Oracle® Business Intelligence Discoverer Desktop
User's Guide
10g Release 2 (10.1.2.1) for Windows
B13917-03

July 2005
Contents

Preface ... ix

Intended Audience ... ix

Documentation Accessibility .. ix

Related Documents ... x

Conventions .. x

Prerequisites to run Discoverer Desktop ... x

Part I Getting Started

1 Discoverer Desktop Overview

1.1 What is Oracle Business Intelligence Discoverer? ... 1-1

1.2 New Discoverer Desktop Features ... 1-2

1.3 How Discoverer Desktop Works .. 1-3

1.3.1 What is a Business Area? .. 1-4

1.3.2 Understanding Workbooks and Worksheets .. 1-5

1.3.3 About Worksheets and Queries ... 1-6

1.4 Opening a Workbook ... 1-6

1.4.1 Opening Another Workbook ... 1-10

1.4.2 Opening Workbooks in a Non-Oracle Database .. 1-12

1.4.3 Looking at a Workbook’s Properties ... 1-12

1.4.4 Switching to Another Worksheet ... 1-13

1.5 Saving a Workbook .. 1-14

1.5.1 Deleting a Workbook .. 1-15

1.5.1.1 Deleting a Workbook from Your Computer .. 1-16

2 What You See on the Screen

2.1 The Workbook Window .. 2-1

2.2 The Four Types of Display .. 2-3

2.2.1 Table Layout .. 2-3

2.2.1.1 Table Layout with Page Details .. 2-4

2.2.2 Crosstab Layout .. 2-4

2.2.2.1 Page Detail Crosstab Layout .. 2-5

2.2.2.2 A Note About Crosstabs ... 2-5

2.3 Selecting Sections of a Worksheet .. 2-5

2.3.1 About the Axis Item Markers ... 2-9
3 Presenting Data on a Graph

3.1 The Features of a Graph ... 3-1
 3.1.1 The Graph Tool Bar ... 3-2
3.2 Creating a Graph ... 3-3
 3.2.1 Updating the Data on a Graph ... 3-6
3.3 Modifying a Graph ... 3-6
 3.3.1 Selecting a New Graph Type ... 3-7
 3.3.2 Displaying the Graph Legend and X Labels ... 3-8
 3.3.3 Resizing the Window and Graph ... 3-9
 3.3.4 Reference Lines and Pull-outs on a Graph ... 3-10
 3.3.5 Rotating Graphs ... 3-11
 3.3.6 Changing the Graph’s Colors and Patterns ... 3-13
 3.3.6.1 Creating Custom Patterns ... 3-14
 3.3.6.2 Creating Custom Colors ... 3-14

Part II Working with Discoverer Desktop

4 Pivoting, Drilling, and Sorting Data

4.1 Pivoting Data ... 4-1
 4.1.1 Pivoting for Comparison and Analysis ... 4-1
 4.1.2 Pivoting Data on a Table ... 4-3
 4.1.3 Pivoting Data on a Crosstab ... 4-5
 4.1.3.1 Producing erroneous results when pivoting ... 4-6
 4.1.4 Duplicating Tables and Crosstabs ... 4-7
4.2 Drilling Into and Out of Data ... 4-8
 4.2.1 Drilling down using the Drill icon ... 4-9
 4.2.2 Drilling out using the Drill icon ... 4-10
Preface

Welcome to Oracle Business Intelligence Discoverer Desktop! This guide explains how to use the Discoverer Desktop ad hoc query and analysis interface for business use.

Intended Audience

This guide is designed for business professionals who want to view, analyze, and manipulate data using Discoverer Desktop. You may want to have Discoverer Desktop running on your computer while reading this guide, so you can follow the step-by-step explanations. If your Discoverer manager at your organization has not created a business area or workbook, you can use the sample database included with Discoverer Desktop.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents
You can access the documents referenced in this guide, and other information about Oracle Business Intelligence (e.g. whitepapers, best practices, documentation updates, other collateral) on Oracle Technology Network at:
http://www.oracle.com/technology

Conventions
The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
<tr>
<td><></td>
<td>Angle brackets enclose user-supplied names or values.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose optional clauses from which you can choose one or none.</td>
</tr>
<tr>
<td>Menu name</td>
<td>Command</td>
</tr>
</tbody>
</table>

Prerequisites to run Discoverer Desktop
To run Discoverer Desktop, a Discoverer End User Layer must already exist. Your Discoverer manager must have created or upgraded the End User Layer using Oracle Business Intelligence Discoverer Administrator (which is shipped as a component of Oracle Developer Suite).
Part I

Getting Started
This chapter explains the basic concepts of Oracle Business Intelligence Discoverer Desktop. Being familiar with these concepts will help you work more effectively with Discoverer.

The topics covered in this chapter include:

- What is Oracle Business Intelligence Discoverer?
- New Discoverer Desktop Features
- How Discoverer Desktop Works
- Opening a Workbook
- Saving a Workbook

1.1 What is Oracle Business Intelligence Discoverer?

Oracle Business Intelligence Discoverer is an intuitive ad-hoc query, reporting, analysis, and Web publishing toolset that gives business users immediate access to information in databases.

Oracle Business Intelligence Discoverer enables business users at all levels of the organization to make faster and more informed business decisions. Using any standard Web browser, you have secure and immediate access to data from both relational and multidimensional data sources. Oracle Business Intelligence Discoverer provides a business view to hide the complexity of the underlying data structures, enabling you to focus on solving business problems.

Oracle Business Intelligence Discoverer comprises a number of integrated components that work together with the Oracle database to give you a complete and integrated Business Intelligence solution.
Which Oracle Business Intelligence Discoverer component you use will depend on what you want to do. For example:

- if you want to create new worksheets and analyze data from both relational and multi-dimensional data sources across the Web, you will use Discoverer Plus (Relational and OLAP)
- if you want to create new worksheets and analyze data from relational data sources using a Windows application on a PC, you will use Discoverer Desktop
- if you want to analyze data in existing worksheets, you will use Discoverer Viewer or Discoverer portlets (that have been added to an OracleAS Portal page using Discoverer Portlet Provider)
- if you want to display Discoverer worksheets as gauges in dashboard-style portals, you will use Discoverer Portlet Provider and Discoverer portlets
- if you want to manage the end user view of relational data, you will use Discoverer Administrator

The Oracle Business Intelligence Discoverer components use definitions of Discoverer objects stored in the Discoverer End User Layer or the Discoverer Catalog.

For more information about the Oracle Business Intelligence Discoverer components, see the Oracle Discoverer Administration Guide.

1.2 New Discoverer Desktop Features

Discoverer Desktop Version 10.1.2 provides support for the Discoverer End User Layer that is created and maintained by Discoverer Administrator Version 10.1.2 and has the following new features for this release:

- Enhanced parameter handling - You can select parameters using parameter index values, and parameters are marked as mandatory or optional. You can also enter a reserved word into a parameter field.
- Conditional formatting - You can use stoplight formats created in Discoverer Plus.
1.3 How Discoverer Desktop Works

Oracle Business Intelligence Discoverer Desktop is a data access tool. You use it to view the information in your company’s databases. The whole purpose of Discoverer Desktop is to help you—the business professional—view the data you want from a database, analyze it to support your business decisions, and create reports to keep track of things.

Figure 1–2 Oracle Discoverer Desktop

Discoverer Desktop solves many of the problems normally associated with databases so that now you can easily:

- Find data that you know is in the database.
- See data displayed quickly without waiting for the computer to spend a long time searching through the entire database.
- View data in a familiar format that is easy to read and understand.
- Analyze data using a wide array of techniques including drilling up and down through the data’s details, finding data that meets certain conditions or that falls within ranges you specify, sorting data, comparing results from “what if” scenarios, and so on.
- Prepare reports of your analytical results and findings.
- Share data with others, and in other applications (such as Excel).

Discoverer Desktop uses a new, unique way of accessing data. Comparing Discoverer Desktop with previous data-access methods can help you understand the new concepts that you will use with the Discoverer Desktop.

The following two figures compare the old fashioned, data access methods with the new Discoverer Desktop methods.
1.3.1 What is a Business Area?

A business area is a logical grouping of database tables or views that apply to your specific data requirements. For example, the accounting department wants data about budgets and finance, while project leaders want data specifically about their projects.
as well as about budgets. Although some of the data you need may be the same (such as the budgets folder as shown in the following figure), the exact combination of tables and views for each department is usually unique. Using Discoverer Administrator, your Database administrator tailors the grouping of data to provide you with the proper access to the precise data needed for analysis, decision support, and presentation of results.

Figure 1–5 Business Areas and Folders

![Diagram of Business Areas and Folders]

1.3.2 Understanding Workbooks and Worksheets

Think of a workbook as a three-ring binder filled with specific data for specific tasks. The workbook has pages, or *worksheets*, that contain data for the specific tasks. For example, if the workbook is for sales and profit data, one worksheet in it might be a table listing your profit for sales versus rentals. Another worksheet might be a comparison of your profit over the last two years by sales region.

The sample database that you receive with Discoverer contains data from a fictitious video store business. The sample data covers many topics including:

- Sales Region
- Year
- Department
- Sum of Profit
- Size of Store (in square feet)
- Type of Store Design (Compact, Modern, or traditional)
- Store Name, and so on.

Discoverer also comes with its own sample workbooks, that you can use to analyze the example data.
1.3.3 About Worksheets and Queries

A query is simply a search of the database that finds and retrieves the data you want. Each worksheet in a workbook contains the result of a query. So, when you see the term “query” while working with Discoverer Desktop, you can think of it as a worksheet with retrieved data.

1.4 Opening a Workbook

Your Database Administrator usually supplies the various passwords and server access instructions to log on to Discoverer Desktop and open a workbook. The following steps explain the basic process.

Note: The Database Administrator at your company will have designed the workbooks that you can open. If you have questions about the workbook names, whether you have access to them, the location of workbooks on company servers, and so on, see your Database Administrator.

To open a workbook:

1. From the Windows Start menu, choose Programs | Oracle Business Intelligence Tools - <HOME_NAME> | Discoverer Desktop.

 The Connect to Discoverer Desktop dialog appears (Figure 1–7). Your user name should already be in the Username box. If not enter it in the Username box.
2. In the Password box, enter your password

3. In the Connect box, enter the name of the database that you wish to use.
 See your Database Administrator for password and database name details.

 Note: For information about connecting to an Oracle Applications EUL, see Appendix B.3.3, “Configuring the Oracle Applications user Connect dialog”.

4. Click Connect.

 The first screen of the Workbook Wizard appears. The wizard steps you through the process to get the specific data you want to see.

Figure 1–8 The Workbook Wizard

Create a new workbook—starts the process to create a new workbook. This option is not available if you don’t have access rights granted by the Database Administrator. See Chapter 7, “Building Worksheets and Workbooks” for details about creating a new workbook.

Open an existing workbook—shows options for opening one of your existing workbooks.
5. Click Open an Existing Workbook. The next Workbook Wizard dialog box shows options for opening your existing workbooks:

Figure 1–9 Opening an Existing Workbook

My Computer—opens a dialog box for selecting a workbook stored on your local computer or on a server on your business network.

Database—opens a dialog box for selecting a workbook stored as part of a specific database. The workbook can be shared easily with others who have access to the database.

Scheduling Manager—displays a list of workbooks previously scheduled to run at a certain times (usually overnight, on a weekend, or at some periodic interval). Scheduled workbooks run automatically and are available when you need to open them.

Recently Used List—shows the workbooks you’ve previously opened (see Figure 1–10 for an example). If you usually work with the same workbooks on a daily basis, this option is the quickest way to open a workbook.

Figure 1–10 A Most Recently User Workbook List

If you choose *My Computer* from the *Where is the workbook you want to open?* options, a dialog box appears for you to select the workbook to open:
6. Select the workbook name and click Open, or just double-click the name.

A dialog box asks if you want to run the query for the worksheet.

7. Discoverer Desktop now evaluates the query to determine how much time it will take to open the workbook and shows you an estimate. Click Yes to see the data.

This dialog box is mainly for your convenience because, if the query time is more than a few minutes, you can be doing other work while Discoverer Desktop gets the data for the worksheet.

If you can’t wait the estimated time, click No. Discoverer Desktop will remain open, but the worksheet will be empty.

If you click Yes, a dialog box shows you the progress and elapsed time while Discoverer Desktop is finding the data. At the end of the process, your workbook appears. Here’s a sample:
1.4.1 Opening Another Workbook

You can open several workbooks at a time and switch back and forth between them. This is an excellent way to compare data to find specific analytical results.

When several workbooks are open at the same time, use the Window menu to switch between them:

To open another workbook:

1. Choose File | Open.

The Open Workbook dialog box appears. Its options are the same as when you were opening the first workbook (see Figure 1–9).
2. Click one of the options. A dialog box for the selected Open Workbook type appears.

![Open Workbook Dialog Box](image1)

3. Select a workbook and click Open.
If the workbook you select is stored in another database account, a dialog box appears for you to open the new workbook.

![Selecting a Workbook from My Computer](image2)

4. Click one of the options and click OK.
If you select the first option in the dialog box, the workbooks currently open will close before the new workbook opens. A message gives you the option to not close the currently open workbooks.

Note: You can turn off this dialog box. See **Section 8.5, "Setting Options"**.
1.4.2 Opening Workbooks in a Non-Oracle Database

If your business uses other, non-Oracle databases your Database Administrator can set up Discoverer to open workbooks in those databases. You can then use the features of Discoverer Desktop to access the data. However, depending on the type of database, you may not be able to use all the data access and analysis features available with Oracle databases.

The basic process to open workbooks in the other, non-Oracle databases is essentially the same as opening a workbook in an Oracle database. Please see your Database Administrator for the correct steps to open the workbooks.

1.4.3 Looking at a Workbook’s Properties

A workbook’s properties provide basic information about the workbook.

To see a workbook’s properties:

1. Open the workbook.

2. Choose File | Manage Workbooks | Properties.

The Workbook Properties dialog box appears showing information about the Workbook. You can record additional information about the workbook in the Description box.

Figure 1–19 Workbook Properties Dialog Box

Note: Identifiers are unique names that Discoverer uses to identify EUL and Workbook elements, (e.g. Business Areas, Folders, Items etc). The default Identifier value is generated automatically by Discoverer. Do not change Identifiers except under the following circumstances:

- The Identifier must be changed to comply with strict naming conventions.
- An element has been deleted and needs to be recreated with the same Identifier.

If you do change an Identifier, you must update matching identifiers in other EULs to reflect the change.
3. Click OK.

1.4.4 Switching to Another Worksheet

The tabs on the bottom of the workbook window show the various worksheets in the workbook. Clicking a tab switches to the next worksheet.

The following figure shows only two tabs, but your workbook may have several worksheets—hence, more tabs.

Figure 1–20 Switch to Another Worksheet

Key to Figure 1–20:

a. Tab scroll buttons.
b. Click these tabs to switch to another sheet in the workbook. This figure shows the worksheet named Tabular Layout is the current worksheet.

To switch to another worksheet:

1. Click the appropriate tab at the bottom of the workbook window. Use the scroll button if necessary to see additional worksheets. You can also use the key combinations Ctrl Pg Up and Ctrl Pg Dn to cycle through the tabs.

If you’ve already opened the worksheet, clicking the tab switches to it immediately. If you haven’t opened it yet, Discoverer Desktop searches the business area to find the data that belongs on the worksheet. Because each worksheet involves a query (search) of the business area, opening a worksheet for the first time takes a few moments while the search is completed. A dialog box reminds you that the search will take place.

Figure 1–21 Open a Worksheet
2. Click Yes to open the worksheet.

 Discoverer Desktop then estimates the time involved for the search and gives you the option to open the worksheet. Click OK to open the worksheet.

 If you decide not to open a worksheet and click Cancel, but then later click on the worksheet tab to open it, this dialog box does not appear. Choose **Sheet | Refresh Sheet** to retrieve the data.

1.5 Saving a Workbook

Saving a workbook saves all of its changes. You have two options:

- To save a workbook, choose **File | Save**. The changes are saved and the workbook remains open.
- To close and save a workbook at the same time, choose **File | Close**. If you haven’t made changes to any worksheet in the workbook, it closes.

 If the workbook contains any unsaved changes on any worksheet, a dialog box reminds you to save the changes.

 Figure 1–22 Save Workbook Reminder

 ![Save Workbook Reminder](image)

 Click Yes to save the changes; click No to close the workbook without saving the changes; click Cancel to keep the workbook open without saving the changes.

 To save the workbook under a different name:

 1. Choose **File | Save As**.

 A dialog box appears for you to specify where you want to save the renamed workbook.

 Figure 1–23 Save Workbook Dialog Box

 ![Save Workbook Dialog Box](image)

 2. Select an option from the Save Workbook dialog box and click Save.

 My Computer - saves the workbook locally on your computer.

 Database - saves the workbook with the database.
If you select My Computer, the Save As dialog box appears (Figure 1–24). Enter a new name and click Save.

If you select Database, the Save Workbook to Database dialog box appears and lists the workbooks already saved to the database (Figure 1–25). Enter a new name for the workbook and click Save.

Figure 1–24 Save As Dialog Box

![Image of Save As Dialog Box]

Figure 1–25 Save Workbook to Database Dialog Box

![Image of Save Workbook to Database Dialog Box]

1.5.1 Deleting a Workbook

Deleting a workbook from the database permanently removes it. You should not delete a workbook from the database unless you are absolutely certain that you won’t need it in the future.

To delete a workbook from the database:

1. Choose File | Manage Workbooks | Delete.

The Delete Workbook from Database dialog box appears and lists the workbooks currently in the database.
2. Click the name of the workbook you want to delete, then click Delete.

1.5.1.1 Deleting a Workbook from Your Computer

If you saved a workbook locally on your computer, deleting it removes it from your computer, but not from the database.

To remove a workbook from your computer, use Windows Explorer or the My Computer icon to remove the workbook as you would any other file.
What You See on the Screen

This chapter explains how to use the various items on the screen while you’re working with Discoverer Desktop.

The topics covered in this chapter include:

- The Workbook Window
- The Four Types of Display
- Selecting Sections of a Worksheet
- Seeing the Next Page of Data
- Formatting a Worksheet
- Some Helpful Shortcuts

Note: The examples in this guide use the sample Video database workbook that come with Discoverer Desktop. The specific tables, charts, data, and other items you see on your screen depend on the actual data in your database, and the workbook(s) designed by your company’s Database Administrator.

2.1 The Workbook Window

The workbook window is where you will do most of your work with Discoverer Desktop. It shows the data in the workbook.
Figure 2–1 The Workbook Window

Key to Figure 2–1:
a. Tool Bar.
b. Analysis Bar.
c. Formatting Bar.
d. Page Axis.
e. Top Axis.
f. Left Axis.
g. Data Points.
h. Worksheet Tabs.
i. Tab Scroll Buttons.
j. Page Scroll Bar (Horizontal).
k. Page Scroll Bar (Vertical).

Tool Bar - Buttons help you use Discoverer Desktop’s features quickly, for example, opening a new workbook, editing a worksheet, drilling data, or sorting data.

Analysis Bar - Buttons help you analyze data quickly, such as adding two sums together or finding the maximum value in a column.

Formatting Bar - Buttons format a selected item quickly, such as aligning text in a column or changing the font and background color of a column.

Clicking a button on these bars runs that button’s function. The functions controlled by these buttons are also available from the menus. Note that button availability depends on the type of selected item. For example, if you select a text item, the Average button is not available because it doesn’t make sense to find the average of text.

Also notice that when you put the cursor on a button, it enlarges and displays a small tool tip that tells you what the button is for. Text on the status bar shows a slightly expanded version of the explanation.
2.2 The Four Types of Display

You can display data in four different ways on the workbook window:

- Table and Page-Detail Table
- Crosstab and Page-Detail Crosstab

2.2.1 Table Layout

The most familiar layout for data, a table, lists data in rows and columns. Typical data for tables includes lists, such as a mailing list of customers sorted by zip code or
customer name, lists of income or profit from various departments, lists of products sorted by part number or part name, and so on.

Here is a sample of a table layout on the workbook window. As you can see, it is essentially a listing of data.

Figure 2–3 Table Layout

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>Video Sale</td>
<td>$11,511</td>
</tr>
<tr>
<td>2</td>
<td>St. Louis</td>
<td>Video Rental</td>
<td>$7,827</td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Video Sale</td>
<td>$3,574</td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Video Rental</td>
<td>$3,864</td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td>Video Sale</td>
<td>$6,090</td>
</tr>
<tr>
<td>6</td>
<td>Minneapolis</td>
<td>Video Rental</td>
<td>$3,862</td>
</tr>
<tr>
<td>7</td>
<td>Louisville</td>
<td>Video Sale</td>
<td>$17,103</td>
</tr>
<tr>
<td>8</td>
<td>Louisville</td>
<td>Video Rental</td>
<td>$12,864</td>
</tr>
<tr>
<td>9</td>
<td>Dallas</td>
<td>Video Sale</td>
<td>$4,774</td>
</tr>
<tr>
<td>10</td>
<td>Dallas</td>
<td>Video Rental</td>
<td>$2,547</td>
</tr>
<tr>
<td>11</td>
<td>Cincinnati</td>
<td>Video Sale</td>
<td>$10,742</td>
</tr>
<tr>
<td>12</td>
<td>Cincinnati</td>
<td>Video Rental</td>
<td>$12,587</td>
</tr>
</tbody>
</table>

2.2.1.1 Table Layout with Page Details

A table layout with page details is a table with multiple pages of data, where each page shows various portions of the data in detail. You set the criteria for displaying portions of data in order to see exactly what you want on each page. Usually you use this type of layout to study data details in a specific, recurring way. For example, in the Video Store data you may always want to see monthly profits per region. In that case, each page would show one region’s profits each month.

Figure 2–4 Table Layout with Page Items

<table>
<thead>
<tr>
<th>Page Items</th>
<th>Year: 1999</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>Video Sale</td>
</tr>
<tr>
<td>2</td>
<td>St. Louis</td>
<td>Video Rental</td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Video Sale</td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Video Rental</td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td>Video Sale</td>
</tr>
<tr>
<td>6</td>
<td>Minneapolis</td>
<td>Video Rental</td>
</tr>
<tr>
<td>7</td>
<td>Louisville</td>
<td>Video Sale</td>
</tr>
<tr>
<td>8</td>
<td>Louisville</td>
<td>Video Rental</td>
</tr>
<tr>
<td>9</td>
<td>Dallas</td>
<td>Video Sale</td>
</tr>
<tr>
<td>10</td>
<td>Dallas</td>
<td>Video Rental</td>
</tr>
<tr>
<td>11</td>
<td>Cincinnati</td>
<td>Video Sale</td>
</tr>
<tr>
<td>12</td>
<td>Cincinnati</td>
<td>Video Rental</td>
</tr>
<tr>
<td>13</td>
<td>Chicago</td>
<td>Video Sale</td>
</tr>
</tbody>
</table>

2.2.2 Crosstab Layout

A crosstab, short for cross-tabulation, relates two different sets of data and summarizes their interrelationship in terms of a third set of data. For example, a typical crosstab for a chain of retail business stores might show the monthly total sales by products by store. In other words, there are three sets of original data: each store name, product type, and total sales amounts. The store name and product type are axes of the crosstab as rows and columns. Each row and column intersection shows the data points, in this case the total sales for a store and product type.

Every crosstab has at least three dimensions of data—rows, columns, and data points. But in Discoverer Desktop, crosstabs can show the interrelationships between many
dimensions of data on the various axes. A crosstab layout has three axes: side axis, top
axis and page axis. Because each axis can hold several data items, a crosstab can
display many dimensions of data.

For example, the following figure is a sample crosstab that shows five dimensions of
data: regions and city names, year, department (video rentals and video sales) and the
total profit. In this example, the data points (that is, the intersections, or cells on the
crosstab) are the sums for total profit. The next page of data would show the same
type of data, except for the next department, which is Video Sale.

Figure 2–5 Crosstab Layout with Page Items

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profit SUM</td>
<td>Profit SUM</td>
<td>Profit SUM</td>
</tr>
<tr>
<td>Central</td>
<td>$47,204</td>
<td>$43,813</td>
<td>$25,157</td>
</tr>
<tr>
<td>East</td>
<td>$71,766</td>
<td>$67,249</td>
<td>$40,492</td>
</tr>
<tr>
<td>West</td>
<td>$39,995</td>
<td>$37,777</td>
<td>$23,521</td>
</tr>
</tbody>
</table>

Key to Figure 2–5:

a. Page Axis. In this sample it contains a single data item—Department.
b. Top Axis. This top axis contains two data items—Year and Profit.
c. Side Axis. This side axis also contains two data items—Region and City.

2.2.2.1 Page Detail Crosstab Layout

A page detail crosstab layout is a crosstab with multiple pages of data, so you can
group the data on separate pages. You set the criteria for displaying portions of data in
order to see exactly what you want on each page, (see Figure 2–5).

2.2.2.2 A Note About Crosstabs

One of the most powerful features of crosstabs is that they can uncover subtleties in
the data that are not readily apparent from a table of data or from the raw data itself.
By relating one group of data to another, for example, you might find that your best
salesperson in terms of volume isn’t the best in terms of efficiency (sales calls versus
deals closed). Or that the return on investment at one store may be higher in a
percentage sense than at another store that posts a higher profit.

A word of caution—used incorrectly, crosstabs can show relationships between two
sets of numbers when, in fact, there is no meaningful correlation between them at all.
For example, it is a well-known observation that the rise and fall of stock prices on the
New York Stock Exchange seems to correlate with the length of women’s
hemlines—miniskirts during booms, maxiskirts during recessions. The correlation
seems to exist, but no one knows why. The same can be true with crosstab numbers; a
relationship seems to exist but it may not be valid. The point is simply this: As with
the women’s skirts, you have to know what’s being covered before the crosstab
relationships make sense.

2.3 Selecting Sections of a Worksheet

You can select axis items, columns, rows, and individual cells on a worksheet by
clicking on the appropriate elements.
By selecting sections on a worksheet you can assign various features to the sections. For example, to boldface the data in a column, you select any cell that column first.

Note: Selecting on a worksheet is similar to selecting on a spreadsheet. If you are familiar with Microsoft Excel or a similar worksheet application, the steps described in this section will also be familiar.

Hint: You can select several portions of a worksheet at a time by holding down the Shift key while clicking (Shift-click).

To select a cell, click the cell. The outline box around the cell indicates it is selected.

Figure 2–6 Select a Cell

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>St. Louis</td>
<td>Video Sale</td>
</tr>
<tr>
<td>2</td>
<td>St. Louis</td>
<td>Video Rental</td>
<td>$7,637</td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Video Sale</td>
<td>$3,574</td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Video Rental</td>
<td>$8,864</td>
</tr>
</tbody>
</table>

Key to Figure 2–6:

a. Click a cell to select it.

To select a row, click the row number or row marker (Figure 2–8). You can also click the cells at the beginning or the end of the row and drag the pointer across the rest of the cells in the row.

Highlighting indicates all the cells in the row are selected. Notice that the first cell is outlined, consistent with selecting on a spreadsheet.

Figure 2–7 Select a Row on a Table

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>Chicago</td>
<td>Video Sale</td>
</tr>
<tr>
<td>2</td>
<td>Cincinnati</td>
<td>Video Sale</td>
<td>$27,325</td>
</tr>
<tr>
<td>3</td>
<td>Dallas</td>
<td>Video Sale</td>
<td>$4,249</td>
</tr>
<tr>
<td>4</td>
<td>Louisville</td>
<td>Video Sale</td>
<td>$15,967</td>
</tr>
</tbody>
</table>

Key to Figure 2–7:

a. Click the row number to select the entire row.

Figure 2–8 Select a Row on a Crosstab

<table>
<thead>
<tr>
<th>Region</th>
<th>1999 Profit SUM</th>
<th>2000 Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>$47,204</td>
<td>$49,813</td>
</tr>
<tr>
<td>East</td>
<td>$71,766</td>
<td>$77,249</td>
</tr>
<tr>
<td>West</td>
<td>$39,396</td>
<td>$37,777</td>
</tr>
</tbody>
</table>

Key to Figure 2–8:

a. Click the row marker to select the entire row on a Crosstab.
To select a column, click the column heading on a table (Figure 2–9) or the column marker on a crosstab (Figure 2–10). You can also click on the cells at the top or bottom of the row and drag the pointer down over the rest of the cells in the column.

Highlighting indicates all the cells in the column are selected. As in a selected row, the first selected cell on the table or crosstab is outlined instead of highlighted.

Figure 2–9 Select a Column on a Table

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>St. Louis</td>
<td>Video Data</td>
</tr>
<tr>
<td>2</td>
<td>St. Louis</td>
<td>Video Rental</td>
<td>$4,000</td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Video Sale</td>
<td>$4,616</td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Video Rental</td>
<td>$1,229</td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td>Video Sale</td>
<td>$5,141</td>
</tr>
</tbody>
</table>

Key to **Figure 2–9**:
a. Click the column heading on a table to select the entire column.

Figure 2–10 Select a Column on a Crosstab

<table>
<thead>
<tr>
<th>Region</th>
<th>Department: Video Sale</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>1999</td>
<td>1999</td>
</tr>
<tr>
<td>East</td>
<td>$100,566</td>
<td>$145,462</td>
</tr>
<tr>
<td>West</td>
<td>$87,986</td>
<td>$57,172</td>
</tr>
</tbody>
</table>

Key to **Figure 2–10**:
a. Click the column marker to select the entire column.

To select all the cells in the entire worksheet:
- On a table, click the box at the top of the row numbers (Figure 2–11).
- On a crosstab, click the small box at the top corner of the rows and columns (Figure 2–12).

Figure 2–11 Select All the Cells in a Table

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>St. Louis</td>
<td>Video Sale</td>
</tr>
<tr>
<td>2</td>
<td>St. Louis</td>
<td>Video Rental</td>
<td>$4,000</td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Video Sale</td>
<td>$4,616</td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Video Rental</td>
<td>$1,229</td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td>Video Sale</td>
<td>$5,141</td>
</tr>
<tr>
<td>6</td>
<td>Minneapolis</td>
<td>Video Rental</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

Key to **Figure 2–11**:
a. Click this box to select all the cells in the table.
Selecting Sections of a Worksheet

Figure 2–12 Select All the Cells in a Crosstab

Key to Figure 2–12:
a. Click this box to select all the cells in the crosstab.

To select a single axis item, click the axis item. The item is highlighted.

Figure 2–13 Select a Single Axis Item

Key to Figure 2–13:
a. Click an axis item to select it.

To select all the items at one level on an axis, click an axis item marker. These markers are either horizontal or vertical depending on the axis where the item is located. See Section 2.3.1, "About the Axis Item Markers" for more about item markers.

Figure 2–14 Axis Item Markers

Key to Figure 2–14:
a. On the top axis or side axis of a crosstabs the markers are horizontal or vertical.

b. On the page axis the markers are at the left side of the heading.
Figure 2–15 Select All Items at One Level on an Axis

Key to Figure 2–15:
a. Click an axis marker to select all the items at that level on the axis.
 In this sample, clicking this marker selects all the City names on the Left Axis but not
 the Region names because they are at a different level on the axis.
b. To select the Region names you would click this marker.

2.3.1 About the Axis Item Markers

An axis item marker pertains to one level of data on the axis. For example, Region is at
a higher level than Cities (because the Regions contain the Cities). When you click an
axis item marker it selects all the items at that level.

Tables and crosstabs can have several axis item markers. Items on the side axis have
their axis markers at the top of the axis. Items on the top axis or page axis have their
markers to the left of the item. The number of markers on a crosstab indicates how
many levels of items in the axes (which is another way of saying how many
“dimensions” of data the crosstabs displays).

Note: The axis markers, row markers, column markers, and other
similar elements on the screen are only for your work on the screen.
Those elements do not appear when you print a table or crosstab
report. Use the Print Preview command to see what a table or
crosstab will look like when printed.

Figure 2–16 Axis Item Marker Examples

Key to Figure 2–16:
a. Axis Item Markers.
b. Note that this side axis has two item markers for the two data items on that axis—Region and City.

2.3.2 Selecting Axis Item Markers

When you put the pointer on an axis item, it changes to an arrow, indicating the marker is selected. On a crosstab, a small note shows you the name of the data item for the selected marker. Typically you use an axis marker to pivot data from one axis to another. See Section 4.1, "Pivoting Data" for details about pivoting.

Figure 2–17 Pointers on the Axis Item Markers

Key to Figure 2–17:
a. Depending on the location of the axis item marker, the pointer changes to an arrow pointing up, down, or sideways.

2.4 Seeing the Next Page of Data

When the page axis contains data, the table or crosstab displays one page of data at a time. A page displays all of the data for a particular data item, such as the profits from Video Rentals for 1996.

To see another page of data on a table or crosstab:

1. Click the down arrow next to the data you want to see.

Figure 2–18 The Down Arrow on Page Axis Items

Key to Figure 2–18:
a. Click the down arrow to select the next page of data for the particular data item. A drop-down list appears showing the pages available for that data item. A checkmark indicates the current page being displayed on the table or crosstab.

2. Select the page that you want to see next from the drop-down menu.

Note: Unlike a word-processing document where you scroll to see the next pages, scrolling a table or crosstab shows all the data on the current page. To see the next pages of data, use the process described above.

In the following figure, the page axis has two data items—Department and Calendar Year. The Calendar Year data covers 1998, 1999, and 2000; the Department data has two departments—Video Sale and Video Rental. Therefore, in combination, the crosstab has a total of six pages of data:

1. 1998 Video Sale
2. 1999 Video Sale
3. 2000 Video Sale
4. 1998 Video Rental
5. 1999 Video Rental
6. 2000 Video Rental

Figure 2–19 See the Next Page of Data

Key to Figure 2–19:

a. Looking at the page labels, you can see that this crosstab shows data for the Video Sale Department for the Calendar Year 2000. To see data for other Departments, click the down arrow in the Department item.

b. A drop-down list shows other items available, in this case the Department Video Rentals. The check mark next to Video Sale indicates that the table currently displays the page for Video Sale data. To view data for the Department Video Rentals, select it from the list.

What You See on the Screen 2-11
c. To see data for other Calendar Years, click the down arrow in the Calendar Years item. Then choose a Year from the list. You can now compare Profit revenues for different years.

2.5 Formatting a Worksheet

Part of a Database Administrator’s responsibility when designing workbooks is to format each worksheet. Text fonts, background colors, column names, and so forth are all part of the default format set up by the Database Administrator. However, you can reformat a worksheet. The following sections describe how to do this.

2.5.1 Rearranging the Columns on Tables

On a table you can move columns from left to right. You can also move columns from the body of a table to the page axis. This is known as pivoting (see Section 4.1, "Pivoting Data" for more information).

To move a table column to the left or right:

1. Select the column heading of the column to move.

 The pointer changes to a double-headed line indicating you can move the column to the left and right.

2. Drag the column in the direction you want to move it.

3. Release the mouse button when you reach the new position.

Hint: To make the selected column the first or last one in the table, drag the pointer to the leftmost or rightmost column. See Figure 2–20 for an example.

Figure 2–20 Move a Column Left or Right on a Table

<table>
<thead>
<tr>
<th>Page Item</th>
<th>Year: 2000</th>
<th>Region</th>
<th>City</th>
<th>Department</th>
<th>Profit SLW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>St. Louis</td>
<td>Video Sale</td>
<td>$12,270</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Central</td>
<td>St. Louis</td>
<td>Video Rental</td>
<td>$4,030</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nashville</td>
<td>Nashville</td>
<td>Video Sale</td>
<td>$4,616</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nashville</td>
<td>Nashville</td>
<td>Video Rental</td>
<td>$1,529</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td>Minneapolis</td>
<td>Video Sale</td>
<td>$5,141</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Minneapolis</td>
<td>Minneapolis</td>
<td>Video Rental</td>
<td>$1,904</td>
<td></td>
</tr>
</tbody>
</table>

Key to Figure 2–20:

a. Select a column and move the cursor to the right.

b. When mouse button is released, the column moves to the right.
2.5.2 Resizing Columns

You can enlarge or reduce the size of each column by dragging the column’s right-hand edge to the right or left.

Dragging the column edges is relatively imprecise, but is quick and usually sufficient for working on the screen. If you want to resize columns precisely (for example, for printing purposes or to create a report), use the Format menu.

To resize a column by dragging its edge:

1. Put the pointer on the right-hand edge of the column header. The pointer changes to a resize pointer.
2. Hold down the mouse button and drag to the right or left.

Figure 2–21 Resize a Column

<table>
<thead>
<tr>
<th>Department</th>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video</td>
<td>Central</td>
<td>$12,270</td>
</tr>
<tr>
<td>2</td>
<td>Video</td>
<td>St. Louis</td>
<td>$4,000</td>
</tr>
<tr>
<td>3</td>
<td>Video</td>
<td>Nashville</td>
<td>$4,816</td>
</tr>
<tr>
<td>4</td>
<td>Video</td>
<td>Nashville</td>
<td>$1,329</td>
</tr>
</tbody>
</table>

Key to Figure 2–21:

a. Drag the resize pointer to the left or right to change the width column width.
b. The Department column has been resized to display the whole Department names.

When decreasing the size of a column that contains text data, click the Text Wrap button. This ensures that text too long to fit on one line in the new column width, will be displayed with multiple lines so all text remains visible. See Section 2.5.3.2, "Reformatting a Column Heading on a Table" for the steps to make a column wrap its text.

Note: Text in the column heading does not wrap, even if Text Wrap button is clicked.

To resize columns with the Format menu:

1. Select the column(s) to resize.
2. Choose Format | Columns | Width.

 The Column Width dialog box appears.

Figure 2–22 Column Width dialog box

3. Enter a number for the width of the column. The number sets the width of the column in characters.
2.5.3 Formatting Headings, Data, and Titles

You can edit the format and text of column headings and page items.

The steps to reformat column headings are slightly different for tables and crosstabs as explained in the following sections.

2.5.3.1 Editing Column Header Text

You use the Item Properties dialog box to edit the text of column headings.

To edit column header text:

1. Select the column header, page item, or item handle.
2. Choose **Edit | Item Properties**.

To use the right mouse button pop up menu, double-click on a column header or click on the column header, page item, or item handle in a crosstab. Then choose Item Properties from the menu.

The Item Properties dialog box appears.
3. Enter a new heading and click OK.

2.5.3.2 Reformatting a Column Heading on a Table

To reformat column headings on a table:

1. Select the column heading. To change the formats of several columns at the same time, Shift-click or Ctrl-click to select them.

 Note: Do not use the tools on the formatting bar to format column headings on tables. Selecting a column heading and clicking a button on the formatting bar is how you reformat the data in the table.

2. Choose **Format | Headings**.

 The Format Heading dialog box appears.

Figure 2–23 Format Heading Dialog Box

Key to **Figure 2–23:**

Hint: You can also resize selected columns using the **Format | Columns | Auto Size** command. The columns automatically resize to fit their data and column headings. Double-clicking on the right edge of a column header also auto-sizes the column.
a. Click these tabs to display the various formatting options.

3. Click the tabs across the top of the dialog box and select the options for reformatting the heading(s).

Note: The tabs you see in this dialog box may differ, depending on the type of data in the column. For example, a column for text will have a tab named **Text**, while a column for dates will have a tab named **Date** so you can select specific formatting for the specific data type.

Font—Select the font, style, size, and color for the column heading text. In the example above, the text is Arial, Bold, 11 point and yellow. Click a color on the color palette to set the text to that color.

Alignment—Select the options to align the text in the column heading in both the horizontal and vertical directions. The example above shows text that is both left and top aligned. The horizontal alignment option **Wrap Text** means a column heading automatically extends to the next line, in case the text is too long to fit on a single line.

Background Color—Click a color for the column heading background. Usually you’ll want contrasting colors such as yellow text on a blue background.

4. Click Apply to apply the new formats so you can see how they look.

5. Click OK when you’re finished.

2.5.3.3 Reformatting a Column Heading on a Crosstab

When formatting a column heading on a crosstab, all of the headings at the same level will also be reformatted because a column heading represents the same data. For example, Year:1995 and Year:1996 both represent the data item, Year. You cannot reformat a single column heading on a crosstab if there are other columns at the same level.

To reformat a column heading on a crosstab:

1. Select a column heading. All column headings at that level receive the formatting.

2. Choose **Format | Headings** and now format the headings the same way you do for a table (see Section 2.5.3.2, "Reformatting a Column Heading on a Table").

Note: Unlike tables, you can use the formatting buttons on the formatting bar to reformat column heading on crosstabs. For example, to change the format of the Year columns on the sample crosstab, select either Year column, click a formatting button, and the both columns are reformatted. Figure 2–1 shows the formatting bar.

2.5.3.4 Reformatting Data

When reformatting data in a table or crosstab, you can use the workbook menu or the formatting buttons on the formatting bar. Figure 2–1 shows the formatting bar.

To reformat data in a table:

1. Select a column heading to reformat the data in that column. You can also Shift-click to reformat the data in multiple columns.
To reformat all of the data in a table at the same time, select the entire table or any row in the table. Page items will not be formatted unless you select them.

2. Choose **Format** | **Data** and select options from the Format Data dialog box.

To reformat data in a crosstab:

1. Select a column heading or any cell in the column. You can also Shift-click to reformat the data in multiple columns.

 To reformat all of the data in a crosstab at the same time, select the entire crosstab. Page items will not be formatted unless you select them.

2. Choose **Format** | **Data** and select options from the Format Data dialog box.

As you select the table or crosstab formatting options, a sample shows the format, including number of decimal places. Click **Apply** to apply the new formatting, and click OK when you’re finished.

2.5.3.5 Adding Bars to Numeric Data

You can add graphic bars to numeric data in tables or crosstabs to provide a quick visual comparison of the relative amounts displayed. Here is an example:

Figure 2–24 Graphic Bars Added to Numeric Data

<table>
<thead>
<tr>
<th>Department</th>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video</td>
<td>Central</td>
<td>123.45</td>
</tr>
<tr>
<td>2</td>
<td>Video</td>
<td>Central</td>
<td>456.78</td>
</tr>
<tr>
<td>3</td>
<td>Video</td>
<td>Nashville</td>
<td>465.78</td>
</tr>
<tr>
<td>4</td>
<td>Video</td>
<td>Nashville</td>
<td>321.09</td>
</tr>
</tbody>
</table>

Key to Figure 2–24:

a. The graphic bars added to the Profit SUM column show the amount visually as a colored bar. The larger the amount, the larger the graphic bar.

To add graphic bars to numbers:

1. Select a column heading with numeric data, or any cell in the column.

2. Choose **Format** | **Data**.

3. Click the Number tab on the Format Data dialog box.

4. Click the checkbox labelled **Show Graphic Bars**.

Figure 2–25 Show Graphic Bars

Key to Figure 2–25:

a. Select the **Show Graphics Bars** check box.
5. Click OK. The graphic bars are added to the table or crosstab.

2.5.4 Formatting a Worksheet Title

The worksheet title is at the top of the worksheet:

Figure 2–26 Worksheet Title

<table>
<thead>
<tr>
<th>Department</th>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Sale</td>
<td>Central</td>
<td>St. Louis</td>
<td>122,693.82</td>
</tr>
<tr>
<td>Video Rental</td>
<td>Central</td>
<td>St. Louis</td>
<td>402,909.81</td>
</tr>
<tr>
<td>Video Sale</td>
<td>North Central</td>
<td>Nashville</td>
<td>401,157.06</td>
</tr>
</tbody>
</table>

Key to *Figure 2–26:*

a. Worksheet Title.

You can edit all aspects of the title, including the name, text, color, style, and so on.

A special editing feature lets you insert text codes that automatically add certain types of data to the title. These text codes are particularly helpful when printing a worksheet. For more information, see Section 2.5.4.1, "Adding Text Variables to Titles".

Discoverer Desktop also has a special function so you can put a bitmap image in the title. For example, your company logo as the background for the worksheet title is useful when printing copies of worksheets for external distribution. For more information, see Section 2.5.4.2, "Adding Bitmaps to Titles".

To reformat a worksheet title:

1. Choose Sheet | Edit Title.

 The Edit Title dialog box appears:

Figure 2–27 Edit Title Dialog Box

Key to *Figure 2–27:*

a. Text style and alignment options.

b. Text color and background color icons.

2. Select the text options such as the font, size, and alignment to format the title.

3. Click the icons at the right side of the dialog box to change the color of the text or background.
Note: As you select options, the sample in the dialog box changes to show the effects of your choices.

4. Click OK when the formatting is complete.

You can also edit formats of a title by choosing Format | Sheet | Title and selecting options from the Format Title dialog box. Those options are the same as shown in Figure 2–23.

To edit the worksheet title:

1. Click in the title where you want to add text, or select a portion of the title to change it.

 Figure 2–28 shows a section of text that has been selected:

 Figure 2–28 Enter Title Text

 ![Figure 2–28 Enter Title Text](image)

 Key to Figure 2–28:

a. Selected text.

2. Type the new text.

2.5.4.1 Adding Text Variables to Titles

Text Codes contain Workbook information such as the current date and time, the name of the workbook where the worksheet is located, or the number of pages. Once inserted, they are automatically updated when Workbook details change.

To add text code to the title of the worksheet:

1. Click in the title where you want to add a text variable.

 To add it on the next line under the title, put the pointer at the end of the title and press Return.

2. Click the Insert button.

 The Insert menu shows the text codes that you can insert in the title:
3. Select the text code from the menu.

The code is added at the pointer location in the title. Note that the text code begins with an ampersand (&); the ampersand is a programming character and does not appear in the title.

Figure 2–30 shows a text code example.

Key to Figure 2–30:

a. This example shows the date code inserted at the end of the title.
b. Here is the Worksheet title with the current date added to the end of the title.
2.5.4.2 Adding Bitmaps to Titles

A bitmap image can be the background of a worksheet title. For example, you can insert a bitmap of your company logo.

To add a bitmap to the title:

1. Choose Sheet | Edit Title.

 The Edit Title dialog box appears:

2. Click the Bitmap tab on the Edit Title dialog box.

Figure 2–31 Bitmap Page for Edit Title Dialog Box

![Bitmap Page for Edit Title Dialog Box](image)

3. Click the Browse button.

 An Open dialog box appears.

4. Find the bitmap file that you want to use and click Open.

 The bitmap appears with the title. For example, in Figure 2–32, the file Disco.bmp has been defined as the bitmap graphic.

Figure 2–32 Bitmap Page with a bitmap graphic (Disco.bmp) file defined

![Bitmap Page with a bitmap graphic](image)

Key to Figure 2–32:

- a
- b
- c

Oracle Business Intelligence Discoverer Desktop User's Guide
a. The bitmap file location and filename.
b. Bitmap alignment options.
c. The graphics file Disco.bmp displayed as part of the Worksheet title.

5. Select an option for displaying the bitmap with the title as Centered, Tiled or Aligned with the text.
 For a bitmap aligned with the text, choose an alignment option from the drop-down menu.

6. When the bitmap is properly displayed in the title, click OK. The bitmap is added to the title on the worksheet.

 Hint: To remove the bitmap and start over, click Clear.

Note: Bitmaps are saved in the database along with the Workbook. If Discoverer Desktop cannot find the original bitmap file, it uses the bitmap stored in the database.

2.5.5 Renaming a Worksheet

A worksheet’s name appears in the worksheet tabs at the lower left of the Workbook windows. See Figure 2–1, "The Workbook Window" as an example.

To rename a worksheet:

1. Choose Sheet | Rename Sheet.

 The Rename Sheet dialog box appears and shows the sheet’s current name.

 Note: You can also double-click on a Worksheet’s name tab to display the Rename Sheet dialog.

2. Type a new name for the sheet and click OK.

2.6 Some Helpful Shortcuts

In addition to the tool bars and other buttons on the window, Discoverer Desktop has built-in shortcuts to help you work more efficiently.

2.6.1 Right Mouse Support

Clicking the right mouse button when the pointer is on various features of the window produces a pop-up menu with context-sensitive commands specific to that feature. This shortcut helps you choose commands quickly without having to use the menus. Figure 2–33 shows samples of right-click menus. There are many others for the other features.
2.6.2 Resizing Windows

Many of Discoverer Desktop’s windows can be resized horizontally or vertically. You may find a more appropriate size better for your particular computer monitor.

To resize a window:

1. Put the pointer on an edge of the window.

The pointer becomes a horizontal or vertical arrow. In Figure 2–34 below, the pointer is horizontal arrow, used to change the width of the dialog box.
Key to Figure 2–34:

a. Horizontal resize arrow at the edge of the dialog box.

2. Drag the pointer to adjust the width of the dialog box.

 When the pointer is on the side edge, drag it to the left or right. When the pointer is on the top or bottom edge, drag it up or down.

 The window will be the selected size from now on.
Presenting Data on a Graph

Discoverer Desktop can convert tables and crosstabs to graphs or charts so you can analyze and present data graphically. Graphs and charts of tables and crosstabs are especially effective for presentations of results.

This chapter explains how display data on a graph.

The topics covered in this chapter include:

■ The Features of a Graph
■ Creating a Graph
■ Modifying a Graph

3.1 The Features of a Graph

The following figure shows a table and its resulting graph. This sample shows a bar graph, but several other styles are also available.

Figure 3–1 A Worksheet table and Its Graph

Key to Figure 3–1:

a. A Worksheet in table format.
b. A graph of the data in the Worksheet. Each bar corresponds to one row on the table. In this example, each bar represents the Profit SUM for a Region for the Calendar Year 1999.
c. Graph legend. Each bar is represented in a different color.
To display Worksheet data as a graph:

1. Display the worksheet that you want to see as a graph.

2. Choose Graph | Show or click the Graph button on the worksheet tool bar.

 The first time you display a graph, the Graph Wizard walks you through the process of defining the graph's features. Then, a graphical representation of the worksheet appears in the Graph window.

3. When you are finished working with the graph, click the Close button on Graph window. You can also click the Minimize button on the Graph window.

The graph retains its design features when closed. The next time you open it, the graph has the same appearance.

Figure 3–2 shows the features on a typical graph.

Figure 3–2 Graph Window

Key to Figure 3–1:

a. **Tool Bar** - click a tool to work with the graph; click a color or pattern and drag it onto the graph to change the data's color or pattern; click the arrows to scroll the colors and patterns.

b. **Y-Axis Scale** - shows the scale appropriate for the data in the original table or crosstab; you can reset the scale and add decimal points.

c. **Titles** - additional labels that you can add to the graph. Four positions for the titles are Top, Left, Right, and Bottom.

d. **Top title**.

e. **Legend** - the color and label for data.

f. **Data** - the graphical representation of the data (in the figure, 3D bars).

3.1.1 The Graph Tool Bar

To work with the graph, use the Graph menu on the worksheet window or the Graph tool bar on the Graph window. To show or hide the Graph tool bar, choose Graph | Tool bar. The following figure identifies the icons on the Graph tool bar.
3.2 Creating a Graph

The Graph Wizard walks you through the process of creating a graph. These dialog boxes only appear the first time you create a graph of a table or crosstab. To make any changes to a graph later, use the Modify Graph button on the Graph tool bar.

To create the initial graph with the Graph Wizard:

1. Display the worksheet that you want to see as a graph.
2. Choose Graph | New Graph or click the Graph button on the worksheet tool bar.

The first Graph Wizard dialog box appears:
Figure 3–5 New Graph: Step 1

3. Select one of the graph types. Scroll to see additional choices. To expand the text description at the bottom of the box, put the pointer on the text.

4. Click Next.

Figure 3–6 New Graph: Step 2

5. Select one of the graph formats. Scroll to see additional choices.

6. Click Next.
To add titles to the graph, enter them in the appropriate boxes. See Figure 3–2 to see the locations of the titles.

To add a legend to the graph, click Show Legend.

To format the axes labels, click the formatting button next to each feature to see the Font dialog box for that element.

Select the font choices and click OK. Repeat for the other design elements that you want to format individually.

7. Click Next on the New Graph wizard dialog box.
8. Select options for the data on the graph:

- **Y-Axis Scale** - enter numbers in the Minimum and Maximum boxes to set the upper and lower boundaries of the y-axis; usually the Minimum value is zero. The Maximum value is normally a value higher than the maximum data point value.

- **Decimals** - enter a number for the number of decimal places on the y-axis scale; enter 2, for example, to display the scale numbers as 100.00.

- **Show Gridlines**—click each option to show gridlines on the background of the graph.

- **Graph Series By**—select one or the other option:
 - **Column** - plots the rows on the x-axis and the data for each row in the graph.
 - **Row** - plots the columns on the x-axis and the data for each column in the graph.

9. Click Finish. The Graph window appears with the new graph in it.

3.2.1 Updating the Data on a Graph

You do not have to update a graph manually. As you analyze data on tables and crosstabs, additional data displayed as part of the analysis is automatically added to the graph and appears the next time you display the graph.

For example, if you display a column of percentages for the data, that column’s data becomes data points on the graph. Likewise if you pivot a column to the page axis, the graph is automatically updated to reflect that change.

3.3 Modifying a Graph

To modify a graph:

1. Click the Modify Graph tool on the Graph window’s tool bar or choose **Graph** \ Graph \ Edit Graph.
 - If you choose **Graph** \ **Edit Graph**, the first Graph Wizard dialog box for modifying the graph appears. It has the same options as the original Graph Wizard dialog box. You can then step through the dialog boxes modifying the graph in the same manner that you created the original graph.
If you click the Modify Graph tool, a dialog box appears for modifying the graph.

Figure 3–10 Modify Graph Dialog Box

The tabs across the top of the dialog box offer the same features as the Graph Wizard dialog boxes that you initially used to create the graph.

Here the Options tab is selected. Compare the options shown in the figure above with Figure 3–9. You can see that the two provide the same options.

2. Use the **Type**, **Format**, **Titles and Legends**, and **Options** tabs to change the graph details as required.

3. Click OK.

In addition to modifying the y-axis scale with the Modify Graph dialog box shown above, you can also choose **Graph | Scale**. The dialog box that appears includes additional options to set the y-axis scale units, plot the scale linearly or logarithmically, and to set the size of the gap between plotted data points.

3.3.1 Selecting a New Graph Type

To select a new graph type:

1. In the Graph window, click the **New Graph Type** button on the Graph window tool bar.

The dialog box for a new graph type appears.
Modifying a Graph

2. Click the new graph type. The graph changes to its new type.

 If you do not want to change the graph’s current type, click on the Graph window (off the drop-down list) and the list closes.

 Here are samples of two types of graph that plot the same data.

Figure 3–11 New Graph Type Drop-Down List

Figure 3–12 A Horizontal Bar Graph

Figure 3–13 A Cube Chart

3.3.2 Displaying the Graph Legend and X Labels

You can show or hide the legend and X labels by clicking the buttons on the tool bar.

To display the legend and X labels:

1. Click the Show/Hide Legend and Show/Hide Labels buttons on the Graph window tool bar. You can also choose Graph | Legend and Graph | X Labels.
Note: These buttons and commands are toggles—that is, click a button to show the data; click it again to hide the data.

Here is a sample graph showing both the legend and X labels from the rows on the original table or crosstab.

Figure 3–14 Graph Showing Legend and X Labels

Key to Figure 3–14:
- a. Each row in the table is represented on the Bar Graph as a bar.
- b. The X labels.
- c. The legend corresponds to the rows in the table.

3.3.3 Resizing the Window and Graph

You may need to resize the graph or its window depending on the type of graph and the amount of plotted data. You can resize most portions of the window and graph.

To select the window or graph so you can resize it:

1. Put the pointer on the edge of the window, edge of the graph, or on one of the other resizable sections of the graph. The pointer changes to a resize arrow.

2. Drag the mouse pointer to resize the window or graph.

The following figure shows some of the places you can drag the pointer to resize.
3.3.4 Reference Lines and Pull-outs on a Graph

On most of the graph types, dragging on the graph produces a set of reference lines that you can use to visually correlate the graph’s data points with the vertical and horizontal scales. On the pie graph and donut graph types, however, dragging pulls sections of the graph out so you can call special attention to them.

Here are some examples:
3.3.5 Rotating Graphs

You can rotate 3D graphs to view them from a different perspective.

To rotate a graph:
1. Choose **Graph | 3D View**.
 A dialog box for rotating the graph appears.

 Figure 3–18 3D View Properties Dialog Box

 ![3D View Properties Dialog Box](image)

 Key to **Figure 3–18**:
 a. Drag these dots around the edge of the sphere rotates the graph in the corresponding x and y direction.
 b. These numbers show the amount of rotation in each axis.
 c. Drag this slider to rotate the graph in the z-axis plane.

 Hint: Before you begin to rotate a graph, write down the X Angle and Y Angle numbers and note the position of the slider so you can return the graph to its unrotated position after experimenting with rotation.

2. Select the options for displaying the graph:
 - **3D** - displays the graph with both the X Angle and Y Angle set at 45 degrees; this is the standard 3D display.
 - **Full 3D View** - displays the graph based on the positions of the dots and slider on the dialog box; this option must be selected to drag the dots. Turning off this option returns the graph to the standard 3D display.
 - **Shadows** - displays shading on the edges of the graph's features to enhance the 3D representation.

3. Drag the dots around the x- and y-axis circles.
 - Dragging the x-axis dot rotates the graph from left to right.
 - Dragging the y-axis dot rotates the graph from top to bottom.

 As you drag the dots, the reference figure represents the amount of rotational change to the graph. The X Angle and Y Angle numbers also change as you drag the dots.

 Hint: You can also enter numbers for the X Angle and Y Angle in the respective boxes. Entering numbers instead of dragging the dots is often a good way to get the exact rotation for a series of graphs.

4. To rotate the graph in the z-axis, drag the slider under the reference figure.
 Dragging the slider increases or decreases the amount of depth to the graph.

5. Click **Apply** to rotate the graph based on the settings in the dialog box.
6. Click OK when the graph is rotated as you want it.

Figure 3–19 Sample Rotated Graphs

3.3.6 Changing the Graph’s Colors and Patterns

The tool bar on the Graph window includes a set of colors and patterns for changing the colors and adding patterns to the graph.

To change a color or pattern:

1. Drag the color or pattern from the tool bar onto the portion of the graph you want to change.

 The pointer becomes a paint jar.

2. Put the paint jar onto the portion to recolor, and release the mouse button.

 You can recolor the plotted data, the axes, the legend background, and the graph’s background.

Figure 3–20 Changing a Graph’s Colors and Patterns
Key to Figure 3–20:

a. Drag a color from the color bar over a section of the graph to change the color of that section. Note that the legend also changes.

b. Drag a pattern from the pattern bar over a section of the graph to change the pattern of that section. Note that the legend also changes.

If you apply a pattern to a graph that has a color, the black bits of the pattern become the color. A graph can be patterned or solid colors, but not both.

If you want a colored pattern, first drag a color down to the graph, then drag a pattern down to the graph.

To remove a pattern from the graph:

1. Drag one of the colors from the tool bar onto the pattern on the graph.

2. The pattern is removed and the graph becomes a color.

3.3.6.1 Creating Custom Patterns

To create a custom pattern:

1. Double-click on a pattern on the tool bar.

 The Pattern Editor appears.

 \[\text{Figure 3–21 Pattern Editor} \]

2. Put the pointer on the pattern bitmap. The pointer becomes a pencil tool.

3. Click on the squares to reverse their color. The sample on the right shows the new pattern.

4. Click OK when you’re finished.

 The new pattern replaces the original one you started with on the tool bar.

3.3.6.2 Creating Custom Colors

To create a custom color:

1. Double-click on a color on the tool bar.

 The Color dialog box appears.
2. Click Define Custom Colors.
 The dialog box expands to show the tools for defining a custom color.

3. Click on one of the empty spaces in the Custom colors panel.
 To edit one of the custom colors already in the panel, click on it instead.

4. Drag the reference marker around in the colors.
 As you drag the Reference Marker, the Color|Solid box shows the new color.
 Color refers a dithered color if your computer is set to show dithered colors. Solid
 refers to the nearest solid (undithered) color. Note that luminance remains
 constant as you drag the marker.

5. Drag the slider up and down to change luminance. Hue and Saturation (Sat)
 remain constant.
 You can also type the color numbers directly in their boxes.

6. When the new color is correct, click Add to Custom Colors. The new color is
 added to the panel of new colors.

7. Click OK when you’re finished.
 The new color replaces the original one you started with on the tool bar.
This chapter explains how to find and arrange the data that you want to analyze. The topics include:

- "Pivoting Data"
- "Drilling Into and Out of Data"
- "Sorting Data"

4.1 Pivoting Data

Laying out data on a table or crosstab organizes it so you can easily compare results side by side, spot trends when you see progressions, track progress over weeks, months and years, and so on. In other words, how the data is arranged is an important aid to analysis because it reveals data relationships that may not be apparent.

Pivoting data is how you move the data from one axis to another to arrange it for efficient analysis. For example, you can pivot data from the body of the table or crosstab to the page axis and back again to see new data relationships.

One way to think about pivoting data is to visualize the data plotted on a graph, and then switching data from the x-axis to the y-axis.

4.1.1 Pivoting for Comparison and Analysis

Pivoting a column on a table from the body to the page axis or from the page axis to the body rearranges the order of the data as it is presented and helps you organize the data. On a crosstab, however, pivoting a column has a much different meaning because the positions of data columns determine the data interrelationships of the items on the crosstab. Therefore, pivoting a column on a crosstab not only changes the positions of the data—you may see different numerical values as the data relationships vary. Figures 4-1 and 4-2 provide examples of pivoting on tables and crosstabs.
Key to Figure 4–1:
a. The Page Items axis.
b. The Region Item is selected, then dragged to the Page Items axis.
c. Region is now a pivoted Item on the Page Items axis. The value ‘Central’ is selected, which means that only Central’s profits are displayed in the table.

Key to Figure 4–2:
a. The Items Department and Video Sales are dragged from the Page Items axis to the table.
b. The Page Items axis is now empty, and the table now displays all four Items. You can now see all dimensions of the data, which is useful for an overview of the data, but not as useful for detailed analysis.
Figure 4–3 An Example of Pivoting Data on a Crosstab

Key to Figure 4–3:
a. The Department Item is dragged from the Page Items axis to the table.
b. The table now displays profits for Departments Video Rentals and Video Sales.

Figure 4–4 Another Example of Pivoting Data on a Crosstab

Key to Figure 4–4:
a. The Calendar Date Year Item is dragged from the top axis to the left axis.
b. The table now displays profits in a single column, and includes sub-totals for each Calendar Date Year. You can see a new data relationship at the new intersection of a column and a row; in this case, the Profit SUM for the year.

4.1.2 Pivoting Data on a Table

To pivot an Item from a table to the Page Items axis:
1. Select the column heading and drag it up to the page axis area.
As you drag the pointer into the page axis area, it changes to an arrow with a horizontal column marker indicating you’re moving a vertical column (in the table body) to a horizontal position (the page axis item).

2. Release the mouse button. The column moves to the page axis.

Figure 4–5 Pivoting Data from a Table to a Page Items axis

Key to Figure 4–5:
- a. The Page Items axis.
- b. The Region Item is selected, then dragged to the Page Items axis.
- c. Region is now a pivoted Item on the Page Items axis. The value ‘Central’ is selected, which means that only Central’s profits are displayed in the table.

To pivot an Item from the Page Items axis to a table:

1. Click the item marker on the page axis item. The item marker is the two dots at the front of the item name.

 The pointer changes to a vertical arrow indicating that you can move the item down to the table body:

Figure 4–6 Pivoting Data from a Page Items axis to a table

Key to Figure 4–6:
- a. The Region Item is dragged from the Page Items axis to the table.
b. The table now displays profits for all three Regions.

2. Drag the pointer down onto the table where you want the page axis item to go.
 The pointer changes to a left-right arrow indicating you can put the page axis item into the table body.

3. Release the mouse button. The page axis item becomes a column in the table.

You can insert the page axis item into a table at three locations:

Left-most column—drag the pointer onto the first column in the table. The page axis item is inserted to become the first column.

Middle columns—drag the pointer onto a column head. The page axis item is inserted to the left of that column.

Right-most column—drag the pointer onto the blank space after the last column. The page axis item is added as the right most column of the table.

Figure 4–7 Column locations for inserting Items

Key to Figure 4–7:
- a. The left-most column.
- b. The middle columns.
- c. The right-most column.

4.1.3 Pivoting Data on a Crosstab

Because the data relationships on a crosstab depend on the intersection of the rows and columns, pivoting data from one axis to another creates a new set of data relationships. In addition, the new arrangement can add levels of data to an axis. For example, if the data on the side axis is organized into three levels such as Region, City, and Store Name, pivoting the Year item to the side axis adds a fourth level of data to that axis, (see Figure 4–8 for an example).

To pivot data on a crosstab:

1. Click the axis item marker of the item to pivot.

2. Drag the pointer to its position on the new axis. You can drag the pointer onto the axis marker or onto one of the rows at that level.
 The direction of the pointer indicates how the item will pivot from horizontal to vertical, or vice versa.

3. Let go of the mouse button. The item moves to the new axis.
Key to Figure 4–8:

a. The Calendar Date Year Item is dragged to a new position on the left axis.

b. The table now displays profits in a single column, and includes sub-totals for each Calendar Date Year.

Notice that the new crosstab now has only one column for the Profit SUM. The Calendar Date Year 2000 data is further down on the side axis. Scroll down the page to see it.

4.1.3.1 Producing erroneous results when pivoting

As you can see, it is easy to pivot data in Discoverer Desktop. However, sometimes this ease of use also makes it easy to produce erroneous results. For example, in a Crosstab layout, if you remove everything from your left axis or your top axis, you can produce a meaningless table, see example Figure 4–9.
Figure 4–9 Producing erroneous results by pivoting data

Key to Figure 4–9:

a. The Region Item is dragged from the left axis to the top axis.

b. Because there is now no cross-tabulation, no profits data is displayed on the table.

4.1.4 Duplicating Tables and Crosstabs

When you have a Worksheet, you can duplicate it as another Worksheet of the same type, or you can convert the Worksheet to a different type, for example, into a Table or Crosstab.

For example, if your data is currently displayed as a table, but you want to analyze it using the pivoting features of a crosstab, you can duplicate the table as a crosstab.

To convert a Worksheet table to another Worksheet type:

1. Choose **Sheet | Duplicate a Table** or **Sheet | Duplicate as Crosstab**.

 The dialog box for duplicating the table or crosstab appears, with the Crosstab Layout tab visible.

 Figure 4–10 shows the Duplicate as Crosstab dialog box. The dialog box for duplicating tables is similar.
2. Click OK now if you want to accept the default table or crosstab configuration.

3. If you want to change the default table or crosstab configuration, choose from the four tabs and configure your duplicate table.

 The tabs across the top of the dialog are used as follows:

 - **Select Items**—adds new items to the new table or crosstab (see Section 7.1.2, "Selecting the Data" for details).
 - **Conditions**—adds conditions to the new table or crosstab (see Section 5.5, "Finding Data that Meets Conditions" for details).
 - **Sort**—(available for tables only) sorts the data on the new table (see "Key to Figure 4–27:" for details).
 - **Calculations**—defines calculations on the new table or crosstab (see Section 8.3, "Creating Calculations" for details).

4. Click OK to create your duplicate table.

 A new Worksheet is created in your Workbook containing the duplicate table or crosstab.

4.2 Drilling Into and Out of Data

Drilling into data shows more details about the data. Drilling out of data (or collapsing) consolidates the data for a broader overview. Typically, you drill into data to analyze it at a finer level of detail, and drill out to get the “bigger picture.”

In addition to drilling into and out of data on the current table or crosstab, you can also drill to another worksheet, or to a related item that is not on the worksheets. See Section 4.2.5, "Drilling with the Drill Dialog Box" for details.

Discoverer Desktop provides two ways to drill into and out of data:

- Drilling directly from a table or crosstab - clicking a Drill Point to display a Drill Icon is the quickest way to drill, and covers many types of drilling typical in routine data analysis, (see Figure 4–11).
Drilling from the Drill dialog box - using this menu option provides even more options for drilling. Select an Item or cell and choose Sheet ¦ Drill from the main Discoverer Desktop menu. You can also choose the Drill option from the Discoverer Desktop tool bar.

Figure 4–11 Drilling in Discoverer Desktop

Key to Figure 4–11:

a. Drill Points are Items that you can drill down into to look at more detail.

b. Drill Icons are displayed when you click a Drill Point, and allow you to choose drill options.

4.2.1 Drilling down using the Drill icon

This section explains how to use the Drill icon to drill down into data.
Key to Figure 4–12:

a. Right-pointing arrows on Items indicate Drill-points, which are data points at which you can drill down to further levels of detail.

b. When you move your cursor over a Drill-point, the icon changes to a magnifying-class with a cross at its center, (the Drill-icon).

c. Click the Drill-icon to see the drilling options available, and select an option. Notice that all Years are selected.

d. The Worksheet displays the drilled data for all Years selected.

4.2.2 Drilling out using the Drill icon

This section explains how to use the Drill icon to drill out of data.
Figure 4–13 Drilling out (or collapsing) using the Drill icon

Key to Figure 4–13:

a. Click the Drill-icon for the data that you want to collapse.

b. From the list of drill options, choose a higher level to which to collapse.

c. The drilled data is collapsed and the original Worksheet is displayed.
4.2.3 Drill examples

Figure 4–14 Selective drilling using the Drill icon

Key to Figure 4–14:

a. The Worksheet displays data for three years, 1998, 1999, and 2000. In this example we want to only drill down to quarter level data for the year 2000.

b. The Drill-icon for the year 2000 is clicked and Calendar Quarter is selected.

c. The Worksheet displays quarter level profits for the year 2000, (named Q1 and Q2), but not the years 1998 and 1999.
Figure 4–15 Drill into Data on a Table Column

Key to Figure 4–15:
a. Put the pointer on the icon next to the data that you want to drill. In this example, the pointer is on the drill icon for Calendar Year, which means you want to drill into or out of data at this level.
b. Click the mouse button to see the drop-down menu for the selected item. The menu options apply only to the data the you want to drill. In this example, the options for Calendar Year are Calendar Quarter and Calendar Month. Select the level of data that you want to see.
c. When you release the mouse button, the new data details appear in a new column in the table; in this case, the Quarter column.

Figure 4–16 Drill into Data on a Table Row

Key to Figure 4–16:
a. Move the cursor over the row icon for the data that you want to drill. In this example, the pointer is on the icon for 1998, which means that you want to drill to data only for that row (not for all rows).
b. From the pull down list, select the level of data that you want to see. Notice that the menu only includes Calendar Quarter and Calendar Month because you are starting from a single Calendar Year row, not the Calendar Year column.
c. When you release the mouse button, the new data details appear in a new column in the table; in this case, the Quarter column. Quarter names appear for only the Calendar Date Quarter 1998 because the drilling started there.

Figure 4–17 Drill Up to a Higher Level of Data on a Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1998</td>
<td>Q1</td>
</tr>
<tr>
<td>2</td>
<td>1998</td>
<td>Q2</td>
</tr>
<tr>
<td>3</td>
<td>1998</td>
<td>Q3</td>
</tr>
<tr>
<td>4</td>
<td>1998</td>
<td>Q4</td>
</tr>
</tbody>
</table>

Key to Figure 4–17:

a. Put the pointer on the icon next to the data from where you want to drill up. In this example, the pointer is on the drill icon for Quarter, which means you want to start the drill at that level.

b. Select the level of data that you want to see. As the menu shows, you could drill up from Calendar Quarter (ticked to indicate that it is the current drill level), down to Calendar Month, or up to Calendar Year. This example shows drilling up to Calendar Year.

c. When you release the mouse button, the data drills back up the Calendar Year level, and the Quarter column is removed.

To drill into or out of data from the table or crosstab:

1. Click the drill icon in the column or row with the data that you want to drill. Drill icons are arrowheads that point to the right.

 You can also double-click on a crosstab data item’s heading to drill quickly. See Section 4.2.4, "Quick Drilling by Double-Clicking" for details.

 To simultaneously drill all the columns or rows at the same level (Figure 4–18), select them first by clicking the selection box for that level of data. Then put the pointer on the drill icon in any one of the selected columns or rows and click.

2. From the drop-down menu, choose the level of data that you want to analyze.

Figure 4–18 Sample Drill Menu

Key to Figure 4–18:

a. The current drill level is ticked.
b. To drill back up, select one of the levels above the current drill level.
c. To drill down, select one of the levels below the current drill level.

If you select a level that has already been drilled down, you can collapse the levels back to their previous state.

Figure 4–19 Sample Collapse Drill Data Menu

Key to *Figure 4–19*:
- **a.** The current drill level is ticked.
- **b.** To drill back up, select Collapse.

Note that the Quarter level does not appear on the sample menu because the data is already drilled to that level and you cannot collapse a level into itself.

Hint: Use Collapse after you drill data down several levels and want to get back to the original level in one step.

You can also collapse drilled data by selecting the level to collapse to and then choosing Sheet | Collapse.

Figure 4–20 Drill to All Rows At the Same Level on the Side Axis

Key to *Figure 4–20*:
- **a.** Select the Region level by clicking on the selection box for the Region data item. All the rows of Regions in the entire worksheet are selected.
- **b.** Now click on any drill icon on any one of the selected Region rows. Then choose a drill level from the options displayed, in this case drill down to City. Alternatively, you could drill further down to Store Name level.
c. When City is selected, City data is displayed for all Regions.
d. Note that a selection box has been added on the side axis for the City data item.

Figure 4–21 Drill to a Single Row on the Side Axis

Key to Figure 4–21:

a. Put the pointer on the drill icon of the row from which you want to drill, in this case the East Region.
b. Select the level to drill to, in this case, drill down to City.
c. The resulting drill shows Cities for the East Region only.
d. Note that a selection box has been added on the side axis for the City data item.

The data on the side axis in the Discoverer Desktop sample data is organized in the hierarchical sequence of Region, City, and Store Name. Typically, you would drill from Region to City and then from City to Store Name. However, in some instances, you may want to drill from Region directly to Store Name.

The following figure shows how to drill to a sub-level on the side axis. This can also be thought of as skipping a hierarchical level.
Pivoting, Drilling, and Sorting Data

Drilling Into and Out of Data

Figure 4–22 Drill to a Sub-Level on the Side Axis

Key to Figure 4–22:

a. Put the pointer on the drill icon of the row from which you want to drill, in this case the East Region.
b. Select the level to drill to, in this drill straight down to Store Name.
c. The resulting drill shows Store Names for the East Region only.
d. Note that a selection box has been added on the side axis for the Store Name data item because now that data is visible.

4.2.4 Quick Drilling by Double-Clicking

You can quickly drill down from one level to the next on a crosstab by clicking in a data item’s column heading. The drill automatically drills to the next level in the data hierarchy. For example, clicking on the column heading Region automatically drills to City because that’s the next level in the hierarchy—Region, City, Store Name.

Figure 4–23 Drill to a Single Row on the Side Axis by Double-Clicking

Key to Figure 4–23:
Drilling Into and Out of Data

a. Put the pointer in the row from which you want to drill, but don’t put the pointer on the drill icon. A white cross is displayed. Double-click the white cross to drill down.
b. Quick drilling drills to the next level of the data. In this example, Region is drilled to City for only the selected row, (the Eastern Region). Double-click on the East Region once more to drill down to the next level of data - Store Name.

Note: Double-clicking on a column head on a table does not drill down. Instead, it displays the data item’s properties.

4.2.5 Drilling with the Drill Dialog Box

Double-clicking on an individual cell displays the Drill dialog box.

Use the Drill dialog box to drill up and down from columns and rows on the tables and crosstabs and additionally, to related items on the worksheet or to related items on another worksheet.

To drill with dialog box:
1. Display the table or crosstab with the data you want to drill.
2. On the table or crosstab, click the data item where you want to begin drilling.
3. Choose Sheet | Drill, or double-click on the data item.
 The Drill dialog box appears.

Figure 4–24 Drill Dialog Box

Key to Figure 4–24:
a. Drill options.
b. Where to drill from.
c. Where to drill to. The arrow indicates the direction of the drill. A down-arrow indicates a drill-down. An up-arrow indicates a drill-up (or collapse).

4. Select a drill option:
 Up/Down—drills down to details or up to an aggregate level in the data’s predefined hierarchy, such as Year to Quarter to Month.
 Drill to a Related Item—drills down to details or up to an aggregate level to data that is related but that is not in the data’s predefined hierarchy, such as City to Quarter or Region to Product.
 Drill to Detail in another Sheet—drills to data that is in the workbook, but that isn’t in the data’s hierarchy; another sheet is created to show the details.
5. Select where to drill from.

The row or column you selected appears here. You can also drill from another starting point by clicking the drop-down arrow and selecting from the list that appears. The choices in the list pertain to the data item to start the drilling and the type of drill option you selected.

For example, if you selected a column heading and Drill Up/Down, the other options are in the column’s data hierarchy. The drop-down arrow is not available if you selected a data item that does not have other levels for drilling.

6. Select where to drill to.

The choices in the list show where you can drill to. The choices depend on the other selections on the dialog box.

7. Click OK. The data on the table or crosstab is then drilled to the level you specified on the dialog box.

The following figures show examples of drilling from the Drill dialog box.

In this example, the drilling starts at the City data, which is in the hierarchy of data—Region, City, Store Name. However, Quarterly data is related to City, so you can drill from City to Quarter.

Figure 4–25 Drill to Related Item with the Drill Dialog Box

Key to Figure 4–25:

a. The East Region item is selected from the left axis.
b. ‘Drill to a Related Item’ is selected.
c. The ‘Where do you want to drill from?’ box confirms the drill-point.
d. Calendar Quarter is selected from the list of related drill options.
e. Click OK to view the East Region data broken down into Quarters.

The Drill Options dialog box offers additional ways to customize the drilling results.

Figure 4–26 Drill Options Dialog Box

Click the **Options** button on the Drill dialog box to open the Drill Options dialog. Choose from the following options:

- **Expand to include new item**—the table or crosstab is enlarged to fit in the new level of data (see Figure 4–27 for an example).
- **Replaced with new item**—the data level where the drill started is replaced with the new level of data (see Figure 4–27 for an example).
- **Current Sheet**—adds the new level of data on the current worksheet.
- **New Sheet**—creates a new worksheet to display the drilled data.
- **Table**—display the results in a table.
- **Crosstab**—display the results in a crosstab.
- **Let me modify query before proceeding**—displays the New Sheet dialog box so you can format the new layout, add conditions and calculations before the drilling takes place. See Section 7.1, “Building a New Workbook or Worksheet” for a description of the options.

Figure 4–27 shows the difference between expanding and replacing data.
4.3 Sorting Data

Sorting arranges text data in alphabetical order and numeric data in numerical order. Creating an ordered list of customers, or employees, or product part numbers are typical uses of sorting. However, sorting is also helpful for analyzing data. For example, sorting sales data from most profitable sales to least profitable sales shows the relative standing of your company’s best selling products or the most effective salespeople.

You can also group data and then sort within the group. For display and reporting purposes, each group of data can start on a new page. See Section 4.3.1.2, “Group Sorting” for details.

4.3.1 Sorting Data on Tables

Figure 4–28 shows an example of sorting data on a table and the results.
Key to Figure 4–28:

a. A sort is selected on Region, which sorts the Region column alphabetically from A - Z, (East - West).

b. A line of size 3 separates the sort groups, (Regions).

c. The Spaces option is left blank, so that there are no spaces between the sort groups (Regions).

d. Because Group Sort is also selected under the Group option, the Cities are also sorted alphabetically within Region.

To sort data on a table:

1. Display the table with the data you want to sort.

2. Choose Tools | Sort.

The Sort Table dialog box appears. It shows the sorting options currently selected for the table.
3. Select the sorting options and click OK.

You can choose from these options in the Sort Table dialog box:

Column—The name of the column containing the data you want to sort. You can add additional columns to sort at several levels on the table. See the next section for details.

Direction—The sort order of the data in the column. Click the up and down buttons in the Direction box to choose the sort order:

- Lo to Hi—A to Z for text; increasing for numbers (e.g., 1 to 10).
- Hi to Lo—Z to A for text; decreasing for numbers (e.g., 10 to 1).

Group—The manner of grouping and displaying sorted data. Click the drop-down button in the Group box and choose one of the options:

- **Group Sort**—Data is sorted within each group. The group name appears once at the beginning of the grouped data.
- **Page Break**—Mainly for printing reports, this option starts a new page at the start of each new group. The group name appears at the top of the page.
- **Hidden**—Sub-group the data at the next hierarchical level, but do not display the sub-grouped item.
 For example, if the hierarchy is Year, Quarter, Month, sorting on Year with the Hidden option selected sorts on Quarter within Year but does not display the Quarter Item, or line separators for each Quarter. To display sub-grouped Items, change this option to Group.
- **None**—The data in the column is not grouped and is all sorted as a unit.

Line—The thickness of the line separating the data groups. Click the drop-down button in the Line box and choose a line thickness. The figures in this section show a line for subtotals; you can also use a line when displaying totals.

Spaces—The number of cell spaces between groups. Click the up and down buttons in the Spaces box to choose the spacing.

4.3.1.1 Sorting Data Within Data

By adding more sort columns, you can sort data within data.
For example, if you sort data first by Region and then by City, data is sorted alphabetically by Region (Central, East, West) and then within the Regions alphabetically by City (Atlanta, Boston, Miami, and so on). However, if you sort first by Region and then by a numeric column, such as Profit SUM, the data is sorted alphabetically by Region and then numerically by the Profit.

Here is an example showing sorting applied to two columns:

Figure 4–30 Two Columns Sorted

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Chicago</td>
<td>$3,333</td>
</tr>
<tr>
<td></td>
<td>Cincinnati</td>
<td>$12,987</td>
</tr>
<tr>
<td>East</td>
<td>Atlanta</td>
<td>$2,085</td>
</tr>
<tr>
<td></td>
<td>Boston</td>
<td>$8,998</td>
</tr>
<tr>
<td></td>
<td>Miami</td>
<td>$2,563</td>
</tr>
<tr>
<td></td>
<td>New Orleans</td>
<td>$4,002</td>
</tr>
</tbody>
</table>

Key to Figure 4–30:
- a. A table sorted on City within Region.
- b. A table sorted on Profit SUM within Region.

To add and rearrange columns to sort:

1. On the Sort Table dialog box, click the Add button to see additional columns for sorting.

 For example, in the following figure you can add the Department or Profit SUM columns for sorting.

Figure 4–31 The Sort Table dialog

Key to Figure 4–31:
- a. Column Number.
b. Column Name.
c. Add button, used to display other Items on which data can be sorted.

2. Choose the additional column.

The column is added to the list of sorting columns.

Note: The order of the columns on the Sort Table dialog box is important. The order of the columns determines which data is sorted first, second, third, and so on. You can move the columns up and down to put them in the proper order on the dialog box.

If you want to move a column up or down on the list, click the column’s handle (just to the right of the column number) to select it. The pointer becomes an up/down arrow indicating you can move the selected column up or down in the order.

Figure 4–32 Move a Sort Column

Key to *Figure 4–32:*

a. The arrow indicates that you can move the selected sort column (Region, in this example) down, changing the sort order to Region within Profit SUM.

3. Drag the column up or down or click the move up or move down buttons.

4. When the order of the columns is correct, select options for Direction, Group, Line, and Spaces for each column (*Figure 4–29*), then click OK.

To remove the selected column for sorting, click the **Delete** button. Delete removes the column only from the list of sort columns. It does not remove it from the table.

4.3.1.2 Group Sorting

Data in tables is often organized into groups. For example, listings by address are often grouped according to City or Zip Code; tables listing business products might group them by type, such as Office Furniture, Computers, and Supplies. One key reason to group sort data is to find subtotals for groups of numbers.

Note: You can group sort on tables, but not on crosstab displays.
Columns with Group Sort selected always precede those with no group sorting (None) to assure that the sorting is done correctly on the table. You cannot move a column without group sorting above a column with group sorting.

The names of group sorted columns appear in italics on the dialog box.

Here is an example of two tables, one group sorted, the other not:

Figure 4–33 Using Group-sort

<table>
<thead>
<tr>
<th></th>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>Chicago</td>
<td>$3,533</td>
</tr>
<tr>
<td>2</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$12,687</td>
</tr>
<tr>
<td>3</td>
<td>Central</td>
<td>Dallas</td>
<td>$3,647</td>
</tr>
<tr>
<td>4</td>
<td>Central</td>
<td>Louisville</td>
<td>$12,664</td>
</tr>
<tr>
<td>5</td>
<td>Central</td>
<td>Minneapolis</td>
<td>$3,562</td>
</tr>
<tr>
<td>6</td>
<td>Central</td>
<td>Nashville</td>
<td>$3,884</td>
</tr>
<tr>
<td>7</td>
<td>Central</td>
<td>St. Louis</td>
<td>$7,627</td>
</tr>
<tr>
<td>8</td>
<td>East</td>
<td>Washington</td>
<td>$9,046</td>
</tr>
<tr>
<td>9</td>
<td>East</td>
<td>Pittsburgh</td>
<td>$6,300</td>
</tr>
<tr>
<td>10</td>
<td>East</td>
<td>Philadelphia</td>
<td>$9,217</td>
</tr>
<tr>
<td>11</td>
<td>East</td>
<td>New York</td>
<td>$30,678</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Region</th>
<th>City</th>
<th>Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central</td>
<td>Chicago</td>
<td>$3,533</td>
</tr>
<tr>
<td>2</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$12,687</td>
</tr>
<tr>
<td>3</td>
<td>Dallas</td>
<td></td>
<td>$3,547</td>
</tr>
<tr>
<td>4</td>
<td>Louisville</td>
<td></td>
<td>$12,664</td>
</tr>
<tr>
<td>5</td>
<td>Minneapolis</td>
<td></td>
<td>$3,562</td>
</tr>
<tr>
<td>6</td>
<td>Nashville</td>
<td></td>
<td>$3,884</td>
</tr>
<tr>
<td>7</td>
<td>St. Louis</td>
<td></td>
<td>$7,627</td>
</tr>
<tr>
<td>8</td>
<td>East</td>
<td>Washington</td>
<td>$9,046</td>
</tr>
<tr>
<td>9</td>
<td>Pittsburgh</td>
<td></td>
<td>$6,300</td>
</tr>
<tr>
<td>10</td>
<td>Philadelphia</td>
<td></td>
<td>$9,217</td>
</tr>
<tr>
<td>11</td>
<td>New York</td>
<td></td>
<td>$30,678</td>
</tr>
</tbody>
</table>

Key to Figure 4–33:

a. A table sorted on Region with group-sorting turned on
b. A table sorted on Region group-sorting turned off.

The table without group sorting does not include a subtotal for groups. Ungrouped data cannot have subtotal rows because the data to total can appear anywhere in the table. See Section 5.3, "Totaling Numeric Data" for steps to add subtotals and totals to data sorted by groups.

Group sorting is also pertinent when finding percentages. When you specify percentages for numbers (for example, the percentage of each region’s profits of the total profits), the data is automatically group sorted for that section of data (e.g., the regions) so the percentages can be displayed properly. See Section 5.4, "Using Percentages" for more information.

The actual grouping of data is based on the design of the business area and workbook developed by your database administrator. In the previous examples, the grouping is Region and City, but it could also have been State and City or Country and City. See your database administrator if you want to group data in some other way.

4.3.1.3 Sorting from the Tool Bar

Three buttons on the tool bar apply the sort direction and grouping to selected columns on the table:

Figure 4–34 Sorting Tools

Key to Figure 4–34:
a. Set the sort order from High to Low.
b. Set the sort order from Low to High.
c. Apply Group-sort.

To use the sorting tools:

1. Select the table column(s) to sort.
2. Click the tool to sort the column.

If a column is already sorted or group sorted, clicking the tool returns the data to its previous unsorted state.

4.3.2 Sorting Data on Crosstabs

Because the location of data on a crosstab determines the relationship of one data item to another, sorting crosstab data is different to sorting tabular data. In particular, you normally want to maintain those data relationships while rearranging the data.

The way to maintain the data relationships is to sort data on the left axis relative to a specific column on the top axis, or sort data on the top axis relative to a specific row on the left axis. The sorting tools and Sort Crosstab dialog box (Figure 4–37) automatically sort the data in that manner and maintain the data relationships.

Note: Some data on a crosstab layout is already sorted by default. For example, text items automatically sort alphabetically.

4.3.2.1 Sorting Crosstabs Data from the Tool Bar

Most typical crosstab data sorts can be handled with the sorting tools on the tool bar (Figure 4–34). Sorting a crosstab with the tools on the tool bar automatically sorts all of the items on an axis.

To sort crosstab data from the tool bar:

1. Select either the column on the top axis or the row on the left axis to use for sorting.
2. Click the A-Z tool or the Z-A tool. The data on the crosstab is sorted relative to the selected column or row.
4.3.2.2 Sorting Across an Axis

Data on each axis is sorted by default:

- Text is sorted alphabetically from A-Z
- Numbers are sorted from lowest to highest

You can reverse the sort order by selecting the item on the axis and clicking the Sort Order tool on the tool bar.

For example, in the following figure, Regions are sorted from high to low (Z-A). To reverse this order, select the item handle as shown in the figure, then click the A-Z tool on the tool bar.
4.3.2.3 Sorting Crosstabs Data from the Sort Crosstab Dialog Box

Although the sorting tools on the tool bar provide most of the types of sorting that you will want to do on a crosstab, the Sort Crosstab dialog box offers additional features and more control over the precise aspects of the sorting.

For example, in Figure 4–35, the Region and Cities are both sorted according to the Profit SUM amounts. By using the Sort Crosstab dialog box, you could sort only the Regions or only the Cities and thus display sort results that are more “finely tuned.”

To sort data on a crosstab with the dialog box:

1. Display the crosstab with the data you want to sort.
2. Choose Tools | Sort.

 The Sort Crosstab dialog box appears.

3. Select the options (described below) from the dialog box and click OK to sort the data according to the selections on the dialog box.

4. Repeat the process to add other sorting to the data.

 For example, after Cities are sorted in the example shown in Figure 4–37, you could repeat the process and sort by Region. Being able to successively sort lets you create a crosstab that orders the data in precisely the way you want.

The Sort Crosstab dialog box includes the following options:

Above the data—Sorts the crosstab based on data from items on the top axis.

Along left side of data—Sorts the crosstab based on data from items on the left axis.

Item to sort—Lists the items for either the top axis or side axis depending on the selected sort location (above the data or along the left side). Click the drop-down arrow and select the item that you want to use to sort the data.
Data Point—The name of the item that will be rearranged as the data is sorted.

Column/Row—Identifies the column that contains the data for sorting when sorting based on data from the left side of the crosstab, or identifies the row that contains the data for sorting when sorting based on data from the top of the crosstab. Click the down arrow to select the specific column or row.

Direction—Click the up or down arrows to select the sort direction.

Add—Click to add a data point for sorting. (See below for more information.)

Delete—Select an item in the dialog box and click to remove it. You cannot delete all of the items on the left axis on a crosstab.

Adding a Data Point

When you click the Add button in the Sort Crosstab dialog box, a drop-down list shows you the data points on the crosstab that can be used for sorting. For example, in the figure above, the added data point is Profit SUM. Without adding that data point to the sorting, the crosstab in the example would simply be sorted alphabetically by City down the left side of the crosstab. With the added data point, however, the cities are sorted by Profit SUM from lowest to highest. In other words, the City entry on the dialog box identifies which data you want to sort, and the added data point (Profit SUM) identifies how you want to sort the cities (by profit from lowest to highest).

Added data points must always be the first item for sorting. (City cannot be above Profit SUM in the example.) This is because sorting items by data points makes logical sense, but sorting data points by items does not.

To illustrate this concept, it makes sense to sort Cities by Profit because each City has a Profit amount associated with it. However, it does not make sense to sort Profit by City because each profit has only one city associated with it. It would be like trying to sort the profit amounts by “New Yorks” or “Phoenixes” which doesn’t make logical sense.

You can add the data point two or more times. This is useful with duplicate data points. In the example, if two cities had exactly the same amount of profit, you could specify how to sort those two duplicated pieces of data (low to high or high to low). This type of “sorting within sorting” on a crosstab is helpful for text or other data likely to have duplicate values. For financial data or other variable numeric items, however, sorting within sorting is usually not necessary.
This chapter describes the basic procedures for working with Discoverer Desktop to analyze data.

The topics covered in this chapter include:

- Using Discoverer Desktop Tools to Analyze Your Data
 A description of each analysis tool and how it’s used; see the following sections for details:
 - Finding Exceptions to Data
 - Totaling Numeric Data
 - Using Percentages
 - Finding Data that Meets Conditions

5.1 Using Discoverer Desktop Tools to Analyze Your Data

The Discoverer Desktop Tools menu gives you a range of tools for analyzing your data. For example, tools for creating and managing Conditions, data Sorts, Calculations etc, (see Figure 5–1 below).

Workbook behaviors that you define using the tools are known as Tool Definitions. Examples of Tool Definitions are

- Condition - "Department is Video Rental or Video Sales"
- Sort - Sort on Calendar Date Year, Department
- Calculation - Profit Increase = ‘Profit SUM * 1.15’

Select an option from the Tools menu to see the definitions you have already created for the tool. You turn a tool definition on and off by adding or removing the checkmark in front of its name in the tool’s dialog box.
Turning on a tool definition applies it to the data in the table or crosstab. The results are then displayed according to the specifications of the tool. For example, turning on (applying) a condition filters the data to show the precise information you want to see. Similarly, turning on a set of totals definitions with the Totals tool calculates and displays subtotals and Grand Totals in your data.

Turning off a tool definition returns the data to its original form. For example, turning off a condition re-displays the data previously filtered out by the condition, and turning off totals displays the data again without subtotals and Grand Totals.

Figure 5–2 The Conditions Dialog Box

Key to Figure 5–2:
a. This panel shows the conditions that you have already created, or have been made available to you by your Discoverer manager. A selected check box indicates that a Condition is active. A cleared check box indicates that a Condition is not active.

- To turn on another tool definition, click the box in front of that definition so a checkmark appears in front of it too.
- To turn off a tool definition, click the box in front of the definition to remove the checkmark.

Note: Clicking the Delete button removes the Condition from the Workbook. You cannot delete Items created for you by your Discoverer manager. When you select these Items, the Delete button is grayed out.

5.1.1 Viewing Tool Definitions for Specific Items

When creating a tool definition, you select whether to assign it to all data items or to a single item. Use the View drop-down menu to see the definitions assigned to various items, (see Figure 5–3 below).
5.1.2 Creating New Tool Definitions

Each tool has its own features, but the initial process to create a new definition is similar.

To create a new definition:

1. Choose a tool from its menu.
 The tool’s dialog box appears.

2. Click the New button.
 A dialog box appears for creating a new definition for that tool.

Each New dialog box is different. See the descriptions in the rest of this chapter for details on how to create a new definition for each tool.
5.1.3 Editing Existing Tool Definitions

To edit a tool definition, you must select it first on the list of definitions:

1. Select a tool from its menu.
 The tool’s dialog box appears.
2. Select a definition from the list.

Figure 5–5 The Conditions Dialog Box

![Conditions Dialog Box](image)

Key to **Figure 5–5:**

a. In this example, the Condition 'Department is Video Rental or Video Sale' is selected.

3. Click the Edit (or Show) button.
 A dialog box appears for editing the definition.
 Each dialog box for editing a definition is different. See the descriptions in the rest of this chapter to see how to edit definitions for each tool.

Note: Editing a definition does not automatically apply it to the data. The box in front of the definition must have a checkmark in it in order to be applied to the data.

5.1.4 Deleting Tool Definitions

Although you can delete definitions, you may want to simply turn them off instead. Then, if you need a definition later, you can just turn it back on.
Deleted definitions are erased permanently. If you delete a definition and want to reuse it later, you will have to re-create that definition from the beginning.

Note: You cannot remove Items created for you by your Discoverer manager.

To delete an existing tool definition:

1. Select a tool from its menu.
 The tool’s dialog box appears.
2. Click the definition in the list of definitions.
3. Click the **Delete** button.
 The definition is deleted and removed from the list of definitions.

5.2 Finding Exceptions to Data

A typical analysis task is to find numerical data that meets or exceeds a particular amount (that is, data that is an *Exception* to the rest of the data). For example, you may want to find all the stores in your nationwide chain that have profits in excess of $10,000 for the year.

Finding Exceptions to the data involves two steps:

- Defining the Exception itself, such as “is greater than 10,000” or “is less than 25%” or “is between 10,000 and 50,000”.
- Defining the format of the Exception data so you can see it easily among the rest of the data.

Use the Exception dialog box for both steps. **Figure 5–6** shows an example.

Figure 5–6 Applying Exception analysis to Worksheets

Key to **Figure 5–6**:

a. The selected Exception format is applied to data in the Worksheet.

b. This Exception colors the cell green where the Item Profit SUM has a value greater or equal than $60,000.

To turn on an Exception:

1. Choose **Format | Exceptions**.
 The Exceptions dialog box appears. It shows the Exceptions you have already defined.
2. Click the check box in front of the Exception definition. A checkmark appears in the check box to indicate that it is selected.

In the example above, the Exception “Profit SUM >= 60000” is turned on.

3. Click OK.

Discover now analyzes the data, finds the Exception data, and displays it according to the format of the Exception’s definition.

You can create many Exceptions concerning the same data items. However, the Exceptions must not conflict.

To turn off an Exception:

1. Choose Format | Exceptions.

The Exceptions dialog box appears.

2. Click the Exception’s box to remove the checkmark.

3. Click OK. The Exception is turned off and removed from the analysis.

5.2.1 Creating a New Exception

To create a new Exception:

1. Choose Format | Exceptions.

The Exceptions dialog box appears.

2. Click the New button.

The Exception dialog box for a new Exception appears:
Creating a new Exception has two parts: defining the Exception and defining its format. The top portion of the dialog box is for defining the Exception; the bottom part is for the formatting.

To create the Exception definition:

1. Click the leftmost drop-down button to see a list of data items.
2. Choose the data item for which you want to find the Exception.
3. Click the drop-down button for the Exception expression, such as “is between” or “is greater than,” and choose the one you want.

The following table shows some examples of the types of expressions you can define for Exceptions.
4. Type the number or text for the Exception in the box(es) at the right of the Exception dialog box. For the expression “is between” two boxes appear for the low and high values.

Figure 5–11 Enter the Exception Value(s)
If you select a data item with discrete values, such as Region, and then select the expression “is equal to” you don’t have to type in the value. Simply click the drop-down button on the third box to see the list of values for that item.

For example, in the sample Vidstore workbook, the three values for Region are Central, East, and West. Selecting “Region is equal to” and then clicking the drop-down button displays Central, East, and West as the choices.

To format the Exception:

1. Select the display options for the Exception from the bottom half of the dialog box.

![Figure 5–12 The Exceptions Dialog Box](image)

Key to Figure 5–12:
- a. The Sample box shows what the Worksheet text will look like.
- b. Options for setting the text font, size, and style.
- c. Options for setting the text alignment.
- d. Options for setting text color and background color.

2. Click OK.

 The Exceptions dialog box reappears with your new Exception listed in it. Remember to click the box in front of the Exception to turn it on and click OK to apply it to the data.

![Figure 5–13 A New Exception](image)

5.2.2 Editing an Exception

To edit an Exception:
1. Select the Exception on the Exceptions dialog box.

Figure 5–14 Select an Exception to Edit

In this example, the Exception “Profit SUM greater than 60000” is selected. The Description at the bottom of the box shows the current Exception and its format.

2. Click the Edit button. The Exception dialog box appears (Figure 5–8).

3. Make the changes to the Exception as required.

4. Click OK to save any changes.

If you now want to apply the edited Exception to your data items, make sure it is turned on (the check box in front of the Exception is selected) and click OK.

5.3 Totaling Numeric Data

When working with numeric items, you often want to see various types of summations of the data. Using the Totals tool you can sum rows and columns of numbers, find averages and standard deviation, compute subtotals and Grand Totals, and so on. The Totals tool automatically places the summations at the appropriate positions on the display.

Here are some examples:

Figure 5–15 A Crosstab Total on Worksheet Rows

Key to Figure 5–15:

a. An ordinary Crosstab Worksheet.

b. The same Crosstab Worksheet with a Total on rows, which calculates a grand total for each Region (Central, East, and West) for 1998, 1999, and 2000.
Figure 5–16 A Worksheet with Totals on Columns

- **a.** The value to be calculated. Other choices include Average, Count, etc.
- **b.** The Item Label displayed on the Worksheet.
- **c.** The Item on which the calculation is performed.
- **d.** The Total is calculated as a Grand Total of all values. Alternatively, the Total could be calculated as a Sub-total.
- **e.** The Grand Total as it is displayed on the Worksheet.
- **f.** The Worksheet also has a Total Sub-grouped on each change in Region, which gives individual Totals for each Region, (see Note d.).

Figure 5–17 Multiple Totals on a Crosstab

- **a.**
- **b.**
- **c.**
Key to Figure 5–17:
a. Two Totals are active. All Items SUM for Profit SUM sums the Profit SUM column. All Items SUM for Sales SUM sums the Profit Sales column.
b. The All Items SUM for Profit SUM Item on the Crosstab Worksheet.
c. The All Items SUM for Sales SUM Item on the Crosstab Worksheet.

Notice that the two Totals are displayed on the same row. When a crosstab has multiple Totals active, Discoverer Desktop puts them on the same row.

To display totals or subtotals on a table or crosstab:
1. Choose Tools | Totals.
 The Totals dialog box appears. It shows any totals you’ve already defined.

2. Click the check box in front of the Total definition so a checkmark appears.
3. Click OK. Discoverer Desktop now computes the totals and displays them on the table or crosstab.

To remove the totals from the data:
1. Choose Tools | Totals.
 The Totals dialog box appears.
2. Click the selected check box(es).
3. Click OK. The totals are removed from the table or crosstab.

5.3.1 Creating a New Totals Definition
Creating a new totals definition has four basic steps:
- Selecting the totals to calculate.
- Selecting the type of total and where to place it on the table or crosstab.
- Creating a label for the totals column or row.
- Defining the format for the totals column or row.

To create a new totals definition:
1. Choose Tools | Totals.
The Totals dialog box appears (Figure 5–18).

2. Click the New button.

The Total dialog box for a new totals appears.

Figure 5–19 Total Dialog Box

![Total Dialog Box](image)

3. Click the leftmost drop-down button to see the list of totals.

Figure 5–20 Select the Totals to Calculate

![Select the Totals to Calculate](image)

4. From the drop-down list, choose the type of total for the data.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>Adds all the values.</td>
</tr>
<tr>
<td>Average</td>
<td>Adds all the values and divides by the number of values.</td>
</tr>
<tr>
<td>Count</td>
<td>Counts the total number of values.</td>
</tr>
<tr>
<td>Count Distinct</td>
<td>Counts the number of unique values.</td>
</tr>
<tr>
<td>Minimum</td>
<td>Finds the lowest value.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Finds the highest value.</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Calculates the standard deviation. (Standard deviation is the square root of the variance of the values.)</td>
</tr>
</tbody>
</table>
5. Click the drop-down button to select the data points to be totaled.

Given Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
<td>Calculates the variance. (Variance is the sum of the squares of the differences between each value and the arithmetic mean divided by the number of values.)</td>
</tr>
<tr>
<td>Percentage of Grand Total</td>
<td>Calculates the Grand Total of the row or column, then finds the percentage of the current column or row of the Grand Total.</td>
</tr>
</tbody>
</table>

Figure 5–21 Select the Data Points to Total

- **All Data Points**—displays totals for each set of appropriate data points. For example, if the table contains two columns of numeric data points, both columns display totals. However, data points not appropriate for the type of total are not displayed.

In the example above, Region is a set of data points, but summing Region data points doesn’t make sense—it would be like trying to add “Central” to “East”. In this case, Regions are not summed even though you selected All Data Points.

- **A specific numeric data point (such as Profit SUM in the example)**—displays totals for the selected set of data points.

- **A non-numeric data point (such as Region in the example)**—when you select a non-numeric set of data points, the options for the totals in the first drop-down list are limited to only those options that apply to non-numeric data points. For example, if you select Region, sum of regions does not make sense. The only totals that make sense for non-numeric data points are Count, Count Distinct, Maximum, and Minimum.

Note: If you choose the All Data Points option when your Worksheet contains Calculations, the Calculation is applied to the Totals. Discoverer Desktop does not total the Calculations, (see Section 5.3.2, "Totals and Calculations").

6. Click one of the options for Placement of the totals data:

 - **Grand total at bottom**—Calculates the Grand Total for a column and places it after the last row of the table or crosstab.
Grand total at right—Calculates the Grand Total for a row and places it to the right of the last column in the crosstab. (This option is only available from the Total dialog box for crosstabs.)

Subtotal at each change in—Calculates the subtotals for a column and places it at each new value for the selected item. Select the item from the drop-down list. For example, the subtotals for Regions appear at the end of the data for each Region.

Figure 5–22 Select a Subtotal Placement

7. Now enter a Label for the totals data.
 You can click the drop-down menu for labels and choose additional options for the title from it.

Figure 5–23 Create a Label for Totals

Key to Figure 5–23:
a. Click here and type a Label.
b. You can also select from this drop-down list to add various system values to the label.

The system values from the drop-down list produce labels that can change as the data changes by adding text codes (such as “&Item” and “&Value”) to the label when you insert them in the label text. In the actual labels on the table or crosstab, the ampersand
(&) will not appear, and appropriate names from the table or crosstab will be inserted in place of the words “Item” or “Value”.

This table shows some examples.

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
<th>Sample label(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Item Name</td>
<td>Latest Data from &Item</td>
<td>Latest Data from Region</td>
</tr>
<tr>
<td>Insert Data Point Name</td>
<td>Top Performers of &Data</td>
<td>Top Performers of Profit Sum</td>
</tr>
<tr>
<td>Insert Value</td>
<td>Total Income for &Value</td>
<td>Total Income for Central</td>
</tr>
<tr>
<td>Generate Label Automatically</td>
<td>Sum</td>
<td>Sum; automatic label is the name of the type of calculation (e.g., Sum, Count, Standard Deviation)</td>
</tr>
</tbody>
</table>

If the total calculates for all data points (as selected at the top of the dialog box), the labels can appear for each appropriate name. For example, when totaling two items, and you select Insert Item Name (&Name), labels for both item names appear in the data or crosstab.

To remove options from the labels, click in the label text on the dialog box and edit it as you would regular text.

1. Click Wrap Text if you think the label will be too long for the column where it will appear.
2. Click the Format button to format the Totals data. The Format dialog box appears.
3. Click OK.

You’ll now see the Totals dialog box again with your new total definition listed in it.

5.3.2 Totals and Calculations

When creating your Totals, if you total a Calculation, the Calculation is applied to the Total. Discoverer Desktop does not total the Calculations.

For example, in Figure 5–24, the Profit Item is a Calculation: **Sales SUM / Cost SUM**. The Sum value for Profits is $3.23, ($1,150,603 / 356,087). The SUM value is NOT $9.70, ($3.20 + $3.23 + $3.27).

Figure 5–24 A Worksheet Total on a Calculation (Profits)

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales SUM</th>
<th>Cost SUM</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>$930,822</td>
<td>$105,665</td>
<td>$7.20</td>
</tr>
<tr>
<td>1999</td>
<td>$978,839</td>
<td>$148,282</td>
<td>$3.23</td>
</tr>
<tr>
<td>2000</td>
<td>$932,143</td>
<td>$101,521</td>
<td>$3.27</td>
</tr>
<tr>
<td>Sum</td>
<td>$1,841,802</td>
<td>$355,468</td>
<td>$13.70</td>
</tr>
</tbody>
</table>

Note: If you want Discoverer Desktop to total Calculations rather than apply the Calculations to Totals, contact your Discoverer manager.

5.3.3 Editing a Totals Definition

To edit a totals definition:
1. Select the definition you want to edit on the Totals dialog box.
2. Click the Edit button. The Total dialog box appears (Figure 5–25).

![Total Dialog Box](image)

3. Make the changes you want.
4. Click OK. The totals definition is now edited.

5.4 Using Percentages

A typical data analysis task is to calculate Item percentages. To calculate percentages in Discoverer Desktop, use the **Percentages** option on the **Tools** menu.

Note: Due to rounding of data, percentages may not add up exactly to 100. The amount of rounding depends on the number of decimal places that you specify for data. Use the Format Data dialog box to set the number of decimal places for your data.
Using Percentages

Figure 5–26 Using Percentages on a Crosstab Worksheet

![Figure 5–26 Using Percentages on a Crosstab Worksheet](image)

Key to Figure 5–26:

a. On the Worksheet you can see the Percentage Item Percentage of Annual, which shows the Profit SUM as a percentage of annual profits.

b. The Percentage dialog box used to define and edit Percentages.

c. The Item on which the Percentage is calculated.

d. ‘Grand Total for each column’ calculates the value as a percentage of the annual total.

e. The name of the Item as it appears on the Worksheet.

5.4.1 Using the Percentages Tool

To find a percentage with the Percentages tool on the tool bar:

1. Select the column containing the data that you want to use to find percentages.

2. Click the Percentages tool on the tool bar.

 The percentage column shows the percentage of each row to the total of all the rows displayed on the table or crosstab.

 Here are examples of percentages on a Crosstab Worksheet:
Using Percentages

Working with Discoverer Desktop

Figure 5–27 A Percentages example on a Crosstab Worksheet

<table>
<thead>
<tr>
<th>City</th>
<th>Profit SUM</th>
<th>Percent Profit SUM</th>
<th>Region</th>
<th>Percent Profit SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>25,157</td>
<td>100%</td>
<td>Region</td>
<td>28%</td>
</tr>
<tr>
<td>Chicago</td>
<td>19,914</td>
<td>8%</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>17,163</td>
<td>28%</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>Dallas</td>
<td>12,728</td>
<td>7%</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>Louisville</td>
<td>17,289</td>
<td>28%</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>19,504</td>
<td>8%</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>Nashville</td>
<td>21,229</td>
<td>5%</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>St. Louis</td>
<td>14,023</td>
<td>16%</td>
<td></td>
<td>5%</td>
</tr>
</tbody>
</table>

Key to Figure 5–27:

a. Percentage SUM Profit, Region calculates profit for each row (in this case City) as a percentage of the Region total, (see note c).

b. Percentage SUM Profit calculates profit for each row (in this case City) as a percentage of the annual total for the year 2000.

c. The Percentage dialog box for the item Percentage SUM Profit, Region, showing how the value is calculated as a percentage of the Region total.

d. The Percentage dialog box for the item Percentage SUM Profit, showing how the value is calculated as a percentage of the annual total.

To display percentages on a table or crosstab:

The Percentages dialog box appears. It shows the percentages you’ve already defined.
2. Select the check box in front of a percentage definition.
3. Click OK.

Discover now computes the percentages and displays them on the table or crosstab.

To remove the percentages from the data:
1. Choose **Tools | Percentages**.

The Percentages dialog box appears.
2. Clear the check box(es).
3. Click OK to remove the percentages from the data.

5.4.2 Creating a New Percentages Definition

Creating a new percentage definition has four basic steps:

- Selecting the data item for calculating the percentage.
- Selecting to calculate the percentage of a total or change in values.
- Creating a label for the percentage column.
- Defining the format for the column.

To create a new percentage definition:
1. Choose **Tools | Percentages**.

The Percentages dialog box appears (Figure 5–28).
2. Click the **New** button.

The Percentage dialog box for a new definition appears:
3. On the Percentage dialog box, click the drop-down button at the top of the box to see the list of data items for which to calculate percentages.

4. Select the data item from the list to use to calculate percentages.

5. Select one of the options to calculate a percentage of. If you select the option **Each Change in**, select the data item where you want the percentage to be displayed when the value changes.

The following table lists your choices:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand total</td>
<td>Calculates the percentage of the Grand Total for each column. This option is only available from the Percentages dialog box for tables.</td>
</tr>
<tr>
<td>Grand total of all values</td>
<td>Calculates the percentage of the Grand Total for all the columns.</td>
</tr>
<tr>
<td>Grand total for each column</td>
<td>Calculates the percentage of the Grand Total for each column.</td>
</tr>
<tr>
<td>Grand total for each row</td>
<td>Calculates the percentage of the Grand Total for each row.</td>
</tr>
<tr>
<td>Each change in</td>
<td>Calculates the percentage places it at each new value for the selected item. Select the item from the drop-down menu.</td>
</tr>
</tbody>
</table>
6. Enter a column heading for the percentages column.

7. Select the check boxes at the bottom of the dialog box to display subtotals and their percentages, or subtotals as a percentage of the Grand Total.

8. Enter labels for the subtotal and Grand Total percentages, or click the drop-down menus for labels and choose additional options.

The options from the drop-down menu produce labels that can change as the data changes by adding text codes such as “&Item” and “&Value” where you insert them in the label text. In the actual labels on the table or crosstab, the ampersand (&) will not appear, and appropriate names from the table or crosstab will be inserted in place of the words “Item” or “Value”.

The table below shows some examples.

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
<th>Sample label(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Item Name</td>
<td>Percent of Profit from &Item</td>
<td>Percent of Profit from Region</td>
</tr>
<tr>
<td>Insert Data Point Name</td>
<td>Top Performers of &Data</td>
<td>Top Performers of Profit Sum</td>
</tr>
</tbody>
</table>
To remove options from the labels, click in the label text on the dialog box and edit it as you would regular text.

1. Click the Format button next to the different label definitions to format the percentages. The Format dialog box appears.
2. Click OK to return to the Percentages dialog box with the new definition.

5.4.3 Editing a Percentage Definition

To edit a percentage definition:

1. Select the definition you want to edit on the Percentages dialog box.
2. Click the Edit button. The Percentage dialog box appears.
3. Make the changes you want.
4. Click OK. The percentage definition is now edited.

5.5 Finding Data that Meets Conditions

A typical data analysis task is to filter the data to find only that data that meets certain conditions. For example, you might want to limit the display of data to the last two years of sales. Or, you want to see the data for only two types of sales items. Each of these tasks involves filtering the data to find the specific data that meets the conditions.

Some sample conditions are:

- Year = 1998 or 1999—The displayed data applies to 1998 and 1999 only. The workbook may contain data from other years, but it will not be displayed.
- Profit SUM > 3000—The worksheet displays Profit SUMs greater than 3000.
- City <> 'Boston'—The worksheet displays data for all cities, except Boston. Note that the value Boston is enclosed in single quotes. Text values in conditional expressions must be in single quotes.

Conditions can be similar to Exceptions. The differences between conditions and Exceptions, however, are significant.

- An Exception finds data that meets the Exception definition and highlights it in the tables and crosstabs. All other data remains visible.
- A condition finds data that meets the condition and removes the rest of the data from the display so you see only the data that meets the conditions.

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
<th>Sample label(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Value</td>
<td>Yearly Percent for &Value</td>
<td>Yearly Percent for Central</td>
</tr>
</tbody>
</table>

Note: Several features for creating conditions involve advanced analysis techniques. For example, instead of creating a condition for a defined data element, you can specify a condition based on a calculated value that computes which data can meet the condition. The advanced features are covered in Chapter 8, "Advanced Discoverer Desktop Features".
Conditions are essentially powerful data filters that find the specific data you’re looking for and displays only that data. You can define numerous conditions and turn them on and off to filter the data in the tables and crosstabs.

Note: Applying a condition to a table or crosstabs does not remove the data from the workbook. It merely filters the data to show the precise data you want to see. To return the rest of the data to the table or crosstab, turn off the condition.

To find data that meets certain conditions:

1. Choose **Tools | Conditions**.

The Conditions dialog box appears.

2. To find data that meets a condition, select the check box in front of the condition definition. That turns on the condition.

 In the example above, the condition “Department is Video Rental or Video Sale” is selected.

3. Click OK. Discover now filters the data, finds the data that meets the condition, and displays it.

Note: If you select two (or more) conditions that conflict, a warning appears. For example, the two conditions “Year = 2000” and “Year = 1998 or 1999” applied to the same layout conflict, because the first condition removes all years except 2000 and the second condition tries to display 1998 and 1999 at the same time.

To see conditions for specific data items:

1. At the Conditions dialog box, choose an item from the drop-down list, **View Conditions For**. You can display all the conditions defined in a workbook, or only those that apply to particular data items.
To see conditions that apply to a specific data item, click the drop-down button and select a data item to see its conditions.

To see all of the conditions defined for the workbook, choose All Items.

To see only those conditions currently turned on, choose Active Only.

Figure 5–33 View Conditions for a Specific Data Item

Key to Figure 5–33:

a. Choose a data item to see its condition.

To remove the condition from the data:

1. Choose Tools | Conditions.

 The Conditions dialog box appears (Figure 5–32).

2. Clear in the check box next to the condition.

 Do not click the Delete button. That deletes the condition definition from the list of conditions.

3. Click OK. The condition is removed from the data.

Now, the data is restored to the table or crosstab, because the data is not being filtered. That is, the condition is turned off.

5.5.1 Creating Conditions

To create a new condition:

1. Choose Tools | Conditions.

 The Conditions dialog box appears.

2. Click the New button.

 The New Condition dialog box appears:
Name—automatically generates a name for the condition based on the item, the condition, and the values that you select for it. To create a different name, clear the check box **Generate name automatically**. You can then enter a name for the condition in the Name box.

Description—For simple, straightforward conditions, the name and description are usually sufficient to explain how the condition will filter the data, and you don’t need to type an extra description. However, advanced conditions may need descriptions for clarity. Enter a description here and it appears on the Conditions dialog box when the condition is selected.

Location—the workbook where the condition will be applied.

3. Click the drop-down button for **Item**.

The drop-down list shows the data items in the workbook that you can use for the condition. It also lists **Create Calculation** and **Select Condition**, which are some other ways to create the first part of the condition.

Create Calculation—you can use a calculation to filter the data (see **Chapter 8, Advanced Discoverer Desktop Features**).

Select Condition—creates conditions that use other conditions to filter the data first (see **Chapter 8, Advanced Discoverer Desktop Features**).
Notice that the list of items contains all the data items in the workbook, not just those being displayed on the current table or crosstab. You can use any data item to create a condition.

4. Choose the data item to use for filtering the data.

5. Click the drop-down button for the condition expression and choose the one you want. See the table below for descriptions and examples of the expressions.

Figure 5–36 Select the Condition Expression

![Condition selection screen](image)

6. To complete the definition of the condition enter a value in the **Value(s)** box.

Note: When you create a condition with text for the value, the text must be enclosed in single quotes. For example, in the condition `Region = 'Central'`, the text value, ‘Central’, must be enclosed in single quotes. Numbers do not have to be in quotes.

The following table describes the condition expressions:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equals</td>
<td>Region = 'Central'; only the Central Region data is displayed.</td>
</tr>
<tr>
<td><></td>
<td>Not equal</td>
<td>Region <> 'Central'; all other region data except Central is displayed.</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>Profit SUM > 10000; all Profit SUM items greater than 10000 are displayed.</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td>Profit SUM < 10000; all Profit SUM items less than 10000 are displayed.</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
<td>Profit SUM <= 10000; all Profit SUM items less than or equal to 10000 are displayed.</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
<td>Profit SUM >= 10000; all Profit SUM items greater than or equal to 10000 are displayed.</td>
</tr>
<tr>
<td>LIKE</td>
<td>Similar to (using wildcard matching)</td>
<td>Name LIKE ‘A%’; finds all names beginning with the letter A. The percent (%) sign matches any number of characters. An underscore symbol (_) matches a single character.</td>
</tr>
</tbody>
</table>
Finding Data that Meets Conditions

To create an advanced condition, click the drop-down button to see other options. You can also click the Advanced button for more options. See Chapter 8, "Advanced Discoverer Desktop Features" for a description of the value options and other advanced features.

Figure 5–37 Enter the Condition Value(s)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Contains one or more values</td>
<td>City IN ('Boston', 'Los Angeles', 'New York'); finds data that contains at least one of the values.</td>
</tr>
<tr>
<td>IS NULL</td>
<td>Contains no data (not even zero)</td>
<td>Commission IS NULL; displays data only when commission has no value.</td>
</tr>
<tr>
<td>IS NOT NULL</td>
<td>Contains some data (even zero)</td>
<td>Commission IS NOT NULL; displays data when commission has any value.</td>
</tr>
<tr>
<td>NOT IN</td>
<td>Is not contained in one or more values</td>
<td>City NOT IN ('Boston', 'Chicago'); does not display data that contains Boston or Chicago.</td>
</tr>
<tr>
<td>BETWEEN</td>
<td>A value lies between two values</td>
<td>Profit BETWEEN 1000 AND 2000; displays profits greater than or equal to 1000 or less than or equal to 2000.</td>
</tr>
<tr>
<td>NOT BETWEEN</td>
<td>A value lies outside of two values</td>
<td>Profits NOT BETWEEN 1000 AND 2000; displays profits less than 1000 or greater than 2000.</td>
</tr>
<tr>
<td>NOT LIKE</td>
<td>Not similar to</td>
<td>Name NOT LIKE 'A%'; finds all names not beginning with A. The percent (%) sign matches any number of characters. An underscore symbol (_) matches a single character.</td>
</tr>
<tr>
<td>!= and ^=</td>
<td>Not equals</td>
<td>Region != 'Central'; finds all regions except Central. Note: These two expressions have the same meaning because both are supported by SQL programming. Therefore, if you use an SQL programming statement to create a complex conditional value, Discoverer Desktop can recognize it regardless of which expression you use in the program.</td>
</tr>
</tbody>
</table>
If you select a data item with discrete values, such as Calendar Year, and then select “is equal to” you do not have to type in the value. Click the Value(s) drop-down button to see the list of values for that item, then select the one that you want to use.

For example, in the sample Video Stores workbook, the three values for Calendar Year are 1998, 1999, and 2000.

7. If you are dealing with text and want the condition to match the uppercase and lowercase characters in the text, select the Match Case check box.

For example, if you want the condition to filter the data to find all “Widgets” but not “widgets”, select the Match Case check box.

8. Click OK. The new condition appears on the Conditions dialog box.

5.5.2 Editing and Removing Condition Expressions

To edit an existing condition:

1. Select the condition on the Conditions dialog box.

Figure 5–38 Conditions Dialog Box

Key to Figure 5–38:

a. The selected check box indicates that this condition is active.
b. This condition is selected.

2. Click the Edit button. The Edit Condition dialog box appears.

3. Make the changes you want to the condition.

4. Click OK. The condition is now edited.

If you now want to apply that condition to the data, make sure it is turned on (the check box in front of the condition is selected) and click OK.

To delete a condition from the list of conditions that you can apply to the data:

1. Choose Tools | Conditions.

 The Conditions dialog box appears (Figure 5–38).

2. Select the condition you want to delete.
3. Click Delete to remove the condition from the list.
This chapter explains how to create reports with Discoverer Desktop. Topics in this chapter include:

- "Preparing Reports for Printing"
- "Sending Reports with E-Mail Messages"
- "Exporting to Other Applications"
- "Producing Scheduled Reports"
- "Sharing Workbooks"

6.1 Preparing Reports for Printing

Tables and crosstabs are displayed in a format that easily lends itself to reporting of results. Additional options, such as adding headers and footers, page numbers, and the date, help you prepare the report for printing.

Here is an example of a table and a printed version of it as a report.
Preparing Reports for Printing

Figure 6–1 Sample Table and Report

Key to Figure 6–1:
a. The Discoverer Desktop Worksheet.
c. The Report Header section.
d. The Header contains the Date, Workbook name, and Worksheet nam.
e. The Report Body section, which contains the Worksheet data.
f. The Report Footer section, containing a variable for the page number.

6.1.1 Selecting Print Options

Use the Page Setup dialog box to add print options to a report.

To select print options:

The Page Setup dialog box appears. The tabs across the top of the dialog box list the various types of options you can select to design the report.
Print What—Specifies the sheet(s) that you want to print.

- **Selected Sheet**—Prints the current sheet displayed in the workbook.
- **All sheets**—Prints all of the sheets in the workbook.
- **Graph**—Prints the graph of a worksheet. This option is available only if the worksheet’s graph is displayed. Choose **Graph | Show** to display a graph.
- **All Page/Detail Combinations**—Prints all pages of a worksheet with all combinations of the page items and data points.

 Note: Be careful when selecting this option if your worksheet includes many pages and data items. You may print more than you intend.

Page Order—Specifies how to print worksheets that don’t fit on a single page, such as a table with many columns.

- **Down, then Across**—Prints the left-hand section of the table or crosstab from top to bottom on successive pages, then prints the right-hand section from top to bottom on successive pages.
- **Across, then Down**—Prints the top section of the table or crosstab from left to right on successive pages, then prints the bottom section from left to right on successive pages.

Orientation—Prints in either Portrait or Landscape mode. Tables and crosstabs often are better suited to the Landscape mode.

Scale—This option is available if your printer uses a Postscript driver for printing. Scaling prints the table or crosstab at the scale factor in the box. Click the up and down arrows to increase or decrease the number. Scaling is particularly useful when you’re printing tables and crosstabs that are too big to fit on a single page. Scaling “shrinks” the table or crosstab so more rows and columns fit on the page. (You can also configure scaling from the File | Print | Properties, Advanced Tab dialog, if a postscript printer is being used.)

2. Click the Header tab to see the options for the report’s header. The options for footers are the same.
Key to Figure 6–3:

a. Click Insert to insert system variables (such as Date, Time, or Worksheet name etc) into the Left Section, Center Section, and Right Section. Then click Add to add them to the header or footer.

b. Enter text here for the header or footer, or add system variables using the Insert option.

Available Headers—Lists headers you have already created. Click the drop-down arrow to see the list. Select the one you want on your report. The names are derived from the text typed into the boxes for the Left, Center, and Right sections.

To create a new header (or footer), choose `<none>` from the drop-down list. Enter the header text in the three boxes for the Left, Center, and Right sections. Click the Add button. That header is added to the drop-down list. To remove a header from the list, select it and click the Remove button.

Line Width—Sets the width of a line that separates the header from the body of the report. Choose No Line if you don’t want a separating line on the report.

Left, Center, Right Sections—Displays the text of the header selected in the Available Header list above. To edit a header, click in a box and type the new text. By default, the Left Section’s text is left-justified, the Center’s text is centered, and the Right Section’s text is right-justified.

Insert—Lists information that you can add to the header. Click in the text where you want the inserted information to appear, then choose from the list to add a text code to the header or footer. The text code is a “placeholder” for variable information in the report.

In the following figure, &Date is the placeholder for the current date when the report is printed. Because the inserted information is in the Left Section box, the current date appears at the left side of the page on the printed report.
Preparing Reports for Printing

Figure 6–4 Insert Header/Footer Text

You can mix typed text with inserted text. Here are some examples:

<table>
<thead>
<tr>
<th>You type...</th>
<th>Then insert...</th>
<th>The text looks like this...</th>
<th>This appears in the report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Page Number</td>
<td>Page &Page</td>
<td>Page 1, Page 2, Page 3...</td>
</tr>
<tr>
<td>Page of</td>
<td>Page Number</td>
<td>Page &Page of &Pages</td>
<td>Page 1 of 10, Page 2 of 10, Page 3 of 10...</td>
</tr>
<tr>
<td>Total Pages</td>
<td></td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>Report date:</td>
<td>Date</td>
<td>Report date: &Date</td>
<td>Report date: April 15, 1998</td>
</tr>
</tbody>
</table>

Font—Displays the Font dialog box. Click anywhere in the section where you want to change the font. Click the Font button then select the options for the text. Click OK. All the text for the selected section receives the new font.

3. Click the Margin tab to see the options for the report’s margins.

Figure 6–5 Page Margins Setup for Reports

Margins—Sets the margins on the page. Click the up and down arrows next to a margin setting to increase or decrease it.
Preparing Reports for Printing

4. **From Edge**—Sets the distance of the header and footer from the edge of the paper. Click the up and down arrow to increase or decrease the distance. Note that the distance from the edge of the page cannot be greater than the margin; otherwise, the header or footer would print in the table or crosstab. For example, if the bottom margin is 1.00, the footer cannot be 1.25.

5. Click OK to put all the page setup settings into effect.

6.1.2 Previewing a Report

To preview a report, click the **Preview** button on the Page Setup dialog box or choose **File | Print Preview**. The Print Preview window appears and shows a representation of the printed report.

The buttons across the top of the Print Preview window are for selecting preview options:

- **Print**—Prints the report.
- **Next Page**—Displays the next page of the report. As you move through the pages, the page number of the report appears at the bottom left corner of the window.
- **Prev Page**—Displays the previous page of the report.
Two Page/One Page—Displays two report pages side-by-side. When two report pages are displayed the button changes to read One Page. Click the One Page button to display a single page. This option is not available when the page is zoomed in, because two pages cannot fit side-by-side in the window.

Zoom In—Enlarges the page so you can preview it in more detail. You can zoom in up to three times. The pointer becomes a magnifying glass. You can also zoom in the image by putting the pointer anywhere on the page and clicking.

Zoom Out—Reduces an enlarged (zoomed in) image.

Close—Close the Print Preview window.

6.2 Sending Reports with E-Mail Messages

You can send worksheets, graphs, and selections of a table or crosstab as part of an e-mail message. This feature is available for most e-mail applications, however, if it does not appear on the menu, your e-mail application does not support the feature.

To send a report with an e-mail message:

1. Display the worksheet that you want to send as a report.
 - To send only a section of the worksheet with the e-mail, select that section by dragging over it.
 - To send a graph, display the graph first by choosing **Graph | Show**.
2. Choose **File | Send**.
 - The Prepare Mail dialog box appears.

Figure 6–7 Prepare Mail Dialog Box

- **Current Sheet**—Selects the current worksheet displayed in the workbook window to send with the e-mail.
- **All Sheets**—Selects all the sheets in the workbook to send with the e-mail.
- **Selection**—Sends a portion of the worksheet if you have a portion of the worksheet selected.
Graph—Sends a graph if a graph is displayed. The graph is sent as an attachment to the e-mail.

Send this as—These options are available for the appropriate types of reports. For example, graphs can only be sent as attachments, not as message text.

- An Attachment—The selected worksheet or graph is attached to your e-mail message.
- Message Text—The current worksheet or selected portion of a worksheet is placed in the body of the e-mail message. This option is not available for graphs and the All Sheets option.

Note: To send the workbook in a Discoverer format, select All Sheets and send the workbook as An Attachment.

What format do you want—Click the drop-down arrow and choose a format appropriate for your e-mail application. The options on the list correspond to the type of worksheet you want to send.

For example, the only format for a graph is Windows Meta File (WMF), which is the proper format for sending a graph. Therefore, the drop-down menu is not available for graphs. Similarly, to send a selected portion of a worksheet as attachment text, the drop-down menu provides the appropriate options.

The following figure shows some available options for attachments:

![Figure 6–8 E-Mail Attachment Format Options](image)

If you select Oracle Report Definition File (*.rdf), a Next button appears at the bottom of the dialog box so you can select additional formatting for the report. See Section 6.3.1, "Exporting to Oracle Reports" for details.

3. Click the Send button.

Your e-mail application starts. Based on your selections on the Prepare Mail dialog box, the worksheet or workbook is either an attachment or the message text of the e-mail message.
6.3 Exporting to Other Applications

You can export tables and crosstabs in a variety of formats to open them in other applications. For example, you can export a table to a Microsoft Excel workbook or a Lotus 1-2-3 spreadsheet and then use Excel or Lotus 1-2-3 to open the table.

Note: Exporting a table or crosstab exports the data, formatting, and layout of the table or crosstab. Exporting does not export the calculations, conditions, or other tools that you define in Discoverer Desktop. In other words, you can view the exported data in another application, but you cannot apply the Discoverer Desktop tools to it in that application.

To export to other applications:

1. Display the worksheet that you want to export.
2. Choose File | Export.

 The Export dialog box appears. See the previous section for a description of the export options.

3. Choose an export format from the drop-down menu.
4. Choose a directory to save the export file. You can also type the directory path in the box. Click the Browse button to see other directories.
5. Enter a name and directory path for the report.

 For example, in the dialog box shown above, the name and directory path is C:\Video Stores Analysis.xls.
6. Click Finish.

 The report is saved in the new format in the directory you specified.

6.3.1 Exporting to Oracle Reports

If your computer includes the Oracle Reports application, you can export tables and crosstabs from Discoverer Desktop as an Oracle Report. Having this capability means
that you can apply the extensive formatting features of Oracle Reports to your Discoverer Desktop reports.

To export to Oracle Reports:

1. Display the worksheet that you want to export to Oracle Reports.

2. Choose **File** | **Export**.
 The Export dialog box appears.

 Figure 6–10 Export to Oracle Reports, Step 1

 ![Export dialog box](image)

 3. Choose Oracle Report Definition File (*.rdf) as the export format.

 4. Choose a directory to save the export file. You can also type the directory path in the box. Click the Browse button to see other directories.

 5. Enter a name for the report in the directory path.

 6. Click Next.
 The dialog box for choosing the report’s template appears.

 Figure 6–11 Export to Oracle Reports, Step 2

 ![Dialog box for choosing template](image)

 The dialog box has options for selecting a report template that you created earlier in Oracle Reports.
Do not use template (unformatted)—exports the report with no formatting, fonts, or colors.

Select a predefined template—select a template for the report from the drop-down menu; the list shows templates already predefined in Oracle Reports.

Select a custom template file—if you created a custom template in Oracle Reports earlier, it will be listed here; select a template from the drop-down menu.

View Report in—select this option if you want to see what the report looks like in the Oracle Reports format.

Report Runtime—view the report in the Oracle Reports runtime.

Report Designer—view the report in the Oracle Reports Builder application; you can then edit the report using Designer’s features.

7. Click Finish.

The template is applied to the report, and the report is saved in the directory that you specified earlier. You can open the report in Oracle Reports, or any other application that supports Oracle Reports.

6.3.2 Exporting to Microsoft Excel

The Excel tool on the tool bar helps you export Discoverer Desktop tables and crosstabs quickly to Microsoft Excel.

To export to Excel:

1. Display the worksheet you want to see in Microsoft Excel.
2. Click the Excel tool on the tool bar.

Figure 6–12 The Excel Tool

The worksheet is saved in .xls format, and Microsoft Excel opens to display the worksheet.
Key to Figure 6–13:
a. The Discoverer Desktop Worksheet.
b. The Worksheet converted to Microsoft Excel spreadsheet format (*.xls) and displayed in Microsoft Excel.
c. Notice that unformatted data is displayed. Currency symbols, decimal places, and percentage formatting are not displayed. This formatting can be re-applied in Microsoft Excel.

6.4 Producing Scheduled Reports

Scheduled reports are workbooks set to run at a specified time. For example, you may want to run a worksheet at the end of each month that calculates monthly profits from monthly sales figures, or run a report every two weeks based on a worksheet that produces a biweekly cash flow analysis.

Often, worksheets that you want to use as scheduled reports are designed specifically for that purpose, rather than being a worksheet for your day-to-day analysis. For example, the worksheet may include special calculations or conditions that produce the results you want for the scheduled report on a periodic basis only.

You can select all or some of the worksheets in a workbook to run as a scheduled report. Typically you schedule reports if:

- The report will take a long time to run; scheduling a report to run at night or on the weekend avoids overburdening the server during normal working hours.
- You run a report at regular intervals, such as weekly report of sales figures or a monthly cash flow analysis.

Because a scheduled report runs on the server, you do not need to leave your computer running overnight (or whenever you schedule the report to run). The results
of running the scheduled report are saved on the server as well and, therefore, are available when you log on to the server and start Discoverer Desktop.

Note: When working with a complex set of data or a complicated worksheet, the time it takes to load the worksheet may exceed the time limit the Database Administrator set for worksheets to open. In that case, a Schedule button appears on the message box that tells you the worksheet loading time exceeds its time limit. You can then click the Schedule button to schedule the worksheet as a report so it will load later without being restricted by the time limit.

To schedule a report:

1. Open the workbook that contains the worksheets that you want to schedule to run as reports.

2. Choose File | Schedule.

 The Schedule Workbook dialog box appears.

 ![Schedule Workbook Dialog Box, Step 1](image)

3. Select in the check box next to a worksheet title to include that worksheet as part of the scheduled report.
 - Click **Select All** to include all of the workbook’s worksheets in the report.
 - Click **Select None** to clear each check box.

4. Enter the time and date to run the report.

 To change the time and date, click on the numbers you want to change, then either type the new time or date, or click the up and down arrows. For example, to change 08:00 PM to 12:01 AM, click on the 08 and either type 12 or click the up arrow until 08 becomes 12. Then click on the 00 and type 01 or click the up arrow once. Then click on PM and click either arrow; PM changes to AM.

5. Select one of the options for how often you want to repeat the schedule:
 - **Never**—runs the scheduled report once and only once.
Producing Scheduled Reports

Repeat every—runs the report on a periodic basis; enter a number and select a time interval from the drop-down menu. For example, to run a monthly report, enter 1 Month in the selections.

6. Click Next.

Figure 6–15 Schedule Workbook Dialog Box, Step 2

![Schedule Workbook Dialog Box](image)

7. Enter a name for the scheduled report.

8. (Optional) Enter a description for the scheduled report. This is particularly helpful if you’ve created several scheduled reports. The description appears on the Scheduling Manager dialog box.

9. Enter a length of time to keep the results of the scheduled report stored on the server. After that period of time the results are automatically deleted from the server. If you’ve saved the results as a worksheet on your local computer, that worksheet remains intact.

10. Click Finish.

 The workbook and its worksheets are now scheduled and run based on the options you selected in the Schedule Workbook dialog box.

6.4.1 Seeing the Results of a Scheduled Report

A scheduled report produces a worksheet or set of worksheets with the results derived from running the report. You can see those results when first starting Discoverer Desktop, or while working in a workbook.

- To see a report while you’re working with Discoverer Desktop, use the Scheduling Manager as described in the next section.

- If you run a scheduled report overnight (or over the weekend) and want to see the results first thing the next morning, use the following procedure.

 To see the results of a scheduled report when starting Discoverer Desktop:

1. Start Discoverer Desktop and log on in the normal manner.

 The window appears for selecting what to open.

2. Click the button, Open an existing workbook.
3. Click the Scheduling Manager button. The Open Scheduled Workbook dialog box opens. It lists the completed reports.

4. Select the completed scheduled report you want to see.
5. Click Open.

The workbook opens and displays the worksheets generated by the scheduled report.

Note: The worksheets produced by running the scheduled report contain data derived specifically for that report. You can now work with the worksheet in the normal manner, but if you change any of its data, a message reminds you that the data on the worksheet is no longer the specific data derived from the report.

6.4.1.1 Viewing Scheduled Workbooks when connected as an Oracle Applications User

When connected as an Oracle Applications User, the following rules apply:

- If you connect as a particular User and Responsibility and schedule a Workbook, the Scheduled Workbook is specific to that User and Responsibility.
- If you connect as a particular User but a different Responsibility from the one used to schedule a Workbook, the Scheduled Workbook may contain different results from the original Scheduled Workbook that was created.
6.4.2 Working with the Scheduling Manager

With the Scheduling Manager you can see the results of a scheduled report, schedule a new report, reschedule a report, or edit a report’s schedule.

To run the Scheduling Manager, choose File | Manage Workbooks | Scheduling Manager. The Scheduling Manager dialog box appears.

Figure 6–18 Scheduling Manager

Key to Figure 6–18:
a. Discoverer Desktop reports scheduled to run. The clock icon indicates that the reports are scheduled to run at the time specified by Date and Time.
b. Completed Discoverer Desktop report ready to open. The report icon indicates that the reports were generated at the Date and Time indicated.

The Scheduling Manager shows scheduled reports and completed reports. The clock icon indicates a scheduled report set to run at a specified time. The icon without a clock indicates a completed report. Other information in this dialog box includes the following:

Name—the names of the scheduled reports or completed reports. You can open completed reports. You cannot open scheduled reports, though you can edit the schedule configuration if required.

Status—status types include scheduled, completed, in progress, out of date (expired), deleted by the database administrator, unable to be scheduled, had an error during the report run, and so on.

Date and Time—either the date and time a scheduled report is set to run or the date and time a completed report was run.

Run time—the length of time needed by the server to complete a scheduled report.

To schedule a new report from the Scheduling Manager dialog box:

1. Click the Schedule button.

The Schedule Workbook dialog box appears.
2. Click either **My Computer** or **Database** to identify the location of the workbook that contains the worksheets for the scheduled report.

3. Click **Schedule**. The Open dialog box appears.

4. Select the workbook and worksheets to schedule as reports.

5. Schedule the reports as described earlier.

To see the results of a scheduled report:

1. Select the completed report in the list.

2. Click **Open**.

 Note: The Open button is only available when you select a completed report. The workbook containing the completed report opens and displays the worksheets that you designated as a scheduled report.

To delete a completed report:

1. Select the completed report in the list.

2. Click **Delete**.

 Note: The Delete button is only available when you select a completed report. It changes to Unscheduled when you select a scheduled report in the list.

To unschedule a scheduled report:

1. Select the scheduled report.

2. Click the **Unschedule** button.

 Note: The Unschedule button is only available when you select a scheduled report. It changes to Delete when you select a completed report in the list. Unscheduling a report deletes it from the list.

To edit the settings of a scheduled report:

1. Select the scheduled report in the list.

2. Click the **Edit** button.

 The Schedule Workbook dialog box appears. The Schedule tab is selected.
This dialog box is almost the same as the dialog box you used to create the scheduled report except you cannot add or delete the sheets in the scheduled report from this dialog box. To do that you need to create a new scheduled report by choosing **File | Schedule**.

3. Make the scheduling changes that you want.
4. Click the General tab.
5. Make the changes on that dialog box that you want.
6. Click OK.

The schedule in the Scheduling Manager dialog box updates to include your changes. Now the scheduled reports will run based on the updated settings.

6.4.2.1 Viewing Errors

In the event an error occurs while the scheduled workbook is running, the status of the report will be “Error while running query” or “Could not schedule.”

To view a message that explains the error:

1. Click the scheduled report that did not run properly.
2. Click the **View Error** button.

A message shows the error code and text.

6.5 Sharing Workbooks

Sharing a workbook grants other people access to it to view, analyze, and print the data. You can share workbooks with other people by setting up sharing two ways:

- Assign a group of people who can share one of your workbooks.
- Assign one or more workbooks that one other person can share with you.

Sharing workbooks lets others use and analyze the same data. For example, you may want everyone in the accounting department to share a workbook that includes accounts payable and accounts receivable information. Similarly, you may want a project manager to have access to all the workbooks created for the project.
To share workbooks, choose **File | Manage Workbooks | Sharing**. The Share Workbooks dialog box appears. The two tabs at the top of the dialog box are for assigning workbooks to users or users to workbooks.

Figure 6–21 Share Workbooks Dialog Box

![Share Workbooks Dialog Box]

Workbook -> User—click this tab to share one workbook with several other people.

User -> Workbook—click this tab to share several workbooks with one other person.

To share a workbook with several other people:

1. Click the Workbook -> User tab.
2. Choose the name of the workbook that you want to share from the drop-down list.
3. In the list of Available Users, click the name of a person with whom you want to share the workbook.
4. Click Add. The person’s name appears in the Shared column.
 The list of names in the Shared column are the people who can have access to the workbook.
5. Repeat for all the other people with whom you want to share the workbook.
6. Click OK.

To share several workbooks with one other person:

1. Click the User -> Workbook tab.
2. Choose the name of the person with whom you want to share the workbook from the drop-down list.
3. In the list of Available Workbooks, click the name of a workbook that you want to share the other person.
4. Click Add. The workbook’s name appears in the Shared column.
 The list of names in the Shared column are the workbooks the other person can share with you.
5. Repeat for all the other workbooks that you want to share the other person.
6. Click OK.
Building Worksheets and Workbooks

Your company’s database administrator creates worksheets and workbooks based on your requirements for specific data analysis and reporting. However, while working with Discoverer Desktop, you may want to create additional worksheets and workbooks.

For example, you may want to create a special worksheet as a scheduled report that gets printed each month as part of your business reporting requirements. Or, you may want to consolidate project-specific information in a separate workbook that you share with other team members.

If you have the appropriate access rights (usually granted by the database administrator), you can use the steps explained in this chapter to create worksheets and workbooks.

Note: You use the same basic process to build workbooks and worksheets. In fact, to build a new workbook, you create the initial worksheet for the new workbook. Thus, the steps described in this section are for both processes—building a new workbook and building a new worksheet.

Topics in this chapter include:

- "Building a New Workbook or Worksheet"
- "Editing a Worksheet"

7.1 Building a New Workbook or Worksheet

The basic steps to create a new workbook or worksheet are as follows:

Required Steps

- Select the type of display for the new worksheet or workbook.
- Select the data that belongs on the worksheet or in the workbook.

Optional Steps

- Arrange the data on a table or crosstab layout.
- Sort the data (for tables only).
- Select conditions to apply to the data.
- Select calculations to apply to the data.
To start the process to build a new workbook or worksheet, choose either of the following:

1. Choose Sheet | New Sheet to build a new worksheet.
2. Choose File | New to create a new workbook.

The New Sheet dialog box appears (Figure 7–1).

Note: The sample dialog boxes in the rest of this section are for creating a new worksheet. The dialog boxes for creating a new workbook are the same, except the dialog box titles are “Workbook Wizard” instead of “New Sheet.”

7.1.1 Selecting Display Type

1. Click the icon for the type of display for the new worksheet.
2. Click Next.

![Workbook Wizard Dialog Box](image)

The next dialog box is for selecting the data that you want on the new worksheet.

7.1.2 Selecting the Data

This dialog box lists the data in the business area that you can use to build the new worksheet. To include data on the new worksheet, you move it from the Available column to the Selected column.
The icons in the list are:

Business area - the file cabinet icon displays a business area created by the database administrator; to select another business area for the new worksheet, click the drop-down arrow and choose from the list of business areas.

Find button - click the torch icon to find a specific item or folder by name in the current business area, or all business areas.

Folders - the folder icon holds the items that you can select for your worksheets.

To add data to a new worksheet:

1. Select the business area from the drop-down menu at the top of the Available list.
2. Click the plus (+) sign next to a folder to see all of the items in it.

Folders containing items available for the current worksheet are active. Others are grayed out.

The items may have plus signs next to them too indicating you can select values for those items as well. For example, the City item contains the names of the cities in the database. You can select a specific city to add to the worksheet.

The following figure shows that the Video Analysis folder is expanded to show its items (such as Department and Region), and the Region item is expanded to show the list of values that correspond to Region (Central, East, West) and the ways to aggregate the data (Count, Max, Min).
Figure 7–3 See Available Items

Key to Figure 7–3:
a. Click a + sign to expand the item and see its values.
b. drop-down button.
c. Browse button.

The icons in the expanded list are:

Axis Item - for example Region, corresponds to a column on a table or a level on a crosstab; axis items remain constant and have relatively few values, such as the names of Departments in your company, or the names of your Sales Regions. The values of an axis item are shown as a list of values.

Axis Item Value - one of the values of an axis item.

Numeric Item - for example Profit, represents numeric data; corresponds to the data in the body of a crosstab. The values of numeric items can change as you analyze the data, such as summing profits for cities compared to regions. Numeric items also behave as Axis items on tables.

Aggregations - for example SUM, the mathematical functions to aggregate the data; for text items such as Region, the typical aggregations are Count, Max, and Min. That is, you can count the number of text items, or find the highest or lowest (where A might be the highest and Z the lowest).

For numeric data, the typical aggregations are Sum, Count, Max, Min, Average, and Detail. For example, you can find the Sum or Average of the numeric data with the aggregation. The aggregation in boldface type is the default. The database administrator sets which aggregation is the default.

Condition - a filter for finding specific data. The database administrator defines conditions for the folder, not for individual items.

Clicking the **Options** button displays a dialog box for selecting options for the new worksheet or workbook. See Section 8.5, "Setting Options" for details.

Add specific data to your worksheet as follows:

1. Select the item(s) to add to the new worksheet. Shift-click on items to add multiple items.
Building a New Workbook or Worksheet

Figure 7–4 Selecting Items for your Worksheet

![Figure 7–4 Selecting Items for your Worksheet](image)

Key to Figure 7–4:
- **a.** Click an Item to select the Item.
- **b.** The Add button.
- **c.** The **Selected** list, containing Items that will be displayed on your Worksheet.

2. The Add button becomes active.
3. Click the **Add** button to add the item(s) to the new worksheet. You can also drag the selected items from the Available list to the Selected box, (see Figure 7–4).

The Selected list shows the data for the new worksheet:

You can select data at various levels in the Available list. For example, selecting a folder and moving it to the Selected list, moves all the data within the folder to the Selected list. Similarly, adding an item adds all the values in it to the worksheet. For example, adding the City item adds all the names of the cities.

Adding a numeric item automatically adds its default aggregation functions. All values are automatically added too. Adding an axis item does not automatically add aggregate functions.

To remove an item from the Selected list, click it and drag it back to the Available list, or click the **Remove** button (under the Add button).

4. At this point, you can click **Finish** to create a new worksheet or workbook. However, clicking **Next** shows the next (optional) dialog box for adding other features to the new worksheet or workbook.

Note: to change selections on the previous dialog boxes, click the **Back** button.

5. Click **Next** to see the dialog box for step 3 of the process.

Note: If you add an Aggregated Data Point and a Detail Data Point to the same Worksheet, Discoverer Desktop displays a warning that you **may** get unexpected results. Click **OK** to continue.

7.1.3 Arranging the Layout

In this step, you move the items on the worksheet to display them in the proper columns, rows, and page axes. It is the same basic process as on the worksheet itself;
that is, drag the item to a new position on the worksheet. See Section 4.1, "Pivoting Data" for a description of moving items to the page axis on a worksheet.

The layout that appears on the dialog box depends on the selection—table or crosstab—in step 1 of the new worksheet/new workbook process. The following figure shows a tabular layout.

Figure 7–5 Step 3: Arrange the Layout

![Figure 7–5 Step 3: Arrange the Layout](image)

The columns on the table correspond to the items selected for the new sheet.

Show Page Items—If an item is selected as a Page Item (as Department is in the example above), this option is not available. If no item is selected as a Page Item, the option becomes available. Removing the checkmark hides the Page Item section of the layout. Click the option again to see the Page Item section.

Hide Duplicate Rows—Select this option to hide duplicate rows of data.

To rearrange the data on the table:

1. Select the item to move.
2. Drag it to its new position. The following figure shows moving Year to the Page Axis.

Figure 7–6 Creating Page Items

![Figure 7–6 Creating Page Items](image)
Key to Figure 7–6:

a. Drag an item to the Page Items area to create a Page Item. The Show Page Items check box must be selected first. You can also move Items to the left and right to change the display layout.

Rearranging items on this layout does not preclude you from rearranging them directly on the worksheet.

3. Click Next or click Finish if you’re finished rearranging the data and creating the new worksheet or workbook.

7.1.4 Selecting Conditions for the Data

Conditions defined for the items added to the Selected list appear in the next dialog box. You can select the conditions as part of the new worksheet or workbook, or create new conditions.

Figure 7–7 Step 4: Select Data Conditions

1. Click the boxes in front of the conditions that you want to add to the new worksheet or workbook.

In the figure above, the first two conditions are selected.

- To create a new condition, click the New button.
- To edit a condition, select it in the list and click the Edit button.

See Section 5.5, "Finding Data that Meets Conditions" for a description of creating and editing conditions. See Section 8.4, "Creating Advanced Conditions" for a description of creating advanced conditions.

2. Click Next or click Finish if you’re finished selecting conditions for the data items and creating the new worksheet or workbook.

7.1.5 Sorting the Data in a New Worksheet or Workbook

This step only applies to tables. If you are creating a new worksheet or workbook as a crosstab, the sorting dialog box does not appear.
To sort the data in the new worksheet or workbook:

1. Click the **Add** button.

 The items on the new table appear in the drop-down list.

2. Select an item on which you want to sort the table from the pull-down list. The selected is added to the dialog box.
Building a New Workbook or Worksheet

3. Set the **Direction**, **Group**, **Line**, and **Spaces** options as required. See Section 4.3.1, "Sorting Data on Tables" for a complete description of the sorting options.

4. When you have defined your Sort, click **Next** to move to the next step in the Wizard, or click **Finish** to create your Workbook with the configuration that you have defined so far.

7.1.6 Selecting Calculations for the Data

Calculations defined for the items added to the Selected list appear in the final dialog box. You can select the calculations as part of the new worksheet or workbook, or create new calculations.

To select calculations for the data:

1. Click the boxes in front of the conditions for the new worksheet or workbook.

 In the figure above, all the calculations are selected.

 - To create a new calculation click the New button.
To edit a calculation, select it in the list and click the Edit button.

See Section 8.3, “Creating Calculations” for a complete description of creating and editing calculations.

2. Click Finish. The new worksheet or workbook appears on the screen.

7.2 Editing a Worksheet

The dialog boxes for editing a worksheet offer the same selections and features that you use to create a worksheet or workbook.

To edit a worksheet:

1. Display the worksheet that you want to edit.
2. Click the Edit Sheet icon on the toolbar, or choose Sheet | Edit Sheet.

The Edit Sheet dialog box appears.

The tabs across the top of the dialog box are for editing the various features of the worksheet. Clicking on a tab displays the options for the feature. When the Select Items tab is selected, the items shown in the Selected list are the items currently in use on the worksheet. Items not grayed out in the Available list can be added to the worksheet.

Figure 7–12 Edit Sheet Items

The figure above is for editing a tabular worksheet. A similar dialog box appears for crosstab worksheets, except Table Layout tab becomes Crosstab Layout and the dialog box does not include the Sort tab. To sort crosstab data, choose Tools | Sort.

7.2.1 Adding and Deleting Items on a Worksheet

The first tab on the Edit Sheet dialog box is for adding or deleting items on a worksheet. For example, if the original item on the worksheet is Region, but does not include City names, you can add a column for the cities within the regions.
To add an item to the current worksheet:
1. Click the plus (+) sign next to folders and items to see their contents.
2. Select the item in the Available list.
3. Click the Add button or drag the item to the Selected list.

To delete an item from the current worksheet:
1. Select the item in the Selected list.
2. Click the Remove button (the button under the Add button).

7.2.2 Editing the Layout

Use the Layout tab (Figure 7–13) to arrange the items on the worksheet. Drag an item to its new position on the worksheet just as you do on the worksheet itself. Click Hide Duplicate Rows to hide rows that contain the same data.

To remove the Page Items box from the top of the worksheet, drag all items from that box to the report body, then click Shows Page Items to remove the checkmark.

Figure 7–13 Edit Sheet Layout

7.2.3 Editing the Conditions

Use the Conditions tab to edit the conditions on the worksheet. Select the conditions for the worksheet. Click to remove the checkmarks next to the conditions that you do *not* want as part of the worksheet. See Section 5.5, "Finding Data that Meets Conditions" for a complete description of conditions.
7.2.4 Editing the Sorting

Use the Sorting tab to change the conditions for sorting on a table. The sort information shows the current sorting applied to the worksheet. See Section 4.3.1, “Sorting Data on Tables” for a complete description of the sorting options for tables.

Note: The Sorting tab is only available for tabular worksheets.

7.2.5 Editing Calculations

Use the Calculation tab (Figure 7–16) to edit the calculations applied to the worksheet. The selected calculations are active for the worksheet. See Section 8.3, “Creating Calculations” for a complete description of the calculations.
Figure 7–16 Edit Sheet Calculations
Discoverer Desktop includes several advanced features for working with data. This chapter describes those features and explains how to use them.

The advanced features are:

- Retrieving All Rows and Counting the Number of Rows
- Creating Parameters
- Creating Calculations
- Creating Advanced Conditions
- Setting Options
- Using Command-Line Options
- Using SQL

8.1 Retrieving All Rows and Counting the Number of Rows

Rows for tables are fetched from the database incrementally in groups. The number of rows in each group is specified in the Options dialog box based on the value set in the option “Retrieve data incrementally in groups of.” Click the Query Governor tab on the Options dialog box to see that option.

To override that setting you can retrieve all the rows at once instead of incrementally. Retrieving all rows applies only to tabular style reports.

- To retrieve all the rows at once instead of incrementally, choose **Sheet | Retrieve All Rows**. The table includes all the rows.
- To count the number of rows choose **Sheet | Count All Rows**.

![Figure 8–1 Number of Rows](image)

The message shows the total number of rows that will be returned by the query. The number of rows may be greater than the actual number of rows currently displayed in the worksheet.
8.1.1 Refreshing the Worksheet

Refreshing a worksheet re-queries the database and displays the worksheet’s data based on any new data. A primary use of refreshing a worksheet is when you’re using Discoverer Desktop in conjunction with real-time data. For example, if the Discoverer Desktop worksheets query a database used for on-line transaction processing, you need to refresh the worksheet periodically to update the worksheet data with the latest transaction results.

To refresh a worksheet, choose Sheet | Refresh Sheet. Discoverer Desktop displays the worksheet results based on the updated data.

8.2 Creating Parameters

Parameters are placeholders used instead of specific values in the definition of a condition. Unlike regular conditions that find the same data each time they are applied, parameters offer choices at the time the data loads.

You can create Parameters at two levels:

1. Workbook level - Here, the Parameter applies to all worksheets in your workbook. Changes to the Parameter in any worksheet cascade to all worksheets in the workbook.

2. Worksheet level - Here, the Parameter applies to the current worksheet only.

For example, suppose one of your routine analysis jobs is to compare sales performance by evaluating sales figures for various products from different groups of cities. By creating two parameters—one for products and the other for cities—you can select the specific grouping of data for the analysis at the time the worksheet loads.

Parameters are particularly helpful if several people use the same workbook or worksheet. Each person can select the parameters that load only the data of interest on the worksheet.

Parameter selections appear when loading a workbook or worksheet. Here’s an example that shows a parameter for limiting the available data to a specific year, (2000).

Figure 8–2 Sample Parameters for Video Sales
Creating Parameters

Key to Figure 8–2:

a. This dialog box appears when loading a workbook or worksheet.
b. Enter a Parameter in the text box, or select a value from the pull-down list by clicking on the down-arrow to the right of the text box and select a value.
c. Choose Finish to load the Worksheet for the selected values.
d. The Worksheet displays only data matching the value (or number) entered for the specified criteria.

To create a parameter:

1. Display the worksheet to which you want to apply the parameter.

2. Choose Tools | Parameters.

 The Parameters dialog box opens. It shows the parameters already created.

 Figure 8–3 Parameters Dialog Box

3. Click New.

 The New Parameter dialog box appears.

 Note: You can also access this dialog box when creating advanced conditions. Select New Parameter from Value(s) drop-down list on the New Conditions dialog box.

 Figure 8–4 New Parameter Dialog Box

 - **For Item:** Rank Sales by Year, Dept, Region
 - **Name:** Choose Year
 - **Prompt:** Please choose a Year to display on your Workbook
 - **Description:** Restrict the Workbook to a particular Year
 - **Default Value:**
 - Let user enter multiple values
 - **What is the value of this parameter if it is used in more than one sheet?**
 - Allow only one value for all sheets
 - Allow a different value in each sheet
This is where you define new parameters.

For Item—select the item for the parameter from the drop-down list. The list shows the items currently available to the worksheet.

Name—the name of the Parameter, which appears on the list of available Parameters dialog.

Create Condition with Operator—creates a condition with an operator. You can select the operator from the drop-down list. For example, select equals (=) to create a condition with the formula “For Item” = “Parameter’s Name”.

Prompt—this text appears on the dialog box that opens prior to loading the worksheet; enter text that tells the person what to select.

Description—this text also appears on the dialog box that opens prior to loading the worksheet; it explains the parameter.

Let User Enter Multiple Values—select this option if you want the person using the worksheet to be able to select multiple values for the parameter when loading the worksheet. If this option is not selected, the person can choose only one value for the parameter.

Default Value—the pre-selected value for the parameter. Click the drop-down arrow and select a value from the list, or type the default value directly into the box.

What is the value of this parameter if it is used in more than one sheet?—allows you to create the Parameter either at Workbook level or Worksheet level. Click ‘Allow only one value for all Sheets’ to make the parameter value cascade across all worksheets in the workbook. Click ‘Allow a different value in each Sheet’ to make the parameter value apply to the current worksheet only.

4. Click OK. The new parameter now appears on the Parameters dialog box.

Moving the parameters up and down on the Parameters dialog box changes their position on the dialog box that appears when loading a worksheet. To add a picture to that dialog box, click **Bitmap** and choose **Set Bitmap**.

5. Click OK on the Parameters dialog box. Those parameters are now in force for the next time the worksheet is loaded.

Parameters are activated when used in an active condition. If you check the option “Create condition with operator” in the New Parameter dialog box, a new condition is created and activated, therefore the parameters are also activated.

To deactivate a parameter, deactivate the condition. Deleting the condition or deleting the parameter also deactivates the parameter.

To edit parameter values:
Here you display the Parameter dialog so that you can choose a different value to display on your worksheet(s).

1. Choose **Sheet** | **Edit Parameter Values**.

 The Parameters dialog box appears.

2. Select the new value(s) for the Parameter.

3. Click OK.

The data on the worksheet is revised to meet the Parameter conditions.
NOTE: If you want to change the Parameter value for your worksheet, you can also use the Refresh option to display the Parameter dialog for active Parameters.

You can enter a reserved word into a parameter field, however the reserved word must have the same data type as the parameter (e.g. SYSDATE or TODAY can only be used with a parameter that has the data type DATE). You can enter the following reserved words into a parameter field:

- **SYSDATE or TODAY**
 Enter the reserved word SYSDATE or TODAY into a parameter field (must be of data type DATE) to display worksheet data that matches the system or today’s date.

- **USER**
 Enter the reserved word USER into a parameter field (must be of the same datatype as the datatype of the parameter) to display worksheet data that matches all database users.

- **NULL**
 Enter the reserved word NULL into a parameter field (must be of data type DATE, STRING or NUMERIC) to display worksheet data where the item that this parameter is based upon has a NULL value.

Note: You must enter reserved words using only capital letters and with no additional text or text symbols. For example, you cannot use NULL% or null or ‘NULL’. Discoverer Desktop would treat ‘NULL’ as a text string and not as a reserved word.

8.2.1 Loading Multiple Values

If the option Let User Enter Multiple Values is selected for a worksheet’s parameters, the person opening the worksheet can select multiple values for the parameter.

Here’s an example:
8.3 Creating Calculations

Discoverer Desktop Calculations are used to analyze the data in your worksheets. Discoverer Desktop provides a comprehensive range of pre-defined functions for use in your Calculations.

Simple Calculations based on the data in a worksheet can produce typical business answers, such as sales commissions per salesperson, royalty fees paid to a supplier, and so on. Complex Calculations can find the answers to more complicated questions including “what if” scenarios.

In other words, instead of merely viewing your data to find trends and answers, you can use Calculations to rigorously analyze the data using mathematical techniques.

The results of Calculations are displayed as new columns on a worksheet, or the Calculations can be part of other Calculations.

You can also pivot Calculation Items to the page axis, just like other Items.

Note: To see examples of how you can use Calculations to analyze your Discoverer Desktop data, refer to Appendix A.2, "About the examples in this chapter".
Creating Calculations

Here is a sample of the results of a simple Calculation on a table:

Figure 8–6 Sample Calculation

Key to Figure 8–6:

a. This is the dialog box that you use to define Calculations. The Calculation box is where you create the formula for the Calculation.

b. After creating a Calculation, a new Item column is displayed on your Worksheet showing the calculated value. In this example, it shows the Profit SUM increased by 20%, (Profit SUM * 1.2).

Calculations are based on items, not on individual data points. For example, you can multiply Profit SUM (an item) by a percentage to find a result for each product.

However, you cannot, for example, subtract Year 2000 profits from Year 1999 profits because 2000 and 1999 are data points in the item, Year. To calculate results based on individual data points, use Discoverer Desktop’s Analytic Functions LAG and LEAD, (see Appendix A.5.8, “Lag/Lead Function Examples”).

To create a Calculation:

1. Display the worksheet on which you want to apply the Calculation.
2. Choose **Tools** | **Calculations**.

The Calculations dialog box appears.
Figure 8–7 Calculations Dialog Box

This dialog box shows Calculations already created for the worksheet. Selected Calculations (where the check box is selected) are active and apply to the worksheet.

3. Click New.

The Edit Calculation dialog box for creating a new Calculation appears.

Figure 8–8 Edit Calculation Dialog Box

Key to Figure 8–8:

a. Calculation Box.

b. Function Categories - you can build calculations using a pre-defined set of functions arranged into the categories.

c. You can use these operators to build calculations.

To help you create the Calculation formula with a minimum of typing, you can:

- Paste expressions from the box on the left to the box on the right.
- Add operators with the operator buttons.
- Type the new Calculation directly into the Calculation box.
- Mix typing with pasting and clicking the operators.
4. Click the **Show** button to see the different expressions.

 Items—lists the items available to the worksheet. This is helpful because you don’t have to remember the name of an item in order to include it in a formula. Parameters are also listed, and you can use the parameters in a formula as well.

 Functions—lists a wide range of functions that you can apply to your formula.

Figure 8–9 Calculations in the Edit Calculation Dialog Box

Key to Figure 8–9:

a. Select an Item then click Paste to copy the Item into the Calculation box.

b. Click the Functions button to show a list of function folders. To display a list of functions, click the plus symbol (+) next to each function folder. Use the Paste button to copy the selected Function into the Calculation box.

5. Click **OK** and then on the Calculation dialog box, click **OK**.

 The Calculation is applied to the worksheet and results appear in a new column.

Note: Calculations use Oracle’s standard syntax. See the *Oracle SQL Reference Language Reference Manual* for a complete description of the syntax.
8.4 Creating Advanced Conditions

The advanced condition option allows you to build complex conditions for filtering your worksheet data.

To create an advanced condition:

1. On the Edit Condition dialog box, click the Advanced button. The dialog box expands to show buttons to add and delete lines to the condition, and to include the Boolean operators (AND, OR, NOT).

![New Condition Dialog Box](image)

The Item drop-down list shows the items currently available to the worksheet.

Other options from the list are:

Create Calculation—click to open the New Calculation dialog box. When you finish creating the Calculation, it appears in the Item section of the condition.

For example, if you create a Calculation that computes a Royalty Fee, that Calculation is listed in the Item portion of the condition, and you can then filter the worksheet's data by the Calculation results.

Select Condition—displays a dialog box that lists the conditions currently defined for the worksheet. Select a condition to become the first part of the advanced conditional expression. With this option you can filter the data using several sequential conditions. That is, condition 1 filters the data, and then based on the results from condition 1, condition 2 filters the data.

Copy Condition—displays a dialog box that lists the conditions currently defined for the worksheet. Copying a condition inserts it on the line in the New Condition dialog box. You can then edit it, or add other features.

2. To add another line to the condition, click Add.

 By default, the two conditional expressions are grouped with the Boolean AND.

3. To change the grouping, click the AND in the expressions, and then click the Or or Not buttons.
Figure 8–11 New Condition Dialog Box with AND Conditions

Note: As you create the condition formula, the box at the bottom of the dialog box shows its SQL syntax.

4. Fill in the values for Item, Condition, and Value(s).

To see options for the Value(s), click the drop-down arrow.

Figure 8–12 New Condition Dialog Box with Values Displayed

The values on the list correspond to the selected item in the condition. Other options are:

Select Multiple Values—displays a list of the values for the item. Click multiple values to include them in the values portion of the condition.

Create Calculation—click to open the Calculation dialog box. When you finish creating the Calculation, it appears in the Value(s) portion of the condition.
Select Item—displays a dialog box that lists the items currently defined for the worksheet. Select an item to become the value of the advanced conditional expression.

Select Parameter—displays a dialog box that lists the parameters currently defined for the worksheet. Select an parameter to become the value of the advanced conditional expression.

New Parameter—displays the Parameter dialog box, and you can create a parameter to be the value of the condition.

Create Subquery—displays a dialog box for creating a subquery as the value portion of the condition. See the next section for details.

Edit Subquery—this option only appears if you’re using a subquery to determine the value; the Edit Subquery dialog box appears so you can edit the previous selections for the subquery.

5. Click OK when the advanced condition is complete.

8.4.1 Creating Subqueries

A subquery for a condition uses a value that requires an intermediate step to determine the value. For example, suppose you want to create a condition that finds all the sales profits that exceed the median profit amount. The intermediate step is to find the median profit amount. Often, you create a separate worksheet to determine the intermediate value.

The subquery then identifies the intermediate value on its worksheet as the value for the condition.

To create a subquery:

1. Choose Create Subquery from the Values drop-down list on the New Condition dialog box. See Figure 8–12 above.

 The Create Subquery dialog box appears.

 Figure 8–13 Create Subquery Dialog Box

 ![Create Subquery Dialog Box](image)

2. If you’ve already created a worksheet that contains the intermediate value, select it from the first drop-down list on the dialog box.
If you need to create a new worksheet that calculates the intermediate value, click the New button. The New Sheet dialog box appears so you can create a new worksheet for the value.

3. In the second drop-down list, select the original item to be used for the condition. For example, when finding sales profits that exceed the median, the item to select in the second drop-down list is profits.

See the next section for a description of correlated items.

4. Click OK. The name of the worksheet appears in the Values portion of the condition on the New Condition dialog box.

8.4.1.1 Using Correlated Items

Correlated items add another dimension to a subquery. For example, suppose you want to find all the sales profits that exceed the median profit amount by department. The “by department” portion of the value is the new dimension to the subquery.

The items to correlate usually appear on both the original worksheet, and the worksheet used to create the intermediate value. For example, on the original worksheet you can find profit data for each department. On the worksheet for calculating the intermediate value, you can find a median value for each department. Correlating the two items matches them so each department median value corresponds to each department profit value.

Correlating items is also necessary when the worksheet for determining the intermediate value has additional values on it. Correlating makes sure the condition uses the correct intermediate values for the items.

As stated on the dialog box, you don’t need to use the features for correlated items if the subquery does not include the extra dimension provided by items that correlate to one another.

Note: Correlated Subqueries cannot contain filters using Oracle Analytical Functions. For example, if you restrict the values returned in a sheet to the top twenty items (assigned using a Rank function), you cannot use this sheet in a correlated subquery.

To use correlated items:

1. Click the Add button on the Edit Subquery dialog box.

2. Choose the item from the Add drop-down list.

 The following figure shows an example.

 The item then appears in the box for correlated items.
Creating Advanced Conditions

Figure 8–14 Correlated Items for a Subquery

The Item column refers to the item on the original worksheet. The Subquery Item column refers to the item on the worksheet used to determine the intermediate value.

Normally you correlate the same item on each worksheet, but you can also correlate two different items. To correlate different items, choose the new item from the Subquery Item drop-down list.

3. To add additional dimensions to the list of correlated items, click the Add button again and repeat the process.

To remove an item from the correlation list, select it and click the Remove button.

4. Click OK.

Note: When creating a new workbook, do not create worksheets for sub-queries as part of the new workbook process. Instead, finish creating the new workbook first, and then create worksheets for the sub-queries. This ensures that you can select the proper worksheets for the sub-queries from the Conditions dialog box.

8.4.2 Editing a Subquery

If you change the worksheet that is used to generate the intermediate value for a subquery, the subquery condition is not automatically updated. You must edit the condition with the subquery first, and then update subquery to match the changed worksheet.

To edit a subquery:

1. Edit the condition with the subquery.

2. Choose **Edit Subquery** from the Values drop-down list on the Edit Condition dialog box.

 A prompt asks if you want to update the subquery to match the changed worksheet.

3. Update the subquery.

 The edited subquery and the changed worksheet now match.
8.5 Setting Options

The Options dialog box offers a wide variety of options for setting operating features, formatting, and other aspects of your worksheets.

To select options:

1. Choose **Tools | Options**, or click the Options button available on several dialog boxes.

 The Options dialog box appears.

 Figure 8–15 Options Dialog Box

 ![Options Dialog Box](image)

 The tabs across the top of the dialog box list the different option categories. If you accessed the dialog box by clicking the Options button on another dialog box, the tabs across the top may only apply to that dialog box.

 2. Click a tab to see its options. To see additional tabs, click the right or left arrows at the top right side of the dialog box.

 General—displays options for viewing different types of files, and for opening workbooks. Click the Viewer check boxes if the worksheets include files with videos, images, and sound (audio). Those viewers open automatically from within Discoverer Desktop to run the files.

 Query Governor—displays options for maximizing the efficiency of working with larger worksheets, limiting the amount of time a query runs, and limiting the number of rows retrieved. You can also choose whether to use Summary data to improve the performance of Discoverer Desktop.

 Table/Crosstab—displays options for the overall table or crosstab layout; you can add or remove gridlines, column headings, row numbering, and so forth. Removing various table or crosstab features is particularly helpful when printing a worksheet as a report. Tab options differ according to whether your worksheet is a Tabular or Crosstab worksheet.

 Formats—displays options for setting the default formats for worksheet headings, data, titles, totals, exceptions, and null values. To change a format, select it and click the **Change** button. The dialog box for setting the font, color, and backgrounds appears.
Using Command-Line Options

- **Cache**—displays options for the memory cache, disk cache, and cache directory for Discoverer Desktop. Generally these options should not be changed without assistance from the database administrator.

- **Connection**—displays options for setting the EUL types that can be used.

- **Advanced**—displays options for configuring Automatic Querying, Fan-trap Detection, and Multiple Join Path Detection. When you open Workbooks, Discoverer Desktop can run queries automatically or not, or can request confirmation before running queries.

- **EUL**—displays the default EUL setting. Use the option on this tab to select a default EUL (End User Layer). Check with your database administrator for the correct EUL to select.

8.6 Using Command-Line Options

You can run Discoverer Desktop from the command line and perform a limited number of tasks automatically, for example, opening or printing a Workbook.

To use command-line options, type the command string for starting Discoverer Desktop, following by a command-line option, (see table 8-1 below).

To run a command line option:

1. From the Windows Start menu, choose Run.
 - The Run dialog box appears.

2. Type:
   ```
   <drive>\orant\bin\dis51usr.exe /connect me/mypassword@mydatabase <option>
   ```

 Where ‘me’ is your Discoverer Desktop ID, ‘mypassword’ is your Discoverer Desktop password, and ‘mydatabase’ is the Oracle database to which you want to connect, (see your Oracle Administrator for connect details). The following table displays some sample command line options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
<th>Effects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/open <file></td>
<td>Open a .DIS file</td>
<td>Opens a workbook from a file.</td>
<td>Skips the Connect dialog box and open the workbook.</td>
</tr>
<tr>
<td>/p <file></td>
<td>Print a Workbook</td>
<td>Prints workbook from the file to the default printer.</td>
<td>Print options are saved as part of the workbook.</td>
</tr>
<tr>
<td>/sheet ALL</td>
<td>Activate all sheets</td>
<td>Runs queries for all sheets in the workbook.</td>
<td>When the workbook opens all queries on all sheets are already run.</td>
</tr>
</tbody>
</table>

For example, to open a file Reports.DIS in your root directory, type:

```
<drive>\orant\bin\dis51usr.exe /connect me/mypassword@mydatabase /open c:\Reports.DIS
```

To print a file Reports.DIS in your root directory, type:

```
<drive>\orant\bin\dis51usr.exe /connect me/mypassword@mydatabase /print c:\Reports.DIS
```
8.7 Using SQL

If you are familiar with SQL, you can analyze the SQL statements that Discoverer Desktop executes against the database. You can also open workbooks with your own SQL programming statements.

8.7.1 Looking at the SQL Statements for Worksheets

To see a worksheet’s SQL statements:

1. Choose View | SQL Inspector.

 The SQL Inspector dialog box appears. It shows the SQL statements used to create your current worksheet.

![Figure 8–16 SQL Inspector Dialog]

2. Click Copy to copy the statements and paste them to another SQL program.

 The SQL statements Discoverer Desktop uses to open a workbook or worksheet involve complex programming. Therefore, you cannot simply copy a worksheet’s SQL and use it to open another workbook or worksheet. You must write your own programs.

3. Click Export to export the statements to another file for use later with another SQL program.

4. Click OK to close the SQL Inspector dialog box.

8.7.2 Importing SQL

If you have written an SQL program to open a workbook, importing the program executes the SQL statement and opens the Discoverer Desktop workbook.

Note: If you are importing an SQL script that contains join definitions, the joins must have been created first by your Discoverer manager using Discoverer Administrator.

To import SQL and open a workbook:
1. Choose File | Import SQL.

 The Open dialog box appears.

 Figure 8–17 Open SQL File Dialog

2. Locate and select the file that contains the SQL statement, then click Open.

 A new workbook is then created from the query defined by the SQL statement.

8.7.3 Using the Discoverer Execution Plan

The Plan tab displays the Oracle Server Execution Plan chosen by the Oracle Server for a query request. The Execution Plan defines the sequence of operations that the Oracle Server performs to execute the SQL statement. This facility is useful when using Summary tables and Materialized Views.

8.7.3.1 About Summaries

Summary tables and Materialized Views store precomputed aggregated data, which is used where possible instead of data retrieved directly from the database. Because Summary tables and Materialized Views are much quicker to access, this enhances the performance of Discoverer Desktop.

Summary Management is handled automatically by Discoverer, and is transparent to most Discoverer Desktop users. However, you may wish to use the SQL Inspector feature to look at SQL statements being generated. For example, when using Summaries, you may wish to check that a query is using a Summary or Materialized View created by your Discoverer manager.

8.7.3.2 Types of Summary

Summaries are created by your Discoverer manager to help do your work more quickly and efficiently.

Two types of Summary are used:

- A **Summary** table is a table created by Discoverer.
- A **Materialized View** is the Oracle database server’s own summary mechanism.

Note: For more information on Summaries and Materialized Views, see Oracle Database Data Warehousing Guide.

8.7.4 Looking at an SQL Execution Plan

To see a worksheet’s Execution Plan:
1. Choose View | SQL Inspector.
 The SQL Inspector dialog appears.

2. Click the Plan tab.

Figure 8–18 SQL Inspector Dialog - Plan Tab

8.7.5 Viewing the SQL and Execution Plan with an Oracle Enterprise Edition database

When running Discoverer Desktop against an Oracle Enterprise Edition database, the server controls query redirection by rewriting the SQL to use a Materialized View. If a server rewrite occurs, the server Execution Plan indicates the Materialized View name.

You can use the Plan tab in the SQL Inspector dialog to see the SQL statement that Discoverer Desktop sends to the server.
Although the Discoverer manager has created a Summary for the Items City, Region, and Profit SUM, the SQL statement displayed in the SQL Inspector SQL tab does not indicate that a Summary, (in this case a Materialized View) is being used, see Figure 8–19 above).
In Figure 8–20, you can see from the SQL Inspector Plan tab that a Materialized View Summary is being used by the database, identified by the table name EUL5_MV<Summary Identifier>.

8.7.6 Configuring the SQL type used

Discoverer Desktop uses Inline Views in its SQL generation. This SQL has Inline Views removed to make external editing easier - this process is also known as ‘flattening’. When you use the SQL Inspector dialog, typically you are looking at SQL with the Inline Views removed, (or flattened SQL).

To set the default variant, there is registry entry called HKEY_CURRENT_USER\Software\Oracle\Discoverer 10\Database\SQLType.

Set this value to configure how SQL is displayed in the SQL Inspector dialog. The valid values for this entry are 0 and 2, used as follows:

- **0** - Show SQL with no Inline Views (flattened SQL). This is the default.
- **2** - Show SQL with Inline Views.

To configure the SQLType registry setting:

1. From the Windows Start menu, choose **Run**.
2. Type `regedit` then choose OK.
3. Navigate to the registry setting in:

 `HKEY_CURRENT_USER\Software\Oracle\Discoverer 10\Database\SQLType`
4. Double click on SQLType, change the setting as required to either 0, 1, or 2, (see notes above), then click OK.

8.7.7 Exporting SQL without running a Workbook

You can export Workbook SQL from the command line, without running Discoverer Desktop. Refer to the Command Line Interface section of the Oracle Discoverer Administration Guide for more details, or contact your Discoverer manager.
This appendix contains the following sections:

■ "Getting More Information"
■ "About the examples in this chapter"
■ "Additional formatting"
■ "Simple Calculation Examples"
■ "Analytic Function Examples"
■ "More about the Analytic Function Template"
■ "Analytic Functions and Sequencing"

A.1 Getting More Information

For more information about Analytic Functions, and Oracle functions in general, refer to the following Oracle publications:

■ Oracle Database SQL Reference
■ Oracle Database Data Warehousing Guide

A.2 About the examples in this chapter

The examples in the following sections use the Discoverer Desktop sample data.

A.3 Additional formatting

The examples in this chapter use the following additional formatting:

■ Currency is displayed with no decimal places, and is prefixed with a Dollar sign ($).
■ Integers are displayed with no decimal places. For example, Ranks.

A.4 Simple Calculation Examples

This section provides the following examples to help you create Calculations.

■ "Calculate the number of rows returned by a query"
■ "Calculate a 25% increase in sales"
■ "Convert text to upper-case"
A.4.1 Calculate the number of rows returned by a query

This example calculates the number of rows returned by a query.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region, City</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental</td>
</tr>
<tr>
<td></td>
<td>Year = 2000 AND Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Rows returned</td>
</tr>
<tr>
<td>Calculation</td>
<td>ROWCOUNT</td>
</tr>
<tr>
<td>Notes</td>
<td>ROWCOUNT does not count NULL values. To calculate the number of rows returned by a query, including NULL values, first create a temporary item One record, (Calculation = '1'). Then, create a Calculation Rows returned to count the occurrences of One record, (SUM(Video Sales Analysis-One record))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>Rows returned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$45,736</td>
<td>1169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Louisville</td>
<td>$35,998</td>
<td>1018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St. Louis</td>
<td>$22,044</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chicago</td>
<td>$10,116</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minneapolis</td>
<td>$9,830</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nashville</td>
<td>$8,345</td>
<td>214</td>
</tr>
</tbody>
</table>

A.4.2 Calculate a 25% increase in sales

This example calculates a 25% increase in sales figures.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region, City</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental</td>
</tr>
<tr>
<td></td>
<td>Year = 2000 AND Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>25% Increase</td>
</tr>
<tr>
<td>Calculation</td>
<td>Sales SUM * 1.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>25% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>Central</td>
<td>Chicago</td>
<td>$10,116</td>
<td>$12,645</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St. Louis</td>
<td>$22,044</td>
<td>$27,551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nashville</td>
<td>$8,345</td>
<td>$10,431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Louisville</td>
<td>$9,830</td>
<td>$12,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dallas</td>
<td>$7,749</td>
<td>$9,686</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cincinnati</td>
<td>$48,278</td>
<td>$59,346</td>
</tr>
</tbody>
</table>
A.4.3 Convert text to upper-case

As well as the extensive range of mathematical functions available in Discoverer Desktop, you also have access to a wide range of number and text formatting functions. This example uses a Calculation to re-format City text data to upper-case.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental</td>
</tr>
<tr>
<td></td>
<td>Year = 2000 AND Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>City(Upper Case)</td>
</tr>
<tr>
<td>Calculation</td>
<td>UPPER(City)</td>
</tr>
</tbody>
</table>

Display Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>City(Upper Case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Central</td>
<td>Chicago</td>
<td>$16,316</td>
<td>CHICAGO</td>
</tr>
<tr>
<td></td>
<td>Central</td>
<td>Cincinnati</td>
<td>$46,759</td>
<td>CINCINNATI</td>
</tr>
<tr>
<td></td>
<td>Dallas</td>
<td></td>
<td>$7,748</td>
<td>DALLAS</td>
</tr>
<tr>
<td></td>
<td>Louisville</td>
<td></td>
<td>$35,208</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td></td>
<td>Minneapolis</td>
<td></td>
<td>$8,020</td>
<td>MINNEAPOLIS</td>
</tr>
<tr>
<td></td>
<td>Nashville</td>
<td></td>
<td>$6,345</td>
<td>NASHVILLE</td>
</tr>
<tr>
<td></td>
<td>St. Louis</td>
<td></td>
<td>$22,041</td>
<td>ST. LOUIS</td>
</tr>
</tbody>
</table>

A.5 Analytic Function Examples

Oracle Business Intelligence Discoverer supports the Analytic Functions that are included in the Oracle database. Discoverer Desktop also extends the functionality of standard SQL by allowing you to nest Analytic Functions. You can use these advanced functions to perform sophisticated analysis on your data.

This section contains the following sub-sections:

- "Analytic Function Categories"
- "Calculations and Drilling Into and out of data"
- "About The Analytic Function Template"
- "Ranking Function Examples"
- "Banding Function Examples"
- "Windowing Function Examples"
- "Reporting Function Examples"
- "Lag/Lead Function Examples"
- "Statistical Function Examples"
- "More about the Analytic Function Template"
- "Analytic Functions and Sequencing"

A.5.1 Analytic Function Categories

Analytic Functions are classified in the following categories:

- **Ranking** - Address business questions like: ‘What are the top 10 and bottom 10 salespeople per region?’.
A.5.2 Calculations and Drilling Into and out of data

When you use Analytic Functions, note that they have a precise definition which does not change as you drill, pivot, or sort the result set. For example, if you use the RANK function to assign ranks to sales figures partitioned by Quarter, if you drill down the Month level, the rank still only applies to the Quarter level.

A.5.3 About The Analytic Function Template

When creating Analytic Functions in Discoverer Desktop, you can either type or paste them directly into the Calculation dialog box, or you can select them from the function list.

If you select them from the function list, you are presented with a generic Analytic Function Template that helps you define the function by telling you what information you may need to provide. Templates should be used as a guide. Because templates are designed to cover most types of usage, you will not always need to use every part of the template.

For example, when you paste a new RANK Analytic Function into a calculation box, Discoverer Desktop provides the following template:

```
OVER (PARTITION BY expr1 ORDER BY expr2)
```

Although you can define a complex function using both expressions (expr1 and expr2), you can often define a simple function using only the `ORDER BY` expression; for example:

```
RANK()OVER(ORDER BY 'Sales')
```

This example ranks sales figures (defined in the ‘Sales’ item).

NOTE: By default, results data is sorted in ascending order (ASC), nulls first (NULLS FIRST).

For more information about expressions used by the Analytic Function template, refer to “More about the Analytic Function Template”.

A.5.4 Ranking Function Examples

- **Banding** - Address business questions like ‘What brands make up 25% of sales?’.

- **Windowing** - Address business questions like ‘What is the 13-week moving average of a stock price?’ or ‘What is the cumulative sum of sales per region?’.

- **Reporting Aggregates** - After a query has been processed, aggregate values like the number of resulting rows, or the sum of a column in a set of rows. Address questions like ‘What are each product’s Sales as a percentage of Sales for its product group?’.

- **Lag/Lead** - Address business questions like ‘Which regions growth of sales of 1998 as compared to 1997 was greater than 20%?’, and ‘What is the value of Sales in Financial Year 1996 minus Sales in Financial Year 1996?’.

- **Statistics** - Perform statistical analysis with Business Intelligence OLAP/spreadsheet applications. For example, covariance and linear regression functions.
A.5.4.1 About Ranking
Ranking functions compute the rank of an item with respect to other items in an ordered list.

A.5.4.2 Assign Ranks to sales figures
This example ranks to a set of sales figures.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000 AND Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Rank</td>
</tr>
<tr>
<td>Calculation</td>
<td>RANK() OVER(ORDER BY Sales SUM DESC)</td>
</tr>
<tr>
<td>Notes</td>
<td>By default, ranked results data is sorted in ascending order (ASC), nulls first (NULLS FIRST). The additional DESC parameter sorts the results in descending order, which ranks the highest value with the Rank 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

A.5.4.3 Assign Ranks to sales figures within Region
This example ranks a set of sales figures within each Region for each Year.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Rank Top</td>
</tr>
<tr>
<td>Calculation</td>
<td>RANK() OVER(PARTITION BY Year, Region ORDER BY Sales SUM DESC)</td>
</tr>
</tbody>
</table>
A.5.4.4 Show the top three selling Cities per Region

This example ranks a set of sales figures and displays the top three selling Cities for each Region.

<table>
<thead>
<tr>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>Rank Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$45,758</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Louisville</td>
<td>$35,816</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Louis</td>
<td>$22,041</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicago</td>
<td>$18,749</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minneapolis</td>
<td>$9,700</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nashville</td>
<td>$8,246</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dallas</td>
<td>$7,749</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>New York</td>
<td>$65,002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington</td>
<td>$35,516</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia</td>
<td>$25,054</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pittsburgh</td>
<td>$22,083</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atlanta</td>
<td>$21,052</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston</td>
<td>$16,410</td>
<td>6</td>
</tr>
</tbody>
</table>

Tip

To quickly filter the list to the first, second, or third ranked cities, pivot the Rank Top item to the page axis, (see also “Pivoting Data on a Table”).

A.5.4.5 Show the top three and bottom three selling Cities per Region

This example ranks a set of sales figures and displays the top three and bottom three performing Cities per Region.

<table>
<thead>
<tr>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>Rank Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$45,758</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Louisville</td>
<td>$35,816</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Louis</td>
<td>$22,041</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicago</td>
<td>$18,749</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minneapolis</td>
<td>$9,700</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nashville</td>
<td>$8,246</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dallas</td>
<td>$7,749</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>New York</td>
<td>$65,002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington</td>
<td>$35,516</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia</td>
<td>$25,054</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pittsburgh</td>
<td>$22,083</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atlanta</td>
<td>$21,052</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston</td>
<td>$16,410</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>San Francisco</td>
<td>$30,480</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle</td>
<td>$16,405</td>
<td>2</td>
</tr>
</tbody>
</table>
A.5.5 Banding Function Examples

A.5.5.1 About Banding

Banding is a type of ranking that divides a list of values in a partition into a specified number of groups called Bands (also known as buckets) and assigns each value to a Band.

Two common types of banding are:

- **Banding by value** - this divides values into groups according to their value, (also known as *equi-width* bands).

 Here, the function typically takes the largest value minus the lowest value, and divides the result by the number of bands required. This value defines the range of each Band.
Values are then assigned to bands according to which range they fall into. Therefore, the number of values in each Band may differ. For example, if we have 100 values and divide them into four equi-width bands, each band may contain different numbers of values.

Use the `GREATEST` function or the `CASE` function to produce equi-width bands based on `value`.

- **Banding by rank** - this divides values into groups according to their `rank`, (also known as **equi-height** bands).

 Here, the function divides the number of values in the partition by the number of bands, which gives the number of values in each band.

 An equal number of values are then placed in each band. For example, if we have 100 values and divide them into four equi-height bands, each band contains 25 values.

Use the `NTILE` function to produce equi-height bands based on `rank`.

A.5.5.2 Producing equi-width Bands (1)

This example divides Sales figures into bands according to their `value`, (also known as equi-width bands).

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000, Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Sales Bands</td>
</tr>
<tr>
<td>Calculation</td>
<td><code>GREATEST(1,4-FLOOR((Sales SUM-Min Sales for Region)/GREATEST(1,FLOOR((Max Sales for Region-Min Sales for Region+1)/4))))</code></td>
</tr>
</tbody>
</table>
A.5.5.3 Producing equi-width Bands (2)

This example creates the same results as the example in "Producing equi-width Bands (1)", except that it uses a CASE statement rather than the GREATEST function. Again, the example divides Sales figures into bands according to their value, using a CASE function, (see also "Producing equi-width Bands (1)").

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000, Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Sales Bands 2</td>
</tr>
<tr>
<td>Calculation</td>
<td>CASE WHEN Sales SUM < Q1 THEN 4 WHEN Sales SUM < Q2 THEN 3 WHEN Sales SUM < Q3 THEN 2 WHEN Sales SUM >= Q3 THEN 1 END</td>
</tr>
</tbody>
</table>
| Additional Calculations Required | MAX Sales = MAX(Sales SUM) OVER(PARTITION BY Year)
 | MIN Sales = MIN(Sales SUM) OVER(PARTITION BY Year)
 | Range = (MAX Sales - MIN Sales)/4
 | Q1 = MIN Sales + Range
 | Q2 = MIN Sales + (Range*2)
 | Q3 = MAX Sales - Range |
A.5.5.4 Producing equi-height Bands

This example assigns a set of sales figures into two equi-height Bands.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>This function uses a series of IF statements in the form of a CASE function to assign sales figures into bands, (see Band Ranges below).</td>
</tr>
<tr>
<td></td>
<td>Band Ranges</td>
</tr>
<tr>
<td></td>
<td>MAX Sales ($45,750)</td>
</tr>
<tr>
<td></td>
<td>Q3 ($36,255.75)</td>
</tr>
<tr>
<td></td>
<td>Q2 ($26,753.50)</td>
</tr>
<tr>
<td></td>
<td>Q1 ($17,251.75)</td>
</tr>
<tr>
<td></td>
<td>MIN Sales ($7,749)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
<th>Year</th>
<th>Region</th>
<th>City</th>
<th>Sales SUM</th>
<th>Sales Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>Central</td>
<td>Cincinnati</td>
<td>$45,750</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Louisville</td>
<td>$35,896</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St. Louis</td>
<td>$22,041</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minneapolis</td>
<td>$18,500</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nashville</td>
<td>$10,345</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dallas</td>
<td>$7,749</td>
<td>4</td>
</tr>
</tbody>
</table>

A.5.6 Windowing Function Examples
A.5.6.1 About Windowing

Windowing functions are used to compute aggregates using values from other rows. For example, cumulative, moving, and centered aggregates.

Two common types of windowing are:

- **Windowing with logical offsets** - here, the offset is based on a value relative to an existing value, e.g. three months preceding a date value.

 For example, if we have a list of monthly sales figures, a logical window could compute a moving average of the previous three months, (inclusive of the current month).

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales</th>
<th>Rolling average</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>10,000</td>
<td>-</td>
</tr>
<tr>
<td>February</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>March</td>
<td>40,000</td>
<td>23,333</td>
</tr>
<tr>
<td>June</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>July</td>
<td>10,000</td>
<td>15,000</td>
</tr>
<tr>
<td>November</td>
<td>30,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>

When calculating the average, the calculation assumes a NULL value for months missing from the list. In the example, the three-month moving average for November assumes NULL values for the missing months September and October.

- **Windowing with physical offsets** - here, the offset is based on a value that is a specified number of rows from an existing value, e.g. three rows from the current item.

 For example, if we have a list of monthly sales figures, a physical window could compute a moving average of the previous three rows ignoring missing months.

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales</th>
<th>Rolling average</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>10,000</td>
<td>-</td>
</tr>
<tr>
<td>February</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>March</td>
<td>40,000</td>
<td>23,333</td>
</tr>
<tr>
<td>June</td>
<td>20,000</td>
<td>26,666</td>
</tr>
<tr>
<td>July</td>
<td>10,000</td>
<td>23,333</td>
</tr>
<tr>
<td>November</td>
<td>30,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>

When calculating the average, the calculation ignores months missing from the list. In the example, the three-month moving average for November uses June, July, and November in the calculation.

A.5.6.2 Calculate a three month moving sales average

This example uses a logical window to calculate a moving three month Sales average.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000, Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Sales Bands 3</td>
</tr>
</tbody>
</table>
A.5.6.3 Show the cumulative values of sales

This example uses a physical window to calculate the cumulative value of sales.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation</td>
<td><code>NTILE(2) OVER(PARTITION BY Year, Region ORDER BY Sales SUM DESC)</code></td>
</tr>
<tr>
<td>Notes</td>
<td>Using the Central Region and Year 2000 as an example, this function takes the number of values (which is six) and divides it by two, giving three values per Band. It then takes the list of values ordered by Sales SUM and places values one, two, and three in Band 1, values four, five, and six in Band 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Region</td>
</tr>
<tr>
<td>2000</td>
<td>Central</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5.7 Reporting Function Examples

A.5.7.1 About Reporting Functions

Reporting functions are used to compute aggregates.

A.5.7.2 Calculate annual sales by Year

This example calculates annual sales by Year.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Cumulative Total</td>
</tr>
<tr>
<td>Calculation</td>
<td><code>SUM(Sales SUM) OVER(ORDER BY Sales SUM DESC ROWS UNBOUNDED PRECEDING)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Region</td>
</tr>
<tr>
<td>2000</td>
<td>Central</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-12 Oracle Business Intelligence Discoverer Desktop User's Guide
A.5.7.3 Calculate annual sales by region

This example calculates the total annual sales by Year and Region.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Annual Sales by Region</td>
</tr>
<tr>
<td>Calculation</td>
<td>SUM(Sales SUM) OVER(PARTITION BY Year, Region ORDER BY Year, Region)</td>
</tr>
<tr>
<td>Display Data</td>
<td>Year</td>
</tr>
<tr>
<td>2000</td>
<td>Central</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>East</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>West</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5.7.4 Calculate percentage of annual sales by Region

This example calculates the percentage of annual sales per Region for each City in each Year.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Annual Sales by Region</td>
</tr>
<tr>
<td>Calculation</td>
<td>SUM(Sales SUM) OVER(PARTITION BY Year, Region ORDER BY Year, Region)</td>
</tr>
<tr>
<td>Display Data</td>
<td>Year</td>
</tr>
<tr>
<td>2000</td>
<td>Central</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>East</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>West</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.5.7.5 Calculate sales as a percentage of total Sales

This example calculates sales as a percentage of total Sales.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Region, City, Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year, Region, % of total Sales</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Year = 2000</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>% of total Sales</td>
</tr>
<tr>
<td>Calculation</td>
<td>RATIO_TO_REPORT(Sales SUM) OVER() *100</td>
</tr>
<tr>
<td>Display Data</td>
<td></td>
</tr>
</tbody>
</table>

A.5.8 Lag/Lead Function Examples
A.5.8.1 About Lag/Lead Functions
LAG and LEAD functions are typically used to compare values in different time periods. For example, compare sales figures in 2000 with sales figures in 2001.

- **LAG** - provides access to more than one row of a table at the same time without a self-join.
- **LEAD** - provides access to a row at a given offset after the current position.

A.5.8.2 Compare sales figures across time
This example compares sales figures across time.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Previous Year</td>
</tr>
<tr>
<td>Calculation</td>
<td>LAG(Sales SUM,1) OVER(ORDER BY Year)</td>
</tr>
<tr>
<td>Notes</td>
<td>Because there are no comparative figures for 1998, the Previous Year value for 1998 is blank.</td>
</tr>
</tbody>
</table>

Display Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales SUM</th>
<th>Previous Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>$618,482</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>$739,838</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>$472,902</td>
<td></td>
</tr>
</tbody>
</table>

A.5.8.3 Calculate sales growth across time
Using the comparative sales figures from example 11.8.2, this example calculates the sales growth across time.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Growth</td>
</tr>
<tr>
<td>Calculation</td>
<td>(Sales SUM-Previous Year)*100/Previous Year</td>
</tr>
<tr>
<td>Additional Calculations Required</td>
<td>Previous Year = LAG(Sales SUM,1) OVER(ORDER BY Year)</td>
</tr>
<tr>
<td>Notes</td>
<td>Because there are no comparative figures for 1998, the Previous Year value for 1998 is blank.</td>
</tr>
</tbody>
</table>

Display Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales SUM</th>
<th>Previous Year</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>$618,482</td>
<td>$618,482</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>$739,838</td>
<td>$618,482</td>
<td>20.25</td>
</tr>
<tr>
<td>2000</td>
<td>$472,902</td>
<td>$739,838</td>
<td>-36.03</td>
</tr>
</tbody>
</table>
A.5.8.4 Rank sales growth

Using the comparative sales figures from examples A.2.8.2 and A.2.8.3, this example ranks sales growth by year.

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Sales SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year</td>
</tr>
<tr>
<td>Conditions</td>
<td>Department = Video Sale OR Department = Video Rental Region = Central</td>
</tr>
<tr>
<td>Calculation Name</td>
<td>Rank Growth</td>
</tr>
<tr>
<td>Calculation</td>
<td>RANK() OVER(ORDER BY Growth DESC)</td>
</tr>
<tr>
<td>Additional Calculations Required</td>
<td>Previous Year = LAG(Sales SUM,1) OVER(PARTITION BY 'Year' ORDER BY 'Year') Growth = (Sales SUM-Previous Year)*100/Previous Year</td>
</tr>
<tr>
<td>Notes</td>
<td>Because there are no comparative figures for 1998, the Previous Year and Growth values for 1998 are blank and the Rank Growth is calculated as ‘1’.</td>
</tr>
<tr>
<td>Display Data</td>
<td></td>
</tr>
</tbody>
</table>

A.5.9 Statistical Function Examples

A.5.9.1 About Statistics Functions

Statistics functions are used to compute covariance, correlation, and linear regression statistics. Each function operates on an unordered set. They also can be used as windowing and reporting functions.

A.5.9.2 Calculate linear regression

This example computes an ordinary least-squares regression line that expresses the Profit SUM per Month as a linear function of its Sales SUM. The following functions are used:

- SLOPE - slope of determination of the regression line
- INTERCEPT - intercept of determination of the regression line
- REGR_R2 - coefficient of determination of the regression line
- REGR_COUNT - number of items
- REGR_AVGX - average salary
- REGR_AVGY - average bonus

<table>
<thead>
<tr>
<th>Workbook options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Items</td>
<td>Video Analysis Information: Year (Calendar Year), Month (Calendar Month), Sales SUM, Profit SUM</td>
</tr>
<tr>
<td>Sort Order</td>
<td>Year</td>
</tr>
</tbody>
</table>
A.6 More about the Analytic Function Template

When you paste a new Analytic Function into a Calculation box, Discoverer Desktop provides the following generic template:

\[
\text{OVER \ (PARTITION BY expr1 ORDER BY expr2)}
\]

The expressions are used as follows.

- **OVER** - indicates that the function operates on a query result set, after the other query clauses have been applied, (such as FROM, WHERE, HAVING etc.
- **PARTITION BY** - partition (or group) the query results set. E.g. PARTITION BY ‘Region’.
- **ORDER BY** - specify how the results set is logically ordered. E.g. ORDER BY ‘Sales SUM’.

For more information about Oracle expressions, refer to "Getting More Information".

A.7 Analytic Functions and Sequencing

When you use Analytic Functions in Conditions, the way that you combine them with non-Analytic Functions affects the data returned by the query. The following sequencing rules apply:

- Where Conditions contain only non-Analytic functions, these are applied before Conditions that contain Analytic functions.
In the example above, the ‘Region = ‘Central’ condition is applied first, then the Rank is computed, then the ‘Rank <= 3’ condition is applied, (which contains an Analytic function).

- Where Conditions contain a combination of non-Analytic functions and Analytic functions, the Analytic functions are applied before the non-Analytic functions.

In the example above, the Rank is evaluated, then the ‘Rank <= 3’ condition is applied, then the ‘Region = ‘Central’ condition is applied.

To illustrate how sequencing affects the data returned by a query, consider the following two scenarios.

In the first scenario above, we apply two simple Conditions: Region = ‘Central’, and Rank <= 3 (where Rank is an Analytic Function). The Region = ‘Central’ condition is applied first, then Rank <= 3. Therefore, only Sales figures for the Central Region that have a ranking of three or less are included in the Results Set.

In the second scenario above, we apply a single advanced Condition: Region = ‘Central’ AND Rank <= 3, (where Rank is an Analytic Function). The Rank <= 3 condition is applied first, then the Region = ‘Central’ condition. Therefore, only figures in the Central Region that have an overall ranking of three or less are included in the Results Set.
This Appendix contains the following sections:

- "Supported Features"
- "Prerequisites"
- "Connect dialog settings for Oracle Applications Users"

B.1 Supported Features

The following Oracle Applications features are supported by Discoverer Desktop:

- Access to Oracle Applications databases
 (using Applications user names, passwords and responsibilities)
- Multiple Organizations

These features are only available when Discoverer Desktop is running against an Oracle Applications database (Applications Mode).

B.2 Prerequisites

To connect as an Oracle Applications user (Applications Mode), you need the following:

- Oracle Applications installed.
 - Oracle Applications must be installed before Discoverer Desktop can be used in Applications Mode.
- Your Discoverer Desktop Connect dialog configured to allow connection to Oracle Applications EULs, (see "Configuring the Oracle Applications user Connect dialog").
- An Oracle Applications version supported by Discoverer Desktop. Supported version are:
 - Release 10.7 (SmartClient and Character mode)
 - Release 11
 - Release 11.5

B.3 Connect dialog settings for Oracle Applications Users
B.3.1 Before you start

When you connect to Discoverer Desktop as an Oracle Applications User, the Connect dialog prompts you to enter your Oracle Applications connect details, (see Status box in Figure B–1).

If Discoverer Desktop is not configured to use Oracle Applications EULs, you need to re-configure your Connect dialog, (see "Configuring the Oracle Applications user Connect dialog").

Figure B–1 Discoverer Desktop Connect dialog for Applications Users only

Note: An Oracle Applications User check box appears beneath the Connect box when Discoverer Desktop is configured to use both standard EULs and Oracle Applications EULs, (see "Connecting to Discoverer Desktop as an Oracle Applications User").

B.3.2 Connecting to Discoverer Desktop as an Oracle Applications User

Once you have configured Discoverer Desktop to use Oracle Applications EULs, (see "Before you start"), connect to Discoverer Desktop as follows:

1. Enter your Oracle Applications Username, Password, and Connect database name given to you by your Discoverer manager.

Figure B–2 Discoverer Desktop Connect dialog with an Applications Users check box

Note: The Oracle Applications User check box appears beneath the Connect box when Discoverer Desktop is configured to use both standard EULs and Oracle Applications EULs, (see “Configuring the Oracle Applications user Connect dialog”).
2. If the Oracle Applications User check box is displayed beneath the Connect box, make sure that you select the Oracle Applications User check box.

Note: The Oracle Applications User check box is displayed when Discoverer Desktop is configured to use both Oracle Applications EULs and standard Discoverer EULs, (see also "Configuring the Oracle Applications user Connect dialog").

3. Click Connect.

 The Choose a Responsibility dialog displays a list of Responsibilities that are defined. If there is more than one Responsibility defined, you must choose one assigned to you by your Oracle Administrator.

Figure B–3 The Choose a Responsibility dialog

4. Select a Responsibility from the list, then click OK.

B.3.3 Configuring the Oracle Applications user Connect dialog

Before you can connect to Discoverer Desktop as an Oracle Applications User, you have to configure the DiscovererDesktop Connect dialog, as follows:

1. Select Tools | Options from the main menu to display the Options dialog:
2. Select one of the following options:

- **Connect to applications EULs**
 Choose this option to allow you to connect to Oracle Applications EULs, but not standard Discoverer EULs.

- **Connect to both standard and applications EULs**
 Choose this option to allow you to connect to both Oracle Applications EULs and standard Discoverer EULs.
 When you use this option, an extra check box is displayed on the Connect dialog called **Oracle Applications User**, which you select when you are connecting to an Applications EUL.

 If you wish to change the default Gateway User ID and Foundation Name settings, see "Entering details into the fields GWYUID/Password and FNDNAM".

3. Click **OK**.

B.3.3.1 Entering details into the fields GWYUID/Password and FNDNAM

When you connect as an Oracle Applications User, you may wish to change the default **Gateway User ID** and **Foundation Name**:

- **Gateway User ID (GWYUID)/Password**
 This field enables you to record your Gateway User ID and Password. (The default values ‘applsyspub/pub’ is used if nothing is entered here.)

- **Foundation Name (FNDNAM)**
 This field enables you to enter the Foundation Name. (The default value ‘apps’ is used if nothing is entered here.)

Note: See your Discoverer manager for **Gateway User ID** and **Foundation Name** details.

B.3.4 Configuring Discoverer Desktop to use standard EULs

To configure Discoverer Desktop to use only standard EULs, configure the Connect dialog, as follows:
1. Select **Tools | Options** from the main menu to display the Options dialog:

![Figure B–5 The Options dialog]

2. Select the **Connect to standard EULs** option.
3. Click **OK**.

B.3.5 Connection Configuration

When connecting to Discoverer Desktop as an Oracle Applications user, you can edit your shortcut properties to enable you to log in automatically in various ways.

B.3.5.1 Editing your Discoverer Desktop shortcut icon

1. On your Windows desktop, right-click your Discoverer Desktop icon.
2. Click **Properties**.
3. Choose the **Shortcut** tab.
4. Type in your changes to the **Target** box.

Here are three examples that show how your Discoverer Desktop shortcut can be configured:

B.3.5.2 Specify a basic Connect

1. Edit your Discoverer Desktop shortcut icon, (see "Editing your Discoverer Desktop shortcut icon").
2. Enter the **Target** string as follows:

 dis51user.exe /APPS_GWYUID GATEWAY_ID /APPS_FNDNAM FOUNDATION_ID /APPS_USER

 where:

 GATEWAY_ID is your Gateway User ID, (this must be in upper-case).
 FOUNDATION_ID is your Foundation name, (this must be in upper-case).
Here, the /APPS_USER argument specifies that Discoverer Desktop should connect using Oracle Applications usernames. In the Discoverer Desktop Connect dialog, the user enters their username as a concatenation of the Applications username and responsibility, separated by a colon character (:). The Password and Database string are entered as normal. For example:

Username: jchung:Purchasing Manager
Password: password
Database: database_name

B.3.5.3 Specify a Connect with an automatic Responsibility
1. Edit your Discoverer Desktop shortcut icon, (see "Editing your Discoverer Desktop shortcut icon").
2. Enter the Target string as follows:
 dis51usr.exe /APPS_GWYUID GATEWAY_ID /APPS_FNDNAM FOUNDATION_ID /APPS_USER /APPS_RESPONSIBILITY RESPONSIBILITY
 where:
 GATEWAY_ID is your Gateway User ID, (this must be in upper-case).
 FOUNDATION_ID is your Foundation name, (this must be in upper-case).
 RESPONSIBILITY is your Responsibility, (this is case insensitive).

Here, the /APPS_RESPONSIBILITY argument specifies that Discoverer Desktop should connect with the Responsibility defined. In the Discoverer Desktop Connect dialog, the user enters in their Username, Password, and Database as normal. For example:

Username: jchung
Password: password
Database: database_name

B.3.5.4 Bypass the Connect dialog with an automatic Connect
1. Edit your Discoverer Desktop shortcut icon, (see "Editing your Discoverer Desktop shortcut icon").
2. Enter the Target string as follows:
 dis51usr.exe /APPS_GWYUID GATEWAY_ID /APPS_FNDNAM FOUNDATION_ID /APPS_USER /CONNECT username:responsibility/password@database
 where:
 GATEWAY_ID is your Gateway User ID, (this must be in upper-case).
 FOUNDATION_ID is your Foundation name, (this must be in upper-case).
 username is your Username, (this is case insensitive).
 responsibility is your Responsibility, (this is case insensitive).
 password is your Password, (this is case insensitive).
 database is your Database, (this is case insensitive).

Here, the Discoverer Desktop Connect dialog is bypassed and a connection is made automatically.
Discoverer Desktop supports OLE automation.

C.1 Discoverer OLE Support
Discoverer Desktop supports OLE automation.
axis
One of the three directions of a sheet. Items that you choose for a query appear in the axes. See: top axis, side axis, page axis, axis item.

axis item
An item appearing in either the top axis, side axis, or page axis of a sheet. In a table, items can appear only in the top axis or page axis; in a crosstab, items can appear in any axis. See: axis, data item.

business area
A set of related information with a common business purpose, organized into folders. Defined in the End User Layer using Discoverer Administrator. See: End User Layer, folder.

calculation
A mathematical formula performed on one or more items. Discoverer Desktop enables you to build complex calculations.

collapse
To remove all levels of related items from below a selected item. In effect, to undo a drill-down. See: drill down.

conceptually identical object
Conceptually Identical Objects are elements in different EULs that refer to the same business objects, (e.g., folders, item-classes, hierarchies). When identifying Conceptually Identical Objects, Discoverer Desktop uses either Headings or Identifiers to match elements.

condition
Criteria for filtering data displayed in a sheet. Discoverer Desktop enables you to combine several conditions.

crosstab
A sheet layout that arranges items in a matrix of rows and columns. Items appear in both the top and side axes. Use a crosstab to display summary information and show how one item relates to another, such as sales by region by month. A crosstab is sometimes called a matrix. See: table.

database
A collection of related data organized for quick access.
data item
The item expressing the relationship between a top axis item and a side axis item. Only items which have a data item in common can appear opposite each other in the top and side axes. Applies only to crosstab-layout sheets. A data item is sometimes called a measure. See: axis item, datapoint.

datapoint
The value of a data item, as displayed in a cell of a sheet. A datapoint reflects the relationship between intersecting axis items in a crosstab. See: data item.

drill
To expand an item to include items related to it. Discoverer Desktop may re-query the database. See: drill down, drill up.

drill down
To expand an item to include related items lower than it in the hierarchy. Discoverer Desktop may re-query the database. See: drill, drill up, collapse.

drill up
To expand an item to include the next related item above it in the hierarchy. Discoverer Desktop may re-query the database. See: drill, drill down, collapse.

End User Layer™
A layer of information that Discoverer Desktop uses to hide the complexities and details of the underlying database. The End User Layer makes it easier and faster to create queries because it organizes the data to reflect particular business areas. The same data can also be used for more than one business situation. The End User Layer is defined using Discoverer Administrator. See: database, business area.

exception
Formatting that highlights data meeting certain criteria you define. For example, you can highlight names of sales people exceeding their quotas in blue. Discoverer Desktop enables you to display several exceptions at once.

folder
A collection of related items within a business area. Folders are defined in the End User Layer using Discoverer Administrator. See: item, business area.

group sort
Formatting that suppresses duplicate values for an item. Applies only to table-layout sheets. For example, if you group sort an item called Region, information will appear grouped under such headings as East, West, North, and South. A group sort is sometimes called break format.

hierarchy
The relationship among items. You can drill up or drill down to related items.

identifier
Identifiers are unique names that Discoverer Desktop uses to identify business area objects (e.g. folders, items, calculations). When matching elements common to different EULs, Discoverer Desktop uses identifiers to locate elements in different EULs that refer to the same business objects (also known as Conceptually Identical Objects).
For example, a folder named ‘Sales’ in EUL ‘A’ may refer to the same folder named ‘Sales Figures’ in EUL ‘B’. Both folders have the same identifier and can therefore be identified as referring to the same folder.

item

A particular category of information within a folder, defined in the End User Layer. Items you choose for a query appear in the top axis and side axis of the resulting sheet. See: folder.

materialized view

A Materialized View is a summary mechanism used by Oracle Enterprise Edition databases. Materialized Views pre-compute and store aggregated data for use in SQL queries.

page axis

The axis that displays a page item. The page axis appears above the top axis.

page item

An item that enables you to view data from a particular perspective. Page items apply to a whole sheet. When you create a page item from an axis item or data item, one value appears at a time, such as 1997 for Year. You change the value of the page item—such as 1997, 1998, or 1999—by choosing from the list of available values in the Page item box. Items can be dragged to the Page item box from either the top axis or the side axis.

pivot

To drag an item from one axis to the other (crosstabs only), or from an axis to the Page item box. A side axis item becomes a top axis item or a page item or vice versa. Pivoting enables you to display the data more compactly and show relationships between items more clearly.

query

A search that retrieves information from a database according to criteria you specify. The criteria include items, layout, formatting, conditions, and calculations. Results of a query are displayed in a sheet.

query prediction

An Discoverer Desktop feature that gives an estimate of the time required to retrieve the information in a query. The query prediction appears before the query begins, so you can cancel the query.

sheet

A tab in the workbook window. A sheet displays the results of one or more queries.

side axis

The axis of a sheet that runs vertically along the left side of the sheet. Applies only to a crosstab. See: axis, axis item.

sort

To specify how data in an item should be ordered. For example, you can sort an item from low to high (A–Z) or from high to low (Z–A).
SQL

Acronym for Structured Query Language, the language used to define and manipulate data in a database. You can view the current SQL code for a particular sheet by choosing SQL Inspector from the View menu.

table

A sheet layout that arranges items in columns. Items appear in the top axis. Use a table to list all information that fits the query criteria, such as sales transactions for the last month. See: crosstab.

top axis

The axis of a sheet that runs horizontally along the top of the sheet. See: side axis, axis item.

total

The result of a calculation that summarizes data in a sheet. Examples of totals are minimum, maximum, average, and sum.

workbook

One or more sheets created and saved together. Each sheet is displayed in a separate tab in the workbook.
Symbols

!= operator in conditions, 5-28
& (ampersand) in worksheet titles, 2-19
+ (plus) sign in dialog boxes, 7-3
< operator in conditions, 5-27
<= operator in conditions, 5-27
<> operator in conditions, 5-27
= operator in conditions, 5-27
> operator in conditions, 5-27
>= operator in conditions, 5-27

Numerics

3D graphs, 3-11
3D View command, 3-12

A

access rights, 7-1
accessing data, 1-4
accessing workbooks, 6-18
active folder, 7-3
Active Only option, 5-3, 5-25
adding graphic bars, 2-16, 2-17
adding graphics to worksheets, 2-20, 8-4
adding new items to layouts, 4-8, 7-10
adding reports, 6-1
addition, 5-13
administrators, 1-5, 1-6
Advanced button (Conditions), 5-28, 8-10
aggregations icon, 7-4
aligning
 bitmaps in titles, 2-21
 report headers/footers, 6-4
 text in column headings, 2-15
All Items option, 5-3, 5-25
ampersand (&) in worksheet titles, 2-19
analysis bar, 2-2
analysis tools
 applying to data, 5-1 to 5-5
 creating definitions, 5-3
 deleting definitions, 5-4
 editing definitions, 5-4
 exporting and, 6-9
 turning definitions on/off, 5-2
types listed, 5-1
viewing definitions, 5-2
Analytic Functions, A-3, A-16
 and Sequencing, A-17
calculating cumulative values, A-12
CASE, A-8
categories, A-3
Equi-height bands, A-8
equi-height bands, A-10
generic template, A-17
in Conditions, A-17
INTERCEPT, A-16
Lag/Lead, A-15
LEAD, A-15
ORDER BY expression, A-17
OVER expression, A-17
PARTITION BY expression, A-17
RANK(), A-5, A-6
Ranking, A-5
RATIO_TO_REPORT, A-14
REGR_AVGX, A-16
REGR_COUNT, A-16
REGR_R2, A-16
Reporting, A-12
SUM, A-12, A-13
 Windowing with logical offsets, A-11
 Windowing with physical offsets, A-11
analyzing data, 2-5, 4-1, 5-1
AND operator, 8-10
and Responsibilities, 6-15
applications, 6-9
Apply group sort icon, 4-27
applying formats, 2-16
arrows as cursors, 2-10
ascending sort order, 4-23
assigning workbooks, 6-19
associating data with workbooks, 2-3
attaching to databases, 1-6
attachments, 6-8
audio files, 8-15
Auto Size command, 2-14
Average option, 5-13
averages, 5-10, 5-13
axes labels (graphs)
 displaying, 3-3, 3-8
 formatting, 3-5
axis item icon, 7-4
axis item markers, 2-8, 2-9
 selecting, 2-10
axis item value icon, 7-4
axis items, 7-4
crosstabs, 2-5
drilling into, 4-16, 4-17
drilling through sub-levels on, 4-17
 moving data among, 4-1, 4-5
 selecting, 2-8 to 2-9, 2-10
 sorting across, 4-29
 sorting on, 4-27, 4-28
 viewing values, 7-4
 workbook window, 2-3

background colors
column headings, 2-15
 worksheet titles, 2-17
Banding
 Banding by rank, A-8
 Banding by value, A-7
 CASE, A-8
 with Analytical Functions, A-7
bar formats
graphs, 3-4
tables, 2-16
BETWEEN operator, 5-28
bitmaps, 2-20, 8-4
Boolean operators, 8-10
Business area icon, 7-3
business areas, 1-4
displaying, 7-3
 selecting items, 7-2, 7-4
buttons
 Graph toolbar, 3-3
 Print Preview window, 6-6
 workbook window, 2-2
 bypassing the Connect dialog, B-6

C
 cache, 8-16
 Calculation dialog box, 8-11
 Calculation Examples, A-1
calculations, 4-8, 5-13, 5-21
 creating, 8-6 to 8-9
 creating for conditions, 5-26
 displaying results, 8-6
 editing in new workbooks, 7-12
 exporting and, 6-9
 selecting for new workbooks, 7-9
 standard syntax, 8-9, 8-13, 8-14, 8-17
 viewing existing, 8-8
 Calculations command, 8-7
 Calculations dialog box, 8-8
 canceling changes, 1-14
case-sensitive text filters, 5-29
cell spacing, 4-23
cells
 drilling and, 4-18
 selecting, 2-6, 2-7
changing data, 1-14
changing data formats, 8-15
changing graphs, 3-6 to 3-7
changing pages
 multi-page layouts, 2-11
 workbooks, 1-13
changing text items, 2-14, 2-18
clock icon, 6-16
Close command, 1-14
closing Print Preview window, 6-7
closing workbooks, 1-14
Collapse command, 4-15
colors
column headings, 2-15
graphs, 3-3, 3-13
 customizing, 3-14 to 3-15
 worksheet titles, 2-17
column headings, 2-3, 2-13, 5-22
 aligning text, 2-15
 display options, 8-15
 drilling and, 4-17
 editing text, 2-14
 formatting caution, 2-14
 reformatting on crosstabs, 2-15
 reformatting on tables, 2-14 to 2-15
 selecting, 2-7
 wrapping text in, 2-15
column markers, 2-7, 2-9
columns, 2-4, 7-4
displaying text, 2-13
drilling multiple, 4-14
 moving, 2-12, 4-25
 group sorts and, 4-26
 pivoting, 4-1, 4-3, 4-4
 reformatting data, 2-15
 removing from sorts, 4-25
 resizing, 2-13 to 2-14
 automatically, 2-14
 selecting, 2-7
 selecting items, 2-6
 sorting on two, 4-25
 Columns Width command, 2-13
 Command Line Interface, 8-22
 command-line options, 8-16
 company logos, 2-20
 comparisons, 1-10, 2-16, 4-1
 complex calculations, 8-6
 complex conditions, 8-10
 condition
 parameter placeholder, 8-2
 condition icon, 7-4
 condition operators, 5-27
 conditions, 4-8, 5-23 to 5-30
 adding descriptions to, 5-26
 applying, 5-24
 assigning data items to, 5-26, 5-27
 changing on new worksheets, 7-11
conflicting, 5-24
creating advanced, 8-10 to 8-12
creating definitions for, 5-25, 5-28
deleting definitions, 5-25, 5-29
editing definitions, 5-29
enabling/disabling definitions, 5-24, 5-25
exceptions vs., 5-23
exporting and, 6-9
naming, 5-26
nesting, 5-26
removing, 5-25
selecting, 8-10
selecting for new worksheets, 7-7
selecting multiple values for, 8-11
viewing definitions for specific items, 5-24

Conditions command, 5-24
Conditions dialog box, 5-24
Configuring Discoverer Desktop to use standard EULs, B-4
Configuring the Oracle Applications user Connect dialog, B-3
Connect to Discoverer dialog box, 1-7
connecting to databases, 1-6
Copy Graph to Clipboard button, 3-3
copying conditions, 8-10
copying SQL statements, 8-17
correlated items, 8-13, 8-14
correlation, A-16
Count All Rows command, 8-1
Count Distinct option, 5-13
Count option, 5-13
covariance, A-16
Create Calculation option, 5-26
Create Subquery dialog box, 8-12
creating calculations, 8-6 to 8-9
creating graphs, 3-2, 3-3 to 3-6
creating reports, 6-1
creating workbooks, 1-7
creating worksheets and workbooks, 7-1, 7-1 to 7-10
arranging layouts, 7-5
choosing data items, 7-3, 7-4
optional steps, 7-1
selecting conditions, 7-7
selecting display type, 7-2
sorting data, 7-8
specifying calculations, 7-9
crosstabs, 1-6, 2-4, 6-1
arranging items on new, 7-6
data points and, 2-3
delineating data, 2-16, 4-23
drilling and, 4-18
multiple columns or rows, 4-14, 4-15
procedure described, 4-14
skipping hierarchical levels, 4-16, 4-17
duplicating, 4-7
editing layouts, 7-10, 7-11
getting data for new, 7-4
item markers and, 2-9, 2-10
larger than a page, 6-3
overview, 2-5
pivoting items, 4-5
reformatting column headings, 2-15
reformatting data, 2-16
scaling, 6-3
selecting as display type, 7-2
selecting items, 2-6, 2-7, 2-8
sorting data, 4-27 to 4-30
across axes, 4-29
adding data points, 4-30
defaults, 4-28
group sorts and, 4-25
restoring previous state, 4-28
with multiple pages, 2-5, 2-11
current date, 2-18, 6-4

data, 2-3
accessing, 1-4
adding to graphs, 3-6
aggregating, 7-4
analyzing, 2-5, 4-1, 5-1
canceling changes, 1-14
comparing, 1-10, 2-16, 4-1
delineating with bars, 2-16, 4-23
displaying specific items, 5-23, 8-10
filtering, 5-23, 7-4, 8-10
finding exceptions, 5-5 to 5-10
defining item for, 5-7
getting details, 4-8
pivoting, 2-10, 4-1 to 4-8
on crosstabs, 4-5
reformatting, 2-15
replacing, 4-20
retrieving, 1-6, 1-9, 1-13
for new crosstabs, 7-4
saving changes to, 1-14
for new crosstabs, 7-4
selecting for drilling, 4-15
automatically, 4-17
in other sheets, 4-18
tables, 4-13
selecting for new worksheets, 7-2, 7-4
sorting, 4-8, 4-21 to 4-30
automatically, 4-26
crosstabs and, 4-27, 4-28, 4-30
data within, 4-23 to 4-25
date options, 4-23
in groups, 4-23, 4-25 to 4-26
on new worksheets or workbooks, 7-7 to 7-9, 7-12
subtotals and ungrouped, 4-26
totals for non-numeric, 5-14
updating, 8-2
viewing, 1-3, 1-5, 2-3, 2-10
Data command, 2-16
data points, 2-4
calculations and, 8-7
defined, 2-3
getting totals for, 5-14, 5-16
sorting, 4-30
databases, 1-3, 1-5, 2-1
connecting to, 1-6
loading, 1-7
non-Oracle, 1-12
saving workbooks with, 1-14
dates
adding to reports, 2-18, 6-4
setting for scheduled reports, 6-13
decimal places, 3-6, 5-17
default aggregate, 7-4
default formats, 2-12
Define Custom Colors option, 3-15
Delete button, 5-5
Delete command, 1-15
Delete Workbook from Database dialog, 1-16
deleting
analysis tool definitions, 5-4
items from workbooks and worksheets, 7-5
items on new worksheets, 7-10
sort columns, 4-25
workbooks, 1-15
descending sort order, 4-23
descriptions for workbooks, 1-12
designing reports, 6-2
dimensions, 2-4, 2-9
Discoverer Desktop
basic concepts, 1-1
running, 1-6
shortcuts, 2-21
disk cache, 8-16
display options, 8-15
display types, 2-3 to 2-5
, 7-2
displaying
business areas, 7-3
data, 1-3, 1-5, 2-3, 2-10
specific items, 5-23, 8-10
graph labels, 3-3, 3-8
graphs, 3-12
items in folders, 7-3
multi-page reports, 6-6
page headers/footers, 6-4
sorted data, 4-23
SQL statements, 8-17, 8-19
text, 2-13
workbooks, 1-10
worksheets, 1-13
distinct values, 5-13
distributing reports, 6-7 to 6-8
donut graphs, 3-10
double-headed cursors, 2-12
Drill command, 4-18
Drill dialog box, 4-18 to 4-19
opening, 4-18
drill options, 4-18, 4-20
from menus, 4-13
Drill Options dialog box, 4-20
drilling, 4-8 to 4-22
across worksheets, 4-18
automatically, 4-17
basic procedure described, 4-14
crosstabs and, 4-18
data out of sequence, 4-16, 4-17
display options, 4-20
tables and, 4-13, 4-14, 4-18
to related items, 4-16, 4-18, 4-19
drilling menus, 4-13
Duplicate as Table dialog box, 4-8
duplicate rows, 7-6
duplicate values, 4-30
duplicating tables and crosstabs, 4-7
E
Edit Calculation dialog box, 8-8
Edit Condition dialog box, 5-29
Edit Graph command, 3-6
Edit Parameter Values command, 8-4
Edit Sheet command, 7-10
Edit Sheet dialog box, 7-10
adding/removing items, 7-10
changing conditions, 7-12
changing layouts, 7-11
changing sorting preferences, 7-12
edit subquery, 8-14
Edit Title command, 2-17, 2-20, 2-21
Edit Title dialog box, 2-17, 2-18, 2-20
Insert button, 2-19
editing
analysis tool definitions, 5-4
column headings, 2-14
exception items, 5-9
graphs, 3-6 to 3-7
new worksheets and workbooks, 7-10 to 7-13
scheduled report settings, 6-17 to 6-18
worksheet titles, 2-18
editing subqueries, 8-12
e-mail, 6-7 to 6-8
adding attachments, 6-8
format options, 6-8
entering reserved words, 6-8
equality, 5-27
error messages, 6-18
EUL (End User Layer), 8-16
Excel tool, 6-11
Excel workbooks, 6-9, 6-11
Exception dialog box, 5-5, 5-6
exceptions, 5-5 to 5-10
conditions vs., 5-23
conflicts, 5-6
creating, 5-6 to 5-9
defining expressions, 5-7, 5-8
editing, 5-9
enabling/disabling, 5-6
formatting, 5-9
Exceptions command, 5-5
Exceptions dialog box, 5-6
opening, 5-5
Exceptions tool, 5-5
Execution Plan
 Materialized Views, 8-18
expanding items in dialog boxes, 7-4
expiration dates, 6-14
Export command, 6-9, 6-10
Export dialog box, 6-9
 for Oracle Reports, 6-10
Export SQL from a Workbook, 8-22
exporting reports, 6-9
exporting SQL statements, 8-17
expressions, 8-8
 defining for conditions, 5-27, 5-29, 8-10
 defining for exceptions, 5-7, 5-8
external applications, 1-3, 6-9

F
files, 8-15
filters, 5-23, 7-4, 8-10
Find button, 7-3
finding
 exceptions to data values, 5-8
 specific text items, 5-8
flattened SQL, 8-21
folders, 1-5
 active vs. unavailable, 7-3
 viewing items, 7-3
Folders icon, 7-3
fonts
 column headings, 2-15
 graphs, 3-5
 report headers/footers, 6-5
footers, 6-3 to 6-5
 adding text codes, 6-4
Format Data dialog box, 2-16
Format Heading dialog box, 2-14
Format Title dialog box, 2-18
formatting axes labels, 3-5
formatting bar, 2-2
 reformatting column headings, 2-14, 2-15
formatting options
 bitmaps, 2-21
 exceptions, 5-9
 percentages, 5-23
 totals and subtotals, 5-16
 worksheet titles, 2-17
formatting worksheets, 2-12, 2-21
 column headings, 2-14 to 2-15
 titles, 2-17
Foundation Name, B-4

G
Gateway User ID, B-4
Generate Label Automatically option, 5-16
Graph button, 3-2
Graph menu, 3-2
Graph window, 3-2
resizing, 3-9
Graph Wizard, 3-2, 3-3, 3-6
graphic bars, 2-16, 2-17
graphics, 2-20, 8-4
graphs, 3-1 to 3-15
 adding legends, 3-5
 adding patterns, 3-13, 3-14
 adding to worksheets, 3-2, 3-3 to 3-6
 color options, 3-13
 display options, 3-12
 distributing via e-mail, 6-7, 6-8
 modifying, 3-6 to 3-7
 plotting data on, 3-6
 printing, 3-3, 6-3
 removing patterns, 3-14
 resizing, 3-9
 rotating, 3-11
 z-axis, 3-12
selecting type, 3-3, 3-4, 3-7
updating, 3-6
visual enhancements, 3-10, 3-12
gridlines, 3-6, 8-15
group names, 4-23
group sorts, 4-23, 4-25 to 4-26
 automatic, 4-27

H
headers, 6-3 to 6-5
 adding text codes, 6-4
Headings command, 2-14, 2-15
Hi to Lo sort order, 4-23
hiding duplicate rows, 7-6
high values, 5-8, 5-13, 5-27
highlighting, 2-6
hints, 2-2
HKEY_CURRENT_USER - registry setting, 8-21
horizontal gridlines, 3-6

I
icons (New Sheet dialog), 7-3, 7-4
 See also tool bar
Import SQL command, 8-18
importing SQL, 8-17
importing SQL statements, 8-17
IN operator, 5-28
informational messages, 2-2
Inline Views, 8-21
Insert Data Point Name option, 5-16, 5-22
Insert Item Name option, 5-16, 5-22
Insert menu, 2-19
Insert Value option, 5-16, 5-23
IS NOT NULL operator, 5-28
IS NULL operator, 5-28
item handles, 4-28
item markers, 2-8, 2-9
 selecting, 2-10
items, 8-7
 adding new, 4-8, 7-10

Index-5
adding to printed reports, 6-3
arranging in layouts, 7-5 to 7-7
attaching to conditions, 8-12
deleting on new worksheets, 7-10
editing, 2-14, 2-18
expanding in dialog boxes, 7-4
formatting, 2-12, 2-21
pivoting on crosstabs, 4-5
pivoting on tables, 4-3, 4-4
removing from workbooks and worksheets, 7-5
selecting, 2-5
 in multiple positions, 2-6
selecting for exceptions, 5-7
selecting for scheduled reports, 6-13, 6-17
viewing conditions for specific, 5-24
viewing in folders, 7-3

J
join definitions - importing SQL, 8-17

L
labels, 5-15
 adding text codes
 percentages and, 5-22
 totals and subtotals, 5-15, 5-16
displaying on graphs, 3-3, 3-8
formatting graph axes, 3-5
generating automatically, 5-16
percentages columns, 5-22
removing text codes, 5-16, 5-23
wrapping text in, 5-16
Landscape mode, 6-3
large worksheets, 8-15
layout options, 8-15
layouts, 2-3 to 2-5
 arranging items, 7-5 to 7-7
 changing, 7-9, 7-11
Legend command, 3-8
legends, 3-2
 adding to graphs, 3-3
 displaying, 3-3, 3-8
LIKE operator, 5-27
linear regression, A-16
lines, 2-16, 4-23, 6-4
lists, 2-3, 4-21
Lo to Hi sort order, 4-23
loading databases, 1-7
logos, 2-20
Lotus 1-2-3 spreadsheet, 6-9
low values, 5-8, 5-13, 5-27

M
magnifying glass, 6-7
mailing lists, 2-3
main window, 2-1
margins, 6-5
Match Case option, 5-29
Materialized View, 8-18
mathematical functions
 selecting, 7-4
Maximum option, 5-13
memory cache, 8-16
menus, 2-2, 2-21
 drilling options, 4-13
metafiles, 6-8
Microsoft Excel workbooks, 6-9, 6-11
Minimum option, 5-13
Modify Graph button, 3-3, 3-7
Modify Graph dialog box, 3-7
monthly reports, 6-12
moving columns, 2-12, 4-25
 group sorts and, 4-26
moving data. See pivoting
 multi-dimensional crosstabs, 2-5
 multi-page crosstabs, 2-5
 changing pages, 2-11
 multi-page reports, 6-6
 multi-page tables, 2-4
 changing pages, 2-11
 multiple columns or rows
 drilling, 4-14, 4-15
 multiple workbooks
 opening, 1-10 to 1-11
 switching among, 1-10

N
nesting conditions, 5-26
New command, 7-2
New Condition dialog box, 5-25, 8-10
New Graph Type button, 3-3, 3-7
New Graph Type drop down list, 3-8
New Parameter command, 8-3
New Parameter dialog box, 8-3
new sheet
 for subqueries, 8-13
New Sheet command, 7-2
New Sheet dialog box, 7-2
 arranging items on layouts, 7-6
 icons described, 7-3
 moving items to Selected list, 7-5
 opening, 7-2
 selecting calculations, 7-9
 setting conditions, 7-7
 sorting data, 7-8
non-numeric data totals, 5-14
non-Oracle databases, 1-3, 1-12
NOT BETWEEN operator, 5-28
NOT IN operator, 5-28
NOT LIKE operator, 5-28
null values, 5-28
numbers, 2-3, 5-10
 adding graphic bars, 2-16, 2-17
 adding to new crosstabs, 7-4
 getting exceptions to, 5-8
 getting totals and subtotals for, 5-13, 5-14
 sorting, 4-21, 4-24, 4-25
numeric item icon, 7-4
OLE automation, C-1
OLE support in Discoverer Desktop, C-1
One Page button, 6-7
on-line transaction processing, 8-2
/open option, 8-16
Open command, 1-10
/open option, 8-16
Open Scheduled Workbook dialog box, 6-15
Open Workbook dialog box, 1-10
opening Scheduling Manager, 6-16
opening workbooks, 1-6, 1-7, 8-15, 8-16
multiple, 1-10 to 1-11
non-Oracle, 1-12
operator buttons, 8-8
operators, 8-4
Boolean, 8-10
conditional expressions, 5-27
Options button, 8-15
Options command, 8-15
Options dialog box, 8-15
Oracle, A-3
Oracle Applications
automatic Connect, B-6
choosing a Responsibility, B-3
configuring the Connect dialog, B-3
Connect dialog, B-2
correct to Discoverer Desktop, B-2
connection configuration, B-5
Foundation Name, B-4
Gateway User ID, B-4
Prerequisites, B-1
shortcut icon, B-5
supported features, B-1
Oracle Applications User, 6-15
Oracle Reports, 6-9 to 6-11
ordered lists, 4-21
Orientation option, 6-3
outlined cells, 2-6
/p <file> option, 8-16
page axis, 2-3
containing data, 2-3
changing pages, 2-11
page detail crosstab layouts, 2-5
changing pages, 2-11
page detail tabular layouts, 2-4
page headers and footers, 6-3 to 6-5
adding text codes, 6-4
page item marker, 4-4
page items
editing, 2-14
pivoting, 4-4
reformatting, 2-16
removing from layouts, 7-6
page numbers, 6-5
page orientation, 6-3
Page Setup command, 6-2
Page Setup dialog box, 6-2, 6-6
opening, 6-2
pagebreaks, 4-23
paint jar, 3-13
Parameter dialog box, 8-12
parameters, 8-5
adding to conditions, 8-12
attaching to conditions, 8-12
calculations and, 8-9
creating, 8-2, 8-4
defined, 8-2
defining default, 8-4
enabling/disabling, 8-4
entering multiple values in, 8-4, 8-5
naming, 8-4
selecting data items for, 8-4
viewing existing, 8-3
Parameters command, 8-3
Parameters dialog box, 8-3
passwords, 1-6
Pattern Editor, 3-14
patterns, 3-3
adding to graphs, 3-13, 3-14
customizing, 3-14
removing from graphs, 3-14
class tool, 3-14
Percentage dialog box, 5-20
Percentage of Grand Total option, 5-14
percentages, 5-14
creating definitions for, 5-20
editing definitions, 5-23
enabling/disabling definitions, 5-20
formatting options, 5-23
getting, 5-18
group sorts and, 4-26
not totaling 100%, 5-17
removing, 5-20
rounding and, 5-17
viewing definitions, 5-19
percentages columns
labeling, 5-22
Percentages command, 5-19
Percentages dialog box, 5-19
opening, 5-19
Percentages tool, 5-18
pie graphs, 3-10
pivoting, 2-10, 4-1 to 4-8
examples, 4-2, 4-2 to 4-3, 4-4
items on crosstabs, 4-5
items on tables, 4-3, 4-4
plus signs (+) in dialog boxes, 7-3
pointers
as arrows, 2-10
as double-headed lines, 2-12
as magnifying glass, 6-7
as paint jar, 3-13
as pencil, 3-14
item markers and, 2-10
page axis and, 2-10
pop-up menus, 2-21
Portrait mode, 6-3
preface
 intended audience, 0-ix
 introduction, 0-ix
Prepare Mail dialog box, 6-7
Preview button, 6-6
previewing reports, 6-6 to 6-7
Print button, 3-3
print options, 6-2, 6-6
Print Preview command, 6-6
Print Preview window, 6-6
 closing, 6-7
 moving through report pages, 6-6
printing, 2-9, 2-17
 from files, 8-16
 graphs, 3-3, 6-3
 large worksheets, 6-3
 reports, 4-23, 6-1
progressions, 4-1
prompts, 8-4
properties, 1-12 to 1-13
Properties command, 1-12
PT PrefaceTitle, 0-ix
Q
queries, 1-6, 1-13, 8-12
 running, 1-9
 running for all sheets, 8-16
query estimate dialog, 1-9
Query Governor, 8-15
R
RANK
 default ordering, A-5
 ordering by ASC, A-5
 ordering by DESC, A-5
RDF files, 6-10
rearranging columns, 2-12, 4-25
 group sorts and, 4-26
reference lines (graphs), 3-10
reformatting worksheets, 2-12, 2-21
 column headings, 2-14 to 2-15
 titles, 2-17
Refresh Sheet command, 1-14, 8-2
refreshing worksheets, 8-2
regrid, 8-21
registry settings, 8-21
removing items from workbooks and
 worksheets, 7-5
removing sort columns, 4-25
removing workbooks, 1-15
renaming workbooks, 1-14
reordering columns, 2-12, 4-25
 group sorts and, 4-26
replacing data, 4-20
report templates (Oracle Reports), 6-10
reports, 1-3, 6-1
adding date/time entries, 2-18, 6-4
adding headers/footers, 6-4
designing page layouts, 6-2
displaying two pages side-by-side, 6-7
distributing with e-mail, 6-7 to 6-8
exporting, 6-9
previewing, 6-6 to 6-7
printing, 4-23, 6-1, 6-6
removing headers/footers, 6-4
running scheduled, 6-12 to 6-18
saving, 6-9
setting margins, 6-5
unscheduling, 6-17
viewing multi-page, 6-6
reserved words
 enter into parameter fields, 8-5
resizing columns, 2-13 to 2-14
 automatically, 2-14
resizing graphs, 3-9
resizing windows, 2-22
result sets, 6-14 to 6-15
 selecting, 6-15
 viewing, 6-17
Retrieve All Rows command, 8-1
retrieving rows, 8-1
right-click menus, 2-21
rotating graphs, 3-11
rounding, 5-17
row markers, 2-9
row numbers, 2-6, 8-15
rows, 2-4
 drilling multiple, 4-14, 4-15
 drilling single, 4-16, 4-17
 hiding duplicate, 7-6
 retrieving, 8-1
 selecting, 2-6
running Discoverer Desktop, 1-6
running queries, 1-9
running scheduled reports, 6-12 to 6-18
S
sample database, 1-5, 2-1
Save As command, 1-14
Save As dialog box, 1-15
Save command, 1-14
Save Workbook dialog box, 1-14
Save Workbook to Database dialog box, 1-15
saving exported reports, 6-9
saving workbooks, 1-14 to 1-15
Scale command, 3-7
scaling printouts, 6-3
Schedule button, 6-13, 6-16
Schedule command, 6-13
Schedule Workbook dialog box, 6-13 to 6-14, 6-17
opening, 6-13
scheduled reports, 6-12 to 6-18
 deleting completed, 6-17
 displaying, 6-16
 editing settings, 6-17 to 6-18
error messages, 6-18
expiration dates, 6-14
naming, 6-14
running, 6-13, 6-16
selecting items, 6-13, 6-17
unscheduling, 6-17
viewing results, 6-14 to 6-15, 6-17
Scheduled Workbook
Oracle Applications User, 6-15
scheduled workbooks, 1-8, 6-15
Oracle Applications Users, 6-15
Scheduling Manager, 6-16 to 6-18
opening, 6-16
Scheduling Manager button, 6-15
Scheduling Manager command, 6-16
screen markers, 2-7, 2-9, 4-4
scroll bars, 2-3
scroll buttons, 1-13, 2-3
scrolling, 2-11
Select Condition option, 5-26
selecting
data for drilling, 4-15
automatically, 4-17
in other sheets, 4-18	
tables, 4-13
data for new worksheets, 7-2, 7-4
exception items, 5-7
items for scheduled reports, 6-13, 6-17
items on worksheets, 2-5
in multiple positions, 2-6
multiple values for conditions, 8-11
result sets, 6-15
workbooks, 1-9, 1-11
worksheets, 1-13, 1-14, 2-10
selection boxes, 2-7, 2-8
Send command, 6-7
sending e-mail messages, 6-7
sequential conditions, 8-10
servers, 6-12
Set Bitmap option, 8-4
setting options, 8-15
setting properties
workbooks, 1-12 to 1-13
setting report margins, 6-5
setting sort order, 4-23, 4-27
shading, 3-12
shadows, 3-12
Share Workbooks dialog box, 6-19
Sharing command, 6-19
sharing workbooks, 6-18 to 6-19
/sheet ALL option, 8-16
shortcuts, 2-21
Show Graphic Bars option, 2-16
Show Page Items option, 7-6
Show/Hide Labels button, 3-3, 3-8
Show/Hide Legend button, 3-3, 3-8
simple calculations, 8-6, 8-7
Sort command, 4-22, 4-29
Sort Crosstab dialog box, 4-29 to 4-30
opening, 4-29
sort order, 4-23, 4-27
reversing, 4-28
Sort Table dialog box, 4-22
ordering columns in, 4-25
sorting data, 4-8, 4-21 to 4-30
adding sort columns, 4-23 to 4-25
automatically, 4-26
crosstabs and, 4-27, 4-28, 4-30
display options, 4-23
group sorting and, 4-23, 4-25 to 4-26
on new worksheets or workbooks, 7-7 to 7-9, 7-12
removing columns, 4-25
sorting options, 4-23, 4-29
sorting tools, 4-26
crosstabs and, 4-27
spacing, 4-23
spreadsheets, 2-6, 6-9
SQL Inspector
Execution Plan, 8-19
SQL Inspector command, 8-17, 8-19
SQL program - importing, 8-17
SQL statements, 8-17
SQL syntax, 8-11
SQLType - registry setting, 8-21
standard deviation, 5-10
calculating, 5-13
Standard Deviation option, 5-13
starting
Discoverer Desktop, 1-6
Statistics, A-16
status bar, 2-2, 2-3
Status Bar command, 3-3
subqueries, 8-12
edit, 8-14
new workbooks, 8-14
subqueries, correlated items, 8-13
subqueries, creating, 8-12
subtotals, 2-16, 2-17
adding lines to, 4-23
grouping, 4-25, 5-15
getting, 4-23
getting percentages for, 5-22
placement options, 5-15
removing, 5-12
ungrouped data and, 4-26
viewing definitions, 5-12
Sum option, 5-13
summaries, 2-4
sums, 5-10, 5-13
subqueries
editing, 8-12
T

table
larger than a page, 6-3
tables, 1-4, 1-6, 2-3, 6-1
arranging items on new, 7-6
changing sorting preferences, 7-12
data points and, 2-3
delineating data, 2-16, 4-23
drilling and, 4-13, 4-14, 4-18
procedure described, 4-14
skipping hierarchical levels, 4-16, 4-17
duplicating, 4-7
editing layouts, 7-10, 7-11
item markers and, 2-9
layout options, 8-15
moving columns, 2-12, 4-25
group sorts and, 4-26
pivoting items, 4-3, 4-4
reformatting column headings, 2-14 to 2-15
reformatting data, 2-15
resizing columns, 2-13 to 2-14
automatically, 2-14
retrieving rows, 8-1
scaling, 6-3
selecting as display type, 7-2
selecting items, 2-6, 2-7
sorting data, 4-22, 4-25
automatically, 4-26
with multiple pages, 2-4, 2-11
tabs, 1-13, 2-3
templates (Oracle Reports), 6-10
text
alining
in column headings, 2-15
case-sensitive filters, 5-29
data points and totals for, 5-14
defining conditions for, 5-29
editing, 2-14, 2-18
finding specific, 5-8
getting exceptions to, 5-8
mathematical functions and, 7-4
resizing columns and, 2-13
sorting, 4-27, 4-28, 4-30
word wrapping, 2-15, 5-16
text codes
adding to labels
percentages columns, 5-22
totals and subtotals, 5-15, 5-16
removing, 5-16, 5-23
report headers/footers, 6-4
Text Wrap button, 2-13
three-dimensional graphs, 3-11
time estimate dialog, 1-9
time limit warnings, 6-13
time settings for scheduled reports, 6-13
time stamps, 2-18
Title command, 2-18
titles
adding bitmaps, 2-20
adding to graphs, 3-2, 3-5
editing, 2-18
formatting, 2-17, 2-19
totals and subtotals, 5-15
tool bar
Graph window, 3-2
Print Preview window, 6-6
tool tips, 2-2, 2-3
Toolbar command, 3-2
Total dialog box, 5-13
totals, 2-16, 2-17, 5-10 to 5-17
adding lines to, 4-23
creating definitions for, 5-12
editing definitions, 5-16
enabling/disabling definitions, 5-12
finding percentages of, 5-21
formatting options, 5-16
getting percentages for, 5-22
placement options, 5-14
removing, 5-12
viewing definitions, 5-12
Totals command, 5-12
Totals dialog box, 5-12
Totals tool, 5-10
options, 5-13
transaction processing, 8-2
trends, 4-1
truncated text, 2-13
Two Page button, 6-7
U
unavailable folders, 7-3
unique values, 5-13
Unschedule button, 6-17
updating graphs, 3-6
updating worksheets, 8-2
User -> Workbook tab, 6-19
user names, 1-6
V
Value(s) option (Conditions), 5-27, 5-29
values, 7-4
counting unique, 5-13
creating conditions for, 5-27
getting exceptions to, 5-5 to 5-10
defining expressions for, 5-8
getting totals and subtotals for, 5-13
null, 5-28
selecting multiple for conditions, 5-13
sorting and duplicate, 4-30
viewing for zaxis items, 7-4
variables, 4-30
Variance option, 5-14
vertical gridlines, 3-6
Video database, 2-1
video files, 8-15
View Conditions For option, 5-24
View Errors option, 6-18
Viewer checkboxes, 8-15
viewing
business areas, 7-3
data, 1-3, 1-5, 2-3, 2-10
specific items, 5-23, 8-10
file types, 8-15
graph labels, 3-3, 3-8
graphs, 3-12
items in folders, 7-3
multi-page reports, 6-6
page headers/footers, 6-4
sorted data, 4-23
SQL statements, 8-17, 8-19
text, 2-13
workbooks, 1-10
worksheets, 1-13
views, 1-4

W
weekly reports, 6-12
“what if” scenarios, 8-6
Window menu, 1-10
wizards
for creating graphs, 3-2
for creating workbooks, 7-2
for opening workbooks, 1-7
WMF formats, 6-8
Workbook -> User tab, 6-19
Workbook Properties dialog box, 1-12
workbook window, 2-1, 2-3
display types, 2-3 to 2-5, 7-2
resizing, 2-22
Workbook Wizard, 1-7, 7-2
workbooks, 7-1
accessing, 6-18
assigning to users, 6-19
associating data with, 2-3
canceling changes, 1-14
closing, 1-14
creating, 1-7, 7-1 to 7-10
optional steps, 7-1
creating subqueries, 8-14
defined, 1-5
deleting, 1-15
going information about, 1-12
identifying location, 2-18
opening, 1-6, 1-7, 8-15, 8-16
multiple, 1-10 to 1-11
non-Oracle, 1-12
reformatting, 2-12, 2-21
removing items, 7-5
renaming, 1-14
saving, 1-14 to 1-15
selecting, 1-9, 1-11
selecting data, 7-2
selecting display types for new, 7-2
selecting multiple items, 7-4
setting properties, 1-12 to 1-13
sharing, 6-18 to 6-19
switching pages, 1-13, 1-14, 2-10
viewing, 1-10
worksheet
deriving subquery, 8-14
for subqueries, 8-13
worksheet tabs, 1-13, 2-3
worksheets, 1-5, 7-1
activating all, 8-16

adding bitmaps, 2-20
adding graphs, 3-2, 3-3 to 3-6
adding items to new, 7-10
changing data, 1-14
choosing items, 2-5
in multiple positions, 2-6
creating, 7-1, 7-1 to 7-10
optional steps, 7-1
deleting items on new, 7-10
distributing via e-mail, 6-7
drilling across, 4-18
editing new, 7-10 to 7-13
editing titles, 2-18
formatting items, 2-12, 2-19
identifying workbook location, 2-18
large, 8-15
printing large, 6-3
refreshing, 8-2
removing items, 7-5
replacing data, 4-20
retrieving data, 1-6, 1-9, 1-13
for new crosstabs, 7-4
scheduled reports and, 6-12
selecting, 1-13, 1-14, 2-10
selecting data, 7-2
selecting display types for new, 7-2
selecting multiple items, 7-4
viewing, 1-13
Wrap Text option, 2-15, 5-16

X
X Labels command, 3-8

Y
y-axis scale, 3-2
setting, 3-6, 3-7

Z
z-axis, 3-12
Zip Codes, 5-8
zoom in, 6-7
zoom out, 6-7