UI screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so
on.

■ The Oracle Applications Supportability Guide, which includes logging guidelines for
both System Administrators and developers, and related topics.

■ The Oracle Applications Framework Release 11i Documentation Road Map
(Metalink Note # 275880.1).

xviii

Part I
Configurator Extensions

Part I contains the following chapters:

■ Chapter 1, "Configurator Extension Basics"

■ Chapter 2, "Building Configurator Extensions"

■ Chapter 3, "Uses for Configurator Extensions"

Configurator Extension Basics 1-1

1
Configurator Extension Basics

Configurator Extensions extend the behavior of the runtime Oracle Configurator. A
Configurator Extension is a custom-coded Java class that uses an established interface
to access a configuration at runtime. The interface is called the Oracle Configuration
Interface Object (CIO); it is described in Part II, "The Configuration Interface Object
(CIO)".

This chapter contains an overview of how Configurator Extensions work and how to
implement them. It also provides important facts about Configurator Extensions and
prerequisites for developing them.

The sections of this chapter are:

■ What are Configurator Extensions?

■ Prerequisite Skills for Developing Configurator Extensions

■ Important Facts About Configurator Extensions

■ Requirements and Restrictions for Configurator Extensions

■ Configurator Extensions and the CIO

■ Installation Requirements for Configurator Extensions

See the Section "Structure" on page xiv in the Preface to verify the audience for whom
this chapter is intended.

1.1 What are Configurator Extensions?
Configurator Extensions extend your runtime Oracle Configurator by attaching
custom code through established interfaces.

The term Configurator Extension includes the following:

Note: Be sure to check Section 1.2, "Prerequisite Skills for
Developing Configurator Extensions" on page 1-2, which describes
the Java development skills required for success with Configurator
Extensions.

Note: Review the Oracle Configurator Performance Guide for
information on the performance impacts of Configurator
Extensions.

Prerequisite Skills for Developing Configurator Extensions

1-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ A Configurator Extension class is the Java class containing the methods that
implement desired behavior

■ A Configurator Extension instance is the event-driven execution (the Java object) of
the Java class at runtime

■ A Configurator Extension Rule is the set of arrangements that you make in Oracle
Configurator Developer to associate the CX class to a Model

For additional information, see the chapter on Configurator Extensions in the Oracle
Configurator Developer User’s Guide, which explains the following essential topics
related to incorporating Configurator Extensions into your configuration model:

■ Configurator Extension Rules

■ Configurator Extension Archives and the Archive Path

■ Events and Event Binding

■ Arguments and Argument Binding

1.2 Prerequisite Skills for Developing Configurator Extensions
To effectively develop a Configurator Extension, an appropriate level of Java
development proficiency is required. The specific level of Java proficiency required
depends on the specific functionality required by the desired Configurator Extension.

In general, the Configurator Extension developer should have the following
knowledge:

■ A basic understanding of these structures:

■ Oracle Applications Bills of Material (BOMs), which consist of Models, Option
Classes, and Standard Items

■ Oracle Configurator Models, which consist of Components, Features, and
Options

■ The relationship of these BOM and Model structures to the CIO

■ Java programming experience that should include solid familiarity with:

■ The Collections class and its subclasses

■ Concurrency issues

■ CIO transaction handling (see Chapter 7)

■ Exception handling

■ Using Java Interfaces

■ HTML and the Java class HttpServletResponse (for writing Configurator
Extensions that generate custom output)

■ A working understanding of Oracle databases, including the principles of JDBC.

■ A familiarity with the Oracle Configurator documentation, including the CIO
reference documentation (see Appendix A).

The skills listed above are fundamental. Other specific expertise may be required for
developing Configurator Extensions to the specific requirements for your project.

1.3 Important Facts About Configurator Extensions
Keep these facts in mind when working with Configurator Extensions and the CIO.

Requirements and Restrictions for Configurator Extensions

Configurator Extension Basics 1-3

■ Configurator Extension Rules have many of the same attributes as other Rules,
and the procedure for defining them is similar. For example, Configurator
Extensions have effectivity, can be disabled, and can participate in rule sequences.
For more details about defining configuration rules, see the Oracle Configurator
Developer User’s Guide.

■ When the runtime Oracle Configurator starts up, it creates an instance of the CIO.
During the resulting configuration session, the CIO creates a Configuration
object. Then Oracle Configurator creates runtime instances of all mandatory model
structure, and, for each instance of each instantiated base node associated with a
Configurator Extension, an instance of the class that you defined for your
Configurator Extension. Oracle Configurator then attaches the Configurator
Extension instance to the associated node.

■ You can associate more than one Configurator Extension with a particular node;
the CIO will create instances of all of the Configurator Extensions at runtime.

■ In order to communicate with your application’s Model, a Configurator Extension
uses Oracle’s CIO API. The CIO can also be used to develop a custom user
interface that allows the runtime Oracle Configurator to access the Model. See
Section 1.5, "Configurator Extensions and the CIO" on page 1-4, and all of Part II,
"The Configuration Interface Object (CIO)".

1.4 Requirements and Restrictions for Configurator Extensions
You must observe certain requirements and restrictions when working with
Configurator Extensions and the CIO.

1.4.1 Requirements for Configurator Extensions
Keep these requirements in mind when working with Configurator Extensions and the
CIO.

■ To build a Configurator Extension, you implement an object class in Java. Oracle
requires that Configurator Extensions be implemented only in Java. Configurator
Extensions can run on any Oracle platform that supports Java.

■ The runtime Oracle Configurator automatically sets up a JDBC database
connection for use by the CIO. Custom applications that take the place of the
runtime Oracle Configurator must perform this task. See Section 4.3, "Initializing
the CIO" on page 4-4 for details.

■ If your host application uses a custom user interface in an MLS deployment, you
may need to create ICX session tickets in order to correctly set the current
language.

■ If you have written Configurator Extensions that use custom messages, then those
messages must be stored into and retrieved from the FND_NEW_MESSAGES
table. You are responsible for translating these messages. See the information on
MLS in the Oracle Configurator Implementation Guide.

Note: As a point of information, the user interfaces generated
with Oracle Configurator Developer for the runtime Oracle
Configurator communicate in this way with the configuration
model.

Configurator Extensions and the CIO

1-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

1.4.2 Restrictions for Configurator Extensions
Keep these restrictions in mind when working with Configurator Extensions and the
CIO.

■ Configurator Extensions cannot be used to customize Oracle Configurator
Developer.

■ CIO interfaces are not thread-safe. A single configuration session should only be
accessed by a single thread at a time. Whenever a custom application interacts
directly with the CIO, you must ensure that it accesses a configuration session by
only a single thread at a time. Multithreading problems can occur, for instance,
when end users click multiple times in a child window. You can prevent
multithreading problems by locking your User Interface or synchronizing on your
servlet. See Section 5.10, "Sharing a Configuration Session" on page 5-10 for an
example of when this is a consideration.

■ If any Configurator Extensions cannot be loaded when you create a new
configuration (for instance, due to internal errors or an incorrect class path or
Archive Path), the configuration will fail to open.

1.5 Configurator Extensions and the CIO
Your Configurator Extension is a client of the CIO. When you program against the
CIO, the CIO creates instances of a set of public interface objects that you work with.
These interfaces are defined in the package oracle.apps.cz.cio. Your code should
refer only to these public interface objects. See Section 4.2, "The CIO’s Runtime Node
Interfaces" on page 4-2.

Configurator Extensions are invoked by the CIO through the runtime Oracle
Configurator, and Configurator Extensions call the CIO to get information from the
runtime configuration model. The CIO is like a broker for the runtime configuration
model, in that it passes information both into and out of the model. Programmers
writing Configurator Extensions need to know how to use the CIO.

1.6 Installation Requirements for Configurator Extensions
This section describes the elements that need to be installed to develop, compile, and
test Configurator Extensions. See the Oracle Configurator Installation Guide and Oracle
Configurator Release Notes for more detail.

1.6.1 Installation Requirements for Developing Configurator Extensions
In order to develop Java Configurator Extensions, you must install a Java development
environment that enables you to compile Java classes, such as:

■ The latest version of Oracle JDeveloper

■ The latest certified patch release of the Java Development Kit (JDK) for your
platform. For the JDK release number, see the About Oracle Configurator
documentation for this release on Metalink, Oracle's technical support Web site.

You do not need JDBC drivers or database access to compile a Configurator Extension,
although these are required to run one. The required driver classes are contained in
the Oracle Applications environment.

Installation Requirements for Configurator Extensions

Configurator Extension Basics 1-5

1.6.2 Installation Requirements for Compiling Configurator Extensions
In order to compile Configurator Extensions:

■ Your class path should be the same as the class path for Oracle iAS (Internet
Application Server.

■ You should compile using the latest certified patch release of the Java
Development Kit (JDK) for your platform. For the JDK release number, see the
About Oracle Configurator documentation for this release on Metalink, Oracle's
technical support Web site.

■ The shared object files described in Table 1–1 must be installed and recognized by
your operating system environment in the appropriate locations.

See the Oracle Configurator Installation Guide and the Oracle Configurator Implementation
Guide for complete details on installation and environment. For background on JDBC
drivers, see the Oracle8i JDBC Developer's Guide and Reference.

1.6.3 Installation Requirements for Testing Configurator Extensions
If you have installed and set up Oracle Configurator Developer so that the Test Model
button runs the Model Debugger successfully, then this setup should also be correct
for testing Configurator Extensions.

The classes that implement your Configurator Extensions should be contained in
Configurator Extension Archives, as described in the Oracle Configurator Developer
User’s Guide.

It is also possible to install your classes in the class path for iAS, which takes
precedence over the Configurator Extension Archive Path. However, if you do so you
will not obtain important advantages provided by using Archives. See the Oracle
Configurator Developer User’s Guide for details.

Note: If you use a class from the collections library, such as List,
then for compatibility with the CIO’s package structure you must
import the class using this syntax:

import com.sun.java.util.collections.List;

Table 1–1 Required Software for Configurator Extensions

File For Platform Comment

czlce.dll Windows NT Must be in the PATH system environment
variable on the host machine on which the
Oracle Configurator Servlet is installed.

libczlce.so (or.sh) UNIX family Must be in the LD_LIBRARY_PATH
environment variable for the Oracle
Configurator Servlet.

Installation Requirements for Configurator Extensions

1-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

Building Configurator Extensions 2-1

2
Building Configurator Extensions

This chapter describes the process for building Configurator Extensions.

The sections of this chapter are:

■ Overview of Building Configurator Extensions

■ Developing Java Classes and Archives

■ Example of Configurator Extension Development

■ Suggested Development Practices

See the Section "Structure" on page xiv in the Preface to verify the audience for whom
this chapter is intended.

To understand the terms and concepts used in this section, see Chapter 1,
"Configurator Extension Basics" and the chapter on Configurator Extensions in the
Oracle Configurator Developer User’s Guide.

2.1 Overview of Building Configurator Extensions
Figure 2–1, "Overview of Configurator Extension Development" on page 2-2 shows the
relationship of a Java development environment to the Oracle Configurator Developer
environment when creating Configurator Extensions. In the Java development
environment, you compile Java classes and add them to Java archive files. In Oracle
Configurator Developer, you upload Java archive files into Configurator Extension
Archives.

In your Model, you specify the Archives that form the Model’s Archive Path, which is
an ordered list of one or more Configurator Extension Archives. Then you create
Configurator Extension Rules, which associate Java classes from Archives with Model
nodes. In each Rule, you create bindings, which bind together a configuration event,
the parameters of a method in the Java class, and arguments related to the Model.

Overview of Building Configurator Extensions

2-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

Figure 2–1 Overview of Configurator Extension Development

Java Development Tasks
The following tasks are normally performed by the programmer who is developing
the Java code for Configurator Extensions. See Section 2.1.1, "Implementing Behavior
with Java Classes" on page 2-3 for more details.

1. Develop Java classes and archives.

See Section 2.2, "Developing Java Classes and Archives" on page 2-4.

2. Create Configurator Extension Archives and upload Java archives.

See the Oracle Configurator Developer User’s Guide for details on this and the
following tasks.

3. Inspect the classes in an Archive.

4. Add archives to a Model’s Archive Path.

5. Optionally, modify the Archive Path for a Model.

Configuration Modeling Tasks
The following tasks are normally performed by the model designer who is developing
the configuration model and rules. See Section 2.1.2, "Incorporating Behavior into
Configuration Models" on page 2-3 for more details.

6. Create a Configurator Extension Rule.

See the Oracle Configurator Developer User’s Guide for details on this and the
following tasks.

7. Choose the Java class for a Rule.

8. Create event bindings for a Rule.

9. Bind arguments from the Model to parameters of Java methods.

If you change the type or number of the parameters of a method used in a
Configurator Extension Rule, then you must create a new binding that reflects
those changes.

10. Test Configurator Extensions.

Overview of Building Configurator Extensions

Building Configurator Extensions 2-3

2.1.1 Implementing Behavior with Java Classes
Implement the behavior of your Configurator Extension by creating one or more Java
classes and methods that use the Oracle Configuration Interface Object (CIO) to access
a runtime configuration object. For details on using the CIO, see Part II, "The
Configuration Interface Object (CIO)".

You can create your Configurator Extension class in any Java development
environment. Then you store the compiled Java class in an archive file, using either the
JAR or Zip format for your archive. You complete the coding stage of Configurator
Extension development by uploading your archive to the Configurator Developer
Repository as a Configurator Extension Archive.

Section 2.2, "Developing Java Classes and Archives" on page 2-4 provides the detailed
procedure for the coding stage of Configurator Extension development.

For an example, see Section 2.3.1, "Example of Configurator Extension Coding" on
page 2-5.

2.1.2 Incorporating Behavior into Configuration Models
The detailed procedure for the modeling stage of Configurator Extension development
is provided in the Oracle Configurator Developer User’s Guide. This section provides a
simple overview.

In Oracle Configurator Developer, you create a connection between your Java class
and your configuration model. To create this connection, you create a Configurator
Extension Rule that binds specific parameters of a Java method to specific nodes or
Properties of a Model.

Figure 2–2, "Configurator Extension Binding" illustrates the relationship of bindings to
Configurator Extension Rules. In this relationship:

■ Each Model can include an Archive Path.

■ A Configurator Extension Rule for the Model specifies:

– A base node in the Model’s structure

– A Java class from one of the Archives in the Archive Path

– One or more bindings

■ A binding specifies:

– A method from the specified Java class

– An event

– A mapping between each parameter of the method and an argument related
to the Model

The Java types of the parameters of your method must agree with the types of
Model entities that are eligible for event binding. For a list of the Java classes
that you can use in event bindings, see Appendix C, "Java Parameter Types for
Configurator Extensions".

Developing Java Classes and Archives

2-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

Figure 2–2 Configurator Extension Binding

For an example of the modeling stage of Configurator Extension development, see
Section 2.3.2, "Example of Configurator Extension Modeling" on page 2-6.

2.2 Developing Java Classes and Archives
This section describes the basic process for coding Configurator Extensions.

Configurator Extensions depend on the CIO for access to your configuration model.
For more background, see Part II, "The Configuration Interface Object (CIO)".

1. Use a Java development environment or text editor to create a .java file in which
to define a Java class. See Example 2–1, "Sample Java Code for Configurator
Extension (InstanceNameChange.java)" on page 2-6 for an example of a very basic
Java class that can be used for a Configurator Extension.

2. Define your class path to include the package oracle.apps.cz.cio.

See Section 1.6, "Installation Requirements for Configurator Extensions" on
page 1-4.

3. Import the classes from the CIO that your Configurator Extension requires to do
its work. See Chapter 4, "CIO Basics" on page 4-1 for background. The following
example is typical:

import oracle.apps.cz.cio.Component;

If you use a class from the collections library, such as List, then for compatibility
with the CIO’s package structure you must import the class using this syntax:

import com.sun.java.util.collections.List;

4. Define a class in which to determine the behavior of your Configurator Extension.

public class InstanceNameChange {
 // implement methods here
}

Example of Configurator Extension Development

Building Configurator Extensions 2-5

5. Create methods that implement the desired behavior for your Configurator
Extension. Any methods that you intend to use in a binding in a Configurator
Extension Rule must be declared as public.

Call methods from the CIO that perform required interaction with your
configuration model (see Section 4.2, "The CIO’s Runtime Node Interfaces" on
page 4-2).

 public void setDefaultName(Component comp, TextFeature tf) {
 // implement CX behavior here
 }

Names of methods used for Configurator Extensions cannot be longer than 30
characters.

The Java types of the parameters of your method must agree with the types of
Model entities that are eligible for event binding. For a list of the Java classes that
you can use in event bindings, see Appendix C, "Java Parameter Types for
Configurator Extensions".

6. Compile the .java file into a .class file.

Use the correct version of the Sun JDK for your platform. See Section 1.6.1,
"Installation Requirements for Developing Configurator Extensions" on page 1-4.

7. Put the resulting .class file into a Java archive file.

You can use either the JAR or Zip format for the Java archive. The archive must be
valid. This means that the directory structure of the archive must correspond to
the package structure of the Java packages in the archive. For example, the
following examples refer to the same class in consistent ways. The first line shows
an import statement using a package reference to the class, and the second line
shows the directory path to the class as stored in an archive file:

import oracle.apps.cz.cio.Component;

oracle/apps/cz/cio/Component.class

8. Now the Java archive file can be incorporated into a Configurator Extension
Archive in Configurator Developer. See Section 2.1.2, "Incorporating Behavior into
Configuration Models" on page 2-3.

2.3 Example of Configurator Extension Development
This section provides a basic example of the development of a Configurator Extension,
which consists of:

■ Example of Configurator Extension Coding

■ Example of Configurator Extension Modeling

2.3.1 Example of Configurator Extension Coding
Example 2–1 on page 2-6 shows the Java source code for a very simple Configurator
Extension.

See Section 2.2, "Developing Java Classes and Archives" on page 2-4 for details on how
to create this code and prepare it for use in a configuration model. See Section 2.3.2,
"Example of Configurator Extension Modeling" on page 2-6 for how this code is used
in a Configurator Extension Rule.

Example of Configurator Extension Development

2-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

Example 2–1 Sample Java Code for Configurator Extension (InstanceNameChange.java)

// When bound to the event for addition of a component instance,
// takes input from the value of a bound Text Feature
// and changes the instance name to that corresponding text.

import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.TextFeature;

public class InstanceNameChange {

 public void setDefaultName(Component comp, TextFeature tf) {

 String name = tf.getCurrentValue();
 comp.setInstanceName(name);
 }
}

2.3.2 Example of Configurator Extension Modeling
See the Oracle Configurator Developer User’s Guide for details on how to incorporate a
Configurator Extension in a configuration model. See Section 2.3.1, "Example of
Configurator Extension Coding" on page 2-5 for how the behavior of this example is
coded in Java.

Section 2.1.2, "Incorporating Behavior into Configuration Models" on page 2-3
provides a summary of the tasks for the modeling stage of Configurator Extension
development.

The following list summarizes the options specific to this example:

■ Use the Java source code in Example 2–1, "Sample Java Code for Configurator
Extension (InstanceNameChange.java)" on page 2-6 to create your Java archive file
and Configurator Extension Archive.

■ When you define model structure, include a Component that can be instantiated
multiple times and a Text Feature with some Initial Value of your choice.

■ When you define a Configurator Extension rule, use the options listed in the
following table:

■ When you define an event binding, use the options listed in the following table:

Option Choose ...

Model Node The node of your Model on which you want Oracle
Configurator Developer to place a button that adds additional
instances of your Component.

Java Class InstanceNameChange, from your Configurator Extension
Archive

Java Class Instantiation With Model Node Instance

Option Choose ...

Event postInstanceAdd

Command Name A string that you choose as a command. For example:
ShowStructure

Suggested Development Practices

Building Configurator Extensions 2-7

■ When you define your argument bindings, use the options listed in the following
tables:

■ When you test the Model, try this procedure:

1. Generate logic for the Model and refresh its User Interface.

2. Click Test Model and select a User Interface. When it appears, the UI contains
a field for the value of the Text Feature and a button (whose default caption is
Add Another) for adding new instances of the instantiable Component.

3. Click the button to add a new instance of the Component. This action is
handled by the runtime Oracle Configurator as a postInstanceAdd event,
which triggers the Configurator Extension, which is bound to that event.

4. The runtime Oracle Configurator changes the name of the new instance of the
Component to the value of the Text Feature.

5. Change the value of the Text Feature, then add another instance of the
Component. The new text value is used to name the new instance.

2.4 Suggested Development Practices
This section contains an assortment of suggestions for developing Configurator
Extensions more efficiently and conveniently.

2.4.1 Observing Project Requirements
Using Configurator Extensions and the CIO allows you to build very powerful
applications with Oracle Configurator. There are important requirements that you
should fulfill if you want to maximize your success with Configurator Extensions.

■ The programmers developing the Java code must possess the requisite skills. See
Section 1.2, "Prerequisite Skills for Developing Configurator Extensions" on
page 1-2 for a description.

Event Scope Your choice of scope. Try repeating the example with
different scopes to see the effect when you test it.

Method Name showModelStructure

Option Choose ...

Argument Type oracle.apps.cz.cio.Component

Argument Specification Event Parameter

Binding instance

Option Choose ...

Argument Type oracle.apps.cz.cio.TextFeature

Argument Specification Model Node or Property

Binding The Text Feature whose value is used to name new
instances of the Component.

Option Choose ...

Suggested Development Practices

2-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ You must develop a test plan for your Configurator Extensions, including a way to
isolate problems caused by them. You need to test your Configurator Extensions
early and often.

If you contact Oracle Support Services (as described in Product Support on
page xvi), you will be asked to reproduce the problem without the Configurator
Extensions. If it is impossible to reproduce the problem without Configurator
Extensions, you will need to explain why you believe your code is not the cause of
the problem. See Section 2.4.7, "Disabling Configurator Extensions" on page 2-10
for information on features that enable you to isolate the effects of your
Configurator Extensions.

2.4.2 Avoiding Common Errors
Observe the following guidelines to avoid common coding errors:

■ Ensure that any static variables and methods are thread-safe. Be aware that CIO
interfaces are not thread-safe. See Section 1.4.2, "Restrictions for Configurator
Extensions" on page 1-4 for details.

■ Use one transaction per CIO operation. See Chapter 7, "Using Logic Transactions"
for details.

■ Handle exceptions properly and avoid empty catch blocks. See Section 2.4.3,
"Handling Exceptions Properly" on page 2-8.

2.4.3 Handling Exceptions Properly
Improper handling of exceptions is the source of many problems that are difficult to
diagnose. See Section 8.3, "Handling Exceptions" on page 8-5 for more information.

Do not ignore or swallow exceptions raised by your code. Ignoring exceptions makes
it very difficult to determine the cause of some problems. Handling exceptions
properly is sound Java coding practice.

Never leave a catch block empty, as shown in Example 2–2. The empty catch block
causes your code to silently ignore the exception. The program may then fail at some
later point that is quite unrelated to the source of the problem, making it very hard to
analyze.

Example 2–2 Empty Catch Block

...
 try {
 opt1.setState(IState.TRUE);
 }
 catch (LogicalException le) {
 // an empty catch block ignores exceptions
 }
...

This advice applies to both checked exceptions (such as predictable user errors) and
unchecked exceptions (unpredictable program failures). Checked exceptions should
always be handled, as shown in Example 2–3. Leaving a catch block empty is worse
than not catching an unchecked exception at all, since an unhandled unchecked
exception (with no catch block at all) causes the program to fail and preserves some
failure information for debugging.

Suggested Development Practices

Building Configurator Extensions 2-9

Example 2–3 Catch Block That Handles an Exception

...
 try {
 opt1.setState(IState.TRUE);
 }
 catch (LogicalException le) {
 // the exception is handled
 throw new RuntimeException("Error");
 }
...

2.4.4 Avoiding Circularity and Recursion
Avoid coding that results in circularity or recursion. Scenarios that might cause this
are described in:

■ Example of Circularity

■ Example of Recursion

Example of Circularity
You might unintentionally define Configurator Extensions that call each other in a
circular chain.

For example, you might bind the postValueChange event to a method that
increments the value of a node, and also to some other method that increments the
value of the same node. At runtime, the change to the node made by one method
triggers the other method, which changes the node again, and triggers the first
method. The resulting endless loop of value changes results in a stack overflow. You
can determine whether this occurred by checking the stack trace.

This kind of scenario can also occur with the onConfigValidate event, which is
dispatched during the validation performed after every CIO transaction.

Example of Recursion
You might unintentionally invoke a method that calls itself recursively in an endless
loop.

For example, you might bind the method setIntegerValue() in Example 2–4 on
page 2-9 to the postValueChange event. (You would also bind its node parameter to
an Integer Feature, and its config parameter to the system parameter
Configuration, with an event scope of Base Node.)

Example 2–4 Inadvertent Recursion (RecursionExample.java)

import oracle.apps.cz.cio.IInteger;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.LogicalException;

public class RecursionExample {

 public void setIntegerValue(IInteger node, Configuration config) {
 ConfigTransaction tr = config.beginConfigTransaction();
 try {
 int val = node.getIntValue();
 node.setIntValue(val + 1); // no limit to setting values

Suggested Development Practices

2-10 Oracle Configurator Extensions and Interface Object Developer’s Guide

 config.commitConfigTransaction(tr);
 } catch(LogicalException le) {
 le.getCause();
 }
 }
}

The setIntegerValue() method changes the value of the specified node inside a
transaction (which is sound practice). However, every time a transaction is committed,
the CIO traverses the list of changes to the configuration (as described in Section 8.1,
"Validating Configurations" on page 8-1) and detects the change to the node, and this
change triggers the postValueChange event, which calls the setIntegerValue()
method again, in a loop.

To avoid this recursion, you must place a limit on the setIntegerValue() method,
such as the following:

if (val < 100) { node.setIntValue(val + 1); } // limit to setting values

At runtime, this method increments the value of the Integer Feature until it reaches
100, and then stop.

2.4.5 Taking Advantage of Argument Binding
Try to make your code simple and reusable by taking advantage of the power of
argument binding.

■ When you want to get a node for processing, do not use
node.getChildByName(). Instead, you can simply bind the desired node to a
method parameter in Oracle Configurator Developer.

■ When you only need one Property of a node, do not bind the node. Instead, bind
the Property. For example, if you need the name of the node node, then bind to
the System Property node.Name() instead of binding node itself and calling
node.getName() in your code.

2.4.6 Sharing Class Instances
All the bindings on a single Configurator Extension Rule share an instance of a class.
This means that any member variable can be shared.

You can group bindings based on their intended functionality or based on their class
usage, and incur less overhead in the creation of objects.

If your Configurator Extension class uses static member variables to communicate
between different instances of the class, the variables cannot be shared across
configurations of different models. For example, a Configurator Extension Rule whose
base node is in Model M1 will not be able to share static member variables with a
Configurator Extension Rule whose base node is in the Model M2 even if both
Configurator Extensions are bound to the same configurator extension class, MyClass.

2.4.7 Disabling Configurator Extensions
When debugging problems with Oracle Configurator, it is sometimes very helpful to
disable some or all of your Configurator Extensions. Disabling Configurator
Extensions shows whether the likely source of a problem is in your Configurator
Extensions or in the Model that they are associated with. If the problem disappears
when you disable Configurator Extensions, then the problem is likely to be in your

Suggested Development Practices

Building Configurator Extensions 2-11

code. If the problem persists, then the problem is likely to be in your model structure
or configuration rules.

■ To disable one or more individual Configurator Extensions, navigate to the Rules
area of the Workbench in Oracle Configurator Developer. Then edit the
Configurator Extension Rule and select its Disable check box, which disables only
that Rule. See the Oracle Configurator Developer User’s Guide for details.

■ To disable many or all Configurator Extension Rules for a Model, navigate to the
Rules area of the Workbench in Oracle Configurator Developer. Then select the
rules, or a folder of rules, and select Disable from the Actions list. See the Oracle
Configurator Developer User’s Guide for details.

■ To disable all Configurator Extensions in your runtime Oracle Configurator, set
the nofc switch of the Oracle Configurator Servlet property cz.activemodel.
See the Oracle Configurator Installation Guide for details on setting this switch.

This setting overrides the settings in Oracle Configurator Developer.

This setting also disables Functional Companions for Models that have already
been published.

■ To programmatically disable all Configurator Extensions and Functional
Companions in your runtime Oracle Configurator, use
CIO.setActiveModelPath():

// set on your CIO object
cio.setActiveModelPath("/nofc");

See Section 4.3, "Initializing the CIO" on page 4-4 for background on the CIO
object.

2.4.8 Testing for a Null User Interface
If a Configurator Extension might be used with both DHTML UIs (created with the
previous release of Oracle Configurator Developer) and generated UIs (created with
the HTML-based version of Oracle Configurator Developer), then you should always
test for the existence of a DHTML UI. This can also be a way to check which type of UI
is in use.

To test for the existence of a DHTML user interface, call
Configuration.getUserInterface(), as shown in Example 2–5. If the test
occurs when the runtime configuration is rendered in a generated UI, then it always
returns null.

Example 2–5 Testing for a Null User Interface

...
mUi = this.getRuntimeNode().getConfiguration().getUserInterface();
if (mUi != null) { // the UI is DHTML }
else { // the UI is generated }
...

2.4.9 Using Logging to Examine Problems
When debugging problems with Oracle Configurator, it is very helpful to examine the
log file entries created by the CIO during a runtime configuration session. You can

Suggested Development Practices

2-12 Oracle Configurator Extensions and Interface Object Developer’s Guide

insert statements in your code to specify how the entries are written. See Chapter 11,
"Logging Through the CIO" for details.

2.4.10 Checking for Deleted or Discontinued Nodes
When working with a runtime node that might have been deleted during a
configuration session, always call IRuntimeNode.isDeleted() to test whether that
node is actually deleted. Attempting to access or set some attribute of a deleted node
generates a NodeDeletedException at runtime. Some methods commonly used to
work with nodes are getState(), setState(), and so on.

If a configured instance of your Model might contain discontinued nodes, then you
should also call IRuntimeNode.isDiscontinued() as a condition of working with
a node. A discontinued node is one that exists in an installed configuration of a
component (as recorded in Oracle Install Base), but has been removed from the
instance of the component being reconfigured, either by deletion or by deselection. If a
node has been discontinued by deselection, but not by deletion, then calling a method
on it will not raise a NodeDeletedException.

For examples of situations in which you might need to test for deleted or discontinued
nodes, see the following sections:

■ Section 6.4, "Getting and Setting Logic States" on page 6-5

■ Section 6.5, "Getting and Setting Numeric Values" on page 6-7

■ Section 6.7, "Access to Options" on page 6-9, which includes a code example,
Example 6–7, "Testing Whether an Option Is Selected" on page 6-10

Uses for Configurator Extensions 3-1

3
Uses for Configurator Extensions

This chapter describes some possible uses for Configurator Extensions.

The sections of this chapter are:

■ Types of Configuration Events

■ Generating Custom Output

■ Filtering for Connectivity

3.1 Types of Configuration Events
Every Configurator Extension must be bound to some configuration event. Therefore,
you should review the available events to help determine the situations in which you
can employ a Configurator Extension.

While there are no formal types for Configurator Extensions themselves, it is possible
to categorize the configuration events to which you can bind Configurator Extensions.
Table 3–1, " Types of Configuration Events" on page 3-1 lists the available types of
configuration events and an example event for each type. For a list of events that you
can use for processing configurations, see Table 5–3, " Events for Processing
Configurations" on page 5-9. For more details, and a full list of the available events, see
the chapter on Configurator Extensions in the Oracle Configurator Developer User’s
Guide.

Table 3–1 Types of Configuration Events

Event Type Possible Use Example Event

Configurator Extension Triggering actions that are
required when the base node for a
Configurator Extension Rule is
instantiated.

postCXInit

Connection Filtering valid targets for a
Connector.

onValidateEligibleTarget

Custom Command Processing custom command
strings that you define. Required
when generating custom output.

onCommand

Session Triggering actions that are
required at some specified point
in a configuration session.

postConfigInit

Value-Related Validating selections or values. onConfigValidate

Generating Custom Output

3-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

3.2 Generating Custom Output
You can generate custom output that is displayed when the end user clicks a button in
the UI of the runtime Oracle Configurator.

The Configurator Extension for this task must be bound to the onCommand event with
a custom command string that you define. This custom command is handled by the UI
layer for the runtime Oracle Configurator. The other requirement is that your Java
method must take an argument of type HttpServletResponse.

For the detailed procedure for creating a Configurator Extension Rule, see Chapter 2,
"Building Configurator Extensions" and the related sections of the Oracle Configurator
Developer User’s Guide. A summary of the required tasks is provided here, with
additional explanation where necessary.

1. The Java method for your Configurator Extension class must take an argument of
the type javax.servlet.http.HttpServletResponse. You must use this
data type because it is the location where your Configurator Extension generates
custom output.

An example of a very simple custom output class is shown in Example 3–1,
"Generating Custom Output (HelloWorldCX.java)" on page 3-3. The example
prints a simple message in an HTML page.

2. Compile the Java class for your Configurator Extension and place it in a Java class
archive file.

3. Create a Configurator Extension Archive for the class, and add it to the Archive
Path for your Model.

4. Define a Configurator Extension Rule with the options listed in the following
table:

5. Create an event binding for the Configurator Extension Rule with the options
listed in the following table:

Option Choose ...

Model Node The node of your Model on which you want the button for
the command event to be placed by Oracle Configurator.
This node is independent of the node to which you might
bind an argument whose Argument Specification is Model
Node or Property.

Java Class HelloWorldCX, selected from your Configurator Extension
Archive.

Java Class Instantiation With Model Node Instance

Option Choose ...

Event onCommand

Command Name A string that you choose as a command. For example: Say
Hello. Do not enclose the string in quotation marks. The
string can contain spaces.

Event Scope Your choice of scope. Try repeating the example with
different scopes to observe the effect when you test it each
time.

Method helloWorld

Generating Custom Output

Uses for Configurator Extensions 3-3

6. Create an argument binding for the event binding with the options listed in the
following table:

7. Generate logic for your Model, to reflect the addition of the Configurator
Extension Rule.

8. Create or refresh a User Interface for your Model. This creates a button in the User
Interface that by default is captioned with the Command Name that you specified
in the binding for the onCommand event. The button is placed on the page for the
Model Node that you associated with the Configurator Extension (the base node).

To change the default caption of the button, edit the Text Expression field in the
Caption Source for the button.

The Button Action for the button is automatically set by Oracle Configurator
Developer to use an Action Type of Raise Command Event in which the
Command is the Command Name string in your event binding. The fact that these
command strings are the same is what causes the button to invoke the Java class
for your Configurator Extension. If you change the Command Name string in
your event binding, you must also change it for the Raise Command Event.

9. Test the Configurator Extension from Configurator Developer by choosing the
Test Model button, then choosing the Model Debugger, or the User Interface that
you generated. When you click the button that triggers the Configurator
Extension, it produces a secondary window and writes the specified message in it.

You can modify the characteristics of the secondary window in Configurator
Developer. The Action Parameters for the Button element include an Output
Window Options field, into which you can enter HTML attributes for the window.
See the Oracle Configurator Developer User’s Guide for information on editing User
Interface elements.

10. For another example of generating output, see Example B–1 in Section B.1,
"Generating Output Related to Model Structure" on page B-1.

Keep the following in mind when working with custom output:

■ If you bind multiple Configurator Extensions to the same command event, they
share the same Button element in the User Interface. When you click that button in
the runtime Oracle Configurator, it triggers all those bound Configurator
Extensions.

■ If you use the limited edition of Oracle Configurator Developer to create a
DHTML UI for a Model that already contains multiple Configurator Extension
command bindings, then it generates a Button for each command binding.
However, when you click a button in the runtime Oracle Configurator, only the
first Configurator Extension runs.

Example 3–1 Generating Custom Output (HelloWorldCX.java)

import java.io.IOException;
import javax.servlet.http.HttpServletResponse;

Option Choose ...

Argument Type javax.servlet.http.HttpServletResponse

Argument Specification Event Parameter

Binding HttpServletResponse

Filtering for Connectivity

3-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

// This CX does not use the CIO, so no need to import CIO classes

public class HelloWorldCX {

 public HelloWorldCX() {
 }

 public void helloWorld(HttpServletResponse resp) {
 StringBuffer sb = new StringBuffer(511);

 sb.append("<html>");
 sb.append("<head>");
 sb.append("<title>Simple CX Test</title>");
 sb.append("</head>");
 sb.append("<body bgcolor='#FFFFFF' text='#000000'>");
 sb.append("HELLO WORLD. This is output from a Configurator Extension.");
 sb.append("</body>");
 sb.append("</html>");
 resp.setContentType("text/html");
 resp.setHeader ("Expires", "-1"); // required for MSIE
 try {
 resp.getWriter().println(sb.toString());
 }
 catch (IOException ioe) {
 throw new RuntimeException();
 }
 }
}

3.3 Filtering for Connectivity
You can define a Connection Filter Configurator Extension that filters the instances of
a target Model that are displayed when an end user of the runtime Oracle
Configurator clicks a Choose Connection button.

3.3.1 Defining a Connection Filter Configurator Extension
To define a Connection Filter Configurator Extension:

1. Define a Java class for your Configurator Extension.

See Section 2.2, "Developing Java Classes and Archives" on page 2-4 for the basic
procedure. See Section 3.3.3, "Example of a Connection Filter Configurator
Extension" on page 3-5 for example code.

2. Define a method that determines the criteria for filtering a list of valid targets for a
Connector.

Example 3–2 on page 3-5 defines such a test in the body of
validateEligibleTarget().

3. In Oracle Configurator Developer, define a Configurator Extension Rule, and
create a binding for the onValidateEligibleTarget event.

Bind the Event Parameter named target as the argument to the parameter of
your validateEligibleTarget() method named target.

Bind the Event Parameter named connector to the Connector node whose target
instances you want to filter.

Filtering for Connectivity

Uses for Configurator Extensions 3-5

See the Oracle Configurator Developer User’s Guide for information about
connectivity and creating Connectors.

3.3.2 Behavior of Connection Filter Configurator Extensions
In the runtime Oracle Configurator, when the end user clicks a Choose Connection
button, Oracle Configurator gets the list of all target instances of the Connector, then
invokes any Configurator Extension bindings that are listening for the
onValidateEligibleTarget event on this Connector. If any of these bindings
return false, then that instance is removed from the list of potential targets, and is
not displayed in the Connection Chooser.

■ If there are no target instances that satisfy the filter, then Oracle Configurator
displays a notification of that fact to the end user.

■ The same Connection Filter Configurator Extension can be associated with more
than one Connector. The same filtering test is performed, but because the potential
targets of the Connectors may be different, the resulting set of eligible instances
may also be different.

■ Different Connection Filter Configurator Extensions can be associated with the
same Connector, for example:

■ Model_A includes Connector_A

■ In Model_A, Configurator Extension CX_1 is associated with Connector_A

■ Model_A is referenced in Model_B (and so Connector_A is accessible through
the reference)

■ In Model_B, Configurator Extension CX_2 is associated with Connector_A

In the runtime Oracle Configurator, when the end user clicks the Choose
Connection button for Connector_A, Oracle Configurator displays a Connection
Chooser containing all of the target instances that satisfy both CX_1 and CX_2.

3.3.3 Example of a Connection Filter Configurator Extension
For an example of a Connection Filter Configurator Extension, see Example 3–2 on
page 3-5. This Configurator Extension searches the target Model for a Resource named
Resource1, and returns False if the value of that Resource is less than 10; otherwise it
returns True.

In the runtime Oracle Configurator, this Configurator Extension filters out any
potential target instances in which the value of the Resource named Resource1 is less
than 10. (If the potential target instance does not even contain a Resource named
Resource1, then a NoSuchChildException is raised.)

Example 3–2 Filtering for Connectivity (TargetFilter.java)

import oracle.apps.cz.cio.Resource;
import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.NoSuchChildException;

public class TargetFilter {

 public boolean validateEligibleTarget(Component target){
 Resource resource = null;
 try {
 resource = (Resource)target.getChildByName("Resource1");
 } catch (NoSuchChildException nsce) {

Filtering for Connectivity

3-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

 nsce.printStackTrace();
 return true;
 }
 if (resource.getValue() < 10) {
 return false;
 } else {
 return true;
 }
 }
}

Part II
The Configuration Interface Object (CIO)

Part II contains the following chapters:

■ Chapter 4, "CIO Basics"

■ Chapter 5, "Working with Configurations"

■ Chapter 6, "Working with Model Entities"

■ Chapter 7, "Using Logic Transactions"

■ Chapter 8, "Contradictions, Exceptions, and Validation"

■ Chapter 9, "Using Requests"

■ Chapter 10, "Configuration Session Change Tracking"

■ Chapter 11, "Logging Through the CIO"

CIO Basics 4-1

4
CIO Basics

This chapter provides basic information about the Oracle Configuration Interface
Object (CIO). For details about how to use the CIO for specific purposes, see the list of
chapters in Part II, "The Configuration Interface Object (CIO)".

The sections of this chapter are:

■ Background

■ The CIO’s Runtime Node Interfaces

■ Initializing the CIO

4.1 Background
This section describes the CIO and its relationship to Configurator Extensions.

4.1.1 What is the CIO?
The Configuration Interface Object (CIO) is an API (application programming
interface) that provides programs access to the Model used by a runtime Oracle
Configurator, which you construct with Oracle Configurator Developer. The CIO is
designed to enable you to programmatically perform any interaction with a
configuration model that can be interactively performed by an end user during a
configuration session.

The CIO is a top-level configuration server. The CIO is responsible for creating, saving
and destroying objects representing configurations, which themselves contain objects
representing Models, Components, Features, Options, Totals and Resources. The
runtime configuration model can be completely controlled and manipulated through
these interfaces, using methods for getting and setting logical, numeric and string
values, and creating optional subcomponents.

Client Applications
The CIO is the only API supported by Oracle for programmatic interaction with the
runtime Oracle Configurator. Consequently, any custom applications must use the
CIO. Custom applications are those that integrate Oracle Configurator with a custom
user interface (a UI not generated by Oracle Configurator Developer).

The CIO is also used by Configurator Extensions, as described in Section 1.5,
"Configurator Extensions and the CIO" on page 1-4. Be sure to review the Oracle
Configurator Performance Guide for information on the performance impacts of
Configurator Extensions.

The CIO’s Runtime Node Interfaces

4-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

Most of the techniques for using the CIO apply equally to custom applications and
Configurator Extensions. This document points out selected cases where there is a
distinction between these two applications.

Implementation Language
The Oracle Configuration Interface Object is written in Java, and implemented as the
Java package oracle.apps.cz.cio. To use the functionality of the CIO you must
import classes from this package.

4.1.2 The CIO and Configurator Extensions
A Configurator Extension is Java code that calls the CIO.

Configurator Extensions are invoked by the CIO through the runtime Oracle
Configurator, and Configurator Extensions call the CIO to get information from the
running Model. The CIO is like a broker for the runtime Oracle Configurator, in that it
passes information both ways. Programmers writing Configurator Extensions need to
know how to use the CIO.

Each Configurator Extension is an object class. For every component instance in your
Model that is associated with a Configurator Extension, the CIO creates an instance of
this class.

4.2 The CIO’s Runtime Node Interfaces
When you program against the CIO, you create one instance of the class CIO (see
Section 4.3, "Initializing the CIO" on page 4-4) and one or more instance of the classes
Configuration and ConfigParameters (see Chapter 5, "Working with
Configurations"). You then use the public interfaces of the CIO, such as those listed in
Table 4–1 on page 4-3, to access fields in the runtime node objects created by your
instances of CIO and Configuration. Apart from CIO and Configuration, your
code should refer only to these public runtime node interface objects. You should not
implement any of the runtime node interfaces, but only use them as references to
runtime node objects.

In Java, an interface is a special type that allows programmers more flexibility in the
way that they implement the internal details of classes. In Java terms, an interface is a
named collection of method definitions, without implementations of those methods.
For example, in the CIO, the interface IRuntimeNode specifies methods that are
implemented in the class RuntimeNode.

Note: Unless stated otherwise, references in this document to
classes, methods, and properties refer to the package
oracle.apps.cz.cio, and all code examples are in Java.

The CIO’s Runtime Node Interfaces

CIO Basics 4-3

Table 4–1 on page 4-3 lists some of the interfaces defined in the Java package
oracle.apps.cz.cio that you are most likely to use in working with the CIO. For
more detail about these and the other CIO interfaces, see Appendix A, "Reference
Documentation for the CIO".

The functionality underlying the CIO interfaces is implemented by other classes in
oracle.apps.cz.cio, which are subject to revision by Oracle. This
interface/implementer architecture protects your code from the effects of such
revisions, since the interfaces remain constant.

Note: In normal circumstances, the only CIO classes that you should
create (with the Java keyword new) are:

■ CIO

■ Configuration

■ ConfigParameters

You only need to create these objects when working with a custom
application. Configurator Extensions do not need to create them,
because that task is performed by the runtime Oracle Configurator
when it starts a configuration session.

Table 4–1 Important Runtime Node Interfaces for the CIO

Interface Role of implementing classes

Component Interface for components.

IBomItem Implemented by all selectable BOM items.

ICount Implemented by objects that have an associated
integer count.

IDecimal Implemented by objects that can both get and set a
decimal value.

IInteger Implemented by objects that have an integer value.

IOption Implemented by objects that act as options. The
defining characteristic of an option is that it can be
selected and deselected.

IOptionFeature Implemented by objects that contain selectable
options. This interface provides a mechanism for
selecting and deselecting options, and for
determining which options are currently selected.

IRuntimeNode Implemented by all objects in the runtime
configuration tree. This interface implements
behavior common to all nodes in the runtime
configuration tree, including Components, Features,
Options, Totals, and Resources.

IState Implemented by objects that have logic state. This
interface contains a set of input states, used to specify
a new state for an object, a set of output states,
returned when querying an object for its state, and a
set of methods for getting and setting the object's
state.

IText Implemented by objects that have a textual value.

Initializing the CIO

4-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

4.3 Initializing the CIO
In order to use any of the features of the CIO, an application must initialize it, using a
JDBC driver to make a connection to the Oracle Configurator schema. This connection
enables the CIO to obtain and store data about Model structure, Configuration Rules,
and User Interface.

Use the following practice to initialize the CIO:

1. Import the necessary packages.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

2. Load the database driver that you have installed. For instance:

Class.forName("oracle.jdbc.driver.OracleDriver");

3. Create a context object and pass to it the information needed to make a database
connection: the host name and port number of the Web server, and the name of
the DBC file. The context object manages the database connection; you should not
create a separate connection object (for instance, with
java.sql.DriverManager.getConnection).

contextObject = new CZWebAppsContext ("hostName", "portNumber", "dbcFileName");

4. Create a single global CIO object. This object is shared by any Configuration
objects that are created during the configuration session.

CIO cioObject = new CIO();

Example 5–1 on page 5-3 shows how some of these steps are employed.

Note:

■ This use of the CIO is intended for custom applications. If you
are using the CIO in a custom application, you must initialize
the CIO.

■ When you run Configurator Extensions through the runtime
Oracle Configurator or through the testing facilities of Oracle
Configurator Developer, this initialization and connection
work is automatically handled for you; you do not have to
write your own code to initialize the CIO.

Working with Configurations 5-1

5
Working with Configurations

This chapter describes how to interact with configuration objects.

The sections of this chapter are:

■ Creating Configurations

■ Removing Runtime Configurations

■ Saving Configurations

■ Monitoring Changes to Configurations

■ Restoring Configurations

■ Restarting Configurations

■ Automatic Behavior for Configurations

■ Access to Configuration Parameters

■ Sharing a Configuration Session

5.1 Overview
The Configuration object, oracle.apps.cz.cio.Configuration, represents a
complete configuration. You can use the CIO to work with multiple configurations
within the same configuration session.

For essential background information about Configuration objects, see the chapter on
managing configurations in the Oracle Configurator Implementation Guide.

You communicate with a runtime configuration through the Configuration object,
using methods such as those listed in Table 5–1:

Table 5–1 Typical Methods of the Configuration Object

To do this ... Use this method of Configuration ...

Access the CIO object that contains the
Configuration object

getCIO()

Access the component object for which the
Configuration object represents a configuration

getRootComponent()

Obtain a collection of current validation failures getValidationFailures()

Obtain an indication of whether the complete
configuration is satisfied

isUnsatisfied()

getUnsatisfiedItems()

Obtain a collection of the selected nodes in the
configuration

getSelectedItems()

Creating Configurations

5-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

The Configuration object also provides methods for starting, ending, and rolling back
logic transactions performed on a configuration. Logic transactions maintain logic
consistency; they are not database transactions. See Chapter 7, "Using Logic
Transactions" on page 7-1.

5.2 Creating Configurations

To create a Configuration object, which is the top-level entry point to a configuration,
use CIO.startConfiguration().

This method takes as arguments a ConfigParameters object and a context object.

The context object provides the application context for the connection to the database.
See Section 4.3, "Initializing the CIO" on page 4-4 for information on creating a context
object.

The ConfigParameters object encapsulates all the information needed to create a
configuration. To create a ConfigParameters object, invoke one of the constructors
for ConfigParameters, depending on the type of configuration you need to create:

■ To create an entirely new configuration, provide a Model ID:

public ConfigParameters(int modelId)

This is the constructor shown in Example 5–1 on page 5-3.

■ To restore a saved configuration, provide its Configuration Header ID and
Configuration Revision Number.

public ConfigParameters(long headerId, long revisionNumber)

■ To create a configuration for a BOM without a configuration model (sometimes
known as a "native BOM" configuration), provide the Inventory Item ID,
Organization ID, and effective date of the BOM to be exploded and configured:

public ConfigParameters(int inventoryItemId, int organizationId, Date
explosionDate)

Save the current configuration saveNew()

saveNewRev()

Close the current configuration closeConfiguration()

Note: This use of the CIO is intended for custom applications.
Configurator Extensions do not need to create a Configuration
object, because that task is performed by the runtime Oracle
Configurator when it starts a configuration session.

Note: The use of CIO.startConfiguration() completely
replaces the use of all versions of
CIO.createConfiguration(), which is now deprecated.
Existing code that uses the deprecated method is still compatible
with the CIO, but cannot use any new functionality.

Table 5–1 (Cont.) Typical Methods of the Configuration Object

To do this ... Use this method of Configuration ...

Creating Configurations

Working with Configurations 5-3

To control the initialization of the new configuration, use the methods in the
ConfigParameters class to set the configuration parameters. For details on these
methods, see the reference for the CIO (described in Chapter A, "Reference
Documentation for the CIO").

Use the methods in the following list to set the effective date for the configuration and
the model’s publication lookup date.

■ setEffectiveDate(java.util.Calendar effectiveDate)

■ setModelLookupDate(java.util.Calendar modelLookupDate)

If you do not set these dates, they default to the date when Oracle Configurator
considers the configuration to have been created.

All other parameters to the ConfigParameters object are optional, and are
defaulted.

Once a configuration has been created, changing a configuration parameter does not
affect the configuration in any way.

To obtain access to the CIO object that created the configuration, use
Configuration.getCIO().

Most of the constructor and method arguments to ConfigParameters correspond to
one of the initialization parameters for the runtime Oracle Configurator. The
correspondences are shown in Table 5–2 on page 5-3. See the Oracle Configurator
Implementation Guide for more information on the initialization parameters.

Example 5–1 shows a technique for creating a Configuration object. For clarity, it omits
some important tasks, such as using transactions and fully handling exceptions.

Example 5–1 Creating a Configuration Object (MyConfigCreator.java)

import oracle.apps.cz.cio.CIO;
import oracle.apps.cz.cio.ConfigParameters;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.cio.IState;
import oracle.apps.cz.cio.IOption;
import oracle.apps.fnd.common.Context;
import oracle.apps.cz.common.CZWebAppsContext;
import java.util.Calendar;

public class MyConfigCreator {

Table 5–2 Correspondence of Configuration Parameters to Initialization Parameters

Configuration Parameter Argument Initialization Parameter

Model ID modelId model_id

Configuration Header ID headerId config_header_id

Configuration Revision Number revisionNumber config_rev_nbr

Inventory Item ID inventoryItemId inventory_item_id

Organization ID organizationId organization_id

Configuration Effective Date effectiveDate config_effective_date

Model Lookup Date modelLookupDate config_model_lookup_date

Removing Runtime Configurations

5-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

// Create the context object for this instance
 private static String hostName = "myhost";
 private static String portNumber = "1521";
 private static String dbcFileName = "myhost_mysid";
 private static CIO cio;
 private static Context context;

 public static void main(String [] args) {

 context = new CZWebAppsContext(hostName, portNumber, dbcFileName);
 CIO cio = new CIO(); // Create shared global CIO
 MyConfigCreator work = new MyConfigCreator();

 // Create a configuration object, using the shared CIO
 work.config1();

 // Use the same shared CIO to create more configurations
 // work.config2();
 // work.config3();
 // and so on ...
 }

 // Create and use a new Configuration object
 public void config1() {

 // Create the ConfigParameters object and set non-default parameters
 int modelId = 5005; // Hypothetical model ID
 ConfigParameters cp = new ConfigParameters(modelId);
 java.util.Calendar modelLookupDate = Calendar.getInstance(); // current date and time
 cp.setModelLookupDate(modelLookupDate);

 try {

 // Create the Configuration object
 Configuration config = cio.startConfiguration(cp, context);

 // Perform an assertion against the configuration ...
 // 1. Get the root component of the configuration
 IRuntimeNode rootComp = (IRuntimeNode)config.getRootComponent();
 // 2. Get an Option Feature
 IRuntimeNode of1 = rootComp.getChildByName("option_feature_1");
 // 3. Select an Option of the Feature
 ((IOption)of1.getChildByName("option_1")).select();

 // Perform other assertions ...

 } catch (Exception e) {
 // Perform exception handling here
 }
 }
}

5.3 Removing Runtime Configurations
To remove all runtime structure and memory associated with a configuration, use
CIO.closeConfiguration(). Oracle recommends that you invoke this method
when ending a configuration session and before exiting the runtime Oracle
Configurator.

Monitoring Changes to Configurations

Working with Configurations 5-5

5.4 Saving Configurations
You save a runtime configuration so that you can operate on it later, after it has been
closed at the end of a configuration session.

When you save a configuration, it is stored in the CZ schema of the Oracle
Applications database. To later operate on a saved configuration, you must first
restore it, as described in Section 5.6 on page 5-6.

There are several methods for saving configurations. Choose the one that suits your
requirements, as described in the following list.

■ Use Configuration.saveNew()to save an entirely new Configuration object.

The saved Configuration object has a new Configuration Header ID and a
Configuration Revision Number of 1.

■ Use Configuration.saveNewRev() to save a new revision of a previously
saved Configuration object.

The saved Configuration object has the same Configuration Header ID as the
previously created Configuration object, but the Configuration Revision Number
uses the next available Revision Number.

■ Use Configuration.save() to save subsequent changes to a previously saved
Configuration object, overwriting the existing configuration data.

The saved Configuration object has the same Configuration Header ID and the
same Configuration Revision Number as the previously created Configuration
object.

■ For more information on saving configurations, see the Oracle Configurator
Implementation Guide.

5.5 Monitoring Changes to Configurations
When changes are made to a configuration, the CIO monitors whether the
configuration needs to be saved. You can access the flag that tracks this status.

5.5.1 How the CIO Monitors Changes to Configurations
During a runtime configuration session, the CIO monitors whether changes have been
made to the current configuration, and whether those changes need to be saved.
Changes can result either from end user actions in the user interface of the runtime
Oracle Configurator, or from assertions made through the CIO by your Configurator
Extensions or custom application code.

To keep track of whether a configuration needs to be saved, the CIO maintains a
Boolean changed-state flag, whose values are interpreted as "clean" or "dirty". At the
beginning of a configuration session, the flag is set according to the following rules:

■ Any new configuration having no assertions against it is marked as clean.

■ Any restored configuration having no assertions against it is marked as clean,
regardless of whether it produces validation failures when restored.

Note: Do not save a Configuration object during a logic
transaction (see Chapter 7, "Using Logic Transactions"). You may
miss some validation messages that are not available until the
transaction is committed.

Restoring Configurations

5-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ Any new or restored configuration with assertions against it is marked as dirty.

During the configuration session, if there are unsaved changes, then the changed-state
flag is set to dirty by the CIO.

When the configuration is saved, the changed-state flag is set to clean. It does not
matter how the saving is performed: by a Configurator Extension or by a custom user
interface.

When the Cancel button is clicked in the user interface of the runtime Oracle
Configurator, the UI Server checks the changed-state flag; if it is dirty, the UI Server
produces a dialog asking the user whether to continue exiting the session without
saving the changes. If you write a custom user interface, it should do the same, using
the technique described in Section 5.5.2, "How You Can Monitor Changes to
Configurations" on page 5-6.

5.5.2 How You Can Monitor Changes to Configurations
You can get or set the value of the changed-state flag of a configuration.

■ To get the value of the changed-state flag, use the method
Configuration.areAllChangesSaved().

This method returns TRUE the configuration is clean (that is, if all the changes that
have been made to this configuration during the configuration session have been
saved). This method returns FALSE if the configuration is dirty (that is, if there are
changes that have been made to this configuration that have not been saved).

You can use this method when you want to determine whether a configuration
needs to be saved.

■ To set the value of the changed-state flag, use the method
Configuration.setAllChangesSaved(), which takes the boolean argument
clean.

If you pass TRUE as the value of clean, then the changed-state flag is set to
"clean". Any further changes to the configuration make it dirty again. If you pass
FALSE as the value of clean, then the changed-state flag is set to "dirty".

You can use this method when you want to change the configuration through the
CIO without interfering with the end user’s sense of what has changed during a
configuration session. For example, if you use a Configurator Extension to create
and rename of an instance of an instantiable component when the configuration is
created, the changed-state flag is set to dirty. You can then use
setAllChangesSaved() to set the flag to clean, so that if the end user clicks the
Cancel button before making any changes, the UI Server does not produce the
dialog asking whether to continue exiting the session without saving changes.

5.6 Restoring Configurations
You restore a configuration in order to operate on if it has been saved and closed (as
described in Section 5.4, "Saving Configurations" on page 5-5).

■ To restore a Configuration object from the Oracle Configurator schema, use
CIO.startConfiguration(). For details about that method, see Section 5.2 on
page 5-2 and Example 5–1 on page 5-3.

Restoring Configurations

Working with Configurations 5-7

■ When you restore a configuration, any user requests (see Section 9.3, "User
Requests" on page 9-2) that cannot be applied are reported as validation failures.
See Section 9.5, "Failed Requests" on page 9-4.

■ You may be able to improve performance by restarting the current configuration,
instead of restoring it. See Section 5.7, "Restarting Configurations" on page 5-8.

■ You must be aware of the possible effects of changing the model structure or
configuration rules in Oracle Configurator Developer between the time you save a
configuration and the time you restore it.

■ If you change the Instantiability settings for a Model or Component to decrease or
increase the Initial Minimum, this might change the number of previously saved
instances that exist when restore a saved configuration. Unmodified initial
instances are restored in the order they were initially created, until they possibly
exceed the Initial Minimum. However, no instances that you modify or add will be
lost.

Here is an example of the preceding point:

1. Define the Initial Minimum of an instantiable component as 5.

2. Create a configuration. The Initial Minimum of 5 is enforced, instantiating that
number of components.

3. Modify 2 of the initially instantiated components. For instance, make them
targets of Connectors, or select options of their children.

4. Add 1 new component instance, and delete 1 initial instance.

There are now 5 instances: 2 modified initial instances, 2 unmodified initial
instances, and 1 added instance.

5. Save the configuration. All 5 instances are saved.

6. Change the Initial Minimum of the instantiable component to 3.

7. Restore the saved configuration.

The following 4 instances are restored:

– The 1 added instance (because added instances are always restored).
Added instances are not counted against changes in the Initial Minimum.

– The 2 modified initial instances (because modified instances are always
restored).

– Only the first 1 of the unmodified initial instances (because the other 1
unmodified initial instance exceeds the new Initial Minimum of 3, and is
not restored).

Only unmodified instances can be lost when a configuration is restored. Any
modified or added instances are restored, regardless of the Initial Minimum.

If the Initial Minimum is increased, then the configuration might be restored
with more instances than were saved.

Note: The use of CIO.startConfiguration() completely
replaces the use of all versions of
CIO.restoreConfiguration(), which is now deprecated.
Existing code that uses the deprecated method is still compatible
with the CIO, but cannot use any new functionality.

Restarting Configurations

5-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ Remember that it is only the User True configuration inputs to the model that are
saved, not all the Logic True effects that those inputs may have when reapplied
later. When you restore a configuration, any user requests that cannot be applied
are reported as validation failures. Consequently, you should notify end users of
changes to your configuration model or rules.

Here is an example of the preceding point:

1. Define a Logic Rule stating that Option1 Requires Option2.

2. In a configuration session, the end user selects Option1, which then has an
input state of TRUE.

See Section 6.4, "Getting and Setting Logic States" on page 6-5 for an
explanation of input and output states.

3. Your configuration rule causes the selection of Option2, which then has an
output state of LTRUE. The end user observes the effect of this change to
Option2. This effect might include the calculation of a price, or the inclusion of
a certain item in the order.

4. The configuration is saved. Only the input state of TRUE for Option1 is saved.

5. The configuration rule "Option1 Requires Option2" is deleted or disabled.

6. The configuration is restored. Only the state of UTRUE for Option1 is restored.
Because your configuration rule is no longer affecting Option2, its input state
remains UNKNOWN. The end user observes, with confusion, that the
previous selection of Option2 no longer occurs. The effect of this situation
might be that a previously observed price or item no longer appears in the
order.

■ For more information on restoring configurations, see the Oracle Configurator
Implementation Guide.

5.7 Restarting Configurations
Use Configuration.restartConfiguration() to restart the current
configuration. You restart a configuration when you want to remove the effects of a
configuration session without removing the components that you are configuring from
the session. When you restart a configuration, the CIO:

■ Rolls back logic transactions

■ Removes requests

■ Reverses the assertions that had set logic states and values

■ Removes component instances added during the session, and restores component
instances deleted during the session

You must be using the CIO with a custom user interface to use
restartConfiguration(); this method cannot be used with a user interface
generated by Oracle Configurator Developer.

5.8 Automatic Behavior for Configurations
You can define behavior that is executed whenever a configuration is processed in
certain ways, by defining Configurator Extensions bound to certain events. Table 5–3
on page 5-9 describes some of these events, and the circumstances under which you
should use them. For a list of types of events, see Table 3–1, " Types of Configuration

Access to Configuration Parameters

Working with Configurations 5-9

Events" on page 3-1. For more details, and a full list of the available events, see the
chapter on Configurator Extensions in the Oracle Configurator Developer User’s Guide.

See the Oracle Configurator Developer User’s Guide for details on how to create
Configurator Extensions that are bound to events.

In the runtime Oracle Configurator, the Configurator Extension runs when one of the
events listed in Table 5–3 on page 5-9 is executed (such as after a configuration is
saved).

5.9 Access to Configuration Parameters
If you are using Oracle Configurator in a Web deployment, you can use a Configurator
Extension to obtain a list of the initialization parameters that are passed from the host
application to your configuration Model.

To access initialization parameters, create a Configurator Extension that calls
Configuration.getUserParameters(), which returns a NameValuePairSet
object. This object contains all the parameter names and values stored by the runtime
Oracle Configurator when it processes the initialization message sent by the host
application to the Oracle Applications Framework.

As a security measure, the initialization parameter pwd, which contains a password, is
not returned by getUserParameters().

To add your own user-defined configuration parameters to those contained in the
initialization message, making them a part of the configuration, use
ConfigParameters.addUserParam(), which takes the name of the parameter (a
string) and the value (an object). To obtain the value of one of these configuration
parameters, call ConfigParameters.getUserParam().

See the Oracle Configurator Implementation Guide for more information about the
initialization message.

Table 5–3 Events for Processing Configurations

Event Triggered ... Comments

postConfigNew When a newly-created
configuration is
activated

See Section 5.2, "Creating Configurations" on
page 5-2 for background on creating
configurations.

preConfigSave Before a configuration
is saved

You can save a configuration using the
Model Debugger in Oracle Configurator
Developer.

postConfigSave After a configuration
is saved

Clicking the Finish button in the runtime
Oracle Configurator terminates the
configuration session and saves the
configuration, if it is valid.

postConfigRestore After a configuration
is restored

You can restore a saved configuration using
the Model Debugger in Oracle Configurator
Developer.

preConfigSummary Immediately before
the Summary screen is
displayed

Clicking the Summary button in the runtime
Oracle Configurator displays the Summary
screen.

Sharing a Configuration Session

5-10 Oracle Configurator Extensions and Interface Object Developer’s Guide

5.10 Sharing a Configuration Session
During a configuration session, your application may require the ability to launch a
custom user interface in a child window of the runtime Oracle Configurator window.
This child UI might interact with the user and perform updates to the state of the
configuration model. When these interactions are finished, the child UI returns control
to the parent window containing the runtime Oracle Configurator UI.

If your application opens such a child window, that window needs shared access to
the configuration model, through the Configuration object.

You can get the Configuration object from the HTTP session by using the key
configurationObject. You can obtain a URL for returning to the parent window
by requesting the session object czReturnToConfiguratorUrl. The example in
Section B.3, "Sharing a Configuration Session in a Child Window" on page B-6
illustrates the use of these objects. You can obtain these objects by using one of the
following methods from the Java servlet/JSP API:

■ javax.servlet.http.HttpSession.getValue
("czReturnToConfiguratorUrl")

■ javax.servlet.jsp.PageContext.getAttribute("czReturnToConfigura
torUrl", PageContext.SESSION_SCOPE)

During the period of user interaction with the child UI window, you should prevent
any use of the parent window, since that might interfere with the changes to the state
of the application or configuration model being made in the child window.

You can create the kind of child window that you need in the HTML-based version of
Oracle Configurator Developer, by creating a UI element (such as a Custom Button)
that supports the Open URL action in a generated Configurator UI, using the
specifications provided in Table 5–4. For background, see the Oracle Configurator
Developer User’s Guide.

These specifications are used for Example B–4, "Sharing a Configuration Session in a
Child Window (TestChildWin.jsp)" on page B-7.

Caution: The custom UI in the child window must be running in the
same HTTP session as the parent window containing the runtime
Oracle Configurator. You must also ensure thread safety, as noted
under Section 1.4.2, "Restrictions for Configurator Extensions" on
page 1-4.

Table 5–4 UI Specifications for Invoking Child Window

Option Choice

Caption Source Text Expression, indicating to the end user the action that the UI
element performs

Action Type Open URL

Target URL Source Text Expression, pointing to your custom child UI (such as a JSP),
which must be located in the OA_HTML directory. The specific
expression for Example B–4 is:

/OA_HTML/TestChildWin.jsp

Target Window Child Window

Select the option to Lock Main Window while Displaying Child

Working with Model Entities 6-1

6
Working with Model Entities

This chapter describes how to interact with entities in model structure.

The sections of this chapter are:

■ Opportunities for Modifying the Configuration

■ Accessing Components

■ Accessing Features

■ Getting and Setting Logic States

■ Getting and Setting Numeric Values

■ Accessing Properties

■ Access to Options

■ Introspection through IRuntimeNode

The root component, and every other node in the underlying runtime Model tree,
implements the IRuntimeNode interface. This interface exposes several attributes of
the configuration model, such as the type of the node (based on a set of node type
constants), its name, the node ID, a runtime ID that is unique to this node across all
nodes created by this particular CIO, the parent node (which is null for the root
component), a (possibly empty) collection of children, and information about whether
this part of the runtime tree has been satisfied. See Section 6.8, "Introspection through
IRuntimeNode" on page 6-10.

6.1 Opportunities for Modifying the Configuration
During a configuration session, there are certain optimal points for modifying the
configuration.

Use IRuntimeNode.getConfiguration() to get the configuration to which a
node belongs. The code fragment in Example 6–1 shows how to get the
Configuration object associated with the current node in the runtime Oracle
Configurator.

Example 6–1 Getting the Configuration from a Runtime Node

IRuntimeNode node = getRuntimeNode();
Configuration config = node.getConfiguration();

Note: This use of the CIO is intended for Configurator Extensions.

Accessing Components

6-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

You can modify a configuration by using a Configurator Extension bound to one of the
configuration events described in Table 5–3, " Events for Processing Configurations"
on page 5-9, Table 3–1, " Types of Configuration Events" on page 3-1, and the chapter
on Configurator Extensions in the Oracle Configurator Developer User’s Guide.

For instance, if you want to modify the configuration immediately after a new
configuration session has been initialized, then bind your Configurator Extension to
the postConfigNew event.

Modifying the configuration through a Configurator Extension is sometimes referred
to as side-effecting it.

Be careful when binding a Configurator Extension to the postCXInit event, since
that event always occurs when a configuration session begins.

6.2 Accessing Components
The CIO represents instantiable components with two structures that are used
together: Component and ComponentSet. An individual instance of a component is
represented by the interface Component. A set of these instances of a given
component is represented by an instance of the class ComponentSet. Both structures
inherit from the interface IRuntimeNode.

In Oracle Configurator Developer, there is no element that corresponds to a
ComponentSet, but you can control the Instantiability settings for a node. The
Instantiability settings for initial minimum and initial maximum determine the
minimum and maximum number of instances that can be added at runtime.
Components that have a minimum number of instances of 1 and a maximum number
of instances of 1 are called required components. Components that have a minimum
number of instances of 0 and a maximum number of instances of 1 or more are called
instantiable components. See the Oracle Configurator Developer User’s Guide for details
about required and instantiable components.

6.2.1 Adding and Deleting Instantiable Components

It is most likely that you would add or delete instantiable components in a
Configurator Extension.

Use ComponentSet.add() to add an instantiable component. The result is a new
object that uses the Component interface.

The add() method can throw a LogicalException if adding the component causes
a logical contradiction.

Caution: Be careful of recursion when using the events
postValueChange and onConfigValidate, which are triggered
when a change to the configuration is detected by Oracle
Configurator. It is possible to enter an infinite loop in which changes
that you make in your Configurator Extension trigger an event that
makes the Configurator Extension run again. See Section 2.4.4,
"Avoiding Circularity and Recursion" on page 2-9 for more details.

Note: This use of the CIO is intended for both custom applications
and Configurator Extensions.

Accessing Components

Working with Model Entities 6-3

Use ComponentSet.delete() to delete an instantiable component.

In the user interface for the runtime Oracle Configurator, a configurable component is
normally represented by a single screen. The screen that represents the parent node of
this component contains a button that adds instances of the component, producing a
new component screen and a new Component object. This is equivalent to adding
instances through ComponentSet.add(). The screen representing the configurable
component itself contains a button that deletes that instance of the component. This is
equivalent to deleting the instance through ComponentSet.delete().

In a user interface generated by Oracle Configurator Developer, when the end user
adds an instance of an instantiable component that is a BOM Model (which is
represented by a BomInstance object), that instance is automatically selected. If the
addition causes any contradictions, the appropriate messages are displayed. However,
if you use a Configurator Extension to add an instance of a BOM Model, that instance
is not automatically selected. If you want your Configurator Extension to select the
instance, you must do it explicitly, as shown in Example 6–2 on page 6-3. Instantiable
components that do not represent BOM Models cannot be selected.

Example 6–2 Adding and Selecting an Instance of a BOM Model

...
ComponentSet compSet = (ComponentSet)comp1.getChildByName("My Model");
Component comp = compSet.add();
if (comp instanceof BomModel) {
 (BomInstance(comp)).select();
}
...

See Section 5.6, "Restoring Configurations" on page 5-6 for information on the effects
of changes to Instantiability settings in Oracle Configurator Developer when restoring
configurations in which instances have been added, deleted, or modified.

6.2.2 Renaming Instances of Components
During a configuration session, when the end user of the runtime Oracle Configurator
creates a new instance of a configurable component, the user interface displays a
distinctive name for the instance.

For more information on controlling the display of instance names in the runtime
Oracle Configurator, see the Oracle Configurator Implementation Guide.

You can access the default name that is displayed in the runtime user interface, by
using the methods setInstanceName(), getInstanceName(), and
hasInstanceName() in the interface Component.

You can use setInstanceName() to set the name of an instance of an instantiable
component. The component to be renamed cannot be a required component. The name
that you set persists when you restore the configuration that contains the instance.

You can use hasInstanceName(), and getInstanceName() to test whether the
name of an instance has been set, and to return the name.

For a fragmentary example of how to change the name of an instance, see
Example 6–3.

Note: There are some performance problems that can arise when
adding and deleting several instantiable components. See the Oracle
Configurator Modeling Guide for details.

Accessing Features

6-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

Example 6–3 Renaming an Instance of a Component

...
String inputText = "My Instance Name";

ComponentSet compSet = (ComponentSet)comp1.getChildByName("My Model");
Component comp = compSet.add();
comp.setInstanceName(inputText);
...

For a full example of how to change the name of an instance, see Example 2–1 on
page 2-6.

6.3 Accessing Features
There are several specialized types of Features. Each Feature type implements the
IRuntimeNode interface, enabling you to use its general methods for working with
runtime nodes (see Section 6.8, "Introspection through IRuntimeNode" on page 6-10).
Each type also implements its own interface with appropriately specialized methods.

Table 6–1, " Feature Types, Value Types, and Interfaces" on page 6-4 lists the types of
Features that you can work with in the CIO, the types of their values, and the CIO
interface for working with them.

Some of these types require special comment:

■ Option Features are represented by OptionFeature objects. An
OptionFeature has a logic value. If the Option Feature is satisfied, the value is
TRUE. The values of an OptionFeature object are Options.

You can use the methods getMinSelected() and getMaxSelected(), of
IOptionFeature, to determine the minimum and maximum number of a
Feature’s child Options that can be selected. If you do, first use
hasMinSelected() or hasMaxSelected() to determine whether there is a
minimum or maximum number of Options. You can use areOptionsCounted()
to determine whether the Feature has Counted Options.

Keep in mind that an end user of the runtime Oracle Configurator can select an
Option of an Option Feature, but not the Option Feature itself. However, in a
Configurator Extension, it is possible to use select() to select an
OptionFeature object itself. You should avoid selecting OptionFeature
objects. If you do so and save the configuration, then this selection is not applied if
you later restore the configuration.

Table 6–1 Feature Types, Value Types, and Interfaces

CIO Interface Feature Type Value Type

IState Boolean boolean state (true/false/unknown)

IDecimal Decimal floating point numeric

IInteger Integer integer numeric

The value can be positive, negative, or zero.

IText Text string

ICount, IState Count boolean, with an associated integer-valued numeric count

IOptionFeature Option logic value for the Option Feature itself

a set of Options for the Option Feature’s children

Getting and Setting Logic States

Working with Model Entities 6-5

See Section 6.7, "Access to Options" on page 6-9 for information about methods for
working directly with Options.

■ CountFeature objects have an associated integer-valued numeric count, and are
a special case of IntegerFeature that has a count greater than or equal to zero.
CountFeature objects behave like counted options in an OptionFeature.

6.4 Getting and Setting Logic States
To interact with objects that have a logic state, you use methods of the IState
interface. This interface contains:

■ A set of constants that represent input states, used to specify a new state for an
object, listed in Table 6–2:

■ A set of constants that represent output states, returned when querying an object
for its state listed in Table 6–3:

■ A set of methods for getting and setting the object's state listed in Table 6–4:

Note: In Oracle Configurator Developer, if you set the minimum
count of an Integer Feature greater than or equal to zero, then at
runtime the CIO treats this Feature as a CountFeature object. If
you set the minimum count to less than zero, then the CIO treats
this Feature as an IntegerFeature object. When working with
runtime nodes, you must consider this distinction to ensure that
you are working with the expected set of objects. For example, if
you use IRuntimeNode.getChildrenByType() to collect
Integer Feature objects, then you must make two calls, one with an
IRuntimeNode.COUNT_FEATURE argument, and another with
an IRuntimeNode.INTEGER_FEATURE argument.

Table 6–2 Input Logic States

State Description

FALSE The input state used to set an object to false.

TRUE The input state used to set an object to true.

TOGGLE The input state used to turn an object state to true if it is false or unknown,
and to make it unknown or false if it is true.

Table 6–3 Output Logic States

State Description

LFALSE The Logic False output state, indicating that the state is false as a
consequence of a rule.

LTRUE The Logic True output state, indicating that the state is true as a
consequence of a rule.

UFALSE The User False output state, indicating that a user has set this object to
false.

UTRUE The User True output state, indicating that a user has set this object to true.

UNKNOWN The Unknown output state, indicating that there is no current state.

Getting and Setting Logic States

6-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

Observe the following practices when you use methods of the IState interface:

■ The code fragment in Example 6–4 uses getState() with UTRUE to test whether
the state of an Option node is user true, meaning that the Option has been selected
by the end user.

Example 6–4 Getting the State of a Node

// Get the necessary components from the configuration.
baseComponent = (Component)comp_node.getChildByName("Component-1");
of = (OptionFeature)baseComponent.getChildByName("Feature-1");
op = (Option)of.getChildByName("Option-1");
intFeat = (IntegerFeature)baseComponent.getChildByName("IF-1");
// Check if the option is set to UTRUE.
// If so, set the Integer value to 5.
if(op.getState() == IState.UTRUE)
 intFeat.setIntValue(5);

■ When using getState(), Always check for deleted or discontinued nodes. See
Section 2.4.10, "Checking for Deleted or Discontinued Nodes" on page 2-12.

■ Using isUnknown(), which returns TRUE if the Feature is in an unknown state, is
important when a node is cast to an integer or decimal class such as
IntegerNode or ReadOnlyDecimalNode. When the numeric value of the node
is zero, a zero value can mean either UNKNOWN (if no value has been set by the
user) or KNOWN (if the value has been set to zero by the user).

■ The code fragment in Example 6–5, which uses setState() with TOGGLE,
toggles the state of the selected item in the Model tree.

Example 6–5 Setting the State of a Node

private void toggleSelectedItem() {
 IState node = (IState)getSelectedNode();
 node.setState(IState.TOGGLE);
 }

You should not use the TOGGLE state unless you are working with a user interface.
If you do not need to render the result in the interface (for instance, if you are
using batch validation) then it is much more efficient to set the state directly:

node.setState(IState.TRUE);
...
node.setState(IState.FALSE);

Table 6–4 Methods for Getting and Setting State

Method Description

getState() Gets the current logic state of this object.

setState() Change the current logic state of this object.

unset() Retracts any user selection made on this node.

isFalse() Tells whether this feature is in false state.

isTrue() Tells whether this feature is in true state.

isUser() Tells whether this feature is in a user- specified state.

isLogic() Tells whether this feature is in a logically specified state.

isUnknown() Tells whether this feature is in unknown or known state.

Getting and Setting Numeric Values

Working with Model Entities 6-7

If you do need to use TOGGLE, do not turn off defaulting, because the CIO must
turn defaulting on in order to determine the correct state to toggle to. This
operation impairs performance.

■ If you try to set the state of a RuntimeNode to UNKNOWN and this causes a
contradiction, then the CIO throws a nonoverridable LogicalException. For
example, assume the following Model structure:

M
|_A (Boolean, UNKNOWN)
|_B (Boolean, UNKNOWN)

And a logic rule:

A Requires B

When you select A, it makes B LTRUE. If you try setting B to UNKNOWN, you get a
nonoverridable logical contradiction:

A.setState(IState.UTRUE);
...
try {
 B.setState(IState.UNKNOWN);
} catch (LogicalException le) {
//le is not overridable

■ When you are not interested in the difference between UTRUE and LTRUE, the
proper way to determine whether the state of a node is true is to call
IState.isTrue().

By contrast, if you test the state of the node this way:

(state == IState.TRUE)

then the test only returns TRUE if the logic state is UTRUE, but not if it is LTRUE.

6.5 Getting and Setting Numeric Values
You can use the following methods to get and set the values of objects that have
numeric values. Consult the CIO reference (see Chapter A, "Reference Documentation
for the CIO") for the hierarchy of the classes you wish to use.

For decimal values, use:

IDecimal.setDecimalValue()
IReadOnlyDecimal.getDecimalValue()

For integer values, use:

IInteger.setIntValue()
IInteger.getIntValue()

The code fragment in Example 6–6 uses setIntValue() to change the value of an
Integer Feature. Note that you can use the generalized IRuntimeNode interface for
flexibility in getting a child node, and then cast the node object to a particular interface
to perform the desired operation on it.

Example 6–6 Setting a Numeric Value

// select a node by name

Getting and Setting Numeric Values

6-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

IRuntimeNode limit = baseComp.getChildByName("Current Limit");

// use an interface cast to set the node’s value by the desired type
((IInteger)limit).setIntValue(5);

To determine whether a numeric value has violated its Minimum or Maximum range,
you may need to iterate through the collection of validation failures returned by
Configuration.getValidationFailures() after setting a value, for instance
with IInteger.setIntValue(). See Section 8.1, "Validating Configurations" on
page 8-1 for more background.

There is a subtlety that you should take note of. IDecimal.setDecimalValue()
does not throw a LogicalException when setting the value of a decimal feature
that exceeds the feature's minimum/maximum limits. The collection of validation
failures returned by Configuration.getValidationFailures() does not
include any failures that result from setting a numeric value until the logic transaction
has been closed. Thus, there is no way to roll back a transaction once it is committed.
You can only undo the setting of the value. Here is a suggested method for dealing
with this situation:

1. Open a transaction.

2. Get the minimum or maximum for the Feature, with getMin() or getMax().

3. Set the new value appropriately.

4. Close the transaction.

5. Get the collection of validation failures for the configuration, to find out about the
status of other nodes.

6. If the last transaction caused a minimum/maximum violation, then call
Configuration.undo(), which retracts the last action in the transaction.

This situation illustrates why it is a good practice to perform the setting of a single
value inside a logic transaction. You can always undo the transaction if the result is
unsatisfactory. Remember: inside a transaction, you can roll back an action; outside a
transaction, you undo an action.

6.5.1 Working with Decimal Quantities
Quantities for imported BOM Standard Items can be either integers or decimals.

Table 6–5, " Methods for Integer and Decimal Nodes" on page 6-8 lists certain methods
of CIO classes and interfaces that are relevant to decimal quantities. The table indicates
the corresponding methods to be used for BOM nodes having Integer (indivisible)
values or Decimal (divisible) values. Using the wrong type of method raises an
IncompatibleValueException. For details on these methods, see Chapter A,
"Reference Documentation for the CIO".

In the classes IRuntimeNode and RuntimeNode, the methods
hasIntegerValue() and hasDecimalValue() should be used to find out if a
run-time node belongs to a Decimal or an Integer BOM.

StateCountNode.getDecimalCount() is a general method for getting the count
and works for both Integer and Decimal BOMs.

Table 6–5 Methods for Integer and Decimal Nodes

Class/Interface Integer Method Decimal Method

BomNode getDefaultQuantity() getDecimalDefaultQuantity()

Access to Options

Working with Model Entities 6-9

When using one of the methods listed in Table 6–5, always check for deleted or
discontinued nodes. See Section 2.4.10, "Checking for Deleted or Discontinued Nodes"
on page 2-12.

6.6 Accessing Properties
You can determine which Properties belong to a runtime node, then use methods of
the class Property to obtain information about the Properties.

Use IRuntimeNode.getProperties() to get a collection of the properties
associated with a node.

Use IRuntimeNode.getPropertyByName() to get a particular property of a node,
based on its name.

When you have the Property, use methods of the class Property, such as
getStringValue(), to obtain specific information.

6.7 Access to Options
An Option is a child of an Option Feature which supports a boolean state (true, false,
or unknown) and a count. Options implement the IRuntimeNode interface.

OptionFeature objects have special methods for selecting options and querying for
selected options. See Section 6.3, "Accessing Features" on page 6-4 for information
about methods for working directly with Features.

In a custom application, you can use IOPtionFeature.select() to select a
specified Option. If a maximum number of selections has been defined for an
OptionFeature, and that maximum has been reached, then this method implements
mutual exclusion behavior by first deselecting the most recently selected Option that
does not cause a contradiction when deselected, then selecting the newly specified
option. The minimum number of selections defined for the OptionFeature does not
affect this behavior.

You can find out which Option has been deselected, after a selection is committed, by
using IOPtionFeature.getSelectedOptions() and examining the list of
selected nodes.

The getSelectedOption() method throws the
SelectionNotMutexedException if this feature does not support mutually
exclusive (mutexed) selections.

BomNode getMaxQuantity() getDecimalMaxQuantity()

BomNode getMinQuantity() getDecimalMinQuantity()

IBomItem getMaxQuantity() getDecimalMaxQuantity()

IBomItem getMinQuantity() getDecimalMinQuantity()

ICount getCount() getDecimalCount()

ICount setCount() setDecimalCount()

StateCountNode getCount() getDecimalCount()

StateCountNode setCount() setDecimalCount()

Table 6–5 (Cont.) Methods for Integer and Decimal Nodes

Class/Interface Integer Method Decimal Method

Introspection through IRuntimeNode

6-10 Oracle Configurator Extensions and Interface Object Developer’s Guide

You can use the interface IOption to select, deselect, and determine the selection state
of Options. Table 6–6 on page 6-10 lists these methods.

The code fragment in Example 6–7 displays a "check" icon if an Option of a runtime
node is selected:

Example 6–7 Testing Whether an Option Is Selected

IRuntimeNode rtNode = (IRuntimeNode)value;
if (value instanceof IOption) {
 IOption optionNode = (IOption)value;
 if !(optionNode.isDeleted() || optionNode.isDiscontinued()) {
 if (optionNode.isSelected()) {
 setIcon(checkIcon);
 }
 }
}

In this example, assume that checkIcon points to an icon file, and that setIcon() is
a custom method that displays it.

6.8 Introspection through IRuntimeNode
You can get information about a node in a Model at runtime by using methods of the
interface IRuntimeNode. This helps you to write "generic" Configurator Extensions,
which can interact with a Model tree dynamically, without having prior knowledge of
its structure. Table 6–7 on page 6-10 lists some of the more important of these
methods.

Table 6–7 on page 6-10 lists some of the methods defined in the interface
IRuntimeNode that you are most likely to use in working with the CIO. For more
detail about these and the other CIO interfaces, see Chapter A, "Reference
Documentation for the CIO".

Table 6–6 Methods of the Interface IOption

Method Action

deselect() Deselect this Option.

isSelected() Returns true if this Option is selected, and false otherwise.
When using isSelected(), always check for deleted or
discontinued nodes. See Section 2.4.10, "Checking for Deleted
or Discontinued Nodes" on page 2-12.

select() Select this Option.

Table 6–7 Important Methods of the Interface IRuntimeNode

Method Action

getCaption() Get the Caption of this node to be displayed in messages.

getChildByID() Gets a particular child identified by its ID.

ComponentSet.getChildByID() could have
duplicate children with same ID, so it returns only the
first child. Instead, call
getChildByInstanceNumber() or change the
instance name.

getChildByName() Gets a particular child identified by its name.

Introspection through IRuntimeNode

Working with Model Entities 6-11

The code fragment in Example 6–8 creates a Configuration object config, sets
homeTheater to the root component of the configuration, and sets userType to the
child node with the user-visible name "User Type".

Example 6–8 Getting a Child Node by Name

Configuration config = m_cio.startConfiguration(params, context);
IRuntimeNode homeTheater = (IRuntimeNode) config.getRootComponent();

IRuntimeNode userType = homeTheater.getChildByName("User Type");

The code fragment in Example 6–9 uses a test for the value of the TEXT_FEATURE field
of an IRuntimeNode object named comp to gather a list of all the children of that
node that are TextFeature objects. It is assumed that traverseTree() is a custom
method.

Example 6–9 Collecting All Child Nodes by Type

//get all the text features
List textFeatList = IRuntimeNode comp.getChildrenByType(IRuntimeNode.TEXT_
FEATURE);
traverseTree(comp.getChildComponentNodes(),
 IRuntimeNode.TEXT_FEATURE,
 textFeatList);
Iterator iter = textFeatList.iterator();

getChildren() Gets the children of this runtime configuration node.

getDescription() Returns the design-time description of the runtime node.

getName() Gets the name of the node.

getParent() Gets the parent of the node.

getProperties() Returns a collection of the properties associated with this
node. The collection contains items of the type Property.

getRuntimeID() Gets the runtime ID of the node.

getType() Gets the type of this node.

isEffective() Returns true if this particular node is effective given the
effectivity criteria of the model.

isUiVisible() Returns true if this node is visible in the UI, meaning that
a control for it appears in the UI for selection by end
users. Returns false if this node is not visible in the UI
(according to the value of CZ_PS_NODES.UI_OMIT).
Note that a node reported as not visible by this method is
nevertheless included in a UI created with the "show all
nodes" option.

isUnsatisfied() Returns true if this particular node, or any one of its
children, has not been completely configured.

Table 6–7 (Cont.) Important Methods of the Interface IRuntimeNode

Method Action

Introspection through IRuntimeNode

6-12 Oracle Configurator Extensions and Interface Object Developer’s Guide

Using Logic Transactions 7-1

7
Using Logic Transactions

In order to help you maintain consistency in interactions with the Oracle Configurator
logic engine, you must use configuration-level logic transactions. A logic transaction
comprises all the logical assertions that constitute a user interaction. At the end of a
transaction, you can obtain a list of all validation failures, by calling
Configuration.getValidationFailures(). See Section 8.1, "Validating
Configurations" on page 8-1.

The Configuration object, oracle.apps.cz.cio.Configuration, provides a set
of methods for starting, ending, and rolling back configuration-level logic transactions.
Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and numeric
values of runtime nodes (as described in Section 6.4, "Getting and Setting Logic States"
on page 6-5 and Section 6.5, "Getting and Setting Numeric Values" on page 6-7).

■ Use Configuration.beginConfigTransaction() to create a new
transaction, returning a ConfigTransaction object. After performing the
desired series of operations (for instance, setting states and values), you must end,
commit, or roll back the transaction by passing the ConfigTransaction object
to one of the mutually exclusive methods that finish the transaction:

endConfigTransaction
commitConfigTransaction
rollbackConfigTransaction

■ Configuration.commitConfigTransaction() commits the given
transaction or series of nested transactions, propagates the effect of user selections
throughout the configuration, and triggers validation checking (see Section 8.1,
"Validating Configurations" on page 8-1).

■ Configuration.endConfigTransaction() ends the transaction that was
started with beginConfigTransaction(), without committing it (thus
skipping validation checking).

■ Configuration.rollbackConfigTransaction() rolls back the unfinished
transaction, undoing the operations performed inside it.

You can nest intermediate transactions with beginConfigTransaction() and
endConfigTransaction, delaying validation checking until you call
commitConfigTransaction(). You should not perform any actions (such as
setting states or counts, or selecting Options) before opening a nested transaction. If
there are actions performed in an uncommitted parent transaction, these may produce
erroneous results for Configuration.getUnsatisfiedItems(). You must end or
commit inner transactions before ending or committing the outer ones that contain
them. When rolling back unfinished transactions, with

7-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

rollbackConfigTransaction(), you can roll back outer transactions, which
automatically rolls back the inner transactions.

Transactions should also be used when you employ nonoverridable requests. See
Section 9.4, "Nonoverridable Requests" on page 9-2.

There are situations in which you must take care to commit a transaction at the
appropriate time. The fragmentary code in Example 7–1 on page 7-2 illustrates the
need for wrapping a common operation inside a transaction to insure that the
operation’s effects are reflected in other parts of the program. Example B.2.1, "Setting
Nonoverridable Requests" on page B-3 also illustrates the use of transactions.

Example 7–1 Using a Logic Transaction with a Deletion

...
Component comp;
ComponentSet compSet;
ConfigTransaction tr;
Configuration config;
IOption opt;

// --
// This sequence produces unintended results:
...

...
// Select a child of compSet.
...
opt.select()
...
// User wants to see the list of all selected nodes:
collec = config.getSelectedItems();
// The returned collection includes children of the deleted component,
// because no transaction was commited.

// --
// This sequence produces the intended results:
...
// Add a component:
comp = compSet.add();
...
// User selects a child of compSet (interactively).
...
// Delete the component, inside a transaction:
tr = config.beginConfigTransaction();
compSet.delete(component);
config.commitConfigTransaction(tr);
...
// User wants to see the list of all selected nodes:
collec = config.getSelectedItems();
// The returned collection does NOT include children of the deleted component,
// because the deletion transaction was commited.

Contradictions, Exceptions, and Validation 8-1

8
Contradictions, Exceptions, and Validation

This chapter describes how to handle:

■ Validation, which is the act of checking that a configuration is valid and complete

■ Logical exceptions, which are the representation in the CIO of contradictions,
(violations of your configuration rules that are presented to the end user)

■ Programming exceptions, which are raised by your code

The sections of this chapter are:

■ Validating Configurations

■ Handling Logical Contradictions

■ Handling Exceptions

8.1 Validating Configurations
Validating a configuration means checking whether it is valid (that is, the selections in
it do not violate any configuration rules) and whether it is complete (that is, all
components in it are satisfied).

The CIO validates a configuration after a transaction is committed or rolled back. See
Chapter 7, "Using Logic Transactions" for a description of what happens in a
transaction.

Validation checking and reporting occur when a logical transaction is ended by using
Configuration.commitConfigTransaction() or
Configuration.rollbackConfigTransaction().

After a committal or rollback, the CIO traverses the nodes of the Model, checking for
validation failures, selected items and unsatisfied items. These are kept in a set of
collections maintained on the Configuration object.

After the transaction is committed, you can call the methods of
oracle.apps.cz.cio.Configuration listed in Table 8–1:

Table 8–1 Methods for Validating Configurations

Method Description

getValidationFailures() Returns a collection of ValidationFailure
objects. Call this after committing or rolling back a
transaction, in order to inspect the list of validation
failures.

Validating Configurations

8-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

To determine whether a configuration has validation failures, call
getValidationFailures() and check whether the collection it returns is empty.

Validation failures are instances of the class StatusInfo. A StatusInfo object has a
reference to the runtime node, which you obtain with its getNode() method. Use
StatusInfo.getStatus() to return the current status of the node.

The status of a node has a life cycle. The stages in the life cycle are represented by the
constants described in Table 8–2, " Life Cycle of StatusInfo Objects" on page 8-2. As
nodes become selected, or unsatisfied, or have validation failures, they have a status
reflected by StatusInfo.STATUS_NEW. If they continue to be selected since the last
transaction their status is StatusInfo.STATUS_EXISTING. If they become
deselected, their status becomes StatusInfo.STATUS_DELETED until the next
transaction at which time they are removed from the collection.

If you are writing a Configurator Extension that validates a configuration, the method
that you bind to the onConfigValidate event should return a list of
CustomValidationFailure objects in the event of a validation failure. This allows
you to return more than one failure. Your validation method can include several tests.
You can track which tests failed, and determine why the tests failed. If the validation
fails, then information about the failure is gathered by the CIO in a List of
CustomValidationFailure objects. The information in these objects is presented to
the user in a message, and does not persist after the presentation.

In general, if a Configurator Extension needs to return a violation message about a
particular runtime node, you have to create a CustomValidationFailure object
and pass it the runtime node, the message, and boolean parameter indicating whether
to persist the failure. The code fragment in Example 8–1 illustrates this point.

getSelectedItems() Returns a collection of selected items as
StatusInfo objects indicating the set of selected
(true) items in the Configuration.

isUnsatisfied() Returns TRUE if the configuration is incomplete.

getUnsatisfiedItems() Returns a collection of unsatisfied items as
StatusInfo objects indicating the set of
unsatisfied items in the Configuration.

getInformationalMessages() Gets a collection of StatusInfo objects
describing all the informational messages in the
configuration. These messages are created
explicitly by external callers or Configurator
Extensions or by the CIO in response to an
exception thrown by a Configurator Extension.

getUnsatisfiedRuleMessages() Gets a list of messages for unsatisfied relations in
the configuration.

Table 8–2 Life Cycle of StatusInfo Objects

StatusInfo Constant Status Description

STATUS_NEW The node has newly attained this status since the last check.

STATUS_EXISTING The node already had this status during the last check, and it still does.

STATUS_DELETED The node has newly lost this status since the last check.

STATUS_REMOVED The node had the deleted status during the last check, so it is removed.

Table 8–1 (Cont.) Methods for Validating Configurations

Method Description

Handling Logical Contradictions

Contradictions, Exceptions, and Validation 8-3

Example 8–1 Returning a List of Validation Failures

public List validateMin() {
...
IRuntimeNode node;
ArrayList failures = new ArrayList();
...
//check to see if the value in the config is not at least the min value
if(!
(val >= min))
 failures.add(new CustomValidationFailure("Value less than minimum", node,
true));
 if(failures.isEmpty())
 return null;
 else
 return failures;
...
}

If the violation persists after the next user action, the Configurator Extension should
not need to create a new CustomValidationFailure, but should instead return a
StatusInfo object with the same status (STATUS_EXISTING). This value prevents
the CIO from returning the previously seen violation message as a new violation
message (STATUS_NEW), which might be annoying for the user. However, if the user
explicitly makes the same invalid selection again, then the message is presented again.

You should use the form of the constructor for CustomValidationFailure that
sets the boolean parameter willPersist to true. This keeps the failure from
disappearing once the message is displayed to the user, which can lead to a situation
in which invalid configurations are displayed as valid.

Invalidating a configuration with a Configurator Extension (by creating
CustomValidationFailure objects) can sometimes lead to performance issues,
since the validation tests are run each time the enclosing transaction is committed. One
way to avoid this is to place the validation tests outside the transaction, or bind the
validating Configurator Extension to an event other than onConfigValidate.

Another way to alleviates this performance issue is to persist the validation failure, as
shown in Example 8–1 on page 8-3, because if the boolean parameter willPersist is
true, then the validation tests are not run each time the enclosing transaction is
committed. However, if you are programmatically marking the configuration as
invalid in this way, you must remove the persisted failure when configuration
becomes valid again. To remove the persisted failure, you can remove the
CustomValidationFailure in the following way:

CustomValidationFailure cvf = findPreviousCustomValidationFailure(node);
cvf.removeCustomValidationFailure();

Note that in this example findPreviousCustomValidationFailure() is a your
custom method for finding the failure for a given node. One way of implementing this
is by maintaining a Map object in your code in which the keys are nodes and the values
are CustomValidationFailure objects. You should clear the map in when your
terminates so that Java garbage collection will release the memory.

8.2 Handling Logical Contradictions
When you make a logic request to modify the state of a configuration, for instance by
using IState.setState(), the result may be a failure of the request because of a

Handling Logical Contradictions

8-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

logical contradiction. Such a failure creates and throws a logical exception, accessed
through either of these objects:

■ LogicalException, which cannot be overridden

■ LogicalOverridableException, which can be overridden

See Section 8.2.2, "Overriding Contradictions" on page 8-4 for details on using
LogicalOverridableException to override the contradiction.

■ Use LogicalException.isOverridable() to determine whether the
exception is an instance of LogicalOverridableException, which can be
overridden with its override() method.

■ Use LogicalException.getCause() to get the runtime node that caused the
failure.

■ Use LogicalException.getReasons() to get a list of Reason objects for the
failure. See Section 8.2.1, "Generating Error Messages from Contradictions" on
page 8-4.

■ Use LogicalException.getMessage() to provide a message containing both
the cause and the reasons.

Use LogicalException.getMessageHeader() to provide a message
containing only the causes. You can pass a caption argument to this method,
which is the string to use as the node name. Use this caption as an alternative to
the node caption provided by the CIO for the message.

8.2.1 Generating Error Messages from Contradictions
You can use the Reason object to wrap the information returned by a contradiction, in
order to include error message information from the table FND_NEW_ MESSAGES.

■ Use Reason.translate() to get the message associated with this reason.

■ Use Reason.getNode() to get the node associated with this reason.

■ Use Reason.getType() to get the type of reason held in this object.

■ Use Reason.toString() to convert this object to a string.

8.2.2 Overriding Contradictions
Your runtime Oracle Configurator or Configurator Extension can provide a message to
your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overridden, then a LogicalOverridableException
is signalled, instead of a LogicalException. LogicalOverridableException is
a subclass of LogicalException that adds an override() method. Use
LogicalOverridableException.override() to override the contradiction.

Both types of exceptions (LogicalException and
LogicalOverridableException) may be thrown from any of the "set" methods
(like setState()) or from Configuration.commitConfigTransaction().

If you want to override the overridable exception you have to call its override()
method, which can also throw a LogicalException. This means that even when
you try to override the exception you still trigger a contradiction and cannot continue.
If the override succeeds, then you still need to call commitConfigTransaction()
to close the transaction. If you don't want to override or if you get a
LogicalException you need to call rollbackConfigTransaction() to purge
it. The Example 8–2 on page 8-5 is a fragment of pseudocode that illustrates this point.

Handling Exceptions

Contradictions, Exceptions, and Validation 8-5

Note that the operations represented with [ASK "text"] and [SHOW "text"] are
not part of the CIO but suggest where your own custom application should try to
handle the situation.

Example 8–2 Handling and Overriding Logical Exceptions

try {
 // begin a transaction
 ConfigTransaction tr = config.beginConfigTransaction();

 // call the "set" method
 opt1.setState(IState.TRUE);
 // commit the transaction
 config.commitConfigTransaction(tr);
 }
 catch(LogicalOverridableException loe) {
 proceed = [ASK "Do you want to override?"];
 if (! proceed) {
 config.rollbackConfigTransaction(tr);
 }
 else {
 try {
 // override the contradiction and ...
 loe.override(); // returns a list of failed requests
 // ... finish the transaction
 config.commitConfigTransaction(tr);
 }
 catch (LogicalException le) {
 // we cannot do anything
 [SHOW "Cannot be overriden"]
 config.rollbackConfigTransaction(tr);
 }
 }
 }
 catch (LogicalException le) {
 // we cannot do anything
 [SHOW "Cannot be overriden"]
 config.rollbackConfigTransaction(tr);
 }

In Example 8–2, the statement loe.override(); returns a list of failed requests. See
Section 9.5, "Failed Requests" on page 9-4.

8.3 Handling Exceptions
This section describes how to handle exceptions raised by the CIO.

8.3.1 Handling Types of Exceptions
When a Configurator Extension is invoked, the runtime Oracle Configurator wraps a
transaction around this invocation. This transaction enables the work of the
Configurator Extension to be either committed or rolled back, as necessary. See
Chapter 7, "Using Logic Transactions" for background.

Caution: Improper handling of exceptions is the source of many
problems that are difficult to diagnose. See Section 2.4.3, "Handling
Exceptions Properly" on page 2-8 for more information.

Handling Exceptions

8-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

If your Configurator Extension needs to handle an exception, you can choose the type
of exception to throw. The runtime Oracle Configurator handles the exception as
follows:

■ If your throwable exception is one that extends java.lang.Error or
java.lang.RuntimeException, it is fatal. The runtime Oracle Configurator
does the following:

■ Drops any open transactions

■ Kills the configuration session, but allows the end user to start a new session

In the case of a fatal exception, your code should throw an unchecked exception,
as shown in Section 8.3.2, "Raising Fatal Exceptions" on page 8-6.

■ If your throwable exception does not extend Error or RuntimeException, then
it is nonfatal. The runtime Oracle Configurator does the following:

■ Rolls back the transaction, which undoes the work done by the Configurator
Extension

■ Uses the message for exception to create an InformationalMessage object
(described in Section 8.3.3, "Presenting Messages for Exceptions" on page 8-7)

■ Allows the user’s configuration session to continue

■ Allows other Configurator Extensions bound to the same triggering event to
run

8.3.2 Raising Fatal Exceptions
If your Configurator Extension code encounters an unexpected problem that you
cannot handle, you should convert the exception that you caught into an unchecked
exception. For this purpose, use the exception
oracle.apps.cz.utilities.CheckedToUncheckedException, which extends
RuntimeException.

CheckedToUncheckedException allows you to change a checked exception into an
unchecked one, as shown in Example 8–3, "Raising a Fatal Exception" on page 8-6. The
new unchecked exception contains the messages and stack traces from both the
original checked exception and the new unchecked exception. However, extra
properties of specialized checked exceptions that you throw as a
CheckedToUncheckedException are not retained in the new unchecked exception.

Example 8–3 Raising a Fatal Exception

public void setBoolean (BooleanFeature bf)
{
 try {
 bf.setState(IState.TRUE);
 }
 catch (LogicalException le) {
 throw new CheckedToUncheckedException(le);
 }
}

Caution: Your code should not ignore or swallow such exceptions;
doing so can lead to problems that are difficult to debug.

Handling Exceptions

Contradictions, Exceptions, and Validation 8-7

8.3.3 Presenting Messages for Exceptions
If you want to present messages to the end user without rolling back the transaction,
your Configurator Extension should add a new InformationalMessage, by calling
Configuration.addInformationalMessage() on the Configuration object
for the session, as shown in Example 8–4 on page 8-7. In Example 8–4, the desc
parameter could be bound to anything in the Model that returns the string that
supplies the text for the message (such as the value of a TextFeature node, a literal, or
a certain System Parameters). The node parameter could be bound to the node on
which the exception occurs.

Example 8–4 Presenting an Informational Message

public void nodeMessage(String desc, IRuntimeNode node) throws LogicalException
 {
 try
 {
 Configuration config = node.getConfiguration();
 ConfigTransaction tr = config.beginConfigTransaction();
 InformationalMessage iMsg = new InformationalMessage("The node is: " +
desc, node);
 config.addInformationalMessage(iMsg);
 config.commitConfigTransaction(tr);
 }catch (LogicalException le){
 throw le;
 }
 }

You can call Configuration.getInformationalMessages() to get a collection
of StatusInfo objects that describe all the InformationalMessages in the
configuration. For information on the StatusInfo object, see Section 8.1, "Validating
Configurations" on page 8-1.

8.3.4 Compatibility of Certain Deprecated Exceptions
The exceptions FuncCompMessageException and FuncCompErrorException
were introduced in a previous version of the CIO, but are now deprecated, and are
retained only for backward compatibility with existing code. Even though these two
exceptions extend RuntimeException, they are not fatal in the CIO. They are treated
as non-fatal exceptions, as described in Section 8.3.1, "Handling Types of Exceptions"
on page 8-5.

A FuncCompErrorException rolls back the open transaction, and allows the end
user’s configuration session to continue. In general, you should not throw a

Note: You can only use addInformationalMessage() to present
a message from a Configurator Extension to the end user. After the
message is dismissed by the user it disappears, without passing any
information back to the runtime Oracle Configurator. You cannot use
an InformationalMessage object to get a response from the end
user in reaction to a message.

Caution: The classes FuncCompMessageException and
FuncCompErrorException are now deprecated, but are retained
for backward compatibility with existing code.

Handling Exceptions

8-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

FuncCompErrorException unless you have very good reasons to believe that the
exception is benign and that the user should also be notified of it. You should
document these reasons in your code.

A FuncCompMessageException allowed you to present a dialog box displaying a
specified message, and the name of the Functional Companion that raised the
exception. When the end user dismissed the dialog box, the runtime Oracle
Configurator committed the open CIO transaction, and allowed the end user to
proceed with the configuration session. It was possible that the Model could be left in
an uncertain state. In the current version of the CIO, the transaction is rolled back,
instead of committed.

Using Requests 9-1

9
Using Requests

This chapter describes requests, which are programmatic attempts to modify a
configuration.

The sections of this chapter are:

■ Getting Information about Requests

■ User Requests

■ Nonoverridable Requests

■ Failed Requests

9.1 About Requests
A request is an attempt to modify a configuration by setting the logical state or
numeric value of a node in the configuration Model (such as an Option or BOM Item).
Table 9–1 on page 9-1 lists some methods of this type:

■ Requests that set a state or value, such as those listed in Table 9–1, are called user
requests. See Section 9.3, "User Requests" on page 9-2.

■ You can code a set of user requests that are applied to a configuration at any time.
These are called nonoverridable requests. These requests can be applied only
programmatically, and have a higher priority than user requests. See Section 9.4,
"Nonoverridable Requests" on page 9-2.

■ When user requests fail, due to an override of a contradiction, the CIO generates a
list of these failed requests. See Section 9.5, "Failed Requests" on page 9-4.

■ You can get information about a request by interrogating an instance of the
Request object. See Section 9.2, "Getting Information about Requests" on page 9-1.

9.2 Getting Information about Requests
The class oracle.apps.cz.cio.Request exposes logic requests. A Request
object can be used to represent several kinds of requests.

Table 9–1 Methods Typically Used to Make Requests

Method Described In ...

IState.setState() Getting and Setting Logic States on page 6-5

ICount.setCount() Getting and Setting Numeric Values on page 6-7

IOPtion.select() Access to Options on page 6-9

User Requests

9-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

The Request object provides a set of methods for determining the value of the
request, and the runtime node on which the request has been made:

■ getNumericValue()

■ getValue()

■ getRuntimeNode()

The Request object also provides a set of methods for determining the type of the
request. These methods are listed in Table 9–2. (In the value column, the test for the
value of the request is case-sensitive. The value strings must be lowercase.)

9.3 User Requests
You can obtain a list of the Request objects that represent all current user requests in
the system, by using the method Configuration.getUserRequests() in your
Configurator Extension.

...
IRuntimeNode node = getRuntimeNode();
Configuration config = node.getConfiguration();
List requests = config.getUserRequests();
Iterator it = requests.iterator();
while (it.hasNext()) {
 Request req = (Request)it.next();
 IRuntimeNode node = req.getRuntimeNode();
 String value = req.getValue();
}
...

9.4 Nonoverridable Requests
You can specify a set of logic requests to be applied to a configuration at any time that
have a higher priority than user requests. Such requests are called nonoverridable
requests.

You apply nonoverridable requests automatically on the creation of a configuration,
following the practice illustrated in Example 9–1 on page 9-3 and in the following
steps:

Table 9–2 Type Methods of the Class Request

This returns TRUE if ...
... the request made was
for ... The value of the request is ...

isNumericRequest() changing the numeric
value of a runtime node

a Number

isStateRequest() changing the state of a
runtime node

true, false, toggle, unknown

isTrueStateRequest() changing the state of a
runtime node to True

true

isFalseStateRequest() changing the state of a
runtime node to False

false

isToggleStateRequest() toggling the state of a
runtime node

toggle

isUnknownStateRequest() unsetting the state of a
runtime node

unknown

Nonoverridable Requests

Using Requests 9-3

1. Begin a configuration transaction, using
Configuration.beginConfigTransaction().

ConfigTransaction tr = config.beginConfigTransaction();

See Section 7, "Using Logic Transactions" on page 7-1 for details about
transactions.

2. Specify that the transaction contains nonoverridable requests, using
ConfigTransaction.useNonOverridableRequests().

tr.useNonOverridableRequests();

3. Specify the desired user requests using the appropriate methods.

BooleanFeature feat = (BooleanFeature)node.getChildByName("Feature_1234");
feat.setState(IState.TRUE);

See Section 9.3, "User Requests" on page 9-2 for details about setting logic requests.

4. When you have set all the desired nonoverridable requests, commit the logic
transaction.

config.commitConfigTransaction(tr);

These steps are combined in Example 9–1. For a fuller example of using
nonoverridable requests, see Example B.2.1, "Setting Nonoverridable Requests" on
page B-3.

Example 9–1 Using Nonoverridable Requests

...
 ConfigTransaction tr = config.beginConfigTransaction();
 tr.useNonOverridableRequests();
 BooleanFeature feat = (BooleanFeature)node.getChildByName("Feature_1234");
 feat.setState(IState.TRUE);
 config.commitConfigTransaction(tr);
...

9.4.1 Usage Notes on Nonoverridable Requests
■ You can think of a transaction that includes

ConfigTransaction.useNonOverridableRequests() (as illustrated in Step
2 on page 9-3) as putting the CIO in "nonoverridable request mode". You can nest
any number of subtransactions within this transaction; the requests in these
subtransactions all inherit this mode of being nonoverridable requests. You can
perform overrides and rollbacks as you would with ordinary user requests. You
must commit or roll back the nonoverridable-request transaction, as in step 4, to
indicate the conclusion of the nonoverridable requests. You can then specify other
user requests in your Configurator Extension.

■ When you save a configuration that includes nonoverridable requests, the
nonoverridable requests are saved as part of the configuration. When you restore
such a configuration, with CIO.restoreConfiguration(), the
nonoverridable requests are reapplied to the configuration.

■ You can get a list of the list of nonoverridable requests present in a configuration
by using Configuration.getNonOverridableRequests().

■ In a nonoverridable transaction, you can retract a nonoverridable request by
calling unset() on the appropriate runtime node.

Failed Requests

9-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

9.4.2 Limitations on Nonoverridable Requests
■ After you apply nonoverridable requests to a configuration, you cannot override

any of the nonoverridable requests with user requests. But you can override
nonoverridable requests with other nonoverridable requests. An attempt to
override a nonoverridable request with a user request throws a
NonOverridableRequestException, which cannot be overridden.

■ You cannot use nonoverridable requests to add or delete components, or create a
connection.

9.5 Failed Requests
When you use LogicalOverridableException.override() to override a
logical contradiction (see Section 8.2.2, "Overriding Contradictions" on page 8-4), the
override() method returns a List of Request objects. These Request objects
represent all the previously asserted user requests that failed due to the override that
you are performing.

See Section B.2.2, "Getting a List of Failed Requests" on page B-5 for an example.

Configuration Session Change Tracking 10-1

10
Configuration Session Change Tracking

This chapter describes the CIO’s Configuration Delta API for tracking changes that
have been made to a configuration.

The sections of this chapter are:

■ Overview

■ How It Works

■ Starting a Session

■ Tracking Session Changes

■ Updating a Region

■ Handling Screen Changes

■ Creating a Custom DeltaValidator

■ Unified Code Example

10.1 Overview
This section is divided as follows:

■ For a general overview of the Configuration Delta API, see Section 10.2, "How It
Works" on page 10-2.

■ For examples of how the Configuration Delta API is used, see:

■ Section 10.3, "Starting a Session" on page 10-5

■ Section 10.4, "Tracking Session Changes" on page 10-7

■ Section 10.5, "Updating a Region" on page 10-8

■ Section 10.6, "Handling Screen Changes" on page 10-9

■ For information on a specialized customization topic, see Section 10.7, "Creating a
Custom DeltaValidator" on page 10-10.

■ For detailed reference documentation that describes the classes of the
Configuration Delta API, see Appendix A, "Reference Documentation for the
CIO".

You can use the CIO’s Configuration Delta API to query a Configuration object about
changes (deltas) that have been made to the configuration during the current
configuration session.

How It Works

10-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

The Configuration Delta API provides a unified interface that enables you to query for
deltas only on the specific nodes in which you register interest. Contrast this to the set
of methods listed Example 10–1, which provide change information only for the entire
set of the nodes in a configuration.

Example 10–1 Change-Detection Methods for the Configuration Object

Configuration.getSelectedItems()
Configuration.getUnsatisfiedItems()
Configuration.getUnsatisfiedItems()
Configuration.getUnsatisfiedRuleMessages()
Configuration.getValidationFailures()

10.2 How It Works

Both custom applications and Configurator Extensions can be clients of the
Configuration Delta API.

The Configuration Delta API consists of the classes and interfaces in the CIO listed in
Table 10–1. The Instances column indicates how many instances of the class exist at
runtime, during a configuration session.

Note: Although the functionality described in this section uses the
terms delta and tracking, this functionality is distinct from the
tracking of deltas described in the Oracle Telecommunications Service
Ordering Process Guide. In that document, the term delta refers to a
change made to a configuration relative to an instance of that
configuration residing in an installation repository.

Note: This use of the CIO is intended for both custom applications
and Configurator Extensions.

Table 10–1 Classes and Interfaces for the Configuration Delta API

Class or Interface Role Instances

DeltaManager Manages all changes made by
end user actions during a
configuration session.

See Section 10.2.2 on page 10-3.

One per client.

DeltaRegion Maintains list of watched
runtime nodes and changes to be
tracked on those nodes.

See Section 10.2.3 on page 10-4.

One per each region of interest in
the user interface.

Can register multiple
DeltaValidators, one for each type
of change to be tracked.

DeltaValidator Manages all defined types of
changes. Base class for all
DeltaValidators.

See Section 10.2.4 on page 10-4.

One per each type of change to be
tracked.

Can be registered with multiple
DeltaRegions.

IValidatorChange Represents any change type.

See Section 10.2.5 on page 10-5.

Not instantiated. Implemented by
all DeltaValidators.

How It Works

Configuration Session Change Tracking 10-3

10.2.1 Relationship of the Classes
The diagram in Figure 10–1 on page 10-3 shows the relationship of the classes in the
Configuration Delta API, using a typical example of their use.

Figure 10–1 Example Class Relationships in the Configuration Delta API

In Figure 10–1, the DeltaManager is managing a UI containing three DeltaRegions
(labeled 1, 2, and 3).

■ Each DeltaRegion maintains a list of runtime nodes that are watched for changes
(the watched-nodes list).

■ Each DeltaRegion is registered with the DeltaManager and contains a list of
DeltaValidators, which determine the types of changes that are watched in the
region.

■ In the example:

■ DeltaRegion 1 has registered DeltaValidators 1 and 2

■ DeltaRegion 2 has registered DeltaValidators 2, 3, and 4

■ DeltaRegion 3 has registered DeltaValidators 4 and 5

■ Each DeltaValidator can be registered with multiple DeltaRegions. Each
DeltaValidator watches for a particular change type in a combined list of all the
runtime nodes in all the DeltaRegions that it is registered with.

■ In the example:

■ Since DeltaValidator 1 is registered only with DeltaRegion 1, its
watched-nodes list is the same as the watched-nodes list in DeltaRegion 1.

■ DeltaValidator 2 is registered with two DeltaRegions (1 and 2). Hence, its
watched-nodes list is the union of the watched-nodes lists from both
DeltaRegions 1 and 2.

10.2.2 Role of the DeltaManager
The DeltaManager object is instantiated once, at the beginning of a configuration
session, and is cached on the Configuration object for the session. The DeltaManager
manages all the changes made by end user actions during that session.

The DeltaManager is identified by an ID that is passed to the method that creates it,
Configuration.createDeltaManager().

How It Works

10-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

You can register multiple DeltaRegions with the DeltaManager, to manage the regions
of your client’s user interface.

10.2.3 Role of DeltaRegions
A DeltaRegion object represents a distinct portion of your client’s user interface. For
example, your UI might have a navigation region, an update region, and a summary
region; your client would create a DeltaRegion object for each of them.

Each DeltaRegion maintains a list of watched runtime nodes in that region. You
determine which nodes are to be watched for changes by registering a DeltaRegion
object with the DeltaManager, using the method
DeltaManager.registerRegion(), which takes as arguments the list of nodes to
watch, the list of DeltaValidators to watch them with, and an ID. See Example 10–5 on
page 10-7 for an example of registering a region.

10.2.4 Role of DeltaValidators
A DeltaValidator object manages defined types of changes. A DeltaValidator
can be thought of as a reusable software component that reports on a particular type of
change.

Each particular change type is handled through a specialized subclass of the class
DeltaValidator. The CIO provides a set of default change types that correspond to
the types of changes that can be made through the CIO. Each subclass defines a
change object (in the form of an inner class) that implements methods that provide
information about the specified type of change.

Table 10–2 lists a sampling of the default change types, and the specialized
DeltaValidators that represent them. For details on the methods of these change object
classes, and the complete set of DeltaValidator subclasses, see the CIO reference
documentation described in Appendix A.

You can write custom DeltaValidators for change types that are not already provided
by the CIO. For details, see Section 10.7, "Creating a Custom DeltaValidator" on
page 10-10.

Table 10–2 Default Change Types and Their Change Objects

Change Type Class for Change Object

ATP (Availability to
Promise)

AtpDeltaValidator.AtpChange

Availability (for selection) AvailabilityDeltaValidator.AvailabilityChange

Connection ConnectionDeltaValidator.ConnectionChange

Count (of runtime nodes) CountDeltaValidator.CountChange

Deletion DeletionDeltaValidator.DeletionChange

Price PriceDeltaValidator.PriceChange

Selection status (change
between selected and
deselected)

SelectionDeltaValidator.SelectionChange

Logic state (of a node) StateDeltaValidator.StateChange

Satisfaction (change
between satisfied and
unsatisfied)

UnsatisfactionDeltaValidator.UnsatisfactionChange

Starting a Session

Configuration Session Change Tracking 10-5

Each change object (inner class) implements the method getType() of the interface
IValidatorChange. Each inner class must also implement any methods that are
appropriate to their particular change type. See Example 10–7 on page 10-9 for
examples of how you would use both the IValidatorChange methods and the
type-specific methods.

10.2.5 Role of the IValidatorChange Interface
The IValidatorChange interface:

■ Represents any kind of DeltaValidator change. It is implemented by all
DeltaValidators to represent their specific change object.

■ Is the interface for the class ValidatorChange, which is the base class for all the
change-object inner classes described in Section 10.2.4, "Role of DeltaValidators"
on page 10-4.

■ Provides the method getType(), which returns one of the DeltaValidator type
constants defined in the DeltaValidator object. See Example 10–7 on page 10-9 for
an example of how you would use this method.

10.3 Starting a Session
Your client should perform the following steps once, at the beginning of a
configuration session.

1. Create a Configuration object.

See Example 10–2 in Section 10.3.1, "Creating a Configuration Object" on
page 10-5.

2. Create a DeltaManager object and associate it with the Configuration object.

See Example 10–3 in Section 10.3.2, "Associating a DeltaManager" on page 10-6.

3. Specify the DeltaValidators corresponding to the change types you want to track
during the configuration session.

See Example 10–4 in Section 10.3.3, "Specifying DeltaValidators" on page 10-6.

4. Get a list of the nodes in the region whose changes you are interested in querying
and register that region.

See Example 10–5 or Example 10–6 in Section 10.3.4, "Registering DeltaRegions" on
page 10-6.

10.3.1 Creating a Configuration Object
If you are working with a custom application, create a Configuration object, as
described in see Section 5.2, "Creating Configurations" on page 5-2 for required
background information. See especially Example 5–1 on page 5-3.

Example 10–2 Creating a Configuration Object

...

ValidationFailure
messages

ValidationDeltaValidator.ValidationChange

Table 10–2 (Cont.) Default Change Types and Their Change Objects

Change Type Class for Change Object

Starting a Session

10-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

// Create a new Configuration and DeltaManager
ConfigParameters params = new ConfigParameters(modelId);
Configuration config = cio.startConfiguration(params, context);
...

10.3.2 Associating a DeltaManager
Associate a DeltaManager object with the Configuration object for the current
configuration session.

Example 10–3 Associating a DeltaManager with a Configuration

...
DeltaManager deltaMgr = config.createDeltaManager("MyDeltaMgr");
...

10.3.3 Specifying DeltaValidators
Create DeltaValidator objects for the change types that you want to track during the
configuration session. Then add them to a list that can be used to register the
DeltaValidators for a DeltaRegion (shown in Example 10–5 on page 10-7).

Example 10–4 Specifying DeltaValidators

...
// Create a Navigation (Tree) region. This is interested in watching
// all runtime nodes for instance name, instantiation, and unsatisfaction
// changes.
List dvList = new ArrayList();

dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANCE_NAME_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANTIATION_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV));
...

10.3.4 Registering DeltaRegions
Register a DeltaRegion with the DeltaManager, passing it the list of nodes to watch
and the list of DeltaValidators to watch them with (dvList, defined in Example 10–4
on page 10-6).

You can also register an individual DeltaValidator, using
DeltaManager.registerDeltaValidator().

Example 10–5 shows the registration of a region using all of the runtime nodes in the
Configuration (config.getRuntimeNodes()). If you want to use some subset of
the runtime nodes (such as only the nodes visible in the user interface), then you must
implement a custom method to do so. This alternative is shown in Example 10–6,

Note: The fragmentary code examples in this section are meant to
be read together, as parts of a larger example. Identifiers are shared
between examples; where the same identifier occurs in multiple
examples, it refers to the same object. These fragmentary examples
are assembled together in Example B–5 on page B-8.

Tracking Session Changes

Configuration Session Change Tracking 10-7

using the hypothetical custom method
getRuntimeNodesInSelectedComponent().

Example 10–5 Registering a DeltaRegion: All Nodes

...
List watchedNodes = config.getRuntimeNodes();

DeltaRegion treeRegion = deltaMgr.registerRegion(watchedNodes, dvList,
"MyTreeRegion");
...

Example 10–6 Registering a DeltaRegion: Subset of Nodes

...
// Create a component region. This region displays a Component screen and is
// interested in watching all nodes in that component for availability, count,
// price, state and unsatisfaction changes
dvList.clear();
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.AVAILABILITY_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.COUNT_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.PRICE_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.STATE_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV));

watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom method, not
defined here

DeltaRegion compRegion = deltaMgr.registerRegion(watchedNodes, dvList,
"MyCompRegion");
...

10.4 Tracking Session Changes
Your client should perform the following steps each time it needs to track a session
change to the current configuration. Most of the code examples shown in this section
are shown in a more complete context in Example B–5, "Tracking Session Changes
(DeltaExample.java)" on page B-8.

1. Begin a configuration transaction. See Chapter 7, "Using Logic Transactions" for
background.

ConfigTransaction tran = config.beginConfigTransaction();

2. Perform the change, by making an assertion. For background details, see
Section 6.4, "Getting and Setting Logic States" on page 6-5 and Section 6.5, "Getting
and Setting Numeric Values" on page 6-7. The following example fragment shows
how to select the Option node named Option1.

// Make an assertion to change the current configuration
try {
Option option1 =
(Option)config.getRootComponent().getChildByName("Feature").getChildByName("Opt
ion1");
option1.select();
 } catch (LogicalException loe) { }

Updating a Region

10-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

3. Close the configuration transaction.

config.commitConfigTransaction(tran);

4. Query the configuration for the changes of interest. Update the list of changes that
you can use to update a region that you registered. The following example
updates the change map for the region registered in Example 10–5 on page 10-7.

// Get the deltas due to this assertion and update the tree and component
regions
Map treeChanges = deltaMgr.getUpdateMapForRegion("MyTreeRegion");

5. Update the region that you registered (as in Example 10–5 on page 10-7), using a
custom method. The custom method updateTreeRegion() is described in
Section 10.5, "Updating a Region" on page 10-8.

// Now update the tree region cache and UI with treeChanges
updateTreeRegion(treeChanges);

10.5 Updating a Region
When you need to update a region with the a list of the changes that your client has
been tracking with the DeltaManager, you can invoke a custom method such as
updateTreeRegion(), whose definition is shown in Example 10–7 on page 10-9.
This method operates as follows:

1. Take as an argument the changes object that is a Map of the changed nodes in the
registered region (MyTreeRegion). See Section 10.4, "Tracking Session Changes"
on page 10-7 for a description of when this updating takes place.

The map of changed nodes consists of a set of pairs, in which the key is a
RuntimeNode object, and the value is a collection of IValidatorChange
objects.

2. Iterate over the nodes in the Map of changed nodes. Use a custom method, such as
getUiNode() in the example, to get access to the UI node corresponding to the
changed node object.

3. Iterate over the List of changes for the node, using each change to set the value of
the IValidatorChange object change.

4. For each change, call IValidatorChange.getType(), which returns the type
of the change in a form that corresponds to one of the change types defined in the
class DeltaValidator, such as INSTANCE_NAME_DV.

5. Using a switch control structure, switch on the change type. For each change
type, cast the change object to the actual implementing class of the change, such
as InstanceNameChange.

InstanceNameDeltaValidator.InstanceNameChange nameChange =
InstanceNameDeltaValidator.InstanceNameChange)change;

6. Using the particular change object for the change, use a custom method to update
the UI node corresponding to the changed node object.

String newName = nameChange.getInstanceName();
uiNode.setName(newName); // custom method on uiNode

Handling Screen Changes

Configuration Session Change Tracking 10-9

Example 10–7 Custom Method to Update a Region

public static void updateTreeRegion(Map changes) {
 for (Iterator iter = changes.keySet().iterator(); iter.hasNext();) {
 RuntimeNode changedNode = (RuntimeNode)iter.next();
 uiNode = getUiNode(changedNode); // custom method
 Collection nodeChanges = (Collection)changes.get(changedNode);
 for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
 IValidatorChange change = (IValidatorChange)iter2.next();
 switch (change.getType()) {
 case DeltaValidator.INSTANCE_NAME_DV:
 InstanceNameDeltaValidator.InstanceNameChange nameChange =
InstanceNameDeltaValidator.InstanceNameChange)change;
 String newName = nameChange.getInstanceName();
 uiNode.setName(newName); // custom method on uiNode
 break;
 case DeltaValidator.INSTANTIATION_DV:
 InstantiationDeltaValidator.InstantiationChange iChange =
(InstantiationDeltaValidator.InstantiationChange) change;
 Collection added = iChange.getNewlyAddedInstances();
 Collection deleted = iChange.getNewlyDeletedInstances();
 uiNode.updateInstances(added, deleted); // custom method on uiNode
 break;
 case DeltaValidator.UNSATISFACTION_DV:
 UnsatisfactionDeltaValidator.UnsatisfactionChange uChange =
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
 boolean unsatisfied = uChange.isUnsatisfied();
 uiNode.setUnsatisfied(unsatisfied); // custom method on uiNode
 break;
 }
 }
 }

10.6 Handling Screen Changes
When a screen change (such as a screen flip to another UI page) occurs in your client’s
user interface, you should update the list of watched nodes in each DeltaRegion, so
that you can get a list of the changes made to the nodes whenever you need such a list.

The manner in which you update the watched nodes depends on how extensive are
the changes to the region you are watching.

■ If the general layout of the region is unchanged, and only the set of nodes in the
region may have changed, you can simply clear the list of watched nodes, get the
list of currently interesting nodes, then add that list to the region’s list of nodes to
watch. This approach is shown in Example 10–8.

Example 10–8 Updating Watched Nodes: Screen Format Unchanged

...
rgn1.clearWatchedNodes();
List visibleNodes = getCurrentVisibleNodes(); // custom method
rgn1.addWatchedNodes(visibleNodes);
...

You must define the custom method used to get the visible nodes,
getCurrentVisibleNodes().

Creating a Custom DeltaValidator

10-10 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ If the general layout of the region has changed significantly, then you should
unregister the region, rebuild the list of DeltaValidators, and register the region,
specifying all the nodes and the list of DeltaValidators. This approach is shown in
Example 10–9.

Example 10–9 Updating Watched Nodes: Screen Format Changed Significantly

...
mgr.unRegisterRegion(rgn1.getId());
List dvList = new ArrayList();
dvList.add(dm.getDeltaValidator(DeltaValidator.PRICE_DV));
dvList.add(dm.getDeltaValidator(DeltaValidator.AVAILABILITY_DV));
rgn1 = mgr.registerRegion(config.getRuntimeNodes(), dvList, null);
...

10.7 Creating a Custom DeltaValidator
It is possible, but unlikely, that you may need to write custom DeltaValidators for
change types that are not already defined in the CIO. See Section 10.2.4, "Role of
DeltaValidators" on page 10-4 for an explanation of DeltaValidators and a description
of the default DeltaValidators provided with the CIO.

In order to create a custom DeltaValidator, you must do the following:

■ Define a subclass that extends DeltaValidator. This class is your custom
DeltaValidator. For example:

public class MyCustomDeltaValidator extends DeltaValidator {
 // constructor
 protected MyCustomDeltaValidator() {
 setType(MY_CUSTOM_DV);
 }

■ Define a change object that represents the type of change that your custom
DeltaValidator is designed to track. This change object class must implement the
interface IValidatorChange. See Section 10.2.5, "Role of the IValidatorChange
Interface" on page 10-5.

public class MyCustomChange extends ValidatorChange {
// Implement your change object here
}

In the DeltaValidators defined in the CIO, the change object is defined as an inner
class, but this design decision is not mandatory.

■ In the custom DeltaValidator, define a constant that designates your custom type
of DeltaValidator and the change type that it tracks. The value of the constant
must be greater than DeltaValidator.CUSTOM_DV (which is currently defined
as 1000, though you should not directly reference that value). Example:

public static final int MY_CUSTOM_DV = DeltaValidator.CUSTOM_DV + 1;

■ In the custom DeltaValidator, implement the method isChanged(), which is
defined as abstract in DeltaValidator:

protected abstract boolean isChanged(IRuntimeNode node, DeltaRegion region)

Your implementation must determine if there are any changes to be reported for
the runtime node by this DeltaValidator, for the given region.

Unified Code Example

Configuration Session Change Tracking 10-11

■ In the custom DeltaValidator, implement the method getChange(), defined as
abstract in DeltaValidator:

protected abstract IValidatorChange getChange(IRuntimeNode node, DeltaRegion
region)

Your implementation must get the change object for this node. For example:

protected IValidatorChange getChange(IRuntimeNode node, DeltaRegion region) {
 MyCustomChange change = new MyCustomChange();
 return change;
}

■ In the change-object class, implement the method getType() from the interface
IValidatorChange. Your implementation must return the change type, which
corresponds to the custom DeltaValidator type that you defined. For example:

public int getType() {
 return MyCustomDeltaValidator.MY_CUSTOM_DV;
}

■ Include your custom DeltaValidator in list of DeltaValidators passed to
DeltaManager.registerRegion(). See Section 10.3.4, "Registering
DeltaRegions" on page 10-6. You can also register a custom DeltaValidator
independently, using DeltaManager.registerDeltaValidator(), which
adds a DeltaValidator to the list of existing ones. This will enable different regions
to use the same instance of your custom DeltaValidator.

10.8 Unified Code Example
The code in Example B–5, "Tracking Session Changes (DeltaExample.java)" on
page B-8 assembles together the fragmentary examples shown elsewhere in this
chapter.

Unified Code Example

10-12 Oracle Configurator Extensions and Interface Object Developer’s Guide

Logging Through the CIO 11-1

11
Logging Through the CIO

This chapter provides basic information about logging the operations you perform
with the CIO, especially those inside Configurator Extensions.

The sections of this chapter are:

■ Overview of Logging

■ Enabling Logging Scope

■ Creating Entries in the Log

■ Recommended Practices for Logging

■ Example of Logging

11.1 Overview of Logging
Oracle Configurator and the Oracle Configuration Interface Object use the Oracle
Applications Logging Framework to provide a convenient and uniform interface for
logging their activity.

For references to Oracle documentation about the Oracle Applications Logging
Framework, see "Troubleshooting" on page xvii.

Logging through the CIO requires these essential actions:

■ Section 11.2, "Enabling Logging Scope" on page 11-1

■ Section 11.3, "Creating Entries in the Log" on page 11-3

■ Section 11.4, "Recommended Practices for Logging" on page 11-4

These actions are illustrated together by Section 11.5, "Example of Logging" on
page 11-5.

11.2 Enabling Logging Scope
In order to enable the creation of log entries through the CIO you must set the
following parameters for the Oracle Applications Logging Framework:

■ AFLOG_ENABLED, to turn on logging.

Note: Logging through the CIO is primarily intended for use within
Configurator Extensions, but you can also use it in custom
applications that use the CIO directly.

Enabling Logging Scope

11-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ AFLOG_MODULE, to specify the Java packages or classes that you wish to log,
using the parameters described in Table 11–1 on page 11-2.

■ AFLOG_LEVEL, to specify the level of entries that you wish to log, using the
parameters described in Table 11–2 on page 11-2.

■ AFLOG_FILENAME, to specify the file where middle-tier log messages are
written.

■ AFLOG_ECHO, to optionally echo all filtered logging messages to STDERR.

These parameters can be set as middle-tier properties or as database profile options.
The parameter names listed here are for middle-tier properties. See the Oracle
Applications Supportability Guide for information on how to set these parameters as
database profile options.

Table 11–1 lists the strings that you can include in the AFLOG_MODULE parameter to
identify the Java packages or classes that you wish to log. The AFLOG_MODULE
parameter is a comma-delimited filter against which the module names of log
messages are compared.

Table 11–2 lists the Oracle Applications Logging Framework logging levels in order of
increasing severity. You must specify one of the supported levels when enabling
logging through the CIO.

Table 11–1 Values for AFLOG_MODULE

Value Description

cz% Logs with attribution to the log-writing method
Configuration.writeCXLogEntry(). This setting logs all activity by
Oracle Configurator during a configuration session, regardless of which class
in your Configurator Extension or custom application caused the entry to be
written. Allows you to examine the activity of your classes in the context of
Oracle Configurator activity.

The Oracle Applications Logging Framework ignores oracle.apps. at the
beginning of a package name, so to specify oracle.apps.cz.cio, you
only specify cz.cio.

Examples:

cz%
cz.cio%

packagepath% Logs with attribution to the methods in your own Configurator Extension or
custom application classes that caused the entry to be written. This setting
logs only activity by your Configurator Extension or custom application
during a configuration session and omits the surrounding activity by Oracle
Configurator.

Examples:

acme%
acme.rocket%

Table 11–2 Values for AFLOG_LEVEL

Value Description

STATEMENT Used for low-level progress reporting.

PROCEDURE Used for API-level progress reporting.

EVENT Used for high-level progress reporting.

EXCEPTION Not supported. Indicates a handled internal software failure.

Creating Entries in the Log

Logging Through the CIO 11-3

See "Troubleshooting" on page xvii for references to more information about AFLOG_
MODULE.

11.3 Creating Entries in the Log
Creating entries in the log requires performing these essential actions in your
Configurator Extension or custom application code:

■ Testing Whether Logging Is Enabled

■ Writing Log Entries

In the Oracle Applications Logging Framework, the term module refers to a Java class
when it is applied to a Java framework, so that term is used for consistency in the
descriptions in this section.

11.3.1 Testing Whether Logging Is Enabled
You test whether logging is enabled by calling the method
Configuration.isCXLogEnabled(). The syntax for this method is as follows:

public final boolean isCXLogEnabled(module, logLevel)

Table 11–3 describes the parameters for this method. Notice that the parameter
module can be either an Object or a String. There are separate signatures of
isCXLogEnabled() for each data type.

Example 11–1, "Logging Through the CIO" on page 11-5 provides an example of how
to use this method.

ERROR Not supported. Indicates an external end user error.

UNEXPECTED Not supported. Indicates unhandled internal software failure.

Caution: Logging through the CIO does not support use of the more
severe logging levels provided by the Oracle Applications Logging
Framework, namely: EXCEPTION, ERROR, and UNEXPECTED.

Table 11–3 Parameters for isCXLogEnabled()

Data Type Parameter Description

Object or
String

module If you pass an Object, this parameter specifies the Java class to
which the log entry will attributed. The typical value for this
parameter is the Java keyword this.

If you pass a String, this parameter specifies the fully-qualified
name of the Java class, including its package, to which the log
entry will attributed. This form is provided for use with static
methods, since Java technology does not allow the use of the
keyword this in static methods.

A runtime exception is raised if this parameter is null.

This description also applies to the parameter of the same name
in Table 11–4, " Parameters for writeCXLogEntry()" on
page 11-4.

Table 11–2 (Cont.) Values for AFLOG_LEVEL

Value Description

Recommended Practices for Logging

11-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

11.3.2 Writing Log Entries
You write an entry by calling the method Configuration.writeCXLogEntry().
The syntax for this method is as follows:

public final void writeCXLogEntry(module, methodName, label, message, logLevel)

Table 11–4 describes the parameters for this method. Notice that the parameter
module can be either an Object or a String. There are separate signatures of
writeCXLogEntry() for each data type.

Example 11–1, "Logging Through the CIO" on page 11-5 provides an example of how
to use this method.

11.4 Recommended Practices for Logging
When logging through the CIO, you should follow these practices:

■ When writing a log entry with writeCXLogEntry(), always wrap that
invocation with a test that uses isCXLogEnabled(). This prevents the

int logLevel The level of detail at which logging is enabled. Must be one of
the following constants:

Configuration.CXLOG_STATEMENT
Configuration.CXLOG_PROCEDURE
Configuration.CXLOG_EVENT

The specified level must correspond to one of the supported
levels specified for AFLOG_LEVEL, as listed in Table 11–2 on
page 11-2. For example, if you specify
Configuration.CXLOG_STATEMENT for this parameter, then
AFLOG_LEVEL must specify STATEMENT.

A runtime exception is raised if this parameter specifies an
unsupported level.

This description also applies to the parameter of the same name
in Table 11–4, " Parameters for writeCXLogEntry()" on
page 11-4.

Table 11–4 Parameters for writeCXLogEntry()

Data Type Parameter Description

Object or
String

module See the description of the parameter of the same name in
Table 11–3, " Parameters for isCXLogEnabled()" on page 11-3.

String methodName The name of your Java method that is calling
writeCXLogEntry(). This name is written to the log.

A runtime exception is raised if this parameter is null or consists
of white space.

String label An optional string. Use to provide additional context for the
entry in the log.

String message An optional string. Use to write the log message that describes
the situation being logged.

int logLevel See the description of the parameter of the same name in
Table 11–3, " Parameters for isCXLogEnabled()" on page 11-3.

Table 11–3 (Cont.) Parameters for isCXLogEnabled()

Data Type Parameter Description

Example of Logging

Logging Through the CIO 11-5

unnecessary invocation of writeCXLogEntry() when logging is not enabled,
which can affect performance.

See Section 11.5, "Example of Logging" on page 11-5 for an example of this
practice.

■ If you are handling an exception, you can add an explicit invocation of
writeCXLogEntry() in the catch block of your exception handling routine,
specifying any of the supported logging levels listed in Table 11–2, " Values for
AFLOG_LEVEL". Note that the CIO logs exceptions even if you do not add this
explicit invocation, but adding it may ease your debugging work.

■ Set the logLevel parameter for writeCXLogEntry() to the level that provides
you with the most useful information. See Table 11–5 for guidance.

11.5 Example of Logging
Example 11–1 illustrates how your code can use the logging methods described in
Section 11.3, "Creating Entries in the Log" on page 11-3. These methods are highlighted
typographically in Example 11–1. The example also highlights these requirements:

■ The methodName parameter must match the name of the enclosing method.

■ The logLevel parameter must agree with the setting of AFLOG_LEVEL, which is
assumed to be STATEMENT, in this example.

Example 11–1 Logging Through the CIO

package acme.code;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;

public class MyClass {
 // ... other code here to interact with configuration ...
 public void selectIt(IRuntimeNode rtNode) {
 Configuration cfg = rtNode.getConfiguration();
 // ... other code here to select a node ...
 if (cfg.isCXLogEnabled(this, Configuration.CXLOG_STATEMENT)) {
 cfg.writeCXLogEntry(this,
 "selectIt",

Table 11–5 Values for the logLevel Parameter

Value Description

CXLOG_STATEMENT Use for low-level progress reporting. Most of your log data will be
written at this level.

Note that using this level can affect performance, since it requires
more logging activity.

CXLOG_PROCEDURE Use for API-level progress reporting. Log at this level to report the
entrance into or exit from a Java method of particular interest.

CXLOG_EVENT Use for high-level reporting of significant configuration session
events, such as the restoring of a configuration or the selection of
a particular Model node.

This level is not necessarily equivalent to an event that triggers a
Configurator Extension, though you can choose to log such events
at this level.

This level provides the best logging performance.

Example of Logging

11-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

 null,
 "Selecting a node.",
 Configuration.CXLOG_STATEMENT);
 }
 }
}

Example 11–2 and Example 11–3 show the log entries produced by the code fragment
in Example 11–1, with differing settings for AFLOG_MODULE, as described in
Section 11.2, "Enabling Logging Scope" on page 11-1.

■ Example 11–2 on page 11-6 shows the effect of setting AFLOG_MODULE to cz%.

■ Example 11–3 on page 11-6 shows the effect of setting AFLOG_MODULE to
acme%.

Example 11–2 Log File Entry When AFLOG_MODULE Includes cz%

[Oct 28, 2004 9:53:58 AM PDT] :
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT:[cz.cio.Configuration.writeCXLogEntry]:[null_
4e9d2fd_2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting Option 1

In Example 11–2:

■ The entry begins with standard Oracle Applications Logging Framework
information.

[Oct 28, 2004 9:53:58 AM PDT] :
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT

■ The next part of the entry shows the attributing class and method:

:[cz.cio.Configuration.writeCXLogEntry]

Notice that the attributing class and method are Configuration and
writeCXLogEntry(), which are the ones that actually wrote the entry.

■ The final part of the entry shows the logging message (which begins with the
standard logging footprint text for Oracle Configurator):

:[null_4e9d2fd_2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting a node.

Notice that the message includes the prefix CXLog> and the full path to your
method that called writeCXLogEntry().

Example 11–3 Log File Entry When AFLOG_MODULE Includes acme%

[Oct 28, 2004 9:53:58 AM PDT] :
1098982438703:Thread[HttpRequestHandler-94,5,main]:-1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT:[acme.code.MyClass.selectIt]:[null_4e9d2fd_2 1 3]
Selecting Option 1

In Example 11–3:

■ The entry begins with standard Oracle Applications Logging Framework
information.

[Oct 28, 2004 9:53:58 AM PDT] :
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT

Example of Logging

Logging Through the CIO 11-7

■ The next part of the entry shows the attributing class and method:

:[acme.code.MyClass.selectIt]

Notice that the message shows the full path to your method that called
writeCXLogEntry().

■ The final part of the entry shows the logging message (which begins with the
standard logging footprint text for Oracle Configurator):

:[null_4e9d2fd_2 1 3] Selecting a node.

Notice that the message shows only the text that you passed as an argument to the
message parameter of writeCXLogEntry().

Example of Logging

11-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

Part III
Appendixes

Part III contains the following chapters:

■ Appendix A, "Reference Documentation for the CIO"

■ Appendix B, "Code Examples"

■ Appendix C, "Java Parameter Types for Configurator Extensions"

Reference Documentation for the CIO A-1

A
Reference Documentation for the CIO

Reference documentation for the Oracle Configuration Interface Object is provided in
the form of pages generated by the Javadoc tool from the source code for the CIO.

For the location of Javadoc pages for the this release, see the About Oracle Configurator
documentation on Metalink, Oracle’s technical support Web site.

A-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

Code Examples B-1

B
Code Examples

This chapter contains code examples illustrating the use of Configurator Extensions
and the CIO. These examples are fuller and longer than the examples provided in the
rest of this document, which are often fragments. For each example, see the cited
background sections for explanatory details.

The sections of this chapter are:

■ Generating Output Related to Model Structure

■ Using Requests

■ Sharing a Configuration Session in a Child Window

■ Tracking Configuration Session Changes

B.1 Generating Output Related to Model Structure
This Configurator Extension produces an HTML representation of the runtime Model
tree, beginning at a node specified in the Configurator Extension binding.

For the detailed procedure for creating a Configurator Extension Rule, see Chapter 2,
"Building Configurator Extensions" and the Oracle Configurator Developer User’s Guide.
For specific information on building a Configurator Extension for generating custom
output, see Section 3.2, "Generating Custom Output" on page 3-2.

Here is a summary of the tasks specific to this example:

■ Use the Java source code in Example B–1 on page B-2 for your Java archive file
and Configurator Extension Archive.

■ When you define your Configurator Extension rule, use the options listed in the
following table:

■ When you define your event binding, use the options listed in the following table:

Option Choose ...

Model Node The node of your Model on which you want the button for the
command event to be placed by Oracle Configurator. This
node is independent of the node in the Model tree from which
the Configurator Extension begins showing structure.

Java Class ShowStructureCX, from your Configurator Extension
Archive

Java Class Instantiation With Model Node Instance

Generating Output Related to Model Structure

B-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

■ When you define your argument bindings, use the options listed in the following
tables:

The example first calls the response.setContentType() method of the
HttpServletResponse class, passing "text/html" as the output type.

The following line is required for compatibility with Microsoft Internet Explorer:

 response.setHeader ("Expires", "-1");

Then the example calls response.getWriter() to get an output stream to which
the Configurator Extension can write HTML.

You can also write non-HTML output by setting a different content type (a MIME
type) and writing appropriate data to the output stream.

In the private method generateNode(), you can call either
IRuntimeNode.getCaption(), as shown, or IRuntimeNode.getName().
However, getCaption() reflects changes to the name of a component instance made
with Component.setInstanceName(), as described in Section 6.2.2, "Renaming
Instances of Components" on page 6-3, while getName() does not.

Example B–1 Generating Output with a Configurator Extension (ShowStructureCX.java)

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServletResponse;
import com.sun.java.util.collections.Iterator;
import oracle.apps.cz.cio.IRuntimeNode;

/**
 * Displays a textual rendition of the model structure tree.

Option Choose ...

Event onCommand

Command Name A string that you choose as a command. For example: Show
Structure. Do not enclose the string in quotation marks.
The string can contain spaces.

Event Scope Your choice of scope. Try repeating the example with
different scopes to see the effect when you test it.

Method Name showModelStructure

Option Choose ...

Argument Type javax.servlet.http.HttpServletResponse

Argument Specification Event Parameter

Binding HttpServletResponse

Option Choose ...

Argument Type oracle.apps.cz.cio.IRuntimeNode

Argument Specification Model Node or Property

Binding The node of your Model from which you want to begin
showing hierarchical Model structure.

Using Requests

Code Examples B-3

 *
 */

public class ShowStructureCX {

/**
 * Bind node parameter to the node from which to start rendering model structure.
 */

 public void showModelStructure(HttpServletResponse response, IRuntimeNode node) throws
IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Runtime Model Structure</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h3>Runtime Model Structure</h3>");
 generateNode(out, node, 0);
 out.println("</body>");
 out.println("</html>");
 }

 private static void generateNode(PrintWriter out, IRuntimeNode node, int level) throws
IOException {
 for (int i = 0; i < level; ++i) {
 out.print("--");
 }
 // out.println(node.getName() + "
 "); // doesn't get changed instance names
 out.println(node.getCaption() + "
 ");
 for (Iterator i = node.getChildren().iterator(); i.hasNext();) {
 IRuntimeNode childNode = (IRuntimeNode)i.next();
 generateNode(out, childNode, (level + 1));
 }
 }
}

B.2 Using Requests
For background, see Chapter 9, "Using Requests".

B.2.1 Setting Nonoverridable Requests
This example shows how to designate a group of requests as nonoverridable requests,
by using ConfigTransaction.useNonOverridableRequests().

For background, see Section 9.4, "Nonoverridable Requests" on page 9-2.

Example B–2 Setting Nonoverridable Requests (NonOverridableTest.java)

import oracle.apps.cz.cio.*;
import com.sun.java.util.collections.Iterator;

public class NonOverridableTest
{
 public void testOverride(Configuration config, IRuntimeNode comp) throws LogicalException {
 ConfigTransaction itr = null;
 try {

Using Requests

B-4 Oracle Configurator Extensions and Interface Object Developer’s Guide

 // Begin transaction that uses nonoverridable requests
 itr = config.beginConfigTransaction();
 itr.useNonOverridableRequests();

 // Try setting an Option Feature with mutually exclusive Options.
 IRuntimeNode of1 = comp.getChildByName("option_feature_1");
 // Select option_1
 ConfigTransaction tr = config.beginConfigTransaction();
 ((IOption)of1.getChildByName("option_1")).select();
 config.commitConfigTransaction(tr);
 // Select option_2
 tr = config.beginConfigTransaction();
 ((IOption)of1.getChildByName("option_2")).select();
 config.commitConfigTransaction(tr);

 // Try setting a value for an Integer Feature.
 tr = config.beginConfigTransaction();
 ((IInteger)comp.getChildByName("integer_feature_1")).setIntValue(33);
 config.commitConfigTransaction(tr);

 // Try overriding a Boolean value.
 // boolean_feature_1 negates boolean_feature_2. This should produce a contradiction.
 tr = config.beginConfigTransaction();
 try {
 ((BooleanFeature)comp.getChildByName("boolean_feature_1")).setState(IState.TRUE);
 ((BooleanFeature)comp.getChildByName("boolean_feature_2")).setState(IState.TRUE);
 } catch (LogicalOverridableException loe) {
 loe.override();
 }
 config.commitConfigTransaction(tr);

 // Get next Component in Component set.
 ComponentSet cset = (ComponentSet)comp.getParent().getChildByName("component_set_1");
 Component cset_comp_1 = null;
 Iterator iter = cset.getChildren().iterator();
 if (iter.hasNext()) {
 cset_comp_1 = ((Component)iter.next());
 }

 // Try deleting a Component from a Component set.
 // This is not allowed, and should produce a contradiction.
 try {
 tr = config.beginConfigTransaction();
 cset.delete(cset_comp_1);
 config.commitConfigTransaction(tr);
 } catch (Exception e) {
 config.rollbackConfigTransaction(tr);
 System.out.println("Expected exception in deleting component " + e);
 }

 // Try adding a Component to a Component set.
 // This is not allowed, and should produce a contradiction.
 try {
 tr = config.beginConfigTransaction();
 cset.add();
 config.commitConfigTransaction(tr);
 } catch (Exception e) {
 config.rollbackConfigTransaction(tr);
 System.out.println("Expected exception in adding component " + e);
 }

Using Requests

Code Examples B-5

 // Try setting value of a Text Feature of Component in Component set
 tr = config.beginConfigTransaction();
 IRuntimeNode featText = cset_comp_1.getChildByName("text_feature_1");
 ((IText)featText).setTextValue("any_text");
 config.commitConfigTransaction(tr);

 // Try overriding default value of an Integer Feature of Component in Component set
 IRuntimeNode intFeatDef = comp.getParent().getChildByName("integer_feature_default");
 tr = config.beginConfigTransaction();
 ((IInteger)intFeatDef).setIntValue(50); // Default value was 25
 config.commitConfigTransaction(tr);

 // Commit the transaction that used nonoverridable requests
 config.commitConfigTransaction(itr);

 // Try setting a nonoverridable request after a user request
 // Make an ordinary user request:
 tr = config.beginConfigTransaction();
 ((IState)comp.getChildByName("boolean_feature_3")).setState(IState.TRUE);
 config.commitConfigTransaction(tr);
 try {
 } catch (Exception e) {
 e.printStackTrace();
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

B.2.2 Getting a List of Failed Requests
This example shows how to use LogicalOverridableException.override() to
override a logical contradiction and return a List of Request objects that represent all
the previously asserted user requests that failed due to the override that you are
performing.

For background, see Section 9.5, "Failed Requests" on page 9-4.

Example B–3 Getting a List of Failed Requests (OverrideTest.java)

import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;
import oracle.apps.fnd.common.*;
import java.util.*;
import com.sun.java.util.collections.List;
import com.sun.java.util.collections.Iterator;

public class OverrideTest
{

 public static void main(String[] args)
 {
 ConfigTransaction tr = null;
 Configuration config = null;
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 WebAppsContext ctx = new WebAppsContext("server01_sid02"); // Use DBC file for context
 CIO cio = new CIO();

Sharing a Configuration Session in a Child Window

B-6 Oracle Configurator Extensions and Interface Object Developer’s Guide

 config = cio.createConfiguration("overrideTest", ctx, null, Calendar.getInstance(),
Calendar.getInstance(), null, null);
 OptionFeature of = (OptionFeature)config.getRootComponent().getChildByName("Feature1");
 Option o1 = (Option) of.getChildByName("Option1");
 Option o2 = (Option) of.getChildByName("Option2");

 try {
 tr = config.beginConfigTransaction();
 o1.select();
 o2.deselect();
 config.commitConfigTransaction(tr);
 } catch (LogicalOverridableException loe) {
 try {
 // Get list of failed requests, if any
 List list = loe.override();
 System.out.println("Option1: " + o1+ " State: " + o1.getState());
 System.out.println("Option2: " + o2+ " State: " + o2.getState());
 printList(list);
 config.commitConfigTransaction(tr);
 } catch (Exception re) {
 re.printStackTrace();
 config.rollbackConfigTransaction(tr);
 }
 } catch (LogicalException le) {
 le.printStackTrace();
 config.rollbackConfigTransaction(tr);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void printList(List list) {
 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 System.out.println("Node: " + iter.next());
 }
 System.out.println("***************\n");
 }
}

B.3 Sharing a Configuration Session in a Child Window
This example must use a child window of the kind described in Section 5.10, "Sharing
a Configuration Session" on page 5-10, which describes the background and purpose
of the example. The child window must be created with the HTML-based version of
Oracle Configurator Developer and run with a generated Configurator UI for the
runtime Oracle Configurator.

This JSP generates the contents of a child window and performs the following tasks:

■ Imports the necessary user classes by importing the CIO. Session-related classes,
such as PageContext, are supplied by your servlet/JSP container.

■ Gets the session’s Configuration object (cfg) through the session key
configurationObject. This allows the child window to modify the same
configuration as the parent window.

Sharing a Configuration Session in a Child Window

Code Examples B-7

■ Gets the URL of the runtime Configurator in the parent window (retUrl)
through the session key czReturnToConfiguratorUrl, so that control can
return to it when the child window is closed.

■ Modifies the state of the current configuration.

Example code for modifying the runtime configuration from the child window is
shown after the comment // Start configuration changes here.. For simplicity, this
code illustrates only basic interaction with the configuration model. For true
interaction with the configuration model, you must tailor the code to your own
circumstances.

The example here locates a node named Boolean Feature-1, checks whether it
exists and is a Boolean Feature, and, if so, toggles its state. This action is performed
when the end user clicks a button like that described in Table 5–4, " UI
Specifications for Invoking Child Window" on page 5-10.

For background on modifying the runtime configuration model, see Chapter 6,
"Working with Model Entities". For details on toggling state, see Example 6–5,
"Setting the State of a Node" on page 6-6 in Section 6.4, "Getting and Setting Logic
States".

■ Provides a button (labeled Close), which refreshes the parent window with the
results of the child window’s actions then closes the child window. This button
calls a function, refreshMainWdw(), that uses the URL of the parent window
(retUrl) to return control to it.

Example B–4 Sharing a Configuration Session in a Child Window (TestChildWin.jsp)

<%@ page contentType="text/html;charset=windows-1252"
 import="oracle.apps.cz.cio.*"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>
Test Child Window
</title>
</head>
<body>
<%
 // Get the session’s configuration object, through javax.servlet.jsp.PageContext
 Configuration cfg = (Configuration)pageContext.getAttribute("configurationObject",
PageContext.SESSION_SCOPE);
 // Get URL of the runtime Configurator, so we can return to it.
 String retUrl = (String)pageContext.getAttribute("czReturnToConfiguratorUrl",
PageContext.SESSION_SCOPE);
 if (cfg != null) {
 out.println("<p>Got Configuration object from HTTP session. Can now modify the
configuration.</p>");

 // Start configuration changes here.
 IRuntimeNode node = cfg.getRootComponent().getChildByName("Boolean Feature-1");
 if (node != null && node instanceof BooleanFeature) {
 ((BooleanFeature)node).setState(IState.TOGGLE);
 }
 // End configuration changes here.

 }
%>
<script>
 function refreshMainWdw() {

Tracking Configuration Session Changes

B-8 Oracle Configurator Extensions and Interface Object Developer’s Guide

 opener.location="<%= retUrl %>";
 window.close();

 }
</script>
<form>
 <input type="button" name="b1" value="Close" onclick="javascript:refreshMainWdw();">
</form>
</body>
</html>

B.4 Tracking Configuration Session Changes
The code in Example B–5 assembles together the fragmentary examples shown in
Chapter 10, "Configuration Session Change Tracking".

Example B–5 Tracking Session Changes (DeltaExample.java)

import com.sun.java.util.collections.*;
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.CZWebAppsContext;
import oracle.apps.fnd.common.Context;

public class DeltaExample
{

 public static void main(String [] args) {
 // Define some constants
 int modelId = 1234;
 String dbcFilename = "dbcFile.dbc";
 String user = "scott";
 String pwd = "tiger";

 try {
 // Load the JDBC Driver and create Context, CIO
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Context context = new CZWebAppsContext(dbcFilename);
 context.getSessionManager().validateLogin(user, pwd);
 CIO cio = new CIO();
 cio.initializeAppsSession(context);

 // Create a new Configuration and DeltaManager
 ConfigParameters params = new ConfigParameters(modelId);
 Configuration config = cio.startConfiguration(params, context);
 DeltaManager deltaMgr = config.createDeltaManager("MyDeltaMgr");

 // Create a Navigation (Tree) region. This is interested in watching
 // all runtime nodes for instance name, instantiation, and unsatisfaction
 // changes.
 List dvList = new ArrayList();

 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANCE_NAME_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANTIATION_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV));

 List watchedNodes = config.getRuntimeNodes();

 DeltaRegion treeRegion = deltaMgr.registerRegion(watchedNodes, dvList, "MyTreeRegion");

Tracking Configuration Session Changes

Code Examples B-9

 // Create a component region. This region displays a Component screen and is
 // interested in watching all nodes in that component for availability, count,
 // price, state and unsatisfaction changes
 dvList.clear();
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.AVAILABILITY_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.COUNT_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.PRICE_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.STATE_DV));
 dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV));

 watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom method, not defined here

 DeltaRegion compRegion = deltaMgr.registerRegion(watchedNodes, dvList, "MyCompRegion");

 // Make an assertion to change the current configuration
 Option option1 =
(Option)config.getRootComponent().getChildByName("Feature").getChildByName("Option1");
 option1.select();

 // Get the deltas due to this assertion and update the tree and component regions
 Map treeChanges = deltaMgr.getUpdateMapForRegion("MyTreeRegion");

 // Now update the tree region cache and UI with treeChanges
 updateTreeRegion(treeChanges);

 Map compChanges = compRegion.getUpdateMap();
 updateCompRegion(compChanges); // a custom method, not defined here
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void updateTreeRegion(Map changes) {
 for (Iterator iter = changes.keySet().iterator(); iter.hasNext();) {
 RuntimeNode changedNode = (RuntimeNode)iter.next();
 uiNode = getUiNode(changedNode); // custom method
 Collection nodeChanges = (Collection)changes.get(changedNode);
 for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
 IValidatorChange change = (IValidatorChange)iter2.next();
 switch (change.getType()) {
 case DeltaValidator.INSTANCE_NAME_DV:
 InstanceNameDeltaValidator.InstanceNameChange nameChange =
(InstanceNameDeltaValidator.InstanceNameChange)change;
 String newName = nameChange.getInstanceName();
 uiNode.setName(newName); // custom method on uiNode
 break;
 case DeltaValidator.INSTANTIATION_DV:
 InstantiationDeltaValidator.InstantiationChange iChange =
(InstantiationDeltaValidator.InstantiationChange) change;
 Collection added = iChange.getNewlyAddedInstances();
 Collection deleted = iChange.getNewlyDeletedInstances();
 uiNode.updateInstances(added, deleted); // custom method on uiNode
 break;
 case DeltaValidator.UNSATISFACTION_DV:
 UnsatisfactionDeltaValidator.UnsatisfactionChange uChange =
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
 boolean unsatisfied = uChange.isUnsatisfied();
 uiNode.setUnsatisfied(unsatisfied); // custom method on uiNode
 break;
 }

Tracking Configuration Session Changes

B-10 Oracle Configurator Extensions and Interface Object Developer’s Guide

 }
 }
 }
}

Java Parameter Types for Configurator Exten
C

Java Parameter Types for Configurator

Extensions

When you are creating Configurator Extensions with Oracle Configurator Developer,
you must be able to bind an entity in your Model as an argument to a parameter in the
Java method that you have selected.

The Java types of the parameters of your method must agree with the types of Model
entities that are eligible for event binding. For a list of the Java classes that you can use
in event bindings, see Example C–1, "Valid Java Types for Parameters". on page C-1.

For information on developing Java methods for Configurator Extensions, see
Section 2.2, "Developing Java Classes and Archives" on page 2-4.

Example C–1 Valid Java Types for Parameters

boolean
com.sun.java.util.collections.Collection
com.sun.java.util.collections.List
double
float
int
java.lang.Integer
java.lang.Long
java.lang.Object
java.lang.String
java.long.Double
java.long.Float
java.text.DecimalFormat
java.utils.Date
javax.servlet.http.HttpServletResponse
long
oracle.apps.cz.cio.BomInstance
oracle.apps.cz.cio.BomModel
oracle.apps.cz.cio.BomNode
oracle.apps.cz.cio.BomOptionClass
oracle.apps.cz.cio.BomStdItem
oracle.apps.cz.cio.BooleanFeature
oracle.apps.cz.cio.CXEvent
oracle.apps.cz.cio.CXRule
oracle.apps.cz.cio.Component
oracle.apps.cz.cio.ComponentInstance
oracle.apps.cz.cio.ComponentSet
oracle.apps.cz.cio.Configuration
oracle.apps.cz.cio.Connector
oracle.apps.cz.cio.CountFeature
oracle.apps.cz.cio.DecimalFeature
sions C-1

oracle.apps.cz.cio.DecimalNode
oracle.apps.cz.cio.IAtp
oracle.apps.cz.cio.IBomItem
oracle.apps.cz.cio.ICount
oracle.apps.cz.cio.IDecimal
oracle.apps.cz.cio.IDecimalMinMax
oracle.apps.cz.cio.IInstance
oracle.apps.cz.cio.IInteger
oracle.apps.cz.cio.IIntegerMinMax
oracle.apps.cz.cio.IOption
oracle.apps.cz.cio.IOptionFeature
oracle.apps.cz.cio.IPrice
oracle.apps.cz.cio.IReadOnlyDecimal
oracle.apps.cz.cio.IRuntimeNode
oracle.apps.cz.cio.IState
oracle.apps.cz.cio.IText
oracle.apps.cz.cio.IntegerFeature
oracle.apps.cz.cio.IntegerNode
oracle.apps.cz.cio.Option
oracle.apps.cz.cio.OptionFeature
oracle.apps.cz.cio.OptionFeatureNode
oracle.apps.cz.cio.OptionNode
oracle.apps.cz.cio.PricedNode
oracle.apps.cz.cio.ReadOnlyDecimalNode
oracle.apps.cz.cio.Resource
oracle.apps.cz.cio.RuntimeNode
oracle.apps.cz.cio.TextFeature
oracle.apps.cz.cio.TextNode
oracle.apps.cz.cio.Total
void
C-2 Oracle Configurator Extensions and Interface Object Developer’s Guide

Glossary

This glossary contains definitions that you may need while working with Oracle
Configurator.

API
Application Programming Interface

applet
A Java application running inside a Web browser. See also Java and servlet.

Archive Path
The ordered sequence of Configurator Extension Archives for a Model that
determines which Java classes are loaded for Configurator Extensions and in what
order.

argument
A data value or object that is passed to a method or a Java class so that the method can
operate.

ATO
Assemble to Order

ATP
Available to Promise

base node
The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

bill of material
A list of Items associated with a parent Item, such as an assembly, and information
about how each Item relates to that parent Item.

Bills of Material
The application in Oracle Applications in which you define a bill of material.

binding
Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.
Glossary-1

BOM
BOM
See bill of material.

BOM item
The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM
Standard Item node.

BOM Model
A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO rules, and other
data are also imported into Configurator Developer. In Configurator Developer, you
can extend the structure of the BOM Model, but you cannot modify the BOM Model
itself or any of its attributes.

BOM Model node
The imported node in Oracle Configurator Developer that corresponds to a BOM
Model created in Oracle Bills of Material.

BOM Option Class node
The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node
The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature
An element of a component in the Model that has two options: true or false.

bug
See defect.

build
A specific instance of an application during its construction. A build must have an
install program early in the project so that application implementers can unit test
their latest work in the context of the entire available application.

CDL
See Constraint Definition Language.

CIO
See Oracle Configuration Interface Object (CIO).

command event
An event that is defined by a character string, which is considered the command for
which listeners are listening.

Comparison Rule
An Oracle Configurator Developer rule type that establishes a relationship to
determine the selection state of a logical Item (Option, Boolean Feature, or
List-of-Options Feature) based on a comparison of two numeric values (numeric
Features, Totals, Resources, Option counts, or numeric constants). The numeric
Glossary-2

configuration model
values being compared can be computed or they can be discrete intervals in a
continuous numeric input.

Compatibility Rule
An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,
Property-based Compatibility Rule.

Compatibility Table
A kind of Explicit Compatibility Rule. For example, a type of compatibility
relationship where the allowable combination of Options are explicitly enumerated.

component
A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component
An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model. Corresponds to one UI screen of selections in a
runtime Oracle Configurator.

Component Set
An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

concurrent program
Executable code (usually written in SQL*Plus or Pro*C) that performs the function(s)
of a requested task. Concurrent programs are stored procedures that perform actions
such as generating reports and copying data to and from a database.

configuration
A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute
A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration engine
The part of the runtime Oracle Configurator that uses configuration rules to validate
a configuration. Compare generated logic.

Configuration Interface Object
See Oracle Configuration Interface Object (CIO).

configuration model
Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime
Oracle Configurator window. See also model.
Glossary-3

configuration rule
configuration rule
A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session
The time from launching or invoking to exiting Oracle Configurator, during which
end users make selections to configure an orderable product. A configuration session
is limited to one configuration model that is loaded when the session is initialized.

configurator
The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Extension
An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so
that the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive
An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity
The connection between client and database that allows data communication.

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector
The node in the model structure that enables an end user at runtime to connect the
Connector node’s parent to a referenced Model.

Constraint Definition Language
A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

Container Model
A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models containing connectivity and
trackable components. Configurations created from Container Models can be tracked
and updated in Oracle Install Base

Contributes to
A relation used to create a specific type of Numeric Rule that accumulates a total
value. See also Total.
Glossary-4

defect
Consumes from
A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count
The number or quantity of something, such as selected options. Compare instance.

CTO
Configure to Order

customer
The person for whom products are configured by end users of the Oracle
Configurator or other ERP and CRM applications. Also the end users themselves
directly accessing Oracle Configurator in a Web store or kiosk.

customer requirements
The needs of the customer that serve as the basis for determining the configuration of
products, systems, and services. Also called needs assessment. See guided buying or
selling.

CZ
The product shortname for Oracle Configurator in Oracle Applications.

CZ schema
The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well
as specific tables used during the construction of the configurator.

data import
Populating the CZ schema with enterprise data from ERP or legacy systems via
import tables.

data source
A programmatic reference to a database. Referred to by a data source name (DSN).

DBMS
Database Management System

default
A predefined value. In a configuration, the automatic selection of an option based on
the preselection rules or the selection of another option.

Defaults relation
An Oracle Configurator Developer Logic Rule relation that determines the logic state
of Features or Options in a default relation to other Features and Options. For
example, if A Defaults B, and you select A, B becomes Logic True (selected) if it is
available (not Logic False).

defect
A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a bug.
Glossary-5

Design Chart
Design Chart
An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

developer
The person who uses Oracle Configurator Developer to create a configurator. See also
implementer and user.

Developer
The tool (Oracle Configurator Developer) used to create configuration models.

DHTML
Dynamic Hypertext Markup Language

discontinued item
A discontinued item is one that exists in an installed configuration of a component (as
recorded in Oracle Install Base), but has been removed from the instance of the
component being reconfigured, either by deletion or by deselection.

element
Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user
The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly
accessing the application via a Web browser or kiosk. Compare user.

enterprise
The systems and resources of a business.

environment
The arena in which software tools are used, such as operating system, applications,
and server processes.

ERP
Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

event
An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure
inside which a listener listens for an event is called the event binding scope. The part
of model structure that is the source of an event is called the event execution scope. See
also command event.

Excludes relation
An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User
Glossary-6

Implies relation
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Negates relation.

feature
A characteristic of something, or a configurable element of a component at runtime.

Feature
An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

functional specification
Document describing the functionality of the application based on user requirements.

generated logic
The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling
Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided
selling questions trigger configuration rule that automatically select some product
options and exclude others based on the end user’s responses.

host application
An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

HTML
Hypertext Markup Language

implementation
The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed configuration
application. The implementation stage includes gathering requirements, defining test
cases, designing the application, constructing and testing the application, and
delivering it to end users. See also developer and user.

implementer
The person who uses Oracle Configurator Developer to build the model structure,
rules, and UI customizations that make up a runtime Oracle Configurator. Commonly
also responsible for enabling the integration of Oracle Configurator in a host
application.

Implies relation
An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For
example, if A Implies B, and you select A, B becomes Logic True. If you deselect A (set
to User False), there is no effect on B, meaning it could be User or Logic True, User or
Logic False, or Unknown. See Requires relation.
Glossary-7

import server
import server
A database instance that serves as a source of data for Oracle Configurator’s
Populate, Refresh, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

import tables
Tables mirroring the CZ schemaItem Master structure, but without integrity
constraints. Import tables allow batch population of the CZ schema’s Item Master.
Import tables also store extractions from Oracle Applications or legacy data that
create, update, or delete records in the CZ schema Item Master.

initialization message
The XML message sent from a host application to the Oracle Configurator Servlet,
containing data needed to initialize the runtime Oracle Configurator. See also
termination message.

Instance
An Oracle Configurator Developer attribute of a component’s node that specifies a
minimum and maximum value. See also instance.

instance
A runtime occurrence of a component in a configuration. See also instantiate. Compare
count.

Also, the memory and processes of a database.

instantiate
To create an instance of something. Commonly, to create an instance of a component
in the runtime user interface of a configuration model.

integration
The process of combining multiple software components and making them work
together.

integration testing
Testing the interaction among software programs that have been integrated into an
application or system. Also called system testing. Compare unit test.

item
A product or part of a product that is in inventory and can be delivered to customers.

Item
A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master
Data stored to structure the Model. Data in the CZ schema Item Master is either
entered manually in Oracle Configurator Developer or imported from Oracle
Applications or a legacy system.

Item Type
Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.
Glossary-8

maintenance
Java
An object-oriented programming language commonly used in internet applications,
where Java applications run inside Web browsers and servers. Used to implement the
behavior of Configurator Extensions. See also applet and servlet.

Java class
The compiled version of a Java source code file. The methods of a Java class are used
to implement the behavior of Configurator Extensions.

JavaServer Pages
Web pages that combine static presentation elements with dynamic content that is
rendered by Java servlets.

JSP
See JavaServer Pages.

legacy data
Data that cannot be imported without creating custom extraction programs.

listener
A class in the CIO that detects the occurrence of specified events in a configuration
session.

load
Storing the configuration model data in the Oracle Configurator Servlet on the Web
server. Also, the time it takes to initialize and display a configuration model if it is not
preloaded.

The burden of transactions on a system, commonly caused by the ratio of user
connections to CPUs or available memory.

log file
A file containing errors, warnings, and other information that is output by the running
application.

Logic Rule
An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the
logical state (User or Logic True, User or Logic False, or Unknown) of Features and
Options in the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

maintainability
The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

maintenance
The effort of keeping a system running once it has been deployed, through defect
fixes, procedure changes, infrastructure adjustments, data replication schedules, and
so on.
Glossary-9

Metalink
Metalink
Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

method
A function that is defined in a Java class. Methods perform some action and often
accept parameters.

Model
The entire hierarchical "tree" view of all the data required for configurations,
including model structure, variables such as Resources and Totals, and elements in
support of intermediary rules. Includes both imported BOM Models and Models
created in Configurator Developer. May consist of BOM Option Classes and BOM
Standard Items.

model
A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

model-driven UI
The graphical views of the model structure and rules generated by Oracle
Configurator Developer to present end users with interactive product selection based
on configuration models.

model structure
Hierarchical "tree" view of data composed of elements (Models, Components,
Features, Options, BOM Models, BOM Option Class nodes, BOM Standard Item
nodes, Resources, and Totals). May include reusable components (References).

Negates relation
A type of Oracle Configurator Developer Logic Rule type that determines the logic
state of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). See Excludes relation.

node
The icon or location in a Model tree in Oracle Configurator Developer that represents
a Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item node.

Numeric Rule
An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes
from.

object
Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.
Glossary-10

Oracle Configurator window
OC
See Oracle Configurator.

OCD
See Oracle Configurator Developer.

option
A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option
An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configuration Interface Object (CIO)
A server in the runtime application that creates and manages the interface between
the client (usually a user interface) and the underlying representation of model
structure and rules in the generated logic.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

Oracle Configurator
The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the
runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator architecture
The three-tier runtime architecture consists of the User Interface, the generated logic,
and the CZ schema. The application development architecture consists of Oracle
Configurator Developer and the CZ schema, with test instances of a runtime Oracle
Configurator.

Oracle Configurator Developer
The suite of tools in the Oracle Configurator product for constructing and maintaining
configurators.

Oracle Configurator engine
The part of the Oracle Configurator product that validates runtime selections. See also
generated logic.

Oracle Configurator schema
See CZ schema.

Oracle Configurator Servlet
A Java servlet that participates in rendering Legacy user interfaces for Oracle
Configurator.

Oracle Configurator window
The user interface that is launched by accessing a configuration model and used by
end users to make the selections of a configuration.
Glossary-11

performance
performance
The operation of a product, measured in throughput and other data.

Populator
An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

preselection
The default state in a configurator that defines an initial selection of Components,
Features, and Options for configuration.

A process that is implemented to select the initial element(s) of the configuration.

product
Whatever is ordered and delivered to customers, such as the output of having
configured something based on a model. Products include intangible entities such as
services or contracts.

Property
A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model,
Oracle Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule
An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

prototype
A construction technique in which a preliminary version of the application, or part of
the application, is built to facilitate user feedback, prove feasibility, or examine other
implementation issues.

PTO
Pick to Order

publication
A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same
configuration model, but each publication corresponds to only one Model and User
Interface.

publishing
The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and
running an Oracle Applications concurrent process to copy data to a specific database.

RDBMS
Relational Database Management System
Glossary-12

runtime
reference
The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference
An Oracle Configurator Developer node type that denotes a reference to another
Model.

Repository
Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation
An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options.
For example, if A Requires B, and if you select A, B is set to Logic True (selected).
Similarly, if you deselect A, B is set to Logic False (deselected). See Implies relation.

resource
Staff or equipment available or needed within an enterprise.

Resource
A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can
have an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

reusable component
See reference and model structure.

reusability
The extent to and ease with which parts of a system can be put to use in other systems.

rules
Also called business rules or configuration rule. In the context of Oracle Configurator
and CDL, a rule is not a "business rule." Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and
Numeric Rule.

runtime
The environment and context in which applications are run, tested, or used, rather
than developed.

The environment in which an implementer (tester), end user, or customer configures
a product whose model was developed in Oracle Configurator Developer. See also
configuration session.
Glossary-13

schema
schema
The tables and objects of a data model that serve a particular product or business
process. See also CZ schema.

server
Centrally located software processes or hardware, shared by clients.

servlet
A Java application running inside a Web server. See also Java, applet, and Oracle
Configurator Servlet.

solution
The deployed system as a response to a problem or problems.

SQL
Structured Query Language

Statement Rule
An Oracle Configurator Developer rule type defined by using the Oracle
Configurator Constraint Definition Language (text) rather than interactively
assembling the rule’s elements.

system
The hardware and software components and infrastructure integrated to satisfy
functional and performance requirements.

termination message
The XML message sent from the Oracle Configurator Servlet to a host application
after a configuration session, containing configuration outputs. See also initialization
message.

Total
A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

UI
See User Interface.

UI Templates
Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown
The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

unit test
Execution of individual routines and modules by the application implementer or by
an independent test consultant to find and resolve defects in the application. Compare
integration testing.
Glossary-14

XML
update
Moving to a new version of something, independent of software release. For instance,
moving a production configurator to a new version of a configuration model, or
changing a configuration independent of a model update.

upgrade
Moving to a new release of Oracle Configurator or Oracle Configurator Developer.

user
The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

User Interface
The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

user interface
The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

user requirements
A description of what the configurator is expected to do from the end user's
perspective.

validation
Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

variable
Parts of the Model that are represented by Totals, Resources, or numeric Features.

verification
Tests that check whether the result agrees with the specification.

Web
The portion of the Internet that is the World Wide Web.

Workbench
Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

XML
Extensible Markup Language, a highly flexible markup language for transferring data
between Web applications. Used for the initialization message and termination
message of the Oracle Configurator Servlet.
Glossary-15

XML
Glossary-16

Index-1

Index

Symbols

A
addInformationalMessage()

usage, 8-7
areOptionsCounted()

usage, 6-4
argument bindings

advantages, 2-10
assertions

changes to configurations, 5-5
logic, 7-1

B
beginConfigTransaction()

usage, 7-1

C
change object, 10-4
CheckedToUncheckedException

(Java class), 8-6
CIO

logging, 11-1
CIO (Configuration Interface Object)

definition, 4-1
interfaces not thread-safe, 1-4, 2-8

CIO (Java class), 2-11, 4-2
circularity

avoiding, 2-9
class files

compiling Configurator Extensions, 2-5
installing, 2-5

class path
building Configurator Extensions, 2-4

classes
creating instances of, 4-3
defining, 2-4
importing, 2-4

closeConfiguration()
usage, 5-4

command events
using, 3-2

commitConfigTransaction()
usage, 7-1, 8-1, 8-4

compiling
Configurator Extensions, 1-4, 2-5

Component (Java interface), 4-3, 6-2
usage, 6-2

components
instantiable, 6-2
mandatory versus instantiable, 6-2
required, 1-3, 6-2

ComponentSet (Java interface), 6-2
ComponentSet.add()

usage, 6-2
ComponentSet.delete()

usage, 6-3
ConfigParameters (Java class), 4-2, 5-2
Configuration (Java class), 1-3, 4-2
Configuration Delta API

described, 10-1
configuration models

saved revisions, 5-2
configuration session

saving a configuration, 5-5
configurations

assertions against, 5-5
background information, 5-1
creating, 1-3, 5-2
creating nonoverridable requests on, 9-2
dirty state, 5-6
logic transactions, 7-1
restarting, 5-8
restoring, 5-2, 5-6

Instantiability changes, 5-7
persistence of component names, 6-3

restoring saved configurations, 5-6
state, 5-7

saving
new, 5-5
revisions, 5-5

validating, 8-1
Configurator Extension Archive Path

defining, 2-1
Configurator Extension Archives

created from Java archive files, 2-5
testing Configurator Extensions, 1-5
uploading, 2-1, 2-3

Index-2

Configurator Extension Rules
bindings, 2-3

Configurator Extensions
association with Model structure, 1-3
avoiding recursion, 6-2
classes, 1-2
compiling, 1-4, 2-5
Connection Filter Configurator Extension, 3-4
definition, 1-1
deprecated exceptions, 8-7
development environment, 1-4
disabling, 2-10
filtering for connectivity, 3-4
implementing behavior, 2-5
instances, 1-2
instantiation, 1-3
loading errors, 1-4
performance impacts, 1-1
prerequisite skills, 1-2
relationship to CIO, 1-3, 1-4, 4-2
required development language, 1-3
Rules, 1-2

Connection Filter Configurator Extension
example, 3-5

connectivity
filtering with Configurator Extensions, 3-4

Connectors
Connection Filter Configurator Extension, 3-4

Counted Options
testing, 6-4

CountFeature (Java class)
behavior, 6-5
relation to IntegerFeature, 6-5

custom applications
definition, 4-1

custom user interface
developed with CIO, 1-3

CustomValidationFailure (Java class), 8-2
cz.activemodel, 2-11
czlce.dll

required for compiling Configurator
Extensions, 1-5

D
DBC file

initializing the CIO, 4-4
debugging

log files, xvii, 1
defaults

performance effects
setting state, 6-7
toggling state, 6-7

deleted nodes
checking, 2-12, 6-6, 6-9, 6-10

delta
alternate meanings, 10-2

DeltaManager (Java class), 10-2
DeltaRegion (Java class), 10-2
deltas (changes during configuration session)

defined, 10-1
DeltaValidator (Java class), 10-2
deprecated exceptions, 8-7
deselect()

usage, 6-10
dirty (configuration state), 5-6
discontinued nodes

checking, 6-6, 6-9, 6-10

E
endConfigTransaction()

usage, 7-1
Error (Java class), 8-6
errors

avoiding, 2-7
troubleshooting, xvii, 1

events
list of available events, 5-9
logging compared to Configurator

Extension, 11-5
onCommand, 3-3
onConfigValidate, 2-9, 6-2, 8-2
onValidateEligibleTarget, 3-4, 3-5
postConfigNew, 6-2
postCXInit, 6-2
postInstanceAdd, 2-6
postValueChange, 2-9, 2-10, 6-2

examples
changing the name of an instance, 2-6
filtering connected target instances, 3-5
generating output related to model structure, B-1
getting a list of failed requests, B-5
setting nonoverridable requests, B-3
sharing a configuration session, B-6
tracking configuration session changes, B-8
using a child window, B-6
using requests, B-3

exceptions
checked, 2-8
CheckedToUncheckedException, 8-6
common errors, 2-8
fatal, 8-6
guidelines, 2-8
logic, 8-4
nonfatal, 8-6
unchecked, 2-8, 8-6

F
failed requests

definition, 9-1
FALSE

state, 6-5
usage, 6-5

FND_NEW_MESSAGES (database table), 1-3
FuncCompErrorException (Java class), 8-7
FuncCompMessageException (Java class), 8-7

Index-3

G
getCause()

usage, 8-4
getChildByName()

usage, 2-10
getCIO()

usage, 5-3
getConfiguration()

usage, 6-1
getDecimalValue()

usage, 6-7
getInformationalMessages()

usage, 8-2
getIntValue()

usage, 6-7
getMaxSelected()

usage, 6-4
getMessage()

usage, 8-4
getMessageHeader()

usage, 8-4
getMinSelected()

usage, 6-4
getName()

usage, 2-10
getNode()

usage, 8-2, 8-4
getNonOverridableRequests

usage, 9-3
getProperties()

usage, 6-9
getPropertyByName()

usage, 6-9
getReasons()

usage, 8-4
getSelectedItems()

usage, 8-2
getSelectedOption()

usage, 6-9
getState()

usage, 6-6
getStatus()

usage, 8-2
getStringValue()

usage, 6-9
getType()

usage, 8-4
getUnsatisfiedItems()

usage, 8-2
getUnsatisfiedRuleMessages()

usage, 8-2
getUserInterface()

usage, 2-11
getUserParameters()

usage, 5-9
getValidationFailures()

usage, 6-8, 8-1
guidelines for development, 2-7

logging, 2-12

H
hasMaxSelected()

usage, 6-4
hasMinSelected()

usage, 6-4
HttpServletResponse (Java class), 1-2, 3-2

I
IBomItem (Java interface), 4-3
ICount (Java interface), 4-3
ICX session ticket, 1-3
IDecimal (Java interface), 4-3
InformationalMessage (Java class), 8-6, 8-7

restrictions, 8-7
initialization

parameters
obtaining list of, 5-9
pwd, 5-9

input states, 6-5
inputs

logic states, 5-8
InstanceNameChange (Java class), 2-6
instances

renaming, 6-3
restored configurations, 6-3

sharing, 2-10
instantiability

definition of an instantiable component, 6-2
interfaces

objects, 1-4
See also Java interfaces

IOption (Java interface), 4-3
IOptionFeature (Java interface), 4-3
IRuntimeNode (Java interface), 4-3, 6-1, 6-2
isDeleted()

usage, 2-12
isDiscontinued()

usage, 2-12
isFalse()

usage, 6-6
isLogic()

usage, 6-6
isOverridable()

usage, 8-4
isSelected()

usage, 6-10
IState (Java interface), 4-3
isTrue()

usage, 6-6
isUnknown()

usage, 6-6
isUnsatisfied()

usage, 8-2
isUser()

usage, 6-6
IText (Java interface), 4-3
IValidatorChange (Java interface), 10-2

Index-4

J
Java

collections library
syntax for importing, 1-5

development environment, 2-4
packages

CIO, 4-2
required for development of Configurator

Extensions, 1-3
Java archive files

for Configurator Extension classes, 2-3, 2-5
Java classes

CheckedToUncheckedException, 8-6
CIO, 2-11, 4-2
ConfigParameters, 4-2, 5-2
Configuration, 1-3, 4-2
CountFeature, 6-5
CustomValidationFailure, 8-2
DeltaManager, 10-2
DeltaRegion, 10-2
DeltaValidator, 10-2
Error, 8-6
FuncCompErrorException

compatibility, 8-7
deprecated, 8-7

FuncCompMessageException
compatibility, 8-7
deprecated, 8-7

HttpServletResponse, 1-2, 3-2
InformationalMessage, 8-6, 8-7
InstanceNameChange, 2-6
List, 1-5, 2-4
logging, 11-2
LogicalException, 8-4
LogicalOverridableException, 8-4
Reason, 8-4
RuntimeException, 8-6
StatusInfo, 8-2

Java interfaces
Component, 4-3, 6-2
ComponentSet, 6-2
definition, 4-2
IBomItem, 4-3
ICount, 4-3
IDecimal, 4-3
IOption, 4-3
IOptionFeature, 4-3
IRuntimeNode, 4-3, 6-1, 6-2
IState, 4-3
IText, 4-3
IValidatorChange, 10-2
runtime objects, 4-2

Java methods
CIO.createConfiguration(), 5-2
CIO.restoreConfiguration(), 5-7
CIO.startConfiguration(), 5-2, 5-6
ConfigParameters.setEffectiveDate(), 5-3
ConfigParameters.setModelLookupDate(), 5-3
Configuration.addInformationalMessage(), 8-7
Configuration.areAllChangesSaved(), 5-6

Configuration.closeConfiguration(), 5-2, 5-4
Configuration.getCIO(), 5-1, 5-3
Configuration.getRootComponent(), 5-1
Configuration.getSelectedItems(), 5-1
Configuration.getUnsatisfiedItems(), 5-1
Configuration.getValidationFailures(), 5-1
Configuration.isUnsatisfied(), 5-1
Configuration.restartConfiguration(), 5-8
Configuration.save(), 5-5
Configuration.saveNew(), 5-2, 5-5
Configuration.saveNewRev(), 5-2, 5-5
Configuration.setAllChangesSaved(), 5-6
Configuration.setInformationalMessage(), 8-7
ICount.setCount(), 9-1
IOPtion.select(), 9-1
IState.setState(), 9-1
parameters

effect of changes, 2-2
Java system properties

setting to log through CIO, 11-2
JDBC

thin drivers, 1-5
JDeveloper

tool for developing Configurator Extensions, 1-4
JDK (Java Development Kit)

tool for developing Configurator Extensions, 1-4,
1-5

version for compiling, 1-4, 1-5, 2-5

L
LD_LIBRARY_PATH, 1-5
LFALSE

usage, 6-5
libczlce.so

required for compiling Configurator
Extensions, 1-5

life cycle
node status during validation, 8-2

List (Java class)
syntax for importing, 1-5, 2-4

log files
troubleshooting errors, xvii, 1
written by CIO, 11-2

logging
controlling log entries, 2-12
Java classes, 11-2
through the CIO, 11-1

logic
contradictions, 8-3
exceptions, 8-4
requests

definition, 9-1
nonoverridable requests, 9-2

transactions, 7-1
definition, 5-2

logic states
getting, 6-5
inside transactions, 7-1
Logic False, 6-5

Index-5

Logic True, 6-5
setting, 6-5
Unknown, 6-5
User False, 6-5
User True, 6-5

LogicalException (Java class), 8-4
LogicalOverridableException (Java class), 8-4
LTRUE

usage, 6-5

M
messages

CIO exceptions, 8-7
presented by Configurator Extensions, 8-7

middle-tier properties
See Java system properties

MLS (Multiple Language Support)
custom messages for Configurator

Extensions, 1-3
need for setting current language, 1-3

modules
logging

See Java classes
multithreading

avoiding problems, 1-4
mutexed

See mutually exclusive rules

N
nested transactions, 7-1
nonoverridable requests, 9-1, 9-2

definition, 9-1, 9-2
effect of restoring, 9-3
effect of saving, 9-3
limitations, 9-3, 9-4

with components, 9-4
nonoverridable request mode, 9-3
prohibition on overriding, 9-4
specifying, 9-3
usage with transactions, 7-2

O
onCommand (event), 3-2, 3-3
onConfigValidate (event), 2-9, 8-2

recursion, 6-2
onValidateEligibleTarget (event), 3-4, 3-5
OptionFeature

Counted Options, 6-4
Oracle Configurator

log files, xvii, 1
TAR template, xvi

Oracle Configurator Developer
customizing, 1-4
defining Configurator Extension Rules, 1-2
disabling Configurator Extensions, 2-11
log files, xvii
product support, xvi
relationship to Configurator Extensions, 2-1

setup for testing Configurator Extensions, 1-5
oracle.apps.cz.cio, 4-3

package to import, 4-2
output

states, 5-8, 6-5
override()

usage, 8-4
overriding

exceptions, 8-4
nonoverridable requests, 9-4

P
parameters

Java methods, 2-2
See also Java methods

passwords
initialization parameter for, 5-9

performance
adding and deleting instantiable components, 6-3
effect of

restoring configurations, 5-7
effect of defaults when setting state, 6-7

postConfigNew (event), 6-2
postCXInit (event), 6-2
postInstanceAdd (event), 2-6, 2-7
postValueChange (event), 2-9, 2-10, 6-2
Product Support, xvi
product support for Oracle Configurator

Developer, xvi
profile options

setting to log through CIO, 11-2
pwd (initialization parameter), 5-9

R
Raise Command Event

UI action for command events, 3-3
Reason (Java class), 8-4
recursion

avoiding, 2-9
dangers for Configurator Extensions, 6-2

renaming
instantiable components, 6-3

requests
contradictions, 8-3
definition, 9-1
failed requests, 9-1
logic, 8-3
nonoverridable requests, 9-1, 9-2
user requests, 9-1

required components
definition, 6-2
renaming prohibited, 6-3
runtime instances, 1-3

restoreConfiguration()
usage, 9-3

restoring
configurations

definition, 5-6

Index-6

effects of model changes, 5-7
Instantiability changes, 5-7
performance, 5-7
validation failures, 5-7, 5-8

nonoverridable requests, 9-3
rollbackConfigTransaction()

usage, 7-1, 8-1, 8-4
runtime Oracle Configurator

extending behavior, 1
role in handling exceptions, 8-6

RuntimeException (Java class), 8-6

S
saveNew()

usage, 5-5
saving

nonoverridable requests, 9-3
select()

usage, 6-9, 6-10, 9-1
setActiveModelPath()

usage, 2-11
setCount()

usage, 9-1
setDecimalValue()

usage, 6-7, 6-8
setInformationalMessage()

usage, 8-7
setIntValue()

usage, 6-7
setState()

usage, 6-6, 8-3, 9-1
TOGGLE, 6-6

side-effecting
definition, 6-2

state
logic, 6-5

states
logic, 5-8, 6-5

getting, 6-5
input, 5-8, 6-5
inside transactions, 7-1
output, 6-5
setting, 6-5

StatusInfo (Java class), 8-2
Support, xvi

T
TAR, xvi
Technical Assistance Request (TAR), xvi
testing

for DHTML User Interface, 2-11
threads

safety, 1-4, 2-8, 5-10
TOGGLE

state, 6-5
usage, 6-5

toString()
usage, 8-4

tracking
alternate meanings, 10-2

transactions
beginning, 7-1
committing, 7-1
common errors, 2-8
ending, 7-1
logic

contrasted with database transactions, 7-1
defined, 7-1

nesting, 7-1
rolling back, 7-1
setting states and values inside, 7-1
usage with nonoverridable requests, 7-2

translate()
usage, 8-4

troubleshooting
analyzing errors, xvii, 1

TRUE
usage, 6-5

true state, 6-5

U
UFALSE

usage, 6-5
unchecked exceptions, 8-6

handling, 8-6
undo()

usage, 6-8
UNKNOWN

usage, 6-5
unset()

usage, 6-6
useNonOverridableRequests()

usage, 9-3
User Interface

testing for DHTML, 2-11
user requests

definition, 9-1
UTRUE

usage, 6-5

V
validateEligibleTarget()

usage, 3-4
validation

configurations, 8-1
failures

checked by CIO, 8-1
getting collection, 5-1
inspecting, 8-1
numeric values, 6-8
restoring configurations, 5-7, 5-8
returned by transactions, 7-1
returning list of, 8-3

W
Web deployment

Index-7

getting initialization parameters, 5-9

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	Product Support

	Part I Configurator Extensions
	1 Configurator Extension Basics
	1.1 What are Configurator Extensions?
	1.2 Prerequisite Skills for Developing Configurator Extensions
	1.3 Important Facts About Configurator Extensions
	1.4 Requirements and Restrictions for Configurator Extensions
	1.4.1 Requirements for Configurator Extensions
	1.4.2 Restrictions for Configurator Extensions

	1.5 Configurator Extensions and the CIO
	1.6 Installation Requirements for Configurator Extensions
	1.6.1 Installation Requirements for Developing Configurator Extensions
	1.6.2 Installation Requirements for Compiling Configurator Extensions
	1.6.3 Installation Requirements for Testing Configurator Extensions

	2 Building Configurator Extensions
	2.1 Overview of Building Configurator Extensions
	2.1.1 Implementing Behavior with Java Classes
	2.1.2 Incorporating Behavior into Configuration Models

	2.2 Developing Java Classes and Archives
	2.3 Example of Configurator Extension Development
	2.3.1 Example of Configurator Extension Coding
	2.3.2 Example of Configurator Extension Modeling

	2.4 Suggested Development Practices
	2.4.1 Observing Project Requirements
	2.4.2 Avoiding Common Errors
	2.4.3 Handling Exceptions Properly
	2.4.4 Avoiding Circularity and Recursion
	2.4.5 Taking Advantage of Argument Binding
	2.4.6 Sharing Class Instances
	2.4.7 Disabling Configurator Extensions
	2.4.8 Testing for a Null User Interface
	2.4.9 Using Logging to Examine Problems
	2.4.10 Checking for Deleted or Discontinued Nodes

	3 Uses for Configurator Extensions
	3.1 Types of Configuration Events
	3.2 Generating Custom Output
	3.3 Filtering for Connectivity
	3.3.1 Defining a Connection Filter Configurator Extension
	3.3.2 Behavior of Connection Filter Configurator Extensions
	3.3.3 Example of a Connection Filter Configurator Extension

	Part II The Configuration Interface Object (CIO)
	4 CIO Basics
	4.1 Background
	4.1.1 What is the CIO?
	4.1.2 The CIO and Configurator Extensions

	4.2 The CIO’s Runtime Node Interfaces
	4.3 Initializing the CIO

	5 Working with Configurations
	5.1 Overview
	5.2 Creating Configurations
	5.3 Removing Runtime Configurations
	5.4 Saving Configurations
	5.5 Monitoring Changes to Configurations
	5.5.1 How the CIO Monitors Changes to Configurations
	5.5.2 How You Can Monitor Changes to Configurations

	5.6 Restoring Configurations
	5.7 Restarting Configurations
	5.8 Automatic Behavior for Configurations
	5.9 Access to Configuration Parameters
	5.10 Sharing a Configuration Session

	6 Working with Model Entities
	6.1 Opportunities for Modifying the Configuration
	6.2 Accessing Components
	6.2.1 Adding and Deleting Instantiable Components
	6.2.2 Renaming Instances of Components

	6.3 Accessing Features
	6.4 Getting and Setting Logic States
	6.5 Getting and Setting Numeric Values
	6.5.1 Working with Decimal Quantities

	6.6 Accessing Properties
	6.7 Access to Options
	6.8 Introspection through IRuntimeNode

	7 Using Logic Transactions
	8 Contradictions, Exceptions, and Validation
	8.1 Validating Configurations
	8.2 Handling Logical Contradictions
	8.2.1 Generating Error Messages from Contradictions
	8.2.2 Overriding Contradictions

	8.3 Handling Exceptions
	8.3.1 Handling Types of Exceptions
	8.3.2 Raising Fatal Exceptions
	8.3.3 Presenting Messages for Exceptions
	8.3.4 Compatibility of Certain Deprecated Exceptions

	9 Using Requests
	9.1 About Requests
	9.2 Getting Information about Requests
	9.3 User Requests
	9.4 Nonoverridable Requests
	9.4.1 Usage Notes on Nonoverridable Requests
	9.4.2 Limitations on Nonoverridable Requests

	9.5 Failed Requests

	10 Configuration Session Change Tracking
	10.1 Overview
	10.2 How It Works
	10.2.1 Relationship of the Classes
	10.2.2 Role of the DeltaManager
	10.2.3 Role of DeltaRegions
	10.2.4 Role of DeltaValidators
	10.2.5 Role of the IValidatorChange Interface

	10.3 Starting a Session
	10.3.1 Creating a Configuration Object
	10.3.2 Associating a DeltaManager
	10.3.3 Specifying DeltaValidators
	10.3.4 Registering DeltaRegions

	10.4 Tracking Session Changes
	10.5 Updating a Region
	10.6 Handling Screen Changes
	10.7 Creating a Custom DeltaValidator
	10.8 Unified Code Example

	11 Logging Through the CIO
	11.1 Overview of Logging
	11.2 Enabling Logging Scope
	11.3 Creating Entries in the Log
	11.3.1 Testing Whether Logging Is Enabled
	11.3.2 Writing Log Entries

	11.4 Recommended Practices for Logging
	11.5 Example of Logging

	Part III Appendixes
	A Reference Documentation for the CIO
	B Code Examples
	B.1 Generating Output Related to Model Structure
	B.2 Using Requests
	B.2.1 Setting Nonoverridable Requests
	B.2.2 Getting a List of Failed Requests

	B.3 Sharing a Configuration Session in a Child Window
	B.4 Tracking Configuration Session Changes

	C Java Parameter Types for Configurator Extensions

	Glossary
	API
	applet
	Archive Path
	argument
	ATO
	ATP
	base node
	bill of material
	Bills of Material
	binding
	BOM
	BOM item
	BOM Model
	BOM Model node
	BOM Option Class node
	BOM Standard Item node
	Boolean Feature
	bug
	build
	CDL
	CIO
	command event
	Comparison Rule
	Compatibility Rule
	Compatibility Table
	component
	Component
	Component Set
	concurrent program
	configuration
	configuration attribute
	configuration engine
	Configuration Interface Object
	configuration model
	configuration rule
	configuration session
	configurator
	Configurator Extension
	Configurator Extension Archive
	connectivity
	Connector
	Constraint Definition Language
	Container Model
	Contributes to
	Consumes from
	count
	CTO
	customer
	customer requirements
	CZ
	CZ schema
	data import
	data source
	DBMS
	default
	Defaults relation
	defect
	Design Chart
	developer
	Developer
	DHTML
	discontinued item
	element
	end user
	enterprise
	environment
	ERP
	event
	Excludes relation
	feature
	Feature
	functional specification
	generated logic
	guided buying or selling
	host application
	HTML
	implementation
	implementer
	Implies relation
	import server
	import tables
	initialization message
	Instance
	instance
	instantiate
	integration
	integration testing
	item
	Item
	Item Master
	Item Type
	Java
	Java class
	JavaServer Pages
	JSP
	legacy data
	listener
	load
	log file
	Logic Rule
	maintainability
	maintenance
	Metalink
	method
	Model
	model
	model-driven UI
	model structure
	Negates relation
	node
	Numeric Rule
	object
	OC
	OCD
	option
	Option
	Oracle Configuration Interface Object (CIO)
	Oracle Configurator
	Oracle Configurator architecture
	Oracle Configurator Developer
	Oracle Configurator engine
	Oracle Configurator schema
	Oracle Configurator Servlet
	Oracle Configurator window
	performance
	Populator
	preselection
	product
	Property
	Property-based Compatibility Rule
	prototype
	PTO
	publication
	publishing
	RDBMS
	reference
	Reference
	Repository
	Requires relation
	resource
	Resource
	reusable component
	reusability
	rules
	runtime
	schema
	server
	servlet
	solution
	SQL
	Statement Rule
	system
	termination message
	Total
	UI
	UI Templates
	Unknown
	unit test
	update
	upgrade
	user
	User Interface
	user interface
	user requirements
	validation
	variable
	verification
	Web
	Workbench
	XML

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

