
Oracle® Application Server 10g
Migrating From WebLogic

10g Release 3 (10.1.3)

B16027-01

January 2006

Oracle Application Server 10g Migrating From WebLogic, 10g Release 3 (10.1.3)

B16027-01

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Intended Audience... vii
Documentation Accessibility .. vii
Where to Find More Information.. viii
Online Help .. viii
Conventions ... viii

1 Overview

1.1 Overview of Oracle Application Server 10g ... 1-1
1.2 Migration Highlights.. 1-2
1.2.1 Migration Approach.. 1-2
1.2.2 J2EE Application Migration Challenges... 1-3
1.2.3 Migration Effort ... 1-3
1.2.4 Migration Tool.. 1-3
1.3 Using This Guide .. 1-4

2 Comparison of Oracle Application Server and WebLogic Server

2.1 Architectures.. 2-1
2.1.1 Specifications Levels Supported.. 2-1
2.1.2 WebLogic Server .. 2-2
2.1.3 Oracle Application Server Components and Concepts ... 2-3
2.1.3.1 J2EE in Oracle Application Server ... 2-3
2.1.3.2 Oracle Application Server Instance ... 2-3
2.1.3.3 Oracle HTTP Server ... 2-4
2.1.3.4 OC4J Instances .. 2-4
2.1.3.5 Oracle Process Management Notification (OPMN) Server 2-6
2.1.3.6 Oracle Enterprise Manager 10g Application Server Control Console 2-6
2.2 Web Services .. 2-7
2.3 High Availability and Load balancing .. 2-8
2.3.1 WebLogic Server Support for High Availability and Load Balancing 2-8
2.3.1.1 HTTP Session State Load Balancing and Fail Over ... 2-8
2.3.1.2 EJB and RMI Object Load Balancing and Fail Over .. 2-8
2.3.2 Oracle Application Server Support for High Availability and Load Balancing......... 2-9
2.3.2.1 Process Monitoring... 2-9
2.3.2.2 Session State Replication .. 2-10

iv

2.3.2.3 Load Balancing... 2-10
2.3.2.4 Java Object Cache .. 2-11
2.4 Java Development and Deployment Tools ... 2-11
2.4.1 WebLogic Development and Deployment Tools... 2-11
2.4.1.1 WebLogic Server Workshop .. 2-11
2.4.1.2 WebLogic Server Administration Console .. 2-11
2.4.2 Oracle Application Server Development and Deployment Tools............................. 2-11
2.4.2.1 Development Tools ... 2-12
2.4.2.2 Assembly Tools.. 2-12
2.4.2.3 Administration Tools .. 2-13

3 Migrating Java Servlets

3.1 Introduction ... 3-1
3.2 Migration Approach for Servlets .. 3-1
3.3 Migrating a Simple Servlet .. 3-2
3.4 Migrating a WAR File .. 3-5
3.5 Migrating an Exploded Web Application ... 3-6
3.6 Migrating Configuration and Deployment Descriptors ... 3-8
3.6.1 Oracle Application Server .. 3-8
3.6.2 WebLogic Server .. 3-10
3.7 Migrating Cluster Aware Applications .. 3-10

4 Migrating JSP Pages

4.1 Introduction ... 4-1
4.1.1 Differences Between WebLogic Server and Oracle Application Server JSP

Implementations .. 4-1
4.1.1.1 OC4J JSP Features... 4-2
4.1.1.1.1 Edge Side Includes for Java (JESI) Tags ... 4-3
4.1.1.1.2 Web Object Cache Tags .. 4-3
4.1.1.2 Oracle JDeveloper and OC4J JSP Container ... 4-3
4.2 Migration Approach... 4-4
4.3 Migrating a Simple JSP Page ... 4-4
4.4 Migrating a Custom JSP Tag Library ... 4-5
4.4.1 Migrating from WebLogic Custom Tags.. 4-8
4.4.1.1 WebLogic Server cache Tag .. 4-9
4.4.1.2 WebLogic Server process Tag ... 4-9
4.4.1.3 WebLogic Server repeat Tag.. 4-9
4.5 Migrating htmlKona... 4-9
4.6 Precompiling JSP Pages.. 4-9
4.6.1 Using the WebLogic Server JSP Compiler ... 4-9
4.6.2 Using the OC4J JSP Pre-translator.. 4-10
4.6.3 Standard JSP Pre-translation Without Execution (based on the JSP 1.1

specification).. 4-11
4.6.4 Configure the JSP Container for Execution with Binary Files Only.......................... 4-11

v

5 Migrating Enterprise JavaBean Components

5.1 Introduction ... 5-1
5.1.1 Comparison of WebLogic Server and Oracle Application Server EJB Features......... 5-1
5.1.1.1 More Efficient Container Managed Persistence... 5-2
5.1.1.2 Clustering Support ... 5-3
5.1.1.3 Scalability and Performance Enhancements... 5-3
5.1.2 EJB Migration Considerations ... 5-4
5.1.2.1 Global JNDI Lookups and Oracle Application Server .. 5-5
5.1.2.2 WebLogic Server Caveats.. 5-5
5.2 Migration Approach... 5-6
5.2.1 Migrating Session EJBs ... 5-6
5.2.2 Migrating Entity EJBs.. 5-6
5.2.2.1 EJBs with Bean-Managed Persistence (BMP) ... 5-7
5.2.2.2 EJBs with Container-Managed Persistence (CMP) .. 5-7
5.2.3 Migrating Deployment Descriptors .. 5-8
5.2.3.1 Steps for Using Oracle JDeveloper 10g (10.1.3) to Convert

weblogic-ejb-jar.xml to orion-ejb-jar.xml .. 5-11
5.2.3.2 Using the Oracle Application Server TopLink Migration Tool to Convert

weblogic-cmp-rdbms-jar.xml to toplink-ejb-jar.xml..................... 5-11
5.2.4 Generating and Deploying EJB Container Classes .. 5-12
5.2.4.1 WebLogic Server.. 5-12
5.2.4.2 OC4J... 5-13
5.2.5 Loading EJB Classes in the Server.. 5-13
5.2.5.1 WebLogic Server.. 5-13
5.2.5.2 OC4J... 5-13
5.3 Migrating EJBs in a EAR or JAR File... 5-13
5.4 Migrating an Exploded EJB Application .. 5-14
5.5 Writing Finders for RDBMS Persistence .. 5-14
5.5.1 Migrating Finder Methods .. 5-15
5.6 WebLogic Query Language (WLQL) and EJB Query Language (EJB-QL) 5-15
5.7 Message Driven Beans... 5-16

6 Migrating JDBC

6.1 Introduction ... 6-1
6.1.1 Differences between WebLogic and Oracle Application Server Database Access

Implementations .. 6-1
6.1.1.1 Overview of JDBC Drivers .. 6-1
6.2 Migrating Data Sources.. 6-3
6.2.1 Data Source Import Statements ... 6-3
6.2.2 Configuring Data Sources in the Application Server ... 6-3
6.2.3 Obtaining a Client Connection Using a Data Source Object ... 6-5
6.3 Migrating Connection Pools.. 6-5
6.3.1 Overview of Connection Pools .. 6-6
6.3.2 How Connection Pools Enhance Performance.. 6-6
6.4 Overview of Clustered JDBC .. 6-7
6.5 Performance Tuning JDBC .. 6-7

vi

A Additional Features

A.1 Migrating Web Services .. A-1
A.2 Java Messaging Service (JMS) .. A-2
A.2.1 Oracle JMS (OJMS) ... A-3
A.3 Oracle TopLink... A-4

Index

vii

Preface

This manual provides the information required to migrate applications from
WebLogic Server to Oracle Application Server 10g Release 3 (10.1.3). See the release
notes for platform-specific details and any late-breaking information.

Intended Audience
Oracle Application Server 10g Migrating From WebLogic is intended for administrators,
developers, and others whose role is to deploy and manage Oracle Application Server
with high availability requirements.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

viii

Where to Find More Information
The following documents in the Oracle Application Server 10g Release 3 (10.1.3)
Documentation Library provide further reading to the information in this book:

■ Oracle Application Server Release Notes, 10g Release 3 (10.1.3), which contains a
chapter for each component of Oracle Application Server.

■ Oracle Containers for J2EE Services Guide

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle Containers for J2EE Servlet Developer’s Guide

Related Manuals
Oracle Application Server Migrating from WebLogic is one of several migration
guides. The others are:

■ Oracle Application Server Migrating from WebSphere

■ Oracle Application Server Migrating from JBoss

Documentation Formats
Documentation for Oracle Application Server Migrating from WebLogic is provided in
PDF and HTML formats.

To view the PDF files, you will need

■ Adobe Acrobat Reader 3.0 or later, which you can download from
http://www.adobe.com.

To view the HTML files, you will need

■ Netscape 4.x or later, or

■ Internet Explorer 4.x or later

Online Help
The OracleAS Personalization Administrative UI includes extensive online help that
can be summoned from a list of contents and from Help buttons.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Overview 1-1

1
Overview

This chapter provides an overview of the issues involved in migrating J2EE Web
applications from WebLogic Server to Oracle Application Server 10g Release 3 (10.1.3),
and the effort required.

The chapter contains these topics:

■ Section 1.1, "Overview of Oracle Application Server 10g"

■ Section 1.2, "Migration Highlights"

■ Section 1.3, "Using This Guide"

1.1 Overview of Oracle Application Server 10g
Oracle Application Server 10g is a comprehensive and integrated standards-based
application platform suite that provides all of the infrastructure and functionality
required to run an agile business. It offers a number of technology solutions based on
service-oriented architecture (SOA):

■ A J2EE-based SOA platform to develop, deploy, and manage Web services.

■ Enterprise integration services for data integration, business process automation,
and business activity monitoring.

These solutions share common infrastructures for security, systems management, and
grid computing, which allows flexible and scalable deployment of applications on
low-cost, modular servers and storage.

Oracle Application Server’s SOA infrastructure provides out-of-the-box facilities to
develop, wrap, orchestrate, provision, manage, secure, federate, discover, and access
enterprise applications and legacy systems as services. All these facilities are available
through a single-installed, integrated product.

The following are the main features of Oracle Application Server:

■ Oracle Containers for J2EE (OC4J) - a fully J2EE 1.4 compatible container
implementation (also backward compatible to J2EE 1.3)

■ Oracle Process Manager and Notification Server (OPMN) - a configurable and
distributed process manager

■ Oracle HTTP Server with mod_oc4j plug-in

■ Oracle Enterprise Manager 10g Application Server Control

■ JMX management infrastructure

■ Web services runtime and management based on JAX-RPC

Migration Highlights

1-2 Migrating From WebLogic

■ Java Object - XML mapping

■ Oracle TopLink object - relational mapping with CMP support

For a comparison of features between Oracle Application Server and WebLogic Server,
see Chapter 2.

1.2 Migration Highlights
In quantifying the migration effort, it is helpful to examine the application components
to be migrated with the following issues in mind:

■ Portability

Code may not be portable because it contains embedded references to
vendor-specific extensions to the J2EE specification. Evaluating and planning for
code modifications may be a significant part of the migration effort.

■ Proprietary extensions

If vendor-specific extensions are in use, migration of those components becomes
difficult or unfeasible. Complete redesign toward J2EE specifications is not
addressed in this document. If vendor-specific extensions are in use, they may
need to be redesigned and reimplemented, rather than being identified as
migration candidates.

■ Deviations from J2EE specifications.

If a component is largely non-compliant with the J2EE specifications, this guide
will not be helpful in determining the migration path to Oracle Application Server.
If the J2EE specification version of the component is not of version 1.4 (the version
on which this guide is based), then the specification implementation differences
will need to be addressed.

1.2.1 Migration Approach
The approach in developing this migration guide was to document our experience
migrating J2EE application components from WebLogic Server to Oracle Application
Server. Examples shipped with WebLogic Server were selected, tested on WebLogic
Server, and migrated to Oracle Application Server. Issues encountered in the
migration of these examples are the basis for this document.

For most migration projects, a J2EE application can be migrated in the following order:

1. Identify the following differences between WebLogic Server and Oracle
Application Server: deployment, runtime (classloaders), third party library
support.

2. Remove (if possible) platform specific proprietary features. For example, for
WebLogic Server: BEA JOLT, JSP-based Tags.

3. Port platform-specific deployment descriptors.

4. Port a J2EE application in tiers in the following sequence:

a. Data tier (EJBs).

b. Web tier.

c. Java clients.

d. Data sources, JMS message queues, and/or JCA adaptors.

e. Other components (for example, single sign-on, JAAS, LDAP repository).

Migration Highlights

Overview 1-3

5. Implement clustering and performance tune OC4J J2EE container.

1.2.2 J2EE Application Migration Challenges
The varying degrees of compliance to J2EE standards can make migrating applications
from one application server to another a daunting task. Some of the challenges in
migrating J2EE applications from one application server to another are:

■ Though in theory, any J2EE application can be deployed on any J2EE-compliant
application server, in practice, this is not strictly true.

■ Lack of knowledge of the implementation details of the given J2EE application.

■ Ambiguity in the meaning of ’J2EE-compliant’ (usually, this means the application
server has J2EE compliant features, not code-level compatibility with the J2EE
specification).

■ The number of vendor-supplied extensions to the J2EE standards in use, which
differ in deployment methods and reduce portability of Java code from one
application server to another.

■ Differences in clustering, load balancing, and fail over implementations among
application servers; these differences are sparsely documented, and are thus an
even bigger challenge to the migration process.

This guide addresses the abovementioned challenges in migrating your applications
from WebLogic Server to Oracle Application Server. It provides an approach to
migration with solutions based on the J2EE version 1.4 specification.

1.2.3 Migration Effort
Moving from WebLogic Server to Oracle Application Server is a relatively simple
process. Standard J2EE applications, using no proprietary APIs, can be deployed with
no required code changes. The only actions required are configuration and
deployment. Those applications using proprietary utilities or APIs can be ported
easily.

1.2.4 Migration Tool
The Oracle JDeveloper Application Migration Assistant (AMA) is a new tool
developed by Oracle to simplify the process of migrating applications to the Oracle
platform. The tool provides code navigation and progress reporting to guide you
through migrating from WebLogic Server to Oracle Application Server 10g.

Note:

■ JNDI names can be different. Use the JNDI tree browser in
Application Server Control Console or Oracle JDeveloper to
browse the JNDI tree in OC4J.

■ After migrating the above tiers and components, the
recommended deployment approach is to deploy your application
to a standalone OC4J instance to validate its full runtime
functionality. When the validation is complete, your application
can be deployed using Application Server Control to a single node
or multi-node cluster of Oracle Application Server installations.

Using This Guide

1-4 Migrating From WebLogic

The AMA tool is installed as a plug-in to Oracle JDeveloper. It uses regular
expressions to identify code in your application files that may require modification to
work on the Oracle platform. These regular expressions are contained in an XML file
called search rules file. AMA can analyze your WebLogic Server application and
generate an analysis report that summarizes project statistics, allows navigation
between review items, and provides comprehensive status tracking for your migration
changes. AMA is customizable by providing an extensible API that allows additional
search rules files to be written and tailored for your specific application.

Oracle provides a number of search rules files through the AMA Search Rules
Exchange (http://www.oracle.com/technology/tech/migration/ama/exchange/exchange.html).
One of these files is the AMA Search Rules for BEA WebLogic Migrations. The rules
defined in this file can be used to identify WebLogic-specific code that may require
modification for migration to Oracle Application Server. For example, the tool can
identify whether you are using Jolt or BEA JCOM. It can also locate any references in
your application to Defweblogic startup/shutdown, T3 services, WebLogic XA, and
native WebLogic JDBC drivers.

To download the tool and for more information on it, go to
http://www.oracle.com/technology/tech/migration/ama/.

1.3 Using This Guide
This guide details the migration of components from WebLogic Server to Oracle
Application Server. While it does not claim to be an exhaustive source of solutions for
every possible configuration, it provides solutions for some of the migration issues
listed above, which will surface, along with others, in your migration effort. The
information in this guide helps you to assess the WebLogic Server applications and
plan and execute their migration to Oracle Application Server. The material in this
guide supports these high-level tasks:

■ Survey the components according to the issues listed above

■ Identify migration candidates

■ Prepare the migration environment and tools

■ Migrate and test the candidate components

Comparison of Oracle Application Server and WebLogic Server 2-1

2
Comparison of Oracle Application Server

and WebLogic Server

Although WebLogic Server and Oracle Application Server are both J2EE servers that
support J2EE 1.3 or 1.4 features (depending on WebLogic Server version), both
application servers have intrinsic differences ranging from product packaging to
runtime architecture. This chapter seeks to discuss these differences and is organized
as follows:

■ Section 2.1, "Architectures"

■ Section 2.2, "Web Services"

■ Section 2.3, "High Availability and Load balancing"

■ Section 2.4, "Java Development and Deployment Tools"

2.1 Architectures
This section describes and compares the overall architectures of WebLogic Server and
Oracle Application Server.

2.1.1 Specifications Levels Supported
The following table provides the specific level of support for J2EE standards provided
by Oracle Application Server and WebLogic Server:

The discussion in this guide focuses on Oracle Application Server 10g Release 3
(10.1.3) and WebLogic Server 7.0 and 8.1.

Table 2–1 J2EE Support in Oracle Application Server and WebLogic Server

Product J2EE 1.3 J2EE 1.4

Oracle Application Server version 9.0.4

10.1.2
10.1.31

1 Backward compatible to J2EE 1.3

WebLogic Server version 7.0

8.1
9.0 Beta2

2 At the time of this writing (November 2005)

Architectures

2-2 Migrating From WebLogic

2.1.2 WebLogic Server
WebLogic Server has several components and concepts peculiar to it. Each WebLogic
Server can be configured and deployed either as a Managed Server or an
Administration Server. A Managed Server hosts and executes the application logic
deployed in it when requests are received from clients. An Administration Server
configures and monitors Managed Servers but does not host applications. Figure 2–1
depicts the components in WebLogic Server and their interactions.

Figure 2–1 WebLogic Server Components

In any node, more than one Managed Server can exist. Each Managed Server is a Java
process (JVM) executing J2EE containers (Web and EJB). An Administration Server,
which is also a Java process, is required to propagate configuration information to
Managed Servers when they start-up. The configuration information is stored in the
file system on the Administration Server node.

The Administration Server is also used to monitor and log information about
individual Managed Servers and the entire WebLogic domain. A WebLogic domain
can consist of standalone Managed Servers, clusters of Managed Servers, and one
Administration Server. If the Administration Server goes offline, client requests can
still be serviced by the Managed Servers. However, configuration information is not
available for new Managed Servers to start-up, and monitoring services are not
available for server clusters. The Administration Server does not have automatic fail
over or replication. Configuration data for the WebLogic domain has to be manually
backed up. The Administration Server functions can be accessed through a console
GUI (remotely over HTTP) or a command line utility.

In order for the Administration Server to start Managed Servers remotely, a Node
Manager must be running on each node where there are Managed Servers. This Node
Manager is a Java program executing in the background as a UNIX daemon or
Windows service. With the Node Manager, the Administration Server can also kill a
Managed Server if the latter hangs or does not respond to commands from the former.

WebLogic Server can also be set up to run as a Web server. In this mode, it supports
HTTP 1.1 and resolves client requests to Managed Servers based on the settings in the

Architectures

Comparison of Oracle Application Server and WebLogic Server 2-3

XML configuration files. Instead of WebLogic Server, third-party proxy plug-ins can
also be used for servicing HTTP requests. Supported plug-ins are Apache, Netscape,
and Microsoft IIS.

2.1.3 Oracle Application Server Components and Concepts
This section describes components and several concepts peculiar to Oracle Application
Server. The discussion here provides an overview scope.

2.1.3.1 J2EE in Oracle Application Server
The J2EE server implementation in Oracle Application Server is called Oracle
Application Server Containers for J2EE (OC4J). OC4J is a pure Java implementation. It
runs on the standard JDK and is extremely lightweight with a small foot print. OC4J
provides high performance and scalability, and is simple to deploy and manage. With
Oracle Application Server 10g Release 3 (10.1.3), OC4J supports J2EE 1.4 APIs.
Figure 2–3 provides an architectural view of the J2EE component layers in Oracle
Application Server.

This migration guide seeks to help you understand the migration challenges you may
face when migrating your J2EE applications from WebLogic Server to Oracle
Application Server 10g Release 3 (10.1.3).

2.1.3.2 Oracle Application Server Instance
An OracleAS instance is a runtime occurrence of an installation of Oracle Application
Server. An Oracle Application Server installation has a corresponding Oracle home
where the Oracle Application Server files are installed. Each Oracle Application Server
installation can provide only one OracleAS instance at runtime. A physical node can
have multiple Oracle homes, and hence, more than one Oracle Application Server
installation and OracleAS instance.

Each OracleAS instance consists of several interoperating components that enable
Oracle Application Server to service user requests in a reliable and scalable manner.
These components are:

■ Oracle HTTP Server

■ OC4J Instances

■ Oracle Process Management Notification (OPMN) Server

Note: For a discussion on WebLogic Server clustering, see
Section 2.3.1, "WebLogic Server Support for High Availability and
Load Balancing"

See Also:

Oracle Application Server Concepts,

Oracle Application Server Administrator’s Guide,

Oracle Application Server High Availability Guide

Oracle Application Server Containers for J2EE User’s Guide.

Note: In this document, where WebLogic Server is mentioned
without a version number, WebLogic Server 7.0 and 8.1 are implied.
Otherwise, a version number is explicitly mentioned.

Architectures

2-4 Migrating From WebLogic

■ Oracle Enterprise Manager 10g Application Server Control Console

2.1.3.3 Oracle HTTP Server
Oracle Application Server contains two listeners: Oracle HTTP Server (based on the
Apache open source project) and the listener that is part of OC4J, which runs in a
separate thread of execution. Each OracleAS instance has one Oracle HTTP Server.

The OC4J listener listens to requests coming from the mod_oc4j module of the Oracle
HTTP Server and forwards them to the appropriate OC4J process. From a functional
viewpoint, the Oracle HTTP Server acts as a proxy server to OC4J, wherein all servlet
or JSP requests are redirected to OC4J processes.

mod_oc4j communicates with the OC4J listener using the Apache JServ Protocol
version 1.3 (AJP 1.3). mod_oc4j works with the Oracle HTTP Server as an Apache
module. The OC4J listener can also accept HTTP and RMI requests, in addition to AJP
1.3 requests.

The following diagram depicts Oracle HTTP Server and other Oracle Application
Server runtime components in a single instance of Oracle Application Server.

Figure 2–2 Components of an OracleAS Instance

2.1.3.4 OC4J Instances
An OC4J instance is a logical instantiation of the OC4J implementation in Oracle
Application Server. This implementation is Java 2 Enterprise Edition (J2EE) 1.4
complete and written entirely in Java. It executes on the standard Java Development
Kit (JDK) 1.4.2 and 5.0 Java Virtual Machine (JDK 5.0 is installed with Oracle
Application Server). It has a lower disk and memory footprint than other Java
application servers. Note that each OC4J instance can consist of more than one JVM
process where each process can be executing multiple J2EE containers. The number of
JVM processes can be specified for each OC4J instance using the Oracle Enterprise
Manager 10g Application Server Control Console GUI.

OC4J can be installed and run in standalone configuration. In this configuration, the
OC4J listener directly accepts client requests as Oracle HTTP Server is not installed.
Another component that is not installed is the Oracle Process Manager and
Notification Server, which performs process monitoring and management functions.
Hence, in standalone configurations, OC4J is unmanaged.

Architectures

Comparison of Oracle Application Server and WebLogic Server 2-5

Figure 2–3 J2EE Architecture in Oracle Application Server

The logical architecture of an OC4J instance, as depicted in Figure 2–3, consists of the
following components:

■ JMX

The Application Server Control Console user interface is built on a JMX-compliant
client that can be used to completely manage and monitor an OC4J instance. The
JMX functionality provided through Application Server Control Console is
enabled through Java components known as MBeans. An MBean, or managed
bean, is a Java object that represents a JMX manageable resource. MBeans are
defined in the J2EE Management Specification (JSR-77), which is part of the J2EE
1.4 specification as published by Sun Microsystems. For more information on
MBeans, see Oracle Application Server Containers for J2EE Configuration and
Administration Guide and Oracle Application Server Containers for J2EE Services Guide.

■ Web Services

OC4J provides full support for Web Services in accordance with the J2EE 1.4
standard, including JAX-RPC 1.1 (WebLogic Server 8.1 supports up to JAX-RPC
1.0). Web services interoperability is also supported. See Oracle Application Server
Web Services Developer’s Guide.

■ EJB, Servlet, JCA containers

OC4J implements the full J2EE 1.4 container functionality for EJB, servlet, and
JCA. It provides clustering features to enable container components for availability
and scalability.

■ Oracle Application Server TopLink persistence layer

OracleAS TopLink provides a Java object-to-relational mapping persistence
architecture. It provides a highly flexible and productive mechanism for storing
Java objects and EJBs in relational database tables enabling developers to focus on
pure object-oriented design and methodologies. In this release of Oracle
Application Server, EJB container-managed persistence is integrated with
OracleAS TopLink. OracleAS TopLink container-managed persistence is the
default container-managed persistence provider. Rich user interface tools in
OracleAS TopLink Mapping Workbench and Oracle JDeveloper 10g allow

Architectures

2-6 Migrating From WebLogic

developers to configure object-relational mapping quickly and easily. For existing
container-managed EJBs, a migration utility is provided to automate migration to
OracleAS TopLink container-managed persistence. See Section A.3, "Oracle
TopLink", Oracle Application Server TopLink Getting Started Guide for more
information on OracleAS TopLink.

Oracle Application Server allows several OC4J instances to be clustered together as
part of an Oracle Application Server Cluster for scalability and high availability
purposes. When OC4J instances are clustered together, they have a consistent
configuration and the same applications deployed throughout the instances. A more
in-depth discussion on clustering is found in Section 2.3.2, "Oracle Application Server
Support for High Availability and Load Balancing".

2.1.3.5 Oracle Process Management Notification (OPMN) Server
Each OracleAS instance has an OPMN component, which performs monitoring and
process management functions of processes in that instant. OPMN manages the
processes in an OracleAS instance to enable startup, death-detection, and recovery of
processes.

OPMN components in separate OracleAS instances can also send messages to each
other to enable each OPMN to be aware of the components in the other OracleAS
instances. When OPMN performs such a role, the OracleAS instances are managed by
OPMN together as a cluster. Such a cluster is called an Oracle Application Server
Cluster (OracleAS Cluster). (See Section 2.3.2, "Oracle Application Server Support for
High Availability and Load Balancing" for more details on clusters.)

OPMN also communicates and interfaces with Application Server Control Console to
provide a consolidated interface for monitoring, configurating, and managing Oracle
Application Server. Some administrative tasks can also be accomplished using an
OPMN command line utility. Oracle HTTP Server, and OC4J instances use a
subscribe-publish messaging mechanism to communicate with the OPMN service. For
process-level fail over and availability, the process that implements the OPMN service
has a shadow process that restarts the OPMN process if it fails.

2.1.3.6 Oracle Enterprise Manager 10g Application Server Control Console
Oracle Enterprise Manager 10g Application Server Control Console (Application
Server Control Console) provides a Web-based interface for managing Oracle
Application Server components and applications. It is deployed by default as an
application in OC4J. Using the Application Server Control Console, you can do the
following:

■ monitor OracleAS components, OracleAS instances, OracleAS clusters, Oracle
HTTP Server, and deployed J2EE applications and their components

■ configure Oracle Application Server components, instances, clusters, and
deployed applications

■ operate OracleAS components, instances, clusters, and deployed applications

■ manage security for OracleAS components and deployed applications

■ provide performance metrics for OC4J instances and applications

For more information on Oracle Enterprise Manager and its two frameworks, see
Oracle Enterprise Manager Concepts.

See Also: Oracle Process Manager and Notification Server
Administrator’s Guide

Web Services

Comparison of Oracle Application Server and WebLogic Server 2-7

2.2 Web Services
The following table provide the specific levels of support for Web services standards
provided by Oracle Application Server 10g Release 3 (10.1.3) and WebLogic Server 7.0
and 8.1:

In addition, consider the following:

■ Oracle Application Server supports Apache Axis. If a WebLogic Server application
is running Axis, the same application should be deployable in Oracle Application
Server provided no proprietary modifications were made to the standard Axis
library.

■ WebLogic Web services are packaged as standard J2EE enterprise applications;
deploying a Web service is the same as deploying an enterprise application.

■ Optional JAX-RPC datatype is support by both Oracle Application Server and
WebLogic Server.

■ WebLogic Server uses ANT autotype and servicegen tasks. These present
some limitations. autotype does not comply with the JAX-RPC specification if
the data type is a complexType, the complexType contains a single sequence, or
the sequence contains a single element with maxOccurs greater than 1 or is
unbounded. The JAX-RPC specification, in turn, states that this type of XML
Schema data type should map to a Java array with a pair of setter and getter
methods in a JavaBean class. WebLogic Web services do not adhere to this last
part of the specification.

■ REST style Web services, which uses XML documents instead of SOAP envelopes,
is supported by Oracle Application Server.

See Also: Oracle Application Server Administrator’s Guide - provides
descriptions on Application Server Control Console and instructions
on how to use it.

Table 2–2 Web Services Standards Supported

Oracle Application Server
10g Release 3 (10.1.3) WebLogic Server 7.0 WebLogic Server 8.1

WS-I Basic Profile 1.0, 1.1 Pre 1.0 1.0

WSDL 1.1 1.1 1.1

SOAP 1.1/1.2 1.1/1.2 incoming

1.1 outgoing

1.1/1.2

WS-Reliability 1.0 Not Supported Not Supported

WS-Security Following from version 1.0
are supported:

■ XML Signature

■ XML Encryption

■ Username Token

■ X.509 Token

■ SAML Token

Not Supported Following from version
one 1.0 are supported:

■ SOAP Message
Security

■ Username Token
Profile

■ X.509 Token Profile

UDDI 2.0 2.0 2.0

See Also: Section A.1, "Migrating Web Services"

High Availability and Load balancing

2-8 Migrating From WebLogic

2.3 High Availability and Load balancing
This section describes high availability and load balancing and their importance to
application server operation. It compares the methodologies for each in WebLogic
Server and Oracle Application Server.

2.3.1 WebLogic Server Support for High Availability and Load Balancing
One or more WebLogic Servers can be grouped together as a cluster. Applications can
be deployed commonly in all servers in a cluster, through cluster-wide deployment, to
allow client requests to be load balanced across the cluster and the applications to
have fail over capabilities. In a WebLogic cluster, the entities that benefit from
clustering are HTTP session states, and EJB and RMI objects. Several load balancing
algorithms are used by WebLogic. These include round-robin, weight-based, and
parameter-based.

2.3.1.1 HTTP Session State Load Balancing and Fail Over
Clients making requests to a WebLogic cluster can have their requests load balanced
across the servers in the cluster. For this to work, a Web server installed with the
WebLogic proxy plug-in or a hardware load balancer must be used. The WebLogic
proxy plug-in uses a round-robin load balancing mechanism to distribute the request
load. If a hardware load balancer is used, the cluster can be load balanced using the
hardware’s mechanism.

WebLogic Server achieves fail over for servlets and JSPs by replicating the HTTP
session states of clients. When a WebLogic Server receives the very first request for a
servlet or JSP, it replicates the servlet’s session state to another server. The replicated
session state is always kept up-to-date with the original. The WebLogic proxy plug-in
returns the names of the two servers to the client through a cookie or by rewriting the
URL. If the server hosting the original session state fails, the WebLogic proxy plug-in
uses the information in the cookie or URL to redirect the client to the server with the
replicated session state. At any one time, the cluster maintains an original and replica
of each active session state. In this scenario, the session state is replicated in memory.
WebLogic Server also supports replication to the file system or a database through
JDBC, however, the fail over is not automatic for these replication methods.

2.3.1.2 EJB and RMI Object Load Balancing and Fail Over
WebLogic Server provides load balancing and fail over for EJB and RMI objects by
using a JNDI service and client stubs which are both cluster-aware.

Each WebLogic Server that is a member of a cluster maintains a local JNDI tree. This
tree contains information on objects deployed on the local server and around the
cluster (for objects that are clusterable). If a clusterable object is deployed on more than
one server, each JNDI tree reflects the existence of that object on those servers. When a
clusterable object is deployed on a server, that server, through multicast, notifies the
other servers in the cluster of the new deployment. The other servers’ update their
JNDI trees accordingly. Note that the server with the deployed object also sends the
object’s stub to the other servers.

When a client looks up a clusterable object in the JNDI service, the server servicing the
request returns a stub of the object to the client. This stub contains information about

Note: The discussion in the following sections provides an overview
of the high availability and load balancing mechanisms used by
WebLogic Server. For deeper details, see http://www.weblogic.com.

High Availability and Load balancing

Comparison of Oracle Application Server and WebLogic Server 2-9

which server(s) the object is actually deployed in. The stub also has load balancing
logic to balance method calls to the object. The load balancing algorithms available are
round-robin, weight-based, random, and parameter-based. From the client’s
point-of-view, the cluster is transparent. The JNDI look ups and load balancing are
done without the client knowing that it is working with a clustered object at the server
end.

In the case where a clustered object is stateful, for example, a stateful session EJB, the
object’s state is replicated to a second server. The replication is achieved in a similar
manner as for HTTP session state. The server that is chosen to service a client’s very
first request replicates the object’s state to another server. The client stub is updated to
note this second server. If the first server fails, the stub receives an exception when it
tries to invoke a method. The stub then redirects the invocation to the server with the
replicated object state. This server instantiates the object with the replicated state and
executes the method invocation. This server also selects another server to replicate the
state to since the original server has failed. Fail over of stateful objects is achieved this
way.

Fail over of stateless objects is more straightforward to achieve as state need not be
replicated. Upon receiving an exception indicating that a server has failed, the client
stub simply selects another server which is hosting another instance of the called
object and redirects the method invocation there.

2.3.2 Oracle Application Server Support for High Availability and Load Balancing
The Oracle Application Server architecture supports high availability for Oracle
Application Server instances that in many cases can prevent unplanned down time for
deployed applications. In general, Oracle Application Server achieves high availability
through clustering and process monitoring. Clustering ensures that fail over, load
balancing, and scalability are achieved for deployed J2EE applications. Additionally,
monitoring of individual processes in a cluster ensures that processes are reliable. The
following sections discuss how the benefits of clustering and process monitoring are
attained by Oracle Application Server:

■ Section 2.3.2.1, "Process Monitoring"

■ Section 2.3.2.2, "Session State Replication"

■ Section 2.3.2.3, "Load Balancing"

■ Section 2.3.2.4, "Java Object Cache"

2.3.2.1 Process Monitoring
Processes in an Oracle Application Server instance are monitored by OPMN. The
OPMN system provides for process death detection and process restarting in the event
that component processes in an Oracle Application Server instance "hang" or "crash."
Monitored components include Oracle HTTP Server and OC4J processes. Refer to
Section 2.1.3.5, "Oracle Process Management Notification (OPMN) Server" for more
information on OPMN.

OPMN provides the functionality for managing clustered Oracle Application Server
components. The OPMN process in an Oracle Application Server instance can be

See Also:

■ Oracle Application Server Containers for J2EE Configuration and
Administration Guide

■ Oracle Application Server High Availability Guide

High Availability and Load balancing

2-10 Migrating From WebLogic

configured to be aware of the availability of Oracle HTTP Server and OC4J processes
in other Oracle Application Server instances. This allows OPMN to have a real-time
picture of the health of all component processes in a cluster.

2.3.2.2 Session State Replication
High availability of HTTP session state and stateful session EJBs is provided by
application clustering. This type of clustering enables fail over and redundancy at the
application level. For applications deployed in OC4J, objects and values in HTTP
sessions and stateful session EJBs can be replicated to OC4J instances in different
server nodes. These OC4J instances host the same applications. If one node fails,
requests to a clustered application on that node can be directed to the a surviving node
hosting that clustered application. The fail over of the application is transparent to the
client. The replication of session state can be made in one of two ways:

■ In memory

When replication of session state is made in memory, the participating nodes can
communicate in one of two ways: multicast or peer-to-peer. For multicast, session
state information is multicast over a common address and port. The address and
port information is specified in an application’s deployment configuration file. All
applications deployed with the same multicast address and port have their state
information replicated to other nodes with the same application and multicast
address and port specified. The number of nodes involved in the replication can
be explicitly specified so that multicast traffic can be minimized.

For peer-to-peer, the session state information is unicast from one peer node to
another. The participating nodes can be dynamically discovered or statically
defined (OC4J standalone deployments only). For dynamic discovery, a node
registers with OPMN to discover other peers and to add itself to the list of peers.
State information is then replicated to each peer in the list.

■ In a database

Session state information can be persisted into a database. The database’s JNDI
datasource name is specified in an application’s deployment configuration file.
The replicated information is stored in three database tables, which are created the
first time the database replication is invoked. The session data is stored for the
duration of the session’s time-to-live. Provided the database itself is protected
from failures and has a backup and recovery scheme in place, persisting state
information in the database allows for recovery of the information in cases where
all processes and nodes participating in the cluster have failed.

2.3.2.3 Load Balancing
Within each cluster, there is no mechanism to load balance or fail over the OracleAS
instances. That is, there is no internal mechanism in the cluster to load balance or fail
over requests to the Oracle HTTP Server component in the instances. A separate load
balancer such as OracleAS Web Cache or hardware load balancing product can be
used to load balance the OracleAS instances in the cluster and fail over the Oracle
HTTP Server instances in the cluster.

Smart Routing – Oracle Application Server Web Cache and Oracle HTTP Server (mod_
oc4j) provide configurable and intelligent routing for incoming requests. Requests
are routed only to processes and components that mod_oc4J determines to be alive,

Note: All session objects must be serializable if they are to be
persisted into memory or a database.

Java Development and Deployment Tools

Comparison of Oracle Application Server and WebLogic Server 2-11

through communication with the Oracle Process Manager and Notification Server
system. This smart routing mechanism load balances requests to J2EE applications
deployed in clustered OC4J instances.

2.3.2.4 Java Object Cache
Oracle Application Server Java Object Cache provides a distributed cache that can
serve as a high availability solution for applications deployed to OC4J. The Java Object
Cache is an in-process cache of Java objects that can be used on any Java platform by
any Java application. It allows applications to share objects across requests and across
users, and coordinates the life cycle of the objects across processes.

Java Object Cache enables data replication among OC4J processes even if they do not
belong to the same OC4J cluster, application server instance, or Oracle Application
Server Cluster.

By using Java Object Cache, performance can be improved since shared Java objects
are cached locally, regardless of which application produces the objects. This also
improves availability; in the event that the source for an object becomes unavailable,
the locally cached version will still be available.

2.4 Java Development and Deployment Tools
This section compares the Java tools offered by the WebLogic Platform and Oracle
Application Server.

2.4.1 WebLogic Development and Deployment Tools
The WebLogic development environment and Administration Console are described
below.

2.4.1.1 WebLogic Server Workshop
WebLogic Workshop is a visual development environment for building and deploying
Web services using Java and XML. Workshop provides a framework and set of
controls to interact with EJBs, databases, JMS topics and queues, and other Web
services and applications. Several of these controls are proprietary to the WebLogic
Platform, in addition to the Java Web Services (JWS) file definition. A JWS file contains
the logic to implement a Web service on WebLogic Server. However, JWS is not a J2EE
or Web services standard and is not portable to other application services.

2.4.1.2 WebLogic Server Administration Console
The WebLogic Server administrative console provides a GUI for managing the
WebLogic Server domain. A WebLogic Server domain consists of one or more
WebLogic Server instances (where each instance runs one or more applications) or
clusters of instances. The administrative console connects to the designated
administrative server running in the domain and can be used to change the
configuration or run-time state on any machine in a domain. The administrative
console is used to define clusters, add servers, deploy applications, configure
applications, and manage Web servers, services, and resources in the domain.

2.4.2 Oracle Application Server Development and Deployment Tools
This section describes development and deployment tools for creating J2EE
applications. The tools are part of the Oracle Developer Suite.

Java Development and Deployment Tools

2-12 Migrating From WebLogic

2.4.2.1 Development Tools
Application developers can use the tools in Oracle JDeveloper to build J2EE-
compliant applications for deployment on OC4J. JDeveloper is a component in Oracle
Internet Developer Suite, a full-featured, integrated development environment for
creating multitier Java applications. It enables you to develop, debug, and deploy Java
client applications, dynamic HTML applications, Web and application server
components and database stored procedures based on industry-standard models. For
creating multitier Java applications, JDeveloper has the following features:

■ Web application development

■ Java client application development

■ Java in the database

■ Component-Based Development with JavaBeans

■ Simplified database access

■ Visual Integrated Development Environment

■ Complete J2EE 1.4 support

■ Automatic generation of .ear files, .war files, ejb-jar.xml file, and
deployment descriptors.

You can build applications with Oracle JDeveloper and deploy them manually, using
Application Server Control Console, or with the OC4J Administration Console. Also
note that you are not restricted to using JDeveloper to build applications; you can
deploy applications built with IBM VisualAge or Borland JBuilder on OC4J.

2.4.2.2 Assembly Tools
Oracle Application Server provides a number of assembly tools to configure and
package J2EE Applications. The output from these tools is compliant with J2EE
standards and is not specific to OC4J. These include:

■ A WAR file assembly tool to assemble JSP, servlets, tag libraries and static content
into WAR files.

■ An EJB assembler, which packages an EJB home, remote interface, deployment
descriptor, and the EJB into a standard JAR file.

■ An EAR file assembly tool, which assembles WAR Files and EJB JARs into
standard EAR files.

■ A tag library assembly tool, which assembles JSP tag libraries into standard JAR
files.

Note: In addition to JDeveloper, Oracle Application Server TopLink,
an object-relational mapping tool, also comes with Oracle Application
Server. See Oracle Application Server TopLink Application Developer’s
Guide.

Note: The Oracle JDeveloper Application Migration Assistant, a
migration tool that plugs into Oracle JDeveloper, can be used to
quickly identify application code that needs to be migrated. See the
section "Migration Tool" on page 1-6 for more information and where
to download the tool.

Java Development and Deployment Tools

Comparison of Oracle Application Server and WebLogic Server 2-13

2.4.2.3 Administration Tools
Oracle Application Server also provides two different administration facilities to
configure, monitor, and administer its components.

■ A graphical management tool, Oracle Enterprise Manager 10g Application Server
Control Console, which provides a single point of administration across OracleAS
Clusters, Farms, and OC4J containers.

■ A command line tool for performing administrative tasks locally or remotely from
a command prompt. (Application Server Control Console is the preferred
administration environment over this command line tool as it provides a more
integrated set of administration services.)

Java Development and Deployment Tools

2-14 Migrating From WebLogic

Migrating Java Servlets 3-1

3
Migrating Java Servlets

This chapter provides the information you need to migrate Java servlets from
WebLogic Server to Oracle Application Server. It covers the migration of simple
servlets, WAR files, and exploded Web applications.

This chapter contains these topics:

■ Section 3.1, "Introduction"

■ Section 3.2, "Migration Approach for Servlets"

■ Section 3.3, "Migrating a Simple Servlet"

■ Section 3.4, "Migrating a WAR File"

■ Section 3.5, "Migrating an Exploded Web Application"

■ Section 3.6, "Migrating Configuration and Deployment Descriptors"

■ Section 3.7, "Migrating Cluster Aware Applications"

3.1 Introduction
Migrating Java servlets from WebLogic Server to Oracle Application Server is
straightforward, requiring little or no code changes to the servlets migrated.

Oracle Application Server 10g Release 3 (10.1.3) is fully compliant with Sun
Microsystem’s J2EE Servlet specification, version 2.4. WebLogic Server 8.1 is
compatible with version 2.3. However, Oracle Application Server 10g Release 3 (10.1.3)
is backward compatible to Servlet 2.3. Hence, servlets written to the standard 2.3
specification should work correctly in Oracle Application Server and require minimal
migration effort.

The primary tasks involved in migrating servlets to a new environment are
configuration and deployment. The use of proprietary extensions, such as htmlKona,
will require additional tasks and complicate the migration effort.

The tasks involved in migrating servlets also depend on how the servlets have been
packaged and deployed. Servlets can be deployed as a simple servlet, as a Web
application packaged with other resources in a standard directory structure, or as a
Web archive (WAR) file.

3.2 Migration Approach for Servlets
Migrating servlets to OC4J is a straightforward process using the following overall
steps:

Migrating a Simple Servlet

3-2 Migrating From WebLogic

1. Configuration - Create or modify the Oracle Application Server deployment
descriptors for the servlets.

2. Packaging:

– Simple servlets can be deployed individually (see Section 3.3).

– Servlets can be packaged as part of a Web application in a WAR file (see
Section 3.4).

3. Deployment - Application Server Control Console can be used to deploy servlets
in a WAR file. Individual servlets and servlets in exploded Web applications can
be deployed automatically by copying them to the appropriate directories.

Servlet Migration Issues
The following are possible issues you may face during servlet migration:

■ Earlier versions of WebLogic Server (6.0) Servlet 2.3 implementation is based on
non-finalized Servlet 2.3 specification, which may require some code upgrade to
use the finalized Servlet 2.3 API, which is the highest level specification supported
by WebLogic Server 8.1. Oracle Application Server 10g Release 3 (10.1.3) supports
Servlet 2.4 and is backward compatible to Servlet 2.3. Hence, WebLogic Server 6.0
and earlier servlets should be upgraded to the Servlet 2.3 API before being
deployed in Oracle Application Server.

■ Setting up HttpSession persistence varies between both Weblogic and OC4J.

■ Proprietary server extensions (WebLogic htmlKona) need to be rewritten.

■ If a servlet in WebLogic Server performs JNDI lookups to resources in applications
other than its own, it may cause a NameNotFoundException when performing
the same lookup after it is migrated to OC4J. This exception occurs if OC4J is not
configured for global JNDI lookup. Refer to Section 5.1.2.1, "Global JNDI Lookups
and Oracle Application Server" for a resolution.

3.3 Migrating a Simple Servlet
Simple servlets are easily configured and deployed in OC4J. The manual process used
to deploy a servlet is the same in both WebLogic Server and OC4J.

A servlet must be registered and configured as part of a Web application. To register
and configure a servlet, several entries must be added to the Web application
deployment descriptor.

The overall steps to deploy a simple servlet are as follows (detailed steps are in
Table 3–1):

Note: Oracle JDeveloper provides tools and wizards to automate all
the above.

Note: The recommended and preferred way to deploy a servlet is by
packaging it in a WAR or EAR file and using Oracle Enterprise
Manager 10g Application Server Control Console. The manual
processes described in this chapter of editing XML files and starting
OC4J at the command line using the java command should
preferably be used in a development environment.

Migrating a Simple Servlet

Migrating Java Servlets 3-3

1. Update the Web application deployment descriptor (web.xml) with the name of
the servlet class and the URL pattern used to resolve requests for the servlet.

2. Copy the servlet class file to the WEB-INF/classes/ directory. If the servlet class
file contains a package statement, create additional subdirectories for each level of
the package statement. The servlet class file must then be placed in the lowest
subdirectory created for that package.

3. Copy other supporting files required by the servlet to the appropriate directory in
the Oracle Application Server installation.

4. Invoke the servlet from your browser by entering its URL.

To determine the effort involved in migrating servlets, we selected and migrated
example servlets provided with WebLogic Server. We chose examples that did not use
proprietary extensions.

Table 3–1 presents the manual process for migrating a simple servlet, HelloWorld,
from WebLogic Server to Oracle Application Server OC4J.

Table 3–1 Migrating a Simple Servlet

Step Description Process

1 Modify the Web application
deployment descriptor

Add the descriptor information below to the web.xml file located in
the following directory in your Oracle Application Server installation:

For UNIX, web.xml can be found in:

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/

For Windows, web.xml can be found in:

<ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF\

The descriptor information to be entered is:

<servlet>
<servlet-name>
HelloWorldServlet
</servlet-name>
<servlet-class>
examples.servlets.HelloWorldServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>
HelloWorldServlet
</servlet-name>
<url-pattern>
/HelloWorldMigrate/*
</url-pattern>

</servlet-mapping>

Migrating a Simple Servlet

3-4 Migrating From WebLogic

2 Copy the servlet class file to the
appropriate directory

After building and running successfully the samples that came with
WebLogic Server, copy HelloWorldServlet.class from a
directory in your WebLogic Server installation to the appropriate
directory in Oracle Application Server as follows:

In UNIX, from:

<BEA_HOME>/weblogic81/samples/server/examples/build/
examplesWebApp/WEB-INF/classes/examples/servlets/

to:

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/
classes/examples/servlets/

In Windows, from:

<BEA_HOME>\weblogic81\samples\server\examples\build\
examplesWebApp\WEB-INF\classes\examples\servlets\

to:

<ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF\
classes\examples\servlets\

NOTE: This servlet provided with the WebLogic Server installation
belongs to a package called examples.servlets. When copying its class
file to Oracle Application Server, you need to create the corresponding
package subdirectories (examples/servlets/).

3 Extract and copy the supporting
utility class file required by the
servlet.

HelloWorldServlet.class imports a utility class,
ExampleUtils.class, found in the JAR file, utils_common.jar,
in the WebLogic Server installation. This utility class needs to be
copied to your Oracle Application Server installation.

ExampleUtils.class can be found in the following location:

(UNIX)

<BEA_HOME>/weblogic81/samples/server/examples/build/
examplesWebApp/WEB-INF/lib/utils_common.jar

(Windows)

<BEA_HOME>\weblogic81\samples\server\examples\build\
examplesWebApp\WEB-INF\lib\utils_common.jar

Extract ExampleUtils.class to:

(UNIX):

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/classes/

(Windows):

<ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF\classes\

Note: The examples/utils/common directory is created from the
extraction.

4 Restart the home OC4J "home"
instance, or start it if it is not
currently running

Use the Oracle Enterprise Manager 10g Application Server Control
Console administration Web pages or the following opmnctl
command (executed locally):

opmnctl @instance restartproc ias-component=OC4J

Table 3–1 (Cont.) Migrating a Simple Servlet

Step Description Process

Migrating a WAR File

Migrating Java Servlets 3-5

3.4 Migrating a WAR File
A Web application can be configured and deployed as a WAR file. This is easily
accomplished in OC4J by using the Application Server Control Console administration
GUI or manually copying the WAR file to the appropriate directory. This is also true
for WebLogic Server. We will illustrate the process using Application Server Control
Console to deploy an example WAR file from WebLogic Server.

Production Web applications are typically deployed using WAR or EAR files through
Application Server Control Console. During the development of a Web application, it
may be faster to deploy and test edited code using an exploded directory format (see
Section 3.5).

Table 3–2 presents the typical process for migrating a WAR file from WebLogic Server
to OC4J.

5 Run the servlet from your Web
browser

Access the servlet from your Web browser using the URL

http://localhost:7777/j2ee/HelloWorldMigrate

(Substitute "localhost" with your OC4J instance’s host name if using
the browser from another machine.)

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide for detailed information on configuring and
deploying servlets.

Note: Manually copying a WAR file to the appropriate directory to
deploy it should only be done in a development environment where
OC4J is in standalone mode (not a component of an Oracle
Application Server instance).

Table 3–2 Migrating a WAR File

Step Description Process

1 Create the WAR file for
the sample application.

If you have not run all the WebLogic Server samples that
came with that product, build the cookie sample Web
application in the following WebLogic Server directory
(UNIX is shown but Windows has equivalent directory
structure):

<BEA_HOME>/weblogic81/samples/server/examples/src/
examples/webapp/cookie

In this directory, build the application by typing <BEA_
HOME>/ant/weblogic81/server/bin/ant

When built, a WAR file for this application, cookie.war, is
created in the following directory:

<BEA_HOME>/weblogic81/samples/domains/examples/
applications/

Table 3–1 (Cont.) Migrating a Simple Servlet

Step Description Process

Migrating an Exploded Web Application

3-6 Migrating From WebLogic

3.5 Migrating an Exploded Web Application
Web applications can also be configured and deployed as a collection of files stored in
a standard directory structure or exploded directory format. This can be accomplished
in OC4J by manually copying the contents of the standard directory structure to the
appropriate directory in the OC4J installation. The same method can also be used for
WebLogic Server. In this section, we will describe the manual process for deploying an
exploded Web application.

2 Deploy the sample
application to Oracle
Application Server.

1. On the machine where the cookie.war file is located,
open a browser and go to the Application Server
Control Console URL of your Oracle Application Server
installation. For example:

http://<hostname>:7777/em

where <hostname> is the qualified name of the host
where Oracle Application Server is installed.

2. Enter your administrator username (oc4jadmin) and
password if prompted.

3. Click the "+" icon of the Oracle Application Server
instance you want to deploy the WAR file to.

4. Click the home OC4J component, which brings up its
settings page.

5. Click "Applications" and then the "Deploy" button. The
"Deploy: Select Archive" page appears.

6. Select "Archive is present on local host." Click the
"Browse" button and enter the location of the
cookie.war file. For deployment plan, leave the
selection to automatically create a deployment plan.
Click Next. The "Deploy: Application Attributes" page
appears.

7. In the "Application Name" and "Context Root" text
boxes, enter "cookie" and "/cookie" respectively. Click
Next. The "Deploy: Deployment Settings" page appears.

8. Click Deploy. A page showing the deployment progress
appears. A success message appears if the deployment
is successful. If an error occurs, view the progress
messages and attempt to troubleshoot the problems
logged.

9. Click Return. The home settings page appears, and the
cookie application should appear in the list of deployed
applications.

3 Test the deployed
application.

In a browser, enter the following URL:

http://<hostname>:7777/cookie

where <hostname> is the Oracle Application Server host
where you deployed the cookie WAR file.

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide and Oracle Application Server Containers for J2EE
User’s Guide for more detailed information on deploying WAR and
EAR files.

Table 3–2 (Cont.) Migrating a WAR File

Step Description Process

Migrating an Exploded Web Application

Migrating Java Servlets 3-7

Deploying a Web application in exploded directory format is used primarily during
the development of a Web application. It provides a fast and easy way to deploy and
test changes. When deploying a production Web application, package the Web
application in a WAR file and deploy the WAR file using Application Server Control
Console.

WebLogic Server
To manually deploy an exploded Web application in WebLogic Server (development
mode), copy the top-level directory containing the exploded Web application files into
the following directories of your WebLogic Server installation:

(UNIX) <BEA_HOME>/user_projects/domains/<domain_
name>/applications
(Windows) <BEA_HOME>\user_projects\domains\<domain_
name>\applications

For WebLogic Server 7.0 - Once the top-level directory is copied to the appropriate
directory, create an empty file with the name "REDEPLOY" within the top-level
directory. WebLogic Server detects this file and deploys the Web application.
(WebLogic Server reads the timestamp of this file every few minutes to determine if
the application needs redeploying. Hence, whenever an application file is updated, the
REDEPLOY file’s timestamp has to be updated to redeploy the file. In UNIX, this can be
done by using the touch command.)

For WebLogic Server 8.1 - When WebLogic Server is running in development mode,
any exploded directory files placed in the abovementioned directory is automatically
deployed. There is no need to create the "REDEPLOY" file as for version 7.0.

Oracle Application Server
Manually deploying an exploded Web application in OC4J varies slightly. Copy the
top-level directory containing the exploded Web application into the following
directory of your OC4J installation:

(UNIX) <ORACLE_HOME>/j2ee/home/applications
(Windows) <ORACLE_HOME>\j2ee\home\applications

Then, modify the following application deployment descriptor to include the Web
application:

(UNIX) <ORACLE_HOME>/config/application.xml
(Windows) <ORACLE_HOME>\config\application.xml

Bind the Web application to your Web site by adding an entry in the following
descriptor file:

(UNIX) <ORACLE_HOME>/config/default-web-site.xml
(Windows) <ORACLE_HOME>\config\default-web-site.xml

Finally, register the new application by adding a new <application> tag entry in
the following files:

(UNIX) <ORACLE_HOME>/config/server.xml
(Windows) <ORACLE_HOME>\config\server.xml

When you modify server.xml and save it, OC4J detects the timestamp change of
this file and deploys the application automatically. OC4J need not be restarted.

See Also: Oracle Application Server Administrator’s Guide for detailed
information on using the Application Server Control Console GUI.

Migrating Configuration and Deployment Descriptors

3-8 Migrating From WebLogic

3.6 Migrating Configuration and Deployment Descriptors
Since WebLogic Server and Oracle Application Server fully support J2EE 1.4, there is a
standard set of XML configuration files supported by both application servers. These
are:

■ web.xml (found in the WEB-INF directory of a Web application’s WAR file)

■ application.xml (found in the META-INF directory of a Web application’s
WAR file)

■ ejb-jar.xml (found in the META-INF directory of an EJB module’s exploded
directory hierarchy)

In addition to the standard files, each application server has specific files used only by
their respective environments. These are:

3.6.1 Oracle Application Server
■ server.xml

Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config/
(Windows) <ORACLE_HOME>\j2ee\home\config\

This is the overall OC4J runtime configuration file. It defines attributes such as the
deployed applications directory, the server log file path and name, path and names
of other XML files, names of applications and their EAR files, paths to runtime
libraries, and so on.

■ application.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config\
(Windows) <ORACLE_HOME>\j2ee\home\config\

This is the global configuration file common settings for all applications deployed
on a particular OC4J installation. Note that this is different from the
application.xml in a J2EE WAR file.

■ <website_name>-web-site.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config\
(Windows) <ORACLE_HOME>\j2ee\home\config\

This file defines a Web site and specifies attributes such as host name, HTTP
listener port number, Web applications it services and their URL contexts, and
HTTP access log file and path. Note that the name and path of each
*-web-site.xml file has to be specified in the server.xml file for OC4J to
configure the defined Web site at runtime.

■ data-sources.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config/
(Windows) <ORACLE_HOME>\j2ee\home\config\

This file contains configuration information for data sources used by the OC4J
runtime. Information in this file include: JDBC drivers used, JNDI binding for each
data source, username and password for each data source, database schemas to
use, maximum connections to each database, and time out values.

Migrating Configuration and Deployment Descriptors

Migrating Java Servlets 3-9

■ principals.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config/
(Windows) <ORACLE_HOME>\j2ee\home\config\

This file contains the user repository for the default XMLUserManager class.
Groups, users belonging to them, and group permissions are defined in this file.
The mapping of groups to roles is defined in the global application.xml file.

■ orion-application.xml
Found in

UNIX: <ORACLE_HOME>/j2ee/home/application-deployments/<app_
name>

or

Windows: <ORACLE_
HOME>\j2ee\home\application-deployments\<app_name>

This file contains OC4J-specific information for an application (<app_name>)
deployed on an OC4J installation. Web and EJB module names and security
information for the application are included in the file. This file is generated by
OC4J at deploy time.

■ global-web-application.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config/
(Windows) <ORACLE_HOME>\j2ee\home\config\

This file contains servlet configuration information used internally by the OC4J
runtime. An example is the JSP translator servlet.

■ orion-web.xml
Found in

UNIX:
<ORACLE_HOME>/j2ee/home/application-deployments/
<app_name>/<web_app_name>/

or

Windows:
<ORACLE_HOME>\j2ee\home\application-deployments\
<app_name>\<web_app_name>\

OC4J internal JSP and servlet information for <web_app_name> is specified in
this file. This file is generated by OC4J at deploy time.

■ orion-ejb-jar.xml
Found in

UNIX:
<ORACLE_HOME>/j2ee/home/application-deployments/
<app_name>/<ejb_jarfile_name>/

or

Windows:
<ORACLE_HOME>\j2ee\home\application-deployments\
<app_name>\<ejb_jarfile_name>\

Migrating Cluster Aware Applications

3-10 Migrating From WebLogic

 This file contains OC4J internal deployment information for EJBs in the JAR file
specified by <ejb_jarfile_name> belonging to the application <app_name>.
This file is generated by OC4J at deploy time.

■ oc4j-connectors.xml
Found in

(UNIX) <ORACLE_HOME>/j2ee/home/config/
(Windows) <ORACLE_HOME>\j2ee\home\config\

This file contains connector information for the OC4J installation.

3.6.2 WebLogic Server
■ config.xml

Found in

(UNIX) <BEA_HOME>/config/<domain_name>/
(Windows) <BEA_HOME>\config\<domain_name>\

This file contains configuration information for an entire WebLogic Server domain.
Information specified in this file include the domain administration server’s host
name and admin port number, JNDI mappings to data sources, JDBC connection
pool information, applications deployed to all nodes in the domain, SSL certificate
information,

■ weblogic.xml
Found in

UNIX:
<BEA_HOME>/config/<domain_name>/applications/
<web_app_name>/WEB_INF/

or

Windows:
<BEA_HOME>\config\<domain_name>\applications\
<web_app_name>\WEB_INF\

This file defines JSP properties, JNDI mappings, resource references, security role
mappings, and HTTP session and cookie parameters for a Web application. This
file is WebLogic Server-specific but is created manually.

■ weblogic-ejb-jar.xml
Found in an EJB module’s META-INF subdirectory. This file maps WebLogic
Server resources to EJBs. These resources include security role names, data
sources, JMS connections, and other EJBs. This file also has performance attributes
for caching and clustering for the EJBs defined in the corresponding
ejb-jar.xml file.

3.7 Migrating Cluster Aware Applications
Oracle Application Server provides more comprehensive clustering features than
WebLogic Server.

Note: The files mentioned above are not an exhaustive list of all XML
configuration file used by each application server. They are files which
are relevant to the configuration and deployment of servlet
applications. Other XML files also exist to configure components such
as HTTP listeners, RMI, security.

Migrating Cluster Aware Applications

Migrating Java Servlets 3-11

WebLogic Server provides two primary cluster services, HTTP session state clustering
and object clustering. The focus of this section is on HTTP session state clustering or
Web application clustering.

WebLogic Server supports clustering for servlets and JSP pages by replicating the
HTTP session state of clients accessing clustered servlets and JSP pages. To benefit
from HTTP session state clustering, you must ensure that the HTTP session state is
persistent by configuring either in-memory replication, file system persistence, or
JDBC persistence.

Oracle Application Server provides clustering support similar to that of WebLogic
Server. In addition, Oracle Application Server provides:

■ Servlet Clustering—OC4J provides facilities to cluster servlets without requiring
any changes to the Web application. The changes necessary are deployment
configuration modifications that are transparent to the Web application and allows
session fail over to multiple OC4J processes.

■ Clustering Architecture and Simplicity—An important differentiator for Oracle
Application Server is the ease with which different instances can be clustered and
the robustness of the architecture used for clustering.

■ Clustering Simplicity—Oracle Enterprise Manager 10g Application Server
Control Console provides a GUI to configure various OracleAS instances to belong
to a single cluster, whether they are multiple servers with load balancing on a
single machine or on different machines. Alternatively, you can also edit a single
XML file. In contrast, it is more complex to configure WebLogic Server clusters
with load balancing either with multiple instances on one machine or on multiple
machines.

■ Superior Clustering Architecture—OC4J uses dynamic IP addresses to register
instances as part of a cluster. Any standard load balancer such as Cisco Local
Director or BigIP has the ability to use a variety of load balancing mechanisms to
route requests to different Oracle Application Server instances. Additionally, mod_
oc4j intelligently routes requests from Oracle HTTP Server to OC4J processes
using one of several load balancing algorithms. In contrast, WebLogic Server uses
static IP addresses to configure clustering. Static IP addresses preclude the use of a
load balancer to distribute requests across instances. As a result, you get either
clustering or load balancing with WebLogic Server but not both.

See Also: Oracle Application Server High Availability Guide and Oracle
Containers for J2EE Configuration and Administration Guide

Migrating Cluster Aware Applications

3-12 Migrating From WebLogic

Migrating JSP Pages 4-1

4
Migrating JSP Pages

This chapter provides the information you need to migrate JavaServer pages from
WebLogic Server to Oracle Application Server. It covers the migration of simple JSP
pages, custom JSP tag libraries, and WebLogic custom tags.

This chapter contains these topics:

■ Section 4.1, "Introduction"

■ Section 4.2, "Migration Approach"

■ Section 4.3, "Migrating a Simple JSP Page"

■ Section 4.4, "Migrating a Custom JSP Tag Library"

■ Section 4.5, "Migrating htmlKona"

■ Section 4.6, "Precompiling JSP Pages"

4.1 Introduction
Migrating JSP pages from WebLogic Server to Oracle Application Server is straight
forward and requires little or no code changes.

WebLogic Server 8.1 is compliant with Sun Microsystem’s JavaServer Page
specifications, version 1.2. Oracle Application Server 10g Release 3 (10.1.3) is compliant
with JSP 2.0 and is backward compatible to version 1.2. Hence, JSP pages written to
the standard version 1.2 specification should work correctly in Oracle Application
Server and require minimal migration effort.

The primary tasks involved in migrating JSP pages to a new environment are
configuration and deployment. The use of proprietary extensions and tag libraries will
require additional tasks and complicate the migration effort.

The tasks involved in migrating JSP pages also depend on how the JSP pages have
been packaged and deployed. JSP pages can be deployed as a simple JSP page, as a
Web application packaged with other resources in a standard directory structure (WAR
file), or as a enterprise application archive (EAR) file. The migration of Web
applications in exploded directory format and WAR files is addressed in Chapter 3,
"Migrating Java Servlets".

4.1.1 Differences Between WebLogic Server and Oracle Application Server JSP
Implementations

Since both WebLogic Server and Oracle Application Server Containers for J2EE (OC4J)
have implemented the same versions of the Java Server Pages specifications, there are

Introduction

4-2 Migrating From WebLogic

no differences between the two in the core JSP specification areas. There are differences
in areas outside the core specifications. These are listed in Table 4–1.

Each vendor provides their own custom JSP tags. WebLogic Server provides four
specialized JSP tags that you can use in your JSP pages. OC4J also provides various JSP
tags - Oracle JSP Markup Language (JML) Custom Tag Library, tags for XML and XSL
integration, and several JSP utility tags. A comprehensive discussion of these tags can
be found in Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference.

4.1.1.1 OC4J JSP Features
Oracle Application Server provides one of the fastest JSP engines on the market.
Further, it also provides several value-added features and enhancements such as
support for globalization, SQLJ, and expression language. If you are familiar with
Oracle9iAS 1.0.2.2, the first release of Oracle Application Server to include OC4J, there
were two JSP containers: a container developed by Oracle and formerly known as
OracleJSP and a container licensed from Ironflare AB and formerly known as the
"Orion JSP container".

In Oracle Application Server, these have been integrated into a single JSP container,
referred to as the "OC4J JSP container". This new container offers the best features of
both previous versions, runs efficiently as a servlet in the OC4J servlet container, and is
well integrated with other OC4J containers. The integrated container primarily
consists of the OracleJSP translator and the Orion container runtime running with a
new simplified dispatcher and the OC4J 1.0.2.2 core runtime classes. The result is one
of the fastest JSP engines on the market with additional functionality over the standard
JSP specifications.

OC4J JSP provides extended functionality through custom tag libraries and custom
JavaBeans and classes that are generally portable to other JSP environments:

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event handling

■ Integration with XML and XSL through custom tags

■ Data-access JavaBeans

■ The Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

■ OC4J JSP includes (non exhaustively) connection pooling tags, XML tags, EJB tags,
file access tags, email tags, caching tags, OracleAS Personalization tags, OracleAS
Ultrasearch tags, a custom tag library for SQL functionality, and support for JSTL
(JavaServer Pages Standard Tag Library). WebLogic only has four: cache,
process, repeat, and form validation.

Table 4–1 JSP feature comparison

Feature

Oracle Application
Server 10g
Release 3 (10.1.3)

WebLogic Server
8.1

JSP Version Support 2.0 1.2

Basic JSP Tag Libraries Yes Yes

Advanced JSP Tag Libraries Yes No

JSP Source Level Debugging Yes No

ASP to JSP Source Level Conversion Yes No

Introduction

Migrating JSP Pages 4-3

■ JESI (Edge Side Includes for Java) tags and Web Object Cache tags and API that
work with content delivery network edge servers to provide an intelligent caching
solution for Web content (see the following sub-sections).

The OC4J JSP container also offers several important features such as the ability to
switch modes for automatic page recompilation and class reloading, JSP instance
pooling, and tag handler instance pooling.

The following sections provide a summary of Edge Side Includes for Java (JESI) Tags
and Web Object Cache Tags. See the Oracle Containers for J2EE JSP Tag Libraries and
Utilities Reference for a discussion of other available tags.

4.1.1.1.1 Edge Side Includes for Java (JESI) Tags OC4J provides fine-grained control
allowing developers to cache fragments of JSP pages down to each individual tag -
these can be cached in OracleAS Web Cache and are automatically invalidated and
refreshed when a JSP changes. The technology behind this is Edge Side Includes (ESI),
a W3C standard XML schema/markup language that allows dynamic content to be
cached in a Web Cache or to be assembled in an edge network. By caching this
dynamic content, it reduces the need to execute JSPs or Servlets, thereby improving
performance, off loading the application servers, and reducing latency. JESI (JSP to
ESI) tags are layered on top of an Edge Side Includes (ESI) framework to provide ESI
caching functionality in a JSP application. JESI tags enable the user to break down
dynamic content of JSP pages into cacheable components or fragments.

4.1.1.1.2 Web Object Cache Tags The Web Object Cache is an Oracle Application Server
feature that allows Web applications written in Java to capture, store, reuse,
post-process, and maintain the partial and intermediate results generated by JSPs or
Servlets. For programming interfaces, it provides a tag library (for use in JSP pages)
and a Java API (for use in Servlets). Cached objects might consist of HTML or XML
fragments, XML DOM objects, or Java serializable objects. By caching these objects in
memory, various operations can be carried out on the cached objects including:

■ Applying a different XSLT based on user profile or device characteristics on the
stored XML

■ Re-using a cached object outside HTTP, such as SMTP to send e-mail to clients.

4.1.1.2 Oracle JDeveloper and OC4J JSP Container
Oracle JDeveloper is integrated with the OC4J JSP container to support the full JSP
application development cycle - editing, source-level debugging, and running JSP
pages. It also provides an extensive set of data-enabled and Web-enabled JavaBeans,
known as JDeveloper Web beans and a JSP element wizard which offers a convenient
way to add predefined Web beans to a page. JDeveloper also provides a distinct
feature that is very popular with developers. It allows you to set breakpoints within
JSP page source and can follow calls from JSP pages into JavaBeans. This is much more
convenient than manual debugging techniques, such as adding print statements
within the JSP page to output state into the response stream for display on browser or
to the server log.

See Also: Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference for detailed information on custom JSP tag libraries.

Migration Approach

4-4 Migrating From WebLogic

4.2 Migration Approach
Migrating a JSP from WebLogic Server is straightforward and involves configuration,
packaging (into a WAR file), and deployment tasks (to appropriate deployment
directory). These tasks can be performed manually or by using Oracle JDeveloper.

In cases where proprietary tag libraries are used, they can be ported to either Oracle
proprietary tags (see Section 4.4.1) or custom tags can be created to replace them.

Known JSP Migration Caveats
The following are known issues for migrating JSPs from WebLogic Server:

■ WebLogic tags are located in the tagext directory.

■ The WebLogic cache tag library is not supported. Use OC4J’s Web Object Cache
tag library (see Section 4.4.1.1).

■ The following WebLogic-specific tags and properties have to be migrated:

– <process> (see Section 4.4.1.2)

– <repeat> (see Section 4.4.1.3)

– <%@ page extends=”..” %>

This directive should be replaced with <%@ page import=”..” %> .

– htmlKona (see Section 4.5)

4.3 Migrating a Simple JSP Page
JSP pages do not require specific mappings as do HTTP servlets. To deploy a simple
JSP page, you can copy the JSP page and any files required by the JSP page to the
appropriate directories. No additional registrations are required.

The deployment process has been simplified in OC4J by providing a J2EE Web
application and various configuration files by default.

To determine the effort involved in migrating JSP pages, we selected and migrated
example JSP pages provided with WebLogic Server. We chose examples that did not
use proprietary extensions.

Table 4–2 presents the typical process for migrating a simple JSP page from WebLogic
Server to OC4J.

Note: Application Server Control Console should be used to deploy
any type of applications including JSPs. But for the purpose of
illustration, the JSP files in the following example are copied manually
without using Application Server Control Console.

Table 4–2 Migrating a Simple JSP Page

Step Description Process

1 Start an instance of
OC4J, if none are
currently running.

Use the Oracle Enterprise Manager 10g Application Server
Control Console administration Web pages or the following
opmnctl command (executed locally):

opmnctl @instance startproc ias-component=OC4J

Migrating a Custom JSP Tag Library

Migrating JSP Pages 4-5

4.4 Migrating a Custom JSP Tag Library
WebLogic Server and OC4J provide the ability to create and use custom JSP tags. The
process used to deploy a custom JSP tag library is similar for both WebLogic Server
and OC4J.

Tag libraries can be packaged and deployed as part of a Web application and are
declared in a specific section of the Web application deployment descriptor.

To determine the effort involved in migrating custom JSP tag libraries, we selected and
migrated example JSP pages provided with WebLogic Server. We chose examples that
did not use proprietary extensions.

Table 4–3 presents the typical process for migrating a JSP page that utilizes a custom
JSP tag library from WebLogic Server 7.0 to OC4J. (Note that this example is not
available in WebLogic Server 8.1.)

2 Copy the JSP page to
the appropriate
directory

Copy HelloWorld.jsp or ShowDate.jsp from its
directory in your WebLogic Server installation to the
appropriate directory in Oracle Application Server
as follows:

In UNIX, from:

<BEA_HOME>/weblogic81/samples/server/examples/src/
examples/jsp/

to:

<ORACLE_HOME>/j2ee/home/default-web-app/

In Windows, from:

<BEA_HOME>\weblogic81\samples\server\examples\src\
examples\jsp\

to:

<ORACLE_HOME>\j2ee\home\default-web-app\

4 Request the JSP page
from your Web
browser

From a Web browser, request the JSP page through the URL:

http://<hostname>:7777/j2ee/HelloWorld.jsp

or

http://<hostname>:7777/j2ee/ShowDate.jsp

where <hostname> is the Oracle Application Server host
you copied the JSP file to.

See Also: Oracle Containers for J2EE Support for JavaServer Pages
Developer’s Guide and Oracle Application Server Containers for J2EE
User’s Guide for detailed information on configuring and deploying
JSP pages.

Table 4–2 (Cont.) Migrating a Simple JSP Page

Step Description Process

Migrating a Custom JSP Tag Library

4-6 Migrating From WebLogic

Table 4–3 Migrating a Custom JSP Tag Library from WebLogic Server 7.0

Step Description Process

1 Copy the tag library file to
the appropriate directory

Copy counter.tld from

UNIX:

<BEA_HOME>/weblogic700/samples/
server/src/examples/jsp/tagext/counter/

Windows:

<BEA_HOME>\weblogic700\samples\
server\src\examples\jsp\tagext\counter\

of your WebLogic Server installation to the following
directory in your OC4J installation:

UNIX:

<ORACLE_HOME>/j2ee/home/
default-web-app/WEB-INF/

Windows:

<ORACLE_HOME>\j2ee\home\
default-web-app\WEB-INF\

2 Copy the JSP file that uses
the tag library to the
appropriate directory

Copy pagehits.jsp from

UNIX:

<BEA_HOME>/weblogic700/samples/
server/src/examples/jsp/tagext/counter/

Windows:

<BEA_HOME>\weblogic700\samples\
server\src\examples\jsp\tagext\counter\

of your WebLogic Server installation to the following
directory in your OC4J installation:

UNIX:

<ORACLE_HOME>/j2ee/home/default-web-app/

Windows:

<ORACLE_HOME>\j2ee\home\default-web-app\

Migrating a Custom JSP Tag Library

Migrating JSP Pages 4-7

3 Copy any class files required
by the tag library and used
by the JSP file to the
appropriate directory

Copy Count.class, Display.class, and
Increment.class from

UNIX:

<BEA_HOME>/weblogic700/samples/server/
config/examples/applications/
examplesWebApp/WEB-INF/classes/
examples/jsp/tagext/counter/

Windows:

<BEA_HOME>\weblogic700\samples\server\
config\examples\applications\
examplesWebApp\WEB-INF\classes\
examples\jsp\tagext\counter\

of your WebLogic Server installation to the following
directory in your OC4J installation:

UNIX:

<ORACLE_HOME>/j2ee/home/
default-web-app/WEB-INF/
classes/examples/jsp/tagext/counter/

Windows:

<ORACLE_HOME>\j2ee\home\
default-web-app\WEB-INF\
classes\examples\jsp\tagext\counter\

Note that these .class files provided with the
WebLogic server installation belong to a package
called examples.jsp.tagext.counter. You may
need to create the
examples/jsp/tagext/counter/ directory (or
Windows equivalent).

4 Copy image files used by the
JSP file

Copy the directory containing the image files from

UNIX:

<BEA_HOME>/weblogic700/samples/server/
src/examples/jsp/tagext/counter/
images/numbers/

Windows:

<BEA_HOME>\weblogic700\samples\server\
src\examples\jsp\tagext\counter\
images\numbers\

of the WebLogic Server installation to the following
directory in your OC4J installation:

UNIX:

<ORACLE_HOME>/j2ee/home/
default-web-app/images/numbers/

Windows:

<ORACLE_HOME>\j2ee\home\
default-web-app\images\numbers\

Note that you may have to create the
images/numbers (or Windows equivalent) directory

Table 4–3 (Cont.) Migrating a Custom JSP Tag Library from WebLogic Server 7.0

Step Description Process

Migrating a Custom JSP Tag Library

4-8 Migrating From WebLogic

4.4.1 Migrating from WebLogic Custom Tags
If WebLogic custom tags are used extensively throughout your Web application, then
the best migration option is to use the WebLogic tag library by deploying it on OC4J.
This option was discussed in the previous section, "Migrating a Custom JSP Tag
Library". You can then migrate to the OC4J JSP tags if required.

If WebLogic custom tags are used sparingly throughout your Web application, then
the best migration option is to modify the JSP pages to use the OC4J JSP tag library.
This option is discussed below.

WebLogic Server provides three specialized JSP tags for use in JSP pages. They are
cache, process, and repeat.

5 Modify the appropriate Web
application deployment
descriptor and save the
changes

Add the directive entry below to the web.xml file
located in the following directory of your OC4J
installation:

UNIX:

<ORACLE_HOME>/j2ee/home/
default-web-app/WEB-INF/

Windows:

<ORACLE_HOME>\j2ee\home\
default-web-app\WEB-INF\

Directive entry (<taglib> is a child element of
<web-app>):

<taglib>
<taglib-uri>
counter
</taglib-uri>
<taglib-location>
/WEB-INF/counter.tld
</taglib-location>

</taglib>

6 Restart or start the OC4J
instance, if it is not currently
running.

Go to http://<hostname>:1810 and restart/start
the home OC4J instance. Or, use the following
opmnctl command executed locally:

opmnctl @instance restartproc
ias-component=OC4J

7 Request the JSP file from
your Web browser

From your Web browser, access the URL

http://<hostname>:7777/j2ee/
pagehits.jsp

where <hostname> is the Oracle Application Server
host you copied the files to.

See Also:

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s
Guide for detailed information on configuring and deploying JSP
pages.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference for
detailed information on custom JSP tag libraries.

Table 4–3 (Cont.) Migrating a Custom JSP Tag Library from WebLogic Server 7.0

Step Description Process

Precompiling JSP Pages

Migrating JSP Pages 4-9

4.4.1.1 WebLogic Server cache Tag
OC4J provides a superset of the WebLogic Server cache tag in the form of Web Object
Cache Tags. These tags provide additional functionality over the WebLogic cache tag.
Further, the Web Object Cache Tags of OC4J are well integrated with other tag libraries
such as the XML tag library. For example, the cacheXMLObj tag is well integrated
with OC4J’s XML tags.

One feature which does not have direct functionality mapping is "async". However,
Edge Side Includes (ESI) and Edge Side Includes for Java (JESI) can provide similar
functionality to it.

4.4.1.2 WebLogic Server process Tag
OC4J does not have an exact equivalent for the process tag. The closest option is to
substitute it with scriptlet if statements, the Apache Struts <logic:exists> tag, or
JSTL tags. Alternatively, you could write Java code to implement the tag.

4.4.1.3 WebLogic Server repeat Tag
Prior to Oracle Application Server 10g Release 3 (10.1.3), this tag could be replaced
with JML tag jml:foreach. However, since JML is now desupported and replaced
with JSTL, the JSTL c:forEach or x:forEach tags can be used.

4.5 Migrating htmlKona
htmlKona is an API available with WebLogic Server. It is used for creating and
manipulating HTML programmatically. htmlKona was made available before JSP
specifications were available. Since htmlKona is proprietary to WebLogic, Oracle
Application Server does not support it, and the recommended approach to migrate
applications using htmlKona to Oracle Application Server is to replace the use of
htmlKona with JSPs. If there is a strong need to manipulate HTML programatically,
Oracle JDeveloper provides UMX and other features to match and exceed the
functionalities of htmlKona.

4.6 Precompiling JSP Pages
JSP pages are compiled automatically by the JSP compiler. However, when testing and
debugging JSP pages, you may want to access the JSP compiler directly.

The JSP compiler parses a .jsp file into a .java file. The standard Java compiler is
then used to compile the .java file into a .class file.

4.6.1 Using the WebLogic Server JSP Compiler
To start the WebLogic Server JSP compiler, type the following command in your
WebLogic Server command line environment:

See Also: Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference for detailed information on Web Object Cache tags and JESI
tags.

See Also:

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s
Guide

Precompiling JSP Pages

4-10 Migrating From WebLogic

java weblogic.jspc -options fileName

The fileName parameter refers to the name of the JSP page to be compiled. Options
may be specified before or after the JSP page name. The following example
demonstrates the use of the -d option to compile myFile.jsp into the destination
directory weblogic/classes:

java weblogic.jspc -d /weblogic/classes myFile.jsp

4.6.2 Using the OC4J JSP Pre-translator
In addition to the standard jsp_precompile mechanism, OC4J provides a
command-line utility called ojspc for pre-translating JSP pages.

Consider the example where the JSP page, HelloWorld.jsp, is located in the
following OC4J default Web application directory (copy the HelloWorld.jsp file
from <ORACLE_HOME>/j2ee/home/default-web-app/, or the Windows
equivalent, to this subdirectory):

UNIX:

<ORACLE_HOME>/j2ee/home/default-web-app/examples/jsp/

Windows:

<ORACLE_HOME>\j2ee\home\default-web-app\examples\jsp\

To pre-translate this JSP page, set your current directory to the application root
directory, then, in ojspc, set the _pages directory as the output base directory using
the -d option. This results in the appropriate package name and file hierarchy. To
illustrate:

In UNIX (assume % is a UNIX prompt):

% cd j2ee/home/default-web-app
% ojspc -d ../application-deployments/default/defaultWebApp/persistence/_pages

examples/jsp/HelloWorld.jsp

In Windows (in a command prompt window and where Oracle is the Oracle home
for your Oracle Application Server installation):

C:\>cd Oracle\j2ee\home\default-web-app
C:\>ojspc -d ../application-deployments/default/defaultWebApp/persistence/_pages

examples/jsp/HelloWorld.jsp

The directory structure above specifies an application-relative path of
examples/jsp/HelloWorld.jsp. The translated JSP can be found in (for UNIX)

<ORACLE_HOME>/j2ee/home/application-deployments/default/
defaultWebApp/persistence/_pages/_examples/_jsp/

or, for Windows:

<ORACLE_HOME>\j2ee\home\application-deployments\default\
defaultWebApp\persistence_pages_examples_jsp\

Note: Ensure that the <ORACLE_HOME>/jdk/bin is set in the path
environment variable so that the correct Java executable is used for
ojspc.

Precompiling JSP Pages

Migrating JSP Pages 4-11

At execution time, the JSP container looks for compiled JSP files in the _pages
subdirectory. The _examples/_jsp/ subdirectory would be created automatically
by ojspc if run as in the above example.

Invoke the JSP page through the URL
http://<hostname>:7777/j2ee/examples/jsp/HelloWorld.jsp. Notice that
response time is faster than without pre-translating.

4.6.3 Standard JSP Pre-translation Without Execution (based on the JSP 1.1
specification)

You can specify JSP pre-translation, without execution, by enabling the standard jsp_
precompile request parameter when invoking a JSP page from the browser. For
instance, http://<hostname>:<port>/foo.jsp?jsp_precompile=true

Using the <ORACLE_HOME>/j2ee/home/default-web-app/HelloWorld.jsp
file (or Windows equivalent) as an example, erase all the "_HelloWorld*" files in:

UNIX:

<ORACLE_HOME>/j2ee/home/application-deployments/default/
defaultWebApp/persistence/_pages/

Windows:

<ORACLE_HOME>\j2ee\home\application-deployments\default\
defaultWebApp\persistence_pages\

Then, invoke the URL http://<hostname>:7777/j2ee/HelloWorld.jsp?jsp_
precompile=true. The pre-translation is performed but the page does not appear on
your browser. Check the _pages subdirectory for the translated files.

4.6.4 Configure the JSP Container for Execution with Binary Files Only
You can avoid exposing your JSP page source, for proprietary or security reasons, by
pre-translating the pages and deploying only the translated and compiled binary files.
JSP pages that are pre-translated, either from previous execution in an on-demand
translation scenario or by using ojspc, can be deployed to any standard J2EE
environment.

For further details, refer to the Oracle Containers for J2EE Support for JavaServer Pages
Developer’s Guide.

See Also: The chapter JSP Translation and Deployment in Oracle
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Precompiling JSP Pages

4-12 Migrating From WebLogic

Migrating Enterprise JavaBean Components 5-1

5
Migrating Enterprise JavaBean Components

This chapter provides the information you need to migrate Enterprise JavaBean
components from WebLogic Server to Oracle Application Server. It addresses the
migration of session and entity EJBs, as well as J2EE Web applications in the form of
EAR files or in an exploded directory format.

This chapter contains these topics:

■ Section 5.1, "Introduction"

■ Section 5.2, "Migration Approach"

■ Section 5.3, "Migrating EJBs in a EAR or JAR File"

■ Section 5.4, "Migrating an Exploded EJB Application"

■ Section 5.5, "Writing Finders for RDBMS Persistence"

■ Section 5.6, "WebLogic Query Language (WLQL) and EJB Query Language
(EJB-QL)"

■ Section 5.7, "Message Driven Beans"

5.1 Introduction
Migrating Enterprise JavaBeans (EJB) from WebLogic Server to Oracle Application
Server is straightforward requiring little or no code changes to the EJBs migrated.
Both application servers support the EJB 2.0 specification with OC4J extending
support to EJB 2.1 and EJB 3.0 Early Draft Review.

All EJBs written and designed to the EJB 2.0 specifications should work correctly and
require minimal migration effort. The primary effort goes into configuring and
deploying the applications in the new environment. Only in cases where proprietary
extensions are used will the migration effort get complex.

In this chapter we cover the migration of EJBs deployed in the form of EAR files or in
an exploded directory format.

5.1.1 Comparison of WebLogic Server and Oracle Application Server EJB Features
Since WebLogic Server 8.1 supports EJB 2.0 and Oracle Application Server Containers
for J2EE (OC4J) supports EJB 2.1 and the EJB 3.0 Early Draft Review, some differences
exist in the two implementations. The following table summarizes the EJB features
available from both application servers.

Introduction

5-2 Migrating From WebLogic

5.1.1.1 More Efficient Container Managed Persistence
There are two specific facts that reflect the significant performance advantages in using
OC4J’s container-managed persistence (CMP) implementation compared to WebLogic
Server’s implementation:

■ Automatic Detection of Modified EJBs - When using CMP, Oracle Application
Server’s J2EE container can automatically detect whether you have modified an
EJB and writes the EJB’s state to the database; it invokes ejbStore only when
necessary. WebLogic Server does not provide such automatic detection,
requiring a user to code is-modified methods, which the WebLogic Server
container uses to know whether or not to perform ejbStore operations.

■ Simple and Complex Database mapping for CMP - Oracle Application
Server’s J2EE container supports both simple (1:1, 1:many) and complex
(many:many) database field mappings very efficiently. In contrast, WebLogic

Table 5–1 Comparison of EJB features

Feature

Oracle
Application
Server 10g
(10.1.3)

WebLogic
Server 7.0

WebLogic
Server 8.1

Session Beans Available Available Available

Container-Managed Persistence
Entity Beans (CMP)

Available Available Available

Bean-Managed Persistence Entity
Beans (BMP)

Available Available Available

Message Driven Beans Available Available Available

JTA Transactions Available Available Available

JCA Enterprise Connectivity Available Available Available

IMS Messaging Available Available Available

Dynamic EJB Stub Generation Available Available Avaiable

Full EAR File Based Deployment Available Available Available

Automatic Deployment of EJB
Applications

Available Available Available

Stateless and Stateful EJB
Clustering

Available Available Available

Local Interfaces for Enterprise
JavaBeans

Available Available except
for MDBs.

Available except
for MDBs.

EJB Query Language (EJB-QL)

- Automatic Code Generation

- Oracle and Non
Oracle Database Support

Available Available.
Extended by
WebLogic QL.

Available.
Extended by
WebLogic QL.

RMI-over-IIOP Support Available Available Available

CMP with Relationships Available Available Available

Concurrency Control

- Read-Only Locking

- Pessimistic Locking

- Optimistic Locking

Available Available Available

Introduction

Migrating Enterprise JavaBean Components 5-3

Server provides rudimentary support for simple CMP database field mapping
(1:many). Additionally, qualifying a where clause string in WebLogic Server
results in unnecessary full table scans.

5.1.1.2 Clustering Support
From a comparative point of view, Oracle Application Server’s J2EE container
provides the following clustering features:

■ Servlet clustering - Oracle Application Server provides facilities to cluster
servlets without requiring any changes to the user’s application. The changes are
deployment configuration modifications which are transparent to the J2EE
application.

■ Clustering architecture simplicity - An important differentiator for Oracle
Application Server’s J2EE container is the ease with which different instances
can be clustered and the robustness of the architecture used for clustering.
Specifically, Oracle Application Server requires modification of a single XML file
(can be done through Application Server Control Console) to configure various
Oracle Application Server instances to belong to a single cluster whether they
are multiple servers with load balancing on a single machine or multiple servers
with load balancing on several machines.

In contrast, it is much more complex to configure WebLogic Server clusters with
load balancing either with multiple instances on one machine or on multiple
machines. For instance, if you indicate that your EJBs are to be used in a cluster,
you need to specify that fact during the time the EJB stubs are created using appc,
which then results in the creation of special cluster-aware classes that are used for
deployment. Overall, Oracle Application Server’s J2EE container, together with
other Oracle Application Server components, provide a more robust clustering
architecture with better ease-of-use.

■ Stateful session bean and entity bean clustering - Oracle Application Server
supports clustering of stateful session beans and entity beans. The following
aspects of design are focused upon:

– clustered performance - Existing clustering facilities such as those in WebLogic
Server impose a severe performance penalty when running the instances in a
stateful fashion with clustering. As a result, most application developers
choose to keep their middle tier completely stateless and write their state to a
persistent store, such as a database. By design, OC4J’s clustering
implementation is optimized to avoid introducing performance penalties.

– programmatic simplicity - Unlike servlets which have a natural session
boundary at which to fail over their state, EJBs do not have such a clear
boundary. As a result, Oracle Application Server provides simple
programmatic facilities to allow developers to use EJB clustering without any
changes to their applications.

5.1.1.3 Scalability and Performance Enhancements
■ Entity bean scalability - Oracle Application Server enhances entity beans

scalability by enabling multiple clients to concurrently look up and invoke
methods on the same entity bean instance, using a configurable pool of bean
wrapper instances per primary key value.

See Also:

Oracle Application Server High Availability Guide
Oracle Containers for J2EE Configuration and Administration Guide

Introduction

5-4 Migrating From WebLogic

■ Better concurrency control - Oracle Application Server introduces a number of
new concurrency control options to improve scalability and performance of large
J2EE applications:

– Read-only locking - For read-only beans that are not updating the database,
the bean developer can instruct the OC4J container to avoid calling or
generating ejbStore(). The appropriate isolation mode is selected,
depending on whether the state of the bean can be updated by external
systems, such as non-EJB applications using SQL.

– Pessimistic locking - Oracle Application Server can serialize access to bean
state while providing each client with its own bean instance for deterministic
timeout and deadlock detection.

– Optimistic locking - Oracle Application Server also supports an alternate
locking scheme, which does not use row locking - data consistency depends
on the isolation mode of the bean ("Non- Repeatable-Reads" or "Serializable") and
the order in which clients update the rows.

WebLogic Server provides a similar set of features.

5.1.2 EJB Migration Considerations
In practice, the process of migrating EJBs from WebLogic Server to Oracle Application
Server does not entail any major hurdles. Generally, little or no code modifications are
required. If there are modifications, these are often related to JNDI portability issues
regarding instantiation of JNDI initial contexts and JNDI lookup names to use for data
sources and EJB home and remote interfaces.

Migration then consists of performing implementation-specific adaptation tasks for
container class generation and object-relational (O-R) mapping definitions, and
customization of deployment properties, if required.

One of the goals of the EJB initiative is to deliver component portability between
different environments not only at source code level, but also at the binary level.
Another goal is to ensure portability of compiled and uniformly packaged
components.

While it is true that EJBs do offer portability, there are still a number of non portable,
implementation-specific aspects that need to be addressed when migrating
components from one implementation to another. Typically, an EJB component
requires low level interfaces with the container in the form of stub and skeleton classes
which need to stay implementation-specific. In effect, a clear partitioning between
portable and non portable elements of an EJB component can be drawn.

Portable EJB elements include:

■ The actual component implementation classes and interfaces (bean class, and
remote and home interfaces).

■ The assembly and deployment descriptors that describe generic component
properties such as JNDI names and transactional attributes.

■ Security attributes.

Implementation-specific elements include:

■ Low-level helper implementation classes (stubs and skeletons) that interface with
the host container.

Introduction

Migrating Enterprise JavaBean Components 5-5

■ O-R mapping definitions for CMP entity beans, including search logic for custom
finder methods that are declared in an implementation-specific format proprietary
to each platform.

■ Every component has a set of properties that require systematic configuration at
deployment time. For example, mapping of security roles declared in an EJB
component to actual users and groups is a task that is systematically performed at
deployment time because mappings may not be known in advance. Also, they
may have dependencies on the structure and population of the user directory on
the target deployment server.

5.1.2.1 Global JNDI Lookups and Oracle Application Server
When migrating an EJB (or any other object that performs JNDI lookups) from
WebLogic Server to OC4J, global JNDI lookup needs to be enabled for OC4J if the EJB
performs JNDI lookups to resources in other applications other than its own. JNDI
lookups in WebLogic Server have a global context whereas the default configuration of
OCJ4 allows lookups within the application scope only. Hence, if an EJB performs a
lookup to another application in OC4J with default configuration, a
NameNotFoundException is thrown.

To enable global JNDI lookups for an OC4J instance, set the
global-jndi-lookup-enabled attribute to true in the
<application-server> element of server.xml. For JNDI names to resolve
properly to their bound classes, the target application's classes must be in the classpath
of the application attempting the lookup. This can be accomplished in by performing
either one of the following tasks:

■ Put the target application’s JAR archive in the $ORACLE_
HOME/j2ee/home/applib common classes directory.

■ Put the target application’s JAR archive in a shared library location. A shared
library can be defined in the <shared-library> element of server.xml. See
Oracle Containers for J2EE Configuration and Administration Guide for more
information on this element.

For further information on Oracle Application Server JNDI, see Oracle Application
Server Containers for J2EE Services Guide.

5.1.2.2 WebLogic Server Caveats
The following are additional notes on the WebLogic Server EJB implementation:

■ The WebLogic Server implementation of BMP security is not in total compliance
with the J2EE specification. According to the specification, an exception needs to
be thrown when there is a violation in a BMP security role permission. While OC4J
throws an exception in compliance with the specification, WebLogic Server does
not do so.

■ Unlike WebLogic Server, OC4J does not make it necessary for the developers to
create a proprietary XML file for EJB deployment such as the WebLogic Server
weblogic-ejb-jar.xml. For OC4J, orion-ejb-jar.xml is created by the
OC4J container for internal purposes. Developers have the ability to modify this
file to provide their own EJB configuration data, if needed, but it is not necessary
for developers to explicitly create this file. Any custom EJB configuration
information in the weblogic-ejb-jar.xml and
weblogic-cmp-rdbms-jar.xml files can be migrated to orion-ejb-jar.xml
using XSLT or the Oracle JDeveloper Migration Assistant. See Section 5.2.3.1.

Migration Approach

5-6 Migrating From WebLogic

5.2 Migration Approach
The overall migration approach EJBs is outlined in this section. Session EJBs migrate
easier than entity EJBs since there are no persistence-level issues to be considered.
Standard J2EE components and deployment descriptors (ejb-jar.xml) require
almost no modifications.

For both session and entity EJBs, implementation-specific dependencies require
modification. These include (as mentioned earlier):

■ Hard-coded JNDI context access and lookups.

■ Data source JNDI names and lookups.

■ Implementation-specific adaptations for O-R mapping, container class generation,
and customization of deployment properties.

■ Modification and regeneration of the EJB archive file (JAR).

5.2.1 Migrating Session EJBs
Migration of session beans involves the “generic steps” of EJB migration. These are:

1. Make any appropriate code changes as follows:

■ Remove and replace all proprietary APIs and flags.

■ Remove implementation-specific hard-coded JNDI and JDBC references.

2. Adjust deployment properties as follows:

■ Recreate XML deployment descriptors where needed. See Section 5.2.3.

■ Customize runtime properties for the OC4J environment.

■ Re-map EJB JNDI names if necessary.

3. Save the updated EJB archive files (.jar and .ear).

4. Deploy the archive file to OC4J.

5.2.2 Migrating Entity EJBs
The migration of entity EJBs involves the “generic steps” of session EJB migration
(Section 5.2.1) and the following steps specific to entity EJB migration:

1. Remove and replace any implementation-specific JNDI or data source lookups.

2. Rewrite any specific database deployment descriptors:

– weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml (for
container-managed persistence) to orion-ejb-jar.xml

3. Remove and replace all proprietary APIs and flags for transaction management,
locking, and caching.

In addition to the above steps, take into consideration the support for different EJB
specification levels from one container to another. Differences in the specifications
may require code changes. For example, in EJB 1.1 (supported by WebLogic Server
7.0), the ejbRemove() method of local entity EJBs requires
javax.rmi.RemoteException to be thrown. Whereas for EJB 2.0 (supported by
Oracle Application Server), ejbRemove() should only throw
javax.ejb.EJBException. If the local entity EJB is migrated from WebLogic
Server 7.0 to Oracle Application Server 10g Release 3 (10.1.3) without changing the

Migration Approach

Migrating Enterprise JavaBean Components 5-7

exception thrown by ejbRemove(), a compilation exception occurs when the EJB is
deployed.

5.2.2.1 EJBs with Bean-Managed Persistence (BMP)
The steps for migrating EJBs with BMP are:

1. Check code for specific JNDI references:

■ Re-map each JNDI name as appropriate.

■ Walk-through the code of the entity bean class to check the data access code
for any implementation-specific dependencies such as hard-coded JNDI
environment properties or implementation-dependent issues such as data
source JNDI names. Modify and regenerate the code and EJB archive file as
required.

2. Adjust deployment properties as required.

If using Oracle JDeveloper, import the EJB archive into EJB Configurator. Then:

■ Adjust deployment properties as required.

■ Save the updated EJB archive file.

■ Deploy to OC4J.

■ Re-map the EJB’s JNDI name.

3. Generate the low-level container classes for OC4J.

4. Customize deployment-time properties of the EJB(s) if required.

The main single point for concern is JNDI context access and the data source lookup
procedure. It is, therefore, necessary and advisable to:

■ Ensure that the code that retrieves the JNDI context does not pass any
implementation-specific properties to the InitialContext class constructor.

■ Modify code that uses any hard-coded references to data source JNDI names so
that the data source JNDI name is obtained indirectly by looking up a specific
environment entry for this EJB. Doing so will later make it straightforward to
amend the data source JNDI name in the EJB’s deployment descriptor when
required.

5.2.2.2 EJBs with Container-Managed Persistence (CMP)
With CMP entity beans, the EJB container is responsible for managing the persistent
state of an object using O-R mappings between the attributes of the object that need to
be persisted and the corresponding columns of a database table that hold this object's
attribute values.

Unfortunately, the EJB specification makes no provisions for a standard way to define
O-R mappings. Therefore, it is left to EJB container vendors to store this information in
the EJB archive file using a proprietary format.

Consequently, O-R mapping definitions stored in the EJB archive file are not
compatible between EJB vendors, and mapping information must be regenerated as
part of the migration process.

The overall tasks for migrating EJBs with CMP are:

■ Since O-R mapping definitions are vendor dependent, the mapping definitions in
weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml need to be

Migration Approach

5-8 Migrating From WebLogic

re-created in orion-ejb-jar.xml. Procedures are provided in Section 5.2.3,
"Migrating Deployment Descriptors".

■ Resolve differences in container-managed relationships (CMR) mapping.

■ Configure OC4J data sources for persistence.

■ Remove WebLogic Server-specific container stub and skeleton classes, and
generate the equivalent OC4J stub & skeleton classes.

5.2.3 Migrating Deployment Descriptors
There are two deployment descriptors that are used to configure and deploy EJBs. The
first deployment descriptor, ejb-jar.xml, is defined in the EJB specifications and
provides a standardized format that describes an EJB application. The second
deployment descriptor is a vendor-specific deployment descriptor that maps resources
defined in the ejb-jar.xml file to resources in the application server. It is also used
to define other aspects of the EJB container such as EJB behavior, caching, and
vendor-specific features.

The WebLogic Server specific deployment descriptors are weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml, and the OC4J-specific deployment descriptor
is orion-ejb-jar.xml.

A typical J2EE application directory structure would look like this:

Migration Approach

Migrating Enterprise JavaBean Components 5-9

Figure 5–1 Directory Structure of a J2EE Application

The WebLogic Server-specific deployment descriptor, weblogic-ejb-jar.xml,
defines EJB deployment descriptor DTDs which are unique to WebLogic Server. The
DTD for weblogic-ejb-jar.xml includes elements for enabling stateful session
EJB replication, configuring entity EJB locking behavior, and assigning JMS Queue and
Topic names for message-driven beans

Elements configured in the EJB weblogic-ejb-jar.xml include:

■ weblogic-enterprise-bean

– ejb-name

– entity-descriptor

– stateless-session-descriptor

– stateful-session-descriptor

– message-driven-descriptor

– transaction-descriptor

– reference-descriptor

– enable-call-by-reference

– jndi-name

Migration Approach

5-10 Migrating From WebLogic

■ Security-role-assignment

■ transaction-isolation

The WebLogic Server-specific deployment descriptor,
weblogic-cmp-rdbms-jar.xml, defines deployment properties for an entity EJB
that uses WebLogic Server RDBMS-based persistence services.

Each weblogic-cmp-rdbms-jar.xml defines the following persistence options:

■ EJB connection pools or data source for CMPs

■ EJB field-to-database-element mappings

■ Foreign key mappings for relationships

■ WebLogic Server-specific deployment descriptors for queries

The OC4J-specific deployment descriptor, orion-ejb-jar.xml, contains extended
deployment information for session beans, entity beans, message driven beans, and
security.

An entity EJB can save its state in any transactional or non transactional persistent
storage (bean-managed persistence), or it can ask the container to save its
non-transient instance variables automatically (container-managed persistence).
WebLogic Server and OC4J allow both choices and a mixture of the two.

In the case of an EJB that uses container-managed persistence, the
weblogic-ejb-jar.xml or the orion-ejb-jar.xml deployment descriptor file
specifies the type of persistence services that an EJB uses. In the case of WebLogic
Server, the automatic persistence services requires the use of additional deployment
files to specify their deployment descriptors, and to define entity EJB finder methods.
WebLogic Server RDBMS-based persistence services obtain deployment descriptors
and finder definitions from a particular bean using the bean's
weblogic-cmp-rdbms-jar.xml file. This configuration file must be referenced in
the weblogic-ejb-jar.xml file. In the case of OC4J, the type of persistence service
as well as the details regarding the RDBMS-based persistence services are configured
and obtained from the same deployment descriptor - orion-ejb-jar.xml.

Standard J2EE descriptors in ejb-jar.xml need little changes and should are
migrated easily. The implementation-specific J2EE descriptors in the following files
need to be modified:

■ weblogic-ejb-jar.xml

■ For CMP EJBs, descriptors in weblogic-cmp-rdbms-jar.xml need to be
ported to orion-ejb-jar.xml (OC4J-specific).

Definitions of OC4J-specific XML descriptors can be found in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide or through online DTD
files. These files are at:

http://xmlns.oracle.com/ias/dtds/orion-application.dtd
http://xmlns.oracle.com/ias/dtds/orion-application.dtd
http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd
http://xmlns.oracle.com/ias/dtds/orion-web.dtd
http://xmlns.oracle.com/ias/dtds/orion-application.dtd

Migration of deployment descriptors can be accomplished through one of the
following ways:

■ Manual creation of platform-specific deployment descriptor files using a text
editor of your choice.

Migration Approach

Migrating Enterprise JavaBean Components 5-11

■ Extensible Stylesheet Language Transformation (XSLT) - Oracle provides BEA,
JBoss & Borland. Oracle’s XSLT transformers are sample code and results will
need some modification.

■ Use Oracle JDeveloper to assist in the authoring of deployment descriptors.
Reverse engineer the application to be migrated into Oracle JDeveloper.
Appropriate descriptors will be automatically generated by Oracle JDeveloper.

5.2.3.1 Steps for Using Oracle JDeveloper 10g (10.1.3) to Convert
weblogic-ejb-jar.xml to orion-ejb-jar.xml
The following steps convert most of the descriptor elements in
weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml:

1. In the File menu, select Import and specify the EAR file containing the WebLogic
Server EJB's to be migrated.

2. Once the import operation has successfully completed, right-click
weblogic-ejb-jar.xml and select "Export to OC4J."

3. Right-click the generated orion-ejb-jar.xml, and select "Properties."

4. Edit any mappings, if required.

5. Create a connection to an OC4J instance using the Connection Navigator. (Select
"Connection Navigator" in the View menu.)

6. Create an EJB deployment profile. In the Application Navigator, right-click
ejb-jar.xml and select "Create EJB Deployment Profile."

7. Deploy the EJBs to your OC4J instance. Right-click the deployment profile you
created in step 6, and select your application server connection.

5.2.3.2 Using the Oracle Application Server TopLink Migration Tool to Convert
weblogic-cmp-rdbms-jar.xml to toplink-ejb-jar.xml
The OracleAS TopLink migration tool takes the following files as input:

■ weblogic-ejb-jar.xml

■ weblogic-cmp-rdbms-jar.xml

It migrates as much WebLogic Server-specific persistence configuration as possible to a
new toplink-ejb-jar.xml file and outputs the following new files in a target
directory you specify:

■ orion-ejb-jar.xml

■ toplink-ejb-jar.xml

■ OracleAS TopLink Mapping Workbench project file TLCmpProject.mwp

Note: For JBuilder, Oracle supplies an add-in which generates OC4J
deployment descriptors.

Note: Use the above same steps to convert
weblogic-cmp-rdbms-jar.xml. The same orion-ejb-jar.xml
file is generated for both WebLogic Server descriptor files.

Migration Approach

5-12 Migrating From WebLogic

The input BEA WebLogic files may be in an EAR, JAR, or just standalone XML files. If
you migrate from standalone XML files (rather than an EAR or JAR file), ensure that
the domain classes are accessible and included in your classpath.

The OracleAS TopLink migration tool outputs a new orion-ejb-jar.xml and
toplink-ejb-jar.xml file to the target directory you specify in the same format as
it reads the original files. For example, if you specify an EAR file as input, then the
OracleAS TopLink migration tool stages and creates a new EAR file that contains both
the new orion-ejb-jar.xml and the new toplink-ejb-jar.xml file but is
otherwise identical to the original.

The OracleAS TopLink Mapping Workbench project file is always output as a separate
file.

As it operates, the OracleAS TopLink migration tool logs all errors and diagnostic
output to a log file named wls_migration.log in the output directory. If you use the
OracleAS TopLink migration tool from the OracleAS TopLink Mapping Workbench,
also see the OracleAS TopLink Mapping Workbench log file
oracle.toplink.workbench.log located in your user home directory (for
example, in Windows, C:\Documents and Settings\<username>).

The OracleAS TopLink migration tool processes descriptor, mapping, and query
information from the input files:

■ It builds a OracleAS TopLink descriptor object for each entity bean and migrates
native persistence metadata like mapped tables, primary keys, and mappings for
CMP and CMR fields.

■ It builds a OracleAS TopLink mapping object for every CMP and CMR field of an
entity bean and migrates native persistence metadata like foreign key references.

■ It builds a OracleAS TopLink query object for each finder or ejbSelect of an
entity bean and migrates persistence metadata like customized query statements.

5.2.4 Generating and Deploying EJB Container Classes
The next step after compiling the EJB classes and adding the required XML
deployment descriptors (the J2EE deployment descriptor as well as the vendor-specific
deployment descriptors) is generation of the container classes that are used to access
the EJB. The container classes include implementation of the external interfaces (home
and remote) that clients use, as well as the classes that the application server uses, for
the internal representation of the EJBs.

5.2.4.1 WebLogic Server
In WebLogic Server, you would have used the appc compiler to generate container
classes according to the deployment properties specified in the WebLogic
Server-specific XML deployment files. For example, if you indicate that your EJBs are

Note: Oracle recommends that you make a backup copy of your
weblogic-ejb-jar.xml, weblogic-cmp-rdbms-jar.xml, and
toplink-ejb-jar.xml files before using the OracleAS TopLink
migration tool.

See Also: Oracle Application Server TopLink Application Developer’s
Guide for steps on using the OracleAS TopLink Migration Tool from
OracleAS TopLink Mapping Workbench.

Migrating EJBs in a EAR or JAR File

Migrating Enterprise JavaBean Components 5-13

to be used in a cluster, appc creates special cluster-aware classes that will be used for
deployment. You can also use appc directly from the command line by supplying the
required options and arguments.

Once the container classes have been generated, you need to package the classes into a
JAR or EAR file and deploy the classes using the console GUI.

5.2.4.2 OC4J
For OC4J, explicit compilation is not required. The EJB JAR file is packaged into a EAR
file (together with a WAR file, if any). Then, you can use the Application Server
Control Console GUI to specify the EAR file for deployment. The container classes are
generated for OC4J and any J2EE Web application in the EAR file is bound to the OC4J
container.

5.2.5 Loading EJB Classes in the Server
This section describes how each application server manages the loading of EJB classes.

5.2.5.1 WebLogic Server
The final step in deploying an EJB involves loading the generated container classes
into WebLogic Server. However, you can prompt WebLogic Server to automatically
load EJB classes by starting WebLogic Server. This places the EJB in the deployment
directory where it is automatically deployed when the server is started.

5.2.5.2 OC4J
Similarly, you can specify classes belonging to an application to be loaded when OC4J
starts by specifying the auto-start="true" parameter in the <application> tag
in server.xml.

5.3 Migrating EJBs in a EAR or JAR File
EAR and JAR files containing EJBs which are deployed in WebLogic Server can be
migrated to Oracle Application Server. However, you should unarchive and rearchive
the EAR file to ensure its contents are complete and that the XML descriptors have the
correct entries (using Oracle JDeveloper is another option). Use the following points as
guidelines:

■ Ensure that the EJB client XML descriptors specify the JNDI names of the EJB
stubs. If the client is a Web application, the JNDI names should be specified in
web.xml. If the client is standalone, the names should be specified in
application-client.xml.

■ For the case where the EJB client is standalone, the client classes and XML
descriptor file, application-client.jar, should be archived into a JAR file,
which in turn should be archived into the EAR file where the EJBs are.

■ If the EJB(s) to be migrated from WebLogic Server are in a JAR file, you need to
repackage them in a EAR file with the EAR’s application.xml.

■ Deploy the EAR file on Oracle Application Server using Application Server
Control Console.

■ You do not need to pre-compile EJB stubs using appc, rmic, or other such
facilities into the client application. The OC4J EJB container generates EJB stubs on
demand as it needs them.

Migrating an Exploded EJB Application

5-14 Migrating From WebLogic

5.4 Migrating an Exploded EJB Application
EJB applications can also be deployed as a collection of files that use a standard
directory structure defined in the J2EE specification. This type of deployment deploys
applications in an exploded directory format. Deploying an EJB application in
exploded directory format is done most often whilst developing your application and
only for standalone OC4J instances. This is because the exploded directory format is
more suitable for developers to modify source files and test the application quickly. In
Oracle Application Server production environments, however, the application should
be packaged in a EAR file and deployed using Application Server Control Console.

When deploying an exploded directory structure to WebLogic Server, you would have
copied the top level directory containing an EJB application in exploded directory
format into the mydomain/config/applications/ directory of your WebLogic
Server distribution (where mydomain is the name of your WebLogic Server domain).
Once copied, WebLogic Server automatically deploys the EJB application.

For OC4J, copy the top level directory containing the EJB application in exploded
directory format into the following directory in your OC4J installation:

UNIX:
<ORACLE_HOME>/j2ee/home/applications/

Windows:
<ORACLE_HOME>\j2ee\home\applications\

Then, modify the default J2EE application deployment descriptor, server.xml,
located in the <ORACLE_HOME>/j2ee/home/config/ directory in UNIX, or
<ORACLE_HOME>\j2ee\home\config\ in Windows, to include your EJB module.

In WebLogic Server, if a file is modified using the administration console, or
otherwise, it requires a server restart before the updated configuration is picked up. In
the case of OC4J, the timestamp change for server.xml will cause OC4J to effect the
changes in the XML file.

5.5 Writing Finders for RDBMS Persistence
For EJBs that use RDBMS persistence, WebLogic Server provides a way to write
dynamic finders. The EJB provider writes the method signature of a finder in the
EJBHome interface, and defines the finder's query expressions in the ejb-jar.xml
deployment file. The appc compiler creates implementations of the finder methods at
deployment time, using the queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

■ The finder method signature in EJBHome

■ A query stanza defined within ejb-jar.xml

■ An optional WebLogic Server query stanza within
weblogic-cmp-rdbms-jar.xml

OC4J simplifies the whole process by automatically generating the finder methods.

Specifying the findByPrimaryKey method is easy to do in OC4J. All the fields for
defining a simple or complex primary key are specified within the ejb-jar.xml
deployment descriptor. To define other finder methods in a CMP entity bean, do the
following:

1. Add the finder method to the home interface

WebLogic Query Language (WLQL) and EJB Query Language (EJB-QL)

Migrating Enterprise JavaBean Components 5-15

2. Add the finder method definition to the OC4J-specific deployment descriptor—the
orion-ejb-jar.xml file

5.5.1 Migrating Finder Methods
The following considerations apply when migrating finder methods:

■ Standard finder methods are automatically generated in OC4J; they do not need to
be regenerated.

■ Finder methods in WebLogic Server 5.1 and 6.0 use WLQL (WebLogic Query
Language), a proprietary query language for specifying selection criteria. These
need to be rewritten.

■ OC4J uses standard SQL WHERE clauses for specifying selection criteria or EJB
Query Language (EJB-QL).

■ Any extensions of EJB-QL made by WebLogic Server need to be rewritten.

The EJB 1.1 specification does not fully address the particulars for custom finder
methods, that is, the logic used within an EJB to find elements in a database. While the
specification mandates that such methods be declared with names beginning with
find…() or findBy…() in the home interface and bean class, it does not however
provide a formal syntax to declare the underlying search logic. In other words, the
way in which queries for custom finders are declared is not standardized, and is
therefore dependent upon the EJB container. Additionally, custom finder methods
may return either a single entity bean or a collection of entity beans, depending on the
desired functionality.

Search logic in WebLogic Server is expressed using WLQL, which uses a syntax close
to that of LISP; query operators and operands are presented in the form:

(operator operand1 operand2)

Search Logic in WebLogic Server
This language allows the definition of queries featuring multiple selection criteria (the
equivalent of the WHERE clause in SQL) and optionally specifying a sorting clause (the
equivalent of the ORDER BY clause in SQL).

Search Logic in Oracle Application Server
In contrast, search logic in Oracle Application Server is expressed using standard SQL
WHERE clauses allowing multiple selection criteria.

For the LIKE operator with input parameters and ORDER BY clause, you can use
Oracle Application Server 10g Release 3 (10.1.3) with OracleAS TopLink CMP that has
support for EJB 2.1. If you do not use OracleAS TopLink, you can use a work around
by modifying the SQL in ’query=""’ in orion-ejb-jar.xml.

5.6 WebLogic Query Language (WLQL) and EJB Query Language
(EJB-QL)

In WebLogic Server 5.1 and 6.0, each finder query stanza in the
weblogic-cmp-rdbms-jar.xml file had to include a WLQL string that defines the
query used to return EJBs. These releases of WebLogic Server implemented an EJB 1.1
container and did not support standardized EJB-QL.

With the emergence of EJB Query Language, which is a standard based on the EJB 2.0
specification, use of WLQL is deprecated. With WebLogic Server 7.0 and 8.1, their EJB

Message Driven Beans

5-16 Migrating From WebLogic

containers are EJB 2.0 compliant and supports EJB-QL. These EJB containers
additionally provide a WLQL extension to EJB-QL. This extension is proprietary to
WebLogic Server.

Oracle Application Server provides complete support for EJB-QL including the
following features:

■ Automatic Code Generation: EJB-QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle Application
Server, the container automatically translates the queries into the SQL dialect of
the target data store. Because of this translation, entity beans with
container-managed persistence are portable -- their code is not tied to a specific
type of data store.

■ Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL and
batched statement dispatch to make database access efficient.

■ Support for Oracle and Non-Oracle Databases: Oracle Application Server provides
the ability to execute EJB-QL against any database - Oracle, MS SQL-Server, IBM
DB/2, Informix, and Sybase.

■ CMP with Relationships: Oracle Application Server supports EJB-QL for both
single entity beans and also with entity beans that have relationships, with
support for any type of multiplicity and directionality.

For more information on EJB-QL in Oracle Application Server, refer to Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

5.7 Message Driven Beans
In WebLogic Server, in addition to the new ejb-jar.xml elements, the
weblogic-ejb-jar.xml file includes only one new message-driven-descriptor
stanza to associate the message-driven bean with an actual destination in WebLogic
Server. The XML element is destination-jndi-name.

In OC4J, to create a message-driven bean, you perform the following steps:

1. Implement a message-driven bean as defined in the EJB specification

2. Create the message-driven bean deployment descriptors

3. Configure the JMS Destination type (queue or topic) in the OC4J JMS XML file,
jms.xml.

4. Map the JMS Destination type to the message-driven bean in the OC4J-specific
deployment descriptor, orion-ejb-jar.xml

5. If a database is involved in your message-driven bean application, configure the
data source that represents your database in data-sources.xml.

6. Create an EJB JAR file containing the bean and the deployment descriptor; once
created, configure the application.xml file, create an EAR file, and deploy the
EJB in OC4J.

Migrating JDBC 6-1

6
Migrating JDBC

This chapter provides the information you need to migrate database access code from
WebLogic Server to Oracle Application Server. It addresses the migration of JDBC
drivers, data sources, and connection pooling.

This chapter contains these topics:

■ Section 6.1, "Introduction"

■ Section 6.2, "Migrating Data Sources"

■ Section 6.3, "Migrating Connection Pools"

■ Section 6.4, "Overview of Clustered JDBC"

■ Section 6.5, "Performance Tuning JDBC"

6.1 Introduction
Migrating applications deployed on WebLogic Server that use JDBC, specifically
WebLogic JDBC drivers, to OC4J and Oracle JDBC drivers can be straightforward,
requiring little or no code changes to the applications migrated. All applications
written to the standard JDBC specifications will work correctly and require minimal
migration effort. The primary effort goes into configuring and deploying the
applications in the new environment. Only in cases where proprietary extensions are
used will the migration effort get complex.

6.1.1 Differences between WebLogic and Oracle Application Server Database Access
Implementations

WebLogic Server 8.1 supports J2EE 1.3 (JDBC 2.0) and OC4J supports J2EE 1.4 (JDBC
2.1). The JDBC drivers from BEA as well as Oracle support the same version of the
JDBC standard - version 2.0 specifications. Therefore, the differences between the two
servers should be minimal, often differing primarily in the area of proprietary
extensions. Before analyzing any differences, an overview of JDBC Drivers is apt.

6.1.1.1 Overview of JDBC Drivers
JDBC defines standard API calls to a specified JDBC driver, a piece of software that
performs the actual data interface commands. The driver is considered the lower level
JDBC API. The interfaces to the driver are database client calls, or database network
protocol commands that are serviced by a database server.

Depending on the interface type, there are four types of JDBC drivers that translate
JDBC API calls:

Introduction

6-2 Migrating From WebLogic

■ Type 1, JDBC-ODBC Bridge—Translates calls into ODBC API calls.

■ Type 2, Native-API Driver—Translates calls into database native API calls. As this
driver uses native APIs, it is vendor dependent. The driver consists of two parts: a
Java language part that performs the translation, and a set of native API libraries.

■ Type 3, Net-Protocol—Translates calls into DBMS-independent network protocol
calls. The database server interprets these network protocol calls into specific
DBMS operations.

■ Type 4, Native-Protocol—Translates calls into DBMS native network protocol
calls. The database server converts these calls into DBMS operations.

BEA provides a variety of options for database access using the JDBC API
specification. These options include WebLogic jDrivers for the Oracle, Microsoft SQL
Server, and Informix database management systems (DBMS). In addition to the Type 2
WebLogic jDriver for Oracle, WebLogic provides a Type 2 driver for Oracle XA and
three Type 3 drivers - RMI Driver, Pool Driver and JTS.

Similarly, Oracle Application Server provides a variety of options for database access,
particularly the best JDBC drivers for the Oracle database, and JDBC drivers from
partner Merant for accessing several other databases including DB2.

■ WebLogic jDriver for Oracle—The WebLogic jDriver for Oracle provides
connectivity to the Oracle database and requires an Oracle client installation since
it is based on OCI (Oracle Call Interface API). The WebLogic jDriver for Oracle XA
driver extends the WebLogic jDriver for Oracle for distributed transactions.

The Oracle thick or JDBC OCI driver is the equivalent of WebLogic jDriver for
Oracle as well as WebLogic jDriver for Oracle XA since the JDBC OCI driver
provides XA functionality.

■ WebLogic Pool Driver—The WebLogic Pool driver enables utilization of
connection pools from server-side applications such as HTTP servlets or EJBs.

■ Oracle JDBC-OCI Driver—The Oracle JDBC-OCI driver allows J2EE applications
to use connection pools. This driver supports JDBC 2.0 connection pool features
fully.

■ WebLogic RMI Driver—The WebLogic RMI driver is a multitier, Type 3, Java Data
Base Connectivity (JDBC) driver that runs in WebLogic Server and can be used
with any two-tier JDBC driver to provide database access. Additionally, when
configured in a cluster of WebLogic Servers, the WebLogic RMI driver can be used
for clustered JDBC, allowing JDBC clients the benefits of load balancing and fail
over provided by WebLogic Clusters.

■ WebLogic JTS Driver—The WebLogic JTS driver is a multitier, Type 3, JDBC
driver used in distributed transactions across multiple servers with one database
instance. The JTS driver is more efficient than the WebLogic jDriver for Oracle XA
driver when working with only one database instance because it avoids two-phase
commit.

■ Oracle Thin Driver—The two-tier Oracle Thin Type 4 driver provides connectivity
from WebLogic Server to Oracle DBMS.

If you are already using the Oracle OCI or Oracle thin JDBC drivers from your
WebLogic Server, your code will not require any changes and you can move to the
section on configuring data-sources in OC4J.

Migrating Data Sources

Migrating JDBC 6-3

6.2 Migrating Data Sources
The JDBC 2.0 specification introduced the java.sql.Datasource class to make the
JDBC program 100% portable. In this version, the vendor-specific connection URL and
machine and port dependencies were removed. This version also discourages using
java.sql.DriverManager, Driver, and DriverPropertyInfo classes. The data
source facility provides a complete replacement for the previous JDBC
DriverManager facility. Instead of explicitly loading the driver manager classes into
the client applications runtime, the centralized JNDI service lookup obtains the
java.sql.Datasource object. The Datasource object can also be used to connect
to the database. According to the JDBC 2.0 API specification, a data source is registered
under the JDBC subcontext or one of its child contexts. The JDBC context itself is
registered under the root context. A DataSource object is a connection factory to a
data source.

WebLogic and OC4J both support the JDBC 2.0 data source API. A J2EE server
implicitly loads the driver based on the JDBC driver configuration, so no client-specific
code is needed to load the driver. The JNDI (Java Naming and Directory Interface) tree
provides the DataSource object reference.

6.2.1 Data Source Import Statements
DataSource objects, along with JNDI, provide access to connection pools for
database connectivity. Each data source requires a separate DataSource object, which
may be implemented as a DataSource class that supports either connection pooling
or distributed transactions.

To use the DataSource objects, import the following classes in your client code:

import java.sql.*;
import java.util.*;
import javax.naming.*;

In the case of WebLogic Server, you would use the weblogic.jdbc.* packages and
in the case of OC4J, you would use oracle.jdbc.* packages.

6.2.2 Configuring Data Sources in the Application Server
For Oracle Application Server, you configure data sources using the Application
Server Control Console Web pages to specify the data source name, database name
and JDBC URL string. You can also define multiple data sources to use a single
connection pool, thereby allowing you to define both transaction and
non-transaction-enabled DataSource objects that share the same database.

The best way to configure and define data sources is through Application Server
Control Console. However, in this document we will examine the underlying
infrastructure and focus on direct manipulation of the configuration files. OC4J uses
flat files to configure data sources for all of its deployed applications. Data sources are
specified in the <ORACLE_HOME>/j2ee/home/config/data-sources.xml file.
Following is an sample data source configuration for an Oracle database. Each data
source specified in data-sources.xml (xa-location, ejb-location and
pooled-location) must be unique.

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="Oracle"
url="jdbc:oracle:thin@<database host name><database listener port
number>:<database SID>"
pooled-location="jdbc/OraclePoolDS"

Migrating Data Sources

6-4 Migrating From WebLogic

xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin@<database host name><database listener port
number>:<database SID>"
schema="database-schemas/oracle.xml"
inactivity-timeout="30"
max-connections="20"
/>

Table 6–1 describes all of the configuration parameters in data-sources.xml. (Not
all of the parameters are shown in the example above).

Table 6–1 Configuration Parameters in data-sources.xml File

Parameter Description

class Class name of the data source.

connection-driver Class name of the JDBC.

connection-retry-int
erval

Number of seconds to wait before retrying a failed connection.

Default value is 1 second.

ejb-location JNDI path for binding an EJB-aware, pooled version of this data
source; this version will participate in container-managed
transactions. This is the type of data source to use from within
EJBs and similar objects.

This parameter only applies to a ConnectionDataSource.

inactivity-timeout Number of seconds unused connections should be cached before
being closed.

location JNDI path for binding this data source.

max-connect-attempts Number of times to retry a failed connection.

Default is 3 times.

max-connections Maximum number of open connections for pooling data sources.

min-connections Minimum number of open connections for pooling data sources.

The default is zero.

name Displayed name of the data source.

password User password for accessing the data source (optional).

pooled-location JNDI path for binding a pooled version of this data source.

This parameter only applies to a ConnectionDataSource.

Relative or absolute path to a database-schema file for the
database connection.

source-location Underlying data source of this specialized data source.

url JDBC URL for this data source (used by some data sources that

deal with java.sql.Connections.

username User name for accessing the data source (optional).

wait-timeout Number of seconds to wait for a free connection if all

connections are used. Default is 60.

Migrating Connection Pools

Migrating JDBC 6-5

6.2.3 Obtaining a Client Connection Using a Data Source Object
To obtain a connection from a JDBC client, you would use JNDI to look up and locate
the DataSource object. This is illustrated in the following code fragment where you
obtain a connection in WebLogic Server:

try
{

java.util.Properties parms = new java.util.Properties();
parms.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

javax.naming.Context ctx = new javax.naming.InitialContext(parms);
javax.sql.DataSource ds = (javax.sql.DataSource)ctx.lookup("jdbc/SampleDB");
java.sql.Connection conn = ds.getConnection();

// process the results
...

}

To migrate the above code from WebLogic Server to OC4J, you need to change the
class that implements the initial context factory (Context.INITIAL_CONTEXT_
FACTORY) of the JNDI tree from weblogic.jndi.WLInitialContextFactory,
which is the WebLogic-specific class, to
com.evermind.server.ApplicationClientInitialContextFactory, which
is the OC4J specific class.

With this change, your code is ready for deployment on OC4J and to use the Oracle
JDBC drivers.

6.3 Migrating Connection Pools
Most Web-based resources, such as servlets and application servers, access information
in a database. Each time a resource attempts to access a database, it must establish a
connection to the database, consume system resources to create the connection,
maintain it, and then release it when it is no longer in use. The resource overhead is
particularly high for Web-based applications, because of the frequency and volume of
Web users connecting and disconnecting. Often, more resources are consumed in
connecting and disconnecting than in the interactions themselves.

Connection pooling enables you to control connection resource usage by spreading the
connection overhead across many user requests. A connection pool is a cached set of
connection objects that multiple clients can share when they need to access a database
resource. The resources to create the connections in the pool are expended only once
for a specified number of connections, which are left open and reused by many client
requests, instead of each client using resources to create its own connection and closing

xa-location JNDI path for binding a transactional version of this data source.

This parameter only applies to a ConnectionDataSource.

xa-source-location Underlying XADataSource of the specialized data source (used
by OrionCMTDataSource).

See Also: Section 5.1.2.1, "Global JNDI Lookups and Oracle
Application Server"

Table 6–1 (Cont.) Configuration Parameters in data-sources.xml File

Parameter Description

Migrating Connection Pools

6-6 Migrating From WebLogic

it after its database operation is complete. Connection pooling improves overall
performance in the following ways:

■ Reducing the load on the middle tier and server

■ Minimizing resource usage by session create and session close operations

■ Eliminating bottlenecks caused by socket and file descriptor limitations and ’n’
user license limitations.

The JDBC 2.0 specification allows you to define a pool of JDBC database connections
with the following objectives:

■ Maximize the availability of connections to resources.

■ Minimize the idle connections in the pool.

■ Return orphan connections to the pool and make them available for reuse by other
servlets or application servers.

To meet these objectives, you:

1. Set the maximum connection pool size property equal to the maximum number of
concurrently active user requests expected.

2. Set the minimum connection pool size property equal to the minimum number of
concurrently active user requests expected.

The connection pooling properties ensure that as the number of user requests
decreases, connections are gradually removed from the pool. Likewise, as the number
of user requests begins to grow, new connections are created. The balance of
connections is maintained so that connection reuse is maximized and connection
creation overhead minimized. You can also use connection pooling to control the
number of concurrent database connections.

6.3.1 Overview of Connection Pools
Connection pools provide ready-to-use pools of connections to your DBMS. Since
these database connections are already established when the connection pool starts up,
the overhead of establishing database connections is eliminated. You can utilize
connection pools from server-side applications such as HTTP servlets or EJBs using the
pool driver or from standalone Java client applications.

One of the greatest advantages of connection pooling is that it saves valuable program
execution time and has almost no or very low overhead. Making a DMBS connection is
very slow. With connection pools, connections are established and available to users
before they are needed. The alternative is for application code to make its own JDBC
connections when needed. A DBMS runs faster with dedicated connections than if it
has to handle incoming connection attempts at runtime.

6.3.2 How Connection Pools Enhance Performance
Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic Server and Oracle Application Server
connection pools offer an solution to this problem.

When WebLogic Server or Oracle Application Server starts, connections from the
connection pools are opened and are available to all clients. When a client closes a
connection from a connection pool, the connection is returned to the pool and becomes
available for other clients; the connection itself is not closed. There is little cost to
"open" and "close" pool connections.

Performance Tuning JDBC

Migrating JDBC 6-7

How many connections should you create in the pool? A connection pool can grow
and shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance will always be when the connection
pool has as many connections as there are concurrent users.

6.4 Overview of Clustered JDBC
Relevant only in multitier configurations, clustered JDBC allows external JDBC clients
to reconnect and restart their JDBC connection without changing the connection
parameters, in case a serving cluster member fails. For WebLogic, clustered JDBC
requires data source objects and the WebLogic RMI driver to connect to the DBMS.
Data source objects are defined for each WebLogic Server using the WebLogic
Administration Console.

Oracle provides functionality that is similar to and more advanced than that provided
by the clustered JDBC by leveraging the TAF capabilities of OCI.

6.5 Performance Tuning JDBC
Performance tuning your JDBC application in OC4J is similar to that for WebLogic
Server. Connection pooling helps improve performance by avoiding the expensive
operation of creating new database connections. The guidelines on writing efficient
code hold true for Oracle Application Server and WebLogic Server.

Performance Tuning JDBC

6-8 Migrating From WebLogic

Additional Features A-1

A
Additional Features

This appendix provides additional comparative information between WebLogic Server
7.0 and Oracle Application Server 10g. This information consists of:

■ Section A.1, "Migrating Web Services"

■ Section A.2, "Java Messaging Service (JMS)"

■ Section A.3, "Oracle TopLink"

A.1 Migrating Web Services
Before JAX-RPC was formalized as a mandatory J2EE 1.4 API, Web services were not
standardized in the Java specifications. Each application server vendor had its own
way of programming Web services (both server and client). Apache Axis, provided
some portability between different vendors as it is a simple library that can run in any
J2EE 1.3 compliant container. Axis is well adopted even though it lacks support for
WS-* standards. If your WebLogic Web service is written using Apache Axis, you
should be able to deploy it in Oracle Application Server 10g Release 3 (10.1.3) with
little modification, if any.

Ideally, JAX-RPC as a standard should be portable. The implementation class, service
endpoint interface, and the WSDL should be sufficient to deploy a Web service
between different application servers. However, due to the complexity of the
serialization/deserialization of SOAP, most of the time, a Web service needs to be
"reassembled" from the top down. Oracle Application Server provides a utility to ease
this task. The WebServicesAssembler utility accepts a WSDL and creates the requisite
service endpoint interface (SEI) using its genInterface command. You can then fill
in the implementation for the Web service for any required architecture, such as Java
classes. To assemble the service, the utility is invoked with its topDownAssemble
command. A EAR file is generated.

Even if a seamless migration is the ideal solution, "rewriting" Web services is not
necessarily as complex as its appears. The critical parts to consider are the
implementation class that contains the business logic and the WSDL that exposes this
business logic as a Web service. Using the top down approach with the
WebServicesAssembler utility allows a Web service’s artifacts to be generated from a
WSDL for Oracle Application Server.

For migrating Web services that are compliant with J2EE 1.4 specifications to Oracle
Application Server, only modifications to proprietary WebLogic Server API need to be

See: Oracle Application Server Web Services Developer’s Guide for
information on using the top down approach with
WebServicesAssembler.

Java Messaging Service (JMS)

A-2 Migrating From WebLogic

made. The SEI and Impl class can be used without modification. The WebLogic Server
proprietary API are usually those that lookup data or objects, such as accessing a
HTTP request from a Web service implementation object. The proprietary API would
usually have package names starting with weblogic.* . They would have to be
replaced with equivalent Oracle API.

A.2 Java Messaging Service (JMS)
Oracle Application Server 10g supports JMS 1.1 and WebLogic Server 7.0 supports
JMS 1.0.2. Table A–1 highlights some of the key JMS features supported by both
application servers.

Oracle Application Server provides support for JMS in the following manner:

■ Fast, Lightweight, Compliant - Oracle Application Server provides two
out-of-the-box JMS implementations.

The first is OracleJMS, which uses the Oracle databases integrated Advanced
Queuing (AQ) to offer secure, transactional, recoverable, and guaranteed delivery
of messages. Oracle Application Server also offers a fast and lightweight,
in-memory JMS that can be used to pass messages between applications in the
middle tier. In contrast, WebLogic provides a simple JMS implementation.

■ Pluggable JMS Providers - Oracle Application Server J2EE applications can access
queues and topics using the JMS API. They can use an Oracle Application Server

Table A–1 JMS Feature Comparison Summary

Feature
Oracle Application Server
10g WebLogic Server 7.0

Pluggable JMS Providers Yes Yes

Message Retention and Query
Ability

Yes Yes

Persistence of JMS Messages Yes Yes

Fail over of Persisted JMS
Messages

Yes No

Message Payloads:

Structured Datatypes,
Unstructured Datatypes,
Relational Data, Text, XML,
Objects, Multimedia Data

Yes Yes

Message Transports:

SOAP, Oracle Net

Yes Yes

Secure Access Yes Yes

Abstraction of Business Logic,
Rules, and Routing into Easily
Maintainable Tables

Yes No

Guaranteed Delivery Yes No

Ability to Cluster in a High
Availability Configuration

Yes No

Interfacing with Java and Non
Java Clients

Yes No

Java Messaging Service (JMS)

Additional Features A-3

specific JNDI namespace to look up JMS ConnectionFactories and
Destinations.

Oracle Application Server defines a ResourceProvider interface for plugging
in message providers and provides the implementation classes for Oracle’s
Advanced Queuing and for third-party messaging systems such as MQSeries,
SonicMQ and SwiftMQ. The ResourceProvider interface allows switching
between message providers transparently to the JMS client. JMS clients can mix
messages from multiple messaging systems in the same application, and switch
between them by merely changing the JNDI mappings, and without any changes
in the source code.

WebLogic has lesser support for plugging-in other JMS providers. Its approach to
supporting IBM MQ Series is complicated. Developers need to use BEA WebLogic
MQ Series JMS classes, a separate library of classes, to plug in MQ Series. Oracle
Application Server, on the other hand, makes it extremely easy to plug in, almost
as simple as a DataSource.

The following apply to Oracle Application Server 10g Release 3 (10.1.3):

■ Supports JMS 1.1.

■ Has generic JMS JCA 1.5 resource adaptor with:

– support for WebSphereMQ, Tibco JMS, SonicMQ

– full MDB support

– full XA support

■ JMX-based dynamic configuration:

– no server restart for Destination and ConnectionFactory creation or
deletion

– no server restart for JMS server property changes

■ JMS router in Oracle Application Server provides bridge for Oracle JMS, OracleAS
JMS, WebSphereMQ, Tibco JMS, SonicMQ.

■ Support for message filtering during routing of messages.

A.2.1 Oracle JMS (OJMS)
OJMS is the Java front-end for the Oracle database integrated Advanced Queuing
(AQ), which offers secure, transactional, recoverable, guaranteed delivery of messages.

Advanced Queuing provides a number of important facilities. OJMS leverages the
Oracle database robustness, query-ability and DML operations, scalability and high
availability, and support for all data types in message payload, including relational
data, text, XML, and multimedia.

The following general features are discussed:

■ Message Retention and Query Ability - OJMS integrates a messaging system with the
Oracle Database leveraging the databases robustness, and providing guaranteed
message retention and auditing/tracking while eliminating the need for 2-PC
operations between the messaging system and the database. Further, since the
queues are stored in the Oracle Databases, they can be queried using standard
SQL.

■ Message Payloads - OJMS can support a variety of structured and unstructured
datatypes as message payloads including relational data, text, XML, objects, and
multimedia data.

Oracle TopLink

A-4 Migrating From WebLogic

■ Message Transports - OJMS also provides support for reliable once-only, in-order
delivery of messages over a variety of transports including SOAP, Oracle Net, and
others. It can also use other messaging providers such as MQ-Series for transport.

■ Secure Access - Finally, OJMS provides stringent access control on individual
queues and messages using the databases ACL mechanisms.

WebLogic Server does not have the following set of capabilities that Oracle Messaging
(JMS) provides:

■ Abstraction of Business Logic, Rules, and Routing into Easily Maintainable Tables -
OJMS has extensive rules functionality. Rules can be used for efficient routing of
messages. You can specify rules as SQL expressions when defining your
subscriptions. Rules engine performs efficient rules evaluation. These SQL
expressions can contain any other PL/SQL, C or Java function. With the Oracle9i
Database (Release 2), you can also organize your rules in rule-sets and use rules
functionality independent of message queuing.

■ Guaranteed Delivery - OJMS provides guaranteed once and only once delivery. This
is a feature unique to OJMS. You can monitor messages in the queues using SQL
views. You can write a single SQL statement to find out exact location of your
message.

■ Ability to Cluster in a Highly Available Configuration - With Oracle Advanced
Queuing, you get benefits of the entire Oracle stack including persistence, high
availability and scalability with Real Application Clusters (RAC).

On the other hand, BEA WebLogic JMS clustering is not as robust. One of the key
considerations in the choice of JMS is reliability. WebLogic Server does not have
fail over of persisted messages pertaining to a server failure. Further, it provides
fail over only for JMS destinations. However, these JMS destinations are not
replicated. For example, you can deploy multiple persistent queues with the same
JNDI name across all nodes of a cluster. A client will hit just one until that node
fails, in which the cluster will transparently fail over the client to the next available
node/queue.

However, what’s stored in the first queue remains in the first queue since it is
persistent until someone manually brings that node up again. Or, you need to find
some mechanism for retrieving the messages yourself. Oracle Application Server
and Oracle AQ, on the other hand, can leverage the high availability capabilities of
Oracle9i RAC to avoid this problem.

■ Interfacing with Java and Non Java Clients - The WebLogic Server implementation of
JMS does not allow sending messages to non Java clients. Oracle Application
Server JMS, through Oracle AQ, has four APIs - PL/SQL, Java (JMS), C, and XML.
This enables a message to be enqueued from any language and dequeued from
any other language, thereby providing the flexibility to integrate with various
heterogeneous systems including legacy systems.

A.3 Oracle TopLink
In an enterprise Java environment, one of the most formidable challenges is storing
business objects and components in a relational database (RDB). Oracle TopLink
makes application development more productive by offering an easy to use mapping
workbench that maps the Java objects to relational databases and by simplifying one
of the most difficult aspects of developing applications - persisting information to the
database. Using Oracle TopLink, developers gain the flexibility to map objects and
Enterprise Java Beans to a relational database schema with minimal impact on ideal
application design or database integrity. The result: developers focused on addressing

Oracle TopLink

Additional Features A-5

business needs rather than building infrastructure. Oracle TopLink is built on JDBC
and is portable across any JDBC-compliant database, including Oracles Database, DB2,
SQL Server, Sybase, Informix, and Microsoft Access.

The Oracle TopLink solution offers three key benefits:

■ Mature Design, Flexibility and Performance - Oracle TopLink provides a rich set of
performance optimization and scalability features. Performance is addressed with
caching techniques that minimize database and network traffic while always
leveraging optimizations provided by JDBC and the databases.

■ Simplified Application Development - Oracle TopLink makes application
development more productive by offering an easy to use mapping workbench that
maps the Java objects to relational databases and by simplifying one of the most
difficult aspects of developing applications - persisting information to the
database.

■ Optimization of Resources - With Oracle TopLink, an application development
team can focus on building the application rather than building infrastructure.

In essence, Oracle TopLink offers the best solution in the market to perform
Java-to-relational database object-relational mapping. With Oracle TopLink, Oracle
has blended the Java world and the relational database world in the best way possible,
and solved one of the greatest challenges facing J2EE developers: productively
mapping their Java objects and entity beans to a relational database.

With Oracle Application Server 10g, Oracle TopLink is an integrated component of
Oracle Application Server. Specifically, the Oracle TopLink framework is integrated
with the Oracle Containers for J2EE, and the Oracle TopLink Workbench is integrated
with Oracle JDeveloper.

Oracle TopLink

A-6 Migrating From WebLogic

Index-1

Index

A
Apache, 2-4

JServ Protocol, 2-4
appc, 5-3, 5-12
Application Server Control Console, 5-13
application.xml, 3-8, 5-16

C
client stubs, 2-8
clustering

JDBC, 6-7
servlets, 3-11
servlets and JSPs, 3-11

concurrent users, 6-6
WebLogic Server

config.xml, 3-10
connection pool, 6-5
console GUI, 5-13

D
data sources, 6-3
data-sources.xml, 3-8, 5-16, 6-3
JDBC

DriverManager, 6-3

E
EAR file, 2-12, 3-2, 4-1, 5-1, 5-13, 5-16
Edge Side Includes (ESI), 4-9
Edge Side Includes for Java (JESI), 4-3, 4-9
ejb-jar.xml, 3-8, 5-8, 5-14, 5-16
Enterprise JavaBeans, 5-1

clustering, 5-3
stateful session bean, 5-3

Query Language, 5-15
entity EJB

simple and complex DB mapping, 5-2

F
failover, 2-9
finder method, 5-14

G
global-web-application.xml, 3-9

H
HelloWorld, 3-3
help, online, 0-viii
high availability, 2-6
HTTP

listener, 3-10
session state, 2-9

I
JNDI

INITIAL_CONTEXT_FACTORY, 6-5
intelligent routing, 2-10

J
J2EE

1.3, 2-1
containers, 2-4

JAR file, 2-12, 5-13
Java Virtual Machine, 2-4
JavaBeans, 2-12, 4-2, 4-3
JDBC, 6-3

clustering, 6-7
drivers, 6-1

jms.xml, 5-16
JNDI, 2-8, 2-9, 5-4, 6-3, 6-5
JSP custom tags, 4-2, 4-5, 4-8
JSP pre-translation, 4-11

L
load balancer, 2-8, 2-10
load balancing

parameter-based, 2-8, 2-9
random, 2-9
round-robin, 2-8, 2-9
weight-based, 2-8

M
message-driven bean, 5-16

Index-2

migration challenges, 1-3
mod_oc4j, 2-10
mod_oc4j, 2-4

O
object-relational mapping, 5-5
OC4J

container, 2-13, 5-13
instances, 2-4
what is, 2-3

oc4j-connectors.xml, 3-10
ojspc, 4-10, 4-11
online help, 0-viii
OPMN, 2-11
Oracle

HTTP Server, 2-4
Internet Developer Suite, 2-12
JDeveloper, 2-12

Oracle Application Server
Cluster, 2-9
components, 2-3

Oracle HTTP Server, 2-4
installation, 2-3
instance, 2-3, 2-9
JSP Markup Language (JML), 4-2
JSP pre-translator, 4-10
Web Cache, 2-10

JESI, 4-3
Oracle Developer Suite, 2-11
Oracle Enterprise Manager, 2-13, 5-13, 6-3

Application Server Control, 2-4
Oracle HTTP Server, 2-10
Oracle JDeveloper, 4-3
Oracle OCI driver, 6-2
Oracle Process Management Notification

(OPMN), 2-6
Oracle XA drivers, 6-2
OracleJSP, 4-2
Orion JSP container, 4-2
orion-application.xml, 3-9
orion-ejb-jar.xml, 3-9, 5-8, 5-10, 5-15, 5-16
orion-web.xml, 3-9

P
portability, 1-2
precompiling, 4-9
principals.xml, 3-9
process monitoring, 2-9
proprietary extensions, 1-2

R
RMI, 2-8, 3-10
round-robin, 2-8

S
scalability, 2-6, 2-9
server.xml, 5-13, 5-14

session state, 2-8, 2-9, 3-11
skeleton classes, 5-4
smart routing, 2-10
SQLJ, 4-2
state replication

database, 3-11
filesystem, 3-11
in-memory, 3-11

stub classes, 5-4
stubs, 2-8

T
tag library, 2-12

custom, 4-5

W
WAR file, 2-12, 3-1, 3-2, 3-5
WebLogic Server, 1-3, 1-4

administration console, 2-11
Administration Server, 2-2
cluster, 2-8
clustering

servlets and JSPs, 3-11
components, 2-2
console GUI, 2-2, 6-7
domain, 2-2
Enterprise JavaBeans

field-to-database-element mapping, 5-10
failover, 2-8
htmlKona, 3-1
JDBC drivers, 6-1
jDriver, 6-2
JSP compiler, 4-9
JSP custom tags, 4-2, 4-8
load balancing, 2-8

parameter-based, 2-9
random, 2-9
round-robin, 2-9
weight-based, 2-9

Managed Server, 2-2
proxy plug-in, 2-8
round-robin, 2-8
session state, 2-8
state replication, 2-8, 3-11

weblogic-cmp-rdbms-jar.xml, 5-8, 5-10
WebLogic Server

weblogic-ejb-jar.xml, 3-10
weblogic-ejb-jar.xml, 5-8, 5-10, 5-16
WebLogic Server

weblogic.xml, 3-10
web.xml, 3-3, 3-8

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Where to Find More Information
	Online Help
	Conventions

	1 Overview
	1.1 Overview of Oracle Application Server 10g
	1.2 Migration Highlights
	1.2.1 Migration Approach
	1.2.2 J2EE Application Migration Challenges
	1.2.3 Migration Effort
	1.2.4 Migration Tool

	1.3 Using This Guide

	2 Comparison of Oracle Application Server and WebLogic Server
	2.1 Architectures
	2.1.1 Specifications Levels Supported
	2.1.2 WebLogic Server
	2.1.3 Oracle Application Server Components and Concepts
	2.1.3.1 J2EE in Oracle Application Server
	2.1.3.2 Oracle Application Server Instance
	2.1.3.3 Oracle HTTP Server
	2.1.3.4 OC4J Instances
	2.1.3.5 Oracle Process Management Notification (OPMN) Server
	2.1.3.6 Oracle Enterprise Manager 10g Application Server Control Console

	2.2 Web Services
	2.3 High Availability and Load balancing
	2.3.1 WebLogic Server Support for High Availability and Load Balancing
	2.3.1.1 HTTP Session State Load Balancing and Fail Over
	2.3.1.2 EJB and RMI Object Load Balancing and Fail Over

	2.3.2 Oracle Application Server Support for High Availability and Load Balancing
	2.3.2.1 Process Monitoring
	2.3.2.2 Session State Replication
	2.3.2.3 Load Balancing
	2.3.2.4 Java Object Cache

	2.4 Java Development and Deployment Tools
	2.4.1 WebLogic Development and Deployment Tools
	2.4.1.1 WebLogic Server Workshop
	2.4.1.2 WebLogic Server Administration Console

	2.4.2 Oracle Application Server Development and Deployment Tools
	2.4.2.1 Development Tools
	2.4.2.2 Assembly Tools
	2.4.2.3 Administration Tools

	3 Migrating Java Servlets
	3.1 Introduction
	3.2 Migration Approach for Servlets
	3.3 Migrating a Simple Servlet
	3.4 Migrating a WAR File
	3.5 Migrating an Exploded Web Application
	3.6 Migrating Configuration and Deployment Descriptors
	3.6.1 Oracle Application Server
	3.6.2 WebLogic Server

	3.7 Migrating Cluster Aware Applications

	4 Migrating JSP Pages
	4.1 Introduction
	4.1.1 Differences Between WebLogic Server and Oracle Application Server JSP Implementations
	4.1.1.1 OC4J JSP Features
	4.1.1.2 Oracle JDeveloper and OC4J JSP Container

	4.2 Migration Approach
	4.3 Migrating a Simple JSP Page
	4.4 Migrating a Custom JSP Tag Library
	4.4.1 Migrating from WebLogic Custom Tags
	4.4.1.1 WebLogic Server cache Tag
	4.4.1.2 WebLogic Server process Tag
	4.4.1.3 WebLogic Server repeat Tag

	4.5 Migrating htmlKona
	4.6 Precompiling JSP Pages
	4.6.1 Using the WebLogic Server JSP Compiler
	4.6.2 Using the OC4J JSP Pre-translator
	4.6.3 Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)
	4.6.4 Configure the JSP Container for Execution with Binary Files Only

	5 Migrating Enterprise JavaBean Components
	5.1 Introduction
	5.1.1 Comparison of WebLogic Server and Oracle Application Server EJB Features
	5.1.1.1 More Efficient Container Managed Persistence
	5.1.1.2 Clustering Support
	5.1.1.3 Scalability and Performance Enhancements

	5.1.2 EJB Migration Considerations
	5.1.2.1 Global JNDI Lookups and Oracle Application Server
	5.1.2.2 WebLogic Server Caveats

	5.2 Migration Approach
	5.2.1 Migrating Session EJBs
	5.2.2 Migrating Entity EJBs
	5.2.2.1 EJBs with Bean-Managed Persistence (BMP)
	5.2.2.2 EJBs with Container-Managed Persistence (CMP)

	5.2.3 Migrating Deployment Descriptors
	5.2.3.1 Steps for Using Oracle JDeveloper 10g (10.1.3) to Convert weblogic-ejb-jar.xml to orion-ejb-jar.xml
	5.2.3.2 Using the Oracle Application Server TopLink Migration Tool to Convert weblogic-cmp-rdbms-jar.xml to toplink-ejb-jar.xml

	5.2.4 Generating and Deploying EJB Container Classes
	5.2.4.1 WebLogic Server
	5.2.4.2 OC4J

	5.2.5 Loading EJB Classes in the Server
	5.2.5.1 WebLogic Server
	5.2.5.2 OC4J

	5.3 Migrating EJBs in a EAR or JAR File
	5.4 Migrating an Exploded EJB Application
	5.5 Writing Finders for RDBMS Persistence
	5.5.1 Migrating Finder Methods

	5.6 WebLogic Query Language (WLQL) and EJB Query Language (EJB-QL)
	5.7 Message Driven Beans

	6 Migrating JDBC
	6.1 Introduction
	6.1.1 Differences between WebLogic and Oracle Application Server Database Access Implementations
	6.1.1.1 Overview of JDBC Drivers

	6.2 Migrating Data Sources
	6.2.1 Data Source Import Statements
	6.2.2 Configuring Data Sources in the Application Server
	6.2.3 Obtaining a Client Connection Using a Data Source Object

	6.3 Migrating Connection Pools
	6.3.1 Overview of Connection Pools
	6.3.2 How Connection Pools Enhance Performance

	6.4 Overview of Clustered JDBC
	6.5 Performance Tuning JDBC

	A Additional Features
	A.1 Migrating Web Services
	A.2 Java Messaging Service (JMS)
	A.2.1 Oracle JMS (OJMS)

	A.3 Oracle TopLink

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	W

