
Oracle® XML Publisher

User’s Guide

Release 11i

Part No. B13817-02

January 2005

Oracle XML Publisher User’s Guide, Release 11i

Part No. B13817-02

Copyright © 2004, 2005, Oracle. All rights reserved.

Primary Author: Leslie Studdard

Contributor: Nancy Chung, Tim Dexter, Edward Jiang, Incheol Kang, Kei Saito

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be
subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights
(June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from
a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a)
the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased products
or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing
with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

Contents

Send Us Your Comments

Preface

1 XML Publisher Introduction

Introduction . 1- 1
Process Overview . 1- 3
Structure of this Manual . 1- 4

2 Creating an RTF Template

Introduction . 2- 1
Supported Modes . 2- 2
Prerequisites . 2- 2

Overview of Creating an RTF Template . 2- 2
Associating the XML Data to the Template Layout 2- 2

Designing the Template Layout . 2- 5
Adding Markup to the Template Layout . 2- 6

Creating Placeholders . 2- 6
Defining Groups . 2- 9
Defining Headers and Footers . 2-13
Including Images . 2-14

Supported Native Formatting Features . 2-15
Special Features . 2-18

Dynamic Data Columns . 2-20
Data Reporting Features . 2-23

Inserting Page Totals . 2-26
Conditional Column Formatting . 2-28
Conditional Cell Highlighting . 2-30
Regrouping the XML Data . 2-32
Chart Support . 2-38
Advanced Design Options . 2-48

Using XSL Elements . 2-48
Using FO Elements . 2-50

Best Practices . 2-50
Using Tables . 2-50

iii

3 Creating a PDF Template

PDF Template Overview . 3- 1
Supported Modes . 3- 2

Designing the Layout . 3- 2
Adding Markup to the Template Layout . 3- 4

Creating a Placeholder . 3- 5
Defining Groups of Repeating Fields . 3- 7

Adding Page Numbers and Page Breaks . 3- 8
Performing Calculations . 3-12
Completed PDF Template . 3-13
Runtime Behavior . 3-13
Creating a Template from a Downloaded PDF . 3-14

4 eText Templates

Introduction . 4- 1
Structure of eText Templates . 4- 2
Constructing the Data Tables . 4- 5

Command Rows . 4- 5
Structure of the Data Rows . 4-10

Setup Command Tables . 4-13
Expressions, Control Structure, and Functions . 4-23
Identifiers, Operators, and Literals . 4-24

5 Using the Template Manager

Introduction . 5- 1
Creating the Data Definition . 5- 1

Viewing and Updating a Data Definition . 5- 3
Creating the Template . 5- 3

Copying a Template . 5- 5
Viewing and Updating a Template . 5- 6

Updating the Template General Definitions . 5- 7
Previewing a Template . 5- 7
Editing the Template Layout . 5- 7
Adding Templates for Additional Languages 5- 7
Mapping PDF Template Fields . 5- 7

6 Generating Your Customized Report

Using the Concurrent Manager to Generate Your Custom Output 6- 1

7 XML Publisher Extended Functions

Extended SQL Functions . 7- 1
XSL Equivalents . 7- 4
Using FO Elements . 7- 6

iv

8 Calling XML Publisher APIs

Introduction . 8- 1
XML Publisher Core APIs . 8- 1

PDF Form Processing Engine . 8- 3
RTF Processor Engine . 8- 8
FO Processor Engine . 8- 9
PDF Document Merger . 8-20
Document Processor Engine . 8-27
XML Publisher Security Properties . 8-39
Applications Layer APIs . 8-42
Datasource APIs . 8-43
Template APIs . 8-45

9 Delivery Manager

Introduction . 9- 1
Delivering Documents via e-Mail . 9- 2
Delivering Your Document to a Printer . 9- 6
Delivering Your Documents via Fax . 9- 9
Delivering Your Documents to WebDAV Servers 9-10
Deliver Your Documents Using FTP . 9-12
Delivering Documents over HTTP . 9-14
Direct and Buffering Modes . 9-17
Monitoring Delivery Status . 9-18
Global Properties . 9-19
Delivering Multiple Requests with a Single Output Stream 9-20
Adding a Custom Delivery Channel . 9-21
Configuration File Support . 9-27

A XML Publisher Configuration File

XML Publisher Configuration File . A- 1
Root Element . A- 2
Properties . A- 3
Font Definitions . A- 4
Locales . A- 6
Predefined Fonts . A- 7
XML Publisher Properties . A- 9
FO Engine Properties . A-10
PDF Form Processor Properties . A-13

Index

v

Send Us Your Comments

Oracle XML Publisher User’s Guide, Release 11 i

Part No. B13817-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your
input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part
number of the documentation and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• Electronic mail: appsdoc_us@oracle.com

• FAX: 650-506-7200 Attn: Oracle Applications Technology Group Documentation Manager

• Postal service:
Oracle Applications Technology Group Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail address
(optional).

If you have problems with the software, please contact your local Oracle Support Services.

vii

Preface

Intended Audience
Welcome to Release 11i of the Oracle XML Publisher User’s Guide.

This manual is intended to instruct users on how to use Oracle XML Publisher to create
customized reports out of the Oracle E-Business Suite.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Standard request submission in Oracle Applications.

• The Oracle E-Business Suite user interfaces.

To learn more about standard request submission and the Oracle E-Business Suite
graphical user interfaces, read the Oracle Applications User’s Guide.

If you have never used Oracle Applications, Oracle suggests you attend one or more of
the Oracle Applications training classes available through Oracle University.

See Related Documents on page x for more Oracle Applications product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology.
This documentation is available in HTML format, and contains markup to facilitate
access by the disabled community. Accessibility standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise

ix

empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 XML Publisher Introduction
2 Creating an RTF Template
3 Creating a PDF Template
4 eText Templates
5 Using the Template Manager
6 Generating Your Customized Report
7 XML Publisher Extended Functions
8 Calling XML Publisher APIs
9 Delivery Manager
A XML Publisher Configuration File

Related Documents

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF).

• PDF Documentation- See the Online Documentation CD for current PDF
documentation for your product with each release. This Documentation CD is also
available on OracleMetaLink and is updated frequently.

• Online Help - You can refer to Oracle Applications Help for current HTML online
help for your product. Oracle provides patchable online help, which you can apply
to your system for updated implementation and end user documentation. No
system downtime is required to apply online help.

• Release Content Document - See the Release Content Document for descriptions of
new features available by release. The Release Content Document is available on
OracleMetaLink.

• About document - Refer to the About document for information about your
release, including feature updates, installation information, and new documentation
or documentation patches that you can download. The About document is available
on OracleMetaLink.

Related Guides
Oracle Applications shares business and setup information with other Oracle
Applications products. Therefore, you may want to refer to other guides when you set
up and use Oracle Applications.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD

x

included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

Documents Related to this Product

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI). This guide also includes information on setting user
profiles, as well as running and reviewing reports and concurrent processes.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security and users, set
report output definitions, and manage concurrent processing.

"About" Document

For information about implementation and user documentation, instructions for
applying patches, new and changed setup steps, and descriptions of software
updates, refer to the "About" document for your product. "About" documents are
available on OracleMetaLink for most products starting with Release 11.5.8.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get
out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xi

1
XML Publish er Introduction

This chapter covers the following topics:

• Introduction

• Process Overview

• Structure of this Manual

Introduction
Oracle XML Publisher is a template-based publishing solution delivered with the Oracle
E-Business Suite. It provides a new approach to report design and publishing by
integrating familiar desktop word processing tools with existing E-Business Suite data
reporting. XML Publisher leverages standard, well-known technologies and tools, so
you can rapidly develop and maintain custom report formats.

The flexibility of XML Publisher is a result of the separation of the presentation of the
report from its data structure. The collection of the data is still handled by the E-Business
Suite, but now you can design and control how the report outputs will be presented
in separate template files. At runtime, XML Publisher merges your designed template
files with the report data to create a variety of outputs to meet a variety of business
needs, including:

• Customer-ready PDF documents, such as financial statements, marketing
materials, contracts, invoices, and purchase orders utilizing colors, images, font
styles, headers and footers, and many other formatting and design options.

• HTML output for optimum online viewing.

• Excel output to create a spreadsheet of your report data.

• "Filled-out" third-party provided PDF documents. You can download a PDF
document, such as a government form, to use as a template for your report. At
runtime, the data and template produce a "filled-out" form.

• Flat text files to exchange with business partners for EDI and EFT transmission.

The following graphic displays a few sample documents generated by XML
Publisher:

XML Publisher Introduction 1-1

User Interfaces
XML Publisher provides the Template Manager to register and maintain report templates
and their data sources. Once both have been registered, use the XML Publisher
Concurrent Request to merge the template and its data source into the customized report.

Note: The Oracle Application Object Library (fnd) patch 3435480 fully
integrates XML Publisher with standard request submission both in
Oracle Forms and HTML-based applications. You are no longer required
to run the XML Publisher Concurrent Request.

Template Manager

The Template Manager is the repository for your templates and data sources. It is
also the vehicle by which you associate your templates to data definitions and make
them available to XML Publisher at runtime. From the Template Manager you can
download, update, and preview your templates.

XML Report Publisher Concurrent Request

The XML Report Publisher concurrent request produces the final output of your
customized report. Before running this request, run your E-Business Suite report to
obtain the XML data file. The XML Report Publisher request, accepts as parameters the
E-Business Suite report request ID and the desired template. The template must be

1-2 Oracle XML Publisher User’s Guide

associated to the report data definition in the Template Manager. The XML Report
Publisher request merges the data and the template.

Process Overview
Creating customized reports using XML Publisher can be divided into two
phases: Design Time and Runtime.

Design Time

1. Register the E-Business Suite report as a Data Definition in the Template Manager.

Create a Data Definition in the Template Manager for E-Business Suite reports
that you wish to customize using XML Publisher. When you create the Data
Definition, the Data Definition Code must match the E-Business Suite report
shortname.

2. Design your template.

Your template files can be either in Rich Text Format (RTF) or Portable Document
Format (PDF).

RTF is a specification used by many word processing applications, such as Microsoft
Word. You design the template using your desktop word processing application
and save the file as an RTF file type (.rtf extension). Insert basic markup tags to the
document to prepare it for merging with the XML data. XML Publisher recognizes
the formatting features that you apply and converts them to XSL.

Use Adobe Acrobat to apply markup tags to your custom-designed or downloaded
PDF template.

3. Create a Template in the Template Manager for your template design file.

When you create the template in the Template Manager, you register and upload
your template design files. The Template must be assigned to the Data Definition
Code of the E-Business Suite report with which it will be merged.

Runtime

1. Set the concurrent program to generate XML.

2. Run the concurrent program using standard request submission to obtain the XML
output.

Note: The Oracle Application Object Library (fnd) patch 3435480
fully integrates XML Publisher with the concurrent manager’s
standard request submission both in Oracle Forms and HTML-based
applications. Simply run the request and select your template from
the Submit Request user interface and XML Publisher merges the
template and data all in a single step. You are no longer required to
run the XML Publisher Concurrent Request.

3. Run the XML Publisher Concurrent Request.

The XML Publisher Concurrent Request will prompt you to enter the Request
ID from the previous step, and to select a template and output type. Available
templates are those associated to the concurrent program’s Data Definition in the
Template Manager. XML Publisher merges your design template with the XML data
to generate your customized output.

XML Publisher Introduction 1-3

Structure of this Manual
This manual contains the following information to enable you to get started and fully
implement the capabilities of XML Publisher.

Creating an RTF Template - describes how to use your word processing application in
conjunction with your report XML file to create a customized template for the report.

Creating a PDF Template - describes how to use Adobe Acrobat in conjunction with your
report XML file to create a customized template for a PDF

eText Templates - describes how to create a table-based template to comply with EDI and
EFT file specifications. These templates are processed by the eText Processing Engine to
create flat text files for exchange with business partners.

Using the Template Manager - describes how to register your Oracle report as a data
definition and upload your templates to the Template Manager.

Generating Your Customized Output - describes how to submit your report request to
generate output in your customized template.

XML Publisher Extended Functions - describes advanced SQL and XSL functions that
XML Publisher has extended for use in templates.

Calling XML Publisher APIs - intended for developers, this section describes how to
leverage XML Publisher’s processing engines via APIs.

Delivery Manager - intended for developers, this section describes how to use
XML Publisher’s Delivery Manager APIs to deliver your documents via multiple
channels, and how to create a custom channel.

XML Publisher Configuration File - this chapter describes the properties that you can set
in the XML Publisher Configuration file.

1-4 Oracle XML Publisher User’s Guide

2
Creating an RTF Template

This chapter covers the following topics:

• Introduction

• Overview of Creating an RTF Template

• Designing the Template Layout

• Adding Markup to the Template Layout

• Supported Native Formatting Features

• Special Features

• Inserting Page Totals

• Conditional Column Formatting

• Conditional Cell Highlighting

• Regrouping the XML Data

• Chart Support

• Advanced Design Options

• Best Practices

Introduction
Rich Text Format (RTF) is a specification used by common word processing
applications, such as Microsoft Word. When you save a document, RTF is a file type
option that you select.

XML Publisher’s RTF Template Parser converts documents saved as the RTF file type to
XSL-FO. You can therefore create report designs using your standard word processing
application’s design features and XML Publisher will recognize and maintain the design.

During design time, you add data fields and other markup to your template using XML
Publisher’s simplified tags for XSL expressions. These tags associate the XML report data
to your report layout. If you are familiar with XSL and prefer not to use the simplified
tags, XML Publisher also supports the use of pure XSL elements in the template.

In addition to your word processing application’s formatting features, XML Publisher
supports other advanced design features such as conditional formatting, dynamic data
columns, and dynamic table of contents.

Creating an RTF Template 2-1

If you wish to include code directly in your template, you can include XSL elements, FO
elements, and a set of SQL expressions extended by XML Publisher.

Supported Modes
XML Publisher supports two methods for creating RTF templates:

• Basic RTF Method

Use any word processing application that supports RTF version 1.6 writer (or later)
to design a template using XML Publisher’s simplified syntax.

• Form Field Method

Using Microsoft Word’s form field feature allows you to place the syntax in hidden
form fields, rather than directly into the design of your template. XML Publisher
supports Microsoft Word 2000 (or later) with Microsoft Windows version 2000 (or
later).

Note: If you use XSL or XSL:FO code rather than the simplified
syntax, you must use the form field method.

This guide describes how to create RTF templates using both methods.

Prerequisites
Before you design your template, you must:

• Know the business rules that apply to the data from your source report.

• Generate a sample of your source report in XML.

• Be familiar with the formatting features of your word processing application.

Overview of Creating an RTF Template
Creating an RTF template file consists of two basic steps:

1. Design your template layout.

Use the formatting features of your word processing application and save the
file as RTF.

2. Mark up your template layout.

Insert the XML Publisher simplified tags.

When you design your template layout, you must understand how to associate the XML
input file to the layout. The following example presents a sample template layout
with its input XML file to illustrate how to make the proper associations to add the
markup tags to the template.

Associating the XML Data to the Template Layout
The following is a sample layout for a Payables Invoice Register:

2-2 Oracle XML Publisher User’s Guide

Sample Template Layout

Note the following:

• The data fields that are defined on the template

For example: Supplier, Invoice Number, and Invoice Date

• The elements of the template that will repeat when the report is run.

For example, all the fields on the template will repeat for each Supplier that is
reported. Each row of the invoice table will repeat for each invoice that is reported.

XML Input File

Following is the XML file that will be used as input to the Payables Invoice Register
report template:

Creating an RTF Template 2-3

<?xml version="1.0" encoding="WINDOWS-1252" ?>
- <VENDOR_REPORT>

- <LIST_G_VENDOR_NAME>
- <G_VENDOR_NAME>

<VENDOR_NAME>COMPANY A</VENDOR_NAME>
- <LIST_G_INVOICE_NUM>

- <G_INVOICE_NUM>
<SET_OF_BOOKS_ID>124</SET_OF_BOOKS_ID>
<GL_DATE>10-NOV-03</GL_DATE>
<INV_TYPE>Standard</INV_TYPE>
<INVOICE_NUM>031110</INVOICE_NUM>
<INVOICE_DATE>10-NOV-03</INVOICE_DATE>
<INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
<ENT_AMT>122</ENT_AMT>
<ACCTD_AMT>122</ACCTD_AMT>
<VAT_CODE>VAT22%</VAT_CODE>

</G_INVOICE_NUM>
</LIST_G_INVOICE_NUM>
<ENT_SUM_VENDOR>1000.00</ENT_SUM_VENDOR>
<ACCTD_SUM_VENDOR>1000.00</ACCTD_SUM_VENDOR>

</G_VENDOR_NAME>
</LIST_G_VENDOR_NAME>

<ACCTD_SUM_REP>108763.68</ACCTD_SUM_REP>
<ENT_SUM_REP>122039</ENT_SUM_REP>

</VENDOR_REPORT>

XML files are composed of elements. Each tag set is an element. For example
<INVOICE_DATE> </INVOICE_DATE> is the invoice date element. "INVOICE_DATE"
is the tag name. The data between the tags is the value of the element. For example, the
value of INVOICE_DATE is "10-NOV-03".

The elements of the XML file have a hierarchical structure. Another way of saying this is
that the elements have parent-child relationships. In the XML sample, some elements are
contained within the tags of another element. The containing element is the parent and
the included elements are its children.

Every XML file has only one root element that contains all the other
elements. In this example, VENDOR_REPORT is the root element. The elements
LIST_G_VENDOR_NAME, ACCTD_SUM_REP, and ENT_SUM_REP are contained
between the VENDOR_REPORT tags and are children of VENDOR_REPORT. Each child
element can have child elements of its own.

Identifying Placeholders and Groups

Your template content and layout must correspond to the content and hierarchy of
the input XML file. Each data field in your template must map to an element in the
XML file. Each group of repeating elements in your template must correspond to a
parent-child relationship in the XML file.

To map the data fields you define placeholders. To designate the repeating elements, you
define groups.

Note: XML Publisher supports regrouping of data if your report
requires grouping that does not follow the hierarchy of your incoming
XML data. For information on using this feature, see Regrouping
the XML Data, page 2-32.

2-4 Oracle XML Publisher User’s Guide

Placeholders

Each data field in your report template must correspond to an element in the XML
file. When you mark up your template design, you define placeholders for the XML
elements. The placeholder maps the template report field to the XML element. At
runtime the placeholder is replaced by the value of the element of the same name in
the XML data file.

For example, the "Supplier" field from the sample report layout corresponds to the XML
element VENDOR_NAME. When you mark up your template, you create a placeholder
for VENDOR_NAME in the position of the Supplier field. At runtime, this placeholder
will be replaced by the value of the element from the XML file (the value in the sample
file is COMPANY A).

Identifying the Groups of Repeating Elements

The sample report lists suppliers and their invoices. There are fields that repeat for each
supplier. One of these fields is the supplier’s invoices. There are fields that repeat for
each invoice. The report therefore consists of two groups of repeating fields:

• Fields that repeat for each supplier

• Fields that repeat for each invoice

The invoices group is nested inside the suppliers group. This can be represented as
follows:

Suppliers

• Supplier Name

• Invoices

• Invoice Num

• Invoice Date

• GL Date

• Currency

• Entered Amount

• Accounted Amount

• Total Entered Amount

• Total Accounted Amount

Compare this structure to the hierarchy of the XML input file. The fields that belong to
the Suppliers group shown above are children of the element G_VENDOR_NAME. The
fields that belong to the Invoices group are children of the element G_INVOICE_NUM.

By defining a group, you are notifying XML Publisher that for each occurrence of an
element (parent), you want the included fields (children) displayed. At runtime, XML
Publisher will loop through the occurrences of the element and display the fields each
time.

Designing the Template Layout
Use your word processing application’s formatting features to create the design.

For example:

Creating an RTF Template 2-5

• Select the size, font, and alignment of text

• Insert bullets and numbering

• Draw borders around paragraphs

• Include a watermark

• Include images (jpg, gif, or png)

• Use table autoformatting features

• Insert a header and footer

For additional information on inserting headers and footers, see Defining Headers
and Footers., page 2-13

For a detailed list of supported formatting features, see Supported Native Formatting
Features, page 2-15.

Adding Markup to the Template Layout
XML Publisher converts the formatting that you apply in your word processing
application to XSL-FO. You add markup to create the mapping between your layout and
the XML file and to include features that cannot be represented directly in your format.

The most basic markup elements are placeholders, to define the XML data elements; and
groups, to define the repeating elements.

XML Publisher provides tags to add markup to your template.

Note: For the XSL equivalents of the XML Publisher tags, see XSL
Equivalent Syntax, page 7- 4 .

Creating Placeholders
The placeholder maps the template field to the XML element data field. At runtime the
placeholder is replaced by the value of the element of the same name in the XML data file.

Enter placeholders in your document using the following syntax:

<?XML element tag name?>

Note: The placeholder must match the XML element tag name exactly. It
is case sensitive.

There are two ways to insert placeholders in your document:

1. Basic RTF Method: Insert the placeholder syntax directly into your template
document.

2. Form Field Method: (Requires Microsoft Word) Insert the placeholder syntax in
Microsoft Word’s Text Form Field Options window. This method allows you to
maintain the appearance of your template.

Basic RTF Method

Enter the placeholder syntax in your document where you want the XML data value to
appear.

Enter the element’s XML tag name using the syntax:

2-6 Oracle XML Publisher User’s Guide

<?XML element tag name?>

In the example, the template field "Supplier" maps to the XML element
VENDOR_NAME. In your document, enter:

<?VENDOR_NAME?>

The entry in the template is shown in the following figure:

Form Field Method

Use Microsoft Word’s Text Form Field Options window to insert the placeholder tags:

1. Enable the Forms toolbar in your Microsoft Word application.

2. Position your cursor in the place you want to create a placeholder.

3. Select the Text Form Field toolbar icon. This action inserts a form field area in
your document.

4. Double-click the form field area to invoke the Text Form Field Options dialog box.

5. (Optional) Enter a description of the field in the Default text field. The entry in this
field will populate the placeholder’s position on the template.

For the example, enter "Supplier 1".

6. Select the Add Help Text button.

7. In the help text entry field, enter the XML element’s tag name using the syntax:

<?XML element tag name?>

You can enter multiple element tag names in the text entry field.

In the example, the report field "Supplier" maps to the XML element
VENDOR_NAME. In the Form Field Help Text field enter:

<?VENDOR_NAME?>

The following figure shows the Text Form Field Options dialog box and the Form
Field Help Text dialog box with the appropriate entries for the Supplier field.

Creating an RTF Template 2-7

8. Select OK to apply.

The Default text is displayed in the form field on your template.

The figure below shows the Supplier field from the template with the added form
field markup.

Complete the Example

The following table shows the entries made to complete the example. The Template
Field Name is the display name from the template. The Default Text Entry is the value
entered in the Default Text field of the Text Form Field Options dialog box (form field
method only). The Placeholder Entry is the XML element tag name entered either in the
Form Field Help Text field (form field method) or directly on the template.

2-8 Oracle XML Publisher User’s Guide

Template Field Name Default Text Entry (Form
Field Method)

Placeholder Entry (XML Tag
Name)

Invoice Num 1234566 <?INVOICE_NUM?>

Invoice Date 1-Jan-2004 <?INVOICE_DATE?>

GL Date 1-Jan-2004 <?GL_DATE?>

Curr USD <?INVOICE_CURRENCY_
CODE?>

Entered Amt 1000.00 <?ENT_AMT?>

Accounted Amt 1000.00 <?ACCTD_AMT?>

(Total of Entered Amt column) 1000.00 <?ENT_SUM_VENDOR?>

(Total of Accounted Amt
column)

1000.00 <?ACCTD_SUM_VENDOR?>

The following figure shows the Payables Invoice Register with the completed form
field placeholder markup.

See the Payables Invoice Register with Completed Basic rtf Markup, page 2-10 for
the completed basic rtf markup.

Defining Groups
By defining a group, you are notifying XML Publisher that for each occurrence of an
element, you want the included fields displayed. At runtime, XML Publisher will loop
through the occurrences of the element and display the fields each time.

In the example, for each occurrence of G_VENDOR_NAME in the XML file, we
want the template to display its child elements VENDOR_NAME (Supplier

Creating an RTF Template 2-9

Name), G_INVOICE_NUM (the Invoices group), Total Entered Amount, and Total
Accounted Amount. And, for each occurrence of G_INVOICE_NUM (Invoices
group), we want the template to display Invoice Number, Invoice Date, GL
Date, Currency, Entered Amount, and Accounted Amount.

To designate a group of repeating fields, insert the grouping tags around the elements to
repeat.

Insert the following tag before the first element:

<?for-each: XML group element tag name?>

Insert the following tag after the final element:

<?end for-each?>

Grouping scenarios

Note that the group element must be a parent of the repeating elements in the XML
input file.

• If you insert the grouping tags around text or formatting elements, the text and
formatting elements between the group tags will be repeated.

• If you insert the tags around a table, the table will be repeated.

• If you insert the tags around text in a table cell, the text in the table cell between the
tags will be repeated.

• If you insert the tags around two different table cells, but in the same table row, the
single row will be repeated.

• If you insert the tags around two different table rows, the rows between the tags will
be repeated (this does not include the row that contains the "end group" tag).

Basic RTF Method

Enter the tags in your document to define the beginning and end of the repeating
element group.

To create the Suppliers group in the example, insert the tag

<?for-each:G_VENDOR_NAME?>

before the Supplier field that you previously created.

Insert <?end for-each? > in the document after the summary row.

The following figure shows the Payables Invoice Register with the basic RTF grouping
and placeholder markup:

2-10 Oracle XML Publisher User’s Guide

Form Field Method

1. Insert a form field to designate the beginning of the group.

In the help text field enter:

<?for-each: group element tag name?>

To create the Suppliers group in the example, insert a form field before the Suppliers
field that you previously created. In the help text field enter:

<?for-each:G_VENDOR_NAME?>

For the example, enter the Default text "Group: Suppliers" to designate the beginning
of the group on the template. The Default text is not required, but can make the
template easier to read.

2. Insert a form field after the final placeholder element in the group. In the help
text field enter <?end for-each?> .

For the example, enter the Default text "End: Suppliers" after the summary row to
designate the end of the group on the template.

The following figure shows the template after the markup to designate the Suppliers
group was added.

Creating an RTF Template 2-11

Complete the Example

The second group in the example is the invoices group. The repeating elements in this
group are displayed in the table. For each invoice, the table row should repeat. Create a
group within the table to contain these elements.

Note: For each invoice, only the table row should repeat, not the entire
table. Placing the grouping tags at the beginning and end of the table
row will repeat only the row. If you place the tags around the table, then
for each new invoice the entire table with headings will be repeated.

To mark up the example, insert the grouping tag <?for-each:G_INVOICE_NUM?> in
the table cell before the Invoice Num placeholder. Enter the Default text "Group:Invoices"
to designate the beginning of the group.

Insert the end tag inside the final table cell of the row after the Accounted Amt
placeholder. Enter the Default text "End:Invoices" to designate the end of the group.

The following figure shows the completed example using the form field method:

2-12 Oracle XML Publisher User’s Guide

Defining Headers and Footers
XML Publisher supports the use of the native RTF header and footer feature. To create
a header or footer, use the your word processing application’s header and footer
insertion tools.

Multiple Headers and Footers

If your template requires multiple headers and footers, create them by using XML
Publisher tags to define the body area of your report. When you define the body area, the
elements occurring before the beginning of the body area will compose the header. The
elements occurring after the body area will compose the footer.

Use the following tags to enclose the body area of your report:

<?start:body?>

<?end body?>

Use the tags either directly in the template, or in form fields.

The Payables Invoice Register contains a simple header and footer and therefore does
not require the start body/end body tags. However, if you wanted to add another
header to the template, define the body area as follows:

1. Insert <?start:body?> before the Suppliers group tag: <?for-each:G_
VENDOR_NAME?>

2. Insert <?end body?> after the Suppliers group closing tag: <?end for-each?>

The following figure shows the Payables Invoice Register with the start body/end
body tags inserted:

Creating an RTF Template 2-13

Inserting Placeholders in the Header and Footer

At the time of this writing, Microsoft Word does not support form fields in the header
and footer. You must therefore insert the placeholder syntax directly into the template
(basic RTF method).

Including Images
XML Publisher supports three methods for including images in your published
document:

• Direct Insertion

Insert the jpg, gif, or png image directly in your template.

• URL Reference

1. Insert a dummy image in your template.

2. In the Format Picture dialog box select the Web tab. Enter the following syntax
in the Alternative text region to reference the image URL:

url:{’http:// image location’}

For example, enter: url:{’http://www.oracle.com/images/ora_
log.gif’}

• OA Media Directory Reference

1. Insert a dummy image in your template.

2. In the Format Picture dialog box select the Web tab. Enter the following syntax
in the Alternative text region to reference the OA_MEDIA directory:

url:{’${OA_MEDIA}/ image name’}

For example, enter:

url:{’${OA_MEDIA}/ORACLE_LOGO.gif’}

2-14 Oracle XML Publisher User’s Guide

Supported Native Formatting Features
In addition to the features already listed, XML Publisher supports the following features
of your word processing application.

Number Formatting
To format numeric values, use Microsoft Word’s field formatting features available from
the Text Form Field Options dialog box. The following graphic displays an example:

To apply a number format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Number.

3. Select the appropriate Number format from the list of options.

At runtime the numeric values from your XML data file will be formatted according
to the field properties.

Note: This function will only work if your data contains raw
numbers, such as 1000.00. If the number has been formatted for
European countries (for example: 1.000,00) the format will not work.

You can also use the native XSL format-number function to format numbers. See: Native
XSL Number Formatting, page 2-50.

Date Formatting
Microsoft Word’s native date formatting feature is supported as well for specific XML
schema date formats (see the Note below).

To apply a date format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Date.

3. Select the appropriate Date format from the list of options.

Creating an RTF Template 2-15

Important: This function will only work on the XML schema date
format: YYY-MM-DDThh:mm:ss+HH:MM, where:

• YYYY is the year

• MM is the month

• DD is the day

• T is the separator between the date and time component

• hh is the hour in 24-hour format

• mm is the minutes

• ss is the seconds

• +HH:MM is the time zone offset from Universal Time (UTC), or
Greenwich Mean Time

An example of this construction is: 2005-01-01T09:30:10-07:00. The data after the "T"
is optional, therefore the following date: 2005-01-01 can be formatted using Microsoft
Word’s native date formatting.

To show a timestamp component in your date field you must provide the complete XML
schema date format including the time zone offset. If you do not include the time zone
offset, the time will be formatted to the UTC time.

General Features
• Large blocks of text

• Page breaks

To insert a page break, insert a Ctrl-Enter keystroke just before the closing tag of a
group. For example if you want the template start a new page for every Supplier in
the Payables Invoice Register:

1. Place the cursor just before the Supplier group’s closing <?end for-each?> tag.

2. Press Ctrl-Enter to insert a page break.

At runtime each Supplier will start on a new page.

• Page numbering

Insert page numbers into your final report by using the page numbering methods of
your word processing application. For example, if you are using Microsoft Word:

1. From the Insert menu, select Page Numbers...

2. Select the Position, Alignment, and Format as desired.

At runtime the page numbers will be displayed as selected.

Alignment
Use your word processor’s alignment features to align text, graphics, objects, and tables.

Note: Bidirectional languages are handled automatically using your
word processing application’s left/right alignment controls.

2-16 Oracle XML Publisher User’s Guide

Tables
Supported table features include:

• Nested Tables

• Cell Alignment

You can align any object in your template using your word processing application’s
alignment tools. This alignment will be reflected in the final report output.

• Row spanning and column spanning

You can span both columns and rows in your template as follows:

1. Select the cells you wish to merge.

2. From the Table menu, select Merge Cells.

3. Align the data within the merged cell as you would normally.

At runtime the cells will appear merged.

• Table Autoformatting

XML Publisher recognizes the table autoformats available in Microsoft Word.

1. Select the table you wish to format.

2. From the Table menu, select Autoformat.

3. Select the desired table format.

At runtime, the table will be formatted using your selection.

• Cell patterns and colors

You can highlight cells or rows of a table with a pattern or color.

1. Select the cell(s) or table.

2. From the Table menu, select Table Properties.

3. From the Table tab, select the Borders and Shading... button.

4. Add borders and shading as desired.

• Repeating table headers

If your data is displayed in a table, and you expect the table to extend across
multiple pages, you can define the header rows that you want to repeat at the
start of each page.

1. Select the row(s) you wish to repeat on each page.

2. From the Table menu, select Heading Rows Repeat.

Date Fields
Insert dates using the date feature of your word processing application. Note that this
date will correspond to the publishing date, not the request run date.

Creating an RTF Template 2-17

Special Features

Embedded Hyperlinks
You can add fixed or dynamic hyperlinks to your template.

• To insert Static Hyperlinks, use your word processing application’s insert hyperlink
feature.

The following screenshot shows the insertion of a static hyperlink using Microsoft
Word’s Insert Hyperlink dialog box.

• If your template includes a data element that contains a hyperlink or part of one, you
can create dynamic hyperlinks at runtime. In the Type the file or Web page name
field of the Insert Hyperlink dialog box, enter the following syntax:

{URL_LINK}

where URL_LINK is the incoming data element name.

If you have a fixed URL that you want to pass parameters to, enter the following
syntax:

http://www.oracle.com?product={PRODUCT_NAME}

where PRODUCT_NAME is the incoming data element name.

In both these cases, at runtime the dynamic URL will be constructed.

The following figure shows the insertion of a dynamic hyperlink using Microsoft
Word’s Insert Hyperlink dialog box. The data element SUPPLIER_URL from the
incoming XML file will contain the hyperlink that will be inserted into the report
at runtime.

2-18 Oracle XML Publisher User’s Guide

Table of Contents/Dynamic TOC
XML Publisher supports the table of contents generation feature of the RTF
specification. Follow your word processing application’s procedures for inserting a
table of contents.

XML Publisher also provides the ability to create dynamic section headings in your
document from the XML data. You can then incorporate these into a table of contents.

To create dynamic headings:

1. Enter a placeholder for the heading in the body of the document, and format it as
a "Heading", using your word processing application’s style feature. You cannot
use form fields for this functionality.

For example, you want your report to display a heading for each company
reported. The XML data element tag name is <COMPANY_NAME>. In your
template, enter <?COMPANY_NAME?>where you want the heading to appear. Now
format the text as a Heading.

2. Create a table of contents using your word processing application’s table of contents
feature.

At runtime the TOC placeholders and heading text will be substituted.

Namespace Support
If your XML data contains namespaces, you must declare them in the template prior to
referencing the namespace in a placeholder. Declare the namespace in the template using
either the basic RTF method or in a form field. Enter the following syntax:

<?namespace: namespace name= namespace url?>

For example:

Creating an RTF Template 2-19

<?namespace:fsg=http://www.oracle.com/fsg/2002-30-2 0/?>

Once declared, you can use the namespace in the placeholder markup, for
example: <?fsg:ReportName?>

Dynamic Data Columns
The ability to construct dynamic data columns is a very powerful feature of the RTF
template. Using this feature you can design a template that will correctly render a table
when the number of columns required by the data is variable.

For example, you are designing a template to display columns of test scores within
specific ranges. However, you do not how many ranges will have data to report. You can
define a dynamic data column to split into the correct number of columns at runtime.

Use the following tags to accommodate the dynamic formatting required to render
the data correctly:

• Dynamic Column Header

<?split-column-header: group element name?>

Use this tag to define which group to split for the column headers of a table.

• Dynamic Column <?split-column-data: group element name?>

Use this tag to define which group to split for the column data of a table.

• Dynamic Column Width

<?split-column-width: name?> or

<?split-column-width:@width?>

Use one of these tags to define the width of the column when the width is described
in the XML data. The width can be described in two ways:

• An XML element stores the value of the width. In this case, use the syntax
<?split-column-width: name?>, where name is the XML element tag name
that contains the value for the width.

• If the element defined in the split-column-header tag, contains a width
attribute, use the syntax <?split-column-width:@width?> to use the
value of that attribute.

• Dynamic Column Width’s unit value (in points) <?split-column-width-
unit: value?>

Use this tag to define a multiplier for the column width. If your column widths are
defined in character cells, then you will need a multiplier value of ~6 to render the
columns to the correct width in points. If the multiplier is not defined, the widths of
the columns are calculated as a percentage of the total width of the table. This is
illustrated in the following table:

2-20 Oracle XML Publisher User’s Guide

Width Definition Column 1

(Width = 10)

Column 2

(Width = 12)

Column 3

(Width = 14)

Multiplier not
present -% width

10/10+12+14*100
28%

%Width = 33% %Width =39%

Multiplier = 6 - width 60 pts 72 pts 84 pts

Horizontal table break with row header number

<?horizontal-break-table: number?>

If columns exceed one page, this tag allows you to specify how many row heading
columns will repeat on subsequent pages with the continuing columns.

Example of Dynamic Data Columns

A template is required to display test score ranges for school exams. Logically, you want
the report to be arranged as shown in the following table:

Test Score Test Score
Range 1

Test Score
Range 2

Test Score
Range 3

...Test Score
Range n

Test Category # students in
Range 1

students in
Range 2

students in
Range 3

of students in
Range n

but you do not know how many Test Score Ranges will be reported. The number of Test
Score Range columns is dynamic, depending on the data.

The following XML data describes these test scores. The number of occurrences of the
element <TestScoreRange> will determine how many columns are required. In this
case there are five columns: 0-20, 21-40, 41-60, 61-80, and 81-100. For each column
there is an amount element (<NumOfStudents>) and a column width attribute
(<TestScore width="15">).

Creating an RTF Template 2-21

<?xml version="1.0" encoding="utf-8"?>
<TestScoreTable>

<TestScores>
<TestCategory>Mathematics</TestCategory>
<TestScore width ="15">
<TestScoreRange>0-20</TestScoreRange>
<NumofStudents>30</NumofStudents>

</TestScore>
<TestScore width ="20">
<TestScoreRange>21-40</TestScoreRange>
<NumofStudents>45</NumofStudents>

</TestScore>
<TestScore width ="15">

<TestScoreRange>41-60</TestScoreRange>
<NumofStudents>50</NumofStudents>

</TestScore>
<TestScore width ="20">
<TestScoreRange>61-80</TestScoreRange>
<NumofStudents>102</NumofStudents>

</TestScore>
<TestScore width ="15">
<TestScoreRange>81-100</TestScoreRange>

<NumofStudents>22</NumofStudents>
</TestScore>
</TestScores>

<TestScoreTable>

Using the dynamic column tags in form fields, set up the table in two columns as
shown in the following figure. The first column, "Test Score" is static. The second
column, "Column Header and Splitting" is the dynamic column. At runtime this column
will split according to the data, and the header for each column will be appropriately
populated. The Default Text entry and Form Field Help entry for each field are listed in
the table following the figure. (See Form Field Method, page 2- 7 for more information
on using form fields).

Default Text Entry Form Field Help Text Entry

Group:TestScores <?for-each:TestScores?>

Test Category <?TestCategory?>

Column Header and Splitting <?split-column-header:TestScore?> <?split-
column-width:@width?> <?TestScoreRange?
>%

Content and Splitting <?split-column-data:TestScore?> <?
NumofStudents?>

end:TestScores <?end for-each?>

• Test Score is the boilerplate column heading.

2-22 Oracle XML Publisher User’s Guide

• Test Category is the placeholder for the <TestCategory> data element, that
is, "Mathematics," which will also be the row heading.

• The second column is the one to be split dynamically. The width you specify will be
divided by the number of columns of data. In this case, there are 5 data columns.

• The second column will contain the dynamic "range" data. The width of the column
will be divided according to the split column width. Because this example does not
contain the unit value tag (<?split-column-width-unit: value?>), the
column will be split on a percentage basis. Wrapping of the data will occur
if required.

Note: If the tag (<?split-column-width-unit: value?>)
were present, then the columns would have a specific width in
points. If the total column widths were wider than the allotted space
on the page, then the table would break onto another page.

The "horizontal-break-table" tag could then be used to specify how
many columns to repeat on the subsequent page. For example, a
value of "1" would repeat the column "Test Score" on the subsequent
page, with the continuation of the columns that did not fit on the
first page.

The template will render the following result in the output:

Data Reporting Features
XML Publisher provides commands that allow you to control what data is reported
at publishing time. Not only can you customize the report by selecting the fields to
display, but you can also set up parameters within the template to define what is
reported (from the data source) and how it is sorted.

Note: For the XSL equivalents of the following, see XSL Equivalent
Syntax, page 7- 4 .

Sorting Fields

You can sort a group by any element within the group. Insert the following syntax
within the group tags:

<?sort: element name?>

To sort the example by Supplier (VENDOR_NAME), enter the following after the
<?for-each:G_VENDOR_NAME?> tag:

<?sort:VENDOR_NAME?>

To sort a group by multiple fields, just insert the sort syntax after the primary sort
field. To sort by Supplier and then by Invoice Number, enter the following

<?sort:VENDOR_NAME?> <?sort:INVOICE_NUM?>

Creating an RTF Template 2-23

Applying Conditional Formatting

Conditional formatting occurs when a formatting element appears only when a certain
condition is met. XML Publisher supports the usage of simple "if" statements, as well
as more complex "choose" expressions.

The conditional formatting that you specify can be XSL or XSL:FO code, or you can
specify actual RTF objects such as a table or data. For example, you can specify that if
reported numbers reach a certain threshold, they will display shaded in red. Or, you can
use this feature to hide table columns or rows depending on the incoming XML data.

If Statements

Use an if statement to define a simple condition; for example, if a data field is a specific
value.

1. Insert the following syntax to designate the beginning of the conditional area.

<?if: condition?>

2. Insert the following syntax at the end of the conditional area: <?end if?> .

For example, to set up the Payables Invoice Register to display invoices only when the
Supplier name is "Company A", insert the syntax <?if:VENDOR_NAME=’COMPANY
A’?> before the Supplier field on the template.

Enter the <?end if?> tag after the invoices table.

This example is displayed in the figure below. Note that you can insert the syntax in
form fields, or directly into the template.

Choose Statements

Use the choose , when, and otherwise elements to express multiple conditional
tests. If certain conditions are met in the incoming XML data then specific sections of
the template will be rendered. This is a very powerful feature of the RTF template. In
regular XSL programming, if a condition is met in the choose command then further
XSL code is executed. In the template, however, you can actually use visual widgets in
the conditional flow (in the following example, a table).

2-24 Oracle XML Publisher User’s Guide

Use the following syntax for these elements:

<?choose?>

<?when: expression?>

<?otherwise?>

"Choose" Conditional Formatting Example

This example shows a choose expression in which the display of a row of data
depends on the value of the fields EXEMPT_FLAG and POSTED_FLAG. When the
EXEMPT_FLAG equals "^", the row of data will render light gray. When POSTED_FLAG
equals "*" the row of data will render shaded dark gray. Otherwise, the row of data will
render with no shading.

In the following figure, the form field default text is displayed. The form field help text
entries are shown in the table following the example.

Creating an RTF Template 2-25

Default Text Entry in Example Form Field Help Text Entry in Fo rm Field

<Grp:VAT <?for-each:VAT?>

<Choose <?choose?>

<When EXEMPT_FLAG=’^’ <?When EXEMPT_FLAG=’^’?>

End When> <?end When?>

<When EXEMPT_FLAG=’^’ <?When EXEMPT_FLAG=’^’?>

End When> <?end When?>

Inserting Page Totals
XML Publisher supports page totaling so that you can define fields in your template
that at runtime will calculate and display total figures for fields that are displayed on
that particular page. Once you define total fields, you can also perform additional
functions on the data in those fields.

The following example shows how to set up page total fields in a template to display
total credits and debits that have displayed on the page, and then calculate the net
of the two fields.

This example uses the following XML:

<balance_sheet>
<transaction>

<debit>1 00</debit>
<credit>90</credit>

</transaction>
<transact ion>

<debit>110</debit>
<credit>80</credit>

</transac tion>
…
<\balance_sheet>

The following figure shows the table to insert in the template to hold the values:

You must declare a page total for each element in your report that requires a page
total. This takes the form:

<?add-page-total: name;’ element’?>

where

name is the name you assign to your total (to reference later) and

’element’ is the XML element field to be totaled

The following table shows the form field entries made in the template for the example
table:

2-26 Oracle XML Publisher User’s Guide

Default Text Entry Form Field Help Text Entry Description

group <?for-each:transaction?> This field defines the opening "for-
each" loop for the transaction
group.

100.00 <?debit?><?add-page-total:
dt;’debit’?>

This field is the placeholder for
the debit element from the XML
file. Because we want to total
this field by page, the page total
declaration syntax is added. The
field defined to hold the total for the
debit element is dt .

90.00 <?credit?> <?add-page-
total:ct;’credit’?> <add-
page-total:net;’debit
- credit’?>

This field is the placeholder for the
credit element from the XML
file. Because we want to total
this field by page, the page total
declaration syntax is added. The
field defined to hold the total for the
credit element is ct . This field
also contains a net value declaration.

end-group <?end for-each?> Closes the for-each loop.

Note that on the field defined as "net" we are actually carrying out a calculation on the
values of the credit and debit elements.

Now that you have declared the page total fields, you can insert a field in your template
where you want the page totals to appear. Reference the calculated fields using the
names you supplied (in the example, ct and dt). The syntax to display the page
totals is as follows:

<?show-page-total: name;’ number-format’?>

where

name is the name you assigned to give the page total field above and

number-format is the format you wish to use to for the display.

For example, to display the debit page total, you could enter the following:

<?show-page-total:dt;$#,##0.00; ($#,##0.00)’?>

Therefore to complete the example, place the following at the bottom of the template
page, or in the footer:

Page Total Debit: <?show-page-total:dt;$#,##0.00; ($#,##0.00)’?>

Page Total Credit: <?show-page-total:ct;$#,##0.00; ($#,##0.00)’?>

Page Total Balance: <?show-page-total:net;$#,##0.00; ($#,##0.00)’?>

The output for this report is shown in the following graphic:

Creating an RTF Template 2-27

Note that this page totaling function will only work if your source XML has raw numeric
values. The numbers must not be preformatted.

Conditional Column Formatting
You can conditionally show and hide columns of data in your document output. The
following example demonstrates how to setup a table so that a column is only displayed
based on the value of an element attribute.

This example will show a report of a price list, represented by the following XML:

<items type="PUBLIC"> <! - can be marked ‘PRIVATE’ - >
<item>

<name>Plasma TV</name>
<quantity>10</quantity>
<price>4000</price>

</item>
<item>

<name>DVD Player</name>
<quantity>3</quantity>
<price>300</price>

</item>
<item>

<name>VCR</name>
<quantity>20</quantity>
<price>200</price>

</item>
<item>

<name>Receiver</name>
<quantity>22</quantity>
<price>350</price>

</item>
</items>

Notice the type attribute associated with the items element. In this XML it is marked
as "PUBLIC" meaning the list is a public list rather than a "PRIVATE" list. For the "public"
version of the list we do not want to show the quantity column in the output, but we
want to develop only one template for both versions based on the list type.

The following is a simple template that will conditionally show or hide the quantity
column:

2-28 Oracle XML Publisher User’s Guide

The following table shows the entries made in the template for the example:

Default Text Form Field Entry Description

grp:Item <?for-each:item?> Holds the opening for-each loop for
the item element.

Plasma TV <?name?> The placeholder for the name
element from the XML file.

IF Quantity end if <?if@column: /items/
@type="PRIVATE"?
>Quantity<?end if?>

The "Quantity" column header
surrounded by the "if" statement.

20 <?if@column: /items/
@type="PRIVATE"?><?
quantity?><?end if?>

The placeholder for the quantity
element surrounded by the "if"
statement.

1,000.00 <?price?> The placeholder for the price
element.

end grp <?end for-each?> Closing tag of the for-each loop.

The conditional column syntax is the "if" statement syntax with the addition of the
@column clause. It is the @column clause that instructs XML Publisher to hide or show
the column based on the outcome of the if statement.

If you did not include the @column the data would not display in your report as a result
of the if statement, but the column still would because you had drawn it in your template.

The example will render the following output:

If the same XML data contained the type attribute set to "PRIVATE" the following output
would be rendered from the same template:

Creating an RTF Template 2-29

Conditional Cell Highlighting
You can conditionally highlight individual cells, columns, or rows in your final
output. The following example demonstrates how to conditionally highlight a cell
based on a value in the XML file.

For this example we will use the following XML:

<accounts>
<account>

<number>1-100-3333</number>
<debit>100</debit>
<credit>300</credit>

</account>
<account>

<number>1-101-3533</number>
<debit>220</debit>
<credit>30</credit>

</account>
<account>

<number>1-130-3343</number>
<debit>240</debit>
<credit>1100</credit>

</account>
<account>

<number>1-153-3033</number>
<debit>3000</debit>
<credit>300</credit>

</account>
</accounts>

The template lists the accounts and their credit and debit values. In the final report we
want to highlight in red any cell whose value is greater than 1000. The template for
this is shown in the following graphic:

The field definitions for the template are shown in the following table:

2-30 Oracle XML Publisher User’s Guide

Default Text Entry Form Field Entry Description

FE:Account <?for-each:account?> Opens the for each-loop for the
element account .

1-232-4444 <?number?> The placeholder for the number
element from the XML file.

CH1 <?if:debit>1000?><xsl:
attribute xdofo:ctx=
"block" name="background-
color">red</xsl:
attribute><?end if?>

This field holds the code to highlight
the cell red if the debit amount is
greater than 1000.

100.00 <?debit?> The placeholder for the debit
element.

CH2 <?if:credit>1000?><xsl:
attribute xdofo:ctx=
"block" name="background-
color">red</xsl:
attribute><?end if?>

This field holds the code to highlight
the cell red if the credit amount is
greater than 1000.

100.00 <?credit?> The placeholder for the credit
element.

EFE <?end for-each?> Closes the for-each loop.

The highlighting code for the debit column as shown in the table is:

<?if:debit>1000?>
<xsl:attribute

xdofo:ctx="block" name="background-color">red
</xsl:attribute>

<?end if?>

The "if" statement is testing if the debit value is greater than 1000. If it is, then the
next lines are invoked. Notice that the example embeds native XSL code inside the
"if" statement.

The "attribute" element allows you to modify properties in the XSL.

The xdo:ctx component is an XML Publisher feature that allows you to adjust XSL
attributes at any level in the template. In this case, the background color attribute
is changed to red.

To change the color attribute, you can use either the standard HTML names (for
example, red, white, green) or you can use the hexadecimal color definition (for
example, #FFFFF).

The output from this template is displayed in the following figure:

Creating an RTF Template 2-31

Regrouping the XML Data
The RTF template supports the XSL 2.0 for-each-group standard that allows you to
regroup XML data into hierarchies that are not present in the original data. With this
feature, your template does not have to follow the hierarchy of the source XML file. You
are therefore no longer limited by the structure of your data source.

XML Sample

To demonstrate the for-each-group standard, the following XML data sample of a CD
catalog listing will be regrouped in a template:

<CATALOG>
<CD>

<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>

</CD>
<CD>

<TITLE>Hide Your Heart</TITLE>
<ARTIST>Bonnie Tylor</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>

</CD>
<CD>

<TITLE>Still got the blues</TITLE>
<ARTIST>Gary More</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>10.20</PRICE>
<YEAR>1990</YEAR>

</CD>
<CD>

<TITLE>This is US</TITLE>
<ARTIST>Gary Lee</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>12.20</PRICE>
<YEAR>1990</YEAR>

</CD>

Using the regrouping syntax, you can create a report of this data that groups the CDs by
country and then by year. You are not limited by the data structure presented.

Regrouping Syntax

To regroup the data, use the following syntax:

<?for-each-group: BASE-GROUP; GROUPING-ELEMENT?>

For example, to regroup the CD listing by COUNTRY, enter the following in your
template:

<?for-each-group:CD;COUNTRY?>

The elements that were at the same hierarchy level as COUNTRY are now children of
COUNTRY. You can then refer to the elements of the group to display the values desired.

2-32 Oracle XML Publisher User’s Guide

To establish nested groupings within the already defined group, use the following syntax:

<?for-each:current-group(); GROUPING-ELEMENT?>

For example, after declaring the CD grouping by COUNTRY, you can then further group
by YEAR within COUNTRY as follows:

<?for-each:current-group();YEAR?>

At runtime, XML Publisher will loop through the occurrences of the new
groupings, displaying the fields that you defined in your template.

Note: This syntax is a simplification of the XSL for-each-group syntax. If
you choose not to use the simplified syntax above, you can use the XSL
syntax as shown below. The XSL syntax can only be used within a
form field of the template.

<xsl:for-each-group
select=expression
group-by="string expression"
group-adjacent="string expression"
group-starting-with=pattern>
<!--Content: (xsl:sort*, content-constructor) -->

</xsl:for-each-group>

Template Example

The following figure shows a template that displays the CDs by Country, then Year, and
lists the details for each CD:

The following table shows the XML Publisher syntax entries made in the form fields of
the preceding template:

Creating an RTF Template 2-33

Default Text Entry Form Field Help Text Entry Description

Group by Country <?for-each-group:
CD;COUNTRY?>

The <?for-each-group:
CD;COUNTRY?>tag declares
the new group. It regroups
the existing CD group by the
COUNTRY element.

USA <?COUNTRY?> Placeholder to display the data
value of the COUNTRY tag.

Group by Year <?for-each-group:
current-gr oup();YEAR?
>

The <?for-each-group:
current-group();YEAR?
> tag regroups the current
group (that is, COUNTRY), by
the YEAR element.

2000 <?YEAR?> Placeholder to display the
data value of the YEAR tag.

Group: Details <?for-each:current-
group()?>

Once the data is grouped
by COUNTRY and then by
YEAR, the <?for-each:
current-group()?>
command is used to loop
through the elements of the
current group (that is, YEAR)
and render the data values
(TITLE, ARTIST, and PRICE)
in the table.

My CD <?TITLE?> Placeholder to display the
data value of the TITLE tag.

John Doe <?ARTIST?> Placeholder to display the
data value of the ARTIST tag.

1.00 <?PRICE?> Placeholder to display the
data value of the PRICE tag.

End Group <?end for-each?> Closes out the <?for-each:
current-group()?> tag.

End Group by Year <?end for-each-group?
>

Closes out the <?for-
each-group:current-
group();YEAR?> tag.

End Group by Country <?end for-each-group?
>

Closes out the

<?for-each-group:
CD;COUNTRY?>tag.

This template produces the following output when merged with the XML file:

2-34 Oracle XML Publisher User’s Guide

Regrouping by an Expression

Regrouping by an expression allows you to apply a function or command to a data
element, and then group the data by the returned result.

To use this feature, state the expression within the regrouping syntax as follows:

<?for-each :BASE-GROUP; GROUPING-EXPRESSION?>
Example
To demonstrate this feature, an XML data sample that simply contains average
temperatures per month will be used as input to a template that calculates the number of
months having an average temperature within a certain range.

The following XML sample is composed of <temp> groups. Each <temp> group
contains a <month> element and a <degree> element, which contains the average
temperature for that month:

Creating an RTF Template 2-35

<temps>
<temp>

<month>Jan</month>
<degree>11</degree>

</temp>
<temp>

<month>Feb</month>
<degree>14</degree>

</temp>
<temp>

<month>Mar</month>
<degree>16</degree>

</temp>
<temp>

<month>Apr</month>
<degree>20</degree>

</temp>
<temp>

<month>May</month>
<degree>31</degree>

</temp>
<temp>

<month>Jun</month>
<degree>34</degree>

</temp>
<temp>

<month>Jul</month>
<degree>39</degree>

</temp>
<temp>

<month>Aug</month>
<degree>38</degree>

</temp>
<temp>

<month>Sep</month>
<degree>24</degree>

</temp>
<temp>

<month>Oct</month>
<degree>28</degree>

</temp>
<temp>

<month>Nov</month>
<degree>18</degree>

</temp>
<temp>

<month>Dec</month>
<degree>8</degree>

</temp>
</temps>

You want to display this data in a format showing temperature ranges and a count of the
months that have an average temperature to satisfy those ranges, as follows:

2-36 Oracle XML Publisher User’s Guide

Using the for-each-group command you can apply an expression to the <degree>
element that will enable you to group the temperatures by increments of 10 degrees. You
can then display a count of the members of each grouping, which will be the number of
months having an average temperature that falls within each range.

The template to create the above report is shown in the following figure:

The following table shows the form field entries made in the template:

Default Text Entry Form Field Help Text Entry

Group by TmpRng <?for-each-group:
temp;floor(degree div 10?>

<?sort:floor(degree div 10)?>

Range <?concat(floor(degree div
10)*10,’ F to ’,floor(degree
div 10) *10+10, F’)?>

Months <?count(current-group())?>

End TmpRng <?end for-each-group?>

Note the following about the form field tags:

• The <?for-each-group:temp;floor(degree div 10)?> is the regrouping
tag. It specifies that for the existing <temp> group, the elements are to be regrouped
by the expression, floor(degree div 10) . The floor function is an XSL
function that returns the highest integer that is not greater than the argument (for
example, 1.2 returns 1, 0.8 returns 0).

In this case, it returns the value of the <degree> element, which is then
divided by 10. This will generate the following values from the XML
data: 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, and 0.

Creating an RTF Template 2-37

These are sorted, so that when processed, the following four groups will be
created: 0, 1, 2, and 3.

• The <?concat(floor(degree div 10)*10,’F to ’, floor(degree
div 10)*10+10,’F’?> displays the temperature ranges in the row header in
increments of 10. The expression concatenates the value of the current group times
10 with the value of the current group times 10 plus 10.

Therefore, for the first group, 0, the row heading displays 0 to (0 +10), or "0 F to 10 F".

• The <?count(current-group())?> uses the count function to count the
members of the current group (the number of temperatures that satisfy the range).

• The <?end for-each-group?> tag closes out the grouping.

Chart Support
XML Publisher leverages the graph capabilities of Oracle Business Intelligence Beans
(BI Beans) to enable you to define charts and graphs in your RTF templates that will
be populated with data at runtime. XML Publisher supports all the graph types and
component attributes available from the BI Beans graph DTD.

The BI Beans graph DTD is fully documented in the following technical note available
from the Oracle Technology Network: "DTD for Customizing Graphs in Oracle Reports."

The following summarizes the steps to add a chart to your template. These steps will be
discussed in detail in the example that follows::

1. Insert a dummy image in your template to define the size and position of your chart.

2. Add the data definition for the chart to the Alternative text box of the dummy
image. The data definition of the chart includes XSL commands

3. At runtime XML Publisher calls the BI Beans applications to render the image that is
then inserted into the final output document.

Adding a Sample Chart
Following is a piece of XML data showing total sales by company division.

2-38 Oracle XML Publisher User’s Guide

<sales year=2004>
<division>

<name>Groceries</name>
<totalsales>3810</totalsales>
<costofsales>2100</costofsales>

</division>
<division>

<name>Toys</name>
<totalsales>2432</totalsales>
<costofsales>1200</costofsales>

</division>
<division>

<name>Cars</name>
<totalsales>6753</totalsales>
<costofsales>4100</costofsales>

</division>
<division>

<name>Hardware</name>
<totalsales>2543</totalsales>
<costofsales>1400</costofsales>

</division>
<division>

<name>Electronics</name>
<totalsales>5965</totalsales>
<costofsales>3560</costofsales>

</division>
</sales>

This example will show how to insert a chart into your template to display this data as
follows:

Creating an RTF Template 2-39

Note the following attributes of this chart:

• The style is a vertical bar chart.

• The chart displays a background grid.

• The components are colored.

• Sales totals are shown as Y-axis labels

• Divisions are shown as X-axis labels

• The chart is titled

• The chart displays a legend

Each of these properties can be customized to suit individual report requirements.

Inserting the Dummy Image

The first step is to add a dummy image to the template in the position you want the
chart to appear. The image size will define how big the chart image will be in the
final document.

Important: You must insert the dummy image as a "Picture" and not
any other kind of object.

The image can be embedded inside a for-each loop like any other form field if you want
the chart to be repeated in the output based on the repeating data. In this example, the
chart is defined within the sales year group so that a chart will be generated for each
year of data present in the XML file.

Open the Format Picture palette for the image that you created and select the Web
tab. Use the Alternative text entry box to enter the code to define the chart characteristics
and data definition for the chart.

2-40 Oracle XML Publisher User’s Guide

Adding Code to the Alternative Text Box

The following graphic shows an example of the XML Publisher code in the Format
Picture Alternative text box:

The content of the Alternative text represents the chart that will be rendered in the final
document. For this chart, the text is as follows:

Creating an RTF Template 2-41

chart:
<Graph graphType = "BAR_VERT_CLUST">

<Title text="Company Sales 2004" visible="true" horizont alAlignme
nt="CENTER"/>

<Y1Title text="Sales in Thousands" visible="true"/>
<O1Title text="Division" visible="true"/>
<LocalGridData colCount="{count(//division)}" rowCoun t="1">

<RowLabels>
<Label>Total Sales $1000s</Label>

</RowLabels>
<ColLabels>

<xsl:for-each select="//division">
<Label>

<xsl:value-of select="name"/>
</Label>

</xsl:for-each>
</ColLabels>
<DataValues>

<RowData>
<xsl:for-each select="//division">

<Cell>
<xsl:value-of select="totalsales"/>

</Cell>
</xsl:for-each>

</RowData>
</DataValues>

</LocalGridData>
</Graph>

The first element of your chart text must be the chart: element to inform the RTF
parser that the following code describes a chart object.

Next is the opening <Graph> tag. Note that the whole of the code resides within
the tags of the <Graph> element. This element has an attribute to define the chart
type: graphType . If this attribute not declared, the default chart is a vertical bar
chart. BI Beans supports many different chart types. Several more types are presented in
this section. For a complete listing, see the BI Beans graph DTD documentation.

The following code defines the chart type and attributes:

<Title text="Company Sales 2004" visible="true" horizont alAlignme
nt="CENTER"/>

<Y1Title text="Sales in Thousands" visible="true"/>
<O1Title text="Division" visible="true"/>

All of these values can be declared or you can substitute values from the XML data at
runtime. For example, you can retrieve the chart title from an XML tag by using the
following syntax:

<Title text="{CHARTTITLE}" visible="true" horizontalAl ighment="CE
NTER"/>

where "CHARTTITLE" is the XML tag name that contains the chart title. Note that
the tag name is enclosed in curly braces.

The next section defines the column and row labels:

2-42 Oracle XML Publisher User’s Guide

<LocalGridData colCount="{count(//division)}" rowCoun t="1">
<RowLabels>

<Label>Total Sales $1000s</Label>
</RowLabels>
<ColLabels>

<xsl:for-each select="//division">
<Label>

<xsl:value-of select="name"/>
</Label>

</xsl:for-each>
</ColLabels>

The LocalGridData element has two attributes: colCount and rowCount . These
define the number of columns and rows that will be shown at runtime. In this example, a
count function calculates the number of columns to render:

colCount="{count(//division)}"

The rowCount has been hard-coded to 1. This value defines the number of sets of data
to be charted. In this case it is 1.

Next the code defines the row and column labels. These can be declared, or a value
from the XML data can be substituted at runtime. The row label will be used in the
chart legend (that is, "Total Sales $1000s").

The column labels for this example are derived from the data: Groceries, Toys, Cars, and
so on. This is done using a for-each loop:

<ColLabels>
<xsl:for-each select="//division">

<Label>
<xsl:value-of select="name"/>

</Label>
</xsl:for-each>

</ColLabels>

This code loops through the <division> group and inserts the value of the <name>
element into the <Label> tag. At runtime, this will generate the following XML:

<ColLabels>
<Label>Groceries</Label>
<Label>Toys</Label>
<Label>Cars</Label>
<Label>Hardware</Label>
<Label>Electronics</Label>

</ColLabels>

The next section defines the actual data values to chart:

<DataValues>
<RowData>

<xsl:for-each select="//division">
<Cell>

<xsl:value-of select="totalsales"/>
</Cell>

</xsl:for-each>
</RowData>

</DataValues>

Creating an RTF Template 2-43

Similar to the labels section, the code loops through the data to build the XML that is
passed to the BI Beans rendering engine. This will generate the following XML:

<DataValues>
<RowData>

<Cell>3810</Cell>
<Cell>2432</Cell>
<Cell>6753</Cell>
<Cell>2543</Cell>
<Cell>5965</Cell>

</RowData>
</DataValues>

Additional Chart Samples
You can also display this data in a pie chart as follows:

The following is the code added to the template to render this chart at runtime:

2-44 Oracle XML Publisher User’s Guide

chart:
<Graph graphType="PIE">

<Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>

<LocalGridData rowCount="{count(//division)}" colCoun t="1">
<RowLabels>
<xsl:for-each select="//division">
<Label>

<xsl:value-of select="name"/>
</Label>
</xsl:for-each>
</RowLabels>
<DataValues>

<xsl:for-each select="//division">
<RowData>

<Cell>
<xsl:value-of select="totalsales"/>

</Cell>
</RowData>

</xsl:for-each>
</DataValues>

</LocalGridData>
</Graph>

Horizontal Bar Chart Sample
The following example shows total sales and cost of sales charted in a horizontal
bar format. This example also adds the data from the cost of sales element
(<costofsales>) to the chart:

Creating an RTF Template 2-45

The following code defines this chart in the template:

chart:
<Graph graphType = "BAR_HORIZ_CLUST">

<Title text="Company Sales 2004" visible="true" horizont alAlignme
nt="CENTER"/>

<LocalGridData colCount="{count(//division)}" rowCoun t="2">
<RowLabels>

<Label>Total Sales (’000s)</Label>
<Label>Cost of Sales (’000s)</Label>

</RowLabels>
<ColLabels>

<xsl:for-each select="//division">
<Label><xsl:value-of select="name"/></Label>

</xsl:for-each>
</ColLabels>
<DataValues>

<RowData>
<xsl:for-each select="//division">

<Cell><xsl:value-of select="totalsales"/></Cell>
</xsl:for-each>

</RowData>
<RowData>

<xsl:for-each select="//division">
<Cell><xsl:value-of select="costofsales"/></Cell>
</xsl:for-each>

</RowData>
</DataValues>

</LocalGridData>
</Graph>

To accommodate the second set of data, In this the rowCount attribute for the
LocalGridData element is set to 2. Also note the DataValues section defines two
sets of data: one for Total Sales and one for Cost of Sales.

Changing the Appearance of Your Chart
There are many attributes available from the BI Beans graph DTD that you can
manipulate to change the look and feel of your chart. For example the previous chart
can be changed to remove the grid, place a graduated background, and change the bar
colors and fonts:

2-46 Oracle XML Publisher User’s Guide

The code to support this is as follows:

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<SeriesItems>

<Series id="0" color="#ffcc00"/>
<Series id="1" color="#ff6600"/>

</SeriesItems>
<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>
<MarkerText visible="true" markerTextPlace="MTP_CENTE R"/>
<PlotArea borderTransparent="true">

<SFX fillType="FT_GRADIENT" gradientDirection="GD_LEF T"
gradientNumPins="300">
<GradientPinStyle pinIndex="1" position="1"

gradientPinLeftColor="#999999"
gradientPinRightColor="#cc6600"/>

</SFX>
</PlotArea>
<Title text="Company Sales 2004" visible="true">

<GraphFont name="Tahoma" bold="false"/>
</Title>
. . .
</Graph>

The colors for the bars are defined in the SeriesIte m section. The colors are defined
in hexadecimal format as follows:

Creating an RTF Template 2-47

<SeriesItems>
<Series id="0" color="#ffcc00"/>
<Series id="1" color="#ff6600"/>

</SeriesItems>

The following code hides the chart grid:

<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>

The MarkerText tag places the data values on the chart bars:

<MarkerText visible="true" markerTextPlace="MTP_CENTE R"/>

The PlotArea section defines the background. The SFX element establishes the
gradient and the borderTransparent attribute hides the plot border:

<PlotArea borderTransparent="true">
<SFX fillType="FT_GRADIENT" gradientDirection="GD_LEF T"

gradientNumPins="300">
<GradientPinStyle pinIndex="1" position="1"

gradientPinLeftColor="#999999"
gradientPinRightColor="#cc6600"/>

</SFX>
</PlotArea>

The Title text tag has also been updated to specify a new font type and size:

<Title text="Company Sales 2004" visible="true">
<GraphFont name="Tahoma" bold="false"/>

</Title>

Advanced Design Options
If you have more complex design requirements, XML Publisher supports the use of XSL
and XSL:FO elements, and has also extended a set of SQL functions.

Using XSL Elements
You can use any XSL element in your template by inserting the XSL syntax into a form
field.

If you are using the basic RTF method, you cannot insert XSL syntax directly into your
template. XML Publisher has extended the following XSL elements for use in RTF
templates.

To use these in a basic-method RTF template, you must use the XML Publisher Tag form
of the XSL element. If you are using form fields, use either option.

Apply a Template Rule

Use this element to apply a template rule to the current element’s child nodes.

XSL Syntax: <xsl:apply-templates select="name">

XML Publisher Tag: <?apply: name?>

This function applies to <xsl:template-match=" n" > where n is the element name.

Copy the Current Node

Use this element to create a copy of the current node.

2-48 Oracle XML Publisher User’s Guide

XSL Syntax: <xsl:copy-of select="name">

XML Publisher Tag: <?copy-of: name?>

Call Template

Use this element to call a named template to be inserted into or applied to the current
template. For example, use this feature to render a table multiple times.

XSL Syntax: <xsl:call-template name="name">

XML Publisher Tag: <?call-template: name?>

Template Declaration

Use this element to apply a set of rules when a specified node is matched.

XSL Syntax: <xsl:template name="name">

XML Publisher Tag: <?template: name?>

Variable Declaration

Use this element to declare a local or global variable.

XSL Syntax: <xsl:variable name="name">

XML Publisher Tag: <?variable: name?>

Example:

<xsl:variable name="color" select="’red’"/>

Assigns the value "red" to the "color" variable. The variable can then be referenced in
the template.

Import Stylesheet

Use this element to import the contents of one style sheet into another.

Note: An imported style sheet has lower precedence than the importing
style sheet.

XSL Syntax: <xsl:import href="url">

XML Publisher Tag: <?import: url?>

Define the Root Element of the Stylesheet

This and the <xsl:stylesheet> element are completely synonymous elements. Both
are used to define the root element of the style sheet.

Note: An included style sheet has the same precedence as the including
style sheet.

XSL Syntax: <xsl:stylesheet xmlns:x="url">

XML Publisher Tag: <?namespace:x=url?>

Note: The namespace must be declared in the template. See Namespace
Support, page 2-19.

Creating an RTF Template 2-49

Native XSL Number Formatting

The native XSL format-number function takes the basic format:

format-number(number,format,[decimalformat])

Parameter Description

number Required. Specifies the number to be formatted.

format Required. Specifies the format pattern. Use the following
characters to specify the pattern:

• # (Denotes a digit. Example: ####)

• 0 (Denotes leading and following zeros. Example: 0000.00)

• · (The position of the decimal point Example: ###.##)

• , (The group separator for thousands. Example: ###,###.##)

• % (Displays the number as a percentage. Example: ##%)

• ; (Pattern separator. The first pattern will be used for positive
numbers and the second for negative numbers)

decimalformat Optional. For more information on the decimal format please
consult any basic XSLT manual.

Using FO Elements
You can use the native FO syntax inside the Microsoft Word form fields.

For more information on XSL-FO see the W3C Website at http://www.w3.org/2002/
08/XSLFOsummary.html

Best Practices

Using Tables
To optimize the exact placement of elements when the template is transformed into
XSL, it is recommended that you use tables to define the placement and alignment.

Note the use of tables in the Payables Invoice Register:

2-50 Oracle XML Publisher User’s Guide

http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html

A table is used in the header to place the image, the title, and the date in exact
positions. By using a table, each element can be aligned within its own cell; thereby
allowing a left alignment for the image, a center alignment for the title, and a right
alignment for the date and page number.

A table is also used for the totals line of the report to achieve alignment with the entries
in the Invoices table.

Tables used for formatting only can be hidden at runtime by turning off (hiding) the
table gridlines.

Creating an RTF Template 2-51

3
Creating a P DF Template

This chapter covers the following topics:

• PDF Template Overview

• Designing the Layout

• Adding Markup to the Template Layout

• Adding Page Numbers and Page Breaks

• Performing Calculations

• Completed PDF Template

• Runtime Behavior

• Creating a Template from a Downloaded PDF

PDF Template Overview
To create a PDF template, you take any existing PDF document and apply the XML
Publisher markup. Because the source of the PDF document does not matter, you have
multiple design options. For example:

• Design the layout of your template using any application that generates documents
that can be converted to PDF

• Scan a paper document to use as a template

• Download a PDF document from a third party Website

Note: The steps required to create a template from a third-party PDF
depend on whether form fields have been added to the document. For
more information, see Creating a Template from a Downloaded PDF,
page 3-14.

If you are designing the layout, note that once you have converted to PDF, your layout
is treated like a set background. When you mark up the template, you draw fields on
top of this background. To edit the layout, you must edit your original document
and then convert back to PDF.

For this reason, the PDF template is not recommended for documents that will require
frequent updates to the layout. However, it is appropriate for forms that will have a
fixed layout, such as invoices or purchase orders.

Creating a PDF Template 3-1

Supported Modes
XML Publisher supports Adobe Acrobat 5.0 (PDF specification version 1.4). If you are
using Adobe Acrobat 6.0, use the Reduce File Size Option (from the File menu) to save
your file as Adobe Acrobat 5.0 compatible.

For PDF conversion, XML Publisher supports any PDF conversion utility, such as Adobe
Acrobat Distiller.

Designing the Layout
To design the layout of your template you can use any desktop application that generates
documents that can be converted to PDF. Or, scan in an original paper document to
use as the background for the template.

The following is the layout for a sample purchase order. It was designed using Microsoft
Word and converted to PDF using Adobe Acrobat Distiller.

3-2 Oracle XML Publisher User’s Guide

The following is the XML data that will be used as input to this template:

Creating a PDF Template 3-3

<?xml version="1.0"?>
<POXPRPOP2>

<G_HEADERS>
<POH_PO_NUM>1190-1</POH_PO_NUM>
<POH_REVISION_NUM>0</POH_REVISION_NUM>
<POH_SHIP_ADDRESS_LINE1>3455 108th Avenue</POH_SHIP_A DDRESS_LINE

1>
<POH_SHIP_ADDRESS_LINE2></POH_SHIP_ADDRESS_LINE2>
<POH_SHIP_ADDRESS_LINE3></POH_SHIP_ADDRESS_LINE3>
<POH_SHIP_ADR_INFO>Seattle, WA 98101</POH_SHIP_ADR_IN FO>
<POH_SHIP_COUNTRY>United States</POH_SHIP_COUNTRY>
<POH_VENDOR_NAME>Allied Manufacturing</POH_VENDOR_NA ME>
<POH_VENDOR_ADDRESS_LINE1>1145 Brokaw Road</POH_VENDOR_ADDRESS_LIN
E1>
<POH_VENDOR_ADR_INFO>San Jose, CA 95034</POH_VENDOR_ADR_INFO>
<POH_VENDOR_COUNTRY>United States</POH_VENDOR_COUNTRY>
<POH_BILL_ADDRESS_LINE1>90 Fifth Avenue</POH_BILL_ADD RESS_LINE1>
<POH_BILL_ADR_INFO>New York, NY 10022-3422</POH_BILL_A DR_INFO>
<POH_BILL_COUNTRY>United States</POH_BILL_COUNTRY>
<POH_BUYER>Smith, J</POH_BUYER>
<POH_PAYMENT_TERMS>45 Net (terms date + 45)</POH_PAYMENT_TERMS>
<POH_SHIP_VIA>UPS</POH_SHIP_VIA>
<POH_FREIGHT_TERMS>Due</POH_FREIGHT_TERMS>
<POH_CURRENCY_CODE>USD</POH_CURRENCY_CODE>
<POH_CURRENCY_CONVERSION_RATE></POH_CURRENCY_CONVERSION_RATE>
<LIST_G_LINES>
<G_LINES>
<POL_LINE_NUM>1</POL_LINE_NUM>
<POL_VENDOR_PRODUCT_NUM></POL_VENDOR_PRODUCT_NUM>
<POL_ITEM_DESCRIPTION>PCMCIA II Card Holder</POL_ITEM_ DESCRIPTION>
<POL_QUANTITY_TO_PRINT></POL_QUANTITY_TO_PRINT>
<POL_UNIT_OF_MEASURE>Each</POL_UNIT_OF_MEASURE>
<POL_PRICE_TO_PRINT>15</POL_PRICE_TO_PRINT>
<C_FLEX_ITEM>CM16374</C_FLEX_ITEM>
<C_FLEX_ITEM_DISP>CM16374</C_FLEX_ITEM_DISP>
<PLL_QUANTITY_ORDERED>7500</PLL_QUANTITY_ORDERED>
<C_AMOUNT_PLL>112500</C_AMOUNT_PLL>
<C_AMOUNT_PLL_DISP> 112,500.00 </C_AMOUNT_PLL_DISP>
</G_LINES>
</LIST_G_LINES>
<C_AMT_POL_RELEASE_TOTAL_ROUND>312420/<C_AMT_POL_RELEASE_TOTAL_ROU
ND>
</G_HEADERS>
</POXPRPOP2>

Adding Markup to the Template Layout
After you have converted your document to PDF, you define form fields that will display
the data from the XML input file. These form fields are placeholders for the data.

The process of associating the XML data to the PDF template is the same as the
process for the RTF template. See: Associating the XML Data to the Template
Layout: Associating the XML data to the template layout, page 2- 2

When you draw the form fields in Adobe Acrobat, you are drawing them on top of the
layout that you designed. There is not a relationship between the design elements on

3-4 Oracle XML Publisher User’s Guide

your template and the form fields. You therefore must place the fields exactly where you
want the data to display on the template.

Creating a Placeholder
You can define a placeholder as text, a check box, or a radio button, depending on how
you want the data presented.

Naming the Placeholder

When you enter a name for the placeholder, enter either the XML source field name or
assign a different, unique name.

Note: The placeholder name must not contain the "." character.

If you assign a different name, you must map the template field to the data source field
when you register the template in the Template Manager. Mapping requires that you
load the XML schema. If you give the template field the same name as the XML source
field, no mapping is required.

For information on mapping fields in the Template Manager, see Mapping PDF Template
Fields, page 5- 7 .

Creating a Text Placeholder

To create a text placeholder in your PDF document:

1. Select the Form Tool from the Acrobat toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Field Properties dialog box.

3. In the Name field of the Field Properties dialog box, enter a name for the field.

4. Select Text from the Type drop down menu.

You can use the Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data
type validation, visibility, formatting

5. If the field is not placed exactly where desired, drag the field for exact placement.

Supported Field Properties Options

XML Publisher supports the following options available from the Field Properties dialog
box. For more information about these options, see the Adobe Acrobat documentation.

• Appearance

• Border Settings: color, background, width, and style

• Text Settings: color, font, size

• Common Properties: read only, required, visible/hidden, orientation (in degrees)

• Border Style

• Options tab

• Multi-line

• Scrolling Text

Creating a PDF Template 3-5

• Format tab - Number category options only

• Calculate tab - all calculation functions

Creating a Check Box

A check box is used to present options from which more than one can be selected. Each
check box represents a different data element. You define the value that will cause
the check box to display as "checked."

For example, a form contains a check box listing of automobile options such as Power
Steering, Power Windows, Sunroof, and Alloy Wheels. Each of these represents a
different element from the XML file. If the XML file contains a value of "Y" for any of
these fields, you want the check box to display as checked. All or none of these options
may be selected.

To create a check box field:

1. Insert the form field.

2. In the Field Properties dialog box, enter a Name for the field.

3. Select Check Box from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match
to enable the "checked" state.

For the example, enter "Y" for each check box field.

Creating a Radio Button Group

A radio button group is used to display options from which only one can be selected.

For example, your XML data file contains a field called <SHIPMENT_METHOD>. The
possible values for this field are "Standard" or "Overnight". You represent this
field in your form with two radio buttons, one labeled "Standard" and one
labeled "Overnight". Define both radio button fields as placeholders for the
<SHIPMENT_METHOD> data field. For one field, define the "on" state when the value
is "Standard". For the other, define the "on" state when the value is "Overnight".

To create a radio button group:

1. Insert the form field.

2. On the Field Properties dialog box, enter a Name for the field. Each radio button
you define to represent this value can be named differently, but must be mapped
to the same XML data field.

3. Select Radio Button from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter "Overnight"
for the field labeled "Overnight".

3-6 Oracle XML Publisher User’s Guide

Defining Groups of Repeating Fields
In the PDF template, you explicitly define the area on the page that will contain the
repeating fields. For example, on the purchase order template, the repeating fields
should display in the block of space between the Item header row and the Total field.

To define the area to contain the group of repeating fields:

1. Insert a form field at the beginning of the area that is to contain the group.

2. In the Name field of the Field Properties window, enter any name you choose. This
field is not mapped.

3. Select Text from the Type drop down list.

4. In the Short Description field of the Field Properties window, enter the following
syntax:

<?rep_field="BODY_START"?>

5. Define the end of the group area by inserting a form field at the end of the area the
that is to contain the group.

6. In the Name field of the Field Properties window, enter any name you choose. This
field is not mapped.

7. Select Text from the Type drop down list.

8. In the Short Description field of the Field Properties window, enter the following
syntax:

<?rep_field="BODY_END"?>

To define a group of repeating fields:

1. Insert a placeholder for the first element of the group.

Note: The placement of this field in relationship to the
BODY_START tag defines the distance between the repeating rows
for each occurrence. See Placement of Repeating Fields, page 3-13.

2. For each element in the group, enter the following syntax in the Short Description
field:

<?rep_field="T1_G n"?>

where n is the row number of the item on the template.

For example, the group in the sample report is laid out in three rows.

• For the fields belonging to the row that begins with "PO_LINE_NUM" enter

<?rep_field="T1_G1"?>

• For the fields belonging to the row that begins with "C_FLEX_ITEM_DISP" enter

<?rep_field="T1_G2"?>

• For the fields belonging to the row that begins with "C_SHIP_TO_ADDRESS"
enter

<?rep_field="T1_G3"?>

The following graphic shows the entries for the Short Description field:

Creating a PDF Template 3-7

3. (Optional) Align your fields. To ensure proper alignment of a row of fields, it is
recommended that you use Adobe Acrobat’s alignment feature.

Adding Page Numbers and Page Breaks
This section describes how to add the following page-features to your PDF template:

• Page Numbers

• Page Breaks

Adding Page Numbers
To add page numbers, define a field in the template where you want the page number to
appear and enter an initial value in that field as follows:

1. Decide the position on the template where you want the page number to be
displayed.

2. Create a placeholder field called @pagenum@(see Creating a Text Placeholder,
page 3- 5).

3. Enter a starting value for the page number in the Default field. If the XML data
includes a value for this field, the start value assigned in the template will be
overriden. If no start value is assigned, it will default to 1.

The figure below shows the Field Properties dialog for a page number field:

3-8 Oracle XML Publisher User’s Guide

Adding Page Breaks
You can define a page break in your template to occur after a repeatable field. To insert a
page break after the occurrence of a specific field, add the following to the syntax in the
Short Description field of the Field Properties dialog box:

page_break="yes"

For example:

<?rep_field="T1_G3", page_break="yes"?>

The following example demonstrates inserting a page break in a template. The XML
sample contains salaries of employees by department:

<?xml ve rsion="1.0"?>
<! - Generated by Oracle Reports version 6.0.8.22.0 - >
<ROOT>

<LIST_G _DEPTNO>
<G_DEPTNO>

<DEPTNO>10</DEPTNO>
<LIST_G _EMPNO>

<G_EMPNO>
<EMPNO>7782</EMPNO>
<ENAME>CLARK</ENAME>
<JOB>MANAGER</JOB>
<SAL>2450</SAL>

</G_EMPNO>
<G_EMPNO>

<EMPNO>7839</EMPNO>

Creating a PDF Template 3-9

<ENAME>KING</ENAME>
<JOB>PRESIDENT</JOB>
<SAL>5000</SAL>

</G_EMPNO>
<G_EMPNO>

<EMPNO>125</EMPNO>
<ENAME>KANG</ENAME>
<JOB>CLERK</JOB>
<SAL>2000</SAL>

</G_EMPNO>
<G_EMPNO>

<EMPNO>7934</EMPNO>
<ENAME>MILLER</ENAME>
<JOB>CLERK</JOB>
<SAL>1300</SAL>

</G_EMPNO>
<G_EMPNO>

<EMPNO>123</EMPNO>
<ENAME>MARY</ENAME>
<JOB>CLERK</JOB>
<SAL>400</SAL>

</G_EMPNO>
<G_EMPNO>

<EMPNO>124</EMPNO>
<ENAME>TOM</ENAME>
<JOB>CLERK</JOB>
<SAL>3000</SAL>

</G_EMPNO>
</LIST_G_EMPNO>
<SUMSALPERDEPTNO>9150</SUMSALPERDEPTNO>

</G_DEPTNO>

<G_DEPTNO>
<DEPTNO>30</DEPTNO>
<LIST_G_EMPNO>

.

.

.

</LIST_G_EMPNO>
<SUMSALPERDEPTNO>9400</SUMSALPERDEPTNO>

</G_DEPTNO>
</LIST_G_DEPTNO>
<SUMSALPERREPORT>29425</SUMSALPERREPORT>

</ROOT>

We want to report the salary information for each employee by department as shown in
the following template:

3-10 Oracle XML Publisher User’s Guide

To insert a page break after each department, insert the page break syntax in the short
description for the SUMSALPERDEPTNO field as follows:

<?rep_field="T1_G3", page_break="yes"?>

The Field Properties dialog box for the field is shown in the following figure:

Note that in order for the break to occur, the field must be populated with data from
the XML file.

The sample report with data is shown in the following figure:

Creating a PDF Template 3-11

Performing Calculations
Adobe Acrobat provides a calculation function in the Field Properties dialog box. To
create a field to display a calculated total on your report:

1. Create a text field to display the calculated total. Give the field any Name you choose.

2. In the Field Properties dialog box, select the Format tab.

3. Select Number from the Category list.

4. Select the Calculate tab.

3-12 Oracle XML Publisher User’s Guide

5. Select the radio button next to "Value is the operation of the following fields:"

6. Select sum from the drop down list.

7. Select the Pick... button and select the fields that you want totaled.

Completed PDF Template

Runtime Behavior

Placement of Repeating Fields
As already noted, the placement, spacing, and alignment of fields that you create on the
template are independent of the underlying form layout. At runtime, XML Publisher

Creating a PDF Template 3-13

places each repeating row of data according to calculations performed on the placement
of the rows of fields that you created, as follows:

First occurrence:

The first row of repeating fields will display exactly where you have placed them on
the template.

Second occurrence, single row:

To place the second occurrence of the group, XML Publisher calculates the distance
between the BODY_START tag and the first field of the first occurrence. The first field of
the second occurrence of the group will be placed this calculated distance below the
first occurrence.

Second occurrence, multiple rows:

If the first group contains multiple rows, the second occurrence of the group will be
placed the calculated distance below the last row of the first occurrence.

The distance between the rows within the group will be maintained as defined in the
first occurrence.

Overflow Data
When multiple pages are required to accommodate the occurrences of repeating rows of
data, each page will display identically except for the defined repeating area, which
will display the continuation of the repeating data. For example, if the item rows of the
purchase order extend past the area defined on the template, succeeding pages will
display all data from the purchase order form with the continuation of the item rows.

Creating a Template from a Downloaded PDF
The steps for creating a template from a downloaded PDF are:

1. Register the Applications data source in the Template Manager.

2. Register the PDF form as a Template in the Template Manager.

3. Use the mapping feature to map the fields from the downloaded PDF form to
your data source.

PDF forms downloaded from third party sources may or may not contain the form
fields already defined. To determine if the form fields are defined, open the document
in Adobe Acrobat and select the Form Tool. If the form fields are defined, they will
display in the document.

If the form fields are not defined, you must mark up the template. See Mark up the
Layout, page 3- 4 for instructions on inserting placeholders and defining groups of
repeating fields.

If the form fields are defined, you are ready to upload the document to the Template
Manager for field mapping.

3-14 Oracle XML Publisher User’s Guide

4
eText Templ ates

This chapter covers the following topics:

• Introduction

• Structure of eText Templates

• Constructing the Data Tables

• Setup Command Tables

• Expressions, Control Structure, and Functions

• Identifiers, Operators, and Literals

Introduction
An eText template is an RTF-based template that is used to generate text output for
Electronic Funds Transfer (EFT) and Electronic Data Interchange (EDI). At runtime, XML
Publisher applies this template to an input XML data file to create an output text file
that can be transmitted to a bank or other customer. Because the output is intended
for electronic communication, the eText templates must follow very specific format
instructions for exact placement of data.

Note: An EFT is an electronic transmission of financial data and
payments to banks in a specific fixed-position format flat file (text).

EDI is similar to EFT except it is not only limited to the transmission
of payment information to banks. It is often used as a method
of exchanging business documents, such as purchase orders and
invoices, between companies. EDI data is delimiter-based, and also
transmitted as a flat file (text).

Files in these formats are transmitted as flat files, rather than printed on paper. The
length of a record is often several hundred characters and therefore difficult to layout
on standard size paper.

To accommodate the record length, the EFT and EDI templates are designed using
tables. Each record is represented by a table. Each row in a table corresponds to a field in
a record. The columns of the table specify the position, length, and value of the field.

These formats can also require special handling of the data from the input XML file. This
special handling can be on a global level (for example, character replacement and
sequencing) or on a record level (for example, sorting). Commands to perform these

eText Templates 4-1

functions are declared in command rows. Global level commands are declared in setup
tables.

At runtime, XML Publisher constructs the output file according to the setup commands
and layout specifications in the tables.

Prerequisites

This section is intended for users who are familiar with EDI and EFT transactions
audience for this section preparers of eText templates will require both functional and
technical knowledge. That is, functional expertise to understand bank and country
specific payment format requirements and sufficient technical expertise to understand
XML data structure and eText specific coding syntax commands, functions, and
operations.

Structure of eText Templates
There are two types of eText templates: fixed-position based (EFT templates) and
delimiter-based (EDI templates). The templates are composed of a series of tables. The
tables define layout and setup commands and data field definitions. The required
data description columns for the two types of templates vary, but the commands and
functions available are the same. A table can contain just commands, or it can contain
commands and data fields.

The following graphic shows a sample from an EFT template to display the general
structure of command and data rows:

4-2 Oracle XML Publisher User’s Guide

Commands that apply globally, or commands that define program elements for the
template, are "setup" commands. These must be specified in the initial table(s) of the
template. Examples of setup commands are Template Type and Character Set.

In the data tables you provide the source XML data element name (or static data) and
the specific placement and formatting definitions required by the receiving bank
or entity. You can also define functions to be performed on the data and conditional
statements.

The data tables must always start with a command row that defines the "Level." The
Level associates the table to an element from the XML data file, and establishes the
hierarchy. The data fields that are then defined in the table for the Level correspond to
the child elements of the XML element.

The graphic below illustrates the relationship between the XML data hierarchy and
the template Level. The XML element "RequestHeader" is defined as the Level. The
data elements defined in the table ("FileID" and "Encryption") are children of the
RequestHeader element.

The order of the tables in the template determines the print order of the records. At
runtime the system loops through all the instances of the XML element corresponding to
a table (Level) and prints the records belonging to the table. The system then moves on
to the next table in the template. If tables are nested, the system will generate the nested
records of the child tables before moving on to the next parent instance.

eText Templates 4-3

Command Rows, Data Rows, and Data Column Header Rows

Command rows are used to specify commands in the template. Command rows always
have two columns: command name and command parameter. Command rows do not
have column headings. The commands control the overall setup and record structures of
the template.

Blank rows can be inserted anywhere in a table to improve readability. Most often
they are used in the setup table, between commands. Blank rows are ignored by XML
Publisher when the template is parsed.

Data Column Header Rows

Data column headers specify the column headings for the data fields (such as
Position, Length, Format, Padding, and Comments). A column header row usually
follows the Level command in a table (or the sorting command, if one is used). The
column header row must come before any data rows in the table. Additional empty
column header rows can be inserted at any position in a table to improve readability. The
empty rows will be ignored at runtime.

The required data column header rows vary depending on the template type. See
Structure of the Data Row, page 4-10.

Data Rows

Data rows contain the data fields to correspond to the column header rows.

The content of the data rows varies depending on the template type. See Structure of
the Data Row, page 4-10.

4-4 Oracle XML Publisher User’s Guide

Constructing the Data Tables
The data tables contain a combination of command rows and data field rows. Each data
table must begin with a Level command row that specifies its XML element. Each record
must begin with a New Record command that specifies the start of a new record, and the
end of a previous record (if any).

The required columns for the data fields vary depending on the Template Type.

Command Rows
The command rows always have two columns: command name and command
parameter. The supported commands are:

• Level

• New record

• Sort ascending

• Sort descending

• Display condition

The usage for each of these commands is described in the following sections.

Level Command

The level command associates a table with an XML element. The parameter for the level
command is an XML element. The level will be printed once for each instance the XML
element appears in the data input file.

The level commands define the hierarchy of the template. For example, Payment XML
data extracts are hierarchical. A batch can have multiple child payments, and a payment
can have multiple child invoices. This hierarchy is represented in XML as nested child
elements within a parent element. By associating the tables with XML elements through
the level command, the tables will also have the same hierarchical structure.

Similar to the closing tag of an XML element, the level command has a companion
end-level command. The child tables must be defined between the level and end-level
commands of the table defined for the parent element.

An XML element can be associated with only one level. All the records belonging to
a level must reside in the table of that level or within a nested table belonging to that
level. The end-level command will be specified at the end of the final table.

Following is a sample structure of an EFT file record layout:

• FileHeaderRecordA

• BatchHeaderRecordA

• BatchHeaderRecordB

PaymentRecordA

PaymentRecordB

• InvoiceRecordA

• Batch FooterRecordC

• BatchFooterRecordD

eText Templates 4-5

• FileFooterRecordB

Following would be its table layout:

<LEVEL> RequestHeader

<NEW RECORD> FileHeaderRecordA

Data rows for the FileHeaderRecordA

<LEVEL> Batch

<NEW RECORD> BatchHeaderRecordA

Data rows for the BatchHeaderRecordA

<NEW RECORD> BatchHeaderRecordB

Data rows for the BatchHeaderRecordB

<LEVEL> Payment

<NEW RECORD> PaymentRecordA

Data rows for the PaymentRecordA

<NEW RECORD> PaymentRecordB

Data rows for the PaymentRecordB

<LEVEL> Invoice

<NEW RECORD> InvoiceRecordA

Data rows for the InvoiceRecordA

<END LEVEL> Invoice

<END LEVEL> Payment

4-6 Oracle XML Publisher User’s Guide

<LEVEL> Batch

<NEW RECORD> BatchFooterRecordC

Data rows for the BatchFooterRecordC

<NEW RECORD> BatchFooterRecordD

Data rows for the BatchFooterRecordD

<END LEVEL> Batch

<LEVEL> RequestHeader

<NEW RECORD> FileFooterRecordB

Data rows for the FileFooterRecordB

<END LEVEL> RequestHeader

Multiple records for the same level can exist in the same table. However, each table can
only have one level defined. In the example above, the BatchHeaderRecordA and
BatchHeaderRecordB are both defined in the same table. However, note that the END
LEVEL for the Payment must be defined in its own separate table after the child element
Invoice. The Payment END LEVEL cannot reside in the same table as the Invoice Level.

Note that you do not have to use all the levels from the data extract in your template. For
example, if an extract contains the levels: RequestHeader > Batch > Payment >
Invoice, you can use just the batch and invoice levels. However, the hierarchy of the
levels must be maintained.

The table hierarchy determines the order that the records are printed. For each parent
XML element, the records of the corresponding parent table are printed in the order they
appear in the table. The system loops through the instances of the child XML elements
corresponding to the child tables and prints the child records according to their specified
order. The system then prints the records of the enclosing (end-level) parent table, if any.

For example, given the EFT template structure above, assume the input data file
contains the following:

• Batch1

• Payment1

• Invoice1

• Invoice2

• Payment2

• Invoice1

• Batch2

• Payment1

• Invoice1

eText Templates 4-7

• Invoice2

• Invoice3

This will generate the following printed records:

4-8 Oracle XML Publisher User’s Guide

Record Order Record Type Description

1 FileHeaderRecordA One header record for the EFT
file

2 BatchHeaderRecordA For Batch1

3 BatchHeaderRecordB For Batch1

4 PaymentRecordA For Batch1, Payment1

5 PaymentRecordB For Batch1, Payment1

6 InvoiceRecordA For Batch1, Payment1,
Invoice1

7 InvoiceRecordA For Batch1, Payment1,
Invoice2

8 PaymentRecordA For Batch1, Payment2

9 PaymentrecordB For Batch1, Payment2

10 InvoiceRecordA For Batch1, Payment2,
Invoice1

11 BatchFooterRecordC For Batch1

12 BatchFooterRecordD For Batch1

13 BatchHeaderRecordA For Batch2

14 BatchHeaderRecordB For Batch2

15 PaymentRecordA For Batch2, Payment1

16 PaymentRecordB For Batch2, Payment1

17 InvoiceRecordA For Batch2, Payment1,
Invoice1

18 InvoiceRecordA For Batch2, Payment1,
Invoice2

19 InvoiceRecordA For Batch2, Payment1,
Invoice3

20 BatchFooterRecordC For Batch2

21 BatchFooterRecordD For Batch2

22 FileFooterRecordB One footer record for the EFT
file

eText Templates 4-9

New Record Command

The new record command signifies the start of a record and the end of the previous
one, if any. Every record in a template must start with the new record command. The
record continues until the next new record command, or until the end of the table or
the end of the level command.

A record is a construct for the organization of the elements belonging to a level. The
record name is not associated with the XML input file.

A table can contain multiple records, and therefore multiple new record commands. All
the records in a table are at the same hierarchy level. They will be printed in the order
in which they are specified in the table.

The new record command can have a name as its parameter. This name becomes the
name for the record. The record name is also referred to as the record type. The name can
be used in the COUNT function for counting the generated instances of the record. See
COUNT, page 4-24 function, for more information.

Consecutive new record commands (or empty records) are not allowed.

Sort Ascending and Sort Descending Commands

Use the sort ascending and sort descending commands to sort the instances of a
level. Enter the elements you wish to sort by in a comma-separated list. This is an
optional command. When used, it must come right after the (first) level command and it
applies to all records of the level, even if the records are specified in multiple tables.

Display Condition Command

The display condition command specifies when the enclosed record or data field
group should be displayed. The command parameter is a boolean expression. When
it evaluates to true, the record or data field group is displayed. Otherwise the record
or data field group is skipped.

The display condition command can be used with either a record or a group of data
fields. When used with a record, the display condition command must follow the
new record command. When used with a group of data fields, the display condition
command must follow a data field row. In this case, the display condition will apply to
the rest of the fields through the end of the record.

Consecutive display condition commands are merged as AND conditions. The merged
display conditions apply to the same enclosed record or data field group.

Structure of the Data Rows
The output record data fields are represented in the template by table rows. In
FIXED_POSITION_BASED templates, each row has the following attributes (or
columns):

• Position

• Length

• Format

• Pad

• Data

• Comments

4-10 Oracle XML Publisher User’s Guide

The first five columns are required and must appear in the order listed.

For DELIMITER_BASED templates, each data row has the following attributes
(columns):

• Maximum Length

• Format

• Data

• Tag

• Comments

The first three columns are required and must be declared in the order stated.

In both template types, the Comments column is optional and ignored by the
system. You can insert additional information columns if you wish, as all columns after
the required ones are ignored.

The usage rules for these columns are as follows:

Position

Specifies the starting position of the field in the record. The unit is in number of
characters. This column is only used with FIXED_POSITION_BASED templates.

Length/Maximum Length

Specifies the length of the field. The unit is in number of characters. For
FIXED_POSITION_BASED templates, all the fields are fixed length. If the data is
less than the specified length, it is padded. If the data is longer, it is truncated. The
truncation always occurs on the right.

For DELIMITER_BASED templates, the maximum length of the field is specified. If the
data exceeds the maximum length, it will be truncated. Data is not padded if it is
less than the maximum length.

Format

Specifies the data type and format setting. There are three accepted data
types: Alpha, Number, and Date. Refer to Field Level Key Words, page 4-26 for their
usage.

Numeric data has two optional format settings: Integer and Decimal. Specify the
optional settings with the Number data type as follows:

• Number, Integer

• Number, Decimal

The Integer format uses only the whole number portion of a numeric value and discards
the decimal. The Decimal format uses only the decimal portion of the numeric value
and discards the integer portion.

The Date data type format setting must always be explicitly stated. The format setting
follows the SQL date styles, such as MMDDYY.

Some EDI (DELIMITER_BASED) formats use more descriptive data types. These are
mapped to the three template data types in the following table:

eText Templates 4-11

ASC X12 Data Type Format Template Data Type

A - Alphabetic Alpha

AN -Alphanumeric Alpha

B - Binary Number

CD - Composite data element N/A

CH - Character Alpha

DT - Date Date

FS - Fixed-length string Alpha

ID - Identifier Alpha

IV - Incrementing Value Number

Nn - Numeric Number

PW - Password Alpha

R - Decimal number Numer

TM - Time Date

Pad

This applies to FIXED_POSITION_BASED templates only. Specify the padding side
(L = left or R = right) and the character. Both numeric and alphanumeric fields can be
padded. If this field is not specified, Numeric fields are left-padded with "0"; Alpha
fields are right-padded with spaces.

Example usage:

• To pad a field on the left with a "0", enter the following in the Pad column field:

L, ’0’

• To pad a field on the right with a space, enter the following the Pad column field:

R, ’ ’

Data

Specifies the XML element from the data extract that is to populate the field. The data
column can simply contain the XML tag name, or it can contain expressions and
functions. For more information, see Expressions, Control Structure, and Functions,
page 4-23.

Tag

Acts as a comment column for DELIMITER_BASED templates. It specifies the reference
tag in EDIFACT formats, and the reference IDs in ASC X12.

4-12 Oracle XML Publisher User’s Guide

Comments

Use this column to note any free form comments to the template. Usually this column is
used to note the business requirement and usage of the data field.

Setup Command Tables

Setup Command Table

A template always begins with a table that specifies the setup commands. The setup
commands define global attributes, such as template type and output character set and
program elements, such as sequencing and concatenation.

The setup commands are:

• Template Type

• Output Character Set

• New Record Character

• Invalid Characters

• Replace Characters

• Define Level

• Define Sequence

• Define Concatenation

Some example setup tables are shown in the following figures:

eText Templates 4-13

4-14 Oracle XML Publisher User’s Guide

Template Type Command

This command specifies the type of template. There are two types: FIXED_POSIT
ION_BASED and DELIMITER_BASED.

Use the FIXED_POSITION_BASED templates for fixed-length record formats, such as
EFTs. In these formats, all fields in a record are a fixed length. If data is shorter than the
specified length, it will be padded. If longer, it will be truncated. The system specifies
the default behavior for data padding and truncation. Examples of fixed position based
formats are EFTs in Europe, and NACHA ACH file in the U.S.

In a DELIMITER_BASED template, data is never padded and only truncated when
it has reached a maximum field length. EMpty fields are allowed (when the data is
null). Designated delimiters are used to separate the data fields. If a field is empty, two
delimiters will appear next to each other. Examples of delimited-based templates are
EDI formats such as ASC X12 820 and UN EDIFACT formats - PAYMUL, DIRDEB, and
CREMUL.

In EDI formats, a record is sometimes referred to as a segment. An EDI segment is
treated the same as a record. Start each segment with a new record command and give it
a record name. You should have a data field specifying the segment name as part of the
output data immediately following the new record command.

eText Templates 4-15

For DELIMITER_BASED templates, you insert the appropriate data field delimiters in
separate rows between the data fields. After every data field row, you insert a delimiter
row. You can insert a placeholder for an empty field by defining two consecutive
delimiter rows.

Empty fields are often used for syntax reasons: you must insert placeholders for empty
fields so that the fields that follow can be properly identified.

There are different delimiters to signify data fields, composite data fields, and end of
record. Some formats allow you to choose the delimiter characters. In all cases you
should use the same delimiter consistently for the same purpose to avoid syntax errors.

In DELIMITER_BASED templates, the <POSITION> and <PAD> columns do not
apply. They are omitted from the data tables.

Some DELIMITER_BASED templates have minimum and maximum length
specifications. In those cases Oracle Payments validates the length.

Define Level Command

Some formats require specific additional data levels that are not in the data extract. For
example, some formats require that payments be grouped by payment date. Using the
Define Level command, a payment date group can be defined and referenced as a level
in the template, even though it is not in the input extract file.

When you use the Define Level command you declare a base level that exists in the
extract. The Define Level command inserts a new level one level higher than the base
level of the extract. The new level functions as a grouping of the instances of the base
level.

The Define Level command is a setup command, therefore it must be defined in the
setup table. It has two subcommands:

• Base Level Command - defines the level (XML element) from the extract that the
new level is based on. The Define Level command must always have one and only
one base level subcommand.

Grouping Criteria - defines the XML extract elements that are used to group the
instances of the base level to form the instances of the new level. The parameter of
the grouping criteria command is a comma-separated list of elements that specify
the grouping conditions.

The order of the elements determines the hierarchy of the grouping. The instances
of the base level are first divided into groups according to the values of the first
criterion, then each of these groups is subdivided into groups according to the
second criterion, and so on. Each of the final subgroups will be considered as
an instance of the new level.

For example, the following table shows five payments under a batch:

4-16 Oracle XML Publisher User’s Guide

Payment Instance PaymentDate (grouping
criterion 1)

PayeeName (grouping
criterion 2)

Payment1 PaymentDate1 PayeeName1

Payment2 PaymentDate2 PayeeName1

Payment3 PaymentDate1 PayeeName2

Payment4 PaymentDate1 PayeeName1

Payment5 PaymentDate1 PayeeName3

In the template, construct the setup table as follows to create a level called
"PaymentsByPayDatePayee" from the base level "Payment" grouped according to
PaymentDate and Payee Name:

<DEFINE LEVEL> PaymentsByPayDatePayee

<BASE LEVEL> Payment

<GROUPING CRITERIA> PaymentDate, PayeeName

<END DEFINE LEVEL> PaymentsByPayDatePayee

The five payments will generate the following four groups (instances) for the new level:

Payment Group Instance Group Criteria Payments in Group

Group1 PaymentDate1, PayeeName1 Payment1, Payment4

Group2 PaymentDate1, PayeeName2 Payment3

Group3 PaymentDate1, PayeeName3 Payment5

Group4 PaymentDate2, PayeeName1 Payment2

The order of the new instances is the order that the records will print. When evaluating
the multiple grouping criteria to form the instances of the new level, the criteria can be
thought of as forming a hierarchy. The first criterion is at the top of the hierarchy, the last
criterion is at the bottom of the hierarchy.

Generally there are two kinds of format-specific data grouping scenarios in EFT
formats. Some formats print the group records only; others print the groups with the
individual element records nested inside groups. Following are two examples for these
scenarios based on the five payments and grouping conditions previously illustrated.

Example
First Scenario: Group Records Only

EFT File Structure:

• BatchRec

eText Templates 4-17

• PaymentGroupHeaderRec

• PaymentGroupFooterRec

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1,
PayeeName1)

3 PaymentGroupFooterRec For group 1 (PaymentDate1,
PayeeName1)

4 PaymentGroupHeaderRec For group 2 (PaymentDate1,
PayeeName2)

5 PaymentGroupFooterRec For group 2 (PaymentDate1,
PayeeName2)

6 PaymentGroupHeaderRec For group 3 (PaymentDate1,
PayeeName3)

7 PaymentGroupFooterRec For group 3 (PaymentDate1,
PayeeName3)

8 PaymentGroupHeaderRec For group 4 (PaymentDate2,
PayeeName1)

9 PaymentGroupFooterRec For group 4 (PaymentDate2,
PayeeName1)

Example
Scenario 2: Group Records and Individual Records

EFT File Structure:

BatchRec

• PaymentGroupHeaderRec

• PaymentRec

• PaymentGroupFooterRec

Generated output:

4-18 Oracle XML Publisher User’s Guide

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1,
PayeeName1)

3 PaymentRec For Payment1

4 PaymentRec For Payment4

5 PaymentGroupFooterRec For group 1 (PaymentDate1,
PayeeName1)

6 PaymentGroupHeaderRec For group 2 (PaymentDate1,
PayeeName2)

7 PaymentRec For Payment3

8 PaymentGroupFooterRec For group 2 (PaymentDate1,
PayeeName2)

9 PaymentGroupHeaderRec For group 3 (PaymentDate1,
PayeeName3)

10 PaymentRec For Payment5

11 PaymentGroupFooterRec For group 3 (PaymentDate1,
PayeeName3)

12 PaymentGroupHeaderRec For group 4 (PaymentDate2,
PayeeName1)

13 PaymentRec For Payment2

14 PaymentGroupFooterRec For group 4 (PaymentDate2,
PayeeName1)

Once defined with the Define Level command, the new level can be used in the template
in the same manner as a level occurring in the extract. However, the records of the new
level can only reference the base level fields that are defined in its grouping criteria. They
cannot reference other base level fields other than in summary functions.

For example, the PaymentGroupHeaderRec can reference the PaymentDate and
PayeeName in its fields. It can also reference thePaymentAmount (a payment level field)
in a SUM function. However, it cannot reference other payment level fields, such as
PaymentDocName or PaymentDocNum.

The Define Level command must always have one and only one grouping criteria
subcommand. The Define Level command has a companion end-define level
command. The subcommands must be specified between the define level and end-define
level commands. They can be declared in any order.

eText Templates 4-19

Define Sequence Command

The define sequence command define a sequence that can be used in conjunction with
the SEQUENCE_NUMBER function to index either the generated EFT records or the
extract instances (the database records). The EFT records are the physical records
defined in the template. The database records are the records from the extract. To avoid
confusion, the term "record" will always refer to the EFT record. The database record
will be referred to as an extract element instance or level.

The define sequence command has four subcommands: reset at level, increment
basis, start at, and maximum:

Reset at Level

The reset at level subcommand defines where the sequence resets its starting number. It
is a mandatory subcommand. For example, to number the payments in a batch, define
the reset at level as Batch. To continue numbering across batches, define the reset level
as RequestHeader.

In some cases the sequence is reset outside the template. For example, a periodic
sequence may be defined to reset by date. In these cases, the PERIODIC_SEQUENCE
keyword is used for the reset at level. The system saves the last sequence number used
for a payment file to the database. Outside events control resetting the sequence in the
database. For the next payment file run, the sequence number is extracted from the
database for the start at number (see start at subcommand).

Increment Basis

The increment basis subcommand specifies if the sequence should be incremented
based on record or extract instances. The allowed parameters for this subcommand are
RECORD and LEVEL.

Enter RECORD to increment the sequence for every record.

Enter LEVEL to increment the sequence for every new instance of a level.

Note that for levels with multiple records, if you use the level-based increment all the
records in the level will have the same sequence number. The record-based increment
will assign each record in the level a new sequence number.

For level-based increments, the sequence number can be used in the fields of one level
only. For example, suppose an extract has a hierarchy of batch > payment > invoice and
you define the increment basis by level sequence, with reset at the batch level. You can
use the sequence in either the payment or invoice level fields, but not both. You cannot
have sequential numbering across hierarchical levels.

However, this rule does not apply to increment basis by record sequences. Records
can be sequenced across levels.

For both increment basis by level and by record sequences, the level of the sequence is
implicit based on where the sequence is defined.

Define Concatenation Command

Use the define concatenation command to concatenate child-level extract elements for
use in parent-level fields. For example, use this command to concatenate invoice number
and due date for all the invoices belonging to a payment for use in a payment-level field.

The define concatenation command has three subcommands: base level, element, and
delimiter.

4-20 Oracle XML Publisher User’s Guide

Base Level Subcommand

The base level subcommand specifies the child level for the operation. For each
parent-level instance, the concatenation operation loops through the child-level instances
to generate the concatenated string.

Item Subcommand

The item subcommand specifies the operation used to generate each item. An item is a
child-level expression that will be concatenated together to generate the concatenation
string.

Delimiter Subcommand

The delimiter subcommand specifies the delimiter to separate the concatenated items
in the string.

Using the SUBSTR Function

Use the SUBSTR function to break down concatenated strings into smaller strings
that can be placed into different fields. For example, the following table shows five
invoices in a payment:

Invoice InvoiceNum

1 car_parts_inv0001

2 car_parts_inv0002

3 car_parts_inv0003

4 car_parts_inv0004

5 car_parts_inv0005

Using the following concatenation definition:

<DEFINE CONCATENATION> ConcatenatedInvoiceInfo

<BASE LEVEL> Invoice

<ELEMENT> InvoiceNum

<DELIMITER> ’,’

<END DEFINE CONCATENATION> ConcatenatedInvoiceInfo

You can reference ConcatenatedInvoiceInfo in a payment level field. The string will be:

car_parts_inv0001,car_parts_inv0002,car_parts_inv00 03,car_
parts_inv0004,car_parts_inv0005

If you want to use only the first forty characters of the concatenated invoice info, use eith
ther TRUNCATE function or the SUBSTR function as follows:

TRUNCATE(ConcatenatedInvoiceInfo, 40)

SUBSTR(ConctenatedInvoiceInfo, 1, 40)

Either of these statements will result in:

eText Templates 4-21

car_parts_inv0001,car_parts_inv0002,car_

To isolate the next forty characters, use the SUBSTR function:

SUBSTR(ConcatenatedInvoiceInfo, 41, 40)

to get the following string:

parts_inv0003,car_parts_inv0004,car_par

Invalid Characters and Replacement Characters Commands

Some formats require a different character set than the one that was used to enter the
data in Oracle Applications. For example, some German formats require the output file
in ASCII, but the data was entered in German. If there is a mismatch between the
original and target character sets you can define an ASCII equivalent to replace the
original. For example, you would replace the German umlauted "a" with "ao".

Some formats will not allow certain characters. To ensure that known invalid characters
will not be transmitted in your output file, use the invalid characters command to
flag occurrences of specific characters.

To use the replacement characters command, specify the source characters in the left
column and the replacement characters in the right column. You must enter the source
characters in the original character set. This is the only case in a format template in
which you use a character set not intended for output. Enter the replacement characters
in the required output character set.

For DELIMITER_BASED formats, if there are delimiters in the data, you can use the
escape character "?" to retain their meaning. For example,

First name?+Last name equates to Fist name+Last name

Which source?? equates to Which source?

Note that the escape character itself must be escaped if it is used in data.

The replacement characters command can be used to support the escape character
requirement. Specify the delimiter as the source and the escape character plus the
delimiter as the target. For example, the command entry for the preceding examples
would be:

<REPLACEMENT CHARACTERS>

+ ?+

? ??

<END REPLACEMENT CHARACTERS>

The invalid character command has a single parameter that is a string of invalid
characters that will cause the system to error out.

The replacement character process is performed before or during the character set
conversion. The character set conversion is performed on the XML extract directly, before
the formatting. After the character set conversion, the invalid characters will be checked
in terms of the output character set. If no invalid characters are found, the system will
proceed to formatting.

4-22 Oracle XML Publisher User’s Guide

Output Character Set and New Record Character Commands

Use the new record character command to specify the character(s) to delimit the explicit
and implicit record breaks at runtime. Each new record command represents an explicit
record break. Each end of table represents an implicit record break. The parameter is a
list of constant character names separated by commas.

Some formats contain no record breaks. The generated output is a single line of data. In
this case, leave the new record character command parameter field empty.

Expressions, Control Structure, and Functions
This section describes the rules and usage for expressions in the template. It also
describes supported control structures and functions.

Expressions

Expressions can be used in the data column for data fields and some command
parameters. An expression is a group of XML extract fields, literals, functions, and
operators. Expressions can be nested. An expression can also include the "IF" control
structure. When an expression is evaluated it will always generate a result. Side effects
are not allowed for the evaluation. Based on the evaluation result, expressions are
classified into the following three categories:

• Boolean Expression - an expression that returns a boolean value, either true or
false. This kind expression can be used only in the "IF-THEN-ELSE" control structure
and the parameter of the display condition command.

• Numeric Expression - an expression that returns a number. This kind of expression
can be used in numeric data fields. It can also be used in functions and commands
that require numeric parameters.

• Character Expression - an expression that returns an alphanumeric string. This kind
of expression can be used in string data fields (format type Alpha). They can also be
used in functions and command that require string parameters.

Control Structures

The only supported control structure is "IF-THEN-ELSE". It can be used in an
expression. The syntax is:

IF <boolean_expressionA> THEN
<numeric or character expression1>

[ELSIF <boolean_expressionB THEN
<numeric or character expression2>]

...
[ELSE

<numeric or character expression2]
END IF

Generally the control structure must evaluate to a number or an alphanumeric
string. The control structure is considered to a numeric or character expression. The
ELSIF and ELSE clauses are optional, and there can be as many ELSIF clauses as
necessary. The control structure can be nested.

Functions

Following is the list of supported functions:

eText Templates 4-23

• SEQUENCE_NUMBER - is a record element index. It is used in conjunction with the
Define Sequence command. It has one parameter, which is the sequence defined by
the Define Sequence command. At runtime it will increase its sequence value by one
each time it is referenced in a record.

• COUNT - counts the child level extract instances or child level records of a specific
type. Declare the COUNT function on a level above the entity to be counted. The
function has one argument. If the argument is a level, the function will count all the
instances of the (child) level belonging to the current (parent) level instance.

For example, if the level to be counted is Payment and the current level is Batch, then
the COUNT will return the total number of payments in the batch. However, if
the current level is RequestHeader, the COUNT will return the total number
of payments in the file across all batches. If the argument is a record type, the
count function will count all the generated records of the (child level) record type
belonging to the current level instance.

• INTEGER_PART, DECIMAL_PART - returns the integer or decimal portion of
a numeric value. This is used in nested expressions and in commands (display
condition and group by). For the final formatting of a numeric field in the data
column, use the Integer/Decimal format.

• IS_NUMERIC - boolean test whether the argument is numeric. Used only with the
"IF" control structure.

• TRUNCATE - truncate the first argument - a string to the length of the second
argument. If the first argument is shorter than the length specified by the second
argument, the first argument is returned unchanged. This is a user-friendly version
for a subset of the SQL substr() functionality.

• SUM - sums all the child instance of the XML extract field argument. The field must
be a numeric value. The field to be summed must always be at a lower level than
the level on which the SUM function was declared.

• MIN, MAX - find the minimum or maximum of all the child instances of the XML
extract field argument. The field must be a numeric value. The field to be operated
on must always be at a lower level than the level on which the function was declared.

• Other SQL functions: TO_DATE, LOWER, UPPER, LENGTH, GREATEST, LEAST
- use the syntax corresponding to the SQL function.

Identifiers, Operators, and Literals
This section lists the reserved key word and phrases and their usage. The supported
operators are defined and the rules for referencing XML extract fields and using literals.

Key Words

There are four categories of key words and key word phrases:

• Command and column header key words

• Command parameter and function parameter key words

• Field-level key words

• Expression key words

4-24 Oracle XML Publisher User’s Guide

Command and Column Header Key Words

The following key words must be used as shown: enclosed in <>s and in all capital
letters with a bold font.

• <LEVEL> - the first entry of a data table. Associates the table with an XML element
and specifies the hierarchy of the table.

• <END LEVEL> - declares the end of the current level. Can be used at the end of a
table or in a standalone table.

• <POSITION> - column header for the first column of data field rows, which
specifies the starting position of the data field in a record.

• <LENGTH> - column header for the second column of data field rows, which
specifies the length of the data field.

• <FORMAT> - column header for the third column of data field rows, which specifies
the data type and format setting.

• <PAD> - column header for the fourth column of data field rows, which specifies the
padding style and padding character.

• <DATA> - column header for the fifth column of data field rows, which specifies
the data source.

• <COMMENT> - column header for the sixth column of data field rows, which
allows for free form comments.

• <NEW RECORD> - specifies a new record.

• <DISPLAY CONDITION> - specifies the condition when a record should be printed.

• <TEMPLATE TYPE> - specifies the type of the template, either
FIXED_POSITION_BASED or DELIMITER_BASED.

• <OUTPUT CHARACTER SET> - specifies the character set to be used when
generating the output.

• <NEW RECORD CHARACTER> - specifies the character(s) to use to signify the
explicit and implicit new records at runtime.

• <DEFINE LEVEL> - defines a format-specific level in the template.

• <BASE LEVEL> - subcommand for the define level and define concatenation
commands.

• <GROUPING CRITERIA> - subcommand for the define level command.

• <END DEFINE LEVEL> - signifies the end of a level.

• <DEFINE SEQUENCE> - defines a record or extract element based sequence for use
in the template fields.

• <RESET AT LEVEL> - subcommand for the define sequence command.

• <INCREMENT BASIS> - subcommand for the define sequence command.

• <START AT> - subcommand for the define sequence command.

• <MAXIMUM> - subcommand for the define sequence command.

• <MAXIMUM LENGTH> - column header for the first column of data field
rows, which specifies the maximum length of the data field. For DELIMITER_BASED
templates only.

eText Templates 4-25

• <END DEFINE SEQUENCE> - signifies the end of the sequence command.

• <DEFINE CONCATENATION> - defines a concatenation of child level item that
can be referenced as a string the parent level fields.

• <ELEMENT> - subcommand for the define concatenation command.

• <DELIMITER> - subcommand for the define concatenation command.

• <END DEFINE CONCATENATION> - signifies the end of the define concatenation
command.

• <SORT ASCENDING> - format-specific sorting for the instances of a level.

• <SORT DESCENDING> - format-specific sorting for the instances of a level.

Command Parameter and Function Parameter Key Words

These key words must be entered in all capital letters, nonbold fonts.

• PERIODIC_SEQUENCE - used in the reset at level subcommand of the define
sequence command. It denotes that the sequence number is to be reset outside
the template.

• FIXED_POSITION_BASED, DELIMITER_BASED - used in the template type
command, specifies the type of template.

• RECORD, LEVEL - used in the increment basis subcommand of the define sequence
command. RECORD increments the sequence each time it is used in a new
record. LEVEL increments the sequence only for a new instance of the level.

Field-Level Key Words

• Alpha - in the <FORMAT> column, specifies the data type is alphanumeric.

• Number - in the <FORMAT> column, specifies the data type is numeric.

• Integer - in the <FORMAT> column, used with the Number key word. Takes the
integer part of the number. This has the same functionality as the INTEGER
function, except the INTEGER function is used in expressions, while the Integer key
word is used in the <FORMAT> column only.

• Decimal - in the <FORMAT> column, used with the Number key word. Takes the
decimal part of the number. This has the same functionality as the DECIMAL
function, except the DECIMAL function is used in expressions, while the Decimal
key word is used in the <FORMAT> column only.

• Date - in the <FORMAT> column, specifies the data type is date.

• L, R- in the <PAD> column, specifies the side of the padding (Left or Right).

Expression Key Words

Key words and phrases used in expressions must be in capital letters and bold fonts.

• IF THEN ELSE IF THEN ELSE END IF - these key words are always used as a
group. They specify the "IF" control structure expressions.

• IS NULL, IS NOT NULL - these phrases are used in the IF control structure. They
form part of boolean predicates to test if an expression is NULL or not NULL.

4-26 Oracle XML Publisher User’s Guide

Operators

There are two groups of operators: the boolean test operators and the expression
operators. The boolean test operators include: "=", "<>", "<", ">", ">=", and
"<=". They can be used only with the IF control structure. The expression operators
include: "()", "||", "+", "-", and "*". They can be used in any expression.

Symbol Usage

= Equal to test. Used in the IF control structure
only.

<> Not equal to test. Used in the IF control
structure only.

> Greater than test. Used in the IF control
structure only.

< Less than test. Used in the IF control structure
only.

>= Greater than or equal to test. Used in the IF
control structure only.

<= Less than or equal to test. Used in the IF
control structure only.

() Function argument and expression group
delimiter. The expression group inside "()" will
always be evaluated first. "()" can be nested.

|| String concatenation operator.

+ Addition operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

- Subtraction operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

* Multiplication operator. Implicit type
conversion may be performed if any of the
operands are not numbers.

DIV Division operand. Implicit type conversion
may be performed if any of the operands are
not numbers. Note that "/" is not used because
it is part of the XPATH syntax.

Reference to XML Extract Fields and XPATH Syntax

XML elements can be used in any expression. At runtime they will be replaced with the
corresponding field values. The field names are case-sensitive.

When the XML extract fields are used in the template, they must follow the XPATH
syntax. This is required so that the XML Publisher engine can correctly interpret the
XML elements.

eText Templates 4-27

There is always an extract element considered as the context element during the
XML Publisher formatting process. When XML Publisher processes the data rows
in a table, the level element of the table is the context element. For example, when
XML Publisher processes the data rows in the Payment table, Payment is the context
element. The relative XPATH you use to reference the extract elements are specified in
terms of the context element.

For example if you need to refer to the PayeeName element in a Payment data table, you
will specify the following relative path:

Payee/PayeeInfo/PayeeName

Each layer of the XML element hierarchy is separated by a backslash “/”. You use this
notation for any nested elements. The relative path for the immediate child element
of the level is just the element name itself. For example, you can use TransactionID
element name as is in the Payment table.

To reference a parent level element in a child level table, you can use the “../”
notation. For example, in the Payment table if you need to reference the BatchName
element, you can specify ../BatchName. The “../” will give you Batch as the context;
in that context you can use the BatchName element name directly as BatchName is an
immediate child of Batch. This notation goes up to any level for the parent elements. For
example if you need to reference the RequesterParty element (in the RequestHeader)
in a Payment data table, you can specify the following:

../../TrxnParties/RequesterParty

You can always use the absolute path to reference any extract element anywhere in
the template. The absolute path starts with a backslash “/”. For the PayeeName
in the Payment table example above, you will have the following absolute
path: /BatchRequest/Batch/Payment/Payee/PayeeInfo/PayeeName

The absolute path syntax provides better performance.

The identifiers defined by the setup commands such as define level, define sequence
and define concatenation are considered to be global. They can be used anywhere in
the template. No absolute or relative path is required. The base level and reset at level
for the setup commands can also be specified. XML Publisher will be able to find the
correct context for them.

If you use relative path syntax, you should specify it relative to the base levels in the
following commands:

• The element subcommand of the define concatenation command

• The grouping criteria subcommand of the define level command

The extract field reference in the start at subcommand of the define sequence command
should be specified with an absolute path.

The rule to reference an extract element for the level command is the same as the rule
for data fields. For example, if you have a Batch level table and a nested Payment level
table, you can specify the Payment element name as-is for the Payment table. Because
the context for evaluating the Level command of the Payment table is the Batch.

However, if you skip the Payment level and you have an Invoice level table directly
under the Batch table, you will need to specify Payment/Invoice as the level element for
the Invoice table.

4-28 Oracle XML Publisher User’s Guide

The XPATH syntax required by the template is very similar to UNIX/LINUX directory
syntax. The context element is equivalent to the current directory. You can specify a file
relative to the current directory or you can use the absolute path which starts with a “/”.

Finally, the extract field reference as the result of the grouping criteria sub-command
of the define level command must be specified in single quotes. This tells the XML
Publisher engine to use the extract fields as the grouping criteria, not their values.

eText Templates 4-29

5
Using the Template Manager

This chapter covers the following topics:

• Introduction

• Creating the Data Definition

• Creating the Template

• Viewing and Updating a Template

Introduction
The Template Manager is the management tool for your templates and data definitions.

Use the Template Manager to:

• Register, view, and update your templates.

• Maintain data definitions for the data sources that are merged with the templates.

• Create and maintain the mapping between PDF form fields and XML elements.

• Preview your template with sample data.

To create a template in the Template Manager:

1. Create the data definition for your template, page 5- 1 .

2. Register the layout template file, page 5- 3 .

Accessing the Template Manager
Access the Template Manager from the XML Publisher Administrator
responsibility. Select Templates to search for or create a template. Select Data
Definitions to search for or create a data definition.

Creating the Data Definition
When you create the data definition, you register the source of the data that will be
merged with your template layout to create your published report. When you register
your template layout file, you must assign it a data definition that exists in the Template
Manager. This associates the two at runtime. Multiple templates can use the same
data definition.

To navigate to the Create Data Definition page:

Using the Template Manager 5-1

Select the Data Definitions tab, then select the Create Data Definition button.

Name Enter a user-friendly name for your data definition.

Code The data definition Code must match the concurrent
program short name of the report program (for
example, RAXCUS for the Customer Listing Summary).

Application Select the report’s application from the LOV.

Start Date Enter the date from which the data definition will be active.

XML Schema You must supply XML Schema if both of the following
conditions are applicable:

• This data definition will be assigned to a PDF template.

• The PDF template will require field mapping.

A PDF template requires mapping if the template form
field names (placeholders) do not match the data element
tag names of the XML file.

Use the Browse button to upload the XML Schema from a
saved location.

Note: The W3C XML Schema Recommendation defines a standardized
language for specifying the structure, content, and certain semantics of a

5-2 Oracle XML Publisher User’s Guide

set of XML documents. An XML schema can be considered metadata that
describes a class of XML documents. The XML Schema recommendation
is described at: http://www.w3.org/TR/xmlschema-0/

For more information, see Oracle XML DB Developer’s Guide 10g.

End Date To make the data definition inactive, enter an end date.

Preview Data To use the report Preview feature of the Template
Manager, upload a sample XML file from the data
source. The Preview feature is available from the View
Template page, page 5- 6 .

After the data definition is created, all the fields are updateable except Application
and Code.

Viewing and Updating a Data Definition
To view an existing data definition:

1. Search for the data definition from the Data Definitions tab.

2. From the search results, select the data definition Name to launch the View Data
Definition page.

Access the Update Data Definition page by performing either of the following:

• Select the Update icon from the search results region.

• Select the Update button from the View Data Definition page.

From the Update Data Definition page, all fields are updateable except Application
and Code. For information on the updateable fields, see Creating the Data Definition,
page 5- 1 .

Creating the Template
When you create a template, you assign it a data definition and upload your template
layout files. Assigning the data definition makes the template available to the
corresponding data source at runtime.

At initial creation, you upload one template file for a specific language and territory
combination. This file will become the Default Template File (see Default Template File,
page 5- 5). To upload additional template files or to change the Default Template
File, use the View Template page (see Viewing and Updating a Template, page 5- 6).

If your template type is PDF, the Template Mapping region will display after you click
the Apply button. See Template Mapping, page 5- 5 .

Using the Template Manager 5-3

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

To navigate to the Create Template page:

Select the Templates tab, then select the Create Template button. To copy an existing
template, see Copying a Template, page 5- 5 .

Name Enter a user-friendly name for your template.

Code Assign a template code using the product short name
and a descriptive ending.

Application Select the report’s Application.

Data Definition Select your report’s data definition. The data definition
must already exist in the Template Manager. To register the
data definition, see Creating the Data Definition, page 5- 1 .

Type Select the file type of the template. Valid template file types
are: eText, PDF, RTF, XSL-FO, XSL-HTML, XSL-TEXT, and
XSL-XML.

Start Date Enter the date from which the template will be active.

End Date To make the template inactive, enter an end date.

Subtemplate If this is a subtemplate, select "Yes" from the drop list.

5-4 Oracle XML Publisher User’s Guide

A subtemplate is referenced by other templates, but cannot
be run on its own.

File Use the Browse button to upload your template layout file.

Language Select the template language.

Add more language template files to your template
definition from the View Template page. See Adding
Templates for Additional Languages, page 5- 7 .

Territory Select the language territory.

After the template definition is created, the following fields are not
updateable: Application, Code, and Type. Update the template from the View
Template page.

The Default Template
When you submit the XML Publisher concurrent request, you are prompted to specify
the language and territory of the template that you wish to apply to the report data. If
you do not select the language and territory, XML Publisher will use a template that
corresponds to your session language and territory. If your session language and
territory combination do not represent an available template, XML Publisher will use the
Default Template to publish the report.

When you create the Template definition in the Template Manager, the original template
file you upload becomes the Default Template. You can change the Default Template
from the View Template page by choosing Update.

PDF Template Mapping
If your template type is PDF, the Template Mapping region displays after you
select Apply. If you named the placeholders on the PDF template according to their
corresponding XML element names, no mapping is required.

If you did not name the PDF placeholders according to the XML element names (or if you
are using a third-party PDF template that already contained named placeholders), you
must map each template field name to its corresponding XML element. You must have
loaded the XML schema to the template’s corresponding Data Definition to make the
XML element names available to the Template Manager’s mapping tool.

To perform mapping, select the Enable Mapping button to launch the Update Mapping
page. See Mapping PDF Template Fields, page 5- 7 .

For information on creating placeholders in the PDF template, see Creating a
Placeholder, page 3- 5 .

Copying a Template
Use the Search region to find the template you wish to copy. From the search results
table, select the Duplicate icon for the template to launch the Copy Template page.

Code Assign a template Code using the product short name
and a descriptive ending.

Name Enter a user-friendly name for your template.

Application Select the report’s application from the LOV.

Using the Template Manager 5-5

Source Template Name (Not updateable) Displays the name of the template that
you are duplicating.

Viewing and Updating a Template
Navigate to the View Template page:

1. Search for your template from the Templates page.

2. Select the template Name from the search results region.

From the View Template page, you can:

• Update the general definitions, page 5- 7

• Preview the template, page 5- 7

• Download the template file, page 5- 7

• Update the template file for editing, page 5- 7

• Add template files for additional languages, page 5- 7

• Update the template field mapping (PDF templates), page 5- 7

Note: Seeded templates cannot be updated or deleted. The Update and
Delete icons for these templates are disabled.

5-6 Oracle XML Publisher User’s Guide

Updating the Template General Definitions
Select the Update button to update the general definitions of a template. (You cannot
update the Template Code, Template Type, or Application.) For information on the
updateable fields, see Creating the Template, page 5- 6 .

Previewing a Template
If you uploaded a preview data file for your data definition, the Preview feature will
merge this data file with the selected template to allow you to immediately view a
sample of the report within the Template Manager.

Select the Preview Format and then select the Preview icon next to the template file that
you wish to preview. XML Publisher automatically generates a preview of your report in
the format selected (PDF templates can only be viewed in PDF format).

Editing the Template Layout
To edit the layout file of a template:

1. Select the Download icon to save the template file to your local file system.

2. Edit the file using your desktop application and save it in the appropriate format.

For guidelines on creating template files, see Creating an RTF Template, page 2- 1 or
Creating a PDF Template, page 3- 1 .

3. Select the Update icon.

4. The Add File page prompts you to Browse for and select your edited file.

5. Select the Apply button to upload the edited file to the Template Manager.

Adding Templates for Additional Languages
After you have created a template definition, you can add translated template files to
support additional languages.

1. Select the Add File button.

2. Browse for or type in the location of the template file.

3. Select the Language for this template file from the LOV.

4. Select the Territory for this template file from the LOV.

Mapping PDF Template Fields
Select the Enable Mapping button to map the PDF template fields to the data source
fields.

Using the Template Manager 5-7

On the Update Mapping page, the Template Field Name column displays the names
assigned to the form fields on the PDF template. The Data Source Element column
displays a drop down list that contains all the element names from the XML schema you
supplied when you created the data definition. Select the appropriate data element from
the drop down list for each template field.

Note: Do not map the BODY_START and BODY_END grouping tags.

Once you have mapped the fields, the Update Mapping and Disable Mapping buttons
become visible from the View Template page.

5-8 Oracle XML Publisher User’s Guide

6
Generating Your Customized Report

This chapter covers the following topics:

• Using the Concurrent Manager to Generate Your Custom Output

Using the Concurrent Manager to Generate Your Custom Output
Important: Since the latest release of XML Publisher, Applications
Object Library (FND) patch 3435480 has been released to fully integrate
XML Publisher with the Concurrent Manager. If you have taken this
patch, you no longer have to run the XML Publisher Concurrent Request
as a second step.

To generate your custom output, ensure that the concurrent program is set to generate
XML. A concurrent program can be set to generate XML from the Concurrent Programs
window by setting the Output Format to XML:

Navigate to the Concurrent Programs window from the System Administrator or
Application Developer responsibility:

• From the System Administrator responsibility, choose Concurrent, then
Program, then Define.

• From the Application Developer responsibility, choose Concurrent, then Program.

If you have applied patch 3435480:
Use standard request submission to submit the report concurrent program.

• If you are using the Submit Request form, the Layout field of the Upon Completion
region displays the currently selected template. To change the template, template
language, or output format select the Options button.

• If you are using the HTML-based Schedule Request interface, select the template and
output format from the Layout page of the process train.

Assigning a Default Template

You can assign a default template to the concurrent program that will be used by the
concurrent manager and XML Publisher to publish the report unless the user selects a
different template at runtime.

To assign a default template to a concurrent program:

Generating Your Customized Report 6-1

1. Navigate to the Update Concurrent Program window (available from the System
Administration Responsibility).

2. Select the Onsite Setting tab.

3. Select the template to use as the default from the Template list of values.

Note: The Template field is not available from the Forms-based
Concurrent Programs window.

If you have not applied patch 3435480:
1. Using Standard Request Submission, submit the report, noting the request ID. The

request creates the XML data file that XML Publisher will merge with the template.

2. After the request completes, use Standard Request Submission to submit the XML
Publisher Concurrent Request.

The Parameters window will prompt you to enter the following fields:

• Report Request - Select the Request ID of the request you wish to publish.

• Template - Select the template you wish to use to format the report data. Only
templates registered in the Template Manager with the request data source
will appear on the list.

• Template Locale - Select the Language and Territory combination of the template
you wish to use.

Note: If you do not select a valid language and territory
combination, XML Publisher will use the template that
corresponds to your session language and territory. If a valid
template for this combination does not exist, XML Publisher
will use the Default Template. See Default Template, page 5- 5 .

• Output Format - select the output format. If your selected template is RTF, you
can generate output in Excel (HTML), HTML, PDF, or RTF. If your selected
template is PDF, the output format must also be PDF.

When you submit the request, XML Publisher merges the XML data from your chosen
request with the selected template to generate your selected output format.

6-2 Oracle XML Publisher User’s Guide

7
XML Publisher Extended Functions

Extended SQL Functions
XML Publisher has extended a set of SQL functions for use in RTF templates. The
syntax for these extended functions is

<?xdofx:expression?>

The supported functions are shown in the following table:

SQL Statement Usage Descripti on

2+3 <?xdofx:2+3?> Addition

2-3 <?xdofx:2-3?> Subtraction

2*3 <?xdofx:2*3?> Multiplication

2/3 <?xdofx:2/3?> Division

2**3 <?xdofx:2**3?> Exponential

3||2 <?xdofx:3||2?> Concatenation

lpad(’aaa’,10,’.’) <?xdofx:lpad(’aaa’,10,’.’)?> The lpad function pads the left side
of a string with a specific set of
characters. The syntax for the lpad
function is:

lpad(string1,padded_
length,[pad_string])

string1 is the string to pad characters
to (the left-hand side).

padded_length is the number of
characters to return.

If the padded_length is smaller
than the original string, the lpad
function will truncate the string to
the size of padded_length.

pad_string is the string that willbe
padded to the left-hand side of
string1 .

XML Publisher Extended Functions 7-1

SQL Statement Usage Description

rpad(’aaa’,10,’.’) <?xdofx:rpad(’aaa’,10,’.’)?> The rpad function pads the right
side of a string with a specific set
of characters.

The syntax for the rpad function is:

rpad(string1,padded_
length,[pad_string]) .

string1 is the string to pad characters
to (the right-hand side).

padded_length is the number of
characters to return.

If the padded_length is smaller than
the original string, the rpad function
will truncate the string to the size
of padded_length. pad_string is the
string that will be padded to the
right-hand side of string1

decode(’xxx’,’bbb’,’ccc’,
’xxx’,’ddd’)

<?xdofx:decode(’xxx’,’bbb’,
’ccc’,’xxx’,’ddd’)?>

The decode function has the
functionality of an IF-THEN-ELSE
statement. The syntax for the
decode function is:

decode(expression,
search, result [,search,
result]...[, default])

expression is the value to compare.

search is the value that is compared
against expression.

result is the value returned, if
expression is equal to search.

default is returned if no matches are
found.

7-2 Oracle XML Publisher User’s Guide

SQL Statement Usage Description

Instr(’abcabcabc’,’a’,2) <?xdofx:Instr(’abcabcabc’,
’a’,2)?>

The instr function returns the
location of a substring in a
string. The syntax for the instr
function is:

instr(string1,string2,
[start_position],[nth_
appearance])

string1 is the string to search.

string2 is the substring to search for
in string1.

start_position is the position in
string1 where the search will
start. The first position in the
string is 1. If the start_position is
negative, the function counts back
start_position number of characters
from the end of string1 and then
searches towards the beginning of
string1.

nth appearance is the nth appearance
of string2.

substr(’abcdefg’),2,3) <?xdofx:substr(’abcdefg’),2,
3)?>

The substr function allows you
to extract a substring from a
string. The syntax for the substr
function is:

substr(string, start_
position, [length])

string is the source string.

start_position is the position for
extraction. The first position in the
string is always 1.

length is the number of characters
to extract.

replace(name,’John’,’Jon’) <?xdofx:replace(name,
’John’,’Jon’)?>

The replace function replaces a
sequence of characters in a string
with another set of characters. The
syntax for the replace function is:

replace(string1,string_to_replace,
[replacement_string])

string1 is the string to replace a
sequence of characters with another
set of characters.

string_to_replace is the string that
will be searched for in string1.

replacement_string is optional. All
occurrences of string_to_replace
will be replaced with replacement_
string in string1.

to_number(’12345’) <?xdofx:to_
number(’12345’)?>

XML Publisher Extended Functions 7-3

SQL Statement Usage Description

to_char(12345) <?xdofx:to_char(12345)?>

sysdate() <?xdofx:sysdate()?>

The following table shows supported combination functions:

SQL Statement Usage

(2+3/4-6*7)/8 <?xdofx:(2+3/4-6*7)/8?>

lpad(substr(’1234567890’,5,3),10,’^’) <?xdofx:lpad(substr(’1234567890’,5,3),10,’^’)?>

decode(’a’,’b’,’c’,’d’,’e’,’1’)||instr(’321’,1,1) <?xdofx:decode(’a’,’b’,’c’,’d’,’e’,’1’)||
instr(’321’,1,1)?>

XSL Equivalents
The following table lists the XML Publisher simplified syntax with the XSL equivalents.

7-4 Oracle XML Publisher User’s Guide

Supported XSL Elements Description XML Publisher Syntax

<xsl:value-of select=
"name">

Placeholder syntax <?name?>

<xsl:apply-templates
select="name">

Applies a template rule to the
current element’s child nodes.

<?apply: name?>

<xsl:copy-of select=
"name">

Creates a copy of the current
node.

<?copy-of: name?>

<xsl:call-template
name="name">

Calls a named template to be
inserted into/applied to the
current template.

<?call: name?>

<xsl:sort select=
"name">

Sorts a group of data based on
an element in the dataset.

<?sort: name?>

<xsl:for-each select=
"name" >

Loops through the rows of
data of a group, used to
generate tabular output.

<?for-each: name?>

<xsl:choose> Used in conjunction with
when and otherwise to
express multiple conditional
tests.

<?choose?>

<xsl:when test="exp"> Used in conjunction with
choose and otherwise to
express multiple conditional
tests

<?when: expression?>

<xsl:otherwise> Used in conjunction with
choose and when to express
multiple conditional tests

<?otherwise?>

<xsl:if test="exp"> Used for conditional
formatting.

<?if: expression?>

<xsl:template name=
"name">

Template declaration <?template: name?>

<xsl:variable name=
"name">

Local or global variable
declaration

<?variable: name?>

<xsl:import href=
"url">

Import the contents of one
stylesheet into another

<?import:url?>

<xsl:include href=
"url">

Include one stylesheet in
another

<?include:url?>

<xsl:stylesheet
xmlns:x="url">

Define the root element of a
stylesheet

<?namespace:x=url?>

XML Publisher Extended Functions 7-5

Using FO Elements
You can use any FO element in an RTF template inside the Microsoft Word form
fields. The following FO elements have been extended for use with XML Publisher RTF
templates. The XML Publisher syntax can be used with either RTF template method.

FO Element XML Publisher Syntax

<fo:page-number-citation ref-id=
"id">

<?fo:page-number-citation:id?>

<fo:page-number> <?fo:page-number?>

<fo:ANY NAME WITHOUT ATTRIBUTE> <?fo:ANY NAME WITHOUT ATTRIBUTE?>

7-6 Oracle XML Publisher User’s Guide

8
Calling XML Publisher APIs

This chapter covers the following topics:

• Introduction

• PDF Form Processing Engine

• RTF Processor Engine

• FO Processor Engine

• PDF Document Merger

• Document Processor Engine

• XML Publisher Security Properties

• Applications Layer APIs

• Datasource APIs

• Template APIs

Introduction
This chapter is aimed at developers who wish to create programs or applications that
interact with XML Publisher through its application programming interface. This
information is meant to be used in conjunction with the Javadocs available from
OracleMetaLink document 295036.1, "About Oracle XML Publisher Release 5.0.".

XML Publisher consists of two layers: a core layer of Java APIs and an Applications
layer of APIs and UI.

• The core layer contains the main processing engines that parse templates, merge
data, generate output, and deliver documents.

• The Applications layer allows the Applications developer to interact with the
Template Manager on a programmatic level, which in turn interacts with the
core layer.

This section assumes the reader is familiar with Java programming, XML, and XSL
technologies. For the Applications layer, it is assumed the reader is familiar with the
Template Manager.

XML Publisher Core APIs
XML Publisher is made up of the following core API components:

Calling XML Publisher APIs 8-1

• PDF Form Processing Engine

Merges a PDF template with XML data (and optional metadata) to produce PDF
document output.

• RTF Processor

Converts an RTF template to XSL in preparation for input to the FO Engine.

• FO Engine

Merges XSL and XML to produce any of the following output formats: Excel
(HTML), PDF, RTF, or HTML.

• PDF Document Merger

Provides optional postprocessing of PDF files to merge documents, add page
numbering, and set watermarks.

• eText Processor

Converts RTF eText templates to XSL and merges the XSL with XML to produce text
output for EDI and EFT transmissions.

• Document Processor (XML APIs)

Provides batch processing functionality to access a single API or multiple APIs by
passing a single XML file to specify template names, data sources, languages, output
type, output names, and destinations.

The following diagram illustrates the template type and output type options for each
core processing engine:

8-2 Oracle XML Publisher User’s Guide

PDF Form Processing Engine
The PDF Form Processing Engine creates a PDF document by merging a PDF template
with an XML data file. This can be done using file names, streams, or an XML data string.

As input to the PDF Processing Engine you can optionally include an XML-based
Template MetaInfo (.xtm) file. This is a supplemental template to define the placement
of overflow data.

The FO Processing Engine also includes utilities to provide information about your
PDF template. You can:

• Retrieve a list of field names from a PDF template

• Generate the XFDF data from the PDF template

• Convert XML data into XFDF using XSLT

Merging a PDF Template with XML Data
XML data can be merged with a PDF template to produce a PDF output document in
three ways:

• Using input/output file names

• Using input/output streams

• Using an input XML data string

You can optionally include a metadata XML file to describe the placement of overflow
data in your template.

Merging XML Data with a PDF Template Using Input/Output File Names

Input:

• Template file name (String)

• XML file name (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FormProcessor;
.
.

FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(args[0]); // Input File (PDF) nam e
fProcessor.setData(args[1]); // Input XML data file name
fProcessor.setOutput(args[2]); // Output File (PDF) name
fProcessor.setMetaInfo(args[3]); // Metadata XML File na me

You can omit this setting when you do not use Metadata.

fProcessor.process();

Calling XML Publisher APIs 8-3

Merging XML Data with a PDF Template Using Input/Output Streams

Input:

• PDF Template (Input Stream)

• XML Data (Input Stream)

• Metadata XML Data (Input Stream)

Output:

• PDF (Output Stream)

Example
import java.io.*;
import oracle.apps.xdo.template.FormProcessor;
.
.
.

FormProcessor fProcessor = new FormProcessor();

FileInputStream fIs = new FileInputStream(originalFileP ath); //
Input File

FileInputStream fIs2 = new FileInputStream(dataFilePath); // Inp
ut Data

FileInputStream fIs3 = new FileInputStream(metaData); // Metadat
a XML Data

FileOutputStream fOs = new FileOutputStream(newFilePath); // Out
put File

fProcessor.setTemplate(fIs);
fProcessor.setData(fIs2); // Input Data
fProcessor.setOutput(fOs);
fProcessor.setMetaInfo(fIs3);
fProcessor.process();

fIs.close();
fOs.close();

Merging an XML Data String with a PDF Template

Input:

• Template file name (String)

• XML data (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

8-4 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(originalFilePath); // Input Fil e (PDF)
name
fProcessor.setDataString(xmlContents); // Input XML str ing
fProcessor.setOutput(newFilePath); // Output File (PDF)
name
fProcessor.setMetaInfo(metaXml); // Metadata XML File na me

You can omit this setting when you do not use Metadata.
fProcessor.process();

Retrieving a List of Field Names
Use the FormProcessor.getFieldNames() API to retrieve the field names from a PDF
template. The API returns the field names into an Enumeration object.

Input:

• PDF Template

Output:

• Enumeration Object

Example
import java.util.Enumeration;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) na me
Enumeration enum = fProcessor.getFieldNames();
while(enum.hasMoreElements()) {

String formName = (String)enum.nextElement();
System.out.println("name : " + formName + " , value : " + fProc e

ssor.getFieldValue(formName));
}

Generating XFDF Data
XML Forms Data Format (XFDF) is a format for representing forms data and annotations
in a PDF document. XFDF is the XML version of Forms Data Format (FDF), a simplified
version of PDF for representing forms data and annotations. Form fields in a PDF
document include edit boxes, buttons, and radio buttons.

Use this class to generate XFDF data. When you create an instance of this class, an
internal XFDF tree is initialized. Use append() methods to append a FIELD element
to the XFDF tree by passing a String name-value pair. You can append data as many
times as you want.

Calling XML Publisher APIs 8-5

This class also allows you to append XML data by calling appendXML() methods. Note
that you must set the appropriate XSL stylesheet by calling setStyleSheet() method before
calling appendXML() methods. You can append XML data as many times as you want.

You can retrieve the internal XFDF document at any time by calling one of the following
methods: toString(), toReader(), toInputStream(), or toXMLDocument().

The following is a sample of XFDF data:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="pr eserve">
<fields>

<field name="TITLE">
<value>Purchase Order</value>
</field>

<field name="SUPPLIER_TITLE">
<value>Supplie</value>

</field>
...

</fields>

The following code example shows how the API can be used:

Example
import oracle.apps.xdo.template.FormProcessor;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) na me
XFDFObject xfdfObject = new XFDFObject(fProcessor.getFi eldInfo());
System.out.println(xfdfObject.toString());

Converting XML Data into XFDF Format Using XSLT
Use an XSL stylesheet to convert standard XML to the XFDF format. Following is an
example of the conversion of sample XML data to XFDF:

Assume your starting XML has a ROWSET/ROW format as follows:

<ROWSET>
<ROW num="0">

<SUPPLIER>Supplier</SUPPLIER>
<SUPPLIERNUMBER>Supplier Number</SUPPLIERNUMBER>
<CURRCODE>Currency</CURRCODE>

</ROW>
...
</ROWSET>

From this XML you want to generate the following XFDF format:

8-6 Oracle XML Publisher User’s Guide

<fields>
<field name="SUPPLIER1">

<value>Supplier</value>
</field>
<field name="SUPPLIERNUMBER1">

<value>Supplier Number</value>
</field>
<field name="CURRCODE1">

<value>Currency</value>
</field>

...
</fields>

The following XSLT will carry out the transformation:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w 3.org/1999/X
SL/Transform">
<xsl:template match="/">
<fields>
<xsl:apply-templates/>
</fields>
</xsl:template>

<!-- Count how many ROWs(rows) are in the source XML file. -->
<xsl:variable name="cnt" select="count(//row|//ROW)" / >
<!-- Try to match ROW (or row) element.
<xsl:template match="ROW/*|row/*">

<field>
<!-- Set "name" attribute in "field" element. -->
<xsl:attribute name="name">

<!-- Set the name of the current element (column name)
as a value of the current name attribute. -->

<xsl:value-of select="name(.)" />
<!-- Add the number at the end of the name attribute v

alue if more than 1 rows found in the source XML file.-->
<xsl:if test="$cnt > 1">

<xsl:number count="ROW|row" level="single" format="
1"/>

</xsl:if>
</xsl:attribute>
<value>

<!--Set the text data set in the current column data a
s a text of the "value" element. -->

<xsl:value-of select="." />
</value>

</field>
</xsl:template>

</xsl:stylesheet>

You can then use the XFDFObject to convert XML to the XFDF format using an XSLT as
follows:

Calling XML Publisher APIs 8-7

Example
import java.io.*;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
XFDFObject xfdfObject = new XFDFObject();

xfdfObject .setStylesheet(new BufferedInputStream(new FileInputStr
eam(xslPath))); // XSL file name
xfdfObject .appendXML(new File(xmlPath1)); // XML data fi le nam
e
xfdfObject .appendXML(new File(xmlPath2)); // XML data fi le nam
e

System.out.print(xfdfObject .toString());

RTF Processor Engine

Generating XSL
The RTF processor engine takes an RTF template as input. The processor parses the
template and creates an XSL-FO template. This can then be passed along with a data
source (XML file) to the FO Engine to produce PDF, HTML, RTF, or Excel (HTML) output.

Use either input/output file names or input/output streams as shown in the following
examples:

Generating XSL with Input/Output File Names

Input:

• RTF file name (String)

Output:

• XSL file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

RTFProcessor rtfProcessor = new RTFProcessor(args[0]); / /input tem
plate
rtfProcessor.setOutput(args[1]); // output file
rtfProcessor.process();

System.exit(0);
}

Generating XSL with Input/Output Stream

Input:

8-8 Oracle XML Publisher User’s Guide

• RTF (InputStream)

Output:

• XSL (OutputStream)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

FileInputStream fIs = new FileInputStream(args[0]); //in pu
t template

FileOutputStream fOs = new FileOutputStream(args[1]); // out
put

RTFProcessor rtfProcessor = new RTFProcessor(fIs);
rtfProcessor.setOutput(fOs);
rtfProcessor.process();
// Closes inputStreams outputStream
System.exit(0);

}

FO Processor Engine

Generating Output from an XML File and an XSL File
The FO Processor Engine is XML Publisher’s implementation of the W3C XSL-FO
standard. It does not represent a complete implementation of every XSL-FO
component. The FO Processor can generate output in PDF, RTF, HTML, or Excel (HTML)
from either of the following two inputs:

• Template (XSL) and Data (XML) combination

• FO object

Both input types can be passed as file names, streams, or in an array. Set the output
format by setting the setOutputFormat method to one of the following:

• FORMAT_EXCEL

• FORMAT_HTML

• FORMAT_PDF

• FORMAT_RTF

An XSL-FO utility is also provided that creates XSL-FO from the following inputs:

• XSL file and XML file

• Two XML files and two XSL files

• Two XSL-FO files (merge)

The FO object output from the XSL-FO utility can then be used as input to the FO
processor.

Calling XML Publisher APIs 8-9

Major Features of the FO Processor

Bidirectional Text

XML Publisher utilizes the Unicode BiDi algorithm for BiDi layout. Based on specific
values for the properties writing-mode, direction, and unicode bidi, the FO Processor
supports the BiDi layout.

The writing-mode property defines how word order is supported in lines and order
of lines in text. That is: right-to-left, top-to-bottom or left-to-right, top-to-bottom. The
direction property determines how a string of text will be written: that is, in a specific
direction, such as right-to-left or left-to-right. The unicode bidi controls and manages
override behavior.

Font Fallback Mechanism

The FO Processor supports a two-level font fallback mechanism. This mechanism
provides control over what default fonts to use when a specified font or glyph is not
found. XML Publisher provides appropriate default fallback fonts automatically without
requiring any configuration. XML Publisher also supports user-defined configuration
files that specify the default fonts to use. For glyph fallback, the default mechanism will
only replace the glyph and not the entire string.

For more information, see XML Publisher Configuration File, page A- 1 .

Variable Header and Footer

For headers and footers that require more space than what is defined in the template, the
FO Processor extends the regions and reduces the body region by the difference between
the value of the page header and footer and the value of the body region margin.

Horizontal Table Break

This feature supports a "Z style" of horizontal table break. The horizontal table break is
not sensitive to column span, so that if the column-spanned cells exceed the page (or
area width), the FO Processor splits it and does not apply any intelligent formatting to
the split cell.

The following figure shows a table that is too wide to display on one page:

The following figure shows one option of how the horizontal table break will handle the
wide table. In this example, a horizontal table break is inserted after the third column.

8-10 Oracle XML Publisher User’s Guide

The following figure shows another option. The table breaks after the third column, but
includes the first column with each new page.

Generating Output Using File Names

The following example shows how to use the FO Processor to create an output file
using file names.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• Output file name (String)

Calling XML Publisher APIs 8-11

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file
processor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Generating Output Using Streams

The processor can also be used with input/output streams as shown in the following
example:

Input:

• XML data (InputStream)

• XSL data (InputStream)

Output:

• Output stream (OutputStream)

8-12 Oracle XML Publisher User’s Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public void runFOProcessor(InputStream xmlInputStream,
InputStream xslInputStream,
OutputStream pdfOutputStream)

{

FOProcessor processor = new FOProcessor();
processor.setData(xmlInputStream);
processor.setTemplate(xslInputStream);
processor.setOutput(pdfOutputStream);
// Set output format (for PDF generation)
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);

}

Generating Output from an Array of XSL Templates and XML Data

An array of data and template combinations can be processed to generate a single
output file from the multiple inputs. The number of input data sources must match
the number of templates that are to be applied to the data. For example, an input of
File1.xml, File2.xml, File3.xml and File1.xsl, File2.xsl, and File3.xsl will produce a single
File1_File2_File3.pdf.

Input:

• XML data (Array)

• XSL data (template) (Array)

Output:

• File Name (String)

Calling XML Publisher APIs 8-13

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

String[] xmlInput = {"first.xml", "second.xml", "third.x ml"};
String[] xslInput = {"first.xsl", "second.xsl", "third.x sl"};

FOProcessor processor = new FOProcessor();
processor.setData(xmlInput);
processor.setTemplate(xslInput);

processor.setOutput("/tmp/output.pdf); //set (PDF) ou
tput file

processor.setOutputFormat(FOProcessor.FORMAT_PDF); p rocessor.p
rocess();

// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

}

Using the XSL-FO Utility
Use the XSL-FO Utility to create an XSL-FO output file from input XML and XSL files, or
to merge two XSL-FO files. Output from this utility can be used to generate your final
output. See Generating Output from an XSL-FO file, page 8-17.

Creating XSL-FO from an XML File and an XSL File

Input:

• XML file

• XSL file

Output:

• XSL-FO (InputStream)

8-14 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.

public static void main(String[] args)
{

InputStream foStream;

// creates XSL-FO InputStream from XML(arg[0])
// and XSL(arg[1]) filepath String
foStream = FOUtility.createFO(args[0], args[1]);
if (mergedFOStream == null)
{

System.out.println("Merge failed.");
System.exit(1);

}

System.exit(0);
}

Creating XSL-FO from Two XML Files and Two XSL files

Input:

• XML File 1

• XML File 2

• XSL File 1

• XSL File 2

Output:

• XSL-FO (InputStream)

Calling XML Publisher APIs 8-15

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.

public static void main(String[] args)
{

InputStream firstFOStream, secondFOStream, mergedFOStr eam;
InputStream[] input = InputStream[2];

// creates XSL-FO from arguments
firstFOStream = FOUtility.createFO(args[0], args[1]);

// creates another XSL-FO from arguments
secondFOStream = FOUtility.createFO(args[2], args[3]);

// set each InputStream into the InputStream Array
Array.set(input, 0, firstFOStream);
Array.set(input, 1, secondFOStream);

// merges two XSL-FOs
mergedFOStream = FOUtility.mergeFOs(input);

if (mergedFOStream == null)
{

System.out.println("Merge failed.");
System.exit(1);

}
System.exit(0);

}

Merging Two XSL-FO Files

Input:

• Two XSL-FO file names (Array)

Output:

• One XSL-FO (InputStream)

8-16 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.

public static void main(String[] args)
{

InputStream mergedFOStream;

// creates Array
String[] input = {args[0], args[1]};

// merges two FO files
mergedFOStream = FOUtility.mergeFOs(input);
if (mergedFOStream == null)
{

System.out.println("Merge failed.");
System.exit(1);

}
System.exit(0);

}

Generating Output from an FO file
The FO Processor can also be used to process an FO object to generate your final
output. An FO object is the result of the application of an XSL-FO stylesheet to XML
data. These objects can be generated from a third party application and fed as input to
the FO Processor.

The processor is called using a similar method to those already described, but a template
is not required as the formatting instructions are contained in the FO.

Generating Output Using File Names

Input:

• FO file name (String)

Output:

• PDF file name (String)

Calling XML Publisher APIs 8-17

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args) {

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XSL-FO input file
processor.setTemplate((String)null);
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Generating Output Using Streams

Input:

• FO data (InputStream)

Output:

• Output (OutputStream)

8-18 Oracle XML Publisher User’s Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public void runFOProcessor(InputStream xmlfoInputStrea m,
OutputStream pdfOutputStream)

{

FOProcessor processor = new FOProcessor();
processor.setData(xmlfoInputStream);
processor.setTemplate((String)null);

processor.setOutput(pdfOutputStream);
// Set output format (for PDF generation)
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}
}

Generating Output with an Array of FO Data

Pass multiple FO inputs as an array to generate a single output file. A template is
not required, therefore set the members of the template array to null, as shown in
the example.

Input:

• FO data (Array)

Output:

• Output File Name (String)

Calling XML Publisher APIs 8-19

Example
import java.lang.reflect.Array;
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

String[] xmlInput = {"first.fo", "second.fo", "third.fo" };
String[] xslInput = {null, null, null}; // null needs for xs

l-fo input

FOProcessor processor = new FOProcessor();
processor.setData(xmlInput);
processor.setTemplate(xslInput);

processor.setOutput("/tmp/output.pdf); //set (PDF) ou
tput file

processor.setOutputFormat(FOProcessor.FORMAT_PDF); p rocessor.p
rocess();

// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

}

PDF Document Merger
The PDF Document Merger class provides a set of utilities to manipulate PDF
documents. Using these utilities, you can merge documents, add page numbering, set
backgrounds, and add watermarks.

Merging PDF Documents
Many business documents are composed of several individual documents that need to
be merged into a single final document. The PDFDocMerger class supports the merging
of multiple documents to create a single PDF document. This can then be manipulated
further to add page numbering, watermarks, or other background images.

Merging with Input/Output File Names

The following code demonstrates how to merge (concatenate) two PDF documents using
physical files to generate a single output document.

Input:

• PDF_1 file name (String)

8-20 Oracle XML Publisher User’s Guide

• PDF_2 file name (String)

Output:

• PDF file name (String)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public static void main(String[] args)
{

try
{

// Last argument is PDF file name for output
int inputNumbers = args.length - 1;

// Initialize inputStreams
FileInputStream[] inputStreams = new FileInputStream[in putNu

mbers];
inputStreams[0] = new FileInputStream(args[0]);
inputStreams[1] = new FileInputStream(args[1]);

// Initialize outputStream
FileOutputStream outputStream = new FileOutputStream(ar gs[2]

);

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

// Closes inputStreams and outputStream
}
catch(Exception exc)
{

exc.printStackTrace();
}

}

Merging with Input/Output Streams

Input:

• PDF Documents (InputStream Array)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 8-21

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public boolean mergeDocs(InputStream[] inputStreams, Ou tputStrea
m outputStream)

{
try
{

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{

exc.printStackTrace();
return false;

}
}

Merging with Background to Place Page Numbering

The following code demonstrates how to merge two PDF documents using input streams
to generate a single merged output stream.

To add page numbers: .

1. Create a background PDF template document that includes a PDF form field in the
position that you would like the page number to appear on the final output PDF
document.

2. Name the form field @pagenum@.

3. Enter the number in the field from which to start the page numbering. If you do not
enter a value in the field, the start page number defaults to 1.

Input:

• PDF Documents (InputStream Array)

• Background PDF Document (InputStream)

Output:

• PDF Document (OutputStream)

8-22 Oracle XML Publisher User’s Guide

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public static boolean mergeDocs(InputStream[] inputStre ams, Input
Stream backgroundStream, OutputStream outputStream)

{
try
{

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Set Background
docMerger.setBackground(backgroundStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{

exc.printStackTrace();
return false;

}
}

Adding Page Numbers to Merged Documents

The FO Processor supports page numbering natively through the XSL-FO templates, but
if you are merging multiple documents you must use this class to number the complete
document from beginning to end.

The following code example places page numbers in a specific point on the page, formats
the numbers, and sets the start value using the following methods:

• setPageNumberCoordinates (x, y) - sets the x and y coordinates for the page number
position. The following example sets the coordinates to 300, 20.

• setPageNumberFontInfo (font name, size) - sets the font and size for the page
number. If you do not call this method, the default "Helvetica", size 8 is used. The
following example sets the font to "Courier", size 8.

• setPageNumberValue (n, n) - sets the start number and the page on which to begin
numbering. If you do not call this method, the default values 1, 1 are used.

Input:

• PDF Documents (InputStream Arrary)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 8-23

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public boolean mergeDocs(InputStream[] inputStreams, Ou tputStrea
m outputStream)

{
try
{

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Calls several methods to specify Page Number

// Calling setPageNumberCoordinates() method is necessar y to
set Page Numbering

// Please refer to javadoc for more information
docMerger.setPageNumberCoordinates(300, 20);

// If this method is not called, then the default font"(Helv
etica, 8)" is used.

docMerger.setPageNumberFontInfo("Courier", 8);

// If this method is not called, then the default initial va
lue "(1, 1)" is used.

docMerger.setPageNumberValue(1, 1);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{

exc.printStackTrace();
return false;

}
}

Setting a Text or Image Watermark
Some documents that are in a draft phase require that a watermark indicating
"DRAFT" be displayed throughout the document. Other documents might require a
background image on the document. The following code sample shows how to use the
PDFDocMerger class to set a watermark.

Setting a Text Watermark

Use the SetTextDefaultWatermark() method to set a text watermark with the following
attributes:

8-24 Oracle XML Publisher User’s Guide

• Text angle (in degrees): 55

• Color: light gray (0.9, 0.9, 0.9)

• Font: Helvetica

• Font Size: 100

• The starting position is calculated based on the length of the text

Alternatively, use the SetTextWatermark() method to set each attribute separately. Use
the SetTextWatermark() method as follows:

• SetTextWatermark ("Watermark Text", x, y) - declare the watermark text, and set the
x and y coordinates of the start position. In the following example, the watermark
text is "Draft" and the coordinates are 200f, 200f.

• setTextWatermarkAngle (n) - sets the angle of the watermark text. If this method
is not called, 0 will be used.

• setTextWatermarkColor (R, G, B) - sets the RGB color. If this method is not
called, light gray (0.9, 0.9, 0.9) will be used.

• setTextWatermarkFont ("font name", font size) - sets the font and size. If you do not
call this method, Helvetica, 100 will be used.

The following example shows how to set these properties and then call the
PDFDocMerger.

Input:

• PDF Documents (InputStream)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 8-25

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public boolean mergeDocs(InputStream inputStreams, Outp utStream
outputStream)

{
try
{

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// You can use setTextDefaultWatermark() without these det ai
led setting

docMerger.setTextWatermark("DRAFT", 200f, 200f); //set text
and place

docMerger.setTextWatermarkAngle(80); //set an
gle

docMerger.setTextWatermarkColor(1.0f, 0.3f ,0.5f); // s et R
GB Color

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{

exc.printStackTrace();
return false;

}
}

Setting Image Watermark

An image watermark can be set to cover the entire background of a document, or just to
cover a specific area (for example, to display a logo). Specify the placement and size
of the image using rectangular coordinates as follows:

float[] rct = {LowerLeft X, LowerLeft Y, UpperRight
X, UpperRight Y}

For example:

float[] rct = {100f, 100f, 200f, 200f}

The image will be sized to fit the rectangular area defined.

To use the actual image size, without sizing it, define the LowerLeft X and LowerLeft
Y positions to define the placement and specify the UpperRight X and UpperRight Y
coordinates as -1f. For example:

float[] rct = {100f, 100f, -1f, -1f}

8-26 Oracle XML Publisher User’s Guide

Input:

• PDF Documents (InputStream)

• Image File (InputStream)

Output:

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.

public boolean mergeDocs(InputStream inputStreams, Outp utStream
outputStream, String imageFilePath)

{
try
{

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

FileInputStream wmStream = new FileInputStream(imageFil ePath
);

float[] rct = {100f, 100f, -1f, -1f};
pdfMerger.setImageWatermark(wmStream, rct);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

// Closes inputStreams
return true;

}
catch(Exception exc)
{

exc.printStackTrace();
return false;

}
}

Document Processor Engine
The Document Processor Engine provides batch processing functionality to access
a single API or multiple APIs by passing a single XML instance document to specify
template names, data sources, languages, output type, output names, and destinations.

This solution enables batch printing with XML Publisher, a single XML document can be
used to define a set of invoices for customers, including the preferred output format and
delivery channel for those customers. The XML format is very flexible allowing multiple
documents to be created or a single master document.

This section:

• Describes the hierarchy and elements of the Document Processor XML file

Calling XML Publisher APIs 8-27

• Provides sample XML files to demonstrate specific processing options

• Provides example code to invoke the processors

Hierarchy and Elements of the Document Processor XML File
The Document Processor XML file has the following element hierarchy:

Requestset
request

delivery
filesystem
print
fax

number
email

message
document

background
text

pagenumber
template

data

This hierarchy is displayed in the following illustration:

The following table describes each of the elements:

Element Attributes Description

requestset xmlns

version

Root element must contain
[xmlns:xapi="http://
xmlns.oracle.com/oxp/
xapi/"] block

The version is not required,
but defaults to "1.0".

request N/A Element that contains the
data and template processing
definitions.

8-28 Oracle XML Publisher User’s Guide

Element Attributes Description

delivery N/A Defines where the generated
output is sent.

document output-type Specify one output that
can have several template
elements. The output-
type attribute is optional.
Valid values are:

pdf (Default if not specified)

rtf

html

excel

text

.

filesystem output Specify this element to save
the output to the file system.
Define the directory path in
the output attribute.

print • printer

• server-alias

The print element can
occur multiple times under
delivery to print one
document to several printers.
Specify the printer
attribute as a URI, such
as, "ipp://myprintserver:631/
printers/printername".

fax • server

• server-alias

Specify a URI in the server
attribute, for example: "ipp:/
/myfaxserver1:631/printers/
myfaxmachine".

number The number element can
occur multiple times to list
multiple fax numbers. Each
element occurrence must
contain only one number.

email • server

• port

• from

• reply-to

• server-alias

Specify the outgoing mail
server (SMTP) in the server
attribute.

Specify the mail server port in
the port attribute.

Calling XML Publisher APIs 8-29

Element Attributes Description

message • to

• cc

• bcc

• attachment

• subject

The message element can be
placed several times under
the email element. You can
specify character data in the
message element.

You can specify multiple email
addresses in the to , cc and
bcc attributes separated by a
comma.

The attachment value is
either true or false (default). If
attachment is true then a
generated document will be
attached when the email is
sent.

The subject attribute is
optional.

background where If the background text is
required on a specific page,
then set the where value to
the page numbers required.
The page index starts at 1. The
default value is 0, which places
the background on all pages.

text • title

• default

Specify the watermark text in
the title value.

A default value of "yes"
automatically draws the
watermark with forward slash
type. The default value is yes.

pagenumber • initial-page-index

• initial-value

• x-pos

• y-pos

The initial-page-index
default value is 0.

The initial-value default
value is 1.

"Helvetica" is used for the
page number font.

The x-pos provides lower
left x position.

The y-pos provides lower
left y position.

8-30 Oracle XML Publisher User’s Guide

Element Attributes Description

template • locale

• location

• type

Contains template
information.

Valid values for the type
attribute are

pdf

rtf

xsl-fo

etext

The default value is "pdf".

data location Define the location
attribute to specify the
location of the data, or attach
the actual XML data with
subelements. The default
value of location is
"inline". It the location
points to either an XML file or
a URL, then the data should
contain an XML declaration
with the proper encoding.

If the location attribute
is not specified, the data
element should contain the
subelements for the actual
data. This must not include an
XML declaration.

XML File Samples
Following are sample XML files that show:

• Simple XML shape

• Defining two data sets

• Defining multiple templates and data

• Retrieving templates over HTTP

• Retrieving data over HTTP

• Generating more than one output

• Defining page numbers

Simple XML sample

The following sample is a simple example that shows the definition of one template
(template1.pdf) and one data source (data1) to produce one output file
(outfile.pdf) delivered to the file system:

Calling XML Publisher APIs 8-31

Example
<?xml version="1.0" encoding="UTF-8" ?>

<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi
">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\tmp\outfile.pdf" />
</xapi:delivery>
<xapi:document output-type="pdf">

<xapi:template type="pdf" location="d:\mywork\templat e1
.pdf">

<xapi:data>
<field1>data1</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Defining two data sets

The following example shows how to define two data sources to merge with one
template to produce one output file delivered to the file system:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\tmp\outfile.pdf"/>
</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>

<field1>The first set of data</field1>
</xapi:data>
<xapi:data>

<field1>The second set of data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>
</xapi:requestset>

Defining multiple templates and data

The following example builds on the previous examples by applying two data sources to
one template and two data sources to a second template, and then merging the two into a
single output file. Note that when merging documents, the output-type must be "pdf".

8-32 Oracle XML Publisher User’s Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\tmp\outfile3.pdf"/>
</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>

<field1>The first set of data</field1>
</xapi:data>
<xapi:data>

<field1>The second set of data</field1>
</xapi:data>

</xapi:template>

<xapi:template type="pdf"
location="d:\mywork\template2.pdf">

<xapi:data>
<field1>The third set of data</field1>

</xapi:data>
<xapi:data>

<field1>The fourth set of data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>
</xapi:requestset>

Retrieving templates over HTTP

This sample is identical to the previous example, except in this case the two templates
are retrieved over HTTP:

Calling XML Publisher APIs 8-33

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out4.pdf"/>
</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="http://your.server:9999/templates/temp
late1.pdf">

<xapi:data>
<field1>The first page data</field1>

</xapi:data>
<xapi:data>

<field1>The second page data</field1>
</xapi:data>

</xapi:template>

<xapi:template type="pdf"
location="http://your.server:9999/templates/temp

late2.pdf">
<xapi:data>

<field1>The third page data</field1>
</xapi:data>
<xapi:data>

<field1>The fourth page data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>
</xapi:requestset>

Retrieving data over HTTP

This sample builds on the previous example and shows one template with two data
sources, all retrieved via HTTP; and a second template retrieved via HTTP with its
two data sources embedded in the XML:

8-34 Oracle XML Publisher User’s Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out5.pdf"/>
</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="http://your.server:9999/templates/temp
late1.pdf">

<xapi:data location="http://your.server:9999/data/da ta_1.x
ml"/>

<xapi:data location="http://your.server:9999/data/da ta_2.x
ml"/>

</xapi:template>

<xapi:template type="pdf"
location="http://your.server:9999/templates/temp

late2.pdf">
<xapi:data>

<field1>The third page data</field1>
</xapi:data>
<xapi:data>

<field1>The fourth page data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>
</xapi:requestset>

Generating more than one output

The following sample shows the generation of two outputs: out_1.pdf and
out_2.pdf . Note that a request element is defined for each output.

Calling XML Publisher APIs 8-35

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out_1.pdf"/>
</xapi:delivery>
<xapi:document output-type="pdf">

<xapi:template type="pdf"
location="d:\mywork\template1.pdf">

<xapi:data>
<field1>The first set of data</field1>

</xapi:data>
<xapi:data>

<field1>The second set of data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out_2.pdf"/>
</xapi:delivery>
<xapi:document output-type="pdf">

<xapi:template type="pdf"
location="d:mywork\template2.pdf">

<xapi:data>
<field1>The third set of data</field1>

</xapi:data>
<xapi:data>

<field1>The fourth set of data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>

</xapi:requestset>

Defining page numbers

The following sample shows the use of the pagenumber element to define page
numbers on a PDF output document. The first document that is generated will begin
with an initial page number value of 1. The second output document will begin with
an initial page number value of 3. The pagenumber element can reside anywhere
within the document element tags.

Note that page numbering that is applied using the pagenumber element will not
replace page numbers that are defined in the template.

8-36 Oracle XML Publisher User’s Guide

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com /oxp/xapi">

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out7-1.pdf"/>
</xapi:delivery>
<xapi:document output-type="pdf">

<xapi:pagenumber initial-value="1" initial-page-index ="1" x-
pos="300" y-pos="20" />

<xapi:template type="pdf"
location="d:\mywork\template1.pdf">

<xapi:data>
<field1>The first page data</field1>

</xapi:data>
<xapi:data>

<field1>The second page data</field1>
</xapi:data>

</xapi:template>
</xapi:document>

</xapi:request>

<xapi:request>
<xapi:delivery>

<xapi:filesystem output="d:\temp\out7-2.pdf"/>
</xapi:delivery>
<xapi:document output-type="pdf">

<xapi:template type="pdf"
location="d:\mywork\template2.pdf">

<xapi:data>
<field1>The third page data</field1>

</xapi:data>
<xapi:data>

<field1>The fourth page data</field1>
</xapi:data>

</xapi:template>
<xapi:pagenumber initial-value="3" initial-page-index ="1" x-

pos="300" y-pos="20" />
</xapi:document>

</xapi:request>

</xapi:requestset>

Invoke Processors
The following code samples show how to invoke the document processor engine using
an input file name and an input stream.

Invoke Processors with Input File Name

Input:

• Data file name (String)

• Directory for Temporary Files (String)

Calling XML Publisher APIs 8-37

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.

public static void main(String[] args)
{

.

.

.
try
{

// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
DocumentProcessor docProcessor = new DocumentProcessor(data

File, tempDir);
docProcessor.process();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

Invoke Processors with InputStream

Input:

• Data file (InputStream)

• Directory for Temporary Files (String)

8-38 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.batch.DocumentProcessor;
import java.io.InputStream;
.
.
.

public static void main(String[] args)
{

.

.

.
try
{

// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
FileInputStream fIs = new FileInputStream(dataFile);

DocumentProcessor docProcessor = new DocumentProcessor(fIs,
tempDir);

docProcessor.process();
fIs.close();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

XML Publisher Security Properties
The FO Processor supports PDF security and other properties that can be applied to
your final documents. Security properties include making a document unprintable and
applying password security to an encrypted document.

Other properties allow you to define font subsetting and embedding. If your template
uses a font that would not normally be available to XML Publisher at runtime, you can
use the font properties to specify the location of the font. At runtime XML Publisher
will retrieve and use the font in the final document. For example, this property might
be used for check printing for which a MICR font is used to generate the account and
routing numbers on the checks.

See XML Publisher Security Properties, page A-10 for the full list of properties.

Setting Properties
The properties can be set in two ways:

• At runtime, specify the property as a Java Property object to pass to the FO Processor

• Set the property in a configuration file

Calling XML Publisher APIs 8-39

Passing Properties to the FO Engine

To pass a property as a Property object, set the name/value pair for the property prior to
calling the FO Processor, as shown in the following example:

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file
processor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
Properties prop = new Properties();
prop.put("pdf-security", "true"); // PDF security

control
prop.put("pdf-permissions-password", "abc"); // permis sions p

assword
prop.put("pdf-encription-level", "0"); // encryption le

vel
processor.setConfig(prop);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Passing a Configuration File to the FO Processor

The following code shows an example of passing the location of a configuration file.

Input:

• XML file name (String)

• XSL file name (String)

Output:

8-40 Oracle XML Publisher User’s Guide

• PDF file name (String)

import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file p

rocessor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.setConfig(“/tmp/xmlpconfig.xml”);
// Start processing
try
{

processor.generate();
} catch (XDOException e)
{ e.printStackTrace();

System.exit(1);
}

System.exit(0);
}

Passing Properties to the Document Processor

Input:

• Data file name (String)

• Directory for Temporary Files (String)

Output:

• PDF FIle

Calling XML Publisher APIs 8-41

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.

public static void main(String[] args)
{

.

.

.
try
{

// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
DocumentProcessor docProcessor = new DocumentProcessor(data

File, tempDir);
Properties prop = new Properties();
prop.put("pdf-security", "true"); // PDF securit

y control
prop.put("pdf-permissions-password", "abc"); // permis sions

password
prop.put("pdf-encription-level", "0"); // encryption

level
processor.setConfig(prop);
docProcessor.process();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

Applications Layer APIs
The applications layer of XML Publisher allows you to store and manager data sources
and templates through the Template Manager user interface via the XML Publisher
Administrator responsibility. You can also access and manipulate these objects via an
application programmer’s interface. This section describes the APIs that are available
to a programmer.

Data sources and templates are stored in the database. This includes the metadata
describing the object and the physical object itself (for example, an RTF file). Use these
APIs to register, update, and retrieve information about datasources and templates. You
can also call use the APIs to call XML Publisher to apply a template to a data source to
generate output documents directly (without going through the concurrent manager).

In the XML Publisher schema, each data source can have multiple templates assigned
to it. However, templates cannot exist without a data source. The following graphic
illustrates this relationship:

8-42 Oracle XML Publisher User’s Guide

Datasource APIs
The following APIs are provided to access and manipulate the data definitions
programmatically:

• DataSource Class

• DataSourceHelper Class

DataSource Class
The data source acts as a placeholder object against which you register templates. The
DataSource class represents a single data source definition entry. This class provides the
following methods to set and get properties from the data source:

DataSourceHelper Class
This is a utility class that can be used to manage data source definition entries in the
Template Manager repository.

A data source definition entry is a logical unit that represents a data source for the
template. Each data source definition entry can have one data defintion in XSD (XML
Schema Definition) format, and one sample data file in XML. Each data source definition
entry can have one or more display names and descriptions for each language. The
appropriate name and description will be picked up and shown to users based on the
user’s session language.

Getting AppsContext

All methods require the AppsContext instance to communicate with the Applications
database. Use one of the following methods to get the AppsContext instance in your
code.

1. If you are using this class in OA Framework, obtain AppsContext by
calling ((OADBTransactionImpl)am.getOADBTransaction()).
getAppsContext()

where am is your OAApplicationModule.

2. If you are using this class in a Java concurrent program, pass CpContext as an
AppsContext.

3. Otherwise create AppsContext from the DBC file. If you are running a servlet/JSP in
Applications, you can obtain the full path to the DBC file by calling

System.getProperty("JTFDBCFILE") or System.get
Property("BNEDBCFILE")

Calling XML Publisher APIs 8-43

Creating Data Source Definition Entries

Add a new data source definition entry to the Template Manager repository as follows:

1. Create an instance of the DataSource class by calling the DataSource.create
Instance() method.

2. Set the attributes of the instance.

3. Pass it to the DataSourceHelper.createDataSource() method.

Example
// Create an instance

DataSource d = DataSource.createInstance(ctx, "XDO", "Te stDataSou
rce");

// Set properties
d.setDescription("This is the test data source entry.");
d.setStartDate(new java.sql.Date(System.currentTimeM illis()));
d.setName("Test Data Source !");
d.setStatus(TypeDefinitions.DATA_SOURCE_STATUS_ENAB LED);
// Call createDataSource() to create an entry into the repos itory
DataSourceHelper.createDataSource(ctx, d);

Getting and Updating Data Source Definition Entries

Update data source definition entries from the repository by calling the
DataSourceHelper.getDataSource() method. It will return an array of
DataSource instances. Update these instances by using the data source "set" methods.

Example
// Get data source definition entries
DataSource[] d = DataSourceHelper.getDataSource(ctx, "X DO", "%XDO

%");

// Update properties
d.setDescription("New data source entry.");
d.setStartDate(new java.sql.Date(System.currentTimeM illis()));
d.setName("New Data Source name");
d.setStatus(TypeDefinitions.DATA_SOURCE_STATUS_ENAB LED);
// Call updateDataSource() to commit the update in the repos itory
DataSourceHelper.updateDataSource(ctx, d);

Deleting Data Source Definition Entries

Delete data source definition entries by calling the DataSource.
deleteDataSource() method. This function does not actually delete the record
from the repository, but marks it as "disabled" for future use. You can change the status
anytime by calling the DataSource.updateDataSourceStatus() method.

Adding, Updating, and Deleting Schema Files and Sample Files

You can add, update and delete the data source schema definition file and the sample
XML file by calling methods defined in the DataSourceHelper class. Please note that
unlike the deleteDataSource() method described above, these methods actually
delete the schema file and sample records from the repository.

8-44 Oracle XML Publisher User’s Guide

Example
// Add a schema definition file
DataSourceHelper.addSchemaFile(ctx, "XDO", "TestDataS ource",

"schema.xsd", new FileInputStream("/path/to/schema.xs d"));
// Add a sample xml data file
DataSourceHelper.addSampleFile(ctx, "XDO", "TestDataS ource",

"sample.xml", new FileInputStream("/path/to/sample.xm l"));

// Update a schema definition file
DataSourceHelper.addSchemaFile(ctx, "XDO", "TestDataS ource",

new FileInputStream("/path/to/new_schema.xsd"));
// Update a sample xml data file
DataSourceHelper.addSampleFile(ctx, "XDO", "TestDataS ource",

new FileInputStream("/path/to/new_sample.xml"));

// Delete a schema definition file
DataSourceHelper.deleteSchemaFile(ctx, "XDO", "TestDa taSource");
// Delete a sample xml data file
DataSourceHelper.deleteSampleFile(ctx, "XDO", "TestDa taSource");

Getting Schema Files and Sample Files from the Repository

You can download schema files or sample files from the repository by calling the
getSchemaFile() or the getSampleFile() method. These methods return an
InputStream connected to the file contents as a return value.

The sample code is as follows:

Example
// Download the schema definition file from the repository

InputStream schemaFile =
DataSourceHelper.getSchemaFile(ctx, "XDO", "TestDataS ource",);

// Download the XML sample data file from the repository
InputStream sampleFile =

DataSourceHelper.getSampleFile(ctx, "XDO", "TestDataS ource",);

Template APIs
Multiple template objects can be associated with a single data source. The Template class
represents a single template instance. The TemplateHelper class is a utility class used to
create and update template objects in the Template Manager.

The Template Class
The Template class represents a single template object in the template manager. It
is associated with a data source object. The class has several get and set methods to
manipulate the template object.

TemplateHelper Class
The TemplateHelper class is a utility class to manage the template entries in the Template
Manager repository. It consists of a set of static utility methods.

Calling XML Publisher APIs 8-45

A template entry is a logical unit that represents a single template. Each template entry
has a corresponding data source definition entry that defines how the data looks for this
template. Each template entry has one physical template file for each language.

Each template entry has one display name and description for each language. These
names will be picked up and used when the Template Manager user interface shows the
template entry name.

Getting the AppsContext Instance

Some methods require the AppsContext instance to communicate with the Applications
database. Get the AppsContext instance in your code using one of the following options:

1. If you are using this class in OA Framework, obtain AppsContext by
calling ((OADBTransactionImpl)am.getOADBTransaction()).
getAppsContext()

where am is your OAApplicationModule.

2. If you are using this class in a Java concurrent program, pass CpContext as an
AppsContext.

3. Otherwise create AppsContext from the DBC file. If you are running a servlet/JSP in
Applications, you can obtain the full path to the DBC file by calling

System.getProperty("JTFDBCFILE") or System.getProperty("BNEDBCF
ILE")

Getting the OAApplicationModule Instance

Some methods require the OAApplicationModule instance to communicate with
the Applications database. Get the OAApplicationModule instance in your code as
follows:

1. If you are using the TemplateHelper in OA Framework, you already have an
OAApplicationModule instance

2. If you already have AppsContext, you can create the OAApplicationModule
instance by using oracle.apps.fnd.framework.server.
OAApplicationModuleUtil

It is recommended that you use AppsContext to call APIs because the latest
development is based on the APIs that take AppsContext. You can still use APIs that
take OAApplicationModule, but they internally call corresponding APIs that take
AppsContext.

Creating Template Entries

To add a new template entry to the Template Manager repository:

1. Create an instance of the Template class by calling the Template.create
Instance() method

2. Set the attributes of the instance.

3. Pass it to the TemplateHelper.createTemplate() method

8-46 Oracle XML Publisher User’s Guide

Example
// Create an instance

Template t = Template.createInstance(appsContext, "XDO" , "TestTem
plate",

TypeDefinitions.TEMPLATE_TYPE_PDF, "XDO", "TestTempla te");

// Set properties
t.setDescription("This is the test template entry.");
t.setStartDate(new java.sql.Date(System.currentTimeM illis()));
t.setName("Test template !");
t.setStatus(TypeDefinitions.TEMPLATE_STATUS_ENABLED);
// Call createTemplate() to create an entry into the reposit ory
TemplateHelper.createTemplate(am, t);

Getting and Updating Template Entries

Get template entries from the repository by calling theTemplateHelper.
getTemplate() method or the getTemplates() method. Update the entry
information by using use these instances.

Example
// Get active template entries

Template[] t = TemplateHelper.getTemplates(appsContext , "XDO", "X
DO%", true);

// Update properties
t[0].setDescription("updated template entry.");
t[0].setStartDate(new java.sql.Date(System.currentTi meMillis()));
t[0].setName("updated template entry name");
t[0].setStatus(TypeDefinitions.TEMPLATE_STATUS_ENAB LED);

// Call updateTemplate() to commit the update in the reposit ory
TemplateHelper.updateTemplate(appsContext, t[0]);

Deleting Template Entries

Delete template entries by calling the Template.deleteTemplate () method. The
method does not actually delete the record from the repository, but marks it
as "disabled" for future use. You can change the status anytime by calling the
Template.updateTemplateStatus() method.

Adding, Updating, and Deleting Template Files

You can add, update and delete template files by calling methods defined in the
TemplateHelper class. Please note that unlike the template entries, deleting template
files actually deletes the record from the repository.

The following code sample demonstrates adding, deleting, and updating a template file:

Calling XML Publisher APIs 8-47

Example
// Add English template file to the template entry
TemplateHelper.addTemplateFile(

appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"us.pdf", // Filename of the template file
new FileInputStream("/path/to/us.pdf")); // Template fi le

// Add Japanese template file to the template entry
TemplateHelper.addTemplateFile(

appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"ja", // ISO language code of the template
"JP", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"ja.pdf", // Filename of the template file
new FileInputStream("/path/to/ja.pdf")); // Template fi le

// Update English template file to the template entry
TemplateHelper.updateTemplateFile(

appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"us.pdf", // Filename of the template file
new FileInputStream("/path/to/new/us.pdf")); // Templa te file

// Delete Japanese template file to the template entry
TemplateHelper.deleteTemplateFile(

appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"ja", // ISO language code of the template
"JP"); // ISO territory code of the template

Getting Template Files

Download template file contents from the repository by calling the
getTemplateFile() methods. These methods return an InputStream connected to
the template file as a return value.

Example
// Download the English template file from the repository

InputStream in = TemplateHelper.getTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US"); // ISO territory code of the template

8-48 Oracle XML Publisher User’s Guide

Processing Templates

You can apply a template, stored in the Template Manager, to an XML data source by
calling one of the processTemplate() methods. You need to pass the OutputStream object
for the destination of the processed document.

Example
// Process template

TemplateHelper.processTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
dataInputStream, // XML data for the template
TemplateHelper.OUTPUT_TYPE_PDF, // Output type of the pro cesed

document
properties, // Properties for the template processing
docOutputStream) // OutputStream where the processed docu m

ent goes.

Pass the properties for template processing by passing a Properties object. You can pass
null if you have nothing to tell to the XML Publisher processors.

In addition to passing the properties that you set, the TemplateHelper class also looks up
the following locations to get system level properties if available:

1. Java system properties for OA specific properties, such as the OA_MEDIAlocation.

2. System configuration file located at {java.home}/lib/xdo.cfg

If there are conflicts between system level properties and user level properties that you
pass, user level properties will take precedence.

Creating and Processing EFT/EDI Templates

The TemplateHelper class supports EFT/EDI templates. You can create EFT/EDI
template entries with Template.TEMPLATE_TYPE_ETEXT template type. You can
also process the EFT/EDI templates by using theprocessTemplate() method
in the TemplateHelper. You can assign OUTPUT_TYPE_ETEXToutput type when
you process EFT/EDI templates. If you need to supply parameters to the EFT/EDI
processing engine, you can pass those parameters as a Properties object when you
call the processTemplate() method.

Calling XML Publisher APIs 8-49

Example
// Process EFT/EDI template

TemplateHelper.processTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
dataInputStream, // XML data for the template
TemplateHelper.OUTPUT_TYPE_ETEXT, // Output type of the p rocese

d document
properties, // Properties for the template processing

.
// All properties will be passed to EFT/E

DI engine
docOutputStream) // OutputStream where the processed docu m

ent goes.

If you need more control for EFT/EDI template processing (such as for getting/setting
context parameters for the EFT/EDI processing engine), you can call EFTGenerator to
process templates.

Example
import oracle.apps.xdo.template.eft.EFTGenerator;

…

// Process EFT/EDI template with EFTGenerator class
EFTGenerator generator = new EFTGenerator();
// Get the template file from template manager repository
// and set it.
generator.loadXSL(

TemplateHelper.getTemplateFile(ctx, "XDO", "TestTempl ate", "en
", "US"));

// Set the data XML
generator.loadXML(dataInputStream);
// Set context param
generator.setContextParam(PARAM1, PARAM1_VALUE);
// Process the template
generator.process(resultOutputStream);
// Get context param
String param2 = generator.getContextParam(PARAM2);

Language Fallback Mechanism

Both the getTemplateFile() and the processTemplate() methods support
the language fallback mechanism. This mechanism provides the most appropriate
InputStream even if there is no template file to match the language criteria. The priority
of the language fallback is as follows:

1. Returns the template file that matches the given language and territory.

2. Returns the template file that matches the given language and is territory
independent (the territory value is "00").

8-50 Oracle XML Publisher User’s Guide

3. Returns the default template. See The Default Template, page 5- 5 for more
information on assigning a default template file.

For example, the following table shows a sample of templates in the Template Manager
repository:

Template File ISO Language Code ISO Territory Code Default?

A en US no

B en 00 no

C fr FR yes

D ja JP no

The following table shows the template that will be returned if you pass the given ISO
language/territory code combinations:

ISO Language Code ISO Territory Code Template Returned

en US A

en GB B

en null B

fr FR C

ja JP D

de DE C

It is recommended that you pass both the ISO language code and territory code explicitly
to best obtain the target template file.

Template Validation

By default, when you call getTemplateFile() or processTemplate() , XML
Publisher runs validation logic against START_DATE, END_DATE, and
TEMPLATE_STATUS set in the template entry. If an invalid entry is found, the
following exceptions are thrown accordingly: TemplateExpiredException ,
TemplateNotYetValidException , StatusDisabledException . These
exceptions are subclasses of the oracle.apps.xdo.XDOException so
you can catch XDOException if you want to catch all these exceptions at
one time. To turn off this validation mode, set the java system property
xdo.TemplateValidation=false . The default mode is set to true.

Calling XML Publisher APIs 8-51

9
Delivery Ma nager

Introduction
The Delivery Manager is a set of Java APIs that allow you to control the delivery of your
XML Publisher documents. Use the Delivery Manager to:

• Deliver documents through established delivery channels (e-mail, fax, printer,
WebDAV, FTP, or HTTP) or custom delivery channels

• Track the status of each delivery

• Redeliver documents

Using the Delivery Manager
To use the Delivery Manager follow these steps:

1. Create a DeliveryManager instance

2. Create a DeliveryRequest instance using the createRequest() method

3. Add the request properties (such as DeliveryRequest destination). Most properties
require a String value. See the supported properties for each delivery channel
for more information.

4. Set your document to the DeliveryRequest.

5. Call submit() to submit the delivery request.

One delivery request can handle one document and one destination. This facilitates
monitoring and resubmission, if necessary.

DeliveryRequest allows you to set the documents in three ways as follows:

• Get OutputStream from the DeliveryRequest and write the document to the
OutputStream. You do not need to close the OutputStream to call the submit()
method immediately after you finish writing the document to the OutputStream.

• Set InputStream of the document to DeliveryRequest. The DeliveryRequest will read
the InputStream when you call submit() for the first time. The DeliveryRequest does
not close the InputStream so you must ensure to close it.

• Set the file name of the document to DeliveryRequest.

The Delivery Manager supports streamlined delivery when you set the direct mode. See
Direct and Buffering Modes, page 9-17.

The follow delivery channels are described in this document:

Delivery Manager 9-1

• E-mail

• Printer

• Fax

• WebDAV

• FTP

• HTTP

Delivering Documents via e-Mail
The following sample demonstrates delivery via E-mail:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_S

MTP_EMAIL);

// set email subject
req.addProperty(DeliveryPropertyDefinitions.SMTP_SU BJECT, "te

st mail");
// set SMTP server host
req.addProperty(

DeliveryPropertyDefinitions.SMTP_HOST, "mysmtphost") ;
// set the sender email address
req.addProperty(DeliveryPropertyDefinitions.SMTP_FR OM, "mynam

e@mydomain.com");
// set the destination email address
req.addProperty(

DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS, "use r1@mydo
main.com, user2@mydomain.com");

// set the content type of the email body
req.addProperty(DeliveryPropertyDefinitions.SMTP_CO NTENT_TYPE

, "application/pdf");
// set the document file name appeared in the email
req.addProperty(DeliveryPropertyDefinitions.SMTP_CO NTENT_FILE

NAME, "test.pdf");
// set the document to deliver
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following table lists the supported properties:

9-2 Oracle XML Publisher User’s Guide

Property Description

SMTP_TO_RECIPIENTS Required

Enter multiple recipients separated by a
comma (example: "user1@mydomain.com,
user2@mydomain.com")

SMTP_CC_RECIPIENTS Optional

Enter multiple recipients separated by a
comma.

SMTP_BCC_RECIPIENTS Optional

Enter multiple recipients separated by a
comma.

SMTP_FROM Required

Enter the e-mail address of the sending party.

SMTP_REPLY_TO Optional

Enter the reply-to e-mail address.

SMTP_SUBJECT Required

Enter the subject of the e-mail.

SMTP_CHARACTER_ENCODING Optional

Default is "UTF-8".

SMTP_ATTACHMENT Optional

If you are including an attachment, enter the
attachment object name.

SMTP_CONTENT_FILENAME Required

Enter the file name of the document
(example: invoice.pdf)

SMTP_CONTENT_TYPE Required

Enter the MIME type.

SMTP_SMTP_HOST Required

Enter the SMTP host name.

SMTP_SMTP_PORT Optional

Enter the SMTP port. Default is 25.

SMTP_SMTP_USERNAME Optional

If the SMTP server requires authentication,
enter your username for the server.

Delivery Manager 9-3

Property Description

SMTP_SMTP_PASSWORD Optional

If the SMTP server requires authentication,
enter the password for the username you
entered.

SMTP_ATTACHMENT_FIRST Optional

If your e-mail contains an attachment and
you want the attachment to appear first, enter
"true". If you do not want the attachment to
appear first, enter "false".

Defining Multiple Recipients

The e-mail delivery server channel supports multiple documents and multiple
destinations per request. The following example demonstrates multiple TO and CC
addresses:

Example
// set the TO email addresses

req.addProperty(
DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,

"user1@myd omain.com", user2@mydomain.com, user3@mydomain.c
om");

// set the CC e mail addresses
req.addProperty(

DeliveryPropertyDefinitions.SMTP_CC_RECIPIENTS,
"user4@mydo main.com, user5@mydomain.com, user6@mydomain.co

m");

Attaching Multiple Documents into One Request

Use the Attachment utility class to attach multiple documents into one request. Sample
usage is as follows:

9-4 Oracle XML Publisher User’s Guide

Example
// Properties for Attachment

Hashtable props = new Hashtable();
// Set encoding property for the non-ASCII file names.
// It’s optional. Default value is "UTF-8"
props.put(DeliveryPropertyDefinitions.SMTP_CHARACTE R_ENCODING,

"UTF-8");
:
:

(You can append other properties also)
:
:

// create Attachment instance
Attachment m = new Attachment(props);

// add attachment files
m.addAttachment(

"/pdf_sample/pdfTest5.pdf", // source file name
"a1.pdf", // file name appeared on

the email
"application/pdf"); // content type

m.addAttachment(
"/rtf_sample/rtfsample_en00.rtf", // source file name
"a2.rtf", // file name appeared on

the email
"application/rtf"); // content type

m.addAttachment(
"/xml_sample/pdfTest5.xml", // source file name
"a3.xml", // file name appeared on

the email
"text/xml"); // content type

:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_AT TACHMENT, m)
;

Attaching HTML Documents

You can attach HTML documents into one request. If you have references to image
files located in the local file system in your HTML document, the Attachment utility
automatically attaches those image files also. The sample usage is as follows:

Example
Attachment m = new Attachment();
m.addHtmlAttachment("/path/to/my.html");

:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_AT TACHMENT, m)
;

Delivery Manager 9-5

Displaying the Attachment at the top of the e-mail

If you want to show your attachment at the top of the e-mail, set the property
SMTP_ATTACHMENT_FIRST to "true". Sample usage is as follows.

Example
Attachment m = new Attachment();
m.addHtmlAttachment("/path/to/my.html");

:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_AT TACHMENT_FIR
ST, "true");

:

Providing Username and Password for Authentication

If the SMTP server requires authentication, you can specify the username and password
to the delivery request.

Example
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_US ERNAME, "sco
tt");

req.addProperty(DeliveryPropertyDefinitions.SMTP_PA SSWORD, "tig
er");

:

Delivering Your Document to a Printer
The Delivery Server supports Internet Printing Protocol (IPP) as defined in RFC 2910 and
2911 for the delivery of documents to IPP-supported printers or servers, such as CUPS.

Common Unix Printing System (CUPS) is a free, server-style, IPP-based software that
can accept IPP requests and dispatch those requests to both IPP and non-IPP based
devices, such as printers and fax machines. See http://www.cups.org/ for more details.

Following is a code sample for delivery to a printer:

9-6 Oracle XML Publisher User’s Guide

http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_PRINTER);

// set IPP printer host
req.addProperty(DeliveryPropertyDefinitions.IPP_HOS T, "myhost

");
// set IPP printer port
req.addProperty(DeliveryPropertyDefinitions.IPP_POR T, "631");
// set IPP printer name
req.addProperty(DeliveryPropertyDefinitions.IPP_PRI NTER_NAME,

"/printers/myprinter");
// set the document format
req.addProperty(DeliveryPropertyDefinitions.IPP_DOC UMENT_FORM

AT,
DeliveryPropertyDefinitions.IPP_DOCUMENT_FORMAT_POS TSCRIPT)

;
// set the document
req.setDocument("/document/invoice.ps");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A string value is required for each
property, unless otherwise noted. Note that printer-specific properties such as
IPP_SIDES, IPP_COPIES and IPP_ORIENTATION depend on the printer capabilities. For
example, if the target printer does not support duplex printing, the IPP_SIDES setting
will have no effect.

Property Description

IPP_HOST Required

Enter the host name.

IPP_PORT Optional

Default is 631.

IPP_PRINTER_NAME Required

Enter the name of the printer that is to receive
the output (example: /printers/myPrinter).

IPP_AUTHTYPE Optional

Valid values for authentication type are:

IPP_AUTHTYPE_NONE - no authentication
(default)

IPP_AUTHTYPE_BASIC - use HTTP basic
authentication

IPP_AUTHTYPE_DIGEST - use HTTP digest
authentication

Delivery Manager 9-7

Property Description

IPP_USERNAME Optional

Enter the username for HTTP authentication.

IPP_PASSWORD Optional

Enter the password for HTTP authentication.

IPP_ENCTYPE Optional

The encryption type can be set to either of the
following:

IPP_ENCTYPE_NONE - no encryption
(default)

IPP_ENCTYPE_SSL - use Secure Socket Layer

IPP_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or
"false" (default).

IPP_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

IPP_ATTRIBUTE_CHARSET Optional

Attribute character set of the IPP request.
Default is "UTF-8".

IPP_NATURAL_LANGUAGE Optional

The natural language of the IPP request.
Default is "en".

IPP_JOB_NAME Optional

Job name of the IPP request.

IPP_COPIES Optional

Define the number of copies to print
(example: "1" , "5", "10"). Default is 1.

IPP_SIDES Optional

Enable two-sided printing. This setting will be
ignored if the target printer does not support
two-sided printing. Valid values are:

IPP_SIDES_ONE_SIDED - default

IPP_SIDES_TWO_SIDED_LONG_EDGE
- prints both sides of paper for binding long
edge.

IPP_SIDES_TWO_SIDED_SHORT_EDGE
- prints both sides of paper for binding short
edge.

9-8 Oracle XML Publisher User’s Guide

Property Description

IPP_ORIENTATIONS Optional

Sets the paper orientation. This setting will be
ignored if the target printer does not support
orientation settings. Valid values are:

IPP_ORIENTATIONS_PORTRAIT (default)

IPP_ORIENTATIONS_LANDSCAPE

IPP_DOCUMENT_FORMAT Optional

The target printer must support the specified
format. Valid values are:

IPP_DOCUMENT_FORMAT_POSTSCRIPT

IPP_DOCUMENT_FORMAT_PLAINTEXT

IPP_DOCUMENT_FORMAT_PDF

IPP_DOCUMENT_FORMAT_
OCTETSTREAM (default)

Printing over an HTTP Proxy Server

To deliver documents to IPP printers or fax machines over an HTTP proxy server, you
may encounter delivery problems due to differences in the HTTP implementations
between CUPS and the proxy servers. Setting the following two properties can resolve
most of these problems:

• DeliveryPropertyDefinitions.IPP_USE_FULL_URL - set to "true"

• DeliveryPropertyDefinitions.IPP_USE_CHUNKED_BODY - set to "false"

Delivering Your Documents via Fax
The delivery system supports the delivery of documents to fax modems
configured on CUPS. You can configure fax modems on CUPS with efax
(http://www.cce.com/efax/ [(http://www.cce.com/efax/]) and FAX4CUPS
(http://gongolo.usr.dsi.unimi.it/fax4CUPS/).

Sample code for fax delivery is as follows:

Delivery Manager 9-9

%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
%28http://www.cce.com/efax/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/
http://gongolo.usr.dsi.unimi.it/fax4CUPS/

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_FAX);

// set IPP fax host
req.addProperty(DeliveryPropertyDefinitions.IPP_HOS T, "myhost

");
// set IPP fax port
req.addProperty(DeliveryPropertyDefinitions.IPP_POR T, "631");
// set IPP fax name
req.addProperty(DeliveryPropertyDefinitions.IPP_PRI NTER_NAME,

"/printers/myfax");
// set the document format
req.addProperty(DeliveryPropertyDefinitions.IPP_DOC UMENT_FORM

AT, "application/postscript");
// set the phone number to send
req.addProperty(DeliveryPropertyDefinitions.IPP_PHO NE_NUMBER,

"9999999");
// set the document
req.setDocument("/document/invoice.pdf");

// submit the request
req.submit();
// close the request
req.close();

The supported properties are the same as those supported for printer documents, plus
the following:

Property Description

IPP_PHONE_NUMBER Required

Enter the fax number.

Delivering Your Documents to WebDAV Servers
The following is sample code for delivery to a WebDAV server:

9-10 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_W

EBDAV);

// set document content type
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ CONTENT_TY

PE, "application/pdf");
// set the WebDAV server hostname
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ HOST, "myw

ebdavhost");
// set the WebDAV server port number
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ PORT, "80"

);
// set the target remote directory
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ REMOTE_DIR

ECTORY, "/content/");
// set the remote filename
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ REMOTE_FIL

ENAME, "xdotest.pdf");

// set username and password to access WebDAV server
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ USERNAME,

"xdo");
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_ PASSWORD,

"xdo");
// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A String value is required for each, unless
otherwise noted.

Property Description

WEBDAV_CONTENT_TYPE Required

Enter the document content type (example:
"application/pdf").

WEBDAV_HOST Required

Enter the server host name.

WEBDAV_PORT Optional

Enter the server port number.

Default is 80.

WEBDAV_REMOTE_DIRECTORY Required.

Enter the remote directory name (example: "/
myreports/").

Delivery Manager 9-11

Property Description

WEBDAV_REMOTE_FILENAME Required.

Enter the remote file name.

WEBDAV_AUTHTYPE Optional

Valid values for authentication type are:

WEBDAV_AUTHTYPE_NONE - no
authentication (default)

WEBDAV_AUTHTYPE_BASIC - use HTTP
basic authentication

WEBDAV_AUTHTYPE_DIGEST - use HTTP
digest authentication

WEBDAV_USERNAME Optional

Enter the username for HTTP authentication.

WEBDAV_PASSWORD Optional

Enter the password for HTTP authentication.

WEBDAV_ENCTYPE Optional

Valid values for encryption type are:

WEBDAV_ENCTYPE_NONE - no encryption
(default)

WEBDAV_ENCTYPE_SSL - use Secure Socket
Layer

WEBDAV_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or
"false" (default).

WEBDAV_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

Deliver Your Documents Using FTP
The following is sample code for delivery to a FTP server:

9-12 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_F

TP);

// set hostname of the FTP server
req.addProperty(DeliveryPropertyDefinitions.FTP_HOS T, "myftph

ost");
// set port# of the FTP server
req.addProperty(DeliveryPropertyDefinitions.FTP_POR T, "21");
// set username and password to access WebDAV server
req.addProperty(DeliveryPropertyDefinitions.FTP_USE RNAME, "xd

o");
req.addProperty(DeliveryPropertyDefinitions.FTP_PAS SWORD, "xd

o");
// set the remote directory that you want to send your docume

nt to
req.addProperty(DeliveryPropertyDefinitions.FTP_REM OTE_DIRECT

ORY, "pub");
// set the remote file name
req.addProperty(DeliveryPropertyDefinitions.FTP_REM OTE_FILENA

ME, "test.pdf");
// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A String value is required unless otherwise
noted.

Delivery Manager 9-13

Property Description

FTP_HOST Required

Enter the server host name.

FTP_PORT Optional

Enter the server port number. Default is 21.

FTP_USERNAME Required

Enter the login user name to the FTP server.

FTP_PASSWORD Required

Enter the login password to the FTP server.

FTP_REMOTE_DIRECTORY Required

Enter the directory to which to deliver the
document (example: /pub/)

FTP_REMOTE_FILENAME Required

Enter the document file name for the remote
server.

FTP_BINARY_MODE Optional

Valid values are "true" (default) or "false".

Delivering Documents over HTTP
The Delivery Manager supports delivery of documents to HTTP servers. The following
sample sends a document through the HTTP POST method. Note that the receiving
HTTP server must be able to accept your custom HTTP request in advance (for example
via a custom servlet or CGI program).

9-14 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_H

TTP);

// set request method
req.addProperty(DeliveryPropertyDefinitions.HTTP_ME THOD, Deli

veryPropertyDefinitions.HTTP_METHOD_POST);
// set document content type
req.addProperty(DeliveryPropertyDefinitions.HTTP_CO NTENT_TYPE

, "application/pdf");
// set the HTTP server hostname
req.addProperty(DeliveryPropertyDefinitions.HTTP_HO ST, "myhos

t");
// set the HTTP server port number
req.addProperty(DeliveryPropertyDefinitions.HTTP_PO RT, "80");
// set the target remote directory
req.addProperty(DeliveryPropertyDefinitions.HTTP_RE MOTE_DIREC

TORY, "/servlet/");
// set the remote filename (servlet class)
req.addProperty(DeliveryPropertyDefinitions.HTTP_RE MOTE_FILEN

AME, "uploadDocument");

// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following table lists the properties that are supported. A String value is required for
each property unless otherwise noted.

Property Description

HTTP_METHOD Optional

Sets the HTTP request method. Valid values
are:

HTTP_METHOD_POST (Default)

HTTP_METHOD_PUT

HTTP_CONTENT_TYPE Optional

The document content type (example:
"application/pdf").

HTTP_HOST Required

Enter the server host name.

HTTP_PORT Optional

Enter the server port number. The default is 80.

Delivery Manager 9-15

Property Description

HTTP_REMOTE_DIRECTORY Required

Enter the remote directory name (example: "/
home/").

HTTP_REMOTE_FILENAME Required

Enter the file name to save the document as in
the remote directory.

HTTP_AUTHTYPE Optional

Valid values for authentication type are:

HTTP_AUTHTYPE_NONE - no authentication
(default)

HTTP_AUTHTYPE_BASIC - use basic HTTP
authentication

HTTP_AUTHTYPE_DIGEST - use digest HTTP
authentication

HTTP_USERNAME Optional

If the server requires authentication, enter the
username.

HTTP_PASSWORD Optional

If the server requires authentication, enter the
password for the username.

HTTP_ENCTYPE Optional

Enter the encryption type:

HTTP_ENCTYPE_NONE - no encryption
(default)

HTTP_ENCTYPE_SSL - use Secure Socket
Layer

HTTP_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or "false"
(default).

HTTP_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

HTTP_TIMEOUT Optional

Enter a length of time in milliseconds after
which to terminate the request if a connection
is not made to the HTTP server. The default is
60000 (1 minute).

9-16 Oracle XML Publisher User’s Guide

Direct and Buffering Modes
The delivery system supports two modes: Direct mode and Buffering mode. Buffering
Mode is the default.

Direct Mode

Direct Mode offers full, streamlined delivery processing. Documents are delivered to the
connection streams that are directly connected to the destinations. This mode is fast, and
uses less memory and disk space. It is recommended for online interactive processing.

To set the direct mode, set the BUFFERING_MODE property to "false". Following
is a code sample:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_PRINTER);

// set the direct mode
req.addProperty(DeliveryPropertyDefinitions.BUFFERI NG_MODE, "

false");
:
:
:

This mode does not offer document redelivery. For redelivery requirements, use the
buffering mode.

Buffering Mode

The buffering mode allows you to redeliver documents as many times as you want. The
delivery system uses temporary files to buffer documents, if you specify a temporary
directory (ds-temp-dir) in the delivery server configuration file. If you do not specify
a temporary directory, the delivery system uses the temporary memory buffer. It is
recommended that you define a temporary directory. For more information about the
configuration file, see Configuration File Support, page 9-27.

You can explicitly clear the temporary file or buffer by calling DeliveryRequest.
close() after finishing your delivery request.

Delivery Manager 9-17

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_PRINTER);

// set buffering mode
req.addProperty(DeliveryPropertyDefinitions.BUFFERI NG_MODE, "

true");
req.addProperty(DeliveryPropertyDefinitions.TEMP_DI R, "/tmp")

;
:
:
:

// submit request
req.submit();

:
:

// submit request again
req.submit();

:
:

// close the request
req.close();

Monitoring Delivery Status
The delivery system allows you to check the latest delivery status of your request by
calling the getStatus() method. You can check the status of the request anytime, but
currently you must retain the delivery request object. Status definitions are defined in
the DeliveryRequest interface.

Monitoring delivery status is not available for the SMTP and HTTP delivery channels.

9-18 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_PRINTER);
:
:

// submit request
req.submit();

:
:

// get request status
int status = req.getStatus();
if (status == DeliveryRequest.STATUS_SUCCESSFUL)
{

System.out.println("Request has been delivered successf ull
y.");

}
:
:

// get request status again...
status = req.getStatus();

:
:

Global Properties
You can define the global properties to the DeliveryManager so that all the delivery
requests inherit the global properties automatically.

The following global properties are supported:

Property Description

BUFFERING_MODE Valid values are "true" (default) and "false". See
Direct and Buffering Modes, page 9-17 for
more information.

TEMP_DIR Define the location of the temporary directory.

CA_CERT_FILE Define the location of the CA Certificate file
generated by Oracle Wallet Manager. This
is used for SSL connection with the Oracle
SSL library. If not specified, the default CA
Certificates are used.

Delivery Manager 9-19

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// set global properties
dm.addProperty(DeliveryPropertyDefinitions.TEMP_DIR , "/tmp");
dm.addProperty(DeliveryPropertyDefinitions.BUFFERIN G_MODE, "t

rue");

// create delivery requests
DeliveryRequest req1 = dm.createRequest(DeliveryManage r.TYPE_

IPP_PRINTER);
DeliveryRequest req2 = dm.createRequest(DeliveryManage r.TYPE_

IPP_FAX);
DeliveryRequest req3 = dm.createRequest(DeliveryManage r.TYPE_

SMTP_EMAIL);
:
:

Delivering Multiple Requests with a Single Output Stream
To deliver your document to multiple delivery channels with a single output stream, use
the MultipleRequestHandler utility. Register all your delivery requests to the utility to
get a single output stream that internally distributes the data to the requests.

9-20 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
:
:

// create delivery requests
DeliveryRequest req1 = dm.createRequest(DeliveryManage r.TYPE_

IPP_PRINTER);
DeliveryRequest req2 = dm.createRequest(DeliveryManage r.TYPE_

IPP_FAX);
DeliveryRequest req3 = dm.createRequest(DeliveryManage r.TYPE_

SMTP_EMAIL);
:
:

// create MultipleRequestHandler instance
MultipleRequestHandler mh = new MultipleRequestHandler();
// register delivery requests
mh.addRequest(req1);
mh.addRequest(req2);
mh.addRequest(req3);
// get the ouptput stream
OutputStream out = mh.getDocumentOutputStream();

:
:

// write the document
out.write(yourDocument);

:
:

// submit all delivery requests
mh.submitRequests();

:
:

// close requests
req1.close();
req2.close();
req3.close();

Adding a Custom Delivery Channel
You can add custom delivery channels to the system by following the steps below:

1. Define the delivery properties

2. Implement the DeliveryRequest interface

3. Implement the DeliveryRequestHandler interface

4. Implement the DeliveryRequestFactory interface

5. Register your custom DeliveryRequestFactory to the DeliveryManager

The following sections detail how to create a custom delivery channel by creating a
sample called "File delivery channel" that delivers documents to the local file system.

Define Delivery Properties

The first step to adding a custom delivery channel is to define the properties. These will
vary depending on what you want your channel to do. You can define constants for

Delivery Manager 9-21

your properties. Our example, a file delivery channel requires only one property, which
is the destination.

Sample code is:

Example
package oracle.apps.xdo.delivery.file;

public interface FilePropertyDefinitions
{

/** Destination property definition. */
public static final String FILE_DESTINATION = "FILE_DESTI NATI

ON:String";

}

The value of each constant can be anything, as long as it is a String. It is recommend that
you define the value in [property name]:[property value type] format so
that the delivery system automatically validates the property value at runtime. In the
example, the FILE_DESTINATION property is defined to have a String value.

Implement DeliveryRequest Interface

DeliveryRequest represents a delivery request that includes document
information and delivery metadata, such as destination and other properties. To
implement oracle.apps.xdo.delvery.DeliveryRequest you can extend the class
oracle.apps.xdo.delivery.AbstractDeliveryRequest.

For example, to create a custom delivery channel to deliver documents to the local file
system, the DeliveryRequest implementation will be as follows:

package oracle.apps.xdo.delivery.file;
import oracle.apps.xdo.delivery.AbstractDeliveryRequ est;

public class FileDeliveryRequest extends AbstractDelive ryRequest
implements FilePropertyDefinitions
{

private static final String[] MANDATORY_PROPS = {FILE_DES TINATIO
N};

/**
* Returns mandatory property names
*/

public String[] getMandatoryProperties()
{

return MANDATORY_PROPS;
}
/**

* Returns optional property names
*/

public String[] getOptionalProperties()
{

return null;
}

}

9-22 Oracle XML Publisher User’s Guide

Implement DeliveryRequestHandler Interface

DeliveryRequestHandler includes the logic for handling the delivery requests. A sample
implementation of oracle.apps.xdo.delivery.DeliveryRequestHandler for the file delivery
channel is as follows:

Example
package oracle.apps.xdo.delivery.file;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

import oracle.apps.xdo.delivery.DeliveryException;
import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestHandl er;
import oracle.apps.xdo.delivery.DeliveryStatusDefini tions;

public class FileDeliveryRequestHandler implements Deli veryRequest
Handler
{

private FileDeliveryRequest mRequest;
private boolean mIsOpen = false;
private OutputStream mOut;

/**
* default constructor.
*/

public FileDeliveryRequestHandler()
{
}

/**
* sets the request.
*/

public void setRequest(DeliveryRequest pRequest)
{

mRequest = (FileDeliveryRequest) pRequest;
}

/**
* returns the request.
*/

public DeliveryRequest getRequest()
{

return mRequest;
}

/**
* opens the output stream to the destination.
*/

public OutputStream openRequest() throws DeliveryExcept ion
{

try
{

String filename =
(String) mRequest.getProperty(FileDeliveryRequest.FI LE_DES

Delivery Manager 9-23

TINATION);
mOut = new BufferedOutputStream(new FileOutputStream(fi lenam

e));

mIsOpen = true;
// set request status to open
mRequest.setStatus(DeliveryStatusDefinitions.STATUS _OPEN);
return mOut;

}
catch (IOException e)
{

closeRequest();
throw new DeliveryException(e);

}

}

/**
* flushes and closes the output stream to submit the request.
*/

public void submitRequest() throws DeliveryException
{

try
{

// flush and close
mOut.flush();
mOut.close();
// set request status
mRequest.setStatus(DeliveryStatusDefinitions.STATUS _SUCCESSF

UL);
mIsOpen = false;

}
catch (IOException e)
{

closeRequest();
throw new DeliveryException(e);

}
}

/**
* checks the delivery status.
*/

public void updateRequestStatus() throws DeliveryExcept ion
{

// check if the file is successfully delivered
String filename =

(String) mRequest.getProperty(FileDeliveryRequest.FI LE_DESTI
NATION);

File f = new File(filename);

// set request status
if (f.exists())

mRequest.setStatus(DeliveryStatusDefinitions.STATUS _SUCCESSF
UL);

else
mRequest.setStatus(DeliveryStatusDefinitions.STATUS _FAILED_I

9-24 Oracle XML Publisher User’s Guide

O_ERROR);

}
/**

* returns the request status.
*/

public boolean isRequestOpen()
{

return mIsOpen;
}

/**
* closes the request, frees all resources.
*/

public void closeRequest()
{

mIsOpen = false;
try
{

if (mOut != null)
{

mOut.flush();
mOut.close();

}
}
catch (IOException e)
{
}
finally
{

mOut = null;
}

}

}

Implement DeliveryRequestFactory Interface

Implement the DeliveryRequestFactory interface to register your custom delivery
channel to the delivery system.

A sample implementation of oracle.apps.xdo.delivery.DeliveryRequestFactory is as
follows:

Delivery Manager 9-25

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestFacto ry;
import oracle.apps.xdo.delivery.DeliveryRequestHandl er;

public class FileDeliveryRequestFactory
implements DeliveryRequestFactory
{

/**
* default constructor.
*/

public FileDeliveryRequestFactory()
{
}
/**

* returns delivery request.
*/

public DeliveryRequest createRequest()
{

return new FileDeliveryRequest();
}
/**

* returns delivery request handler.
*/

public DeliveryRequestHandler createRequestHandler()
{

return new FileDeliveryRequestHandler();
}
/**

* returns this
*/

public DeliveryRequestFactory getFactory()
{

return this;
}

}

Register your custom DeliveryRequestFactory to DeliveryManager

The final step is to register your custom delivery channel to the delivery system. You can
register your delivery channel in two ways:

• Static method

Use this method to register your delivery channel to the whole delivery system by
specifying it in the configuration file. See Configuration File Support, page 9-27
for more information.

• Dynamic method

Register the delivery channel to the Java VM instance by calling the Register API
programmatically.

Sample code to register the file delivery channel using the dynamic method and call
the file delivery channel is as follows:

9-26 Oracle XML Publisher User’s Guide

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryManager;
import oracle.apps.xdo.delivery.DeliveryRequest;

public class FileDeliverySample
{

public static void main(String[] args) throws Exception
{

// register the file delivery channel
DeliveryManager.addRequestFactory("file", "oracle.ap ps.xdo.del

ivery.file.FileDeliveryRequestFactory");

// create delivery manager instance
DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest("file");

// set the destination
req.addProperty(

FileDeliveryRequest.FILE_DESTINATION,
"d:/Temp/testDocument_delivered.pdf");

// set the document to deliver
req.setDocument("D:/Temp/testDocument.pdf");

// submit the request
req.submit();
// close the request
req.close();

}
}

Configuration File Support
The delivery systems supports a configuration file to set default servers, default
properties, and custom delivery channels. The location of the configuration file is

{XDO_TOP}/resource/xdodelivery.cfg

where {XDO_TOP} is a Java system property that points to the physical directory.

This system property can be set in two ways:

• Pass -DXDO_TOP=/path/to/xdotop to the Java startup parameter

• Use a Java API in your code, such as java.lang.System.getProperties().
put("XDO_TOP", "/path/to/xdotop")

The system property must be defined before constructing a DeliveryManager object.

Following is a sample configuration file:

Example
<?xml version=’1.0’ encoding=’UTF-8’?>

<config xmlns="http://xmlns.oracle.com/oxp/delivery/ config">
<! - == ========

- >
<! - servers section

- >

Delivery Manager 9-27

<! - List your pre-defined servers here.
- >

<! - == ========
- >

<servers>
<server name="myprinter1" type="ipp_printer" default=" true">

<uri>ipp://myprinter1.oracle.com:631/printers/mypri nter1</u
ri>

</server>
<server name="myprinter2" type="ipp_printer" >

<host>myprinter2.oracle.com</host>
<port>631</port>

<uri>ipp://myprinter2.oracle.com:631/printers/mypri nter2</u
ri>

<authType>basic</authType>
<username>xdo</username>
<password>xdo</password>

</server>
<server name="myfax1" type="ipp_fax" default="true" >

<host>myfax1.oracle.com</host>

<port>631</port>
<uri>ipp://myfax1.oracle.com:631/printers/myfax1</u ri>

</server>
<server name="mysmtp1" type="smtp_email" default="true ">

<host>myprinter1.oracle.com</host>
<port>25</port>

</server>
<server name="mysmtp2" type="smtp_email" >

<host>mysmtp12.oracle.com</host>
<port>25</port>
<username>xdo</username>
<password>xdo</password>

</server>
</servers>
<! - == ========

- >
<! - properties section

- >
<! - List the system properties here.

- >
<! - == ========

- >
<properties>

<property name="ds-temp-dir">/tmp</property>
<property name="ds-buffering">true</property>

</properties>
<! - == ========

- >
<! - channels section

9-28 Oracle XML Publisher User’s Guide

- >

<! - List the custom delivery channels here.
- >

<! - == ========
- >

<channels>
<channel name="file">oracle.apps.xdo.delivery.file.F ileDelive

ryRequestFactory</channel>
</channels>

</config>

Defining Multiple Servers for a Delivery Channel

You can define multiple server entries for each delivery channel. For example, the
preceding sample configuration file has two server entries for the "ipp_printer" delivery
channel ("myprinter1" and "myprinter2").

Load a server entry for a delivery request by calling DeliveryRequest.setServer()
method. Following is an example:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager .TYPE_I

PP_PRINTER);

// load myprinter1 setting
req.setServer("myprinter1");

Specifying a Default Server for a Delivery Channel

To define a default server for a delivery channel, specify default="true". In the
configuration file example above, "myprinter1" is defined as the default sever for the
"ipp_printer" delivery channel. If a user does not specify the server properties for
"ipp_printer" delivery, the server properties under the default server will be used.

Delivery Manager 9-29

A
XML Publish er Configuration File

XML Publisher Configuration File
You can customize the behavior of XML Publisher by setting properties in a configuration
file. The configuration file is optional. There is no default configuration file in the system.

The configuration file is primarily used for:

• Setting a temporary directory

• Setting general properties for PDF files generated by XML Publisher

• Setting security properties for PDF files generated by XML Publisher

• Setting font locations and substitutions

Important: It is strongly recommended that you set up this
configuration file to create a temporary directory for processing large
files. If you do not, you will encounter "Out of Memory" errors when
processing large files. Create a temporary directory by defining the
system-temp-dir property (described below).

It is also recommended that you secure the configuration file if you use
it to set the PDF security passwords.

File Name and Location

You must name this file xdo.cfg and place it under <JRE_TOP>/lib .

Namespace

The namespace for this configuration file is:

http://xmlns.oracle.com/oxp/config/

Configuration File Example

Following is a sample configuration file:

XML Publisher Configuration File A-1

<config version="1.0.0" xmlns="http://xmlns.oracle.co m/oxp/confi
g/">

<!-- Properties -->
<properties>

<!-- System level properties -->
<property name="system-temp-dir">/tmp</property>

<!-- PDF compression -->
<property name="pdf-compression">true</property>

<!-- PDF Security -->
<property name="pdf-security">true</property>
<property name="pdf-open-password">user</property>
<property name="pdf-permissions-password">owner</pro perty>
<property name="pdf-no-printing">true</property>
<property name="pdf-no-changing-the-document">true</ property

>
</properties>

<!-- Font setting -->
<fonts>

<!-- Font setting (for FO to PDF etc...) -->

<truetype path="/fonts/Arial.ttf" />

<truetype path="/fonts/ALBANWTJ.ttf" />

<!--Font substitute setting (for PDFForm filling etc...) -->
<font-substitute name="MSGothic">

<truetype path="/fonts/msgothic.ttc" ttcno="0" />
</font-substitute>

</fonts>
</config>

How to Read the Element Specifications

The following is an example of an element specification:

<Element Name Attribute1="value"
Attribute2="value"

AttributeN="value"
<Subelement Name1/>[occurrence-spec]
<Subelement Name2>...</Subelement Name2>
<Subelement NameN>...</Subelement NameN>

</Element Name>

The [occurrence-spec] describes the cardinality of the element, and corresponds to
the following set of patterns:

• [0..1] - indicates the element is optional, and may occur only once.

• [0..n] - indicates the element is optional, and may occur multiple times.

Root Element
The <config> element is the root element. It has the following structure:

A-2 Oracle XML Publisher User’s Guide

<config version="cdata" xmlns="http://xmlns.oracle.co m/oxp/config
/">

<fonts> ... </fonts> [0..n]
<properties> ... </properties> [0..n]

</config>

Attributes

version The version number of the configuration file format. Specify
1.0.0.

xmlns The namespace for XML Publisher’s configuration file. Must
be http://xmlns.oracle.com/oxp/config/

Description

The root element of the configuration file. The configuration file consists of two parts:

• Properties (<properties> elements)

• Font definitions (<fonts> elements)

The <fonts> and <properties> elements can appear multiple times. If conflicting
definitions are set up, the last occurrence prevails.

Properties
This section describes the <properties> element and the <property> element.

The <properties> element
The properties element is structured as follows:

<properties locales="cdata">
<property>...
</property> [0..n]

</properties>

Attributes

locales Specify the locales for this font definition. This attribute is
optional.

Description

The <properties> element defines a set of properties. You can specify the locales
attribute to define locale-specific properties. Following is an example:

Example
<!-- Properties for all locales -->
<properties>
...Property definitions here...

</properties>

<!--Korean specific properties-->
<properties locales="ko-KR">

. ..Korean-specific property definitions here...
</properties>

XML Publisher Configuration File A-3

The <property> element
The <property > element has the following structure:

<property name="cdata">
...pcdata...

</property>

Attributes

name Specify the property name.

Description

Property is a name-value pair. Specify the property name (key) to the name attribute and
the value to the element value. For the available names and values for the <property>
element, see XML Publisher Properties, page A- 9 .

Example
<properties>

<property name="system-temp-dir">d:\tmp</property>
<property name="system-cache-page-size">50</property >
<property name="pdf-compression">true</property>

</properties>

Font Definitions
Font definitions include the following elements:

• <fonts>

•

• <font-substitute>

• <truetype>

• <type1>

<fonts> element
The <fonts> element is structured as follows:

<fonts locales="cdata">
 ... [0..n]
<font-substitute> ... </font-substitute> [0..n]

</fonts>

Attributes

locales Specify the locales for this font definition. This attribute is
optional.

Description

The <fonts> element defines a set of fonts. Specify the locales attribute to define
locale-specific fonts.

A-4 Oracle XML Publisher User’s Guide

Example
<!-- Font definitions for all locales -->
<fonts>

..Font definitions here...
</fonts>

<!-- Korean-specific font definitions -->
<fonts locales="ko-KR">
... Korean Font definitions here...
</fonts>

 element
Following is the structure of the element:

<font family="cdata" style="normalitalic"
weight="normalbold">

<truetype>...</truetype>
or <type1> ... <type1>

Attributes

family Specify any family name for this font. If you specify
"Default" to this attribute, you can define a default fallback
font. family is case-insensitive.

style Specify "normal" or "italic" for the font style.

weight Specify "normal" or "bold" for the font weight.

Description

Defines an XML Publisher font. This element it primarily used to define font for
FO-to-PDF processing. The PDF Form Processor does not refer to this element.

Example
<!-- Define "Arial" font -->

<truetype path="/fonts/Arial.ttf"/>

<font-substitute> element
Following is the structure of the font-substitute element:

<font-substitute name="cdata">
<truetype>...</truetype>

or <type1>...</type1>
</font-substitute>

Attributes

name Specify the name of the font to be substituted.

Description

Defines a font substitution. This element is used to define fonts for the PDF Form
Processor.

XML Publisher Configuration File A-5

Example
<font-substitute name="MSGothic">

<truetype path="/fonts/msgothic.ttc" ttccno=0"/>
</font-substitute>

<truetype> element
The form of the truetype element is as follows:

<truetype path="cdata" ttcno="cdata"/>

Attributes

path Specify the absolute path for the font.

ttcno Specify the TTC number starting from 0 if the specified font
is a TrueType collection (.TTC). This attribute is optional.

Description

<truetype> element defines a TrueType font.

Example
<!--Define "Arial" font -->

<truetype path="/fonts/Arial.ttf"/>

<type1> element>
The form of the <type1> element is as follows:

<type1 name="cdata"/>

Attributes

name Specify one of the Adobe standard Latin1 fonts, such as
"Courier".

Description

<type1> element defines an Adobe Type1 font.

Example
<!--Define "Helvetica" font as "Serif" -->

<type1 name="Helvetica"/>

Locales
A locale is a combination of an ISO language and an ISO country. ISO languages are
defined in ISO 639 and ISO countries are defined in ISO 3166.

The structure of the locale statement is

ISO Language-ISO country

Locales are not case-sensitive and the ISO country can be omitted.

Example locales:

A-6 Oracle XML Publisher User’s Guide

• en

• en-US

• EN-US

• ja

• ko

• zh-CN

Predefined Fonts
XML Publisher has several predefined fonts. These fonts do not require any font setting
in the configuration file.

To use the predefined TrueType fonts, the TrueType font files must exist under
<java.home>/lib/fonts directory. An example of a <java.home> get is as follows:

StringjavaHome=(String)System.getProperty("java.hom e");

Font family names are case insensitive.

The Type1 fonts are listed in the following table:

Number Font Family Style Weight Actual Font

1 serif normal normal Time-Roman

1 serif normal bold Times-Bold

1 serif italic normal Times-Italic

1 serif italic bold Times-BoldItalic

2 sans-serif normal normal Helvetica

2 sans-serif normal bold Helvetica-Bold

2 sans-serif italic normal Helvetica-
Oblique

2 sans-serif italic bold Helvetica-
BoldOblique

3 monospace normal normal Courier

3 monospace normal bold Courier-Bold

3 monospace italic normal Courier-Oblique

3 monospace italic bold Courier-
BoldOblique

4 Courier normal normal Courier

4 Courier normal bold Courier-Bold

4 Courier italic normal Courier-Oblique

XML Publisher Configuration File A-7

Number Font Family Style Weight Actual Font

4 Courier italic bold Courier-
BoldOblique

5 Helvetica normal normal Helvetica

5 Helvetica normal bold Helvetica-Bold

5 Helvetica italic normal Helvetica-
Oblique

5 Helvetica italic bold Helvetica-
BoldOblique

6 Times normal normal Times

6 Times normal bold Times-Bold

6 Times italic normal Times-Italic

6 Times italic bold Times-BoldItalic

7 Symbol normal normal Symbol

8 ZapfDingbats normal normal ZapfDingbats

The TrueType fonts are listed in the following table. All TrueType fonts will be subsetted
and embedded into PDF.:

Numbe r Font F amily
Name

Style Weigh t Actua l Font Actua l Font
Type

1 Albany WT normal normal ALBANYWT.
ttf

TrueType
(Latin1 only)

2 Albany WT J normal normal ALBANWTJ.
ttf

TrueType
(Japanese
flavor)

3 Albany WT K normal normal ALBANWTK.
ttf

TrueType
(Korean
flavor)

4 Albany WT
SC

normal normal ALBANWTS.
ttf

TrueType
(Simplified
Chinese
flavor)

5 Albany WT
TC

normal normal ALBANWTT.
ttf

TrueType
(Traditional
Chinese
flavor)

A-8 Oracle XML Publisher User’s Guide

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

6 Andale
Duospace WT

normal normal ADUO.ttf TrueType
(Latin1 only,
Fixed width)

6 Andale
Duospace WT

bold bold ADUOB.ttf TrueType
(Latin1 only,
Fixed width)

7 Andale
Duospace WT
J

normal normal ADUOJ.ttf TrueType
(Japanese
flavor, Fixed
width)

7 Andale
Duospace WT
J

bold bold ADUOJB.ttf TrueType
(Japanese
flavor, Fixed
width)

8 Andale
Duospace WT
K

normal normal ADUOK.ttf TrueType
(Korean
flavor, Fixed
width)

8 Andale
Duospace WT
K

bold bold ADUOKB.ttf TrueType
(Korean
flavor, Fixed
width)

9 Andale
Duospace WT
SC

normal normal ADUOSC.ttf TrueType
(Simplified
Chinese
flavor, Fixed
width)

9 Andale
Duospace WT
SC

bold bold ADUOSCB.ttf TrueType
(Simplified
Chinese
flavor, Fixed
width)

10 Andale
Duospace WT
TC

normal normal ADUOTC.ttf TrueType
(Traditional
Chinese
flavor, Fixed
width)

10 Andale
Duospace WT
TC

bold bold ADUOTCB.
ttf

TrueType
(Traditional
Chinese
flavor, Fixed
width)

XML Publisher Properties
This section lists the properties that you can set in the XML Publisher Configuration file.

XML Publisher Configuration File A-9

FO Engine Properties
The following table defines the properties that you can set to control FO Engine
processing.

Property Name Default
Value

Description

system-temp-
dir

N/A Temporary directory for the FO Processor.

Setting a temporary directory is strongly recommended to avoid "Out of Memory"
errors when processing large files.

system-cache-
page-size

50 This property is enabled only when you have specified a system-temp-dir . During
table of contents creation, the FO Processor caches the pages until the number of
pages exceeds the value specified for this property. It then writes the pages to a
file in the system-temp-dir .

pdf-
compression

true Specify "true" or "false" to control compression of the output PDF file. Set to "true" to
compress the PDF.

pdf-hide-
toolbar

false Specify "true" to hide the viewer application’s toolbar when the document is active.

pdf-hide-
menubar

false Specify "true" to hide the viewer application’s menu bar when the document is active.

pdf-security false Specify "true" or "false" to control the output PDF security. If you specify "true" the
output PDF file will be encrypted.

You must also specify the following properties (described below):

• pdf-open-password

• pdf-permissions-password

• pdf-encryption-level

Example:

<property name="pdf-security">true</property>

<property name="pdf-open-password">user</property>

<property name="pdf-permissions-password">owner</pro perty>

<property name="pdf-encryption-level">0</property>

pdf-open-
password

(null) This property is effective only when the pdf-security property is set to "true".

Specify the password to open the output PDF. This password enables users to open
the document only.

Setting this property in the configuration file is not recommended because the
configuration file is not encrypted.

pdf-
permissions-
password

(null) This property is effective only when the pdf-security property is set to "true".

Specify the permissions password for the output PDF file. This password enables
a user to override the security setting.

Setting this property in the configuration file is not recommended because the
configuration file is not encrypted.

A-10 Oracle XML Publisher User’s Guide

Property Name Default
Value

Description

pdf-
permissions

0 This property is effective only when the pdf-security property is set to "true".

Specify the security permissions for the output PDF. For more information see section
3.5 of Adobe’s PDF Reference: Version 1.4 (third edition).

If this property is not set, the following permission properties are used instead (see
below for descriptions of each property):

pdf-
encryption-
level

0 Specify the encryption level for the output PDF file. The possible values are:

• 0: Low (40-bit RC4, Acrobat 3.0 or later)

• 1: High (128-bit RC4, Acrobat 5.0 or later)

This property is effective only when the pdf-security property is set to "true".

When pdf-encryption-leve l is 0 you can also set the following properties
(described below):

• pdf-no-printing

• pdf-no-changing-the-document

• pdf-no-cceda

• pdf-no-accff

When pdf-encryption-level is 1, you can also set the following properties
(described below):

• pdf-enable-accessibility

• pdf-enable-copying

• pdf-changes-allowed

• pdf-printing-allowed

pdf-no-
printing

false Permission when pdf-encryption-level is set to 0 (40-bit). When set to "true"
printing is disabled for the PDF file.

pdf-no-
changing-the-
document

false Permission when pdf-encryption-level is set to 0 (40-bit). When set to "true"
the PDF file cannot be edited.

pdf-no-cceda false Permission when pdf-encryption-level is set to 0 (40-bit). When set to
"true", content copying, content extraction, and accessibility features are disabled.

pdf-enable-
accessibility

true Permission when pdf-encryption-level is set to 1 (128-bit). When set to
"true", text access for screen reader devices is enabled.

pdf-enable-
copying

false Permission when pdf-encryption-level is set to 1 (128-bit). When set to
"true", copying of text, images, and other content is enabled.

XML Publisher Configuration File A-11

Property Name Default
Value

Description

pdf-changes-
allowed

0 Permission when pdf-encryption-level is set to 1 (128-bit). Valid values are:

• 0: none

• 1: Allows inserting, deleting, and rotating pages

• 2: Allows filling in form fields and signing

• 3: Allows commenting, filling in form fields, and signing

• 4: Allows all changes except extracting pages

pdf-printing-
allowed

0 Permission when pdf-encryption-level is set to 1 (128-bit). Valid values are:

• 0: None

• 1: Low Resolution (150 dpi)

• High Resolution

font.
<family> .
<style>.
<weight>

N/A Defines a font for XML Publisher.

<family> is case insensitive.

<style> must be "italic" or "normal"

<weight> must be "bold" or "normal"

The value of this property can be one of the following:

• type1.<fontname>

• truetype.<path>d

• truetype.<path>.(<ttcno>)

Example

<type1 name="Courier-BoldOblique"/>

is same as:

font.Courier.italic.bold=type1.Courier-BoldOblique

Example

<truetype path="C:\fonts\Arial.ttf"/>

is same as:

font.Arial.normal.normal=truetype.C:\fonts\Arial.tt f

Example

<truetype path="C:\fonts\msgothic.ttc" ttcno="0"/>

is same as:

font.MSGothic.normal.normal="truetype.C:\fonts\msgo thic.ttc(0)

A-12 Oracle XML Publisher User’s Guide

PDF Form Processor Properties
Property Name:

font-substitute.<fontname>

Description:

Use this property to map a font name from the PDF to a font file for I18N support.

The value of this property is one of the following:

• truetype.<path>

• truetype.<path>.<ttcno>

Example 1:

<font-substitute name="Courier">
<truetype path="C:\fonts\Arial.ttf />

</font-substitute>

is same as:

font-substitute.Courier=truetype.C:\fonts\Arial.ttf

Example 2:

<font-substitute name="Courier">
<truetype patch="C:\fonts\msgothic.ttc" ttcno="0"/>

</font-substitute>

is same as:

font-substitute.Courier=truetype.C:\fonts\msgothic. ttc(0)

XML Publisher Configuration File A-13

Index

Symbols
<root> element

configuration file, A- 2

A
alignment

RTF template, 2-16
APIs, 8- 1

B
bidirectional language alignment

RTF template, 2-16
body tags

PDF template, 3- 7
RTF template, 2-13

buffering mode
delivery server, 9-17

C
calculations in PDF template, 3-12
cell highlighting

conditional in RTF templates, 2-30
charts

building in RTF templates, 2-38
check box placeholder

creating in PDF template, 3- 6
choose statements, 2-24
Concurrent Manager, 6- 1

integration with, 1- 2
concurrent manager, 6- 1
conditional columns

rtf template, 2-28
conditional formatting, 2-24
configuration file

<properties> element, A- 3
<root> element, A- 2
delivery manager, 9-27

Copy Template page, 5- 5
Create Data Definition page, 5- 1

field definitions, 5- 2
Create Template page

field definitions, 5- 4

D
Data Definition

creating in Template Manager, 5- 1
date fields in RTF templates, 2-17
default template, 5- 5
default template file, 5- 3
delivery channels

adding custom, 9-21
delivery manager

configuration file, 9-27
delivery server

buffering mode, 9-17
direct mode, 9-17
global properties, 9-19
multiple requests, 9-20

delivery status, 9-18
direct mode

delivery server, 9-17
downloaded PDFs as templates, 3-14
dynamic data columns, 2-20

example, 2-21
dynamic table of contents in RTF template, 2-19

E
e-mail delivery, 9- 2
editing templates from the Template Manager,
5- 7
etext data tables, 4- 5
etext template command rows, 4- 5
etext template setup command table, 4-13

F
fax delivery, 9- 9
FO elements

using in RTF templates, 2-50, 7- 6
font definitions

configuration file, A- 4
footers

RTF template, 2-13
for-each-group XSL 2.0 standard, 2-32
form field method

inserting placeholders, 2- 7

Index -1

form field properties options in PDF template,
3- 5
form fields in the PDF template, 3- 4
formatting options in PDF templates, 3- 5
FTP delivery, 9-12

G
global properties

delivery server, 9-19
groups

basic RTF method, 2-10
defining in PDF template, 3- 7
defining in RTF template, 2- 9

syntax, 2-10
defining in RTF templates, 2- 5
form field method, 2-11
grouping scenarios in RTF template, 2-10
in RTF templates, 2- 4

H
headers and footers

inserting placeholders, 2-14
multiple, 2-13
RTF template, 2-13

horizontal table break, 2-21
HTTP

delivering documents over, 9-14
hyperlinks

inserting in RTF template, 2-18

I
if statements, 2-24
images

including in RTF template, 2-14

L
languages

adding templates for , 5- 7
locales

configuration file, A- 6

M
markup

adding to the PDF template, 3- 4
adding to the RTF template, 2- 6

multiple headers and footers
RTF template, 2-13

N
Namespace support in RTF template, 2-19

O
overflow data in PDF template, 3-14

P
Page breaks

PDF templates, 3- 8
page breaks

RTF template, 2-16
Page numbers

PDF templates, 3- 8
page numbers

RTF template, 2-16
page totals

inserting in RTF template, 2-26
PDF Form Processor Properties, A-13
PDF template

adding markup, 3- 4
completed example, 3-13
defining groups, 3- 7
definition of, 3- 1
downloading PDFs to use as templates, 3-14
overflow data, 3-14
placeholders

check box, 3- 6
naming, 3- 5
naming to avoid mapping, 3- 5
radio button group, 3- 6
text, 3- 5
types of, 3- 5

placement of repeating fields at runtime, 3-13
runtime behaviors, 3-13
sample purchase order template, 3- 2
saving as Adobe Acrobat 5.0 compatible, 3- 2
sources for document templates, 3- 2
supported modes, 3- 2
template mapping, 5- 3
when to use, 3- 1

PDF template mapping, 5- 5 , 5- 7
PDF templates

page breaks, 3- 8
page numbering, 3- 8

placeholders
basic RTF method, 2- 6 , 2- 6
form field RTF method, 2- 6 , 2- 7
in PDF templates, 3- 4
in RTF templates, 2- 4

defining, 2- 5 , 2- 6
inserting in the header and footer of RTF
template, 2-14
PDF template

check box, 3- 6
radio button group, 3- 6
text, 3- 5

PDF templates
naming, 3- 5
naming to avoid mapping, 3- 5
types of, 3- 5

Index -2

predefined fonts, A- 7
previewing a template, 5- 7
printing, 9- 6
process overview, 1- 3

design time, 1- 3
runtime, 1- 3

R
radio button group

creating in PDF template, 3- 6
regrouping, 2-32
repeating elements

See groups
Rich Text Format (RTF)

definition, 2- 1
RTF placeholders

syntax, 2- 6
RTF template

adding markup, 2- 6
applying design elements, 2- 5
definition, 2- 1
designing, 2- 2
groups, 2- 4
including images, 2-14
native formatting features, 2-15
placeholders, 2- 4
prerequisites, 2- 2
sample template design, 2- 2
supported modes, 2- 2

basic method, 2- 2
form field method, 2- 2
using XSL or XSL:FO, 2- 2

RTF template design
headers and footers, 2-13

RTF template placeholders, 2- 6

S
sample RTF template

completed markup, 2- 9
sorting

RTF template, 2-23
SQL functions

using in RTF templates, 2-48
XML Publisher syntax for, 7- 1

SQL functions extended for XML Publisher, 7- 1
Standard Request Submission, 6- 1
standard request submission

integration with, 1- 2
syntax

RTF template placeholder, 2- 6

T
table features

repeating table headers
RTF template, 2-17

RTF template, 2-17
table of contents support

RTF template, 2-19
dynamic TOC, 2-19

tables
best practices for formatting, 2-50

tables
horizontal table break, 2-21

template
defining in Template Manager, 5- 3

Template Manager
accessing, 5- 1
copying a template, 5- 5
creating a Data Definition, 5- 1
defining the template, 5- 3
description, 1- 2
editing templates, 5- 7
previewing a template, 5- 7
template mapping, 5- 7
updating a template, 5- 6
viewing a template, 5- 6

Template Manager
features, 5- 1

template mapping, 5- 3 , 5- 5
templates

copying, 5- 5
editing in the Template Manager, 5- 7

text placeholder
creating in PDF template, 3- 5

totals
inserting page totals in RTF template, 2-26

U
updating a data definition, 5- 3
updating a template, 5- 6
user interfaces, 1- 2

V
viewing a data definition, 5- 3
viewing a template, 5- 6

W
WebDAV delivery, 9-10

X
XML data file

example, 2- 3
XML file

how to read, 2- 4
XML Report Publisher concurrent request

description, 1- 2
XML Report Publisher program, 6- 1
XSL elements

apply a template rule, 2-48

Index -3

call template, 2-49
copy the current node, 2-48
define the root element of the stylesheet, 2-49
import stylesheet, 2-49
template declaration, 2-49

using in RTF templates, 2-48
variable declaration, 2-49
XML Publisher syntax for , 7- 4

XSL:FO elements
using in RTF templates, 2-48

Index -4

Index -5

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	TTY Access to Oracle Support Services
	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Accessibility of Links to External Web Sites in Documentation

	Structure
	Related Documents
	Online Documentation
	Related Guides

	Do Not Use Database Tools to Modify Oracle Applications Data

	1 XML Publisher Introduction
	Introduction
	User Interfaces

	Process Overview
	Structure of this Manual

	2 Creating an RTF Template
	Introduction
	Supported Modes
	Prerequisites

	Overview of Creating an RTF Template
	Associating the XML Data to the Template Layout

	Designing the Template Layout
	Adding Markup to the Template Layout
	Creating Placeholders
	Defining Groups
	Defining Headers and Footers
	Including Images

	Supported Native Formatting Features
	Number Formatting
	Date Formatting
	General Features
	Alignment
	Tables
	Date Fields

	Special Features
	Embedded Hyperlinks
	Table of Contents/Dynamic TOC
	Namespace Support
	Dynamic Data Columns
	Data Reporting Features

	Inserting Page Totals
	Conditional Column Formatting
	Conditional Cell Highlighting
	Regrouping the XML Data
	Chart Support
	Adding a Sample Chart
	Additional Chart Samples
	Horizontal Bar Chart Sample
	Changing the Appearance of Your Chart

	Advanced Design Options
	Using XSL Elements
	Using FO Elements

	Best Practices
	Using Tables

	3 Creating a PDF Template
	PDF Template Overview
	Supported Modes

	Designing the Layout
	Adding Markup to the Template Layout
	Creating a Placeholder
	Defining Groups of Repeating Fields

	Adding Page Numbers and Page Breaks
	Adding Page Numbers
	Adding Page Breaks

	Performing Calculations
	Completed PDF Template
	Runtime Behavior
	Placement of Repeating Fields
	Overflow Data

	Creating a Template from a Downloaded PDF

	4 eText Templates
	Introduction
	Structure of eText Templates
	Constructing the Data Tables
	Command Rows
	Structure of the Data Rows

	Setup Command Tables
	Expressions, Control Structure, and Functions
	Identifiers, Operators, and Literals

	5 Using the Template Manager
	Introduction
	Accessing the Template Manager

	Creating the Data Definition
	Viewing and Updating a Data Definition

	Creating the Template
	The Default Template
	PDF Template Mapping
	Copying a Template

	Viewing and Updating a Template
	Updating the Template General Definitions
	Previewing a Template
	Editing the Template Layout
	Adding Templates for Additional Languages
	Mapping PDF Template Fields

	6 Generating Your Customized Report
	Using the Concurrent Manager to Generate Your Custom Output

	7 XML Publisher Extended Functions
	Extended SQL Functions
	XSL Equivalents
	Using FO Elements

	8 Calling XML Publisher APIs
	Introduction
	XML Publisher Core APIs

	PDF Form Processing Engine
	Merging a PDF Template with XML Data
	Retrieving a List of Field Names
	Generating XFDF Data
	Converting XML Data into XFDF Format Using XSLT

	RTF Processor Engine
	Generating XSL

	FO Processor Engine
	Generating Output from an XML File and an XSL File
	Using the XSL-FO Utility
	Generating Output from an FO file

	PDF Document Merger
	Merging PDF Documents
	Setting a Text or Image Watermark

	Document Processor Engine
	Hierarchy and Elements of the Document Processor XML File
	XML File Samples
	Invoke Processors

	XML Publisher Security Properties
	Setting Properties

	Applications Layer APIs
	Datasource APIs
	DataSource Class
	DataSourceHelper Class

	Template APIs
	The Template Class
	TemplateHelper Class

	9 Delivery Manager
	Introduction
	Using the Delivery Manager

	Delivering Documents via e-Mail
	Delivering Your Document to a Printer
	Delivering Your Documents via Fax
	Delivering Your Documents to WebDAV Servers
	Deliver Your Documents Using FTP
	Delivering Documents over HTTP
	Direct and Buffering Modes
	Monitoring Delivery Status
	Global Properties
	Delivering Multiple Requests with a Single Output Stream
	Adding a Custom Delivery Channel
	Configuration File Support

	A XML Publisher Configuration File
	XML Publisher Configuration File
	Root Element
	Properties
	The <properties> element
	The <property> element

	Font Definitions
	<fonts> element
	 element
	<font-substitute> element
	<truetype> element
	<type1> element>

	Locales
	Predefined Fonts
	XML Publisher Properties
	FO Engine Properties
	PDF Form Processor Properties

	Index

