®
Oracle Applications
Developer’s Guide

RELEASE 11i

VOLUME 1
April 2001

ORACLE

Oracle Applications Developer’s Guide, RELEASE 11i VOLUME 1
The part number for this volume is A83705-03.

To reorder this book, please use the set part number, A75545-03.
Copyright © 1995, 2001 Oracle Corporation. All rights reserved.

Contributing Authors: Anne Carlson, Emily Nordhagen, Lisa Nordhagen, Dana Spradley,
Martin Taylor, Peter Wallack, Millie Wang, Sara Woodhull

Contributors: Ram Bhoopalam, Eric Bing, Steven Carter, Cliff Godwin, Mark Fisher, Michael
Konopik, Michael Mast, Tom Morrow, Robert Nix, Gursat Olgun, Susan Stratton, Leslie
Studdard, Venkata Vengala, Maxine Zasowski

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual property law. Reverse
engineering of the Programs is prohibited. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on behalf
of the U.S. Government, the following notice is applicable:

RESTRICTED RIGHTS LEGEND

Programs delivered subject to the DOD FAR Supplement are ‘commercial computer software’ and use,
duplication and disclosure of the Programs including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software’ and use, duplication and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software —
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe, back up,

redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark and Oracle7, Oracle8, Oracle Application Object Library, Oracle Applica-
tions, Oracle Alert, Oracle Financials, Oracle Workflow, SQL*Forms, SQL*Plus, SQL*Report, Oracle Data
Browser, Oracle Forms, Oracle General Ledger, Oracle Human Resources, Oracle Manufacturing, Oracle
Reports, PL/SQL, Pro*C and SmartClient are trademarks or registered trademarks of Oracle Corporation.

All other company or product names are mentioned for identification purposes only, and may be trademarks
of their respective owners.

Contents

Volume 1

Preface i
Audiencefor ThisGuidecccovia... i
Other InformationSources i
Do Not Use Database Tools to Modify Oracle
ApplicationsData i Vi
TypographicConventions vii
AboutOracle iX
Your Feedback iX

Chapter 1 Overview of Coding Standards 1-1

Overview of Coding Standards 1-2
Importance of these Standards 1-2
Coding Principles 1-2
CodingWithHandlers, 1-3
Libraries 1-4
Performance 1-5
Coding for Web Compatibility 1-6

The Standard Development Environment 1-7
Oracle Application Object Library for Release 11i 1-9
Setting Object Characteristics 1-9
Shared Objectso 1-10
Standard Libraries 1-11

Contents i

Chapter 2

Chapter 3

Chapter 4

Property Classesiiiiiiiiiii i 1-13

Visual Attributes 1-14
Overview of Building an Application 1-15
Overall Design Issuesto Consider 1-15
Overview of Application Development Steps 1-16
Overview of Form Development Steps 1-17
Setting Up Your Application Framework 2-1
Overview of Setting Up Your Application Framework 2-2
Definitions i 2-2
Set Up Your Application Directory Structures 2-3
Register Your Application, 2-3
Modify Your EnvironmentFiles 2-4
Set Up and Register Your Oracle Schema 2-4
Create Database Objects and Integrate with APPS Schema . 2-5
Add Your ApplicationtoaDataGroup 2-5
Set Up ConcurrentManagerscccovvnvn... 2-5
ApplicationsWIindow i 2-6
Prerequisites 2-7
ApplicationsBlock i 2-7
Building Your Database Objects 3-1
Overview of Building Your Database Objects 3-2
Using Cost-Based Optimization 3-2
Tracking Data Changes with Record History (WHO) 3-2
Oracle8i Declarative Constraints 3-5
LONG, LONG RAW and RAW Datatypes 3-7
Columns UsingaReservedWord 3-7
VWS ot 3-7
SEOUEBNCES . oottt 3-10
Table Registration APl 3-11
Using PL/SQL in Oracle Applications 4-1
Overview of Using PL/SQL in Applications 4-2
Definitions 4-3
General PL/SQL Coding Standards 4-3
Database Server Side versus ClientSide 4-6
Formatting PL/SQL Code, 4-7
ExceptionHandling 4-9

ii Oracle Applications Developer’s Guide

Chapter 5

Chapter 6

SQL Coding Guidelines 4-11

TriggersinForms e 4-11
RESOUICES ... 4-12
Replacements for Oracle Forms Built-=ins 4-14
Coding Item, Eventand Table Handlers 4-17
CodingltemHandlers, 4-17
CodingEventHandlers, 4-19
Coding TableHandlers o, 4-20
Example Client-Side Table Handler 4-21
Example Server-Side Table Handler 4-24
Setting the Properties of Container Objects 5-1
Modules 5-2
WINAOWS ..o 5-3
Non-Modal Windows, 5-3
Modal Windows i 5-5
CaNVASES ...t 5-8
Content CanVaseScovititiii e 5-8
Stacked Canvasesi i 5-8
BIOCKS .. oo 5-10
ContextBIlocKkS 5-11
DialogBlocks i 5-11
Data Blocks WithNoBase Table 5-13
Single-Record Data Blocks 5-13
Multi-Record Blocks 5-14
CombinationBlocks i, 5-16
Master-Detail Relations 5-16
Dynamic WHERE Clauses, 5-17
REgIONS . .. 5-19
Tabbed Regions i 5-19
Alternative Regions (Obsolete for Release 11i) 5-19
Overflow Regions i 5-19
Setting the Properties of Widget Objects 6-1
TeXtItemS ... 6-2
DateFields i 6-3
Display HEMS i 6-4
POPLISES . oo 6-6
OPtioN GrOUPS .ottt e e 6-8

Contents

Chapter 7

CheCK BOXES . . .ottt e 6-9

BULIONS ... o 6-10
Lists of Values (LOVS)t e 6-12
LOVBehavIiors 6-14
LOVsIin ENTER-QUERY Mode 6-15
AlBrtS 6-17
Editors ... 6-18
Flexfields 6-19
Setting Item Propertiest 6-20
Using APP_ITEM_PROPERTY.SET_PROPERTY 6-20
Item Properties with Unique Oracle Applications Behavior 6 -21
Impact of Item-level and Item-instance—level Settings 6-25
Setting Propertiesat Design Time 6—26
Setting Visual Attributes Programatically 6-26
Controlling Window, Block and Region Behavior 7-1
Controlling Window Behavior 7-2
Positioning Windows Upon Opening 7-2
ClosingWindowsci i 7-3
Setting Window Titles Dynamically 7-5
Controlling Block Behavior 7-6
Coding Master-Detail Relations 7-6
Implementing a CombinationBlock 7-8
Coding Tabbed Regions 7-12
Definitions 7-12
Tabbed RegionBehavior............................... 7-13
Three Degrees of Coding Difficulty 7-14
Implementing Tabbed Regions 7-15
TabHandlerLogico i 7-18
WHEN-TAB-PAGE-CHANGED Logic 7-18
WHEN-NEW-ITEM-INSTANCE Logic 7-22
Handling DynamicTabs oo, 7-23
Other Code YouMay Needo, 7-25
Coding Alternative Region Behavior 7-27
Alternative Regions i 7-27
Example: Coding an Alternative Region 7-27
Controlling RecordsinaWindow 7-31
DuplicatingRecords ..., 7-31
Renumbering All RecordsinaWindow 7-32
Passing InstructionstoaForm 7-34

iv. Oracle Applications Developer’s Guide

Chapter 8

Chapter 9

Chapter 10

Enabling Query Behavior, 8-1
Overviewof QueryFind i, 8-2
Raising Query FindonForm Startup 8-2
Implementing Row—-LOV i 8-3
Implementing Find Windows 8-4
Coding Item Behavior i, 9-1
ItemRelations 9-2
Dependent Items oo 9-3
Conditionally Dependentitem 9-5
Multiple Dependentitems, 9-6
Two Master Items and One Dependent Item 9-7
Cascading Dependencecoiiiiiiininnann.. 9-8
Mutually Exclusive ltems 9-10
Mutually Inclusive ltems 9-12
Mutually Inclusive Items with Dependent Items 9-13
Conditionally Mandatory Items 9-15
Defaults 9-18
Integrity Checking i 9-19
UniquenessCheck i, 9-19
Referential Integrity Check 9-20
TheCalendar i 9-23
Advanced Calendar Optionscou... 9-24
CalendarExamples i 9-26
CALENDAR: Calendar Package 9-28
CALENDARSHOW 9-28
CALENDAR.SSETUP 9-28
CALENDAR.EVENT e 9-28
Controlling the Toolbar and the Default Menu 10-1
Pulldown Menus and the Toolbar 10-2
Menu and Toolbar Entries 10-2
Saveand Proceed 10-8
Synchronizing 10-38
Application-Specific Entries: Special Menus 10-8
Customizing Right-Mouse Menus (Popup Menus) 10-10
APP_POPUP: Right-Mouse Menu Control 10-13
APP_POPUPINSTANTIATE i 10-13
APP_SPECIAL: Menu and Toolbar Control 10-15
APP_SPECIAL.INSTANTIATE ...t 10-15

Contents v

Chapter 11

Chapter 12

APP_SPECIAL.EENABLE i 10-17

APP_SPECIAL.GET_CHECKBOXccovvivnnn.. 10-18
APP_SPECIAL.SET_CHECKBOXccvvvun... 10-19
Menus and Function Security 11-1
Overview of Menus and Function Security 11-2
Using Form Functions i, 11-6
Function Security Standards oL, 11-9
General Function and Menu Standards 11-9
Form Function Standards oo, 11-10
SubfunctionStandards oL 11-1
Function Security Reports 11-14
Function Security APIs for PL/SQL Procedures 11-15
FND_FUNCTION.TESTt 11-15
FND_FUNCTION.QUERY 11-15
FND_FUNCTION.EXECUTE ... 11-16
FND_FUNCTION.USER_FUNCTION_NAME 11-19
FND_FUNCTION.CURRENT_FORM_FUNCTION 11-20
Forms WIindow 11-21
Prerequisitest 11-21
FormsBlock 11-21
Form FunctionsWindow 11-23
Form FunctionsBlock 11-24
Menus WINAOW o 11-28
MenusBIOCK 11-29
Menu EntriesBlock 11-30
Message Dictionaryo i 12-1
Overview of Message Dictionarycoovvon. 12-2
Major Features 12-2
Definitions i 12-3
Implementing Message Dictionary 12-5
Create Your Message Directories 12-5
Define YOUr MeSsageso 12-5
Create Your Message Files 12-6
Code Logicto SetUpMessagescovvuvvunennnnn 12-7
Code Logic to Display Messagesc.ooou... 12-8
Message Dictionary APIs for PL/SQL Procedures 12-11
FND_MESSAGE.CLEAR i 12-11
FND_MESSAGE.DEBUGccciiiiiiiiiina 12-11

vi Oracle Applications Developer’s Guide

Chapter 13

FND_MESSAGE.ERASE it 12-12

FND_MESSAGE.ERRORt 12-12
FND_MESSAGE.GETo 12-13
FND_MESSAGE.HINT ...t 12-14
FND_MESSAGE.QUESTION 12-14
FND_MESSAGE.RETRIEVE, 12 -17
FND_MESSAGE.SET_NAME 12-17
FND_MESSAGE.SET STRINGcovviiin... 12-19
FND_MESSAGE.SET _TOKEN 12-19
FND_MESSAGE.SHOW i 12-22
FND_MESSAGEWARN e 12-22
Application Message Standards 12-24
Definitions i 12-24
Message Naming Standards 12-26
Message Numbering Standards 12 -27
Message Type Standards 12-29
Message Description Standards 12-31
Message Content Standards, 12-33
Message Token Standards 12-33
A Few General Guidelines for Writing Good Messages 12 -36
When the User NeedstoGetHelp 12-37
Complex MESSages . ..o vvvei i 12 -39
Specific Types of Message Content 12 -40
Message WritingStyle 12-42
Special Purpose Messagesoviiiiiiiiiinan 12-52
Messages WINdow 12-55
Prerequisites 12 -56
MessagesBlock 12 - 56
User Profiles 13-1
Overview of User Profiles 13-2
Definitions 13-2
Defining New User Profile Options 13-3
Setting User Profile Option Values 13-4
Setting Your Personal User Profile 13-4
Implementing User Profiles, 13-5
Predefined User Profile Options 13-5
FND_PROFILE: User Profile APIS 13-9
FND_PROFILEPUT e 13-9
FND_PROFILE.GET ..ot 13-10
FND_PROFILEVALUE, 13-11

Contents vii

Chapter 14

User Profile CFunctions 13-12

afpoget ... 13-12
afpopul ... 13-12
ProfilesWindow i 13-14
Prerequisites 13-14
ProfilesBlock i 13-15
Flexfields o 14-1
Overview of Flexfields it 14-2
Definitions 14-5
Building a Flexfield into Your Application 14-8
Flexfields and Application Upgrades 14-10
Implementing Key Flexfields 14-11
Defining Key Flexfield Database Columns 14-15
Registering Your Key Flexfield Table 14-18
Registering Your Key Flexfield 14 -18
Add Your Flexfield to Your Forms 14-19
Implementing Descriptive Flexfields 14-20
Planning for Reference Fields 14-20
Defining Descriptive Flexfield Database Columns 14-21
Adding a Descriptive Flexfield to a Table with Existing
Data ... 14 - 22
Protected Descriptive Flexfields 14 -23
Registering Your Descriptive Flexfield Table 14-24
Registering Your Descriptive Flexfield 14-24
Add Your Flexfield to Your Forms 14-24
Adding Flexfieldsto YourForms 14 -25
Create Your Hidden Fields 14-25
Create Your Displayed Fields 14 - 27
Create Your Flexfield Definition 14 - 27
Invoke Your Flexfield Definition from Several Event
LI L T 1= £ 14 - 28
Flexfield Definition Procedures 14 -30
Key Flexfield Definition Syntax 14 -30
Range (Type) Flexfield Definition Syntax 14 - 33
Descriptive Flexfield Definition Syntax 14 -35
Flexfield Definition Arguments 14 - 36
Flexfield DefinitionExamples 14 -55
Updating Flexfield Definitions 14 -59
Update Key Flexfield Definition Syntax 14 -60
Update Range (Type) Flexfield Definition Syntax 14 - 62

viii Oracle Applications Developer’s Guide

Update Descriptive Flexfield Definition Syntax 14 -64

Updating Flexfield Definition Example 14 -65
Using Key Flexfields in Find Windows 14 -65
Using Range Flexfields in Query Find Windows 14 - 67
Troubleshooting Flexfields 14 -69
Register Key Flexfields i .. 14-71
Register Key FlexfieldsBlock 14-72
QualifiersWindow i 14-74
ColumnsWindow i 14 -76
Register Descriptive Flexfields 14-78
Register Descriptive FlexfieldsBlock 14-78
Reference FieldsWindow 14-81
ColumnsWindow i 14 - 83
Index

Contents iX

Chapter 15

Chapter 16

Chapter 17

Volume 2

Overview of Concurrent Processing 15-1
Overview of Concurrent Processingc.oovvv... 15-2
Basic Application Development Needs 15-2
Major Featurest e e 15-2
Definitions 15-4
Overview of Designing Concurrent Programs 15-8
Submitting Concurrent Programs onthe Client 15-15
Using Concurrent Processingcvviievnn... 15-16
Automated Recovery for Concurrent Processing 15-17
Overview of Implementing Concurrent Processing 15-21
Choosing Your Implementation 15-21
Defining Concurrent Programsccovvvnann.. 16-1
Defining Concurrent Programsc.oiiinnaan.. 16-2
Concurrent Program Executable Window 16-6
Concurrent Program Executable Block 16-6
Stage Function Parameters Window 16-9
Concurrent Programs Window 16-11
Concurrent ProgramsBlock 16-12
CopytoWIndow ...t e 16-18
Session Control Window, 16-18
Incompatible Programs Window 16 -20
Concurrent Program Libraries Window 16 - 27
Prerequisiteso 16 - 28
Concurrent Program LibrariesBlock 16 - 28
Concurrent ProgramsBlock, 16 -29
Rebuild Library 16 -29
Coding Oracle Tools Concurrent Programs 17-1
Oracle Tool Concurrent Programs c.ooovieen.... 17-2
SQL*PLUS Programsoviiiiiinnnnnn... 17-2
PL/SQL Stored Procedurescoiiiininn. 17-3
SQL*Loaderc i 17-4
Accepting Input Parameters For Oracle Tool Programs 17-5
Naming Your Oracle Tool Concurrent Program 17-5

x Oracle Applications Developer’s Guide

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Coding Oracle Reports Concurrent Programs 18-1
Oracle REPOItS . ..o 18-2
Concurrent Processing with Oracle Reports 18-2
Oracle Reports Parameters iiiinn... 18-4
Accessing User Exits and Profile Options 18-5
User Exits Used in Oracle Reports 18-8
FND SRWINITZFND SRWEXIT ... 18-8
FND FLEXIDVAL / FND FLEXSQL 18-8
Using Dynamic Currency in Oracle Reports 18-9
FND FORMAT_CURRENCY UserExit 18-10
Example Report Using FND FORMAT_CURRENCY 18-15
Sample Report OQutput i 18-15
Procedure 18-17
Oracle Reports Troubleshooting 18-20
Frequently Asked Questions 18-22
Coding C or Pro*C Concurrent Programs 19-1
Coding C and Pro*C Concurrent Programs 19-2
Pro*C Concurrent Programscoovvnoe... 19-2
Header Files Used With Concurrent Programs 19-9
Concurrent Processing Pro*C Utility Routines 19-10
afpend() 19-10
fApfrs() ... 19-11
FAPSCP() - - v v 19-13
fAPSCr() . o 19-14
FAPWIE() . oo 19-16

Coding Concurrent Programs using Java Stored Procedures .. 20 -1
Coding Concurrent Programs Using Java Stored Procedures ... 20 -2
How to Write a Concurrent Program using a Java Stored

Procedure 20-2
Example ... 20-2
PL/SQL APIs for Concurrent Processing 21-1
FND_CONC GLOBALPackagecccciviviinn... 21-2
FND_CONC_GLOBAL.REQUEST DATA 21-2
FND_CONC_GLOBAL.SET REQ GLOBALS 21-2
Example ... 21-2
FND_CONCURRENTPackageccovviiiinann.. 21-5

Contents

Xi

FND_CONCURRENTAF_COMMIT 21-5

FND_CONCURRENT.AF_ROLLBACK 21-5
FND_CONCURRENT.GET_REQUEST_STATUS (Client
OF SBIVEL) ittt e 21-5
FND_CONCURRENT.WAIT_FOR_REQUEST (Client
OF SV o e 21-8
FND_CONCURRENT.SET_COMPLETION_STATUS
(SEBIVEN) o 21-9
FND_FILE: PL/ZSQLFile I/O ... i 21-11
FND_FILEPUT ... e 21-11
FND_FILE.PUT_LINE ... e 21-11
FND_FILEINEW_LINE 21-12
FND_FILE.PUT_NAMES e 21-13
FND _FILE.CLOSE e 21-13
ErrorHandling i 21-14
FND_PROGRAM: Concurrent Program Loaders 21-15
FND_PROGRAM.MESSAGEot 21-15
FND_PROGRAM.EXECUTABLE 21-15
FND_PROGRAM.DELETE_EXECUTABLE 21-16
FND_PROGRAM.REGISTER, 21-17
FND_PROGRAM.DELETE_PROGRAM 21-19
FND_PROGRAM.PARAMETER 21-20
FND_PROGRAM.DELETE_PARAMETER 21-21
FND_PROGRAM.INCOMPATIBILITY 21-22
FND_PROGRAM.DELETE_INCOMPATIBILITY 21-22
FND_PROGRAM.REQUEST GROUP 21-23
FND_PROGRAM.DELETE_GROUP 21-23
FND_PROGRAM.ADD_TO GROUP 21-24
FND_PROGRAM.REMOVE_FROM_GROUP 21-24
FND_PROGRAM.PROGRAM EXISTS 21-25
FND_PROGRAM.PARAMETER_EXISTS 21-25
FND_PROGRAM.INCOMPATIBILITY_EXISTS 21-26
FND_PROGRAM.EXECUTABLE_EXISTS 21-26
FND_PROGRAM.REQUEST _GROUP_EXISTS 21-27
FND_PROGRAM.PROGRAM_IN_GROUP 21-27
FND_PROGRAM.ENABLE PROGRAM 21 -27
FND_REQUESTPackagecouiiiiiiiiinainn... 21-29
FND_REQUEST.SET_OPTIONS (Client or Server) 21-29

FND_REQUEST.SET_REPEAT_OPTIONS (Client or Server)
21-30

FND_REQUEST.SET_PRINT_OPTIONS (Client or Server) . 21-31
FND_REQUEST.SUBMIT_REQUEST (Client or Server) 21-32

xii - Oracle Applications Developer’s Guide

Chapter 22

FND_REQUEST.SET_MODE (Server) 21-33

Example Request Submissions 21-34
FND_REQUEST_INFO and Multiple Language Support (MLS) 21 -38
FND_REQUEST_INFO.GET_PARAM_NUMBER 21-38
FND_REQUEST_INFO.GET PARAM_INFO 21-39
FND_REQUEST_INFO.GET_PROGRAM 21-39
FND_REQUEST_INFO.GET_PARAMETER 21-39
Example MLS Function 21-40
FND_SET: Request SetLoaderscccivvvnenn.. 21-42
FND_SET.MESSAGE 21-42
FND_SET.CREATE SET ...t 21-42
FND_SET.DELETE SET ...t 21-43
FND_SET.ADD_PROGRAM, 21-44
FND_SET.REMOVE_PROGRAM 21 -145
FND_SET.PROGRAM_PARAMETER 21-45
FND_SET.DELETE_PROGRAM_PARAMETER 21 -46
FND_SET.ADD_STAGEo 21-47
FND_SET.REMOVE_STAGE 21-148
FND_SET.LINK STAGES, 21-49
FND_SET.INCOMPATIBILITY 21-49
FND_SET.DELETE_INCOMPATIBILITY 21-51
FND_SET.ADD_SET_TO _GROUP 21-52
FND_SET.REMOVE_SET FROM GROUP 21-52
FND_SUBMIT: Request Set Submission 21-53
FND_SUBMIT.SET_MODE ..., 21-53
FND_SUBMIT.SET_REL_CLASS OPTIONS 21-53
FND_SUBMIT.SET_REPEAT OPTIONS 21-54
FND_SUBMIT_SET.REQUEST SET 21-55
FND_SUBMIT.SET_PRINT_OPTIONS 21-55
FND_SUBMIT.ADD PRINTER.................ciun. 21-56
FND_SUBMIT.ADD_NOTIFICATION 21-56
FND_SUBMIT.SET_NLS OPTIONS 21-57
FND_SUBMIT.SUBMIT_PROGRAM 21-57
FND_SUBMIT.SUBMIT_SET ...ttt 21-58
Examples of Request Set Submission 21 -58
Standard Request Submission 22-1
Overview of Standard Request Submission 22-2
Basic Application Development Needs 22-2
Major Features 22 -3
Definitions 22-5

Contents

Xiii

Chapter 23

Chapter 24

Chapter 25

Controlling Access to Your Reports and Programs 22-6

Implementing Standard Request Submission 22-8
Developing Reports for Standard Request Submission 22 -8
Defining Parameter Validation 22-9
Defining Your Report or Other Program 22-11
Cross—application Reportingt 22-12

Request Sets 23-1

Overview of Request Sets ..., 23-2
Sets, Stages,and Requests i, 23-2
Stage FUNCLIONSo 23-6
Request Set Completion Status 23-7

The TEMPLATEFOrM e 24-1

Overview of the TEMPLATEForm 24-2

Librariesinthe TEMPLATEForm con... 24-3

Special Triggers in the TEMPLATEform 24-6
Triggers That Often Require Some Modification 24-7
Triggers That Cannot Be Modified 24-11

Attachments 25-1

Overview of Attachments 25-2
Definitions i 25-2
How AttachmentsWork 25-4
Attachments for Forms or Form Functions 25-6

Planning and Defining the Attachments Feature 25-7
Planning to Add the Attachments Feature to Your
Application 25-7
Setting Up the Attachments Feature for Your Form 25-10

Document EntitiesWindow 25-11
Document EntitiesBlock, 25-11

Document CategoriesWindow 25-13
Document CategoriesBlock 25-13
Category Assignments Window 25-14

Attachment FunctionsWindow 25-16
Attachment Functions Block 25-16
CategoriesWINAOWt 25-17
Block Declaration Window 25-18
Entity DeclarationWindow 25-20

xiv Oracle Applications Developer’s Guide

Chapter 26

Chapter 27

HandlingDates i 26-1
Year 2000 Compliance in Oracle Applications 26 -2
RR Date SUPPOIt 26 -3
PathstoCompliance i, 26 -4
Dates in Oracle Applications 26-4
Date Coding Standards i, 26-9
Using Dates While Developing Application Forms 26-9
Using Dates With Compliant Versions of OAS 26-13
Conversion To Date Compliance 26 - 15
Verify Compliance 26 -15
Character Mode and External Programs Code Review 26 - 16
Date-Enhanced Forms Code Review 26 -17
Non-Date-Enhanced Forms Code Review 26 -17
TeStiNg ..o 26-18
Troubleshooting i 26 - 20
Use the DATECHECK Script to Identify Issues 26 — 20
Problems Observed During Testing 26-21
Date Checklist 26-21
Customization Standards 27-1
Overview of Customizing Oracle Applications 27-2
Basic BusinessNeedsciiiiiiiiiiin... 27-2
Definitions i 27-3
DeterminingYour Needs oo, 27-5
Customization By Extension, 27-6
Defining Your Custom Application 27 -7
AddingaForm 27-8
Adding a Report or Concurrent Program 27-9
Adding a New Report Submission Form 27-10
AddingOnlineHelp i 27-10
AddingMenus ... 27-10
Adding Responsibilities o oL 27-11
Adding Message Dictionary Messages 27-11
Customization By Modification 27-12
Modifying an ExistingForm 27-14
Modifying an ExistingReport 27-16
Modifying an Existing C Program 27-18
Modifying an Existing PL/SQL Stored Procedure 27-18
Modifying ExistingOnlineHelp 27-19
Modifying Existing Message Dictionary Messages 27-19

Contents XV

Chapter 28

Modifying Existing Menus and Responsibilities
Oracle Applications Database Customization
Oracle Applications Upgrades and Patches
Building Online Help for Custom Applications

How the Help SystemWorks

Prepare Your Forms i,

Create HTML HelpFiles

Create a Help Navigation Tree

Upgradesand Patches
Integrating Custom Objects and Schemas
Upgrading Custom Formsto Release 11i

Converting Your Formto Oracle Forms6i

Upgrading Your Forms to Release 11i Standards

Performing Required Manual Changes on Your Forms

Performing Optional Manual Changes on Your Forms
The Upgrade Utility and Standards Compliance Checker:
N0 . ..

PreparingtoRunflinté0

Running the flint60 Utility

Reviewing flint60 Log File Output

Changes to Internal Menu Names from Release 11 to
Release 110o

Using the CUSTOM Library o it
Customizing Oracle Applications with the CUSTOM Library ..
Writing Code for the CUSTOM Library
Events Passed to the CUSTOM Library
When to Use the CUSTOM Library
CodiNg Zo0OM ... o
Coding GenericFormEvents
Coding Product-SpecificEvents
Adding Custom Entries to the Special Menu
SupportandUpgrading ...t
Product-Specific Events in Oracle Application Object Library . .
WHEN-LOGON-CHANGEDEvent
WHEN-RESPONSIBILITY-CHANGEDEvent
CUSTOM PaCKagevviiiii it e e
CUSTOM.ZOOM_AVAILABLE
CUSTOM.STYLE ... e
CUSTOM.EVENT e
Example of Implementing Zoom Using the CUSTOM Library ..

xvi Oracle Applications Developer’s Guide

Chapter 29

Modifythe Form 28 -23

Modify the CUSTOM Library 28-24
APPCORERouUtine APIS 29-1
APP_COMBO: Combination Block APl 29-3

APP_COMBO.KEY PREV ITEMcccovin... 29-3
APP_DATE and FND_DATE: Date Conversion APIs 29-4

Listof Date Terms e 29-4

APP_DATE.CANONICAL_TO_DATE and

FND_DATE.CANONICAL_TO DATE 29-5

APP_DATE.DISPLAYDATE_TO_DATE and

FND_DATE.DISPLAYDATE_TO DATE 29-6

APP_DATE.DISPLAYDT _TO_DATE and

FND_DATE.DISPLAYDT TO DATEc.... 29-7

APP_DATE.DATE_TO_CANONICAL and

FND_DATE.DATE_TO_CANONICAL 29-7

APP_DATE.DATE_TO_DISPLAYDATE and

FND_DATE.DATE_TO_DISPLAYDATE 29-8

APP_DATE.DATE_TO_DISPLAYDT and

FND_DATE.DATE_TO_DISPLAYDT ..., 29-8

APP_DATE.DATE_TO_FIELDoo.... 29-9

APP_DATE.FIELD_TO _DATE ..., 29-10

APP_DATE.VALIDATE_CHARDATE 29-11

APP_DATE.VALIDATE_CHARDT 29-12

FND_DATE.STRING_TO DATEcc.ovvn... 29-12

FND_DATE.STRING_TO_CANONICAL 29-13
APP_EXCEPTION: Exception Processing APIS 29-15

APP_EXCEPTION.RAISE_EXCEPTION 29-15

APP_EXCEPTION.RETRIEVEt 29-15

APP_EXCEPTION.GET_TYPEcoi .. 29-15

APP_EXCEPTION.GET_CODE 29-16

APP_EXCEPTION.GET_TEXTccviiiiiiiin.. 29-16

APP_EXCEPTION.RECORD_LOCK_EXCEPTION 29-16

APP_EXCEPTION.RECORD LOCK_ERROR 29-16

APP_EXCEPTION.DISABLEDccoovu... 29-17
APP_FIELD: Item Relationship Utilities 29-18

APP_FIELD.CLEAR_FIELDSot 29-18

APP_FIELD.CLEAR_DEPENDENT_FIELDS 29-18

APP_FIELD.SET_DEPENDENT_FIELD 29-19

APP_FIELD.SET_EXCLUSIVE_FIELD 29-20

APP_FIELD.SET_INCLUSIVE FIELD 29-21

APP_FIELD.SET_REQUIRED FIELD 29-22

Contents

XVii

Chapter 30

APP_FIND: Query-Find Utilities 29 -23

APP_FIND.NEW 29-23
APP_FIND.CLEAR e 29-23
APP_FIND.CLEAR_DETAILt 29-23
APP_FIND.FIND e 29-24
APP_FIND.QUERY_RANGE 29-24
APP_FIND.QUERY_FIND it 29-24
APP_ITEM: Individual Item Utilities 29-26
APP_ITEM.COPY_DATE e 29-26
APP_ITEM.S VALID e 29-26
APP_ITEMSIZE_WIDGET ...t 29-27
APP_ITEM_PROPERTY: Property Utilities 29-28
APP_ITEM_PROPERTY.GET_PROPERTY 29-28
APP_ITEM_PROPERTY.SET_PROPERTY 29-28
APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE 29-29
APP_NAVIGATE: OpenaForm Function 29-30
APP_NAVIGATE.EXECUTEt 29-30
APP_RECORD: Record Utilities, 29-33
APP_RECORD.TOUCH_RECORD 29-33
APP_RECORD.HIGHLIGHT 29-33
APP_RECORD.FOR_ALL_RECORDS 29-34
APP_RECORD.DELETE_ROW ...t 29-34
APP_RECORD.VALIDATE_RANGE 29-35
APP_REGION: Region Utilities 29-37
APP_REGION.ALT_REGION ...t 29-37
APP_STANDARDPackageccoiiiiiiiiiian,. 29 - 38
APP_STANDARD.APP_VALIDATE 29-38
APP_STANDARD.EVENT it 29-38
APP_STANDARD.SYNCHRONIZE 29-39
APP_STANDARD.PLATFORMccivinn.. 29-39
APP_WINDOW: Window Utilities 29 -40
APP_WINDOW.CLOSE_FIRST_WINDOW 29-40
APP_WINDOWPROGRESSciiiiiinn.. 29-40
APP_WINDOW.SET_COORDINATION 29-40
APP_WINDOW.SET_WINDOW_POSITION 29-41
APP_WINDOW.SET _TITLE oot 29-42
FNDSQF Routine APIS e 30-1
FND_CURRENCY: Dynamic Currency APIS 30-2
FND_CURRENCY.GET_FORMAT_MASK (Client or
S V) ot 30-2

xviii - Oracle Applications Developer’s Guide

Chapter 31

Currency Examples i 30-3

FND_DATE: Date Conversion APIs 30-4
FND_GLOBAL: WHO Column Maintenance and Database
Initialization 30-5
FND_GLOBAL.USER_ID (Server)ccoovviun... 30-5
FND_GLOBAL.APPS_INITIALIZE (Server) 30-5
FND_GLOBAL.LOGIN_ID (Server)c.covvvun... 30-7
FND_GLOBAL.CONC_LOGIN_ID (Server) 30-7
FND_GLOBAL.PROG_APPL_ID (Server) 30-7
FND_GLOBAL.CONC_PROGRAM_ID (Server) 30-8
FND_GLOBAL.CONC_REQUEST_ID (Server) 30-8
FND_ORG: Organization APISt 30-9
FND_ORG.CHANGE LOCAL ORG 30-9
FND_ORG.CHANGE_GLOBAL_ORG 30-9
FND_ORG.CHOOSE ORGciiiiiiiinaannnnnn 30-9
FND_STANDARD: Standard APIs 30-10
FND_STANDARD.FORM_INFO 30-10
FND_STANDARD.SET WHOco.... 30-10
FND_STANDARD.SYSTEM_DATE 30-11
FND_STANDARD.USER, 30-11
FND_UTILITIES: Utility Routines 30-12
FND_UTILITIES.OPEN_URL 30-12
FND_UTILITIES.PARAM _EXISTS, 30-12
Naming Standards i, 31-1
Naming Standards and Definitions 31-2
Database Objectsco i, 31-2
FOormObjects 31-5
FileStandards i 31-9
PL/SQL Packages, Procedures and Source Files 31-10
Reserved WOrds 31-11
Glossary
Index

Contents XiX

xx Oracle Applications Developer’s Guide

Preface

T his manual contains the coding standards followed by the Oracle
Applications development staff. It describes the code needed to
implement the Oracle Applications user interface described in the
Oracle Applications User Interface Standards for Forms—Based Products. It
also provides information necessary to help you integrate your Oracle
Forms Developer 6i forms with Oracle Applications. This preface
includes the following topics:

¢ Audience for this Guide

Other Information Sources

Do Not Use Database Tools to Modify Oracle Applications Data

Typographic Conventions
Your Feedback

Preface i

Audience for This Guide

This guide is written for the application developer and assumes
assumes you have a working knowledge of the following:

e Oracle Forms Developer 6i

If you have never used Oracle Forms Developer, we suggest you
attend one or more of the relevant training classes available
through Oracle University.

e PL/SQL 8 and Oracle8i

If you have never used Oracle8i or PL/SQL, we suggest you
attend one or more of the relevant training classes available
through Oracle University.

e The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user
interface, read the Oracle Applications User Guide.

See Other Information Sources for more information about Oracle
Applications product information.

Other Information Sources

Online Documentation

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle Application Object Library.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides unless we specify
otherwise.

Most Oracle Applications documentation is available online (HTML
and/or PDF). The technical reference guides are available in paper
format only. Note that the HTML documentation is translated into
over twenty languages.

The HTML version of this guide is optimized for onscreen reading, and
you can use it to follow hypertext links for easy access to other HTML
guides in the library. When you have an HTML window open, you can
use the features on the left side of the window to navigate freely
throughout all Oracle Applications documentation.

ii Oracle Applications Developer’s Guide

Related User Guides

e You can use the Search feature to search by words or phrases.

e You can use the expandable menu to search for topics in the
menu structure we provide. The Library option on the menu
expands to show all Oracle Applications HTML documentation.

You can view HTML help in the following ways:

e From an application window, use the help icon or the help menu
to open a new Web browser and display help about that window.

e Use the documentation CD.
e Use a URL provided by your system administrator.

Your HTML help may contain information that was not available when
this guide was printed.

You can read Oracle Applications products user guides online by
choosing Library from the expandable menu on your HTML help
window, by reading from the Oracle Applications Document Library
CD included in your media pack, or by using a Web browser with a
URL that your system administrator provides.

If you require printed guides, you can purchase them from the Oracle
store at http://oraclestore.oracle.com.

User Guides Related to All Products

Oracle Applications User Guide

This guide explains how to navigate the system, enter data, and query
information, and introduces other basic features of the GUI available
with this release of Oracle Application Object Library (and any other
Oracle Applications product).

You can also access this user guide online by choosing “Getting Started
and Using Oracle Applications” from the Oracle Applications help
system.

Oracle Alert User Guide

Use this guide to define periodic and event alerts that monitor the
status of your Oracle Applications data.

Preface iii

Oracle Applications Implementation Wizard User Guide

If you are implementing more than one Oracle product, you can use the
Oracle Applications Implementation Wizard to coordinate your setup
activities. This guide describes how to use the wizard.

Oracle Applications User Interface Standards

This guide, Oracle Applications User Interface Standards for Forms—Based
Products, contains the user interface (Ul) standards followed by the
Oracle Applications development staff. It describes the Ul for the
Oracle Applications products and how to apply this Ul to the design of
an application built by using Oracle Forms.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference
information for the Oracle Applications implementation team, as well
as for users responsible for the ongoing maintenance of Oracle
Applications product data. This guide also provides information on
creating custom reports on flexfields data.

Installation and System Administration Guides

iv

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i. It provides a useful first book to read before an installation
of Oracle Applications. This guide also introduces the concepts behind,
and major issues, for Applications—wide features such as Business
Intelligence (BIS), languages and character sets, and self-service
applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process
is handled using Oracle One-Hour Install, which minimizes the time it
takes to install Oracle Applications and the Oracle 8i Server technology
stack by automating many of the required steps. This guide contains
instructions for using Oracle One-Hour Install and lists the tasks you
need to perform to finish your installation. You should use this guide
in conjunction with individual product user guides and
implementation guides.

Oracle Applications Developer’s Guide

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i. This guide
describes the upgrade process in general and lists database upgrade
and product-specific upgrade tasks. You must be at either Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0 to upgrade to
Release 11i. You cannot upgrade to Release 11i directly from releases
prior to 10.7.

Using the AD Utilities

Use this guide to help you run the various AD utilities, such as
Autolnstall, AutoPatch, AD Administration, AD Controller, Relink,
and others. It contains how-to steps, screenshots, and other
information that you need to run the AD utilities.

Oracle Applications Product Update Notes

Use this guide as a reference if you are responsible for upgrading an
installation of Oracle Applications. It provides a history of the changes
to individual Oracle Applications products between Release 11.0 and
Release 11i. It includes new features and enhancements and changes
made to database objects, profile options, and seed data for this
interval.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
processing.

Oracle Applications Technical Reference Guides

These reference guides contain database diagrams and a detailed
description of database tables, forms, reports, and programs for Oracle
Applications products. This information helps you convert data from
your existing applications, integrate Oracle Applications products with
non-Oracle applications, and write custom reports for Oracle
Applications products.

You can order a technical reference guide for any product you have
licensed. Technical reference guides are available in paper format only.

Preface v

Oracle Workflow Guide

This guide explains how to define new workflow business processes as
well as customize existing Oracle Applications—embedded workflow
processes. You also use this guide to complete the setup steps
necessary for any Oracle Applications product that includes
workflow-enabled processes.

Training and Support

Training

We offer a complete set of training courses to help you and your staff
master Oracle Applications. We can help you develop a training plan
that provides thorough training for both your project team and your
end users. We will work with you to organize courses appropriate to
your job or area of responsibility.

Training professionals can show you how to plan your training
throughout the implementation process so that the right amount of
information is delivered to key people when they need it the most. You
can attend courses at any one of our many Educational Centers, or you
can arrange for our trainers to teach at your facility. We also offer Net
classes, where training is delivered over the Internet, and many
multimedia—based courses on CD. In addition, we can tailor standard
courses or develop custom courses to meet your needs.

Support

From on-site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle Applications products working for you. This team includes
your Technical Representative, Account Manager, and Oracle’s large
staff of consultants and support specialists with expertise in your
business area, managing an Oracle server, and your hardware and
software environment.

Do Not Use Database Tools to Modify Oracle Applications Data

We STRONGLY RECOMMEND that you never use SQL*Plus, Oracle
Data Browser, database triggers, or any other tool to modify Oracle
Applications tables, unless we tell you to do so in our guides.

Vi Oracle Applications Developer’s Guide

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database. But if you
use Oracle tools such as SQL*Plus to modify Oracle Applications data,
you risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using an Oracle Applications form can update many tables at
once. But when you modify Oracle Applications data using anything
other than Oracle Applications forms, you might change a row in one
table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving
erroneous information and you risk unpredictable results throughout
Oracle Applications.

When you use Oracle Applications forms to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. But, if you
enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools
do not keep a record of changes.

Typographic Conventions

Function Keys

This manual uses the following typographic conventions to distinguish
important elements from the body of the manual.

Forms function keys are represented by the key name enclosed in
square brackets: [Next Item].

For key mappings for your particular keyboard type, refer to the
following sources:

¢ Online help Show Keys screen (for most keyboards, [CtrI-K] or
Help—>Keyboard Help from within Oracle Applications)

Command and Example Syntax

Example:

Commands and examples appear in a monotype font, as follows:

SET_CANVAS_PROPERTY (canvas_name, property, value);
/*

Preface vii

Case Sensitivity

Syntax:

** Built-in: SET_CANVAS PROPERTY
** Example: Change the ”background color” by setting the

* %k canvas color dynamically at runtime to the name
* %k of a visual attribute you created.

*/

BEGIN

Set_Canvas_Property('my main cnv’,VISUAL ATTRIBUTE, 'blue_ text’);
END;

Command and example syntax adhere to the following conventions:

Convention Explanation

plain monotype Used for code fragments and examples.

italic monotype Indicates user—supplied items such as variables,
exceptions, and actual parameters.

underlined Indicates a default parameter. If you indicate no

monotype parameter in a parameter set, Forms applies the

default parameter.

An ellipsis shows that statements or clauses were
left out. The ellipsis can appear horizontally as
shown, or in vertical format.

/* A slash and asterisk begin a C-style comment.
*/ An asterisk and slash end a C-style comment.

— Two consecutive hyphens begin an ANSI-style
comment, which extends to the end of the line.

indentation Indentation helps show structure within code
examples, but is not required.

Although neither PL/SQL nor Forms commands are case sensitive
(that is, you can enter text in upper or lower case without restriction),
in the documentation both upper and lower case are used for ease in
reading.

In syntax examples, built-in names are usually shown in all caps;
user—defined values are usually shown in lower case.

SET CANVAS_ PROPERTY (canvas _name, property, value);

viil Oracle Applications Developer’s Guide

Syntax Examples

Example Syntax:
With Values:
Example Syntax:

With Values:

About Oracle

Your Feedback

This example illustrates first how the syntax is presented in this
manual, followed by an example of how you actually enter a built-in
procedure into your triggers.

SET_ FORM_PROPERTY (formmodule name, property, value);
Set_Form_ Property('‘my form’, savepoint mode, PROPERTY ON) ;
SET TIMER(timer name, milliseconds, iterate);

Set_Timer (‘my timer’, 12000, REPEAT);

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support and office automation, as well as Oracle
Applications. Oracle Applications provides the E-business Suite, a
fully integrated suite of more than 70 software modules for financial
management, Internet procurement, business intelligence, supply chain
management, manufacturing, project systems, human resources and
sales and service management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers, and personal digital assistants,
enabling organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and application products, along with related
consulting, education and support services, in over 145 countries
around the world.

Thank you for using Oracle Application Object Library and this guide.

We value your comments and feedback. This guide contains a
Reader’s Comment Form you can use to explain what you like or
dislike about Oracle Application Object Library or this guide. Mail

Preface iX

your comments to the following address or call us directly at (650)
506-7000.

Oracle Applications Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Or, send electronic mail to appsdoc@us.oracle.com.

Oracle Applications Developer’s Guide

Overview of Coding
Standards

CHAPTER

T his chapter describes the general principles on which the Oracle
Applications Coding Standards are based, and introduces basic coding
standards that apply to all forms.

The following topics are covered:
¢ Importance of these Standards
e Coding Principles
e Coding with Handlers
e Performance
e The Standard Development Environment
e Shared Objects
e Libraries
e Property Classes
e Visual Attributes
e Overview of Building an Application
e Overall Design Issues to Consider
e Overview of Application Development Steps

e Overview of Form Development Steps

Overview of Coding Standards 1-1

Overview of Coding Standards

Importance of these Standards

Coding Principles

1-2

The coding standards described in this manual, together with the user
interface standards described in the Oracle Applications User Interface
Standards for Forms—Based Products, are used by Oracle Corporation
developers to build Oracle Applications. If you want to build custom
application code that integrates with and has the same look and feel as
Oracle Applications, you must follow these standards. If you do not
follow these standards exactly as they are presented, you may not
achieve an acceptable result.

This manual makes no attempt to analyze the consequences of
deviating from the standards in particular cases. The libraries and
procedures that are packaged with Oracle Applications all assume
adherence to these standards. In fact, since the behavior of Oracle
Forms, the Oracle Applications standard libraries, and the standards
are so tightly linked, a deviation from standards that appears to be
minor may in fact have far-reaching and unpredictable results.
Therefore, we recommend that when you develop custom application
code, you follow the standards exactly as they are described in this
manual and in the Oracle Applications User Interface Standards for
Forms—Based Products.

Oracle Applications coding standards are guided by the following
principles:

e Code must be readable to be maintained

e Tools such as Oracle Forms and PL/SQL are used whenever
possible (avoid complex user exits using other coding languages)

o Fast performance over the World Wide Web (the web) is critical

o Platform-specific code should be avoided except where
absolutely necessary

¢ Reusable objects should be employed wherever possible

Oracle Applications Developer’s Guide

Coding With Handlers

Oracle Applications uses groups of packaged procedures, called
handlers, to organize PL/SQL code in forms so that it is easier to
develop, maintain, and debug.

In Oracle Forms, code is placed in triggers, which execute the code
when that trigger event occurs. Implementing complex logic may
require scattering its code across multiple triggers. Because code in
triggers is not located in one place, it cannot be written or reviewed
comprehensively, making development, maintenance, and debugging
more difficult. To determine what code and events affect a particular
item, a developer must scan many triggers throughout the form. Code
that affects multiple items can be extremely difficult to trace.

To centralize the code so it is easier to develop, maintain, and debug,
place the code in packaged procedures and call those procedures from
the triggers. Pass the name of the trigger as an argument for the
procedure to process. This scheme allows the code for a single
business rule to be associated with multiple trigger points, but to reside
in a single location.

There are different kinds of procedures for the different kinds of code
you write: item handlers, event handlers, table handlers, and business
rules. Code resides in these procedures; do not put any code in the
triggers other than calls to the procedures.

Handlers may reside in program units in the form itself, in form
libraries, or in stored packages in the database as appropriate.

Item Handlers

An item handler is a PL/SQL procedure that encapsulates all of the
code that acts upon an item. Most of the validation, defaulting, and
behavior logic for an item is typically in an item handler.

D Coding Item Handlers (See page 4 - 17)

Event Handlers

An event handler is a PL/SQL procedure that encapsulates all of the
code that acts upon an event. Usually event handlers exist to satisfy
requirements of either Oracle Forms or the Oracle Applications User
Interface Standards for Forms—Based Products, as opposed to particular
business requirements for a product.

D Coding Event Handlers (See page 4 — 19)

Overview of Coding Standards 1-3

Libraries

Table Handlers

A table handler encapsulates all of the code that manages interactions
between a block and its base table. When an updatable block is based
on a view, you must supply procedures to manage the insert, update,
lock and delete. Referential integrity checks often require additional
procedures. Table handlers may reside on either the forms server or
the database, depending on their size and the amount of interaction
with the database, but they typically reside in the database.

Coding Table Handlers (See page 4 — 20)
Server side versus Client side (See page 4 - 6)

Business Rules

A business rule describes complex data behavior. For example, one
business rule is: A discount cannot be greater than 10% if the current
credit rating of the buyer is less than 'Good’.” Another business rule is:
”A Need-By Date is required if a requisition is made for an inventory

item.”

A business rule procedure encapsulates all of the code to implement
one business rule when the business rule is complex or affects more
than one item or event. The business rule procedure is then called by
the item or event handlers that are involved in the business rule. If the
business rule is simple and affects only one item or event, implement
the business rule directly in the item or event handler.

Libraries contain reusable client-side code. They support these form
coding standards by allowing the same code to be used by all forms to
enforce specific validation, navigation and cosmetic behaviors and
appearances.

Libraries allow code to be written once and used by multiple forms.
Additionally, because the executables attach at runtime, they facilitate
development and maintenance without being invasive to a form.

Every form requires several standard triggers and procedures to link
the form with a library. Many of these triggers and procedures have a
default behavior that a developer overrides for specific items or blocks.

D Special Triggers in the TEMPLATE form (See page 24-6)

1-4 Oracle Applications Developer’s Guide

Performance

Application—Specific Libraries

Each application is strongly encouraged to create its own libraries.
Typically, each application creates a central library that governs
behaviors of objects found throughout many of its forms. Additional
libraries should be created for each major transaction form to facilitate
the following:

e Multiple developers can work on a single module, with some
developers coding the actual form and others coding the
supporting libraries.

e Shipment and installation of patches to code is vastly simplified
if the correction is isolated in a library. Libraries do not require
any porting or translation.

All libraries should reside in the $AU_TOP/resource directory (or its
equivalent).

Attaching Libraries

Sometimes library attachments can be lost on platforms that have
case-sensitive filenames. By Oracle Applications standards, library
names must be in all uppercase letters (except for the file extension).
However, for forms developed using Microsoft Windows, the library
filename may be attached using mixed case letters, making the
attachment invalid on case-sensitive platforms such as Unix. If you
attach a library to a form in the Oracle Forms Developer on Microsoft
Windows, you should avoid using the Browse mechanism to locate the
file. Instead, type in just the filename, in uppercase only, with no file
extension (for example, CUSTOM). Oracle Forms will then preserve
the attachment exactly as you typed it. Note that your attachment
should never include a directory path; your FORMS60_PATH should
include the directory that holds all your libraries.

Performance is a critical issue in any application. Applications must
avoid overloading the network that connects desktop client, server, and
database server computers, since often it is network performance that
most influences users’ perceptions of application performance.

Oracle Applications are designed to minimize network traffic on all
tiers. For example, they try to limit network round trips to one per
user—distinguishable event by employing the following coding
standards:

Overview of Coding Standards 1-5

Use database stored procedures when extensive SQL is required

Code all non-SQL logic on the client side where possible

Cache data on the client side where practical

Base blocks on views that denormalize foreign key information
where practical

Views (See page 3-7)
Server Side versus Client Side (See page 4 - 6)

Coding for Web Compatibility

Following Oracle Applications standards carefully will help ensure that
your forms can be deployed on the Web.

You should avoid using the following features in your forms, as they
are not applicable in this architecture:

e ActiveX, VBX, OCX, OLE, DDE (Microsoft Windows-specific
features that would not be available for a browser running on a
Macintosh, for example, and cannot be displayed to users from
within the browser)

o Timers other than one-millisecond timers (one—-millisecond
timers are treated as timers that fire immediately)

¢ WHEN-MOUSE-MOVE, WHEN-MOUSE-ENTER/LEAVE and
WHEN-WINDOW-ACTIVATED/DEACTIVATED triggers

e Open File dialog box

— It would open afile on the applications server, rather than
on the client machine (where the browser is) as a user might
expect

e Combo boxes
— Our standards do not use combo boxes anyhow
e Text 10 and HOST built-in routines

— These would take place on the applications server, rather
than on the client machine (where the browser is) as a user
might expect

1-6 Oracle Applications Developer’s Guide

The Standard Development Environment

These coding standards assume that you are developing code in the
appropriate Oracle Applications development environment, which
includes compatible versions of several products. You can ensure that
you have all the correct versions of the Oracle Applications and other
Oracle products by installing all products from one set of Oracle
Applications Release 11i CDs.

¢ Oracle Forms Developer 6i

e Oracle Reports Developer 6i

e Oracle Application Object Library Release 11i
e Oracle8i

e Jlnitiator

While you can develop forms using the standard Oracle Forms
Developer, you cannot run your Oracle Applications-based forms from
the Oracle Forms Developer. Running such forms requires additional
Oracle Application Object Library user exits referred to by the libraries,
as well as settings and runtime code that can only be seen when
running forms through a browser with Jinitiator. Both the libraries and
the user exits also assume a full installation of the Oracle Application
Object Library database schema, as they reference tables, views, and
packages contained therein.

Mandatory Settings for Running Oracle Applications

The html file used to launch Oracle Applications must include several
specific settings for Oracle Applications to function properly. The
following table contains the required parameters and their required

values:
Name Value
colorScheme blue
lookAndFeel oracle
separateFrame true
darkLook true
readOnlyBackground automatic

Table1-1 (Page 1of2)

Overview of Coding Standards 1-7

1-8

Name Value

dontTruncateTabs true

background no

Table1-1 (Page 2 of 2)

Additionally, the file OracleApplications.dat must contain the
following lines:

app.ui.requiredFieldVABGColor=255,242,203
app.ui.lovButtons=true
app.ui.requiredFieldVA=true

There are several variables that must be set correctly, either as Unix
environment variables or NT Registry settings, before starting up your
Forms Server for running Oracle Applications. These variables include
NLS DATE_FORMAT. NLS_DATE_FORMAT must be set to
DD-MON-RR.

Additional Information: Installing Oracle Applications

Mandatory Settings for Form Generation

At form generation time, make sure you designate the character set
designed for your language in the NLS_LANG variable in your
Windows NT registry or environment file (for Unix). You must ensure
that the character set you specify is the character set being used for
your Oracle Applications installation.

You must also set the value of your FORMS60_PATH environment
variable in your environment file (or platform equivalent such as
Windows NT registry) to include any directory that contains forms,
files, or libraries you use to develop and generate your forms.
Specifically, you must include a path to the <$AU_TOP>/forms/US
directory to be able to find all referenced forms, and a path to the
<$AU_TOP>/resource directory to be able to find the Oracle
Applications library files you need (where <$AU_TOP> is the
appropriate directory path, not the variable).

Recommended Setting for Form Development

Oracle Forms Developer allows referenced objects to be overridden in
the local form. Oracle Forms Developer also does not normally
provide any indication that an object is referenced unless you set a
special environment variable (Registry setting for NT). Set the

Oracle Applications Developer’s Guide

environment variable (Registry setting) ORACLE_APPLICATIONS to
TRUE before starting Oracle Forms Developer. This setting allows you
to see the reference markers (little flags with an ”R” in them) on
referenced objects so you can avoid changing referenced objects
unintentionally. Any object referenced from the APPSTAND form must
never be changed.

é Warning: Oracle Forms Developer allows referenced objects
to be overridden in the local form. Any object referenced from
the APPSTAND form must never be changed.

Oracle Application Object Library for Release 11i

Oracle Application Object Library (AOL) for Release 11i includes
(partial list):

e Starting forms
— Template form with standard triggers (TEMPLATE)

— Form containing standard property classes for your runtime
platform (APPSTAND)

e PL/SQL libraries

— Routines for Flexfields, Function security, User Profiles,
Message Dictionary (FNDSQF)

— Standard user interface routines (APPCORE, APPCORE?2)
— Routines for Calendar widget (APPDAYPK)
e Development standards

— Oracle Applications User Interface Standards for Forms—Based
Products

— Oracle Applications Developer’s Guide (this manual)

Setting Object Characteristics

The characteristics of most form objects, including modules, windows,
canvases, blocks, regions, and items may be set in the following ways:

¢ Inherited through property classes, which cause certain
properties to be identical in all forms (such as canvas visual
attributes)

Overview of Coding Standards 1-9

Shared Objects

o At the discretion of the developer during form design (such as

window sizes)

o At runtime, by calling standard library routines (such as window

positions)

These standards rely extensively on the object referencing capabilities
of Oracle Forms. These capabilities allow objects to be reused across
multiple forms, with changes to the master instance automatically
inherited by forms that share the object. Additionally, these shared
objects provide flexibility for cross—platform support, allowing Oracle
Applications to adhere to the look and feel conventions of the platform
they run on.

APPSTAND Form

The APPSTAND form contains the master copy of the shared objects.
It contains the following:

e Object group STANDARD_PC_AND_VA, which contains the

Visual Attributes and Property Classes required to implement
much of the user interface described in the Oracle Applications
User Interface Standards for Forms—Based Products. A property
class exists for almost every item and situation needed for
development.

Property Classes (See page 1 - 13)
Setting the Properties of Container Objects: page 5-1
Setting the Properties of Widget Objects: page 6 — 1

Object group STANDARD_TOOLBAR, which contains the
windows, canvasses, blocks, and items of the Applications
Toolbar. This group also contains other items which are required
in all forms but are not necessarily part of the Toolbar.

D Pulldown Menus and the Toolbar (See page 10 - 2)

Object group STANDARD_CALENDAR, which contains the
windows, canvasses, blocks, and items of the Applications
Calendar.

D The Calendar (See page 9 — 23)

1-10 Oracle Applications Developer’s Guide

e Object group QUERY_FIND, which contains a window, canvas,
block, and items used as a starting point for coding a Find
Window. This object group is copied into each form, rather than
referenced, so that it can be modified.

D Query Find Windows (See page 8 - 2)

A Warning: Additional objects in the APPSTAND form are for
internal use by Oracle Applications only, and their use is not
supported. Specifically, the object group STANDARD _
FOLDER is not supported.

é Warning: Oracle Forms Developer allows referenced objects
to be overridden in the local form. Any object referenced from
the APPSTAND form must never be changed.

TEMPLATE Form

The TEMPLATE form is the required starting point for all development
of new forms. It includes references to many APPSTAND objects,
several attached libraries, required triggers, and other objects.

Start developing each new form by copying this file, located in
$AU_TOP/forms/US (or your language and platform equivalent), to a
local directory and renaming it as appropriate. Be sure to rename the
filename, the internal module name, and the name listed in the call to
FND_STANDARD.FORM_INFO found in the form-level PRE-FORM
trigger.

D Overview of the TEMPLATE Form (See page 24-2)

FNDMENU

The Oracle Applications default menu (with menu entries common to
all forms, such as File, Edit, View, Help, and so on) is contained in the
$AU_TOP/resource/US directory (or its equivalent) as the file
FNDMENU. You should never modify this file, nor should you create
your own menu for your forms.

Standard Libraries

Application Object Library contains several libraries that support the
Oracle Applications User Interface Standards for Forms—Based Products:

Overview of Coding Standards 1-11

1-12

o FNDSQF contains packages and procedures for Message
Dictionary, flexfields, profiles, and concurrent processing. It also
has various other utilities for navigation, multicurrency, WHO,
etc.

o APPCORE and APPCORE2 contain the packages and procedures
that are required of all forms to support the menu, Toolbar, and
other required standard behaviors. APPCORE2 is a
near—duplicate of APPCORE intended for use with the CUSTOM
library.

D Oracle Applications APIs (See page 29 - 1)

o APPDAYPK contains the packages that control the Applications
Calendar.

D The Calendar (See page 9 — 23)

o APPFLDR contains all of the packages that enable folder blocks.

c Warning: Oracle Applications does not support use of the
APPFLDR library for custom development.

e VERT, GLOBE, PSAC, PQH_GEN, GHR, JA, JE, and JL exist to
support globalization and vertical markets. These libraries are
for Oracle Applications use only and may not be attached to
custom forms. However, they appear to be attached to most
forms based on the TEMPLATE form because they are attached
to the APPCORE library or other standard libraries.

e CUSTOM contains stub calls that may be modified to provide
custom code for Oracle Applications forms without modifying
the Oracle Applications forms directly.

Customizing Oracle Applications with the CUSTOM
Library (See page 28 - 2)

The TEMPLATE form includes attachments to the FNDSQF, APPCORE
and APPDAYPK libraries. Other standard Oracle Applications libraries
are attached to those libraries and may appear to be attached to the
TEMPLATE form.

D Libraries in the TEMPLATE Form (See page 24-3)

Any code you write within a form that is based on the TEMPLATE
form may call any (public) procedure that exists in these libraries. If
you code your own library, you will need to attach the necessary
libraries to it.

Oracle Applications Developer’s Guide

Property Classes

Property classes are sets of attributes that can be applied to almost any
Oracle Forms object. The TEMPLATE form automatically contains
property classes, via references to APPSTAND, that enforce standard
cosmetic appearances and behaviors for all widgets and containers as
described in the Oracle Applications User Interface Standards for
Forms—Based Products.

Property Classes
Oracle Applications User Interface Standards for Forms—Based
Products

Rules for attaching the property classes to specific objects are discussed
in Chapters 5 and 6.

Setting the Properties of Container Objects (See page 5 - 1)
Setting the Properties of Widget Objects (See page 6 — 1)

Do not override any attribute set by a property class unless this manual

explicitly states that it is acceptable, or there is a compelling reason to
do so. Overriding an inherited attribute is very rarely required.

Application—-specific Property Classes, Object Groups and Objects

Each application should take advantage of the referencing capabilities
of Oracle Forms to help implement standards for their particular
application in the same manner as APPSTAND.

For example, the General Ledger application might have specified
standard widths and behaviors for ”Total” fields throughout the
application. A GL_TOTAL Property Class, referenced into each form,
could set properties such as width, format mask, etc. A General
Ledger developer, after referencing in this set of property classes, can
then simply apply the GL_TOTAL property class to each item in the
form that is a Total field and it inherits its standard appearance and
behavior automatically. Entire items or blocks can also be reused.

Further, property classes can be based on other property classes, so the
GL_TOTAL class could be based on the standard TEXT_ITEM _
DISPLAY_ONLY class in APPSTAND. Such subclassing allows the
application-specific object to inherit changes made within APPSTAND
automatically.

Most Oracle Applications products also have a ”standard” form
(typically called [Application short name]STAND, such as GLSTAND
or BOMSTAND) in the same directory if you install the development

Overview of Coding Standards 1-13

versions of those products. These files are used for storing
application—specific object groups, property classes, and other objects
that are referenced into Oracle Applications forms.

Visual Attributes

All of the visual attributes described in the Oracle Applications User
Interface Standards for Forms—Based Products are automatically included
in the TEMPLATE form via references to APPSTAND. Each visual
attribute is associated with a property class or is applied at runtime by
APPCORE routines.

For detailed information about the specific color palettes and effects of
the visual attributes, see the Oracle Applications User Interface Standards
for Forms—Based Products.

1-14 Oracle Applications Developer’s Guide

Overview of Building an Application

An application that integrates with Oracle Applications consists of
many pieces, including but not limited to forms, concurrent programs
and reports, database tables and objects, messages, menus,
responsibilities, flexfield definitions, online help, and so on.

Building an application also requires that you consider many overall
design issues, such as what platforms and languages your application
will run on, what other applications you will integrate with,
maintenance issues, and so on.

Overall Design Issues to Consider

When designing your application, you should keep in mind that many
Oracle Applications features affect various facets of your application
including database objects, forms, concurrent programs, and so on, and
including these features should be considered from the beginning of
your application design process. These features include but are not
limited to:

o Flexfields

e User profiles

e Multiple organizations

e Oracle Workflow integration
e Multiple platform support

¢ National language support
e Flexible date formats

e Multiple currency support

e Year 2000 support

e CUSTOM library support

¢ Object naming standards

Overview of Coding Standards 1-15

Overview of Application Development Steps

1-16

This is the general process of creating an application that integrates
with Oracle Applications.

1
2.

10.

11.

12.

13.

Register your application. See: Applications Window: page 2 - 6.

Set up your application directory structures. See: Overview of
Setting Up Your Application Framework: page 2 — 2.

Modify the appropriate environment files. See: Oracle Applications
Concepts manual.

Register your custom Oracle schema. See: Oracle Applications
System Administrator’s Guide.

Include your custom application and Oracle schema in data
groups. See: Oracle Applications System Administrator’s Guide.

Create your application tables and views. See: Tables: page 3 - 2.
See: Views: page 3-7.

Integrate your tables and views with the Oracle Applications APPS
schema. See: Integrating Custom Objects and Schemas: page
27 - 29.

Register your flexfields tables. See: Table Registration API: page
3-11.

Build your application libraries and forms. See: Overview of Form
Development Steps: page 1 - 17.

Build your application functions and menus. See: Overview of
Menus and Function Security: page 11 — 2.

Build your application responsibilities. See: Oracle Applications
System Administrator’s Guide.

Build concurrent programs and reports. See: Overview of
Concurrent Processing: page 15 - 2.

Customize Oracle Applications forms if necessary using the
CUSTOM library. See: Customizing Oracle Applications with the
CUSTOM Library: page 28 — 2.

Oracle Applications Developer’s Guide

Overview of Form Development Steps

This is the general process of building a form that integrates with
Oracle Applications.

1.

10.

11.

12.

13.
14.

15.

16.

Copy the form TEMPLATE and rename it. See: Overview of the
TEMPLATE Form: page 24-2.

Attach any necessary libraries to your copy of TEMPLATE.
TEMPLATE comes with several libraries already attached. See:
Overview of the TEMPLATE Form: page 24-2.

Create your form blocks, items, LOVSs, and other objects and apply
appropriate property classes. See: Setting Properties of Container
Obijects: page 5 — 1. See: Setting Properties of Widget Objects: page
6-1.

Create your window layout in adherence with the Oracle
Applications User Interface Standards for Forms—Based Products.

Add table handler logic. See: Coding Table Handlers: page 4 — 20.

Code logic for window and alternative region control. See:
Controlling Window Behavior: page 7 - 2.

Add Find windows and/or Row-LOVs and enable Query Find.
See: Overview of Query Find: page 8 - 2.

Code logic for item relations such as dependent fields. See: Item
Relations: page 9 - 2.

Code any messages to use Message Dictionary. See: Overview of
Message Dictionary: page 12 — 2.

Add flexfields logic if necessary. See: Overview of Flexfields: page
14-2.

Add choices to the Special menu and add logic to modify the
default menu and toolbar behavior if necessary. See: Pulldown
Menus and the Toolbar: page 10 - 2.

Code any other appropriate logic.
Test your form by itself.

Register your form with Oracle Application Object Library. See:
Forms Window: page 11 - 21.

Create a form function for your form and register any subfunctions.
See: Overview of Menus and Function Security: page 11 - 2.

Add your form function to a menu, or create a custom menu. See:
Overview of Menus and Function Security: page 11 - 2.

Overview of Coding Standards 1-17

17. Assign your menu to a responsibility and assign your responsibility
to a user. See: Oracle Applications System Administrator’s Guide.

18. Test your form from within Oracle Applications (especially if it
uses features such as user profiles or function security).

1-18 Oracle Applications Developer’s Guide

Setting Up Your
Application Framework

CHAPTER

T his chapter describes what you need to do to set up your
application framework, including creating directory structures,
registering your application, registering your Oracle schema, and so on.

The following topics are covered:
e Application Directory Structures
e Registering Your Application
e Registering Your Oracle Schema

e Setting Up Your Application and Integrating It with Oracle
Applications

e Applications window

Setting Up Your Application Framework 2-1

Overview of Setting Up Your Application Framework

Oracle Applications and custom applications that integrate with Oracle
Applications rely on having their components arranged in a predictable
structure. This includes particular directory structures where you

place reports, forms, programs and other objects, as well as
environment variables and application names that allow Oracle
Application Object Library to find your application components.

Definitions

2-2

Application

An application, such as Oracle General Ledger or Oracle Inventory, is a
functional grouping of forms, programs, menus, libraries, reports, and
other objects. Custom applications group together site—-specific
components such as custom menus, forms, or concurrent programs.

Application Short Name

The application short name is an abbreviated form of your application
name used to identify your application in directory and file names and
in application code such as PL/SQL routines.

Oracle Schema

Database username used by applications to access the database. Also
known as Oracle ID (includes password) or Oracle user.

Environment Variable

An operating system variable that describes an aspect of the
environment in which your application runs. For example, you can
define an environment variable to specify a directory path.

e 3APPL_TOP: An environment variable that denotes the
installation directory for Oracle Application Object Library and
your other Oracle applications. $APPL_TOP is usually one
directory level above each of the product directories (which are
often referred to as SPROD_TOP or $PRODUCT_TOP or
$<prod>_TOP)

Oracle Applications Developer’s Guide

Note that environment variables may be documented with or without
the $ sign. For Windows NT environments, most environment
variables correspond to Registry settings (without the $ sign), although
some variables may be located in .cmd files instead of in the Registry.

Application Basepath

An environment variable that denotes the directory path to your
application—level subdirectories. You include your application
basepath in your application environment files and register it with
Oracle Application Object Library when you register your application
name. Corresponds to the $PRODUCT_TOP directory.

Set Up Your Application Directory Structures

When you develop your application components, you must place them
in the appropriate directories on the appropriate machines so that
Oracle Application Object Library can find them. For example, reports
written using Oracle Reports are typically placed in a subdirectory
called reports on the concurrent processing server machine, while
forms belong in separate subdirectories, depending on their territory
and language (such as US for American English, D for German, and so
on), on the forms server machine.

The directory structure you use for your application depends on the
computer and operating system platform you are using, as well as the
configuration of Oracle Applications at your site. For example, you
may be using a configuration that includes a Unix database server a
separate Unix concurrent processing server, a Microsoft Windows NT
forms server, and Web browsers on PCs, or you may be using a
configuration that has the database and forms server on the same Unix
machine with Web browsers on PCs. These configurations would have
different directory setups. See your Oracle Applications Concepts manual
for directory setup information for your particular platforms and
configuration. For a description of the contents and purpose of each of
the subdirectories, see your Oracle Applications Concepts manual.

Register Your Application

You must register your application name, application short name,
application basepath, and application description with Oracle
Application Object Library. Oracle Application Object Library uses this

Setting Up Your Application Framework 2-3

information to identify application objects such as responsibilities and
forms as belonging to your application.

This identification with your custom application allows Oracle
Applications to preserve your application objects and customizations
during upgrades. When you register your application, your
application receives a unique application ID number that is included in
Oracle Application Object Library tables that contain application
objects such as responsibilities. This application ID number is not
visible in any Oracle Applications form fields.

To reduce the risk that your custom application short name could
conflict with a future Oracle Applications short name, we recommend
that your custom application short name begins with ”XX”. Such a
conflict will not affect application data that is stored using the
application ID number (which would never conflict with application
IDs used by Oracle Applications products). However, a short name
conflict may affect your application code where you use your
application short name to identify objects such as messages and
concurrent programs (you include the application short name in the
code instead of the application ID).

E Applications Window (See page 2 - 6)

Modify Your Environment Files

You must add your application basepath variable to the appropriate
Oracle Applications environment files (or Windows NT Registry). The
format and location of these files depends on your operating system
and Oracle Applications configuration. See your Oracle Applications
Concepts manual for information about your environment files.

Set Up and Register Your Oracle Schema

2-4

When you build custom forms based on custom tables, typically you
place your tables in a custom Oracle schema in the database. You must
register your custom schema with Oracle Application Object Library.
See your Oracle Applications System Administrator’s Guide.

Oracle Applications Developer’s Guide

Create Database Objects and Integrate with APPS Schema

To integrate your application tables with Oracle Applications, you must
create the appropriate grants and synonyms in the APPS schema. See
Integrating Custom Objects and Schemas: page 27 — 29 for information
about integrating with the APPS schema.

Add Your Application to a Data Group

Oracle Applications products are installed as part of the Standard data
group. If you are building a custom application, you should use the
Data Groups window to make a copy of the Standard data group and
add your application-Oracle ID pair to your new data group. Note
that if you have integrated your application tables with the APPS
schema, then you would specify APPS as the Oracle ID in the
application—-Oracle ID pair (instead of the name of your custom
schema). See your Oracle Applications System Administrator’s Guide.

N
Set Up Concurrent Managers

If your site does not already have a concurrent manager setup
appropriate to support your custom application, you may need to have
your system administrator set up additional concurrent managers. See
your Oracle Applications System Administrator’s Guide.

Setting Up Your Application Framework 2-5

Applications Window

E%-_:‘; Oracle Apphcations _ O]

File Edit lp ORACLE

YOI &SP

EE Applications

€ J Jﬁ'xffﬁrﬁo’ghi}‘

Application Basepath Description

i
[
I
I
I
I
I
[
[
I

| =0SC= | =DBG=

When you define a custom application, you supply several pieces of
information to Oracle Applications. You must register your application
name, application short name, application basepath, and application
description with Oracle Application Object Library. Oracle Application
Object Library uses this information to identify application objects such
as responsibilities and forms as belonging to your application. This
identification with your custom application allows Oracle Applications
to preserve your application objects and customizations during
upgrades. The application basepath tells Oracle Application Object
Library where to find the files associated with your custom application.

You can use your custom application to name your custom menus,
concurrent programs, custom responsibilities, and many other custom
components. For some objects, the application part of the name only
ensures uniqueness across Oracle Applications. For other components,
the application you choose has an effect on the functionality of your
custom object.

2-6 Oracle Applications Developer’s Guide

Prerequisites

Applications Block

U Define an environment variable that translates to your application’s
basepath (see Oracle Applications Concepts for your operating
system).

U Set up adirectory structure for your application (see Oracle
Applications Concepts for your operating system)

U If your application resides in a database other than the database
where Oracle Alert resides, you must create a database link.

When you register a custom application, you provide the information
Oracle uses to identify it whenever you reference it. Although you can
change the name of an application, doing so may cause a change in the
application code where you hardcode your application name. For
example, if you pass program arguments through the menu that have
application name hardcoded, you will also have to update them.

Attention: You should not change the name of any application
IS5 that you did not develop, as you cannot be sure of the
consequences. You should never change the name of any
Oracle Applications application, because these applications
may contain hardcoded references to the application name.

Application

This user—friendly name appears in lists seen by application users.

Short Name

Oracle Applications use the application short name when identifying
forms, menus, concurrent programs and other application components.
The short name is stored in hidden fields while the name displays for
users.

Your short name should not include spaces. You use an application
short name when you request a concurrent process from a form, and
when you invoke a subroutine from a menu.

3~ Suggestion: Although your short name can be up to 50

@ characters, we recommend that you use only four or five
characters for ease in maintaining your application and in

calling routines that use your short name. To reduce the risk

Setting Up Your Application Framework 2-7

2-8

that your custom application short name could conflict with a
future Oracle Applications short name, we recommend that
your custom application short name begins with XX,

Basepath

Enter the name of an environment variable that represents the top
directory of your application’s directory tree. Oracle Applications
search specific directories beneath the basepath for your application’s
executable files and scripts when defining actions that reside in
external files.

In general, your application’s basepath should be unique so that
separate applications do not write to the same directories.

However, you may define custom applications that will be used only
for naming your custom responsibilities, menus and other components.
In this case, you can use the basepath of the Oracle application that
uses the same forms as your application. For example, if you are
defining a Custom_GL application, you could use the GL_TOP
basepath for your custom application.

See: Development Environment (Oracle Applications Concepts)

Oracle Applications Developer’s Guide

CHAPTER

Building Your Database
Objects

T his chapter provides you with information you need to build
tables, views, and sequences.

The following topics are covered:
e Tracking Data Changes with WHO
e Oracle8 Declarative Constraints
e LONG, LONG RAW, and RAW Datatypes
e Views
e Sequences
e Table Registration API

Building Your Database Objects 3-1

Overview of Building Your Database Objects

This section describes specifications for how to define your tables and
the required columns to add. It also covers special data types such as
LONG and LONG RAW, and declarative constraints.

Using Cost-Based Optimization

In Release 11i, Oracle Applications now uses Oracle 8i Cost-Based
Optimization (CBO) instead of Rule-Based Optimization (RBO) used in
previous versions. All new code should be written to take advantage
of Cost-Based Optimization. Where your custom application code was
tuned to take advantage of Rule-Based Optimization, you may need to
retune that code for Cost-Based Optimization.

Additional Information: Oracle 8i Tuning

Tracking Data Changes with Record History (WHO)

3-2

The Record History (WHO) feature reports information about who
created or updated rows in Oracle Applications tables. Oracle
Applications upgrade technology relies on Record History (WHO)
information to detect and preserve customizations.

If you add special WHO columns to your tables and WHO logic to
your forms and stored procedures, your users can track changes made
to their data. By looking at WHO columns, users can differentiate
between changes made by forms and changes made by concurrent
programs.

You represent each of the WHO columns as hidden fields in each block
of your form (corresponding to the WHO columns in each underlying
table). Call FND_STANDARD.SET_WHO in PRE-UPDATE and
PRE-INSERT to populate these fields.

Adding Record History Columns

The following table lists the standard columns used for Record History
(WHO), the column attributes and descriptions, and the sources for the
values of those columns. Set the CREATED_BY and
CREATION_DATE columns only when you insert a row (using
FND_STANDARD.SET_WHO for a form).

Oracle Applications Developer’s Guide

Foreign

Column Name Type Null? Key? Description Value
CREATED_BY NUMBER(15) | NOT FND_ Keeps track of | TO_NUMBER
NULL USER which user (FND_
PROFILE.
created each VALUE
row (CUSER_ID"))
CREATION_ DATE NOT Stores the date | SYSDATE
DATE NULL on which each
row was
created
LAST_ NUMBER(15) | NOT FND_ Keeps track of | TO_NUMBER
UPDATED_BY NULL USER who last up- I(DFR'\é)I?:_ILE
dated each row | \a U
('USER_ID"))
LAST_UPDATE_ | DATE NOT Stores the date | SYSDATE
DATE NULL on which each
row was last
updated
LAST_UPDATE_ | NUMBER(15) FND_ Provides TO_NUMBER
LOGIN LOGINS (FND_
gc;:ess tc;_ PROFILE.
information VALUE
about the oper- | (LoGIN_

ating system
login of the
user who last
updated each
row

1D%))

Table3-1 (Page 1of1)

Any table that may be updated by a concurrent program also needs
additional columns. The following table lists the concurrent processing

columns used for Record History, the column attributes and

descriptions, and the sources for the values of those columns.

Building Your Database Objects

3-3

3-4

Concurrent Program WHO Columns

Foreign Key to

Column Name Type Null? Table? Description
REQUEST_ID NUMBER(15) FND_ Keeps track of the
ESS'SEUSF;EENT— concurrent request

during which this
row was created or
updated

PROGRAM_ NUMBER(15) FND_ With PROGRAM 1D,

APPLICATION_ CONCURRENT_ =

s PROGRAMS keeps track of which
concurrent program
created or updated
each row

PROGRAM_ID NUMBER(15) FND_ With PROGRAM _

gggggmgm- APPLICATION_ID,

keeps track of which
concurrent program
created or updated
each row

PROGRAM_ DATE PROGRAM_ Stores the date on

UPDATE_DATE BZ%‘TE‘ which the concurrent

program created or
updated the row

Table 3-2 (Page 10f1)

Use Event Handlers to Code Record History in Your Forms

Some operations that must be done at commit time do not seem
designed for a table handler. For example, event handlers are preferred
to table handlers for setting Record History information for a record, or
determining a sequential number. The logic for these operations may
be stored in a PRE_INSERT and/or PRE_UPDATE event handler,
which is called from PRE-INSERT and PRE-UPDATE block-level
triggers during inserts or updates.

Oracle Applications Developer’s Guide

D FND_STANDARD: Standard APIs (See page 30 — 10)

Property Classes For WHO Fields

Apply the CREATION_OR_LAST_UPDATE_DATE property class to
the form fields CREATION_DATE and LAST_UPDATE_DATE. This
property classes sets the correct attributes for these fields, including the
data type and width.

Record History Column Misuse

Never use Record History columns to qualify rows for processing.
Never depend on these columns containing correct information.

In general, you should not attempt to resolve Record History columns
to HR_EMPLOYEES; if you must attempt such joins, they must be
outer joins.

Tables Without Record History Information

For blocks that are based on a table, but do not have Record History
information, disable the menu entry HELP—>ABOUT_THIS_RECORD
(all other cases are handled by the default menu control).

Code a block-level WHEN-NEW-BLOCK-INSTANCE trigger (style
”Override”) with these lines:

app_standard.event (' WHEN-NEW-BLOCK-INSTANCE') ;
app_special.enable ('ABOUT’, PROPERTY OFF) ;

APP_SPECIAL: Menu and Toolbar Control (See page
10 - 15)

Oracle8i Declarative Constraints

This section discusses the declarative constraints Oracle8 permits on
tables, and when to use each feature with your Oracle Applications
tables.

For the most part, any constraint that is associated with a table should
be duplicated in a form so that the user receives immediate feedback if
the constraint is violated.

A Warning: You should not create additional constraints on
Oracle Applications tables at your site, as you may adversely
affect Oracle Applications upgrades. If you do create
additional constraints, you may need to disable them before
upgrading Oracle Applications.

Building Your Database Objects 3-5

3-6

NOT NULL

Use wherever appropriate. Declare the corresponding fields within
Oracle Forms as ”Required” = True.

DEFAULT

In general, do not use this feature due to potential locking problems
with Oracle Forms. You may be able to use this feature with tables that
are not used by forms (for example, those used by batch programs), or
tables that contain columns that are not maintained by forms. For
example, defaulting column values can make batch programs simpler.
Possible default values are SYSDATE, USER, UID, USERENV(), or any
constant value.

UNIQUE

Use wherever appropriate. A unique key may contain NULLSs, but the
key is still required to be unique. The one exception is that you may
have any number of rows with NULLS in all of the key columns.

In addition, to implement a uniqueness check in a form, create a
PL/SQL stored procedure which takes ROWID and the table unique
key(s) as its arguments and raises an exception if the key is not unique.
Only fields that the user can enter should have a uniqueness check
within the form; system—generated unique values should be derived
from sequences which are guaranteed to be unique.

D Uniqueness Check (See page 9 —19)

CHECK

Use this feature to check if a column value is valid only in simple cases
when the list of valid values is static and short (i.e., 'Y’ or 'N’).

CHECK provides largely duplicate functionality to database triggers
but without the flexibility to call PL/SQL procedures. By using
triggers which call PL/SQL procedures instead, you can share
constraints with forms and coordinate validation to avoid redundancy.

CHECK does provide the assurance that all rows in the table will pass
the constraint successfully, whereas database triggers only validate
rows that are inserted/updated/deleted while the trigger is enabled.

This is not usually a concern, since Oracle Applications database
triggers should rarely be disabled. Some triggers (such as Alert events)
are disabled before an upgrade and re—enabled at the end of the
upgrade.

Oracle Applications Developer’s Guide

We strongly advise against the use of database triggers.

PRIMARY KEY

Define a Primary Key for all tables.

Cascade Delete and Foreign Key Constraint

Do not use the Declarative Cascade Delete or the Foreign Key
Constraint when defining tables. Cascade Delete does not work across
distributed databases, so you should program cascade delete logic
everywhere it is needed.

To implement a referential integrity check, create a PL/SQL stored
procedure which takes the table unique key(s) as its argument(s) and
raises an exception if deleting the row would cause a referential
integrity error.

D Integrity Checking (See page 9 —19)

LONG, LONG RAW and RAW Datatypes

Avoid creating tables with the LONG, LONG RAW, or RAW datatypes.
Within Oracle Forms, you cannot search using wildcards on any
column of these types. Use VARCHAR2(2000) columns instead.

Columns Using a Reserved Word

If a table contains a column named with a PL/SQL or an Oracle Forms
reserved word, you must create a view over that table that aliases the
offending column to a different name. Since this view does not join to
other tables, you can still INSERT, UPDATE, and DELETE through it.

Views

In general, complex blocks are based on views while simple setup
blocks are based on tables. The advantages to using views include:

¢ Network traffic is minimized because all foreign keys are
denormalized on the server

Building Your Database Objects 3-7

3-8

e You do not need to code any POST-QUERY logic to populate
non-database fields

¢ You do not need to code PRE-QUERY logic to implement
query-by-example for non-database fields

You should also base your Lists of Values (LOVs) on views. This
allows you to centralize and share LOV definitions. An LOV view is
usually simpler than a block view, since it includes fewer denormalized
columns, and contains only valid rows of data.

D Example LOV (See page 6 — 14)

Define Views To Improve Performance

Whenever performance is an issue and your table has foreign keys, you
should define a view to improve performance. Views allow a single
SQL statement to process the foreign keys, reducing parses by the
server, and reducing network traffic.

Define Views to Promote Modularity

Any object available in the database promotes modularity and reuse
because all client or server side code can access it. Views are extremely
desirable because:

e They speed development, as developers can build on logic they
already encapsulated

e They modularize code, often meaning that a correction or
enhancement can be made in a single location

e They reduce network traffic
e They are often useful for reporting or other activities

e They can be easily and centrally patched at a customer site

When Not to Create A View

Avoid creating views that are used by only one SQL statement.
Creating a view that is only used by a single procedure increases
maintenance load because both the code containing the SQL statement
and the view must be maintained.

ROW_ID Is the First Column

The first column your view should select is the ROWID
pseudo—column for the root table, and the view should alias it to

Oracle Applications Developer’s Guide

ROW_ID. Your view should then include all of the columns in the root
table, including the WHO columns, and denormalized foreign key
information.

an Oracle Forms block is based on this view. The Oracle Forms
field corresponding to the ROW_ID pseudo-column should
use the ROW_ID property class.

@ Suggestion: You only need to include the ROWID column if

Change Block Key Mode

In Oracle Forms, you need to change the block Key Mode property to
Non-Updatable to turn off Oracle Forms default ROWID references for
blocks based on views. Specify the primary keys for your view by
setting the item level property Primary Key to True.

For example, a view based on the EMP table has the columns ROW_ID,
EMPNO, ENAME, DEPTNO, and DNAME. Set the Key Mode
property of block EMP_V to Non-Updatable, and set the Primary Key
property of EMPNO to True.

If your block is based on a table, the block Key Mode should be
Unique.

Code Triggers for Inserting, Updating, Deleting and Locking

When basing a block on a view, you must code ON-INSERT,
ON-UPDATE, ON-DELETE, and ON-LOCK triggers to insert, update,
delete, and lock the root table instead of the view.

D Coding Table Handlers (See page 4 — 20)

Single Table Views

Single table views do not require triggers for inserting, updating,
deleting and locking. Set the block Key Mode to Unique. Single table
views do not require a ROW_ID column.

Special Characters

Do not use the CHR() function (used to define a character by its ASCII
number) on the server side. This causes problems with server—side
platforms that use EBCDIC, such as MVS. You should not need to
embed tabs or returns in view definitions.

Building Your Database Objects 3-9

Sequences

This section discusses standards for creating and using sequences.

Create Single Use Sequences

Use each sequence to supply unique ID values for one column of one
table.

Do Not Limit the Range of Your Sequences

Do not create sequences that wrap using the CYCLE option or that
have a specified MAXVALUE. The total range of sequences is so great
that the upper limits realistically are never encountered.

In general, do not design sequences that wrap or have limited ranges.

Use Number Datatypes to Store Sequence Values

Use a NUMBER datatype to store sequence values within PL/SQL.

If you need to handle a sequence generate a sequence value in your C
code, do not assume that a sequence—-generated value will fit inside a C
long variable. The maximum value for an ascending sequence is 10727,
whereas the maximum value for a C signed long integer is 10"9. If
1079 is not a reasonable limit for your sequence, you may use a double
instead of a long integer. Remember that by using a double for your
sequence, you may lose some precision on fractional values. If you do
not need to do arithmetic, and simply need to fetch your sequence
either to print it or store it back, consider retrieving your sequence in a
character string.

Do Not Use the FND_UNIQUE_IDENTIFIER_CONTROL Table

Do not rely on the FND_UNIQUE_IDENTIFIER_CONTROL table to
supply sequential values. Use a sequence or the sequential numbering
package instead. The FND_UNIQUE_IDENTIFIER_CONTROL table is
obsolete and should not have any rows for objects in your product.

Additionally, do not create application—specific versions of the FND
table to replace the FND_UNIQUE_IDENTIFIER_CONTROL table.

3-10 Oracle Applications Developer’s Guide

Table Registration API

You register your custom application tables using a PL/SQL routine in
the AD_DD package.

Flexfields and Oracle Alert are the only features or products that
depend on this information. Therefore you only need to register those
tables (and all of their columns) that will be used with flexfields or
Oracle Alert. You can also use the AD_DD API to delete the
registrations of tables and columns from Oracle Application Object
Library tables should you later modify your tables.

If you alter the table later, then you may need to include revised or new
calls to the table registration routines. To alter a registration you
should first delete the registration, then reregister the table or column.
You should delete the column registration first, then the table
registration.

You should include calls to the table registration routines in a PL/SQL

script. Though you create your tables in your own application schema,
you should run the AD_DD procedures against the APPS schema. You
must commit your changes for them to take effect.

The AD_DD API does not check for the existence of the registered table
or column in the database schema, but only updates the required AOL
tables. You must ensure that the tables and columns registered actually
exist and have the same format as that defined using the AD_DD API.
You need not register views.

Procedures in the AD_DD Package

procedure register table (p_appl short name in varchar2,

p_tab name in varchar2,

p_tab type in varchar2,

p_next extent in number default 512,
p_pct free in number default 10,
p_pct used in number default 70);

procedure register column (p_appl short name in varchar2,

p_tab name in varchar2,
p_col name in varchar2,
p_col seq in number,

p_col type in varchar2,

p_col width in number,
p_nullable in varchar2,
p_translate in varchar2,

Building Your Database Objects 3-11

p_precision in number default null,
p_scale in number default null) ;

procedure delete table (p appl short name in varchar2,
p_tab name in varchar2) ;

procedure delete column (p_appl short name in varchar2,

p_tab name in varchar2,

p_col name in wvarchar2) ;
p_appl_short_ The application short name of the application that
name owns the table (usually your custom application).
p_tab_name The name of the table (in uppercase letters).
p_tab_type Use 'T’if it is a transaction table (almost all

application tables), or ’S’ for a ”seed data” table
(used only by Oracle Applications products).

p_pct_free The percentage of space in each of the table’s
blocks reserved for future updates to the table
(1-99). The sum of p_pct_free and p_pct_used
must be less than 100.

p_pct_used Minimum percentage of used space in each data
block of the table (1-99). The sum of p_pct free
and p_pct_used must be less than 100.

p_col_name The name of the column (in uppercase letters).

p_col_seq The sequence number of the column in the table
(the order in which the column appears in the table
definition).

p_col_type The column type C(NUMBER’, "VARCHAR?’,
‘DATE’, etc.).

p_col_width The column size (a number). Use 9 for DATE
columns, 38 for NUMBER columns (unless it has a
specific width).

p_nullable Use "N’ if the column is mandatory or 'Y’ if the

column allows null values.

p_translate Use "Y'’ if the column values will be translated for
an Oracle Applications product release (used only
by Oracle Applications products) or ‘N’ if the
values are not translated (most application
columns).

3-12 Oracle Applications Developer’s Guide

p_next_extent

p_precision

p_scale

Example of Using the AD_DD Package

The next extent size, in kilobytes. Do not include
the 'K,

The total number of digits in a number.

The number of digits to the right of the decimal
point in a number.

Here is an example of using the AD_DD package to register a flexfield
table and its columns:

EXECUTE ad_dd.register_ table(’FND’, ’'CUST_FLEX TEST', 'T’,

8, 10, 90);

EXECUTE ad_dd.register column(’FND’, ’CUST_FLEX TEST’,

"APPLICATION ID’, 1, ’'NUMBER’, 38, ’'N’, ’'N’);

EXECUTE ad dd.register column(’FND’, ‘CUST FLEX TEST’,

'ID FLEX CODE’, 2, ’VARCHAR2', 30, 'N’, 'N’');

EXECUTE ad_dd.register column(’FND’, ’'CUST FLEX TEST’,

"LAST UPDATE DATE’, 3, 'DATE’, 9, 'N’', 'N');

EXECUTE ad _dd.register column(’FND’, ‘CUST FLEX TEST’,

'LAST UPDATED BY', 4, 'NUMBER’, 38, 'N’, 'N’);

EXECUTE ad_dd.register column(’FND’, ’'CUST FLEX TEST’,

"UNIQUE ID COLUMN’, 5, ’'NUMBER’, 38, 'N’, 'N’);

EXECUTE ad dd.register column(’FND’, ’‘CUST FLEX TEST’,

'UNIQUE_ID COLUMN2’, 6, 'NUMBER’, 38, 'N’, 'N’);

EXECUTE ad dd.register column(’FND’, ’'CUST FLEX TEST’,

'SET DEFINING COLUMN’, 7, ’'NUMBER’, 38, 'N’, 'N’);

EXECUTE ad_dd.register_column(’'FND’, ’'CUST_FLEX TEST',

'SUMMARY FLAG’, 8, 'VARCHAR2’, 1, 'N’, ’'N');

EXECUTE ad dd.register column(’FND’, ’‘CUST FLEX TEST’,

'ENABLED FLAG’, 9, ’‘VARCHAR2', 1, 'N’, 'N’);

EXECUTE ad_dd.register_column(’'FND’, ’'CUST_FLEX TEST',

"START DATE ACTIVE’, 10, 'DATE’, 9, 'N’, 'N’);

EXECUTE ad _dd.register column(’FND’, ’'CUST FLEX TEST’,

'END DATE ACTIVE’, 11, 'DATE’, 9, 'N’, 'N’);

EXECUTE ad_dd.register_column(’'FND’, ’'CUST_FLEX TEST',

"SEGMENT1’, 12, 'VARCHAR2’, 60, 'Y’', 'N');

EXECUTE ad _dd.register column(’FND’, ’'CUST FLEX TEST’,

"SEGMENT2’, 13, ‘VARCHAR2’, 60, 'Y’, 'N’);

EXECUTE ad_dd.register_column(’'FND’, ’'CUST_FLEX TEST',

" SEGMENT3', 14, 'VARCHAR2’, 60, 'Y’', 'N');

EXECUTE ad _dd.register column(’FND’, ’'CUST FLEX TEST’,
Building Your Database Objects 3-13

'SEGMENT4', 15, 'VARCHAR2’, 60, 'Y’, 'N’);
EXECUTE ad_dd.register column(’FND’, ’CUST FLEX TEST',
'SEGMENT5’, 16, ’'VARCHAR2’, 60, 'Y’, 'N’);

3-14 Oracle Applications Developer’s Guide

Using PL/SQL in
Oracle Applications

CHAPTER

T his chapter provides you with information you need to build a
PL/SQL procedure to use with Oracle Applications. It explains the
standards you should follow to develop a PL/SQL procedure, where to
locate your code, and how to handle exceptions.

The following topics are covered:
e Overview of Building a PL/SQL Procedure
PL/SQL Procedure Coding Standards

Replacements for Oracle Forms Built-ins

Resources

Triggers

Using PL/SQL in Oracle Applications 4-1

Overview of Using PL/SQL in Applications

4-2

You can use PL/SQL procedures as part of an application that you
build around Oracle Applications. By following the coding standards,
you can create a PL/SQL procedure that integrates seamlessly with
your application and with Oracle Applications.

You use PL/SQL to:

o Develop procedural extensions to your forms and reports
quickly and easily

e Modularize your application code to speed development and
improve maintainability

e Optimize your application code to reduce network traffic and
improve overall performance

You can use PL/SQL, Oracle’s procedural language extension to SQL,
to develop procedural extensions to custom forms and reports you
create with Oracle tools.

For example, to develop a form that follows Oracle Applications
standards, you organize your form code into PL/SQL business rule
procedures, item handlers, event handlers, and table handlers. You put
very little PL/SQL code directly into form triggers because those
triggers do not represent a logical model; they are simply event points
that Oracle Forms provides for invoking procedural code. If you put
most of your code in packaged PL/SQL procedures, and then call those
procedures from your triggers, you will have modular form code that
is easy to develop and maintain.

You may write any PL/SQL procedure that helps you modularize your
form code. For example, an item handler, event handler, or business
rule procedure may actually consist of several smaller procedures. Be
sure to group these smaller procedures into logical packages so their
purpose is clear. (There is no special name for these smaller
procedures. They are simply PL/SQL procedures.)

You can also use PL/SQL to develop concurrent programs or stored
procedures that are called from concurrent programs. Generally, any
concurrent program you would have developed as an immediate
concurrent program in past releases of Oracle Applications could be
developed as a PL/SQL concurrent program. Or, you may develop the
main body of your concurrent program in C, but encapsulate any SQL
statements issued by your concurrent program in PL/SQL stored
procedures.

D PL/SQL Stored Procedures (See page 17 — 3)

Oracle Applications Developer’s Guide

Definitions

Server-side

Server-side is a term used to describe PL/SQL procedures that are
stored in an Oracle database (on the database server). Procedures and
functions stored in the database are also referred to as stored
procedures and functions, and may also be referred to as being
database server-side procedures.

Client-side

Client-side is a term used to describe PL/SQL procedures that run in
programs that are clients of the Oracle database, such as Oracle Forms,
Oracle Reports, and libraries.

The term client-side” in this manual usually refers to the forms server
(where the forms reside). ”Client-side” in this manual does not
typically refer to the ”desktop client”, which is usually a PC or other
desktop machine running a Web browser.

General PL/SQL Coding Standards

Always Use Packages

PL/SQL procedures should always be defined within packages. Create
a package for each block of a form, or other logical grouping of code.

Package Sizes

A client-side (Oracle Forms) PL/SQL program unit’s source code and
compiled code together must be less than 64K. (A program unitis a
package specification or body or stand-alone procedure.) This implies
that the source code for a program unit cannot exceed 10K.

If a package exceeds the 10K limit, you can reduce the size of the
package by putting private variables and procedures in one or more
”private packages.” By standard, only the original package should
access variables and procedures in a private package. If an individual
procedure exceeds the size limit, you should separate the code into two
or more procedures.

When an Oracle Forms PL/SQL procedure exceeds the 64K limit,
Oracle Forms raises an error at generate time.

Using PL/SQL in Oracle Applications 4-3

4-4

Server-side packages and procedures do not have a size limit, but
when Oracle Forms refers to a server—side package or procedure, it
creates a local stub, which does have a size limit. The size of a package
stub depends on the number of procedures in the package and the
number and types of arguments each procedure has. Keep the number
of procedures in a package less than 25 to avoid exceeding the 10K
limit.

Adding New Procedures to Existing Packages

When you add new procedures or functions to existing packages
(either stored in the database or in Oracle Forms libraries), you should
usually add them to the end of the package (and package specification).
If you add new procedures to the middle of the package specification
and package, you must regenerate every form that references the
package, or those forms may get ORA-4062 errors.

Using Field Names in Client-Side PL/SQL Packages

Always specify field names completely by including the block name
(that is, BLOCK.FIELD_NAME instead of just FIELD_NAME). If you
specify just the field name, Oracle Forms must scan through the entire
list of fields for each block in the form to locate your field and check if
its name is ambiguous, potentially degrading your form perfomance. If
you include the block name, Oracle Forms searches only the fields in
that block and stops when it finds a match. Moreover, if you ever add
more blocks, your existing code continues to work since you specified
your field names unambiguously.

Field Names in Procedure Parameters

Pass field names to procedures and use COPY to update field values
instead of using IN OUT or OUT parameters. This method prevents a
field from being marked as changed whether or not you actually
modify it in your procedure. Any parameter declared as OUT is
always written to when the procedure exits normally.

For example, declare a procedure as test (my var VARCHAR2 IN)
andcall itas test (block.field’) instead of declaring the
procedure as test (my var VARCHAR2 IN OUT) and callingitas
test (:block.field).

Explicitly associate the parameter name and value with => when the
parameter list is long to improve readability and ensure that you are
not ”off” by a parameter.

Oracle Applications Developer’s Guide

Using DEFAULT

Use DEFAULT instead of ”:=” when declaring default values for your
parameters. DEFAULT is more precise because you are defaulting the
values; the calling procedure can override the values.

Conversely, use ”:=” instead of DEFAULT when declaring values for
your constant variables. Using :=" is more precise because you are
assigning the values, not defaulting them; the values cannot be
overridden.

Use Object IDs

Any code that changes multiple properties of an object using the
SET_<OBJECT>_PROPERTY built-in (or the Oracle Application Object
Library equivalent) should use object IDs. First use the appropriate
FIND_<OBJECT> built—in to get the ID, then pass the ID to the
SET_<OBJECT>_PROPERTY built-in.

You should also consider storing the ID in a package global so that you
retrieve it only once while the form is running.

Handling NULL Value Equivalence

Use caution when handling NULL values in PL/SQL. For example, if
a := NULLandb := NULL, the expression (a = b) evaluatesto
FALSE. In any "= expression where one of the terms is NULL, the
whole expression will resolve to FALSE.

For this reason, to check if a value is equal to NULL, you must use the
operator ”is” instead. If you’'re comparing two values where either of
the values could be equal to NULL, you should write the expression
likethis: ((a = b) or ((a is null) and (b is null))

Global Variables

Oracle Forms Developer and PL/SQL support different types of global
variables:

e Oracle Forms Global: a variable in the global” pseudo-block of
aform

e PL/SQL Package Global: a global defined in the specification of
a package

e Oracle Forms Parameter: a variable created within the Oracle
Forms Designer as a Parameter

Using PL/SQL in Oracle Applications 4-5

See the Oracle Forms Reference Manual for a complete description of
these variable types. The following table lists the characteristics of each
type of variable, and enables you to select the type most appropriate
for your code.

Oracle PL/SQL Oracle
Forms Package Forms
Behavior Global Global Parameter
Can be created at Design time Y Y
Can be created at runtime Y
Accessible across all forms Y
Accessible from attached libraries Y (1) Y
Support specific datatypes 2) Y Y
Have declarative defaults Y
Can be referenced indirectly Y Y
Can be specified on command line Y
Must be erased to recover memory Y
Can be used in any Oracle Forms code Y Y

Table4-1 (Page 1o0f1)

(1) A package variable defined in a form is not visible to any attached
library; a variable defined in an attached library is visible to the form.
(An Oracle Forms Global is visible to an attached library)

(2) Always CHAR(255).

Database Server Side versus Client Side

4-6

Performance is a critical aspect of any application. Because network
round trips are very costly in a typical client-server environment,
minimizing the number of round trips is key to ensuring good
performance.

You should decide whether your PL/SQL procedures reside on the
server or on the client based on whichever results in the fewest number
of network round trips. Here are some guidelines:

o Procedures that call Oracle Forms built-ins (more generally,
client built-ins) must reside on the client.

Oracle Applications Developer’s Guide

e Procedures that reference fields directly, either as :block.field or
via NAME_IN/COPY, must reside on the client. You can avoid
referencing fields directly by accepting field values or names as
parameters to your PL/SQL procedures, which also improves
your code’s modularity.

e |If a procedure contains three or more SQL statements, or
becomes very complicated, the procedure usually belongs on the
server.

e Procedures that perform no SQL and that need no database
access should reside wherever they are needed.

If a procedure is called from the server, it must reside on the server. Ifa
procedure is called from both client and server, it should be defined in
both places, unless the procedure is very complicated and double
maintenance is too costly. In the latter case, the procedure should
reside on the server.

Formatting PL/SQL Code

This section contains recommendations for formatting PL/SQL code.

e Within a package, define private variables first, then private
procedures, and finally public procedures.

e Always end procedures and packages by following the ”end”
statement with the procedure or package name to help delineate
procedures.

¢ Indent code logically. Using increments of two spaces provides
an easy way to track your nested cases.

¢ Indent SQL statements as follows:

Example

DECLARE
CURSOR employees IS
SELECT empno

FROM emp
WHERE deptno = 10
AND ename IN (’WASHINGTON’, ’‘MONROE’)

AND mgr = 2701;

Using PL/SQL in Oracle Applications 4-7

4-8

Use ”—-""to start comments so that you can easily comment out
large portions of code during debugging with ”/* ... */”.

Indent comments to align with the code being commented.

When commenting out code, start the comment delimiter in the
leftmost column. When the code is clearly no longer needed,
remove it entirely.

Use uppercase and lowercase to improve the readability of your
code (PL/SQL is case—-insensitive). As a guideline, use
uppercase for reserved words and lowercase for everything else.

Avoid deeply nested IF-THEN-ELSE condition control. Use
IF-THEN-ELSIF instead.

Example of Bad Style

THEN ... ELSE
THEN ... ELSE
IF ... THEN ... ELSE
END IF
END IF

END IF;

Example of Good Style

THEN
ELSIF ... THEN
ELSTF ... THEN
ELSIF ... THEN

END IF;

e Only create nested PL/SQL blocks (BEGIN/END pairs) within a

procedure when there is specific exception handling you need to
trap.

Oracle Applications Developer’s Guide

Exception Handling

Errors in Oracle Forms PL/SQL

If a failure occurs in Oracle Forms PL/SQL and you want to stop
further processing, use FND_MESSAGE to display an error message,
then RAISE FORM_TRIGGER_FAILURE to stop processing:

IF (error condition) THEN
fnd message.set name (appl short name,
message_name) ;
fnd message.error;
RAISE FORM TRIGGER FAILURE;
END IF;

Note that RAISE FORM_TRIGGER_FAILURE causes processing to stop
quietly. Since there is no error notification, you must display any
messages yourself using FND_MESSAGE before raising the exception.

Message Dictionary APIs for PL/SQL Procedures (See
page 12 —11)

Errors in Stored Procedures

If a failure occurs in a stored procedure and you want to stop further

processing, use the package procedures FND_MESSAGE.SET_NAME
to set a message, and APP_EXCEPTION.RAISE_EXCEPTION to stop
processing:

IF (error condition) THEN
fnd message.set name (appl short name,
message_name) ;
APP EXCEPTION.RAISE EXCEPTION;
END IF;
The calling procedure in the form does not need to do anything to
handle this stored procedure error. The code in the ON-ERROR trigger

of the form automatically detects the stored procedure error and
retrieves and displays the message.

= Attention: For performance reasons, server side packages
should return a return_code for all expected returns, such as

Using PL/SQL in Oracle Applications 4-9

4-10

no_rows. Only unexpected exceptions should be processed
with an exception handler.

D Message Dictionary APIs for PL/SQL Procedures (See
page 12 - 11)
Special Triggers in the TEMPLATE form (See page 24-6)
APP_EXCEPTION: Exception Processing APIs (See page
29 -15)

Testing FORM_SUCCESS, FORM_FAILURE and FORM_FATAL

When testing FORM_SUCCESS, FORM_FAILURE, or FORM_FATAL
be aware that their values may be changed by a built-in in another
trigger that is fired as a result of your built-in. For example, consider
the following code:

GO_ITEM('emp.empno’) ;
IF FORM_ FAILURE THEN

RATISE FORM TRIGGER FAILURE;
END IF;

The GO_ITEM causes other triggers to fire, such as
WHEN-NEW-ITEM-INSTANCE. Although the GO_ITEM may fail,
the last trigger to fire may succeed, meaning that FORM_FAILURE is
false. The following example avoids this problem.

GO_ITEM (’'EMP.EMPNO’) ;

IF :SYSTEM.CURSOR ITEM != ’'EMP.EMPNO’ THEN
—-— No need to show an error, because Oracle Forms
—-— must have already reported an error due to
-— some other condition that caused the GO _ITEM
-— to fail.
RATISE FORM TRIGGER_FAILURE;

END IF;

See the Oracle Forms Reference Manual for other techniques
to trap the failure of each built-in.

Avoid RAISE_APPLICATION_ERROR

Do not use RAISE_APPLICATION_ERROR. It conflicts with the
scheme used to process server side exceptions.

Message Dictionary APIs for PL/SQL Procedures (See
page 12 - 11)

Oracle Applications Developer’s Guide

SQL Coding Guidelines

Follow these guidelines for all SQL that you code:

Triggers in Forms

Use "select from DUAL” instead of ”select from SYS.DUAL”.
Do not use SYSTEM.DUAL.

All SELECT statements should use an explicit cursor. Implicit
SELECT statements actually cause 2 fetches to execute: one to get
the data, and one to check for the TOO_MANY_ROWS
exception. You can avoid this by FETCHing just a single record
from an explicit cursor.

If you want to SELECT into a procedure parameter, declare the
parameter as IN OUT, whether or not you reference the
parameter value, unless the parameter is a field.

A single-row SELECT that returns no rows raises the exception
NO_DATA_FOUND. An INSERT, UPDATE, or DELETE that
affects no rows does not raise an exception. You need to
explicitly check the value of SQL%NOTFOUND if no rows is an
error.

To handle NO_DATA_FOUND exceptions, write an exception
handler. Do not code COUNT statements to detect the existence
of rows unless that is your only concern.

When checking the value of a field or PL/SQL variable against a
literal, do the check in PL/SQL code, not in a WHERE clause.
You may be able to avoid doing the SQL altogether.

Do not check for errors due to database integrity problems. For
example, if a correct database would have a table SYS.DUAL
with exactly one row in it, you do not need to check if
SYS.DUAL has zero or more than one row or if SYS.DUAL
exists.

Follow these general rules for triggers in your forms.

Execution Style

The ’Execution Style’ for all block or field level triggers should either be
Override or Before. In general, use style Before, since usually the
form-level version of the trigger should also fire. The exception is if
you have a flexfield call in the form-level POST-QUERY trigger, but

Using PL/SQL in Oracle Applications 4-11

you reset the query status of the block in the block level POST-QUERY.
In that case, the block-level POST-QUERY should use Execution Style
After.

D Special Triggers in the TEMPLATE form (See page 24-6)

KEY- Trigger Properties

Set the ”Show Keys” property to True for all KEY- triggers you code,
except those that you are disabling (which should have "Show Keys”
set to False). Always set the "Show Keys Description” property to
NULL.

WHEN-CREATE-RECORD in Dynamic Query-Only Mode

The WHEN-CREATE-RECORD trigger fires even when the block does
not allow inserts. You may need to check if the block allows insert if
you have logic in this trigger and your block may dynamically have
insert-allowed "FALSE”:

IF GET_ITEM_ PROPERTY (’/<BLOCK>’, INSERT ALLOWED) = FALSE THEN
null;

ELSE
<your logic heres;

END IF;

Resources

On the PC there is a limit to the number of real widgets available
simultaneously (text items and display items are not real Windows
widgets, as Oracle Forms creates these items). Every check box, list
item, and object group in your form consumes these resources.

If a real widget is on a hidden canvas, the resources it consumes are
freed. You can free resources by explicitly hiding a canvas that does
not appear on the screen. Also, any canvas set with a display property
of FALSE in the Oracle Forms Designer does not consume resources for
itself or its widgets until the canvas is visited or the canvas is
programmatically displayed.

Remember that Oracle Forms navigates to the first enterable item at
startup time, which creates the canvas and all its widgets for the First
Navigation Block.

4-12 Oracle Applications Developer’s Guide

Checking Resource Availability

To check the availability of MS Windows resources before performing
some action, use the following utility:

if get application property (USER_INTERFACE) =
"MSWINDOWS’ then
if (FND _UTILITIES.RESOURCES LOW) then
FND MESSAGE.SET NAME ('FND’, ‘RESOURCES LOW') ;
if (FND_MESSAGE.QUESTION ('Do Not Open’, ’‘Open’,
7, 1) =1) then
raise FORM TRIGGER_ FAILURE;
end if;
end if;
end if;

Using PL/SQL in Oracle Applications 4-13

Replacements for Oracle Forms Built-ins

4-14

These standards require that certain built-ins be avoided entirely, or
“wrapper” routines be called in their place. For many built-ins, there
are multiple methods of invocation. You can call the built-in directly,
giving you the standard forms behavior. For some built-ins, there are
standard Oracle Applications behaviors, which you invoke by calling
APP_STANDARD.EVENT.

Many of these built-ins have a key and a KEY- trigger associated with
them. If there is any additional logic which has been added to the
KEY- trigger that you want to take advantage of, you can invoke the
trigger by using the DO_KEY built-in. This is the same result you
would get if the user pressed the associated key.

You should routinely use the DO_KEY built-in. The only reason to
bypass the KEY- trigger is if you need to avoid the additional code that
would fire.

Do Not Use CALL_FORM

Do not use this Oracle Forms built-in:

CALL_FORM This built-in is incompatible with OPEN_FORM,
which is used by Oracle Applications routines.

You should use FND_FUNCTION.EXECUTE
instead of either CALL_FORM or OPEN_FORM
whenever you need to open a form
programatically. Using
FND_FUNCTION.EXECUTE allows you to open
forms without bypassing Oracle Applications
security, and takes care of finding the correct
directory path for the form.

Function Security APIs for PL/SQL Procedures (See page
11 - 15)

Oracle Forms Built-In With APPCORE Replacements

These Oracle Forms built-ins have equivalent APPCORE routines that
provide additional functionality:

EXIT_FORM The Oracle Applications forms have special exit
processing. Do not call EXIT_FORM directly;
always call do_key (" EXIT FORM’).

Oracle Applications Developer’s Guide

To exit the entire Oracle Applications suite, first
call:

copy ('Y’ ,'GLOBAL.APPCORE EXIT FLAG') ;

Then call:

do key('exit form’);

SET_ITEM_
PROPERTY

Replace with APP_ITEM_PROPERTY.SET_
PROPERTY and APP_ITEM_PROPERTY.SET _
VISUAL_ATTRIBUTE. These APPCORE routines
set the properties in the Oracle Applications
standard way and change the propagation
behavior. Some properties use the native Oracle
Forms SET_ITEM_PROPERTY. For a complete list
of properties that APP_ITEM_PROPERTY.SET _
PROPERTY covers, see the documentation for that
routine.

APP_ITEM_PROPERTY: Individual Property Utilities (See

page 29 — 28)

GET_ITEM_ Use APP_ITEM_PROPERTY.GET_PROPERTY

PROPERTY when getting Oracle Applications specific
properties. Use the Oracle Forms built-in when
setting or getting other properties.

OPEN_FORM Use FND_FUNCTION.EXECUTE. This routine is
necessary for function security.
Both OPEN_FORM and FND_
FUNCTION.EXECUTE cause the POST-RECORD
and POST-BLOCK triggers to fire.

CLEAR_FORM Use do_key (’clear form’). This routine raises
the exception FORM_TRIGGER_FAILURE if there
is an invalid record.
You may use this built-in without ”"do_key” to
avoid the additional functionality that comes from
going through the trigger.

COMMIT Use do _key (' commit form’). This routine

raises the exception FO§M_TRIGGER_FAILURE if
there is an invalid record.

You may use this built-in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

Using PL/SQL in Oracle Applications 4-15

4-16

EDIT_FIELD/
EDIT_
TEXTITEM

VALIDATE

Use do_key (’edit field’). Thisroutine
raises the calendar when the current item is a date.

You may use this built-in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

Use APP_STANDARD.APP_VALIDATE instead.
This routine navigates to any item that causes
navigation failure.

You may use this built-in without do_key” to
avoid the additional functionality that comes from
going through the trigger.

Warning: APP_STANDARD.APP_VALIDATE requires that
you follow the button coding standards.

APP_STANDARD Package (See page 29 — 38)
Buttons (See page 6 — 10)

Oracle Applications Developer’s Guide

Coding Item, Event and Table Handlers

Developers call handlers from triggers to execute all the code necessary
to validate an item or to ensure the correct behavior in a particular
situation.

Handlers serve to centralize the code so it is easier to read and work
with. A typical form has a package for each block, and a package for
the form itself. Place code in procedures within these packages and call
the procedures (handlers) from the associated triggers. When a
handler involves multiple blocks or responds to form-level triggers,
place it in the form package.

There are different kinds of procedures for the different kinds of code,
such as item handlers, event handlers, and table handlers. Most code
resides in these procedures, and other than calls to them, you should
keep cod