
Oracle® Containers for J2EE
Services Guide

10g Release 3 (10.1.3)

B14427-01

January 2006

Oracle Containers for J2EE Services Guide, 10g Release 3 (10.1.3)

B14427-01

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Alfred Franci

Contributing Author: Bonnie Vaughan, Brian Wright, Dan Hynes, Frances Zhao, Jerry Bortvedt, Kirk
Bittler, Tom Collier, Qiang Liu, Vivekananda Maganty, Bob Nettleton, Shengsong Ni, Debabrata Panda, Paul
Parkinson, J. J. Snyder, John Speidel, Jerry Steidl.

Contributor: John Lang, Rajkumar Irudayaraj, Lixin Zheng, Peter Wu, Valarie Moore, Anthony Lai, Ashok
Banerjee, Cheuk Chau, Editor Ellen Siegal, Erik Bergenholtz, Gary Gilchrist, Irene Zhang, Jon Currey,
Jyotsna Laxminarayanan, Krishna Kunchithapadam, Kuassi Mensah, Lars Ewe, Lelia Yin, Mike Lehmann,
Mike Sanko, Min-Hank Ho, Nickolas Kavantzas, Olga Peschansky, Rachel Chan, Raymond Ng, Sastry
Malladi, Stella Li, Sunil Kunisetty, Thomas Van Raalte.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

 Contents

 Preface ... xvii

Intended Audience... xvii
Documentation Accessibility .. xvii
Related Documents ... xviii
Conventions ... xx

1 Introduction to OC4J Services

Java Naming and Directory Interface (JNDI) ... 1-1
Java Message Service (JMS) ... 1-1
Data Sources ... 1-2
OC4J Transaction Support J .. 1-2
Using Remote Method Invocation in OC4J .. 1-2
Java Object Cache ... 1-2
XML Query Service .. 1-3
Third-Party Licenses ... 1-3

2 Oracle JNDI

What You Need To Know About Oracle JNDI ... 2-3
Configuring JNDI for Deployment.. 2-3

Initial Context .. 2-4
Creating and Using the Initial Context ... 2-4
Constructing a JNDI Context ... 2-4

Example: Looking Up An EJB .. 2-6
JNDI Contexts and Threads.. 2-7

Browsing the JNDI Context.. 2-7
Looking Up Objects from J2EE Application Components .. 2-8

Looking Up Objects In the Same Application ... 2-8
Example: Servlet Looking Up a Data Source ... 2-8

Looking Up Objects in Another Application .. 2-9
RMIInitialContextFactory ... 2-9

Example: Servlet Looking Up an EJB Remotely Using RMI 2-10
Example: Servlet Looking Up an EJB Remotely in a Multiple Instance Environment
.. 2-10

IIOPInitial ContextFactory ... 2-10
Example: Servlet Looking Up an EJB Remotely Using IIOP...................................... 2-11
iii

Looking Up Objects from J2EE Application Clients .. 2-11
Environment Properties ... 2-12
Load Balancing ... 2-13
Example: Application Client Looking Up an EJB .. 2-13
Example: Application Client Looking Up an EJB Using IIOP ... 2-15

JNDI State Replication ... 2-16
What Is JNDI State Replication .. 2-17
Enabling JNDI State Replication .. 2-17
Limitations of JNDI State Replication .. 2-18

Propagating Changes Across the Cluster... 2-18
Binding a Remote Object... 2-18

3 Oracle Enterprise Messaging Service (OEMS)

About JMS ... 3-3
JMS How-To Documents and Demo Sets .. 3-4

JMS Configuration Overview ... 3-5
JMS Configuration Sequence.. 3-6

Developing and Assembling the Application .. 3-6
Configuring the Resource Provider ... 3-6
Configuring the JMS Connector .. 3-7
Additional Information and Examples.. 3-7

JMS Configuration File Structure .. 3-8
Bypassing the JMS Connector for Application Clients.. 3-15

Resource Providers ... 3-16
Declaring Resource Provider References .. 3-16
OEMS JMS In-Memory and File-Based Persistence ... 3-18

Configuring Destination Objects and Connection Factories ... 3-19
Default Destination Objects and Connection Factories .. 3-19

Configuring in the Application Server Control Console .. 3-20
 Configuration Elements .. 3-20
Configuration Using jms.xml .. 3-24
Configuring Ports ... 3-26
Sending and Receiving JMS Messages .. 3-26
JMS Utility .. 3-28
Configuring File-Based Persistence .. 3-31

Enabling File-Based Persistence in the Application Server Control Console 3-32
Enabling File-Based Persistence in the jms.xml File .. 3-32
Persistence Recovery .. 3-33

Abnormal Termination .. 3-35
Recovery Steps .. 3-35

Predefined Exception Queue ... 3-36
Message Expiration .. 3-36

Message Paging ... 3-37
JMS Configuration Properties ... 3-38
Resource Naming for OEMS JMS In-Memory and File-Based.. 3-40
Required Class Path for Application Clients Using Direct OEMS JMS In-Memory and
File-Based Lookup ... 3-40
iv

OEMS JMS Database Persistence ... 3-41
 Using the OEMS JMS Database Option .. 3-41

Install and Configure OEMS JMS Database .. 3-42
Create User and Assign Privileges .. 3-42
Creating OEMS JMS Database Destination Objects... 3-43
Declaring the OEMS JMS Database Reference ... 3-44
Resource Naming for OEMS JMS Database.. 3-45
Sending and Receiving Messages Using OEMS JMS Database Persistence 3-46
Required Class Path for Application Clients Using Direct OEMS JMS Database Lookup
... 3-46

Using OEMS JMS Database with the Oracle Application Server and the Oracle Database
... 3-47

Error When Copying aqapi.jar.. 3-47
OEMS JMS Database Certification Matrix .. 3-47

Using Third-Party JMS Providers... 3-48
Declaring an IBM WebSphere MQ Resource Provider Reference 3-49
Declaring a TIBCO Enterprise Message Service Resource Provider Reference 3-49
Declaring a SonicMQ Resource Provider Reference ... 3-50

JMS Connector .. 3-51
Modifying the JMS Connector .. 3-52
Configuring the JMS Connector ... 3-53

JMS Connector Connection Factories and Destinations... 3-53
JMS Connector Settings ... 3-54
Configuring the JMS Connector in the XML Files ... 3-56

Using Message-Driven Beans ... 3-57
Using Logical Names to Reference Resources ... 3-57

How to Declare Logical Names ... 3-58
Mapping Logical Names to Explicit JNDI Locations ... 3-59
JNDI Naming Property Setup for Java Application Clients .. 3-60
Client Sends JMS Message Using Logical Names... 3-61

Required Class Path for Application Clients Using JMS Connector Lookup 3-61
Using High Availability and Clustering for OEMS JMS ... 3-62

Configuring OEMS JMS In-Memory and File-Based High Availability 3-62
Terminology.. 3-63
Distributed Destinations ... 3-63
Cold Failover Cluster .. 3-65
Dedicated JMS Server.. 3-66

Modifying the OPMN Configuration .. 3-67
Configuring OEMS JMS .. 3-67
Deploying Applications... 3-68
High Availability .. 3-68

Custom Topologies .. 3-68
Mechanisms ... 3-68
Considerations .. 3-71
Cases ... 3-72

Configuring OEMS JMS Database High Availability ... 3-73
Failover Scenarios When Using a RAC Database ... 3-73
v

RAC Network Failover .. 3-73
Transparent Application Failover (TAF)... 3-74

Sample Code for Connection Recovery ... 3-74
J2CA Configuration for Connection Recovery ... 3-75

Clustering Best Practices ... 3-76
JMS Router ... 3-76

Functionality .. 3-76
JMS Providers .. 3-77
Configuration... 3-78

Router Jobs ... 3-78
Global Router Parameter(s) ... 3-78
Subscription ... 3-79
Log Queues and Exception Queues ... 3-79
Configuring the JMS Router and Its Objects ... 3-80

JMS Router Configuration in jms.xml ... 3-84
Managing the Router .. 3-86

Router Logging .. 3-86
JMS Router Status Information .. 3-86
Error Handling ... 3-87
Pausing and Resuming a Job ... 3-88
Running In a Clustered OC4J Environment .. 3-88
Routing with Remote Destinations ... 3-89

4 Data Sources

Data Source Types ... 4-2
Managed Data Sources ... 4-3
Native Data Sources .. 4-3

Defining Data Sources .. 4-3
Defining a Connection Pool ... 4-4
Defining a Managed Data Source .. 4-5
Defining a Native Data Source... 4-6
Defining Fatal Error Codes .. 4-7
Using Password Indirection ... 4-7

Connections ... 4-8
Establishing a Connection .. 4-8
Using Connection Pools for Managed Data Sources .. 4-8
Using Connection Proxies with Managed Data Sources.. 4-9
Getting a Connection From a DataSource ... 4-10

Retry... 4-11
Statements... 4-11

Statement Caching with Managed Data Sources ... 4-12
Setting the JDBC Statement Cache Size in Data Sources.. 4-12

Statement Proxies with Managed Data Sources .. 4-13
Transactions .. 4-13

Local Transactions... 4-14
Local Transaction Management .. 4-15

Global Transactions (XA) .. 4-16
vi

XA Recovery ... 4-16
Emulating XA ... 4-17

Configuring Data Source Objects ... 4-17
Managed Data Sources .. 4-18
Native Data Source ... 4-19
Connection Pools and Connection Factories .. 4-21

Connection Factories ... 4-21
Connection Factory Properties ... 4-21
Connection Factory Proxy Interface... 4-22

Connection Properties .. 4-23
Connection Pools ... 4-23

Implicit Connection Cache ... 4-28
Configuration Examples .. 4-28

Syntax of the data-sources.xml File .. 4-29
Examples: Configuring Data Sources .. 4-31

Example: Native Data Source... 4-31
Example: Managed Data Source Using an XADataSource Connection Factory 4-31
Example: Managed Data Source Using a DataSource Connection Factory 4-31
Example: Managed Data Source Using a Driver Connection Factory 4-32
Example: Defining Proxy Interfaces.. 4-32
Example: Defining XA Recovery ... 4-33
Example: Connection Properties ... 4-33

Examples: Configuring Transaction Level ... 4-33
Examples: Configuring Fast Connection Failover ... 4-34

Using High Availability and Fast Connection Failover .. 4-34
Using JDBC Drivers.. 4-36

Oracle JDBC Drivers ... 4-36
OCI ... 4-36
Thin .. 4-37
 Notes on Oracle JDBC-OCI driver upgrade in the Oracle Application Server 4-37

JDBC Drivers for non-Oracle Databases.. 4-38
Installing and Setting Up DataDirect JDBC Drivers ... 4-38
Example DataDirect Data Source Entries ... 4-39

DataDirect DB2 ... 4-39
DataDirect Sybase... 4-40
DataDirect Informix ... 4-40
DataDirect SQLServer .. 4-41

Additional Data Source Configuration Examples .. 4-42
Legacy Configuration .. 4-44

5 OC4J Transaction Support

Introduction to OC4J Transaction Support ... 5-2
Programming Models - Container-Managed and Bean-Managed Transactions 5-6

Demarcating Transactions .. 5-7
Demarcating Container-Managed Transactions ... 5-8
Demarcating Bean-Managed Transactions .. 5-9

Configuring the OC4J Transaction Manager ... 5-10
vii

Configuring the Middle-Tier Transaction Manager in the Application Server Control Console
and the JTA Resource MBean 5-10
Configuring Middle-Tier OC4J Transaction Support in XML Files .. 5-12

server.xml.. 5-12
transaction-manager.xml .. 5-12

Performance Settings.. 5-13
oc4j-ra.xml... 5-14
data-sources.xml .. 5-15

Configuring the In-Database Transaction Coordinator... 5-15
Managing the OC4J Transaction Manager .. 5-18

Manual Commit and Rollback Operations .. 5-18
Monitoring the OC4J Transaction Manager .. 5-18

OC4J Transaction Support Statistics ... 5-19
Event Notifications .. 5-19

Managing OC4J Transaction Manager Recovery ... 5-19
Transaction Propagation between OC4J Processes over ORMI ... 5-21

How Does Transaction Propagation Work?.. 5-21
Configuring Transaction Propagation .. 5-22
Transaction Propagation Constraints ... 5-23

Backwards Compatibility .. 5-23
EJB Failover ... 5-24

Debugging and Troubleshooting .. 5-24

6 Using Remote Method Invocation in OC4J

What Is RMI?... 6-1
Choosing RMI/ORMI or RMI/IIOP .. 6-2

Using Oracle Remote Method Invocation (RMI/ORMI) ... 6-2
Introducing RMI/ORMI .. 6-2

Features of ORMI.. 6-2
Increased RMI Message Throughput .. 6-2
Enhanced Threading Support ... 6-3
Co-Located Object Support .. 6-3
Compatibility Patches for 9.0.4.x and 10.1.2.x ... 6-3

Configuring RMI in a Standalone OC4J Installation ... 6-4
Access Restrictions.. 6-5

Client-Side Requirements to Use RMI/ORMI ... 6-5
Configuring RMI in an Oracle Application Server Environment ... 6-7

Remote Object Lookup Using RMI/ORMI ... 6-8
Setting JNDI Properties for RMI .. 6-8

Setting the Java Naming Provider URL... 6-8
Specifying the opmn Request Port in Oracle Application Server 10g Release 3 (10.1.3) ..
.. 6-9
Specifying the RMI Port in Oracle Application Server 10g Release 2 (10.1.2) And
Earlier 6-10

Specifying the Context Factory .. 6-10
Configuring ORMI Request Load Balancing .. 6-11
Example Lookups Using ORMI .. 6-12
viii

Standalone OC4J 10g Release 3 (10.1.3) .. 6-12
OC4J in Oracle Application Server 10g Release 3 (10.1.3) ... 6-12
OC4J in Oracle Application Server Releases Before 10g Release 3 (10.1.3) 6-13

Configuring ORMI Tunneling through HTTP .. 6-13
Using ORMI/SSL (ORMIS) in OC4J .. 6-14
Using J2EE Interoperability (RMI/IIOP) .. 6-14

Introduction to RMI/IIOP ... 6-15
Transport .. 6-15
Naming ... 6-15
Security .. 6-15
Transactions .. 6-16
The rmic.jar Compiler ... 6-16

Configuring OC4J for Interoperability .. 6-16
Interoperability OC4J Flags .. 6-16
Interoperability Configuration Files ... 6-16
JNDI Properties for Interoperability (jndi.properties) .. 6-17

Context Factory Usage ... 6-17
Client-Side Requirements to Use IIOP .. 6-17

Switching from ORMI to IIOP Transport ... 6-18
Configuring an EJB for Interoperability in a Standalone OC4J Environment 6-18
Configuring an EJB for Interoperability in an Oracle Application Server Environment 6-19
Specifying the corbaname URL ... 6-21
Specifying the OPMN URL .. 6-21
Exception Mapping .. 6-22
Invoking OC4J-Hosted Beans from a Non-OC4J Container .. 6-22

7 Java Object Cache

Java Object Cache Concepts .. 7-2
Java Object Cache Basic Architecture.. 7-3

Distributed Object Management... 7-3
How the Java Object Cache Works.. 7-4
Cache Organization ... 7-5
Java Object Cache Features... 7-6

Java Object Cache Object Types ... 7-6
Memory Objects ... 7-6
Disk Objects... 7-7
StreamAccess Objects .. 7-7
Pool Objects... 7-7

Java Object Cache Environment ... 7-8
Cache Regions... 7-8
Cache Subregions ... 7-8
Cache Groups ... 7-8
Region and Group Size Control ... 7-9
Cache Object Attributes.. 7-10

Using Attributes Defined Before Object Loading ... 7-10
Using Attributes Defined Before or After Object Loading .. 7-13

Developing Applications Using Java Object Cache ... 7-15
ix

Importing Java Object Cache... 7-15
Defining a Cache Region.. 7-15
Defining a Cache Group... 7-16
Defining a Cache Subregion ... 7-16
Defining and Using Cache Objects ... 7-17
Implementing a CacheLoader Object... 7-17

Using CacheLoader Helper Methods.. 7-18
Invalidating Cache Objects .. 7-19
Destroying Cache Objects .. 7-19
Multiple Object Loading and Invalidation.. 7-20
Java Object Cache Configuration.. 7-22

Examples ... 7-25
Declarative Cache.. 7-26

Declarative Cache File Sample... 7-28
Declarative Cache File Format ... 7-28
Examples ... 7-30
Declarable User-Defined Objects... 7-32
Declarable CacheLoader, CacheEventListener, and CapacityPolicy 7-33
Initializing the Java Object Cache in a Non-OC4J Container .. 7-33

Capacity Control ... 7-34
Implementing a Cache Event Listener ... 7-36
Restrictions and Programming Pointers.. 7-38

Working with Disk Objects... 7-39
Local and Distributed Disk Cache Objects .. 7-39

Local Objects ... 7-40
Distributed Objects .. 7-40

Adding Objects to the Disk Cache.. 7-40
Automatically Adding Objects .. 7-40
Explicitly Adding Objects ... 7-40
Using Objects that Reside Only in Disk Cache.. 7-41

Working with StreamAccess Objects .. 7-42
Creating a StreamAccess Object.. 7-43

Working with Pool Objects ... 7-43
Creating Pool Objects ... 7-44
Using Objects from a Pool.. 7-45
Implementing a Pool Object Instance Factory .. 7-45
Pool Object Affinity .. 7-46

Running in Local Mode ... 7-46
Running in Distributed Mode .. 7-46

Configuring Properties for Distributed Mode .. 7-47
Setting the distribute Configuration Property... 7-47
Setting the discoveryAddress Configuration Property.. 7-47

Using Distributed Objects, Regions, Subregions, and Groups... 7-47
Using the REPLY Attribute with Distributed Objects .. 7-48
Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT.. 7-49

Accessing Objects in Remote Caches ... 7-51
Cached Object Consistency Levels ... 7-53
x

Using Local Objects ... 7-54
Propagating Changes Without Waiting for a Reply ... 7-54
Propagating Changes and Waiting for a Reply... 7-54
Serializing Changes Across Multiple Caches .. 7-54

Sharing Cached Objects in an OC4J Servlet .. 7-55
Using User-Defined Class Loaders... 7-55
HTTP and Security for Distributed Cache... 7-55

HTTP ... 7-56
SSL.. 7-56
Firewall .. 7-57
Restricting Incoming Connections .. 7-58

Monitoring and Debugging .. 7-58
XML Schema for Cache Configuration ... 7-63
XML Schema for Attribute Declaration .. 7-64

8 XML Query Service

Introduction to XML Query Service ... 8-1
What is XQS? .. 8-2
Technologies Related to XQS.. 8-2

A Quick Look at XQuery ... 8-2
The Oracle XQuery Implementation.. 8-3
Comparing XQS with the XQuery API for Java ... 8-5

Why Use XQS?.. 8-6
Requirements, Limitations, and Special Notes for the Current Release 8-6

Overview of XQS Features and Functionality .. 8-7
XQS Data Source Support ... 8-7

Supported Categories of Data Sources .. 8-7
Data Source Access Through XQuery Functions ... 8-8
What Do Data Source Function Objects Do? .. 8-8
Overview of Preparing Data Sources... 8-9

Introduction to XQS Configuration and Configuration Files .. 8-9
Introduction to XQS Client Interfaces .. 8-10
Introduction to OC4JPackager .. 8-11
Security for XQS Applications .. 8-12
Introduction to XQS Performance and Optimization Features.. 8-12
Introduction to XQS Error Handling.. 8-13
Summary of the Main Steps in Using XQS.. 8-13

How to Enable XQS As an OC4J Extension ... 8-14
How to Prepare to Use Your Data Sources.. 8-15

Preparing to Use a Non-XML Document Source ... 8-15
What is D3L?... 8-16
D3L Schema Files ... 8-16
Configuring XQS to Use D3L ... 8-17

Preparing to Use an XQS View ... 8-17
Preparing to Use a WSDL Source with SOAP Binding ... 8-18
Preparing to Use a Database Source (WSDL Source with SQL Binding) 8-19
Preparing to Use a Custom Class or EJB (WSDL Source with Java or EJB Binding) 8-23
xi

How to Configure Your XQS Functions.. 8-24
Configuring an XQS Function That Accesses a Document Source.. 8-24
Configuring an XQS Function That Uses an XQS View.. 8-27
Configuring an XQS Function That Accesses a WSDL Source... 8-32

How to Design Your Queries .. 8-36
Query Considerations... 8-36
Query Examples .. 8-37
Type-Checking for Input Parameters... 8-38

How to Develop Your Application Code: Using the XQS Client Interfaces.............................. 8-39
Supported Types for Query Parameters .. 8-40
General Coding Steps in Using XQS Client APIs ... 8-40
Stateful Versus Stateless Clients ... 8-41
Using the Java Class Client API .. 8-42

Example 1: XQSFacade API with an Ad-Hoc Query.. 8-43
Example 2: XQSFacade API with an Ad-Hoc Query.. 8-46
Example 3: XQSFacade API with an XQS View .. 8-48

Using the EJB Client API.. 8-52
EJB Clients for Stateful Versus Stateless Sessions ... 8-52
Use of the EJB Client API in Stateful Sessions ... 8-53
Example: EJB Client API with an XQS View in a Stateless Session.................................. 8-53

Using the JSP Tag Library.. 8-54
JSP Tags for Stateful Versus Stateless Access .. 8-55
Example: JSP Tags with an XQS View in a Stateful Access Pattern 8-56
Example: JSP Tags with an Ad-Hoc Query in a Stateless Access Pattern 8-57

Using an XQS View Exposed as a Web Service Operation... 8-58
How to Use OC4JPackager to Package Your XQS Application .. 8-58

Steps in Using OC4JPackager.. 8-58
Preparing to Run OC4JPackager.. 8-58
Running OC4JPackager: Required and Optional Parameters and Properties 8-59

Running OC4JPackager on the Command Line ... 8-60
Running OC4JPackager Through Ant.. 8-60
OC4JPackager Basic Output .. 8-61
OC4JPackager Additional Output to Expose XQS Views as Web Service Operations......... 8-62

Example: Configuration to Expose a View as a Web Service Operation......................... 8-63
Example: EAR File for a View Exposed as a Web Service Operation 8-63
Example: WAR File for a View Exposed as a Web Service Operation............................. 8-63
Example: WSDL document for a View Exposed as a Web Service Operation 8-63

Using XQS Performance Features .. 8-65
Performance Considerations for Using the XQS Stateless or Stateful Client APIs................ 8-65
Configuring XQS Caching ... 8-66

Configure XQS Cache Settings... 8-66
XQS Caching Strategies... 8-67
Caching and Nondeterministic Results .. 8-67

Configuring XQS Document or View Sources for Large Data ... 8-68
XQS XPath Optimization for WSDL Sources with SQL Binding ... 8-68

Using XQS Error Handling Modes and APIs .. 8-69
Configuring XQS Function Error Handling.. 8-69
xii

Retrieving XQS Error Objects .. 8-72
Obtaining Information from XQS Error Objects... 8-72
Example: Error Retrieval and Processing .. 8-74

XQS Client APIs Reference ... 8-75
XQS QueryParameter Class Reference .. 8-75

QueryParameter Constructors ... 8-75
QueryParameter Methods .. 8-76

XQSFacade Class Reference... 8-77
XQSFacade Constructor .. 8-77
XQSFacade Methods.. 8-77

XQS EJB Client API Reference... 8-78
Stateful EJB Client Methods ... 8-78
Stateless EJB Client Methods.. 8-78

XQS JSP Tag Library Reference... 8-79
JSP Tags for Stateful Access.. 8-79

XQS executeCursor Tag ... 8-79
XQS param Tag ... 8-82
XQS next Tag ... 8-83
XQS close Tag.. 8-84

JSP Tags for Stateless Access .. 8-84
XQS execute Tag ... 8-84

XQSError Class Reference.. 8-85
XQS Configuration File Reference .. 8-86

<bind-prefix>... 8-88
<cache-properties>.. 8-88
<document-source> .. 8-88
<documentURL>... 8-89
<error-message>.. 8-90
<function-name>... 8-90
<in-memory> ... 8-91
<input-parameters> .. 8-92
<itemType>.. 8-92
<mapping>... 8-93
<operation>.. 8-93
<output-element> ... 8-94
<part>.. 8-95
<password> ... 8-96
<port> ... 8-96
<portType> .. 8-97
<queryName>.. 8-97
<repository>... 8-98
<schema-file>... 8-98
<schema-type> .. 8-99
<service>... 8-100
<typeMap>... 8-101
<use-prefix> ... 8-101
<username> ... 8-101
xiii

<wsdl-source> ... 8-102
<wsdlURL>.. 8-103
<xqs-config> .. 8-103
<xqs-sources> .. 8-103
<xqsview-source> ... 8-104
<XMLTranslate> ... 8-104
<xmlType> ... 8-105
<xquery-sequence>... 8-105

OC4JPackager Reference ... 8-106
OC4JPackager Parameters ... 8-106

appArchives.. 8-106
globalXqsConfig... 8-106
help... 8-106
jsp ... 8-107
name... 8-107
output .. 8-107
repository .. 8-107
sf ... 8-107
sl.. 8-107
xqsConfigFile .. 8-108

Java Properties for OC4JPackager .. 8-108
oracle.home... 8-108
java.home .. 8-108
java.util.logging.properties.file .. 8-108
xds.packager.work.dir... 8-109

Summary of XQS MBeans and Administration .. 8-109
General Overview of OC4J MBean Administration... 8-109
Summary of XQS MBeans.. 8-110

XQS Troubleshooting ... 8-110
Enabling OC4J Logging.. 8-111
Key XQS Symptoms, Causes, and Remedies .. 8-111

XQS Sample.. 8-112

A Third Party Licenses

ANTLR .. A-1
The ANTLR License.. A-1

Apache ... A-1
The Apache Software License ... A-1

Apache SOAP ... A-6
Apache SOAP License .. A-6

DBI Module .. A-9
Perl Artistic License .. A-9

Preamble.. A-9
Definitions... A-9

expat ... A-11
FastCGI.. A-11

FastCGI Developer's Kit License... A-11
xiv

Module mod_fastcgi License... A-12
Info-ZIP Unzip Package ... A-13

The Info-ZIP Unzip Package License ... A-13
Jabberbeans .. A-13
JSR 110 ... A-14
Jaxen ... A-14

The Jaxen License .. A-14
JGroups.. A-15

The GNU License .. A-15
JTidy ... A-22
mod_dav .. A-22
mod_mm and mod_ssl.. A-23
OpenSSL ... A-24

OpenSSL License ... A-24
Perl.. A-26

Perl Kit Readme... A-26
mod_perl 1.29 License .. A-27
mod_perl 1.99_16 License .. A-28
Perl Artistic License .. A-31

Preamble.. A-31
Definitions... A-31

PHP... A-33
The PHP License.. A-33

SAXPath .. A-34
The SAXPath License.. A-34

Sun Microsystems, Inc. .. A-35
The Java Logo .. A-35

W3C DOM .. A-35
The W3C License... A-35

Index
xv

xvi

 Preface

Oracle Application Server 10g Release 3 (10.1.3) includes a J2EE environment known
as Oracle Containers for J2EE (OC4J). This book describes the services provided by
OC4J.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
This manual is intended for developers familiar with the J2EE architecture who want
to understand Oracle J2EE Services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.
xvii

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Developer’s Guide

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

■ Oracle Containers for J2EE Deployment Guide

This covers information and procedures for deploying an application to an OC4J
environment. This includes discussion of the deployment plan editor that comes
with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Configuration and Administration Guide

This discusses how to configure and administer applications for OC4J, including
use of the Oracle Enterprise Manager 10g Application Server Control Console, use
of standards-compliant MBeans provided with OC4J, and, where appropriate,
direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This provides information for servlet developers regarding use of servlets and the
servlet container in OC4J, including basic servlet development and use of JDBC
and EJBs.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This book provides information about JavaServer Pages development and the JSP
implementation and container in OC4J. This includes discussion of Oracle features
such as the command-line translator and OC4J-specific configuration parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information as well as detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J. There is also a summary of tag libraries from other Oracle product groups.

■ Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

■ Oracle Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server Security
Guide) describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
xviii

This book provides information about Enterprise JavaBeans development and the
EJB implementation and container in OC4J.

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This book provides an overview of J2EE Connector Architecture features and
describes how to configure and monitor resource adapters in OC4J.

■ Oracle Application Server Web Services Developer’s Guide

This book describes Web services development and configuration in OC4J.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

This book also describes how to employ the Web Service Invocation Framework
(WSIF), the Web Service Provider API, message attachments, and management
features (reliability, logging, and auditing). It also describes alternative Web
service strategies, such as using JMS as a transport mechanism.

Oracle TopLink documents:

■ Oracle TopLink Getting Started Guide

■ Oracle Application Server TopLink Mapping Workbench User’s Guide

■ Oracle TopLink Developer’s Guide

Java-related documents for Oracle Database:

■ Oracle Database Java Developer's Guide

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Database JPublisher User's Guide

Additional Oracle Application Server documents:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Security Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

■ Oracle Application Server Performance Guide

■ Oracle HTTP Server Administrator's Guide

■ Oracle Process Manager and Notification Server Administrator’s Guide

■ Oracle Application Server Globalization Guide

■ Oracle Application Server Web Cache Administrator’s Guide

■ Oracle Application Server Upgrade and Compatibility Guide

Oracle JDeveloper documentation:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://www.oracle.com/technology/products/jdev/index.html

Additional Oracle Database documents:
xix

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database PL/SQL User's Guide and Reference

■ Oracle Database SQL Reference

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Advanced Security Administrator's Guide

■ Oracle Database Reference

The following Web site for Java servlets and JavaServer Pages is also available:

http://www.oracle.com/technology/tech/java/servlets/index.html

For further servlet information, refer to the Java Servlet Specification at the following
location:

http://java.sun.com/products/servlet/download.html#specs

Resources from Sun Microsystems:

■ Web site for Java servlet technology:

http://java.sun.com/products/servlet/index.html

■ Web site for JavaServer Pages technology:

http://java.sun.com/products/jsp/index.html

■ J2EE 1.4 Javadoc, including the servlet packages javax.servlet and
javax.servlet.http:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
xx

Introduction to OC4J Ser
1

Introduction to OC4J Services

Oracle Containers for J2EE (OC4J) supports the following technologies, each of which
has its own chapter in this book:

■ Java Naming and Directory Interface (JNDI)

■ Java Message Service (JMS)

■ Using Remote Method Invocation in OC4J

■ Data Sources

■ OC4J Transaction Support J

■ Java Object Cache

■ XML Query Service

This chapter gives a brief overview of each technology in the preceding list and a link
to the relevant chapter.

Java Naming and Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) service that is implemented by OC4J
provides naming and directory functionality for Java applications. JNDI is defined
independently of any specific naming or directory service implementation. As a result,
JNDI enables Java applications to access different, possibly multiple, naming and
directory services using a single API. Different naming and directory service provider
interfaces (SPIs) can be plugged in behind this common API to handle different
naming services.

See Chapter 2, "Oracle JNDI", for details.

Java Message Service (JMS)
Java Message Service (JMS) provides a common way for Java programs to access
enterprise messaging products. JMS is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging product.

In past releases, Oracle has used the terms "OracleAS JMS" and "OJMS" when
describing the In-Memory, File-Based, Database persistence options. "OracleAS JMS"

Note: In addition to these technologies, OC4J supports the
JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP). For information about these
technologies, see the Sun Microsystems J2EE documentation.
vices 1-1

Data Sources
referred to the In-Memory and File-Based options while "OJMS" referred to JMS
interface to Streams Advanced Queuing (AQ). To avoid any confusion regarding JMS,
the term "OEMS JMS" is used instead of the terms "OracleAS JMS" and "OJMS". This
reflects the fact that Oracle offers a single JMS interface to the three message
persistence options. Your JMS application code will not have to change if you decide to
change message persistence between any of the three quality of service choices.

See Chapter 3, "Oracle Enterprise Messaging Service (OEMS)", for details.

Data Sources
A data source is the instantiation of an object that implements the
javax.sql.DataSource interface. A data source enables you to retrieve a
connection to a database server.

See Chapter 4, "Data Sources", for details.

OC4J Transaction Support J
EJBs use Java Transaction API (JTA) 1.0.1 for managing transactions. These
transactions involve single-phase and two-phase commits.

See Chapter 5, "OC4J Transaction Support", for details.

Using Remote Method Invocation in OC4J
Remote Method Invocation (RMI) is one Java implementation of the remote procedure
call paradigm, in which distributed applications communicate by invoking procedure
calls and interpreting the return values.

OC4J supports RMI over both the Oracle Remote Method Invocation (ORMI) protocol
and over the Internet Inter-ORB Protocol (IIOP).

By default, OC4J uses RMI/ORMI. In addition to the benefits provided by RMI/IIOP,
RMI/ORMI provides additional features such as invoking RMI/ORMI over HTTP, a
technique known as "RMI tunneling."

Version 2.0 of the Enterprise Java Beans (EJB) specification uses RMI over the Internet
Inter-ORB Protocol (IIOP) to make it easy for EJB-based applications to invoke one
another across different containers. You can make your existing EJB interoperable
without changing a line of code: simply edit the bean’s properties and redeploy. J2EE
uses RMI to provide interoperability between EJBs running on different containers.

For details on RMI/ORMI and interoperability (RMI/IIOP), see Chapter 6, "Using
Remote Method Invocation in OC4J".

Java Object Cache
The Java Object Cache (formerly OCS4J) is a set of Java classes that manage Java
objects within a process, across processes, and on a local disk. The primary goal of the
Java Object Cache is to provide a powerful, flexible, easy-to-use service that
significantly improves server performance by managing local copies of objects that are
expensive to retrieve or create. There are no restrictions on the type of object that can
be cached or the original source of the object. The management of each object in the
cache is easily customized. Each object has a set of attributes associated with it to
control such things as how the object is loaded into the cache, where the object is
stored (in memory, on disk, or both), how it is invalidated (based on time or by explicit
1-2 Oracle Containers for J2EE Services Guide

Third-Party Licenses
request), and who should be notified when the object is invalidated. Objects can be
invalidated as a group or individually. See Chapter 7, "Java Object Cache", for details.

XML Query Service
XML Query Service (XQS), a new service in the OC4J 10.1.3 implementation built upon
XQuery (the XML query language) that provides a convenient user model for the
retrieval, analysis, integration, and transformation of enterprise data. Generally,
without a service such as XQS, XQuery is limited to accessing XML documents. With
XQS, you can also retrieve data from non-XML documents, relational databases, and
other possibly non-XML enterprise information systems, through access mechanisms
such as SOAP or SQL. See Chapter 8, "XML Query Service", for details.

Third-Party Licenses
This appendix lists the licensing agreements that pertain to the third-party products
included with Oracle Application Server. See Appendix A, "Third Party Licenses", for
details.
Introduction to OC4J Services 1-3

Third-Party Licenses
1-4 Oracle Containers for J2EE Services Guide

Oracle
2

Oracle JNDI

This chapter describes the Java Naming and Directory Interface (JNDI) service as
implemented by Oracle Containers for J2EE (OC4J). The chapter focuses on setting up
the initial contexts for using JNDI and describing how to perform JNDI lookups.

This chapter covers the following topics:

■ What You Need To Know About Oracle JNDI

■ Configuring JNDI for Deployment

■ Browsing the JNDI Context

■ Looking Up Objects from J2EE Application Components

■ Looking Up Objects from J2EE Application Clients

■ JNDI State Replication

To use the information in this chapter, you should be familiar with the basics of JNDI
and the JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at:

http://java.sun.com/products/jndi/index.html

For more information about the other JNDI classes and methods, see the Javadoc at:

http://java.sun.com/products/jndi/1.2/javadoc/index.html

JNDI Tasks
This chapter discusses the following common JNDI tasks:

■ Configuring JNDI for Deployment

■ Enabling JNDI State Replication

■ Browsing the JNDI Context

■ Constructing a JNDI Context

■ Creating JNDI bindings and using JNDI to look up bindings, as described in the
following sections:

– Looking Up Objects from J2EE Application Components

– Looking Up Objects from J2EE Application Clients

What’s New for 10.1.3
The following OC4J JNDI features and behaviors are new for this release:
 JNDI 2-1

■ JNDI Tree Browser - The Application Server Control Console provides a JNDI tree
browser as described in Browsing the JNDI Context.

■ Global JNDI Lookup - In the default OC4J configuration, lookups within an
application are bound to be available within the current application's namespace.
It is now possible to configure JNDI to perform inter-application lookups. Note
that for global lookup to work properly, the target application's classes must be in
the classpath of the application attempting the lookup. The simplest way to
achieve this is to copy the target EJB jar into the J2EE_HOME/applib directory.
This will cause OC4J to load this jar as a system library that is imported by all
deployed applications. If finer-grained control of system libraries is desired, it is
also possible to deploy the target classes as a named system library, and then
explicitly import these into each application.

Please consult the OC4J documentation on configuring a system library for the
steps required to accomplish this. For configuration instructions, see "Configuring
JNDI for Deployment" on page 2-3.

■ Relative Java Context Lookups - Relative lookups are now attempted when all
other lookup attempts fail. For example, if a client looks up its resource using
context.lookup("ejb/EJBName"), rather than
("java:comp/env/ejb/EJBName"), this lookup will now succeed. This lookup
attempt is always relative to the "java:comp/env" namespace, and has the same
effect as calling context.lookup() with the "java:comp/env" prefix attached
to the binding name. There is no configuration required for this feature, since this
feature is enabled by default in OC4J.

■ Associating a Principal with a Thread

For work that requires authentication or access control, you can now associate a
principal, or user, with the thread that performs the work. This is described in
"JNDI Contexts and Threads" on page 2-7.

■ MBean Support for JNDI - The following JNDI-related MBeans are now
registered with OC4J and are available for use within the Oracle Enterprise
Manager 10g Application Server Control Console:

– JNDIResource - This JSR-77 MBean allows for queries on the JNDI bindings
of a given application. A JNDIResource MBean is registered for each
deployed application in a given OC4J instance. When an application is
undeployed, the associated JNDIResource MBean is deregistered. This MBean
offers two ways to access the JNDI bindings for a given application:

* getBindingsAsXMLString() - returns the bindings tree as an XML
document.

* getBindingsAsString() - used mainly for debugging.

– JNDINamespace - This MBean allows a client to iterate over all of the
JNDIResource MBeans registered on a given OC4J instance. This means that
this namespace bean can be used to view all of the JNDI bindings for a given
application server instance, separated by application name. The method
getAllBindingsAsXMLString() returns an XML document that
represents the entire bindings tree.

Both MBeans return XML documents that can be parsed to determine the current
bindings of the applications deployed to an OC4J instance. This XML document
uses the oc4j-jndi-bindings-10_0.xsd schema for validation.

Path to JNDI-Related MBeans from the Application Server Control Page
2-2 Oracle Containers for J2EE Services Guide

What You Need To Know About Oracle JNDI
OC4J:Home > Administration tab > Task Name.System MBean Browser. Go To
Task > Drill down: J2EEDomain:oc4j, J2EEServer:standalone > JNDI Namespace
and JNDI Resource

■ Deprecated

The following item is deprecated in this release:

– The previous package structure for context factories provided by OC4J is
deprecated, and is replaced by a more consistent naming structure. See the
note below Table 2–1, " InitialContext Properties" on page 2-6.

■ No Longer Supported

The following items are no longer supported in this release:

– The dedicated.connection environment property is no longer supported
as of release 10.1.3.

– The dedicated.rmicontext environment property is no longer supported
as of release 10.1.3. See Table 2–2, " JNDI-Related Environment Properties" on
page 2-12.

Additional Documentation
The How-To documents at the following site provide information about OC4J 10g
Release 3 (10.1.3) features, including feature overviews and code excerpts relevant to
the feature.

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

What You Need To Know About Oracle JNDI
The Java Naming and Directory Interface (JNDI) is a core part of the J2EE specification.
JNDI provides naming and directory functionality for J2EE applications and
components. JNDI is defined independently of any specific naming or directory
service implementation. This enables J2EE applications and components to access
different naming and directory services using a single API. Different naming and
directory service provider interfaces (SPIs) can be plugged in behind this common API
to handle different naming services.

A J2EE-compatible application uses JNDI to obtain naming contexts. A naming
context enables the application to retrieve J2EE resources including data sources, local
and remote Enterprise Java Beans (EJBs), and JMS-administered objects such as topics
and queues.

Configuring JNDI for Deployment
The only configuration necessary for JNDI is to enable global JNDI lookup.

To enable global lookups, make the following configuration changes:
Set the global-jndi-lookup-enabled attribute to true in server.xml. This
causes a lookup to be attempted across all known applications in the OC4J instance. If
the lookup fails within the current application, the lookup is attempted on each
deployed application's context. The first successful lookup of the given name is
returned. This feature is disabled by default. When this feature is enabled, each

Note: For information about controlling access to JNDI namespaces,
see the Oracle Application Server Security Guide.
Oracle JNDI 2-3

Initial Context
resource binding name must be unique across all applications deployed in an OC4J
instance. When a lookup across all applications is performed, the order of applications
is not guaranteed. If two applications in the same instance have a binding of the same
name pointing to different objects, then a lookup might return an unexpected object
when using this new feature.

For reference documentation of server.xml, see Oracle Containers for J2EE
Configuration and Administration Guide Appendix B - Configuration Files Used in OC4J,
Section - "Overview of the OC4J Server Configuration File (server.xml)".

Initial Context
The concept of the initial context is central to JNDI. This section discusses the
following topics:

Creating and Using the Initial Context
The two most frequently used JNDI operations in J2EE applications are:

■ Creating a new javax.naming.InitialContext instance

■ Using the InitialContext to look up a resource

When OC4J starts up, it constructs a JNDI initial context for each application by
reading the resource references in each application’s deployment descriptor.

■ For lookups from within EJBs, the resource references are specified in
ejb-jar.xml. Resource references specified in ejb-jar.xml are then mapped
to actual JNDI locations in orion-ejb-jar.xml.

■ When a servlet creates an initial context, the JNDI implementation maps bindings
to the resource references specified in web.xml to the actual JNDI locations
specified in orion-web.xml.

■ An application client's application-client.xml descriptor's references are
bound when the context is created from a remote application client. These
references are bound to the actual JNDI locations specified in
orion-application-client.xml.

Persistence
After the initial configuration, the JNDI namespace for each application is purely
memory-based. Additions made to the context at run time are not persisted.

When OC4J is shut down, any bindings made programmatically (by making a call to
Context.bind, for example) are no longer available.

Bindings that are specified declaratively through J2EE deployment descriptors are
persisted beyond a shutdown of the application server.

Constructing a JNDI Context
Upon initialization, OC4J constructs a JNDI context for each application that is
deployed in the server. There is always at least one application for an OC4J server, the
global application, which is the default parent for each application in a server instance.
User applications inherit properties and bindings from the global application and can
override property values defined in the global application, specify new values for
properties, and define new properties as required. Lookups in a user application's
context are made in the following order:

■ First, look in the local application’s namespace.
2-4 Oracle Containers for J2EE Services Guide

Initial Context
■ If the binding is not found locally, then look for the binding in the parent
application.

■ If the binding is not found locally or in the parent application, then one of the
following occurs:

– If global lookup is enabled, then OC4J will attempt to resolve the lookup over
all known application contexts currently deployed in the OC4J instance.

– If global lookup is not enabled (which is the default behavior), then a
NameNotFoundException is thrown.

For more information about configuring the OC4J server and its contained
applications, see the Oracle Containers for J2EE Configuration and Administration Guide.

Environment and Constructors
The environment that OC4J uses to construct a JNDI initial context can be found in
three places:

■ An environment specified explicitly in a java.util.Hashtable instance passed
to the JNDI initial context constructor. ("Example: Application Client Looking Up
an EJB" on page 2-13 includes an example of this constructor.)

■ System property values, as set either by the OC4J server or by the application
container.

■ A jndi.properties file contained in the application EAR file (as part of
application-client.jar).

The JNDI InitialContext has two constructors. You can use either of the following
constructors to create the initial context:

InitialContext()
InitialContext(Hashtable env)

InitialContext()
The InitialContext() constructor creates a Context object using the default
context environment. If you use this constructor in an OC4J server-side application,
then the application context built by OC4J upon startup is returned. This constructor is
typically used in code that runs on the server side, such as JSPs, EJBs, and servlets.

InitialContext(Hashtable env)
The InitialContext(Hashtable env) constructor takes an environment
parameter. You normally use this form of the InitialContext constructor in remote
client applications, where it is necessary to specify the JNDI environment. The env
parameter in this constructor is a java.util.Hashtable that contains properties
required by JNDI. Table 2–1 lists these properties, which are defined in the
javax.naming.Context interface.
Oracle JNDI 2-5

Initial Context
See "Example: Application Client Looking Up an EJB" on page 2-13 for a code example
that sets these properties and gets a new JNDI initial context.

Example: Looking Up An EJB
This example shows code to use on the server side in a typical Web or EJB application:

Context ctx = new InitialContext();
HelloHome myhome = (HelloHome) ctx.lookup("java:comp/env/ejb/myEJB");

The first statement creates a new initial context object, using the default environment.
The second statement looks up an EJB home interface reference in the application’s
JNDI tree.

In this case, myEJB is the name of a reference to a session bean that is declared in
web.xml (if this code executes in a servlet), or in ejb-jar.xml (if this code executes
in an EJB business method). This reference is defined in an <ejb-ref> tag. The EJB

Table 2–1 InitialContext Properties

Property Value Meaning

java.naming.factor
y.initial

INITIAL_CONTEXT_FA
CTORY

This property specifies which initial context factory to use
when creating a new initial context object. The eligible
settings are:

■ oracle.j2ee.rmi.RMIInitialContextFactory

■ oracle.j2ee.naming.ApplicationClientInitia
lContextFactory

■ oracle.j2ee.iiop.IIOPInitialContextFactory

See the Note following this table for information about
deprecated context factories.

java.naming.provid
er.url

PROVIDER_URL This property specifies the URL that the client-side JNDI
code uses to look up objects on the server. See Table 2–2,
" JNDI-Related Environment Properties" on page 2-12 for
details.

java.naming.securi
ty.principal

SECURITY_PRINCIPAL This property specifies the user name for the current
security credentials. Required in application client code to
authenticate the client. Not required for server-side code,
because the authentication has already been performed.

java.naming.securi
ty.credential

SECURITY_CREDENTIA
LS

This property specifies the password for the current
security principal. Required in application client code to
authenticate the client. Not required for server-side code,
because the authentication has already been performed.

Note: The use of the 10g package names for OC4J initial context
factories is deprecated as of 10.1.3.

The following context factories are deprecated:

■ com.evermind.server.rmi.RMIInitialContextFactory

■ com.evermind.server.ApplicationClientInitialContext
Factory

■ com.oracle.iiop.server.IIOPInitialContextFactory

For the new context factory names that replace the deprecated ones,
see the java.naming.factory.initial item in Table 2–1,
" InitialContext Properties".
2-6 Oracle Containers for J2EE Services Guide

Browsing the JNDI Context
reference would then be mapped to an actual JNDI location in either orion-web.xml
or orion-ejb-jar.xml, depending on the caller that is executing this code.

For example:

<ejb-ref>
 <ejb-ref-name>ejb/myEJB</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
</ejb-ref>

JNDI Contexts and Threads

By default, when you create a JNDI Context with a username and password, a
principal or user is bound to a context instance when establishing an initial context
with OC4J. Thus, the specified principal or user is used during authentication and
access control when looking up a named object in the OC4J namespace, obtaining a
reference to a remote object, and invoking operations on the remote object. In this
scenario, multiple threads within an application client may share the context.

You can also associate a principal or user with the thread that will perform the work.
To do so, create a context with the appropriate principal and credential property
values as described below. To disassociate a principal from the thread, close the
context.

When a thread is associated with a principal, that principal becomes the default for the
thread. If any contexts are subsequently created without principal or credential
properties, the principal associated with the thread will remain unchanged.

While it is technically possible to share a single context among multiple threads,
passing a context to another thread does not associate the principal used in creating
the context with the new thread. The only way to associate a principal with a new
thread is to create a new context within that thread. In addition, a context can only be
closed within the thread with which it was created. For these reasons, Oracle
recommends that all work performed with a given context be handled in the same
thread.

A thread may be associated with only one principal at any given time. If multiple
contexts are created within a single thread without closing any contexts, the thread
will be associated with the principal used in the last context created. Principal
information is stored with the thread in a stack. If the last context is closed, the thread
becomes associated with the principal used in creating the previous context, and so on.

To enable this feature in 10.1.3, set the system property
-DAssociateUserToThread=true on the command line. By default, this feature is
not enabled (set to false).

Browsing the JNDI Context
Using the JNDI Browser, you can view the entire JNDI namespace to verify that a
given set of objects is actually bound in an application.

The JNDI Browser is available within the Oracle Enterprise Manager 10g Application
Server Control Console as follows:

Path to JNDI Browser
Oracle JNDI 2-7

Looking Up Objects from J2EE Application Components
OC4J: Home > Administration tab > Task Name: Services > JNDI Browser > Click Go
To Task icon > Expand All

To Get JNDI Bindings as a String

You can also get a string representation of the bindings in a JNDI context. This can be
useful in debugging.

OC4J: Home > Administration tab > Task Name: System MBean Browser. Go To Task
> Drill down: J2EEDomain:oc4j, J2EEServer:standalone, JNDIResource > Select
application > Operations tab > getBindingsAsString or
getBindingsAsXMLString > Invoke

Looking Up Objects from J2EE Application Components
This section describes how to use the JNDI to look up bound objects from J2EE
application components, such as servlets, JSP pages, and EJBs.

You can use initial context factories in OC4J to access objects from J2EE application
components:

■ Looking Up Objects In the Same Application

■ Looking Up Objects in Another Application

Looking Up Objects In the Same Application
When code is running in a server, it is by definition part of an application. Because the
code is part of an application, OC4J establishes defaults for properties that JNDI uses.
Application code, such as a servlet or an EJB business method, does not need to
provide any property values when constructing a JNDI InitialContext object.

Example: Servlet Looking Up a Data Source
In this example, a servlet retrieves a data source to perform a JDBC operation on a
database.

Use the Application Server Control Console to specify data source location. Specify the
location in the JNDI Location field of the Create Data Source page. See Chapter 4,
"Data Sources".

The servlet’s web.xml file defines the following resource:

<resource-ref>
 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Note: If your application must look up a remote reference, such as a
resource in another J2EE application in the same JVM or a resource
external to any J2EE application, then you must use
RMIInitialContextFactory or IIOPInitialContextFactory.
See "Looking Up Objects in Another Application" on page 2-9.
2-8 Oracle Containers for J2EE Services Guide

Looking Up Objects from J2EE Application Components
The corresponding orion-web.xml mapping is:

<resource-ref-mapping name="jdbc/EmployeeAppDB" location="jdbc/pool/OracleCache" />

The name value is the same as that specified in the <res-ref-name> element in
web.xml.

The location value corresponds to the "jndi-name" attribute in the
<data-source> element of data-sources.xml.

In this case, the following code in the servlet returns the correct reference to the data
source object:

...
try {
 InitialContext ic = new InitialContext();
 ds = (DataSource) ic.lookup("java:comp/env/jdbc/EmployeeAppDB");
 ...
}
catch (NamingException ne) {
 throw new ServletException(ne);
}
...

When looking up objects within the same application, no initial context factory
specification is necessary, because OC4J sets appropriate defaults when the application
starts. For most lookups within the same application, only the no-args constructor
for javax.naming.InitialContext to create an InitialContext is required.

Also, it is not necessary to supply a provider URL in this case, because no URL is
required to look up an object contained within the same application or under
java:comp/.

Looking Up Objects in Another Application
Use one of the following context factories to access objects in another application, or to
access J2EE resources from a standalone java client:

■ oracle.j2ee.rmi.RMIInitialContextFactory

■ oracle.j2ee.iiop.IIOPInitialContextFactory

■ oracle.j2ee.naming.ApplicationClientInitialContextFactory

RMIInitialContextFactory
The RMIInitialContexFactory provides a JNDI context implementation that uses the
Oracle Remote Method Invocation (RMI) protocol for distributed lookups. This
context factory is used by remote clients, as well as applications that attempt lookups
for bindings deployed in other OC4J instances. The JNDI environment properties
used by the RMIInitialContextFactory are described in Table 2–2,

Note: Some versions of the JDK on some platforms automatically
set the system property java.naming.factory.url.pkgs to
include com.sun.java.*.

Check this property and remove com.sun.java.* if it is present.
Oracle JNDI 2-9

Looking Up Objects from J2EE Application Components
" JNDI-Related Environment Properties" on page 2-12. For information on RMI, see the
"Using Remote Method Invocation in OC4J" chapter on page 6-1.

Example: Servlet Looking Up an EJB Remotely Using RMI

In this example, a servlet accesses an EJB running on another OC4J instance on a
different machine. The EJB in this example is the EmployeeBean that is used in the
"Example: Application Client Looking Up an EJB" on page 2-13.

Here is an excerpt of the servlet code:

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
"oracle.j2ee.rmi.RMIInitialContextFactory");
env.put("java.naming.provider.url","ormi://remotehost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context context = new InitialContext(env);
Object homeObject =
context.lookup("EmployeeBean");

Example: Servlet Looking Up an EJB Remotely in a Multiple Instance Environment

When running OC4J within IAS, a remote JNDI service can specify that the request
should use the "opmn:ormi" protocol, which allows a client to attempt a lookup
without hard-coding the ORMI port information. The OC4J JNDI code contacts the
opmn process to determine the proper ORMI port for this IAS install. The lookup is
similar to the above ORMI example, except that the
"java.naming.provider.url" property is set to a URL that begins with
"opmn:ormi". Here is an excerpt of the same lookup code, using "opmn:ormi":

Here is an excerpt of the servlet code:

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
"oracle.j2ee.rmi.RMIInitialContextFactory");
env.put("java.naming.provider.url","opmn:ormi://remotehost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context context = new InitialContext(env);
Object homeObject =
context.lookup("EmployeeBean");

There are also ways to specify which home instance the "opmn" URL should refer to.
For more information on using "opmn", see Using Remote Method Invocation in OC4J
on page 6-1.

IIOPInitial ContextFactory
The IIOPInitialContexFactory provides a JNDI Context implementation that
uses the Internet Inter-ORB Protocol (IIOP) for distributed lookups. For information on
RMI, see the "Using Remote Method Invocation in OC4J" chapter on page 6-1.

The conditions under which to use IIOPInitialContextFactory are the same as
those for RMIInitialContextFactory except that the remote protocol is IIOP
instead of ORMI.
2-10 Oracle Containers for J2EE Services Guide

Looking Up Objects from J2EE Application Clients
Example: Servlet Looking Up an EJB Remotely Using IIOP

Here is an example.

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
"oracle.j2ee.iiop.IIOPInitialContextFactory");
env.put("java.naming.provider.url","corbaname::remotehost:PORT_NUMBER#APPLICATION_
NAME");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context context = new InitialContext(env);
Object homeObject =
context.lookup("EmployeeBean");

In this example, a corbaname URL is used to specify the location of the EJB. In the
corbaname string provided in the above example, PORT_NUMBER is the IIOP port
number that OC4J is configured to use, remotehost is the name of the server that
OC4J is running on, and APPLICATION_NAME is the name of the application that
contains the EJB.

The application used in this example must be deployed with IIOP enabled for this
lookup to succeed. The remote client must also include the IIOP client jar generated
by OC4J. For more information on this, see the OC4J IIOP documentation at
"Switching from ORMI to IIOP Transport" on page 6-18.

Looking Up Objects from J2EE Application Clients
This section discusses how to configure an application client to access objects running
inside an OC4J instance.

Section 9.1 of the J2EE 1.3 specification defines application clients as follows:

 "... first tier client programs that execute in their own Java virtual machines.
Application clients follow the model for Java technology-based applications: they are
invoked at their main method and run until the virtual machine is terminated.
However, like other J2EE application components, application clients depend on a
container to provide system services. The application client container may be very
light-weight compared to other J2EE containers, providing only the security and
deployment services described [in this specification]."

When an application client must look up a resource that is available in a J2EE server
application, the client uses the ApplicationClientInitialContextFactory in
the oracle.j2ee.naming package to construct the initial context.

Note: You can use IIOPInitialContextFactory only for
looking up EJBs. The same holds true for using a "corbaname"
URL with the ApplicationClientInitialContextFactory.

Note: If your application is a J2EE application client (that is, it has
an application-client.xml file), then you must always use
ApplicationClientInitialContextFactory regardless of
the protocol (ORMI or IIOP) that the client application is using. The
protocol itself is specified by the JNDI property
java.naming.provider.url. See Table 2–2, " JNDI-Related
Environment Properties" on page 2-12 for details.
Oracle JNDI 2-11

Looking Up Objects from J2EE Application Clients
Remote and local access of components is essentially the same from the point of view
of the remote client. Clients can use ORMI or IIOP, depending on the provider URL.

Consider an application client that consists of Java code that connects to an OC4J
server. For example, the client code is running on a workstation and might connect to a
server object, such as an EJB, to perform some application task. In this case, the remote
client must specify the value of the property java.naming.factory.initial as
"oracle.j2ee.naming.ApplicationClientInitialContextFactory". This
can be specified in client code, or it can be specified in the jndi.properties file that
is part of the application’s application-client.jar file included in the EAR file.

To have access to remote objects that are part of the application,
ApplicationClientInitialContextFactory reads the
META-INF/application-client.xml file and the
META-INF/orion-application-client.xml file in the
application-client.jar file.

Environment Properties
If the ORMI protocol is being used, then
ApplicationClientInitialContextFactory reads the properties listed in
Table 2–2 from the environment.

Table 2–2 JNDI-Related Environment Properties

Property Meaning

dedicated.rmicontext This property is no longer used by OC4J. This property previously
was used for two reasons:

■ To enable load balancing.

■ As a workaround for known ORMI/JNDI bugs.

In Version 10.1.3, the known ORMI /JNDI bugs that required this flag
have been resolved. To enable client-side ORMI load-balancing in
10.1.3, please use the properties described in the "Load Balancing"
section.

The properties described in the "Load Balancing" section on page 2-13
can be used in the few cases that would still require this flag.

java.naming.provider.url This property specifies the URL to use when looking for local or
remote objects. The format is either

[opmn:|http:|https:]ormi://hostname/appname

or

 corbaname:hostname:port

For details on the corbaname URL, see "Specifying the corbaname
URL" on page 6-21.

You can supply multiple hosts (for failover) in a comma-separated list
when using the ORMI protocol.

java.naming.factory.url.pkgs Some versions of the JDK on some platforms automatically set the
system property java.naming.factory.url.pkgs to include
com.sun.java.*.

Check this property and remove com.sun.java.* if it is present.

Context.SECURITY_PRINCIPAL This property specifies the user name and is required in client-side
code to authenticate the client. It is not required for server-side code
because authentication has already been performed. This property
name is also defined as java.naming.security.principal.
2-12 Oracle Containers for J2EE Services Guide

Looking Up Objects from J2EE Application Clients

Load Balancing
In situations where heavy request volume is expected, load balancing of requests
across OC4J instances may be desired. Load balancing is configurable using the
oracle.j2ee.rmi.loadBalance property, which can be set in the client’s
jndi.properties file or in a Hashtable in the client code. The values for this the
oracle.j2ee.rmi.loadBalance property are outlined in the following table.

For more information on load balancing see "Configuring ORMI Request Load
Balancing" on page 6-11.

Example: Application Client Looking Up an EJB
This section shows how to configure an application client to access an EJB running
inside an OC4J instance.

First, the EJB is deployed into OC4J. with the name EmployeeBean. The name is
defined as follows in ejb-jar.xml:

<ejb-jar>
 <display-name>bmpapp</display-name>
 <description>
 An EJB app containing only one Bean Managed Persistence Entity Bean
 </description>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>

Context.SECURITY_CREDENTIAL This property specifies the password and is required in client-side
code to authenticate the client. It is not required for server-side code
because authentication has already been performed. This property
name is also defined as java.naming.security.credentials.

Table 2–3 oracle.j2ee.rmi.loadBalance Property Values

Value Description

client If specified, the client interacts with the OC4J process that was
initially chosen at the first lookup for the entire conversation.

context Used for a Web client (servlet or JSP) that will access EJBs in a
clustered OC4J environment.

If specified, a new Context object for a randomly-selected OC4J
instance will be returned each time InitialContext() is
invoked.

lookup Used for a standalone client that will access EJBs in a clustered
OC4J environment.

If specified, a new Context object for a randomly-selected OC4J
instance will be created each time the client calls
Context.lookup().

Table 2–2 (Cont.) JNDI-Related Environment Properties

Property Meaning
Oracle JNDI 2-13

Looking Up Objects from J2EE Application Clients
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 <ejb-class>bmpapp.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 ...
 </entity>
 </enterprise-beans>
..
</ejb-jar>

The EJB EmployeeBean is bound to the JNDI location bmpapp/EmployeeBean in
orion-ejb-jar.xml as follows:

<orion-ejb-jar>
 <enterprise-beans>
 <entity-deployment name="EmployeeBean"
 location="bmpapp/EmployeeBean" table="EMP">
 ...
 </entity-deployment>
 ...
 </enterprise-beans>
 ...
</orion-ejb-jar>

The application client program uses the EmployeeBean EJB, and refers to it as
EmployeeBean.

An excerpt from the application client program follows:

public static void main (String args[])
{
 ...
 Context context = new InitialContext();
 /**
 * Look up the EmployeeHome object. The reference is retrieved from the
 * application environment naming context (java:comp/env). The ejb reference is
 * specified in the assembly descriptor (META-INF/application-client.xml).
 */
 Object homeObject =
 context.lookup("java:comp/env/EmployeeBean");
 // Narrow the reference to an EmployeeHome.
 EmployeeHome home =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);
 // Create a new record.
 Employee rec = home.create(empNo, empName, salary);
 // call method on the EJB
 rec.doSomething();
 ...
}

Note that we are not passing a hash table when creating a context in the line:

Context context = new InitialContext();

This is because the context is created with values read from the jndi.properties
file, which in this example contains:

java.naming.factory.initial=oracle.j2ee.naming.ApplicationClientInitialContextFactory
2-14 Oracle Containers for J2EE Services Guide

Looking Up Objects from J2EE Application Clients
java.naming.provider.url=ormi://localhost/bmpapp
java.naming.security.principal=SCOTT
java.naming.security.credentials=TIGER

Alternatively, you can pass a hash table to the constructor of InitialContext
instead of supplying a jndi.properties file. The code looks like this:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"oracle.j2ee.naming.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url","ormi://localhost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context initial = new InitialContext(env);

Because the application client code refers to the EmployeeBean EJB, you must declare
this in the <ejb-ref> element in the application-client.xml file:

<application-client>
 <display-name>EmployeeBean</display-name>
 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 </ejb-ref>
</application-client>

Recall that the EmployeeBean EJB is bound to the JNDI location
bmpapp/EmployeeBean as configured in the orion-ejb-jar.xml file. You must
map the EJB reference name used in the application client program to the JNDI
location where the EJB is actually bound to in orion-ejb-jar.xml. Do this in the
orion-application-client.xml file:

orion-application-client.xml file:
<orion-application-client>
 <ejb-ref-mapping name="EmployeeBean" location="bmpapp/EmployeeBean" />
</orion-application-client>

For details on the application-client.xml file and the
orion-application-client.xml file, see Oracle Containers for J2EE Developer’s
Guide, Appendix A, OC4J-Specific Deployment Descriptors.

Example: Application Client Looking Up an EJB Using IIOP
In the previous example, the application client used ORMI as the underlying protocol
for remote lookups of resources. Alternatively, you can configure the application
client to use IIOP as the remote protocol. The code for looking up the EmployeeBean
is the same as the previous example, with the following differences:

The jndi.properties file must be changed to reflect the fact that IIOP is being used
as the remote protocol. This is configured in the java.naming.provider.url
system property in jndi.properties. The following is the jndi.properties file
for the same example, configured to use IIOP:

java.naming.factory.initial=oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=corbaname::REMOTE_HOST:IIOP_PORT#bmpapp
java.naming.security.principal=SCOTT
Oracle JNDI 2-15

JNDI State Replication
java.naming.security.credentials=TIGER

Alternatively, you can pass a hash table to the constructor of InitialContext
instead of supplying a jndi.properties file to use IIOP as the underlying protocol.
The code looks like this:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"oracle.j2ee.naming.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url","corbaname::REMOTE_HOST:IIOP_PORT#bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context initial = new InitialContext(env);

If an application client sets the JNDI properties through a hash table, as shown in this
example, the security credentials must be set as system properties. The IIOP
interceptors require access to the client's credentials through system properties. This is
achieved automatically when using the jndi.properties file, since the JNDI
framework automatically sets these properties as system properties.

If the properties are set in the code itself, the following lines must be added to the
client code:

System.setProperty("java.naming.security.principal","SCOTT");
System.setProperty("java.naming.security.credentials ","TIGER");

In both the jndi.properties file and the programmatic example,

■ REMOTE_HOST must be set to the name of the server running the OC4J server.

■ IIOP_PORT must be set to the port number used by OC4Jfor serving IIOP
requests.

When using IIOP with the application client, no changes need to be made to the
application client code or the deployment descriptors. The client must be configured
to use IIOP properly, including the use of the jndi.properties file.

The remote application client must also include the deployed application's IIOP client
jar in its classpath, in order to have access to the IIOP stubs for each EJB deployed.

See "Switching from ORMI to IIOP Transport" on page 6-18 for more information on
this.

JNDI State Replication
This section discusses JNDI state replication.

Note: JNDI State Replication supports clustering in a multiple-OC4J
environment.

If you are using Oracle Application Server in standalone mode as an
environment for developing applications to be used in a
multiple-OC4j environment, the information in this section is
provided to support your planning and coding process.
2-16 Oracle Containers for J2EE Services Guide

JNDI State Replication
The section covers the following topics:

■ What Is JNDI State Replication

■ Enabling JNDI State Replication

■ Limitations of JNDI State Replication

What Is JNDI State Replication
JNDI state replication causes changes made to the context on one OC4J instance of an
OC4J cluster to be replicated to the name space of every other OC4J instance in the
cluster.

When JNDI state replication is enabled, you can bind a serializable value into an
application context (using a remote client, EJB, or servlet) on one server and read it on
another server.

Enabling JNDI State Replication
JNDI state replication is enabled on a per-application basis. When an application is
deployed, a <cluster> tag can be added to orion-application.xml, which is
found in the application's META-INF directory. This type of configuration allows for
control over the clustering status of each application. Adding this <cluster> tag
enables HTTP/EJB session replication as well as JNDI State replication.

The <cluster> element serves as the single mechanism for clustering configuration.
You can add the <cluster> element to either of the following files:

■ The ORACLE_HOME/j2ee/home/config/application.xml file to configure
clustering at the global level.

■ An application-specific orion-application.xml file for per-application
clustering configuration.

Configuring the <cluster> element mainly involves specifying the following
subelements:

■ The <replication-policy> subelement controls when replication occurs and
what data is replicated.

■ The <protocol> subelement defines what mechanism to use for replication -
multicast (default), peer-to-peer, or database.

Here are two example OC4J clustering and JNDI state replication configuration.

Example 1:

This example configures an application to communicate over a multicast network. It is
important to make sure that all nodes in this cluster use the same multicast port.

<cluster>
 <protocol>
 <multicast ip="230.230.0.30" port="45678" />
 </protocol>
</cluster>

Example 2:

This example uses a peer-to-peer protocol for JNDI state replication. This example
requires that all nodes running in the cluster be part of a managed IAS instance. This
Oracle Application Server instance is controlled by OPMN.

<cluster>
Oracle JNDI 2-17

JNDI State Replication
 <replication-policy trigger="onRequestEnd" scope="modifiedAttributes" />
 <protocol>
 <peer>
 <opmn-discovery/>
 </peer>
 </protocol>
</cluster>

For detailed information on OC4J clustering, see the Oracle Containers for J2EE
Configuration and Administration Guide.

Limitations of JNDI State Replication
Consider the following limitations when relying on JNDI state replication:

■ Propagating Changes Across the Cluster

■ Binding a Remote Object

Propagating Changes Across the Cluster
Bindings to values that are not serializable are not propagated across the cluster.

Binding a Remote Object
If you bind a remote object (typically a home or EJB object) in an application context,
then that JNDI object is shared across the cluster but there is a single point of failure in
the first server to which it is bound.
2-18 Oracle Containers for J2EE Services Guide

Oracle Enterprise Messaging Service (O
3

Oracle Enterprise Messaging Service (OEMS)

The Oracle Enterprise Messaging Service (OEMS) provides a robust messaging
platform for building and integrating distributed applications. It provides the
framework for Oracle's messaging and message integration solutions.

The following key features make up OEMS:

■ Standardized interface

– Java Message Service (JMS) and J2EE Connector Architecture (J2CA)

■ Quality of Service choice for message persistence

– In-Memory, File-Based, or Oracle Database

■ Seamless Integration with non-Oracle messaging systems

– JMS Connector, JMS Router, and Messaging Gateway (MGW)

All of these areas are covered in this chapter. The only OEMS feature not covered here
is MGW, which is documented in the Oracle Streams Advanced Queuing User's Guide and
Reference document.

This chapter discusses the following topics:

■ JMS Tasks

■ New JMS Features

■ About JMS

Note:

In past releases, Oracle has used the terms "OracleAS JMS" and
"OJMS" when describing the In-Memory, File-Based, Database
persistence options. "OracleAS JMS" referred to the In-Memory and
File-Based options while "OJMS" referred to JMS interface to Streams
Advanced Queuing (AQ).

To avoid any confusion regarding JMS, the "OracleAS JMS" and
"OJMS" nomenclature will not be used. The "OEMS JMS" reference
will be used instead. This reflects the fact that Oracle offers a single
JMS interface to the three message persistence options. Your JMS
application code will not have to change if you decide to change
message persistence between any of the three quality of service
choices.
EMS) 3-1

■ JMS Configuration Overview

■ OEMS JMS In-Memory and File-Based Persistence

■ OEMS JMS Database Persistence

■ JMS Connector

■ Resource Providers

■ Sending and Receiving JMS Messages

■ Using High Availability and Clustering for OEMS JMS

■ JMS Router

JMS Tasks
This chapter discusses the following JMS tasks:

■ Configuring Destination Objects and Connection Factories.

■ Configuring Ports

■ Sending and Receiving JMS Messages

■ Declaring the OEMS JMS Database Reference

■ Enabling File-Based Persistence in the Application Server Control Console

■ Using Logical Names to Reference Resources

■ Using Third-Party JMS Providers

■ Using Message-Driven Beans

■ Using High Availability and Clustering for OEMS JMS

New JMS Features
The following OC4J JMS features and behaviors are new for this release:

■ JMS 1.1 and J2EE 1.4 Compliance - OEMS JMS is JMS 1.1 compliant and J2EE 1.4
compliant.

You can access the JMS 1.1 specification at:
http://java.sun.com/products/jms/docs.html.

You can access the J2EE 1.4 specification at:
http://java.sun.com/j2ee/1.4/docs/index.html

■ Domain Unification - You can use the same JMS connection and session to
operate on OEMS JMS queues and topics. This is a JMS 1.1 feature.

■ JMS Connector - The JMS Connector is a generic JMS J2CA resource adapter used
to integrate the OEMS JMS In-Memory, File-Based, and Database resource
providers, as well as non-Oracle JMS providers, in to OC4J. Supported non-Oracle
JMS providers that can be integrated are WebSphereMQ, Tibco, and SonicMQ. All
of these providers are now fully integrated with OC4J. The JMS Connector
supports MDBs. Other significant advantages are:

– Support for global transactions

– MDBs that react to changing loads

– JMS connection pooling (not implemented for applications running in a
non-managed environment)
3-2 Oracle Containers for J2EE Services Guide

About JMS
– Performance enhancement features: Lazy enlistment of global transactions and
lazy evaluation of JMS operations. Certain operations, such as enlisting
resources and looking up connection factories and destinations are not
performed until necessary.

For discussion of the Resource Adapter, see Oracle Containers for J2EE Resource
Adapter Administrator’s Guide.

■ Support for Message Driven Beans (MDB) for the following JMS resource
providers:

– OEMS JMS In-Memory, File-Based, and Database

– IBM WebSphere MQ-based JMS

– TIBCO Enterprise for JMS

– SonicMQ

■ Transactions across Domains - You can engage queues and topics in the same
transaction. This is a JMS 1.1 feature.

■ JMS Router - The JMS Router provides message-bridging routing services. The
JMS Router is discussed in the "JMS Router" section starting on page 3-76.

■ Oracle and Third-party Support - The following JMS message providers are
officially supported through the JMS Connector bundled with OC4J:

– OEMS JMS In-Memory, File-Based, and Database

– IBM WebSphere MQ for JMS versions 6.0 and 5.3 resource provider

– TIBCO Enterprise for JMS version 3.1.0

– SonicMQ JMS 6.0

For information on the third-party providers, see "Resource Providers" on
page 3-16. The demos that demonstrate configuration and usage of the JMS
providers through the Resource Adapter are available at
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/i
ndex.html.

■ Start-order independence - See the "JMS Connector" section on page 3-51 section
for details.

■ Demo Code - Demos for various JMS configuration functions are available at
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/i
ndex.html.

For a list of the How-To documents and demo sets and their URLs, see "JMS
How-To Documents and Demo Sets" on page 3-4.

About JMS
Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. Java Message Service (JMS) offers a common way for Java
programs to access these systems. JMS is the standard messaging API for passing data
between application components and allowing business integration in heterogeneous
and legacy environments.
Oracle Enterprise Messaging Service (OEMS) 3-3

About JMS
Before reading this chapter, you should be familiar with the basics of JMS and the JMS
API. For basic information about JMS, including tutorials and the API documentation,
visit the Sun Microsystems Web site at:

http://java.sun.com/products/jms/index.htm

JMS provides two messaging domains, each associated with a JMS destination type,
and a domain-specific set of Java interfaces:

■ Point-to-Point—Messages are sent to a single consumer using a JMS queue.

■ Publish/Subscribe—Messages are broadcast to all registered listeners using a JMS
topic.

JMS destination objects are bound in the JNDI environment and made available to
J2EE applications.

In addition to providing two sets of messaging interfaces, one for each messaging
domain, JMS (starting with JMS 1.1) also provides a set of common interfaces for
implementing domain-independent application code. This set of common interfaces
maintains the distinct behavior of the two messaging domains (where the behavior is
governed by the messaging domain used, as associated with the JMS destination type),
while providing common programming interfaces for both messaging domains. The
interfaces belonging to this set of common interfaces, as well as how they relate to the
domain-specific interfaces, are detailed in Table 2-1 in the JMS 1.1 specification
document.

Backward Compatibility
Oracle recommends that newer JMS applications be deployed using the JMS
Connector, which is based on the J2CA 1.5 specification and mandated by the J2EE 1.4
standard. This path provides the new features introduced in OracleAS 10.1.3.
However, Oracle will continue to support JMS applications deployed using the older
proprietary OC4J Resource Provider supported in OracleAS 9.0.4/10.1.2.

The Oracle JMS Connector is discussed in the "JMS Connector" section starting on
page 3-51.

JMS How-To Documents and Demo Sets
How-To documents and a set of examples, including commented configuration files,
are available at the How-To website:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

The JMS documents and demo sets are listed under the Messaging (JMS) heading. The
documents and deployment descriptor files in the demo set are organized by resource
provider and include the configuration variations called for by the various supported
resource providers. Unzip the files that apply to the relevant resource provider.

Table 3–1, " JMS How-To Documents and Demo Sets" lists the JMS topics, the
associated How-To documents, and their demo set ZIP files.
3-4 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
Additional Documentation
The How-To documents at the following site provide additional information about
OC4J 10g Release 3 (10.1.3) features, including feature overviews and code excerpts
relevant to the feature.

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

JMS Configuration Overview

This section gives an overview of the following JMS configuration topics:

■ JMS Configuration Sequence

■ JMS Configuration File Structure

This OEMS document and the associated demos and How-To documents describe
using the JMS Connector with the various supported resource providers, with
emphasis on the OEMS JMS In-Memory and File-Based persistence options.

Additional discussions of these topics are available in other parts of this document.
Also, a demo set of examples, including How-To documents and commented

Table 3–1 JMS How-To Documents and Demo Sets

JMS Topic How-To Document URL Demo Set ZIP File

How To Use the JMS Router
for OracleAS JMS and
Oracle OJMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-use-JMS-router/doc/How-
to-Use-JMS-Router.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-use-JMS-router/how-to-u
se-JMS-router.zip

How-To Configure and Use
MQ Series® JMS with OC4J
10g (10.1.3) JCA 1.5
Resource Adapters

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-mq-jms/doc/how-to-mq-jm
s.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-mq-jms/how-to-mq-jms.zi
p

How to Configure and Use
Oracle's Generic JMS
Resource Adapter with
OracleAS JMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-oracleasjms/d
oc/how-to-gjra-with-oracleasjm
s.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-oracleasjms/h
ow-to-gjra-with-oracleasjms.zi
p

How to Configure and Use
Oracle's Generic JMS
Resource Adapter with
OJMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-ojms/doc/how-
to-gjra-with-ojms.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-ojms/how-to-g
jra-with-ojms.zip

How to Configure and Use
Oracle's Generic JMS
Resource Adapter with IBM
WebSphere MQ JMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-mqseries/doc/
how-to-gjra-with-mqseries.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-mqseries/how-
to-gjra-with-mqseries.zip

How to Configure and Use
Oracle's Generic JMS
Resource Adapter with
Tibco Enterprise for JMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-tibco/doc/how
-to-gjra-with-tibco.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-tibco/how-to-
gjra-with-tibco.zip

How to Configure and Use
Oracle's Generic JMS
Resource Adapter with
SonicMQ JMS

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-sonic/doc/how
-to-gjra-with-sonic.html

http://www.oracle.com/technolo
gy/tech/java/oc4j/1013/how_to/
how-to-gjra-with-sonic/how-to-
gjra-with-sonic.zip
Oracle Enterprise Messaging Service (OEMS) 3-5

JMS Configuration Overview
configuration files, is available at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html. For a list of the How-To documents and demo sets and their URLs, see "JMS
How-To Documents and Demo Sets" on page 3-4.

JMS Configuration Sequence
This section outlines preparing the following components for JMS operation:

■ Developing and Assembling the Application

■ Configuring the Resource Provider

■ Configuring the JMS Connector

You can, but are not required to, create matching sets of connection factories and
destination objects, one set on the resource provider and the matching set on the JMS
Connector. Alternatively, you can use "automatic destination wrapping" to avoid
having to make a matching set of JMS Connector destinations.

Developing and Assembling the Application
The tasks for developing and assembling your application to use JMS messaging are as
follows:

■ Write Code to Send and Receive Messages

■ Declare Logical Names for JMS Resources

■ Use Logical Names for JMS Resources

■ Create and Declare an MDB Class

■ Declare Message Destinations

■ Link to Message Destinations

■ Define the onMessage Transaction Attribute

■ List the Application Modules

For details, see the How-To documents included in the demo set. For a list of the
How-To documents and demo sets and their URLs, see "JMS How-To Documents and
Demo Sets" on page 3-4.

Configuring the Resource Provider
Configuring the resource provider usually requires several rounds, arising out of the
need for application component developers and application assemblers to have some
connection factories and destinations to use for development. The development
connection factories and destinations are often not the same connection factories and
destinations used for deployment (since the development servers and production
servers are often separate machines, and may be configured using different
organization strategies, and may even use different resource providers). This
document focuses on the production deployment.

When configuring a resource provider, you have to decide the following:

■ How many and what type of resource provider connection factories will be
needed to satisfy the application.

■ How many and what type of resource provider destinations are needed to satisfy
the application.
3-6 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
■ Create RP Connection Factories

■ Create RP Destinations

■ Declare a Resource Provider Reference

See the How-to documents in the demo set for details. For a list of the How-To
documents and demo sets and their URLs, see "JMS How-To Documents and Demo
Sets" on page 3-4.

Configuring the JMS Connector
The introduction of the JMS Connector functionality in OEMS provides some degree of
insulation from the specifics of the various resource providers. Based on the J2CA 1.5
specification, the JMS Connector acts as a compatibility layer and a value-added
wrapper for the resource provider.

The tasks for configuring the JMS Connector are as follows:

■ Settings in ra.xml.

■ Create a JMS Connector Instance

■ Create JMS Connector Connection Factories

■ Create JMS Connector Destinations

For details, see the How-To documents included in the demo set. For a list of the
How-To documents and demo sets and their URLs, see "JMS How-To Documents and
Demo Sets" on page 3-4.

Additional Information and Examples
For detailed examples of the oc4j-connectors.xml, the oc4j-ra.xml, and the
ra.xml files, go to:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

For detailed reference information on the JMS Connector XML files, go to Appendix A,
OC4J Resource Adapter Configuration Files of the Oracle Containers for J2EE Resource
Adapter Administrator’s Guide.

The following links point to the document "How to Configure and Use Oracle's
Generic JMS Resource Adapter with OracleAS JMS" and to the ZIP file containing the
corresponding set of demo files. In these documents, the term "Generic JMS Resource
Adapter" refers to the JMS Connector.

■ "How to Configure and Use Oracle's Generic JMS Resource Adapter with
OracleAS JMS" is available at:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/h
ow-to-gjra-with-oracleasjms/doc/how-to-gjra-with-oracleasjms.
html

■ The ZIP file containing the corresponding set of demo files is available at:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/h
ow-to-gjra-with-oracleasjms/how-to-gjra-with-oracleasjms.zip
Oracle Enterprise Messaging Service (OEMS) 3-7

JMS Configuration Overview
JMS Configuration File Structure
This section points out the consistencies that must exist between the
connection-factory and destination references and definitions in the JMS configuration
files. Figure 3–1, "JMS Infrastructure" illustrates the references and definitions that
must agree with each other.

Figure 3–1 JMS Infrastructure
3-8 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
Figure 3–1 depicts the various types of links between the java source code, the
application deployment descriptors, the resource adapter deployment descriptors, and
the resource provider. At the tail of each arrow is a "link-reference", and at the head of
each arrow is the "link-key" (name, JNDI location or Java interface) of the item being
referenced. The textual representation of the link-key at the head and link-reference at
the tail of any given arrow is always identical except where otherwise noted.

The files are:

■ ra.xml

■ oc4j-ra.xml

■ application.xml

■ orion-application.xml

■ oc4j-connectors.xml

■ ejb-jar.xml

■ orion-ejb-jar.xml

■ application-client.xml

■ orion-application-client.xml

■ web.xml

■ orion-web.xml

The demo set includes expanded explanations of the relationships depicted in
Figure 3–1, "JMS Infrastructure". For a list of the How-To documents and demo sets
and their URLs, see "JMS How-To Documents and Demo Sets" on page 3-4.

Download and unzip the relevant How-To-gjra-with-xxx.zip file, where xxx is the
name of the relevant resource provider.

Open the relevant how-to-gjra-with-xxx.html document. The explanations in this
section point to the section in the how-to document that explains the relationship.

The demo set also includes examples of Java code and deployment descriptor XML
files.

Java Source Code
In J2EE applications, Java source code typically uses logical names to reference JMS
resources. Logical names (references declared with <resource-ref> and
<message-destination-ref> elements) are types of environment entries, and all
environment entries are placed in the java:comp/env/ JNDI subcontext. For details,
see "Application Component Provider Task #3: Use Logical Names for JMS Resources"
in the relevant How-To document.

Figure 3–1 depicts the two types of links from the Java source code to the J2EE
application component deployment descriptors. The number of each description in the
following list corresponds to a numbered link in the figure.

■ 1 - The first link in a typical outbound connection factory "chain" is from the Java
source code to a <resource-ref> element in a J2EE application component
deployment descriptor. The link-reference is the location used in the JNDI lookup
to obtain the JMS connection factory and must include the java:comp/env
prefix. The link-key for a <resource-ref> element is the value of its
<res-ref-name> subelement and must not include the java:comp/env prefix.
Except for the java:comp/env prefix, the link-reference and link-key should be
identical.
Oracle Enterprise Messaging Service (OEMS) 3-9

JMS Configuration Overview
■ 2 - The first link in a typical outbound destination chain is from the Java source
code to a <message-destination-ref> element in a J2EE application
component deployment descriptor. The link-reference is the location used in the
JNDI lookup to obtain the JMS destination and must include the java:comp/env
prefix. The link-key for a <message-destination-ref> element is the value
of its <message-destination-ref-name> subelement and must not include
the java:comp/env prefix. Except for the java:comp/env prefix, the link-reference
and link-key should be identical.

J2EE application component deployment descriptors (application-client.xml,
ejb-jar.xml, web.xml)
The logical names used by the Application Component Providers have a many-to-one
relationship with physical destinations. The Application Assembler creates logical
destinations which have a one-to-one relationship with physical destinations. The
Application Assembler then needs to link the message destination references and
MDBs created by the Application Component Providers to the message destinations
created by the Application Assembler. This is done by adding
<message-destination-link> elements that name the appropriate message
destination. These links are not part of the destination chain, but instead provide
information needed by the Deployer to complete the destination chain. For details, see
"Application Assembler Task #2: Link to Message Destinations" in the relevant
how-to-gjra-with-xxx.html document, where xxx is the name of the relevant resource
provider.

Figure 3–1 depicts the two types of links fully contained within the J2EE application
component deployment descriptor:

■ 3 - For outbound messaging, this informational-only link is from a
<message-destination-ref> element to a <message-destination>
element, both in J2EE application component deployment descriptors (though not
necessarily the same one). The link-reference is the value of the
<message-destination-link> subelement. The link-key for a
<message-destination> element is the value of its
<message-destination-name> subelement. The link-reference may be
prefixed with the name of the file containing the link-key followed by a #
character. (This is only needed when different link-keys from different files
happen to have the same exact value.) Except for the optional prefix, the
link-reference and link-key should be identical.

■ 4 - For MDB/inbound messaging, this informational-only link is from a
<message-driven> element to a <message-destination> element, both in
J2EE application component deployment descriptors (though not necessarily the
same one). The link-reference is the value of the
<message-destination-link> subelement. As previously mentioned, the
link-key for a <message-destination> element is the value of its
<message-destination-name> subelement. The link-reference may be
prefixed with the name of the file containing the link-key followed by a #
character. (This is only needed when different link-keys from different files
happen to have the same exact value.) Except for the optional prefix, the
link-reference and link-key should be identical.

OC4J-specific application component deployment descriptors
(orion-application-client.xml, orion-ejb-jar.xml, orion-web.xml)
Figure 3–1 depicts the following seven types of references from the OC4J-specific
application component deployment descriptor:
3-10 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
■ Application components declare logical names for connection factories in J2EE
application component deployment descriptors. The deployer then maps those
logical names to JMS Connector connection factories.

For details and examples, see "Deployer Task #1: Map Logical Connection
Factories to RA ConnectionFactories" in the relevant How-To document.

The figure depicts the two types of connection factory links provided by the
<resource-ref-mapping> element.

– 6 - The second link in a typical outbound connection factory chain is from a
<resource-ref-mapping> element in an OC4J-specific application
component deployment descriptor back to a <resource-ref> element in a
J2EE application component deployment descriptor. The link-reference is the
value of the name attribute of the <resource-ref-mapping> element. As
mentioned previously, the link-key for a <resource-ref> element is the
value of its <res-ref-name> subelement.

– 5 - The third link in a typical outbound connection factory chain is from a
<resource-ref-mapping> element in an OC4J-specific application
component deployment descriptor to a <connector-factory> element in
an oc4j-ra.xml file. The link-reference is the value of the location attribute
of the <resource-ref-mapping> element. The link-key for a
<connector-factory> element is the value of its location attribute (which
is also the JNDI location where the resource adapter connection factory
defined by the given <connector-factory> element will be bound).

■ Application components declare logical names for destinations in J2EE application
component deployment descriptors. The deployer then maps those logical names
to JMS Connector destinations, making use of any information provided by the
Application Assembler in the form of <message-destination-link>s and
<message-destination>s.

For each <message-destination>, the deployer must map all
<message-destination-ref>s and MDBs linked to that
<message-destination> to the same destination.

For details and examples, see "Deployer Task #2: Map Logical Destinations to RA
Destinations" in the relevant How-To document.

The figure depicts the two types of destination links provided by the
<destination-ref-mapping> element:

– 8 - The second link in a typical outbound destination chain is from a
<message-destination-ref-mapping> element in an OC4J-specific
application component deployment descriptor back to a
<message-destination-ref> element in a J2EE application component
deployment descriptor. The link-reference is the value of the name attribute of
the <message-destination-ref-mapping> element. As mentioned
previously, the link-key for a <message-destination-ref> element is the
value of its <message-destination-ref-name> subelement.

– 7 - The third link in a typical outbound destination chain is from a
<message-destination-ref-mapping> element in an OC4J-specific
application component deployment descriptor to an
<adminobject-config> element in an oc4j-connectors.xml file. The
link-reference is the value of the location attribute of the
<message-destination-ref-mapping> element. The link-key for an
<adminobject-config> element is the value of its location attribute (which
Oracle Enterprise Messaging Service (OEMS) 3-11

JMS Configuration Overview
is also the JNDI location where the resource adapter destination defined by the
given <adminobject-config> element will be bound).

■ For each MDB, the deployer must indicate the JMS Connector instance, connection
factory and destination that should be used to meet the MDB's inbound messaging
requirements.

For details and examples, see "Deployer Task #2: Map Logical Destinations to RA
Destinations" and "Deployer Task #3: Configure the MDB" in the relevant
document.

Figure 3–1 depicts the three types of inbound messaging links from the
orion-ejb-jar.xml file to the oc4j-connectors.xml and oc4j-ra.xml
files:

– 9 - The link that tells the container which JMS Connector instance should be
used to handle a given MDB's inbound messaging needs is from the MDB's
<message-driven-deployment> element in an orion-ejb-jar.xml file
to the JMS Connector instance's <connector> element in an
oc4j-connectors.xml file. The link-reference is the value of the
resource-adapter attribute of the <message-driven-deployment> element.
The link-key for a <connector> element is the value of its name attribute
(which is also the JNDI location where the resource adapter instance defined
by the given <connector> element will be bound).

– 10 - For MDB/inbound messaging, a single link is used instead of the three
connection factory links described to this point. This link is from a
<message-driven-deployment> element in an orion-ejb-jar.xml file
to a <connector-factory> element in an oc4j-ra.xml file. The
link-reference is the value of the <message-driven-deployment>'s
ConnectionFactoryJNDIName config property. As mentioned previously,
the link-key for a <connector-factory> element is the value of its location
attribute (which is also the JNDI location where the resource adapter
connection factory defined by the given <connector-factory> element
will be bound). Note that this links to the same place as the third link in the
outbound case, and the rest of the connection factory chain is the same for
both inbound and outbound messaging.

– 11 - For MDB/inbound messaging, a single link is used instead of the three
destination links described to this point. This link is from a
<message-driven-deployment> element in an orion-ejb-jar.xml file
to an <adminobject-config> element in an oc4j-connectors.xml file.
The link-reference is the value of the <message-driven-deployment>'s
DestinationName config property. As mentioned previously, the link-key
for an <adminobject-config> element is the value of its location attribute
(which is also the JNDI location where the resource adapter destination
defined by the given <adminobject-config> element will be bound). Note
that this links to the same place as the third link in the outbound case, and the
rest of the destination chain is the same for both inbound and outbound
messaging.

oc4j-connectors.xml
JMS Connector destinations act as wrappers for RP destinations. In order for the JMS
Connector to look up an RP destination, the JMS Connector needs to know the JNDI
location of the RP destination.

For details and examples, see "Resource Adapter Task #4: Create RA Destinations" in
the relevant How-To document. For information on creating resource provider
3-12 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
destinations, see "Configuring the Resource Provider" in the relevant How-To
document.

Figure 3–1 depicts the two types of links which together tie JMS Connector
destinations defined in oc4j-connectors.xml to RP destinations:

■ 12 - The final segment of the destination chain is from an
<adminobject-config> element in an oc4j-connectors.xml file (which
defines a JMS Connector destination) to a resource provider destination, and is
composed of two parallel links. The first link is from the
<adminobject-config> element to a <resource-provider> element in an
individual application's orion-application.xml file (or the default
application's application.xml file). The link-reference is the value of the
<adminobject-config>'s resourceProviderName config property. The
link-key for a <resource-provider> element is the value of its name attribute
(which is also the JNDI location under java:comp/resource where the resource
provider reference defined by the <resource-provider> element will be bound
- the providerName).

■ 13 - The second link completes the connection from the <adminobject-config>
element to the resource provider destination. The link-reference is the value of the
<adminobject-config>'s jndiName config property. The link-key is the JNDI
location of the RP destination within the resource provider's JNDI context (the
resourceName). Together, these two links provide the JMS Connector destination
with the full JNDI location

 java:comp/resource/providerName/resourceName
of the RP destination.

oc4j-ra.xml
JMS Connector connection factories act as wrappers for RP connection factories. In
order for the JMS Connector to look up an RP connection factory, the JMS Connector
needs to know the JNDI location of the RP connection factory.

For details and examples, see "Resource Adapter Task #3: Create RA Connection
Factories" in the relevant How-To document. For information on creating resource
provider connection factories (but not for the OEMS JMS Database persistence option
since all these connection factories are automatically pre-created, see "Configuring the
Resource Provider" in the relevant How-To document.

Figure 3–1 depicts three types of links that help define the implementation for JMS
Connector connection factories defined in oc4j-ra.xml and tie them to RP
connection factories:

■ 15 - In theory this link ties a <connector-factory> element in an
oc4j-ra.xml file (which defines a JMS Connector connection factory) to a
<connector> element in an oc4j-connectors.xml file (which defines an JMS
Connector instance). In practice this link may not actually be used, but for future
compatibility it should be set as follows: The link-reference is the value of the
connector-name attribute of the <connector-factory> element. As
previously mentioned, the link-key for a <connector> element is the value of its
name attribute (which is also the JNDI location where the JMS Connector instance
defined by the given <connector> element will be bound).

■ 16 - The final segment of the connection factory chain is from a
<connector-factory> element in an oc4j-ra.xml file (which defines a JMS
Connector connection factory) to an RP connection factory, and is composed of
Oracle Enterprise Messaging Service (OEMS) 3-13

JMS Configuration Overview
two parallel links. The first link gives the JNDI location under
java:comp/resource where the resource provider reference is bound (the
providerName). It's link-reference is located in the ra.xml file - see the description
for arrow #18. The second link completes the connection from the
<connector-factory> element to the resource provider connection factory.
The link-reference is the value of the <connector-factory>'s jndiLocation
config property. The link-key is the JNDI location of the RP connection factory
within the resource provider's JNDI context (the resourceName). Together, these
two links provide the JMS Connector connection factory with the full JNDI
location

 java:comp/resource/providerName/resourceName

of the RP connection factory. NOTE: This link is actually an optional over-ride.
(See description for arrow #17.) By convention this over-ride is always set (even if
its value is the same as the value it is overriding).

■ 14 - The implementation details for a JMS Connector connection factory (a
<connector-factory> element in an oc4j-ra.xml file) are defined by linking
the <connector-factory> element to a <connection-definition> element
in an ra.xml file. The link-reference is the value of the
<connector-factory>'s <connectionfactory-interface> subelement.
The link-key for a <connection-definition> element is the value of its
<connectionfactory-interface> subelement.

ra.xml
Much of the content in the ra.xml file does not need to be changed when using the
JMS Connector. (The reason for this is that the ra.xml file is based on a J2EE
Connector Architecture 1.5 schema file, which is a generic schema intended to work
with many types of resource adapters, including non-JMS resource adapters.)

For details and examples, see "Resource Adapter Task #1: Customize the ra.xml File" in
the relevant How-To document.

Figure 3–1 depicts two types of links that define default JMS Connector connection
factory settings in ra.xml:

■ 18 - This is the first link of the final segment of the connection factory chain. (See
description for arrow #16.) This link is from a <resourceadapter> element in
an ra.xml file to a <resource-provider> element in an individual
application's orion-application.xml file (or the default application's
application.xml file). The link-reference is the value of the
<resourceadapter>'s resourceProviderName config property. As
mentioned previously, the link-key for a <resource-provider> element is the
value of its name attribute (which is also the JNDI location under
java:comp/resource where the resource provider reference defined by the
<resource-provider> element will be bound). NOTE: The link-reference
value in the ra.xml file is just a default, and for any given JMS Connector
instance it may be overridden using the <connector>'s
resourceProviderName config property in the JMS Connector instance's
oc4j-connectors.xml file. The over-ride is generally not required and is not
depicted with an arrow in the figure.

■ 17 - This link acts as a default when a <connector-factory> linked to a
<connection-definition> (see description for arrow #14) does not include a
jndiLocation config property (see description for arrow #16). The
link-reference is the value of the <connection-definition>'s jndiLocation
3-14 Oracle Containers for J2EE Services Guide

JMS Configuration Overview
config property. The link-key is the JNDI location of the RP connection factory
within the resource provider's JNDI context

Bypassing the JMS Connector for Application Clients
Most of the features provided by the JMS Connector are not applicable to application
clients. In order to keep application clients as light-weight as possible, you may choose
to not use the JMS Connector with application clients. An application client that is not
using the JMS Connector can communicate with application components that are
using the JMS Connector so long as the same underlying resource provider (RP)
destination is used by both components. Bypassing the JMS Connector is
accomplished by referencing resource provider resources instead of JMS Connector
resources in the orion-application-client.xml file:

1. Bypass JMS Connector Connection Factories -

For each <resource-ref-mapping> element, make the value of its location
attribute be

 java:comp/resource/providerName/resourceName

where providerName is equal to the link-key for arrow #18 in Figure 3–1, "JMS
Infrastructure"
and resourceName is equal to the link-key for arrow #16 in Figure 3-1.
This replaces arrows #6, #18 and #16 in Figure 3-1 with a direct link to the RP
connection factory, bypassing the JMS Connector’s oc4j-ra.mxl and ra.xml
files.

2. Bypass JMD Connector Destinations -

For each <message-destination-ref-mapping> element, make the value of
its location attribute be

 java:comp/resource/providerName/resourceName

where providerName is equal to the link-key for arrow #12 in Figure 3–1, "JMS
Infrastructure"
and resourceName is equal to the link-key for arrow #13 in Figure 3-1.
This replaces arrows #7, #12 and #13 in Figure 3-1 with a direct link to the RP
destination, bypassing the JMS Connector’s oc4j-connectors.xml file.

Some third-party tools or libraries that access JNDI directly may have rigid location
limits and/or validation rules that do not allow for the java:comp/resource syntax
and/or naming peculiarities of specific resource providers, such as the Queues/ prefix
and other prefixes used by OEMS JMS Database option. In that situation, the JMS
Connector should not be bypassed. (In general this limitation does not apply to the
OEMS JMS In-Memory and File-Based options. This is because, for these resources,
the resourceName can be used in a JNDI lookup by itself. That is, the

 java:comp/resource/providerName/resourceName

prefix is purely optional when using OEMS JMS In-Memory or File-Based options.)

An application must not pass JMS Connector destinations to any object derived from
an RP connection factory, and must not pass RP destinations to any object derived
from a JMS Connector connection factory. The JMS Connector automatically manages
the conversion from one destination type to the other for the JMSDestination and
JMSReplyTo header fields for all sent, received, and browsed messages. For example,
if an application client that is not using the JMS Connector sets the JMSReplyTo
header field for an RP message to an RP destination and sends the message, and
Oracle Enterprise Messaging Service (OEMS) 3-15

Resource Providers
another application component that is using the JMS Connector receives the message
and reads the JMSReplyTo header field, then the receiver will get a compatible JMS
Connector message and JMS Connector destination that wrap the original RP message
and RP destination. There is no automatic conversion for any other case. For example,
if that scenario were repeated, but instead of sending the message directly it was sent
as the body of an ObjectMessage, then when the receiver extracted the body of the
ObjectMessage it would get an RP message instead of an JMS Connector message, and
the JMSReplyTo header field of that RP message would contain an RP destination
rather than a JMS Connector destination.

Resource Providers
The underlying connection factories and destinations that application clients use to
send and receive JMS messages are resource provider objects. In 10.1.3, OC4J uses the
JMS Connector to plug in the OEMS JMS (In-Memory, File-Based, and Database), IBM
MQ, TIBCO, and Sonic resource providers.

But ultimately the destinations and connection factories must be created in the
resource provider.

In general, use the following steps to configure a resource provider:

■ Declare Resource Provider References

■ Create RP Connection Factories

■ Create RP Destinations

Each JMS provider requires its own procedure for configuring the provider and
creating connection factories and destination objects. For resource providers other than
OEMS JMS, refer to the documentation for that provider.

■ OEMS JMS In-Memory and File-Based resource provider connection factories and
destinations are created and bound to JNDI in the jms.xml file. These OEMS JMS
persistence options are discussed in "OEMS JMS In-Memory and File-Based
Persistence", starting on page 3-18.

■ The OEMS JMS Database persistence option connection factories and destinations
are created using SQL procedures. The OEMS JMS Database option is discussed in
"OEMS JMS Database Persistence", starting on page 3-41.

Declaring Resource Provider References
A client can use one or more different JMS resource providers, each with its own
resource adapter, choosing according to the integration and quality-of-service (QOS)
features desired.

You declare the references to the resource provider that you will use in one or more
<resource-provider> elements of the orion-application.xml file and/or the
application.xml file.

■ OEMS JMS In-Memory and File-Based Persistence—These two OEMS JMS
persistence options are installed with OC4J.

■ OEMS JMS Database Persistence—The OEMS JMS Database persistence option is a
feature of the Oracle database and is based on the Streams Advanced Queuing
(AQ) messaging system.

The benefits of the OEMS JMS Database persistence option are as follows:
3-16 Oracle Containers for J2EE Services Guide

Resource Providers
– It is backed by the Oracle database.

– OEMS JMS Database persistence and other Oracle database transactions can
be used together in one-phase commit transactions.

– It also provides access to extra features provided by AQ including
interoperability with PL/SQL and OCI.

■ Using Third-Party JMS Providers—You can integrate with the following
third-party JMS providers:

– WebSphere MQ for JMS versions 6.0 and 5.3 resource provider

– TIBCO Enterprise for JMS version 3.1.0

– SonicMQ 6.0

Use one of the following files to declare a resource provider reference:

■ To make a resource provider reference visible to all applications (global), then use
the global application.xml file.

■ To make a resource provider reference visible only to a single application (local),
then use the orion-application.xml file specific to the application.

Add the following code to the appropriate XML file (as listed above):

<resource-provider class="providerClassName" name="providerName">
 <description>description </description>
 <property name="name" value="value" />
</resource-provider>

For the <resource-provider> attributes, configure the following:

■ class—The name of the resource provider class.

– For the OEMS JMS In-Memory and File-Based option, use:
com.evermind.server.jms.Oc4jResourceProvider

– For the OEMS JMS Database option, use: oracle.jms.OjmsContext

– For all third party resource providers, use:
com.evermind.server.deployment.ContextScanningResourceProv
ider

■ name—A name by which to identify the resource provider. This name is used to
map the resource provider’s JNDI context in the application’s JNDI as:

java:comp/resource/providerName/

The subelements of the <resource-provider> are configured as follows:

■ <description> subelement—A description of the specific resource provider.

■ <property> subelement—The name and value attributes are used to identify
parameters provided to the resource provider. The name attribute identifies the
name of the parameter, and its value is provided in the value attribute.

Before an application or a resource adapter running in OC4J can access a resource
provider, a resource provider reference must be declared with the
<resource-provider> element. The resource provider reference holds
miscellaneous data (for example, the class name described below) that OC4J uses to
interact with the resource provider. The resource provider reference also provides a
JNDI subcontext through which resource provider resources can be accessed. The
resource provider reference (and said JNDI access) can be made local to the application
Oracle Enterprise Messaging Service (OEMS) 3-17

Resource Providers
by placing it in orion-application.xml, or available to all applications by placing
it in %ORACLE_HOME%/j2ee/home/config/application.xml.

The two pieces of information that you must provide whenever declaring a resource
provider reference are the name you wish to use for the resource provider reference
and the Java class that implements the resource provider interface.

The resource provider reference maps the resource provider's JNDI context, which
contains resource provider connection factories and resource provider destinations, to
a JNDI subcontext accessible by the application and, more importantly, the JMS
Connector. The reason it is more important for the JMS Connector to be able to access
resource provider resources than for the application to be able to do so is that, when
using a JMS Connector, the application need not (and in general should not) directly
look up or use any resource provider resources. That JNDI subcontext is
java:comp/resource/providerName where providerName is the name of the
resource provider reference.

The demo set at
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html includes examples of declaring resource provider references. For a list of the
How-To documents and demo sets and their URLs, see "JMS How-To Documents and
Demo Sets" on page 3-4.

Download and unzip the How-To-gjra-with-xxx.zip file, where xxx is the name of the
relevant resource provider.

Drill down to the following file: /src/META-INF/orion-application.xml.

For more detail, search for "Configuring the Resource Provider" in the relevant
How-To document.

In the demo, the data source and the resource provider are declared local to the
application. If the data source definition is placed in
$J2EE_HOME/config/data-sources.xml and the resource-provider definition is
placed in $J2EE_HOME/config/application.xml, then they are visible to all
applications. (Only the demo for the OEMS JMS Database Persistence provider
requires or includes a data source.)

The following sections give more detail on declaring the resource provider reference
for each resource provider supported by OC4J, including the Java class and an
example resource provider reference name for each:

■ OEMS JMS In-Memory and File-Based Persistence

■ OEMS JMS Database Persistence

■ Declaring the OEMS JMS Database Reference on page 3-44

■ Declaring an IBM WebSphere MQ Resource Provider Reference on page 3-49

■ Declaring a TIBCO Enterprise Message Service Resource Provider Reference on
page 3-49

■ Declaring a SonicMQ Resource Provider Reference on page 3-50

OEMS JMS In-Memory and File-Based Persistence
The OEMS JMS In-Memory and File-Based options provide the following features:

■ Complies with the JMS 1.1 specification.

■ Is compatible with the J2EE 1.4 specification.
3-18 Oracle Containers for J2EE Services Guide

Resource Providers
■ Offers a choice between in-memory or file-based message persistence.

■ Provides an exception queue for undeliverable messages.

This section covers the following topics:

■ Configuring Destination Objects and Connection Factories

■ Configuring in the Application Server Control Console

■ Configuration Elements

■ Configuration Using jms.xml

■ Configuring Ports

■ Sending and Receiving JMS Messages

■ JMS Utility

■ Configuring File-Based Persistence

■ Abnormal Termination

■ Predefined Exception Queue

■ Message Paging

■ Configuration Elements

■ JMS Configuration Properties

Configuring Destination Objects and Connection Factories
Destination objects can be queues or topics. The OEMS JMS In-Memory and File-Based
options are already installed with OC4J, so the only configuration necessary is for the
custom destination objects and connection factories for your applications to use.

The primary tool for configuring Destination objects and connection factories is the
Application Server Control Console. You can also edit the XML files directly.

Default Destination Objects and Connection Factories

The defaults are useful as follows:

■ The connection factories can be copied and used as templates for connection
factories that you create. The default connection factories can also be used without
modification in production.

■ The destinations can be copied and used as templates for destinations that you
create. The default destinations should NOT be used in production.

Six default connection factories are created for the different combinations of XA
(global transaction enabled), non-XA, and various JMS interfaces. Your applications
can use these connection factories without your having to add them in the Application
Server Control Console or the jms.xml file. The only reason to define a new
connection factory is to specify non default values for one or more of the optional
attributes of connection-factory elements.

Note: If you see the term "OC4J JMS" or "OracleAS JMS" in the
Application Server Control Console, in the MBeans, or in the sample
code, this refers to the OEMS JMS In-Memory and File-Based
persistence options.
Oracle Enterprise Messaging Service (OEMS) 3-19

Resource Providers
The default connection factory objects are created internally by OC4J, which binds
them to the default JNDI locations within the OC4J server where the JMS connection is
created.

The following default connection factories are created, even though they are not
explicitly defined in the jms.xml file. It is safer to treat these as reserved JNDI
locations and to use other JNDI locations when you create custom connection factories.

Default destinations are as follows:

Configuring in the Application Server Control Console
The Application Server Control Console is the primary tool for configuring the OEMS
JMS In-Memory and File-Based persistence option connection factories and destination
objects. For each destination object, you must specify its name, location, and
destination type (queue or topic).

Path to the Application Server Control Console:
OC4J:Home > Administration tab > Services > JMS Providers > Go To Task Configure
OracleAS JMS > Select the appropriate tab.

Table 3–2, Configuration Elements table describes the OracleAS JMS resource provider
configuration elements and their attributes.

 Configuration Elements
Table 3–2 defines the configuration elements and shows where to make the settings in
the Application Server Control Console, in the MBeans, and in the jms.xml file.

XA non-XA

Default Queue Connection Factory jms/XAQueueConnectionFa
ctory

jms/QueueConnectionFact
ory

Default Topic Connection Factory jms/XATopicConnectionFa
ctory

jms/TopicConnectionFact
ory

Default Unified Connection Factory jms/XAConnectionFactory jms/ConnectionFactory

Default Destination

Default Queue jms/demoQueue

Default Topic jms/demoTopic
3-20 Oracle Containers for J2EE Services Guide

Resource Providers
Table 3–2 Configuration Elements

Console and MBean
Setting Locations

Element(s) of
jms.xml Description and Attributes

The JMSAdministrator
MBean enables you to
specify the server host name
and port, and multiple
related attributes and
operations.

Path to the
JMSAdministrator MBean:

OC4J:Home >
Administration tab > Task
Name: JMX. System MBean
Browser. > Go To Task >
Drill down:
J2EEDomain:oc4j,
J2EEServer:standalone,
JMSAdministratorResource,
"JMSAdministrator"

<jms-server> The root element of the server configuration.

The <jms-server> element takes the following attributes:

host - The host name defined in a String (DNS or
dot-notation host name) to which this server should bind. By
default, the server binds to 0.0.0.0 (also known as [ALL] in
the configuration file). Optional.

port - The port defined as an int (valid TCP/IP port number)
to which this server should bind. The default setting is 9127.
This setting applies only to the standalone configuration of
OC4J. In the Oracle Application Server configuration, the port
setting in the configuration file is overridden by command-line
arguments that are used (by, for example, OPMN and others)
when starting the OC4J server. Optional.

Create a resource provider
destination and specify its
attributes on the Add
Destinations page.

Path to the Add
Destinations page:

OC4J:Home >
Administration tab > Task
Name: Services.JMS
Providers > Go To Task >
Destinations tab > Create
New

<queue> This element configures queues. The queues are available
when OC4J starts up, and are available for use until the server
is restarted or reconfigured. You can configure zero or more
queues in any order. Any newly-configured queue is not
available until OC4J is restarted.

The <queue> element takes the following attributes:

name - This required attribute is the provider-specific name
(String) for the queue. The name can be any valid non empty
string (with white space and other special characters included,
although this is not recommended). The name specified here
can be used in Session.createQueue() to convert the
provider-specific name to a JMS queue. It is invalid for two
destinations to specify the same name. There is no default.

location - This required attribute states the JNDI location
(String) where the queue is bound. The value should follow
the JNDI rules for valid names.

persistence-file - An optional path and filename
(String). The path for the persistence-file attribute is
either an absolute path of the file or a path relative to the
persistence directory defined in application.xml. The
default path is J2EE_HOME/persistence/<group> for
Oracle Application Server environments and
J2EE_HOME/persistence for standalone environments.

Each queue and topic must have its own persistence file name.
You must not have two objects writing to the same persistence
file.

The persistence-file attribute is discussed further at
"Persistence Recovery" on page 3-33.

Oracle Enterprise Messaging Service (OEMS) 3-21

Resource Providers
Create a topic destination
and specify its attributes on
the Add Destinations
page.

Path to the Add
Destinations page:

OC4J:Home >
Administration tab > Task
Name: Services.JMS
Providers > Go To Task >
Destinations tab > Create
New

<topic> This element configures a topic. The topics are available when
OC4J starts up, and are available for use until the server is
restarted or reconfigured. You can configure zero or more
topics in any order. Any newly configured topic is not
available until OC4J is restarted.

The <topic> element takes the following attributes:

name - This required attributes is the provider-specific name
(String) for the topic. The name can be any valid non empty
string (with white space and other special characters included,
although this is not recommended). The name specified here
can be used in Session.createTopic() to convert the
provider-specific name to a JMS topic. It is invalid for two
destinations to specify the same name. There is no default.

location - This required attribute states the JNDI location
(String) where the topic is bound. The value should follow
the JNDI rules for valid names. There is no default.

persistence-file - An optional path and filename
(String). The path for the persistence-file attribute is
either an absolute path of the file or a path relative to the
persistence directory defined in application.xml; the
default path is J2EE_HOME/persistence/<group> for
Oracle Application Server environments and
J2EE_HOME/persistence for standalone environments.

Each queue and topic must have its own persistence file name.
You must not have two objects writing to the same persistence
file.

The persistence-file attribute is discussed further at
"Persistence Recovery" on page 3-33.

The Description field is
on the Add Destination
page where you create the
topic or queue to which the
description applies.

<description> A sub-element of <queue> or <topic>. A user-defined string
to remind the user for what the queue or topic is used.
Optional.

Table 3–2 (Cont.) Configuration Elements

Console and MBean
Setting Locations

Element(s) of
jms.xml Description and Attributes
3-22 Oracle Containers for J2EE Services Guide

Resource Providers
Create a connection factory
and specify its attributes on
the Add Connection
Factory page.

Path to Add or Edit a
Connection Factory:

OC4J:Home >
Administration tab > Task
Name: Services.JMS
Providers > Go To Task >
Connection Factories tab >
Create New or Edit
Properties

<connection-fa
ctory>

or

<queue-connect
ion-factory>

or

<topic-connect
ion-factory>

Connection factory configuration. A connection factory
element takes the following attributes:

■ location - Required. The JNDI location to which the
connection factory is bound. The value must follow JNDI
rules for valid names.

■ host - Optional. The fixed OC4J host to which this
connection factory will connect. By default, a connection
factory uses the same host as configured for the
jms-server element. Non default values can be used to
force all JMS operations to be directed to a specific OC4J
JVM, bypassing any locally available OC4J servers and
other Oracle Application Server or clustered
configurations. Optional, string, DNS or dot notation host
name. Default = ALL

■ port - Optional. The fixed port to which this connection
factory connects. By default, a connection factory uses the
same port as configured for the jms-server element (or
the value of the port that was specified for Oracle
Application Server or clustered configurations on the
command line). Non default values can be used to force all
JMS operations to be directed to a specific OC4J JVM,
bypassing any locally available servers and other Oracle
Application Server or clustered configurations. Optional,
int, valid TCP/IP port number. Default = 9127.

■ username - Optional. The user name for the
authentication of JMS default connections created from
this connection factory. That is, if an application creates a
connection and neither the application nor the
oc4j-ra.xml file specifies a username/password, then
the username and password attributes from this element
will be used. The user name itself must be properly
created and configured with other OC4J facilities.
Optional, string. Default = the empty string.

■ password - Optional. The password for the
authentication of JMS default connections created from
this connection factory. The password itself must be
properly created and configured with other OC4J facilities.
The property password attribute supports password
indirection. For more information, refer to the Oracle
Containers for J2EE Security Guide. Optional, string.
Default = the empty string.

■ clientID - Optional. The administratively configured,
fixed JMS clientID for connections created from this
connection factory. If no clientID is specified, then the
default is an empty string, which can also be
programmatically overridden by client programs,
according to the JMS specification. The clientID is used
only for durable subscriptions on topics; its value does not
matter for queue and nondurable topic operations.
Optional, string. Default = the empty string.

Table 3–2 (Cont.) Configuration Elements

Console and MBean
Setting Locations

Element(s) of
jms.xml Description and Attributes
Oracle Enterprise Messaging Service (OEMS) 3-23

Resource Providers
Configuration Using jms.xml
The OEMS JMS In-Memory and File-Based configuration settings are persisted in the
jms.xml file. The settings in jms.xml include:

■ Connection factories

■ Destinations

■ JMS Router jobs

■ Global configuration

Create an XA-enabled
connection factory and
specify its attributes on the
Add Connection
Factory page.

Path to Add or Edit a
Connection Factory:

OC4J:Home >
Administration tab > Task
Name: Services.JMS
Providers > Go To Task >
Connection Factories tab >
Create New or Edit
Properties

<xa-connection

-factory>

or

<xa-queue-conn
ection-factory
>

or

<xa-topic-conn
ection-factory
>

XA variants of connection factory configuration.

The XA connection factory elements take the same attributes as
the non-XA connection factory elements, which are described
in the previous row.

<log> Enables logging of the JMS activity in either file or ODL
format. See the section "Enabling OC4J Logging" in the Oracle
Containers for J2EE Configuration and Administration Guide
for information on logging.

Edit system properties
settings in the
JMSAdministratorResou
rce MBean.

Path to system properties
settings in
JMSAdministratorResource
MBean:

OC4J:Home >
Administration tab > Task
Name: JMX.System MBean
Browser. > Go To Task >
Drill down:
J2EEDomain:oc4j,
J2EEServer:standalone,
JMSAdministratorResource,
"JMSAdministrator" >
Operations tab >
setConfigProperty

<config-proper
ties>

Sets system properties. The settings are persisted to the
jms.xml file.

<config-property> - Subelement of
<config-properties>.

These settings are discussed in "JMS Configuration Properties"
on page 3-38.

Table 3–2 (Cont.) Configuration Elements

Console and MBean
Setting Locations

Element(s) of
jms.xml Description and Attributes
3-24 Oracle Containers for J2EE Services Guide

Resource Providers
The following example shows the structure of elements under <jms-server> within
the jms.xml file. This example configures the following destinations and connection
factories:

■ The queue "MyQueue" at JNDI location jms/MyQueue

■ The topic "MyTopic" at JNDI location jms/MyTopic

■ A connection factory (unified) at JNDI location jms/Cf

■ A queue connection factory at JNDI location jms/Qcf

■ An XA topic connection factory at JNDI location jms/xaTcf.

<jms>
 <jms-server>

 <queue name="MyQueue" location="jms/MyQueue" persistence-file="/tmp/MyQueue">
 <description>The demo queue. </description>
 </queue>

 <topic name="MyTopic" location="jms/MyTopic" persistence-file="/tmp/MyTopic">
 <description>The demo topic. </description>
 </topic>

 <connection-factory location="jms/Cf">
 </connection-factory>

 <queue-connection-factory location="jms/Qcf">
 </queue-connection-factory>

 <xa-topic-connection-factory location="jms/xaTcf"
 username="foo" password="bar" clientID="baz">
 </xa-topic-connection-factory>

 <log>
 <file path="../log/jms.log" />
 </log>

 <config-properties>
 <config-property name="oc4j.jms.debug" value="true">
 </config-property>
 </config-properties>

 </jms-server>

 <jms-router>
 <!-- JMS router configuration is shown in the
 "JMS Router Configuration in jms.xml" section.
 -->
 </jms-router>

</jms>

Note: Remember that you must restart the OC4J instance to enable
configuration changes made directly in the XML files.
Oracle Enterprise Messaging Service (OEMS) 3-25

Resource Providers
A detailed example of the element structure under <jms-router> is available at
"JMS Router Configuration in jms.xml" on page 3-84.

Configuring Ports
In a standalone OC4J instance, you can set the port range in the JMSAdministrator
MBean. You must restart the OC4J instance for your changes to take effect. This restart
requirement is a special case for port settings.

In the full Oracle Application Server environment (managed), use the Application
Server Control Console to configure the port range.

Path to configure the port range in the Application Server Control Console:
OC4J:Home > Administration tab > Task Name: JVM Properties > JMS Ports

Sending and Receiving JMS Messages
The code for sending and receiving JMS messages is not dependent on the JMS
Connector or the resource providers involved.

This example is from the MyChannel.java file in the demo sets at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Drill down to the following file: /src/common/MyChannel.java

In the demo, MyChannel.java is the only class that sends or receives JMS messages.
All other classes call MyChannel to do sends and receives. MyChannel is the same for
all of the different resource providers. In fact, all of the .java source is the same for all
of the resource providers except for some comments in Player.java that explain
alternate JNDI locations (not based on logical names) that may be used for looking up
connection factories and destinations

For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

 public MyChannel(String connectionFactoryName, String destinationName) throws
Exception {

 Context ctx = new InitialContext();

 // Get the destination.
 Destination destination = (Destination) ctx.lookup(destinationName);

 // Get the connection factory.
 ConnectionFactory cf = (ConnectionFactory)
 ctx.lookup(connectionFactoryName);

 // Use the connection factory to create a connection.
 connection = cf.createConnection();

 // Start the connection.
 connection.start();

 // Use the connection to create a session.
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 // Use the session and destination to create a message producer and a
message consumer.
3-26 Oracle Containers for J2EE Services Guide

Resource Providers
 producer = session.createProducer(destination);
 consumer = session.createConsumer(destination);
 }

 /**
 * Send message.
 * prerequisite: channel is open
 * @param obj object to be sent
 */
 public void send(Serializable obj) throws JMSException {

 // Use the session to create a new message.
 ObjectMessage msg = session.createObjectMessage(obj);

 // Use the message producer to send the message.
 producer.send(msg);
 System.out.println("Sent message: " + obj);
 }

 /**
 * Receive message (wait forever).
 * prerequisite: channel is open
 * @return object which was received in message, or <code>null</code> if no
message was received
 */
 public Serializable receive() throws JMSException {

 // Use the message consumer to receive a message.
 ObjectMessage msg = (ObjectMessage) consumer.receive();

 System.out.println("Got message: " + msg.getObject());
 return msg.getObject();
 }

 /**
 * Receive message (wait a while).
 * prerequisite: channel is open
 * @param timeout maximum time (in milliseconds) to wait for a message to
arrive
 * @return object which was received in message,
 * or <code>null</code> if no message was received
 */
 public Serializable receive(long timeout) throws JMSException {

 // Use the message consumer to receive a message (if one comes in time).
 ObjectMessage msg = (ObjectMessage) consumer.receive(timeout);

 if (msg == null) return null;
 System.out.println("Got message: " + msg.getObject());
 return msg.getObject();
 }

 /**
 * Close channel.
 * prerequisite: channel is open
 * Once a MyChannel object is closed, it may no longer be used to send or
receive
 * messages.
 */
 public void close() throws JMSException {
Oracle Enterprise Messaging Service (OEMS) 3-27

Resource Providers
 // Close the connection (and all of its sessions, producers and
consumers).
 connection.close();
 }

 private Connection connection;
 private Session session;
 private MessageProducer producer;
 private MessageConsumer consumer;
}

JMS Utility
In this release, JMS Utility functionality is available as attributes and operations on
various MBeans, replacing the deprecated command line interface of previous releases.

JMS Utility functionality resides on the following MBeans:

■ The JMSAdministrator MBean - Path:

OC4J:Home > Administration tab > Task Name: JMX.System MBean Browser > Go
To Task > Drill down: J2EEDomain:oc4j, J2EEServer:standalone,
JMSAdministratorResource, "JMSAdministrator"

■ The JMS MBean - Path:

OC4J:Home > Administration tab > Task Name: JMX.System Bean Browser > Go
To Task > Drill down: J2EEDomain:oc4j, J2EEServer:standalone, JMSResource,
"JMS"

■ Various JMSDestinationResource MBeans - Path:

OC4J:Home > Administration tab > Task Name: JMX.System MBean Browser > Go
To Task > Drill down: J2EEDomain:oc4j, J2EEServer:standalone, JMSResource,
"JMS", JMSDestinationResource > Select the MBean that represents the desired
destination.

Table 3–3 JMS Utility

MBean Implementation

Previous
Command Line
Command Description

configProperties attribute
in the JMSAdministrator
MBean

knobs Display all available system properties (shown in Table 3–4)
and their current settings.
3-28 Oracle Containers for J2EE Services Guide

Resource Providers
Statistics tab in the JMS MBean stats The following OEMS JMS In-Memory and File-Based
statistics are available through the JMS MBean:

■ activeHandlers

■ activeConnections

■ pendingMessageCount

■ messageDequeued

■ messageExpired

■ messageCommitted

■ messageRolledBack

■ messageEnqueued

■ messageRecovered

■ messageDiscarded

■ messagePagedIn

■ messageCount

validateSelector
operation on the
JMSAdministrator Mbean.

check
<selector>

Check validity of the specified JMS message selector. The
operation takes the argument selector.

areSelectorsEqual
operation on the
JMSAdministrator Mbean.

check <sel1>
<sel2>

Check if two specified selectors are treated as equivalent. This
is useful for reactivating durable subscriptions.

The operation takes the arguments: sel1 and sel2.

subscribe operation on all
JMSDestinationResource
MBeans whose domain =
topic

subscribe Creates a durable subscription on the destination. This
replaces existing, inactive durable subscriptions.

The operation takes the following arguments:

■ name - name of the durable subscriber

■ noLocal - if true, allows subscriber to inhibit delivery
of messages published by its own connection

■ xact - if true, session will be transacted

■ clientId - the client id

■ selector - the message selector

unsubscribe operation on all
JMSDestinationResource
MBeans whose domain =
topic

unsubscribe Removes the durable subscription.

The operation takes the following arguments:

■ name - name of the durable subscriber

■ xact - if true, session will be transacted

■ clientId - the client id

Table 3–3 (Cont.) JMS Utility

MBean Implementation

Previous
Command Line
Command Description
Oracle Enterprise Messaging Service (OEMS) 3-29

Resource Providers
browse operation on all
JMSDestinationResource
Mbeans

browse Browse this destination.

The operation takes the following arguments:

■ sub - name of the durable subscriber, only available for
MBeans where domain = topic

■ xact - if true, session will be transacted

■ clientId - the client ID (optional)

■ selector - the message selector (optional)

■ count - the maximum number of messages to process (0
for all)

copy operation on all
JMSDestinationResource
Mbeans

copy Copies messages from this destination to the specified
destination.

The operation takes the following arguments:

■ sub - name of the durable subscriber, only available for
MBeans where domain = topic

■ toDestination - the destination to move the messages
to

■ xact - if true, session will be transacted

■ clientID - the client ID (optional)

■ selector - the message selector (optional)

■ count - the maximum number of messages to process (0
for all)

drain operation on all
JMSDestinationResource
Mbeans

drain Drain messages from this destination.

The operation takes the following arguments:

■ sub - name of the durable subscriber, only available for
MBeans where domain = topic

■ xact - if true, session will be transacted

■ clientId - the client ID (optional)

■ selector - the message selector (optional)

■ count - the maximum number of messages to process (0
for all)

Table 3–3 (Cont.) JMS Utility

MBean Implementation

Previous
Command Line
Command Description
3-30 Oracle Containers for J2EE Services Guide

Resource Providers
Configuring File-Based Persistence
The following sections discuss file-based persistence:

■ Enabling File-Based Persistence in the Application Server Control Console

■ Enabling File-Based Persistence in the jms.xml File

■ Persistence Recovery

When file-based persistence is enabled OC4J automatically performs the following:

■ If a persistence file does not exist, then OC4J automatically creates the file and
initializes it with the appropriate data.

■ If the persistence file exists and is empty, then OC4J initializes it with the
appropriate data.

Even if persistence is enabled, only certain messages are persisted to a file. For a
message to be persisted, all of the following conditions must be true:

move operation on all
JMSDestinationResource
Mbeans

move Moves messages from this destination to the specified
destination.

The operation takes the following arguments:

■ sub - name of the durable subscriber, only available for
MBeans where domain = topic

■ toDestination - the destination to move the messages
to

■ xact - if true, session will be transacted

■ clientID - the client ID (optional)

■ selector - the message selector (optional)

■ count - the maximum number of messages to process (0
for all)

Caution:

A persistence file must not be copied, deleted, or renamed when the
OC4J server is active. Doing so can result in data corruption and
message loss.

If OC4J is not active, then deleting a persistence file is equivalent to
deleting all messages and durable subscriptions in the destination
associated with that persistence file. When OC4J starts up again, the
JMS server re initializes the file as usual.

For more information on this, see "Persistence File Management" on
page 3-34.

Table 3–3 (Cont.) JMS Utility

MBean Implementation

Previous
Command Line
Command Description
Oracle Enterprise Messaging Service (OEMS) 3-31

Resource Providers
■ The destination object is defined to be persistent by specifying a persistence file in
the Application Server Control Console or by setting the destination's
persistence-file attribute in the jms.xml file.

■ The message has a PERSISTENT delivery mode, which is the default.

Messages sent to persistent destinations that are defined with a non-persistent
delivery mode (defined as DeliveryMode.NON_PERSISTENT) are not persisted.

■ The destination is a queue, or the destination is a topic and the consumer is a
durable subscriber.

Setting the DeliveryMode to PERSISTENT or NON_PERSISTENT is described in the
JMS specification.

Setting the default DeliveryMode for a message producer is described at:
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.
html#setDeliveryMode(int)

Setting a per-message DeliveryMode (over-riding the default) is described at:
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.
html#send(javax.jms.Destination,%20javax.jms.Message,%20int,%20i
nt,%20long)

and at:
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.
html#send(javax.jms.Message,%20int,%20int,%20long)

Notes on Enabling File-Based Persistence
Given that the previously-listed conditions are met, the file-based persistence option
features recoverable and persistent storage of messages. Each destination can be
associated with a relative or absolute path name that points to a file that stores the
messages sent to the destination object. The file can reside anywhere in the file system
(and not necessarily inside a J2EE_HOME directory). Multiple persistence files can be
placed in the same directory. Persistence files can be placed on a remote network file
system or can be part of a local file system.

Enabling File-Based Persistence in the Application Server Control Console The Application
Server Control Console is the primary tool for enabling file-based persistence for
destination objects. Use the following path to specify the parameters of the persistence
file in the Application Server Control Console.

Path to specify persistence files for destinations in the Application Server
Control Console:
OC4J:Home > Administration tab > Task Name: Services, JMS Providers:, Go To Task >
Destinations > Create New > "Persistence File"

You can specify a persistence file in the Application Server Control Console when
creating a new destination. You cannot modify the persistence file specification for an
existing destination in the Console. You can modify the persistence specification in the
jms.xml file. See Enabling File-Based Persistence in the jms.xml File on page 3-32.

Enabling File-Based Persistence in the jms.xml File You can enable file-based persistence for
destination objects, by specifying the persistence-file attribute in the jms.xml
file.

The following XML configuration example demonstrates how the
persistence-file attribute defines the name of the file as pers.
3-32 Oracle Containers for J2EE Services Guide

Resource Providers
<queue name="foo" location="jms/persist" persistence-file="pers">
</queue>

The path for the persistence-file attribute is either an absolute path of the file or
a path relative to the persistence directory defined in application.xml.

The OC4J server will not create any directories for persistence files. So when a
persistence file is defined in jms.xml it must either be in an existing absolute
directory, for example:

 persistence-file="/this/dir/exists/PersistenceFile"

or simply be a filename for example:

persistence-file="PersistenceFile"

In the latter case, by default the persistence file will be created in
$J2EE_HOME/persistence (for a standalone instance) or
$J2EE_HOME/persistence/<group_name> (in the full Oracle Application Server
environment).

The persistence-file attribute is discussed in Table 3–2, " Configuration
Elements" on page 3-21.

Oracle Application Server may have multiple OC4J instances writing to the same file
directory, even with the same persistence filename. Setting this attribute enables
file-based persistence, but also creates the possibility that your persistence files can be
overwritten by another OC4J instance.

Persistence Recovery The following sections discuss the various aspects of persistence
recovery:

■ Scope of Recoverability

■ Persistence File Management

■ Reporting Errors to the JMS Client

■ Recovery Steps

Scope of Recoverability
The OEMS JMS File-Based persistence option can recover from some but not all
possible failures. If any of the following failures occurs, then recoverability of the
persistence file is not guaranteed:

■ Media corruption - The disk system holding the persistence file fails abnormally or
gets corrupted.

■ External corruption - The persistence file is deleted, edited, modified, or otherwise
corrupted (by software). Only the JMS server should write into a persistence file.

■ Silent failure or corruption - The I/O methods in the JDK fail silently or corrupt
data that are being read or written silently.

■ A java.io.FileDescriptor.sync() failure - The sync() call does not
properly and completely flush all file buffers associated with the given descriptor
to the underlying file system.
Oracle Enterprise Messaging Service (OEMS) 3-33

Resource Providers
Persistence File Management
When the JMS server is running, you must not copy, delete, or rename persistence files
currently in use. It is an unrecoverable error to perform any of these actions on any of
the persistence files when they are being used.

However, when no OEMS server is using a persistence file, you can perform the
following administrative and maintenance operations on the persistence files:

■ delete - Deleting a persistence file removes all messages and, in the case of topics,
all durable subscriptions. On startup, OEMS JMS initializes a new (and empty)
persistence file.

■ copy - An existing persistence file can be copied for archival or backup purposes.
If an existing persistence file becomes corrupted, an earlier version can be used (as
long as the association between the OEMS JMS destination name and the file is
maintained), pointed to by any suitable path name, to go back to the previous
contents of the JMS destination.

Persistence files cannot be concatenated, split up, rearranged, or merged. Attempting
any of these operations causes unrecoverable corruption of the data in these files.

In addition to persistence files specified by a user and lock files, the OEMS JMS
In-Memory and File-Based options use a special file, jms.state, for internal
configuration and transaction state management. The OEMS JMS server cleans up this
file and its contents during normal operations. You must never delete, move, copy, or
otherwise modify this file, even for archival purposes. Attempting to manipulate the
jms.state file can lead to message and transaction loss.

Reporting Errors to the JMS Client
The sequence of operations when a JMS client enqueues or dequeues a message, or
commits or rolls back a transaction, is as follows:

1. Client makes a function call

2. Pre-persistence operations

3. Persistence occurs

4. Post-persistence operations

5. Client function call returns

If a failure occurs during the pre-persistence or persistence phase, then the client
receives a JMSException or some other type of error, but no changes are made to the
persistence file.

If a failure occurs in the post-persistence phase, the client may receive a
JMSException or some other type of error; however, the persistence file is still
updated, and OEMS JMS recovers as if the operation succeeded.

Note: The location of the jms.state file is different depending
on whether you are operating OC4J in standalone or in Oracle
Application Server mode, as follows:

■ Standalone: J2EE_HOME/persistence directory

■ Oracle Application Server:
J2EE_HOME/persistence/<group_name> directory

The location of the persistence directory is defined in the
application.xml file.
3-34 Oracle Containers for J2EE Services Guide

Resource Providers
Abnormal Termination
If OC4J terminates normally, then the lock files are cleaned up automatically. However,
if OC4J terminates abnormally, for example, a kill -9 command, then the lock files
remain in the file system. OC4J can usually recognize leftover lock files. If not, you
must manually remove lock files before restarting OC4J after abnormal termination.

The default location of the lock files is in the persistence
directory—J2EE_HOME/persistence. The persistence directory is defined in the
application.xml file. Other locations can be set within the persistence-file
attribute of the destination object.

Recovery Steps Lock files prevent multiple OC4J processes from writing into the same
persistence file. If multiple OC4J JVMs are configured to point to the same persistence
file in the same location, then they could overwrite each other’s data and cause
corruption or loss of persisted JMS messages. To protect against such sharing
violations, OEMS JMS associates each persistence file with a lock file. Thus, each
persistence file—for example, /path/to/persistenceFile— is associated with a
lock file named /path/to/persistenceFile.lock. See "Configuring File-Based
Persistence" on page 3-31 for more information on persistence files.

OC4J must have appropriate permissions to create and delete the lock file.

On termination and restart, one of the following lock-file scenarios will apply:

■ Normal termination - Lock files are automatically cleaned up. Restart proceeds
normally.

■ Abnormal termination - On restart, lock files are recognized. Restart proceeds
normally.

■ Abnormal termination - On restart, a CRITICAL message is delivered indicating a
sharing violation. Restart cannot continue. Delete the lock file indicated in the
error message and restart. If more than one lock file is involved, you may have to
do this once for each.

JMS persistence lock files are tagged with (contain) server and persistence directory
location info. If the lock file exists when the JMS server starts, and the lock file was
created by the same server (having the same ip address) and using the same
persistence directory location, then the JMS server will assume control of the lock file
and start up successfully.

The remainder of this discussion of OEMS JMS File-Based recovery steps in this
subsection assumes that all lock files in question have been removed.

OEMS JMS performs recovery operations on all persistence files as configured in
OEMS JMS at the time of abnormal termination. In other words, if OC4J terminates
abnormally and then the user modifies the JMS server configuration and restarts OC4J,
the JMS server still attempts to recover all the persistence files in the original
configuration, and, after recovery is successful, moves to using the new configuration
specified.

If recovery of the old configuration fails, then the JMS server does not start. The server
must be shut down or restarted repeatedly to give recovery another chance, until
recovery is successful.

The JMS server caches its current persistence configuration in the jms.state file,
which is also used to maintain transaction state. If you wish to bypass all recovery of
the current configuration, you can remove the jms.state file, remove all lock files,
possibly change the configuration, and start the server in a clean-slate mode. (Oracle
Oracle Enterprise Messaging Service (OEMS) 3-35

Resource Providers
does not recommend doing this.) If the JMS server cannot find a jms.state file, then
it creates a new one.

If, for some reason, the jms.state file itself is corrupted, then the only recourse is to
delete it, with the attendant loss of all pending transactions—that is, transactions that
have been committed, but the commits not yet performed by all individual destination
objects participating in the transactions.

If messaging activity was in progress during abnormal termination, then OEMS JMS
tries to recover its persistence files. Any data corruption (of the types mentioned
earlier) is handled by clearing out the corrupted data; this may lead to a loss of
messages and transactions.

If the headers of a persistence file are corrupted, OEMS JMS may not be able to recover
the file, because such a corrupted file is often indistinguishable from user
configuration errors. The oc4j.jms.forceRecovery administration property
(described in Table 3–4, " System Properties" on page 3-38) instructs the JMS server to
proceed with recovery, clearing out all invalid data at the cost of losing messages or
masking user configuration errors.

Predefined Exception Queue
As an extension to the JMS specification, OEMS JMS In-Memory and File-Based
options come with a predefined exception queue for handling undeliverable messages.
This is a single, persistent, global exception queue to store undeliverable messages in
originating in any OEMS JMS destination. The exception queue has the following fixed
properties:

■ A fixed name - jms/Oc4jJmsExceptionQueue

■ A fixed JNDI location - jms/Oc4jJmsExceptionQueue

■ A fixed persistence file - Oc4jJmsExceptionQueue

The exception queue is always available to the JMS server and its clients, and should
not be explicitly defined in the jms.xml configuration file. Attempting to do so is an
error. The name, JNDI location, and persistence path name of the exception queue are
reserved words in their respective name spaces. Any attempt to define other entities
with these names is an error.

Messages can become undeliverable because of message expiration and listener errors.
The following subsection explains what happens to undeliverable messages in case of
message expiration.

Message Expiration By default, if a message sent to a persistent destination expires, then
it is moved to the exception queue. The JMSXState of the expiring message is set to
the value 3 (indicating EXPIRED), but the message headers, properties, and body are

Note: The location of the Oc4jJmsExceptionQueue persistence
file varies according to whether you are operating OC4J in
standalone or Oracle Application Server mode, as follows:

■ Standalone directory: J2EE_HOME/persistence

■ Oracle Application Server directory:
J2EE_HOME/persistence/<group_name>

The location of the persistence directory is defined in the
application.xml file.
3-36 Oracle Containers for J2EE Services Guide

Resource Providers
not otherwise modified. The message is wrapped in an ObjectMessage and the
wrapping message is sent to the exception queue.

The wrapping ObjectMessage has the same DeliveryMode as the original
message.

By default, messages expiring on non persistent or temporary destination objects are
not moved to the exception queue. Normally, the messages sent to these destination
objects are considered not worth persisting and neither are their expired versions.

You can specify that all expired messages be sent to the exception queue, regardless of
whether they are sent to persistent, non persistent, or temporary destination objects,
by setting the oc4j.jms.saveAllExpired administration property, described in
Table 3–4, " System Properties" on page 3-38, to true when starting the OC4J server. In
this case, all expired messages are moved to the exception queue. Even though this
causes non persistent messages to be sent to the exception queue, it does not change
their non persistent nature.

Message Paging
The OEMS JMS In-Memory and File-Based options support paging in and out
message bodies under the following circumstances:

■ The message has a persistent delivery mode.

■ The message is sent to a persistent destination object (see "Configuring File-Based
Persistence" on page 3-31).

■ The destination is a queue, or the destination is a topic and the consumer is a
durable subscriber.

■ The amount of used memory in the OC4J server's JVM is above some user-defined
threshold.

Only message bodies are paged. Message headers and properties are never paged. You
can set the paging threshold through the system property,
oc4j.jms.pagingThreshold, described in Table 3–4, " System Properties" on
page 3-38.

The value ranges from somewhere above 0.0 to somewhere below 1.0. It is almost
impossible to write a Java program that uses no JVM memory, and programs almost
always die by running out of memory before the JVM heap gets full.

For example, if the paging threshold is 0.5, and the memory usage fraction of the JVM
rises to 0.6, the JMS server tries to page out as many message bodies as possible until
the memory usage fraction reduces below the threshold, or no more message bodies
can be paged out.

When a message that has been paged out is requested by a JMS client, the JMS server
automatically pages in the message body (regardless of the memory usage in the JVM)
and delivers the correct message header and body to the client. After the message has
been delivered to the client, it may once again be considered for paging out,
depending on the memory usage in the server JVM.

If the memory usage fraction drops below the paging threshold, then the JMS server
stops paging out message bodies. The bodies of messages already paged out are not
automatically paged back in. The paging in of message bodies happens only on
demand (that is, when a message is dequeued or browsed by a client).

By default, the paging threshold is set to 1.0. In other words, by default, message
bodies are never paged.
Oracle Enterprise Messaging Service (OEMS) 3-37

Resource Providers
The user should choose a suitable value for the paging threshold depending on the
JMS applications, the sizes of the messages they send and receive, and the results of
experiments and memory usage monitoring on real-life usage scenarios.

No value of the paging threshold is ever incorrect. JMS semantics are always
preserved regardless of whether paging is enabled or disabled. Control of the paging
threshold does allow the JMS server to handle more messages in memory than it might
have been able to without paging.

JMS Configuration Properties
Runtime configuration of the OEMS JMS In-Memory and File-Based options and JMS
clients is accomplished through JVM system properties. None of these properties affect
basic JMS functionality. They pertain to features, extensions, and performance
optimizations that are specific to the JMS server. These are the properties that you see
when you use the knobs command line command.

The primary tool for editing configuration properties at runtime is the
JMSAdministrator MBean.

As a secondary method, in standalone, you can pass the configuration properties in as
a command line argument as follows:

java -D<propertyname>=<value>

These property settings are persisted in the jms.xml file.

Path to JMS configuration properties settings in the JMSAdministratorResource
MBean:
OC4J:Home > Administration tab > Task Name: JMX.System MBean Browser > Go To
Task > Drill down: J2EEDomain:oc4j, J2EEServer:standalone,
JMSAdministratorResource, "JMSAdministrator" > Operations tab >
setConfigProperty

Table 3–4 lists and describes the system properties for the OEMS JMS resource
provider In-Memory and File-Based options.

Table 3–4 System Properties

JVM System Property
Server/
Client Description

oc4j.jms.serverPoll JMS client Interval (in milliseconds) that JMS connections ping the OC4J
server and report communication exceptions to exception
listeners.

Type =long. Default = 15000.

oc4j.jms.messagePoll JMS client Maximum interval (in milliseconds) that JMS consumers wait
before checking for new messages.

Type =long. Default = 1000.
3-38 Oracle Containers for J2EE Services Guide

Resource Providers
oc4j.jms.listenerAttempts JMS client Number of listener delivery attempts before the message is
declared undeliverable.

This property only limits the number of delivery attempts when
the message is being received by means of a MessageListener
registered with JMS using one of the setMessageListener()
methods. It does not limit the number of delivery attempts when
a message is being received by means of one of the receive
methods (except in the case where the message was already
declared undeliverable by a previous delivery attempt to a
MessageListener). Note that the JMS Connector implements
inbound messaging for MDBs using the receive methods, so this
property does not apply in that situation. Furthermore, due to
J2EE 1.4 restrictions on the use of Message Listeners, this
property is only applicable to application clients. For MDBs, the
MaxDeliveryCnt activation spec property should be used to
limit message delivery attempts. The orion-ejb-jar.xml
demo file contains comments describing the MaxDeliveryCnt
property.

Type =int. Default = 5.

oc4j.jms.maxOpenFiles OC4J
server

Maximum number of open file descriptors for persistence files.
This is relevant if the server is configured with more persistent
destination objects than the maximum number of open file
descriptors allowed by the operating system.

Type =int. Default = 64.

oc4j.jms.saveAllExpired OC4J
server

Save all expired messages on all destination objects (persistent,
nonpersistent, and temporary) to the exception queue.

Type =boolean. Default = false.

oc4j.jms.socketBufsize JMS client When using TCP/IP sockets for client-server communication,
use the specified buffer size for the socket input/output streams.
A minimum buffer size of 8 KB is enforced. The larger the size of
messages being transferred between the client and server, the
larger the buffer size should be to provide reasonable
performance.

Type =int. Default = 64*1024.

oc4j.jms.debug JMS client If true, enable tracing of NORMAL events in JMS clients and the
JMS server. All log events (NORMAL, WARNING, ERROR, and
CRITICAL) are sent to both stderr and, when possible, either
J2EE_HOME/log/server.log or J2EE_HOME/log/jms.log.
Setting this property to true typically generates large amounts
of tracing information.

Type =boolean. Default = false.

oc4j.jms.noDms JMS client If true, disable instrumentation.

Type =boolean. Default = false.

Table 3–4 (Cont.) System Properties

JVM System Property
Server/
Client Description
Oracle Enterprise Messaging Service (OEMS) 3-39

Resource Providers
Setting JMS Configuration Properties in the jms.xml File
The following fragment shows how a configuration property is set in the jms.xml
file.

 <config-properties>
 <config-property name="oc4j.jms.debug" value="true">
 </config-property>
 </config-properties>

This fragment is shown in context in the jms.xml example at "Configuration Using
jms.xml" on page 3-24. It is also covered in Table 3–2, " Configuration Elements" on
page 3-21.

Resource Naming for OEMS JMS In-Memory and File-Based
The variable resourceName is used in this section to represent the JNDI location of an
RP resource (connection factory or destination) within the resource provider's JNDI
context.

The resourceName of an OEMS JMS resource is specified as a JNDI location in the
console as described in Configuring Destination Objects and Connection Factories on
page 3-19. Connection factory resourceName values are used to identify a specific
OEMS JMS connection factory (as the link-key for arrow #16 in Figure 3–1).
Destination resourceName values are used to identify a specific OEMS JMS destination
(as the link-key for arrow #13 in Figure 3–1). Connection factory and destination
resourceName values may also be used when bypassing the JMS Connector as discussed
in Bypassing the JMS Connector for Application Clients on page 3-15.

Required Class Path for Application Clients Using Direct OEMS JMS In-Memory and
File-Based Lookup
When using OEMS JMS In-Memory and File-Based options directly from an
application client, the JAR files that must be included in the class path are listed

oc4j.jms.forceRecovery OC4J
server

If true, forcibly recover corrupted persistence files. By default,
the JMS server does not perform recovery of a persistence file if
its header is corrupted (because this condition is, in general,
indistinguishable from configuration errors). Forcible recovery
allows the JMS server almost always to start up correctly and
make persistence files and destination objects available for use.

Type =boolean. Default = false.

oc4j.jms.pagingThreshold OC4J
server

Represents the memory usage fraction above which the JMS
server begins to consider message bodies for paging. This value
is an estimate of the fraction of memory in use by the JVM. This
value can range from 0.0 (the program uses no memory at all)
to 1.0 (the program is using all available memory).

Type =double. Default = 1.0.

See "Message Paging" on page 3-37 for more information.

Table 3–4 (Cont.) System Properties

JVM System Property
Server/
Client Description
3-40 Oracle Containers for J2EE Services Guide

Resource Providers
inTable 3–5, " Client-side JAR Files Required for OEMS JMS In-Memory and File-Based
Lookup".

OEMS JMS Database Persistence
The OEMS JMS Database persistence option is the JMS interface to the Oracle Database
Streams Advanced Queuing (AQ) feature in the Oracle database. This section will
cover in detail the configuration and usage of OEMS JMS using AQ as the persistent
store for messages.

As with the OEMS JMS In-Memory and File-Based options, Oracle recommends that
your applications use the JMS Connector when accessing AQ through the OEMS JMS
Database option.

For details about configuring OEMS JMS with AQ, see the Oracle Streams Advanced
Queuing User's Guide and Reference.

This section describes the following topics:

■ Using the OEMS JMS Database Option

■ Using OEMS JMS Database with the Oracle Application Server and the Oracle
Database

 Using the OEMS JMS Database Option
To create and access OEMS JMS Database resource provider destination objects
(queues and topics), do the following:

Note: For 10g Release 3 (10.1.3), OEMS JMS cannot be used for
global transactions without the JMS Connector.

Table 3–5 Client-side JAR Files Required for OEMS JMS In-Memory and File-Based
Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

optic.jar

(Required only if the opmn:ormi prefix is
used in Oracle Application Server
environment.)

/opmn/lib

Note:

In past Oracle Application Server documentation and collateral, as
well as in the Oracle Streams Advanced Queuing User's Guide and
Reference, you will see the OEMS JMS Database persistence option
described as "OJMS". When you encounter the acronym, "OJMS", it is
describing the OEMS JMS Database persistence option.
Oracle Enterprise Messaging Service (OEMS) 3-41

Resource Providers
■ Install and configure OEMS JMS on the database. See "Install and Configure
OEMS JMS Database" on page 3-42.

■ On the database, create an RDBMS user. The JMS application will connect the
RDBMS user to the back-end database and assign privileges. See "Create User and
Assign Privileges" on page 3-42.

■ Create the JMS destination objects. See "Creating OEMS JMS Database Destination
Objects" on page 3-43.

■ Create data sources or LDAP directory entries, if needed. See "Declaring the OEMS
JMS Database Reference" on page 3-44.

■ In the OC4J XML configuration, define the OEMS JMS Database option in the
<resource-provider> element of the orion-application.xml file with
information about the back-end database.

■ Access the resource in your implementation through a JNDI lookup. See "Sending
and Receiving JMS Messages" on page 3-26.

Install and Configure OEMS JMS Database You or your DBA must install OEMS JMS
according to the Oracle Streams Advanced Queuing User's Guide and Reference and
generic database manuals. After you have installed and configured OEMS JMS, you
must apply additional configuration. This includes the following:

1. You or your DBA must create an RDBMS user through which the JMS client
connects to the database. Grant this user appropriate access privileges to perform
OEMS JMS operations. OEMS JMS allows any database user to access queues in
any schema, provided that the user has the appropriate access privileges. See
"Create User and Assign Privileges" on page 3-42.

2. You or your DBA must create the tables and queues to support the JMS destination
objects. See "Creating OEMS JMS Database Destination Objects" on page 3-43.

Create User and Assign Privileges Create an RDBMS user through which the JMS client
connects to the database. Grant access privileges to this user to perform OEMS JMS
operations. The privileges that you need depend on what functionality you are
requesting. Refer to the Oracle Streams Advanced Queuing User's Guide and Reference for
more information on privileges necessary for each type of function.

The following example creates jmsuser, which must be created within its own
schema, with privileges required for OEMS JMS operations. You must be a SYS DBA to
execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect,resource,AQ_ADMINISTRATOR_ROLE TO jmsuser
 IDENTIFIED BY jmsuser ;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

Note: The following sections use SQL for creating queues, topics,
and their tables, and for assigning privileges.

For examples, see
http://www.oracle.com/technology/tech/java/oc4j/10
13/how_to/index.html.
3-42 Oracle Containers for J2EE Services Guide

Resource Providers
connect jmsuser/jmsuser;

You may need to grant other privileges, such as two-phase commit or system
administration privileges, based on what the user needs. See Chapter 5, "OC4J
Transaction Support", for information on two-phase commit privileges.

Creating OEMS JMS Database Destination Objects Refer to the Oracle Streams Advanced
Queuing User's Guide and Reference for information on the DBMS_AQADM packages and
OEMS JMS Database messages types.

The following examples demonstrate creating a queue and a topic in OEMS JMS
Database.

1. Create the table that handles the OEMS JMS destination (queue or topic).

Both topics and queues use a queue table. The following SQL example creates a
single table, demoTestQTab, for a queue.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestQTab’,
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 sort_list => ’PRIORITY,ENQ_TIME’,
 multiple_consumers => false,
 compatible => ’8.1.5’);

The multiple_consumers parameter specifies whether there are multiple
consumers. Set multiple_consumers to false for a queue. Set
multiple_consumers to true for a topic.

2. Create the JMS destination. This SQL example creates a queue called demoQueue
within the queue table demoTestQTab and then starts the queue.

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => ’demoQueue’,
 Queue_table => ’demoTestQTab’);

DBMS_AQADM.START_QUEUE(
 queue_name => ’demoQueue’);

Example:
The following example shows how you can create a topic called demoTopic within
the topic table demoTestTTab. After creation, two durable subscribers are added to
the topic. Finally, the topic is started.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestTTab’,

Note: For examples, see
http://www.oracle.com/technology/tech/java/oc4j/10
13/how_to/index.html.

Note: OEMS JMS Database uses the
DBMS_AQADM.CREATE_QUEUE method to create both queues and
topics.
Oracle Enterprise Messaging Service (OEMS) 3-43

Resource Providers
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 multiple_consumers => true,
 compatible => ’8.1.5’);
DBMS_AQADM.CREATE_QUEUE(’demoTopic’, ’demoTestTTab’);
DBMS_AQADM.START_QUEUE(’demoTopic’);

Declaring the OEMS JMS Database Reference

For an overview of declaring the resource provider reference, see "Declaring Resource
Provider References" on page 3-16.

The two pieces of information you must provide whenever declaring a resource
provider reference are the name you wish to use for the resource provider reference
and the Java class that implements the resource provider interface.

For OEMS JMS Database, the class is oracle.jms.OjmsContext. To declare a
resource provider reference named OJMSReference, use:

 <resource-provider class="oracle.jms.OjmsContext" name="OJMSReference">
 ...
 </resource-provider>

For example, if the OEMS JMS reference is named OJMSReference, and the JNDI
location (within the resource provider's JNDI context of a resource provider queue is
Queues/MY_QUEUE, then that resource provider queue is accessible to the application
and resource adapter at JNDI location
java:comp/resource/OJMSReference/Queues/MY_QUEUE.

In general, use the following steps to declare an OEMS JMS reference:

1. First create a local data-source in the data-sources.xml file. The demo set has
an example of this at: /ojms/src/META-INF/data-sources.xml.

2. Then tell OC4J where the data-sources.xml file has been placed by adding a
<data-sources> element to orion-application.xml:

 <data-sources path="data-sources.xml"/>

Note that the data-sources path is relative to the orion-application.xml file.

3. Finally, set the datasource for the resource provider reference by adding a
<property> subelement to the previously created <resource-provider>
element:

 <resource-provider class="oracle.jms.OjmsContext" name="OJMSReference">

Note:

OEMS JMS Database incorporates the (Queue_name) names passed
into the DBMS_AQADM.CREATE_QUEUE method into the JNDI
names for the destinations. For example, OEMS JMS Database
makes the queue created with Queue_name "demoQueue"
available with the JNDI name "Queues/demoQueue".

In order to wrap an OEMS JMS destination with a JMS Connector
destination, the OEMS JMS-provided JNDI name for the
destination and the "jndiName" <config-property> for the JMS
Connector destination defined in the oc4j-connectors.xml file
(either the global one in $J2EE_HOME/config or a local one
optionally contained in an application's .ear file) must match. See
arrow #13 in Figure 3–1, "JMS Infrastructure"
3-44 Oracle Containers for J2EE Services Guide

Resource Providers
 <property name="datasource"
value="jdbc/xa/MyChannelDemoDataSource"></property>
 </resource-provider>

Configuring data sources is discussed in the "Data Sources" chapter of this guide.
When selecting which driver to use (OCI or thin), it is best to measure actual
application performance. The OCI driver may be faster for non-XA operations, but
can be significantly slower than the thin driver for XA operations.

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Resource Naming for OEMS JMS Database The resourceName of an OEMS JMS Database
resource is:

typeName/instanceName

The values for typeName and instanceName depend on the type of resource (connection
factory or destination), and are described next.

For OEMS JMS Database connection factories:

 typeName corresponds to the connection factory type and is one of the following:

■ ConnectionFactories

■ QueueConnectionFactories

■ TopicConnectionFactories

■ XAConnectionFactories

■ XAQueueConnectionFactories

■ XATopicConnectionFactories

instanceName can be anything (because it is ignored - OEMS JMS Database connection
factories are not customizable so there is no need for multiple instances of the same
connection factory type).

For example, the resourceName for an OEMS JMS Database non-XA queue connection
factory (where the ignored instanceName is arbitrarily set to myQCF) is:

 QueueConnectionFactories/myQCF

Connection factory resourceName values created as per the above instructions are used
to identify a specific OEMS JMS Database connection factory (that is, as the link-key
for arrow #16 in Figure 3–1, "JMS Infrastructure"). They may also be used when
bypassing the resource adapter as discussed in Bypassing the JMS Connector for
Application Clients on page 3-15.

The following table shows the javax.jms.* interfaces implemented.

Table 3–6 javax.jms.* Interfaces Implemented

typeName CF QCF TCF XACF XAQCF XATCF

ConnectionFactories X

QueueConnectionFactories X X

TopicConnectionFactories X X
Oracle Enterprise Messaging Service (OEMS) 3-45

Resource Providers
If the application requires a javax.jms.TopicConnectionFactory (as specified
by the <res-type> element), the only type names that will return a suitable
connection factory are "TopicConnectionFactories" and
"XATopicConnectionFactories".

For OEMS JMS Database destinations:

typeName corresponds to the destination type and is one of the following:

■ Queues

■ Topics

instanceName is the name of the destination (the Queue_Name parameter provided to
DBMS_AQADM.CREATE_QUEUE). If the destination is not owned by the user specified
in the username property in the <resource-provider> element, then instanceName
must be prefixed with "owner." where owner is the owner of the destination. (Even
when not required, the "owner." prefix is still allowed.)

For example, the resourceName for an OEMS JMS Database queue given the name
demoQueue in the call to DBMS_AQADM.CREATE_QUEUE is:

Queues/demoQueue

If the owner (for example, someUser) needs to be specified, then the resourceName
would be:

 Queues/someUser.demoQueue

Destination resourceName values created according to the above instructions are used
to identify a specific OEMS JMS Database destination (that is, as the link-key for arrow
#13 in Figure 3–1). They may also be used when bypassing the resource adapter as
discussed in Bypassing the JMS Connector for Application Clients on page 3-15.

Sending and Receiving Messages Using OEMS JMS Database Persistence Oracle
recommends that the application use the JMS Connector for sending and receiving
messages. In this way the sending and receiving code can be independent of the
resource provider used. The examples at "Sending and Receiving JMS Messages" on
page 3-26 can be used for all resource providers, including OEMS JMS Database, with
only the passed-in destination and connection factory locations being different.

Required Class Path for Application Clients Using Direct OEMS JMS Database Lookup

XAConnectionFactories X X

XAQueueConnectionFactories X X X X

XATopicConnectionFactories X X X X

Note: A destination is a queue (typeName = Queues) if the
multiple_consumers parameter passed to
DBMS_AQADM.CREATE_QUEUE_TABLE was false. Otherwise the
destination is a topic (typeName = Topics).

Table 3–6 (Cont.) javax.jms.* Interfaces Implemented

typeName CF QCF TCF XACF XAQCF XATCF
3-46 Oracle Containers for J2EE Services Guide

Resource Providers
When using OEMS JMS Database options directly from an application client, the JAR
files that must be included in the class path are listed inTable 3–7, " Client-side JAR
Files Required for OEMS JMS Database Lookup".

Using OEMS JMS Database with the Oracle Application Server and the Oracle
Database
This section discusses common issues encountered by users of OEMS JMS Database
with Oracle Application Server.

■ Error When Copying aqapi.jar

■ OEMS JMS Database Certification Matrix

Error When Copying aqapi.jar A common error seen when using the OEMS JMS Database
option with the Oracle Application Server is:

PLS-00306 "wrong number or types of arguments"

If you receive this message, then the aqapi.jar file being used in Oracle Application
Server is not compatible with the version of the Oracle database being used for AQ. A
common mistake is to copy the aqapi.jar file from the Oracle database installation
into the Oracle Application Server installation, or from the Oracle Application Server
installation into the Oracle database installation, under the false assumption that they
are interchangeable. The confusion is because the Oracle Application Server and the
Oracle database both ship the OEMS JMS client JAR file. Do not copy this file. Use the
matrix in Table 3–8 to find the correct version of the database and Oracle Application
Server, then use the aqapi.jar file that comes with the Oracle Application Server.

In an Oracle Application Server installation, the OEMS JMS Database client JAR file
can be found at ORACLE_HOME/rdbms/jlib/aqapi.jar and should be included in
the CLASSPATH.

OEMS JMS Database Certification Matrix Table 3–8 indicates which versions of the Oracle
database work with the Oracle Application Server when the OEMS JMS client is

Table 3–7 Client-side JAR Files Required for OEMS JMS Database Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

ejb.jar /j2ee/<instance>/lib

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

adminclient.jar /j2ee/<instance>/lib

ojdbc14dms.jar /j2ee/<instance>/../../oracle/jdbc/lib

dms.jar /j2ee/<instance>/../../oracle/lib

bcel.jar /j2ee/<instance>/lib

optic.jar

(Required only if the opmn:ormi
prefix is used in Oracle
Application Server environment.)

/opmn/lib
Oracle Enterprise Messaging Service (OEMS) 3-47

Resource Providers
running in OC4J. An X indicates that the Oracle Database version and the Oracle
Application Server version that intersect at that cell are certified to work together. If
the cell has no X, then the corresponding version of the Oracle Database and Oracle
Application Server should not be used together.

Using Third-Party JMS Providers
This section briefly discusses declaring references to the supported third-party JMS
resource providers.

OC4J supports two-phase commit (2pc) for all supported resource providers as long as
the resource provider has an XA interface and the JMS Connector and application are
configured to use it. All of the supported third party providers have an XA interface.

The versions of each third-party JMS provider that OC4J supports are listed at Using
Third-Party JMS Providers on page 3-48.

This section provides information on declaring references for the following third-party
JMS providers:

■ Declaring an IBM WebSphere MQ Resource Provider Reference

■ Declaring a TIBCO Enterprise Message Service Resource Provider Reference

■ Declaring a SonicMQ Resource Provider Reference

The context-scanning resource provider class is a generic resource provider class
shipped with OCJ for use with third-party message providers.

Note: This is not a certification matrix for the Oracle Application
Server and the Oracle Database in general. It is only for the OEMS
JMS Database persistence option when used in the Oracle
Application Server.

Table 3–8 OEMS JMS Database Certification Matrix

OracleAS / Oracle Database v9.0.1 v9.0.1.3 v9.0.1.4 v9.2.0.1 v9.2.0.2+ v10.1.0+

9.0.2 X X X

9.0.3 X X

9.04 X X

9.0.4.1 X

10.1.2 X X X

10.1.3 X

Note: To declare a resource provider reference, use one or the other
of the following files:

■ To make the resource provider reference visible to all applications
(global), then use the global application.xml file.

■ To make the resource provider reference visible to a single
application (local), then use the orion-application.xml file
specific to the application.
3-48 Oracle Containers for J2EE Services Guide

Resource Providers
Declaring an IBM WebSphere MQ Resource Provider Reference
WebSphere MQ is an IBM messaging provider. WebSphere MQ resources are available
under

java:comp/resource/providerName
where providerName is the name used in the <resource-provider> element.

To declare a WebSphere MQ resource provider reference, perform the following steps:

1. Install and configure WebSphere MQ on your system, then verify the installation
by running any examples or tools supplied by the vendor. See the documentation
supplied with the WebSphere MQ software for instructions.

2. Add WebSphere MQ as a custom resource provider.

The following example demonstrates using the <resource-provider> element
in the orion-application.xml file to declare a WebSphere MQ resource
provider reference.

<resource-provider
 class="com.evermind.server.deployment.ContextScanningResourceProvider"
 name="MQSeries">
 <description> MQSeries resource provider </description>
 <property
 name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory">
 </property>
 <property
 name="java.naming.provider.url"
 value="file:/home/developer/services_guide_demo/mqseries/src/bindings">
 </property>
</resource-provider>

This example shows how this configuration was accomplished in the demo set. It
applies to the demo author’s environment only and must be edited to work in any
other environment.

3. Add to J2EE_HOME/applib any JAR files required by a Websphere MQ JMS
client as described in the IBM documentation.

The section "Resource Provider Task #3: Declare a Resource Provider Reference" in
the how-to-gjra-with-mqseries.html document in the demo set has more
detail.

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Declaring a TIBCO Enterprise Message Service Resource Provider Reference
TIBCO Enterprise Message Service is a message provider from TIBCO Software.
TIBCO resources are available under

java:comp/resource/providerName

where providerName is the name used in the <resource-provider> element.

To declare a TIBCO resource provider reference, perform the following steps:

1. Install and configure TIBCO Enterprise Message Service on your system, then
verify the installation by running any examples or tools supplied by the vendor.
See the documentation supplied with the TIBCO software for instructions.
Oracle Enterprise Messaging Service (OEMS) 3-49

Resource Providers
2. Add TIBCO as a custom resource provider. The following example demonstrates
using the <resource-provider> element in the orion-application.xml
file to declare a TIBCO resource provider reference.

 <resource-provider
 class="com.evermind.server.deployment.ContextScanningResourceProvider"
 name="TibcoJMSReference">
 <property
 name="java.naming.factory.initial"
 value="com.tibco.tibjms.naming.TibjmsInitialContextFactory">
 </property>
 <property
 name="java.naming.provider.url"
 value="tibjmsnaming://jleinawe-sun:7222">
 </property>
 </resource-provider>

This example shows how this configuration was accomplished in the demo set. It
applies to the demo author’s environment only and must be edited to work in any
other environment.

3. Add to J2EE_HOME/applib any JAR files required by a TIBCO JMS client as
described in the TIBCO documentation.

The section "Resource Provider Task #3: Declare a Resource Provider Reference" in
the how-to-gjra-with-tibco.html document in the demo set has more
detail.

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Declaring a SonicMQ Resource Provider Reference
SonicMQ is a messaging provider from Sonic Software Corporation. Sonic resources
are available under

java:comp/resource/providerName

where providerName is the name used in the <resource-provider> element.

To declare a SonicMQ resource provider reference, perform the following steps:

1. Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. See the documentation
supplied with the Sonic software for instructions.

2. Add SonicMQ as a custom resource provider. The following example
demonstrates using the <resource-provider> element in the
orion-application.xml file to declare a SonicMQ resource provider reference.

 <resource-provider
 class="com.evermind.server.deployment.ContextScanningResourceProvider"
 name="SonicJMSReference">
 <property
 name="java.naming.factory.initial"
 value="com.sonicsw.jndi.mfcontext.MFContextFactory">
 </property>
 <property
 name="java.naming.provider.url"
 value="tcp://stadd41:2506">
 </property>
 <property
3-50 Oracle Containers for J2EE Services Guide

JMS Connector
 name="com.sonicsw.jndi.mfcontext.domain"
 value="Domain1">
 </property>
 </resource-provider>

This example shows how this configuration was accomplished in the demo set. It
applies to the demo author’s environment only and must be edited to work in any
other environment.

3. Add to J2EE_HOME/applib any JAR files required by a SonicMQ JMS client as
described in the Sonic documentation.

The section "Resource Provider Task #3: Declare a Resource Provider Reference" in
the how-to-gjra-with-sonic.html document in the demo set has more
detail.

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

JMS Connector
Oracle provides a J2CA 1.5-compliant resource adapter called the JMS Connector that
allows OC4J-managed applications to have a unified mechanism to access any JMS
provider, regardless of whether their level of J2CA support is at version 1.5. The JMS
Connector does not use any Oracle proprietary APIs. Supported JMS implementations
include OEMS JMS and third-party products such as IBM Websphere MQ JMS, TIBCO
Enterprise for JMS, and SonicMQ JMS.

The JMS Connector is the recommended path for JMS usage in the OC4J 10.1.3
implementation. It is based on the J2CA 1.5 and JMS 1.1 and 1.02b standards and
includes minimal customization for OC4J, and none for individual JMS providers. It is
intended to seamlessly integrate any standard JMS implementation.

(Note that the JMS Connector does not typically provide optimal access to a particular
JMS provider, given that many JMS providers support custom extensions.)

The JMS Connector includes features in the following areas:

■ JNDI mapping

■ MDB integration (including dynamic adjustment to changing message load)

■ Global transaction support (including standards-based support for transaction
recovery). Transaction support is discussed in Chapter 5, "OC4J Transaction
Support".

■ True generic JMS connection pooling

■ Deployment convenience (including order independence)

■ Lazy resolution of JMS operations (including start order independence, tolerance
of dynamic management such as starts and stops of JMS providers, and
connection retries in case of provider failure)

■ Performance

■ JSR-77 statistics

Typically, the JMS Connector is used in situations where the EIS being connected is a
JMS resource provider. However, it can also be used in situations where the EIS uses
JMS messaging as a means of notifying J2EE application components. In this case, the
resource adapter (along with a JMS resource provider) can be used instead of the
inbound communication features (if any) of the EIS-specific resource adapter. This
Oracle Enterprise Messaging Service (OEMS) 3-51

JMS Connector
two-adapter solution, where the EIS-specific adapter is used for outbound
communication and the JMS Connector is used for inbound communication, enables
bidirectional communication between the EIS and J2EE applications where it may
otherwise not be possible.

For more information on resource adaptors see the Oracle Containers for J2EE Resource
Adapter Administrator’s Guide.
For information on using the Application Server Control Console for JMS Connector
settings, see Chapter 2.
For information on configuring JMS Connector connection factories, see Chapter 3.

Modifying the JMS Connector
The JMS Connector provided with OC4J is configured out-of-the-box to support the
OEMS JMS In-Memory and File-Based persistence options. If you need to integrate
with the OEMS JMS Database option or one of the supported non-Oracle JMS
providers then you must create another configuration for the JMS Connector. Another
reason you may want to create another JMS Connector is to support an
application-local adapter to connect to the OEMS JMS In-Memory and File-Based
options.

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Create and configure a new JMS Connector module as follows:

1. Go to the demo set for the resource provider to be connected.

2. Read the How-to document.

3. Copy the following files to be used as templates for your new JMS Connector
module:

■ ra.xml

■ oc4j-ra.xml

■ oc4j-connectors.xml

4. Modify the ra.xml, the oc4j-ra.xml, and the oc4j-connectors.xml files
according to the instructions at "Configuring the Resource Adapter" in the How-to
document.

5. Create a new .rar file (You can name it whatever you want.) with the following
structure:

META-INF/ra.xml

META-INF/oc4j-ra.xml

6. Place the new oc4j-connectors.xml in one of the following locations
according to the desired level of visibility:

■ For application-local visibility, place the new oc4j-connectors.xml file in
the top-level META-INF/ directory of your application’s .ear file

For global visibility, copy the new <connector> element(s) into the
$J2EE_HOME/config/oc4j-connectors.xml file. Make sure the name of
your new connector (the <connector>'s name attribute) does not conflict
with the name of other connectors or any other JNDI objects.

7. Prepare deployment as follows:

■ For local visibility, do the following:
3-52 Oracle Containers for J2EE Services Guide

JMS Connector
– Place the new .rar file in the .ear file.

– Insert a <connectors> element that looks like the following into the
META-INF/orion-application.xml file in the .ear file.

<connectors path="oc4j-connectors.xml"/>

– Insert a <module> element that looks like the following into the
META-INF/application.xml file in the .ear file.

<module>
 <connector>rarFileName</connector>
</module>

■ For global visibility, follow the instructions for deploying a connector in the
Oracle Containers for J2EE Deployment Guide.

Configuring the JMS Connector
The Application Server Control Console is the primary tool for configuring the JMS
Connector.

JMS Connector Connection Factories and Destinations
The default application defines the following destination objects for the default JMS
Connector:

■ A queue bound to JNDI location OracleASjms/MyQueue1.

■ A topic bound to JNDI location OracleASjms/MyTopic1.

■ An automatic destination wrapping JNDI subcontext for queues bound to JNDI
location OracleASjms/Queues.

■ An automatic destination wrapping JNDI subcontext for topics bound to JNDI
location OracleASjms/Topics.

Your applications can use these destinations and automatic destination wrapping
JNDI subcontexts without your having to add them in the Console or the
JMSAdministrator MBean.

The JMS Connector default connection factories are as follows:

The default connection factories in the table are explicitly declared in the default
oc4j-ra.xml file that ships with OC4J).

Creating JMS Connector connection factories and destinations
For information on configuring the JMS Connector connection factories and
destinations, including examples of the oc4j-connectors.xml, oc4j-ra.xml, and
ra.xml files, go to:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

XA non-XA

Default Queue Connection Factory OracleASjms/MyXAQCF OracleASjms/MyQCF

Default Topic Connection Factory OracleASjms/MyXATCF OracleASjms/MyTCF

Default Unified Connection Factory OracleASjms/MyXACF OracleASjms/MyCF
Oracle Enterprise Messaging Service (OEMS) 3-53

JMS Connector
Download and unzip the relevant how-to-gjra-with-xxx.zip file, where xxx is the name
of the resource provider. Search for "Configuring the Resource Adapter" in the relevant
How-To document.

For detailed reference information on the JMS Connector XML files, go to "Appendix
A, OC4J Resource Adapter Configuration Files" of the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide.

JMS Connector Settings
Table 3–9 lists and describes the JMS Connector configuration settings.

Path to JMS Connector Settings in the Application Server Control Console:
OC4J:Home > Applications tab > View: Standalone Resource Adapters > OracleASjms

Table 3–9 JMS Connector Configuration Settings

Console Settings XML Persistence File(s) Description

OC4J:Home > Applications
tab > View: Standalone
Resource Adapters >
OracleASjms > Connection
Factories tab > Create
button

Connection Factory
Interface

This is the link-reference for
arrow #14 in Figure 3–1.

This setting is persisted in
the
<connectionfactory-in
terface> element of the
oc4j-ra.xml file.

The Connection Factory Interface setting defines the
type of connection factory to be created.

JNDI Location

This is the link-key for
arrow #5 in Figure 3–1.

This setting is persisted in
the location attribute of a
<connector-factory>
element of the
oc4j-ra.xml file.

The JNDI Location setting specifies the JNDI
location where the new resource adapter connection
factory is to be bound. Enter a valid JNDI location so
the application component can locate the connection
factory when it needs to connect to the EIS.

Note that "JNDI Location" is not the same as
"jndiLocation".
3-54 Oracle Containers for J2EE Services Guide

JMS Connector
Connection Pooling This setting is persisted in
the
<connection-pooling>
element of the
oc4j-ra.xml file.

Connection pooling allows a set of connections to
the EIS to be reused within an application. An
application can choose to either create its own
exclusive connection pool or use one of the shared
connection pools available for this resource adapter.

No Connection Pool - Select this option to
disable connection pooling.

Use Private Connection Pool - Select this
option to create a new connection pool for exclusive
use by the selected connection factory.

Use Shared Connection Pool - Select this
option to use a shared connection pool that can be
used by multiple connection factories.

The oc4j-ra.xml file contains OC4J-specific
configuration for the JMS Connector. Subelements
of <connector-factory> include
<connection-pooling>, to set up connection
pooling for the factory, and <security-config>,
to set up container-managed sign-on. Each
connector factory can have configuration for a
private connection pool, or can use a shared
connection pool that is set up through a
<connection-pool> subelement of
<oc4j-connector-factories>.

jndiLocation

This is the link-reference for
arrow #16 in Figure 3–1.

This setting is persisted in a
<config-property>
subelement of a
<connector-factory>
element of the
oc4j-ra.xml file.

The jndiLocation setting specifies the resource
provider connection factory to be wrapped by the
resource adapter connection factory that you are
creating.

Note that "jndiLocation" is not the same as "JNDI
Location".

<none> This setting is persisted in a
<config-property>
subelement of a
<connector-factory>
element of the
oc4j-ra.xml file.

The clientId setting specifies what client id
should be applied to any newly created resource
provider connection created by the JMS Connector
connection.

OC4J:Home > Applications
tab > View: Standalone
Resource Adapters >
OracleASjms >
Administered Objects tab >
Create button

Object Class

This setting is persisted in
an
<adminobject-class>
subelement of an
<adminobject-config>
element of the
oc4j-connectors.xml
file.

The Object Class setting defines the type of
administered object (destination) to be created.
Select from the drop-down list.

Table 3–9 (Cont.) JMS Connector Configuration Settings

Console Settings XML Persistence File(s) Description
Oracle Enterprise Messaging Service (OEMS) 3-55

JMS Connector
 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Configuring the JMS Connector in the XML Files
The JMS Connector configuration settings are persisted in the following files:

■ oc4j-connectors.xml - The oc4j-connectors.xml file is used to create
JMS Connector instances and JMS Connector destinations.

■ oc4j-ra.xml - The oc4j-ra.xml file contains OC4J-specific configuration for a
JMS Connector. When you use Application Server Control Console to create or edit
a JMS Connector connection factory, OC4J updates the oc4j-ra.xml file.

■ ra.xml - The standard JMS Connector module configuration file provided by
Oracle. When you configure a JMS Connector, entries in ra.xml typically serve as
defaults.

For detailed examples of the oc4j-connectors.xml, the oc4j-ra.xml, and the
ra.xml files, go to:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

For detailed reference information on the JMS Connector XML files, go to Appendix A,
OC4J Resource Adapter Configuration Files of the Oracle Containers for J2EE Resource
Adapter Administrator’s Guide.

JNDI Location

This is the link-key for
arrows #7 and #11 in
Figure 3–1.

This setting is persisted in
the location attribute of
an
<adminobject-config>
element of the
oc4j-connectors.xml
file.

The JNDI Location setting specifies the JNDI
location where the new resource adapter
administered object (destination) is to be bound.

jndiName

This is the link-reference for
arrow #13 in Figure 3–1.

This setting is persisted in
the value attribute of a
<config-property>
subelement of a
<adminobject-config>
element of the
oc4j-connectors.xml
file.

The jndiName setting is the JNDI name of the
resource provider destination to be wrapped by the
resource adapter administered object (destination)
that you are creating.

Note: This description of the jndiName setting
applies to individually-bound resource provider
queues and topics. See the comments in the
oc4j-connectors.xml files in the demo set for
more information.

resourceProviderName

This is the link-reference for
arrow #12 in Figure 3–1.

This setting is persisted in
the value attribute of a
<config-property>
subelement of a
<adminobject-config>
element of the
oc4j-connectors.xml
file.

The resourceProviderName setting identifies the
resource provider that owns the destination to be
wrapped by the resource adapter administered
object (destination) that you are creating.

Table 3–9 (Cont.) JMS Connector Configuration Settings

Console Settings XML Persistence File(s) Description
3-56 Oracle Containers for J2EE Services Guide

JMS Connector
Using Message-Driven Beans
OC4J supports Message-Driven Beans (MDBs), using the JMS Connector in OC4J to
plug in message providers, including OEMS JMS, as well as the supported third-party
message providers. This offers significant advantages such as JMS connection pooling,
and MDB listener thread sets that size themselves according to changing load
(dynamic load adjustment).

A full example of configuring an MDB is included in the demo at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Download and unzip one of the how-to-gjra-with-xxx.zip files, where xxx is the name
of the relevant resource provider. MDB example code can be viewed in the following
files: /src/ejb/META-INF/ejb-jar.xml and
/src/ejb/META-INF/orion-ejb-jar.xml

Connection Pooling
The JMS Connector uses J2CA connection pooling. For information on connection
pooling, see the Oracle Containers for J2EE Resource Adapter Administrator’s Guide.

Dynamic Load Adjustment
Dynamic load adjustment for listener threads is based on the following
<activation-config> properties:

■ ListenerThreadMaxIdleDuration

■ ListenerThreadMinBusyDuration

■ ReceiverThreads

The orion-ejb-jar.xml demo file contains comments describing the
<activation-config> properties. For information on MDB configuration,
including dynamic load adjustment for MDB instances, see the Oracle Containers for
J2EE Enterprise JavaBeans Developer’s Guide.

Using Logical Names to Reference Resources
This section describes how you can use logical names in your client application,
thereby reducing the number of dependencies on installation-specific JMS
configuration within the non-OC4J-specific deployment descriptors. With this
indirection, you can make your client implementation generic for any JMS
configuration (and therefore independent of any specific JMS resource provider).

Using logical names enables you to make your client application code resource
provider-independent. In general, configure and use logical names as follows:

1. In your client application code, use logical names for JMS destinations and
connection factories.

2. Declare the logical names in the J2EE application component deployment
descriptors, such as application-client.xml and ejb-jar.xml.

Note: Remember that you must restart the OC4J instance to enable
configuration changes made directly in the XML files.
Oracle Enterprise Messaging Service (OEMS) 3-57

JMS Connector
3. Map the logical names to explicit JNDI locations in the OC4J-specific application
component deployment descriptors, such as orion-application-client.xml
and orion-ejb-jar.xml.

Configuring and using logical names is discussed and demonstrated in the How-To
documents and the .java and .xml files available at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Download and unzip one of the how-to-gjra-with-xxx.zip files, where xxx is the name
of the resource provider.

This section describes the following topics:

■ How to Declare Logical Names

■ Mapping Logical Names to Explicit JNDI Locations

■ JNDI Naming Property Setup for Java Application Clients

■ Client Sends JMS Message Using Logical Names

The client uses JMS destinations and connection factories to send and receive
messages. The recommended method for a client to retrieve a JMS destination object or
connection factory is by using a logical name (an environment entry). Using direct
JNDI locations should generally not be used unless logical names are not suitable, or
some other mechanism is used to maintain the application's portability.

How to Declare Logical Names
To use a logical name in your application code, you must declare the logical name in
one of the following XML deployment files before the application is deployed:

■ A standalone Java client—in the application-client.xml file

■ An EJB —the ejb-jar.xml file

■ For a JSP or servlet —the web.xml file

This is covered in the How-To documents available at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html. Under "Developing the Application Components" look at task #2 "Declare
Logical Names for JMS Resources".

Declare logical names for connection factories and destinations as follows:

■ Declare a logical name for a connection factory using a <resource-ref>
element.

– Specify the logical name for the connection factory in the <res-ref-name>
element. This is the link-key for arrows #1 and #6 in Figure 3–1.

– Specify the connection factory class type in the <res-type> element as one of
the following:

* javax.jms.ConnectionFactory

* javax.jms.QueueConnectionFactory

* javax.jms.TopicConnectionFactory

– Specify the authentication responsibility (Container or Application) in
the <res-auth> element.

– Specify the sharing scope (Shareable or Unshareable) in the
<res-sharing-scope> element.
3-58 Oracle Containers for J2EE Services Guide

JMS Connector
■ Declare a logical name for a JMS destination using a
<message-destination-ref element.

– Specify the logical name for the destination in the
<message-destination-ref-name> element. This is the link-key for
arrows #2 and #8 in Figure 3–1.

– Specify the destination type in the <message-destination-ref-type>
element as either javax.jms.Queue or javax.jms.Topic.

– Specify whether the client will produce messages to this destination, consume
messages from this destination, or both by setting the
<message-destination-usage> element to Produces, Consumes, or
ConsumesProduces.

Example
The following example illustrates how to specify logical names for a queue. In the
example, jms/PlayerConnectionFactory is the logical name for the connection
factory and jms/PlayerCommandDestination is the logical name for the
destination queue. This example is from the application-client.xml file in the
demo set.

<resource-ref>
 <res-ref-name>jms/PlayerConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>
<message-destination-ref>

<message-destination-ref-name>jms/PlayerCommandDest</message-destination-ref-name>
 <message-destination-type>javax.jms.Queue</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage>
</message-destination-ref>

A full example of specifying logical names, with descriptive comments, is included in
the demo at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Drill down to the following files:
/src/client/META-INF/application-client.xml

and

/src/ejb/META-INF/ejb-jar.xml

 For a list of the How-To documents and demo sets and their URLs, see "JMS How-To
Documents and Demo Sets" on page 3-4.

Mapping Logical Names to Explicit JNDI Locations
After the logical names are created, the logical names must be mapped to the JNDI
locations of resources. Normally, the deployer sets these up. This mapping is defined
in one of the following OC4J deployment descriptor files:

■ For a standalone Java client, the mapping is defined in the client’s
orion-application-client.xml file.

■ For an EJB, the mapping is defined in the EJB’s orion-ejb-jar.xml file.

■ For a JSP or a servlet, the mapping is defined in the orion-web.xml file of the
JSP or the servlet.
Oracle Enterprise Messaging Service (OEMS) 3-59

JMS Connector
The logical names in the application component’s deployment descriptor are mapped
as follows:

■ For connection factories, the logical name (declared in a <resource-ref>
element) is mapped to a JNDI location using a <resource-ref-mapping>
element. This is represented by arrows #6 and #5 in Figure 3–1.

■ For destinations, the logical name, declared via a
<message-destination-ref> element, is mapped to a JNDI location using a
<message-destination-ref-mapping> element. This is represented by
arrows #8 and #7 in Figure 3–1.

See the following sections for how the mapping occurs for the three OEMS JMS quality
of service options and how application components use this naming convention:

■ Resource Naming for OEMS JMS In-Memory and File-Based

■ Resource Naming for OEMS JMS Database

■ JNDI Naming Property Setup for Java Application Clients

■ Client Sends JMS Message Using Logical Names

JNDI Naming Property Setup for Java Application Clients
In an OC4J standalone environment, a Java application client accesses an OEMS JMS
destination object by defining the following properties in the jndi.properties file:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/myApplicationDeploymentName
java.naming.security.principal=oc4jadmin
java.naming.security.credentials=welcome

If you wish to specify the port, use the optional :port element as follows:

java.naming.provider.url=ormi://myhost:port/myApplicationDeploymentName

The default RMI port is 23791.

You must:

■ Use the ApplicationClientInitialContextFactory as your initial context
factory object.

■ Supply the standalone OC4J host and port, and the application deployment name
in the provider URL.

In the Oracle Application Server, a Java application client accesses an OEMS JMS
destination object by defining the following properties in the jndi.properties file:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://$HOST:$OPMN_REQUEST_PORT:$OC4J_INSTANCE/myApp
licationDeploymentName
java.naming.security.principal=oc4jadmin
java.naming.security.credentials=welcome

■ Use the ApplicationClientInitialContextFactory as your initial context
factory object.
3-60 Oracle Containers for J2EE Services Guide

JMS Connector
■ Supply the OPMN host and port, the OC4J instance, and the application
deployment name in the provider URL.

You can see a full example of a jndi.properties file at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Drill down to the following file:

/src/client/jndi.properties

Client Sends JMS Message Using Logical Names
After the resources have been defined and the JNDI properties configured, the client
must perform the following steps to send a JMS message. These steps summarize the
procedure shown in "Sending and Receiving JMS Messages" on page 3-26.

1. Retrieve both the configured JMS destination and its connection factory using a
JNDI lookup.

2. Create a connection from the connection factory.

3. Create a session over the connection.

4. Providing the retrieved JMS destination, create a message producer.

5. Create the message.

6. Send the message using the message producer.

7. Close the connection.

Required Class Path for Application Clients Using JMS Connector Lookup
When using the JMS Connector from an application client, the JAR files that must be
included in the class path are listed inTable 3–10, " Client-side JAR Files Required for
JMS Connector Lookup".

Table 3–10 Client-side JAR Files Required for JMS Connector Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

adminclient.jar /j2ee/<instance>/lib

oc4j-internal.jar /j2ee/<instance>/lib

connector.jar /j2ee/<instance>/lib

jmxri.jar /j2ee/<instance>/lib

jazncore.jar /j2ee/<instance>

oc4j.jar /j2ee/<instance>
Oracle Enterprise Messaging Service (OEMS) 3-61

Using High Availability and Clustering for OEMS JMS
Using High Availability and Clustering for OEMS JMS
A highly available JMS server provides a guarantee that JMS requests will be serviced
with no interruptions because of software or hardware failures. One way to achieve
high availability is through fail-over; if one instance of the server fails, then a
combination of software, hardware, and infrastructure mechanisms causes another
instance of the server to take over the servicing of requests.

For information about high availability, see the Oracle Application Server High
Availability Guide.

Table 3–11, " High Availability Summary" summarizes the support for high availability
in OEMS JMS.

OEMS JMS clustering provides an environment where JMS applications deployed in
this type of environment can load balance JMS requests across multiple OC4J instances
or processes. Clustering of stateless applications is trivial: the application is deployed
on multiple servers, and user requests are routed to one of them.

JMS is a stateful API. Both the JMS client and the JMS server contain state about each
other, which includes information about connections, sessions, and durable
subscriptions. Users can configure their environment and use a few simple techniques
when writing their applications to make them cluster-friendly.

The following sections discuss how to achieve high availability and clustering with
OEMS JMS:

■ Configuring OEMS JMS In-Memory and File-Based High Availability

■ Configuring OEMS JMS Database High Availability

■ Failover Scenarios When Using a RAC Database

■ Sample Code for Connection Recovery

■ Clustering Best Practices

Configuring OEMS JMS In-Memory and File-Based High Availability
OEMS JMS clustering normally implies that an application deployed in this type of
environment is able to load balance messages across multiple instances of OC4J. There
is also a degree of high availability in this environment because the container
processes can be distributed across multiple nodes. If any of the processes or nodes
goes down, then the processes on an alternate node continue to service messages.

This section describes the following OEMS JMS clustering topics:

■ Terminology

■ Distributed Destinations

Table 3–11 High Availability Summary

Feature Database In-Memory and File-Based

High availability RAC + OPMN OPMN

Configuration RAC configuration, resource provider
configuration

Dedicated JMS server, jms.xml configuration,
opmn.xml configuration

 Message store On RAC database In dedicated JMS server/persistence files

 Failover Same or different machine
(depending on RAC)

Same or different machine within Oracle
Application Server Cold Failover Cluster
(Midtier)
3-62 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
In this configuration, all factories and destinations are defined on all OC4J
instances. Each OC4J instance has a separate copy of each destination.

This configuration is good for high-throughput applications where requests must
be load balanced across OC4J instances. No configuration changes are required for
this scenario.

■ Cold Failover Cluster

This configuration is a two-node cluster. Only one node is active at any time. The
second node is made active if the first node fails.

■ Dedicated JMS Server

In this configuration, a single JVM within a single OC4J instance is dedicated as
the JMS server. All other OC4J instances that are hosting JMS clients forward their
JMS requests to the dedicated JMS server.

This configuration is the easiest to maintain and troubleshoot and should be
suitable for the majority of JMS applications, especially those where message
ordering is a requirement.

■ Custom Topologies

This section discusses reasons for using custom topologies, lists requirements and
impacts of various topology choices, and explains how custom topologies can be
created.

Custom topologies by their very nature are more complex to understand and use
correctly, and involve more configuration effort. They should only be used when
none of the standard configurations is adequate.

Terminology
The terms introduced here are explained in the Oracle Application Server High
Availability Guide and the Oracle Process Manager and Notification Server
Administrator’s Guide.

■ OHS—Oracle HTTP Server

■ OracleAS Cluster—A grouping of similarly configured Oracle Application Server
instances

■ Oracle Application Server Instance—Represents an installation of Oracle Application
Server (that is, an ORACLE_HOME)

■ OC4J Instance—Within an Oracle Application Server instance there can be multiple
OC4J instances.

■ Factory—Denotes a JMS connection factory

■ Destination —Denotes a JMS destination

Distributed Destinations
In this configuration, OHS services HTTP requests and load balances them across two
or more Oracle Application Server instances in an Oracle Application Server cluster.

Each copy of the destinations is unique and is not replicated or synchronized across
OC4J instances. Destinations can be persistent or in-memory. A message enqueued to
one OC4J instance can be dequeued only from that OC4J instance.

This type of deployment has several advantages:
Oracle Enterprise Messaging Service (OEMS) 3-63

Using High Availability and Clustering for OEMS JMS
■ High throughput is achieved because applications and the JMS server are both
running inside the same JVM and no interprocess communication is necessary.

■ Load balancing promotes high throughput as well as high availability.

■ There is no single point of failure. As long as one OC4J process is available, then
requests can be processed.

■ Oracle Application Server instances can be clustered without impacting JMS
operations.

■ Destination objects can be in-memory or file-based.

Figure 3–2 Distributed Destinations

Configuring a Distributed Destinations Cluster
Within each Oracle Application Server instance, two OC4J instances have been
defined. Each of these OC4J instances is running a separate application. In other
words, OC4J instance #1 (Home1) is running Application #1 while OC4J instance #2
(Home2) is running Application #2. Remember, each OC4J instance can be configured
to run multiple JVMs, allowing the application to scale across these multiple JVMs.

Within an Oracle Application Server cluster, the configuration information for each
Oracle Application Server instance is identical (except for the instance-specific
information such as host name, port numbers, and so on). This means that Application
#1 deployed to OC4J instance #1 in Oracle Application Server instance #1 is also
deployed on OC4J instance #1 in Oracle Application Server instance #2. This type of
architecture allows for load balancing of messages across multiple Oracle Application
Server instances—as well as high availability of the JMS application, especially if
Oracle Application Server instance #2 is deployed to another node to ensure against
hardware failure.
3-64 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
The sender and receiver of each application must be deployed together on an OC4J
instance. In other words, a message enqueued to the JMS Server in one OC4J process
can be dequeued only from that OC4J process.

All factories and destinations are defined on all OC4J processes. Each OC4J process has
a separate copy of each destination. The copies of destinations are not replicated or
synchronized. So, in the diagram, Application #1 is writing to a destination called
myQueue1. This destination physically exists in two locations (Oracle Application
Server instance #1 and #2) and is managed by the respective JMS servers in each OC4J
instance.

Note that this type of JMS deployment is suited only for specific types of JMS
applications. Assuming that message order is not a concern, messages are enqueued
onto distributed queues of the same name. Given the semantics of JMS point-to-point
messaging, messages must not be duplicated across multiple queues. In the preceding
case, messages are sent to whatever queue the load balancing algorithm determines,
and the MDBs dequeue them as they arrive.

Cold Failover Cluster
This configuration is a two-node cluster. Only one node is active at any time. The
second node is made active if the first node fails. For larger clusters, Cold Failover
Clustering can be used in combination with the dedicated JMS server configuration
described in the next section by having two nodes configured to be the dedicated JMS
server, but having only one of them active at any given time. For Cold Failover
documentation, see the Oracle Application Server High Availability Guide.

Configuring a Cold Failover Cluster
Configure both nodes identically as described in the following example. Modify the
jms.xml file for both OC4J instances. Set the host parameter in the jms-server to
be:

<jms-server host=vmt.my.company.com port="9127">
….
….
</jms-server>

When using file-based message persistence for a queue, the file must be located on a
shared disk that is accessible by both nodes. The shared disk must fail over with the
virtual IP when failing over from one node to the other. Configure the
persistence-file as follows:

<queue name="Demo Queue" location="jms/demoQueue"
persistence-file="/path/to/shared_file_system/demoQueueFile">
 <description>A dummy queue</description>
</queue>

Stop and Start
On each node, use the following commands to stop and start:

$ORACLE_HOME/opmn/bin/opmnctl stopall
$ORACLE_HOME/opmn/bin/opmnctl startall

Oracle Enterprise Messaging Service (OEMS) 3-65

Using High Availability and Clustering for OEMS JMS
Dedicated JMS Server
In this configuration, a single OC4J instance is configured as the dedicated JMS server
within an Oracle Application Server clustered environment. This OC4J instance
handles all messages, thus message ordering is always maintained. All JMS
applications use this dedicated server to host their connection factories and
destinations, and to service their enqueue and dequeue requests.

Only one OC4J JVM is acting as the dedicated JMS provider for all JMS applications
within the cluster. This is achieved by limiting the JMS port range in the opmn.xml file
to only one port for the dedicated OC4J instance.

Although this diagram shows the active JMS server in the OC4J Home instance, Oracle
recommends that the JMS provider be hosted in its own OC4J instance. For example,
although Home is the default OC4J instance running after an Oracle Application Server
installation, you should create a second OC4J instance with the Oracle Enterprise
Manager 10g Application Server Control Console. In the opmn.xml file example
following, we have created an OC4J instance called JMSserver.

Figure 3–3 Dedicated JMS Server

After creating an OC4J instance called JMSserver, we must make the following two
changes to the opmn.xml file for this Oracle Application Server instance:

1. Make sure that only one JVM is started for this OC4J instance (JMSserver).

The single JVM in the OC4J instance ensures that other JVMs will not attempt to
use the same set of persistent files.

2. Specify only one value for the JMS port range for this instance.

The single port value ensures that OPMN always assigns this value to the
dedicated JMS server. This port value is used to define the connection factory in
the jms.xml file that other OC4J instances will use to connect to the dedicated
JMS server.

For more information on OPMN and dynamic port assignments, see the Oracle
Process Manager and Notification Server Administrator’s Guide.
3-66 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
Modifying the OPMN Configuration

The following XML from the opmn.xml file shows what changes must be made and
how to find where to make these changes.

■ Assuming an OC4J instance has been created through Application Server Control
Console called JMSserver, then the line denoted by (1) demonstrates where to
locate the start of the JMSserver definition.

■ The line denoted by (2) is the JMS port range that OPMN uses when assigning JMS
ports to OC4J JVMs. For the desired dedicated OC4J instance that acts as your JMS
provider, narrow this range down to one value. In this example, the original range
was from 3701-3800. In our connection factory definitions, we know the port to
use by configuring this value as 3701-3701.

■ The line denoted by (3) defines the number of JVMs that will be in the JMSserver
default group. By default, this value is set to 1. This value must always be 1.

<ias-component id="OC4J">
 (1) <process-type id="JMSserver" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
 "/>
 </category>
 <category id="stop-parameters">
 <data id="java-options"
 value="-Djava.security.policy=
 $ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="ajp" range="3000-3100"/>
 <port id="rmi" range="3201-3300"/>
 (2) <port id="jms" range="3701-3701"/>
 (3) <process-set id="default_group" numprocs="1"/>
 </process-type>
</ias-component>

Configuring OEMS JMS As already described in this scenario, one of the OC4J instances
is dedicated as the JMS server. Other OC4J instances and standalone JMS clients
running outside OC4J must be set up to forward JMS requests to the dedicated JMS
server. All connection factories and destinations are defined in the JMS server
instance's jms.xml file. This jms.xml file should then be copied to all the other OC4J
instances that will be communicating with the JMS server.

The connection factories configured in the jms.xml file on the dedicated JMS server
must specify, explicitly, the host name and the port number of the server. The host
name and port number in jms.xml must match the host name and single port
number defined by OPMN for the dedicated server as discussed above. The same
connection factory configuration must also be used in all other OC4J instances so that
they all point to the dedicated JMS server for their operations.

Thus, if the dedicated JMS server runs on host1, port 3701, then all connection
factories defined within the jms.xml file for each OC4J instance in the cluster must
Oracle Enterprise Messaging Service (OEMS) 3-67

Using High Availability and Clustering for OEMS JMS
point to host1, port 3701—where this port is the single port available in the
opmn.xml file used in the dedicated OC4J instance (in our example, JMSserver)
used for the dedicated JMS server.

The destinations configured in the jms.xml file on the dedicated JMS server should
also be configured on all other OC4J instances; the physical store for these
destinations, however, is on the dedicated JMS server.

Queue Connection Factory Definition Example
Here is an example for defining a queue connection factory in the jms.xml file of the
dedicated server:

<!-- Queue connection factory -->
<queue-connection-factory name="jms/MyQueueConnectionFactory"
 host="host1" port="3701"
 location="jms/MyQueueConnectionFactory"/>

Administrative changes (that is, adding a new destination object) should be made to
the dedicated JMS server’s jms.xml file. These changes should then be made in the
jms.xml files of all other OC4J instances running JMS applications. Changes can be
made either by hand or by copying the dedicated JMS server’s jms.xml file to the
other OC4J instances.

Deploying Applications The user decides where the JMS applications will actually be
deployed. Although the dedicated JMS server services JMS requests, it can also
execute deployed JMS applications. JMS applications can also be deployed to other
OC4J instances (that is, Home).

Remember, the jms.xml file from the dedicated JMS server must be propagated to all
OC4J instances where JMS applications are to be deployed. JMS applications can also
be deployed to standalone JMS clients running in separate JVMs.

High Availability OPMN provides the failover mechanism to keep the dedicated JMS
server up and running. If for some reason the JMS server fails, then OPMN detects this
and restarts the JVM. If a hardware failure occurs, then the only way to recover
messages is to have the persisted destinations hosted on a network file system. An
OC4J instance can then be brought up and configured to point to these persisted files.

See the Oracle Process Manager and Notification Server Administrator’s Guide for
more information on how OPMN manages Oracle Application Server processes.

Custom Topologies
In addition to the previously discussed configurations, OEMS JMS can be configured
into arbitrary user-defined topologies.

Mechanisms

This section discusses the mechanisms that allow custom topologies to be created and
to function. These mechanisms are already defined in other places in this document,
however this section also covers some of the finer points that need to be understood
when using a custom topology.

Using a JMS server other than the one in the local OC4J JVM requires a connection
factory that references the desired JMS server. This is done by way of a host and port
mapping.

First, the JMS server must be associated with a host and port. Usually, the host is the
single host/IP address of the machine on which the JMS server is run. In the case of a
3-68 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
machine with multiple host/IP addresses, all addresses will be associated with the
JMS server unless a specific address is specified via the "host" attribute of the
<jms-server> element in the jms.xml file. The port is 9127 unless a different
value is specified via the "port" attribute. See the <jms-server> entry in Table 3–2,
" Configuration Elements" on page 3-21, and also see "Configuring Ports" on
page 3-26. When OPMN is used, the "port" attribute is ignored and port assignment
is handled automatically from a range of port values set in the opmn.xml file. See
"Modifying the OPMN Configuration" on page 3-67.

Once the host and port have been designated for each JMS server, then connection
factories can be made to reference specific JMS servers. The first step in making a
connection factory reference a specific JMS server is to set the host attribute of the
connection factory element to be the same as the host/IP address of the given JMS
server. See <connection-factory>, <xa-connection-factory>, and the other
connection factory elements in Table 3–2, " Configuration Elements" on page 3-21.
When making a connection factory reference a JMS server on the same machine where
that machine has a single host/IP address, this step may be skipped (the "host"
attribute may be left out). The next step in making a connection factory reference a
specific JMS server is to set the "port" attribute of the connection factory element to be
the same as the port of the given JMS server. If the port is 9127, this step may be
skipped (the "port" attribute may be left out).

If connection factory CF1 has been configured (as described in the previous
paragraph) to reference JMS server JMS1, then a connection created from CF1 is a
connection to JMS1. All operations performed via that connection will go to JMS1. It is
not possible to use that connection to interact with any other JMS server. (It is not even
possible to use that connection to interact with the JMS server running in the local
JVM, unless it happens to be JMS1.) Likewise, if that connection is used to create a
session, and that session to create a message producer, then that session and message
producer are both connected to JMS1. All messages sent via that message producer
will go to JMS1, will be stored (in memory or file) by JMS1, and can only be received or
browsed from JMS1 (via a message consumer or queue browser that is connected to
JMS1). Note that this JMS server association does not extend to javax.jms.Message
objects. Message objects created or received from a session or message producer
associated with one JMS server may be sent using any message producer. For
example, an application could receive a message from a physical destination
maintained by JMS server "JMS1" using a message consumer associated with "JMS1",
and then send that message to a physical destination maintained by JMS server "JMS2"
using a message producer associated with "JMS2".

When dealing with multiple JMS servers, it is necessary to draw a distinction between
physical destinations (physical locations where messages are stored), destination
configuration (elements/attributes in jms.xml) and destination admin objects (Java
objects looked up in JNDI).

From the perspective of a JMS server:

■ A name (whether from a destination configuration or from a destination admin
object) uniquely identifies a physical destination - one controlled solely by the
given JMS server.

■ The persistence-file attribute (or its absence) tells the JMS server where it
should persist the messages for a given physical destination.

■ The location attribute tells the JMS server where to bind a destination admin object
(containing the value of the name attribute) in JNDI in the local JVM.

From the perspective of a JMS client:
Oracle Enterprise Messaging Service (OEMS) 3-69

Using High Availability and Clustering for OEMS JMS
■ Destination admin objects do not contain JNDI locations. Instead, they are
looked-up at a JNDI location.

■ Destination admin objects do not have any persistence file settings. Instead, the
persistence file (if any) used for a given physical destination is determined by the
JMS server that controls that physical destination.

■ Destination admin objects contain only a name, and names do not uniquely
identify a physical destination. When interacting with JMS server JMS1, a
destination admin object will be considered to be a reference to a physical
destination controlled by JMS1. When interacting with JMS server JMS2, that
same destination admin object will be considered to be a reference to a different
physical destination - one controlled by JMS2. (If, when interacting with a JMS
server, a destination admin object is used whose name does not match the name of
any physical destination on the given JMS server, the operation will fail.)

For example, given an excerpt from JMS server JMS1's jms.xml file:

 <queue name="queue1"
 location="jms/alpha"
 persistence-file="foo">
 </queue>

And given an excerpt from JMS server JMS2's jms.xml file:

 <queue name="queue1"
 location="jms/omega"
 persistence-file="bar">
 </queue>

 <queue name="queue2"
 location="jms/alpha">
 </queue>

In Table 3–12, " Results for Various Message Scenarios" on page 3-70, if a destination is
looked-up from the server in column 1 using the JNDI location from column 2, and
then a message producer connected to the server in column 3 is used to send a
PERSISTENT message, the result is as described in the final column.

Table 3–12 Results for Various Message Scenarios

Destination
looked-up in the
same JVM as

JNDI location used
to look up
destination

Message producer
connected to

Result (physical destination that receives
message, or error)

JMS1 jms/alpha JMS1 JMS1's "queue1", persisted to file "foo"

JMS1 jms/alpha JMS2 JMS2's "queue1", persisted to file "bar"

JMS2 jms/alpha JMS2 JMS2's "queue2", stored in memory on JMS2

JMS2 jms/alpha JMS1 Error (JMS1 does not have a "queue2")

JMS1 jms/omega don’t care Error looking up "jms/omega" in JNDI

JMS2 jms/omega JMS1 JMS1's "queue1", persisted to file "foo"

JMS2 jms/omega JMS2 JMS2's "queue1", persisted to file "bar"
3-70 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
Note that the above example (and the connection factories in the "Distributed
Destinations" configuration) bind/require different values for the same JNDI location
in different JVMs, and therefore require that JNDI values not be automatically
propagated from one JVM to another.

When using the following combination:

■ OPMN (automatic JMS port assignment)

■ One or more dedicated JMS servers

■ Multiple OC4J instances per machine

Care should be taken to ensure that:

■ The range of available JMS ports is just enough for the number of JMS servers on
the given machine. This guarantees that the dedicated JMS server port number
actually gets assigned to one of the available JMS servers.

■ The persistence files (if any) for the destination(s) controlled by the dedicated JMS
serve are specified in the jms.xml file(s) using absolute paths. If a path is relative
to the OC4J instance, then previously persisted messages would be lost after a
server restart when OPMN assigns the dedicated JMS server port number to a JMS
server in a different OC4J instance than it did after the previous restart.

Considerations

The "Dedicated JMS Server" and "Distributed Destinations" configurations are the only
configurations where each instance of an arbitrary JMS application is guaranteed to
only ever communicate with a single JMS server. The considerations discussed in this
section do not apply to those scenarios. They also do not apply to other scenarios
where it can be guaranteed that a JMS application instance only ever communicates
with a single JMS server.

For example, if all instances of application A use JMS server #1 and all instances of
application B use JMS server #2, then the following considerations are not applicable.

In other scenarios, where a single JMS application instance interacts with two or more
JMS servers, there are several consequences:

■ There is an application-complexity impact:

Since a JMS server is selected based on the connection factory (and its derived
objects), using multiple JMS servers from a single application instance requires the
use of multiple connection factories (and derived objects such as sessions,
consumers and producers). For example, if an application uses producer A to
enqueue a message to JMS server #1, it is not possible to also use producer A to
enqueue a message to JMS server #2. Instead, a different producer, derived from a
different connection factory than the one from which producer A was derived,
must be used. (To be specific, a producer derived from a connection factory
associated with JMS server #2 must be used.) This also means that using multiple
JMS servers may not be possible with a pre-existing JMS application unless the
application already accommodates (or can be modified to accommodate) this
prerequisite.

■ There is a performance impact:

Since two different JMS servers represent two different resource managers, global
transactions involving two JMS servers will always require two-phase commit,
even if no other resource types (such as JDBC) are used during the transaction.
Even if two-phase commit was already required for a given transaction, when
more resource managers participate in a transaction, the cost (in performance) of
Oracle Enterprise Messaging Service (OEMS) 3-71

Using High Availability and Clustering for OEMS JMS
the transaction goes up. However, using multiple JMS servers is still a
performance win in many scenarios since it can be used to offload work from
potential bottlenecks (such as a single, dedicated JMS server) and increase both
parallelism and locality.

These same considerations also apply if a single JMS application instance is using two
different JMS resource providers. For example, an application might use OEMS JMS
In-Memory for memory-based or file-based persistence and also use OEMS JMS
Database for database-backed persistence.

Cases

This section shows two example situations driven by application-specific messaging
requirements, along with custom topologies that could be used to improve throughput
in each case. These examples should not be considered exhaustive, either in terms of
situations you may encounter or in topologies that can be created.

Case #1: Only some destinations need global consistency:
It may be that some destinations must provide global consistency, as provided by the
"Dedicated JMS Server" configuration, and other destinations have no such
requirement. In that case, it is not necessary to pay the expense of global consistency
(routing all messages through a single JMS server) for the destinations that do not
require it and could instead be locally partitioned, such as in the "Distributed
Destinations" configuration.

Say that destinations A and B need global consistency, and that destinations C and D
do not. In that case, all jms.xml files define all four destinations. One machine is
selected to host the dedicated JMS server for destinations A and B. The dedicated JMS
server must have fixed host and port values in order to allow connection factories to
reference it. At least two connection factories are defined in the jms.xml files, one that
references the dedicated JMS server (that is, with a fixed host and port value) and one
that references the JMS server in the local JVM (that is, with the default host and port
values). In order to access destinations A and B (and maintain global consistency), the
Java code must use a connection factory that references the dedicated JMS server. In
order to access destinations C and D, the Java code must use a connection factory that
references the JMS server in the local JVM.

Case #2: Using multiple dedicated JMS servers for load-balancing:
In the previous example, two destinations (A and B) needed global consistency. This
requires that destination A has a dedicated JMS server and that destination B has a
dedicated JMS server, but does not require that those two JMS servers be the same.
When multiple destinations requiring global consistency are heavily used, it may be
worth while to divide the load of those destinations across multiple dedicated JMS
servers. This is especially true for destinations that tend to not be involved in a
common transaction and/or when a multi-destination dedicated JMS server is acting
as a system bottleneck.

For this case, all jms.xml files define all four destinations. One machine is selected to
host the dedicated JMS server for destination A. Another machine (or another JVM on
the same machine) is selected to host the dedicated JMS server for destination B. Both
dedicated JMS servers must have fixed host and port values in order to allow
connection factories to reference them. At least three connection factories are defined
in the jms.xml files, one that references the dedicated JMS server for destination A, one
that references the dedicated JMS server for destination B, and one that references the
JMS server in the local JVM. In order to access destination A, the Java code must use a
connection factory that references the dedicated JMS server for destination A. In order
to access destination B, the Java code must use a connection factory that references the
3-72 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
dedicated JMS server for destination B. In order to access destinations C and D, the
Java code must use a connection factory that references the JMS server in the local
JVM.

Configuring OEMS JMS Database High Availability
To enable high availability the OEMS JMS Database option, run the following:

■ Run an Oracle database that contains the AQ queues and topics in RAC-mode.
This ensures that the database is highly available.

■ Run Oracle Application Server in OPMN-mode. This ensures that the application
servers (and applications deployed on them) are highly available.

Each application instance in an Oracle Application Server cluster uses OC4J resource
providers to point to the back end Oracle database, which is operating in RAC-mode.
JMS operations invoked on objects derived from these resource providers are directed
to the real application clusters (RAC) database.

If a failure of the application occurs, then state information in the application is lost
(that is, state of connections, sessions, and messages not yet committed). As the
application server is restarted, the applications must re-create their JMS state
appropriately and resume operations.

If network failover of a back-end database occurs, where the database is a non-RAC
database, then state information in the server is lost (that is, state of transactions not
yet committed). Additionally, the JMS objects (connection factories, destination objects,
connections, sessions, and so on) inside the application may also become invalid.

After the failure of the database occurs, those JMS objects will throw exceptions
whenever the application code attempts to use them. In order to recover, the
application must recreate any and all JMS objects which are throwing such exceptions.
This includes relooking up connection factories using JNDI.

Failover Scenarios When Using a RAC Database
An application that uses a RAC database must handle database failover scenarios.
There are two types of failover scenarios, as described in Chapter 4, "Data Sources".
The following sections demonstrate how to handle each failover scenario:

■ RAC Network Failover

■ Transparent Application Failover (TAF)

RAC Network Failover

A standalone client running against an RAC database must write code to obtain the
connection again, by invoking the API
com.evermind.sql.DbUtil.oracleFatalError(), to determine if the
connection object is invalid. It must then reestablish the database connection if
necessary. The oracleFatalError() method detects if the SQL error thrown by the

Note: The RAC-enabled attribute of a data source is discussed in
Chapter 4, "Data Sources". For more information on using this flag
with an infrastructure database, see the Oracle Application Server
High Availability Guide.
Oracle Enterprise Messaging Service (OEMS) 3-73

Using High Availability and Clustering for OEMS JMS
database during network failover is a fatal error. This method takes in the SQL error
and the database connection, and returns true if the error is a fatal error. If true, you
may wish to aggressively roll back transactions and re-create the JMS state (such as
connections, session, and messages that were lost).

The following example outlines the logic:

getMessage(QueueSesssion session) {
 try {
 Message msgRec = null;
 QueueReceiver rcvr = session.createReceiver(rcvrQueue);
 msgRec = rcvr.receive();
 } catch(Exception exc) {
 while (exc instanceof JMSException) {
 exc = ((JMSException) exc).getLinkedException();
 }
 if (exc instanceof SQLException) {
 sql_ex = (SQLException) exc;
 db_conn = (oracle.jms.AQjmsSession) session.getDBConnection();
 if ((DbUtil.oracleFatalError(sql_ex, db_conn)) {
 // failover logic
 }
 }
 }
}

Transparent Application Failover (TAF)

In most cases where TAF is configured, the application does not notice that failover to
another database instance has occurred. So, you need not do anything to recover from
failure.

However, in some cases, OC4J throws an ORA error when a failure occurs. The JMS
client passes these errors to the user as a JMSException with a linked SQL exception.
In this case, do one or more of the following:

■ As described in "RAC Network Failover" on page 3-73, you can use the
DbUtil.oracleFatalError method to determine if the error is a fatal error. If
it is not a fatal error, then the client recovers by sleeping for a short time and then
retrying the current operation.

■ You can recover from failback and transient errors caused by incomplete failover
by trying to use the JMS connection after a short time. Waiting allows the database
failover to recover from the failure and reinstate itself.

■ In the case of transaction exceptions (such as "Transaction must roll back"
(ORA-25402) or "Transaction status unknown" (ORA-25405)) you must roll back
the current operation and retry all operations past the last commit. The connection
is not usable until the cause of the exception is dealt with. If this retry fails, then
close and re-create all connections and retry all non committed operations.

Sample Code for Connection Recovery
The following example shows OEMS JMS application code that is can be used with
any of the persistence options, for a queue that is tolerant to intermittent connection
failures, such as may happen during network outages, server reboots, JMS server
failover, and other situations.
3-74 Oracle Containers for J2EE Services Guide

Using High Availability and Clustering for OEMS JMS
 while (!shutdown) {
 Context ctx = new InitialContext();

 // get the queue connection factory
 QueueConnectionFactory qcf =
 (QueueConnectionFactory) ctx.lookup(QCF_NAME);

 // get the queue
 Queue q = (Queue) ctx.lookup(Q_NAME);

 ctx.close();

 QueueConnection qc = null;
 try {
 // create a queue connection, session, sender and receiver
 qc = qcf.createQueueConnection();
 QueueSession qs = qc.createQueueSession(true, 0);
 QueueSender snd = qs.createSender(q);
 QueueReceiver rcv = qs.createReceiver(q);

 // start the queue connection
 qc.start();

 // receive requests using the queue receiver and send
 // replies using the queue sender
 while (!done) {
 Message request = rcv.receive();
 Message reply = qs.createMessage();

 // put code here to process request and construct reply

 snd.send(reply);
 qs.commit();
 }
 } catch (JMSException ex) {
 if (transientServerFailure) {
 // retry
 } else {
 shutdown = true;
 }
 } finally {
 // close the queue connection
 if (qc != null) qc.close();
 }
 }

J2CA Configuration for Connection Recovery
Note that connection pooling means that when a connection is closed by the
application, the physical connection is not actually closed by the connector but is
instead returned to the connection pool. If a connection fails, this can result in an
invalid connection being returned to the pool. Subsequent attempts to create a new
connection may then obtain an invalid connection, negating the value of the above
style of code. In order to make failover reliable, connection pooling should be disabled
for the connection factory used to create the connection. This is done by modifying the
the connection factory's <connector-factory> element in the oc4j-ra.xml file to
include the following:
Oracle Enterprise Messaging Service (OEMS) 3-75

JMS Router
 <connection-pooling use="none">
 </connection-pooling>

Clustering Best Practices
■ Minimize JMS client-side state.

– Perform work in transacted sessions.

– Save/checkpoint intermediate program state in JMS queues/topics for full
recoverability.

– Do not depend on J2EE application state to be serializable or recoverable
across JVM boundaries. Always use transient member variables for JMS
objects, and write passivate/activate and serialize/deserialize functions that
save and recover JMS state appropriately.

■ Do not use nondurable subscriptions on topics.

– Nondurable topic subscriptions duplicate messages per active subscriber.
Clustering and load-balancing creates multiple application instances. If the
application creates a nondurable subscriber, it causes the duplication of each
message published to the topic. This is either inefficient or semantically
invalid.

– Use only durable subscriptions for topics. Use queues whenever possible.

■ Do not keep durable subscriptions alive for extended periods of time.

– Only one instance of a durable subscription can be active at any given time.
Clustering and load-balancing creates multiple application instances. If the
application creates a durable subscription, only one instance of the application
in the cluster succeeds. All other instances fail with a JMSException.

– Create, use, and close a durable subscription in small time/code windows,
minimizing the duration when the subscription is active.

– Write application code that accommodates failure to create durable
subscription due to clustering (when some other instance of the application
running in a cluster is currently in the same block of code) and program
appropriate back-off strategies. Do not always treat the failure to create a
durable subscription as a fatal error.

JMS Router
This section describes the JMS Router.

Functionality
In the present complex and disparate enterprise-computing environment, a messaging
infrastructure must integrate and interoperate with various messaging systems to
achieve maximum connectivity.

The JMS Router provides a reliable asynchronous JMS message routing service that
can bridge:

■ Destinations of the same JMS provider.

■ Destinations of different JMS providers.
3-76 Oracle Containers for J2EE Services Guide

JMS Router
The JMS Router guarantees the following behavior:

■ For persistent JMS messages, the JMS Router guarantees exactly-once message
delivery.

■ For non-persistent JMS messages, the JMS Router guarantees at-most-once
message delivery.

■ The JMS Router guarantees the delivery of messages in the order they are received
by the JMS Router from the source destination.

Users can specify a message selector to selectively route messages when creating a
router job. Only the messages that satisfy the selector are routed from the source
destination to the target destination by the JMS Router. The message selectors must be
valid JMS message selectors. See the JMS 1.1 specification for the message selector
syntax and semantics for JMS queues and topics.

The JMS Router requires that the participating JMS provider support JMS 1.1 if either
the source or target of a JMS Router job is a JMS topic.

 You can access the JMS 1.1 specification at:
http://java.sun.com/products/jms/docs.html.

By bridging JMS destinations, the JMS Router provides users the following benefits:

■ The application that sends messages in one messaging system and the application
that receives messages in another messaging system are decoupled. It is not
necessary for the two applications to be aware of messages traveling across
different messaging systems.

■ An application that needs to send and receive messages to or from multiple
messaging systems need only connect to one messaging system and rely on the
JMS Router to distribute messages across multiple messaging systems. This
simplifies application code by eliminating the need to connect to multiple
messaging systems, to manage global transactions with 2-PC, and to deal with
message translation.

■ The automatic recovery and guaranteed message delivery by the JMS Router make
applications and application integration more reliable because the applications do
not need to require that all involved messaging systems be alive at the same time.

JMS Providers
The JMS Router uses the JMS Connector to access the following JMS providers:

■ OEMS JMS In-Memory, File-Based, and Database persistence options

■ IBM WebSphere MQ V6.0 JMS, MQ V5.3 JMS with Fix Pack 8 (CSD08)

■ TIBCO Enterprise for JMS version 3.1.0

■ SonicMQ 6.0 JMS

The JMS Router relies on the OC4J pre-packaged standalone JMS Connector instance
OracleASjms to access the OEMS JMS In-Memory and File-Based options that run in
the same container as the JMS Router. Therefore, there is no need to deploy any
additional adapters for routing messages to and from OEMS JMS In-Memory or
File-Based Destinations.

For routing messages to and from any JMS provider other than OracleAS JMS, there
must be a standalone JMS Connector deployed for the JMS provider.

The JMS Router uses the J2CA adapter's declarative container-managed sign-on
mechanism for JMS provider authentication and authorization. The JMS Router runs
Oracle Enterprise Messaging Service (OEMS) 3-77

JMS Router
on behalf of the role jmsRouter. Therefore, all the resource adapters used by the JMS
Router must have a valid principal mapping with either the <default-mapping>
element or a <principal-mapping-entry> element that has jmsRouter as
<initiating-user> in the oc4j-ra.xml.

Additional information on how to use the JMS Router for OEMS JMS is available at
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html.

Configuration
This section discusses configuration with respect to the following JMS Router objects:

■ Router Jobs

■ Global Router Parameter(s)

■ Subscription

■ Log Queues and Exception Queues

The primary administration interface of the JMS Router is the JMS Router MBean. The
MBean enables you to manage configuration, to start and stop individual JMS Router
jobs, and to monitor the status of the jobs.

The JMS Router may also be configured statically through the jms.xml file.

Router Jobs
The JMS Router job is defined as a message routing task to move messages from the
source destination to a target destination. When processing a router job, the JMS
Router dequeues messages from the source destination and enqueues the messages to
the target destination.

The source and the target destinations can be either JMS queues or topics. If the source
is a JMS queue, then the JMS Router moves all messages from the queue. If the source
is a topic, then the JMS Router moves all messages that are published to the topic since
the JMS durable subscriber was created.

A JMS Router job uses the objects described in Table 3–14, " JMS Router Settings" on
page 3-81.

The JMS Router uses the JMS Connector to access JMS destinations and connection
factories. The JMS Router requires that source and target destinations for all JMS
Router jobs exist in the accessed JMS provider, and are configured in the appropriately
configured JMS Connector. For information on configuring Queues, Topics, and
ConnectionFactories, see "Configuring Destination Objects and Connection Factories"
on page 3-19. For additional resource adapter configuration information, see "JMS
Connector" on page 3-51 and the Oracle Containers for J2EE Resource Adapter
Administrator’s Guide.

Global Router Parameter(s)
The number of concurrent jobs is configurable as a JMS Router attribute
maxLocalConcurrency. This attribute prevents a JMS Router with many active jobs

Note: JMS Router jobs must not share a source, whether it is a queue
or a durable subscriber.
3-78 Oracle Containers for J2EE Services Guide

JMS Router
from dominating the OC4J J2EE container. This also sets the upper limit on the number
of JMS sessions created by JMS Connectors that are used by the JMS Router.

Subscription
If the source is a JMS topic, the user may provide a durable subscriber name on the
topic. The actual durable subscriber can be created before the associated router job is
created. If the name of the durable subscriber is not specified, then the JMS Router
creates a subscriber name based on the name of the job. If the durable subscriber
associated with the subscriber name does not exist when the JMS Router starts to
process the job, then the router creates the durable subscriber. The JMS Router moves
all messages that are published to the topic since the durable subscriber was created.

By default, when a JMS Router job is deleted, the JMS Router attempts to remove the
durable subscriber. If the JMS Router fails to remove the durable subscriber, then the
user must remove it through the administration interface of the messaging system to
avoid unnecessary message accumulation. Users can also optionally ask the JMS
Router not to remove the durable subscriber when deleting a JMS Router job.

Log Queues and Exception Queues
This section discusses log queues and exception queues.

Log Queues
The JMS Router uses queues for internal logging. Each router job must have a source
log queue and a target log queue. These queues are used to ensure quality of service
when processing router jobs. For the OEMS JMS In-Memory and File-Based options,
the JMS Router creates log queues. For the OEMS JMS Database option and other
supported non-Oracle JMS providers, a JMS queue must be created on that system,
and the name of the queue must be specified when creating the router job. Log queues
may be shared by multiple jobs.

Log queues for the JMS Router must exist in the accessed messaging system and must
be configured in the appropriate resource adapter.

Exception Queues
When the JMS Router fails to send a message to the target destination, it blocks
processing of the associated router job in order to maintain message order.

In order for the JMS Router to keep processing a job with problematic messages, users
can configure the job with an exception queue into which the JMS Router can move the
problematic messages in order to process the remaining messages in the source
destination.

Each JMS Router job can have one exception queue, which must be a JMS queue in the
same messaging system as the source destination and accessible through the same
connection factory as that of the source destination. The physical JMS destination for
the exception queue must exist before it is used for any JMS Router jobs. In the OEMS
JMS In-Memory and File-Based options, an exception queue is already defined by
default -- Oc4jJmsExceptionQueue.

In order for the JMS Router to move problematic messages into the exception queue,
the useExceptionQueue flag must be set to true for the associated router job.

Optionally, exception queues, if configured, for the JMS Router must exist in the
accessed messaging system and must be configured in the appropriate resource
adapter.
Oracle Enterprise Messaging Service (OEMS) 3-79

JMS Router
Configuring the JMS Router and Its Objects
The primary administration interface of the JMS Router is the JMS Router MBean. Use
the MBean to manage configuration, to start and stop individual JMS Router jobs, and
to monitor the status of the jobs.

This section describes the operations and settings available in JMS Router MBean.

Path to the JMS Router MBean:
OC4J:Home > Administration tab > Services > JMS Providers > Click the icon. >
Select the appropriate tab. > Related Links: OracleASJMSRouter

The following table lists and describes the operations available on the JMS Router
MBean. All operations update the JMS Router dynamically and persist the changes to
jms.xml.

Table 3–14, " JMS Router Settings" lists and describes the router and router job settings
in the JMS Router MBean. The first column of the table lists the name of the setting in
the JMS Router MBean. The settings that you make in the JMS Router MBean are
persisted to the jms.xml file. The second column of the table lists the name of the
corresponding elements in the jms.xml file.

Note: The JMS Router exports a single JMS Router MBean per OC4J
instance: "jmsrouter:j2eeType=OracleASJMSRouter".

Table 3–13 JMS Router MBean Operations

Operation Description

addRouterJob Configures a JMS Router job.

alterRouterJob Alters the attributes of a JMS Router job. The default value for all
parameters to alterRouterJob is to leave them unchanged.

configureRouter Configures certain global parameters of the JMS Router, such as
maxLocalConcurrency.

pauseRouterJob Suspend the execution of a JMS Router job.

removeRouterJob Removes a JMS Router job.

resetRouterJob Resets the number of failures in the JMS Router job to zero.

resumeRouterJob Resume the execution of a JMS Router job.
3-80 Oracle Containers for J2EE Services Guide

JMS Router
Table 3–14 JMS Router Settings

MBean Setting XML Entity Description

jobName

Editable through the
addRouterJob operation.

<job-name>

Router job element

The name given to this router job. It must be unique for
the OC4J instance for which it is configured.

messageSource

Editable through the
addRouterJob operation.

<message-source>

Router job element

The JNDI location of the destination (topic or queue) to
be used as the source of messages.

If automatic destination wrapping is used, then the
name may be of the form:

<JNDIsubcontext>/providerName

where <JNDIsubcontext> is the automatic
destination wrapping JNDI subcontext as specified in
oc4j-connectors.xml.

For example, if automatic destination wrapping is used
with the JMS Connector, a name would be of the form:

OracleASjms/Queues/jms/queue_name

or

OracleASjms/Topics/jms/topic_name

sourceConnectionFact
ory

Editable through the
addRouterJob operation.

<source-connection-fa
ctory>

Router job element

The JNDI location of the connection factory used to
access the message source.

For example, using the JMS Connector, a name might
be

OracleASjms/MyCF

If the message source is a JMS Topic, this name must
refer to a connection factory that supports both JMS
Queues and Topics.

messageTarget

Editable through the
addRouterJob operation.

<message-target>

Router job element

The JNDI location of the destination (topic or queue) to
be used as the target for message propagation.

If automatic destination wrapping is used, then the
name may be of the form:

<JNDIsubcontext>/providerName

where <JNDIsubcontext> is the automatic
destination wrapping JNDI subcontext as specified in
oc4j-connectors.xml.

For example, if automatic destination wrapping is used
with the JMS Connector, a name would be of the form:

OracleASjms/Queues/jms/queue_name

or

OracleASjms/Topics/jms/topic_name
Oracle Enterprise Messaging Service (OEMS) 3-81

JMS Router
targetConnectionFact
ory

Editable through the
addRouterJob operation.

<target-connection-fa
ctory>

Router job element

The JNDI location of the connection factory used to
access messageTarget.

For example, using the JMS Connector, a name might
be

OracleASjms/MyCF

If the message source is a JMS Topic, this name must
refer to a connection factory that supports both JMS
Queues and Topics.

sourceLogQueue

Editable through the
addRouterJob operation.

<source-log-queue>

Router job element

The JNDI location of the queue to be used for JMS
Router internal logging for the source messaging
system. The log queue must be accessible through the
connection factory indicated by

sourceConnectionFactory.

This parameter is optional when using OEMS JMS
In-Memory or File-Based Destinations. In this case, if
not specified, then the JMS Router uses the queue

OracleASRouter_LOGQ

If this queue does not exist, then the JMS Router will
create it.

targetLogQueue

Editable through the
addRouterJob operation.

<target-log-queue>

Router job element

The JNDI location of the queue to be used for JMS
Router internal logging for the target messaging
system. The log queue must be accessible through the
connection factory indicated by

targetConnectionFactory.

This parameter is optional when using OEMS JMS
In-Memory or File-Based Destinations. In this case, if
not specified, then the JMS Router uses the queue

OracleASRouter_LOGQ

If this queue does not exist, then the JMS Router will
create it.

messageSelector

Editable through the
addRouterJob operation.

<message-selector>

Router job element

Optional. A message selector for selectively receiving
messages from the messageSource. The default is
none.

subscriberName

Editable through the
addRouterJob operation.

<subscriber-name>

Router job element

Optional. The name for a durable subscriber to use if
the messageSource is a topic. If the specified durable
subscriber does not exist and the messageSource is a
topic, then the JMS Router attempts to create it

The default value is

OracleASRouter_jobName

where jobName is the name of the Router job.

Table 3–14 (Cont.) JMS Router Settings

MBean Setting XML Entity Description
3-82 Oracle Containers for J2EE Services Guide

JMS Router
exceptionQueue

Editable through the
addRouterJob and
alterRouterJob
operations.

<exception-queue>

Router job element

The JNDI location of a queue into which undeliverable
messages are placed. The exception queue must be
accessible from sourceConnectionFactory.

This parameter need only be specified if
useExceptionQueue is true. When useExceptionQueue
is true, this parameter is optional when the message
provider is OEMS JMS In-Memory or File-Based
option. If not specified, then the JMS Router will use
the OEMS JMS exception queue,
Oc4jJmsExceptionQueue. This queue already exists,
so does not need to be created separately.

The default is null when using alterRouterJob.

maxRetries

Editable through the
addRouterJob and
alterRouterJob
operations.

max-retries

Router job attribute

Optional. The number of times the JMS Router will
attempt to deliver a message for this job before
suspending execution of the job.

The value must be an integer-valued string. If the string
does not represent an integer, then it is ignored and the
default is used.

The default is 16 when using addRouterJob. The
default is null when using alterRouterJob.

pollingInterval

Editable through the
addRouterJob and
alterRouterJob
operations.

polling-interval

Router job attribute

Optional. If no message is present in the message
source, then this parameter represents the minimum
time in seconds to wait before checking the message
source again.

The value must be a string representing an integer. If
the string does not represent an integer, then it is
ignored and the default is used.

The default is 5 when using addRouterJob. The
default is null when using alterRouterJob.

useExceptionQueue

Editable through the
addRouterJob and
alterRouterJob
operations.

use-exception-queue

Router job attribute

Optional. If the value is set to true and an exception
queue is available, then undeliverable messages will be
placed in it. Otherwise, no exception queue will be
used.

The default is false when using addRouterJob. The
default is null when using alterRouterJob.

pauseJob

Editable through the
addRouterJob operation.

pause-job

Router job attribute

Optional. If true, then the job is added in deactivated
mode.

To start the job, invoke resumeJob.

If not true, then the job is created in activated mode.

The default is false.

batchSize

Editable through the
addRouterJob and
alterRouterJob
operations.

batch-size

Router job attribute

Optional. The number of messages to dequeue and
enqueue in a single transaction.

The default is 30 when using addRouterJob. The
default is null when using alterRouterJob.

Table 3–14 (Cont.) JMS Router Settings

MBean Setting XML Entity Description
Oracle Enterprise Messaging Service (OEMS) 3-83

JMS Router
JMS Router Configuration in jms.xml

The file J2EE_HOME/config/jms.xml is used to persist JMS Router jobs and global
configuration.

In the jms.xml file, the JMS Router is configured in the <jms-router> element. A
<jms-router> element consists of zero or more <router-job> elements. A JMS
Router job is defined in the element <router-job>.

Table 3–14, " JMS Router Settings" lists and describes the JMS Router elements of the
jms.xml file.

Minimal Example: JMS Router in jms.xml
This example illustrates a minimal configuration for a single JMS Router job that uses
an OEMS JMS In-Memory queue as a source and an OEMS JMS In-Memory queue as
target, utilizing the globally deployed JMS Connector instance OracleASjms for JMS
objects.

<?xml version="1.0"?>
<jms xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema
Location="http://www.oracle.com/technology/oracleas/schema/jms-server-10_1.xsd"
schema-major-version="10" schema-minor-version="1">
 <!-- OracleAS JMS server configuration -- omitted for brevity -->
 <jms-server>
 ...
 </jms-server>

 <!-- JMS Router configuration -->
 <jms-router max-local-concurrency="-1" >

 <!-- Minimal configuration for a JMS Router job.-->
 <router-job job-name="routerjob1">

 <!-- The name of a JMS Router destination -->
 <message-source>OracleASjms/Topics/jms/mySource</message-source>

 <!-- Connection factory for the message source. -->

removeSubscriber

Editable through the
removeRouterJob
operation.

remove-subscriber

Router job attribute

If true and the router job used a durable subscriber,
then the JMS Router attempts to remove that durable
subscriber.

If false, then no attempt is made to remove the
durable subscriber. If the durable subscriber is not
removed successfully by the JMS Router, then the user
is responsible for its removal.

The default is true.

maxLocalConcurrency

Editable through the
configureRouter
operation.

maxlocalconcurrency

Global JMS Router attribute

Optional. The maximum concurrency of dequeue
operations possible. This argument places a limit on the
number of threads that the JMS Router can use to
dequeue messages at one time.

A negative number indicates the JMS Router will
enforce no limits on concurrency. The default behavior
is to enforce no limits.

Table 3–14 (Cont.) JMS Router Settings

MBean Setting XML Entity Description
3-84 Oracle Containers for J2EE Services Guide

JMS Router
 <source-connection-factory>OracleASjms/MyCF</source-connection-factory>

 <!-- The name of a JMS Router destination -->
 <message-target>OracleASjms/Queues/jms/myTarget</message-target>

 <!--Connection factory for the message target. -->
 <target-connection-factory>OracleASjms/MyCF</target-connection-factory>

 </router-job>
 </jms-router>

</jms>

Syntax Example: JMS Router in jms.xml
This example illustrates the syntax of the JMS Router portion of jms.xml by defining
a router job that provides values for all available attributes. It defines a configuration
for a single JMS Router job that uses OEMS JMS In-Memory queue as source and
OEMS JMS Database queue as target, utilizing the JMS Connector instance
OracleASjms for the source JMS objects, and the JMS Connector instance ojmsaq for
the target objects.

<?xml version="1.0"?>
<jms xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema
Location="http://www.oracle.com/technology/oracleas/schema/jms-server-10_1.xsd"
schema-major-version="10" schema-minor-version="1">
 <!-- OracleAS JMS server configuration -- omitted for brevity -->
 <jms-server>
 ...
 </jms-server>

 <!-- JMS Router configuration -->
 <jms-router max-local-concurrency="-1" >

 <router-job
 job-name="routerjob1"
 max-retries="16"
 polling-interval="5"
 pause-job="false"
 use-exception-queue="true"
 batch-size="30"
 >
 <!-- The name of an JMS Router source destination -->
 <message-source>OracleASjms/Topics/jms/mySource</message-source>

 <!-- Connection factory for the message source. -->
 <source-connection-factory>OracleASjms/MyCF</source-connection-factory>

 <!-- A message selector used at the message source -->
 <message-selector>color='blue'</message-selector>

 <!--This is the default subscriber name for this job as written to this
file by the JMS Router -->
 <subscriber-name>OracleASRouter_routerjob1</subscriber-name>

 <!--There is no need to specify the log queue for OracleAS JMS, but the
default value will be written back to this file by the JMS Router -->

<source-log-queue>OracleASjms/Queues/OracleASRouter_LOGQ</source-log-queue>
Oracle Enterprise Messaging Service (OEMS) 3-85

JMS Router
 <!-- An exception queue -->
 <exception-queue>OracleASjms/Queues/jms/myExQ</exception-queue>

 <!-- The name of an JMS Router target destination -->
 <message-target>ojmsaq/Queues/Queues/MyDBTarget</message-target>

 <!-Connection factory for the message target. -->
 <target-connection-factory>ojmsaq/CF</target-connection-factory>

 <!-- A log queue must be specified for all providers but OracleAS JMS.
This queue must already exist ->
 <target-log-queue>ojmsaq/Queues/Queues/MyJMSRouterLog</target-log-queue>

 </router-job>
 </jms-router>

</jms>

Managing the Router
This section describes the JMS Router MBean operations for managing the JMS
Router.

The JMS Router MBean enables you to:

■ Start and stop individual JMS Router jobs

■ Monitor router job status

■ Monitor and query the JMS Router

Table 3–13, " JMS Router MBean Operations" on page 3-80 lists and describes the JMS
Router MBean operations.

Path to the JMS Router MBean:
OC4J:Home > Administration tab > Services > JMS Providers > Click the icon. >
Select the appropriate tab. > Related Links: OracleASJMSRouter

Router Logging
The JMS Router logs all significant events and error messages to the standard OC4J log
file. The logger name is oracle.j2ee.jms.router.

JMS Router Status Information
You can access JMS Router run-time status information using the
RouterJobsStatus and RouterGlobalStatus attributes of the JMS Router
MBean.

Table 3–15 JMS Router and Router Job Status

Statistic Description

NumberJobs The number of configured jobs

RouterState A string representing the JMS Router state

Retries Number of times the JMS Router has failed
to deliver a message for this job
3-86 Oracle Containers for J2EE Services Guide

JMS Router
Error Handling
While processing a JMS Router job, the JMS Router may encounter various failures,
such as an unreachable source or target destination or messaging operation failures.
Based on the nature of the failures and the router job configuration, the JMS Router
handles failures as follows:

If the JMS Router fails to enqueue a message to the target destination due to the
content of the message and

■ if no exception queue exists or the flag useExceptionQueue is set to false for
the associated router job, then the JMS Router stops processing the router job.

■ if an exception queue is provided for the job and the flag useExceptionQueue is
set to true for the associated router job, then the JMS Router moves the message
into the exception queue and the job continues processing subsequent messages.

When moving a message from the source destination to the exception queue, the JMS
Router adds certain message properties to the original message to preserve error
information. These messages are listed and described in Table 3–16, " Properties
Added to Messages in Exception Queue".

ExceptionQMessages Number of messages moved to exception
queue by this job

LastErrorTime If this job is in an error state, the time last
error occurred

TargetQMessages Number of messages propagated to target
queue by this job

JobState A string representing the state of this job

Table 3–16 Properties Added to Messages in Exception Queue

JMS Property Description

oraMsgRouter_origMsgid ID of the source message

oraMsgRouter_jobName Name of the router job

oraMsgRouter_srcCF Name of the connection factory used for
dequeue/enqueue

oraMsgRouter_srcQName Name of the source queue from which the message was
obtained

oraMsgRouter_moveReason Reason the message was moved to exception queue

oraMsgRouter_moveTime Time the message was moved to exception queue

Table 3–15 (Cont.) JMS Router and Router Job Status

Statistic Description
Oracle Enterprise Messaging Service (OEMS) 3-87

JMS Router
If the failure is not due to the content of a message, the JMS Router will automatically
retry the failing operation in the increasing intervals

(2^n) * (pollingInterval),

with a maximum of 15 minutes, until it either succeeds or stops processing the router
job when it reaches the configurable maximum number of retries specified in the
maxRetries attribute, as described in Table 3–14, " JMS Router Settings" on
page 3-81.

If the JMS Router stops processing a router job because the number of retries specified
in the maxRetries setting has been reached, then users can call resetJob to reset
the failure count to 0 to resume processing of the job.

The failure count of each job is stored in memory. Therefore, when the JMS Router
restarts, the failure count of every job is reset to 0.

Pausing and Resuming a Job
A JMS Router job is in either activated or deactivated mode, as specified in the
pauseJob setting, described in Table 3–14, " JMS Router Settings" on page 3-81.

The JMS Router does not process jobs that are in deactivated mode.

You can use the pauseJob operation in the JMS Router MBean to put a job in
deactivated mode.

You can use the resumeJob operation in the JMS Router MBean to put a job in
activated mode.

By default, jobs are created in activated mode.

Running In a Clustered OC4J Environment
In a clustered OC4J environment, a JMS Router instance may run on each OC4J
instance. These JMS Router instances are configured independently and run without
knowledge of each other. A JMS Router job that is configured on an OC4J instance is
processed by only the JMS Router instance running in that OC4J instance.

■ Creating or managing a JMS Router job must be done using the JMS Router
MBean or jms.xml file of a particular OC4J instance.

■ All JMS connection factories and JMS destinations that are referenced by JMS
Router jobs defined on an OC4J instance must be accessible from that OC4J
instance

■ If an OC4J instance is terminated, no jobs defined for the JMS Router instance
running on the OC4J instance will be processed.

As a rule, different JMS Router jobs must not share a common source, i.e., a queue or a
durable subscriber. Otherwise the JMS Router jobs may run into unrecoverable
failures. In a clustered OC4J environment, this rule applies across all OC4J instances in
the cluster.

■ A JMS queue that is not an OEMS JMS In-Memory or File-Based distributed
destination, can only be the source of one JMS Router job across the entire OC4J
cluster.

■ A JMS topic that is not an OEMS JMS In-Memory or File-Based distributed
destination can be the source of multiple JMS Router jobs across the entire OC4J
cluster. However, the associated durable subscriber names must be unique in the
3-88 Oracle Containers for J2EE Services Guide

JMS Router
cluster. Specifically, if subscriber names of the JMS Router jobs are specified, the
subscriber names must be different. If the subscriber names are not specified, the
JMS Router job name must be unique across the cluster for jobs sharing the same
topic as a source, since the JMS Router generates the durable subscriber names
based on the JMS Router job names.

■ Each copy of an OEMS JMS In-Memory or File-Based distributed destination on an
OC4J instance in a cluster is treated by the JMS Router as a separate JMS
destination. In order to route messages from an OEMS JMS In-Memory or
File-Based distributed destination, a JMS Router job using the destination as the
source must be defined on each OC4J instance.

Routing with Remote Destinations
The JMS Router can route messages from one OC4J instance to another via OEMS JMS
by using OEMS JMS remote connection factories. For more information, see Custom
Topologies on page 3-68.

If a JMS Router job is defined using a connection factory for a remote OEMS JMS
instance, any JMS destinations accessed using that connection factory must be defined
on both the remote and local OC4J instances. If the source connection factory is remote,
these JMS destinations include the message source, the JMS Router source log queue,
and, optionally, an exception queue. If the target connection factory is remote,
applicable JMS destinations include the message target, and the JMS Router target log
queue.

The JMS Router log queue for OEMS JMS is named OracleASRouter_LOGQ. This
queue is normally created automatically when a JMS Router job using OEMS JMS is
first configured. However, when the message source or message target is remote, it
may need to be created manually on the remote instance. Alternatively, a different
persistent log queue may be created on the remote instance and specified when
creating the JMS Router job.
Oracle Enterprise Messaging Service (OEMS) 3-89

JMS Router
3-90 Oracle Containers for J2EE Services Guide

Data So
4

Data Sources

This chapter discusses Data Sources in Oracle Containers for J2EE (OC4J). It contains
the following sections:

■ Data Source Types, including:

– Managed Data Sources

– Native Data Sources

■ Defining Data Sources, including:

– Defining a Connection Pool

– Defining a Managed Data Source

– Defining a Native Data Source

– Using Password Indirection

■ Getting a Connection From a DataSource

■ Connections

■ Statements

■ Transactions

■ Configuring Data Source Objects

■ Configuration Examples

■ Using High Availability and Fast Connection Failover

■ Using JDBC Drivers

Tasks
The following OC4J Data Source tasks are described in this chapter:

■ Defining a Connection Pool

■ Defining a Managed Data Source

■ Defining a Native Data Source

■ Defining Fatal Error Codes

■ Using Password Indirection

■ Establishing a Connection
urces 4-1

Data Source Types
■ Using Connection Pools for Managed Data Sources

■ Using Connection Proxies with Managed Data Sources

■ Getting a Connection From a DataSource

■ Setting the JDBC Statement Cache Size in Data Sources

■ Configuring Data Source Objects

■ Using High Availability and Fast Connection Failover

■ Using JDBC Drivers

What’s New in 10.1.3
The following OC4J Data Source features and behaviors are new for this release:

■ Data source configuration can be performed entirely in the Oracle Enterprise
Manager 10g Application Server Control Console.

■ The OC4J Data Sources types are managed data sources and native data sources,
replacing emulated, non-emulated, and native.

■ OC4J tracks local transactions by default. This ensures that OC4J maintains
consistency across different database drivers and vendors. More importantly it
allows OC4J to avoid transaction corruption due to the interleaving of
transactions.

■ New connection caching mechanism that is uniform across Oracle data sources
and offers integrated Real Application Clusters (RAC) failover support. For more
information, see "Connection Pools" on page 4-23, Table 4–3, " Connection Pool
Attributes" on page 4-23, and "Implicit Connection Cache" on page 4-28.

Deprecated
The following item(s) are deprecated in this release:

■ The class OracleConnectionCacheImpl is deprecated in OC4J 10.1.3. This class
does not support multiple schemas, only one user can be cached.

■ The stmt-cache-size attribute is deprecated. In 10.1.3, to configure JDBC
statement caching for a data source, use the num-cached-statements attribute
to set the size of the cache instead of the stmt-cache-size attribute.

Additional Documentation
The following documents give additional data source information:

■ Oracle Database JDBC Developer's Guide and Reference

■ How-To overview documents with code examples available at:
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/i
ndex.html

■ Additional articles available at:
http://www.oracle.com/technology/tech/java/oc4j/index.html

Data Source Types
A data source is a Java object that implements the javax.sql.DataSource
interface. Data sources offer a portable, vendor-independent method for creating
connections to databases. A data source object's properties are set so that it represents
4-2 Oracle Containers for J2EE Services Guide

Defining Data Sources
a particular database. An application can use a different database by changing the
data source's properties; no change in the application code is required.

OC4J provides two types of data sources: managed and native.

Managed Data Sources
Managed data sources are managed by OC4J. This means that OC4J provides critical
system infrastructure such as global transaction management, connection pooling, and
error handling. A managed data source is an OC4J-provided implementation of the
javax.sql.DataSource interface that acts as a wrapper to a JDBC driver or data
source. J2EE components access managed data sources via JNDI with no knowledge
that the data source implementation is a wrapper.

Managed data sources differ from native data sources as follows:

■ The connections retrieved from a managed data source can participate in global
transactions.

■ A managed data source uses OC4J's connection pool and statement cache.

■ A connection returned from a managed data source is wrapped with an OC4J
Connection proxy.

Native Data Sources
Native data sources implement the javax.sql.DataSource interface and are
provided by JDBC driver vendors (such as Oracle and DataDirect.) Native data
sources differ from managed data sources as follows:

■ The connections retrieved from a native data source cannot participate in global
transactions.

■ A native data source does not use OC4J's connection pool or statement cache.

■ A connection returned from a native data source is not wrapped with an OC4J
Connection proxy.

For information on configuring native data sources, see Defining a Native Data Source
on page 4-6.

Defining Data Sources
The Application Server Control Console is your primary tool for managing data
sources including operations to create data sources and connection pools, remove data
sources and connection pools, and modify existing data sources and connection pools.

The online help in the Application Server Control Console provides useful information
on data source settings.

When the data sources are modified in the Application Server Control Console, the
data source settings are immediately persisted to the data-sources.xml file for that
application.

The default application's data sources configuration file is located in
$J2EE_HOME/config/data-sources.xml.

Each <data-source> tag in this file represents one data source that is bound into
JNDI and therefore accessible from client components (servlets, EJBs, etc.)
Data Sources 4-3

Defining Data Sources
This section shows examples of data source definitions in the data-sources.xml
configuration file.

For more information on defining data sources, see "Configuring Data Source Objects"
on page 4-17.

For examples of the data-sources.xml file, see the Configuration Examples section
on page 4-28.

Configuration Notes
When a data source is added, edited, or deleted directly in the data-sources.xml
file, you must restart OC4J to implement the changes.

When a data source is added, edited, or deleted in the Application Server Control
Console, it is not necessary to restart OC4J to implement the changes.

Each time you save your data source settings in the Application Server Control
Console, a new data-sources.xml file is generated and comments are lost.

The jndi-name of a data source must be unique for an application. You cannot have
duplicate jndi names in the same data-sources.xml file. For 10.1.3, OC4J throws
an exception if jndi location is repeated within a data-sources.xml file. You may
specify a jndi-name in the data-sources.xml file for an application that has
already been specified in the global data-sources.xml file. In this case, jndi
locations specified in the application data-sources.xml serve as overrides for those
locations in the application context.

Data sources are defined using the <data-source> tag. The class attribute can be
set to any full-path class name of the object implementing the
javax.sql.DataSource interface.

Certain well-defined properties are specified in this tag as well such as user,
password, url, and so on.

Properties that OC4J does not know about can be defined using a <property> tag.

OC4J-specific implementations DO NOT have any extra properties that can be set.
That is, all of their properties are set be means of the values specified in the
<data-source> tag.

Oracle-specific implementations such as oracle.jdbc.pool.OracleDataSource
DO have properties that can be set by means of the <property> sub tag of the
<data-source> tag.

For information about Oracle JDBC drivers, see the Oracle Database JDBC Developer's
Guide and Reference.

Non-Oracle vendor-specific implementations, such as DB2, Sybase, SQLServer, etc.
most likely also have properties outside of the ones defined in the <data-source>
tag that can be defined using the <property> tag. It is up to the user to determine
the properties of non-Oracle data source implementations.

Defining a Connection Pool
A managed data source uses a connection pool to efficiently manage connections. If
you will create managed data sources, you must define at least one connection pool
and its connection factory.

OC4J provides the connection pool feature to increase efficiency for managed data
sources by maintaining a cache of physical connections that can be reused. When a
client closes a connection, the connection gets placed back into the pool so that another
4-4 Oracle Containers for J2EE Services Guide

Defining Data Sources
client can use it. A connection pool improves performance and scalability by allowing
multiple clients to share a small number of physical connections.

For more information on the nature and purpose of connection pools, see Using
Connection Pools for Managed Data Sources on page 4-8.

Path to Connection Factory and Connection Pool Settings in the Application
Server Control Console
OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Drill down to desired settings.

Here is an example of defining a connection pool in the data-sources.xml file
instead of the Application Server Control Console.

<connection-pool name="myConnectionPool">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"

url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com"/>
 <property name="foo" value="bar"/>
 </connection-factory>
</connection-pool>

The <connection-pool> element contains a name attribute that uniquely identifies
the connection pool. Other attributes define parameters for the connection pool such
as the maximum number of connections that the connection pool will hold. A
connection pool uses a connection factory (defined by the <connection-factory>
element) to get physical connections from the database.

The <connection-factory> element contains the URL that the JDBC driver uses to
connect to the database plus an optional default user and password that can be used to
get connections from the database. The factory-class attribute defines the
implementation class provided by the JDBC driver that is used to get the connections.
The implementation class must be an implementation of one of the following:

■ java.sql.Driver

■ javax.sql.DataSource

■ javax.sql.XADataSource

■ javax.sql.ConnectionPoolDataSource.

For details on connection pool and connection factory settings, see Table 4–3,
" Connection Pool Attributes" on page 4-23.

Defining a Managed Data Source
After you have defined at least one connection pool you can define a managed data
source.

Note: The terms "connection pool" and "connection cache" are
synonymous.
Data Sources 4-5

Defining Data Sources
Path to Managed Data Source Settings

OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Data Sources > Create > Select Application > Select Data Source Type >
Managed

Here's an example of a managed data source definition in the data-sources.xml
file using the connection pool defined above:

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"/>

The name attribute uniquely identifies the managed data source. The jndi-name
attribute defines the location with which this data source will be placed into JNDI.
The connection-pool-name attribute identifies the connection pool with which this
managed data source will interact to get connections. This connection pool name
corresponds to the value specified for the name attribute in the <connection-pool>
element in the example in the example in the previous section "Defining a Connection
Pool".

Defining a Native Data Source
A native data source has no dependencies on a connection pool. As such, a native data
source definition includes data required to communicate with the underlying
database.

Path to Native Data Source Settings

OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Data Sources > Create > Select Application > Select Data Source Type > Native

Here's an example of native data source definition in the data-sources.xml file:

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 data-source-class="com.acme.DataSourceImpl"
 user="frank"
 password="frankpw"
 url="jdbc:acme:@localhost:5500:acme">
</native-data-source>

Additional data source configuration examples are shown in the article Data Source
Configuration in Oracle Application Server 10g available at
http://www.oracle.com/technology/tech/java/newsletter/articles/o
c4j_datasource_config.html

The name attribute uniquely identifies the native data source. The jndi-name
attribute defines the location with which this data source will be placed into JNDI.
The data-source-class attribute defines the implementation class of the native
data source and must be an implementation of javax.sql.DataSource. The user
and password attributes define the default user and password. The url attribute
defines the url that the data source will use to communicate with the database.
4-6 Oracle Containers for J2EE Services Guide

Defining Data Sources
Defining Fatal Error Codes
For each data source defined in data-sources.xml, you can define fatal error codes
that indicate that the back-end database with which the data source communicates is
no longer accessible. When OC4J detects one of these error codes (stated when a
SQLException is thrown by the JDBC driver), OC4J will clean its connection pool. That
is, it closes all connections in the connection pool. For Oracle, the predefined fatal
error codes are: 3113, 3114, 1033, 1034, 1089, and 1090.

Use the following procedure to define fatal error codes for non-Oracle databases or to
add additional fatal error codes for Oracle databases.

Use the <fatal-error-codes> element, which is a subtag of the
<connection-factory> element. The <fatal-error-codes> element uses the
child element <error-code> to define one fatal error code. You can define 0 - n
<error-code> elements for each <fatal-error-codes> element. For example,
for fatal error codes 10, 20, and 30, the data source definition would look like this:

<connection-pool name="myConnectionPool">
 <connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"

url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com"/>

 <fatal-error-codes>
 <error-code code='10'/>
 <error-code code='20'/>
 <error-code code='30'/>
 </fatal-error-codes>
 </connection-factory>
</connection-pool>

Using Password Indirection
The data-sources.xml file requires passwords for authentication. Embedding these
passwords without some kind of obfuscation poses a security risk. To avoid this
problem, OC4J supports password indirection.

An indirect password is made up of a special indirection symbol (->) and a user name
(or user name and realm). When OC4J encounters an indirect password, it retrieves the
password associated with the specified user from the security store provided by a user
manager.

For more information on creating users and passwords, and working with a user
manager, see the section on password management in the Oracle Containers for J2EE
Security Guide.

For example, if the native data source entry looks like:

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 data-source-class="com.acme.DataSourceImpl"
 user="frank"
 password="frankpw"
 url="jdbc:acme:@localhost:5500:acme">
 </native-data-source>

Data Sources 4-7

Connections
You can replace the password, "frankpw", with the indirection symbol (->) and a user
name (frank) as follows: password="->frank". This assumes that a user named
frank with the password frankpw has been created in a user manager.

You can configure password indirection in the Application Server Control Console.

To configure an indirect password for a data source directly in the
data-sources.xml file and change the value of the password attribute so that its
value is "->", followed either by the username or by the realm and user separated by a
slash ("/"). Here is an example:

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 data-source-class="com.acme.DataSourceImpl"
 user="frank"
 password="->frank"
 url="jdbc:acme:@localhost:5500:acme">
</native-data-source>

Note that there are password attributes for <native-data-source>,
<managed-data-source>, and <connection-factory> elements.

Connections
OC4J data sources return two types of connections:

■ Managed Connections - Connections returned from managed data sources come
from a connection pool and are wrapped by a proxy class thus allowing OC4J to
process SQL errors and to enlist these connections in global transactions. See
"Using Connection Proxies with Managed Data Sources" on page 4-9.

■ Native Connections - Connections returned from native data sources are not
manipulated in any way by OC4J. That is, the connections are not wrapped, do
not have proxies associated with them, and cannot participate in global
transactions.

Establishing a Connection
A data source produces connections by communicating with a database. Typically a
data source uses a URL to identify the machine, port, and database name, etc. that it
uses to communicate with that database.

For a managed data source, the URL is defined in that managed data source's
connection pool's connection factory. The connection factory's url attribute defines
the URL that is used to communicate with the database. The JDBC driver defines the
format of the URL. Several examples of the URL are provided throughout this
document.

For a native data source, the URL is defined by the url attribute of the
<native-data-source> element.

Using Connection Pools for Managed Data Sources
Basic implementations of data sources have a one-to-one correspondence between a
client's connection object and a physical connection. When the client closes the
connection, the physical connection is typically dropped. This incurs a lot of overhead
each time a client retrieves a connection from the data source.

OC4J's managed data sources make frequent use of connection pools.
4-8 Oracle Containers for J2EE Services Guide

Connections
A connection pool can be used by more than one managed data source; that is,
multiple managed data sources can share the same connection pool.

When a data source is defined to use the Oracle 10g JDBC driver, OC4J uses the
sophisticated connection pool that is provided by the Implicit Connection Cache (ICC)
that comes with that driver. OC4J data sources automatically use the ICC. All of the
connection pool attributes described in Table 4–3, " Connection Pool Attributes" on
page 4-23 apply to the ICC, unless otherwise specified. Some of the attributes apply
only to Implicit-Connection-Cache-enabled data sources (OracleDataSource and
OracleXADataSource). There is no additional configuration necessary to use the
ICC.

For information on connection pool configuration settings, see Table 4–3, " Connection
Pool Attributes" on page 4-23.

Connection pools are also provided for non-Oracle JDBC drivers and previous
versions of Oracle JDBC drivers. An example of configuring a connection pool are
described in the Configuration Examples section on page 4-28.

Using Connection Proxies with Managed Data Sources
When using managed data sources, OC4J wraps each connection retrieved from the
connection pool with a proxy object. This proxy enables OC4J to provide transaction
enlistment, exception handling, and logging.

Vendor-Specific Extensions
Clients can also use extensions to the java.sql interfaces that are provided by the
vendor implementations of these interfaces. For example, the Oracle extension of the
java.sql.Connection interface is the oracle.jdbc.OracleConnection. This
interface provides Oracle-specific APIs that are not part of the
java.sql.Connection interface. OC4J provides a configuration element that
allows you to limit the interfaces that the proxy should implement so that the client
has access to only those APIs. This configuration element can be used to specify
additional interfaces for any of the java.sql.* interfaces. By default the proxies
implement any public interface that is implemented by the underlying object.

For information on setting proxies, see Table 4–3, " Connection Pool Attributes" on
page 4-23.

Here is an example of defining a connection proxy and a statement proxy for a
connection pool in a data-sources.xml file instead of the Application Server
Control Console.

<connection-pool name="myConnectionPool">
 <connection-factory
 factory-class="com.acme.AcmeDataSource"
 user="scott"
 password="tiger"
 url="jdbc:acme:@localhost:1234:acme"/>
 <property name="foo" value="bar"/>
 <proxy-interface sql-object="Connection"
 interface="com.acme.AcmeConnection"/>
 <proxy-interface sql-object="CallableStatement"
 interface="com.acme.AcmeCallableStatement"/>
 </connection-factory>
</connection-pool>
Data Sources 4-9

Connections
In this example, proxies generated for Connection objects would only expose the
com.acme.AcmeConnection interface, regardless of what other interfaces are
implemented by the underlying connection object. Likewise, proxies generated for
Statement objects would only expose the com.acme.AcmeStatement interface. This
gives the data source deployer a way to limit the interfaces exposed by the proxy
objects.

Getting a Connection From a DataSource
This section provides sample code for getting a connection from a data source and
executing a statement.

 Connection connection = null;
 try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource) context.lookup("jdbc/ManagedDS");
 connection = ds.getConnection();
 Statement statement = connection.createStatement();
 statement.execute("select * from dual");
 statement.close();
 }
 catch(Exception exception) {
 // process exception
 }
 finally {
 if (connection != null)
 {
 try {
 connection.close();
 }
 catch(SQLException sqlException){}
 }
 }

Notes:

Take care to always close a connection that is retrieved from a data
source even when exceptions are thrown.

The string used to perform the lookup must match the value of a JNDI
Location jndi-name setting in a managed data source or a native
data source.
4-10 Oracle Containers for J2EE Services Guide

Statements
Retry
Under certain circumstances a data source may not be able to return a connection. The
most common cause for this is when all of the connections in the connection pool are
in use. You may want the data source to wait for a period of time and then check the
connection pool to see if it has any available connections before returning.

There are two connection pool configuration settings that you can use to control the
amount of time to wait if a connection is not available in the pool and the number of
times to retry asking the connection pool for a connection.

The max-connect-attempts setting defines the number of times that a managed
data source will retry getting a connection from the connection pool (when all of the
connection pool's connections are in use.) The connection-retry-interval
setting specifies the interval to wait (in seconds) before attempting to get a connection
from the connection pool after the last failed attempt. For more on these settings, see
Connection Pool Attributes on page 4-23.

Here is an example of configuring the retry in the data-sources.xml instead of the
Application Server Control Console. The example sets the max-connect-attempts
to 5 seconds and the connection-retry-interval to 3 seconds.

<connection-pool name="myConnectionPool"
max-connect-attempts="5"
connection-retry-interval="3">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"

url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com"/>
 </connection-factory>
</connection-pool>

Statements
Managed data sources provide caching and proxies to make working with statements
more efficient.

Notes:

When using getConnection(), if no user/password is passed in,
then the user and password specified in the definition of the
connection factory is automatically used and the connection is
successfully created. If different user/passwords are specified in
connection factory, one pair in attributes and a different pair in
properties, then getConnection(), uses the user/password
specified in the properties.

Specifying the connection factory user/password is described in
Table 4–4, " Connection Factory Attributes" on page 4-27.

Connection factory properties is discussed in Connection Factory
Properties on page 4-21.
Data Sources 4-11

Statements
Statement Caching with Managed Data Sources
Statement caching improves performance by caching executable statements that are
used repeatedly and makes it unnecessary for programmers to explicitly reuse
prepared statements. Statement caching eliminates overhead due to repeated cursor
creation, repeated statement parsing and creation and reduces overhead of
communication between the application server and the database server. The following
is true about statement caching:

■ Statement caching and reuse is transparent to an application.

■ Each statement cache is associated with a physical connection. That is, each
physical connection will have its own statement cache.

■ The statement match criteria are the following:

– The SQL string in the statement must be identical (case-sensitive) to one in the
cache.

– The statement type must be the same (prepared or callable).

– The scrollable type of result sets produced by the statement must be the same
(forward-only or scrollable).

– Maximum Number of Statements Cached

Setting the JDBC Statement Cache Size in Data Sources
To lower the overhead of repeated cursor creation and repeated statement parsing and
creation, you can use statement caching with database statements. To enable JDBC
statement caching, which caches executable statements that are used repeatedly,
configure a datasource to use statement caching. A JDBC statement cache is associated
with a particular physical connection maintained by a datasource. A statement cache is
not per data source so it is not shared across all physical connections. The JDBC
statement cache is maintained in the middle-tier (not in the database server).

You can dynamically enable and disable statement caching programmatically using
the setStmtCacheSize() method on the connection object.

To configure JDBC statement caching for a data source, use the
num-cached-statements attribute to set the size of the cache. This attribute sets the
maximum number of statements to be placed in the cache. If you do not specify the
num-cached-statements attribute or set it to 0, the statement cache is disabled.

 The following XML sets the statement cache size to 200 statements:

 <data-source>
 ...
 num-cached-statements="200"
 </data-source>

To set the num-cached-statements attribute, first determine how many distinct
statements the application issues to the database. Then, set the size of the cache to this
number. If you do not know the number of statements that your application issues to
the database, you can use the JDBC performance metrics to assist you with
determining the statement cache size. To use the statement metrics you need to set the
Java property oracle.jdbc.DMSStatementMetrics to true for the OC4J.
4-12 Oracle Containers for J2EE Services Guide

Transactions
Statement Cache Size Resource Issues
Even though the num-cached-statements is specified for a data source, statements
are cached per connection, not per data source or connection pool. In other words,
each managed connection acquired from a given data source will maintain its own
statement cache if num-cached-statements is greater than 0 for that data source.

You should be aware that statements held in a connection's statement cache may hold
on to database resources. It is possible that the number of opened connections
combined with the number of cached statements per connection could exceed the limit
of open cursors allowed for the database. You may be able to avoid this problem by
reducing the num-cached-statements value or by increasing the limit of open
cursors allowed for the database.

Statement Proxies with Managed Data Sources
All implementations of the java.sql.* interfaces (managed data sources) are
wrapped by OC4J with a proxy object. This includes the statement objects as well
(java.sql.Statement, java.sql.PreparedStatement, and
java.sql.CallableStatement).

For information on setting proxies, see the Connection Factory Proxy Interfaces tab
description in Table 4–3, " Connection Pool Attributes" on page 4-23.

Under certain conditions, a connection proxy may rebind to a new physical
connection. This can happen, for example, when a connection proxy is used across a
transaction. When this occurs, any statement objects obtained through the connection
proxy are no longer valid since they were created using the old physical connection.
For this reason, a proxy fronts statement objects acquired from the physical connection
as well. These statement proxies are associated with the connection proxy from which
they were obtained so that they can monitor the association with the underlying
physical connection. If the statement proxy determines that the physical connection
associated with its connection proxy has changed, then it will acquire a new physical
statement from the connection proxy.

Vendor-specific extensions to the java.sql.Statement,
java.sql.PreparedStatement, and java.sql.CallableStatement interfaces
can be made available to clients in the same manner as connections.

Transactions
J2EE supports two kinds of transactions:

■ Local Transactions - A local transaction is internal to a single resource.

■ Global Transactions - A global transaction is created by an external transaction
manager and is used to scope work on multiple resources.

Note: In 10.1.3, to configure JDBC statement caching for a data
source, use the num-cached-statements attribute to set the size of
the cache. The stmt-cache-size attribute is deprecated.
Data Sources 4-13

Transactions
Transaction support, including local transactions and global transactions, is discussed
in the Chapter 4, "Data Sources",

Local Transactions
When a managed data source is configured for local transactions it returns connections
that can participate in local transactions but cannot participate in global transactions.
This means that the connections will not be enlisted in global transactions. The data
source will set the auto commit to true for retrieved connections. However, it is up to
the client to determine how the connections will be used in local transactions. That is,
the client can change the auto-commit mode by using setAutoCommit() on a
connection.

To set a managed data source for local transactions, see the Transaction Level setting in
Table 4–1, " Managed Data Source Settings" on page 4-18.

To configure a data source for local transactions in the data-sources.xml file
instead of the Application Server Control Console, set the tx-level attribute to
"local" (The default value is "global".) Here's an example:

<managed-data-source
jndi-name="jdbc/ManagedDS"
name="Managed DataSource Name"
connection-pool-name="myConnectionPool"
tx-level="local"/>

Native data sources can only participate in local transactions so there is no setting for a
native data source for transaction support.

It is possible that a connection marked as local will be used inside a global
transaction. Although this case is not specifically addressed in the JDBC specification,
the specification implies that if a connection is not participating in a distributed
transaction then the connection behaves like a local connection. If a connection is not
enlisted in a global transaction then it is not participating in the transaction. Therefore
a connection produced by a data source that is configured with local transaction
will be treated as if it is in a local transaction even if work is performed on it inside a
global transaction. That is, if auto commit is set to false, then the work performed
on that connection cannot be committed or rolled back until commit or rollback is
called on the connection even if the commit or rollback is executed on the distributed
transaction. In this case, the connection only appears syntactically with the transaction
boundaries, but does not actually participate in that transaction semantically, that is, it
is not enlisted.

For example:
■ Get a connection, lc, from a data source configured for local transaction.

■ Begin a global transaction.

■ Get a connection, gc, from a data source that can be used in global transactions.

■ Perform work on both connections.

The work done on lc may be committed when the work is performed (if auto
commit is set to true) or commit/rollback may be called on lc (if auto commit is
set to false.)

■ Commit or rollback the global transaction.
4-14 Oracle Containers for J2EE Services Guide

Transactions
The work done on gc is now committed or rolled back. No work will be
committed on lc.

■ The work done on lc may be committed or rolled back by calling commit or
rollback on the connection (assuming that auto commit is set to false.)

Here is a code example of the above steps:

Connection lc = localTxDataSource.getConnection();
userTransaction.begin();
Connection gc = globalTxDataSource.getConnection();
lc.doWork();
gc.doWork();
userTransaction.commit();
// At this point work done on gc is now committed.
//The work done on lc is NOT yet committed.
lc.commit();
// At this point work done on lc is now committed.

Local Transaction Management
Typically a local transaction begins when a client sets autoCommit to false on a
connection and the local transaction ends when the client calls commit() or
rollback() on that connection. If no transactional work has been performed on the
connection when autoCommit is false then explicitly calling commit() or
rollback() on the connection may be deemed as unnecessary (the driver may be
smart enough to know that no transactional work was done so committing or rolling
back is not necessary.)

OC4J determines that there is an active local transaction on a connection when
autoCommit is false and any method, other than commit(), rollback(),
setAutoCommit(true), or close() has been called on the connection (note that
OC4J cannot determine if the work done on the connection is actually transactional or
not.) Calling commit(), rollback(), or changing the value of autoCommit ends
the current local transaction. If autoCommit is false and a method (other than
commit(), rollback(), setAutoCommit(true), or close) is subsequently called
on the connection then OC4J considers this the beginning of a new local transaction.

What happens when the client does not explicitly end the local transaction (by calling
commit(), rollback(), or setAutoCommit(true)) for the connection? There are
two cases to consider:

■ In the first case the client there is an active local transaction and the user closes the
connection.

■ In the second case there is an active local transaction and the connection is used in
a global transaction.

OC4J can handle these cases in two ways:

■ OC4J can manage local transactions and intercede when the connection is closed
or when the connection is used in the global transaction. More specifically, OC4J
can implicitly end the local transaction by calling commit() or rollback().
OC4J can also throw an exception when the connection is closed or when the
connection is used in a global transaction.

■ OC4J cannot manage local transactions and will not intercede in these cases. More
specifically, when a connection is closed or when a connection is used in a global
Data Sources 4-15

Transactions
transaction, then the resource must determine how to end the local transaction (or
not end it.) Note that when OC4J is configured to not manage local transactions it
is possible that when a connection is placed back into the connection pool it will
have an uncommitted local transaction active.

Global Transactions (XA)
When a managed data source is configured for global transactions, it returns
connections that can participate in global transactions. A global transaction (also called
a distributed transaction) enlists more than one resource in the transaction.

For information on how the transaction manager deals with global transactions when
there are outstanding JCA local transactions, see "Local Transaction Management" on
page 4-15.

For more on transactions, see Chapter 5, "OC4J Transaction Support".

To set a managed data source for global transactions, see the Transaction Level setting
in Table 4–1, " Managed Data Source Settings" on page 4-18.

To configure a data source for global transactions in the data-sources.xml file
instead of the Application Server Control Console, either do not include the
tx-level attribute (The default is "global".) or set the tx-level attribute to
global. Here's an example:

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"
 tx-level="global"/>

XA Recovery
When a global transaction fails, the transaction manager must perform XA recovery.
To do this, it must have some information defined for it for each resource to be
recovered. For data sources this means defining a recovery username and password
for each connection factory that uses a javax.sql.XADataSource as its
factory-class.

See the User and Password settings in Table 4–3, " Connection Pool Attributes" on
page 4-23

Here's an example of configuring XA recovery in the data-sources.xml file instead
of the Application Server Control Console. Note the xa-recovery-config node.

<connection-pool name="myConnectionPool">
 <connection-factory
 factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"

url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com"/>
 <xa-recovery-config>
 <password-credential>
 <username>system</username>
 <password>manager</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
</connection-pool>
4-16 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
Emulating XA
An emulated XAResource is an implementation of javax.sql.XAResource that
emulates the semantics of the XA protocol. This means that during a global
transaction, those connections that are associated with an emulated XAResource
follow the semantics of XA by using local transactions rather than transaction
branches controlled explicitly as a subset of the global unit of work.

Emulating an XAResource is needed to support JDBC drivers that do not supply
implementations of javax.sql.XADataSource. Also, an emulated XAResource
will perform faster than a true XAResource since the performance of an emulated
XAResource will not be affected by the overhead associated with true two-phase
commit.

Note that using emulated XAResources can lead to inconsistent or non-recoverable
outcomes when more than one XAResource is enlisted and at least one of them is
emulated. The reason for this is that during the prepare phase an emulated
XAResource does not perform a true prepare because it is using a local transaction.
One way that this can be a problem is that when commit is called on the emulated
XAResource its local transaction may have timed out which causes the local
transaction's commit to fail which in turn causes the entire transaction to be in an
inconsistent state.

OC4J automatically determines when to emulate XA behavior. It does this by
introspecting the connection factory's factory-class object (the factory-class
attribute specifies the object that is used by the connection factory to create
connections for the connection pool.) If this object is an instance of
javax.sql.XADataSource then OC4J does NOT emulate XA. If this object is an
instance of java.sql.Driver, javax.sql.DataSource, or
javax.sql.ConnectionPoolDataSource then OC4J emulates XA behavior for
this data source.

Configuring Data Source Objects
This section lists and describes the configuration settings for the various
data-source-related objects, whether you make the settings in the Application Server
Control Console or directly in the data-sources.xml file.

The settings are discussed in the following tables:

■ Table 4–3, " Connection Pool Attributes"

■ Table 4–1, " Managed Data Source Settings"

Notes:

■ If the factory-class is an instance of java.sql.Driver,
javax.sql.DataSource, or
javax.sql.ConnectionPoolDataSource then the XA
recovery configuration is not necessary. for more information, see
"Emulating XA" on page 4-17.

■ OracleXADataSource is also an instance of
javax.sql.XADataSource.
Data Sources 4-17

Configuring Data Source Objects
■ Table 4–2, " Native Data Source Settings"

For more information on configuring data source objects, see "Defining Data Sources"
on page 4-3.

Managed Data Sources
You must define at least one connection pool before you can define a managed data
source.

Path to Managed Data Source Settings

OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Data Sources > Create > Select Application > Select Data Source Type >
Managed

■ Each <managed-data-source> tag defines one managed data source.

■ Attributes are described in Table 4–1, " Managed Data Source Settings" on
page 4-18.

Here's an example of a managed data source definition in data-sources.xml:

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"/>

Table 4–1 Managed Data Source Settings

Application Server
Control Console
Property

<managed-data-
source> Attribute Description

Name name Required. The name of the data source. This must be a unique
value.

This name is used as the "name" key property of the
JDBCDataSource managed object
(j2eeType=JDBCDataSource,name=data source name).

JNDI Location jndi-name Required. The JNDI logical name for the data source object.
OC4J binds an instance of the data source into the application
JNDI namespace with this value.

Connection Pool connection-pool-
name

Required. The name of the connection pool that this managed
data source uses to get connections.

Schema schema The path to the database schema for this data source when using
the Orion CMP implementation for EJBs. This is provided for
backward compatibility.

Transaction Level tx-level The transaction level supported by this managed data source.

A value of local indicates that this data source and the
connections it produces may participate in local transactions
only.

A value of global indicates that this data source and the
connections it produces may participate in local and global
transactions.

Optional. Default = global.
4-18 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
Native Data Source
Path to Native Data Source Settings

OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Data Sources > Create > Select Application > Select Data Source Type > Native

Local Transaction
Management

manage-local-tra
nsactions

Specifies whether or not OC4J should manage local transactions.

■ If true, then the following happens when autoCommit is
false for a connection:

When close() is called on a connection, OC4J calls
commit() on the connection before calling close().

If the connection is used in a global transaction, then OC4J
calls rollback() on the connection and throws an
exception.

■ If false, then the following happens when autoCommit is
false for a connection:

When close() is called on a connection, OC4J will not call
commit() on the connection before calling close(). The
JDBC driver determines how to handle the local transaction.

If the connection is used in a global transaction, then OC4J
will not call rollback() on the connection nor will it
throw an exception. The JDBC driver determines how to
handle the local transaction.

Optional. Default = true.

SQL Object
Management

manage-sql-objec
ts

Determines how OC4J manages the java.sql.* objects.
Managing one of these objects means that OC4J will wrap the
object in a proxy and will intercept the methods that are invoked
on the objects.

A value of all means that OC4J will manage all java.sql.*
objects.

A value of basic means that OC4J will manage only
java.sql.Connection, java.sql.Statement,
java.sql.PreparedStatement, and
java.sql.CallableStatement.

Optional. Default = basic.

Login Timeout login-timeout The maximum time, in seconds, that this data source will wait
while attempting to connect to a database. A value of 0 (zero)
specifies that the timeout is the default system timeout if there is
one; otherwise, it specifies that there is no timeout.

Optional. Default = 0

User user The default user to use to connect to the database.

Optional. No default.

Password password The default password to use to connect to the database.

Optional. No default.

Table 4–1 (Cont.) Managed Data Source Settings

Application Server
Control Console
Property

<managed-data-
source> Attribute Description
Data Sources 4-19

Configuring Data Source Objects
■ A native data source has no dependencies on a connection pool. As such, a native
data source definition includes data required to communicate with the underlying
database.

■ Each <native-data-source> tag defines one native data source.

■ Native data source settings are described in Table 4–2, " Native Data Source
Settings" on page 4-20.

■ Each "native-data-source" tag may have 0 or more "property" tags. Each
"property" tag defines a property on the native data source instance. Reflection
will be used on the native data source object to set the property's value. The
property name must match (case sensitive) the name of the setter method used to
set the property. For example, if there exists on the connection factory object a
property named "MyProp" then a method named "setMyProp" will be called to
set the property. Therefore the "property" tag's name must be "MyProp" in
order to set the property correctly.

<native-data-source
 name='My Native DataSource'
 jndi-name='jdbc/nativeDs'
 data-source-class='com.acme.DataSourceImpl'
 user='frank'
 password='frankpw'
 url='jdbc:acme:@localhost:5500:acme'>
 <property name="foo" value="bar"/>
</native-data-source>

Additional data source configuration examples are shown in the article Data Source
Configuration in Oracle Application Server 10g available at
http://www.oracle.com/technology/tech/java/newsletter/articles/o
c4j_datasource_config.html

Table 4–2 Native Data Source Settings

Application Server
Control Console
Property

<managed-data-
source> Attribute Description

Name name Required. The name of the data source. This must be a unique
value.

JNDI Location jndi-name Required. The JNDI logical name for the data source object.
OC4J binds an instance of the data source into the application
JNDI namespace with this value.

Data Source Class data-source-clas
s

Required. The name and path of the data source class
implementation. This must be an implementation of
javax.sql.DataSource.

URL url Required. The URL that will be used by the JDBC driver to
connect to the database. The URL typically identifies the
database host machine, port, and database name. For example:
jdbc:acme:@localhost:1234:acme
4-20 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
Connection Pools and Connection Factories

Path to Connection Factory and Connection Pool Settings
OC4J:Home > Administration tab > Task Name: Services > JDBC Resources: Go To
Task > Connection Pools > Drill down to desired settings.

Connection Factories
The connection-factory tag defines the connection factory that will be used to
create connections for the data source.

If the factory-class is an implementation of javax.sql.XADataSource, then
the connections retrieved from this connection factory will be able to participate in
global transactions and will NOT have their XA capabilities emulated. If the
factory-class is not an implementation of javax.sql.XADatatSource, then the
connections retrieved from this connection factory will emulate the XA behavior when
participating in global transactions.

Connection Factory Properties Each <connection-factory> tag can have zero or
more <property> tags. Each <property> tag defines a property on the connection
factory instance.

If the connection factory is an implementation of java.sql.Driver then each of
these driver properties is placed in a java.util.Properties object that is used by
the driver when it retrieves connections from the database.

If the connection factory is an implementation of javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, or javax.sql.XADataSource, then
reflection is used on the connection factory object to set the property's value.

The property name must match (case sensitive) the name of the setter method used to
set the property. For example, if there exists on the connection factory object a
property named MyProp, then a method named setMyProp() will be called to set
the property. Therefore the property tag's name must be MyProp in order to set the
property correctly.

Login Timeout login-timeout The maximum time, in seconds, that this data source will wait
while attempting to connect to a database. A value of 0 (zero)
specifies that the timeout is the default system timeout if there is
one; otherwise, it specifies that there is no timeout.

Optional. Default = 0.

User user The default user to use to connect to the data source.

Optional. No default.

 Password password The default password to use to connect to the data source.

Optional. No default.

Table 4–2 (Cont.) Native Data Source Settings

Application Server
Control Console
Property

<managed-data-
source> Attribute Description
Data Sources 4-21

Configuring Data Source Objects
Connection Factory Proxy Interface Each <connection-factory> tag may have zero or
more <proxy-interface> tags.

Each proxy interface is implemented by a proxy that wraps the connection objects
returned by the connection factory and the java.sql.* objects created by these
connection objects.

The SQL Object setting defines the java.sql.* object for which the proxy interface is
defined. This must be one of the following:

■ "Array"

■ "Blob"

■ "CallableStatement"

■ "Connection"

■ "DatabaseMetaData"

■ "ParameterMetaData"

■ "PreparedStatement"

■ "Ref"

■ "resultSet"

■ "ResultSetMetaData"

■ "Savepoint"

■ "SQLData"

■ "SQLInput"

■ "SQLOutput"

■ "Struct"

■ "Statement"

The interface attribute defines the fully qualified path of the interface that the proxy to
this object will implement.

There may be more than one proxy interface defined for each SQL object.

The interface attribute defines the fully qualified path of the interface that the
proxy to this object will implement.

Note:

It is possible to specify two different user/passwords in connection
factory, one user/password in attributes and a different
user/password in properties, as in the following example. In this case
getConnection(), uses the user/password specified in the
properties, in this example, scott2/tiger2, not the one specified in the
attributes.

 <connection-factory user="scott1" password="tiger1" ...>
 <property name="user" value="scott2" />
 <property name="password" value="tiger2" />
 </connection-factory>
4-22 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
There may be more than one proxy-interface tag defined for each SQL object.

The <xa-recover-config> tag defines the information needed for the transaction
manager to perform recovery when a global transaction fails. The <username> sub
tag defines the username used to perform the recovery. The <password> sub tag
defines the password used to perform recovery.

Connection Properties
The <connection-properties> tag defines the connection properties that will be
set on the connection factory when the connection factory is an instance of
oracle.jdbc.pool.OracleDataSource (including instances that are derived
from oracle.jdbc.pool.OracleDataSource). Each connection property is
defined by the <property> sub-tag. There may be 0 - N <property> sub-tags
defined for the <connection-properties> tag.

Connection Pools
A managed data source uses a connection pool to efficiently manage connections. If
you will create managed data sources, you must define at least one connection pool
and its connection factory.

The <connection-pool> tag defines one connection pool.

Each <connection-pool> tag must have one <connection-factory> tag.

Table 4–3 Connection Pool Attributes

Application Server
Control Console
Setting

<connection-pool>
Attribute Description

Name name Required. The name of the connection pool. This must be a
unique value.

Minimum Number of
Connections

min-connections The minimum number of connections that the connection
pool will maintain.

Optional. Default = 0.

The min-connections setting specifies the minimum
number of connections that will be kept in the pool at any
given time assuming the following activity:

■ There are no connections in use. If there are connections
in use, then they are not in the pool, so there may be <
min-connections> in the pool.

■ There have been sufficient connections created and were
simultaneously in use such that the connection pool was
required to create those connections.

For example, if min-connections is 10 and only 2
connections were ever used, then the number of connections
available in the pool would be 2. OC4J will not create
connections unnecessarily.
Data Sources 4-23

Configuring Data Source Objects
Maximum Number of
Connections

max-connections The maximum number of connections that the connection
pool can contain.

A value of 0 indicates:

■ The data source connection pool is off. Connections are
not pooled.

■ All other connection pool settings are ignored.

A negative value indicates that the connection pool is on and
there is no maximum limit.

Optional. Default = No limit.

When the session starts, if max-connections is set lower
than min-connections, then min-connections is reset
to the value of max-connections.

Initial Size of
Connection Cache

initial-limit The size of the connection cache when the cache is initially
created or reinitialized. When this property is set to a value
greater than 0, that many connections are pre-created and are
ready for use. This parameter is typically used to reduce the
ramp-up time in priming the cache to its optimal size.

Optional. Default = 0.

When the initial-limit of a connection pool is greater
than 1, but the user/password is not provided in the
connection-factory, OC4J fails to start and throws an error. See
the note after Table 4–4, " Connection Factory Attributes" on
page 4-27.

When the session starts, if initial-limit is set greater
than max-connections (for example, initial-limit=10
and max-connections=5), then only the
max-connections number (5) of connections will be
initialized.

When the session starts, if initial-limit is set less than
min-connections, (for example, initial-limit=10 and
min-connections=15), then only the initial-limit
number (10) of connections will be initialized. Later on, when
more connections are called, the min-connections number
of connections will be maintained for the pool.

Wait for Used
Connection Timeout

used-connection-wa
it-timeout

The amount of time to wait, in seconds, for a used connection
to be released by a client.

This parameter only applies when the maximum number of
connections has been retrieved from the data source and are
in use. In this case when a client tries to borrow a connection
from the pool and all connections are in use, the connection
pool will wait for a connection to be released back to the pool.

Optional. Default = 0.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Table 4–3 (Cont.) Connection Pool Attributes

Application Server
Control Console
Setting

<connection-pool>
Attribute Description
4-24 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
Inactivity Timeout inactivity-
timeout

The amount of time to wait, in seconds, that an unused
connection may be inactive before it is removed from the
pool.

Optional. Default = 60.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Login Timeout login-timeout The maximum amount of time, in seconds, that this data
source will wait while attempting to connect to a database.

A value of 0 specifies that the timeout is the default system
timeout if there is one; otherwise, it specifies that there is no
timeout.

Optional. Default = 0.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Connection Retry
Interval

connection-retry
-interval

The interval to wait, in seconds, the before retrying a failed
connection attempt.

This parameter is used in conjunction with
max-connect-attempts.

Optional. Default = 1.

Maximum Connection
Attempts

max-connect-
attempts

The number of times to retry making a connection.

This parameter is used in conjunction with
connection-retry-interval.

Optional. Default = 3.

Validate Connection validate-
connection

Oracle Implicit Connection Cache only.

Indicates whether or not a connection, when borrowed from
the pool, will be validated against the database. Validation is
performed by the SQL statement specified as the value of the
validate-connection-statement parameter.

A value of true indicates that when a connection is
borrowed from the connection pool, the SQL statement is
executed to verify that the connection is valid.

Optional. Default = false, meaning that no validation is
performed.

SQL Statement for
Validation

validate-
connection-
statement

Oracle Implicit Connection Cache only.

If validate-connection is true, the SQL statement
executed when a connection is borrowed from the pool.

Optional. No default.

Maximum Number of
Statements Cached

num-cached-
statements

The maximum number of SQL statements that should be
cached for each connection. Any value greater than 0
automatically enables statement caching for the data source.

Optional. Default = 0.

For more detail, see "Setting the JDBC Statement Cache Size
in Data Sources" on page 4-12.

Table 4–3 (Cont.) Connection Pool Attributes

Application Server
Control Console
Setting

<connection-pool>
Attribute Description
Data Sources 4-25

Configuring Data Source Objects
Max Active Time for a
Used Connection

time-to-live-timeo
ut

Oracle Implicit Connection Cache only.

The maximum time, in seconds, a used connection may be
active.

When this timeout expires, the used connection is
unconditionally closed, the relevant statement handles
canceled, and the connection is returned to the connection
pool.

Optional. Default = -1 means that the feature is not enabled.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Abandoned
Connection Timeout

abandoned-
connection-
timeout

Oracle databases only.

The amount of time to wait, in seconds, that an unused
logical connection may be inactive before it is removed from
the pool.

This parameter is similar to inactivity-timeout, but on a
logical connection borrowed from the cache by the user.
When set, JDBC monitors SQL database activity on this
logical connection.

For example, when a stmt.execute() is invoked on this
connection, a heart beat is registered to convey that this
connection is active. The heart beats are monitored only at
places (to lower the cost of monitoring), that result in
database execute calls.

If a connection has been inactive for the specified amount of
time, the underlying PooledConnection is reclaimed and
returned to the cache for reuse.

Optional. Default = -1, indicating that the feature is disabled.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Disable Server
Connection Pooling
(checkbox)

disable-server-
connection-
pooling

Whether or not to disable the application server's connection
pool.

This parameter is provided because some JDBC drivers
provide connection pooling inside the driver.

f the JDBC driver is Oracle and the driver is using the Implicit
Connection Cache, then this parameter is ignored.

Optional. Default = false, indicating that the pool is
enabled.

Table 4–3 (Cont.) Connection Pool Attributes

Application Server
Control Console
Setting

<connection-pool>
Attribute Description
4-26 Oracle Containers for J2EE Services Guide

Configuring Data Source Objects
Table 4–4 lists and describes the connection factory attributes.

Enforce Timeout
Limits Interval

property-check-int
erval

Oracle databases only.

Used with Oracle databases only. The time interval, in
seconds, for the cache daemon thread to enforce the time out
limits.

Optional. Default = 900.

For a timeout setting to be enforced, the
property-check-interval must be set lower than that
timeout setting.

Lower Threshold
Limit On Pool

lower-threshold-li
mit

Oracle databases only.

Used with Oracle databases only. The lower threshold limit
on the connection pool as a percentage of the value indicated
in max-connections.

Optional. Default = 20 percent.

Table 4–4 Connection Factory Attributes

Application Server
Control Console
Setting

<connection-factory>
Attribute Description

Connection Factory
Class

factory-class Required. The name and path of the connection factory class
that will be used to create connections for the data source.
This class is provided by the JDBC driver. For example:
com.acme.AcmeDataSource

This class must be an implementation of java.sql.Driver,
javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, or
javax.sql.XADataSource.

If the factory-class is an implementation of
javax.sql.XADataSource then the connections retrieved
from this connection factory will be able to participate in
global transactions and will NOT have their XA capabilities
emulated. If the factory-class is not an implementation
of javax.sql.XADatatSource then the connections
retrieved from this connection factory will emulate the XA
behavior when participating in global transactions.

URL url Required. The URL that will be used by the JDBC driver to
connect to the database. The URL typically identifies the
database host machine, port, and database name. For
example: jdbc:acme:@localhost:1234:acme

Table 4–3 (Cont.) Connection Pool Attributes

Application Server
Control Console
Setting

<connection-pool>
Attribute Description
Data Sources 4-27

Configuration Examples
Implicit Connection Cache The Oracle Implicit Connection Cache (ICC) is a sophisticated
connection pool that comes with the Oracle 10g JDBC driver. OC4J data sources
automatically use the ICC. There is no additional configuration necessary to use the
ICC.

Table 4–3, " Connection Pool Attributes" lists and describes the Connection Pool
attributes. All of the connection pool attributes described in Table 4–3 apply to the
Implicit Connection Cache (ICC), unless otherwise specified. Some of the attributes
(identified) apply only to Implicit-Connection-Cache-enabled data sources
(OracleDataSource and OracleXADataSource).

Configuration Examples
This section shows examples of data source definitions in the data-sources.xml
configuration file.

The default application's data sources configuration file is located in
$J2EE_HOME/config/data-sources.xml.

User user The default user to use to connect to the database.

Optional. No default.

When the initial-limit of a connection-pool is greater than 1,
but the user/password is not provided in the
connection-factory, OC4J fails to start and throws an error. See
the note after this table.

Password password The default password to use to connect to the database.

Optional. No default.

Login Timeout login-timeout The maximum amount of time, in seconds, that this data
source will wait while attempting to connect to a database.

A value of 0 specifies that the timeout is the default system
timeout if there is one; otherwise, it specifies that there is no
timeout.

Optional. Default = 0.

Note: When the initial-limit of a connection-pool is greater than 1,
but the user/password is not provided in the connection-factory,
OC4J fails to start and throws an error.

SEVERE: Error occurred initializing connectors. Exception is: Error
creating data source connection pool. Exception:
oracle.oc4j.sql.DataSourceException: Could not get/create instance of
ConnectionCacheManager. Exception: User credentials doesn't match
the existing ones com.evermind.server.ApplicationStateRunning
initConnector

This error occurs because there is no user/password to initialize the
connections in the pool.

Table 4–4 (Cont.) Connection Factory Attributes

Application Server
Control Console
Setting

<connection-factory>
Attribute Description
4-28 Oracle Containers for J2EE Services Guide

Configuration Examples
Each application can have its own data-sources.xml file. If an application has its
own, then it is located in the root directory of the application.

This section contains the following information:

■ Syntax of the data-sources.xml File

■ Examples: Configuring Data Sources, including:

– Example: Native Data Source

– Example: Managed Data Source Using an XADataSource Connection Factory

– Example: Managed Data Source Using a DataSource Connection Factory

– Example: Managed Data Source Using a Driver Connection Factory

– Example: Defining Proxy Interfaces

– Example: Defining XA Recovery

■ Examples: Configuring Transaction Level, including:

– Global

– Local

■ Examples: Configuring Fast Connection Failover, including:

– Thin

– OCI

Syntax of the data-sources.xml File
Data source settings are persisted in an Enterprises Application’s
data-sources.xml file. Each <data-source> tag in this file represents one data
source that is bound into JNDI and therefore accessible from client components
(servlets, EJBs, etc.)

The following example describes the syntax of the data-sources.xml file. See the
schema for details.

<managed-data-source
 attr1="val1"
 attr2="val2"
 …
/>

<native-data-source
 attr1="val1"
 attr2="val2"
 …>
 <property name="propertyName" value="propertyValue"/>
 …

</native-data-source>
<connection-pool
 attr1="val1"
 attr2="val2"
 …
>

 <connection-factory
 attr1="val1"
 attr2="val2"
Data Sources 4-29

Configuration Examples
 …>

 <proxy-interface sql-object="javaSQLObject" interface=""/>
 …
 <property name="propertyName" value="propertyValue"/>
 …

 <xa-recover-config>
 <password-credential>
 <username></username>
 <password></password>
 </password-credential>
 </xa-recovery-config>

 <fatal-error-codes>
 <error-code code="integerCode"/>
 …
 </fatal-error-codes>
 <connection-properties>
 <property name="propertyName value="propertyValue"/>
 …
 </connection-properties>

 </connection-factory>
</connection-pool

Populated examples
The following example shows populated examples of the data-sources.xml
definitions:

<?xml version="1.0" standalone="yes"?>
<data-sources>
 <connection-pool name="myConnectionPool" max-connections="30">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"

url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com"/>
 </connection-factory>
 </connection-pool>

 <managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"/>

 <native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 data-source-class="com.acme.DataSourceImpl"
 user="frank"
 password="frankpw"
 url="jdbc:acme:@localhost:5500:acme">
 </native-data-source>

</data-sources>
4-30 Oracle Containers for J2EE Services Guide

Configuration Examples
Examples: Configuring Data Sources
This section provides examples of data source configuration file definitions.

Additional data source configuration examples are shown in the article Data Source
Configuration in Oracle Application Server 10g available at
http://www.oracle.com/technology/tech/java/newsletter/articles/o
c4j_datasource_config.html

Example: Native Data Source
<native-data-source
 name='My Native DataSource'
 jndi-name='jdbc/nativeDs'
 data-source-class='com.acme.DataSourceImpl'
 user='frank'
 password='frankpw'
 url='jdbc:acme:@localhost:5500:acme'>
 <property name="foo" value="bar"/>
</native-data-source>

Example: Managed Data Source Using an XADataSource Connection Factory
This data source does NOT emulate XA behavior. See "Emulating XA" on page 4-17
for more information about emulating XA behavior.

<managed-data-source
 name='My Managed DataSource'
 jndi-name='jdbc/managedDs_1'
 connection-pool-name='myConnectionPool'/>

<connection-pool
 name='myConnectionPool'
 min-connections='5'
 max-connections='25'>
 <connection-factory
 factory-class='oracle.jdbc.xa.client.OracleXADataSource'
 user='scott'
 password='tiger'

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com'>
 </connection-factory>
</connection-pool>

Example: Managed Data Source Using a DataSource Connection Factory
This data source emulates XA behavior. See "Emulating XA" on page 4-17 for more
information about emulating XA behavior.

<managed-data-source
 name='My Managed DataSource'
 jndi-name='jdbc/managedDs_1'
 connection-pool-name='myConnectionPool'/>

<connection-pool
 name='myConnectionPool'
Data Sources 4-31

Configuration Examples
 min-connections='5'
 max-connections='25'>
 <connection-factory
 factory-class='oracle.jdbc.pool.OracleDataSource'
 user='scott'
 password='tiger'

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com'>
 </connection-factory>
</connection-pool>

Example: Managed Data Source Using a Driver Connection Factory
This data source emulates XA behavior. See "Emulating XA" on page 4-17 for more
information about emulating XA behavior.

<managed-data-source
 name='My Managed DataSource'
 jndi-name='jdbc/managedDs_1'
 connection-pool-name='myConnectionPool'/>

<connection-pool
 name='myConnectionPool'
 min-connections='5'
 max-connections='25'>
 <connection-factory
 factory-class='oracle.jdbc.OracleDriver'
 user='scott'
 password='tiger'

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com'>
 </connection-factory>
</connection-pool>

Example: Defining Proxy Interfaces
<connection-pool
 name='myConnectionPool'
 min-connections='5'
 max-connections='25'>
 <connection-factory
 factory-class='oracle.jdbc.pool.OracleDataSource'
 user='scott'
 password='tiger'

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com'>
 <proxy-interface sql-object="Connection"
 interface="oracle.jdbc.internal.OracleConnection"/>
 <proxy-interface sql-object="Statement"
 interface="oracle.jdbc.OracleStatement"/>
 <proxy-interface sql-object="CallableStatement"
 interface="oracle.jdbc.OracleCallableStatement"/>
 <proxy-interface sql-object="ResultSet"
 interface="oracle.jdbc.OracleResultSet"/>
 <proxy-interface sql-object="PreparedStatement"
 interface="oracle.jdbc.OraclePreparedStatement"/>
 </connection-factory>
4-32 Oracle Containers for J2EE Services Guide

Configuration Examples
</connection-pool>

Example: Defining XA Recovery
<connection-pool
 name='myConnectionPool'
 min-connections='5'
 max-connections='25'>
 <connection-factory
 factory-class='oracle.jdbc.xa.client.OracleXADataSource'
 user='scott'
 password='tiger'

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com'>
 <xa-recovery-config>
 <password-credential>
 <username>system</username>
 <password>manager</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
</connection-pool>

Example: Connection Properties
<managed-data-source
 jndi-name="jdbc/managedDs_1"
 name="Managed DataSource"
 connection-pool-name="myConnectionPool"/>

<connection-pool
 name="myConnectionPool">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"

url='jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com’>
 <connection-properties>
 <property name="oracle.jdbc.RetainV9LongBindBehavior"
 value="true"/>
 </connection-properties>
 </connection-factory>
</connection-pool>

For information on the connection properties, see "Connection Properties" on
page 4-23.

Examples: Configuring Transaction Level

Global

Here's an example of configuring a managed data source for global transactions by
setting the tx-level attribute to global in the data-sources.xml file.
Data Sources 4-33

Using High Availability and Fast Connection Failover
<managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"
 tx-level="global"/>

Local

Here's an example of configuring a managed data source for local transactions by
setting the tx-level attribute to "local" in the data-sources.xml file. The
default value is "global".

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 name="Managed DataSource Name"
 connection-pool-name="myConnectionPool"
 tx-level="local"/>

Examples: Configuring Fast Connection Failover
The following is an example of configuring a connection factory for fast connection
failover.

Thin

<connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@(DESCRIPTION=
(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"
 <property name="connectionCachingEnabled" value="true"/>
 <property name="fastConnectionFailoverEnabled" value="true"/>
</connection-factory>

OCI

The following is an example connection factory definition using OCI:

<connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:oci:@myAlias"
</connection-factory>

Using High Availability and Fast Connection Failover
OC4J's data sources are fully integrated with the Oracle 10G JDBC driver and therefore
automatically take advantage of High Availability (HA) and Fast Connection Failover
(FCF).

Additional High Availability and Fast Connection Failover information is available in
the following documents:

■ Oracle Database High Availability Overview
4-34 Oracle Containers for J2EE Services Guide

Using High Availability and Fast Connection Failover
■ "Part VI, High Availability" of the Oracle Database JDBC Developer's Guide and
Reference

■ Additional information at:
http://www.oracle.com/technology/tech/java/oc4j/index.html

Fast Connection Failover is a RAC/FaN client implemented in the JDBC Implicit
connection cache. Its primary purpose is to guarantee the validity and availability of a
connection. Hence Fast Connection Failover on the client side provides the following
features:

■ Rapid Dead Connection Detection (DCD) of connections in the Implicit connection
cache

■ Removes such stale or bad connections from the cache.

■ Propagates errors to the caller to facilitate retries at higher layers.

■ Connection redistribution when new a RAC instance joins.

To enable the Fast Connection Failover mechanism, the following properties and
attributes must be set on the <connection-factory> tag for an
OracleDataSource object.

The following examples show valid and invalid syntax for URL usage on a connection
cache setup for Fast Connection Failover.

Valid URL Usage

url="jdbc:oracle:oci:@TNS_ALIAS"

url="jdbc:oracle:oci:@(DESCRIPTION=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

url="jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

url = "jdbc:oracle:thin@//host:port/service_name"

Property Description

connectionCachingEnabled This is a Boolean property, and enables
connection caching when set to true. By default
connection caching is disabled and the property
value is set to false.

fastConnectionFailoverEnabled This property, when set to TRUE, enables the Fast
Connection Failover mechanism. By default, Fast
Connection Failover is disabled and the property
value is set to FALSE.

url This is an attribute on the <connection-factory>
tag. When enabling Fast Connection Failover, the
URL must be set using the service name syntax.
The service name specified on the connection
URL is used to map the connection cache to the
service. If a SID is specified on the URL, when
Fast Connection Failover is enabled, then an
exception is thrown.
Data Sources 4-35

Using JDBC Drivers
url = "jdbc:oracle:thin@//cluster-alias:port/service_name"

url="jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

url = "jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

Invalid URL Usage

url = "jdbc:oracle:thin@host:port:SID"

Enabling Fast Connection Failover in the data-sources.xml File

The following example shows enabling fast connection failover for a Native Data
Source in the data-sources.xml file:

<native-data-source>
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 description="Native DataSource"
 data-source-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:1521:oracle">
 <property name="connectionCacheName" value="ICC1"/>
 <property name="connectionCachingEnabled" value="true"/>
 <property name="fastConnectionFailoverEnabled" value="false"/>
</native-data-source>

Using JDBC Drivers
This section discusses:

■ Oracle JDBC Drivers

■ JDBC Drivers for non-Oracle Databases

Oracle JDBC Drivers
This section has information about the Oracle JDBC OCI driver and the Oracle JDBC
thin driver.

For more information about Oracle JDBC drivers, see the Oracle Database JDBC
Developer's Guide and Reference.

OCI
The examples of Oracle data source definitions in this chapter use the Oracle JDBC
Thin driver. However, you can use the Oracle JDBC OCI driver as well. Do the
following before you start the OC4J server:

1. Install the Oracle Client on the same system on which OC4J is installed.

2. Set the OLE_HOME variable.
4-36 Oracle Containers for J2EE Services Guide

Using JDBC Drivers
3. Set LD_LIBRARY_PATH (or the equivalent environment variable for your OS) to
$OLE_HOME/lib.

4. Set TNS_ADMIN to a valid Oracle administration directory with a valid
tnsnames.ora file.

The URL to use in the "url" attribute of the <connection-factory> element definition
can have any of these forms:

■ jdbc:oracle:oci:@ This TNS entry is for a database on the same system as the client,
and the client connects to the database in IPC mode.

■ jdbc:oracle:oci:@ TNS_service_name The TNS service name is an entry in the
instance tnsnames.ora file.

■ jdbc:oracle:oci:@ full_TNS_listener_description For more TNS information, see the
Oracle Net Administrator's Guide.

Here is an example connection factory definition using OCI:

<connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:oci:@myAlias"
</connection-factory>

Thin
The examples of Oracle data source definitions in this chapter use the Oracle JDBC
Thin driver.

 Notes on Oracle JDBC-OCI driver upgrade in the Oracle Application Server
It is not possible to upgrade to an arbitrary Oracle JDBC-OCI driver version due to
client library compatibility constraints. Upgrading to OCI driver versions with
matching Oracle Client libraries that are installed within the Oracle Application Server
10g (10.1.2) is supported. For example, Oracle JDBC 10.1.x drivers are supported, but
the Oracle JDBC 9.2.x drivers are not.

Where the use of JDBC-OCI within the Oracle Application Server is supported, it is
also necessary for the opmn.xml entry for each OC4J instance to propagate
appropriate ORACLE_HOME and library path values to its startup environment.

The environment variable ORACLE_HOME is common to all platforms, but the name of
the environment variable that specifies the library path is different depending on the
operating systems:

■ LD_LIBRARY_PATH for Solaris

■ SLIB_PATH for AIX

■ SHLIB_PATH for HP-UX

■ PATH for Windows

The generic syntax for specifying the library paths in opmn.xml looks like this:

<prop name="<LIB_PATH_VARIABLE>" value="<LIB_PATH_VARIABLE_VALUE>"/>
Data Sources 4-37

Using JDBC Drivers
where <LIB_PATH_VARIABLE> should be replaced with the appropriate
platform-specific variable name that specifies the library path, and

 <LIB_PATH_VARIABLE_VALUE>

should be replaced with that variable's value.

Here is an example, assuming the Solaris OS:

 <process-type id="OC4J_SECURITY" module-id="OC4J">
 <environment>
 <variable id="ORACLE_HOME"
 value="/u01/app/oracle/product/inf10120"/>
 <variable
 id="LD_LIBRARY_PATH"
 value="/u01/app/oracle/product/inf10120/lib"
 />
 </environment>
 ...

JDBC Drivers for non-Oracle Databases
When your application must connect to heterogeneous databases, use DataDirect
JDBC drivers. DataDirect JDBC drivers are not meant to be used with an Oracle
database but for connecting to non-Oracle databases, such as DB2, Sybase, Informix,
and SQLServer. If you want to use DataDirect drivers with OC4J, then add
corresponding entries for each database in the data-sources.xml file.

Installing and Setting Up DataDirect JDBC Drivers
Install the DataDirect JDBC drivers as described in the DataDirect Connect for JDBC
User's Guide and Reference

After you have installed the drivers, follow these instructions to set them up.

1. Unzip the content of the DataDirect JDBC drivers to the directory DDJD_INSTALL.

2. Create the directory OC4J_INSTALL/j2ee/INSTANCE_NAME/applib if it does
not already exist.

3. Copy the DataDirect JDBC drivers in DDJD_INSTALL/lib to the
OC4J_INSTALL/j2ee/INSTANCE_NAME/applib directory.

4. Verify that the file application.xml contains a library entry that references the
j2ee/home/applib location, as follows:

Note: In the following instructions, note these definitions:

■ OC4J_INSTALL: In a standalone OC4J environment, the directory
into which you unzip the file oc4j_extended.zip. In an Oracle
Application Server, OC4J_INSTALL is ORACLE_HOME.

■ In both a standalone OC4J environment and an Oracle
Application Server, DDJD_INSTALL is the directory into which
you unzip the content of the DataDirect JDBC drivers.

■ In a standalone OC4J environment, INSTANCE_NAME is home.

■ In an Oracle Application Server, INSTANCE_NAME is the OC4J
instance into which you install the DataDirect JDBC drivers.
4-38 Oracle Containers for J2EE Services Guide

Using JDBC Drivers
<library path="../../INSTANCE_NAME/applib" />

5. Add data sources to the file data-source.xml as described in "Example
DataDirect Data Source Entries" on page 4-39.

Example DataDirect Data Source Entries
This section shows an example data source entry for each of the following non-Oracle
databases:

■ DataDirect DB2

■ DataDirect Sybase

■ DataDirect Informix

You can also use vendor-specific data sources in the class attribute directly. That is, it is
not necessary to use an OC4J-specific data source in the class attribute.

For more detailed information, refer to the DataDirect Connect for JDBC User's Guide
and Reference.

Additional data source configuration examples are shown in the article Data Source
Configuration in Oracle Application Server 10g available at
http://www.oracle.com/technology/tech/java/newsletter/articles/o
c4j_datasource_config.html

DataDirect DB2

Note: OC4J does not work with non-Oracle data sources in the
non-emulated case. That is, you cannot use a non-Oracle data source
in a two-phase commit transaction.

Notes: When using a DataDirect JDBC driver to connect to DB2, the
following constraints apply:

■ This item is exceptional behavior:

If you use com.oracle.ias.jdbcx.db2.DB2DataSource as the
connection factory class, the <url> is a required element but the values
passed in the url attributes are ignored. For this reason, setting the url
alone is enough.

In order for the data source to work properly, you must set the
serverName, portNumber, and databaseName in <property>
elements, even though the <property> tag is "technically" optional.

■ This item is normal behavior:

If you use com.oracle.ias.jdbc.db2.DB2Driver as the connection
factory class, then it is not necessary to set the serverName,
portNumber, and databaseName in <property> elements. You can set
the serverName, portNumber, and databaseName in the url
attributes. The url is read completely and the values passed in the url
attributes are read.
Data Sources 4-39

Using JDBC Drivers
<managed-data-source
 name="db2"
 jndi-name="jdbc/db2"
 connection-pool-name="db2 Connection Pool"/>

<connection-pool name="db2 Connection Pool">
 <connection-factory
 factory-class="com.oracle.ias.jdbcx.db2.DB2DataSource"
 user="user1"
 password="user1"

 url="jdbc:oracle:db2://localhost:50000;DatabaseName=sample;PackageName=JDBCPKG">
 <property name="databaseName" value="sample"/>
 <property name="packageName" value="JDBCPKG"/>
 <property name="serverName" value="localhost"/>
 <property name="portNumber" value="50000"/>
 <xa-recovery-config>
 <password-credential>
 <username>system</username>
 <password>manager</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
</connection-pool>

DataDirect Sybase

<managed-data-source
 name="Sybase"
 jndi-name="jdbc/Sybase"
 connection-pool-name="Sybase Connection Pool"/>

<connection-pool name=" Sybase Connection Pool">
 <connection-factory
 factory-class="com.oracle.ias.jdbcx.sybase.SybaseDataSource"
 user="user1"
 password="password"
 url="jdbc:oracle:sybase://localhost:4101">
 <property name="serverName" value="localhost"/>
 <property name="portNumber" value="4101"/>
 <xa-recovery-config>
 <password-credential>
 <username>system</username>
 <password>manager</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
</connection-pool>

DataDirect Informix

<managed-data-source
 name="Informix"
4-40 Oracle Containers for J2EE Services Guide

Using JDBC Drivers
 jndi-name="jdbc/Informix"
 connection-pool-name="Informix Connection Pool"/>

<connection-pool name=" Informix Connection Pool">
 <connection-factory
 factory-class="com.oracle.ias.jdbc.informix.InformixDriver"
 user="user1"
 password="password"

url="jdbc:oracle:informix://localhost:3900;informixServer=gtw93;DatabaseName=gatew
aydb">

 <xa-recovery-config>
 <password-credential>
 <username>userid</username>
 <password>pword</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
</connection-pool>

DataDirect SQLServer

This section shows a SQLServer managed data source example and a SQLServer
native source example.

SQLServer Managed Data Source

 <connection-pool name="ConnectionSqlserver"
 max-connections="20"
 min-connections="1">
 <connection-factory
factory-class="com.oracle.ias.jdbcx.sqlserver.SQLServerDataSource"
 user="msuser"
 password="mspass"

url="jdbc:oracle:sqlserver://myserver\\myinstance;User=msuser;Password=mspass" >
 <property name="serverName" value="myserver\\myinstance"/>
 <xa-recovery-config>
 <password-credential>
 <username>msuser</username>
 <password>mspass</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
 </connection-pool>
.
 <managed-data-source connection-pool-name="ConnectionSqlserver"
 jndi-name="jdbc/mysqlserver"
 name="mysqlserver" />

SQLServer Native Data Source
 <native-data-source
 jndi-name="jdbc/mysqlserver"
 name="mysqlserver"

data-source-class="com.oracle.ias.jdbcx.sqlserver.SQLServerDataSource"
Data Sources 4-41

Using JDBC Drivers
 user="msuser"
 password="mspass"

url="jdbc:oracle:sqlserver://myserver\\myinstance;User=msuser;Password=mspass" >
 <property name="serverName" value="myserver\\myinstance"/>
 </native-data-source>

Additional Data Source Configuration Examples
The following additional data source configuration examples show various
permutations of data source type, connection factory type, and other variables. These
examples are taken from the article Data Source Configuration in Oracle Application
Server 10g available at
http://www.oracle.com/technology/tech/java/newsletter/articles/o
c4j_datasource_config.html

Native Data Source - Oracle JDBC to Oracle Database

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 description="Native DataSource"
 data-source-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//dbhost:1521/dbservicename">
</native-data-source>

Native Data Source - DataDirect JDBC to DB2 UDB

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 description="Native DataSource"
 data-source-class="com.ddtek.jdbcx.db2.DB2DataSource"
 user="frank"
 password="frankpw"
 url="jdbc:datadirect:db2://server_name:50000;DatabaseName=your_database">
</native-data-source>

Native Data Source - DB2 Universal JDBC to DB2 UDB

<native-data-source
 name="nativeDataSource"
 jndi-name="jdbc/nativeDS"
 description="Native DataSource"
 data-source-class="com.ibm.db2.jcc.DB2DataSource"
 user="db2adm"
 password="db2admpwd"

url="jdbc:db2://sysmvs1.stl.ibm.com:5021/dbname:user=db2adm;password=db2admpwd;">
</native-data-source>
4-42 Oracle Containers for J2EE Services Guide

Using JDBC Drivers
Managed Data Source Using an XADataSource Connection Factory

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 description="Managed DataSource"
 connection-pool-name="myConnectionPool"/>

<connection-pool
 name="myConnectionPool"
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30">
 <connection-factory
 factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//dbhost:1521/dbservicename"/>
 </connection-factory>
</connection-pool>

Managed Data Source Using a DataSource Connection Factory

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 description="Managed DataSource">
 connection-pool-name="myConnectionPool"/>

<connection-pool
 name="myConnectionPool"
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//dbhost:1521/dbservicename"/>
 </connection-factory>
</connection-pool>

Managed Data Source Using a Driver Connection Factory

<managed-data-source
 jndi-name="jdbc/ManagedDS"
 description="Managed DataSource">
 connection-pool-name="myConnectionPool"/>

<connection-pool
 name="myConnectionPool"
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30">
 <connection-factory
 factory-class="oracle.jdbc.OracleDriver"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//dbhost:1521/dbservicename"/>
 </connection-factory>
Data Sources 4-43

Legacy Configuration
</connection-pool>

Legacy Configuration
The following points are pertinent for the configuration of versions prior to 10.1.3:

■ There are two syntaxes for data-sources.xml.

– One is the new 10.1.3 syntax, which follows the
http://xmlns.oracle.com/oracleas/schema/data-sources-10_1.
xsd schema.

– The other is the pre-10.1.3 syntax, which follows the
http://xmlns.oracle.com/ias/dtds/data-sources-9_04.dtd.

Both syntaxes are legal but the new syntax is preferred.

■ When data-sources.xml is persisted due to a change made in the Application
Server Control Console the syntax is always written in the new 10.1.3 format.

■ The data-sources.xml file can be converted from the old legacy syntax to the
new 10.1.3 syntax explicitly via the admin.jar utility using the
-convertDataSourceConfiguration option.

4-44 Oracle Containers for J2EE Services Guide

OC4J Transaction Su
5

OC4J Transaction Support

This chapter discusses Transaction Support in Oracle Containers for J2EE (OC4J). It
contains the following topics:

■ What’s New in Transaction Support for OC4J 10.1.3

■ Introduction to OC4J Transaction Support

■ Programming Models - Container-Managed and Bean-Managed Transactions

■ Configuring the OC4J Transaction Manager

■ Managing the OC4J Transaction Manager

■ Transaction Propagation between OC4J Processes over ORMI

Transaction Management Tasks
This chapter describes the following transaction management tasks:

Configuring the OC4J Transaction Manager

Configuring the In-Database Transaction Coordinator

Managing Transaction Demarcation. See Demarcating Transactions

Manual Commit and Rollback Operations

Monitoring the OC4J Transaction Manager

What’s New in Transaction Support for OC4J 10.1.3
The following OC4J Transaction Support features and behaviors are new for this
release:

■ Middle-Tier Two-Phase Commit (2PC) Coordinator that supports all
XA-compatible resources, not just those from Oracle. This feature is referred to as a
"heterogeneous middle-tier coordinator".

■ New configuration

■ Transaction administration

■ Transaction Propagation between OC4J Processes over ORMI

■ J2CA 1.5 transaction inflow support

■ Deprecated

The following item is deprecated in this release and will be desupported in the
future:
pport 5-1

Introduction to OC4J Transaction Support
– The use of the in-database transaction coordinator by OC4J is deprecated as of
release 10.1.3. Oracle recommends that the middle-tier transaction coordinator
be used going forward. For additional information, see Configuring the
In-Database Transaction Coordinator on page 5-15.

■ No Longer Supported

The following items are no longer supported in this release:

– Use of transaction-timeout in server.xml. Moved to
transaction-manager.xml.

Before Using OC4J in Production
Before using OC4J in production, Oracle recommends that the following tasks be
performed:

■ Configure the mid-tier coordinator to use a persistent store. The persistent store
(and thereby logging) is disabled by default. See "transaction-manager.xml" on
page 5-12.

■ Change the default transaction recovery password. See "Recovery" on page 5-23

Additional Documentation
The How-To documents at the following site provide information about OC4J 10g
Release 3 (10.1.3) features, including feature overviews and code excerpts relevant to
the feature.

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/inde
x.html

Introduction to OC4J Transaction Support
The Java Transaction API (JTA) is a specification developed by Sun Microsystems to
provide support for global (distributed) transactions in the J2EE environment. Global
transactions combine multiple enterprise systems - such as databases and message
queues - into a single unit of work.

The JTA maps the specifications based on the Open Group Distributed Transaction
Processing model into the Java environment. The Open Group XA specification
defines the interface between transaction managers and resource managers. The JTA
specification defines the interface between applications and transaction managers.

The JTA specification is available at http://java.sun.com/products/jta

What Is a Transaction?
A transaction is a mechanism that ensures correct outcomes in a system undergoing
state changes. A transaction allows a programmer to scope a number of state changes
in a system into a single unit of work. JTA transactions consist of enlisting resources
and demarcating transactions. The changes that are scoped by the transaction may be
either committed or rolled back.

Typically, a transaction is started by an application, the application performs some
work against shared resources (such as one or more database systems), and the
application commits the transaction. In the case of container-managed transactions, the
application server starts the transaction.

For more about transaction processing in J2EE, you can refer to the following book:
5-2 Oracle Containers for J2EE Services Guide

Introduction to OC4J Transaction Support
Little, Maron, Pavlik: Java Transaction Processing: Design and Implementation, Prentice Hall,
2004

ACID
The transaction model that is supported by J2EE and most major information
management systems are usually designed to preserve the ACID properties:

■ Atomic - Either all changes scoped by the transaction are committed or all changes
are rolled back.

■ Consistent - The system moves from valid state to valid state.

■ Isolated - The results of a transaction are not visible outside of the transaction
until the transaction has been committed.

■ Durable - The state changes scoped by the transaction are made permanent.

Note that the system infrastructure itself cannot maintain all of these properties. The
consistency property requires that the application logic make valid changes to the
system. For example, a transaction whose logic inserts an identifier representing a
planet instead of a person into a human resource management database would create
an inconsistent outcome - though the application server and database may have no
way of knowing that the planet name was a meaningless value.

Note also that ACID guarantees place a burden on infrastructure and applications. If
you need to reduce the overhead of ACID, design the work to use only one local
resource, if possible, and not to use two-phase commit.

Middle-Tier Two-Phase Commit (2PC) Coordinator
In this release, transaction coordination functionality is now located in OC4J, replacing
in-database coordination, which is now deprecated. Also, the middle-tier coordinator
is now "heterogeneous", meaning that it supports all XA-compatible resources, not just
those from Oracle.

The middle tier coordinator provides the following features:

■ Supports any XA compliant resource

■ Supports interpositioning and transaction inflow

■ Last Resource Commit Optimization

■ Recovery Logging

Figure 5–1, "New Middle-Tier Coordinator vs. Deprecated In-Database Coordinator"
shows the differences between the new middle tier coordinator and the deprecated
in-database coordinator.
OC4J Transaction Support 5-3

Introduction to OC4J Transaction Support
Figure 5–1 New Middle-Tier Coordinator vs. Deprecated In-Database Coordinator

Local and Global Transactions
The complexity of a transaction is determined by how many resources the application
enlists within the transaction.

A local transaction involves only one resource and the transaction activity is scoped
and coordinated locally to the resource itself. A local transaction uses the one-phase
commit (1pc) protocol.

A global transaction (also called a distributed transaction) enlists more than one
resource in the transaction. For example, a global transaction can be used to scope
work on two databases. Transaction processing systems that support global
transactions usually have several distinct logical components: a transaction factory,
resource managers, coordinator and application. To achieve atomic outcomes in the
global transaction, a termination protocol known as the two-phase commit (2pc)
protocol is used.

The Two-Phase Commit Protocol
The two-phase commit (2pc) protocol is a mechanism to arrive at consensus among
multiple participants in a global transaction. The protocol, as the name suggests, is
divided into two phases. The first phase is often referred to as the voting phase. Each
participant is asked to prepare the work in the transaction to be committed. If the
participant is able to commit the work, it sends a message to the coordinator voting to
commit.

During the voting, if ANY participant cannot prepare a transaction to commit, then all
participants are instructed to roll back.

To guarantee the ACID properties, some transaction systems combine the two-phase
commit protocol with the two-phase locking protocol. In practice, this means that no
work may be performed in a transaction after the prepare phase has begun.
5-4 Oracle Containers for J2EE Services Guide

Introduction to OC4J Transaction Support
In order to provide atomic outcomes in the event of system failures, the two-phase
commit protocol requires that the transaction manager log the transaction progress.

Using Multiple Resources
Resources are enlisted automatically by the application server when used within the
scope of a transaction. However, to guarantee ACID properties in a two-phase commit
transaction all participating resources must be XA compliant, with the exception of the
last resource commit optimization.

Last Resource Commit
Last resource commit allows for a single non-XA-compliant resource to participate in
an XA transaction. If more than one non-XA-compliant resource is enlisted in the
transaction, then an exception is thrown from the enlistment attempt.

During the prepare phase, all XA- compliant resources are prepared. If all of the XA
resources return OK from prepare, the coordinator performs a transfer of control to the
non-XA compliant resource. If the non-XA compliant resource returns that it has
committed, then the coordinator logs a commit decision, else a rollback decision is
logged. The coordinator then notifies all of the XA resources of its decision.

Because the last resource commit optimization only allows a single one-phase commit
resource to be enlisted in a given transaction, OC4J restricts the enlistment of the
one-phase commit resource to the root OC4J process. If an attempt is made to enlist a
one-phase commit resource on a subordinate OC4J process, then an exception is
thrown indicating that the server was unable to enlist the resource. This restriction is
necessary because of the overhead involved in ensuring that only one one-phase
commit resource was enlisted in a global transaction tree if subordinates were allowed
to enlist one-phase commit resources when using the last resource commit
optimization.

To turn on last resource commit, enable transaction logging by configuring the
transaction manager with a persistent store. The persistent store (and thereby logging)
is disabled by default. See "transaction-manager.xml" on page 5-12.

In addition to allowing a single non-XA resource to participate in a global transaction,
last resource commit can also be used as an optimization. By enlisting an XA-capable

Note: Although this optimization works correctly a great majority of
the time, there is some risk in using the last resource commit
optimization. If a failure occurs during the transfer of control to the
non-XA compliant resource, the coordinator has no way of knowing
whether the resource committed or rolled back. This could lead to
non-atomic outcomes, which would be very hard to rectify.

Notes:

■ It is possible to enlist more than one non-XA compliant resource
in a global transaction if transaction logging is set to "none",
however, there are no ACID guarantees nor recovery in this case.
Setting transaction logging is described in
"transaction-manager.xml" on page 5-12.

■ If the transaction manager is not using a persistent store,
enlistment is allowed on the subordinate node.
OC4J Transaction Support 5-5

Programming Models - Container-Managed and Bean-Managed Transactions
resource as a non-XA resource and using last resource commit, a gain in performance
is achieved because the resource doesn't perform logging and a network call is
eliminated because the coordinator would only make one call to the resource instead
of two. Also, the resource would never be put in doubt, which would prevent
resources from being locked. Although last resource commit can be used as a
performance optimization, it is at the cost of guaranteed correctness.

Additional discussion of the last resource commit feature in OC4J can be found in the
"Transaction Management" chapter of the Oracle Containers for J2EE Resource Adapter
Administrator’s Guide.

Resource Manager
A resource manager is responsible for managing shared resources. A common
example of a resource manager is a relational database system.

Transaction Manager
A transaction manager combines the roles of transaction factory and coordinator.
Applications communicate with the transaction manager to begin and end
transactions and to enlist resources. When the application requests that a transaction
be committed, the transaction manager will coordinate the two-phase commit
protocol.

Heuristics
To achieve consensus, two-phase commit is a blocking protocol. This means that, if a
coordinator fails before delivering the final phase messages, the participants must
remain blocked, holding onto resources. Modern transaction systems add heuristics to
two-phase commit, which allows such participants to make unilateral decisions about
whether they will commit or rollback. If a participant makes a choice that turns out to
be different from the one taken by other participants, then non-atomic behavior occurs.
These decisions are generally made by administrative intervention. This is described
in Manual Commit and Rollback Operations on page 5-18.

Synchronizations
Synchronizations are objects that are registered with a transaction and notified before
and after running the two-phase commit protocol. For example, an application will
often maintain it's own state and persist the cache to the resource only when necessary
or just before completion and then release resources after completion.

Synchronizations are not available via the UserTransaction interface, so
applications are not able to register synchronizations directly. This can only be done by
the application server. In the case of CMP, the persistence layer handles this.

Information on EJBs is available in the Oracle Containers for J2EE Enterprise JavaBeans
Developer’s Guide.

Programming Models - Container-Managed and Bean-Managed
Transactions

Enterprise Java Beans use JTA 1.0.1B for managing transactions through either
container-managed transactions or bean-managed transactions.
5-6 Oracle Containers for J2EE Services Guide

Programming Models - Container-Managed and Bean-Managed Transactions
Container-Managed Transactions
Container-managed transactions are controlled by the container. That is, the container
either joins an existing transaction or starts a new transaction for the application—as
defined within the deployment descriptor—and ends the newly created transaction
when the bean method completes. It is not necessary for your implementation to
provide code for managing the transaction.

Bean-Managed Transactions
Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

Demarcating Transactions
Demarcating a transaction means to initiate and terminate the transaction.

You can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional based on
the transaction attributes specified in the EJB deployment descriptor.

Container-managed transaction is available to all EJBs. However, the bean-managed
transactions are available for session beans and message-driven beans (MDBs) only. In
other words, entity beans, designed for data access, must use container-managed
transaction demarcation. Session beans can use either model.

Specify the type of demarcation in the bean deployment descriptor. The following
example shows a session bean that is declared as container-managed transactional by
defining the <transaction-type> element as Container. To configure the bean
for bean-managed transactional demarcation, define the <transaction-type>
element as Bean.

Example: Session Bean Declared as Container-Managed Transactional
</session>
 <description>no description</description>
 <ejb-name>myEmployee</ejb-name>
 <home>cmtxn.ejb.EmployeeHome</home>
 <remote>cmtxn.ejb.Employee</remote>
 <ejb-class>cmtxn.ejb.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>

Note: Other terms for "container-managed transactions" are
"declarative transactions" and "CMT".

Other terms for "bean-managed transactions" are "programmatic
transactions" and "BMT".

Note: Transactions cannot be demarcated from the application client
container.
OC4J Transaction Support 5-7

Programming Models - Container-Managed and Bean-Managed Transactions
 </resource-ref>
</session>

Demarcating Container-Managed Transactions
If you define your bean to use container-managed transactions (CMTs), then you must
specify how the container manages the JTA transaction for this bean in the
<trans-attribute> element in the bean deployment descriptor as shown in the
following example. The following table lists and describes the transaction attribute
settings.

Table 5–1 <trans-attribute> Element Settings

Setting Description

 NotSupported The bean is not involved in a transaction.

If the bean invoker calls the bean while involved in a
transaction, then the invoker's transaction is suspended, the
bean executes, and when the bean returns, the invoker's
transaction is resumed.

For message-driven beans (MDBs), this is the default.

Required The bean must be involved in a transaction.

If the invoker is involved in a transaction, then the bean uses the
invoker's transaction.

If the invoker is not involved in a transaction, then the container
starts a new transaction for the bean. This is the default.

For CMP 2.0 entity beans, this is the default.

Supports Whatever transactional state that the invoker is involved in is
used for the bean.

If the invoker has begun a transaction, then the invoker's
transaction context is used by the bean.

If the invoker is not involved in a transaction, then neither is the
bean.

This is the default for all entity beans except CMP 2.0 entity
beans and MDBs.

RequiresNew Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself.

If the invoker calls while involved in a transaction, then the
invoker's transaction is suspended until the bean completes.

Mandatory The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker's transaction context.

Never The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean.

If the invoker is involved in a transaction, then a
RemoteException is thrown.
5-8 Oracle Containers for J2EE Services Guide

Programming Models - Container-Managed and Bean-Managed Transactions
The following example shows the <container-transaction> portion of the EJB
deployment descriptor. It demonstrates how this bean specifies the RequiresNew
transaction attribute for all (*) methods of the myEmployee EJB.

Example: <container-transaction> in Deployment Descriptor
 <assembly-descriptor>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>myEmployee</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

No bean implementation is necessary to start, commit, or roll back the transaction. The
container handles these functions based on the transaction attribute that is specified in
the deployment descriptor.

Demarcating Bean-Managed Transactions
Web components (JSP, servlets) and stateless and stateful session beans can use
programmatic transaction demarcation. Entity beans cannot, and thus must use
container-managed transaction demarcation.

If you declare the bean as bean-managed transactional (BMT) within the
<transaction-type> element of the bean deployment descriptor, then the bean
implementation must demarcate the start, commit, or rollback for the global
transaction.

For bean-managed (programmatic) transaction demarcation, the bean developer can
use the UserTransaction interface to demarcate global transactions or RM-specific
methods to demarcate RM local transactions.

The Web component or bean writer must explicitly issue the begin(), commit(),
and rollback() methods of the UserTransaction interface, as shown in the
following example:

Context initCtx = new Initial Context();

Note: The default <trans-attribute> setting for each type of
entity bean is as follows:

■ For CMP 2.0 entity beans, the default is Required.

■ For MDBs, the default is NotSupported

■ For all other entity beans, the default is Supports.

Note: Client-side transaction demarcation is not supported in the
application client container:
OC4J does not support client-side transaction demarcation. This form
of transaction demarcation is not required by the J2EE specification,
and is not recommended for performance and latency reasons.
OC4J Transaction Support 5-9

Configuring the OC4J Transaction Manager
ut = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");

ut.begin();
// Do work.
…
try {
 // Commit the transaction.
 ut.commit();
// Handle exceptions. Should really catch specific exceptions, not Exception
} catch (Exception ex) { … }

Configuring the OC4J Transaction Manager
This section discusses the following topics:

■ Configuring the Middle-Tier Transaction Manager in the Application Server
Control Console and the JTA Resource MBean

■ Configuring Middle-Tier OC4J Transaction Support in XML Files

■ Configuring the In-Database Transaction Coordinator

Configuring the Middle-Tier Transaction Manager in the Application Server Control
Console and the JTA Resource MBean

The primary tool for configuring the Transaction Manager is the Oracle Enterprise
Manager 10g Application Server Control Console. The Application Server Control
Console is the preferred method for configuring OC4J.

Path to the Transaction Manager page in the Application Server Control
Console:
OC4J:Home > Administration tab > Task Name: Services > Transaction Manager: Go
To Task

From the Transaction Manager page:

■ The Performance tab presents OC4J Transaction Support statistics, as described
in "Monitoring the OC4J Transaction Manager" on page 5-18.

■ The Transactions tab presents the detail of all transactions that are currently
running or being recovered and displays the details returned from the
CurrentTransactionDetail attribute and allows for the administration of
these transactions. The CurrentTransactionDetail attribute is available from
the JTAResource MBean in the Application Server Control Console.

■ The Administration tab presents the current OC4J Transaction Support
configuration and allows for it to be altered.

In addition to the Transaction Manager page, the JTAResource MBean, accessible
through the Application Server Control Console, provides configuration and
management services for OC4J Transaction Support.

Path to the JTAResource MBean:
OC4J:Home > Administration tab > Task Name: JMX > System MBean Browser: Go To
Task
5-10 Oracle Containers for J2EE Services Guide

Configuring the OC4J Transaction Manager
The descriptions in the following tables refer to settings made on the Transaction
Manager page, in the JTAResource MBean, and in the XML files. The XML files are
discussed in "Configuring Middle-Tier OC4J Transaction Support in XML Files" on
page 5-12.

Table 5–2 JTAResource MBean configureCoordinator Operation Parameters

Parameter Description

commitCoordinator The two-phase commit coordinator type, either database or
middle-tier.

The use of the in-database coordinator by OC4J is deprecated as
of release 10.1.3. Oracle recommends that the middle tier
coordinator be used going forward. For additional information,
see Configuring the In-Database Transaction Coordinator on
page 5-15.

logType The log type, either none, file, or database. This setting
applies only when commitCoordinator is set to
middle-tier.

logLocation The log location, either directory path for file or jndi location for
database logging.

userName The database username.

password The database password.

retryCount The number of times the coordinator will, when valid, retry
commands to resource managers synchronously. Retries may
occur, for example, if a resource manager returns XA_RETRY.

Coordinator Configuration Notes:

■ Server restart is required for coordinator configuration changes to
take effect and all transactions must be purged before shutdown.

■ If there are any transactions that are not purged, the server will
wait until they have been administratively resolved.

■ If the server shutdown is forced while transactions are still in
doubt, the configuration change will not be written to file.

Table 5–3 JTAResource MBean Attributes

Attribute Description

transactionTimeout The default transaction timeout in seconds

maxConcurrentTransact
ions

The maximum number of concurrent transactions in the server
before System Exceptions will be thrown. (-1 indicates
unlimited.)

transactionManagerCon
figurationDetail

Details of the transaction manager configuration

Note:

Changes to the JTAResource MBean attributes are persisted to the
transaction-manager.xml configuration file and take effect
immediately. A server restart is not required.
OC4J Transaction Support 5-11

Configuring the OC4J Transaction Manager
Configuring Middle-Tier OC4J Transaction Support in XML Files
The following configuration files are used to configure OC4J Transaction Support:

■ server.xml

■ transaction-manager.xml

■ oc4j-ra.xml

■ data-sources.xml

server.xml
The server.xml file must simply contain the following element for the transaction
manager to be configured:

 <transaction-manager-config path="./transaction-manager.xml"/>

For reference documentation of server.xml, see Oracle Containers for J2EE
Configuration and Administration Guide Appendix B - Configuration Files Used in OC4J,
Section - "Overview of the OC4J Server Configuration File (server.xml)".

transaction-manager.xml
The transaction-manager.xml file takes the following default form:

<?xml version="1.0" encoding="UTF-8"?>

<transaction-manager
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/transaction-manager-10_0.xsd
"
 transaction-timeout="30"
 max-concurrent-transactions="-1"
>
 <!-- transaction-timeout is in seconds and defaults to 30 -->
 <!-- a max-concurrent-transactions of -1 indicates unlimited concurrent transactions -->
 <commit-coordinator retry-count="4">
 <middle-tier>
 <!-- specify 'none' to turn off logging and increase performance, however, note that
recovery is impossible -->
 <log type="none"/>

 <!-- specify 'file' to log to flat file (use the 'location' attribute to override the
default directory and file-logging-performance attributes to override default settings)
 <log type="file">
 <file-logging-performance min-pool-size="40" max-open-files="256"
old-file-release-size="20" />
 </log>
 -->

Note: As of 10.1.3, all transaction manager configuration, such as the
transaction-timeout attribute, is now contained in the
transaction-manager.xml file and is no longer contained in the
server.xml file.
5-12 Oracle Containers for J2EE Services Guide

Configuring the OC4J Transaction Manager
 <!-- specify 'database' to log to the native-data-source specified by the 'location'
attribute (use database-logging-performance attributes to override default settings
 <log type="database" location="jdbc/logging">
 <identity user="system" password="manager"/>
 <database-logging-performance batch-create-interval="10" batch-state-interval="10"
batch-purge-interval="100" />
 </log>
 -->

 </middle-tier>

 <!-- specify the following database element instead of the middle-tier when using the in-db
coordinator
 <database location="jdbc/OracleDS">
 <identity user="system" password="manager"/>
 </database>
 -->

 </commit-coordinator>
</transaction-manager>

Performance Settings

This section describes the performance settings for file store logging and for database
store logging in the transaction-manager.xml file.

The following table lists and describes the settings for file store logging in the
transaction-manager.xml file.

Notes on Middle-tier Coordinator Database Logging:

■ The database must be Oracle.

■ The schema located at

ORACLE_HOME/j2ee/home/database/j2ee/jta/oracle/2pc_jdbcstore.sq
l

must be installed on the database.

■ The data source used for logging must be a native data source and
not a managed data source.

■ The data source used for logging must be deployed to the default
application.

Table 5–4 File store logging attributes

Attribute Description

minPoolSize The number of files that will be pre-allocated to the pool during
startup. Default is 40. Optimal value is enough to cover the
maximum number of concurrent requests.

maxOpenFiles The maximum number of file channels that can remain
open/active. When this number is exceeded, the oldest channels
will be released until the xid is requested again. Default is 256.
Optimal value is enough to cover the maximum number of
concurrent requests.
OC4J Transaction Support 5-13

Configuring the OC4J Transaction Manager
The following table lists and describes the settings for database store logging in the
transaction-manager.xml file.

oc4j-ra.xml
oc4j-ra.xml specifies XA and recovery information necessary for JMS or any other
connectors to participate in 2pc transactions and recovery

An XAConnectionFactory must be used in order to participate in two-phase
commit processing and the connection-factory must define an
xa-recovery-config element if the runtime user does not have permission to
conduct the necessary XAResource.recover call.

For more information, see the "Transaction Management" chapter and the "OC4J
Resource Adapter Configuration Files" appendix in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide.

The xa-recovery-config element takes the following form:

 <connection-factory>
...
 <xa-recovery-config>
 <password-credential>
 <username>adapter_admin_user</username>
 <password>adapter_admin_pw</password>
 </password-credential>
 </xa-recovery-config>
...
 </connection-factory>

oldFileReleaseSize The number of the oldest file handles that will be closed when
max-open-files has been exceeded. Default is 20. Optimal value
is a function of the odds of maxOpenFiles being exceeded,
which should be avoided if at all possible or kept to a minimum
otherwise.

Table 5–5 Database store logging attributes

Attribute Description

batchCreateInterval The time in milliseconds between each batch write of
transactions. Default is 10. Optimal value is small but relates to
the cost of database call (such as network latency) and jvm heap
size.

batchStateInterval The time in milliseconds between each batch write of transaction
state changes. Default is 10. Optimal value is small but relates to
the cost of database call (such network latency) and jvm heap
size

batchPurgeInterval The time in milliseconds between each batch purge of completed
transactions. Default is 100. Optimal value is large but relates to
the cost of database call (such as network latency) and jvm heap
size

Table 5–4 (Cont.) File store logging attributes

Attribute Description
5-14 Oracle Containers for J2EE Services Guide

Configuring the OC4J Transaction Manager
The following list shows examples of vendor-specific permissions. Those relating to
RDBMS resource managers are specified in the data-sources.xml.

■ Oracle: select privileges on DBA_PENDING_TRANSACTIONS as well as execute
privileges on sys.dbms system in version 9.2 and later of the RDBMS

■ DB2: sysadmin role

■ MSSQL: execute privileges on XA stored procedures

■ MQSeries: sysadmin role

data-sources.xml
The data-source.xml file is used to specify recovery information necessary for
data-sources to participate in 2pc transactions and recovery if the runtime user does
not have XAResource.recover privileges.

//
<connection-pool
 name="cmt Connection Pool">
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30"
 <connection-factory factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:1521:ORCL">

 <xa-recovery-config>
 <password-credential>
 <username>system</username>
 <password>manager</password>
 </password-credential>
 </xa-recovery-config>
 </connection-factory>
 </connection-pool>

<managed-data-source connection-pool-name="cmt Connection Pool"
 jndi-name="jdbc/cmt"
 name="cmt"/>

Configuring the In-Database Transaction Coordinator
This section discusses requirements for using the in-database two-phase commit
coordinator.

Note: Data sources must be designated as managed data sources in
order to participate in OC4J global transactions.

Note: The use of the in-database two-phase commit coordinator by
OC4J is deprecated as of release 10.1.3. Oracle recommends that the
middle tier coordinator be used going forward.
OC4J Transaction Support 5-15

Configuring the OC4J Transaction Manager
You must configure the in-database two-phase commit engine with the following:

■ Fully-qualified database links from the coordinating database to each of the
databases involved in the transaction. When the transaction ends, the two-phase
commit engine communicates with the included databases over their
fully-qualified database links.

■ A user that is designated to create sessions to each database involved and is given
the responsibility of performing the commit or rollback. The user that performs the
communication must be created on all involved databases and be given the
appropriate privileges.

Designate and configure an eligible Oracle database as the two-phase commit engine
as follows:

1. Define a managed data source in the JDBC Resources page of the Application
Server Control Console or in the data-sources.xml file.

The following example shows the definition in the data-sources.xml file.

 <connection-pool
 name="OracleCommitDS">
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30"
 <connection-factory
 factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:1521:ORCL">
 </connection-factory>
 </connection-pool>
<managed-data-source connection-pool-name="Example Connection Pool"
 jndi-name="jdbc/OracleCommitDS"
 name="OracleCommitDS"/>

2. Refer to the two-phase commit engine DataSource in the
transaction-manager.xml as follows:

Note: For in-database two-phase commit (2pc) functionality, use
Oracle Database version 9.2.0.4 or later. The in-database two-phase
commit (2pc) function is not available with Oracle Database version
9.2 or earlier.

Notes on In-Database Coordinator Configuration:

■ The database used must be Oracle.

■ The data source specified as the coordinator must be a native data
source and not a managed data source.

■ The in-database coordinator cannot be used within propagated
transactions (neither as the root nor interposed coordinator) and
does not provide a last resource commit optimization]

■ The data source specified as the coordinator must be deployed to
the default application.
5-16 Oracle Containers for J2EE Services Guide

Configuring the OC4J Transaction Manager
 <database location="jdbc/OracleCommitDS">
 <identity user-name="COORDUSR" password="COORDPW"/>
 </database>

The identity element is used only if it is necessary to override the user and
password specified in the managed data source.

For more on transaction-manager.xml, see "transaction-manager.xml" on
page 5-12.

3. Create a user and grant the appropriate permissions on all databases involved in
the transaction.

■ Create the user on the two-phase commit engine that facilitates the
transaction.

■ The user opens a session from the two-phase commit engine to each of the
involved databases.

■ Grant the CONNECT, RESOURCE, CREATE SESSION privileges for the user
to connect to each of these databases. The FORCE ANY TRANSACTION
privilege allows the user to commit or roll back the transaction.

For example, if the user that facilitates the transaction is COORDUSR, then the
following example shows the operations on the two-phase commit engine and
EACH database involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER COORDUSR IDENTIFIED BY COORDUSR;
GRANT CONNECT, RESOURCE, CREATE SESSION TO COORDUSR;
GRANT FORCE ANY TRANSACTION TO COORDUSR;

4. Configure fully-qualified public database links (using the CREATE PUBLIC
DATABASE LINK command) from the two-phase commit engine to each database
that is to be involved in the global transaction. These links are necessary for the
two-phase commit engine to communicate with each database at the end of the
transaction. These links enable the COORDUSR to connect to all participating
databases.

5. For each managed data source participating in the transaction, add the additional
property of the fully-qualified-database link from the two-phase commit engine to
this database.

Add the property in the Connection Pool page of the Application Server Control
Console or in the data-sources.xml file.

The following example shows the definition in the data-sources.xml file.

 <connection-pool
 name="OracleDS1">
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30"
 <connection-factory
 factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@host1:1521:ORCL">
 <property name="dblink"
 value="DBLINK1.REGRESS.RDBMS.DEV.US.OLE.COM"/>
 </connection-factory>
 </connection-pool>
<managed-data-source connection-pool-name="Example Connection Pool"
OC4J Transaction Support 5-17

Managing the OC4J Transaction Manager
 jndi-name="jdbc/OracleDS1"
 name="OracleDS1"/>
 <connection-pool
 name="OracleDS2">
 min-connections="10"
 max-connections="30"
 inactivity-timeout="30"
 <connection-factory
 factory-class="oracle.jdbc.xa.client.OracleXADataSource"
 user="scott"
 password="tiger"
 url="jdbc:oracle:thin:@host2:1521:ORCL">
 <property name="dblink"
 value="DBLINK2.REGRESS.RDBMS.DEV.US.OLE.COM"/>
 </connection-factory>
 </connection-pool>
<managed-data-source connection-pool-name="Example Connection Pool"
 jndi-name="jdbc/OracleDS2"
 name="OracleDS2"/>

Managing the OC4J Transaction Manager
This section discusses the following operations that can be performed during run time:

■ Manual Commit and Rollback Operations

■ Monitoring the OC4J Transaction Manager

■ Managing OC4J Transaction Manager Recovery

Manual Commit and Rollback Operations

Path to the JTAResource MBean:
OC4J:Home > Administration tab > Task Name: JMX > System MBean Browser: Go To
Task

The following operations of the JTAResource MBean, which is accessible through the
Application Server Control Console, can be used to force the outcome of a current
transaction:

Monitoring the OC4J Transaction Manager
This section discusses the following features, which are available through the
JTAResource MBean:

Operation Description

heuristicCommit Make an autonomous commit decision for an in-doubt
transaction

heuristicRollback Make an autonomous rollback decision for an in-doubt
transaction

setRollbackOnly Make an autonomous setRollbackOnly decision for an active
transaction
5-18 Oracle Containers for J2EE Services Guide

Managing the OC4J Transaction Manager
■ OC4J Transaction Support Statistics

■ Event Notifications

OC4J Transaction Support Statistics
The statistics listed in the following table are provided by the JTAResource MBean,
which is accessible through the Application Server Control Console.

The attributes listed in the following table are provided by the JTAResource MBean.

The following JTAResource MBean operations are related to statistics.

Event Notifications
You can add JMX event notifications that are fired when specified OC4J Transaction
CountStatistics exceed given thresholds and again at the specified count intervals.

Use the following procedure to add a Threshold Event:

1. Drill down to the JTAResource MBean.

2. Select the addThresholdEvent operation and enter the following parameters:

■ statName - the name of a valid OC4J Transaction Count Statistic to monitor

■ threshold - the count at which to broadcast the event

■ repeatNotificationInterval - the interval count at which to broadcast
subsequent events

To remove a threshold event, select the removeThreshold operation of the MBean
and enter the name of the statistic as the argument.

You can subscribe to notification broadcasts on the Notification Subscriptions page of
the Application Server Control Console.

Path to the Notification Subscriptions Page:
OC4J:Home > Administration tab > Task Name: JMX > Notification Subscriptions

The notifications received can then be viewed on the Notifications Received page of
the Application Server Control Console.

Path to the Notifications Received Page:
OC4J:Home > Administration tab > Task Name: JMX > Notification Received

Managing OC4J Transaction Manager Recovery

Managing Recovery
In the normal case, for example where either OC4J or a resource participating in a 2PC
transaction crashes and is subsequently brought back up, recovery occurs
automatically, assuming proper configuration.

In the OPMN environment, if an OC4J instance crashes, then OPMN starts a new
instance, which uses the crashed instance's logs.

In a standalone environment, if an OC4J instance crashes and cannot or should not be
brought back for some reason, then the logs can be migrated to another OC4J instance.
OC4J Transaction Support 5-19

Managing the OC4J Transaction Manager
The process for doing so depends on whether the instance is a root transaction
manager, interposed transaction manager, or both and whether the file or database
logging mechanism is used.

For a root transaction manager using the file store, you must either change the log
location configuration of the new OC4J instances to the location of the crashed one or
manually move the logs to the new OC4J instance log location. This must be done
while the destination server is offline or shut down.

For an interposed transaction manager using the file store, the process is the same,
however, any parent transaction managers of this interposed transaction manager
must now update their references to this new location. This is possible using the
-updateTransactionLogs offline admin command.

For a root transaction manager using the database store, the logs are migrated by
updating the instance field of the oc4j_transaction table using the
-updateTransactionLogs offline admin command. If the new OC4J instance is to
use a completely new database, then the log file must be exported/imported as well.

For an interposed transaction manager using the database store, the process is the
same, however, any parent transaction managers of this interposed transaction
manager must now update their references to this new location. This is conducted
using the -updateTransactionLogs offline admin command.

Two offline admin commands are available via the admin.jar:

■ -analyzeTransactionLogs

■ -updateTransactionLogs

The -analyzeTransactionLogs command provides offline analysis of transaction
log files. Do not use this utility if OC4J is running (use the Application Server Control
Console instead). Arguments are:

The -updateTransactionLogs command provides offline updates of transaction
log files. Do not use this utility if OC4J is running (use the Application Server Control
Console instead). Arguments are:

Note: These notes apply to the context of standalone file migration,
but they can be useful in certain situation in the opmn environment as
well.

Argument Description

-logType ["file" | "database"] The store type.

-location [location] The location of the store.

The directory for file logging.

The connection url for database logging.

-username [username] Applies only to database logging.

-password [password] Applies only to database logging.

Argument Description

-logType ["file" | "database"] The store type.
5-20 Oracle Containers for J2EE Services Guide

Transaction Propagation between OC4J Processes over ORMI
Transaction Propagation between OC4J Processes over ORMI
This section discusses transaction propagation.

How Does Transaction Propagation Work?
Transaction context propagation makes it possible for multiple OC4J instances to
participate in a single global transaction. Multiple OC4J instances need to participate
in the same transaction if an OC4J instance makes a remote call into another OC4J
instance in the scope of an existing transaction, assuming the EJB semantics for the
method support scoping work in a client's transaction. An example of this is a servlet
in OC4J instance:

■ First, obtaining a reference to an EJB residing in OC4J instance.

■ Then, starting a transaction and making a method call on the remote EJB in the
scope of the transaction.

When multiple OC4J instances participate in a single transaction, all work done by the
participating OC4J instances as part of the global transaction is guaranteed to be
atomic.

When a remote method invocation is made between OC4J instances, the requesting
OC4J instance must create a transaction context that represents the current transaction
and implicitly flow the context with the remote call over ORMI. This allows the OC4J
instance that receives the remote method invocation to associate work done as part of
the request with the transaction that is represented by the transaction context. The
remote OC4J instance gets enlisted as a resource with the requesting OC4J instance,
which creates a tree of OC4J instances in which the original OC4J instance is the root
transaction coordinator and the child OC4J instances are nodes. It is possible for an
OC4J instance to be both a parent and a child. In this case, the instance would act as a

-location [location] The location of the store.

The directory for file logging.

The connection url for database logging.

-username [username] Applies only to database logging.

-password [password] Applies only to database logging.

-instanceId [old instance id]
[new instanceid]

The OC4J instance id associated with this log.

 -branchLocation [old branch
location] [new branch
location]

The location of the branch, generally the jndi
location prefixed by the application name.

-branchArg [old branch arg]
[new branch arg]

The argument for the branch. For example, the
container-managed sign-on username

Note: Transaction context propagation and subject propagation is
supported between OC4J 10.1.3 instances only. These features are not
supported between OC4J instances earlier than 10.1.3 or between an
OC4J 10.1.3 instance and an earlier OC4J instance.

Argument Description
OC4J Transaction Support 5-21

Transaction Propagation between OC4J Processes over ORMI
resource to its parent and as a coordinator to its children. This is called
interpositioning. For more on ORMI, see Chapter 6, "Using Remote Method Invocation
in OC4J".

When the root coordinator commits the transaction, it runs the two-phase commit
(2pc) protocol and sends completion calls to all of its registered resources, including
enlisted OC4J instances. The root coordinator is responsible for driving transaction
completion using the two-phase commit (2pc) protocol, while the subordinate OC4J
instances merely act as resources in the transaction. It is possible that the root
coordinator is not an OC4J instance but instead is an external coordinator as would be
the case when OC4J imports a transaction via the J2CA 1.5 Transaction Inflow contract.
When an OC4J instance is enlisted as a resource, it behaves like any other enlisted
resource and is only responsible for preparing and committing its branch of the
transaction. When an OC4J instance receives a call to prepare, it attempts to prepare all
of its enlisted resources and returns the result. Likewise, when a commit call is
received, the OC4J instance calls commit on all of its enlisted resources and returns the
result to its parent.

For more information on the Transaction Inflow Contract, see the "Using RAs for
Inbound Connections" chapter of the Oracle Containers for J2EE Resource Adapter
Administrator’s Guide.

By propagating transactions between OC4J instances over ORMI, transactions can
span more than one OC4J instance.

The How-To document "How-To Propagate a transaction context between OC4J
instances" and the ZIP file at the following site contains information and an example
about transaction context propagation between OC4J instances:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/how-
to-transaction-propagation/doc/how-to-transaction-propagation.ht
ml

Configuring Transaction Propagation
This section describes transaction propagation configuration issues.

Enabling/Disabling

Transaction propagation is enabled by default in OC4J. To disable transaction
propagation, set the system property -Drmi.disablePropagation=true. By
setting this flag, all context propagation is disabled, which includes transaction and
subject propagation. Enabling or disabling of transaction propagation affects all
applications deployed to the server. Finer level granularity is not available. Great care
should be taken when disabling transaction propagation. It is imperative that all OC4J
processes that are involved in a request be configured identically in this regard. This
means that all OC4J processes involved in a request must be enabled or that all of the
OC4J processes must be disabled. If there is a mix of configurations, meaning that
some OC4J processes in a request are enabled and that some are disabled, unexpected
behavior may result. Also, if transaction propagation is disabled, then multiple OC4J

Note: In most cases, transaction propagation is never disabled.
Disabling transaction propagation is only done in exceptional
circumstances such as troubleshooting. Exercise caution when
disabling transaction propagation.
5-22 Oracle Containers for J2EE Services Guide

Transaction Propagation between OC4J Processes over ORMI
processes cannot participate in a single global transaction. Only after fully
understanding all of the consequences related to disabling transaction propagation
should it be considered. Because of the possible adverse effects of disabling transaction
propagation, it is recommended that this feature not be disabled.

Recovery
Because OC4J processes may act as transactional resources, they must be able to be
recovered in the event of a failure. To facilitate transaction recovery, each OC4J process
must have a configured password to be used by the transaction recovery manager at
transaction recovery time. OC4J is shipped with a default password, which should be
changed after install.

The recovery password is configured in the configuration file jazn-data.xml, which
is in the $J2EE_HOME/config directory. To modify the transaction recovery
password, change the credentials value for the user JtaAdmin in the
jazn-data.xml file.

<user>
 <name>JtaAdmin</name>
 <display-name>JTA Recovery User</display-name>
 <description>Used to recover propagated OC4J transactions</description>
 <credentials>!newJtapassword</credentials>
</user>

During transaction recovery, the recovery password in the actual security store for the
OC4J process that is being recovered must match the password that was configured in
jazn-data.xml during transaction processing. If the password does not match, the
recovery manager cannot contact the subordinate OC4J process and therefore the
recovery manager cannot complete recovery.

Logging
Although transaction propagation does not require any additional transaction logging
configuration, it is important to note that because a transaction my span multiple OC4J
processes, each OC4J process must be configured independently with regards to
logging.

Transaction Propagation Constraints
This section discusses the following constraints that apply to transaction propagation
functionality:

■ Backwards Compatibility

■ EJB Failover

Backwards Compatibility
OC4J 10.1.3 is the first version to support propagation, all previous versions did not.
When an OC4J instance that supports transaction propagation makes a remote method
invocation on a bean that is deployed on an older version of OC4J that does not

Caution: Even if OC4J is configured to use a security service other
than JAZN, such as OID, the transaction recovery password must still
be configured in jazn-data.xml.
OC4J Transaction Support 5-23

Debugging and Troubleshooting
support transaction propagation, no transaction context is propagated. For this reason,
even though the caller may be in the scope of a transaction, the work done on the
remote machine is not executed in the scope of the caller's transaction. The Application
Deployer or Admin must understand the transactional requirements of an application
prior to deployment if the application is to be deployed to various OC4J versions.

EJB Failover
When a transaction is propagated to an OC4J process, any failure that causes requests
to that server to be failed over to a secondary server while in the scope of the
propagated transaction will result in the transaction being rolled back.

EJB failover behavior is discussed in the Oracle Containers for J2EE Enterprise JavaBeans
Developer’s Guide.

Debugging and Troubleshooting
The following hints apply to debugging and troubleshooting:

■ The j2ee-logging.xml file can be used to turn on debugging. Transaction
issues are often related to the transaction participants and so turning on the J2CA,
JDBC, and other logging will be of great contextual help.

■ The logger name for the transaction manager is oracle.j2ee.transaction.
The j2ee-logging.xml file is discussed in the "Logging in OC4J" chapter of the
Oracle Containers for J2EE Configuration and Administration Guide.

■ The Application Server Control Console provides information on all transactions
both active and recovering.

■ DMS must be enabled for all statistics.

■ The transaction manager will throw an exception at the time that an attempt is
made to enlist a resource in a global transaction that is currently participating in
an outstanding JCA local transaction. This is new behavior in release 10.1.3. This
behavior is mandated by section 7.8.3 of the J2CA 1.5 specification.
5-24 Oracle Containers for J2EE Services Guide

Using Remote Method Invocation in
6

Using Remote Method Invocation in OC4J

This chapter includes the following topics:

■ What Is RMI?

■ Using Oracle Remote Method Invocation (RMI/ORMI)

■ Remote Object Lookup Using RMI/ORMI

■ Configuring ORMI Tunneling through HTTP

■ Using ORMI/SSL (ORMIS) in OC4J

■ Using J2EE Interoperability (RMI/IIOP)

■ Switching from ORMI to IIOP Transport

What Is RMI?
Java Remote Method Invocation (RMI) enables you to create distributed Java-based to
Java-based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines (JVMs), possibly on different hosts.

OC4J supports RMI over both the proprietary Oracle Remote Method Invocation
(ORMI) protocol and over the standard Internet Inter-ORB Protocol (IIOP). Objects
running within OC4J instances can invoke one another using RMI/ORMI. Objects can
invoke one another across different J2EE containers—for example, between OC4J and
BEA WebLogic servers—using RMI/IIOP.

Additional Documentation
■ The How-To document "How-To Propagate a transaction context between OC4J

instances" and the ZIP file at the following site contains information and an
example about transaction context propagation between OC4J instances using
ORMI:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/h
ow-to-transaction-propagation/doc/how-to-transaction-propagat
ion.html

■ The How-To documents at the following site provide additional information about
OC4J 10g Release 3 (10.1.3) features, including feature overviews and code
excerpts relevant to the feature.

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/i
ndex.html
OC4J 6-1

Using Oracle Remote Method Invocation (RMI/ORMI)
Choosing RMI/ORMI or RMI/IIOP
When can you use RMI/ORMI versus RMI/IIOP?

■ Use RMI/ORMI to invoke methods on remote objects within or across OC4J
instances.

See "Using Oracle Remote Method Invocation (RMI/ORMI)" on page 6-2 for
details.

■ Use RMI/IIOP to invoke methods on remote objects across OC4J and non-Oracle
J2EE containers, such as BEA WebLogic.

See "Switching from ORMI to IIOP Transport" on page 6-18 for details.

Using Oracle Remote Method Invocation (RMI/ORMI)
This section describes Oracle Containers for J2EE (OC4J) support for allowing
objects—such as EJBs—to invoke one another across OC4J server instances using the
proprietary Remote Method Invocation (RMI)/Oracle RMI (ORMI) protocol.

 This section covers the following topics:

■ Introducing RMI/ORMI

■ Configuring RMI in a Standalone OC4J Installation

■ Configuring RMI in an Oracle Application Server Environment

■ Client-Side Requirements to Use RMI/ORMI

Introducing RMI/ORMI
The Oracle Remote Method Invocation (ORMI) is Oracle’s proprietary implementation
of the RMI protocol that is optimized for use with OC4J.

By default, EJBs within OC4J server instances exchange RMI calls over ORMI.
Alternatively, you can convert an EJB to exchange RMI calls over IIOP, making it
possible for EJBs to invoke one another across different EJB containers from different
vendors, such as OC4J and BEA WebLogic. See "Switching from ORMI to IIOP
Transport" on page 6-18 for more.

Features of ORMI
ORMI is enhanced for OC4J and provides the following features:

■ Increased RMI Message Throughput

■ Enhanced Threading Support

■ Co-Located Object Support

Increased RMI Message Throughput Using ORMI, OC4J can process at a very high
transaction rate. This is reflected in Oracle's SpecJ Application Server benchmarks at
http://www.spec.org/.

Note: For the OC4J 10g Release 3 (10.1.3) implementation, load
balancing and failover are supported only for ORMI, not for IIOP.
6-2 Oracle Containers for J2EE Services Guide

Using Oracle Remote Method Invocation (RMI/ORMI)
One way ORMI achieves this performance is by using messages that are much smaller
than IIOP messages. Smaller messages take less bandwidth to send and receive, and
less processing time to encode and decode.

ORMI message size is further reduced by optimizing how much state information is
exchanged between client and server. Using ORMI, some state is cached on the server
so that it does not need to be transmitted in every RMI call. This does not violate the
RMI requirement to be stateless because in the event of a failover, the client code
resends all the state information required by the new server.

Enhanced Threading Support ORMI is tightly coupled with the OC4J threading model to
take full advantage of its queuing, pooling, and staging capabilities.

ORMI uses one thread per client. For multi-threaded clients, OC4J multiplexes each
call through one connection. However, OC4J does not serialize them, so multiple
threads do not block each other.

This feature ensures that each client (single-threaded or multi-threaded) has one
connection to the remote server.

Co-Located Object Support For co-located objects, RMI/ORMI detects the co-located
scenario and avoids the extra, unnecessary socket call.

The same is true when the JNDI registry is co-located.

Compatibility Patches for 9.0.4.x and 10.1.2.x

In order to use ORMI to invoke a method on a remote object when the invoking object
and the invoked object are running on different OC4J versions, you must install a
patch on the older version. This applies when the newer version is 10.1.3 and the older
version is 9.0.4.x or 10.1.2.x. This applies both ways; that is when invoking from the
older version to the newer version or when invoking from the newer version to the
older version.

Some examples:

■ A servlet running on OC4J 9.0.4.3 invoking a method on an EJB running on OC4J
10.1.3.

■ An EJB running on OC4J 10.1.3 invoking a JMS object running on OC4J 10.12.0.2.

■ A JSP running on OC4J 10.1.2 invoking a method on an EJB running on OC4J
10.1.3.

The patches can be downloaded from http://metalink.oracle.com.
The following table lists the older versions to be patched and the corresponding patch
identifiers.

Note: Invoking between 9.0.4.x and 10.1.2.x does not require a patch;
these versions are compatible already.

OC4J Version to be Patched Patch Identifier

9.0.4.3 BUG 4712885

10.1.2.2 BUG 4712552

10.1.2.0.0 BUG 4742351

10.1.2.0.2 BUG 4740687
Using Remote Method Invocation in OC4J 6-3

Using Oracle Remote Method Invocation (RMI/ORMI)
Configuring RMI in a Standalone OC4J Installation
In a standalone OC4J installation, you must specify RMI server data in the RMI
configuration file, rmi.xml. You must also specify the location of this file in
server.xml, the OC4J configuration file.

The rmi.xml file and the server.xml file are installed in
ORACLE_HOME/j2ee/home/config by default

1. Specify the path to the RMI configuration file—rmi.xml—in the <rmi-config>
element in server.xml, the OC4J server configuration file.

The syntax is as follows:

<rmi-config path="RMI_PATH" />

The typical value for RMI_PATH is ./rmi.xml.

2. Add an <rmi-server> element specifying the host, port, and user name and
password to use to connect to (and accept connections from) remote RMI servers
to the rmi.xml file on the OC4J instance. This file is installed in
ORACLE_HOME/j2ee/home/config by default.

For example:

<rmi-server host="hostname" port="port">
</rmi-server>

The attributes of the <rmi-server> element are:

■ host: The host name or IP address from which the RMI server accepts RMI
requests. If you omit this attribute, the RMI server accepts RMI requests from
any host.

■ port: The port number on which the RMI server listens for RMI requests. In
an OC4J standalone environment, if you omit this attribute, it defaults to
23791.

3. Optionally configure the <rmi-server> element with one or more <server>
elements that each specify a remote (point-to-point) RMI server that your
application can contact over RMI.

For example:

<rmi-server host="hostname" port="port">
<server host="serverhostname" username="username" port="serverport"
password="password"/>

</rmi-server>

The host attribute is required; the remaining attributes are optional. Here are the
user-replaceable attributes of the server element:

■ serverhostname: the host name or IP address on which the remote RMI
server listens for RMI requests

■ username: the user name of a valid principal on the remote RMI server

■ serverport: the port number on which the remote RMI server listens for
RMI requests

■ password: the password used by the principal username
6-4 Oracle Containers for J2EE Services Guide

Using Oracle Remote Method Invocation (RMI/ORMI)
Access Restrictions
ORMI and ORMIS enable you to restrict incoming IP access by defining ACL masks
within rmi.xml using the <access-mask> element.

Access controls can either be exclusive or inclusive.

■ In the exclusive mode, access must be explicitly granted to an IP address or host
name. The default mode for the access mask default="deny" specifies that the
access control is exclusive.

■ In the inclusive mode, access is available to all and exceptions must be granted
individually. The default mode for the access mask default="allow" specifies
that the access control is inclusive.

The <host-access> and <ip-access> sub elements are used to specify exceptions
to the default access mode.

For additional information, see Appendix A, "Web Module Administration"", in the
Oracle Containers for J2EE Servlet Developer’s Guide

An example of an exclusive mode configuration to allow only localhost and the
192.168.1.* subnet is shown in the following example:

<rmi-server
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/rmi-server-10_0.xsd"
 port="23791"
 ssl-port="23943"
 schema-major-version="10"
 schema-minor-version="0">

 <access-mask default="deny" >
 <host-access domain="localhost" mode="allow"/>
 <ip-access ip="192.168.1.0" netmask="255.255.255.0" mode="allow"/>
 </access-mask>

 <log>
 <file path="../log/rmi.log" />
 </log>

 <ssl-config
 keystore="../wallets/wallet-server-a/ewallet.p12"
 keystore-password="serverkey-a"
 />

 </rmi-server>

Client-Side Requirements to Use RMI/ORMI
This section lists the ZIP files that you use to install the Oracle and J2EE standard JAR
files that enable EJB and JMS lookup using RMI/ORMI.

The following ZIP files are available from
http://www.oracle.com/technology/software/products/ias/htdocs/ut
ilsoft.html
Using Remote Method Invocation in OC4J 6-5

Using Oracle Remote Method Invocation (RMI/ORMI)
■ To enable EJB lookup using ORMI, download and expand oc4j_client.zip.

■ To enable other lookups, such as JMS, download and expand
oc4j_extended.zip instead of oc4j_client.zip.

Once the appropriate ZIP file is expanded, make sure that oc4jclient.jar is
included in the CLASSPATH.

The ZIP files contain all the JAR files required by the client. The JAR files contain the
classes necessary for client interaction. You must only add oc4jclient.jar to your
CLASSPATH, because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

To enable EJB lookup, make sure that the following JAR files are included on the client
side.

To enable resource adapter lookup, include the following JAR files on the client side.

To enable internal OEMS JMS In-Memory and File-Based lookup, make sure that the
JAR files listed in Table 6–3, " Client-side JAR Files Required for OEMS JMS
In-Memory and File-Based Lookup" are included on the client side.

Table 6–1 Client-side JAR Files Required for EJB Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

ejb.jar /j2ee/<instance>/lib

Table 6–2 Client-side JAR Files Required for JMS Connector Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

adminclient.jar /j2ee/<instance>/lib

oc4j-internal.jar /j2ee/<instance>/lib

connector.jar /j2ee/<instance>/lib

jmxri.jar /j2ee/<instance>/lib

jazncore.jar /j2ee/<instance>

oc4j.jar /j2ee/<instance>

Table 6–3 Client-side JAR Files Required for OEMS JMS In-Memory and File-Based
Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib
6-6 Oracle Containers for J2EE Services Guide

Using Oracle Remote Method Invocation (RMI/ORMI)
To enable internal OEMS JMS Database lookup directly from an application client,
make sure that the JAR files listed in Table 6–4, " Client-side JAR Files Required for
OEMS JMS Database Lookup" are included on the client side.

Configuring RMI in an Oracle Application Server Environment
In an Oracle Application Server environment, you must edit the opmn.xml file to
specify the port range on which this local RMI server listens for RMI requests.

Note that manual changes to configuration files in an Oracle Application Server
environment must be manually updated on each OC4J instance.

To configure the opmn.xml file:

1. Configure the rmi port range using the port id="rmi" element as shown in the
following example opmn.xml file excerpt:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="default-web-site" range="12501-12600" protocol="ajp" />

javax77.jar /j2ee/<instance>/lib

optic.jar

(Required only if the opmn:ormi prefix is
used in Oracle Application Server
environment.)

/opmn/lib

Table 6–4 Client-side JAR Files Required for OEMS JMS Database Lookup

JAR ORACLE_HOME Path

oc4jclient.jar /j2ee/<instance>

ejb.jar /j2ee/<instance>/lib

jta.jar /j2ee/<instance>/lib

jms.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

adminclient.jar /j2ee/<instance>/lib

ojdbc14dms.jar /j2ee/<instance>/../../oracle/jdbc/lib

dms.jar /j2ee/<instance>/../../oracle/lib

bcel.jar /j2ee/<instance>/lib

optic.jar

(Required only if the opmn:ormi
prefix is used in Oracle
Application Server environment.)

/opmn/lib

Table 6–3 (Cont.) Client-side JAR Files Required for OEMS JMS In-Memory and
File-Based Lookup

JAR ORACLE_HOME Path
Using Remote Method Invocation in OC4J 6-7

Remote Object Lookup Using RMI/ORMI
<port id="rmi" range="12401-12500" />
<port id="rmis" range="12801-12900" />
<port id="jms" range="12601-12700" />
<process-set id="default_group" numprocs="1"/>

</process-type>
</ias-component>

For more information on configuring the opmn.xml file, see the Oracle Application
Server Administrator’s Guide.

2. Apply changes by running the following opmnctl command:

opmnctl reload

Remote Object Lookup Using RMI/ORMI
To invoke methods on an object, you must first be able to locate the object.

■ Setting JNDI Properties for RMI

■ Configuring ORMI Request Load Balancing

■ Example Lookups Using ORMI

Setting JNDI Properties for RMI
The following RMI/ORMI properties are specified in the client’s jndi.properties
file:

■ java.naming.provider.url (see "Setting the Java Naming Provider URL" on
page 6-8)

■ java.naming.factory.initial (see "Specifying the Context Factory" on
page 6-10)

Setting the Java Naming Provider URL
Use the following syntax to define one or more OC4J hosts as the value of
java.naming.provider.url:

<protocol>://<host>:[<port>]:<oc4j_instance>/<appName>

For example, specify the following for an application running within Oracle
Application Server:

java.naming.provider.url=opmn:ormi://myHost:home/ejbsamples

Table 6–5 describes arguments used in this syntax.

Note:

■ For details on setting the java.naming.provider.url for
applications that will utilize HTTP tunneling, see "Configuring
ORMI Tunneling through HTTP" on page 6-13.

■ For java.naming.provider.url values for applications using
ORMI over SSL, see the CSIv2 chapter in the Oracle Containers for
J2EE Security Guide.
6-8 Oracle Containers for J2EE Services Guide

Remote Object Lookup Using RMI/ORMI
Specifying the opmn Request Port in Oracle Application Server 10g Release 3 (10.1.3)

In Oracle Application Server 10g Release 3 (10.1.3), you can specify the port defined for
the request attribute of the notification-server element’s port element
configured in the opmn.xml file (default: 6003). When opmn receives an RMI request

Table 6–5 Naming Provider URL

Parameter Description

protocol ■ Applications on Oracle Application Server:

Use opmn:ormi://

■ Applications on standalone OC4J:

Use ormi://

■ Applications that must interoperate with non-OC4J containers:

Use corbaname (see "Specifying the corbaname URL" on
page 6-21).

host ■ Applications on Oracle Application Server:

Specify the name of the OPMN host as defined in the opmn.xml
file. Although OPMN is often located on the same node as the
OC4J instance, specify the host name in case it is located on
another machine.

■ Applications on standalone OC4J:

Specify the OC4J host name as defined by the <rmi-server>
element host attribute in the rmi.xml file.

port ■ Applications on Oracle Application Server 10g Release 3 (10.1.3):

Specify the OPMN request port. The opmn process will forward
RMI requests to the RMI port that it selected for the appropriate
OC4J instance (see "Specifying the opmn Request Port in Oracle
Application Server 10g Release 3 (10.1.3)" on page 6-9). If omitted,
the default OPMN request port value 6003 is used.

■ Applications on Oracle Application Server 10g Release 2 (10.1.2)
and earlier:

Specify the RMI port that opmn selected for your OC4J instance
(see "Specifying the RMI Port in Oracle Application Server 10g
Release 2 (10.1.2) And Earlier" on page 6-10).

■ Applications on standalone OC4J:

Specify the port number defined in the port attribute of the
<rmi.server> element in rmi.xml.

■ Applications that must interoperate with non-OC4J containers
and use the corbaname prefix:

See "Specifying the corbaname URL" on page 6-21 for information
on what port to specify.

The port is optional and is determined by the protocol.
The ORMI protocol defaults to port 23791.
The ORMIS protocol defaults to port 23943.

oc4j_instance ■ For Oracle Application Server applications:

The name of the OC4J instance. The name of the default OC4J
instance is home.

■ For standalone OC4J applications:

This variable is not applicable.

appName The name of your application.
Using Remote Method Invocation in OC4J 6-9

Remote Object Lookup Using RMI/ORMI
on its request port, it forwards the RMI request to the RMI port that it selected for
the appropriate OC4J instance.

For example, consider the following opmn.xml file excerpt:

<notification-server>
<port local="6100" remote="6200" request="6004"/>
<log-file path="$OLE_HOME/opmn/logs/ons.log" level="4"

rotation-size="1500000"/>
<ssl enabled="true" wallet-file="$OLE_HOME/opmn/conf/ssl.wlt/default"/>

</notification-server>

In this example, the port defined for the request attribute of the
notification-server element’s port element is 6004, so you would use 6004 as
the port in your JNDI naming provider URL.

For an example of how this URL is used, see "OC4J in Oracle Application Server 10g
Release 3 (10.1.3)" on page 6-12.

Specifying the RMI Port in Oracle Application Server 10g Release 2 (10.1.2) And Earlier

In releases prior to Oracle Application Server 10g Release 3 (10.1.3), you must specify
the RMI port assigned by opmn for each OC4J instance. To get the assigned RMI port,
use the following opmnctl command on the OC4J host:

opmnctl status -l

This outputs a table of data with one row per OC4J instance.

For example (some columns are omitted for clarity):

Processes in Instance: server817.company.us.com
-------------------+--------------------+-------+ ... +------
ias-component | process-type | pid | ... | ports
-------------------+--------------------+-------+ ... +------
OC4J | home | 2012 | ... | iiop:12701,jms:12601,rmi:12401
HTTP_Server | HTTP_Server | 28818 | ... | http2:7200,http1:7778,http:7200

In this example, opmn has selected port 12401 for RMI on the OC4J instance. Use this
value as the port in your JNDI naming provider URL for this OC4J instance.

Specifying the Context Factory
The initial context factory creates the initial context class for the client.

Set thejava.naming.factory.initial property to one of the following:

■ oracle.j2ee.naming.ApplicationClientInitialContextFactory

■ com.evermind.server.ApplicationInitialContextFactory

■ oracle.j2ee.rmi.RMIInitialContextFactory

The ApplicationClientInitialContextFactory is used when looking up
remote objects from standalone application clients. It uses the refs and
ref-mappings found in application-client.xml and

Note: The following initial context factories are deprecated:

■ com.evermind.server.ApplicationClientInitialContext
Factory

■ com.evermind.server.RMIInitialContextFactory
6-10 Oracle Containers for J2EE Services Guide

Remote Object Lookup Using RMI/ORMI
orion-application-client.xml. It is the default initial context factory when the
initial context is instantiated in a Java application.

The RMIInitialContextFactory is used when looking up remote objects between
different OC4J server instances using the ORMI protocol.

The type of initial context factory that you use depends on what the client is:

■ If the client is a pure Java client outside the OC4J container, then use the
ApplicationClientInitialContextFactory class.

■ If the client is an EJB or servlet client within the OC4J container, then use the
ApplicationInitialContextFactory class. This is the default class; thus,
each time you create a new InitialContext without specifying an initial
context factory class, your client uses the
ApplicationInitialContextFactory class.

■ If the client is an administrative class that is going to manipulate or traverse the
JNDI tree, then use the RMIInitialContextFactory class.

■ If the client is going to use DNS load balancing, then use the
RMIInitialContextFactory class.

Configuring ORMI Request Load Balancing
Load balancing of client ORMI requests made to EJBs deployed into multiple clustered
OC4J instances is supported in OC4J.

The default behavior is for the client to connect to the same OC4J instance with each
call. Specifically, each time the client calls InitialContext() using the same
user/password/provider URL combination, the cached Context object created
the first time the client was invoked will be returned. Thus, the client will send
requests to the same OC4J instance defined by this Context object.

In situations where the number of client calls is fairly low, connecting in this manner is
efficient and results in the best performance.

However, in situations where heavy request volume is expected, load balancing of
requests across OC4J instances may be desired. Load balancing is configurable using
the oracle.j2ee.rmi.loadBalance property, which can be set in the client’s
jndi.properties file or in a Hashtable in the client code. The values for this
property are outlined in the following table.

Table 6–6 oracle.j2ee.rmi.loadBalance Property Values

Value Description

client If specified, the client interacts with the OC4J process that was
initially chosen at the first lookup for the entire conversation.

context Used for a Web client (servlet or JSP) that will access EJBs in a
clustered OC4J environment.

If specified, a new Context object for a randomly-selected OC4J
instance will be returned each time InitialContext() is
invoked.

lookup Used for a standalone client that will access EJBs in a clustered
OC4J environment.

If specified, a new Context object for a randomly-selected OC4J
instance will be created each time the client calls
Context.lookup().
Using Remote Method Invocation in OC4J 6-11

Remote Object Lookup Using RMI/ORMI
The following example illustrates how this property can be set to lookup in a
Hashtable:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContext
Factory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.PROVIDER_URL,"opmn:ormi://<hostname>:oc4j_inst1/ejbsamples");
env.put("oracle.j2ee.rmi.loadBalance","lookup");

Example Lookups Using ORMI
This section provides examples of how to look up an EJB using ORMI in:

■ Standalone OC4J 10g Release 3 (10.1.3)

■ OC4J in Oracle Application Server 10g Release 3 (10.1.3)

■ OC4J in Oracle Application Server Releases Before 10g Release 3 (10.1.3)

Standalone OC4J 10g Release 3 (10.1.3)
The following example shows how to look up an EJB called MyCart in the J2EE
application ejbsamples deployed in a standalone OC4J instance. The application is
located on a node configured to listen on RMI port 23792:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"oracle.j2ee.rmi.RMIInitialContextFactory"
);
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.PROVIDER_URL, "ormi://<hostname>:23792/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

OC4J in Oracle Application Server 10g Release 3 (10.1.3)
In Oracle Application Server 10g Release 3 (10.1.3), you can use the following type of
lookup in the URL to look up an EJB in an Oracle Application Server environment.

The following example shows how to look up the EJB named MyCart in the J2EE
application ejbsamples in an Oracle Application Server 10g Release 3 (10.1.3)
environment. The differences between this invocation and the standalone invocation
are: the opmn prefix to ormi, the specification of the OC4J instance name oc4j_inst1
to which the EJB application is deployed, and no requirement to specify the RMI port:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"oracle.j2ee.rmi.RMIInitialContextFactory"
);
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.PROVIDER_URL,"opmn:ormi://<hostname>:oc4j_inst1/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);
6-12 Oracle Containers for J2EE Services Guide

Configuring ORMI Tunneling through HTTP
OC4J in Oracle Application Server Releases Before 10g Release 3 (10.1.3)
In an OC4J instance in an Oracle Application Server environment, RMI ports are
assigned dynamically, and JAZNUserManager is the default user manager.

In Oracle Application Server releases before 10g Release 3 (10.1.3), if you are accessing
an EJB in Oracle Application Server, you have to know the RMI ports assigned by
opmn. If you have only one JVM for your OC4J instance, then you have to limit the
port ranges for RMIs to a specific number, for example: 3101-3101.

The following example shows how to look up an EJB called MyCart in the J2EE
application ejbsamples in an Oracle Application Server environment in releases
before 10g Release 3 (10.1.3). The application is located on a node configured to listen
on RMI port 12401:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContext
Factory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL, "ormi://<hostname>:12401/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

Configuring ORMI Tunneling through HTTP
To enable EJB communication through firewalls, ORMI utilizes HTTP tunneling to
wrap RMI calls within an HTTP POST request. The request is then forwarded to the
default Web application within the target OC4J instance. Note that tunneling is
supported only with RMI/ORMI; you cannot perform HTTP tunneling using
RMI/IIOP.

The HTTP tunneling URL set as the value of java.naming.provider.url has the
following syntax. See "Setting JNDI Properties for RMI" on page 6-8 for details on this
URL.

ormi:http://<hostname:[http_port]>/<context_uri>/<appName>

You can target an application deployed to a specific OC4J instance - for example, home
or home2 - by specifying the URI context for the default Web application instance
within the OC4J instance hosting the target application. This context URI is defined in
default-web-site.xml as the value of the root attribute of the
<default-web-app> element.

Table 6–7 HTTP tunneling URL syntax

Parameter Description

OHS_hostname The name of the Oracle HTTP Server host that will receive the request.

http_port The Oracle HTTP Server port. This value is optional; if omitted, it defaults
to 80.

context_uri The value of the root attribute in the <default-web-app> element in
ORACLE_HOME/j2ee/<instanceName>/default-web-site.xml.
The value for the OC4J home instance is /j2ee.

appName The name of the target application.
Using Remote Method Invocation in OC4J 6-13

Using ORMI/SSL (ORMIS) in OC4J
The following entry in ORACLE_HOME/j2ee/home/default-web-site.xml
defines the context URI as /j2ee for default Web application in the home instance:

<default-web-app application="default" name="defaultWebApp" root="/j2ee" />

To target a request to the acme application deployed to the home instance, you would
specify this context URI in the ORMI tunneling URL (assuming Oracle HTTP Server is
configured to listen on port 7777):

ormi:http://OHShost:7777/j2ee/acme

If your HTTP traffic goes through a proxy Web server, specify the proxyHost and
(optionally) proxyPort in the command line that starts the EJB client:

-Dhttp.proxyHost=<proxy_host> -Dhttp.proxyPort=<proxy_port>

If omitted, proxy_port defaults to 80.

Using ORMI/SSL (ORMIS) in OC4J
ORMI over SSL (ORMIS) is a new feature in Oracle Application Server 10g Release 3
(10.1.3). With this feature, OC4J now supports Secure Socket Layer (SSL) RMI
communication between objects across OC4J server instances.

ORMIS is disabled by default in OC4J, client and server keystores must be created
before this feature can be used.

See the Oracle Containers for J2EE Security Guide for information on the following
topics:

■ Creating keystores and wallets

■ Enabling ORMI/SSL (ORMIS) in OC4J

■ Configuring OC4J to Use ORMIS

■ Configuring Clients to Use ORMIS

■ EJB Server Security Properties (internal-settings.xml)

■ CSIv2 Security Properties

■ CSIv2 Security Properties (internal-settings.xml)

■ CSIv2 Security Properties (ejb_sec.properties)

■ CSIv2 Security Properties (orion-ejb-jar.xml)

■ EJB Client Security Properties (ejb_sec.properties)

Using J2EE Interoperability (RMI/IIOP)
This section describes OC4J support for EJBs and other objects to invoke one another
across different J2EE containers—for example, between OC4J and BEA WebLogic
servers—using the standard Remote Method Invocation (RMI)/Internet Inter-Orb
Protocol (IIOP).

This section covers the following topics:

■ Introduction to RMI/IIOP

■ Switching from ORMI to IIOP Transport
6-14 Oracle Containers for J2EE Services Guide

Using J2EE Interoperability (RMI/IIOP)
■ Configuring OC4J for Interoperability

Introduction to RMI/IIOP
Java Remote Method Invocation (RMI) enables you to create distributed Java-based to
Java-based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines (JVMs), possibly on different hosts.

Version 2.0 of the EJB specification introduced features that make it easy for EJB-based
applications to invoke one another across different containers. You can make your
existing EJB interoperable without changing a line of code: simply edit the bean’s
properties and redeploy. "Switching from ORMI to IIOP Transport" on page 6-18
discusses redeployment details.

EJB interoperability consists of the following:

■ Transport interoperability, through CORBA IIOP Internet Inter-ORB Protocol,
where ORB is Object Request Broker)

■ Naming interoperability, through the CORBA CosNaming Service (CORBA Object
Service Naming, part of the OMG CORBA Object Service specification)

■ Security interoperability, through Common Secure Interoperability Version 2
(CSIv2)

■ Transaction interoperability, through the CORBA Transaction Service (OTS)

OC4J furnishes transport, naming, and security interoperability.

Transport
By default, OC4J EJBs use RMI/Oracle Remote Method Invocation (ORMI), a
proprietary protocol, to communicate as described in "Using Oracle Remote Method
Invocation (RMI/ORMI)" on page 6-2.

However, you can easily convert an EJB to use RMI/IIOP, making it possible for EJBs
to invoke one another across different EJB containers. This section describes
configuring and using RMI/IIOP.

Naming
OC4J supports the CORBA CosNaming service. OC4J can publish EJBHome object
references in a CosNaming service and provides a JNDI CosNaming implementation
that allows applications to look up JNDI names using CORBA. You can write your
applications using either the JNDI or CosNaming APIs.

Security
OC4J supports Common Secure Interoperability Version 2 (CSIv2), which specifies
different conformance levels; OC4J complies with the EJB specification, which requires
conformance level 0.

For information about security topics, see the CSIv2 chapter in the Oracle Containers for
J2EE Security Guide.

Note: For the OC4J 10g Release 3 (10.1.3) implementation, load
balancing and failover are supported only for ORMI, not for IIOP.
Using Remote Method Invocation in OC4J 6-15

Using J2EE Interoperability (RMI/IIOP)
Transactions
The EJB2.0 specification stipulates an optional transactional interoperability feature.
Conforming implementations must choose one of the following:

■ Transactionally interoperable: transactions are supported between beans that are
hosted in different J2EE containers.

■ Transactionally noninteroperable: transactions are supported only among beans in
the same container.

The current release of OC4J is transactionally noninteroperable, so when a transaction
spans EJB containers, OC4J raises a specified exception.

The rmic.jar Compiler
To invoke or be invoked by CORBA objects, RMI objects must have corresponding
stubs, skeletons, and Internet Description Language (IDL). Use the rmic.jar
compiler to generate stubs and skeletons from Java classes or to generate IDL.

For use with RMI/IIOP, be sure to compile using the -iiop option.

Configuring OC4J for Interoperability
To add interoperability support to your EJB, you must specify interoperability
properties. Some of these properties are specified when starting OC4J and others in
bean properties that are specified in deployment files.

Interoperability OC4J Flags
The following OC4J startup flags support RMI interoperability:

■ -DGenerateIIOP=true generates new stubs and skeletons whenever you
redeploy an application.

■ -Diiop.debug=true generates deployment-time debugging messages, most of
which have to do with code generation.

■ -Diiop.runtime.debug=true generates runtime debugging messages.

Interoperability Configuration Files
Before EJBs can communicate, you must configure the parameters in the configuration
files listed in Table 6–8.

Table 6–8 Interoperability Configuration Files

Context File Description

Server server.xml The <sep-config> element in this file
specifies the path name, normally
internal-settings.xml, for the server
extension provider properties. For example:

<sep-config
path="./internal-settings.xml">

internal-settings.xml This file specifies server extension provider
properties that are specific to RMI/IIOP.

Application orion-ejb-jar.xml The <ior-security-config> subentity of
the <session-deployment> and
<entity-deployment> entities specifies
Common Secure Interoperability Version 2
(CSIv2) security properties for the server.
6-16 Oracle Containers for J2EE Services Guide

Using J2EE Interoperability (RMI/IIOP)
For information about security topics, see the CSIv2 chapter in the Oracle Containers for
J2EE Security Guide.

JNDI Properties for Interoperability (jndi.properties)
The following RMI/IIOP properties are controlled by the client’s jndi.properties
file:

■ java.naming.provider.url may be an OPMN or a corbaname URL for the
bean to be interoperable.

If you configure your client’s JNDI property java.naming.provider.url to
use an OPMN URL, then your client cannot connect to ssl-port and
ssl-client-server-auth-port ports because OPMN-allocated ports are not
reported to OC4J.

For details on corbaname URLs, see "Specifying the corbaname URL" on page 6-21.
For details on the OPMN URL, see "Specifying the OPMN URL" on page 6-21.

■ contextFactory can be either
ApplicationClientInitialContextFactory or the class
IIOPInitialContextFactory.

If your application has an application-client.xml file, then leave
contextFactory set to ApplicationClientInitialContextFactory. If
your application does not have an application-client.xml file, then change
contextFactory to IIOPInitialContextFactory.

Context Factory Usage

■ oracle.j2ee.naming.ApplicationClientInitialContextFactory
is used when looking up remote objects from standalone application clients. It uses
the refs and ref-mappings found in application-client.xml and
orion-application-client.xml. It is the default initial context factory when
the initial context is instantiated in a Java application.

■ oracle.j2ee.iiop.IIOPInitialContextFactory is used when looking up
remote objects between different containers using the IIOP protocol.

Client-Side Requirements to Use IIOP
This section lists the ZIP files that you use to install the Oracle and J2EE standard JAR
files that enable EJB and JMS lookup using RMI/IIOP.

The following ZIP files are available from
http://www.oracle.com/technology/software/products/ias/index.htm
l:

■ To enable EJB lookup using IIOP, download and expand
oc4j_iiop_client.zip.

ejb_sec.properties This file specifies client-side security properties
for an EJB.

jndi.properties This file specifies the URL of the initial naming
context used by the client. See "JNDI Properties
for Interoperability (jndi.properties)" on
page 6-17 for details.

Table 6–8 (Cont.) Interoperability Configuration Files

Context File Description
Using Remote Method Invocation in OC4J 6-17

Switching from ORMI to IIOP Transport
■ To enable other lookups, such as JMS, you must also download and expand
oc4j_extended.zip.

Once these ZIP files are expanded, make sure that oc4jclient.jar is included in
the CLASSPATH.

The ZIP files contain all the JAR files required by the client. The JAR files contain the
classes necessary for client interaction. You must only add oc4jclient.jar to your
CLASSPATH, because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

While running the IIOP Client, the following properties must be set for IIOP clients:

■ -Dorg.omg.CORBA.ORBInitialHost=${orb.host}

■ -Dorg.omg.CORBA.ORBInitialPort=${orb.port}

■ -Djavax.rmi.CORBA.PortableRemoteObjectClass=com.sun.corba.ee.im
pl.javax.rmi.PortableRemoteObject

■ -Dcom.oracle.CORBA.OrbManager=com.oracle.corba.ee.impl.orb.ORBM
anagerImpl

Switching from ORMI to IIOP Transport
In OC4J, EJBs use RMI/ORMI, a proprietary protocol, to communicate (as described in
"Using Oracle Remote Method Invocation (RMI/ORMI)" on page 6-2). You can convert
an EJB to use RMI/IIOP, making it possible for EJBs to invoke one another across
different EJB containers from different vendors, such as OC4J and BEA WebLogic.

The following sections provide details on making the conversions:

■ Configuring an EJB for Interoperability in a Standalone OC4J Environment

■ Configuring an EJB for Interoperability in an Oracle Application Server
Environment

■ Specifying the corbaname URL

■ Specifying the OPMN URL

■ Exception Mapping

■ Invoking OC4J-Hosted Beans from a Non-OC4J Container

Configuring an EJB for Interoperability in a Standalone OC4J Environment
Follow these steps to convert an EJB to use RMI/IIOP in a standalone OC4J
environment:

1. Specify CSIv2 security policies for the bean in orion-ejb-jar.xml and in
internal-settings.xml.

Note: RMI/IIOP support is based on the CORBA 2.3.1
specification. Applications that were compiled using earlier releases
of CORBA may not work correctly.
6-18 Oracle Containers for J2EE Services Guide

Switching from ORMI to IIOP Transport
For information about security topics, see the CSIv2 chapter in the Oracle
Containers for J2EE Security Guide.

2. Restart OC4J with the -DGenerateIIOP=true flag.

3. Deploy your application using admin.jar. You must obtain the client's stub JAR
file, using the -iiopClientJar switch. Here is an example:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome -deploy -file
filename -deployment_name application_name -iiopClientJar stub_jar_filename

4. Change the client’s classpath to include the stub JAR file that was obtained
during deployment, by running admin.jar with the -iiopClientJar switch.

A copy of the stub JAR file that was generated by OC4J can also be found in the
server's deployment directory at:

application_deployment_directory/appname/ejb_module/_iiopClient.jar

5. Edit the client’s JNDI property java.naming.provider.url to use a
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"Specifying the corbaname URL" on page 6-21.

6. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces.

Configuring an EJB for Interoperability in an Oracle Application Server Environment
This section describes how to convert an EJB to use RMI/IIOP in an Oracle
Application Server environment.

1. Specify CSIv2 security policies for the bean in orion-ejb-jar.xml and in
internal-settings.xml.

For information about security topics, see the CSIv2 chapter in the Oracle
Containers for J2EE Security Guide.

2. By default, RMI/IIOP is disabled in an Oracle Application Server environment. To
enable RMI/IIOP, confirm in the OPMN configuration file
J2EE_HOME/opmn/conf/opmn.xml that a unique iiop, iiops1, and iiops2
port (or port range) exists for each OC4J instance to be managed by OPMN. These
are the port meanings:

iiop—standard IIOP port

iiops1—IIOP/SSL port used for server-side authentication only

iiops2—IIOP/SSL port used for both client and server authentication

Note: You must use the -iiopClientJar switch to enable
interoperability (IIOP) for the application you are deploying. In
OC4J, interoperability is enabled on a per-application basis.

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.
Using Remote Method Invocation in OC4J 6-19

Switching from ORMI to IIOP Transport
Here is an example:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="ajp" range="3000-3100"/>
<port id="rmi" range="23791-23799"/>
<port id="jms" range="3201-3300"/>
<port id="iiop" range="3401-3500"/>
<port id="iiops1" range="3501-3600"/>
<port id="iiops2" range="3601-3700"/>
<process-set id="default_group" numprocs="1"/>

</process-type>
</ias-component>

3. Use opmnctl to restart all OC4J instances that are managed by OPMN. Use the
-DGenerateIIOP=true flag.

opmnctl -DGenerateIIOP=true startall

4. Deploy your application specifying the -enableIIOP option. For information
about deployment, see the Oracle Containers for J2EE Deployment Guide.

5. Change the client’s classpath to include the stub JAR file that was generated by
OC4J. This is normally found in the server's deployment directory:

application_deployment_directory/appname/ejb_module/_iiopClient.jar

6. Edit the client’s JNDI property java.naming.provider.url to use an OPMN or
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"Specifying the corbaname URL" on page 6-21. For details on the OPMN URL, see
"Specifying the OPMN URL" on page 6-21.

7. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces.

Note: You must specify an iiop, iiops1, and iiops2 port (or
port range) for each OC4J instance in which interoperability with
CSIv2 is to be enabled. Failure to do so causes OC4J to not
configure an IIOP listener, thus automatically disabling
interoperability, regardless of the configuration in the
internal-settings.xml file of OC4J.

Note: If you choose to configure your client’s JNDI property
java.naming.provider.url to use an OPMN URL, then your
client cannot connect to iiops1 or iiops2 ports because
OPMN-allocated ports are not reported to OC4J.

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.
6-20 Oracle Containers for J2EE Services Guide

Switching from ORMI to IIOP Transport
Specifying the corbaname URL
To interoperate, an EJB must look up other beans using CosNaming. This means that
the URL for looking up the root NamingContext must use the corbaname URL
scheme instead of the ormi URL scheme. This section discusses the corbaname
subset that EJB developers use most often. For a full discussion of the corbaname
scheme, see section 2.5.3 of the CORBA Naming Service specification. The corbaname
scheme is based on the corbaloc scheme, which section 13.6.10.1 of the CORBA
specification discusses.

The most common form of the corbaname URL scheme is:

corbaname::host[:port]

This corbaname URL specifies a conventional DNS host name or IP address, and a
port number. For example,

corbaname::example.com:8000

A corbaname URL can also specify a naming context by following the host and port
by # and NamingContext in string representation. The CosNaming service on the
specified host is responsible for interpreting the naming context.

corbaname::host[:port]#namingcontext

For example:

corbaname::example.com:8000#Myapp

Specifying the OPMN URL
This section describes OPMN URL details that are specific to RMI/IIOP. For general
information about the OPMN URL, see "Setting JNDI Properties for RMI" on page 6-8.

In an Oracle Application Server environment, IIOP ports for all OC4J processes within
each Oracle Application Server instance are dynamically managed by OPMN. Because
of this, it may not be possible for clients to know the ports on which OC4J processes
are actively listening for IIOP requests. To enable clients to successfully make
RMI/IIOP requests in an Oracle Application Server environment without having to
know the IIOP ports for all active OC4J processes, modify the
jndi.naming.provider.url property (in the client’s jndi.properties file)
with a URL of the following format:

opmn:corbaname::host[:port][#instance-name]#appname

For example:

opmn:corbaname::dlsun74:6003#oc4j_inst1#ejbsamples
Using Remote Method Invocation in OC4J 6-21

Switching from ORMI to IIOP Transport
Exception Mapping
When EJBs are invoked over IIOP, OC4J must map system exceptions to CORBA
exceptions. Table 6–9 lists the exception mappings.

Invoking OC4J-Hosted Beans from a Non-OC4J Container
EJBs that are not hosted in OC4J must add the file oc4j_interop.jar to the
classpath to invoke OC4J-hosted EJBs. OC4J expects the other container to make the
HandleDelegate object available in the JNDI name space at
java:comp/HandleDelegate. The oc4j_interop.jar file contains the standard
portable implementations of home and remote handles, and metadata objects.

Notes:

■ For the OC4J 10g Release 3 (10.1.3) implementation, load
balancing and failover are supported only for ORMI, not for
IIOP.

■ If you use an OPMN URL, your client cannot connect to
iiops1 or iiops2 (ssl-port or
ssl-client-server-auth-port) ports.

Table 6–9 Java-CORBA Exception Mappings

OC4J System Exception CORBA System Exception

javax.transaction.

 TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.

TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.

InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN
6-22 Oracle Containers for J2EE Services Guide

Java Object C
7

Java Object Cache

This chapter describes the Oracle Containers for J2EE (OC4J) Java Object Cache (JOC),
including its architecture and programming features. This chapter covers the following
topics:

■ Java Object Cache Concepts

■ Java Object Cache Object Types

■ Java Object Cache Environment

■ Developing Applications Using Java Object Cache

■ Working with Disk Objects

■ Working with StreamAccess Objects

■ Working with Pool Objects

■ Running in Local Mode

■ Running in Distributed Mode

What's New for 10.1.3
The following OC4J JOC features and behaviors are new for this release:

■ DMS support

■ Enhanced classloader support -

Object names as well as the cached objects themselves can now be loaded using a
region specific class loader.

■ Enhanced remote cache access -

It is now possible to add or retrieve an object from a specific remote cache using
CacheAccess.replaceRemote and CacheLoader.getFromRemote
respectively.

CacheAccess.getAllCached allows the retrieval of a particular named object
from all caches in the system. This is returned as a list. This is particularly useful in
retrieving statistics from each cache.

Previously, all listeners were executed asynchronously. The request would
typically return before the event listener executed. In 10.1.3, synchronized update
listeners have been added to allow listeners to be executed as part of the event
rather than in a separate thread.

■ Deprecated

The following item is deprecated in this release:
ache 7-1

Java Object Cache Concepts
– Attributes.logging levels have been replaced by those specified in
java.util.logging.Levels.

Java Object Cache Concepts
Oracle Application Server 10g offers the Java Object Cache to help e-businesses
manage Web site performance issues for dynamically generated content. The Java
Object Cache improves the performance, scalability, and availability of Web sites
running on Oracle Application Server 10g.

By storing frequently accessed or expensive-to-create objects in memory or on disk, the
Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle Application Server 10g cache architecture includes the following cache
components:

■ Oracle Application Server Web Cache. The Web Cache sits in front of the
application servers (Web servers), caching their content and providing that content
to Web browsers that request it. When browsers access the Web site, they send
HTTP requests to the Web Cache. The Web Cache, in turn, acts as a virtual server
to the application servers. If the requested content has changed, the Web Cache
retrieves the new content from the application servers.

The Web Cache is an HTTP-level cache, maintained outside the application,
providing fast cache operations. It is a pure, content-based cache, capable of
caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such as
servlet or JSP results). Given that it exists as a flat content-based cache outside the
application, it cannot cache objects (such as Java objects or XML DOM—Document
Object Model—objects) in a structured format. In addition, it offers relatively
limited postprocessing abilities on cached data.

■ Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects can contain generated pages or can
provide support objects within the program to assist in creating new content. The
Java Object Cache automatically loads and updates objects as specified by the Java
application.

■ Web Object Cache. The Web Object Cache is a Web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically, using application programming interface (API) calls (for
servlets) or custom tag libraries (for JSPs). The Web Object Cache is generally used
as a complement to the Web cache. By default, the Web Object Cache uses the Java
Object Cache as its repository.

A custom tag library or API enables you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or XML
text fragments, XML DOM objects, or Java serializable objects. These objects can be
cached conveniently in association with HTTP semantics. Alternatively, they can
be reused outside HTTP, such as in outputting cached XML objects through Simple
Mail Transfer Protocol (SMTP), Java Message Service (JMS), Advanced Queueing
(AQ), or Simple Object Access Protocol (SOAP).
7-2 Oracle Containers for J2EE Services Guide

Java Object Cache Concepts
Java Object Cache Basic Architecture
Figure 7–1, "Java Object Cache Basic Architecture" shows the basic architecture for the
Java Object Cache. The cache delivers information to a user process. The process could
be a servlet application that generates HTML pages, or any other Java application.

The Java Object Cache is an in-process, process-wide caching service for general
application use. That is, objects are cached within the process memory space, and the
Java Object Cache is a single service that is shared by all threads running in the
process, in contrast to a service that runs in another process. The Java Object Cache can
manage any Java object. To facilitate sharing of cached objects, all objects within the
cache are accessed by name. The caching service does not impose a structure on objects
being cached. The name, structure, type, and original source of the object are all
defined by the application.

To maximize system resources, all objects within the cache are shared. However, access
to cached objects is not serialized by access locks, allowing for a high level of
concurrent access. When an object is invalidated or updated, the invalid version of the
object remains in the cache as long as there are references to that particular version of
the object. It is thus possible to have multiple versions of an object in the cache at the
same time; however, there is never more than one valid version of the object. The old
or invalid versions of an object are visible only to applications that had references to
the version before it was invalidated. If an object is updated, a new copy of the object
is created in the cache, and the old version is marked as invalid.

Objects are loaded into the cache with a user-provided CacheLoader object. This
loader object is called by the Java Object Cache when a user application requests an
object from the cache and it is not already present. Figure 7–1 is a graphical
representation of the architecture. The application interacts with the cache to retrieve
objects, and the cache interacts through the CacheLoader with the data source. This
process gives a clean division between object creation and object use.

Figure 7–1 Java Object Cache Basic Architecture

Distributed Object Management
The Java Object Cache can be used in an environment in which multiple Java processes
are running the same application or working on behalf of the same application. In this
environment, it is useful to have identical objects cached in different processes. For
simplicity, availability and performance, the Java Object Cache is specific to each

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the Oracle
Containers for J2EE JSP Tag Libraries and Utilities Reference.
Java Object Cache 7-3

Java Object Cache Concepts
process. There is no centralized control of which objects are loaded into a process.
However, the Java Object Cache coordinates object updating and invalidation between
processes. If an object is updated or invalidated in one process, then it is also updated
or invalidated in all other associated processes. This distributed management allows a
system of processes to stay synchronized without the overhead of centralized control.

Figure 7–2, "Java Object Cache Distributed Architecture" is a graphical representation
of the following:

■ How the application interacts with the Java Object Cache to retrieve objects

■ How the Java Object Cache interacts with the data source

■ How the caches of the Java Object Cache coordinate cache events through the
cache messaging system

Figure 7–2 Java Object Cache Distributed Architecture

How the Java Object Cache Works
The Java Object Cache manages Java objects within a process, across processes, and on
a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of Java
objects. There are very few restrictions on the types of Java objects that can be cached
or on the original source of the objects. Programmers use the Java Object Cache to
manage objects that, without cache access, are expensive to retrieve or to create.

The Java Object Cache is easy to integrate into new and existing applications. Objects
can be loaded into the object cache, using a user-defined object, the CacheLoader,
and can be accessed through a CacheAccess object. The CacheAccess object
supports local and distributed object management. Most of the functionality of the
Java Object Cache does not require administration or configuration. Advanced
features support configuration using administration APIs in the Cache class.
Administration includes setting configuration options, such as naming local disk space
or defining network ports. The administration features allow applications to fully
integrate the Java Object Cache.

Each cached Java object has a set of associated attributes that control how the object is
loaded into the cache, where the object is stored, and how the object is invalidated.
Cached objects are invalidated based on time or an explicit request. (Notification can
be provided when the object is invalidated.) Objects can be invalidated by group or
individually.
7-4 Oracle Containers for J2EE Services Guide

Java Object Cache Concepts
Figure 7–3, "Java Object Cache Basic APIs" illustrates the basic Java Object Cache APIs.
Figure 7–3, "Java Object Cache Basic APIs" does not show management.

Figure 7–3 Java Object Cache Basic APIs

Cache Organization
The Java Object Cache is organized as follows:

■ Cache Environment. The cache environment includes cache regions, subregions,
groups, and attributes. Cache regions, subregions, and groups associate objects
and collections of objects. Attributes are associated with cache regions, subregions,
groups, and individual objects. Attributes affect how the Java Object Cache
manages objects.

■ Cache Object Types. The cache object types include memory objects, disk objects,
pooled objects, and StreamAccess objects.

Table 7–1, " Cache Organizational Construct" contains a summary of the constructs in
the cache environment and the cache object types.

Table 7–1 Cache Organizational Construct

Cache Construct Description

Attributes Functionality associated with cache regions, groups, and individual
objects. Attributes affect how the Java Object Cache manages objects.

Cache region An organizational name space for holding collections of cache objects
within the Java Object Cache.

Cache subregion An organizational name space for holding collections of cache objects
within a parent region, subregion, or group.

Cache group An organizational construct used to define an association between
objects. The objects within a region can be invalidated as a group.
Common attributes can be associated with objects within a group.

Memory object An object that is stored and accessed from memory.

Disk object An object that is stored and accessed from disk.

Pooled object A set of identical objects that the Java Object Cache manages. The
objects are checked out of the pool, used, and then returned.

StreamAccess
object

An object that is loaded using a Java OutputStream and accessed
using a Java InputStream. The object is accessed from memory or
disk, depending on the size of the object and the cache capacity.
Java Object Cache 7-5

Java Object Cache Object Types
Java Object Cache Features
The Java Object Cache provides the following features:

■ Objects can be updated or invalidated

■ Objects can be invalidated either explicitly, or with an attribute specifying the
expiration time or the idle time

■ Objects can be coordinated between processes

■ Object loading and creation can be automatic

■ Object loading can be coordinated between processes

■ Objects can be associated in cache regions or groups with similar characteristics

■ Cache event notification provides for event handling and special processing

■ Cache management attributes can be specified for each object or applied to cache
regions or groups

Java Object Cache Object Types
This section describes the object types that the Java Object Cache manages:

■ Memory Objects

■ Disk Objects

■ StreamAccess Objects

■ Pool Objects

Memory Objects
Memory objects are Java objects that the Java Object Cache manages. Memory objects
are stored in the Java virtual machine (JVM) heap space as Java objects. Memory
objects can hold HTML pages, the results of a database query, or any information that
can be stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object can be external (for
example, using data in a table on the Oracle9i Database Server). The application
supplied loader accesses the source and either creates or updates the memory object.
Without the Java Object Cache, the application would be responsible for accessing the
source directly, rather than using the loader.

You can update a memory object by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using the CacheAccess.replace() method). This replaces the original
memory object.

Note: Objects are identified by a name that can be any Java object.
The Java object used for the identifying name must override the
default Java object equals method and the default Java object
hashcode method. If the object is distributed, and can be updated
or saved to disk, the Serializable interface must be
implemented.
7-6 Oracle Containers for J2EE Services Guide

Java Object Cache Object Types
The CacheAccess.defineObject() method associates attributes with an object. If
attributes are not defined, then the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using the
SPOOL attribute). Setting this attribute allows the Java Object Cache to handle memory
objects that are large, or costly to re-create and seldom updated. When the disk cache
is set up to be significantly larger than the memory cache, objects on disk stay in the
disk cache longer than objects in memory.

Combining memory objects that are spooled to a local disk with the distributed feature
from the DISTRIBUTE attribute provides object persistence (when the Java Object
Cache is running in distributed mode). Object persistence allows objects to survive the
restarting of the JVM.

Disk Objects
Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared across Java Object
Cache processes, or they can be local to a particular process, depending on disk
location specified and the setting for the DISTRIBUTE attribute (and whether the Java
Object Cache is running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the TimeToLive or IdleTime
attributes. When the Java Object Cache requires additional space, disk objects that are
not being referenced can be removed from the cache.

StreamAccess Objects
StreamAccess objects are special cache objects set up to be accessed using the Java
InputStream and OutputStream classes. The Java Object Cache determines how to
access the StreamAccess object, based on the size of the object and the capacity of
the cache. Smaller objects are accessed from memory; larger objects are streamed
directly from disk. All streamAccess objects are stored on disk.

The cache user's access to the StreamAccess object is through an InputStream. All
the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not supply a mechanism to
manage a stream—for example, StreamAccess objects cannot manage socket
endpoints. InputStream and OutputStream objects are available to access
fixed-sized, potentially large objects.

Pool Objects
Pool objects are a special class of objects that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects. Individual objects within the
pool can be checked out to be used and then returned to the pool when they are no
longer needed.

Attributes, including TimeToLive or IdleTime can be associated with a pool object.
These attributes apply to the pool object as a whole.

The Java Object Cache instantiates objects within a pool using an application-defined
factory object. The size of a pool decreases or increases based on demand and on the
values of the TimeToLive or IdleTime attributes. A minimum size for the pool is
specified when the pool is created. The minimum size value is interpreted as a request
rather than a guaranteed minimum value. Objects within a pool object are subject to
Java Object Cache 7-7

Java Object Cache Environment
removal from the cache because of a lack of space, so the pool can decrease below the
requested minimum value. A maximum pool size value can be set by putting a hard
limit on the number of objects available in the pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:

■ Cache Regions

■ Cache Subregions

■ Cache Groups

■ Region and Group Size Control

■ Cache Object Attributes

This section describes these Java Object Cache environment constructs.

Cache Regions
The Java Object Cache manages objects within a cache region. A cache region defines a
name space within the cache. Each object within a cache region must be uniquely
named, and the combination of the cache region name and the object name must
uniquely identify an object. Thus, cache region names must be unique from other
region names, and all objects within a region must be uniquely named relative to the
region. (Multiple objects can have the same name if they are within different regions or
subregions.)

You can define as many regions as you need to support your application. However,
most applications require only one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Attributes can be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

Cache Subregions
The Java Object Cache manages objects within a cache region. Specifying a subregion
within a cache region defines a child hierarchy. A cache subregion defines a name space
within a cache region or within a higher cache subregion. Each object within a cache
subregion must be uniquely named, and the combination of the cache region name,
the cache subregion name, and the object name must uniquely identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion's attributes are
inherited by the objects within the subregion. If a subregion's parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

Cache Groups
A cache group creates an association between objects within a region. Cache groups
allow related objects to be manipulated together. Objects are typically associated in a
cache group because they must be invalidated together, or they use common
attributes. Any set of cache objects within the same region or subregion can be
associated using a cache group, which can, in turn, include other cache groups.
7-8 Oracle Containers for J2EE Services Guide

Java Object Cache Environment
A Java Object Cache object can belong to only one group at any given time. Before an
object can be associated with a group, the group must be explicitly created. A group is
defined with a name. A group can have its own attributes, or it can inherit its
attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects, but rather to define a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming purposes;
therefore, a region cannot include a group and a memory object with the same name.
You must use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Region and Group Size Control
With the 10g Release 3 (10.1.3) version of the Java Object Cache, you can specify the
maximum size of a region or group as either the number of objects in the region or
group, or the maximum number of bytes allowed. If the number of bytes controls the
region capacity, then set the size attribute for all objects in the region. This can be set
either directly by the user when the object is created, or automatically by setting the
Attributes.MEASURE attribute flag. You can set the size of a region or group at
multiple levels in the naming hierarchy—that is, at the region and subregion level, or
at the group level within a region or another group.

When the capacity of a region or group is reached, the CapacityPolicy object
associated with that region or group, if defined, is called. If no capacity policy has been
specified, then the default policy is used. The default policy follows: If a nonreferenced
object of lesser or equal priority is found, then it is invalidated in favor of the new
object. If the priority attribute has not been set for an object, then the priority is
assumed to be Integer.MAX_VALUE. When searching for an object to remove, all
objects in the immediate region or group and all subregions and subgroups are
searched. The first object that can be removed, based on the capacity policy, is
removed. So, for example, this may not be the object of lowest priority in the search
area.

Figure 7–4, "Capacity Policy Example" illustrates the example.

The capacity of region A is set to 50 objects, with subregion B and subregion C set to 20
objects each. If the object count of region A reaches 50, with 10 directly in region A and
20 each in subregions B and C, then the capacity policy for region A is called. The
object that is removed can come from region A or from one of its subregions.
Figure 7–4, "Capacity Policy Example" shows this situation.

If subregion B reaches 20 before the capacity of region A is reached, then the capacity
policy for subregion B is called, and only objects within subregion B are considered for
removal.
Java Object Cache 7-9

Java Object Cache Environment
Figure 7–4 Capacity Policy Example

Cache Object Attributes
Cache object attributes affect how the Java Object Cache manages objects. Each object,
region, subregion, and group has a set of associated attributes. An object's applicable
attributes contain either the default attribute values; the attribute values inherited
from the object's parent region, subregion, or group; or the attribute values that you set
for the object.

Attributes fall into two categories:

■ The first category is attributes that must be defined before an object is loaded into
the cache. Table 7–2, " Java Object Cache Attributes–Set at Object Creation"
summarizes these attributes. None of the attributes shown in Table 7–2, " Java
Object Cache Attributes–Set at Object Creation" has a corresponding set or get
method, except the LOADER attribute. Use the Attributes.setFlags()
method to set these attributes.

■ The second category is attributes that can be modified after an object is stored in
the cache. Table 7–3, " Java Object Cache Attributes" summarizes these attributes.

Using Attributes Defined Before Object Loading
The attributes shown in Table 7–2, " Java Object Cache Attributes–Set at Object
Creation" must be defined for an object before the object is loaded. These attributes
determine an object's basic management characteristics.

The following list shows the methods that you can use to set the attributes shown in
Table 7–2, " Java Object Cache Attributes–Set at Object Creation" (by setting the values
of an Attributes object argument).

■ CacheAccess.defineRegion()

■ CacheAccess.defineSubRegion()

■ CacheAccess.defineGroup()

Note: Some attributes do not apply to certain types of objects. See
the "Object Types" sections in the descriptions in Table 7–2, " Java
Object Cache Attributes–Set at Object Creation" and Table 7–3,
" Java Object Cache Attributes".
7-10 Oracle Containers for J2EE Services Guide

Java Object Cache Environment
■ CacheAccess.defineObject()

■ CacheAccess.getAccess()

■ CacheAccess.getSubRegion()

■ CacheAccess.put()

■ CacheAccess.createPool()

■ CacheLoader.createDiskObject()

■ CacheLoader.createStream()

■ CacheLoader.SetAttributes()

Note: You cannot reset the attributes shown in Table 7–2, " Java
Object Cache Attributes–Set at Object Creation" by using the
CacheAccess.resetAttributes() method.

Table 7–2 Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

DISTRIBUTE Specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates
and invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the
default value for the DISTRIBUTE attribute for the objects within the region,
subregion, or group unless the objects explicitly set their own DISTRIBUTE
attribute. Because pool objects are always local, this attribute does not apply to pool
objects.

Default Value: All objects are local.

GROUP_TTL_DESTROY Indicates that the associated object, group, or region should be destroyed when the
TimeToLive expires.

Object Types: When set on a region or a group, all the objects within the region or
group, and the region, subregion, or group itself are destroyed when the
TimeToLive expires.

Default Value: Only group member objects are invalidated when the TimeToLive
expires.

LOADER Specifies the CacheLoader associated with the object.

Object Types: When set on a region or group, the specified CacheLoader becomes
the default loader for the region, subregion, or group. The LOADER attribute is
specified for each object within the region or the group.

Default Value: Not set.

ORIGINAL Indicates that the object was created in the cache, rather than loaded from an
external source. ORIGINAL objects are not removed from the cache when the
reference count goes to zero. ORIGINAL objects must be explicitly invalidated when
they are no longer useful.

Object Types: When set on a region or group, this attribute sets the default value for
the ORIGINAL attribute for the objects within the region, subregion, or group,
unless the objects set their own ORIGINAL attribute.

Default Value: Not set.
Java Object Cache 7-11

Java Object Cache Environment
REPLY Specifies that a reply message will be sent from remote caches after a request for an
object update or invalidation has completed. Set this attribute when a high level of
consistency is required between caches. If the DISTRIBUTE attribute is not set, or
the cache is started in non-distributed mode, REPLY is ignored.

Object Types: When set on a region or group, this attribute sets the default value for
the REPLY attribute for the objects within the region, subregion, or group, unless
the objects explicitly set their own REPLY attribute. For memory, StreamAccess,
and disk objects, this attribute applies only when the DISTRIBUTE attribute is set to
the value DISTRIBUTE. Because pool objects are always local, this attribute does
not apply for pool objects.

Default Value: No reply is sent. When DISTRIBUTE is set to local, the REPLY
attribute is ignored.

SPOOL Specifies that a memory object should be stored on disk rather than being lost when
the cache system removes it from memory to regain space. This attribute applies
only to memory objects. If the object is also distributed, the object can survive the
death of the process that spooled it. Local objects are accessible only by the process
that spools them, so if the Java Object Cache is not running in distributed mode, the
spooled object is lost when the process dies.

Note: An object must be serializable to be spooled.

Object Types: When set on a region, subregion, or group, this attribute sets the
default value for the SPOOL attribute for the objects within the region, subregion, or
group unless the objects set their own SPOOL attribute.

Default Value: Memory objects are not spooled to disk.

SYNCHRONIZE This attribute indicates that updates to this object must be synchronized. If this flag
is set, only the "owner" of an object can load or replace the object. Ownership is
obtained using the CacheAccess.getOwnership() method. The "owner" of an
object is the CacheAccess object. Setting the SYNCHRONIZE attribute does not
prevent a user from reading or invalidating the object.

Object Types: When set on a region, subregion, or group, the ownership restriction
is applied to the region, subregion, or group as a whole. Pool objects do not use this
attribute.

Default Value: Updates are not synchronized.

SYNCHRONIZE_DEFAULT Indicates that all objects in a region, subregion, or group should be synchronized.
Each user object in the region, subregion, or group is marked with the
SYNCHRONIZE attribute. Ownership of the object must be obtained before the object
can be loaded or updated.

Setting the SYNCHRONIZE_DEFAULT attribute does not prevent a user from reading
or invalidating objects. Thus, ownership is not required for reads or invalidation of
objects that have the SYNCHRONIZE attribute set.

Object Types: When set on a region, subregion, or group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use
this attribute.

Default Value: Updates are not synchronized.

ALLOWNULL Specifies that the cache accepts null as a valid value for the affected objects. Null
objects that are returned by a cacheLoader object are cached, rather than
generating an ObjectNotFoundException.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
individually to each object within the region, subregion, group, or pool unless
explicitly set for the object.

Default Value: OFF. (Nulls are not allowed.)

Table 7–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description
7-12 Oracle Containers for J2EE Services Guide

Java Object Cache Environment
Using Attributes Defined Before or After Object Loading
A set of Java Object Cache attributes can be modified either before or after object
loading. Table 7–3, " Java Object Cache Attributes" lists these attributes. These
attributes can be set using the methods in the list under "Using Attributes Defined
Before Object Loading" on page 7-10, and can be reset using the
CacheAccess.resetAttributes() method.

MEASURE Specifies that the size attribute of the cached object is calculated, automatically,
when the object is loaded or replaced in the cache. The capacity of the cache or
region can then be accurately controlled based on object size, rather than object
count.

Object Types: When set on a region, subregion, or group, this attribute applies
individually to each object within the region, subregion, or group unless explicitly
set for the object.

Default Value: OFF. (The size of an object is not automatically calculated.)

CapacityPolicy Specifies the CapacityPolicy object to be used to control the size of the region or
group. This attribute is ignored if set for an individual object.

Object Types: When set on a region, subregion, or group, this attribute applies to the
entire region or group. This attribute is not applicable to individual objects or pools.

Default Value: OFF. (No capacity policy is defined for a region or group. If the
region or group reaches capacity, the first nonreferenced object in the region or
group is invalidated.)

Classloader Specifies the classloader that should be used when an object or object name is
instantiated from disk or when received from another cache over the network.

Default Value: The default is to use the system classloader. The loader the
cache.jar was loaded by.

Table 7–3 Java Object Cache Attributes

Attribute Name Description

DefaultTimeToLive Establishes a default value for the TimeToLive attribute that is applied to all
objects individually within the region, subregion, or group. This attribute applies
only to regions, subregions, and groups. This value can be overridden by setting
the TimeToLive on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool unless the
objects explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

IdleTime Specifies the amount of time an object can remain idle, with a reference count of 0,
in the cache before being invalidated. If the TimeToLive or
DefaultTimeToLive attribute is set, the IdleTime attribute is ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless the object explicitly sets IdleTime.

Default Value: No automatic IdleTime invalidation.

CacheEventListener Specifies the CacheEventListener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEventListener becomes the default CacheEventListener for the
region, subregion, or group unless a CacheEventListener is specified
individually on objects within the region, subregion, or group.

Default Value: No CacheEventListener is set.

Table 7–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description
Java Object Cache 7-13

Java Object Cache Environment
TimeToLive Establishes the maximum amount of time that an object remains in the cache
before being invalidated. If associated with a region, subregion, or group, all
objects in the region, subregion, or group are invalidated when the time expires. If
the region, subregion, or group is not destroyed (that is, if GROUP_TTL_DESTROY
is not set), the TimeToLive value is reset.

Object Types: When set for a region, subregion, group, or pool, this attribute
applies to the region, subregion, group, or pool, as a whole, unless the objects
explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

Version An application can set a Version for each instance of an object in the cache. The
Version is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool unless the
objects explicitly set their own Version.

Default Value: The default Version is 0.

Priority Controls which objects are removed from the cache or region when its capacity has
been reached. This attribute, an integer, is made available to the
CapacityPolicy object used to control the size of the cache, region, or group.
The larger the number, the higher the priority. For region and group capacity
control, when an object is removed to make room, specifically for another object,
an object of higher priority is never removed to allow an object of lower priority to
be cached. For the cache capacity control, lower priority objects are chosen for
eviction over higher priority.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless explicitly set for the object.

Default Value: integer.MAX_VALUE.

MaxSize Specifies the maximum number of bytes available for a region or group. If this
attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

MaxCount Specifies the maximum number of objects that can be stored in a region or group.
If this attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

User-defined attributes Attributes can be defined by the user. These are name-value pairs that are
associated with the object, group, or region. They are intended to be used in
conjunction with a CapacityPolicy object, although they can be defined as
needed by the cache user.

Object Types: When set on a region, subregion, group, or pool, these attributes are
available to each object within the region, subregion, group, or pool unless
explicitly reset for the object.

Default Value: No user-defined attributes are set by default.

Table 7–3 (Cont.) Java Object Cache Attributes

Attribute Name Description
7-14 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Developing Applications Using Java Object Cache
This section describes how to develop applications that use the Java Object Cache. This
section covers the following topics:

■ Importing Java Object Cache

■ Defining a Cache Group

■ Defining a Cache Subregion

■ Defining and Using Cache Objects

■ Implementing a CacheLoader Object

■ Invalidating Cache Objects

■ Destroying Cache Objects

■ Multiple Object Loading and Invalidation

■ Java Object Cache Configuration

■ Declarative Cache

■ Capacity Control

■ Implementing a Cache Event Listener

■ Restrictions and Programming Pointers

Importing Java Object Cache
The Oracle installer installs the Java Object Cache JAR file cache.jar in the directory
$OLE_HOME/javacache/lib on UNIX or in %OLE_HOME%\javacache\lib on
Windows.

To use the Java Object Cache, import oracle.ias.cache, as follows:

import oracle.ias.cache.*;

Defining a Cache Region
All access to the Java Object Cache is through a CacheAccess object, which is
associated with a cache region. You define a cache region, usually associated with the
name of an application, using the CacheAccess.defineRegion()static method. If
the cache has not been initialized, then defineRegion() initializes the Java Object
Cache.

When you define the region, you can also set attributes. Attributes specify how the
Java Object Cache manages objects. The Attributes.setLoader() method sets the
name of a cache loader. Example 7–1, "Setting the Name of a CacheLoader" shows this.

Example 7–1 Setting the Name of a CacheLoader

Attributes attr = new Attributes();
MyLoader mloader = new MyLoader;
attr.setLoader(mloader);
attr.setDefaultTimeToLive(10);

final static String APP_NAME_ = "Test Application";
CacheAccess.defineRegion(APP_NAME_, attr);
Java Object Cache 7-15

Developing Applications Using Java Object Cache
The first argument for defineRegion uses a String to set the region name. This
static method creates a private region name within the Java Object Cache. The second
argument defines the attributes for the new region using the default cache attributes.

Defining a Cache Group
Create a cache group when you want to create an association between two or more
objects within the cache. Objects are typically associated in a cache group because they
must be invalidated together or because they have a common set of attributes.

Any set of cache objects within the same region or subregion can be associated using a
cache group, including other cache groups. Before an object can be associated with a
cache group, the cache group must be defined. A cache group is defined with a name
and can use its own attributes, or it can inherit attributes from its parent cache group,
subregion, or region. The code in Example 7–2, "Defining a Cache Group" defines a
cache group within the region named Test Application:

Example 7–2 Defining a Cache Group

final static String APP_NAME_ = "Test Application";
final static String GROUP_NAME_ = "Test Group";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a group
caccess.defineGroup(GROUP_NAME_);
// Close the CacheAccess object
caccess.close();

Defining a Cache Subregion
Define a subregion when you want to create a private name space within a region or
within a previously defined subregion. The name space of a subregion is independent
of the parent name space. A region can contain two objects with the same name, as
long as the objects are within different subregions.

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a subregion,
the subregion must be defined. A cache subregion is defined with a name and can use
its own attributes, or it can inherit attributes from its parent cache region or subregion.
Use the getParent() method to obtain the parent of a subregion.

The code in Example 7–3, "Defining a Cache Subregion" defines a cache subregion
within the region named Test Application.

Example 7–3 Defining a Cache Subregion

final static String APP_NAME_ = "Test Application";
final static String SUBREGION_NAME_ = "Test SubRegion";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a SubRegion
caccess.defineSubRegion(SUBREGION_NAME_);
// Close the CacheAccess object
caccess.close();
7-16 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Defining and Using Cache Objects
You may sometimes want to describe to the Java Object Cache, before an individual
object is loaded, how the object should be managed within the cache. You can specify
management options when the object is loaded, by setting attributes within the
CacheLoader.load() method. However, you can also associate attributes with an
object by using the CacheAccess.defineObject() method. If attributes are not
defined for an object, then the Java Object Cache uses the default attributes set for the
region, subregion, or group with which the object is associated.

Example 7–4, "Setting Cache Attributes" shows how to set attributes for a cache object.
The example assumes that the region APP_NAME_ has already been defined.

Example 7–4 Setting Cache Attributes

import oracle.ias.cache.*;
final static String APP_NAME_ = "Test Application";
CacheAccess cacc = null;
try
{
 cacc = CacheAccess.getAccess(APP_NAME_);
// set the default IdleTime for an object using attributes
 Attributes attr = new Attributes();
// set IdleTime to 2 minutes
 attr.setIdleTime(120);

// define an object and set its attributes
 cacc.defineObject("Test Object", attr);

// object is loaded using the loader previously defined on the region
// if not already in the cache.
 result = (String)cacc.get("Test Object");
} catch (CacheException ex){
 // handle exception
 } finally {
 if (cacc!= null)
 cacc.close();
}

Implementing a CacheLoader Object
The Java Object Cache has two mechanisms for loading an object into the cache:

■ The object can be put into the cache directly by the application using the
CacheAccess.put() method.

■ You can implement a CacheLoader object.

In most cases, implementing the CacheLoader is the preferred method. With a cache
loader, the Java Object Cache automatically determines if an object needs to be loaded
into the cache when the object is requested. And the Java Object Cache coordinates the
load if multiple users request the object at the same time.

A CacheLoader object can be associated with a region, subregion, group, or object.
Using a CacheLoader allows the Java Object Cache to schedule and manage object
loading, and handle the logic for "if the object is not in cache then load."

If an object is not in the cache, then when an application calls the
CacheAccess.get() or CacheAccess.preLoad() method, the cache executes the
CacheLoader.load method. When the load method returns, the Java Object Cache
inserts the returned object into the cache. Using CacheAccess.get(), if the cache is
Java Object Cache 7-17

Developing Applications Using Java Object Cache
full, the object is returned from the loader, and the object is immediately invalidated in
the cache. (Therefore, using the CacheAccess.get() method with a full cache does
not generate a CacheFullException.)

When a CacheLoader is defined for a region, subregion, or group, it is taken to be the
default loader for all objects associated with the region, subregion, or group. A
CacheLoader object that is defined for an individual object is used only to load the
object.

Using CacheLoader Helper Methods
The CacheLoader cache provides several helper methods that you can use from
within the load() method implementation. Table 7–4, " CacheLoader Methods Used
in load()" summarizes the available CacheLoader methods.

Example 7–5, "Implementing a CacheLoader" illustrates a CacheLoader object using
the cacheLoader.netSearch() method to check whether the object being loaded is
available in distributed Java Object Cache caches. If the object is not found using
netSearch(), then the load method uses a more expensive call to retrieve the object.
(An expensive call may involve an HTTP connection to a remote Web site or a
connection to the Oracle9i Database Server.) For this example, the Java Object Cache
stores the result as a String.

Example 7–5 Implementing a CacheLoader

import oracle.ias.cache.*;
class YourObjectLoader extends CacheLoader{
 public YourObjectLoader () {
 }
 public Object load(Object handle, Object args) throws CacheException
 {

Note: A CacheLoader object that is defined for a region,
subregion, or group or for more than one cache object must be
written with concurrent access in mind. The implementation
should be thread-safe, because the CacheLoader object is shared.

Table 7–4 CacheLoader Methods Used in load()

Method Description

setAttributes() Sets the attributes for the object being loaded.

netSearch() Searches other available caches for the object to load. Objects
are uniquely identified by the region name, subregion name,
and the object name.

getName() Returns the name of the object being loaded.

getRegion() Returns the name of the region associated with the object
being loaded.

createStream() Creates a StreamAccess object.

createDiskObject() Creates a disk object.

getFromRemote() Retrieve an object from a specified remote cache.

exceptionHandler() Converts noncache exceptions into CacheExceptions, with
the base set to the original exception.

log() Records messages in the cache service log.
7-18 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
 String contents;
 // check if this object is loaded in another cache
 try {
 contents = (String)netSearch(handle, 5000);// wait for up to 5 scnds
 return new String(contents);
 } catch(ObjectNotFoundException ex){}

 try {
 contents = expensiveCall(args);
 return new String(contents);
 } catch (Exception ex) {throw exceptionHandler("Loadfailed", ex);}
 }

 private String expensiveCall(Object args) {
 String str = null;
 // your implementation to retrieve the information.
 // str = ...
 return str;
 }
 }

Invalidating Cache Objects
An object can be removed from the cache either by setting the TimeToLive attribute
for the object, group, subregion, or region, or by explicitly invalidating or destroying
the object.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or group invalidates all the individual objects from the region,
subregion, or group, leaving the environment—including all groups, loaders, and
attributes—available in the cache. Invalidating an object does not undefine the object.
The object loader remains associated with the name. To completely remove an object
from the cache, use the CacheAccess.destroy() method.

An object can be invalidated automatically based on the TimeToLive or IdleTime
attribute. When the TimeToLive or IdleTime expires, objects are, by default,
invalidated and not destroyed.

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region, use the
CacheAccess.invalidate() method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.invalidate("Test Object"); // invalidate an individual object
cacc.invalidate("Test Group"); // invalidate all objects associated with a group
cacc.invalidate(); // invalidate all objects associated with the region cacc
cacc.close(); // close the CacheAccess handle

Destroying Cache Objects
An object can be removed from the cache either by setting the TimeToLive attribute
for the object, group, subregion, or region, or by explicitly invalidating or destroying
the object.

Destroying an object marks the object and the associated environment, including any
associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the region,
subregion, or group for removal, including the associated environment.
Java Object Cache 7-19

Developing Applications Using Java Object Cache
An object can be destroyed automatically based on the TimeToLive or IdleTime
attributes. By default, objects are invalidated and are not destroyed. If the objects must
be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region also closes
the CacheAccess object used to access the region.

To destroy an object, group, subregion, or region, use the CacheAccess.destroy()
method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.destroy("Test Object"); // destroy an individual object
cacc.destroy("Test Group"); // destroy all objects associated with
 // the group "Test Group"

cacc.destroy(); // destroy all objects associated with the region
 // including groups and loaders

Multiple Object Loading and Invalidation
In most cases, objects are loaded into the cache individually; in some cases, however,
multiple objects can be loaded into the cache as a set. The primary example of this is
when multiple cached objects can be created from a single read from a database. In this
case, it is much more efficient to create multiple objects from a single call to the
CacheLoader.load method.

To support this scenario, the abstract class CacheListLoader and the method
CacheAccess.loadList have been added. The CacheListLoader object extends
the CacheLoader object defining the abstract method loadList and the helper
methods getNextObject, getList, getNamedObject, and saveObject. The
cache user implements the CacheListLoader.loadList method. Employing the
helper methods, the user can iterate through the list of objects, creating each one and
saving it to the cache. If the helper methods defined in CacheLoader are used from
the CacheListLoader method, then getNextObject or getNamedObject should
be called first to set the correct context.

 The CacheAccess.loadList method takes as an argument an array of object
names to be loaded. The cache processes this array of objects. Any objects that are not
currently in the cache are added to a list that is passed to the CacheListLoader
object that is defined for the cached objects. If a CacheListLoader object is not
defined for the objects or the objects have different CacheListLoader objects
defined, then each object is loaded individually, using the CacheLoader.load
method defined.

It is always best to implement both the CacheListLoader.loadList method and
the CacheListLoader.load method. Which method is called depends on the order
of the user requests to the cache. For example, if the CacheAccess.get method is
called before the CacheAccess.loadList method, then the
CacheListLoader.load method is used rather than the CacheAccess.loadList
method.

As a convenience, the invalidate and destroy methods have been overloaded to also
handle an array of objects.

Example 7–6, "Sample CacheListLoader" shows a sample CacheListLoader, and
Example 7–7, "Sample Usage" shows sample usage.

Example 7–6 Sample CacheListLoader

Public class ListLoader extends CacheListLoader
{
 public void loadList(Object handle, Object args) throws CacheException
7-20 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
 {
 while(getNextObject(handle) != null)
 {
 // create the cached object based on the name of the object
 Object cacheObject = myCreateObject(getName(handle));
 saveObject(handle, cacheObject);
 }
 }

 public Object load(Object handle, Object args) throws CacheException
 {
 return myCreateObject(getName(handle));
 }

 private Object myCreateObject(Object name)
 {
 // do whatever to create the object
 }
}

Example 7–7 Sample Usage

// Assumes the cache has already been initialized

CacheAccess cacc;
Attributes attr;
ListLoader loader = new
ListLoader();
String objList[];
Object obj;

// set the CacheListLoader for the region
attr = new Attributes();
attr.setLoader(loader);

//define the region and get access to the cache
CacheAccess.defineRegion("region name", attr);
cacc = CacheAccess.getAccess("region name");

// create the array of object names
objList = new String[3];
for (int j = 0; j < 3; j++)
 objList[j] = "object " + j;

// load the objects in the cache via the CacheListLoader.loadList method
cacc.loadList(objList);

// retrieve the already loaded object from the cache
obj = cacc.get(objList[0]);

// do something useful with the object

// load an object using the CacheListLoader.load method
obj = cache.get("another object")

// do something useful with the object
Java Object Cache 7-21

Developing Applications Using Java Object Cache
Java Object Cache Configuration
The Java Object Cache is NOT initialized automatically upon OC4J startup. You can
force OC4J to initialize jcache by using -Doracle.ias.jcache=true in
opmn.xml, as shown in the following example:

 <ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
-Djava.security.policy=$OLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
-DApplicationServerDebug=true
-Ddatasource.verbose=true
-Djdbc.debug=true -Doracle.ias.jcache=true"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options"
value="-Djava.security.policy=$OLE_HOME/j2ee/home/config/java2.
policy -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="ajp" range="3301-3400"/>
 <port id="rmi" range="3201-3300"/>
 <port id="jms" range="3701-3800"/>
 <process-set id="default_group" numprocs="1"/>
 </process-type>
 </ias-component>

The OC4J runtime initializes the Java Object Cache using configuration settings
defined in the file javacache.xml. The file path is specified in the
<javacache-config> tag of the OC4J server.xml file. The default relative path
values of javacache.xml in server.xml are the following:

<javacache-config path="../../../javacache/admin/javacache.xml"/>

The rules for writing javacache.xml and the default configuration values are
specified in an XML schema. The XML schema file ora-cache.xsd and the default
javacache.xml are in the directory $OLE_HOME/javacache/admin on UNIX and
in %OLE_HOME%\javacache\admin on Windows.

For reference documentation of server.xml, see Oracle Containers for J2EE
Configuration and Administration Guide Appendix B - Configuration Files Used in OC4J,
Section - "Overview of the OC4J Server Configuration File (server.xml)".

In earlier versions of Java Object Cache (before 9.0.4), configuration was done through
the file javacache.properties. Starting with version 10g (9.0.4), Java Object Cache
configuration is done through javacache.xml.
7-22 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
A sample configuration follows:

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
xmlns=http://www.oracle.com/oracle/ias/cache/configuration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/oracle/ias/cache/configuration
ora-cache.xsd">
 <logging>
 <location>javacache.log</location>
 <level>ERROR</level>
 </logging>
 <communication>
 <isDistributed>true</isDistributed>
 <discoverer discovery-port="7000"/>
 </communication>
 <persistence>
 <location>diskcache</location>
 <disksize>32</disksize>
 </persistence>
 <max-objects>1000</max-objects>
 <max-size>48</max-size>
 <clean-interval>30</clean-interval>
</cache-configuration>

Table 7–5, " Java Object Cache Configuration Properties" contains the valid property
names and the valid types for each property.

Note: If you install both a release that uses
javacache.properties (before 9.0.4) and a release that uses
javacache.xml (9.0.4 or later) on the same host, then you must
ensure that the javacache.xml discovery-port attribute and
javacache.properties coordinatorAddress attribute are
not configured to the same port. If they are, then you must
manually change the value in one or the other to a different port
number. The default range is 7000-7099.

Table 7–5 Java Object Cache Configuration Properties

Configuration XML
Element Description Type

clean-interval Specifies the time, in seconds, between each cache cleaning. At the
cache-cleaning interval, the Java Object Cache checks for objects that
have been invalidated by the TimeToLive or IdleTime attributes
that are associated with the object. (Table 7–3 describes these
attributes.)

Default value: 60

Positive
integer

ping-interval Specifies the time, in seconds, between each cache death detection for
determining the availability of the remote cache systems.

Default value: 60

Positive
integer

max-size Specifies the maximum size of the memory, in megabytes, available
to the Java Object Cache.

Default value: 10

Positive
integer
Java Object Cache 7-23

Developing Applications Using Java Object Cache
max-objects Specifies the maximum number of in-memory objects that are
allowed in the cache. The count does not include group objects, or
objects that have been spooled to disk and are not currently in
memory.

Default value: 5000

Positive
integer

preload-file Specifies the full path to the declarative cache configuration file. The
format of the file must conform to the declarative cache schema
(cache.xsd). The declarative cache configuration allows the system
to predefine cache regions, groups, objects, attributes, and policies
upon Java Object Cache service initialization. For more information
about the declarative cache, see "Declarative Cache" on page 7-26.
Also see "Examples" on page 7-25.
Note: The file path of the declarative cache XML schema is
OLE_HOME/javacache/admin/cache.xsd. Refer to the XML
schema when writing a declarative cache file.

Default value: To not use a declarative cache.

String

communication Indicates whether the cache is distributed. Specifies the IP address
and port that the Java Object Cache initially contacts to join the
caching system, when using distributed caching.

If the distribute property is set for an object, then updates and
invalidation for that object are propagated to other caches known to
the Java Object Cache.

If the isDistributed subelement of the communication element
is set to false, all objects are treated as local, even when the
attributes set on objects are set to distribute. See "Examples" on
page 7-25.

Default value: Cache is not distributed (isDistributed
subelement is set to false).

Complex
(has
subelements
)

logging Specifies the logger attributes such as log file name and log level. The
available options of the log level are OFF, FATAL, ERROR, DEFAULT,
WARNING, TE, INFO, and DEBUG. See "Examples" on page 7-25.

These log level are deprecated. Java cache now uses levels as
specified in java.util.logging.Level.

Default log file name:

on UNIX:

 $OLE_HOME/javacache/admin/logs/javacache.log

on Windows:

%OLE_HOME%\javacache\admin\logs\javacache.log

Default log level: DEFAULT

Complex
(has
subelements
)

persistence Specifies the disk cache configuration, such as absolute path to the
disk cache root and maximum size for the disk cache. If a root path is
specified, the default maximum size of the disk cache is 10 MB. The
unit of the disk cache size is megabytes. See "Examples" on page 7-25.

Default value: Disk caching is not available.

Complex
(has
subelements
)

Note: Configuration properties are distinct from the Java Object
Cache attributes that you specify using the Attributes class.

Table 7–5 (Cont.) Java Object Cache Configuration Properties

Configuration XML
Element Description Type
7-24 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Examples
The following example illustrates the use of the <preload-file> element:

■ Specify a declarative cache configuration file:

<preload-file>/app/oracle/javacache/admin/decl.xml</preload-file>

The following examples illustrate the use of the <communication> element:

■ Turn off distributed cache:

<communication>
 <isDistributed>false</isDistributed>
</communication>

■ Distribute cache among multiple JVMs in local machine:

<communication>
 <isDistributed>true</isDistributed>
</communication>

■ Specify the initial discovery port that the Java Object Cache initially contacts to
join the caching system in the local node:

<communication>
 <isDistributed>true</isDistributed>
 <discoverer discovery-port="7000">
</communication>

■ Specify the IP address and initial discovery port that the Java Object Cache
initially contacts to join the caching system.

<communication>
<isDistributed>true</isDistributed>
<discoverer ip="192.10.10.10" discovery-port="7000">
</communication>

■ Specify multiple IP addresses and the initial discovery port that the Java Object
Cache initially contacts to join the caching system. If the first specified address is
not reachable, it contacts the next specified address:

<communication>
 <isDistributed>true</isDistributed>
 <discoverer ip="192.10.10.10" discovery-port="7000">
 <discoverer ip="192.11.11.11" discovery-port="7000">
 <discoverer ip="192.22.22.22" discovery-port="7000">
 <discoverer ip="192.22.22.22" discovery-port="8000">
</communication>

The following examples illustrate the use of the <persistence> element:

■ Specify a root path for the disk cache using the default disk size:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
</persistence>

■ Specify a root path for the disk cache with a disk size of 20 MB:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
 <disksize>20</disksize>
</persistence>
Java Object Cache 7-25

Developing Applications Using Java Object Cache
The following examples illustrate the use of the <logging> element:

■ Specify a log file name:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
</logging>

■ Specify log level as INFO:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
<level>INFO</level>
</logging>

Declarative Cache
With the 10g Release 3 (10.1.3) release of the Java Object Cache, object, group, and
region, as well as cache attributes, can be defined declaratively. You do not need to
write any Java code to define cache objects and attributes in your applications when
using declarative cache.

A declarative cache file can be read automatically during Java Object Cache
initialization. Specify the location of the declarative cache file in the <preload-file>
element of the cache configuration file. In addition, the declarative cache file can be
loaded programmatically or explicitly with the public methods in
oracle.ias.cache.Configurator.class. Multiple declarative cache files are
also permitted.

Figure 7–5, "Declarative Cache Architecture" shows the declarative cache.
7-26 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Figure 7–5 Declarative Cache Architecture

You can set up the Java Object Cache to automatically load a declarative cache file
during system initialization. Example 7–8, "Automatically Load Declarative Cache"
shows this. Example 7–9, "Programmatically Read Declarative Cache File" shows how
to programmatically read the declarative cache file.

Example 7–8 Automatically Load Declarative Cache

<!-- Specify declarative cache file:my_decl.xml in javacache.xml -->
<cache-configuration>
 …
<preload-file>/app/9iAS/javacache/admin/my_decl.xml</preload-file>
 …
</cache-configuration>

Example 7–9 Programmatically Read Declarative Cache File

try {
 String filename = "/app/9iAS/javacache/admin/my_decl.xml";
Configurator config = new Configurator(filename);
Config.defineDeclarable();
} catch (Exception ex) {
}

Java Object Cache 7-27

Developing Applications Using Java Object Cache
Declarative Cache File Sample
<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://www.javasoft.com/javax/cache"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/javax/cache">
 <region name="fruit">
 <attributes>
 <time-to-live>3000</time-to-live>
 <max-count>200</max-count>
 <capacity-policy>
 <classname>com.acme.MyPolicy</classname>
 </capacity-policy>
 </attributes>
 <group name="apple">
 <attributes>
 <flag>spool</flag>
 <flag>distribute</flag>
 <cache-loader>
 <classname>com.acme.MyLoader</classname>
 <parameter name="color">red</parameter>
 </cache-loader>
 </attributes>
 </group>
 <cached-object>
 <name>
 <string-name>theme</string-name>
 </name>
 <object>
 <classname>com.acme.DialogHandler</classname>
 <parameter name="prompt">Welcome</parameter>
 </object>
 </cached-object>
 </region>
</cache>

Declarative Cache File Format
The declarative cache file is in XML format. The file contents should conform to the
declarative cache XML schema that is shipped with Oracle Application Server 10g. The
file path of the XML schema is OLE_HOME/javacache/admin/cache.xsd.

Table 7–6, " Description of Declarative Cache Schema (cache.xsd)" lists the elements of
the declarative cache schema, their children, and the valid types for each element. See
"Examples" on page 7-30 for code that shows usage for most elements.

Table 7–6 Description of Declarative Cache Schema (cache.xsd)

Element Description Children Type

region Declare a cache region or subregions. <attributes>
<region>
<group>
<cached-object>

regionType

group Declare a cache group or subgroup. <attributes>
<group>
<cached-object>

groupType

cached-object Declare a cache object. <attributes>
<name>
<object>

objectType
7-28 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Figure 7–6, "Declarative Cache Schema Attributes" shows the attributes of the
declarative cache schema.

name Declare the name for a cached object.
The name can use a simple string type
or it can be a type of a specified Java
object.

<string-name>
<object-name>

nameType

object Declare a user-defined Java object. The
class of the specified object must
implement the declarable interface of
the oracle.ias.cache package.

<classname>
<parameter>

userDefinedObjectType

attributes Declare an attributes object for a cache
region, group, or cache object. Each
child element corresponds to each field
in the attributes class of the
oracle.ias.cache package. See the
Javadoc of Attributes.class for
more details.

<time-to-live>
<default-ttl>
<idle-time>
<version>
<max-count>
<priority>
<size>
<flag>
<event-listener>
<cache-loader>
<capacity-policy>
<user-defined>

attributesType

event-listener Declare a CacheEventListener
object.

<classname> event-listenerType

cache-loader Declare a CacheLoader object. <classname>
<parameter>

userDefinedObjectType

capacity-policy Declare a CapacityPolicy object. <classname>
<parameter>

userDefinedObjectType

user-defined Declare user-defined string type
attributes.

<key>
<value>

element

Table 7–6 (Cont.) Description of Declarative Cache Schema (cache.xsd)

Element Description Children Type
Java Object Cache 7-29

Developing Applications Using Java Object Cache
Figure 7–6 Declarative Cache Schema Attributes

Examples
The following examples show the use of elements in Table 7–6, " Description of
Declarative Cache Schema (cache.xsd)":

■ Declare cache region and subregions with the <region> element:

<region name="themes">
 <region name="cartoon">
7-30 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
 <!-- sub region definition -->
 </region>
 <group name="colors">
 <!-- group definition -->
 </group>
</region>

■ Declare cache group and subgroups with the <group> element:

<group name="colors">
 <group name="dark">
 <!-- sub group definition -->
 </group>
</group>

■ Declare a cached object with the <cached-object> element:

<cached-object>
 <name>
 <string-name>DialogHandler</string-name>
 </name>
 <object>
 <classname>com.acme.ConfigManager</classname>
 <parameter name="color">blue</parameter>
 </object>
</cached-object>

■ Declare the name for a cached object with the <name> element using a string:

<name>
 <string-name>DialogHandler</string-name>
</name>

Declare the name for a cached object with the <name> element using an object:

<name>
 <object-name>
 <classname>DialogHandler</classname>
 <parameter name="color">green</parameter>
 </object-name>
</name>

■ Declare a user-defined Java object with the <object> element:

<object>
 <classname>com.acme.CustomConfigManager</classname>
 <parameter name="color">blue</parameter>
</object>

// Implementation of CustomConfigManager.java
package com.acme;
import oracle.ias.cache.Declarable;
public class CustomConfigManager implements Declarable {
}

■ Declare an attributes object for a cache region, group, or cache object with the
<attributes> element:

<attributes>
 <time-to-live>4500</time-to-live>
 <default-ttl>6000</default-ttl>
 <version>99</version>
Java Object Cache 7-31

Developing Applications Using Java Object Cache
 <max-count>8000</max-count>
 <priority>50</priority>
 <flag>spool</flag>
 <flag>allownull</flag>
 <flag>distribute</flag>
 <flag>reply</flag>
 <cache-loader>
 <classname>MyLoader</classname>
 <parameter name="debug">false</parameter>
 </cache-loader>
</attributes>

■ Declare user-defined string type attributes with the <user-defined> element:

<attributes>
 <user-defined>
 <key>color</key>
 <value>red</value>
 </user-defined>
</attributes>

Declarable User-Defined Objects
The topology of the cache objects, object attributes, and user-defined objects can all be
described in the declarative cache file. For the system to load and instantiate a
user-defined Java object (including CacheLoader, CacheEventListener, and
CapacityPolicy) declared in the declarative cache file, the object must be an
instance of the oracle.ias.cache.Declarable interface. That is, you must
implement the oracle.ias.cache.Declarable interface for any Java objects
declared in the declarative cache file. You must be aware that all user-defined Java
objects are loaded by the JVM's default class loader instead of the application's class
loaders. After the declarable object is instantiated, the system implicitly invokes its
init(Properties props) method. The method uses the user-supplied parameters
(name-value pair) defined in the declarative cache file to perform any necessary
initialization task. Example 7–10, "Define An Object by Declaratively Passing in a
Parameter" shows how to define an object by declaratively passing in a parameter
(color = yellow).

Example 7–10 Define An Object by Declaratively Passing in a Parameter

In the declarative XML file:

<cached-object>
 <name>
 <string-name>Foo</string-name>
 </name>
 <object>
 <classname>com.acme.MyCacheObject</classname>
 <parameter name="color">yellow</parameter>
 </object>
</cached-object>

Declarable object implementation:

package com.acme;

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheObject implements Declarable {
7-32 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
 private String color_;

 /**
 * Object initialization
 */
 public void init(Properties prop) {
 color_ = prop.getProperty("color");
 }
}

Declarable CacheLoader, CacheEventListener, and CapacityPolicy
When you specify a CacheLoader, CacheEventListener, or CapacityPolicy
object in the declarative cache file, the object itself must also be an instance of
oracle.ias.cache.Declarable. This requirement is similar to that of the
user-defined object. You must implement a declarable interface for each specified
object in addition to extending the required abstract class. Example 7–11, "Declarable
CacheLoader Implementation" shows a declarable CacheLoader implementation.

Example 7–11 Declarable CacheLoader Implementation

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheLoader extends CacheLoader implements Declarable {

 public Object load(Object handle, Object argument) {
 // should return meaningful object based on argument
 return null;
 }

 public void init(Properties prop) {
 }
}

Initializing the Java Object Cache in a Non-OC4J Container
To use the Java Object Cache in any Java application but run it in a non-OC4J runtime,
insert the following reference to where the application (Java class) is initialized:

Cache.open(/path-to-ocnfig-file/javacache.xml);

If you invoke Cache.open() without any parameter in your code, then the Java
Object Cache uses its internal default configuration parameter. You can also initialize
the Java Object Cache by invoking Cache.init(CacheAttributes). This allows
you to derive the configuration parameters from your own configuration file or
generate them programmatically.

If the Java Object Cache is not used in the OC4J runtime, you must include
cache.jar in the classpath where the JVM is launched. You must also initialize the
Java Object Cache explicitly by invoking Cache.open(String
config_filename), where config_filename is the full path to a valid
javacache.xml file, or by invoking Cache.init(CacheAttributes).

Use any of the following method invocations to initialize the Java Object Cache
explicitly in a non-OC4J container:

■ Cache.open();
Java Object Cache 7-33

Developing Applications Using Java Object Cache
Use the default Java Object Cache configuration stored in the cache.jar file.

■ Cache.open(/path-to-oracle-home/javacache/admin/javacache.xml);

Use the configuration defined in the javacache.xml file.

■ Cache.open(/path-to-user's-own-javacache.xml);

Use the configuration defined in the specific javacache.xml file.

■ Cache.init(CacheAttributes);

Use the configuration that is set in a CacheAttributes object.

For J2EE applications running in an OC4J container, the path to the javacache.xml
file can be configured in the OC4J server.xml configuration file. The cache can be
initialized automatically when the OC4J process is started. See OC4J configuration for
details.

In a non-OC4J container, if you do not use any of the preceding method invocations,
the Java Object Cache is initialized implicitly (using default configuration settings
stored in cache.jar) when you invoke Cache.getAccess() or
Cache.defineRegion().

Capacity Control
The capacity control feature allows the cache user to specify the policy for determining
which objects should be removed from the cache when the capacity of the cache,
region, or group has been reached. To specify the policy, extend the abstract class
CapacityPolicy, and set the instantiated object as an attribute of the cache, region,
or group.

For regions and groups, the CapacityPolicy object is called when the region or
group has reached its capacity and a new object is being loaded. An object in the
region or group must be found to invalidate, or the new object is not saved in the
cache. (It is returned to the user but is immediately invalidated.)

The CapacityPolicy object that is associated with the cache as a whole is called
when capacity of the cache reaches some "high water mark," some percentage of the
configured maximum. When the high water mark is reached, the cache attempts to
remove objects to reduce the load in the cache to 3% below the high water mark. The
high water mark is specified by the capacityBuffer cache attribute. If the
capacityBuffer is set to 5, then the cache begins removing objects from the cache
when it is 95% full (100% -5%) and continues until the cache is 92% full (95% - 3%). The
default value for capacityBuffer is 15.

The capacity policy used for the cache can be different from those used for specific
regions or groups.

By default, the capacity policy for groups and regions is to remove a nonreferenced
object of equal or lesser priority when a new object is added and capacity has been
reached. For the cache, the default policy is to remove objects that have not been
referenced in the last two clean intervals, with preference to objects of priority—that is,
low priority objects that have not been referenced recently are removed first.

To help create a capacity policy, many statistics are kept for objects in the cache and
aggregated across the cache, regions, and groups. The statistics are available to the
CapacityPolicy object. For cache objects, the following statistics are maintained:

■ Priority

■ Access count—the number of times the object has been referenced
7-34 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
■ Size—the size of the object in bytes (if available)

■ Last access time—the time in milliseconds that the object was last accessed

■ Create time—the time in milliseconds when the object was created

■ Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Along with these statistics, all attributes associated with the object are available to the
CapacityPolicy object.

The following aggregated statistics are maintained for the cache, regions, and groups.
For each of these statistics, the low, high, and average value is maintained. These
statistics are recalculated at each clean interval or when Cache.updateStats() is
called.

■ Priority

■ Access count—the number of times that the object has been referenced

■ Size—the size of the object in bytes (if available)

■ Last access time—the time in milliseconds that the object was last accessed

■ Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Example 7–12, "Sample CapacityPolicy Based on Object Size" is a sample
CapacityPolicy object for a region, based on object size.

Example 7–12 Sample CapacityPolicy Based on Object Size

class SizePolicy extends CapacityPolicy
{
 public boolean policy (Object victimHandle, AggregateStatus aggStatus,
 long currentTime , Object newObjectHandle) throws CacheException
 {
 int newSize;
 int oldSize;

 oldSize = getAttributes(victimHandle).getSize();
 newSize = getAttributes(newObjectHandle).getSize();
 if (newSize >= oldSize)
 return true;
 return false;
 }

Example 7–13, "Sample CapacityPolicy Based on Access Time and Reference Count" is
a sample CapacityPolicy for the cache, based on access time and reference count. If
an object has below-average references and has not been accessed in the last 30
seconds, then it is removed from the cache.

Example 7–13 Sample CapacityPolicy Based on Access Time and Reference Count

class SizePolicy extends CapacityPolicy
{
public boolean policy (Object victimHandle, AggregateStatus aggStatus, long
 currentTime , Object newObjectHandle) throws CacheException
{
 long lastAccess;
 int accessCount;
 int avgAccCnt;
Java Object Cache 7-35

Developing Applications Using Java Object Cache
 lastAccess = getStatus(victimHandle).getLastAccess();
 accessCount = getStatus(victimHandle).getAccessCount();
 avgAccCnt = aggStatus.getAccessCount(AggregateStatus.AVG);

 if (lastAccess + 30000 < currentTime && accessCount < avgAccCnt)
 return true;
 }

}

Implementing a Cache Event Listener
Many events can occur in the life cycle of a cached object, including object creation and
object invalidation. This section shows how an application can be notified when cache
events occur.

To receive notification of the creation of an object, implement event notification as part
of the cacheLoader. For notification of invalidation or updates, implement a
CacheEventListener, and associate the CacheEventListener with an object,
group, region, or subregion using Attributes.setCacheEventListener().

CacheEventListener is an interface that extends java.util.EventListener.
The cache event listener provides a mechanism to establish a callback method that is
registered and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If an
event listener is associated with a group, region, or subregion, then by default, the
listener runs only when the group, region, or subregion itself is invalidated.
Invalidating a member does not trigger the event. The
Attributes.setCacheEventListener() call takes a boolean argument that, if
true, applies the event listener to each member of the region, subregion, or group,
rather than to the region, subregion, or group itself. In this case, the invalidation of an
object within the region, subregion, or group triggers the event.

The CacheEventListener interface has one method, handleEvent(). This
method takes a single argument, a CacheEvent object that extends
java.util.EventObject. This object has a number of methods to help process
events:

■ getID(), which returns the type of event (OBJECT_INVALIDATION,
OBJECT_UPDATED, or OBJECT_UPDATED_SYNC)

■ getSource(), which returns the object being invalidated. For groups and
regions, the getSource() method returns the name of the group or region.

■ getName(), which returns the name of the object associated with the event

■ getRegion(), which returns the region containing the object associated with the
event

■ getReason(), which returns a reason for the event. This currently only applies to
invalidation events.

The handleEvent() method is executed in the context of a background thread that
the Java Object Cache manages. Avoid using Java Native Interface (JNI) code in this
method, because the expected thread context may not be available.

Example 7–14, "Implementing a CacheEventListener" illustrates how a
CacheEventListener is implemented and associated with an object or a group.
7-36 Oracle Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
Example 7–14 Implementing a CacheEventListener

import oracle.ias.cache.*;

 // A CacheEventListener for a cache object
 class MyEventListener implements CacheEventListener
 {

 public void handleEvent(CacheEvent ev) throws CacheException
 {
 MyObject obj = (MyObject)ev.getSource();
 obj.cleanup();
 }
 }

 class MyObject
 {
 public void cleanup()
 {
 // do something
 }
 }

 import oracle.ias.cache.*;

 // A CacheEventListener for a group object
 class MyGroupEventListener implements CacheEventListener
 {
 public void handleEvent(CacheEvent ev) throws CacheException
 {
 String groupName = (String)ev.getSource();
 notify("group " + groupName + " has been invalidated");

 }
 void notify(String str)
 {
 // do something
 }
 }

Use the Attributes.setCacheEventListener() method to specify the
CacheEventListener for a region, subregion, group, or object.

Example 7–15, "Setting a Cache Event Listener on an Object" illustrates how to set a
cache event listener on an object. Example 7–16, "Setting a Cache Event Listener on a
Group" illustrates how to set a cache event listener on a group.

Example 7–15 Setting a Cache Event Listener on an Object

import oracle.ias.cache.*;

 class YourObjectLoader extends CacheLoader
 {
 public YourObjectLoader () {
 }

 public Object load(Object handle, Object args) {
 Object obj = null;
 Attributes attr = new Attributes();
 MyEventListener el = new MyEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, el);
Java Object Cache 7-37

Developing Applications Using Java Object Cache
 // your implementation to retrieve or create your object

 setAttributes(handle, attr);
 return obj;
 }
}

Example 7–16 Setting a Cache Event Listener on a Group

import oracle.ias.cache.*;
try
{
 CacheAccess cacc = CacheAccess.getAccess(myRegion);
 Attributes attr = new Attributes ();

 MyGroupEventListener listener = new MyGroupEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, listener);

 cacc.defineGroup("myGroup", attr);
 //....
 cacc.close();

}catch(CacheException ex)
{
 // handle exception
}

Restrictions and Programming Pointers
This section covers restrictions and programming pointers when using the Java Object
Cache.

■ Do not share the CacheAccess object between threads. This object represents a
user to the caching system. The CacheAccess object contains the current state of
the user's access to the cache: what object is currently being accessed, what objects
are currently owned, and so on. Trying to share the CacheAccess object is
unnecessary and may result in unpredictable behavior.

■ A CacheAccess object holds a reference to only one cached object at a time. If
multiple cached objects are being accessed concurrently, then use multiple
CacheAccess objects. For objects that are stored in memory, the consequences of
not doing this are minor, because Java prevents the cached object from being
garbage collected, even if the cache believes it is not being referenced. For disk
objects, if the cache reference is not maintained, the underlying file could be
removed by another user or by time-based invalidation, causing unexpected
exceptions. To optimize resource management, keep the cache reference open as
long as the cached object is being used.

■ Always close a CacheAccess object when it is no longer being used. The
CacheAccess objects are pooled. They acquire cache resources on behalf of the
user. If the access object is not closed when it is not being used, then these
resources are not returned to the pool and are not cleaned up until they are
garbage collected by the JVM. If CacheAccess objects are continually allocated
and not closed, then degradation in performance may occur.

■ When local objects (objects that do not set the Attributes.DISTRIBUTE
attribute) are saved to disk using the CacheAccess.save() method, they do not
survive the termination of the process. By definition, local objects are visible only
to the cache instance where they were loaded. If that cache instance goes away for
7-38 Oracle Containers for J2EE Services Guide

Working with Disk Objects
any reason, then the objects that it manages, including on disk, are lost. If an object
must survive process termination, then both the object and the cache must be
defined DISTRIBUTE.

■ The cache configuration, also called the cache environment, is local to a cache; this
includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. Define the cache
configuration during the initialization of the application.

■ If a CacheAccess.waitForResponse() or
CacheAccess.releaseOwnership() method call times out, then you must call
it again until it returns successfully. If CacheAccess.waitForResponse() does
not succeed, then you must call CacheAccess.cancelResponse to free
resources. If CacheAccess.releaseOwnership() doesn't succeed, then you
must call CacheAccess.releaseOwnership with a timeout value of -1 to free
resources.

■ When a group or region is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, then all
objects in the group or region are invalidated or destroyed across the entire cache
system, even if the individual objects or associated groups are defined as local. If
the group or region is defined as local, then local objects within the group are
invalidated locally; distributed objects are invalidated throughout the entire cache
system.

■ When an object or group is defined with the SYNCHRONIZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

■ In general, objects that are stored in the cache should be loaded by the system class
loader that is defined in the classpath when the JVM is initialized, rather than
by a user-defined class loader. Specifically, any objects that are shared between
applications or can be saved or spooled to disk must be defined in the system
classpath. Failure to do so can result in a ClassNotFoundException or a
ClassCastException.

■ On some systems, the open file descriptors can be limited by default. On these
systems, you may need to change system parameters to improve performance. On
UNIX systems, for example, a value of 1024 or greater can be an appropriate
value for the number of open file descriptors.

■ When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a JVM process (that is, in the program running in
the JVM that uses the Java Object Cache API).

Working with Disk Objects
The Java Object Cache can manage objects on disk as well as in memory.

This section covers the following topics:

■ Local and Distributed Disk Cache Objects

■ Adding Objects to the Disk Cache

Local and Distributed Disk Cache Objects
This section covers the following topics:

■ Local Objects
Java Object Cache 7-39

Working with Disk Objects
■ Distributed Objects

Local Objects
When operating in local mode, the cache attribute isDistributed is not set and all
objects are treated as local objects (even when the DISTRIBUTE attribute is set for an
object). In local mode, all objects in the disk cache are visible only to the Java Object
Cache cache that loaded them, and they do not survive after process termination. In
local mode, objects stored in the disk cache are lost when the process using the cache
terminates.

Distributed Objects
If the cache attribute isDistributed is set to true, the cache will operate in
distributed mode. Disk cache objects can be shared by all caches that have access to the
file system hosting the disk cache. This is determined by the disk cache location
configured. This configuration allows for better utilization of disk resources and
allows disk objects to persist beyond the life of the Java Object Cache process.

Objects that are stored in the disk cache are identified using the concatenation of the
path that is specified in the diskPath configuration property and an internally
generated String representing the remaining path to the file. Thus, caches that share
a disk cache can have a different directory structure, as long as the diskPath
represents the same directory on the physical disk and is accessible to the Java Object
Cache processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

Adding Objects to the Disk Cache
There are several ways to use the disk cache with the Java Object Cache, including:

■ Automatically Adding Objects

■ Explicitly Adding Objects

■ Using Objects that Reside Only in Disk Cache

Automatically Adding Objects
The Java Object Cache automatically adds certain objects to the disk cache. Such
objects can reside either in the memory cache or in the disk cache. If an object in the
disk cache is needed, it is copied back to the memory cache. The action of spooling to
disk occurs when the Java Object Cache determines that it requires free space in the
memory cache. Spooling of an object occurs only if the SPOOL attribute is set for the
object.

Explicitly Adding Objects
In some situations, you may want to force one or more objects to be written to the Java
Object Cache disk cache. Using the CacheAccess.save() method, a region,
subregion, group, or object is written to the disk cache. (If the object or objects are
already in the disk cache, they are not written again.)

Note: Using CacheAccess.save() saves an object to disk even
when the SPOOL attribute is not set for the object.
7-40 Oracle Containers for J2EE Services Guide

Working with Disk Objects
Calling CacheAccess.save() on a region, subregion, or group saves all the objects
within the region, subregion, or group to the disk cache. During a
CacheAccess.save() method call, if an object is encountered that cannot be written
to disk, either because it is not serializable or for other reasons, then the event is
recorded in the Java Object Cache log, and the save operation continues with the next
object. When individual objects are written to disk, the write is synchronous. If a group
or region is saved, then the write is performed as an asynchronous background task.

Using Objects that Reside Only in Disk Cache
Objects that you access only directly from disk cache are loaded into the disk cache by
calling CacheLoader.createDiskObject() from the CacheLoader.load()
method. The createDiskObject() method returns a File object that the
application can use to load the disk object. If the attributes of the disk object are not
defined for the disk object, then set them using the createDiskObject() method.
The system manages local and distributed disk objects differently; the system
determines if the object is local or distributed when it creates the object, based on the
specified attributes.

When CacheAccess.get() is called on a disk object, the full path name to the file is
returned, and the application can open the file, as needed.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared by all Java Object
Cache processes, or they can be local to a particular process, depending on the setting
for the DISTRIBUTE attribute (and the mode that the Java Object Cache is running in,
either distributed or local).

Example 7–17, "Creating a Disk Object in a CacheLoader" shows a loader object that
loads a disk object into the cache.

Example 7–17 Creating a Disk Object in a CacheLoader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 File file;
 FileOutputStream = out;
 Attributes attr = new Attributes();

 attr.setFlags(Attributes.DISTRIBUTE);
 try
 // The distribute attribute must be set on the createDiskObject method
 {
 file = createDiskObject(handle, attr);
 out = new FileOutputStream(file);

 out.write((byte[])getInfofromsomewhere());
 out.close();
 }

Note: If you want to share a disk cache object between distributed
caches in the same cache system, then you must define the
DISTRIBUTE attribute when the disk cache object is created. This
attribute cannot be changed after the object is created.
Java Object Cache 7-41

Working with StreamAccess Objects
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in file handling", ex)
 }
 return file;
 }
 }

Example 7–18, "Application Code that Uses a Disk Object" illustrates application code
that uses a Java Object Cache disk object. This example assumes that the region named
Stock-Market is already defined with the YourObjectLoader loader that was set
up in Example 7–17, "Creating a Disk Object in a CacheLoader" as the default loader
for the region.

Example 7–18 Application Code that Uses a Disk Object

import oracle.ias.cache.*;

try
{
 FileInputStream in;
 File file;
 String filePath;
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");

 filePath = (String)cacc.get("file object");
 file = new File(filePath);
 in = new FileInputStream(filePath);
 in.read(buf);

// do something interesting with the data
 in.close();
 cacc.close();
}
catch (Exception ex)
{
// handle exception
}

Working with StreamAccess Objects
A StreamAccess object is accessed as a stream and automatically loaded to the disk
cache. The object is loaded as an OutputStream and read as an InputStream.
Smaller StreamAccess objects can be accessed from memory or from the disk cache;
larger StreamAccess objects are streamed directly from the disk. The Java Object
Cache automatically determines where to access the StreamAccess object, based on
the size of the object and the capacity of the cache.

The user is always presented with a stream object, an InputStream for reading and
an OutputStream for writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.
7-42 Oracle Containers for J2EE Services Guide

Working with Pool Objects
Creating a StreamAccess Object
To create a StreamAccess object, call the CacheLoader.createStream() method
from the CacheLoader.load() method when the object is loaded into the cache.
The createStream() method returns an OutputStream object. Use the
OutputStream object to load the object into the cache.

If the attributes have not already been defined for the object, then set them using the
createStream() method. The system manages local and distributed disk objects
differently; the determination of local or distributed is made when the system creates
the object, based on the attributes.

Example 7–19, "Creating a StreamAccess Object in a Cache Loader" shows a loader
object that loads a StreamAccess object into the cache.

Example 7–19 Creating a StreamAccess Object in a Cache Loader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 OutputStream = out;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);

 try
 {
 out = createStream(handle, attr);
 out.write((byte[])getInfofromsomewhere());
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in write", ex)
 }
 return out;
 }
}

Working with Pool Objects
A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects that the Java Object Cache
manages. Users access individual objects within the pool with a check out, using a
pool access object, and then return the objects to the pool when they are no longer
needed.

This section covers the following topics:

■ Creating Pool Objects

■ Using Objects from a Pool

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, then you must define
the DISTRIBUTE attribute when the StreamAccess object is
created. You cannot change this attribute after the object is created.
Java Object Cache 7-43

Working with Pool Objects
■ Implementing a Pool Object Instance Factory

■ Pool Object Affinity

Creating Pool Objects
To create a pool object, use CacheAccess.createPool(). The CreatePool()
method takes as arguments:

■ A PoolInstanceFactory

■ An Attributes object

■ Two integer arguments

The integer arguments specify the maximum pool size and the minimum pool size. By
supplying a group name as an argument to CreatePool(), a pool object is associated
with a group.

Attributes, including TimeToLive or IdleTime, can be associated with a pool object.
These attributes can be applied to the pool object itself, when specified in the attributes
set with CacheAccess.createPool(), or they can be applied to the objects within
the pool individually.

Using CacheAccess.createPool(), specify minimum and maximum sizes with
the integer arguments. Specify the minimum first. It sets the minimum number of
objects to create within the pool. The minimum size is interpreted as a request rather
than a guaranteed minimum. Objects within a pool object are subject to removal from
the cache due to lack of resources, so the pool can decrease the number of objects
below the requested minimum value. The maximum pool size puts a hard limit on the
number of objects available in the pool.

Example 7–20, "Creating a Pool Object" shows how to create a pool object.

Example 7–20 Creating a Pool Object

import oracle.ias.cache.*;

 try
 {
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");
 Attributes attr = new Attributes();
 QuoteFactory poolFac = new QuoteFactory();

 // set IdleTime for an object in the pool to three minutes
 attr.setIdleTime(180);
 // create a pool in the "Stock-Market" region with a minimum of
 // 5 and a maximum of 10 object instances in the pool
 cacc.createPool("get Quote", poolFac, attr, 5, 10);
 cacc.close();
 }
 catch(CacheException ex)
 {
 // handle exception
 }
}

Note: Pool objects and the objects within a pool object are always
treated as local objects.
7-44 Oracle Containers for J2EE Services Guide

Working with Pool Objects
Using Objects from a Pool
To access objects in a pool, use a PoolAccess object. The PoolAccess.getPool()
static method returns a handle to a specified pool. The PoolAccess.get() method
returns an instance of an object from within the pool (this checks out an object from the
pool). When an object is no longer needed, return it to the pool, using the
PoolAccess.returnToPool() method, which checks the object back into the pool.
Finally, call the PoolAccess.close() method when the pool handle is no longer
needed.

Example 7–21, "Using a PoolAccess Object" describes the calls that are required to
create a PoolAccess object, check an object out of the pool, and then check the object
back in and close the PoolAccess object.

Example 7–21 Using a PoolAccess Object

PoolAccess pacc = PoolAccess.getPool("Stock-Market", "get Quote");
//get an object from the pool
GetQuote gq = (GetQuote)pacc.get();
// do something useful with the gq object
// return the object to the pool
pacc.returnToPool(gq);
pacc.close();

Implementing a Pool Object Instance Factory
The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object—a PoolInstanceFactory. The
PoolInstanceFactory is an abstract class with two methods that you must
implement: createInstance() and destroyInstance().

The Java Object Cache calls createInstance() to create instances of objects that are
being accumulated within the pool. The Java Object Cache calls
destroyInstance() when an instance of an object is being removed from the pool.
(Object instances from within the pool are passed into destroyInstance().)

The size of a pool object (that is, the number of objects within the pool) is managed
using these PoolInstanceFactory() methods. The system decreases or increases
the size and number of objects in the pool, based on demand, and based on the values
of the TimeToLive or IdleTime attributes.

Example 7–22, "Implementing Pool Instance Factory Methods" shows the calls
required when implementing a PoolInstanceFactory.

Example 7–22 Implementing Pool Instance Factory Methods

import oracle.ias.cache.*;
 public class MyPoolFactory implements PoolInstanceFactory
 {
 public Object createInstance()
 {
 MyObject obj = new MyObject();
 obj.init();
 return obj;
 }
 public void destroyInstance(Object obj)
 {
 ((MyObject)obj).cleanup();
 }
 }
Java Object Cache 7-45

Running in Local Mode
Pool Object Affinity
Object pools are a collection of serially reusable objects. A user "checks out" an object
from the pool to perform a function, then "checks in" the object back to the pool when
done. During the time the object is checked out, the user has exclusive use of that
object instance. After the object is checked in, the user gives up all access to the object.
While the object is checked out, the user can apply temporary modifications to the
pool object (add state) to allow it to execute the current task. Since some cost is
incurred to add these modifications, it would be beneficial to allow the user to,
whenever possible, get the same object from the pool with the modifications already in
place. Since the 9.0.2 version of the Java Object Cache, the only way to do this was
never to check in the object, which would then defeat the purpose of the pool. To
support the pool requirement described in this paragraph, the functionality described
in the following two paragraphs has been added to the pool management of the Java
Object Cache.

Objects checked into the pool using the returnToPool method of the PoolAccess
object maintain an association with the last PoolAccess object that referenced the
object. When the PoolAccess handle requests an object instance, the same object it
had previously is returned. This association will be terminated if the PoolAccess
handle is closed, or the PoolAccess.release method is called, or the object is given
to another user. Before the object is given to another user, a callback is made to
determine if the user is willing to give up the association with the object. If the user is
not willing to dissolve the association, then the new user is not given access to the
object. The interface PoolAffinityFactory extends the interface
PoolInstanceFactory, adding the callback method affinityRelease. This
method returns true if the association can be broken, and false otherwise.

If the entire pool is invalidated, the affinityRelease method is not called. Object
instance cleanup is then performed with the
PoolInstanceFactory.instanceDestroy method.

Running in Local Mode
When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same system or remotely
across the network. Object persistence across system shutdowns or program failures is
not supported when running in local mode.

By default, the Java Object Cache runs in local mode, and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DISTRIBUTE attribute for all objects.

Running in Distributed Mode
In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same system or remotely across the network.
Object updates and invalidations are propagated between communicating caches.
Distributed mode supports object persistence across system shutdowns and program
failures.

This section covers the following topics:

■ Configuring Properties for Distributed Mode

■ Using Distributed Objects, Regions, Subregions, and Groups

■ Accessing Objects in Remote Caches
7-46 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
■ Accessing Objects in Remote Caches

■ Sharing Cached Objects in an OC4J Servlet

■ Using User-Defined Class Loaders

■ HTTP and Security for Distributed Cache

Configuring Properties for Distributed Mode
To configure the Java Object Cache to run in distributed mode, set the value of the
distribute and discoveryAddress configuration properties in the
javacache.xml file.

Setting the distribute Configuration Property
To start the Java Object Cache in distributed mode, set the isDistributed attribute
to true in the configuration file. "Java Object Cache Configuration" on page 7-22
describes how to do this.

Setting the discoveryAddress Configuration Property
In distributed mode, invalidations, destroys, and replaces are propagated through the
messaging system of the cache. The messaging system requires a known host name
and port address to allow a cache to join the cache system when it is first initialized.
Use the discoverer attribute in the communication section in the javacache.xml
file to specify a list of host name and port addresses.

By default, the Java Object Cache sets the discoverer to the value :12345 (this is
equivalent to localhost:12345). To eliminate conflicts with other software on the
site, have your system administrator set the discoveryAddress.

If the Java Object Cache spans systems, then configure multiple discoverer entries,
with one hostname:port pair specified for each node. Doing this avoids any
dependency on a particular system being available or on the order the processes are
started. Also see "Java Object Cache Configuration" on page 7-22.

Using Distributed Objects, Regions, Subregions, and Groups
When the Java Object Cache runs in distributed mode, individual regions, subregions,
groups, and objects can be either local or distributed. By default, objects, regions,
subregions, and groups are defined as local. To change the default local value, set the
DISTRIBUTE attribute when the object, region, or group is defined.

A distributed cache can contain both local and distributed objects.

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the caches.
Also see "Accessing Objects in Remote Caches" on page 7-51.

Note: All caches cooperating in the same cache system must
specify the same set of host name and port addresses. The address
list, set with the discoverer attributes, defines the caches that make
up a particular cache system. If the address lists vary, then the
cache system could be partitioned into distinct groups, resulting in
inconsistencies between caches.
Java Object Cache 7-47

Running in Distributed Mode
Using the REPLY Attribute with Distributed Objects
When updating, invalidating, or destroying objects across multiple caches, it may be
useful to know when the action has completed at all the participating sites. Setting the
REPLY attribute causes all participating caches to send a reply to the originator when a
requested action has completed for the object. The
CacheAccess.waitForResponse() method allows the user to block until all
remote operations have completed.

To wait for a distributed action to complete across multiple caches, use
CacheAccess.waitForResponse(). To ignore responses, use the
CacheAccess.cancelResponse() method, which frees the cache resources used to
collect the responses.

Both CacheAccess.waitForResponse() and
CacheAccess.cancelResponse() apply to all objects that are accessed by the
CacheAccess object. This feature allows the application to update several objects,
then wait for all the replies.

Example 7–23, "Distributed Caching Using Reply" illustrates how to set an object as
distributed and handle replies when the REPLY attribute is set. In this example, you
can also set the attributes for the entire region. Additionally, you can set attributes for
a group or individual object, as appropriate for your application.

Example 7–23 Distributed Caching Using Reply

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and have a reply generated
// by the remote caches when the change is completed

attr.setFlags(Attributes.DISTRIBUTE|Attributes.REPLY);
attr.setLoader(loader);

CacheAccess.defineRegion("testRegion",attr);
cacc = CacheAccess.getAccess("testRegion"); // create region with
 //distributed attributes

obj = (String)cacc.get("testObject");
cacc.replace("testObject", obj + "new version"); // change will be
 // propagated to other caches

cacc.invalidate("invalidObject"); // invalidation is propagated to other caches

try
{
// wait for up to a second,1000 milliseconds, for both the update
// and the invalidate to complete
 cacc.waitForResponse(1000);

catch (TimeoutException ex)
{
 // tired of waiting so cancel the response
 cacc.cancelResponse();
}
cacc.close();
7-48 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
}

Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT
When updating objects across multiple caches, or when multiple threads access a
single object, you can coordinate the update action. Setting the SYNCHRONIZE
attribute enables synchronized updates, and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONIZE attribute also applies to regions, subregions, and groups. When the
SYNCHRONIZE attribute is applied to a region, subregion, or group, ownership of the
region, subregion, or group must be obtained before an object can be loaded or
replaced in the region, subregion, or group.

Setting the SYNCHRONIZE_DEFAULT attribute on a region, subregion, or group applies
the SYNCHRONIZE attribute to all the objects within the region, subregion, or group.
Ownership must be obtained for the individual objects within the region, subregion, or
group before they can be loaded or replaced.

To obtain ownership of an object, use CacheAccess.getOwnership(). After
ownership is obtained, no other CacheAccess instance is allowed to load or replace
the object. Reads and invalidation of objects are not affected by synchronization.

After ownership has been obtained and the modification to the object is completed,
call CacheAccess.releaseOwnership() to release the object.
CacheAccess.releaseOwnership() waits up to the specified time for the updates
to complete at the remote caches. If the updates complete within the specified time,
ownership is released; otherwise, a TimeoutException is thrown. If the method
times out, call CacheAccess.releaseOwnership() again.
CacheAccess.releaseOwnership()must return successfully for ownership to be
released. If the timeout value is -1, then ownership is released immediately, without
waiting for the responses from the other caches.

Example 7–24, "Distributed Caching Using SYNCHRONIZE and
SYNCHRONIZE_DEFAULT" illustrates distributed caching using SYNCHRONIZE and
SYNCHRONIZE_DEFAULT.

Example 7–24 Distributed Caching Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE);
attr.setLoader(loader);

//create region
CacheAccess.defineRegion("testRegion");
cacc = CacheAccess.getAccess("testRegion");
cacc.defineGroup("syncGroup", attr); //define a distributed synchronized group
cacc.defineObject("syncObject", attr); // define a distributed synchronized object
attr.setFlagsToDefaults() // reset attribute flags

// define a group where SYNCHRONIZE is the default for all objects in the group
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE_DEFAULT);
cacc.defineGroup("syncGroup2", attr);
Java Object Cache 7-49

Running in Distributed Mode
try
{
// try to get the ownership for the group don't wait more than 5 seconds
 cacc.getOwnership("syncGroup", 5000);
 obj = (String)cacc.get("testObject", "syncGroup"); // get latest object
 // replace the object with a new version
 cacc.replace("testObject", "syncGroup", obj + "new version");
 obj = (String)cacc.get("testObject2", "syncGroup"); // get a second object
 // replace the object with a new version
 cacc.replace("testObject2", "syncGroup", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for group");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncGroup",5000);
}
catch (TimeoutException ex)
{
 // tired of waiting so just release ownership
 cacc.releaseOwnership("syncGroup", -1));
}
try
{
 cacc.getOwnership("syncObject", 5000); // try to get the ownership for the object
 // don't wait more than 5 seconds
 obj = (String)cacc.get("syncObject"); // get latest object
 cacc.replace("syncObject", obj + "new version"); // replace the object with a new version
}
catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncObject", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("syncObject", -1)); // tired of waiting so just release ownership
}
try
{
 cacc.getOwnership("Object2", "syncGroup2", 5000); // try to get the ownership for the object
 // where the ownership is defined as the default for the group don't wait more than 5 seconds
 obj = (String)cacc.get("Object2", "syncGroup2"); // get latest object
 // replace the object with new version
 cacc.replace("Object2", "syncGroup2", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
7-50 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("Object2", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("Object2", -1)); // tired of waiting so just release ownership
}
 cacc.close();
}

Accessing Objects in Remote Caches
The Cache Service provides four methods to access the contents of remote caches. The
protected methods CacheLoader.getFromRemote() and
CacheLoader.netSearch() can only be accessed from CacheLoader.load().
getFromRemote searches a specified remote cache for a specified object to load into
the local cache, while netSearch searches all caches in the system for a specified
object to load into the local cache. CacheAccess.replaceRemote() replaces a
specified object in a specified remote cache. CacheAccess.getAllCached() does
not change the contents of caches, but returns a vector of all instances of a specified
object in all caches in the distributed system.

If the object exists in the remote cache, getFromRemote will load it into the local
cache and return a reference to it. If the useRemoteTtl boolean parameter is set, the
local object attributes such as time to live or idle time will be set to the remote object
values. netSearch is used in the same way, except there is no need to specify any
particular remote cache because it searches all remote caches.

The following examples demonstrate using getFromRemote/netSearch in
implementing CacheLoader.load().

import oracle.ias.cache.*;
 class MyLoader extends CacheLoader
 {
 public Object load (Object handle, Object args) throws CacheException
 {
 Object obj = null;
 try
 {
 obj = getFromRemote(handle, (CacheAddress)args, 10000, true); // use
remote ttl
 }
 catch (CacheException ex)
 {
 throw ex;
 }
 return obj;
 }
 }
**
import oracle.ias.cache.*;
 class MyLoader extends CacheLoader
 {
 public Object load (Object handle, Object args) throws CacheException
Java Object Cache 7-51

Running in Distributed Mode
 {
 Object obj = null;
 try
 {
 obj = netSearch(handle, 10000, true); // use remote ttl
 }
 catch (CacheException ex)
 {
 throw ex;
 }
 return obj;
 }
 }

While getFromRemote can be used with memory, disk, and stream objects,
netSearch can only be used with memory objects.

When calling replaceRemote, the contents in the remote target cache take priority. If
the object being replaced is marked as a local object in the remote cache, or if the
remote cache is full, then the operation will fail with an exception. If the target address
is the local cache address, then the operation will be treated as a localized replace. If
the specified object does not exist in the remote cache, then the operation will be
treated as a remote put. replaceRemote is also limited to memory objects.

The following example demonstrates using replaceRemote. After execution, a
cacc.get() in Cache1.java on object "obj" will return the string "object 1
replacement".

Cache1.java

import oracle.ias.cache.*;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 cacc.put("obj", "object 1");

Cache2.java

import oracle.ias.cache.*;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 CacheAddress cache1 = getCache1CacheAddress();
 cacc.replaceRemote("obj", "object 1 replacement", cache1);

Unlike getFromRemote/netSearch and replaceRemote, getAllCached does
not change the contents of any cache. This method can deal with memory, stream, or
disk objects, with the limitation that it can only deal with one type each call. In other
words, when calling getAllCached on an object, that object's basic type should be
consistent across all caches in the distributed system. If no cache currently has an
object matching that name in cache, an empty vector will be returned. Depending on
whether you care about any possible exceptions thrown at remote caches while trying
to locate the object, you can set the optional boolean parameter ignoreRemoteEx. By
default, it is set to true, and all remote exceptions are ignored.

The following example demonstrates using getAllCached.
7-52 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
Cache1.java

import oracle.ias.cache.*;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 MemObjType1 obj = new MemObjType1();
 cacc.put("obj", obj);

Cache2.java

import oracle.ias.cache.*;Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 MemObjType2 obj = new MemObjType2();
 cacc.put("obj", obj);

...

Cache9.java

import oracle.ias.cache.*;Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 MemObjType9 obj = new MemObjType9();
 cacc.put("obj", obj);

Cache10.java

import oracle.ias.cache.*;Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);
 CacheAccess.defineRegion("region", attr);
 CacheAccess cacc = CacheAccess.getAccess("region");
 Vector objects = cacc.getAllCached("obj");

Note that all objects that need to be communicated between caches must be
Serializable objects.

Cached Object Consistency Levels
Within the Java Object Cache, each cache manages its own objects locally, within its
JVM process. In distributed mode, when using multiple processes or when the system
is running on multiple sites, a copy of an object can exist in more than one cache.

The Java Object Cache allows you to specify the consistency level that is required
between copies of objects that are available in multiple caches. The consistency level
that you specify depends on the application and the objects being cached. The
supported levels of consistency vary, from none to all copies of objects being consistent
across all communicating caches.

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

■ Using Local Objects (No consistency requirements)
Java Object Cache 7-53

Running in Distributed Mode
■ Propagating Changes Without Waiting for a Reply

■ Propagating Changes and Waiting for a Reply

■ Serializing Changes Across Multiple Caches

Using Local Objects
If there are no consistency requirements between objects in distributed caches, then
define an object as a local object. (When Attributes.DISTRIBUTE is unset, this
specifies a local object.) Local is the default setting for objects. For local objects, all
updates and invalidation are visible to only the local cache.

Propagating Changes Without Waiting for a Reply
To distribute object updates across distributed caches, define an object as distributed
by setting the DISTRIBUTE attribute. All modifications to distributed objects are
broadcast to other caches in the system. Using this level of consistency does not control
or specify when an object is loaded into the cache or updated, and does not provide
notification as to when the modification has completed in all caches.

Propagating Changes and Waiting for a Reply
To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object's DISTRIBUTE and REPLY attributes. When
you set these attributes, notification occurs when a modification has completed in all
caches. When you set Attributes.REPLY for an object, replies are sent back to the
modifying cache when the modification has been completed at the remote site. These
replies are returned asynchronously—that is, the CacheAccess.replace() and
CacheAccess.invalidate() methods do not block. Use the
CacheAccess.waitForResponse() method to wait for replies and block.

Serializing Changes Across Multiple Caches
To use the highest level of consistency of the Java Object Cache, set the appropriate
attributes on the region, subregion, group, or object to make objects act as
synchronized objects.

When you set Attributes.SYNCHRONIZE_DEFAULT on a region, subregion, or
group, it sets the SYNCHRONIZE attribute for all the objects within the region,
subregion, or group.

When you set Attributes.SYNCHRONIZE on an object, it forces applications to
obtain ownership of the object before the object can be loaded or modified. Setting this
attribute effectively serializes write access to objects. To obtain ownership of an object,
use the CacheAccess.getOwnership() method. When you set the
Attributes.SYNCHRONIZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess.releaseOwnership() to block until any
outstanding updates have completed and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

Note: Setting Attributes.SYNCHRONIZE for an object is not the
same as setting synchronized on a Java method. With
Attributes.SYNCHRONIZE set, the Java Object Cache forces the
cache to serialize creates and updates of the object, but does not
prevent the Java programmer from obtaining a reference to the
object and then modifying the object.
7-54 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
When using this level of consistency, with Attributes.SYNCHRONIZE, the
CacheLoader.load() method calls CacheLoader.netSearch() before loading
the object from an external source. Calling CacheLoader.netSearch() in the load
method tells the Java Object Cache to search all other caches for a copy of the object.
This process prevents different versions of the object from being loaded into the cache
from an external source. Proper use of the SYNCHRONIZE attribute, along with the
REPLY attribute and the invalidate method, supports consistency of objects across the
cache system

Sharing Cached Objects in an OC4J Servlet
To take advantage of the distributed functionality of the Java Object Cache or to share
a cached object among servlets, some minor modification to an application's
deployment may be necessary. Any user-defined objects that will be shared among
servlets or distributed among JVMs must be loaded by the system class loader. By
default, objects that are loaded by a servlet are loaded by the context class loader.
These objects are visible only to the servlets within the context that loaded them. The
object definition is not available to other servlets or to the cache in another JVM. If the
object is loaded by the system class loader, the object definition is available to other
servlets and to the cache on other JVMs.

With OC4J, the system classpath is derived from the manifest of the oc4j.jar file
and any associated JAR files, including cache.jar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, copy
the class file to OLE_HOME/javacache/sharedobjects/classes, or add it to the
JAR file OLE_HOME/javacache/cachedobjects/share.jar. Both the classes
directory and the share.jar file have been included in the manifest for cache.jar.

Using User-Defined Class Loaders
You can place objects in the cache that require user-defined class loaders. The Cache
Service supports user-defined class loaders by providing two methods:
Attributes.setClassLoader() and Attributes.getClassLoader(). Once
you have set a region or a group to use a user-defined class loader, all objects under
that region or group are loaded using this class loader (by inheriting attributes). This
attribute does not apply to objects that are not region or group, and will be ignored if
set.

The following example demonstrates setting user-defined class loader. Object A is
loaded using MyClassLoader.

import oracle.ias.cache.*;
import java.lang.ClassLoader;
Classloader loader = this.getClass().getClassLoader();
CacheAttributes cAttr = new CacheAttributes();
Attributes attr = new Attributes();
CacheAccess cacc;
Cache.init(cAttr);
attr.setClassLoader(loader);
CacheAccess.defineRegion("region A", attr);
cacc = CacheAccess.getAccess("region A");
cacc.get("object A")

HTTP and Security for Distributed Cache
This section discusses HTTP and security for distributed cache.
Java Object Cache 7-55

Running in Distributed Mode
HTTP
By default, the Cache Service now uses the HTTP protocol to communicate between
caches. For backward compatibility, the Cache Service will continue to support the
proprietary TCP protocol to communicate between caches. While the proprietary
protocol is kept for compatibility reasons, some of the newer functionalities are
implemented exclusively for HTTP. In particular, in a distributed cache system, when
getting disk or stream objects from remote caches, HTTP mode is required.
CacheAccess.getAllCached(), CacheLoader.getFromRemote(), and
CacheLoader.netSearch() are three example operations where HTTP mode is
required for dealing with disk and stream objects. To enable the proprietary mode, you
must use the CacheAttributes.setTransport() method,
CacheAttributes.setTransport(NamedCacheAttributes.TCP).

All caches in the distributed system must be using the same communication protocol.

The following examples show two ways to enable TCP mode.

Example 1 - Enabling TCP in cache_attributes.xml

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <transport>TCP</transport>
 </communication>
</cache-configuration>

import oracle.ias.cache.*;
Cache.open("cache_attributes.xml");

Example 2 - Enabling TCP in code:

import oracle.ias.cache.*;
CacheAttributes cAttr = new CacheAttributes();
cAttr.distribute = true;
cAttr.setTransport(NamedCacheAttributes.TCP;
Cache.init(cAttr);

SSL

For secure communication between caches, the Cache Service supports the SSL
protocol. SSL is only available with the HTTP protocol. The JDK keytool program can
be used to generate certificates and set up the keystore, as documented on Sun's J2SE
1.4.2 Key and Certificate Management Tool web page. The same key pair and
certificate used for OC4J can be used for the Cache Service.

To use SSL, you must enable it on all of the caches within a distributed system.

After setting up the keystore, you need to tell the cache where the keystore is with this
command:

java –jar $OLE_HOME/javacache/lib/cache.jar sslconfig <cache_attributes.xml>
<keystore_file> <password>
7-56 Oracle Containers for J2EE Services Guide

Running in Distributed Mode
where

■ $OLE_HOME is the home directory of the Oracle IAS instance.

■ cache_attributes.xml is your cache configuration file.

■ keystore_file is the full path to your keystore file as generated by keytool.

■ password is the password you used in keytool to generate the key pair.

This generates an SSL configuration file to be used by the cache, where the name of the
file is as specified in cache_attributes.xml. In addition, you need to set
CacheAttributes.isSSLEnabled to true.

The following examples show two ways to enable SSL:

Example 1 - Enabling SSL in cache_attributes.xml

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <useSSL>true</useSSL>
 <keyStore>.keyStore</keyStore>
 <sslConfigFile>.sslConfig</sslConfigFile>
 </communication>
</cache-configuration>

import oracle.ias.cache.*;
Cache.open("cache_attributes.xml");

Example 2 - Enabling SSL in code:

import oracle.ias.cache.*;
CacheAttributes cAttr = new CacheAttributes();
cAttr.distribute = true;
cAttr.isSSLEnabled = true;
cAttr.keyStoreLocation = ".keyStore";
cAttr.sslConfigFilePath = ".sslConfig";
Cache.init(cAttr);

Two caches must be using the same set of keys to communicate with each other. If the
caches in a system reside on multiple machines, then you need to copy the keystore
file to all machines and run the java –jar … command for every cache
configuration file in the system.

Firewall
To make a distributed cache system work across a firewall, the current workaround is
to enable a set of outbound TCP ports at the firewall and to define them in
cache_attributes.xml.

For example, cache_attributes.xml might look something like this if the ports are
within the range of 7100 to 7199:

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
Java Object Cache 7-57

Monitoring and Debugging
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <useSSL>false</useSSL>
 <sslConfigFile>.sslConfig</sslConfigFile>
 <port lower="7100" upper="7199"/>
 <discoverer discovery-port="7100" original="true" xmlns=""/>
 </communication>
</cache-configuration>

Make sure that the discovery-port is within the range specified.

Restricting Incoming Connections
For systems that are configured with more than one address to support multiple
network subnets (private and public, for example), you can specify a configuration
element, localAddress, in cache_attributes.xml to restrict incoming
connections to a specified local address. By default, the distributed cache system will
bind the listener socket to the primary host address returned by the operating system.
If localAddress is specified, however, the cache will bind the listener socket to the
specified address. The value specified for localAddress must be a fully qualified
hostname or IP address. For example:

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <localAddress>123.456.78.90</localAddress>
 <discoverer discovery-port="7100" original="true" xmlns=""/>
 </communication>
</cache-configuration>

or

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <localAddress>computer.oracle.com</localAddress>
 <discoverer discovery-port="7100" original="true" xmlns=""/>
 </communication>
</cache-configuration>

In the latter case, even if the IP underneath a virtual hostname changes, JOC will
remain unaffected.

Monitoring and Debugging
Besides Cache.listCacheObjects() and Cache.dump(), the Cache Service
provides additional methods to reflect the current status of the cache and of the
7-58 Oracle Containers for J2EE Services Guide

Monitoring and Debugging
regions, groups, and individual objects within the cache. These methods can be found
in the classes CacheAccess, Cache, ObjectStatus, and AggregateStatus.

The methods under Cache reflect the cache's own status. getActiveHostInfo
returns an array of CacheHostInfo objects for all active caches in a cache system.
getCacheSize estimates total space (bytes) taken up by memory objects in the cache.
getDistributedDiskCacheSize and getLocalDiskCacheSize estimate total
space (bytes) taken up by objects in the distributed and local disk caches, respectively.
getObjectCount returns the current total number of objects in the cache.

The methods under CacheAccess reflect region, group, and individual object status.
listNames names all objects under the region. listObjects names all objects
under the region and also provides access to them. listRegions names all
sub-regions under the region. These three methods are not recursive. For example,
listRegions does not list the sub-regions under the sub-regions of the region.

CacheAccess.getStatus() reflects more detailed status information for a named
individual object or group under the region in the form of an ObjectStatus object.
This includes the cached object's access count, time of creation, size on disk (if stored
on disk), last time of access, loading time (ms), priority (as set by the object's creator),
and size in cache (bytes). If no object or group name is specified, getStatus returns
the status of the region.

CacheAccess.getAggregateStatus(), on the other hand, returns overall
statistics for a named group or region (sub-region) in the form of an
AggregateStatus object. AggregateStatus reflects the low, average, and high
values of attributes of the objects under the region or group. These attributes include
access count, time of creation, last time of access, loading time, priority, and size in
cache. In addition, the AggregateStatus object also includes the total object count
for the region or group. Reflection methods in the AggregateStatus class allows
you to access all of these numbers individually.

The Cache Service automatically compiles the information reflected by
getAggregateStatus during every clean interval. To obtain the latest information,
you need to call Cache.updateStats() before calling getAggregateStatus.

Here is an example of using getAggregateStatus

import oracle.ias.cache.*;
import java.util.Date;
import java.io.*;

CacheAccess cacc;

// create objects, load objects, etc.
...

AggregateStatus aggStats;
long avgCreateTime;
Date avg;

Cache.updateStats();
aggStats = cacc.getAggregateStatus();
avgCreateTime = aggStats.getCreateTime(AggregateStatus.AVG);
avg = new Date(avgCreateTime);

System.out.println("average creation time: " + avg);

JOC supports DMS by providing the following metrics at the process-wide cache level:
Java Object Cache 7-59

Monitoring and Debugging
■ Memory Size - the total number of bytes of memory consumed by objects in the
cache. The accuracy of this number depends on whether Attributes.MEASURE
is set for the objects and, if not set, then whether the object sizes specified by the
user are accurate. If MEASURE is not set and the explicitly set size is not accurate,
then memory size will not be accurate.

■ Memory Object Count - the total number of objects in the cache.

■ Disk Size - the total number of bytes of disk space consumed by objects in the
cache.

■ Worker Thread Count - the total number of background worker threads. The cache
spawns these threads to execute background routine tasks and to respond to
remote cache requests.

■ Task Count - the current number of background asynchronous tasks. These
include tasks such as spooling memory objects to disk and cleaning the cache
periodically.

■ Response Q Size - the current size of the response queue. The response queue
keeps track of response objects that are used to manage responses to requests
made to other caches in the system.

■ Time Q Size - the current size of the time queue. The time queue is a sorted list that
keeps track of expiration times of group/region objects.

At the region level, JOC tracks the following metrics for DMS. Disk metrics are only
tracked if diskcache is enabled.:

■ Memory Size - the total number of bytes of memory consumed by objects in the
region. The accuracy of this number depends on whether Attributes.MEASURE
is set for the objects and, if not set, then whether the object sizes specified by the
user are accurate. If MEASURE is not set and the explicitly set size is not accurate,
then memory size will not be accurate.

■ Memory Object Count - the total number of objects in the region.

■ Memory Average Load Time - the average load time for objects in the region.

■ Memory Object Access Count - the total number of accesses of objects in the
region.

■ Disk Size - the total number of bytes of disk space consumed by objects in the
region.

■ Disk Count - the total number of disk objects in the region.

■ Disk Average Load Time - the average load time for disk objects in the region.

CacheWatchUtil
By default, the Cache Service provides the CacheWatchUtil cache monitoring utility
that can display current caches in the system, display a list of cached objects, display
caches' attributes, reset cache logger severity, dump cache contents to the log, and so
on.

To invoke CacheWatchUtil, while caches are running, type one of the following
commands:

java oracle.ias.cache.CacheWatchUtil [-config=cache_config.xml] [-help]

or
7-60 Oracle Containers for J2EE Services Guide

Monitoring and Debugging
java –jar $OLE_HOME/javacache/lib/cache.jar watch [-config=cache_config.xml]
[-help]

where "-config=" and "-help" are optional parameters, and cache_config.xml is
a cache configuration file.

■ "help" gives you a list of commands you can invoke in the cache watcher. Among
these commands,

■ "set severity=<level> [CacheId]" sets logger severity level for a
particular cache. The levels are:

■ -1 off

■ 0 fatal

■ 3 error

■ 4 default

■ 6 warning

■ 7 trace

■ 10 info

■ 15 debug

■ "set timeout=<value>" sets group communication timeout for the cache
system to value.

■ "dump [CacheId]" dumps the contents of a particular cache to the log file.

■ "invalidate" invalidates all objects in the cache system.

■ "destroy" destroys all objects in the cache system (include memory, stream, and
disk).

Typing "get config [CacheId]" returns the cache configuration information for a
particular cache. You can retrieve remote cache configurations for verification, as
shown in the following example.

cache> get config 3
ache 3 at localhost:53977
distribute = true
version = 10.1.3
max objects = 200
max cache size = 48
diskSize = 32
diskPath = <disk_path>
clean interval = 3
LogFileName = <log_file_name>
Logger = MyCacheLogger
Log severity = 3
cache address list = [127.0.0.1:22222, pos=-1, uid=0, orig, name=, pri=0
]
Typing "list caches" or "lc" lists all of the active caches in the system. The cache
watcher also occupies a spot on the list, as shown in the following example. The UID
column displays every cache's ID. The cache watcher does not detect caches that have
been configured but are not active.

cache> lc
Java Object Cache 7-61

Monitoring and Debugging
Current coordinator: [127.0.0.1:53957, pos=0, uid=0, tag=27979955, pri=0]
UID CacheAddress
- --- ---------------------
1 0 localhost:53957
2 1 localhost:53965
3 2 localhost:53974
4 3 localhost:53977
5 4 localhost:53980
6 5 localhost:53997 <-- this cache watcher

Typing

"list objects [CacheId] [region=<region>] [sort=<0...7>]"

or

"lo [CacheId] [region=<region>] [sort=<0...7>]"

 lists all objects in a specified cache, under a specified region, and in the order specified
by the sort option. The sort options are:

■ 0 by region name

■ 1 by object name

■ 2 by group name

■ 3 by object type

■ 4 by valid status

■ 5 by reference count

■ 6 by access count

■ 7 by expiration

Without any options, lo lists all objects in all caches without sorting. The following
example shows lo for cache 3, A-Region, sorted by object name. Columns have been
adjusted to improve example readability.

cache> lo 3 region=A-Region sort=1
Cache 3 at localhost:53977
 REGION OBJNAME GROUP TYPE REFCNT ACCCNT EXPIRE VALID LOCK
-------- --------- ------- ------ -------- -------- -------- ------- ------
[A-Region] [A-Group] [A-Region] Group 0 1 None true null
[A-Region] [A-Region] [null] Region 0 4 295 Seconds true null
[A-Region] [B-Group] [A-Region] Group 0 3 None true null
[A-Region] [bar] [B-Group] Loader 0 1 None true null

Finally, typing "groupdump" dumps all group communication information for all
caches to the log file. It is unlikely that you will need to use this command or that you
will find its output useful, but in the event of group communication errors, technical
support might ask you to supply the information for problem diagnosis.
7-62 Oracle Containers for J2EE Services Guide

XML Schema for Cache Configuration
XML Schema for Cache Configuration

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="cache-configuration" type="CacheConfigurationType">
 <xs:annotation>
 <xs:documentation>Oracle JavaCache implementation</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="CacheConfigurationType">
 <xs:sequence>
 <xs:element name="logging" type="loggingType" minOccurs="0"/>
 <xs:element name="communication" type="communicationType" minOccurs="0"/>
 <xs:element name="persistence" type="persistenceType" minOccurs="0"/>
 <xs:element name="preload-file" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="max-objects" type="xs:positiveInteger" default="1000" minOccurs="0"/>
 <xs:element name="max-size" type="xs:positiveInteger" default="1000" minOccurs="0"/>
 <xs:element name="clean-interval" type="xs:positiveInteger" default="60" minOccurs="0"/>
 <xs:element name="ping-interval" type="xs:positiveInteger" default="60" minOccurs="0"/>
 <xs:element name="cacheName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="loggingType">
 <xs:sequence>
 <xs:element name="location" type="xs:string" minOccurs="0"/>
 <xs:element name="level" type="loglevelType" minOccurs="0"/>
 <xs:element name="logger" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="communicationType">
 <xs:sequence>
 <xs:element name="isDistributed" type="xs:boolean" default="false" minOccurs="0"/>
 <xs:element name="transport" type="transportType" minOccurs="0"/>
 <xs:element name="useSSL" type="xs:boolean" minOccurs="0"/>
 <xs:element name="sslConfigFile" type="xs:string" minOccurs="0"/>
 <xs:element name="keyStore" type="xs:string" minOccurs="0"/>
 <xs:element name="port" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="lower" type="xs:nonNegativeInteger" use="optional" default="0"/>
 <xs:attribute name="upper" type="xs:nonNegativeInteger" use="optional" default="0"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="localAddress" type="xs:string" minOccurs="0"/>
 <xs:element name="discoverer" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="discovererType">
 <xs:attribute name="order" type="xs:nonNegativeInteger"/>
 <xs:attribute name="original" type="xs:boolean"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="discovererElection" type="electionType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
Java Object Cache 7-63

XML Schema for Attribute Declaration
 <xs:complexType name="discovererType">
 <xs:attribute name="ip" type="xs:string"/>
 <xs:attribute name="discovery-port" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="persistenceType">
 <xs:sequence>
 <xs:element name="location" type="xs:string"/>
 <xs:element name="disksize" type="xs:positiveInteger" default="30" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="loglevelType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="OFF"/>
 <xs:enumeration value="FATAL"/>
 <xs:enumeration value="ERROR"/>
 <xs:enumeration value="DEFAULT"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="TE"/>
 <xs:enumeration value="INFO"/>
 <xs:enumeration value="DEBUG"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="transportType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="HTTP"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="electionType">
 <xs:sequence>
 <xs:element name="useMulticast" type="xs:boolean" minOccurs="0"/>
 <xs:element name="updateInterval" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="resolutionInterval" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="multicastAddress" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="ip" type="xs:string" use="optional"/>
 <xs:attribute name="port" type="xs:string" use="optional"/>
 <xs:attribute name="TTL" type="xs:nonNegativeInteger" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="usePriorityOrder" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

XML Schema for Attribute Declaration

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration/declarative"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration/declarative"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:complexType name="regionType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="region" type="regionType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="group" type="groupType" minOccurs="0" maxOccurs="unbounded"/>
7-64 Oracle Containers for J2EE Services Guide

XML Schema for Attribute Declaration
 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="attributesType">
 <xs:sequence>
 <xs:element name="time-to-live" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="default-ttl" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="idle-time" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 <xs:element name="max-count" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="priority" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="size" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="flag" minOccurs="0" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="flagType">
 <xs:enumeration value="distribute"/>
 <xs:enumeration value="reply"/>
 <xs:enumeration value="synchronize"/>
 <xs:enumeration value="spool"/>
 <xs:enumeration value="group_ttl_destroy"/>
 <xs:enumeration value="original"/>
 <xs:enumeration value="synchronize-default"/>
 <xs:enumeration value="allownull"/>
 <xs:enumeration value="measure"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="event-listener" type="event-listenerType" minOccurs="0"/>
 <xs:element name="cache-loader" type="userDefinedObjectType" minOccurs="0"/>
 <xs:element name="capacity-policy" type="userDefinedObjectType" minOccurs="0"/>
 <xs:element name="user-defined" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="flagType">
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:complexType name="userDefinedObjectType">
 <xs:sequence>
 <xs:element name="classname" type="xs:string"/>
 <xs:element name="parameter" type="propertyType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="event-listenerType">
 <xs:sequence>
Java Object Cache 7-65

XML Schema for Attribute Declaration
 <xs:element name="classname" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="handle-event" type="handle-eventType" use="required"/>
 <xs:attribute name="default" type="xs:boolean"/>
 </xs:complexType>
 <xs:simpleType name="handle-eventType">
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:enumeration value="object-invalidated"/>
 <xs:enumeration value="object-updated"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="groupType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="group" type="groupType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="cached-objectType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="name" type="nameType" minOccurs="0"/>
 <xs:element name="object" type="userDefinedObjectType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="nameType">
 <xs:choice>
 <xs:element name="string-name" type="xs:string"/>
 <xs:element name="object-name" type="userDefinedObjectType"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="cache">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="region" type="regionType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>
7-66 Oracle Containers for J2EE Services Guide

XML Query Se
8

XML Query Service

This chapter describes how to use XML Query Service (XQS), a new service in the
OC4J 10.1.3 implementation that provides a convenient user model for the retrieval,
analysis, integration, and transformation of enterprise data. The following topics are
covered:

■ Introduction to XML Query Service

■ Overview of XQS Features and Functionality

■ How to Enable XQS As an OC4J Extension

■ How to Prepare to Use Your Data Sources

■ How to Configure Your XQS Functions

■ How to Design Your Queries

■ How to Develop Your Application Code: Using the XQS Client Interfaces

■ How to Use OC4JPackager to Package Your XQS Application

■ Using XQS Performance Features

■ Using XQS Error Handling Modes and APIs

■ XQS Client APIs Reference

■ XQS Configuration File Reference

■ OC4JPackager Reference

■ Summary of XQS MBeans and Administration

■ XQS Troubleshooting

■ XQS Sample

Introduction to XML Query Service
This section introduces the XML Query Service, providing a brief overview of XQS
and related technologies that it is built upon. This discussion includes the following:

■ What is XQS?

■ Technologies Related to XQS

■ Why Use XQS?

■ Requirements, Limitations, and Special Notes for the Current Release
rvice 8-1

Introduction to XML Query Service
What is XQS?
XQS is an OC4J service built upon XQuery (the XML query language) to provide a
simplified, declarative mechanism for creating integrated views of enterprise data.

Generally, without a service such as XQS, XQuery is limited to accessing XML
documents. With XQS, you can also retrieve data from non-XML documents, relational
databases, and other possibly non-XML enterprise information systems, through
access mechanisms such as SOAP or SQL.

XQS simplifies your programming task. In the planning stages, you need only focus on
the design of your XQuery expressions (queries, built-in function calls, or user-defined
function calls) and the structure of the data. The details of accessing data sources are
determined later, through configuration settings—this is where a binding occurs
between your XQuery expressions and the data to be accessed. XQS then does the
work of creating external XQuery functions, referred to as XQS functions, used in
retrieving the data from the desired sources.

XQS supports ad-hoc queries, which are XQuery expressions passed in at runtime, or
XQS views, which are queries you created and saved previously. A view becomes an
XQuery function that you can access later by name. (XQuery itself does not yet
support the concept of views.) Views allow you to reuse XQuery expressions in
building hierarchical queries that are powerful and yet easily maintainable.

XQS offers a variety of client interfaces, allowing you to execute your XQuery
expressions through an EJB, a JSP tag library, a Java class, or a Web service.

Technologies Related to XQS
This section offers a glance at technologies that XQS is built upon:

■ A Quick Look at XQuery

■ The Oracle XQuery Implementation

■ Comparing XQS with the XQuery API for Java

A Quick Look at XQuery
XQuery is a declarative language for querying and transforming XML data. You can
intelligently query an XML source, using desired criteria, and retrieve and interpret
elements and attributes and the data they contain. It is a standard and flexible
technology that applies broadly across many and varied kinds of XML sources,
including XML databases as well as XML documents. Its role is comparable to the role
SQL plays in querying a relational database, with similar functionality.

In addition to querying data, XQuery can transform XML data. In this way, it can be
used as a complement or an alternative to XSLT.

In XQuery, the basic construct is an expression, with the data model for expressions
being based on XPath 2.0. Each XQuery result is returned as an XML sequence. This is a
sequence of zero or more data items, where each item is a scalar value, XML node, or
XML document. Type definitions for items are based on the XML Schema standard.

Note: For introductory tutorials for these and related technologies,
you can try the following site (among many others):

http://www.w3schools.com/
8-2 Oracle Containers for J2EE Services Guide

Introduction to XML Query Service
A query may consist of one or more fragments called modules, and a module may
consist of a prolog followed by a query body. A prolog is a series of declarations and
imports that define the processing environment for the module.

The general model for a query in XQuery is the "for-let-where-order-return" (FLWOR)
expression. Here is pseudocode showing an example of what a FLWOR expression
could accomplish:

For each department in depts.xml
Let [variable] represent each employee in each department
Where the headcount of employees in a department is at least 10
Order by average salary of department
Return headcount and average salary of each department

XQuery also allows the definition and use of predefined functions to perform queries.
For more complex queries, external functions may be provided separately, then
declared and invoked from your XQuery definition. External functions may be
implemented in a variety of languages, including Java and SQL.

The use of external functions is a critical part of XQS functionality. XQS creates
external functions, according to your XQS configuration, to execute the desired queries
on your data.

The Oracle XQuery Implementation
The Oracle XQuery implementation in Java is an underlying engine for XQS and is
provided as part of the XML Query Service. Do not confuse this with the Oracle
XQuery implementation that is part of Oracle XML DB in the Oracle Database product,
although the two have common origins and common features.

XMLItem Type
Oracle's XQuery implementation uses the type
oracle.xml.xqxp.datamodel.XMLItem to represent an individual item in the
result XML sequence of a query.

Predefined Namespaces and Prefixes
The following table lists predefined namespaces and prefixes for use with XQuery and
XQS.

Notes:

■ XQuery 1.0 is an extension of XPath 2.0, so they share the same
data model, functions, and syntax. The data model is also
common to XSLT 2.0.

■ For details about XQuery, refer to the specification XQuery 1.0: An
XML Query Language, available at the following location:

http://www.w3.org/TR/xquery/

Table 8–1 Predefined Namespaces and Prefixes

Prefix Namespace Description

ora http://xmlns.oracle.com/xdb Oracle XML DB namespace

local http://www.w3.org/2003/11/xpath-loc
al-functions

XPath local function declaration
namespace
XML Query Service 8-3

Introduction to XML Query Service
You can use these prefixes in XQuery expressions without first declaring them in the
XQuery-expression prolog. You can redefine any of them except xml in the prolog. All
of these prefixes except ora are predefined in the XQuery standard.

Oracle XQuery Extension Functions
The Java version of Oracle XQuery includes support for ora extension functions first
introduced in the database version, including the following:

■ ora:contains lets you restrict a structural search with a full-text predicate.

■ ora:matches lets you use a regular expression to match text in a string.

■ ora:replace lets you use a regular expression to replace text in a string.

■ ora:sqrt lets you return the square root of a number.

■ ora:view lets you query existing database tables or views inside an XQuery
expression, as if they were XML documents. In effect, this function creates XML
views over the relational data.

For more information about these functions, refer to the XQuery chapter of the Oracle
XML DB Developer's Guide.

fn http://www.w3.org/2003/11/xpath-fu
nctions

XPath function namespace

xdt http://www.w3.org/2003/11/xpath-da
tatypes

XPath datatype namespace

xml http://www.w3.org/XML/1998/names
pace

XML namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema
-instance

XML Schema instance namespace

Note: At the time of this release, the W3C XQuery working group
had not yet published the XQuery recommendation. Oracle will
continue to track the evolution of the XQuery standard, until such
time as it becomes a recommendation. During this period, in order to
follow the evolution of the XQuery standard, Oracle may be forced to
release updates to the XQuery implementation which are not
backwards compatible with previous releases or patch sets. During
this period Oracle does not guarantee any backward compatibility
between database releases or patch sets with respect to our XQuery
implementation. After the XQuery standard becomes a
recommendation, Oracle will produce a release or patch set that
includes an implementation of the XQuery recommendation. From
that point on, standard Oracle policies with respect to backwards
compatibility will apply to the Oracle XQuery implementation. See
http://www.w3.org for the latest information on the status of
XQuery.

Table 8–1 (Cont.) Predefined Namespaces and Prefixes

Prefix Namespace Description
8-4 Oracle Containers for J2EE Services Guide

Introduction to XML Query Service
Implementation Choices Specified in the XQuery Standard
Implicit time zone support: In XQuery in XQS, the implicit time zone is always
assumed to be Z.

Implementation Departures from the XQuery Standard
Boundary condition differences, for +0 and -0: The XQuery standard distinguishes
positive zero from negative zero, but XQuery in XQS does not. Both are presented as 0,
and they are treated equally.

XQuery Optional Features
There is currently no support for the following optional XQuery features defined by
the W3C:

■ Schema Import Feature

■ Schema Validation Feature

■ Module Feature

In addition to these defined optional features, the W3C specification allows an
implementation to provide implementation-defined pragmas and extensions. These
include the following:

■ Pragmas

■ Must-understand extensions

■ Static-typing extensions

The Oracle implementation does not require any such pragmas or extensions.

Support for XQuery Functions and Operators
XQS supports all of the XQuery functions and operators included in the latest
specification with the following exceptions, for which there is no support:

■ XQuery regular-expression functions.

Use the Oracle extensions for regular-expression operations, instead

■ Functions fn: trace, fn:id, fn:idref, fn:codepoint-equal,
fn:prefix-from-QName, fn:doc-available, and fn:collection()
(fn:collection() without any argument)

XQuery Functions doc and collection
XQuery built-in functions fn:doc and fn:collection are essentially
implementation-defined. XQS supports these functions. Function doc retrieves a file
from the local file system that is targeted by its URI argument; it must be a file of
well-formed XML data. Function collection is similar, but works on a folder (each
file in the folder must contain well-formed XML data).

Comparing XQS with the XQuery API for Java
The XQuery API for Java (XQJ) is an evolving standard for executing XQuery
expressions from Java applications. (Refer to JSR-225.) It is a low-level programmatic
interface comparable to JDBC. Because it is not yet a standard, however, XQJ is not yet
supported in the 10.1.3 implementation of the Oracle Application Server.

XQS supplies a higher-level API for similar underlying functionality. You can execute
XQuery expressions from Java without having to write code to connect to the data
source, create XQuery expression objects, and so on.
XML Query Service 8-5

Introduction to XML Query Service
Why Use XQS?
XQS is versatile. It is useful for Web services as well as Java applications, and for
accessing non-XML data as well as XML data.

XQS also relieves you of coding steps such as using the low-level XQJ interface to
execute an XQuery expression. The XQS model of data source access through
non-programmatic configuration allows faster and more convenient development.
Also, registration of the library for the external functions that XQS creates is handled
automatically, and namespace assignment is flexible and within your control.

As well as being used to retrieve data, XQS can serve as a convenient mechanism for
transforming XML data or joining data from multiple sources.

In addition, XQS offers the following advantages and conveniences:

■ The XQS configuration model allows you to create queries that are independent of
the particular data source or XML document you access, making your application
more portable. You need only alter your XQS configuration for a different source
or document location.

■ Use of the "XQS views" feature allows more convenient hierarchical queries, as
well as allowing queries to be shared, reused, and centrally maintained.

■ Through the use of performance optimizations in cooperation with other Oracle
Application Server and Oracle Database components, a query executed through
XQS is expected to perform at least as well as, and typically better than, the
hand-coded XQJ equivalent. XQS itself offers additional performance
enhancements, including configurable caching for source data and results, and
efficiencies in handling large data sets.

■ XQS simplifies migration between the middle tier and database tier. If a data
source outgrows middle-tier capacity, you can typically migrate data to Oracle
XDB without modifying or redeploying your middle-tier application. Move your
data to the database and update your configuration for that data source as
appropriate. Other middle-tier data sources can remain on the middle tier.

Also see "Introduction to XQS Performance and Optimization Features" on page 8-12.

Requirements, Limitations, and Special Notes for the Current Release
Be aware of the following for the XQS 10.1.3 implementation:

■ XQS uses the OC4J Java Object Cache for its caching. It requires that the cache be
running (automatically starting it if necessary), and requires the presence of the
Java Object Cache configuration file. See "Configuring XQS Caching" for
additional information about caching.

■ Due primarily to limitations of the current XQuery specification, XQS reads from
data sources but cannot write to data sources. You can query data, but not update,
insert, or delete data.

■ Within the set of nodes (as defined by the XML data model) returned by a function
call, each node has a unique identity. But if a function is called more than once in a
query, XQS does not guarantee the uniqueness of node identities across the
different result sets. Because of this, some queries based on node identity may
produce nondeterministic results. As an example, consider the following queries,
Q1 and Q2:

(: Q1 :)
declare namespace xqs="http://xmlns.oracle.com/ias/xqs";
declare function xqs:a() external;
8-6 Oracle Containers for J2EE Services Guide

Overview of XQS Features and Functionality
let $x := xqs:a()
return $x/b is $x/b

Q1 will always return true, given that the node identity test is on nodes from the
same function call.

(: Q2 :)
declare namespace xqs="http://xmlns.oracle.com/ias/xqs";
declare function xqs:a() external;
xqs:a()/b is xqs:a()/b

Q2 may return true or false, depending on certain performance optimization
settings.

Overview of XQS Features and Functionality
This section introduces important XQS features. Further details are provided later in
the chapter.

■ XQS Data Source Support

■ Introduction to XQS Configuration and Configuration Files

■ Introduction to XQS Client Interfaces

■ Introduction to OC4JPackager

■ Security for XQS Applications

■ Introduction to XQS Performance and Optimization Features

■ Introduction to XQS Error Handling

■ Summary of the Main Steps in Using XQS

XQS Data Source Support
As noted previously, XQS supports several different kinds of data sources. This section
covers the following related topics:

■ Supported Categories of Data Sources

■ Data Source Access Through XQuery Functions

■ What Do Data Source Function Objects Do?

■ Overview of Preparing Data Sources

Supported Categories of Data Sources
In XQS, data sources requiring a variety of access protocols can be described through
WSDL documents because of XQS support for the popular Apache Web Services
Invocation Framework (WSIF), an extension of the Web service mechanism behind
SOAP and HTTP to include any custom invocation protocols. Because of this
mechanism, XQS supports WSDL-based sources other than SOAP-based Web services.

In all, XQS supports the following categories of data sources, with special features to
access various kinds of sources through a WSDL document.

■ Document: Access files or, more generally, any URL-based input streams that
contain XML documents. This is similar to the functionality of the built-in XQuery
function fn:doc(). XQS supports the Oracle Data Definition Description
Language (D3L) translator plug-ins to convert non-XML data to XML, so
non-XML files are supported as well.
XML Query Service 8-7

Overview of XQS Features and Functionality
■ XQS view: Run a previously stored query (similar in concept to database stored
procedures). XQS locates the query, binds any external variables, and executes the
query.

■ WSDL source with SOAP binding: Access a resource through a Web service. You
must provide a WSDL document, with a SOAP binding, to describe the Web
service operations and the data source.

■ WSDL source with SQL binding: Access tables, views, PL/SQL stored procedures,
or Java stored procedures in a relational database. This is accomplished through
the XQS WSIF provider for SQL, a binding that is defined by Oracle. See
"Preparing to Use a Database Source (WSDL Source with SQL Binding)" on
page 8-19 for information. You must provide a WSDL document with a SQL
binding. XQS converts a relational result set to an XML sequence by invoking the
Oracle XML-SQL Utility. XQS gets connection information for the appropriate data
source, as specified in the WSDL, from the OC4J data-sources.xml
configuration file.

The XQS fetchSize attribute for WSDL sources with SQL binding recommends
a number of rows for JDBC to fetch from the database in one round trip. This
attribute is translated into a call to the setFetchSize method of
java.sql.PreparedStatement. The setFetchSize parameter in JDBC (and,
therefore, the fetchSize attribute in XQS) is only a hint: it is not binding.

■ WSDL source with Java or EJB binding: Access a resource through any custom
Java class or EJB that returns XML data. This is accomplished through the WSIF
provider for Java or WSIF provider for EJB. You must implement the class or EJB
and provide a WSDL document with a Java or EJB binding, specifying the class
name or EJB name and any argument types.

A WSDL document that you provide for any of the WSDL sources will describe a set
of callable operations and provide specifics for connecting to the source, using the
appropriate binding. Your XQS configuration will reference a name for each operation,
and point to the WSDL for the description of the operation. The WSDL must have a
working URL, which you specify in your XQS configuration. XQS will go to that URL
to fetch the WSDL. Also note that XQS allows you to use a WSDL URL as an XQuery
namespace, and to treat individual operations of a WSDL port as local names in that
namespace.

Data Source Access Through XQuery Functions
Access of your data sources and execution of your operations are accomplished
through external XQuery functions, referred to as "XQS functions" (introduced earlier),
that XQS automatically creates and invokes for you based on your XQS configuration.
You specify the desired name and namespace of the function in your configuration,
along with other relevant items (input parameters, for example). When you use a data
source in a query, you must declare the associated XQS function as an external
function in your XQuery prolog.

A namespace corresponds to a function library containing function objects. Each
function object corresponds to an operation. For a WSDL source with SOAP binding,
for example, there is a function object for each operation in the WSDL document. For a
WSDL source with SQL binding, each SQL query or stored procedure call maps to a
function.

What Do Data Source Function Objects Do?
Each function object created by XQS is instantiated according to your XQS
configuration, and performs the following basic tasks:
8-8 Oracle Containers for J2EE Services Guide

Overview of XQS Features and Functionality
1. Accepts input arguments passed from the XQuery engine. Permissible input types
are according to what is allowable in an XML sequence; namely, primitive Java
types and XML nodes. XQS cannot perform Java object-to-XML mapping, but you
can perform mapping prior to the query, such as through Oracle TopLink.

2. Invokes the query against the underlying data source. XQS maps the function
name to the corresponding XQS configuration element, then finds the connection
information for the data source and creates the connection.

3. Receives and packages results. XQS synchronously receives results from the data
source, in XML form, then packages the results into an XML sequence.

4. Processes any errors (such as problems accessing a data source, for example, or
type incompatibilities) and returns error information according to your
error-handling configuration.

Overview of Preparing Data Sources
For most data sources you can use with XQS, there are necessary preparation steps.
For example:

■ To use a non-XML document source, you must prepare to use the conversion tool,
Oracle D3L, that XQS supplies. Preparation includes providing a D3L schema file
with instructions about the data format.

■ To use an XQS view, you must consider the data input and return types, design the
query, save it as an .xq file, and decide where to place it.

■ To use a WSDL source with any of the supported bindings, you must provide (in
some cases, create) an appropriate WSDL document.

See "How to Prepare to Use Your Data Sources" on page 8-15 for details.

Introduction to XQS Configuration and Configuration Files
As is true with OC4J and its other components as well, XQS has the concept of global
configuration versus application-specific configuration. Global configuration is for
XQS functions and data sources that are to be available to all applications running in
the OC4J instance, as opposed to being available only to a particular application.

The application-specific XQS configuration file is xqs-config.xml, which XQS looks
for in the xqs-resources.jar file (created by the OC4J packaging utility) at the top
level of the application EAR file. Use it to specify information about XQS functions
and data sources specific to your application.

The global XQS configuration file is global-xqs-config.xml, in the
ORACLE_HOME/j2ee/home/config directory, which you can use to specify sources
available to all applications.

When XQS looks for configuration for an XQS function, it first looks in the
application-level file. If (and only if) it does not find it there, it will look in the global
file. (In other words, if a function is configured in both files, it is ignored in the global
file.)

The top-level elements are as follows:

■ <document-source> to access data from a document, including either XML or
non-XML files

■ <xqsview-source> to use an XQS view

■ <wsdl-source> for any data source involving a user-provided WSDL document
XML Query Service 8-9

Overview of XQS Features and Functionality
XQS reads information from the configuration file and uses that information to
populate the XQS function objects that access the data sources.

You do not have to restart OC4J when you update configuration, but you must
redeploy the application. (See the Oracle Containers for J2EE Deployment Guide for
information.)

See "How to Configure Your XQS Functions" on page 8-24 for additional information.

Introduction to XQS Client Interfaces
XQS supports the following client interfaces for implementing your XQuery
functionality. See "How to Develop Your Application Code: Using the XQS Client
Interfaces" on page 8-39 for usage information and examples for each of these
interfaces.

■ Java class client API: XQS provides a general-purpose Java class, XQSFacade, that
you can use for a Java implementation of desired XQuery functionality. This class
is based on the "facade" design pattern, shielding you from details and
complexities of the underlying XQS functionality. Use the appropriate "execute"
method to pass in an ad-hoc query or XQS view name and any bind parameters. In
either case, use the "get next item" method to process the results. An XQSFacade
instance returns an XML result sequence directly to the client, meaning it is up to
the client whether to retrieve and process items from the sequence incrementally
(a stateful approach), or to retrieve and process all items from the sequence at once
(a stateless approach).

Note: In the 10.1.3 implementation of the Oracle Application Server,
there are not yet any pages for XQS configuration in the Oracle
Enterprise Manager 10g Application Server Control Console.
Although MBeans are available (summarized for reference in
"Summary of XQS MBeans and Administration" on page 8-109), we
recommend for the current release that you manage your XQS
configuration directly in the xqs-config.xml file.

Note: When you use any of the XQS client APIs for a query, the
query execution defines the results, but does not necessarily put all
the results into memory immediately. A set of results that is
immediately and fully stored into memory is said to be materialized,
whereas a set of results accessed one at a time (or several at a time,
with batching) through an implicit cursor, using some sort of "next
item" functionality, is said to be nonmaterialized. With nonmaterialized
results, there is no guarantee as to when results are retrieved and
written to memory. Any "next item" call may trigger the evaluation of
the XQuery expression to produce the next result item.

As noted in the descriptions that follow, XQS client APIs allow you
the choice of using stateless client objects, with materialized results, or
using stateful client objects, with nonmaterialized results.

These concepts are discussed in further detail, and with strategic
considerations, in "Stateful Versus Stateless Clients" on page 8-41.
8-10 Oracle Containers for J2EE Services Guide

Overview of XQS Features and Functionality
■ EJB client API: The EJB client API provides a way to access your application
through session beans, either remotely (through RMI) or locally. XQS supports the
use of either stateful or stateless session beans. Stateless beans minimize calls to
the EJB, while stateful beans are preferable if memory usage is a concern. In either
case, you provide the ad-hoc query or XQS view name, along with any bind
parameters, in the appropriate "execute" method. For a stateful session bean, you
use the "get next item" method to process the results. For a stateless session bean,
the sequence is always materialized and is returned by the "execute" method.

■ JSP tag library: The JSP tag library provides a way to access your application
through HTTP. XQS provides JSP tags for either stateful or stateless access. You
provide the ad-hoc query or XQS view name using an "execute" or
"executeCursor" tag. Which tag to use depends on whether you want stateful or
stateless access. There is a nested "parameter" tag for specifying bind parameters.
For stateful access, you use the "next" tag associated with the "executeCursor" tag
to process the results. For stateless access, the sequence is always materialized and
is returned by the "execute" tag. Results can be returned as a JSP output stream, a
DOM document, or an array of Java Object instances (according to attribute
settings of the "execute" or "executeCursor" tag).

■ XQS view Web service: When you use an XQS view, you can optionally have XQS
add an operation to a WSDL document that it creates, to expose the view as a Web
service operation. (This is accomplished as part of the configuration for an XQS
view.) You can then implement a client for this as you would for any other Web
service.

Introduction to OC4JPackager
OC4JPackager, provided with XQS, is a command-line Java tool that packages
XQS-related files with a J2EE or Web application to allow the application to use XQS
functionality.

In a typical scenario, you would write a Web application that calls XQS through one of
the XQS client APIs (the XQSFacade class, EJB client API, or JSP tag library). You
would also create an XQS configuration file, xqs-config.xml, that points to the
relevant data sources and XQS views, and choose an XQS repository—the directory
where your views are located. Then you would bundle your application, XQS
configuration file, and XQS repository into an EAR file, which you then deploy.

Given instructions through its command-line parameters, OC4JPackager will complete
the step of bundling everything for you. Specifically, it does the following:

1. Bundles xqs-config.xml and all XQS repository files into a file called
xqs-resources.jar.

Note: The XQSFacade class is also used behind the scenes for the
EJB client API and JSP tag library.

Note: Also be aware of the XQS QueryParameter class. To use
queries with external binds for the Java client API or EJB client API,
you must create an array of QueryParameter objects for the bind
values. See "XQS QueryParameter Class Reference" on page 8-75 for
reference information. (This class is also used behind the scenes for the
JSP client interface.)
XML Query Service 8-11

Overview of XQS Features and Functionality
2. Opens each archive associated with your application (such as WAR files and EJB
JAR files) and modifies the Class-Path attribute in the manifest (MANIFEST.MF)
to include xqs-resources.jar.

3. Bundles an EAR archive that consists of all your application archive files plus
xqs-resources.jar.

4. Creates or modifies (as applicable) the orion-application.xml file in the EAR
archive to add xqs-resources.jar to the list of libraries accessible by all
components of the EAR.

When you run OC4JPackager, you specify a directory that contains one of the
following:

■ An existing EAR file, which OC4JPackager will unbundle and rebuild

■ An existing set of J2EE modules such as WAR and EJB JAR files, which
OC4JPackager will bundle into a new EAR.

For an XQS view that you want to expose as a Web service operation, OC4JPackager
performs additional tasks, delegating invocation of the Web service operation to the
XQS view. The operation is added to a WSDL document that is automatically
generated. For more information see "OC4JPackager Additional Output to Expose
XQS Views as Web Service Operations" on page 8-62.

For more information about OC4JPackager in general, see "How to Use OC4JPackager
to Package Your XQS Application" on page 8-58 and "OC4JPackager Reference" on
page 8-106.

Security for XQS Applications
XQS itself does not add any layers of security. In this way, it is essentially like any J2EE
application. Security is provided by OC4J through standard Web and J2EE security
features that you must use, as appropriate for the type of XQS client you are using and
the type of data source you are accessing.

 For example, if you are using a WSDL source with a SQL binding, use data source
security features. If you are using the XQS EJB client interface, use standard EJB
security. If you are using the XQS JSP tag library, use standard authentication for an
HTTP connection. And so on.

Introduction to XQS Performance and Optimization Features
XQS offers the following features to improve performance:

■ Caching: XQS can cache the results of XQS view execution, or cache XML data
from data sources for use in future queries. This improves performance,
particularly for situations where data sources, such as external Web services, may
require significant time to access. Caching is also important when accessing
asynchronous sources. You can specify expiration and invalidation settings for
cached data, or optionally disable caching entirely, through your XQS
configuration.

■ Handling of large data sets: XQS has features to minimize the chance of running
out of system memory when you access very large data sets, such as dozens of
megabytes or more. In such situations, XQS will materialize the results partially, as
the data is needed, staying within a fixed amount of memory usage (a "working
unit" approach). You have the option of returning data items one by one.

■ Scalability: XQS efficiently streams inputs to the XQuery engine, allows sharing
and reuse of cached resources (such as parsed WSDL documents), and can use
8-12 Oracle Containers for J2EE Services Guide

Overview of XQS Features and Functionality
non-materialized result sequences as appropriate for scalability. You can control
these behaviors through your XQS configuration.

See "Using XQS Performance Features" on page 8-65 for more information.

Introduction to XQS Error Handling
An XQS application may encounter problems related to XQS external functions and
the underlying data sources during execution, such as problems converting input
parameters to types expected by the data source, or problems converting data returned
by the data source to XML. In addition, the data source may be unavailable or may
return an error. The default behavior of XQS is to raise an XQuery dynamic error in
these situations, which stops execution of a query, with no results being returned.

Alternatively, an XQS configuration attribute (onError) allows you to choose less
severe behaviors, allowing XQS to continue so you can obtain additional information
about any errors that occurred. Three error-handling modes are available:

■ dynamicError (default)

■ emptySequence

■ errorMessage

With emptySequence or errorMessage mode, if an error is encountered during
execution of an XQS external function for which this mode has been set, the error does
not terminate query execution, and will be retained by XQS for later retrieval if
desired. XQS returns an empty XML sequence (for emptySequence mode) or a
one-item XML sequence consisting of an error message (for errorMessage mode). In
errorMessage mode, you can preconfigure a fixed error message in your XQS
configuration, or you can have the message be whatever is returned by the data
source.

Information about "suppressed" errors from XQS external functions is returned by
XQS in an iterator of XQSError objects.

XQS applies special handling only to errors inside an XQS function. A regular XQuery
error, such as a syntax error or type mismatch, terminates query execution regardless
of the XQS error mode.

You configure the XQS error mode for each XQS function individually. The error mode
for one function does not have any affect on the behavior of other XQS functions in the
same query.

See "Using XQS Error Handling Modes and APIs" on page 8-69 for more information.

Summary of the Main Steps in Using XQS
The following are the key steps in using XQS. Links are provided to the sections that
cover each step in detail.

1. Enable XQS as an OC4J extension.

For an instance of OC4J that Oracle Process Management and Notification
(OPMN) manages, you can enable XQS by adding the following Java system
property to the ORACLE_HOME/opmn/conf/opmn.xml configuration:

Note: While XQS works in close conjunction with the Oracle XQuery
engine and XDK to optimize data flow, XQS does not optimize the
queries.
XML Query Service 8-13

How to Enable XQS As an OC4J Extension
-Doracle.hooks=oracle.xds.XDSExtension

After configuring opmn.xml, you can use Oracle Enterprise Manager (OEM) or
the OPMN tool to start or stop XQS with the OC4J instance. See "How to Enable
XQS As an OC4J Extension" on page 8-14.

For a standalone instance of OC4J, pass following Java system property to the
OC4J container:

-Doracle.hooks=oracle.xds.XDSExtension

You can pass this property on the command line, as follows:

java –jar oc4j.jar -Doracle.hooks=oracle.xds.XDSExtension

Or you can pass it by using the Ant task startoc4j.

See the Oracle Application Server Installation Guide for more details regarding
various OC4J starting options. XQS users need to pass the additional
Doracle.hooks parameter, as the preceding text describes.

2. Prepare your data sources as necessary. For a document source, for example, this
would include any setup to convert from non-XML to XML. For XQS views, this
includes defining and saving the queries. Some access of WSDL-based sources,
such as databases, also requires special setup. See "How to Prepare to Use Your
Data Sources" on page 8-15.

3. Configure XQS. Use the xqs-config.xml (or global-xqs-config.xml) file
to specify and configure data sources to be accessed and queries to be executed,
and to create mappings to the XQS functions that represent the data sources for the
queries. See "How to Configure Your XQS Functions" on page 8-24.

4. Design your queries. See "How to Design Your Queries" on page 8-36.

5. Develop your application. This primarily involves using one of the APIs that XQS
provides to execute your XQuery expressions, and processing the XML results that
are returned. See "How to Develop Your Application Code: Using the XQS Client
Interfaces" on page 8-39.

6. Package and deploy your application. Use the packager supplied with XQS. See
"How to Use OC4JPackager to Package Your XQS Application" on page 8-58.

How to Enable XQS As an OC4J Extension
For an OPMN-managed instance of OC4J, you can edit the
ORACLE_HOME/opmn/conf/opmn.xml configuration to enable XQS as an OC4J
extension. Add the following Java system property to the start-parameters
category in the OC4J module of the IAS component:

-Doracle.hooks=oracle.xds.XDSExtension

For example:

Note: This is a simplification. Typically, you cannot actually go
through the steps in a modular, sequential manner, especially with
multiple sources that may include XQS views. The process is iterative.
For example, you could start by preparing a database source and then
design a query for it. Then you may want to persist the query as an
XQS view—in other words, prepare an XQS view source. Then you
may design another query that uses the view.
8-14 Oracle Containers for J2EE Services Guide

How to Prepare to Use Your Data Sources
<ias-component id="OC4J">
<process-type id="home" module-id="OC4J" status="enabled">
<module-data>
<category id="start-parameters">
<data id="java-options" value="-server
-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
-Djava.awt.headless=true -Dhttp.webdir.enable=false
-Doracle.hooks=oracle.xds.XDSExtension/>
</category>
<category id="stop-parameters">
<data id="java-options"
value="-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
-Djava.awt.headless=true -Dhttp.webdir.enable=false"/>
</category>
</module-data>
<start timeout="600" retry="2"/>
<stop timeout="120"/>
<restart timeout="720" retry="2"/>
<port id="default-web-site" range="12501-12600" protocol="ajp"/>
<port id="rmi" range="12401-12500"/>
<port id="jms" range="12601-12700"/>
<process-set id="default_group" numprocs="1"/>
</process-type>
</ias-component>

After you configure opmn.xml, you can start or stop an OC4J instance, including XQS,
with EM or the OPMN tool.

For a standalone instance of OC4J, pass following Java system property to the OC4J
container:

-Doracle.hooks=oracle.xds.XDSExtension

You can pass this property on the command line, as follows:

java –jar oc4j.jar -Doracle.hooks=oracle.xds.XDSExtension

Or you can pass it by using the Ant task startoc4j.

How to Prepare to Use Your Data Sources
For most data sources you want to use with XQS, there are necessary preparation
steps. This section covers the following topics:

■ Preparing to Use a Non-XML Document Source

■ Preparing to Use an XQS View

■ Preparing to Use a WSDL Source with SOAP Binding

■ Preparing to Use a Database Source (WSDL Source with SQL Binding)

■ Preparing to Use a Custom Class or EJB (WSDL Source with Java or EJB Binding)

Preparing to Use a Non-XML Document Source
Some documents do not use XML as their native message format, instead using native
formats such as structured records of bytes and characters. Examples of this are Excel
comma-separated-values (CSV) files. For non-XML data to be understandable for use
with XQS and XQuery, it must follow a predefined, structured set of rules so that XQS
can use an appropriate conversion tool. Data in such a structured format can be
XML Query Service 8-15

How to Prepare to Use Your Data Sources
processed so that it can be retrieved and transformed into an XML format for your
application.

For use of non-XML documents, the XQS 10.1.3 implementation supports the Oracle
Data Definition Description Language (D3L). Prepare to use a non-XML document
source with XQS by taking the following steps:

1. Ensure that the non-XML data is compatible with the D3L conversion mechanism.

2. Provide a schema file that gives instructions to D3L about the data format, so D3L
can parse and convert the data.

3. Configure XQS to use D3L, specifying the name and location of the schema file.

The following sections provide an overview of D3L and its usage:

■ What is D3L?

■ D3L Schema Files

■ Configuring XQS to Use D3L

What is D3L?
D3L describes the structure that must be followed by the native, non-XML format of a
document to allow processing by certain Oracle middle-tier components—in general,
by OracleAS Integration InterConnect; for purposes of this document, by XQS.

D3L supplies the following:

■ An XML-based data description language that describes the format of native files,
such as the record layout of binary, string, structured, and sequence data

■ A translation engine that uses the instructions from a D3L schema file to translate
the native format file contents

D3L schema files must comply with the syntax defined by the D3L document type
definition (DTD). You specify the D3L schema file to use through your XQS
configuration.

D3L Schema Files
A D3L schema file describes data types, formats, and delimiters so that the D3L
translation engine can parse the data and convert it to XML. The schema file must
conform to the specifications of d3l.dtd.

Refer to the Oracle Application Server Integration InterConnect User’s Guide for details
about D3L schema files and how to create them, but here is a fragment to give you a
general idea of their appearance:

<?xml version="1.0" encoding="US-ASCII"?>

Note: See the Oracle Application Server Integration InterConnect User’s
Guide for details about D3L features.

Important: To use D3L, the number of fields in the underlying native
format data must be fixed and known. D3L is not suitable for
arbitrarily structured data (such as regular XML), name-value pair
data, or conditional data structures that require token look-aheads to
parse.
8-16 Oracle Containers for J2EE Services Guide

How to Prepare to Use Your Data Sources
<!DOCTYPE message SYSTEM "d3l.dtd">
<message name="replyFlight" type="BookingReplyType" object="Booking"
 header="D3L-Header" value="replyOptions">
 <unsigned4 id="u4" />
 <unsigned2 id="u2" />
 <struct id="DateTimeRecord">
 <field name="DateInfo">
 <date format="MMDDYY">
 <pfxstring id="datstr" length="u4" />
 </date>
 </field>
 <field name="TimeHour"><limstring delimiter="*" /></field>
 <field name="TimeMinute"><limstring delimiter="*" /></field>
 </struct>
...
</message>

Configuring XQS to Use D3L
To have XQS use the D3L conversion mechanism for a non-XML document source:

1. Use the <XMLTranslate> subelement of <document-source> to direct XQS to
use D3L. (In the future, other tools may be supported as well, and specified in the
same way.)

2. Use the <schema-file> subelement of <XMLTranslate> to specify the schema
file for D3L to use in parsing the data.

Here is the XQS configuration to use a D3L schema file named
PersonalInfoD3L.xml:

<document-source ... >
 ...
 <XMLTranslate method="D3L">
 <schema-file>http://host:port/xqs/PersonalInfoD3L.xml</schema-file>
 </XMLTranslate>
 ...
</document-source>

Preparing to Use an XQS View
As noted earlier, an XQS view is a query that is stored for future use. XQS treats the
view itself as a source, and you configure it through an <xqsview-source> element.
To prepare to use a query as an XQS view, do the following:

1. Consider any input parameters that the query will require. You can specify a
parameter for an XQS view by declaring it as an external variable in the XQuery
prolog.

2. Design the query, including external variable declarations for any input
parameters, and save it as an .xq file. (Also see "How to Design Your Queries" on
page 8-36.)

Notes:

■ There is reference information for these elements under "XQS
Configuration File Reference" on page 8-86.

■ Also see "Configuring an XQS Function That Accesses a
Document Source" on page 8-24.
XML Query Service 8-17

How to Prepare to Use Your Data Sources
3. Consider where you will place the .xq file. Your location for .xq files is referred
to as the XQS repository. You can specify a location through your XQS
configuration (using the <repository> element), or you can use a location you
specify through the -repository option when you run OC4JPackager.

4. Consider whether to expose the XQS view as a Web service operation. Do this
through the WSDLvisibility attribute of the <xqsview-source> element in
your XQS configuration. This results in the view being included as an operation in
a Web service that XQS adds to your application. If you do expose the view as a
Web service operation, be aware of the XML output type—we advise that you
reflect that type in the <output-element> subelement of <xqsview-source>
in your configuration. (Also see "Using an XQS View Exposed as a Web Service
Operation" on page 8-58 for additional information.)

Following is an XQuery expression that we will use for an XQS view. It accepts the
external variable loc and passes it through to a function readFile that reads
purchase order data from a file. You can use any desired .xq file name to save it, and
specify that name in your XQS configuration. You will also have to specify a desired
name for the XQS function that XQS will implement to execute the view. The file name
and function name are distinct, but you can use the function name as the base name of
the file by default if you want.

declare variable $loc external;
declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:readFile($l as xs:string) external;
for $po in xqs:readFile($loc)//po return $po//total

In your XQS configuration, under the <xqsview-source> element, you will
typically use at least the following:

■ The WSDLvisibility attribute if you want to expose the view as a Web service
operation, and then the <output-element> subelement if you do expose the
view

■ The <function-name> subelement to specify the desired name of the XQS
function for the view

■ The <input-parameters> subelement and its subelements to specify external
variables that correspond to input parameters of the XQS function (loc in the
preceding example)

■ The <queryName> subelement to specify the name of the .xq file containing the
view (unless you use a base file name that matches the XQS function name)

■ The <repository> subelement to specify the location of the .xq file (not
necessary if the file is in the location specified through the -repository option
when you run OC4JPackager)

Preparing to Use a WSDL Source with SOAP Binding
To access a data source through a Web service operation, you must provide a WSDL
document for the Web service and specify the location of the WSDL in your XQS

Notes:

■ There is reference information for these elements under "XQS
Configuration File Reference" on page 8-86.

■ For a continuation of the above example, see "Configuring an XQS
Function That Uses an XQS View" on page 8-27.
8-18 Oracle Containers for J2EE Services Guide

How to Prepare to Use Your Data Sources
configuration. One XQS view function corresponds to one Web service operation that
XQS will implement.

Examine the WSDL. You will use a <wsdl-source> element and its subelements in
the XQS configuration file to configure the XQS function, with configuration settings
(some optional) corresponding to WSDL entries as follows:

■ The WSDL operation corresponds to an <operation> element in the XQS
configuration.

■ For WSDL input messages, each input message part corresponds to a <part>
subelement of <input-parameters>.

■ The applicable WSDL service corresponds to a <service> element.

■ The applicable WSDL port corresponds to a <port> element.

■ The applicable WSDL port type corresponds to a <portType> element.

In addition, consider how the WSDL document may be accessed by XQS, and specify
this location using the <wsdlURL> element.

Preparing to Use a Database Source (WSDL Source with SQL Binding)
The XQS WSIF provider for SQL allows you to use XQuery on data fetched from a
relational database that is accessed through SQL. To use this feature, you must provide
a WSDL document that specifies SQL binding and contains complete information
about any SQL operations (queries or stored procedure calls) to perform.

As an initial summary, be aware of the following for the WSDL document:

■ For connection information, the WSDL refers to a JNDI name, and XQS looks in
the OC4J data-sources.xml configuration file for the data source associated
with that JNDI name.

■ The WSDL specifies the SQL statement for each operation. Each WSDL operation
is for a single SQL statement (and corresponds to a single XQS function, as noted
earlier).

■ The XQS fetchSize attribute for WSDL sources with SQL binding recommends
a number of rows for JDBC to fetch from the database in one round trip. This
attribute is translated into a call to the setFetchSize method of
java.sql.PreparedStatement. The setFetchSize parameter in JDBC (and,
therefore, the fetchSize attribute in XQS) is only a hint, not a binding.

■ Each WSDL operation must use a predefined message type, SQLOutputMessage,
for the output message. This is defined in the Oracle xqs.wsdl document, which
you can import into your WSDL as discussed below. The output message contains
one part, named result, corresponding to the root of the XML document
containing the query results. The result type is defined in the XQS types
namespace:

http://xmlns.oracle.com/ias/xqs/types/

Notes:

■ There is reference information for these elements under "XQS
Configuration File Reference" on page 8-86.

■ For an example of a WSDL document and a corresponding XQS
configuration fragment, see "Configuring an XQS Function That
Accesses a WSDL Source" on page 8-32.
XML Query Service 8-19

How to Prepare to Use Your Data Sources
■ Each WSDL operation must use a predefined message type, SQLFaultMessage,
for fault messages. This is also defined in xqs.wsdl. The fault message contains
two parts: code for the error code and message for the error message. These are
also defined in the XQS types namespace.

■ Each operation can specify an XML transform to use for non-XML data. Currently
only the Oracle XML-SQL Utility (XSU) is supported.

Specifically, you must use the XQS SQL extensions in your WSDL as follows (and as
shown in the example afterward).

WSDL Definitions and Imports
1. Declare the namespaces and associated prefixes for XQS, XQS types, and the XQS

SQL extensions. (By convention, in discussion that follows, we use the "sql:" prefix
for XQS SQL extensions.)

2. Import xqs.wsdl to define SqlOutputMessage and SqlFaultMessage. The
xqs.wsdl document is available with the XQSDemo application, so that you can
place it in the same directory as your WSDL document. Alternatively, you can
import it from the following location:

<import namespace="http://xmlns.oracle.com/ias/xqs/"
 location="http://www.oracle.com/technology/tech/xml/xqs/xqs.wsdl" />

Input Message Declarations
1. If your SQL query uses bind variables, you must specify an input message with a

part for each bind variable, where the part types match the required bind variable
types.

WSDL Port Type Declarations
For each operation:

1. Use message="xqs:SqlOutputMessage" for the <output> element.

2. Use message="xqs:SqlFaultMessage" for the <fault> element.

WSDL Binding Declarations
In the <binding> element:

1. Use an empty <sql:binding/> subelement.

2. For each operation, use a <sql:operation> subelement with
XMLtransform="XSU-Client" and element contents specifying the SQL
statement to execute.

3. For each operation input, use a <sql:input> subelement to specify the names of
the bind parameters. This is a comma-separated list of previously defined message
part names, in the order in which they are to be bound to the SQL statement.

WSDL Service Declarations
1. Use a <sql:address> element, setting the data-source-location attribute

to indicate the JNDI location of the data source, as configured in the OC4J
data-sources.xml file.

Sample WSDL with SQL Binding
<?xml version="1.0" ?>
<definitions targetNamespace="http://xqstest.sql.scott/"
8-20 Oracle Containers for J2EE Services Guide

How to Prepare to Use Your Data Sources
 xmlns:scott="http://xqstest.sql.scott/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xqs="http://xmlns.oracle.com/ias/xqs/"
 xmlns:xqstypes="http://xmlns.oracle.com/ias/xqs/types/"
 xmlns:sql="http://xmlns.oracle.com/ias/xqs/sql/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!-- import definitions of XQS SqlOutputMessage and SqlFaultMessage-->
 <import namespace="http://xmlns.oracle.com/ias/xqs/" location="xqs.wsdl" />
 <!-- input messages -->
 <message name="EmpByNameAndDeptInput">
 <part name="ename" type="xs:string"/>
 <part name="deptno" type="xs:int"/>
 </message>
 <message name="EmpByNameInput">
 <part name="ename" type="xs:string"/>
 </message>
 <!-- port type declarations -->
 <portType name="ScottSqlSource">
 <operation name="SelectEmpByName">
 <input name="SqlInput" message="scott:EmpByNameInput"/>
 <output name="SqlResult" message="xqs:SqlOutputMessage"/>
 <fault name="SqlFault" message="xqs:SqlFaultMessage"/>
 </operation>
 <operation name="SelectEmpByNameAndDept">
 <input name="SqlInput" message="scott:EmpByNameAndDeptInput"/>
 <output name="SqlResult" message="xqs:SqlOutputMessage"/>
 <fault name="SqlFault" message="xqs:SqlFaultMessage"/>
 </operation>
 </portType>
 <!-- binding declarations -->
 <binding name="SQLBinding" type="scott:ScottSqlSource">
 <sql:binding/>
 <operation name="SelectEmpByName">
 <sql:operation XMLtransform="XSU-client">
 select * from emp where ename=:1
 </sql:operation>
 <input name="SqlInput">
 <sql:input> ename </sql:input>
 </input>
 <output name="SqlResult"/>
 <fault name="SqlFault"/>
 </operation>
 <operation name="SelectEmpByNameAndDept">
 <sql:operation XMLtransform="XSU-client">
 select * from emp where ename=:1 and deptno=:2
 </sql:operation>
 <input name="SqlInput">
 <sql:input> ename,deptno </sql:input>
 </input>
 <output name="SqlResult"/>
 <fault name="SqlFault"/>
 </operation>
 </binding>
 <!-- service declaration -->
 <service name="ScottSQLService">
 <port name="ScottSQLPort" binding="scott:SQLBinding">
 <sql:address data-source-location="jdbc/OracleCoreDS" />
 </port>
 </service>
</definitions>
XML Query Service 8-21

How to Prepare to Use Your Data Sources
xqs.wsdl
For reference, here is the Oracle xqs.wsdl document, imported by the preceding
sample WSDL.

<?xml version="1.0" ?>
<definitions targetNamespace="http://xmlns.oracle.com/ias/xqs/"
 xmlns:xqstypes="http://xmlns.oracle.com/ias/xqs/types/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!-- XQS type defs -->
 <types>
 <xs:schema targetNamespace="http://xmlns.oracle.com/ias/xqs/types/"
 xmlns:xs="http://www.w3.org/1999/XMLSchema">
 <!-- Result of all SQL functions is an XML Node
 representing document root,
 with optional XML type for elements-rows -->
 <xs:complexType name="SQLXMLDocument">
 <xs:attribute name="rowType" type="xs:QName" />
 <xs:sequence>
 <xs:element name="root" type="xs:anyType"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </types>
 <!-- all XQS sql functions should use this message type for output -->
 <message name="SqlOutputMessage">
 <part name="result" type="xqstypes:SQLXMLDocument"/>
 </message>
 <!-- all XQS sql functions should use this message type for error (fault) -->
 <message name="SqlFaultMessage">
 <part name="code" type="xs:int"/>
 <part name="message" type="xs:string"/>
 </message>
</definitions>

Considerations for the XQS Configuration
For general configuration considerations for a WSDL source, see "Preparing to Use a
WSDL Source with SOAP Binding" on page 8-18.

In particular, each <port> element in your XQS configuration for a WSDL source
must refer to the appropriate SQL binding. For example, consider the following XQS
configuration:

<port namespace="http://xqstest.sql.scott/">
 ScottSQLPort
</port>

Corresponding to the following WSDL port definition:

<service name="ScottSQLService">
 <port name="ScottSQLPort" binding="scott:SQLBinding">
 <sql:address data-source-location="jdbc/OracleCoreDS" />
 </port>
</service>

■ Each XQS function name in your XQS configuration is bound to a single SQL
statement in the WSDL.

■ You must specify a <port> element that refers to the correct SQL binding.
8-22 Oracle Containers for J2EE Services Guide

How to Prepare to Use Your Data Sources
Preparing to Use a Custom Class or EJB (WSDL Source with Java or EJB Binding)
You can access a data source through a custom Java class or EJB by using the WSIF
provider for Java or the WSIF provider for EJB. XQS does nothing special in this area;
this is open technology from the Apache Foundation. You must do the following:

■ Implement a custom Java class or EJB that returns XML data that you can then
query.

■ Create a WSDL document with Java or EJB binding (as appropriate) to define the
desired operations.

■ Consider any XML-Java type mapping you will require.

See "Preparing to Use a WSDL Source with SOAP Binding" on page 8-18 for general
WSDL considerations for your XQS configuration.

Refer to the Oracle Application Server Web Services Developer’s Guide for information
about how to implement the class or bean and the Oracle Application Server Advanced
Web Services Developer’s Guide for information on the WSIF providers for Java and EJB.

Here is a sample fragment from a WSDL document with Java binding. With this, you
can invoke the Java method readEntry(), for example, by its operation name. Note
that a WSDL <format:typeMapping> specification corresponds to a <typeMap>
element in the XQS configuration.

< definitions>
 ...
 <binding name="JavaBinding" type="tns:AddressBook">
 <java:binding />
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="typens:address"
 formatType = "localjava.client.stub.addressbook.wsiftypes.Address" />
 <format:typeMap typeName="xsd:string"
 formatType="java.lang.String" />
 </format:typeMapping>
 <operation name="readEntry">
 <java:operation methodName="readEntry"
 parameterOrder = "name"
 methodType = "instance" />
 <input name="ReadEntryWholeNameRequest" />
 <operation name="readAllMatchingEntries">
 ...
 </operation>
 </binding>
 <service name="AddressBookService">
 <port name="JavaPort" binding="tns:JavaBinding">
 <java:address

Notes:

■ There is reference information for these elements under "XQS
Configuration File Reference" on page 8-86.

■ Also see "Configuring an XQS Function That Accesses a WSDL
Source" on page 8-32.

Note: Also see "Configuring an XQS Function That Accesses a WSDL
Source" on page 8-32.
XML Query Service 8-23

How to Configure Your XQS Functions
 className = "localjava.service.AddressBookImpl" />
 </port>
 </service>
 ...
</definitions>

How to Configure Your XQS Functions
There must be an entry in the XQS configuration for each XQuery external function
used in any XQuery expression in your application—in other words, for each XQS
function that XQS will implement—that specifies details including the desired name of
the XQS function that will be used in the query, the data source to access, and any
input parameters. There are three basic configuration categories: for a document
source, an XQS view, or a WSDL source. And there are three corresponding high-level
configuration elements: <document-source>, <xqsview-source>, and
<wsdl-source>.

Your configuration for any given XQS function can be either in the application-specific
xqs-config.xml file, or, for the configuration to be available to any application
running in the OC4J instance, in the global-xqs-config.xml file. In case of any
duplication, the application-specific configuration file takes precedence. Duplicate or
conflicting configuration in the global file would be ignored.

This section covers the following topics:

■ Configuring an XQS Function That Accesses a Document Source

■ Configuring an XQS Function That Uses an XQS View

■ Configuring an XQS Function That Accesses a WSDL Source

See "Introduction to XQS Configuration and Configuration Files" on page 8-9 for
related overview, including discussion of the local versus global XQS configuration
file.

See "XQS Configuration File Reference" on page 8-86 for reference information about
the configuration elements discussed here.

Configuring an XQS Function That Accesses a Document Source
This section discusses how to configure an XQS function that accesses a document
source, concluding with examples. Elements mentioned here are subelements of the
<document-source> element. For additional information, see the reference section
"<document-source>" on page 8-88, which includes links to information about all the
subelements.

Always Required
At a minimum, you must configure the following element for a document source:

■ <function-name>: Through this element, specify the qualified name you want
to use for the XQS function that XQS implements to access the document source.
The element value is the local name, and there are attributes for the namespace
(either namespace or prefix, as discussed in "<function-name>" on page 8-90).
Your XQuery prolog must use the same name when declaring the XQS function as
an XQuery external function.

Here is a sample configuration:

<document-source ... >
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
8-24 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions
 myFileSource
 </function-name>
 ...
</document-source>

And here is a corresponding XQuery declaration and usage:

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:myFileSource() external;
for $po in xqs:myFileSource()//po
return $po

Optional or Sometimes Required
The following elements are sometimes necessary or appropriate for a document
source:

■ <documentURL>: Use this element to specify the URL of the document source.
Here is an example:

<document-source ... >
 ...
 <documentURL>
 http://host:port/xqsdemos/Repository/pos-2KB.xml
 </documentURL>
 ...
</document-source>

If you provide a <documentURL> element, then you implicitly specify that your
XQS function takes no arguments. Alternatively, you can omit <documentURL>,
in which case you must pass the URL in to the XQS function at runtime, as in the
following example. In this case, the function must be declared in XQuery to have
one parameter for the URL.

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:myFileSource($bind as xs:string) external;
for $po in xqs:myFileSource
 ("http://host:port/xqsdemos/Repository/pos-2KB.xml")//po
return $po

■ <output-element>: You can use this subelement to specify the qualified name
of the XML element or output type (either a simple type or a complex type) for
data that is returned. This is not always required, but XQS can use the information
for type checking. Here is an example:

<document-source ... >
 ...
 <output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/Customers.xsd">
type=Customers
 </output-element>
 ...
</document-source>

Important: For your specification of the document URL, be aware
that if the document is on the local file system, then using file://
protocol to specify the absolute path to the file, instead of using
http:// protocol, will give you faster data retrieval.
XML Query Service 8-25

How to Configure Your XQS Functions
For an <xqsview-source> element that defines <output-element>, the
<output-element> subelement is required in every XQS function that defines an
"errorMessage" error-handling option in the underlying query, or in a query that is
nested via use of another <xqsview-source> function. For more information about
this requirement, see "Using XQS Error Handling Modes and APIs" on page 8-69.

■ <XMLTranslate>: For a non-XML document source, use this element to specify
the conversion tool to use and to provide any information the tool needs.
Currently only D3L is supported, which requires a D3L schema file to be specified
through the <schema-file> subelement. See "Preparing to Use a Non-XML
Document Source" on page 8-15 for information about D3L.

Here is an example:

<document-source ... >
 ...
 <XMLTranslate method="D3L">
 <schema-file>
 http://host:port/xqsdemos/paymentInfoD3L.xml
 </schema-file>
 </XMLTranslate>
 ...
</document-source>

Performance and Error-Handling
You can set up error-handling and specify the use of performance features such as
caching or special processing of large data sets. This would involve the
<document-source> attributes isCached, largeData, and onError, and
subelements <cache-properties> and <error-message>. Configuring these
features is not discussed here. Refer to "Using XQS Error Handling Modes and APIs"
on page 8-69 and "Using XQS Performance Features" on page 8-65.

Examples
These examples use default settings for caching, large data, and error handling, which
is equivalent to <document-source> attribute settings of isCached="false",
largeData="false", and onError="dynamicError".

The following example is for an XML document source that resides in a fixed location:

<document-source>
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 myFileSource
 </function-name>
 <documentURL>
 http://host:port/xqsdemos/Repository/pos-2KB.xml
 </documentURL>
</document-source>

The following example is for a document source in non-XML format, using the D3L
conversion tool and paymentInfoD3L.xml D3L schema file:

<document-source>
 <function-name prefix="xqs">
 paymentStatusInfo
 </function-name>
 <documentURL>http://host:port/xqsdemos/paymentInfo.csv</documentURL>
 <XMLTranslate method="D3L">
 <schema-file>
 http://host:port/xqsdemos/paymentInfoD3L.xml
 </schema-file>
8-26 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions
 </XMLTranslate>
</document-source>

Configuring an XQS Function That Uses an XQS View
This section discusses how to configure an XQS function that uses an XQS view,
concluding with an example. Elements mentioned here are subelements of the
<xqsview-source> element. For additional information, see the reference section
"<xqsview-source>" on page 8-104, which includes links to information about all the
subelements.

For preliminary steps, such as creating the XQS view that you will use, see "Preparing
to Use an XQS View" on page 8-17.

WSDLvisibility Setting
You can use the <xqsview-source> attribute setting WSDLvisibility="true" to
expose an XQS view as a Web service operation. XQS will add the operation to the
WSDL that it generates. If the configuration is in the application-specific configuration
file, xqs-config.xml, then the Web service operation is made part of the Web
service of that application. A view that is configured in the global configuration file,
global-xqs-config.xml, is potentially available to any application running in the
OC4J instance. (To add an operation based on a global XQS view to the Web service of
your application, you must point to the global configuration file when you run
OC4JPackager. See "OC4JPackager Parameters" on page 8-106 for information about
the -globalXqsConfig option.)

For more information about exposing an XQS view as a Web service, see
"OC4JPackager Additional Output to Expose XQS Views as Web Service Operations"
on page 8-62.

Always Required
For ensuing discussion, assume the following example has been saved as an XQS view
in mytotals.xq. It uses a function that reads from a file, taking the input parameter
loc (a string variable indicating a file location) and passing it through to the function,
then returns an integer total:

declare variable $loc external;
declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:readFile($l as xs:string) as xs:int external;
for $po in xqs:readFile($loc)//po return $po//total

At a minimum, you must configure the following elements to use an XQS view:

■ <function-name>: Through this element, specify the qualified name you want
to use for the XQS function that XQS implements to execute the view. The element
value is the local name, and there are attributes for the namespace (either
namespace or prefix, as discussed in "<function-name>" on page 8-90). If you
use this function in a query (as opposed to using the view directly in an
executeView() call), then you must declare the XQS function as an XQuery
external function, using the function name specified in the <function-name>
element.

Here is a sample configuration:

<xqsview-source ... >
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 totals
 </function-name>
 ...
XML Query Service 8-27

How to Configure Your XQS Functions
</xqsview-source>

■ <input-parameters>: If an XQS view takes external variables, then the function
implemented by XQS must take an input parameter for each external variable in
the view. XQS will assign function argument values to external variables before
executing the query. Use the <input-parameters> element to configure input
parameters, with a <part> subelement for each parameter. Note that this element
is always required for an XQS view; use an empty element if there are no input
parameters:

<xqsview-source ... >
 ...
 <input-parameters/>
 ...
</xqsview-source>

Following is an example with one input parameter being bound to an external
string variable named loc. Type information, through a <schema-type> or
<xquery-sequence> element, is required for any input parameter for an XQS
view. Assume for the following example that the "xs" prefix has been set to
correspond to the XMLSchema namespace. (See reference documentation later in
this chapter for information about the <input-parameters>, <part>,
<schema-type>, and <xquery-sequence> elements.)

<xqsview-source ... >
 ...
 <input-parameters type-match="none" >
 <part position="1" name="loc">
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
 ...
</xqsview-source>

And here is an example of using the XQS view in a query, with the XQuery declaration
and usage corresponding to the preceding <function-name> and
<input-parameters> discussion:

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function totals($loc as xs:string) as xs:int external;
for $t in xqs:totals("C:\MyPurchaseOrders.xml") return
<outstanding_balance> fn:sum($t) </outstanding_balance>

Optional or Sometimes Required
The following elements are sometimes necessary or appropriate for an XQS view:

■ <output-element>: Use this to specify the qualified name of the XML element
or output type (either a simple type or a complex type) for data that is returned.
For an XQS view with WSDLvisibility="true", the <output-element>
element is particularly advisable and its location attribute must point to the
XML schema file containing the element or type definition. Here is an example:

<xqsview-source WSDLvisibility="true">
 ...
 <output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/Customers.xsd">
 </output-element>
 ...
</xqsview-source>
8-28 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions
For an XQS view with WSDLvisibility="false", the <output-element>
element is still useful for type-checking. Assume the prefix "xs" has been set to
correspond to the XMLSchema namespace:

<xqsview-source WSDLvisibility="false">
 ...
 <output-element prefix="xs">integer</output-element>
 ...
</xqsview-source>

■ <query-name>: Use this to specify the name of the .xq file where you have
saved the XQS view, with or without specifying the .xq extension (which XQS
will append if necessary). The <query-name> element is optional. If you omit it,
XQS will assume that the base name of the .xq file is the same as the XQS function
name specified in the <function-name> element. Here is an example for an XQS
view saved in mytotals.xq:

<xqsview-source ... >
 ...
 <queryName>mytotals</queryName>
 ...
</xqsview-source>

Given the earlier example for the <function-name> element, if <queryName>
were omitted, then XQS would look for a file named totals.xq.

■ <repository>: Use this to specify where your XQS view repository is—the
location of your .xq file. If you omit this element, XQS assumes the repository is
as specified through the optional -repository option when you run
OC4JPackager.

Here is an example:

<xqsview-source ... >
 ...
 <repository>META-INF/xqs/mydir</repository>
 ...
</xqsview-source>

Considerations for Using <output-element >
When the WSDLvisibility attribute is set to true, XQS generates a Web service
operation for the view and includes the definition of this operation in the WSDL
document. The contents of <output-element> in <xqsview-source> determine
the type of the output message for the WSDL operation, as follows:

■ If <output-element> is omitted, the type of result in the WSDL operation output
message will be declared as follows:

<sequence> <any/> </sequence>

■ If <output-element> is present, it should provide a namespace for the output
element in the form of namespace or prefix attribute. The namespace results in the
<import> element in the WSDL. For example:

<output-element namespace="urn:PurchaseOrders"

location="http://myhost:80/myapp/PurchaseOrders.xsd" />
This code generates the following import element in the WSDL:

<types>
 <schema...>
XML Query Service 8-29

How to Configure Your XQS Functions
 <import namespace="urn:PurchaseOrders"
schemaLocation="http://myhost:80/myapp/PurchaseOrders.xsd" />
...
</schema>
</types>

Whenever possible, provide the location attribute because it allows a more
complete <import> element in the WSDL.

■ If <output-element> specifies a type attribute, it will be used in conjunction
with a namespace or prefix attribute to create a qualified name for the type of
the result element. The text value of <output-element> will be used as the
name for the result element itself.

For example:

<output-element namespace="urn:PurchaseOrders"

location="http://myhost:80/myapp/PurchaseOrders.xsd"
 type="POType" >
 po
</output-element>

This code results in an <import> element, as discussed in the preceding text,
plus the following definition of the result type for the WSDL operation:

<complexType name="POswithRetTypeResultType">
...
<element name="result" nillable="true">
<complexType >
<sequence>
 <element name="po" xnlns:_ns1="urn:PurchaseOrders"
type="_ns1:POType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
...

■ If <output-element> does not specify the type attribute, then the result
element in the WSDL operation output message will be declared as a reference to
an element in the imported schema. For example, consider the following
configuration element:

<output-element namespace="urn:PurchaseOrders"

location="http://myhost:80/myapp/PurchaseOrders.xsd">
 polist </output-element>
Such an element generates a result definition in the WSDL like this:

<complexType name="POListResultType">
...
<element name="result" nillable="true">
<complexType >
<sequence>
 <element ref="_ns1:polist" minOccurs="0" maxOccurs="unbounded"
/>

</sequence>
...

■ If <output-element> specifies the type attribute but is empty (has no text
element value), XQS will use a fixed name for the result element, item, but use the
type name provided. For example, consider the following configuration:

<output-element namespace="urn:PurchaseOrders"
8-30 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions

location="http://myhost:80/myapp/PurchaseOrders.xsd"
 type="POType" />

Such a configuration will generate a definition of the result element like this:

<complexType name="POsResultType">
...
<element name="result" nillable="true">
<complexType >
<sequence>
 <element name="item" xnlns:_ns1="urn:PurchaseOrders"
type="_ns1:POType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>

Performance and Error-Handling
You can set up error-handling and specify the use of performance features such as
caching or special processing of large data sets. This would involve the
<xqsview-source> attributes isCached, largeData, and onError, and
subelements <cache-properties> and <error-message>. Configuring these
features is not discussed here. Refer to "Using XQS Error Handling Modes and APIs"
on page 8-69 and "Using XQS Performance Features" on page 8-65.

Example
The example that follows puts together previous fragments to configure the XQS
function totals, which takes a string variable loc (for a file location) and outputs an
integer result. For convenience, here once again is the XQS view, mytotals.xq:

declare variable $loc external;
declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:readFile($l as xs:string) external;
for $po in xqs:readFile($loc)//po return $po//total

This example uses default settings for caching, large data, and error handling, which is
equivalent to <xqsview-source> attribute settings of isCached="false",
largeData="false", and onError="dynamicError". It does not expose the XQS
view as a Web service.

<xqsview-source WSDLvisibility="false">
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 totals
 </function-name>
 <input-parameters type-match="none" >
 <part position="1" name="loc">
 <schema-type prefix="xs">string</schema-type>
 </part>

Important: The type that defines the result element (through the
type attribute in WSDL), or the element that defines the result
element by reference (through the ref attribute in WSDL) must refer to
a top-level type or element definition in the imported schema. In the
previous examples, POType must be a top-level type definition in the
imported schema for the namespace urn:PurchaseOrders;
alternatively, polist (used to define an element by reference) must
be defined at the top level of the imported schema at this location:

http://myhost:80/myapp/PurchaseOrders.xsd
XML Query Service 8-31

How to Configure Your XQS Functions
 </input-parameters>
 <repository>META-INF/xqs/mydir</repository>
 <queryName>mytotals</queryName>
 <output-element prefix="xs">int</output-element>
</xqsview-source>

Configuring an XQS Function That Accesses a WSDL Source
This section discusses how to configure an XQS function that accesses a WSDL-based
source, concluding with a partial sample WSDL document and corresponding
configuration. Elements mentioned here are subelements of the <wsdl-source>
element. For additional information, see the reference section "<wsdl-source>" on
page 8-102, which includes links to information about all the subelements.

Depending on the type of WSDL source you are using, also see "Preparing to Use a
WSDL Source with SOAP Binding" on page 8-18, "Preparing to Use a Database Source
(WSDL Source with SQL Binding)" on page 8-19, or "Preparing to Use a Custom Class
or EJB (WSDL Source with Java or EJB Binding)" on page 8-23.

Always Required
At a minimum, you must configure the following elements for a WSDL source:

■ <function-name>: Through this element, specify the qualified name you want
to use for the XQS function that XQS implements to access the WSDL source. The
element value is the local name, and there are attributes for the namespace (either
namespace or prefix, as discussed in "<function-name>" on page 8-90). Your
XQuery prolog must use the same name when declaring the XQS function as an
XQuery external function.

Here is a sample configuration:

<wsdl-source ... >
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 getmySearchCachedPage
 </function-name>
 ...
</wsdl-source>

■ <input-parameters>: For every WSDL source, the function implemented by
XQS must take an input parameter for each input part specified in the WSDL. Use
the <input-parameters> element to configure input parameters, with a
<part> subelement for each parameter. Note that this element is always required
for a WSDL source; use an empty element if there is no input:

<wsdl-source ... >
 ...
 <input-parameters/>
 ...
</wsdl-source>

Following is an example with two input parameters, external string variables
named key and url. Type information, through a <schema-type> element, is
optional for input parameters for a WSDL source; however, it is useful so that XQS
can perform type-checking during invocation of the Web service. In the example,
assume the "xs" prefix has been set to correspond to the XMLSchema namespace.
(See reference documentation later in this chapter for information about the
<input-parameters>, <part>, and <schema-type> elements.)

<wsdl-source ... >
 ...
8-32 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions
 <input-parameters>
 <part position="1" name="key" >
 <schema-type prefix="xs">string</schema-type>
 </part>
 <part position="2" name="url" >
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
 ...
</wsdl-source>

■ <wsdlURL>: Specify a URL that instructs XQS where to find the WSDL document.
For example:

<wsdl-source ... >
 ...
 <wsdlURL>http://api.mySearch.com/mySearch.wsdl</wsdlURL>
 ...
</wsdl-source>

■ <operation>: Specify the Web service operation to execute, corresponding to an
operation name in the WSDL. For example:

<wsdl-source ... >
 ...
 <operation>doGetCachedPage</operation>
 ...
</wsdl-source>

■ <port>: Specify the applicable Web service port, corresponding to a port name in
the WSDL. For example:

<wsdl-source ... >
 ...
 <port namespace="urn:mySearch">mySearchPort</port>
 ...
</wsdl-source>

Here is a sample function declaration corresponding to the <function-name> and
<input-parameters> examples above:

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:getmySearchCachedPage ($key as xs:string, $url as xs:string)
 as xs:base64Binary external;

Optional or Sometimes Required
The following elements are sometimes necessary or appropriate for a WSDL source.

■ <service>: Use this to specify the applicable service, corresponding to a service
name in the WSDL. This is not required, however, if the WSDL defines only one
service. Here is a sample service configuration:

<wsdl-source ... >
 ...
 <service namespace="urn:mySearch">mySearchService</service>
 ...
</wsdl-source>

■ <portType>: Use this to specify the applicable port type, corresponding to a port
type name in the WSDL. This is not required, however, if the port in the WSDL
XML Query Service 8-33

How to Configure Your XQS Functions
supports only one binding (and, therefore, only one port type). Here is a sample
port type configuration:

<wsdl-source ... >
 ...
 <portType namespace="urn:mySearch">mySearchPort</portType>
 ...
</wsdl-source>

■ <output-element>: You can optionally use this to specify the qualified name of
the XML output element or type (either a simple type or a complex type) for data
that is returned. This is not required, but XQS can use the information for
type-checking. Here is an example:

<wsdl-source ... >
 ...
 <output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/Customers.xsd">
type="Customers>
 </output-element>
 ...
</wsdl-source>

■ <typeMap>: For a WSDL source with Java or EJB binding, you can use this
element to map XML types to Java types, using the <mapping> subelement and
its <xmlType> subelement as shown. (See the reference documentation later in
this chapter for more information about the <typeMap>, <mapping>, and
<xmlType> elements.)

<wsdl-source ... >
 ...
 <typeMap>
 <mapping typeClass="org.w3c.dom.Node">
 <xmlType prefix="myeis">Customer</xmlType>
 </mapping>
 ...
 </typeMap>
 ...
</wsdl-source>

(A <typeMap> element would be ignored for a WSDL source with a SQL or SOAP
binding.)

Performance and Error-Handling
You can set up error-handling and specify the use of caching. This would involve the
<wsdl-source> attributes isCached and onError, and subelements
<cache-properties> and <error-message>. Configuring these features is not
discussed here. Refer to "Using XQS Error Handling Modes and APIs" on page 8-69
and "Configuring XQS Caching" on page 8-66.

Example
This example puts together some of the previous fragments to configure an XQS
function for a Web service operation defined in mySearch.wsdl, a portion of which
follows.

The example uses default settings for caching and error handling, which is equivalent
to <wsdl-source> attribute settings of isCached="false" and
onError="dynamicError".
8-34 Oracle Containers for J2EE Services Guide

How to Configure Your XQS Functions
<wsdl-source>
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 getmySearchCachedPage
 </function-name>
 <wsdlURL>http://api.mySearch.com/mySearch.wsdl</wsdlURL>
 <operation>doGetCachedPage</operation>
 <service namespace="urn:mySearch">mySearchService</service>
 <port namespace="urn:mySearch">mySearchPort</port>
 <input-parameters>
 <part position="1" name="key" >
 <schema-type prefix="xs">string</schema-type>
 </part>
 <part position="2" name="url" >
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
</wsdl-source>

mySearch.wsdl
Here are relevant fragments of mySearch.wsdl, relating to the preceding
configuration. Highlighted WSDL portions correspond to configuration elements.

<?xml version="1.0" ?>

<definitions name="mySearch" targetNamespace="urn:mySearch"
 xmlns:typens="urn:mySearch"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 ...
 <message name="doGetCachedPage">
 <part name="key" type="xs:string" />
 <part name="url" type="xs:string" />
 </message>
 <message name="doGetCachedPageResponse">
 <part name="return" type="xs:base64Binary" />
 </message>
 ...
 <portType name="mySearchPort">
 <operation name="doGetCachedPage">
 <input message="typens:doGetCachedPage" />
 <output message="typens:doGetCachedPageResponse" />
 </operation>
 ...
 </portType>
 ...
 <binding name="mySearchBinding" type="typens:mySearchPort">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="doGetCachedPage">
 <soap:operation soapAction="urn:mySearchAction" />
 <input>
 <soap:body use="encoded" namespace="urn:mySearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:mySearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
XML Query Service 8-35

How to Design Your Queries
 </output>
 </operation>
 ...
 </binding>
 ...
 <service name="mySearchService">
 <port name="mySearchPort" binding="typens:mySearchBinding">
 <soap:address location="http://api.mySearch.com/search/beta2" />
 </port>
 </service>
</definitions>

How to Design Your Queries
This chapter assumes developers are already familiar with the XQuery language and
the basics of how to design an effective and efficient query, but this section will
summarize key points to consider, including special considerations for working with
XQS, and includes query examples. The following topics are covered:

■ Query Considerations

■ Query Examples

■ Type-Checking for Input Parameters

Query Considerations
As a first step, of course, you must consider your data source, including how to access
it and the types of data it contains. "How to Prepare to Use Your Data Sources" on
page 8-15 already discussed any preliminary steps you must take for certain kinds of
data sources.

Then you must consider aspects of the query itself, including the following:

■ Will your query require input parameters? If so, do you want type-checking? (See
"Type-Checking for Input Parameters" on page 8-38.)

■ What are the data types of any input parameters and the query return value?

■ Will you want to transform the data, outputting it into another XML structure?

■ Will you want to use an ad-hoc query, or save the query as an XQS view (.xq file)?

■ Are there tuning and performance considerations, and will you want to use XQS
performance features? XQS can cache source data, and also has a special mode for
processing large volumes of data. (See "Using XQS Performance Features" on
page 8-65 for details.)

As discussed previously, XQS implements an external XQuery function to access the
data source. Your XQuery prolog must include a declaration for the function that XQS
creates, using a function name you choose, and must reference the appropriate

Notes:

■ Oracle fully supports XQuery 1.0, so you can use any syntax that
XQuery supports.

■ You can use any third-party tool to help you develop your
queries, including the Oracle JDeveloper Query Builder, but
currently no tools, including JDeveloper, provide any special
support for XQS.
8-36 Oracle Containers for J2EE Services Guide

How to Design Your Queries
namespace. The function name you declare must match the name you specify in the
<function-name> element when you configure the data source (as described under
"How to Configure Your XQS Functions" on page 8-24).

Query Examples
Here is a simple query that retrieves data from an XML document, the location of
which is passed in to the XQS function at runtime:

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:get_poSQ($bind as xs:string) external;
for $po in xqs:get_poSQ("http://host:port/xqsdemos/Repository/pos-2KB.xml")
return $po

XQS implements the function according to your XQS configuration. The function
name (get_poSQ in this example) is of your choosing. The function takes as input a
string with the name and location of the document source, pos-2KB.xml, and returns
purchase order data from the file.

Now here is an example that passes in parameter values through the XQuery code.
The XQS function is example, implemented by XQS according to your configuration.

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare function xqs:example($i as xs:int, $d as xs:duration,
 $h as xs:hexBinary, $bin as xs:base64Binary,
 $t as xs:boolean) external;

for $result in xqs:example(xs:int(1),
 xs:duration("P1Y2MT2H"),
 xs:hexBinary("0FB7"),
 xs:base64Binary("vYrfOJ39673//-BDiIIGHSPM=+"),
 xs:boolean("true"))
return $result;

Following is a more complicated example for a query that, given the name of a
customer, searches a payment record for orders by that customer. It returns
information about the customer and the customer's orders. There are two data sources
involved: 1) customer information is in a data source accessed through a custom WSIF
extension "myeis"; and 2) payment information is in an Excel spreadsheet (non-XML
document source). To access the data source for customer information, the XQS
function customerInfo is used, taking a string with the customer name as input.
That function accesses the customer information data source and yields information
for the specified customer, including a customer key. Then the payment information
Excel file is accessed, using the XQS function paymentStatusInfo, and order
information is returned for the customer whose key matches the key from the
customer information data source. Note the XQuery code includes an XML
transformation of the results.

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
(: returns payment info for all customers:)
declare function xqs:paymentStatusInfo() external;

(: returns customer info given customer name :)
declare function xqs:customerInfo ($name as xs:string) external;

(: customer name passed in to query :)
declare variable $custName external;

let $custInfo := xqs:customerInfo($custName)
for $custOrderInfo in xqs:paymentStatusInfo()/excel/Row[CustomerKey eq
XML Query Service 8-37

How to Design Your Queries
$custInfo/key]
return
 <result>
 <MYEIS_RESULT>
 <Row>
 <Name> { $custInfo/name } </Name>
 <Company> { $custInfo/company} </Company>
 <Address> { $custInfo/address} </Address>
 <City> { $custInfo/city} </City>
 <State> { $custInfo/state} </State>
 <Zip> { $custInfo/zip} </Zip>
 </Row>
 </MYEIS_RESULT>
 <EXCEL_RESULT>
 <Row>
 <OrderID>{$custOrderInfo/OrderId}</OrderID>
 <Amount>{$custOrderInfo/Amount}</Amount>
 <PaymentStatus>{$custOrderInfo/PaymentStatus}</PaymentStatus>
 </Row>
 </EXCEL_RESULT>
 </result>

Type-Checking for Input Parameters
For a WSDL source or XQS view, if you want XQuery to perform additional
type-checking steps before sending input arguments to the underlying data source,
then take the following steps:

1. For each input parameter, which is specified in your configuration for the
applicable XQS function through a <part> subelement under the
<input-parameters> element, specify the parameter type. For XQS view
sources, this would be through one of the following, as appropriate:

■ A <schema-type> subelement of <part>

■ For an input sequence, an <xquery-sequence> subelement of <part>, with
the <itemType> subelement of <xquery-sequence>

For WSDL sources, which do not support a sequence as input, only
<schema-type> is relevant.

(See the reference documentation later in this chapter for details about all these
elements.)

2. Include the parameter types with the function declaration in the XQuery prolog.

3. If input parameters are of user-defined types, import the schema or files
containing the type definitions.

Here is an example. First, the XQS configuration:

<wsdl-source isCached="false">
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 SplitRatio
 </function-name>
 ...
 <input-parameters>
 <part position="1" name="parameters">
 <schema-type namespace="http://www.xignite.com/services/">
 GetSplitRatio
 </schema-type>
 </part>
8-38 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
 </input-parameters>
</wsdl-source>

Then, the corresponding XQuery expression:

import schema namespace xignite="http://www.xignite.com/services/"
 at "http://www.xignite.com/xSecurity.asmx?wsdl"
declare namespace xqs="http://xmlns.oracle.com/ias/xqs";
declare function xqs:SplitRatio($params as xignite:GetSplitRatio)
 as xignite:GetSplitRatioResponse external;

let $in := <xignite:GetSplitRatio></xignite:GetSplitRatio>

let $y := xqs:SplitRatio($in) return <split>$y//xignite:Ratio</split>

At execution time, XQuery will ensure that the argument passed into
xqs:SplitRatio is of the type xignite:GetSplitRatio from the imported
schema.

How to Develop Your Application Code: Using the XQS Client Interfaces
This section discusses the steps involved in using the client APIs that XQS provides
(first discussed in "Introduction to XQS Client Interfaces" on page 8-10), and offers
some examples. The focus is on the Java class client API, the EJB client API, and the
JSP tag library. For Web service clients, the particulars of what XQS does to expose an
XQS view as a Web service operation are left to the packaging discussion—see
"OC4JPackager Additional Output to Expose XQS Views as Web Service Operations"
on page 8-62. Otherwise, XQS generates a regular WSDL with SOAP 1.1 binding, and
we assume readers are knowledgeable about creating Web service clients.

The following topics are covered here:

■ Supported Types for Query Parameters

■ General Coding Steps in Using XQS Client APIs

■ Stateful Versus Stateless Clients

■ Using the Java Class Client API

■ Using the EJB Client API

■ Using the JSP Tag Library

■ Using an XQS View Exposed as a Web Service Operation

Note: XQS does not generate Java code for a Web service client. It is
a responsibility of the user to invoke the Web service dynamically or
generate the client invocation code based on the WSDL.
XML Query Service 8-39

How to Develop Your Application Code: Using the XQS Client Interfaces
Supported Types for Query Parameters
The XQS oracle.xds.client.QueryParameter class is for use with the XQS Java
client API and EJB client API for arrays of bind parameters for queries. It is also used
behind the scenes with the XQS JSP tag library. (See "XQS QueryParameter Class
Reference" on page 8-75 for additional information.) Table 8–2 shows the
correspondence between XML types that XQS supports, and Java types that you use to
pass input values through instances of the QueryParameter class.

General Coding Steps in Using XQS Client APIs
There are several basic coding steps in using the XQS client APIs:

1. Create your query. To use an ad-hoc query, this may consist of hard-coding a query
or writing code to accept a query from user input. To use an XQS view, this
consists of saving the query in an .xq file. Also see "How to Design Your Queries"
on page 8-36.

Notes:

■ We assume that before you use any of the XQS client interfaces,
you have prepared and configured your data source as described
in "How to Prepare to Use Your Data Sources" on page 8-15 and
"How to Configure Your XQS Functions" on page 8-24. We also
assume you have completed any additional configuration, such as
the ejb-jar.xml file if you use an EJB, or web.xml file if you
use a Web module.

■ Your choice of which client API to use is independent of the type
of data source you use. These are entirely separate considerations.

Table 8–2 XQS Type Support for Bind Parameters

Supported XML Type
Corresponding Java Type for
QueryParameter Class

boolean boolean

string java.lang.String

int int

integer int, long, java.math.BigInteger

long long

float float

double double

decimal java.math.BigDecimal

base64Binary java.lang.String

hexBinary java.lang.String

anyURI java.net.URI

dateTime boolean, java.util.GregorianCalendar

duration java.lang.String (lexical representation
of duration)

anyType, user-defined XML types org.w3c.dom.Node
8-40 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
2. Obtain an XQS client object, such as by creating the local interface to use the XQS
EJB client API, by creating an XQSFacade instance to use the Java class client API,
or by including the XQS JSP tag library in a JSP page.

3. Specify any input parameters. For the Java class API or EJB API, create an array of
type oracle.xds.client.QueryParameter. (See "XQS QueryParameter Class
Reference" on page 8-75.) For the JSP tag library, use the param subtag of
execute or executeCursor. (See "XQS param Tag" on page 8-82.) Also see the
preceding section, "Supported Types for Query Parameters".

4. Execute the query.

5. Read and process the results. For a stateless client, XQS either returns the results
all at once in a java.util.Vector instance or, if you are using the JSP tags,
returns a java.util.ArrayList instance and an XML document. For a stateful
client, you retrieve the results item by item, either using the Oracle XQuery type
oracle.xml.xqxp.datamodel.XMLItem, or, if you employ the JSP tags, using
java.lang.Object instances and nodes of an XML document. For the XQS EJB
API and JSP tag library, you have the option of using either a stateless or stateful
access pattern.

The Java class API (XQSFacade) uses a stateful access pattern. See "Using the Java
Class Client API" on page 8-42 for information about using the XQSFacade class.

6. Optionally retrieve and process errors. If you configure XQS to continue even if
errors are encountered during execution of the XQS function for the query, you can
retrieve information about the errors. See "Using XQS Error Handling Modes and
APIs" on page 8-69.

7. When using a stateful client, close the client object to free all resources associated
with the query.

Stateful Versus Stateless Clients
The XQS client APIs return query results as an XML sequence—one or more XML
items, where each item may be an XML document, XML node, or primitive value. It is
important to realize that the query execution defines the result, but does not
necessarily materialize all result items into process memory immediately. An XML
sequence, like a result set from a relational query, implicitly maintains a "cursor" that is
initially positioned in front of the first item in the sequence and may be advanced by a
"next" operation. If an XML sequence is accessed through the implicit cursor, through
repeated calls to a "next" operation, then any of the "next" calls may trigger the actual
evaluation of the XQuery expression in order to produce the next item requested. The
exact moment when XQuery evaluates the expression and whether XQuery evaluates
it incrementally or all at once depend on the specific XQuery expression and the level
of optimization of the XQuery implementation. As an alternative to using this sort of
cursor access, though, the XQS client APIs also offer reading all query results
immediately into process memory in a single step.

Each of the single-step and cursor modes of execution has advantages and
disadvantages. For most situations, single-step execution is preferable, because
associated resources (such as connections to the underlying data sources, and internal

Note: This discussion does not include security or performance
considerations. See "Security for XQS Applications" on page 8-12 and
"Using XQS Performance Features" on page 8-65 for information on
those topics.
XML Query Service 8-41

How to Develop Your Application Code: Using the XQS Client Interfaces
XQuery resources dedicated to the expression) are freed immediately after the
evaluation is completed. You also do not have the potential performance impact of
repeated trips to the data source. However, single-step execution is not feasible when
the total size of items in the result sequence may be too large, such that materializing
the whole sequence at one time would run out of process memory. In this case, cursor
mode is the only option, as long as there is nothing (such as aggregate expressions, for
example) preventing the query from providing the results item-by-item.

To allow the choice between the single-step and cursor modes, XQS provides two
types of client APIs: stateless for single-step mode, or stateful for cursor mode. (In this
discussion, "state" refers to the internal state of the XQuery engine.) These work as
follows:

■ When an XQuery expression is executed through a stateless API, the entire result
sequence is materialized at once, and all internal state and resources are freed
immediately afterward. The only requirement for stateless execution is that the
entire result sequence must fit into process memory.

■ By contrast, executing an XQuery expression through a stateful API results in
placement of the "current" position in front of the first item in the result sequence.
To obtain each item, starting with the first item, the client must invoke a "next"
operation. The current position and all the internal resources necessary to evaluate
the next item constitute the state of the query. This state is freed only after the last
item in the sequence is returned, or if the query is explicitly closed. It is important
to note, however, that to take advantage of the reduced memory requirements of
stateful execution, the client code must release each result item once it has been
processed.

The XQS EJB client API and JSP client API each has features for stateless execution and
features for stateful execution. The XQS Java class (XQSFacade) client API provides
stateful access. Users can simulate stateless access by immediately getting all result
items and freeing the client object.

Using the Java Class Client API
Refer to the "General Coding Steps in Using XQS Client APIs" on page 8-40. Do as
follows to apply these steps using the XQS Java class client API (after creating your
query):

1. Create an XQSFacade instance. Method calls in the following steps are called from
this instance.

2. Create a QueryParameter array for any input parameters.

3. Use the execute() method to execute an ad-hoc query, or the executeView()
method to execute an XQS view, passing in the query and QueryParameter
array (or null if there are no input parameters). For executeView(), also pass
in the namespace of the XQS function for the view.

4. If you configured any data sources used in the query with the emptySequence or
errorMessage error mode, optionally use the getErrors() method to retrieve
any errors encountered during execution of the query. This returns an iterator over
a collection of XQSError objects. See "Using XQS Error Handling Modes and
APIs" on page 8-69 for information about error configuration and processing.

5. Repeatedly use the getNextItem() method to get the results back item by item.
Each item is returned in an XMLItem instance. Process these items as desired.

6. Use the close() method to free all resources associated with the query.
8-42 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
These steps are shown in examples that follow. Also see "XQSFacade Class Reference"
on page 8-77 for reference information.

Example 1: XQSFacade API with an Ad-Hoc Query
This example shows general use of the XQSFacade API. The query returns bind
parameters in a sequence, showing how to bind and how to retrieve data. No
configuration is necessary, because the query does not use any functions.

For processing query results, the code uses the XMLItem class (in package
oracle.xml.xqxp.datamodel).

import oracle.xml.xqxp.datamodel.XMLItem;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.XMLElement;
import oracle.xds.client.XQSFacade;
import oracle.xds.client.QueryParameter;
import oracle.xds.client.XQSError;
import oracle.xml.xqxp.functions.builtIns.FNUtil;
import java.util.Vector;

public class XQSFacadeTest {
public static void main(String[] args) throws Exception {
 try{
 //get XQSFacade
 XQSFacade facade = new XQSFacade();
 String xquery = "declare variable $bind1 external;\n"+
 "declare variable $bind2 external;\n"+
 "declare variable $bind3 external;\n"+
 "declare variable $bind4 external;\n"+
 "declare variable $bind5 external;\n"+
 "declare variable $bind6 external;\n"+
 "declare variable $bind7 external;\n"+
 "declare variable $bind8 external;\n"+
 "declare variable $bind9 external;\n"+
 "declare variable $bind10 external;\n"+
 "declare variable $bind11 external;\n"+
 "declare variable $bind12 external;\n"+
 "declare variable $bind13 external;\n"+
 "declare variable $bind14 external;\n"+
 "declare variable $bind15 external;\n"+
 "declare variable $bind16 external;\n"+

 " ("+
 "$bind1,$bind2,$bind3,$bind4,$bind5,$bind6,$bind7,\n"+
 "$bind8,$bind9,$bind10,$bind11,$bind12,$bind13,$bind14,$bind15,$b
ind16)";
 QueryParameter params[] = new QueryParameter[16];
 params[0] = new QueryParameter("bind1");
 params[0].setString("test");
 params[1] = new QueryParameter("bind2");
 params[1].setInteger(new BigInteger("100"));
 params[2] = new QueryParameter("bind3");
 params[2].setBoolean(true);
 params[3] = new QueryParameter("bind4");
 params[3].setFloat(-1);
 params[4] = new QueryParameter("bind5");
 params[4].setDuration("P1Y2M3DT10H30M");
 params[5] = new QueryParameter("bind6");
 params[5].setDouble(-11.0);
XML Query Service 8-43

How to Develop Your Application Code: Using the XQS Client Interfaces
 TimeZone LAtz = new SimpleTimeZone(-28800000,
 "America/Los_Angeles",
 Calendar.APRIL, 1, -Calendar.SUNDAY,
 7200000,
 Calendar.OCTOBER, -1, Calendar.SUNDAY,
 7200000,
 3600000);
 GregorianCalendar cal = new GregorianCalendar(LAtz);

 params[6] = new QueryParameter("bind7");
 params[6].setDateTime(cal,true);

 URI uri = new URI("http://www.test.com");
 params[7] = new QueryParameter("bind8");
 params[7].setAnyURI(uri);
 params[8] = new QueryParameter("bind9");
 params[8].setInt(-7);
 params[9] = new QueryParameter("bind10");
 params[9].setLong(50l);
 params[10] = new QueryParameter("bind11");
 params[10].setDecimal(new BigDecimal(999999));
 params[11] = new QueryParameter("bind12");
 XMLDocument document = new XMLDocument();
 Element elem = document.createElementNS("http://client.xqs.oracle/",
"tns:result");
 document.appendChild(elem);
 params[11].setNode(elem);
 params[12] = new QueryParameter("bind13");
 params[12].setBase64Binary("vYrfOJ39673//-BDiIIGHSPM=+");
 params[13] = new QueryParameter("bind14");
 params[13].setHexBinary("0FB7");
 params[14] = new QueryParameter("bind15");
 params[14].setDayTimeDuration(60.5);
 params[15] = new QueryParameter("bind16");
 params[15].setYearMonthDuration(13);
 facade.execute(xquery, params);
 // lookup functions
 XMLItem item = facade.getNextItem();

 while(item != null) {
 if (item.instanceOfType(XMLItem.XMLITEM_STRING)) {
 System.out.println("string item value: expected: \”test\”, actual:",
item.getString());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_INT)) {
 System.out.println("int item value: expected: \”-7\”, actual: ",
item.getInt());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_LONG)) {
 System.out.println("long item value: expected: \”501\”, actual: ",
item.getInt());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_INTEGER)) {
 if(item.intFormat())
 System.out.println("integer item value: expected: \”100\”, actual: "
, item.getInt());
 else
 System.out.println("integer item value: expected: \”100\”, actual:
", item.getDecimal().intValue());
8-44 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_BOOLEAN)) {
 System.out.println("boolean item value: expected: \”true\”, actual: ",
item.getBoolean());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_FLOAT)) {
 System.out.println("float item value: expected: \”-1\”, actual:
",(float)item.getDouble());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_XDT_DAYTIMEDURATION)) {
 System.out.println("dayTimeDuration item value: expected: \”60.5
seconds\”, actual: ", item.getDayTimeDuration());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_XDT_YEARMONTHDURATION)) {
 System.out.println("yearMonthDuration item value: expected: \”13
months\”, actual: ", item.getYearMonthDuration());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_DURATION)) {
 System.out.println("duration item value: expected: \” P1Y2M3DT10H30M
\”, actual: ", item.getLexicalValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DOUBLE)) {
 System.out.println("double item value: expected: \” –11.0\”, actual:
", item.getDouble());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DATETIME)) {
 System.out.println("dateTime item value: expected Timezone: \”Pacific
(Latz) \”, actual: ",
 item.getCalendar().getTimeZone());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_ANYURI)) {
 System.out.println("anyURI item value: expected:
\"http://www.test.com\", actual: ", item.getString());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_DECIMAL)) {
 System.out.println("decimal item value: expected: \”999999 \”, actual:
", item.getDecimal().intValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_NODE)) {
 XMLElement node = (XMLElement)item.getNode();
 //when obtained from document function, it returns XMLDocument
 if(node instanceof XMLDocument)
 node = (XMLElement)node.getFirstChild();
 System.out.println("node item value: expected namespace: \”
http://client.xqs.oracle \”, actual: ",node.getNamespaceURI());
 System.out.println("node item value: expected local name: \”result\”,
actual: ",node.getLocalName());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_HEXBINARY)) {
 System.out.println("hexBinary item value: expected: \”0FB7\”, actual:
", item.getString());
 }
 else if (item.instanceOfType(XMLItem.XMLITEM_BASE64BINARY)) {
 System.out.println("base64Binary item value: expected: \”
vYrfOJ39673//-BDiIIGHSPM=+ \”, actual: ",
 item.getString());
 }
 else {
 System.out.println("item type not supported: "+item.getLexicalValue());
 }
XML Query Service 8-45

How to Develop Your Application Code: Using the XQS Client Interfaces
 item = facade.getNextItem();
 }
 }catch(Exception ex){
 ex.printStackTrace();
 fail(ex.getMessage());
 assertTrue("xquery execution failed", false);
 }
 facade.close();
 }
}

Example 2: XQSFacade API with an Ad-Hoc Query
This section has a Java class to show the steps of using the XQSFacade API in your
client code, along with related XQS configuration. The example has an ad-hoc query
that uses an XQS view source, which in turn uses a document source.

Query This example uses the following ad-hoc query:

declare namespace xqs="http://xmlns.oracle.com/ias/xqs";
declare function xqs:get_poSQ($bind as xs:string) external;
for $po in xqs:get_poSQ("http://localhost:8888/myrepository/pos-2KB.xml")
 return $po

Configuration The query in turn uses the XQS function get_poSQ, which
corresponds to an XQS view source that is configured as shown immediately below.
By default, if the .xq file name and location are not specified in the configuration
(through the <queryName> and <repository> elements), the file name is assumed
to match the function name, and the location is assumed to be as specified through the
-repository option when you run OC4JPackager.

<xqsview-source>
 <function-name prefix="xqs">get_poSQ</function-name>
 <input-parameters>
 <part position="1" name="bind" >
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
</xqsview-source>

The XQS view get_poSQ, defined in the file get_poSQ.xq, uses a document source
and is defined as follows:

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs";
declare variable $bind external;
declare function xqs:genericFile($bind as xs:string) external;
for $po in xqs:genericFile($bind)//po
 return $po

And the document source genericFile is configured as follows:

<document-source>
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 genericFile
 </function-name>
</document-source>

The genericFile function takes the document URL as input, so there is no
<documentURL> element.
8-46 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
Java Code The code follows—a complete class that does the following:

■ An XQSFacade instance is created.

■ The ad-hoc query, which uses the XQS view get_poSQ, is defined. The query is
stored in the string xqueryStr after being pieced together in a string buffer
xqueryBuf. The URL for the backend document source is taken by the get_poSQ
function as input.

■ The query is executed. There are no input parameters for the query, so null is
passed in to the execute() method where the QueryParameter array would
go. (The next example, "Example 3: XQSFacade API with an XQS View" on
page 8-48, shows an input parameter.)

■ No error processing is shown here, but if you have appropriate configuration of
the source (error mode errorMessage or emptySequence), you could retrieve
and process error objects. (The next example also shows error processing. Or see
"Using XQS Error Handling Modes and APIs" on page 8-69 for additional
information.)

■ A while loop goes through the cursor item by item. Each item is a node, so is
placed into an XML document, doc. From there, results can be displayed or
further processed as desired (from that point, the processing is not XQS-specific).

■ A close() call closes the cursor and frees associated resources.

import oracle.xml.xqxp.datamodel.XMLItem;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.XMLElement;
import oracle.xml.parser.v2.XMLNode;
import oracle.xds.client.XQSFacade;

public class XQSFacadeTest {

 public static void main(String[] args) throws Exception{
 XQSFacade bean = new XQSFacade();
 StringBuffer xqueryBuf = new StringBuffer();
 xqueryBuf.append
 ("declare namespace xqs=\"http://xmlns.oracle.com/ias/xqs\";\n");
 xqueryBuf.append
 ("declare function xqs:get_poSQ($bind as xs:string) external;\n");
 xqueryBuf.append("for $po in xqs:get_poSQ
 (\"http://localhost:8888/myrepository/pos-2KB.xml\") \n");
 xqueryBuf.append("return $po\n");

 String xqueryStr = xqueryBuf.toString();

 //no parameters to be bound, so pass null
 bean.execute(xqueryStr, null);

 XMLItem item = bean.getNextItem();

 XMLDocument doc = new XMLDocument();
 XMLElement rootElem = (XMLElement)doc.createElement("QueryResult");
 doc.appendChild(rootElem);

 while(item != null) {
 /* the test is actually superfluous - all items are expected to nodes
 for Purchase Order, here we show a standard treatment of items that
 are XML nodes, including entire documents
 (where node type is DOCUMENT_NODE)
 */
XML Query Service 8-47

How to Develop Your Application Code: Using the XQS Client Interfaces
 if(item.getItemType().isNode()) {
 rootElem.appendChild(doc.importNode(
 item.getNode().getNodeType()==
 XMLNode.DOCUMENT_NODE?(XMLNode)
 ((XMLDocument)item.getNode()).getDocumentElement():
 (XMLNode)item.getNode(), true));
 }
 item = bean.getNextItem();
 }
 bean.close();
 }
}

Example 3: XQSFacade API with an XQS View
This section has an example using the XQSFacade API to execute an XQS view
directly through an executeView() call.

Configuration Here is the configuration for an XQS view named BasicFileWS:

<xqsview-source WSDLvisibility="true" isCached="false" onError="errorMessage">
 <function-name prefix="xqs">BasicFileWS</function-name>
 <input-parameters type-match="none" >
 <part position="1" name="custName">
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
 <output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/MyTypes.xsd"
type="CustomerOrdersType">
 </output-element>
</xqsview-source>

There is no <queryName> element, so the .xq file name is assumed to be
BasicFileWS.xq (matching the specified function name). The view takes a string
parameter, custName, as input.

Here is the definition of the view BasicFileWS.xq (a query discussed earlier, in
"Query Examples" on page 8-37), including the variable to take the customer name as
input. This view uses two XQS functions, for data sources whose configurations are
shown immediately following.

declare namespace xqs = "http://xmlns.oracle.com/ias/xqs" ;
(: returns payment info for all customers:)
declare function xqs:paymentStatusInfo () external;

(: returns customer info given customer name :)
declare function xqs:customerInfo ($name as xs:string) external;

(: customer name passed in to query :)
declare variable $custName external;

let $custInfo := xqs:customerInfo($custName)
for $custOrderInfo in xqs:paymentStatusInfo()/excel/Row[CustomerKey eq
$custInfo/key]
return
 <result>
 <MYEIS_RESULT>
 <Row>
 <Name> { $custInfo/name } </Name>
 <Company> { $custInfo/company} </Company>
8-48 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
 <Address> { $custInfo/address} </Address>
 <City> { $custInfo/city} </City>
 <State> { $custInfo/state} </State>
 <Zip> { $custInfo/zip} </Zip>
 </Row>
 </MYEIS_RESULT>
 <EXCEL_RESULT>
 <Row>
 <OrderID>{$custOrderInfo/OrderId}</OrderID>
 <Amount>{$custOrderInfo/Amount}</Amount>
 <PaymentStatus>{$custOrderInfo/PaymentStatus}</PaymentStatus>
 </Row>
 </EXCEL_RESULT>
 </result>

Here is the configuration for the document source associated with the function
paymentStatusInfo. This is a non-XML document, so D3L is used for conversion.
(See "Preparing to Use a Non-XML Document Source" on page 8-15.)

<document-source isCached="false">
 <function-name prefix="xqs">paymentStatusInfo</function-name>
 <documentURL>http://host:port/xqsdemos/paymentInfo.csv</documentURL>
 <XMLTranslate method="D3L">
 <schema-file>
 http://host:port/xqsdemos/paymentInfoD3L.xml
 </schema-file>
 </XMLTranslate>
</document-source>

And here is the configuration for the WSDL source associated with the function
customerInfo. This includes some information for Java-to-XML type mapping.

<wsdl-source isCached="false">
 <function-name namespace="http://xmlns.oracle.com/ias/xqs">
 customerInfo
 </function-name>
 <wsdlURL>http://host:port/xqsdemos/CustomerInfo.wsdl</wsdlURL>
 <operation>getCustomer</operation>
 <service prefix="myeis">CustomerInfoMYEISService</service>
 <port prefix="myeis">CustomerInfo</port>
 <input-parameters>
 <part position="1" name="name">
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
 <typeMap>
 <mapping typeClass="org.w3c.dom.Node">
 <xmlType prefix="myeis">
 Customer
 </xmlType>
 </mapping>
 </typeMap>
</wsdl-source>

Java Code This section shows a complete class with Java code for executing the view
BasicFileWS, accomplishing the following:

■ Obtain an XQSFacade instance.

■ Set up the QueryParameter array to input the customer name.
XML Query Service 8-49

How to Develop Your Application Code: Using the XQS Client Interfaces
■ Execute the view. The view name passed to the executeView() method must
match the function name associated with the view in your configuration. Note this
method also takes the namespace of the function (also indicated in your
configuration). In this example, the view is declared in the XQS namespace.

■ Process errors. Methods of the XQSError class are used to print out information
about any errors encountered during the query. This assumes appropriate XQS
error configuration to use the emptySequence or errorMessage mode;
otherwise, an error will terminate the query and there will be no useful
information in the errors iterator. In this example, as shown earlier in the
BasicFileWS configuration, errorMessage mode is used. (See "Using XQS
Error Handling Modes and APIs" on page 8-69 and "XQSError Class Reference" on
page 8-85 for additional information.)

■ Process results. Query results are obtained as instances of class XMLItem (in
package oracle.xml.xqxp.datamodel). Type constants and type-specific
accessors of the XMLItem class are used to retrieve values.

■ Close the cursor to free resources associated with the query

import oracle.xml.xqxp.datamodel.XMLItem;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.XMLElement;
import oracle.xml.parser.v2.XMLNode;
import oracle.xds.client.XQSFacade;
import oracle.xds.client.XQSError;
import oracle.xds.client.QueryParameter;

public class XQSFacadeViewTest {

 public static void main(String[] args) throws Exception{
 XQSFacade facade = new XQSFacade();

 String xqueryView = "BasicFileWS";
 QueryParameter param = new QueryParameter(null, "custName");
 param.setString("John Ford");
 QueryParameter[] params = new QueryParameter[1];
 params[0] = param;

 facade.executeView(xqueryView, "http://xmlns.oracle.com/ias/xqs", params);

 java.util.ListIterator errors = facade.getErrors();
 while(errors.hasNext()) {
 XQSError error = (XQSError)errors.next();
 System.out.println
 ("The function which gives error is: " + error.getFunctionQName());

 System.out.println("The error type is: "+error.getErrorType()+ " which
is - "+XQSError.typeNames(error.getErrorType()));
 System.out.println("The error code is:" + error.getErrorCode());
 System.out.println("The error message is:" + error.getErrorMessage());
 }

 XMLItem item = facade.getNextItem();
 StringBuffer resultBuf = new StringBuffer();

Note: There is no need to declare the XQS function, BasicFileWS,
when it is executed directly in an executeView() call.
8-50 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces

 XMLDocument doc = new XMLDocument();
 XMLElement rootElem = (XMLElement)doc.createElement("QueryResult");
 doc.appendChild(rootElem);

 while(item != null) {
 if(item.instanceOfType(XMLItem.XMLITEM_STRING)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_INT)) {
 resultBuf.append(item.getInt());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_LONG)) {
 resultBuf.append(item.getInt());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM INTEGER)) {
 if(item.intFormat())
 resultBuf.append(item.getInt());
 else
 resultBuf.append(item.getDecimal().intValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_BOOLEAN)) {
 resultBuf.append(item.getBoolean());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_FLOAT)) {
 resultBuf.append((float)item.getDouble());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DOUBLE)) {
 resultBuf.append(item.getDouble());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_XDT_DAYTIMEDURATION)) {
 resultBuf.append(item.getDayTimeDuration());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_YEARMONTHDURATION)) {
 resultBuf.append(item.getYearMonthDuration());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DURATION)) {
 resultBuf.append(item.getLexicalValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DATETIME)) {
 resultBuf.append(item.getCalendar().getTime());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_ANYURI)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DECIMAL)) {
 resultBuf.append(item.getDecimal().intValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_NODE)) {
 resultBuf.append(item.getNode().getNodeName());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_HEXBINARY)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_BASE64BINARY)) {
 resultBuf.append(item.getString());
 }

 item = facade.getNextItem();
XML Query Service 8-51

How to Develop Your Application Code: Using the XQS Client Interfaces
 }
 facade.close();
 }
}

Using the EJB Client API
Refer to the "General Coding Steps in Using XQS Client APIs" on page 8-40. For the
XQS EJB client API, there are differences in the details of these steps depending on
whether you choose a stateful session or a stateless session, as follows (after creating
your query):

1. Complete appropriate steps to create a bean instance, such as by executing the
lookup, obtaining the EJB local home interface, and creating the local interface.
Method calls in the following steps are called from this instance. See "EJB Clients
for Stateful Versus Stateless Sessions" immediately below for how to create a
stateful bean versus a stateless bean.

2. Create a QueryParameter array for any input parameters.

3. Use the execute() method to execute an ad-hoc query, or the executeView()
method to execute an XQS view, passing in the query and QueryParameter
array (or null if there are no input parameters). For executeView(), also pass
in the namespace of the XQS function for the view.

4. For a stateful bean, repeatedly use the getNextItem() method to get the results
back item by item. Each item is returned in an XMLItem instance. Process these
items as desired.

For a stateless bean, the query results are fully materialized as a vector,
java.util.Vector, containing XMLItem instances. Process this vector of items
as desired.

5. If you configured any of the data sources used in the query with the
emptySequence or errorMessage error mode, optionally use the
getErrors() method to retrieve any errors encountered within those data
sources during execution of the query. This returns an iterator over a collection of
XQSError objects. See "Using XQS Error Handling Modes and APIs" on page 8-69
for information about error configuration and processing.

6. For a stateful bean, use the close() method to free all resources associated with
the query. This is not applicable for a stateless bean.

These steps are shown in examples that follow. Also see "XQS EJB Client API
Reference" on page 8-78 for reference information.

EJB Clients for Stateful Versus Stateless Sessions
See "Stateful Versus Stateless Clients" on page 8-41 for information about when to use
a stateful session and when to use a stateless one.

Obtaining a stateful EJB versus a stateless EJB is determined by your JNDI lookup and
which XQS package you use. The following example will obtain a stateful bean:

//Look up and create the EJB to execute the query.
InitialContext ic = new InitialContext();
//Use Local client.
oracle.xds.client.ejb.stateful.XQSClientLocalHome home =
 (oracle.xds.client.ejb.stateful.XQSClientLocalHome)ic.lookup
 ("java:comp/env/XQSClientStatefulLocal");
oracle.xds.client.ejb.stateful.XQSClientLocal bean = home.create();
8-52 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
And this example will obtain a stateless bean:

//Look up and create the EJB to execute the query.
InitialContext ic = new InitialContext();
//Use Local client.
oracle.xds.client.ejb.stateless.XQSClientLocalHome home =
 (oracle.xds.client.ejb.stateless.XQSClientLocalHome)ic.lookup
 ("java:comp/env/XQSClientStatelessLocal");
oracle.xds.client.ejb.stateless.XQSClientLocal bean = home.create();

As noted earlier, when you execute a query (ad-hoc or view) in a stateless EJB session,
results are fully materialized in a vector containing XMLItem instances, which you
then process as desired. For a stateful session, after executing the query, you retrieve
items one by one using the getNextItem() method, which returns items of type
XMLItem.

Use of the EJB Client API in Stateful Sessions
The XQS EJB stateful client API is the same as the XQSFacade API. Beyond the code
shown in the preceding section to create the bean, code examples for a stateful EJB
client would look like what is shown for XQSFacade in "Example 2: XQSFacade API
with an Ad-Hoc Query" on page 8-46 and "Example 3: XQSFacade API with an XQS
View" on page 8-48. You loop to repeatedly use the getNextItem() method to
retrieve and process items one by one, as XMLItem instances.

Example: EJB Client API with an XQS View in a Stateless Session
This stateless EJB example reuses the BasicFileWS XQS view used in "Example 3:
XQSFacade API with an XQS View" on page 8-48, and repeats some of that code. Refer
to that section to see the view and its configuration.

In addition to the JNDI lookup and creation of the stateless bean, the key difference
between this stateless EJB example and an XQSFacade example is in the result
processing. Results for a stateless session are fully materialized into a vector
containing XMLItem instances. You then retrieve items one by one from there, casting
them as XMLItem, as opposed to there being a getNextItem() method in the bean
to retrieve XMLItem instances. The basic nature of the processing remains the same,
however.

...
//lookup and create the EJB to execute the xquery
InitialContext ic = new InitialContext();

oracle.xds.client.ejb.stateless.XQSClientLocalHome home =
 (oracle.xds.client.ejb.stateless.XQSClientLocalHome)
 ic.lookup("java:comp/env/XQSClientStatelessLocal");
oracle.xds.client.ejb.stateless.XQSClientLocal bean = home.create();

String xqueryView = "BasicFileWS";
QueryParameter param = new QueryParameter("custName");
param.setString("John Ford");
QueryParameter[] params = new QueryParameter[1];
params[0] = param;

java.util.Vector result =
 bean.executeView(xqueryView,"http://xmlns.oracle.com/ias/xqs",params);

java.util.Enumeration resultEnum = result.elements();
while(resultEnum!=null && resultEnum.hasMoreElements()) {
 XMLItem item = (XMLItem)resultEnum.nextElement();
XML Query Service 8-53

How to Develop Your Application Code: Using the XQS Client Interfaces
 if(item.instanceOfType(XMLItem.XMLITEM_STRING)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_INT)) {
 resultBuf.append(item.getInt());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_LONG)) {
 resultBuf.append(item.getInt());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_INTEGER)) {
 if(item.intFormat())
 resultBuf.append(item.getInt());
 else
 resultBuf.append(item.getDecimal().intValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_BOOLEAN)) {
 resultBuf.append(item.getBoolean());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_FLOAT)) {
 resultBuf.append((float)item.getDouble());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DOUBLE)) {
 resultBuf.append(item.getDouble());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_XDT_DAYTIMEDURATION)) {
 resultBuf.append(item.getDayTimeDuration());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_YEARMONTHDURATION)) {
 resultBuf.append(item.getYearMonthDuration());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DURATION)) {
 resultBuf.append(item.getLexicalValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DATETIME)) {
 resultBuf.append(item.getCalendar().getTime());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_ANYURI)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_DECIMAL)) {
 resultBuf.append(item.getDecimal().intValue());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_NODE)) {
 resultBuf.append(item.getNode().getNodeName());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_HEXBINARY)) {
 resultBuf.append(item.getString());
 }
 else if(item.instanceOfType(XMLItem.XMLITEM_BASE64BINARY)) {
 resultBuf.append(item.getString());
 }
// Here is where you might use a bean.getErrors() call and process errors.
// (Assuming appropriate configuration.)
}
...

Using the JSP Tag Library
Refer to the "General Coding Steps in Using XQS Client APIs" on page 8-40. For the
XQS JSP tag library, there are differences in the details of these steps depending on
8-54 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
whether you choose a stateful or stateless access mode, as follows (after creating your
query):

1. Import the XQS JSP tag library through a taglib statement, specifying the TLD
URI and desired prefix.

2. Use an executeCursor tag to execute a query in a stateful mode, or an execute
tag to execute a query in a stateless mode. With either an executeCursor or
execute tag:

■ Use the xqueryString attribute to specify an ad-hoc query, or the
xqsViewName and namespace attributes to specify an XQS view.

■ Define output variables for results of the query: to an XML document (by
using the toXMLDoc attribute) and to a java.util.ArrayList instance of
results (by using the resultItems attribute). Also, you can optionally output
to the JSP output stream (by using the toWriter attribute). Results will be
represented by Java object types according to Table 8–2, " XQS Type Support
for Bind Parameters" on page 8-40.

■ If you configured any of the data sources used in the query with the
emptySequence or errorMessage error mode, optionally use the errors
attribute to process any errors encountered within those data sources during
execution of the query. This will give you an iterator over a collection of
XQSError objects. See "Using XQS Error Handling Modes and APIs" on
page 8-69 for information about error configuration and processing.

3. In either an executeCursor or execute tag, use a param subtag for each input
parameter. Use the param tag localName, namespace, value, and type
attributes as appropriate.

4. With the executeCursor tag, use the related next tag to retrieve results item by
item or in batches and place them into the output vehicles.

With the execute tag, results are fully materialized into the output vehicles.

5. Loop through one or more output vehicles to process the results. This is not
XQS-specific, as the available output vehicles—JSP output stream, XML document,
and list of Java objects—are standard. Be aware that results of each execution of
next must be processed before next is executed again, because results are
overwritten.

6. With the executeCursor tag, use the close tag to free all resources associated
with the query. This is not applicable for the execute tag.

These steps are shown in examples that follow. Also see "XQS JSP Tag Library
Reference" on page 8-79 for reference information.

JSP Tags for Stateful Versus Stateless Access
See "Stateful Versus Stateless Clients" on page 8-41 for information about when to use
stateful access and when to use stateless access.

In a JSP page employing XQS, whether you use stateful access or stateless access is
determined by which query tag you use. The executeCursor tag uses stateful
access, while the execute tag uses stateless access.

Note: You can also use standard JSTL tags in a JSP page to transform
results as desired.
XML Query Service 8-55

How to Develop Your Application Code: Using the XQS Client Interfaces
As noted earlier, when you execute a query (ad-hoc or view) in a stateless JSP access
pattern, results are fully materialized into the output vehicles you choose through
your attribute settings—an XML DOM document and an Object[] array, and
optionally the JSP output stream—and then you process those results as desired. For a
stateful access pattern, after executing the query, you retrieve and process items one by
one using the next tag.

Example: JSP Tags with an XQS View in a Stateful Access Pattern
This stateful JSP example reuses the BasicFileWS XQS view used in "Example 3:
XQSFacade API with an XQS View" on page 8-48. Refer to that section to see the view
and its configuration.

The code shown below does the following:

■ The page directives import required classes.

■ A taglib directive specifies the TLD URI of the tag library, and the desired tag
prefix to use.

■ The executeCursor tag executes the view, resulting in an open cursor ready for
fetching. The namespace attribute specifies the namespace where the underlying
XQSView function is defined.

■ The param subtag of executeCursor specifies the input parameter (customer
name).

■ The next tag, associated with the executeCursor tag through the cursorId
setting, loops through the results to populate the output vehicles (XML document
and result items ArrayList instance), using the itemsFetched attribute each
time through as a test of whether any data remains to be processed. The next tag
must reference the cursor ID (mycursor) specified in the executeCursor tag.

■ The close tag closes the cursor and frees resources associated with it. This tag
must also reference the cursor ID (mycursor) specified in the executeCursor
tag.

<%@ page import="oracle.xml.parser.v2.XMLElement" %>
<%@ page import="oracle.xml.parser.v2.XMLDocument" %>

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xquerytag.tld"
 prefix="xq"%>
<%
String xqueryView = "BasicFileWS";
int items;
%>
<xq:executeCursor
 xqsViewName="<%=xqueryView%>"

Notes:

■ Error processing is not shown here. Assuming appropriate error
configuration (emptySequence or errorMessage mode in the
data source configuration), you could process the myerrors
iterator. See "Using XQS Error Handling Modes and APIs" on
page 8-69.

■ Processing of the output vehicles is not shown here; there is
nothing specific to XQS about processing an XML document or
array of result objects.
8-56 Oracle Containers for J2EE Services Guide

How to Develop Your Application Code: Using the XQS Client Interfaces
 namespace="http://xmlns.oracle.com/ias/xqs"
 resultItems="myresults"
 toXMLDoc="mydoc"
 cursorId="mycursor"
 errors="myerrors" >
 <xq:param
 localName="custName"
 value="John Ford"
 type="String"/>
</xq:executeCursor>
<%
do{
// Populate the XML document and result items array.
%>
 <xq:next
 cursorId="mycursor"
 itemsFetched="fetched" />
<%
 items=fetched.intValue();
 }while(items>0)
// Here is where you might process the "myerrors" error iterator.
// (Assuming appropriate configuration.)

// Retrieve results from XML document mydoc and/or result items array myresults.
// (This processing is not XQS-specific.)
%>
<xq:close cursorId="mycursor" />

Example: JSP Tags with an Ad-Hoc Query in a Stateless Access Pattern
This example uses the XQS JSP execute tag to execute an ad-hoc query, and a
stateless access pattern is used. The intent is primarily to compare and contrast the
following, compared to the preceding example using stateful access:

■ Use an ad-hoc query instead of a view. See "Example 2: XQSFacade API with an
Ad-Hoc Query" on page 8-46, which uses the same query, for relevant
configuration. The query is pieced together in a string buffer, then written from
there to a string.

■ Use the execute tag, for stateless access, instead of the executeCursor tag, for
stateful access. Note that there is no next subtag for an execute tag, and the
close tag is not required.

<%@ page import="oracle.xml.xqxp.datamodel.XMLItem" %>
<%@ page import="oracle.xml.parser.v2.XMLElement" %>
<%@ page import="oracle.xml.parser.v2.XMLDocument" %>

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xquerytag.tld"
 prefix="xq"%>
<%
StringBuffer xqueryBuf = new StringBuffer();
xqueryBuf.append("declare namespace xqs=\"http://xmlns.oracle.com/ias/xqs\";\n");
xqueryBuf.append("declare function xqs:get_poSQ($bind as xs:string) external;\n");
xqueryBuf.append("for $po in
xqs:get_poSQ(\"http://localhost:8888/myrepository/pos-2KB.xml\") \n");
xqueryBuf.append("return $po\n");

String xqueryStr = xqueryBuf.toString();
%>
<xq:execute
 xqueryString="<%=xqueryStr%>"
XML Query Service 8-57

How to Use OC4JPackager to Package Your XQS Application
 toXMLDoc="mydoc"
 resultItems="myresults"
 errors="myerrors" />
<%
// Here is where you might process the "myerrors" error iterator.
// (Assuming appropriate configuration.)
%>
<%
// Retrieve the results from either the XML document mydoc or result items array
// myresults. (This processing is not XQS-specific.)
%>

Using an XQS View Exposed as a Web Service Operation
XQS can expose an XQS view as a Web service operation, with the Web service being
implemented through a servlet that is generated automatically. This and related details
are described in "OC4JPackager Additional Output to Expose XQS Views as Web
Service Operations" on page 8-62.

Note that you must provide the Web service client yourself.

How to Use OC4JPackager to Package Your XQS Application
This section describes how to use OC4JPackager to bundle XQS-related files with your
application. See "Introduction to OC4JPackager" on page 8-11 for an overview.

OC4JPackager produces an EAR file which you can deploy to OC4J as you would any
other EAR file. See the Oracle Containers for J2EE Deployment Guide for general
information.

The following topics are covered here:

■ Steps in Using OC4JPackager

■ Running OC4JPackager on the Command Line

■ Running OC4JPackager Through Ant

■ OC4JPackager Basic Output

■ OC4JPackager Additional Output to Expose XQS Views as Web Service
Operations

Steps in Using OC4JPackager
This section covers the basic preparatory and execution steps when you have a J2EE
application and want to run OC4JPackager to enable it to use XQS features. See
"OC4JPackager Reference" on page 8-106 for general information about the
OC4JPackager parameters and Java properties mentioned here.

Preparing to Run OC4JPackager
Complete these steps to prepare to run OC4JPackager:

1. Create JAR files for your application components as usual—WAR files for Web
modules, EJB JAR files for EJB modules, and so on, all with the applicable
standard J2EE configuration files (such as web.xml and ejb-jar.xml). You then

Note: OC4JPackager does not support directory or file names with
spaces.
8-58 Oracle Containers for J2EE Services Guide

How to Use OC4JPackager to Package Your XQS Application
have the option of bundling them into an EAR file for OC4JPackager to access, or
leaving them and any other relevant files (such as application.xml) in a
directory structure reflecting the structure and contents of an EAR file.

2. Choose a desired directory for your application, and place the EAR file or
structured EAR contents (as applicable) in that directory.

You will specify that directory to OC4JPackager through the -appArchives
parameter (required).

3. Choose a desired directory as your XQS repository, where any XQS view (.xq)
files are located, and place the XQS view (.xq) files there.

You can specify that directory to OC4J Packager through the -repository
parameter.

4. Assuming you have completed your XQS configuration (see "How to Configure
Your XQS Functions" on page 8-24), choose a desired directory for the
xqs-config.xml file and place the file in that directory.

You will specify that directory to OC4JPackager through the -xqsConfig
parameter (required).

5. If you would like to expose XQS view sources in the global configuration as Web
services through your application, choose a desired directory for the
global-xqs-config.xml file and place the file in that directory.

You will specify that directory to OC4JPackager through the -globalXqsConfig
parameter.

Running OC4JPackager: Required and Optional Parameters and Properties
Specify the following, as applicable, when you run OC4JPackager. See the next section,
"Running OC4JPackager on the Command Line", for examples.

Program Parameters
1. Use the required -appArchives parameter to specify the directory where your

application is located (where the EAR file is, or the top-level directory of an EAR
structure).

2. Use the optional -repository parameter to specify the directory for your XQS
repository.

3. Use the required -xqsConfig parameter to specify the full path of your
application xqs-config.xml file, including the file name.

4. If the global XQS configuration file includes configuration for XQS views and you
would like to expose XQS view sources in the global configuration as Web services
through your application, use the -globalXqsConfig parameter to specify the
full path of the global-xqs-config.xml file, including the file name.

5. Use the required -name and -output parameters to specify the desired name and
output directory of the EAR file that OC4JPackager will produce.

6. Use applicable flags to have OC4JPackager include files for XQS features that your
application uses:

■ Use the -jsp flag if you use the XQS JSP tag library.

■ Use the -sf flag if you use the XQS stateful EJB client API.

■ Use the -sl flag if you use the XQS stateless EJB client API.

(The XQSFacade class is always included.)
XML Query Service 8-59

How to Use OC4JPackager to Package Your XQS Application
Java VM Properties
1. Use the required Java property java.home to specify your Java home directory,

from which OC4JPackager will run the java command for its tasks.

2. Use the optional Java property xds.packager.work.dir if you want to have
OC4JPackager use a particular working directory (where it unbundles and
bundles EAR files as needed). The default is the directory specified by the
user.home Java property,.

3. Use the optional Java property java.util.logging.properties.file to
specify a logging properties file where you can specify Java logging settings,
including the OC4JPackager logging level. Logging properties are defined by
standard J2SE logging, as described in the following guide:

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

4. Use the optional Java property oracle.home if you want to indicate your Oracle
home directory. You must do this to use OC4JPackager flags -jsp, -sf, and -sl
(described in "OC4JPackager Parameters" on page 8-106) and related JAR files.

Running OC4JPackager on the Command Line
You can run OC4JPackager from a command line by using the java command to
execute OC4JPackager.jar (where % is the command prompt):

% java -jar OC4JPackager.jar ...

OC4JPackager.jar is in the xds/tools directory of your XQS distribution.

Here is an example (where $ORACLE_HOME has been set as the home directory of your
Oracle installation, and "\" indicates line wrap). This is for an application that uses the
XQS JSP tag library and stateful EJB client API, and has no relevant configuration in
the XQS global configuration file. Note that you can specify paths that are either
relative to your current directory, or absolute.

% java -jar OC4JPackager.jar \
 -Djava.home=/home/myjavainstall \
 -Dxds.packager.work.dir=$ORACLE_HOME/temp \
 -Doracle.home=$ORACLE_HOME \
 -Djava.util.logging.properties.file=myfile.properties \
 -appArchives $ORACLE_HOME/myapp \
 -xqsConfig $ORACLE_HOME/xds/myconfig/xqs-config.xml \
 -repository $ORACLE_HOME/xds/repository \
 -output $ORACLE_HOME/xds/mystaging -name myxqsapp.ear \
 -jsp -sf

Alternatively, you can run OC4JPackager through Ant, as described in the next section.

Also see "OC4JPackager Basic Output" on page 8-61.

Running OC4JPackager Through Ant
As an alternative to running OC4JPackager from a command line, as described in the
preceding section, you can run it as part of a build process using Ant, through the
standard Ant java task. Refer to the Apache Web site
http://ant.apache.org/manual/ for general information about Ant. (In
addition, if you are interested, see the Oracle Containers for J2EE Deployment Guide
for information about OC4J-specific Ant tasks.)
8-60 Oracle Containers for J2EE Services Guide

How to Use OC4JPackager to Package Your XQS Application
The following example from an Ant build file executes OC4JPackager, and
corresponds to the command-line example shown in the preceding section:

<java jar="OC4JPackager.jar" fork="true" failonerror="true">
 <jvmarg value="-Doracle.home=${ORACLE_HOME}"/>
 <jvmarg value="-Djava.home=/home/myjavainstall"/>
 <jvmarg value="-Dxds.packager.work.dir=${ORACLE_HOME}/temp"/>
 <jvmarg value="-Djava.util.logging.properties.file=myfile.properties"/>
 <arg line="-appArchives ${ORACLE_HOME}/myapp"/>
 <arg line="-xqsConfig ${ORACLE_HOME}/xds/myconfig/xqs-config.xml"/>
 <arg line="-repository ${ORACLE_HOME}/xds/repository"/>
 <arg line="-output ${ORACLE_HOME}/xds/mystaging" />
 <arg line="-name myxqsapp.ear"/>
 <arg line="-jsp"/>
 <arg line="-sf"/>
</java>

OC4JPackager Basic Output
The EAR file produced by OC4JPackager has the standard structure, with at least one
additional component—a file named xqs-resources.jar that contains the XQS
configuration file and a directory with the XQS repository files (.xq files for XQS
views).

For an application consisting of a Web module mywebapp and EJB module myejb,
here are the contents of the EAR file that OC4JPackager would produce:

META-INF/
 application.xml
 orion-application.xml
 data-sources.xml
mywebapp.war
myejb.jar
xqs-resources.jar

Aside from xqs-resources.jar, your application must already include the
application.xml file, plus optional orion-application.xml and
data-sources.xml files, if needed, WAR files for any Web modules, EJB JAR files
for any EJB modules, and so on.

The structure of xqs-resources.jar is as follows:

 APP-REPOSITORY/
 filename.xq
 filename.xq
 filename.xq
 ...
 xqs-config.xml
 xds-application.properties

Important: In the <arg> elements to set OC4JPackager parameters,
use the line attribute, as shown, as opposed to the value attribute.

Note: The EAR file will contain additional components if you have
XQS views that you are exposing as Web service operations. See the
next section, "OC4JPackager Additional Output to Expose XQS Views
as Web Service Operations".
XML Query Service 8-61

How to Use OC4JPackager to Package Your XQS Application
The file xds-application.properties is for internal use by XQS.

OC4JPackager Additional Output to Expose XQS Views as Web Service Operations
For any XQS view with a setting of WSDLvisibility="true" in the XQS
configuration, XQS exposes the view as a Web service operation. (You must have a
Web service client to invoke the operation, as for any Web service.)

OC4JPackager creates an implementation of the Web service and a WSDL document
that defines an operation for each XQS view to be exposed. OC4JPackager then
produces a WAR file with contents including the following:

■ The WSDL document

■ Web module configuration file web.xml, to configure the Web service servlet

■ Web services configuration file oracle-webservices.xml

OC4JPackager also updates the application.xml file for your application, to make
an entry for the additional Web module.

The name of the additional Web module, representing the XQS View Web service, as
well as the context root and the WAR file correspond to the name of your application,
such as the following for an application myapp:

■ /myapp-WS—the context root of the Web services module

■ myapp-WS-web.war

The generated WSDL file is always names xqsview-WS.wsdl.

The URL pattern for the servlet representing the Web service (and leading to the
Oracle Web service test page) is always /xqs-ws.

Thus, the URL for the WSDL of the XQS view Web service is
http://host:port/myapp-WS/xqs-ws?WSDL.

In the WSDL document, the wsdl:operation will have the same name as the
corresponding XQS function name defined in the XQS configuration (in the
<function-name> subelement of <xqsview-source>). Each wsdl:input
message type maps to the XML types corresponding to the input parameter types
defined in the XQS configuration (under the <input-parameters> subelement of
<xqsview-source>). The wsdl:output message type maps to the XML element or
type corresponding to the output element defined in the XQS configuration (in the
<output-element> subelement of <xqsview-source>). These can be either simple
types such as string or int, or complex types defined by users. The bindings will be
SOAP doc/wrapped bindings.

The following sections together provide an example:

■ Example: Configuration to Expose a View as a Web Service Operation

■ Example: EAR File for a View Exposed as a Web Service Operation

■ Example: WAR File for a View Exposed as a Web Service Operation

■ Example: WSDL document for a View Exposed as a Web Service Operation

Note: The additional WAR file does not contain client invocation
code for Web services. It is intended to be part of your application
deployment on the server.
8-62 Oracle Containers for J2EE Services Guide

How to Use OC4JPackager to Package Your XQS Application
Example: Configuration to Expose a View as a Web Service Operation
The following configuration, seen earlier in this chapter, exposes the view
BasicFileWS as a Web service operation, through the setting
WSDLvisibility="true".

<xqsview-source WSDLvisibility="true" isCached="false">
 <function-name prefix="xqs">BasicFileWS</function-name>
 <input-parameters type-match="none" >
 <part position="1" name="custName">
 <schema-type prefix="xs">string</schema-type>
 </part>
 </input-parameters>
 <output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/MyTypes.xsd"
type=CustomerOrdersType>customerOrders </output-element>
</xqsview-source>

Assume, for ensuing discussion, that this is part of an application called myapp.

Example: EAR File for a View Exposed as a Web Service Operation
Assume an application, myapp, comprises mywebapp.war and myejb.jar and
exposes one or more XQS views as Web service operations. Here are the relevant
contents of the application EAR file after we run OC4JPackager:

META-INF/
 application.xml
mywebapp.war
myejb.jar
myapp-WS-web.war
xqs-resources.jar

The WAR file myapp-WS-web.war is for the automatically created servlet
implementation of the Web service operations for any exposed views. See the next
section for its contents.

Example: WAR File for a View Exposed as a Web Service Operation
Here are the contents of myapp-WS-web.war, created for a servlet implementation of
the Web service operations for any exposed views:

WEB-INF/
 web.xml
 oracle-webservices.xml
 wsdl/
 xqsview-WS.wsdl
In particular, note the WSDL document. Sample fragments of the WSDL are shown in
the next section, "Example: WSDL document for a View Exposed as a Web Service
Operation".

Example: WSDL document for a View Exposed as a Web Service Operation
This section shows fragments of a WSDL document generated through use of
OC4JPackager for an XQS view being exposed as a Web service. This example focuses
on fragments relating to a view named BasicFileWS.

...
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:__xqscws="xqs-client-ws"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xqs0="http://xmlns.oracle.com/ias/xqs" xmlns:tns="xqs-
XML Query Service 8-63

How to Use OC4JPackager to Package Your XQS Application
 client-ws_myapp-WS" name="myapp-WS" targetNamespace="xqs-
 client-ws_myapp-WS">
...
<types>
...
<schema targetNamespace="http://xmlns.oracle.com/ias/xqs"
xmlns:xqs1="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
xmlns:tns="http://xmlns.oracle.com/ias/xqs"
...
>
<import namespace=”http://xmlns.oracle.com/ias/xqs/CustomerDemo”
schemaLocation=”http://host:port/xqsdemos/MyTypes.xsd”/>

<complexType name="BasicFileWSType">
 <sequence>
 <element name="custName" type="string"
 nillable="true" />
 </sequence>
 </complexType>
 <complexType name="BasicFileWSResultType">
 <sequence>
 <element name="return" nillable="true">
 <complexType>
 <sequence>
 <element name="result" nillable="true">
 <complexType>
 <sequence>
 <element name="customerOrders"
type="xqs1:CustomerOrdersType"
minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 <element name="errors" nillable="true" minOccurs="0">
 <complexType>
 <sequence>
 <element name="xqserror"
 type="__xqscws:XQSErrorType"
 maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
<element name="BasicFileWS" type="tns:BasicFileWSType" />
<element name="BasicFileWSResult" type="tns:BasicFileWSResultType" />

…
</schema>
…
</types>
…
<message name="BasicFileWSRequest">
 <part name="parameters" element="xqs0:BasicFileWS" />
</message>
<message name="BasicFileWSResponse">
 <part name="return" element="xqs0:BasicFileWSResult" />
8-64 Oracle Containers for J2EE Services Guide

Using XQS Performance Features
</message>
…
<portType name="XQSViewWebServices">
 <operation name="BasicFileWS">
 <input message="tns:BasicFileWSRequest" />
 <output message="tns:BasicFileWSResponse" />
 </operation>
 …
 </portType>
 <binding name="HttpSoap11Binding" type="tns:XQSViewWebServices">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="BasicFileWS">
 <soap:operation />
 <input>
 <soap:body use="literal" parts="parameters" />
 </input>
 <output>
 <soap:body use="literal" parts="return" />
 </output>
 </operation>
 …
 </binding>
 <service name="XQSView-WS">
 <port name="HttpSoap11" binding="tns:HttpSoap11Binding">
 <soap:address xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 location="http://host:port/myapp-WS/xqs-ws" />
 </port>
 </service>
</definitions>

Using XQS Performance Features
This section discusses performance features that XQS offers. The following topics are
covered:

■ Performance Considerations for Using the XQS Stateless or Stateful Client APIs

■ Configuring XQS Caching

■ Configuring XQS Document or View Sources for Large Data

■ XQS XPath Optimization for WSDL Sources with SQL Binding

Performance Considerations for Using the XQS Stateless or Stateful Client APIs
As noted previously, the XQS client APIs give you the choice of stateless query
execution, where results are fully materialized into process memory, or stateful query
execution, where results are accessed incrementally through a cursor. Each approach
has advantages and disadvantages. For most situations, stateless execution is
preferable because associated resource are freed immediately after the evaluation is
completed. However, stateless execution is not feasible when the total size of items in
the result sequence may be too large, such that materializing the whole sequence at
one time would run out of process memory. In this case, cursor mode is the only
option, as long as there is nothing (such as aggregate expressions, for example)
preventing the query from providing the results item-by-item.

See "Stateful Versus Stateless Clients" on page 8-41 for additional information.
XML Query Service 8-65

Using XQS Performance Features
Configuring XQS Caching
This section covers the details of how to configure the cache when using XQS, and
discusses related considerations:

■ Configure XQS Cache Settings

■ XQS Caching Strategies

■ Caching and Nondeterministic Results

Configure XQS Cache Settings
XQS caching is configured individually for each XQS function (essentially, for each
data source that you access). Use the steps that follow to employ caching for any
particular XQS function.

Strategies to consider are discussed in the next section, "XQS Caching Strategies".
Complete documentation for all the elements and attributes mentioned here is under
"XQS Configuration File Reference" on page 8-86.

1. Enable caching through the isCached attribute of the <document-source>,
<xqsview-source>, or <wsdl-source> element. For example:

<document-source isCached="true">
 ...
</document-source>

2. Use the <cache-properties> subelement of <document-source>,
<xqsview-source>, or <wsdl-source>. The time-to-live attribute takes
an integer value to determine how long, in seconds, cache entries are maintained
before expiring. For example:

 <cache-properties time-to-live="600">
 ...
 </cache-properties>

3. Use the <in-memory> subelement of <cache-properties> to specify which
cache mode to use, through the useSpool and useDiskCache attributes. For
plain memory-based caching, set useSpool and useDiskCache both to "false".
For memory-based caching with the capability of spooling cached data to disk as
necessary in case of any memory shortage, set useSpool to "true" and
useDiskCache to "false". For disk-based caching, set useDiskCache to
"true" and useSpool to "false". (See "XQS Caching Strategies", immediately

Important: The XQS 10.1.3 implementation uses the OC4J Java
Object Cache for its caching. The Java Object Cache must be running
(and will be started automatically if necessary), and its configuration
file, ORACLE_HOME/j2ee/home/config/javacache.xml, must be
present. There is generally no need for you to update this file directly,
but you have that option. See Chapter 7, "Java Object Cache," for more
information.

Be aware that any configuration of the Java Object Cache applies
across the OC4J instance, not just to your XQS application.

Important: If isCached has a value of "false" (the default), all
other cache settings for the XQS function are ignored.
8-66 Oracle Containers for J2EE Services Guide

Using XQS Performance Features
below, for related considerations.) The following example uses memory-based
caching, but with spooling if necessary:

 <in-memory useSpool="true" useDiskCache="false"/>

Here is the complete cache configuration example:

<document-source isCached="true">
 ...
 <cache-properties time-to-live="600">
 <in-memory useSpool="true" useDiskCache="false"/>
 </cache-properties>
 ...
</document-source>

XQS Caching Strategies
Note the following considerations for XQS caching:

■ In situations where data is expensive in any way (in time, in terms of any other
possible access costs, or in terms of application overhead), you should probably
cache your sources. You should also consider the possible impact of caching on the
OC4J instance system memory, but memory effects can be alleviated through
disk-based caching, or memory-based caching with spooling. (These are discussed
immediately below.)

■ In order to cache query results, define a query as an XQS view. A view, being a
type of XQS source, can be cached (meaning its results are cached).

■ Expiration, or time-to-live, of cached objects is at your discretion. The nature of the
data, and how old it can be without losing its usefulness, determines how long it
should be cached before expiring.

■ In defining your <in-memory> settings, consider whether to use plain
memory-based caching (useSpool="false" and useDiskCache="false");
memory-based caching with spooling to disk, in case that is necessary due to
memory shortage (useSpool="true" and useDiskCache="false"); or
disk-based caching (useSpool="false" and useDiskCache="true"). See
"<in-memory>" on page 8-91 for additional information. Note the following:

– Plain memory-based caching has the fastest performance but the greatest risk
of loss of cached data, due either to memory shortage or server failure.

– Memory-based caching with spooling is faster than disk-based caching (unless
memory issues result in cached data always being spooled), but risks the loss
of cached data in case of server failure.

– Disk-based caching has the slowest performance, but the greatest safety for
cached data. There are no memory concerns, and cached data is recovered in
the event of server failure.

Balance the criticality of cached data versus the importance of execution speed.

Caching and Nondeterministic Results
Be aware that the issue of XQS functions and node identity, described in
"Requirements, Limitations, and Special Notes for the Current Release" on page 8-6,
may be relevant in some unusual or atypical situations, resulting in differing query
results depending on whether caching is used. Generally this is not an issue, however,
as the great majority of queries depend on equality between values, not between
nodes.
XML Query Service 8-67

Using XQS Performance Features
Configuring XQS Document or View Sources for Large Data
There are situations where data sets are so large that memory limitations are
encountered regardless of system capacity or the use of typical memory conservation.
A solution for this is to use a "working unit" approach behind the scenes, where a
constant amount of memory is used regardless of the total amount of data being
retrieved. XQS is cooperating with dependent technologies in the Oracle XDK and
middle-tier XQuery to provide such a scalable solution whenever you are running
XQS.

There are also situations, however, where data sets are large enough that even the
"working unit" approach is insufficient. In these circumstances, for document sources
and XQS view sources, you can provide a hint to XQS that the data source may take up
sizable memory resources, and that XQS should use memory-saving internal
optimizations. Use the largeData flag—an attribute of the <document-source>
and <xqsview-source> elements—as in the following example:

<document-source largeData="true">
 ...
</document-source>

If you have trouble loading a large document source or XQS view source into memory,
enabling this flag may allow you to proceed.

XQS XPath Optimization for WSDL Sources with SQL Binding
For WSDL sources with SQL binding, XQS has special functionality to analyze each
XQuery expression and try to choose the most efficient way to execute it. In particular,
if you have expressions that apply an XPath path to the results of the function call, it is
best to apply the path directly at the point of the function call.

For example, assume mySQLData() is for a WSDL source with SQL binding,
executing a relational query and returning results as XML. First consider the following
XQuery expression:

...
for $i in mySQLData(param) return
<c>
$i/a/b/c
</c>

By comparison, now consider this XQuery expression:

...
for $i in mySQLData(param)/a/b/c return
<c>
$i
</c>

The second XQuery expression is equivalent to the first, but may execute faster and
bring in less data from the database to the OC4J server space, if the XPath expression
selects only a small subtree of the XML result returned by mySQLData(). This is

Important:

■ The largeData flag does not apply to WSDL sources.

■ With largeData="true", you may experience degradation in
speed. Use this setting only when necessary. For this reason, the
default value is "false".
8-68 Oracle Containers for J2EE Services Guide

Using XQS Error Handling Modes and APIs
because in the second case, the XPath expression "/a/b/c" would be executed by the
XQuery engine in the database, and therefore only the "c" sub-tree would be brought
into the XQS application running on OC4J. XQS applies this optimization to a certain
subset of XPath expressions, such that the correctness of the result is assured.

Using XQS Error Handling Modes and APIs
As noted in "Introduction to XQS Error Handling" on page 8-13, you can configure
XQS functions to continue even if they encounter errors (such as data source
unavailability or data conversion problems). If you do configure XQS functions to
continue, you can then retrieve the errors, which are returned as an iterator over
oracle.xds.client.XQSError objects, and obtain information about the errors.

XQS applies special handling only to errors inside an XQS function. A regular XQuery
error, such as a syntax error or type mismatch, terminates query execution regardless
of the XQS error mode.

You configure the XQS error mode for each XQS function individually. The error mode
for one function does not have any effect on the behavior of other XQS functions in the
same query.

The following sections discuss how to configure XQS functions to continue and return
error information, and what methods are available to retrieve that information:

■ Configuring XQS Function Error Handling

■ Retrieving XQS Error Objects

■ Obtaining Information from XQS Error Objects

■ Example: Error Retrieval and Processing

Configuring XQS Function Error Handling
For each data source you configure in xqs-config.xml (or
global-xqs-config.xml), you can specify XQS error-handling through the
onError attribute of the source element—<document-source>,
<xqsview-source>, or <wsdl-source>. The following settings are supported.

■ dynamicError (default): With this setting, XQS raises an XQuery dynamic error
and the query is terminated if any problem is encountered during evaluation of
the XQS function. In this circumstance, no error objects are returned; you cannot
retrieve any information beyond the exception message itself.

■ emptySequence: With this setting, in the event of an error generated by the XQS
function, the function returns an empty XML sequence as its result, and the query
execution can continue. You can retrieve error objects and obtain information from
them as discussed in the sections that follow.

■ errorMessage: With this setting, in the event of an error generated by the XQS
function, the function returns a one-item XML sequence for the function result.
The item in the sequence represents an error message—either a preconfigured
message or whatever message the data source returns, depending on your
configuration. You can also retrieve error objects and obtain information from
them as discussed in the sections that follow.

Note: This optimization is supported only with Oracle Database and
a version of 10.2 or higher.
XML Query Service 8-69

Using XQS Error Handling Modes and APIs
So there are possibly two steps in configuring your XQS error-handling for a particular
data source:

1. Specify the desired setting of the onError attribute in the <document-source>,
<xqsview-source>, or <wsdl-source> element.

2. If you are using errorMessage mode, optionally use the <error-message>
subelement of <document-source>, <xqsview-source>, or <wsdl-source>.
This will preconfigure an error message for XQS to place in the one-item XML
sequence that is returned for the query result.

Here is an example for a source that uses emptySequence mode:

<document-source onError="emptySequence">
 ...
</document-source>

And here is an example that uses errorMessage mode with a preconfigured
message:

<wsdl-source onError="errorMessage">
 ...
 <error-message>No information available</error-message>
 ...
</wsdl-source>

In errorMessage mode, if you do not specify a preconfigured message (in other
words, if you do not use an <error-message> element), then XQS will take
whatever message is returned by the data source, and put that message in the one-item
XML sequence that is returned as the function result. Occasionally it will be impossible
to obtain any meaningful error message from a data source with poor error-reporting
facilities. In that case, if you did not provide a preconfigured message, the error
message returned will be empty.

The single item in the sequence returned can be of one of two types: xs:string or
xs:node.

■ If the item is a string, the string is simply the error message, either preconfigured
or taken from the actual error that occurred.

■ If the item is an XML node, it will be called xqserror and its text value will be
the error message. In addition, the error node will have three attributes:
functionName, type and code. The XQS error node looks like this:

<xqserror functionName="XQS function name" type="XQSERR_XXX" code="XQS 0NNN" >
 error message
</xqserror>
XQS chooses a more appropriate type for the error item based on the type information
it has about the function:

■ If the XQS function is a Document function, the error item will be of type
xs:node. This is because a Document function is always expected to return an
XML node.

■ If the XQS function is configured with <output-element>, and the type or
element name is not a primitive XML Schema type, XQS assumes that the function
is an XML element type and creates the error item as an XML node.

■ If <output-element> specifies a primitive XML Schema type (even if it is not
xs:string), or if <output-element> is not provided, then XQS creates the
error item as a string.
8-70 Oracle Containers for J2EE Services Guide

Using XQS Error Handling Modes and APIs
Notes:

■ If you configure an XQS function with the errorMessage error
mode and you do not provide <output-element>, or you
provide <output-type> and it is not a user-defined complex
type or xs:string, do not specify a return type for the function
in the XQuery prolog of the queries that use this function.
Declaring a return type for external XQuery functions is optional.
If you specify the return type under the preceding circumstances,
XQuery enforces this return type at runtime. If an error occurs
during execution of the XQS function, XQS will return the error
message as a string, and this will conflict with the return type
declared in the query prolog. If you do not declare the return type,
the type match will not be enforced.

■ For a situation in which an XQS view uses other XQS functions
and sources, error-handling configuration of the view and of the
underlying functions are relevant. Configuration of any
underlying function determines how the function behaves when
an error is encountered—whether it terminates with a dynamic
error, or continues and returns a predetermined value (either an
empty sequence or an error message). Configuration of the view
itself determines whether to stop or to continue the query
associated with the view when an error is encountered, including
but not limited to errors raised by any underlying functions.

■ For an <xqsview-source> element that defines <output-element>,
check if any XQS function in the underlying query, or in a query
nested via use of another <xqsview-source> function, defines an
"errorMessage" error-handling option. Every such nested
<xqsview-source> function with the onError="errorMessage"
option must provide an appropriate <output-element> definition.
If this requirement is not met and an error occurs in the nested
XQS view function, XQS will create a return value of the type
xs:string for that function. This would violate the declared type of
the outermost XQS view function and create additional XQuery
errors due to a type mismatch.

 Other error-handling options are not subject to this requirement.

■ When an error occurs in the default dynamicError mode, XQS
clients propagate the exception as follows: an EJB will return an
EJB exception; an XQSFacade instance will throw an XQS
exception wrapping the XQuery exception; a JSP tag will throw a
JSP tag exception which can be handled through the standard JSP
errorPage attribute.

■ In addition to creating error objects (discussed in "Retrieving XQS
Error Objects" below), XQS reports errors to OC4J log files
according to your overall OC4J logging configuration. You can
search for XQS error, warning, or information messages in the
relevant log file (such as
ORACLE_HOME/j2ee/home/log/oc4j/log.xml). See Oracle
Containers for J2EE Configuration and Administration Guide for
general information about OC4J logging.
XML Query Service 8-71

Using XQS Error Handling Modes and APIs
Retrieving XQS Error Objects
Assuming an XQS function is configured to use the emptySequence or
errorMessage error-handling mode, you can use features of the XQS client APIs to
retrieve an iterator of error objects, from which you can obtain information about any
problems that occurred during the query. Here is a quick summary:

■ If you use the XQSFacade class or either of the XQS EJB APIs (stateful or
stateless), use the following method to retrieve an iterator containing error objects:

java.util.ListIterator getErrors()

■ If you use the XQS JSP tag library (stateful or stateless), specify the desired
variable name as the value of the errors attribute of the execute or
executeCursor tag. The JSP tag implementation creates the ListIterator
variable and populates it with an iterator containing error objects.

In either case, you will have an iterator containing oracle.xds.client.XQSError
objects. Here is an example:

...
XQSFacade bean = new XQSFacade();
...
bean.executeView(viewname, namespace, queryparams);
...
ListIterator errorIt = bean.getErrors();
XQSError error = null;
while(errorIt.hasNext()) {
 error = (XQSError)errorIt.next();
 (Process errors)
}
...
bean.close();
...

And here is a JSP example:

XQSError error=null;
...
<xq:executeCursor ... errors="errorIt" ... >
 ...
</xq:executeCursor>
...
<xq:next ... />
while(errorIt.hasNext()) {
 error = (XQSError)errorIt.next();
 (Process errors)
}

See the next sections, "Obtaining Information from XQS Error Objects" and "Example:
Error Retrieval and Processing", for information and examples for obtaining error
information.

Obtaining Information from XQS Error Objects
The preceding section, "Retrieving XQS Error Objects", describes how to obtain a
java.util.ListIterator instance consisting of
oracle.xds.client.XQSError objects.

You can process the iterator instance to obtain the individual XQSError objects. The
ListIterator type includes the following methods:
8-72 Oracle Containers for J2EE Services Guide

Using XQS Error Handling Modes and APIs
■ Object next(): This returns the next element in the iterator. You can cast each
element to the XQSError type.

■ boolean hasNext(): This returns true if there are elements remaining.

You can then use the individual XQSError instances to obtain information about each
error that occurred during a query.

This section summarizes the XQSError methods for obtaining error information, and
also summarizes XQS error types. For complete information, see "XQSError Class
Reference" on page 8-85.

With each XQSError instance, you can do the following. Assume an XQSError
instance, xqserr, for these examples:

1. Obtain the qualified name of the XQS function that returned the error:

String funcname = xqserr.getFunctionQName();

2. Obtain the error type (see immediately below for types):

int errortype = xqserr.getErrorType();

3. Obtain string representation of the error type:

String typeStr= XQSError.typeNames(xqserr.getErrorType()
4. Obtain the error message:

String errormessage = xqserr.getErrorMessage();

5. For data sources that provide error codes separately from error messages (such as
ORA-xxxxx codes from an Oracle database), obtain the error code:

String errorcode = xqserr.getErrorCode();

6. Optionally use utility methods to combine the function name, error type, error
message, and error code into a single string, an XML string (a string that includes
appropriate XML markup), or an XML node:

String errorstring = xqserr.toString();
...
String errorxmlstring = xqserr.toXMLString();
...

Notes:

■ XQS returns XQSError objects only if you configure one or more
XQS functions used in your query with a nondefault
emptySequence or errorMessage mode. If no errors occurred,
ListIterator will be empty.

■ The XQSError Java object should not be confused with the error
item of type xs:node, which XQS sometimes constructs as a
return value for an XQS function in the case of an error, as
described in "Configuring XQS Function Error Handling". on
page 8-69. XQSError is a Java object, as opposed to an XML node.
XQSError objects are returned to the client of XQS, whereas the
XML error node is returned to the XQuery execution. Finally,
XQSError objects are returned even if the error mode is
emptySequence, whereas an XML error node is constructed only
when the error mode is errorMessage.
XML Query Service 8-73

Using XQS Error Handling Modes and APIs
org.w3c.dom.node errornode = xqserr.toXMLNode();

Here is a summary of the integer constants for error types:

■ XQSERR_MISSING_SRC: Data source not found.

■ XQSERR_SRC_ACCESS: Data source found but returns an access error (such as
invalid login).

■ XQSERR_SRC_ERROR: Data source found and accessed but returns some other
error.

■ XQSERR_PARAM: Problems encountered in passing bind parameters to the source,
or receiving output parameters from the source.

■ XQSERR_SRC_CONFIG: Problems encountered in processing XQS configuration.

■ XQSERR_INTERNAL:XQS encountered unexpected internal error.

See "XQSError Class Reference" on page 8-85 for additional information about these
constants.

Example: Error Retrieval and Processing
This section shows a simple error-processing example with corresponding
configuration.

Configuration To use XQSError objects in an XQS application (as discussed earlier,
in "Configuring XQS Function Error Handling" on page 8-69), the data source must be
configured for error mode emptySequence or errorMessage. The following
example uses errorMessage mode:

<xqsview-source ... onError="errorMessage">
 <function-name prefix="xqs">BasicFileWS</function-name>
<output-element namespace="myNS">myElement</output-element>
 ...
</xqsview-source>

Because no <error-message> element is used, the one-item XML result sequence
that is returned will forward whatever message comes from the data source, rather
than containing a predefined message. If the XQS view function, in fact, encounters an
error, XQS will construct an <xqserror> XML node and return it as the function
result. The error message will be the text value of the <xqserror> node. XQS will
choose the XML node representation because the XQS view configuration specifies a
user-defined element in its <output-element> configuration.

Java Code Following is a sample code fragment that executes a view and then does
the following error processing:

■ Calls the getErrors() method of the XQSFacade class to retrieve a
java.util.ListIterator instance of XQSError objects.

■ Uses the ListIterator class hasNext() method to determine how many error
objects to iterate through.

■ For each error, prints the qualified name of the XQS function that produced the
error, then prints the error type, error message, and error code.

...
XQSFacade bean = new XQSFacade();
String xqueryView = "BasicFileWS";
QueryParameter param = new QueryParameter("custName");
8-74 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
param.setString("John Ford");
QueryParameter[] params = new QueryParameter[1];
params[0] = param;
bean.executeView(xqueryView, null, params);
while(bean.getNextItem() !=null) {
}
ListIterator errors = bean.getErrors();
while(errors.hasNext()) {
 XQSError error = (XQSError)errors.next();
 System.out.println("The function which gives error is: " +
 error.getFunctionQName());
 System.out.println("The error type is:" + error.getErrorType()) +
", which means " +XQSError.typeNames(error.getErrorType()));

 System.out.println("The error message is:" + error.getErrorMessage());
 System.out.println("The error code is:" + error.getErrorCode());
}
...

XQS Client APIs Reference
This section provides reference documentation for XQS public classes and user
interfaces:

■ XQS QueryParameter Class Reference

■ XQSFacade Class Reference

■ XQS EJB Client API Reference

■ XQS JSP Tag Library Reference

■ XQSError Class Reference

XQS QueryParameter Class Reference
This section documents the constructor and methods of the
oracle.xds.client.QueryParameter class. A QueryParameter array is used
for binding external variables for a query when using the XQS general-purpose Java
API or the EJB API.

"Example 3: XQSFacade API with an XQS View" on page 8-48 includes an example of
using QueryParameter for an input parameter.

QueryParameter Constructors
The QueryParameter class supplies the following constructors:

■ QueryParameter(String namespace, String localName)

■ QueryParameter(String localName)

When you construct a QueryParameter instance, you specify the name of the
external XQuery variable to be bound, and this must match the name from the
corresponding external variable declaration in the XQuery prolog. XQuery
variables use XML names, so the QueryParameter constructor can take two
string values—one for the namespace and one for the local name. If you do not
specify a namespace, then null is assigned to the namespace in the qualified
name.
XML Query Service 8-75

XQS Client APIs Reference
QueryParameter Methods
The QueryParameter class supplies the following methods, each to set a value of an
external XQuery variable. These methods reflect XML types supported by XQS, and
their Java equivalents; also see "Supported Types for Query Parameters" on page 8-40.

■ void setBase64Binary(String value)

Use this to bind a base 64 binary value, represented by a Java string (for example,
"vYrfOJ39673//-BDiIIGHSPM=+"), and corresponding to the XML
base64Binary type.

■ void setBoolean(boolean value)

Use this to bind a boolean value, corresponding to the XML boolean type.

■ void setDateTime(java.util.GregorianCalendar value
 boolean isTimeZoneSet)

Use this to bind a GregorianCalendar value representing a particular point in
time, corresponding to the XML dateTime type. Set isTimeZone to true if the
calendar object TimeZone property has been set. (See
http://java.sun.com/j2se/1.4.2/docs/api/ for information about using
GregorianCalendar objects.)

■ void setDecimal(java.math.BigDecimal value)

Use this to bind a BigDecimal value, corresponding to the XML decimal type.

■ void setDouble(double value)

Use this to bind a double value, corresponding to the XML double type.

■ void setDuration(String value)

Use this to bind a String value representing a duration, corresponding to the
XML duration type. See
http://www.w3.org/TR/xmlschema-2/#duration for information about
lexical (string) representations of durations.

■ void setFloat(float value)

Use this to bind a floating point value, corresponding to the XML float type.

■ void setHexBinary(String value)

Use this to bind a hexadecimal binary value, represented by a Java string (for
example, "0FB7"), and corresponding to the XML hexBinary type.

■ void setInt(int value)

Use this to bind an integer value, corresponding to the XML int type.

■ void setInteger(int value)

■ void setInteger(long value)

■ void setInteger(java.math.BigInteger value)

Use one of the setInteger() methods to bind an integer value, corresponding
to the XML integer type. Choose the appropriate signature based on the value
representation or magnitude.

■ void setLong(long value)

Use this to bind a long integer value, corresponding to the XML long type.

■ void setString(String value)
8-76 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
Use this to bind a Java string value, corresponding to the XML string type.

■ void setAnyURI(java.net.URI value)

Use this to bind a URI value, corresponding to the XML anyURI type.

■ void setNode(org.w3c.dom.Node value)

Use this to bind an XML node, corresponding to the XML anyType type or to any
user-defined XML type.

XQSFacade Class Reference
This section documents the constructor and methods of the
oracle.xds.client.XQSFacade class, a general-purpose Java client API that XQS
supplies. See "Using the Java Class Client API" on page 8-42 for usage instructions and
an example.

XQSFacade Constructor
The XQSFacade constructor has no arguments:

■ XQSFacade()

XQSFacade Methods
The XQSFacade class supplies the following methods:

■ void execute(String xquery, QueryParameter[] params)

Use this method to execute an ad-hoc query. Pass in a string containing the query,
and a QueryParameter array for any bind parameters. (See "XQS
QueryParameter Class Reference" on page 8-75.) The array can be null if there are
no parameters to pass.

■ void executeView(String viewName, String namespace,
QueryParameter[] params)

Use this method to execute an XQS view directly. Pass in a view name by
specifying the local name and namespace (as strings), and pass in a
QueryParameter array for any bind parameters (or null). The view name and
namespace together define a qualified name and must match the corresponding
function name and namespace in your configuration, according to the
<function-name> subelement of <xqsview-source>, and its namespace or
prefix attribute.

■ oracle.xml.xqxp.datamodel.XMLItem getNextItem()

After using execute() or executeView(), use getNextItem() to obtain the
next item in the result sequence, as an Oracle XMLItem instance. The first
getNextItem() call returns the first item in the sequence. If you call this method
after you have already retrieved the last item, it returns null.

Note: The QueryParameter class has no getter methods
corresponding to these setter methods.

Important: A call to the getNextItem() method triggers the
evaluation of the item by XQuery. Any resources required when
executing the query (such as a database connection or file handle) are
not freed until after the last getNextItem() call.
XML Query Service 8-77

XQS Client APIs Reference
■ java.util.ListIterator getErrors()

If you configure any of the XQS functions used in your query to continue even if
errors are encountered (as discussed in "Configuring XQS Function Error
Handling" on page 8-69), you can use getErrors() to retrieve information about
any errors that may have been encountered during execution of XQS functions.
This method returns an iterator over a collection of XQSError objects, from which
you can retrieve the specifics of each error. (See "XQSError Class Reference" on
page 8-85.) If there were no errors, the iterator will point to an empty collection.

■ void close()

Use this to free all resources associated with the query. It is good practice to call
close() after retrieving all query results.

XQS EJB Client API Reference
This section documents EJB client methods supported by XQS, through the
XQSClientRemote and XQSClientHome interfaces for remote EJBs, and the
XQSClientLocal and XQSClientLocalHome interfaces for local EJBs. There are
versions of these interfaces for either stateful or stateless session beans.

See "Using the EJB Client API" on page 8-52 for usage instructions and examples.

Stateful EJB Client Methods
The following Oracle-specific methods are available through EJB interfaces in package
oracle.xds.client.ejb.stateful, for stateful session beans, and have the same
functionality as the methods of the same name discussed in "XQSFacade Class
Reference" on page 8-77:

■ void execute(String xquery, QueryParameter[] params)
throws EJBException

■ void executeView(String viewName, String namespace,
QueryParameter[] params)
throws EJBException

■ oracle.xml.xqxp.datamodel.XMLItem getNextItem()
throws EJBException

■ java.util.ListIterator getErrors()

■ void close()

Stateless EJB Client Methods
The following Oracle-specific methods are available through EJB interfaces in package
oracle.xds.client.ejb.stateless, for stateless session beans:

■ java.util.Vector execute(String xquery, QueryParameter[]
params)
throws EJBException

Use this method to execute an ad-hoc query. Pass in a string containing the query,
and a QueryParameter array for any bind parameters. (See "XQS
QueryParameter Class Reference" on page 8-75.) The array can be null if there are
no parameters to pass. Results are fully materialized, returned in a Vector
instance.
8-78 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
■ java.util.Vector executeView(String viewName, String
namespace, QueryParameter[] params)
throws EJBException

Use this method to execute an XQS view. Pass in a view name by specifying the
local name and namespace (as strings), and pass in a QueryParameter array for
any bind parameters (or null). The view name and namespace together define a
qualified name and must match the corresponding function name and namespace
in your configuration, according to the <function-name> subelement of
<xqsview-source>, and its namespace or prefix attribute. Results are fully
materialized, returned in a Vector instance.

■ java.util.ListIterator getErrors()

This method has the same functionality as the method of the same name discussed
in "XQSFacade Class Reference" on page 8-77.

XQS JSP Tag Library Reference
XQS supplies custom JSP tags for either stateful or stateless access to XQuery.

See "Using the JSP Tag Library" on page 8-54 for usage instructions and examples.

See the Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide for
general information about using JSP tag libraries.

JSP Tags for Stateful Access
Use these tags when you want a stateful access to XQuery.

XQS executeCursor Tag Use this tag to prepare and execute the query. It has the
following syntax. (The param subtag, used for any bind parameters, is described
next.)

<xq:executeCursor
 [xqueryString = "query"]
 [xqsViewName = "viewname"]
 [namespace = "namespace"]
 cursorId = "cursorname"
 [maxItems = "maxnumber"]
 [toWriter = "true" | "false"]
 toXMLDoc = "docname"
 resultItems = "arrayname"
 errors = "errorvarname" >

Notes: The prefix "xq:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired prefix in
your taglib directive.

For tag syntax, note the following:

■ Italic indicates where you specify a value or string.

■ Optional attributes are enclosed in square brackets: [...]

■ Default values of optional attributes are indicated in bold.

■ Choices in attribute values are separated by vertical bars: |

■ Except where noted, you can use JSP runtime expressions to set
tag attribute values: "<%= jspExpression %>"
XML Query Service 8-79

XQS Client APIs Reference
 <xq:param ... />
 <xq:param ... />
 ...

</xq:executeCursor>

Use attributes of the executeCursor tag as follows:

■ xqueryString: When using an ad-hoc query, use this attribute to specify the
complete XQuery syntax of the query. It is usually easiest to define the query in a
string variable and specify the name of the variable in a JSP expression:

String myquerystring = "...";
...
<xq:executeCursor ... xqueryString = "<%=myquerystring%>" ... >
 ...
</xq:executeCursor>

■ xqsViewName: When using an XQS view, use this attribute to specify the view.
Specifically, this is the name of the corresponding XQS function name in your
configuration.

■ namespace: If you use xqsViewName to specify a view, you must also use
namespace to specify the namespace of the XQS function for the view, according
to your XQS configuration.

■ cursorId (required): Use this tag to specify the name of a variable for the cursor,
for later use. (The variable will be declared by the JSP container.) You will
reference the specified variable name when you use a next tag to retrieve results
from the cursor, and when you use the close tag to close the cursor. Here is an
example:

<xq:executeCursor ... cursorId="mycursor" ... >
 ...
</xq:executeCursor>
...
<xq:next cursorId="mycursor" />
...
<xq:close cursorId="mycursor" />

■ maxItems: Use this if you want to specify a maximum number of items to receive
from the query, such as maxItems="10000". Items beyond that point will be
discarded, and the next tag will stop returning values after maxItem items have
been received.

■ toWriter: Set this to "true" to output query results to the JSP output stream. The
writing occurs every time the next tag is executed.

■ toXMLDoc (required): Provide the name for a variable to be used by a related
next tag to output query results to an XML DOM document. The document can
be used after the executeCursor tag. A variable of type

Important:

■ For query input, you must use either the xqueryString attribute
or the xqsViewName and namespace attributes.

■ You must provide variable names for the output attributes
toXMLDoc, resultItems, and errors.
8-80 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
org.w3c.dom.Document will be declared by the JSP container. Here is an
example:

<xq:executeCursor cursorId="mycursor" toXMLDoc="mydoc" ... >
 ...
</xq:executeCursor>

<xq:next cursorId="mycursor" />

Element root = mydoc.getDocumentElement();
...

After using the executeCursor tag, each time you execute the next tag you will
receive a batch of result nodes collected in the document mydoc.

■ resultItems (required): Provide the name for a variable to be used by a related
next tag to output query results to an array list. A variable of type
java.util.ArrayList will be declared by the JSP container. The ArrayList
instance can be used after the executeCursor tag. Here is an example:

<xq:executeCursor ... resultItems="myobjects" ... >
 ...
</xq:executeCursor>

Node node = (Node)myobjects.get(0);
...

After using the executeCursor tag, each time you execute the next tag you can
access a result item from the myobjects variable.

■ errors (required): Provide the name of a variable to be used in retrieving errors
that result from execution of the XQS query. A variable of type

Important:

■ The toXMLDoc document collects only results that are XML
nodes. Results that are primitive types are ignored for the XML
document, but collected through the resultItems array.

■ The toXMLDoc document holds only the batch of items from one
execution of the next tag. Each subsequent execution of next
overwrites the items with a new set of items.

■ You cannot use a runtime expression for the toXMLDoc attribute.

Note: The specified name will also become the name of the root
element of the document.

Important:

■ The resultItems variable holds only the batch of items from
one execution of the next tag. Each subsequent execution of next
overwrites the items with a new set of items.

■ You cannot use a runtime expression for the resultItems
attribute.
XML Query Service 8-81

XQS Client APIs Reference
java.util.ListIterator will be declared by the JSP container for an iterator
over a collection of XQSError objects (one object per error). The iterator can be
used after the executeCursor tag. Here is an example:

<xq:executeCursor cursorId="mycursor" errors="myerroriter" ... >
 ...
</xq:executeCursor>
<xq:next cursorId="mycursor" />

XQSError error = (XQSError)myerroriterator.next();
...

See "XQSError Class Reference" on page 8-85 for how to use XQSError objects.

XQS param Tag Use this subtag of executeCursor and execute to specify any
external bind parameters for the query (one param tag per parameter). It has the
following syntax:

<xq:param
 localName = "localvarname"
 [namespace = "namespace"]
 value = "bindvalue"
 type = "bindparamtype"
/>

Use attributes of the param tag as follows:

■ localName (required): Use this to specify the local part of the external variable
name.

■ namespace: Use this to specify the namespace part of the external variable name.
Because it is permissible to use a local variable name without a namespace, this
attribute is optional.

■ value (required): Use this for the value to be bound, which will presumably be a
runtime value using a JSP runtime expression:

<xq:param ... value = "<%=jspExpression%>"... />

■ type (required): Use this to specify the data type of the bind parameter, indicating
an XML type for which the XQS QueryParameter class supports a
corresponding Java type. Supported settings, and the type or types for which they
are appropriate, are shown in Table 8–3. (Also see "Supported Types for Query
Parameters" on page 8-40.)

Important: You cannot use a runtime expression for the errors
attribute.

Note: The type of the bind value must be a match for the type
attribute setting, as noted in Table 8–3 below.

Table 8–3 Correspondence of Java Types to type Attribute Settings

type Attribute Setting Matching Java Type(s)

boolean java.lang.Boolean

string java.lang.String
8-82 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
XQS next Tag Use this tag to process results, item by item or batch by batch, from the
executeCursor tag, referencing the cursor ID name that you specified in that tag.
The next tag has the following syntax:

<xq:next
 cursorId = "cursorname"
 [batchSize= "numitems"]
 [itemsFetched = "intvarname"]
/>

Use attributes of the next tag as follows:

■ cursorId (required): Use this attribute to reference the cursor name for the query,
as specified in the executeCursor tag. The cursor must still be open (there has
not yet been a close tag specifying the same cursor name).

■ batchSize: Use this attribute if you want XQS to use batch mode for the query.
Specify an integer value for how many items you want fetched from the cursor
each time the next tag is executed. The default value is "1" (no batching).

■ itemsFetched: Specify the name of a java.lang.Integer variable for a value
that indicates how many items were fetched from the cursor in the current next
tag execution. The variable will be declared by the JSP container.

Here is an example:

...
<xq:executeCursor cursorId="mycursor"
 resultItems="myresults"
 toXMLDoc="mydoc"

int java.lang.Integer

integer java.lang.Integer, java.lang.Long, java.math.BigInteger

long java.lang.Long

float java.lang.Float

double java.lang.Double

decimal java.math.BigDecimal

base64Binary java.lang.String

(Representation of the value.)

hexBinary java.lang.String

(Representation of the value.)

anyURI java.net.URI

dateTime java.util.GregorianCalendar

(With the assumption that the time zone for the calendar value
has been initialized appropriately.)

duration java.lang.String

(Lexical representation of the duration, discussed at
http://www.w3.org/TR/xmlschema-2/#duration.)

node java.lang.String

(Text representation of the node, to be parsed by an XML parser.)

Table 8–3 (Cont.) Correspondence of Java Types to type Attribute Settings

type Attribute Setting Matching Java Type(s)
XML Query Service 8-83

XQS Client APIs Reference
 errors="myerrors" ... >
 <xq:param ... />
 ...
</xq:executeCursor>
<%
 int items;
 do {
 // Populate output vehicles (myresults array and mydoc document)
%>
 <xq:next
 cursorId="mycursor"
 itemsFetched="fetched" />
<%
 items = fetched.intValue();
 } while(items>0)
 // ... Here is where you would retrieve results from the output vehicles ...
%>
...

XQS close Tag For a stateful JSP (using the executeCursor tag), use the close tag to
free resources associated with the query. It has the following syntax:

<xq:close
 cursorId = "cursorname"
/>

Use attributes of the close tag as follows:

■ cursorId (required): Use this attribute to reference the cursor name, as specified
in the executeCursor tag, corresponding to the query you want to close.

JSP Tags for Stateless Access
Use the execute tag when you want a stateless access to XQuery.

XQS execute Tag Use this tag to prepare and execute the query. It has the following
syntax:

<xq:execute
 [xqueryString = "query"]
 [xqsViewName = "viewname"]
 [namespace = "namespace"]
 [maxItems = "maxnumber"]
 [toWriter = "true" | "false"]
 toXMLDoc = "docname"
 resultItems = "arrayname"
 errors = "errorvarname" >

 <xq:param ... />
 <xq:param ... />
 ...

</xq:execute>
8-84 Oracle Containers for J2EE Services Guide

XQS Client APIs Reference
Aside from cursorId, this tag uses the same attributes as the executeCursor tag
(for stateful access). It also uses the XQS param subtag, as does executeCursor, for
bind parameters. See "XQS executeCursor Tag" on page 8-79 and "XQS param Tag" on
page 8-82.

XQSError Class Reference
This section provides reference documentation for the class
oracle.xds.client.XQSError.

If you configure any of the XQS functions used in your query to continue even if errors
are encountered, as discussed in "Configuring XQS Function Error Handling" on
page 8-69, you can retrieve information about any errors that may have occurred
during execution of the XQS function for the query. Errors are returned in an iterator
of XQSError objects.

The XQSError class provides a number of methods to return its key information—the
name of the XQS function that encountered the error, the type of error (an XQS-specific
designation), the error message, and the error code (if applicable)—in various formats.
See "Obtaining Information from XQS Error Objects" on page 8-72 for usage
instructions and an example.

■ String getFunctionQName()

Use this to get the fully qualified name of the XQS function that encountered the
error, as follows:

{namespace_URI}/local_name

■ int getErrorType()

Use this to get an integer constant that indicates the XQS error type designation:

– XQSERR_MISSING_SRC if the data source cannot be found—such as if an
HTTP 404 error is returned, the file is not found for a document source, the
source is down, or the desired table in a database source does not exist.

– XQSERR_SRC_ACCESS if the data source is found but returns an access error.
This would include, for example, an ORA-xxxxx error from an Oracle
database, a Web site login error, or a parser error when reading a document
source.

– XQSERR_SRC_ERROR if the data source is found but returns some kind of
error besides an access error, such as a business method error, a Web service
fault message, or a SQL error for a database source.

– XQSERR_PARAM if XQS encountered problems in passing bind parameters to
the data source or receiving output parameters from the data source. For
example, this is returned if XQS could not convert an input string to the
corresponding data type required according to the WSDL document, or if XQS
could not transform a non-XML file into an XML document with the particular
transformer it is using.

Important:

■ For query input, you must use either the xqueryString
attribute, or the xqsViewName and namespace attributes.

■ You must provide variable names for output vehicles using the
required attributes toXMLDoc, resultItems, and errors.
XML Query Service 8-85

XQS Configuration File Reference
– XQSERR_SRC_CONFIG if XQS encountered a problem while processing
configuration of the XQS function.

– XQSERR_INTERNAL if XQS encountered an unexpected internal error.

■ String getErrorMessage()

Use this to retrieve the error message, either from the data source or from XQS, as
applicable. This method never returns null. If a data source generates an error
without returning a message, XQS returns the generic message "Function
generated an error."

■ String getErrorCode()

For an error generated by a data source, use this to return the XQS error code
string.

■ String toString()

Use this to combine the function name, error type, error code, and error message
into a single string.

■ String toXMLString()

Use this to combine the function name, error type, error code, and error message
into a string representation of an XML error element.

■ public static String[] typenames

Use this static array to store one of the following string representations of XQS
error types in each element of the array:

– XQSERR_MISSING_SRC

– XQSERR_SRC_ACCESS

– XQSERR_PARAM

– XQSERR_SRC_ERROR

– XQSERR_SRC_CONFIG

– XQSERR_INTERNAL

Given a Java object error of type XQSError, the expression
XQSError.typNames[error.getErrorType()] returns a string appropriate
for the error type of the object.

■ org.w3c.dom.Node toXMLNode()

Use this to retrieve the function name, error type, error code, and error message in
DOM node format.

XQS Configuration File Reference
This section has an alphabetical dictionary of elements of the XQS configuration files,
xqs-config.xml and global-xqs-config.xml. The XML schema for XQS
configuration files can be found at
http://www.oracle.com/technology/tech/xml/xqs/xqs-config.xsd. It is
also available with the XLSDemo application in
xds/samples/XQSDemo/XDS/xqs-config.xsd, This XML schema applies to both
the application-specific as well as global configurations Also see "How to Configure
Your XQS Functions" on page 8-24 for information about the use of key elements for
each category of data source.
8-86 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
At the application level, XQS looks for xqs-config.xml in the
xqs-resources.jar file at the top level of the application EAR file. The global
version, global-xqs-config.xml, is in the following location:

ORACLE_HOME/j2ee/home/config

For each external function declared for an XQuery expression, XQS will first look for
configuration for the function in the application-specific xqs-config.xml file; if the
configuration is not found there, XQS will look in global-xqs-config.xml, where
you can configure data sources available to any application.

Following is a summary of the hierarchy of these files. For each XQS function you
configure, you will use a <wsdl-source> element, <xqsview-source> element, or
<wsdl-source> element, depending on the kind of data source being accessed.

<xqs-config>
 <bind-prefix>
 <use-prefix>
 <xqs-sources>
 <wsdl-source>
 <function-name>
 <cache-properties>
 <in-memory>
 <output-element>
 <error-message>
 <wsdlURL>
 <operation>
 <service>
 <portType>
 <port>
 <input-parameters>
 <part>
 <schema-type>
 <typeMap>
 <mapping>
 <xmlType>
 <xqsview-source>
 <function-name>
 <cache-properties>
 <in-memory>
 <output-element>
 <error-message>
 <repository>
 <queryName>
 <input-parameters>
 <part>
 <schema-type>
 <xquery-sequence>
 <itemType>
 <document-source>
 <function-name>
 <cache-properties>
 <in-memory>
 <output-element>
 <error-message>
 <documentURL>
 <XMLTranslate>
 <schema-file>
XML Query Service 8-87

XQS Configuration File Reference
<bind-prefix>

Parent element: <xqs-config>

Child elements: <use-prefix>

Required? Optional; zero or one

Use this element, with <use-prefix> subelements, if you want to designate prefixes
to represent certain XML namespaces in XQS configuration elements. Each
<use-prefix> subelement designates one prefix.

The <bind-prefix> element has no attributes.

<cache-properties>

Parent element: <document-source>, <wsdl-source>, or <xqsview-source>

Child elements: <in-memory>

Required? Optional; zero or one inside each occurrence of a parent element

If you enable XQS caching through the isCached attribute of <document-source>,
<wsdl-source>, or <xqsview-source>, use the <cache-properties> element
with its required <in-memory> subelement to set caching properties for use by the
particular XQS function. See "XQS Caching Strategies" on page 8-67 for related
considerations.

The <cache-properties> element is ignored if isCached="false" (the default).

<document-source>

Parent element: <xqs-sources>

Child elements: <cache-properties>, <documentURL>, <error-message>,
<function-name>, <output-element>, <XMLTranslate>

Required? Optional; zero or more

Use a <document-source> element and its subelements (as appropriate) for each
XQS function you configure that uses a document source.

You can configure the use of a generic document source where the URL is taken at
runtime, or you can use the <documentURL> subelement to specify a fixed URL in the
configuration. (For an example of taking a URL at runtime, see "Configuring an XQS
Function That Accesses a Document Source" on page 8-24.)

For a non-XML document, you can use the <XMLTranslate> element to configure
translation to XML, if the document conforms to formats supported by the D3L tool.

Table 8–4 <cache-properties> Attributes

Name Description

time-to-live Values: Integer (seconds)

Default: n/a (required)

This specifies how long items are held in the cache before
expiring.
8-88 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
(See "Preparing to Use a Non-XML Document Source" on page 8-15 for information
about D3L.)

<documentURL>

Parent element: <document-source>

Child elements: None

Required? Optional; zero or one inside each occurrence of the parent element

Use the value of this element to specify the document to use as the data source, such as
in the following example:

<documentURL>http://host:port/xqsdemos/Repository/pos-2KB.xml</documentURL>

If it is a non-XML document, use the <XMLTranslate> subelement of
<document-source> to specify the translation tool for XQS to use.

The <documentURL> element has no attributes.

Table 8–5 <document-source> Attributes

Name Description

isCached Values: Boolean

Default: false

Set this to "true" to cache results from the data source. Also see
"Configuring XQS Caching" on page 8-66 and information about
the <cache-properties> element.

largeData Values: Boolean

Default: false

Set this to "true" if you want to provide a hint to XQS that it
should try to use memory-saving internal optimizations to
handle large volumes of data. (Use only when necessary.) Also
see "Configuring XQS Document or View Sources for Large
Data" on page 8-68.

onError Values: dynamicError | emptySequence | errorMessage

Default: dynamicError

This determines which error-handling mode XQS uses. See
"Configuring XQS Function Error Handling" on page 8-69.
XML Query Service 8-89

XQS Configuration File Reference
<error-message>

Parent element: <document-source>, <wsdl-source>, or <xqsview-source>

Child elements: None

Required? Optional; zero or one inside each occurrence of a parent element

For the XQS errorMessage error mode—determined by the onError attribute of
<document-source>, <wsdl-source>, or <xqsview-source>—use the
<error-message> element if you want to predefine a fixed error message instead of
forwarding whatever message comes from the data source. The element value
constitutes the message, as in the following example:

<error-message>No information available</error-message>

Also see "Introduction to XQS Error Handling" on page 8-13.

The <error-message> element has no attributes.

<function-name>

Parent element: <document-source>, <wsdl-source>, or <xqsview-source>

Child elements: None

Required? Required inside each occurrence of a parent element; one only

Use this element to declare the desired name of the XQuery function that XQS will
implement to access the data source. The element value is the function name, and
attribute settings specify the function namespace. (Each XQuery function must belong
to some namespace.) Be aware that you must reference the function namespace every
time you invoke the function in an XQuery expression, unless you have declared that
particular namespace as the default for the XQuery expression.

Use the namespace attribute to specify the namespace directly; use the prefix
attribute as a shortcut if you have previously defined a namespace prefix through a
<bind-prefix> element. You must use one or the other, but do not use both
namespace and prefix at the same time. For information about using the

Notes:

■ If you are behind a firewall and the specified URL requires
external Internet access, be aware that you must also configure
OC4J with appropriate proxy settings.

■ As an alternative to predefining a document URL through the
<documentURL> element, you can omit this element and declare
the XQuery external function (corresponding to the XQS function
you are configuring) to take the document URL as a runtime
argument.

■ For your specification of the document URL, be aware that if the
document is on the local file system, using file:// protocol
instead of http:// protocol will give you faster data retrieval.
8-90 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
<output-element> element, see "Considerations for Using <output-element >" on
on page 8-29.

The function name you specify here is the function name you will declare in the
XQuery external function declarations in your code, to access the corresponding data
source.

Here is an example:

<function-name namespace="http://xmlns.oracle.com/ias/xqs">
 customerInfo
</function-name>

Or, alternatively, if xqs has been defined as a prefix for the XQS namespace:

<function-name prefix="xqs">customerInfo</function-name>

Here is an example of an XQuery function declaration corresponding to the preceding
configuration:

declare namespace xqs="http://xmlns.oracle.com/ias/xqs";
declare function xqs:customerInfo() external;

<in-memory>

Parent element: <cache-properties>

Child elements: None

Required? Required if the parent element is used; one only

Use the <cache-properties> element and its <in-memory> subelement to set XQS
cache properties. Attributes of the <in-memory> element determine the caching
mode. For simple memory-based caching, set useSpool and useDiskCache both to
"false". For memory-based caching with the capability of spooling cached data to
disk as necessary, in case of any memory shortage, set useSpool to "true" and
useDiskCache to "false". For disk-based caching, set useDiskCache to "true"
and useSpool to "false". With disk-based caching, cached data will survive a server
crash. See "XQS Caching Strategies" on page 8-67 for related considerations.

For example, for memory-based caching that uses spooling if necessary:

<cache-properties time-to-live="600">
 <in-memory useSpool="true" useDiskCache="false"/>
</cache-properties>

See "Configuring XQS Caching" on page 8-66 for additional information.

Table 8–6 <function-name> Attributes

Name Description

namespace Values: URI

Default: None (required if prefix not used)

Specifies the namespace directly.

prefix Values: String

Default: None (required if namespace not used)

Specifies the namespace through a predefined prefix.
XML Query Service 8-91

XQS Configuration File Reference
<input-parameters>

Parent element: <wsdl-source> or <xqsview-source>

Child elements: <part>

Required? Required inside each occurrence of a parent element; one only

Use this element to specify input parameters to the XQS function for the associated
data source. Use a <part> subelement for each parameter. Type-matching, for WSDL
sources only, is according to the type-match attribute.

This element is required even if there are no input parameters; use an empty element
in that case.

<itemType>

Parent element: <xquery-sequence>

Child elements: None

Required? Optional; zero or one inside each occurrence of the parent element

Table 8–7 <in-memory> Attributes

Name Description

useSpool Values: Boolean

Default: false

Set useSpool="true" for memory-based caching of data, but
with spooling enabled. This allows cached data to be spooled
from memory to disk so that it is not lost if cached objects have
to be removed from memory to reclaim space.

useDiskCache Values: Boolean

Default: false

Set useDiskCache="true" for disk-based caching of data,
which allows the cached data to be recovered in the event of a
server crash.

Table 8–8 <input-parameter> Attributes

Name Description

type-match Values: strict | none

Default: strict

For a WSDL source, this determines whether XQS performs
type-matching for input parameters. With a setting of
type-match="strict" (the default), XQS compares the input
type you specify (through the <schema-type> subelement of
<part>) to the type of the corresponding part in the WSDL
document. "Strict" matching, the only level currently supported,
requires an exact match of the type names. If the actual input
type is not among the types supported by the <schema-type>
element, choose the closest supported type and use a setting of
type-match="none". (Equivalently, you can avoid
type-matching if you do not use a <schema-type> element.)
8-92 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
When you use the <xquery-sequence> element to specify a sequence type as an
input type for an XQS view, where each member of the sequence is of the same type,
you can use the <itemType> subelement to specify the type of the members. This is
useful in allowing XQS to perform type-checking.

Use the namespace attribute to directly specify a namespace that defines the type; use
the prefix attribute as a shortcut if you have previously defined a namespace prefix
through a <bind-prefix> element. You must use one or the other, but do not use
both namespace and prefix at the same time.

<mapping>

Parent element: <typeMap>

Child elements: <xmlType>

Required? Required inside the parent element if that is used; one or more

For a WSDL source with Java or EJB binding, use this in conjunction with its
<xmlType> subelement to map between a Java type and an XML type. Use the
typeClass attribute to specify the Java type.

<operation>

Parent element: <wsdl-source>

Child elements: None

Table 8–9 <itemType> Attributes

Name Description

namespace Values: URI

Default: None (required if prefix not used)

Specifies the namespace directly.

prefix Values: String

Default: None (required if namespace not used)

Specifies the namespace through a predefined prefix.

location Values: URI

Default: None

For a user-defined type, you can specify a URI with the location
where the schema that defines the type can be found. This is
useful for type-checking by XQS, if a corresponding detailed
declaration of the parameter exists in your XQuery prolog.

Table 8–10 <mapping> Attributes

Name Description

typeClass Values: String

Default: n/a (required)

This attribute specifies a fully qualified Java class name for
XML-Java type mapping. The class must be in the OC4J class
path.
XML Query Service 8-93

XQS Configuration File Reference
Required? Required inside each occurrence of the parent element; one only

Use this to specify the Web service operation to execute. It would be an operation
defined in the WSDL document that the <wsdlURL> element points to, with the value
of the XQS <operation> element corresponding to the name attribute of an
<operation> element in the WSDL. Here is an example:

<operation>getCustomerByKey</operation>

The <operation> element has no attributes.

<output-element>

Parent element: <document-source>, <wsdl-source>, or <xqsview-source>

Child elements: None

Required? Optional; zero or one inside each occurrence of a parent element

The value of this element defines the item type of the sequence that is the result of the
XQS function. This element is not required, but XQS can use the information for
type-checking and optimizations. We especially advise you to use this element for an
XQS view source with the setting WSDLvisibility="true". XQS would still
generate a valid Web service operation without the type information, but it is not a
good practice to define an untyped Web service in a production system.

You can define the result item in either of two ways: by its type or by a reference to an
element previously defined in another schema. The name of such an imported element
is given as the text value of the element <output-element>. For example, if items in
the result sequence will be <po> elements from the schema urn:PurchaseOrders
namespace, <output-element> might look like this:

<output-element namespace="urn:purchaseOrders" > po </output-element>
If items in the result sequence will be elements of type POType defined in the schema
urn:PurchaseOrders namespace, found at
http://myHost:/mySchemas/PurchaseOrders.xsd, <output-element>
might look like this:

<output-element prefix="po_ns"
location="http://myHost:/mySchemas/PurchaseOrders.xsd" type="POType"/>
Use the namespace attribute to specify the namespace directly; or use the prefix
attribute as a shortcut if you have previously defined a namespace prefix through a
<bind-prefix> element. You must use one or the other, but do not use both
namespace and prefix at the same time.

Here is an example for a complex type:

<output-element namespace="http://xmlns.oracle.com/ias/xqs/CustomerDemo"
 location="http://host:port/xqsdemos/Customers.xsd"
type="CustomersType">
 cstomers
</output-element>

Here is an example for a simple type:

<output-element prefix="xs">float</output-element>
8-94 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
<part>

Parent element: <input-parameters>

Child elements: <schema-type>, <xquery-sequence>

Required? Required unless parent element is empty; one for each input argument

Use a <part> element for each input parameter for a WSDL source or XQS view.
Specify the name and position (order) of the parameter through the attributes. Use a
<schema-type> subelement or an <xquery-sequence> subelement (for XQS views
only) to specify the type, as appropriate. Specifying the type is required for an XQS
view that uses input parameters. For a WSDL source, specifying a type is not required,
but is useful so that XQS can perform type-checking.

For a WSDL source, each <part> element must correspond to a part in the input
message of the WSDL operation that is used to access the source. For an XQS view,
each <part> element must correspond to an external bind variable of the XQuery that
defines the view.

Table 8–11 <output-element> Attributes

Name Description

namespace Values: URI

Default: None (required if prefix not used)

Specifies a namespace directly.

prefix Values: String

Default: None (required if namespace not used)

Specifies a namespace through a predefined prefix.

location Values: URI

Default: None

Specify a URI with the location where the schema that defines
the element or type can be found. This attribute is required
when you use the <output-element> element in an
<xqsview-source> element that has
WSDLvisibility="true". Otherwise it is not required, but is
useful for type-checking by XQS if a corresponding detailed
declaration of the parameter exists in your XQuery prolog.

type Values: String

Default: None

Specify a local name for the XML type that will be the item type
of the sequence that is the result of the XQS function. The
namespace for the type name is determined from the
namespace or prefix attribute. The type attribute is not
required if the type of result item is defined through a reference
to am element name given as the text value of the
<output-element> element.
XML Query Service 8-95

XQS Configuration File Reference
<password>

Parent element: <document-source>

Child elements: None

Required? Optional; zero or one

This element is reserved for future security enhancements.

The <password> element has no attributes.

<port>

Parent element: <wsdl-source>

Child elements: None

Required? Required inside each occurrence of the parent element; one only

The value of this element specifies the name of a Web service port defined in the
WSDL document that the <wsdlURL> element points to, corresponding to the name
attribute of a <port> element in the WSDL.

Attribute settings specify the namespace, but you are not required to specify a
namespace if the applicable service has only one port.

Use the namespace attribute to specify the namespace directly; use the prefix
attribute as a shortcut if you have previously defined a namespace prefix through a
<bind-prefix> element. Do not use both namespace and prefix at the same time.

For example:

<port namespace="http://customer.myeis.com/">CustomerInfo</port>

Alternatively:

<bind-prefix>
 <use-prefix prefix="myeis">http://customer.myeis.com/</use-prefix>

Table 8–12 <part> Attributes

Name Description

name Values: String

Default: n/a (required)

This specifies the name of the input parameter. For a WSDL
source, the name must be the same as in the WSDL document.
For an XQS view, it must be the same as the name of the external
XQuery variable.

position Values: Positive integer

Default: n/a (required)

The position attributes for all the <part> elements within an
<input-parameters> element together determine the order in
which the input parameters are assigned to message parts (for a
WSDL source) or assigned to external variables (for an XQS
view). The parameter with the lowest position setting, starting
with position="1", is taken first, and so on. Each <part>
element must have a unique position setting.
8-96 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
</bind-prefix>
...
<port prefix="myeis">CustomerInfo</port>

<portType>

Parent element: <wsdl-source>

Child elements: None

Required? May be required; zero or one inside each occurrence of the parent element

The value of this element specifies the name of a Web service port type defined in the
WSDL document that the <wsdlURL> element points to, corresponding to the name
attribute of a <portType> element in the WSDL. This element is required if the port
used for the operation has multiple bindings in the WSDL.

Attribute settings specify the namespace, but you are not required to specify a
namespace if all port types in the WSDL belong to the same namespace.

Use the namespace attribute to specify the namespace directly; use the prefix
attribute as a shortcut if you have previously defined a namespace prefix through a
<bind-prefix> element. Do not use both namespace and prefix at the same time.

For example:

<portType namespace="http://customer.myeis.com/">CustomerInfoType</portType>

<queryName>

Parent element: <xqsview-source>

Child elements: None

Table 8–13 <port> Attributes

Name Description

namespace Values: URI

Default: None

Specifies the namespace directly.

prefix Values: String

Default: None

Specifies the namespace through a predefined prefix.

Table 8–14 <portType> Attributes

Name Description

namespace Values: URI

Default: None

Specifies the namespace directly.

prefix Values: String

Default: None

Specifies the namespace through a predefined prefix.
XML Query Service 8-97

XQS Configuration File Reference
Required? Optional; zero or one inside each occurrence of the parent element

The value of this element specifies the name of the XQuery expression text file (.xq
file) where the XQS view is defined, such as in the following example:

<queryName>UserByOrderNum.xq</queryName>

You can leave off the .xq file name extension, as XQS assumes that automatically. The
directory where XQS looks for the file is according to the <repository> subelement
of <xqsview-source> (or else according to a default location).

If you do not use the <queryName> element, XQS assumes the XQS view file to have
the same name as the function you specify in the <function-name> subelement of
<xqsview-source>.

The <queryName> element has no attributes.

<repository>

Parent element: <xqsview-source>

Child elements: None

Required? Optional; zero or one inside each occurrence of the parent element

The value of this element is the absolute path to the directory containing the XQuery
expression text file (.xq file) where the XQS view is defined. Specify the file name in
the <queryName> subelement of <xqsview-source>.

If you do not use the <repository> element, XQS looks in the directory you
specified through the OC4JPackager -repository option. Here is an example
explicitly specifying what would be the default directory for the XQS demo
application:

<repository>/META-INF/xqs/mydir/</repository>

The <repository> element has no attributes.

<schema-file>

Parent element: <XMLTranslate>

Child elements: None

Required? Required if the parent element is used; one only

If a document source is non-XML and conforms to formats supported by the D3L tool,
use the <XMLTranslate> element and <schema-file> subelement to give
information to XQS about how to translate the document to XML for you. (See
"Preparing to Use a Non-XML Document Source" on page 8-15 for information about
D3L.)

The <XMLTranslate> element specifies the translation tool to use (D3L), and the
<schema-file> element specifies the schema file to use in translation.

Here is an example:

<documentURL>http://host:port/xqsdemos/paymentInfo.csv</documentURL>
<XMLTranslate method="D3L">
 <schema-file>http://host:port/xqsdemos/paymentInfoD3L.xml</schema-file>
8-98 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
</XMLTranslate>

The <schema-file> element has no attributes.

<schema-type>

Parent element: <part>

Child elements: None

Required? See description; one only

For each input parameter for an XQS view, either this element or the
<xquery-sequence> element (for an input sequence) is required to specify the
parameter type.

For each input parameter for a WSDL source, this element is optional inside the
<part> parent element, but is useful for type-checking, or for organizational
purposes—to have all your types listed in the XQS configuration file. (A WSDL source
cannot have an input sequence.)

Note that to perform type-checking for WSDL sources, the <input-parameters>
element must have the attribute setting type-match="strict".

For <schema-type>, the element value specifies the type, and attribute settings
specify the namespace. Use the namespace attribute to specify the namespace
directly; use the prefix attribute as a shortcut if you have previously defined a
namespace prefix through a <bind-prefix> element. You must use one or the other,
but do not use both namespace and prefix at the same time.

Here is an example:

<input-parameters>
 <part position="1" name="empname">
 <schema-type namespace="http://www.w3.org/2001/XMLSchema">string</schema-type>
 </part>
</input-parameters>

Or, alternatively, defining xs as a prefix for the XMLSchema namespace:

<bind-prefix>
 <use-prefix prefix="xs">http://www.w3.org/2001/XMLSchema</use-prefix>
</bind-prefix>
...
<input-parameters>
 <part position="1" name="empname">
 <schema-type prefix="xs">string</schema-type>
 </part>
</input-parameters>

Or, for a user-defined type:

<input-parameters>
 <part position="1" name="DBServiceSelect_cust_id_inparameters">
 <schema-type namespace=
 "http://xmlns.oracle.com/pcbpel/adapter/db/top/TestDBAdapter">
 DBServiceSelect_cust_id
 </schema-type>
 </part>
</input-parameters>
XML Query Service 8-99

XQS Configuration File Reference
In addition to any user-defined XML types, XQS currently supports the following
subset of types defined in the XQuery 1.0 and XPath 2.0 data model: xs:boolean,
xs:string, xs:int, xs:long, xs:float, xs:double, xs:decimal,
xs:base64Binary, xs:hexBinary, xs:anyURI, xs:dateTime, xs:duration,
and xs:anyType. (Also see "Supported Types for Query Parameters" on page 8-40.) If
you have an XQuery/XPath input type that is not among these supported types,
choose a supported type with the Java representation that best suits your data, and use
a setting of type-match="none" in the <input-parameters> element. (For a
WSDL source with a Java or EJB binding, this is a situation where you would also use
the <typeMap> subelement of <wsdl-source>.)

<service>

Parent element: <wsdl-source>

Child elements: None

Required? May be required; zero or one inside each occurrence of the parent element

The value of this element specifies the name of a service. It would be a service defined
in the WSDL document that the <wsdlURL> element points to, with the value of the
XQS <service> element corresponding to the name attribute of a <service>
element in the WSDL. The XQS <service> element is required if the WSDL
document defines multiple services.

Attribute settings specify the namespace, but you are not required to specify a
namespace if all service elements in the WSDL belong to the same namespace.

Use the namespace attribute to specify the namespace directly; use the prefix
attribute as a shortcut if you have previously defined a namespace prefix through a
<bind-prefix> element. Do not use both namespace and prefix at the same time.

For example:

<service namespace="http://customer.myeis.com/">CustomerInfoMYEISService</service>

Table 8–15 <schema-type> Attributes

Name Description

namespace Values: URI

Default: None (required if prefix not used)

Specifies the namespace directly.

prefix Values: String

Default: None (required if namespace not used)

Specifies the namespace through a predefined prefix.

Table 8–16 <service> Attributes

Name Description

namespace Values: URI

Default: None

Specifies the namespace directly.

prefix Values: String

Default: None

Specifies the namespace through a predefined prefix.
8-100 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
<typeMap>

Parent element: <wsdl-source>

Child elements: <mapping>

Required? Optional; zero or one within each occurrence of the parent element

For a WSDL source with a Java or EJB binding, you can use this element as necessary
to map XML types to Java types. Specify the Java type through the <mapping>
subelement, and the XML type through the <xmlType> subelement of <mapping>.

The <typeMap> element has no attributes.

<use-prefix>

Parent element: <bind-prefix>

Child elements: None

Required? Required if the parent element is used; one or more

Use a <bind-prefix> element and <use-prefix> subelements if you want to
designate prefixes to represent certain XML namespaces. Each <use-prefix>
subelement designates one prefix, with the element value specifying a namespace and
the prefix attribute specifying the prefix to represent that namespace. Here is an
example:

<bind-prefix>
 <use-prefix prefix="xs">http://www.w3.org/2001/XMLSchema</use-prefix>
 <use-prefix prefix="xqs">http://xmlns.oracle.com/ias/xqs</use-prefix>
 <use-prefix prefix="myeis">http://customer.myeis.com/</use-prefix>
</bind-prefix>

Given these settings, XQS configuration elements that must specify a namespace can
use, for example, prefix="myeis" instead of
namespace="http://customer.myeis.com/".

<username>

Parent element: <document-source>

Child elements: None

Note: A <use-prefix> designation is valid only in the XQS
configuration file in which it appears, not in XQuery expressions.

Table 8–17 <use-prefix> Attributes

Name Description

prefix Values: String

Default: n/a (required)

This attribute specifies the desired prefix.
XML Query Service 8-101

XQS Configuration File Reference
Required? Optional; zero or one

This element is reserved for future security enhancements.

The <username> element has no attributes.

<wsdl-source>

Parent element: <xqs-sources>

Child elements: <cache-properties>, <error-message>, <function-name>,
<input-parameters>, <operation>, <output-element>, <port>, <portType>, <service>,
<typeMap>, <wsdlURL>

Required? Optional; zero or more

Use a <wsdl-source> element and its subelements (as appropriate) for each XQS
function you configure that will access a WSDL-based source. (See "Supported
Categories of Data Sources" on page 8-7 for an overview of the kinds of WSDL-based
sources you can use with XQS.)

Table 8–18 <wsdl-source> Attributes

Name Description

fetchSize Values: Integer

Default: 1

This attribute takes effect only for WSDL sources that use XQS
SQL binding to connect to a relational database. The attribute is
optional, and the default is 1 row.

The fetchSize attribute is translated into a call to the
setFetchSize method of java.sql.PreparedStatement.
The attribute serves as a hint to JDBC to define the number of
rows in the result set that will be fetched from the database in
one round trip. Note that the setFetchSize parameter in
JDBC (and, therefore, the fetchSize attribute in XQS) is only a
hint; it is not binding.

isCached Values: Boolean

Default: false

Set this to "true" to cache results from the data source. Also see
"Configuring XQS Caching" on page 8-66 and information about
the <cache-properties> element.

largeData Values: Boolean

Default: false

Set this to "true" if you want to provide a hint to XQS that it
should try to use memory-saving internal optimizations to
handle large volumes of data. (Use only when necessary.) Also
see "Configuring XQS Document or View Sources for Large
Data" on page 8-68.

onError Values: dynamicError | emptySequence | errorMessage

Default: dynamicError

This determines which error-handling mode XQS uses. See
"Introduction to XQS Error Handling" on page 8-13.
8-102 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
<wsdlURL>

Parent element: <wsdl-source>

Child elements: None

Required? Required inside each occurrence of the parent element; one only

Use this to point to the WSDL document that defines the operation to be executed. The
WSDL will be accessed at runtime. Here is an example:

<wsdlURL>http://api.mySearch.com/mySearch.wsdl</wsdlURL>

The <wsdlURL> element has no attributes.

<xqs-config>

Parent element: n/a (root)

Child elements: <bind-prefix>, <xqs-sources>

Required? Required; one only

This is the root element of xqs-config.xml and global-xqs-config.xml. At a
minimum, you must have this element, its <xqs-sources> subelement, and at least
one subelement of <xqs-sources>—<document-source>, <wsdl-source>, or
<xqsview-source>.

<xqs-sources>

Parent element: <xqs-config>

Child elements: <document-source>, <wsdl-source>, <xqsview-source>

Required? Required; one only

This is the parent element for the source elements for all XQS functions being
configured. It does not have any attributes.

Note: If you are behind a firewall and the specified URL requires
external Internet access, be aware that you must also configure OC4J
with appropriate proxy settings.

Table 8–19 <xqs-config> Attributes

Name Description

version Values: XML name token (NMTOKEN)

Default: 1.0 (current version)

This attribute notes the version number of the
xqs-config.xml schema definition. For the XQS 10.1.3
implementation, use the default value.
XML Query Service 8-103

XQS Configuration File Reference
<xqsview-source>

Parent element: <xqs-sources>

Child elements: <cache-properties>, <error-message>, <function-name>,
<input-parameters>, <output-element>, <queryName>, <repository>

Required? Optional; zero or more

Use an <xqsview-source> element and its subelements (as appropriate) for each
XQS function you configure that uses an XQS view.

<XMLTranslate>

Parent element: <document-source>

Child elements: <schema-file>

Required? Optional; zero or one inside each occurrence of the parent element

If a document source is non-XML and conforms to formats supported by the D3L tool,
use the <XMLTranslate> element and <schema-file> subelement to give
information to XQS about how to translate the document to XML for you. This is
useful for translating formatted files, such as Excel comma-separated-values (CSV)
files, to XML. See "Preparing to Use a Non-XML Document Source" on page 8-15 for
information about D3L.

Table 8–20 <xqsview-source> Attributes

Name Description

isCached Values: Boolean

Default: false

Set this to "true" to cache results from the data source. Also see
"Configuring XQS Caching" on page 8-66 and information about
the <cache-properties> element.

largeData Values: Boolean

Default: false

Set this to "true" if you want to provide a hint to XQS that it
should try to use memory-saving internal optimizations to
handle large volumes of data. (Use only when necessary.) Also
see "Configuring XQS Document or View Sources for Large
Data" on page 8-68.

onError Values: dynamicError | emptySequence | errorMessage

Default: dynamicError

This determines which error-handling mode XQS uses. See
"Introduction to XQS Error Handling" on page 8-13.

WSDLvisibility Values: Boolean

Default: false

Set this to "true" if you want XQS to expose the view as a Web
service operation in the Web service component of your
application. Also see "Using an XQS View Exposed as a Web
Service Operation" on page 8-58.
8-104 Oracle Containers for J2EE Services Guide

XQS Configuration File Reference
The method attribute of <XMLTranslate> specifies the translation tool to use. XQS
currently supports the D3L translation tool.

The <schema-file> subelement is required, to specify the schema to use in
translation.

<xmlType>

Parent element: <mapping>

Child elements: None

Required? Required inside each occurrence of the parent element; one only

For a WSDL source with Java or EJB binding, use this in conjunction with its
<mapping> parent element to map between a Java type and an XML type. Use
attribute settings to specify the namespace of the XML type: use the namespace
attribute to specify the namespace directly; use the prefix attribute as a shortcut if
you have previously defined a namespace prefix through a <bind-prefix> element.
You must use one or the other, but do not use both namespace and prefix at the
same time.

The <mapping> parent element specifies the Java type.

Here is an example:

<typeMap>
 <mapping typeClass="org.w3c.dom.Node">
 <xmlType prefix="myeis">Customer</xmlType>
 </mapping>
 ...
</typeMap>

<xquery-sequence>

Parent element: <part>

Child elements: <itemType>

Table 8–21 <XMLTranslate> Attributes

Name Description

method Values: D3L

Default: n/a (required)

Specifies the translation tool for XQS to use. XQS currently
supports D3L.

Table 8–22 <xmlType> Attributes

Name Description

namespace Values: URI

Default: None (required if prefix not used)

Specifies the namespace directly.

prefix Values: String

Default: None (required if namespace not used)

Specifies the namespace through a predefined prefix.
XML Query Service 8-105

OC4JPackager Reference
Required? This or <schema-type> is required inside each occurrence of the parent
element or an XQS view; one only

For each input parameter for an XQS view, where the parameter is an XQuery/XPath
sequence type, you must use this element (as opposed to the <schema-type>
element for a non-sequence type) inside the <part> parent element to specify the
type.

For a WSDL source, input sequences are not supported so this element is not relevant.

The <xquery-sequence> element can be used for a heterogeneous sequence
consisting of items of multiple types, in which case it should be an empty element.
Alternatively, it can include the <itemType> subelement to specify the common type
of each member of a homogeneous sequence.

The <xquery-sequence> element has no attributes.

OC4JPackager Reference
This section provides reference documentation for parameters and properties of the
XQS packager utility, OC4JPackager. For an overview, see "Introduction to
OC4JPackager" on page 8-11. For usage instructions, see "How to Use OC4JPackager to
Package Your XQS Application" on page 8-58.

OC4JPackager Parameters
This section documents OC4JPackager parameters in alphabetical order, with
descriptions and usage examples. Run OC4JPackager as follows (where % is the
command prompt):

% java -jar OC4JPackager.jar -option1 value1 -option2 value2 ... -optionN valueN

appArchives
Required. Specify a directory path.

Use this to specify where your application is located—either the directory containing
an EAR file, or the top-level directory of an EAR structure.

-appArchives /dir1/myappdir

globalXqsConfig
Optional. Specify a file path.

If any of the XQS views you want to expose as Web services are configured in the
global-xqs-config.xml file for global access, use this parameter to specify the
path (including file name) of this file. This will bring those views into your local
configuration.

-globalXqsConfig ORACLE_HOME/j2ee/home/config/global-xqs-config.xml

help
Optional. This is a toggle flag.

Note: For specifying paths in parameter or property settings,
OC4JPackager supports paths that are either relative to the current
directory (including the use of "." and ".." directory notation) or
absolute.
8-106 Oracle Containers for J2EE Services Guide

OC4JPackager Reference
Use this without any other parameters to show OC4JPackager usage information and a
parameter list.

-help

jsp
Optional (required if you use the XQS JSP tag library). This is a toggle flag.

Use this to include the XQS JSP tag library JAR file (xquerytaglib.jar) in the
output EAR file.

-jsp

name
Required. Specify an EAR file name.

Use this to specify the desired name of the output EAR file (with or without the .ear
extension). Its location will be determined by the -output parameter.

-name myxqsapp.ear

output
Required. Specify a directory path.

Use this to specify where OC4JPackager should place the EAR file that it creates. The
file name is according to the -name parameter.

-output /dir1/mydeployments

repository
Optional. Specify a directory path.

Use this to specify your XQS repository location, where your XQS views are stored.

-repository ORACLE_HOME/xds/samples/repository

sf
Optional (required if you use the XQS stateful EJB client API). This is a toggle flag.

Use this to include the XQS stateful EJB client JAR file (xqsclient-stateful.jar)
in the output EAR file.

-sf

This also results in the following <module> element being added to the
application.xml file:

<module>
 <ejb>xqsclient-stateful.jar</ejb>
</module>

sl
Optional (required if you use the XQS stateless EJB client API). This is a toggle flag.

Use this to include the XQS stateless EJB client JAR file
(xqsclient-stateless.jar) in the output EAR file.

-sl
XML Query Service 8-107

OC4JPackager Reference
This also results in the following <module> element being added to the
application.xml file:

<module>
 <ejb>xqsclient-stateless.jar</ejb>
</module>

xqsConfigFile
Required. Specify a file path.

Use this to specify the path (including file name) of the XQS configuration file,
xqs-config.xml, for your application.

-xqsConfigFile /dir1/subdir/myconfigdir/xqs-config.xml

Java Properties for OC4JPackager
This section documents Java properties supported by OC4JPackager, in alphabetical
order, with descriptions and usage examples. Use the Java -D option, as follows:

java -Dproperty1=value1 -Dproperty2=value2 -jar OC4JPackager.jar \
 -option1 value1 -option2 value2 ... -optionN valueN

oracle.home
Optional. Specify a directory path.

OC4JPackager supports the oracle.home property to specify your Oracle home
directory. For example:

-Doracle.home=/myroot/myoraclehome

Specifying an Oracle home directory allows XQS to find any client JAR files requested
through the -jsp, -sf, and -sl flags and bundle them with your application. If you
do not set oracle.home, these flags are ignored.

java.home
Required. Specify a directory path.

Specify the path to your Java home directory, from which OC4JPackager will run the
java command for its work (such as unbundling and bundling JAR files).

-Djava.home=/dir1/myjavahome

OC4JPackager will exit if you do not specify this property.

java.util.logging.properties.file
Optional. Specify a file path.

Use this to indicate a path to the file, including the file name, where you specify Java
logging properties, as in the following example (where myfile.properties is in the
current directory):

-Djava.util.logging.properties.file=myfile.properties

Without specifying a logging properties file, you will not see any Java error output.

OC4JPackager logs messages using the standard J2SE logging framework, as described
at the following location:

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/
8-108 Oracle Containers for J2EE Services Guide

Summary of XQS MBeans and Administration
Within the properties file, OC4JPackager supports the property
oracle.xds.tools.OC4JPackager.level to specify any of the following logging
levels for messages from the packager: SEVERE, WARNING, INFO, or FINE. For
high-level progress messages use INFO; for low-level debugging messages, use FINE.

Here are sample entries for a logging properties file, to send messages to the console
and use the INFO level for messages from OC4JPackager:

output to console
handlers= java.util.logging.ConsoleHandler
...
set packager level to INFO
oracle.xds.tools.OC4JPackager.level=INFO

xds.packager.work.dir
Optional. Specify a directory path.

Use this to specify a working directory that OC4JPackager can use when it unbundles
and rebuilds EAR files.

-Dxds.packager.work.dir=/some/dir

The default location is your user.home directory.

Summary of XQS MBeans and Administration
Standards-compliant MBeans play a role in OC4J runtime configuration. The following
sections provide an overview:

■ General Overview of OC4J MBean Administration

■ Summary of XQS MBeans

General Overview of OC4J MBean Administration
OC4J support for the JMX specification (JSR-77) allows standard interfaces to be
created for managing resources dynamically, including resources relating to XQS, in a
J2EE environment. The OC4J implementation of JMX provides a JMX client, the
System MBean Browser, that you can use to manage an OC4J instance through MBeans
that are provided with OC4J.

An MBean is a Java object that represents a JMX manageable resource. Each
manageable resource within OC4J, such as an application, is managed through an
instance of the appropriate MBean. Each MBean provided with OC4J exposes a
management interface that is accessible through the System MBean Browser in the
Application Server Control Console. You can set MBean attributes, execute operations
to call methods on an MBean, subscribe to notifications of errors or specific events, and
display execution statistics.

To access the browser from the OC4J home page, select the Administration tab and
then, under the list of tasks, go to the task "System MBean Browser". From the browser,
you can do the following:

Note: This information is provided for reference, but for the current
release we advise you to make your XQS configuration settings
directly through the configuration files. See "How to Configure Your
XQS Functions" on page 8-24.
XML Query Service 8-109

XQS Troubleshooting
■ Select the MBean of interest in the left-hand frame.

■ Use the Attributes tab in the right-hand frame to view or change attributes. An
attribute that can be set has a field where you can type in a new value. Then apply
the change.

■ Use the Operations tab in the right-hand frame to invoke methods on the MBean.
Select the operation of interest, and then specify to invoke it.

■ Use the Notifications tab (where applicable) in the right-hand frame to subscribe
to notifications. You can select each item for which you want notification, and then
apply the changes.

■ Use the Statistics tab (where applicable) in the right-hand frame to display
execution statistics.

Be aware that MBeans and their attributes vary regarding when changes take effect. In
the runtime model, changes take effect immediately. In the configuration model, some
changes take effect when the resource is restarted, others when the application is
restarted, and still others when OC4J is restarted. There is also variation in whether
changes are persisted.

See the Oracle Containers for J2EE Configuration and Administration Guide for
additional general information about OC4J MBeans. The System MBean Browser itself
also provides information about the MBeans.

Summary of XQS MBeans
Table 8–23 summarizes the OC4J implementation of MBeans that relate to XQS. These
implementations are in the oracle.xds.management package.

Note that if you use these MBeans, XQS does the work of persisting values to the
xqs-config.xml (or global-xqs-config.xml) configuration file, as soon as you
make the updates.

XQS Troubleshooting
This section describes how to enable OC4J logging and offers an assortment of
troubleshooting tips for your XQS application.

Note: MBeans are self-documenting in the System MBean Browser,
providing some documentation of MBean attributes, operations, and
notifications (as applicable).

Table 8–23 System MBeans for XQS

MBean Description

XDSConfig The overall configuration MBean for XQS.

XDSDocumentSourceConfig The configuration MBean for XQS document sources,
corresponding to the XQS <document-source>
configuration element.

XDSWsdlSourceConfig The configuration MBean for XQS WSDL sources,
corresponding to the XQS <wsdl-source>
configuration element.

XDSViewSourceConfig The configuration MBean for XQS views, corresponding
to the <xqsview-source> configuration element.
8-110 Oracle Containers for J2EE Services Guide

XQS Troubleshooting
Enabling OC4J Logging
You can enable OC4J logging by using the Java property
java.util.logging.properties.file to specify a logging properties file. In this
file you can specify Java logging settings, including the OC4JPackager logging level.
Logging properties are defined by standard J2SE logging, as specified at the following
location:

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

For more information about logging, see "java.util.logging.properties.file" on
page 8-108, the chapter on logging in OC4J in the Oracle Containers for J2EE
Configuration and Administration Guide, and the logging implementation guidelines in
the Oracle Containers for J2EE Developer’s Guide.

Key XQS Symptoms, Causes, and Remedies
This section discusses possible problems you may encounter with your XQS
application, and their solutions.

Trouble with large volumes of data: If you have trouble loading large XML
documents into memory, enabling the largeData flag may allow you to proceed. See
"Configuring XQS Document or View Sources for Large Data" on page 8-68.

XQS function did not load properly: You may see an error message such as the
following (where "arity" refers to the number of arguments the function takes, and
"ns" and "funcname" are replaced by the namespace and name of your function):

XP0017: It is a static error if the expanded QName and number of arguments in a
function call do not match the name and arity of an in-scope function in the
static context. Detail: unknown function 'ns:funcname'

The key point is that XQuery did not recognize the function, which is an indication
that the function could not be loaded properly by XQS, perhaps because it was not
configured correctly. Examine your OC4J error log file (such as
ORACLE_HOME/j2ee/home/log/oc4j/log.xml) and look for a detailed
explanation of the particular problem with this function.

External function has inconsistent signatures: Consider an error such as the
following:

external function "Foo" has inconsistent signatures: the one defined in function
library framework is different from the one declared in function declaration
prolog

Be aware that the term "function library framework" in the context of XQS refers to the
signature defined within an <input-parameters> element in the XQS configuration
file. You must ensure that <part> definitions under the <input-parameters>
element match function signatures in your XQuery prologs.

If you have trouble bringing your XQuery signatures into consistency with your
configuration, you may be trying to use an unsupported XML type. (See "Supported
Types for Query Parameters" on page 8-40.) As a workaround, however, you can avoid

Note: There are no Dynamic Monitoring Service (DMS) metrics for
the XQS 10.1.3 implementation.
XML Query Service 8-111

XQS Sample
prolog type declarations for XQuery parameters or XQuery return values altogether.
For example, instead of a fully typed function declaration such as the following:

declare function xqs:Foo ($s as element()) as xs:positiveInteger external;

You can declare the function without types, as follows:

declare function xqs:Foo ($s) external;

However, you are always required to specify the number of input parameters, through
your XQS configuration.

XQS Sample
For an XQS sample, see the technology preview of Oracle XML Query Service on the
Oracle Technology Network at the following location:

http://www.oracle.com/technology/sample_code/tech/java/oc4j/index.html
8-112 Oracle Containers for J2EE Services Guide

Third Party Lice
A

Third Party Licenses

This appendix includes the third party licenses for third party products related to
content discussed in this book.

ANTLR
This program contains third-party code from ANTLR. Under the terms of the Apache
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the ANTLR software, and the terms contained in the
following notices do not change those rights.

The ANTLR License
Software License

We reserve no legal rights to the ANTLR--it is fully in the public domain. An
individual or company may do whatever they wish with source code distributed with
ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or its
output, into commerical software.
We encourage users to develop software with ANTLR. However, we do ask that credit
is given to us for developing ANTLR. By "credit", we mean that if you use ANTLR or
incorporate any source code into one of your programs (commercial product,
research project, or otherwise) that you acknowledge this fact somewhere in the
documentation, research report, etc... If you like ANTLR and have developed a nice
tool with the output, please mention that you developed it using ANTLR. In
addition, we ask that the headers remain intact in our source code. As long as
these guidelines are kept, we expect to continue enhancing this system and expect
to make other tools available as they are completed.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
nses A-1

Apache
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
A-2 Oracle Containers for J2EE Services Guide

Apache
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
Third Party Licenses A-3

Apache
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
A-4 Oracle Containers for J2EE Services Guide

Apache
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
Third Party Licenses A-5

Apache SOAP
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
A-6 Oracle Containers for J2EE Services Guide

Apache SOAP
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

Third Party Licenses A-7

Apache SOAP
 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
A-8 Oracle Containers for J2EE Services Guide

DBI Module
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

DBI Module
This program contains third-party code from Tim Bunce. Under the terms of the Tim
Bunce license, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Tim Bunce software, and the terms contained in
the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Tim Bunce software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or Tim Bunce.

The DBI module is Copyright (c) 1994-2002 Tim Bunce. Ireland. All rights reserved.

You may distribute under the terms of either the GNU General Public License or the
Artistic License, as specified in the Perl README file.

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)
Third Party Licenses A-9

DBI Module
"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
A-10 Oracle Containers for J2EE Services Guide

FastCGI
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt
is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

expat
This program contains third-party code from CPAN. Under the terms of the CPAN
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the CPAN software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the CPAN software is provided by Oracle "AS
IS" and without warranty or support of any kind from Oracle or CPAN.

FastCGI
This program contains third-party code from Open Market, Inc. Under the terms of
the Open Market license, Oracle is required to license the Open Market software to
you under the following terms. Note that the terms contained in the Oracle program
license that accompanied this product do not apply to the Open Market software, and
your rights to use the software are solely as set forth below. Oracle is not responsible
for the performance of the Open Market software, does not provide technical support
for the software, and shall not be liable for any damages arising out of any use of the
software.

FastCGI Developer's Kit License
This FastCGI application library source and object code (the "Software") and its
documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open
Market"). The following terms apply to all files associated with the Software and
Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software
and the Documentation solely for the purpose of implementing the FastCGI
specification defined by Open Market or derivative specifications publicly endorsed
Third Party Licenses A-11

FastCGI
by Open Market and promulgated by an open standards organization and for no other
purpose, provided that existing copyright notices are retained in all copies and that
this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this Software and Documentation may be copyrighted by their
authors and need not follow the licensing terms described here, but the modified
Software and Documentation must be used for the sole purpose of implementing the
FastCGI specification defined by Open Market or derivative specifications publicly
endorsed by Open Market and promulgated by an open standards organization and
for no other purpose. If modifications to this Software and Documentation have new
licensing terms, the new terms must protect Open Market's proprietary rights in the
Software and Documentation to the same extent as these licensing terms and must be
clearly indicated on the first page of each file where they apply.

Open Market shall retain all right, title and interest in and to the Software and
Documentation, including without limitation all patent, copyright, trade secret and
other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT
TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT
LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO
YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING
TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT
LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR
SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN
MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE
SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET
HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE
ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.

Module mod_fastcgi License
This FastCGI application library source and object code (the "Software") and its
documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open
Market"). The following terms apply to all files associated with the Software and
Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software
and the Documentation solely for the purpose of implementing the FastCGI
specification defined by Open Market or derivative specifications publicly endorsed
by Open Market and promulgated by an open standards organization and for no other
purpose, provided that existing copyright notices are retained in all copies and that
this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this Software and Documentation may be copyrighted by their
authors and need not follow the licensing terms described here, but the modified
Software and Documentation must be used for the sole purpose of implementing the
FastCGI specification defined by Open Market or derivative specifications publicly
endorsed by Open Market and promulgated by an open standards organization and
for no other purpose. If modifications to this Software and Documentation have new
licensing terms, the new terms must protect Open Market's proprietary rights in the
Software and Documentation to the same extent as these licensing terms and must be
clearly indicated on the first page of each file where they apply.
A-12 Oracle Containers for J2EE Services Guide

Jabberbeans
Open Market shall retain all right, title and interest in and to the Software and
Documentation, including without limitation all patent, copyright, trade secret and
other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT
TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT
LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO
YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING
TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT
LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR
SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN
MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE
SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET
HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE
ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.

Info-ZIP Unzip Package
This program contains third-party code from Info-ZIP. Under the terms of the
Info-ZIP license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the Info-ZIP software, and the terms contained in
the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Info-ZIP software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or Info-ZIP.

The Info-ZIP Unzip Package License
Copyright (c) 1990-1999 Info-ZIP. All rights reserved. For the purposes of this
copyright and license, "Info-ZIP" is defined as the following set of individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup
Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase, Greg Hartwig,
Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, Johnny Lee, Onno
van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens,
George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith,
Christian Spieler, Antoince Verheijen, Paul von Behren, Rich Wales, Mike White

This software is provided "AS IS," without warranty of any kind, express or
implied. In no event shall InfoZIP or its contributors be held liable for any
direct, indirect, incidental, special or consequential damages arising out of the
use of or inability to use this software."

Jabberbeans
This program contains third-party code from Jabber, Inc. Under the terms of the
Jabber Open Source License, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the JabberBeans software, and the
terms contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the JabberBeans software is
provided by Oracle "AS IS" and without warranty or support of any kind from Oracle
or Jabber, Inc.

The source code for JabberBeans is available from Jabber, Inc. at www.jabber.com.
Third Party Licenses A-13

JSR 110
JSR 110
This program contains third-party code from IBM Corporation ("IBM"). Under the
terms of the IBM license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the IBM software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the IBM software is provided
by Oracle "AS IS" and without warranty or support of any kind from Oracle or IBM.

Copyright IBM Corporation 2003 – All rights reserved

Java APIs for the WSDL specification are available at:
http://www-124.ibm.com/developerworks/projects/wsdl4j/

Jaxen
This program contains third-party code from the Apache Software Foundation
("Apache") and from the Jaxen Project ("Jaxen"). Under the terms of the Apache and
Jaxen licenses, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Apache and Jaxen software, and the terms
contained in the following notices do not change those rights.

The Jaxen License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "Jaxen" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jaxen.org.

Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
A-14 Oracle Containers for J2EE Services Guide

JGroups
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

JGroups
This program contains third-party code from GNU. Under the terms of the GNU
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the GNU software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the GNU software is provided by Oracle "AS
IS" and without warranty or support of any kind from Oracle or GNU.

The GNU License
GNU Lesser General Public License
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the
successor of the GNU Library Public License, version 2, hence the version number
2.1.]

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software--to make sure the software is free
for all its users.

This license, the Lesser General Public License, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide to use it. You can use it too, but we suggest you
first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish); that
you receive source code or can get it if you want it; that you can change the
software and use pieces of it in new free programs; and that you are informed that
you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
Third Party Licenses A-15

JGroups
that they, too, receive or can get the source code. If you link other code with
the library, you must provide complete object files to the recipients, so that
they can relink them with the library after making changes to the library and
recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy,
distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no
warranty for the free library. Also, if the library is modified by someone else
and passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the users
of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License,
applies to certain designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code
with the library.

We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General
Public License for many libraries. However, the Lesser license provides advantages
in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard.
To achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to
free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as well as its variant, the
GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library
has the freedom and the wherewithal to run that program using a modified version
of the Library.

The precise terms and conditions for copying, distribution and modification
A-16 Oracle Containers for J2EE Services Guide

JGroups
follow. Pay close attention to the difference between a "work based on the
library" and a "work that uses the library". The former contains code derived from
the library, whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying
it may be distributed under the terms of this Lesser General Public License (also
called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under copyright law: that is to say, a work
containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using the
Library is not restricted, and output from such a program is covered only if its
contents constitute a work based on the Library (independent of the use of the
Library in a tool for writing it). Whether that is true depends on what the
Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data
to be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
Third Party Licenses A-17

JGroups
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function
must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter
all the notices that refer to this License, so that they refer to the ordinary GNU
General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you
can specify that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it,
under Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the
same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation, is not a derivative work
of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a "work that uses the library". The executable is
A-18 Oracle Containers for J2EE Services Guide

JGroups
therefore covered by this License. Section 6 states terms for distribution of such
executables.

When a "work that uses the Library" uses material from a header file that is part
of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is
itself a library. The threshold for this to be true is not precisely defined by
law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in
length), then the use of the object file is unrestricted, regardless of whether it
is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the
object code for the work under the terms of Section 6. Any executables containing
that work also fall under Section 6, whether or not they are linked directly with
the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of
the Library, and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as well
as a reference directing the user to the copy of this License. Also, you must do
one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable "work that uses the
Library", as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to
use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library already
present on the user's computer system, rather than copying library functions into
the executable, and (2) will operate properly with a modified version of the
library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to
give the same user the materials specified in Subsection 6a, above, for a charge
no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified materials
from the same place.

e) Verify that the user has already received a copy of these materials or that you
Third Party Licenses A-19

JGroups
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is
a work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it
A-20 Oracle Containers for J2EE Services Guide

JGroups
and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain
countries either by patents or by copyrighted interfaces, the original copyright
holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask
for permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
Third Party Licenses A-21

JTidy
TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest possible use
to the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright" line and
a pointer to where the full notice is found.

<one line to give the library's name and an idea of what it does.> Copyright (C)
<year> <name of author>

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

JTidy
This program contains third-party code known as Java HTML Tidy "JTidy" from the
World Wide Web Consortium ("W3C") and the following contributing authors: Dave
Raggett dsr@w3.org, Andy Quick <ac.quick@sympatico.ca> (translation to Java), Gary
L Peskin <garyp@firstech.com> (Java development), Sami Lempinen
<sami@lempinen.net> (release management). Note, however, that the Oracle
program license that accompanied this product determines your right to use the
Oracle program, including the W3C JTidy software. Notwithstanding anything to the
contrary in the Oracle program license, the W3C JTidy software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle, the W3C or the
contributing authors.

mod_dav
This program contains third-party code from Greg Stein. Under the terms of the Greg
Stein license, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Greg Stein software, and the terms contained in
the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Greg Stein software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or Greg Stein.

Copyright © 1998-2001 Greg Stein. All rights reserved.
A-22 Oracle Containers for J2EE Services Guide

mod_mm and mod_ssl
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 3. All advertising materials mentioning features or use of this software
 must display the following acknowledgment:

 This product includes software developed by Greg Stein
 <gstein@lyra.org> for use in the mod_dav module for Apache
 (http://www.webdav.org/mod_dav/).

 4. Products derived from this software may not be called "mod_dav" nor may
 "mod_dav" appear in their names without prior written permission of
 Greg Stein. For written permission, please contact gstein@lyra.org.

 5. Redistributions of any form whatsoever must retain the following
 acknowledgment:

 This product includes software developed by Greg Stein
 <gstein@lyra.org> for use in the mod_dav module for Apache
 (http://www.webdav.org/mod_dav/).

THIS SOFTWARE IS PROVIDED BY GREG STEIN "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL GREG STEIN OR THE SOFTWARE'S CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 --
Greg Stein
Last modified: Thu Feb 3 17:34:42 PST 2000

mod_mm and mod_ssl
This program contains third-party code from Ralf S. Engelschall ("Engelschall").
Under the terms of the Engelschall license, Oracle is required to provide the following
notices. Note, however, that the Oracle program license that accompanied this
product determines your right to use the Oracle program, including the Engelschall
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the mod_mm
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Engelschall.

mod_mm
Copyright (c) 1999 - 2000 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).
Third Party Licenses A-23

OpenSSL
mod_ssl
Copyright (c) 1998-2001 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

OpenSSL
This program contains third-party code from the OpenSSL Project. Under the terms of
the OpenSSL Project license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the OpenSSL software, and the terms
contained in the following notices do not change those rights.

OpenSSL License
/* ==
 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
A-24 Oracle Containers for J2EE Services Guide

OpenSSL
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
Third Party Licenses A-25

Perl
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

Perl
This program contains third-party code from the Comprehensive Perl Archive
Network ("CPAN"). Under the terms of the CPAN license, Oracle is required to
provide the following notices. Note, however, that the Oracle program license that
accompanied this product determines your right to use the Oracle program, including
the CPAN software, and the terms contained in the following notices do not change
those rights.

Perl Kit Readme
Copyright 1989-2001, Larry Wall

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of either:

1. the GNU General Public License as published by the Free Software Foundation;
either version 1, or (at your option) any later version, or

2. the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See either the GNU General Public License
or the Artistic License for more details.

You should have received a copy of the Artistic License with this Kit, in the file named
"Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License along with
this program in the file named "Copying". If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA or visit their
Web page on the internet at http://www.gnu.org/copyleft/gpl.html.

For those of you that choose to use the GNU General Public License, my interpretation
of the GNU General Public License is that no Perl script falls under the terms of the
GPL unless you explicitly put said script under the terms of the GPL yourself.
Furthermore, any object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions of subroutines and
variables, and does not otherwise impair the resulting interpreter from executing any
standard Perl script. I consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You may sell such an
object file as proprietary provided that you provide or offer to provide the Perl source,
as specified by the GNU General Public License. (This is merely an alternate way of
specifying input to the program.) You may also sell a binary produced by the dumping
of a running Perl script that belongs to you, provided that you provide or offer to
A-26 Oracle Containers for J2EE Services Guide

Perl
provide the Perl source as specified by the GPL. (The fact that a Perl interpreter and
your code are in the same binary file is, in this case, a form of mere aggregation.) This
is my interpretation of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License spells all this out for
your protection, so you may prefer to use that.

mod_perl 1.29 License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1996-2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 */
Third Party Licenses A-27

Perl
mod_perl 1.99_16 License
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
A-28 Oracle Containers for J2EE Services Guide

Perl
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
Third Party Licenses A-29

Perl
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
A-30 Oracle Containers for J2EE Services Guide

Perl
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
Third Party Licenses A-31

Perl
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt
is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End
A-32 Oracle Containers for J2EE Services Guide

PHP
PHP
This program contains third-party code from Henry Spencer and the PHP Group.
Under the terms of the Henry Spencer copyright notice and the PHP license, Oracle is
required to provide the following notices. Note, however, that the Oracle program
license that accompanied this product determines your right to use the Oracle
program, including the PHP software, and the terms contained in the following
notices do not change those rights.

The PHP License
--
 The PHP License, version 3.01
Copyright (c) 1999 - 2005 The PHP Group. All rights reserved.
--

Redistribution and use in source and binary forms, with or without
modification, is permitted provided that the following conditions
are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 3. The name "PHP" must not be used to endorse or promote products
 derived from this software without prior written permission. For
 written permission, please contact group@php.net.

 4. Products derived from this software may not be called "PHP", nor
 may "PHP" appear in their name, without prior written permission
 from group@php.net. You may indicate that your software works in
 conjunction with PHP by saying "Foo for PHP" instead of calling
 it "PHP Foo" or "phpfoo"

 5. The PHP Group may publish revised and/or new versions of the
 license from time to time. Each version will be given a
 distinguishing version number.
 Once covered code has been published under a particular version
 of the license, you may always continue to use it under the terms
 of that version. You may also choose to use such covered code
 under the terms of any subsequent version of the license
 published by the PHP Group. No one other than the PHP Group has
 the right to modify the terms applicable to covered code created
 under this License.

 6. Redistributions of any form whatsoever must retain the following
 acknowledgment:
 "This product includes PHP software, freely available from
 <http://www.php.net/software/>".

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PHP
DEVELOPMENT TEAM OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
Third Party Licenses A-33

SAXPath
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

--

SAXPath
This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "SAXPath" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@saxpath.org.

Products derived from this software may not be called "SAXPath", nor may "SAXPath"
appear in their name, without prior written permission from the SAXPath Project
Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made
by many individuals on behalf of the SAXPath Project and was originally created by
bob mcwhirter and James Strachan . For more information on the SAXPath Project,
A-34 Oracle Containers for J2EE Services Guide

W3C DOM
please see http://www.saxpath.org/.

Sun Microsystems, Inc.
This program contains third-party code from Sun Microsystems, Inc. Under the terms
of the Sun license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the Sun software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Sun software is provided by Oracle AS IS
and without warranty or support of any kind from Oracle or Sun.

The Java Logo

W3C DOM
This program contains third-party code from the World Wide Web Consortium
("W3C"). Under the terms of the W3C license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the W3C
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the W3C
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or W3C.

The W3C License
W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby
granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.
Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
Third Party Licenses A-35

W3C DOM
(hypertext is preferred, text is permitted) within the body of any redistributed
or derivative code.
Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is
derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission.
Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.
A-36 Oracle Containers for J2EE Services Guide

Index
Numerics
1pc

See one-phase commit
2pc

See two-phase commit

A
abnormal termination

OEMS JMS, 3-35
ad-hoc query, XQS, 8-2
administration

MBeans administration in OC4J, 8-109
OEMS JMS, 3-38
system MBeans for XQS, 8-110

admin.jar tool, 6-19
ALLOWNULL Java Object Cache attribute, 7-12
Application Server Control Console

configuring JMS ports, 3-26
ApplicationClientInitialContextFactory, 2-11, 6-10
application-client.jar

JNDI, 2-5, 2-12
application-client.xml, 6-17

JNDI, 2-12
AQ, 3-41
Attributes.setCacheEventListener() method, 7-36

B
bind-prefix XQS configuration element, 8-88

C
cache

concepts, 7-2
cache region, 7-8
CacheAccess

createPool() method, 7-44
CacheAccess.getOwnership() method, 7-49
CacheAccess.releaseOwnership() method, 7-49
CacheAccess.save() method, 7-40
CacheEventListener

Java Object Cache attribute, 7-13
CacheEventListener interface, 7-36
CacheLoader.createStream() method, 7-43
cache-properties XQS configuration element, 8-88

CapacityPolicy
Java Object Cache attribute, 7-13

Classloader
Java Object Cache attribute, 7-13

clean-interval configuration XML element, 7-23
client APIs, XQS, 8-10
client-side installation requirements

RMI/ORMI, 6-5
clustering

issues, JMS and OEMS JMS, 3-76
JNDI

enabling, 2-17
limitations, 2-18

com.evermind.server package
ApplicationClientInitialContextFactory, 6-17
ApplicationInitialContextFactory, 6-10
RMIInitialContextFactory, 6-10

Common Secure Interoperability Version 2
See CSIv2

configuring
high availability, 3-73
high availability, OEMS JMS, 3-62
high availability, OEMS JMS Database, 3-73
OC4J for interoperability, 6-16
OEMS JMS, 3-19
OEMS JMS ports, 3-26
XQS, 8-9, 8-86, 8-87

connection factories
default, in OEMS JMS, 3-19

connection factory
configuration examples, 3-24

connection-factory element, 3-23
constructing

JNDI contexts, 2-4
JNDI InitialContext, 2-4, 2-5

context factory
usage, 6-10, 6-17

contextFactory
ApplicationClientInitialContextFactory, 6-17
IIOPInitialContextFactory, 6-17

contextFactory property, 6-17
context.SECURITY_CREDENTIAL

JNDI-related environment properties, 2-13
context.SECURITY_PRINCIPAL

JNDI-related environment properties, 2-12
CORBA Object Service Naming
Index-1

See CosNaming
CORBA Transaction Service

see OTS
corbaname URL, 6-21
CosNaming, 6-15, 6-21
createDiskObject() method, 7-18, 7-41
createInstance() method, 7-45
CreatePool() method, 7-44
createStream() method, 7-18
CSIv2, 6-15

D
data source entry

SQLServer, with DataDirect, 4-39
data sources

introduction, 4-1
summary, 1-2
XQS, 8-7

DataDirect JDBC drivers
installing, 4-38

DBMS_AQADM package, 3-43
DBMS_AQADM.CREATE_QUEUE, 3-43
declaring resource provider references

JMS, 3-16
dedicated.rmicontext

JNDI-related environment properties, 2-12
DefaultTimeToLive

Java Object Cache attribute, 7-13
defineGroup() method, 7-16
defineObject() method, 7-17
defineRegion() method, 7-15
deployment

and interoperability, 6-16
destination objects

default, in OEMS JMS, 3-19
destroy() method, 7-19
destroyInstance() method, 7-45
discoveryAddress property, 7-47
DISTRIBUTE

Java Object Cache attribute, 7-11, 7-46
document-source XQS configuration element, 8-88
documentURL XQS configuration element, 8-89

E
EJB

interoperability, 6-14
making interoperable, 6-18
XQS client API, 8-52, 8-78

EJB interoperability
introduction, 6-15

<entity-deployment> element, 6-16
environment properties

JNDI-related, 2-12
error-message XQS configuration element, 8-90
example

JNDI, servlet retrieves data source, 2-8
examples

connection factory configuration, 3-24

exception queue, predefined
OEMS JMS, 3-36

exceptionHandler() method, 7-18
expressions in XQuery, 8-2

F
file-based persistence

OEMS JMS, 3-31
files

interoperability deployment, 6-16
flags

OC4J, starting interoperably, 6-16
function-name XQS configuration element, 8-90

G
generated stub JAR file, 6-19
getFromRemote() method, 7-18
getID() method, 7-36
getName() method, 7-18
getOwnership() method, 7-49
getOwnsership() method, 7-54
getParent() method, 7-16
getRegion() method, 7-18
getSource() method, 7-36
global-xqs-config.xml file, 8-87
GROUP_TTL_DESTROY

Java Object Cache attribute, 7-11
GROUP_TTL_DESTROY attribute, 7-19

H
handleEvent() method, 7-36
high availability, 3-62, 3-73

and clustering, JMS, 3-62
configuring, 3-73

High Availability Summary, 3-62

I
identifying objects, 7-6
IdleTime

Java Object Cache attribute, 7-13
IIOP, 6-15
iiopClientJar switch, 6-19
IIOPInitialContextFactory, 2-10, 6-17
import

oracle.ias.cache, 7-15
initial context factories

accessing objects in same application, 2-8
accessing objects not in same application, 2-9
JNDI, 2-11

INITIAL_CONTEXT_FACTORY
InitialContext property, 2-6

InitialContext
constructing in JNDI, 2-4, 2-5
constructors, 2-5

InitialContext properties
INITIAL_CONTEXT_FACTORY, 2-6
PROVIDER_URL, 2-6
Index-2

SECURITY_CREDENTIAL, 2-6
SECURITY_PRINCIPAL, 2-6

in-memory XQS configuration element, 8-91
input-parameters XQS configuration element, 8-92
Install and Configure OEMS JMS Database, 3-42
installing

client-side, RMI/ORMI, 6-5
interface types

JMS, 3-4
Internet Inter-ORB Protocol

See IIOP
interoperability

adding to EJB, 6-18
advanced, configuring manually, 6-19
configuring OC4J for, 6-16
files configuring, 6-16
naming, 6-15
OC4J flags, 6-16
overview, 6-14
security, 6-15
summary, 1-2
transaction, 6-15
transport, 6-15

interoperability, simple
in application server environment, 6-19
in standalone environment, 6-18

interoperable transport, 6-18
introduction to data sources, 4-1
invalidate() method, 7-19
<ior-security-config> element, 6-16
itemType XQS configuration element, 8-92

J
J2EE application clients

JNDI initial contexts, 2-11
J2EE application components

JNDI initial contexts, 2-8
Java Object Cache, 7-1, 7-2

attributes, 7-10
basic architecture, 7-3
basic interfaces, 7-4
cache consistency levels, 7-53
cache environment, 7-8
classes, 7-4
configuration

clean-interval XML element, 7-23
maxObjects property, 7-24
maxSize property, 7-23
ping-interval XML element, 7-23

consistency levels
distributed with reply, 7-54
distributed without reply, 7-54
local, 7-54
synchronized, 7-54

default region, 7-8
defining a group, 7-16
defining a region, 7-15
defining an object, 7-17
destroy object, 7-19

disk cache
adding objects to, 7-40

disk objects, 7-39
definition of, 7-7
distributed, 7-41
local, 7-41
using, 7-41

distribute property, 7-47
distributed disk objects, 7-40
distributed groups, 7-47
distributed mode, 7-46
distributed objects, 7-47
distributed regions, 7-47
features, 7-6
group, 7-8
identifying objects, 7-6
invalidating objects, 7-19
local disk objects, 7-40
local mode, 7-46
memory objects

definition of, 7-6
local memory object, 7-6
spooled memory object, 7-6
updating, 7-6

naming objects, 7-6
object types, 7-5, 7-6
pool objects

accessing, 7-45
creating, 7-44
definition of, 7-7
using, 7-43

programming restrictions, 7-38
region, 7-8
StreamAccess object, 7-7
subregion, 7-8
summary, 1-2

Java Object Cache attributes
ALLOWNULL, 7-12
CacheEventListener, 7-13
CapacityPolicy, 7-13
Classloader, 7-13
DefaultTimeToLive, 7-13
DISTRIBUTE, 7-11, 7-46
GROUP_TTL_DESTROY, 7-11
IdleTime, 7-13
LOADER, 7-11
maxCount, 7-14
MaxSize, 7-14
MEASURE, 7-13
ORIGINAL, 7-11
Priority, 7-14
REPLY, 7-12
SPOOL, 7-12
SYNCHRONIZE, 7-12
SYNCHRONIZE_DEFAULT, 7-12
TimeToLive, 7-14
User-defined, 7-14
Version, 7-14

Java-CORBA exception mapping, 6-22
java.naming.factory.initial property, 2-12, 6-8
Index-3

java.naming.factory.url.pkgs
JNDI-related environment properties, 2-12

java.naming.provider.url
JNDI-related environment properties, 2-12
property, 6-8, 6-17

java.util.Hashtable
JNDI, 2-5

javax.naming.Context interface
JNDI, 2-5

javax.naming.InitialContext instance, 2-4
JMS

declaring resource provider references, 3-16
Destination, 3-43
high availability and clustering, 3-62
interface types, 3-4
OEMS, 3-18
sending a message, JMS steps, 3-26
summary, 1-1
system properties, 3-38

JMS Connector, 3-51
jms/default connection factories, 3-53
jms-server element, 3-21
JNDI, 2-1

application-client.jar, 2-5, 2-12
application-client.xml, 2-12
clustering

enabling, 2-17
limitations, 2-18

constructing contexts, 2-4
environment, 2-4, 2-5
example, servlet retrieves data source, 2-8
initial context factories, 2-11
InitialContext constructors, 2-5
java.util.Hashtable, 2-5
javax.naming.Context interface, 2-5
jndi.properties file, 2-5
oracle.j2ee.naming package, 2-11
orion-application-client.xml, 2-12
summary, 1-1

jndi
persistence, 2-4

JNDI Browser, 2-7
JNDI initial components

from J2EE application clients, 2-8
JNDI initial contexts

from J2EE application clients, 2-11
JNDI namespace, 2-7
JNDI tree, 2-7
jndi.properties file, 6-8, 6-17

JNDI, 2-5
JNDI-related environment properties, 2-12

context.SECURITY_CREDENTIAL, 2-13
context.SECURITY_PRINCIPAL, 2-12
dedicated.rmicontext, 2-12
java.naming.factory.url.pkgs, 2-12
java.naming.provider.url, 2-12

JTA
bean-managed transaction, 5-7
container-managed transaction, 5-7
two-phase commit, definition, 5-4

L
LOADER

Java Object Cache attribute, 7-11
log element, 3-24
log() method, 7-18
logging, enabling for XQS, 8-111

M
mapping XQS configuration element, 8-93
maxCount

Java Object Cache attribute, 7-14
maxObjects property, 7-24
MaxSize

Java Object Cache attribute, 7-14
maxSize property, 7-23
MBeans

administration in OC4J, 8-109
system MBeans for XQS, 8-110

MDBs, 3-57
MEASURE

Java Object Cache attribute, 7-13
message

sending in JMS, steps, 3-26
message expiration

OEMS JMS, 3-36
message paging

OEMS JMS, 3-37
Message Router, 3-76
<message-destination-ref> element, 3-59
message-driven beans, See MDBs

N
namespaces, predefined for XQS, 8-3
naming interoperability, 6-15
naming objects, 7-6
netSearch() method, 7-18, 7-54

O
OBJECT_INVALIDATION event, 7-36
OBJECT_UPDATED event, 7-36
OBJECT_UPDATED_SYNC event, 7-36
OC4J-hosted beans

invoking from non-OC4J container, 6-22
oc4j.jms.debug, 3-39
oc4j.jms.forceRecovery, 3-40
oc4j.jms.listenerAttempts, 3-39
oc4j.jms.maxOpenFiles, 3-39
oc4j.jms.messagePoll, 3-38
oc4j.jms.noDms, 3-39
oc4j.jms.pagingThreshold, 3-40
oc4j.jms.saveAllExpireD, 3-39
oc4j.jms.saveAllExpired property, 3-37
oc4j.jms.serverPoll, 3-38
oc4j.jms.socketBufsize, 3-39
OC4JPackager, XQS application, 8-58
OEMAS JMS

control knob oc4j.jms.saveAllExpired, 3-39
Index-4

OEMS JMS, 3-18
abnormal termination, 3-35
administration, 3-38
configuring, 3-19
control knob oc4j.jms.debug, 3-39
control knob oc4j.jms.forceRecovery, 3-40
control knob oc4j.jms.listenerAttempts, 3-39
control knob oc4j.jms.maxOpenFiles, 3-39
control knob oc4j.jms.messagePoll, 3-38
control knob oc4j.jms.noDms, 3-39
control knob oc4j.jms.serverPoll, 3-38
control knob oc4j.jms.socketBufsize, 3-39
default connection factories, 3-19
default destination objects, 3-19
exception queue, predefined, 3-36
file-based persistence, 3-31
message expiration, 3-36
message paging, 3-37
persistence file management, 3-34
persistence, file-based, 3-31
port,

configuring, 3-26
predefined exception queue, 3-36
system properties, table, 3-38
utility, 3-28

OEMS JMS configuring, 3-62
OEMS JMS Database

define resource provider, 3-16
Install and Configure OEMS JMS Database, 3-42

OEMS JMS Database configuring, 3-73
OEMS JMS Database Persistence, 3-41
OEMS JMS ports

configuring, 3-26
OEMS JMS resource provider configuration

elements, 3-20
operation XQS configuration element, 8-93
OPMN URL, 6-21
opmn.xml file

editing, 6-7
Oracle Application Server Containers for J2EE (OC4J)

interoperability, 6-14
interoperability flags, 6-16

OracleAS Web Cache, 7-2
oracle.ias.cache package, 7-15
oracle.j2ee.naming package

JNDI, 2-11
ORIGINAL

Java Object Cache attribute, 7-11
orion-application-client.xml

JNDI, 2-12
orion-application.xml file

and JNDI resource provider, 3-17, 3-48
orion-ejb-jar.xm file

<entity-deployment> element, 6-16
orion-ejb-jar.xml file

<session-deployment> element, 6-16
<ior-security-config> element, 6-16

ORMI, 6-2
ORMI tunneling, 6-13
ORMIS, 6-14

ORMI/SSL, 6-14
OTS, 6-15
output-element XQS configuration element, 8-94

P
part XQS configuration element, 8-95
password XQS configuration element, 8-96
Persistence, 3-41
persistence

jndi, 2-4
persistence file management

OEMS JMS, 3-34
persistence, file-based

OEMS JMS, 3-31
ping-interval configuration XML element, 7-23
PoolAccess

close() method, 7-45
get() method, 7-45
getPool() method, 7-45
object, 7-45
returnToPool() method, 7-45

PoolInstanceFactory
implementing, 7-45

port XQS configuration element, 8-96
portType XQS configuration element, 8-97
predefined exception queue

OEMS JMS, 3-36
prefixes, predefined for XQS, 8-3
Priority

Java Object Cache attribute, 7-14
PROVIDER_URL

InitialContext property, 2-6

Q
queryName XQS configuration element, 8-97
QueryParameter class, XQS, 8-75
queue element, 3-21
queue-connection-factory element, 3-23

R
release_Ownsership() method, 7-54
releaseOwnership() method, 7-49
Remote Method Invocation

See RMI
REPLY

Java Object Cache attributes, 7-12
REPLY attribute, 7-48
repository XQS configuration element, 8-18, 8-98
resource provider

OEMS JMS Database, define, 3-16
<resource-ref> element, 3-58
returnToPool() method, 7-45
RMI

IIOP, 6-15
introduction, 6-2
ORMI, 6-2
overview, 6-2
summary, 1-2
Index-5

<rmi-config> element, 6-4
RMI/IIOP

configuring for advanced interoperability
manually, 6-19

contextFactory property, 6-17
Java-CORBA exception mapping, 6-22
java.naming.factory.initial property, 6-8
java.naming.provider.url property, 6-8, 6-17
jndi.properties file, 6-8, 6-17
simple interoperability in application server

environment, 6-19
simple interoperability in standalone

environment, 6-18
RMIInitialContextFactory, 2-9
<rmi-server> element, 6-4
rmi.xml

editing, 6-4

S
save() method, 7-40
schema-file XQS configuration element, 8-98
schema-type XQS configuration element, 8-99
security interoperability, 6-15
SECURITY_CREDENTIAL

InitialContext property, 2-6
SECURITY_PRINCIPAL

InitialContext property, 2-6
sending a message

JMS steps, 3-26
<sep-config> element, 6-16
server.xml

<sep-config> element, 6-16
service provider interfaces, 2-3
service XQS configuration element, 8-100
<session-deployment> element, 6-16
setAttributes() method, 7-18
setCacheEventListener() method, 7-36
SPIs, 2-3
SPOOL

Java Object Cache attribute, 7-12, 7-40
SQLServer

data source entry with DataDirect, 4-39
SSL, 6-14
stateful access, XQS

client API, 8-41, 8-42
EJB client methods, 8-78
JSP tags, 8-79
XQSFacade class, 8-41, 8-42
XQuery, 8-79

stateless access, XQS
client API, 8-41
EJB client methods, 8-78
JSP tags, 8-84
XQuery, 8-79

StreamAccess object, 7-7
InputStream, 7-42
OutputStream, 7-42
using, 7-42

Streams Advanced Queuing (AQ), 3-41

SYNCHRONIZE
Java Object Cache attribute, 7-12, 7-49

SYNCHRONIZE_DEFAULT
Java Object Cache attribute, 7-12, 7-49

system properties
OEMS JMS, 3-38

T
TimeToLive

Java Object Cache attribute, 7-14
topic element, 3-22
topic-connection-factory element, 3-23
transaction

bean managed, 5-7
container-managed, 5-7

transaction interoperability, 6-15
transaction support

summary, 1-2
transport interoperability, 6-15
tunneling

ORMI, 6-13
two-phase commit

definition, 5-4
typeMap XQS configuration element, 8-101

U
URL

corbaname, 6-21
OPMN, 6-21

use-prefix XQS configuration element, 8-101
User-defined

Java Object Cache attribute, 7-14
username XQS configuration element, 8-101
Using the OEMS JMS Database Option, 3-41
utility

OEMS JMS, 3-28

V
Version

Java Object Cache attribute, 7-14

W
Web Cache, 7-2
Web Object Cache, 7-2
Web service operation, XQS view, 8-61
Web Services Invocation Framework (WSIF), 8-7
wsdl-source XQS configuration element, 8-102
wsdlURL XQS configuration element, 8-103
WSIF (Web Services Invocation Framework), 8-7

X
xa-connection-factory element, 3-24
xa-queue-connection-factory element, 3-24
XML query service

summary, 1-3
XML Query Service (XQS), 8-1
Index-6

XML sequence, defined, 8-2
XMLItem type

description, 8-3
Oracle XQuery result, 8-41

XMLTranslate XQS configuration element, 8-104
xmlType XQS configuration element, 8-105
XQS

administration, 8-110
caching, 8-66
client API

EJB, 8-52, 8-78
reference, 8-75
stateful access, 8-41, 8-42
stateful versus stateless access, 8-41
using, 8-42
XQSFacade class, 8-41, 8-42, 8-77
XQuery implementation, 8-10

configuration elements
bind-prefix, 8-88
cache-properties, 8-88
document-source, 8-88
documentURL, 8-89
error-message, 8-90
function-name, 8-90
in-memory, 8-91
input-parameters, 8-92
itemType, 8-92
mapping, 8-93
operation, 8-93
output-element, 8-94
part, 8-95
password, 8-96
port, 8-96
portType, 8-97
queryName, 8-97
repository, 8-98
schema-file, 8-98
schema-type, 8-99
service, 8-100
typeMap, 8-101
use-prefix, 8-101
username, 8-101
wsdl-source, 8-102
wsdlURL, 8-103
XMLTranslate, 8-104
xmlType, 8-105
xqs-config, 8-103
xqs-sources, 8-103
xqsview-source, 8-104
xquery-sequence, 8-105

configuration files, 8-9, 8-86, 8-87
data source support, 8-7
enabling as OC4J extension, 8-13, 8-14
error handling, 8-69
error types, 8-86
features, 8-7
function

defined, 8-2
error handling, 8-78

JSP tags

library, 8-79
stateful access, 8-79
stateless access, 8-84

large data sets, 8-68
logging, enabling, 8-111
namespaces and prefixes predefined, 8-3
packaging applications, 8-58
performance, 8-65
QueryParameter class

reference, 8-75
type support, 8-40

repository, 8-18
starting, 8-13, 8-14
system MBeans for, 8-110
view

ad-hoc query, 8-2
example with XQSFacade class, 8-48
Web service operation, 8-61
XQuery function, 8-2

XML type support, 8-40, 8-82
xqs-config XQS configuration element, 8-103
xqs-config.xml configuration file, 8-87
XQSError class, 8-85
XQSFacade class

client API, 8-11, 8-41
creating instance, 8-42
description, 8-10
error handling, 8-71, 8-72
example with ad-hoc query, 8-43, 8-46
example with XQS view, 8-48
reference, 8-77
stateful access, 8-41, 8-42
using, 8-42

xqs-resources.jar file, 8-11
xqs-sources XQS configuration element, 8-103
xqsview-source XQS configuration element, 8-104
XQuery

API for Java, 8-5
description, 8-2
error handling, 8-71
expressions, 8-2
function, 8-2
namespaces and prefixes predefined, 8-3
Oracle extension functions, 8-4
Oracle implementation, 8-3
prologs, 8-3
result sequence, 8-2
XQS OC4J service for, 8-2

xquery-sequence XQS configuration element, 8-105
Index-7

Index-8

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to OC4J Services
	Java Naming and Directory Interface (JNDI)
	Java Message Service (JMS)
	Data Sources
	OC4J Transaction Support J
	Using Remote Method Invocation in OC4J
	Java Object Cache
	XML Query Service
	Third-Party Licenses

	2 Oracle JNDI
	What You Need To Know About Oracle JNDI
	Configuring JNDI for Deployment

	Initial Context
	Creating and Using the Initial Context
	Constructing a JNDI Context
	Example: Looking Up An EJB

	JNDI Contexts and Threads

	Browsing the JNDI Context
	Looking Up Objects from J2EE Application Components
	Looking Up Objects In the Same Application
	Example: Servlet Looking Up a Data Source

	Looking Up Objects in Another Application
	RMIInitialContextFactory
	Example: Servlet Looking Up an EJB Remotely Using RMI
	Example: Servlet Looking Up an EJB Remotely in a Multiple Instance Environment

	IIOPInitial ContextFactory
	Example: Servlet Looking Up an EJB Remotely Using IIOP

	Looking Up Objects from J2EE Application Clients
	Environment Properties
	Load Balancing
	Example: Application Client Looking Up an EJB
	Example: Application Client Looking Up an EJB Using IIOP

	JNDI State Replication
	What Is JNDI State Replication
	Enabling JNDI State Replication
	Limitations of JNDI State Replication
	Propagating Changes Across the Cluster
	Binding a Remote Object

	3 Oracle Enterprise Messaging Service (OEMS)
	About JMS
	JMS How-To Documents and Demo Sets

	JMS Configuration Overview
	JMS Configuration Sequence
	Developing and Assembling the Application
	Configuring the Resource Provider
	Configuring the JMS Connector
	Additional Information and Examples

	JMS Configuration File Structure
	Bypassing the JMS Connector for Application Clients

	Resource Providers
	Declaring Resource Provider References
	OEMS JMS In-Memory and File-Based Persistence
	Configuring Destination Objects and Connection Factories
	Default Destination Objects and Connection Factories

	Configuring in the Application Server Control Console
	Configuration Elements
	Configuration Using jms.xml
	Configuring Ports
	Sending and Receiving JMS Messages
	JMS Utility
	Configuring File-Based Persistence
	Enabling File-Based Persistence in the Application Server Control Console
	Enabling File-Based Persistence in the jms.xml File
	Persistence Recovery

	Abnormal Termination
	Recovery Steps

	Predefined Exception Queue
	Message Expiration

	Message Paging
	JMS Configuration Properties
	Resource Naming for OEMS JMS In-Memory and File-Based
	Required Class Path for Application Clients Using Direct OEMS JMS In-Memory and File-Based Lookup

	OEMS JMS Database Persistence
	Using the OEMS JMS Database Option
	Install and Configure OEMS JMS Database
	Create User and Assign Privileges
	Creating OEMS JMS Database Destination Objects
	Declaring the OEMS JMS Database Reference
	Resource Naming for OEMS JMS Database
	Sending and Receiving Messages Using OEMS JMS Database Persistence
	Required Class Path for Application Clients Using Direct OEMS JMS Database Lookup

	Using OEMS JMS Database with the Oracle Application Server and the Oracle Database
	Error When Copying aqapi.jar
	OEMS JMS Database Certification Matrix

	Using Third-Party JMS Providers
	Declaring an IBM WebSphere MQ Resource Provider Reference
	Declaring a TIBCO Enterprise Message Service Resource Provider Reference
	Declaring a SonicMQ Resource Provider Reference

	JMS Connector
	Modifying the JMS Connector
	Configuring the JMS Connector
	JMS Connector Connection Factories and Destinations
	JMS Connector Settings
	Configuring the JMS Connector in the XML Files

	Using Message-Driven Beans
	Using Logical Names to Reference Resources
	How to Declare Logical Names
	Mapping Logical Names to Explicit JNDI Locations
	JNDI Naming Property Setup for Java Application Clients
	Client Sends JMS Message Using Logical Names

	Required Class Path for Application Clients Using JMS Connector Lookup

	Using High Availability and Clustering for OEMS JMS
	Configuring OEMS JMS In-Memory and File-Based High Availability
	Terminology
	Distributed Destinations
	Cold Failover Cluster
	Dedicated JMS Server
	Modifying the OPMN Configuration
	Configuring OEMS JMS
	Deploying Applications
	High Availability

	Custom Topologies
	Mechanisms
	Considerations
	Cases

	Configuring OEMS JMS Database High Availability
	Failover Scenarios When Using a RAC Database
	RAC Network Failover
	Transparent Application Failover (TAF)

	Sample Code for Connection Recovery
	J2CA Configuration for Connection Recovery

	Clustering Best Practices

	JMS Router
	Functionality
	JMS Providers
	Configuration
	Router Jobs
	Global Router Parameter(s)
	Subscription
	Log Queues and Exception Queues
	Configuring the JMS Router and Its Objects
	JMS Router Configuration in jms.xml

	Managing the Router
	Router Logging
	JMS Router Status Information
	Error Handling
	Pausing and Resuming a Job
	Running In a Clustered OC4J Environment
	Routing with Remote Destinations

	4 Data Sources
	Data Source Types
	Managed Data Sources
	Native Data Sources

	Defining Data Sources
	Defining a Connection Pool
	Defining a Managed Data Source
	Defining a Native Data Source
	Defining Fatal Error Codes
	Using Password Indirection

	Connections
	Establishing a Connection
	Using Connection Pools for Managed Data Sources
	Using Connection Proxies with Managed Data Sources
	Getting a Connection From a DataSource
	Retry

	Statements
	Statement Caching with Managed Data Sources
	Setting the JDBC Statement Cache Size in Data Sources

	Statement Proxies with Managed Data Sources

	Transactions
	Local Transactions
	Local Transaction Management

	Global Transactions (XA)
	XA Recovery
	Emulating XA

	Configuring Data Source Objects
	Managed Data Sources
	Native Data Source
	Connection Pools and Connection Factories
	Connection Factories
	Connection Factory Properties
	Connection Factory Proxy Interface

	Connection Properties
	Connection Pools
	Implicit Connection Cache

	Configuration Examples
	Syntax of the data-sources.xml File
	Examples: Configuring Data Sources
	Example: Native Data Source
	Example: Managed Data Source Using an XADataSource Connection Factory
	Example: Managed Data Source Using a DataSource Connection Factory
	Example: Managed Data Source Using a Driver Connection Factory
	Example: Defining Proxy Interfaces
	Example: Defining XA Recovery
	Example: Connection Properties

	Examples: Configuring Transaction Level
	Examples: Configuring Fast Connection Failover

	Using High Availability and Fast Connection Failover
	Using JDBC Drivers
	Oracle JDBC Drivers
	OCI
	Thin
	Notes on Oracle JDBC-OCI driver upgrade in the Oracle Application Server

	JDBC Drivers for non-Oracle Databases
	Installing and Setting Up DataDirect JDBC Drivers
	Example DataDirect Data Source Entries
	DataDirect DB2
	DataDirect Sybase
	DataDirect Informix
	DataDirect SQLServer

	Additional Data Source Configuration Examples

	Legacy Configuration

	5 OC4J Transaction Support
	Introduction to OC4J Transaction Support
	Programming Models - Container-Managed and Bean-Managed Transactions
	Demarcating Transactions
	Demarcating Container-Managed Transactions
	Demarcating Bean-Managed Transactions

	Configuring the OC4J Transaction Manager
	Configuring the Middle-Tier Transaction Manager in the Application Server Control Console and the JTA Resource MBean
	Configuring Middle-Tier OC4J Transaction Support in XML Files
	server.xml
	transaction-manager.xml
	Performance Settings

	oc4j-ra.xml
	data-sources.xml

	Configuring the In-Database Transaction Coordinator

	Managing the OC4J Transaction Manager
	Manual Commit and Rollback Operations
	Monitoring the OC4J Transaction Manager
	OC4J Transaction Support Statistics
	Event Notifications

	Managing OC4J Transaction Manager Recovery

	Transaction Propagation between OC4J Processes over ORMI
	How Does Transaction Propagation Work?
	Configuring Transaction Propagation
	Transaction Propagation Constraints
	Backwards Compatibility
	EJB Failover

	Debugging and Troubleshooting

	6 Using Remote Method Invocation in OC4J
	What Is RMI?
	Choosing RMI/ORMI or RMI/IIOP

	Using Oracle Remote Method Invocation (RMI/ORMI)
	Introducing RMI/ORMI
	Features of ORMI
	Increased RMI Message Throughput
	Enhanced Threading Support
	Co-Located Object Support
	Compatibility Patches for 9.0.4.x and 10.1.2.x

	Configuring RMI in a Standalone OC4J Installation
	Access Restrictions

	Client-Side Requirements to Use RMI/ORMI
	Configuring RMI in an Oracle Application Server Environment

	Remote Object Lookup Using RMI/ORMI
	Setting JNDI Properties for RMI
	Setting the Java Naming Provider URL
	Specifying the opmn Request Port in Oracle Application Server 10g Release 3 (10.1.3)
	Specifying the RMI Port in Oracle Application Server 10g Release 2 (10.1.2) And Earlier

	Specifying the Context Factory

	Configuring ORMI Request Load Balancing
	Example Lookups Using ORMI
	Standalone OC4J 10g Release 3 (10.1.3)
	OC4J in Oracle Application Server 10g Release 3 (10.1.3)
	OC4J in Oracle Application Server Releases Before 10g Release 3 (10.1.3)

	Configuring ORMI Tunneling through HTTP
	Using ORMI/SSL (ORMIS) in OC4J
	Using J2EE Interoperability (RMI/IIOP)
	Introduction to RMI/IIOP
	Transport
	Naming
	Security
	Transactions
	The rmic.jar Compiler

	Configuring OC4J for Interoperability
	Interoperability OC4J Flags
	Interoperability Configuration Files
	JNDI Properties for Interoperability (jndi.properties)
	Context Factory Usage

	Client-Side Requirements to Use IIOP

	Switching from ORMI to IIOP Transport
	Configuring an EJB for Interoperability in a Standalone OC4J Environment
	Configuring an EJB for Interoperability in an Oracle Application Server Environment
	Specifying the corbaname URL
	Specifying the OPMN URL
	Exception Mapping
	Invoking OC4J-Hosted Beans from a Non-OC4J Container

	7 Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	Distributed Object Management

	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Region and Group Size Control
	Cache Object Attributes
	Using Attributes Defined Before Object Loading
	Using Attributes Defined Before or After Object Loading

	Developing Applications Using Java Object Cache
	Importing Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader Object
	Using CacheLoader Helper Methods

	Invalidating Cache Objects
	Destroying Cache Objects
	Multiple Object Loading and Invalidation
	Java Object Cache Configuration
	Examples

	Declarative Cache
	Declarative Cache File Sample
	Declarative Cache File Format
	Examples
	Declarable User-Defined Objects
	Declarable CacheLoader, CacheEventListener, and CapacityPolicy
	Initializing the Java Object Cache in a Non-OC4J Container

	Capacity Control
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Local and Distributed Disk Cache Objects
	Local Objects
	Distributed Objects

	Adding Objects to the Disk Cache
	Automatically Adding Objects
	Explicitly Adding Objects
	Using Objects that Reside Only in Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory
	Pool Object Affinity

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Setting the distribute Configuration Property
	Setting the discoveryAddress Configuration Property

	Using Distributed Objects, Regions, Subregions, and Groups
	Using the REPLY Attribute with Distributed Objects
	Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

	Accessing Objects in Remote Caches
	Cached Object Consistency Levels
	Using Local Objects
	Propagating Changes Without Waiting for a Reply
	Propagating Changes and Waiting for a Reply
	Serializing Changes Across Multiple Caches

	Sharing Cached Objects in an OC4J Servlet
	Using User-Defined Class Loaders
	HTTP and Security for Distributed Cache
	HTTP
	SSL
	Firewall
	Restricting Incoming Connections

	Monitoring and Debugging
	XML Schema for Cache Configuration
	XML Schema for Attribute Declaration

	8 XML Query Service
	Introduction to XML Query Service
	What is XQS?
	Technologies Related to XQS
	A Quick Look at XQuery
	The Oracle XQuery Implementation
	Comparing XQS with the XQuery API for Java

	Why Use XQS?
	Requirements, Limitations, and Special Notes for the Current Release

	Overview of XQS Features and Functionality
	XQS Data Source Support
	Supported Categories of Data Sources
	Data Source Access Through XQuery Functions
	What Do Data Source Function Objects Do?
	Overview of Preparing Data Sources

	Introduction to XQS Configuration and Configuration Files
	Introduction to XQS Client Interfaces
	Introduction to OC4JPackager
	Security for XQS Applications
	Introduction to XQS Performance and Optimization Features
	Introduction to XQS Error Handling
	Summary of the Main Steps in Using XQS

	How to Enable XQS As an OC4J Extension
	How to Prepare to Use Your Data Sources
	Preparing to Use a Non-XML Document Source
	What is D3L?
	D3L Schema Files
	Configuring XQS to Use D3L

	Preparing to Use an XQS View
	Preparing to Use a WSDL Source with SOAP Binding
	Preparing to Use a Database Source (WSDL Source with SQL Binding)
	Preparing to Use a Custom Class or EJB (WSDL Source with Java or EJB Binding)

	How to Configure Your XQS Functions
	Configuring an XQS Function That Accesses a Document Source
	Configuring an XQS Function That Uses an XQS View
	Configuring an XQS Function That Accesses a WSDL Source

	How to Design Your Queries
	Query Considerations
	Query Examples
	Type-Checking for Input Parameters

	How to Develop Your Application Code: Using the XQS Client Interfaces
	Supported Types for Query Parameters
	General Coding Steps in Using XQS Client APIs
	Stateful Versus Stateless Clients
	Using the Java Class Client API
	Example 1: XQSFacade API with an Ad-Hoc Query
	Example 2: XQSFacade API with an Ad-Hoc Query
	Example 3: XQSFacade API with an XQS View

	Using the EJB Client API
	EJB Clients for Stateful Versus Stateless Sessions
	Use of the EJB Client API in Stateful Sessions
	Example: EJB Client API with an XQS View in a Stateless Session

	Using the JSP Tag Library
	JSP Tags for Stateful Versus Stateless Access
	Example: JSP Tags with an XQS View in a Stateful Access Pattern
	Example: JSP Tags with an Ad-Hoc Query in a Stateless Access Pattern

	Using an XQS View Exposed as a Web Service Operation

	How to Use OC4JPackager to Package Your XQS Application
	Steps in Using OC4JPackager
	Preparing to Run OC4JPackager
	Running OC4JPackager: Required and Optional Parameters and Properties

	Running OC4JPackager on the Command Line
	Running OC4JPackager Through Ant
	OC4JPackager Basic Output
	OC4JPackager Additional Output to Expose XQS Views as Web Service Operations
	Example: Configuration to Expose a View as a Web Service Operation
	Example: EAR File for a View Exposed as a Web Service Operation
	Example: WAR File for a View Exposed as a Web Service Operation
	Example: WSDL document for a View Exposed as a Web Service Operation

	Using XQS Performance Features
	Performance Considerations for Using the XQS Stateless or Stateful Client APIs
	Configuring XQS Caching
	Configure XQS Cache Settings
	XQS Caching Strategies
	Caching and Nondeterministic Results

	Configuring XQS Document or View Sources for Large Data
	XQS XPath Optimization for WSDL Sources with SQL Binding

	Using XQS Error Handling Modes and APIs
	Configuring XQS Function Error Handling
	Retrieving XQS Error Objects
	Obtaining Information from XQS Error Objects
	Example: Error Retrieval and Processing

	XQS Client APIs Reference
	XQS QueryParameter Class Reference
	QueryParameter Constructors
	QueryParameter Methods

	XQSFacade Class Reference
	XQSFacade Constructor
	XQSFacade Methods

	XQS EJB Client API Reference
	Stateful EJB Client Methods
	Stateless EJB Client Methods

	XQS JSP Tag Library Reference
	JSP Tags for Stateful Access
	XQS executeCursor Tag
	XQS param Tag
	XQS next Tag
	XQS close Tag

	JSP Tags for Stateless Access
	XQS execute Tag

	XQSError Class Reference

	XQS Configuration File Reference
	<bind-prefix>
	<cache-properties>
	<document-source>
	<documentURL>
	<error-message>
	<function-name>
	<in-memory>
	<input-parameters>
	<itemType>
	<mapping>
	<operation>
	<output-element>
	<part>
	<password>
	<port>
	<portType>
	<queryName>
	<repository>
	<schema-file>
	<schema-type>
	<service>
	<typeMap>
	<use-prefix>
	<username>
	<wsdl-source>
	<wsdlURL>
	<xqs-config>
	<xqs-sources>
	<xqsview-source>
	<XMLTranslate>
	<xmlType>
	<xquery-sequence>

	OC4JPackager Reference
	OC4JPackager Parameters
	appArchives
	globalXqsConfig
	help
	jsp
	name
	output
	repository
	sf
	sl
	xqsConfigFile

	Java Properties for OC4JPackager
	oracle.home
	java.home
	java.util.logging.properties.file
	xds.packager.work.dir

	Summary of XQS MBeans and Administration
	General Overview of OC4J MBean Administration
	Summary of XQS MBeans

	XQS Troubleshooting
	Enabling OC4J Logging
	Key XQS Symptoms, Causes, and Remedies

	XQS Sample

	A A Third Party Licenses
	ANTLR
	The ANTLR License

	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	DBI Module
	Perl Artistic License
	Preamble
	Definitions

	expat
	FastCGI
	FastCGI Developer's Kit License
	Module mod_fastcgi License

	Info-ZIP Unzip Package
	The Info-ZIP Unzip Package License

	Jabberbeans
	JSR 110
	Jaxen
	The Jaxen License

	JGroups
	The GNU License

	JTidy
	mod_dav
	mod_mm and mod_ssl
	OpenSSL
	OpenSSL License

	Perl
	Perl Kit Readme
	mod_perl 1.29 License
	mod_perl 1.99_16 License
	Perl Artistic License
	Preamble
	Definitions

	PHP
	The PHP License

	SAXPath
	The SAXPath License

	Sun Microsystems, Inc.
	The Java Logo

	W3C DOM
	The W3C License

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

