
Oracle® Containers for J2EE
Enterprise JavaBeans Developer’s Guide

10g Release 3 (10.1.3)

B14428-02

February 2006

Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide, 10g Release 3 (10.1.3)

B14428-02

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Peter Purich

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions .. xxii

Part I EJB Overview

1 Understanding Enterprise JavaBeans

What are Enterprise JavaBeans? .. 1-1
What is the Anatomy of an EJB 3.0 EJB?... 1-2
What is the Anatomy of an EJB 2.1 EJB?... 1-4
What is the Lifecycle of an EJB? ... 1-5

Callback Methods ... 1-6
EJB 3.0 Callback Listener.. 1-6

What is EJB Context? ... 1-6
How Do Annotations and Resource Injection Work?... 1-7

What is a Session Bean? .. 1-8
What is a Stateless Session Bean?... 1-9

What is the Stateless Session Bean Lifecycle? ... 1-9
What is a Stateful Session Bean? ... 1-10

What is the Stateful Session Bean Lifecycle?.. 1-11
What is Session Context? ... 1-14

What is an EJB 3.0 Entity? .. 1-14
What are Container-Managed Persistence Fields?... 1-15
What are Container-Managed Relationship Fields? .. 1-15
What is the EJB 3.0 Entity Lifecycle? .. 1-16
What is an EJB 3.0 Entity Primary Key?... 1-16
How Do You Query for an EJB 3.0 Entity?.. 1-17

Understanding EJB Query Syntax ... 1-17
Understanding the EJB 3.0 EntityManager Query API .. 1-18

What is an EJB 2.1 Entity Bean? .. 1-19
What is an EJB 2.1 CMP Entity Bean? .. 1-20

What are Container-Managed Persistence Fields?.. 1-20
What are Container-Managed Relationship Fields? ... 1-21

iv

What is the CMP Entity Bean Lifecycle? .. 1-21
What is a CMP Entity Bean Primary Key? ... 1-22

What is an EJB 2.1 BMP Entity Bean?... 1-23
What are Bean-Managed Persistence Fields?... 1-23
What are Bean-Managed Relationship Fields? .. 1-23
What is the BMP Entity Bean Lifecycle?... 1-23
What is a BMP Entity Bean Primary Key?.. 1-24

What is Entity Context?.. 1-25
How do You Avoid Database Resource Contention?.. 1-25

Transaction Isolation ... 1-25
Concurrency (Locking) Mode .. 1-26

When Does Entity Bean Passivation Occur? ... 1-27
What are Entity Bean Commit Options?.. 1-27

Commit Options and CMP Applications ... 1-27
Commit Options and BMP Applications.. 1-28

How Do You Query for an EJB 2.1 Entity Bean? .. 1-28
Understanding EJB Query Syntax ... 1-28
Understanding Finder Methods .. 1-31
Understanding Select Methods.. 1-33

What is a Message-Driven Bean? ... 1-35
What is the Message-Driven Bean Lifecycle?.. 1-36
What is Message Driven Context? .. 1-36

Which Type of EJB Should You Use?.. 1-36
Which Type of Session Bean Should You Use? .. 1-37
When do you use Bean-Managed versus Container-Managed Persistence? 1-37
What is the Difference Between Session and Entity Beans? ... 1-38

2 Understanding EJB Application Development

How Should You Develop EJB Applications?.. 2-1
Understanding the EJB Application Directory Structure... 2-1
Using EJB Development Tools ... 2-2

Using JDeveloper .. 2-2
Using Eclipse ... 2-2
Using TopLink Workbench ... 2-3

What OC4J Services Can You Use with an EJB? .. 2-3
How do You Package and Deploy an EJB Application? ... 2-4

General Packaging and Deployment Procedure ... 2-4
Understanding EJB Deployment Descriptor Files... 2-7
Understanding Packaging .. 2-7
Understanding Deployment... 2-7

How Do Specify Vendor-Specific Configuration in an EJB 3.0 Application? 2-7
How Does OC4J Determine What Type of Persistence to Use?... 2-8
In What Order does OC4J Deploy EJB Modules? .. 2-9

What is the ejb-jar.xml File?... 2-10
EJB 3.0 .. 2-10
EJB 2.1 .. 2-10
XML Reference ... 2-11

v

What is the orion-ejb-jar.xml File? .. 2-11
EJB 3.0 .. 2-11
EJB 2.1 .. 2-11
XML Reference ... 2-11

What is the toplink-ejb-jar.xml File?... 2-11
EJB 3.0 .. 2-12
EJB 2.1 .. 2-12
XML Reference ... 2-12

What is the ejb3-toplink-sessions.xml File?... 2-12
EJB 3.0 .. 2-12
EJB 2.1 .. 2-12
XML Reference ... 2-12

What is the persistence.xml File? .. 2-13
Understanding the OC4J Default Persistence Unit ... 2-14
EJB 3.0 .. 2-14
EJB 2.1 .. 2-14
XML Reference ... 2-14

What is the orm.xml File? .. 2-15
EJB 3.0 .. 2-15
EJB 2.1 .. 2-15
XML Reference ... 2-15

How Do You Use an EJB in Your Application? ... 2-15
Understanding Client Access .. 2-15
Understanding EJB 3.0 Interceptors .. 2-16

Interceptor Restrictions ... 2-16
Interceptors and Invocation Context... 2-17

Understanding EJBs and Web Services.. 2-17
Understanding EJB Administration ... 2-17

Understanding EJB JNDI Services... 2-18
Understanding EJB Data Source Services .. 2-18

What Types of Data Source does OC4J Support?... 2-18
Managed Data Source ... 2-19
Native Data Source .. 2-19

How Do You Define a Connection URL in OC4J? ... 2-19
What Transaction Types Do Data Sources Support? ... 2-20
Where Do You Configure Data Source Information in OC4J? ... 2-20
What is a Default Data Source?... 2-20
How Does OC4J Handle Multiple Data Sources? .. 2-20

Understanding EJB Transaction Services ... 2-21
Who Manages a Transaction?.. 2-21

Container-Managed Transaction (CMT) .. 2-21
Bean-Managed Transaction (BMT).. 2-22

How are Transactions Handled When a Client Invokes a Business Method?....................... 2-22
Container-Managed Transaction Demarcation ... 2-23
Bean-Managed Transaction Demarcation .. 2-23
Client-Managed Transaction Demarcation .. 2-23
What Type of Transaction Demarcation Can My EJB Use?... 2-23

vi

How do I Participate in a Global or Two-Phase Commit Transaction? 2-23
Understanding EJB Security Services ... 2-24
Understanding Message Services .. 2-24

What Message Providers Can I use with My MDB?.. 2-24
Oracle Application Server JMS (OracleAS JMS) Provider: File-Based............................. 2-25
Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based...................................... 2-25
J2EE Connector Architecture (J2CA) Adapter Message Provider 2-26

Understanding OC4J EJB Application Clustering Services.. 2-28
State Replication .. 2-29

State Replication Trigger... 2-29
State Replication Scope ... 2-30
State Replication Mode ... 2-30

Load Balancing .. 2-30
Replication-Based Load Balancing .. 2-30
Static Retrieval Load Balancing ... 2-30
DNS Load Balancing ... 2-30

Failover ... 2-30
Transactions ... 2-31
Performance ... 2-31

Understanding EJB Timer Services ... 2-31
Understanding J2EE Timer Services... 2-31
Understanding OC4J Cron Timer Services.. 2-32

3 Understanding EJB Support in OC4J

EJB 3.0 Support ... 3-1
What JDK is Required?.. 3-1
How do You Define an EJB 3.0 Application?... 3-2
How does OC4J Manage Persistence in an EJB 3.0 Application? ... 3-2

TopLink Entity Manager.. 3-2
Customizing the TopLink Entity Manager ... 3-2

EJB 2.1 Support ... 3-4
What JDK is Required?.. 3-4
How do You Define an EJB 2.1 Application?... 3-4
How does OC4J Manage Persistence in an EJB 2.1 Application? ... 3-4

TopLink Persistence Manager... 3-4
Customizing the TopLink Persistence Manager .. 3-5
Migrating to the TopLink Persistence Manager... 3-5

Configuration Changes in this Release ... 3-5
New Package Names for RMI and Application Client Initial Context Factories 3-6
Unsupported orion-ejb-jar.xml Attributes .. 3-6

Part II EJB 3.0 Session Beans

4 Implementing an EJB 3.0 Session Bean

Implementing an EJB 3.0 Stateless Session Bean .. 4-1
Using Annotations ... 4-2

vii

Using Deployment XML ... 4-3
Implementing an EJB 3.0 Stateful Session Bean .. 4-3

Using Annotations ... 4-4
Using Deployment XML ... 4-5

5 Using EJB 3.0 Session Bean API

Configuring Passivation ... 5-2
Configuring Passivation Criteria .. 5-2
Configuring Passivation Location... 5-2
Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean.. 5-2

Using Annotations ... 5-2
Using Deployment XML ... 5-3

Configuring a Lifecycle Callback Listener for an EJB 3.0 Session Bean 5-3
Using Annotations ... 5-3
Using Deployment XML ... 5-3

Configuring an Interceptor on an EJB 3.0 Session Bean... 5-3
Using Annotations ... 5-3
Using Deployment XML ... 5-4

Configuring an Interceptor Class for an EJB 3.0 Session Bean ... 5-4
Using Annotations ... 5-4
Using Deployment XML ... 5-4

Part III EJB 3.0 Entities

6 Implementing an EJB 3.0 Entity

Implementing an EJB 3.0 Entity .. 6-1
Using Annotations ... 6-2
Using Deployment XML ... 6-3

7 Using EJB 3.0 Persistence API

Configuring an EJB 3.0 Entity Primary Key .. 7-2
Configuring an EJB 3.0 Entity Primary Key Field ... 7-2

Using Annotations .. 7-2
Using Deployment XML.. 7-3

Configuring an EJB 3.0 Entity Composite Primary Key Class .. 7-3
Using Annotations .. 7-3
Using Deployment XML.. 7-4

Configuring EJB 3.0 Entity Automatic Primary Key Generation.. 7-4
Using Annotations .. 7-4
Using Deployment XML.. 7-6

Configuring Table and Column Information... 7-6
Configuring the Primary Table .. 7-6

Using Annotations .. 7-6
Using Deployment XML.. 7-7

Configuring a Secondary Table.. 7-7
Using Annotations .. 7-7

viii

Using Deployment XML.. 7-7
Configuring a Column .. 7-7

Using Annotations .. 7-7
Using Deployment XML.. 7-8

Configuring a Join Column .. 7-8
Using Annotations .. 7-8
Using Deployment XML.. 7-9

Configuring an EJB 3.0 Entity Container-Managed Relationship Field 7-9
Configuring a Basic Mapping.. 7-9

Using Annotations .. 7-10
Using Deployment XML .. 7-10

Configuring a Large Object Mapping ... 7-10
Using Annotations .. 7-10
Using Deployment XML .. 7-11

Configuring a Serialized Object Mapping... 7-11
Using Annotations .. 7-11
Using Deployment XML .. 7-11

Configuring a One-to-One Mapping... 7-11
Using Annotations .. 7-12
Using Deployment XML .. 7-12

Configuring a Many-to-One Mapping.. 7-12
Using Annotations .. 7-12
Using Deployment XML .. 7-12

Configuring a One-to-Many Mapping.. 7-12
Using Annotations .. 7-13
Using Deployment XML .. 7-13

Configuring a Many-to-Many Mapping... 7-13
Using Annotations .. 7-13
Using Deployment XML .. 7-14

Configuring an Aggregate Mapping ... 7-14
Using Annotations .. 7-14
Using Deployment XML .. 7-15

Configuring Optimistic Lock Version Field .. 7-16
Using Annotations .. 7-16
Using Deployment XML .. 7-16

Configuring Lazy Loading on Finder Methods... 7-16
Configuring a Lifecycle Callback Method for an EJB 3.0 Entity.. 7-16

Using Annotations .. 7-17
Using Deployment XML .. 7-18

Configuring Inheritance for an EJB 3.0 Entity... 7-18
Joined Subclass .. 7-18
Single Table for each Class Hierarchy.. 7-19
Using Annotations .. 7-19

Configuring Joined Subclass Inheritance with Annotations ... 7-19
Configuring Single Table Inheritance with Annotations ... 7-20

Using Deployment XML .. 7-21
Configuring a Lifecycle Callback Listener for an EJB 3.0 Entity ... 7-21

ix

Using Annotations .. 7-21
Using Deployment XML .. 7-21

8 Using EJB 3.0 Query API

Implementing an EJB 3.0 Named Query.. 8-1
Using Annotations ... 8-1
Using Deployment XML ... 8-2

Implementing an EJB 3.0 Dynamic Query .. 8-2
Using Java.. 8-3
Using Deployment XML ... 8-3

Part IV EJB 3.0 Message-Driven Beans

9 Implementing an EJB 3.0 MDB

Implementing an EJB 3.0 MDB.. 9-1
Using Annotations ... 9-3
Using Deployment XML ... 9-4

10 Using EJB 3.0 MDB API

Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider 10-2
Using Annotations .. 10-2
Using Deployment XML .. 10-3

Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider 10-3
Using Annotations .. 10-3
Using Deployment XML .. 10-5

Configuring Listener Threads .. 10-5
Configuring Maximum Delivery Count ... 10-5
Configuring Dequeue Retry Count and Interval .. 10-5
Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method.............................. 10-5

Using Annotations .. 10-6
Using Deployment XML .. 10-6

Configuring an Interceptor Class for an EJB 3.0 MDB Message Listener.................................. 10-6
Using Annotations .. 10-6
Using Deployment XML .. 10-6

Configuring a Lifecycle Callback Method for an EJB 3.0 MDB... 10-6
Using Annotations .. 10-7
Using Deployment XML .. 10-7

Configuring a Lifecycle Callback Listener for an EJB 3.0 MDB .. 10-7
Using Annotations .. 10-7
Using Deployment XML .. 10-8

Part V EJB 2.1 Session Beans

11 Implementing an EJB 2.1 Session Bean

Implementing an EJB 2.1 Stateless Session Bean ... 11-1

x

Using Java... 11-2
Using Deployment XML .. 11-3

Implementing an EJB 2.1 Stateful Session Bean ... 11-4
Using Java... 11-5
Using Deployment XML .. 11-6

Implementing the Home Interfaces... 11-7
Implementing the Remote Home Interface ... 11-7
Implementing the Local Home Interface ... 11-8

Implementing the Component Interfaces .. 11-9
Implementing the Remote Component Interface ... 11-9
Implementing the Local Component Interface... 11-9

Implementing the setSessionContext Method .. 11-10

12 Using EJB 2.1 Session Bean API

Configuring Passivation .. 12-1
Using Deployment XML .. 12-2

Configuring Passivation Criteria ... 12-2
Using Deployment XML .. 12-2

Configuring Passivation Location.. 12-3
Using Deployment XML .. 12-3

Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean..................................... 12-3
Using Java... 12-4

Part VI EJB 2.1 Entity Beans

13 Implementing an EJB 2.1 Entity Bean

Implementing an EJB 2.1 CMP Entity Bean ... 13-1
Using Java... 13-3
Using Deployment XML .. 13-5

Implementing an EJB 2.1 BMP Entity Bean ... 13-6
Using Java... 13-8
Using Deployment XML .. 13-14
Implementing an EJB 2.1 BMP ejbCreate Method.. 13-15

Implementing the EJB 2.1 Home Interfaces ... 13-18
Implementing the Remote Home Interface ... 13-19
Implementing the Local Home Interface ... 13-19

Implementing the EJB 2.1 Component Interfaces... 13-19
Implementing the Remote Component Interface ... 13-19
Implementing the Local Component Interface... 13-20

Implementing the setEntityContext and unsetEntityContext Methods 13-20

14 Using EJB 2.1 CMP Entity Bean API

Configuring an EJB 2.1 CMP Entity Bean Primary Key... 14-1
Configuring an EJB 2.1 CMP Entity Bean Primary Key Field .. 14-2

Using Deployment XML... 14-2
Configuring an EJB 2.1 CMP Entity Bean Composite Primary Key Class.............................. 14-3

xi

Using Java ... 14-3
Using Deployment XML... 14-4

Configuring EJB 2.1 CMP Entity Bean Automatic Primary Key Generation 14-5
Using Deployment XML... 14-5

Configuring Table and Column Information.. 14-5
Configuring Primary Table.. 14-6

Using Deployment XML... 14-6
Configuring Column .. 14-6

Using Deployment XML... 14-6
Configuring Join Column .. 14-6

Using Deployment XML... 14-6
Configuring Secondary Table.. 14-6

Using Deployment XML... 14-6
Configuring Automatic Database Table Creation .. 14-6

Using Deployment XML .. 14-6
Configuring an EJB 2.1 CMP Entity Bean Container-Managed Persistence Field 14-7

Using Java... 14-7
Using Deployment XML .. 14-8

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field 14-8
Using Java... 14-9
Using Deployment XML .. 14-10

Configuring Default Mappings.. 14-10
Using Deployment XML .. 14-10

Configuring a One-to-One Mapping... 14-11
Using Deployment XML .. 14-12

Configuring a One-to-Many Mapping.. 14-12
Using Deployment XML .. 14-12

Configuring a Many-to-One Mapping.. 14-12
Using Deployment XML .. 14-12

Configuring a Many-to-Many Mapping... 14-12
Using Deployment XML .. 14-12

Configuring Advanced Mappings ... 14-12
Using the TopLink Workbench... 14-12

Configuring Concurrency Modes .. 14-13
Using Deployment XML .. 14-13

Configuring Database Isolation Modes.. 14-13
Using Deployment XML .. 14-13

Configuring Exclusive Write Access to the Database .. 14-13
Using Deployment XML .. 14-13

Configuring Lazy Loading on Finder Methods... 14-14
Using Deployment XML .. 14-14

Configuring a Lifecycle Callback Method for an EJB 2.1 CMP Entity Bean 14-14
Using Deployment XML .. 14-14

15 Using EJB 2.1 BMP Entity Bean API

Configuring an EJB 2.1 BMP Entity Bean Primary Key... 15-1
Configuring an EJB 2.1 BMP Entity Bean Primary Key Field... 15-1

xii

Using Deployment XML... 15-1
Configuring an EJB 2.1 BMP Entity Bean Primary Key Class .. 15-1

Using Deployment XML... 15-1
Configuring Bean-Managed Persistence Fields .. 15-2

Using Deployment XML .. 15-2
Configuring a Read-Only BMP Entity Bean .. 15-2

Using Deployment XML .. 15-2
Configuring BMP Commit Options .. 15-3

Using Deployment XML .. 15-3
Configuring an EJB 2.1 BMP Entity Bean Query .. 15-3

Implementing an EJB 2.1 BMP the ejbFindByPrimaryKey Method .. 15-3
Implementing Other EJB 2.1 BMP Finder Methods ... 15-4

Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean 15-5
Implementing an EJB 2.1 BMP ejbStore Method .. 15-5
Implementing an EJB 2.1 BMP ejbLoad Method .. 15-6
Implementing an EJB 2.1 BMP ejbPassivate Method... 15-6
Implementing an EJB 2.1 BMP ejbActivate Method .. 15-6
Implementing an EJB 2.1 BMP ejbRemove Method... 15-7

16 Using EJB 2.1 Query API

Implementing an EJB 2.1 EJB QL Finder Method... 16-1
Using Java... 16-2
Using Deployment XML .. 16-3
Using TopLink Workbench ... 16-4

Implementing an EJB 2.1 EJB QL Select Method.. 16-5
Using Java... 16-5
Using Deployment XML .. 16-7
Using TopLink Workbench ... 16-7

OC4J EJB 2.1 EJB QL Extensions .. 16-8

Part VII EJB 2.1 Message-Driven Beans

17 Implementing an EJB 2.1 MDB

Implementing an EJB 2.1 MDB... 17-1
Using Java... 17-3
Using Deployment XML .. 17-4
Implementing the setMessageDrivenContext Method.. 17-6

18 Using EJB 2.1 MDB API

Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider 18-1
Using Deployment XML .. 18-1

Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider 18-2
Using Deployment XML .. 18-3

Configuring an MDB for Fast Undeploy on Windows.. 18-4
Using System Properties .. 18-4

Configuring an MDB for Oracle RAC Failover... 18-5

xiii

Using Deployment XML .. 18-5
Using Java... 18-5

Configuring Listener Threads .. 18-6
Using Deployment XML .. 18-6

Configuring Maximum Delivery Count ... 18-7
Using Deployment XML .. 18-7

Configuring Dequeue Retry Count and Interval .. 18-8
Using Deployment XML .. 18-8

Configuring a Lifecycle Callback Method for an EJB 2.1 MDB... 18-9
Using Deployment XML .. 18-9

Part VIII OC4J EJB Services

19 Configuring JNDI Services

Configuring Environment References .. 19-1
EJB Environment References ... 19-2
Resource Manager Connection Factory Environment References... 19-2
Environment Variable Environment References .. 19-2
Web Service Environment References ... 19-2
Persistence Context References ... 19-3
Where Do You Configure an EJB Environment Reference? ... 19-3
Should You Use Logical Names?.. 19-3

Configuring an Environment Reference to an EJB ... 19-3
Configuring an Environment Reference to a Remote EJB... 19-4
Configuring an Environment Reference to a Local EJB... 19-5

Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection
Factory.. 19-7
Configuring an Environment Reference to a JMS Destination Resource Manager Connection
Factory (JMS 1.1) .. 19-8
Configuring an Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0).. 19-9
Configuring an Environment Reference to a Java Mail Resource Manager Connection Factory
19-11
Configuring an Environment Reference to a URL Resource Manager Connection Factory 19-13
Configuring an Environment Reference to an Environment Variable..................................... 19-14
Configuring an Environment Reference to a Web Service ... 19-15
Configuring an Environment Reference to a Persistence Context .. 19-16
Configuring the Initial Context Factory.. 19-17

Configuring the Default Initial Context Factory .. 19-18
Configuring an Oracle Initial Context Factory ... 19-18

Configuring the Naming Provider URL for OC4J and Oracle Application Server...... 19-19
Configuring the Naming Provider URL for OC4J Standalone.. 19-19

Setting JNDI Properties in an EJB ... 19-20
Setting JNDI Properties with the JNDI Properties File.. 19-20
Setting JNDI Properties with System Properties .. 19-21
Setting JNDI Properties in the Initial Context... 19-21

Looking up an EJB 3.0 EJB ... 19-21

xiv

Using Annotations .. 19-21
Using Initial Context... 19-21

Looking Up the Remote Interface of an EJB 3.0 EJB Using ejb-ref.................................. 19-22
Looking Up the Remote Interface of an EJB 3.0 EJB Using location............................... 19-22
Looking up the Local Interface of an EJB 3.0 EJB Using local-ref 19-23
Looking up the Local Interface of an EJB 3.0 EJB Using local-location.......................... 19-23

Looking Up an EJB 3.0 Resource Manager Connection Factory... 19-24
Using Annotations .. 19-24
Using Initial Context... 19-25

Looking Up an EJB 3.0 Environment Variable .. 19-25
Using Resource Injection.. 19-25
Using Initial Context... 19-26

Looking Up an EJB 2.1 EJB .. 19-26
Using Initial Context... 19-26

Looking Up the Remote Interface of an EJB 2.1 EJB Using ejb-ref.................................. 19-27
Looking Up the Remote Interface of an EJB 2.1 EJB Using location............................... 19-27
Looking up the Local Interface of an EJB 2.1 EJB Using local-ref 19-28
Looking up the Local Interface of an EJB 2.1 EJB Using local-location.......................... 19-28

Looking Up an EJB 2.1 Resource Manager Connection Factory... 19-29
Using Initial Context... 19-29

Looking Up an EJB 2.1 Enviornment Variable .. 19-29
Using Initial Context... 19-29

20 Configuring Data Sources

Configuring a Data Source for an Oracle Database ... 20-1
Using Application Server Control Console ... 20-1
Using Deployment XML .. 20-2

Configuring a Data Source for a Third-Party Database... 20-2
Using Application Server Control Console ... 20-2
Using Deployment XML .. 20-3

Configuring a Default Data Source for an EJB 3.0 Application ... 20-3
Using Deployment XML .. 20-3

Configuring a Default Data Source for an EJB 2.1 Application ... 20-4
Using Deployment XML .. 20-4

21 Configuring Transaction Services

Configuring EJB 3.0 Transaction Management ... 21-1
Using Annotations .. 21-1
Using Deployment XML .. 21-1

Configuring an EJB 3.0 Transaction Attribute... 21-2
Using Annotations .. 21-2
Using Deployment XML .. 21-2

Configuring EJB 3.0 Bean-Managed Transaction Demarcation ... 21-2
Using Annotations .. 21-2
Using Deployment XML .. 21-2

Configuring EJB 3.0 Client-Managed Transaction Demarcation... 21-2
Using Annotations .. 21-2

xv

Using Deployment XML .. 21-2
Configuring EJB 2.1 Transaction Management ... 21-3

Using Deployment XML .. 21-3
Configuring an EJB 2.1 Transaction Attribute... 21-3

Using Deployment XML .. 21-3
Configuring EJB 2.1 Client-Managed Transaction Demarcation... 21-3

Using Deployment XML .. 21-3
Configuring Transaction Timeouts ... 21-3

Configuring a Global Transaction Timeout .. 21-4
Using Application Server Control Console.. 21-4
Using Deployment XML... 21-4

Configuring a Transaction Timeout for a Session Bean .. 21-4
Using Deployment XML... 21-4

Configuring a Transaction Timeout for a Message-Driven Bean .. 21-5
Using Deployment XML... 21-5

Transaction Best Practices.. 21-6
Using Container Managed Transactions with Datasource Connections 21-6
Using a Rollback Strategy .. 21-7

22 Configuring Security Services

Granting Permissions in Browser .. 22-1
Defining Users, Groups, and Roles in an EJB Application .. 22-1

Specifying Users and Groups.. 22-3
Specifying Logical Roles in the EJB Deployment Descriptor ... 22-3
Specifying a Role for an EJB Method ... 22-4

Using Annotations ... 22-5
Using Deployment XML... 22-5

Specifying Unchecked Security for EJB Methods... 22-6
Using Annotations ... 22-6
Using Deployment XML... 22-7

Specifying the runAs Security Identity.. 22-7
Using Annotations ... 22-7
Using Deployment XML... 22-7

Mapping Logical Roles to Users and Groups ... 22-8
Specifying a Default Role Mapping for Undefined Methods... 22-9
Specifying Users and Groups by the Client .. 22-10

Specifying Credentials in EJB Clients .. 22-10
Specifying Credentials in JNDI Properties .. 22-11
Specifying Credentials in the Initial Context .. 22-11
Specifying EJB Client Security Properties in the ejb_sec.properties File 22-12

Using EJB 3.0 Security Annotations... 22-12
Using Annotations .. 22-13
Using Deployment XML .. 22-13

Retrieving Credentials from an EJB Using the JAAS API .. 22-13
Defining a Custom JAAS Login Module for an EJB Application ... 22-14

xvi

23 Configuring Message Services

Configuring an OracleAS JMS Message Service Provider ... 23-1
OracleAS JMS Destination and Connection Factory Names .. 23-2
Configuring jms.xml ... 23-2

Configuring an OJMS Message Service Provider... 23-3
OJMS Destination and Connection Factory Names ... 23-3
Installing and Configuring the OJMS Provider .. 23-4
Configuring data-sources.xml... 23-5
Configuring application.xml or orion-application.xml ... 23-6

Configuring a Message Service Provider Using J2CA ... 23-6
J2CA Message Service Provider Connection Factory Names... 23-7
Installing and Configuring a J2CA Adapter ... 23-7
Configuring OC4J Deployment XML Files ... 23-7

24 Configuring OC4J EJB Application Clustering Services

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy 24-1
Using Deployment XML .. 24-1

Configuring Global Replication Policy in the application.xml File for Web and EJB
Components 24-2
Configuring Application-Level Replication Policy in the orion-application.xml File for
Web and EJB Components 24-2
Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB
Components 24-2

Configuring Replication-Based Load Balancing... 24-3
Using System Properties .. 24-3

Configuring Static Retrieval Load Balancing .. 24-3
Using JNDI Properties .. 24-3

Configuring DNS Load Balancing... 24-4
Using JNDI Properties .. 24-4

25 Configuring Timer Services

Configuring an EJB 3.0 EJB with a J2EE Timer ... 25-1
Using Annotations .. 25-1
Using Initial Context... 25-2
Using Deployment XML .. 25-2

Configuring an EJB 2.1 EJB with a J2EE Timer ... 25-2
Using Deployment XML .. 25-3

Configuring an EJB with an OC4J Cron Timer ... 25-3
Using Deployment XML .. 25-5

Troubleshooting Timers .. 25-5
How to Retrieve Information About the Timer.. 25-5
How to Retrieve a Persisted Timer... 25-5
Executing the Timer Within the Scope of a Transaction ... 25-5
What Does a NoSuchObjectLocalException Mean with Timers? .. 25-5

Part IX Packaging and Deploying an EJB Application

xvii

26 Configuring Deployment Descriptor Files

Configuring the ejb-jar.xml File... 26-1
Creating ejb-jar.xml During Migration .. 26-1
Creating the ejb-jar.xml File at Deployment Time ... 26-1
Creating ejb-jar.xml with JDeveloper... 26-2

Configuring the toplink-ejb-jar.xml File.. 26-2
Creating toplink-ejb-jar.xml During Migration .. 26-2
Creating toplink-ejb-jar.xml with TopLink Workbench.. 26-2

Configuring the orion-ejb-jar.xml File.. 26-2
Configuring the ejb3-toplink-sessions.xml File.. 26-3

Creating ejb3-toplink-sessions.xml with TopLink Workbench.. 26-3
Configuring the persistence.xml File .. 26-3

Configuring a Named Persistence Unit in the persistence.xml File .. 26-3
What Persistent Managed Classes Does this Persistence Unit Include?.......................... 26-4

Configuring the persistence.xml File for the OC4J Default Persistence Unit......................... 26-4
Configuring the orm.xml File ... 26-4

27 Packaging an EJB Application

Packaging an EJB 3.0 Session Bean Application ... 27-1
Using JDeveloper .. 27-1

Packaging an EJB 3.0 Entity Application .. 27-1
Using JDeveloper .. 27-1

Packaging an EJB 3.0 MDB Bean Application ... 27-1
Using JDeveloper .. 27-2

Packaging an EJB 2.1 Session Bean Application ... 27-2
Using JDeveloper .. 27-2

Packaging an EJB 2.1 Entity Bean Application .. 27-2
Using JDeveloper .. 27-2

Packaging an EJB 2.1 MDB Bean Application ... 27-2
Using JDeveloper .. 27-2

Packaging an Application with Both EJB 3.0 and EJB 2.1 EJBs .. 27-2
Sharing Classes Between EJB Applications ... 27-2

Handling Out of Memory Exceptions at Runtime ... 27-3
Handling Class Cast Exceptions at Runtime... 27-3

28 Deploying an EJB Application to OC4J

Deploying an EJB Application with JDeveloper .. 28-1
Deploying to the Built-In OC4J Instance ... 28-1
Deploying to a Standalone OC4J Instance... 28-1

Deploying an EJB Application with Enterprise Manager ... 28-1
Deploying a Large EJB Application... 28-1

Tuning the VM to Avoid Out Of Memory Errors During Deployment 28-2
Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment 28-2

Deploying Incrementally... 28-3
Troubleshooting Application Deployment.. 28-4

xviii

Part X Using an EJB in Your Application

29 Accessing an EJB from a Client

What Type of Client Do You Have? .. 29-1
EJB Client.. 29-2
Standalone Java Client.. 29-2
Servlet or JSP Client .. 29-2

Configuring the Client ... 29-2
Configuring the Client Classpath for OC4J... 29-3
Selecting an Initial Context Factory Class ... 29-3
Specifying Security Credentials .. 29-3
Selecting an EJB Reference... 29-3

Accessing an EJB 3.0 EJB .. 29-4
Accessing an EJB 3.0 EJB in Another Application .. 29-5
Accessing an EJB 3.0 Entity Using an EntityManager.. 29-5

Acquiring an EntityManager... 29-5
Acquiring the OC4J Default Entity Manager in an EJB 3.0 Stateful Session Bean Client.........
29-6
Acquiring a Named Entity Manager in an EJB 3.0 Stateful Session Bean Client............ 29-6
Acquiring an Entity Manager in Other EJB 3.0 Bean Clients .. 29-7
Acquiring an Entity Manager in a Helper Class or Web Client.. 29-7
Using Annotations in a Web Client... 29-9

Creating a New Entity Instance .. 29-9
Querying for an EJB 3.0 Entity Using the EntityManager... 29-10

Finding an Entity by Primary Key with the Entity Manager .. 29-10
Creating a Named Query with the EntityManager .. 29-10
Creating a Dynamic EJB QL Query with the Entity Manager... 29-11
Creating a Dynamic TopLink Expression Query with the EntityManager................... 29-11
Creating a Dynamic Native SQL Query with the EntityManager.................................. 29-11
Configuring Query Hints.. 29-12
Executing a Query.. 29-13

Modifying an Entity Instance .. 29-14
Using an Updating Query .. 29-14
Using the Entity’s Public API... 29-14
Refreshing from the Database.. 29-14
Removing an Entity ... 29-15
Using Flush ... 29-15

Detaching and Merging an Entity Bean Instance ... 29-15
Accessing an EJB 3.0 MDB... 29-16

Sending a Message to a JMS Destination Using EJB 3.0 .. 29-16
Sending a Message to a JMS J2CA Destination Using EJB 3.0.. 29-16

Accessing an EJB 3.0 EJBContext.. 29-16
Using Resource Injection.. 29-16

Accessing an EJB 2.1 EJB .. 29-17
Accessing an EJB 2.1 EJB Remotely .. 29-17
Accessing an EJB 2.1 EJB Locally .. 29-18
Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client 29-19

xix

Accessing an EJB 2.1 EJB in Another Application .. 29-19
Accessing an EJB 2.1 MDB... 29-19

Sending a Message to a JMS Destination Using EJB 2.1 .. 29-20
Sending a Message to a J2CA Destination Using EJB 2.1 .. 29-23

Accessing an EJB 2.1 EJBContext.. 29-23
Handling Parameters .. 29-24

Passing Parameters Into an EJB .. 29-24
Handling Parameters Returned by an EJB .. 29-24

Handling Exceptions... 29-25
Recovering From a NamingException While Accessing a Remote EJB 29-25
Recovering From a NullPointerException While Accessing a Remote EJB.......................... 29-25
Recovering From Deadlock Conditions... 29-25

30 Using EJBs and Web Services

Exposing a Stateless Session Bean as a Web Service ... 30-1
Using Annotations .. 30-1

Accessing a Web Service from an EJB ... 30-2
Using Annotations .. 30-2
Using Initial Context... 30-3

31 Administrating an EJB Application

OC4J EJB JMX Support .. 31-1
Using Oracle Enterprise Manager 10g Application Server Control .. 31-1
Configuring EJB Logging .. 31-2

Logging Namespaces.. 31-2
Logging Levels .. 31-3
Configuring Logging with Application Server Control Logging MBean............................... 31-3
Configuring Logging Using the j2ee-logging.xml File .. 31-3
Configuring Logging Using System Properties.. 31-3

Managing the Bean Instance Pool .. 31-3
Configuring Bean Instance Pool Size ... 31-4

Using Deployment XML... 31-4
Configuring Bean Instance Pool Timeouts for Session Beans .. 31-4

Using Deployment XML... 31-5
Configuring Bean Instance Pool Timeouts for Entity Beans... 31-5

Using Deployment XML... 31-5
Starting and Stopping an EJB Application... 31-6
Troubleshooting an EJB Application .. 31-6

Validating XML Files .. 31-6
Debugging the ejb-jar.xml File .. 31-6
Debugging Generated Code .. 31-6

Preserving Generated Code in the Default Directory .. 31-7
Preserving Generated Code in a Directory You Specify .. 31-7
Disabling Generated Code Preservation .. 31-7

xx

A XML Reference for orion-ejb-jar.xml Elements

OC4J and the orion-ejb-jar.xml File... A-1
TopLink Persistence Support.. A-2
OC4J-Specific Deployment Descriptor for EJBs ... A-3

Enterprise Beans Section .. A-3
Persistence Manager Section (persistence-manager) .. A-4
Session Bean Section (session-deployment)... A-4
Entity Bean Section (entity-deployment).. A-8
Message Driven Bean Section (message-driven-deployment) .. A-15
EJB 1.1 CMP Field Mapping Section (cmp-field-mapping) ... A-18
Method Definition.. A-19

Assembly Descriptor Section... A-20
Element Description ... A-20

Glossary

Index

xxi

Preface

This guide gets you started building EJB 3.0 and 2.1 Enterprise JavaBeans for Oracle
Containers for J2EE (OC4J) using the TopLink persistence manager. It includes code
examples to help you develop your application.

The Orion persistence manager is deprecated. Oracle recommends that you use OC4J
and the TopLink persistence manager for new development. Using the migration tool
(see "Migrating to the TopLink Persistence Manager" on page 3-5), you can easily
migrate an existing OC4J application that uses EJB 2.0 entity beans with the Orion
persistence manager to use EJB 2.0 entity beans with the TopLink persistence manager.

If you have questions about OC4J, see the OC4J user’s forum at
http://forums.oracle.com/forums/category.jspa?categoryID=13.

If you have questions or feedback about this documentation, see the documentation
feedback forum at
http://forums.oracle.com/forums/forum.jspa?forumID=165.

Audience
Anyone developing Enterprise JavaBeans for OC4J will benefit from reading this
guide. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in EJB applications deployed
to OC4J.

This guide assumes that you already have a working knowledge of J2EE and the EJB
3.0 and EJB 2.1 specifications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xxii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Containers for J2EE
10g Release 3 (10.1.3) documentation set:

■ Oracle Application Server Release Notes

■ Oracle Containers for J2EE Configuration and Administration Guide

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Oracle Containers for J2EE Developer’s Guide

■ Oracle Containers for J2EE Services Guide

■ Oracle Containers for J2EE Security Guide

■ Oracle Containers for J2EE Deployment Guide

■ Oracle Containers for J2EE Job Scheduler Developer’s Guide

■ Oracle TopLink Developer’s Guide

■ Oracle TopLink API Reference

■ EJB specifications: http://java.sun.com/products/ejb/docs.html.

■ EJB API documentation: http://www.javasoft.com.

■ EJB tutorials: http://java.sun.com/developer/onlineTraining/.

■ EJB design patterns: http://java.sun.com/blueprints/patterns/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xxiii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

xxiv

Part I
EJB Overview

This part provides conceptual information to help you understand EJB architecture,
EJB application development, and OC4J EJB support.

This part contains the following chapters:

■ Chapter 1, "Understanding Enterprise JavaBeans"

■ Chapter 2, "Understanding EJB Application Development"

■ Chapter 3, "Understanding EJB Support in OC4J"

Understanding Enterprise JavaBeans 1-1

1
Understanding Enterprise JavaBeans

The Java 2 Enterprise Edition(J2EE) Enterprise JavaBeans (EJB) are a component
architecture that you use to develop and deploy object-oriented, distributed,
enterprise-scale applications. An application written according to the Enterprise
JavaBeans architecture is scalable, transactional, and secure. The component types that
you can create are commonly referred to as Enterprise JavaBeans.

This chapter describes the following:

■ What are Enterprise JavaBeans?

■ What is a Session Bean?

■ What is an EJB 3.0 Entity?

■ What is an EJB 2.1 Entity Bean?

■ What is a Message-Driven Bean?

■ Which Type of EJB Should You Use?

What are Enterprise JavaBeans?
The EJB architecture is flexible enough to implement the objects that Table 1–1 lists.

Table 1–1 EJB Types

Type Description See ...

Session An EJB 3.0 or EJB 2.1 EJB component created by a client for the duration of a
single client/server session used to perform operations for the client.

"What is a Session Bean?" on
page 1-8

Stateless A session bean that does not maintain conversational state. Used for reusable
business services that are not connected to any specific client.

"What is a Stateless Session
Bean?" on page 1-9

Stateful A session bean that does maintain conversational state. Used for conversational
sessions with a single client (for the duration of its lifetime) that maintain state,
such as instance variable values or transactional state.

"What is a Stateful Session
Bean?" on page 1-10

Entity An EJB 3.0 compliant light-weight entity object that represents persistent data
stored in a relational database using container-managed persistence. Because it is
not a remotely accessible component, an entity can represent a fine-grained
persistent object.

"What is an EJB 3.0 Entity?" on
page 1-14

Entity Bean An EJB 2.1 EJB component that represents persistent data stored in a relational
database.

"What is an EJB 2.1 Entity
Bean?" on page 1-19

CMP A Container-Managed Persistence (CMP) entity bean is an entity bean that
delegates persistence management to the container that hosts it.

"What is an EJB 2.1 CMP
Entity Bean?" on page 1-20

BMP A Bean-Managed Persistence (BMP) entity bean is an entity bean that manages
its own persistence.

"What is an EJB 2.1 BMP
Entity Bean?" on page 1-23

MDB A Message-Driven Bean (MDB) is an EJB 3.0 or EJB 2.1 EJB component that
functions as an asynchronous consumer of Java Message Service (JMS) messages.

"What is a Message-Driven
Bean?" on page 1-35

What are Enterprise JavaBeans?

1-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ What is the Anatomy of an EJB 3.0 EJB?

■ What is the Anatomy of an EJB 2.1 EJB?

■ What is the Lifecycle of an EJB?

■ What is EJB Context?

■ How Do Annotations and Resource Injection Work?

■ Which Type of EJB Should You Use?

What is the Anatomy of an EJB 3.0 EJB?
Using EJB 3.0, the interfaces for your EJB implementation are not restricted by EJB
type. For example, in your EJB 3.0 entity bean implementation, you may implement an
EJB using a plain old Java object (POJO) and any plain old Java interfaces (POJI): you
do not need to implement interfaces like javax.ejb.EntityBean and you do not
need to provide separate interfaces that extend EJBHome, EJBLocalHome,
EJBObject, or EJBLocalObject. A client may instantiate an EJB 3.0 POJO entity
instance with new (or the EntityManager: see "How Do You Query for an EJB 3.0
Entity?" on page 1-17). A client may instantiate an EJB 3.0 session bean using
dependency injection or JNDI lookup. For more information, see, "EJB 3.0 Support" on
page 3-1.

Table 1–2 lists the parts you create when developing an EJB 3.0 EJB.

Table 1–2 Parts of an EJB 3.0 EJB

Part Type Description

Home interface POJI An optional POJI annotated with @Home
that specifies an object that the container
itself implements: the home object. The
@Home is only provided to help EJB 3.0
beans interoperate with EJB 2.1 clients, if
necessary. Most EJB 3.0 bean instances will
not need to provide a home interface.

Component interface POJI An mandatory POJI annotated with
@Remote or @Local (default) that specifies
the business methods that you implement
in the bean and that a client can invoke. No
other container service methods need be
implemented unless you need to override
default container behavior. The bean class
does not need to implement this interface.

Bean implementation POJO A mandatory POJO that may optionally
implement a component interface and
contains the Java code that implements the
methods defined in the optional home
interface and component interface (business
methods). If necessary, you can optionally
annotate any method to serve as a container
lifecycle callback function.

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-3

As Figure 1–1 illustrates, to acquire an EJB 3.0 EJB instance, a Web client (such as a
servlet) or Java client uses JNDI while an EJB client may use either JNDI or resource
injection. For more information about EJB clients, see "What Type of Client Do You
Have?" on page 29-1.

For entity beans, EJB 3.0 provides an EntityManager that you use to create, find,
merge, and persist an EJB 3.0 entity (see "How Do You Query for an EJB 3.0 Entity?" on
page 1-17).

Figure 1–1 A Client Using an EJB 3.0 Stateful Session Bean by Component Interface

The client in Figure 1–1 accesses the EJB as follows:

1. The client retrieves the component interface of the bean.

The servlet or Java client uses JNDI to look up an instance of Cart.

The EJB client uses resource injection by annotating a Cart instance variable with
the @EJB annotation: at run time, the EJB container will ensure that the variable is
initialized accordingly.

In both cases, the EJB container manages instantiation. A home interface is not
necessary.

2. The client invokes a method defined in the component interface (remote or local
interface), which delegates the method call to the corresponding method in the
bean instance (through a stub).

3. The client can destroy the stateful session bean instance by invoking a method in
its component interface that is annotated in the bean instance with @Remove.

Deployment descriptor ejb-jar.xml

orion-ejb-jar.xml

toplink-ejb-jar.xml

ejb3-toplink-sessions.xml

Optional means of specifying attributes of
the bean for deployment. These designate
configuration specifics, such as
environment, interface names, transactional
support, type of EJB, and persistence
information. Because this metadata can be
expressed entirely through annotations (or
defaults), deployment descriptor XML files
are less important in EJB 3.0. Configuration
in a deployment descriptor XML file
overrides the corresponding annotation
configuration, if present. For more
information, see "Understanding EJB
Deployment Descriptor Files" on page 2-7.

Table 1–2 (Cont.) Parts of an EJB 3.0 EJB

Part Type Description

What are Enterprise JavaBeans?

1-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Stateless session beans do not require a remove method; the container removes
the bean if necessary. The container can also remove stateful session beans that
exceed their configured timeout or to maintain the maximum configured pool size.
Entity beans do not require a remove method; you use the EJB 3.0
EntityManager to create and destroy entity beans.

What is the Anatomy of an EJB 2.1 EJB?
Using EJB 2.1, the interfaces for your EJB implementation are based on EJB type. For
example, in your EJB 2.1 entity bean implementation, you must implement the
javax.ejb.EntityBean interface and you must provide separate interfaces that
extend EJBHome or EJBLocalHome and EJBObject or EJBLocalObject. A client
may instantiate an EJB 2.1 EJB instance only with a create method that your EJB
home interface provides. For more information, see "EJB 2.1 Support" on page 3-4.

Table 1–3 lists the parts you create when developing an EJB 2.1 EJB.

A client uses the home interface to acquire an EJB 2.1 EJB instance and uses the
component interface to invoke its business methods as Figure 1–2 illustrates. For more
information about EJB clients, see "What Type of Client Do You Have?" on page 29-1.

Table 1–3 Parts of an EJB 2.1 EJB

Part Type Description

Home interface javax.ejb.EJBHome (remote)

javax.ejb.EJBLocalHome

Specifies the interface to an object that
the container itself implements: the home
object. The home interface contains the
life cycle methods, such as the create
methods that specify how a bean is
created.

Component interface javax.ejb.EJBObject (remote)

javax.ejb.EJBLocalObject

Specifies the business methods that you
implement in the bean. The bean must
also implement additional container
service methods. The EJB container
invokes these methods at different times
in the life cycle of a bean.

Bean implementation javax.ejb.SessionBean

javax.ejb.EntityBean

javax.ejb.MessageDrivenBean

Contains the Java code that implements
the methods defined in the home
interface (life cycle methods), component
interface (business methods), and the
required container methods (container
callback functions).

Deployment descriptor ejb-jar.xml

toplink-ejb-jar.xml

orion-ejb-jar.xml

Specifies attributes of the bean for
deployment. These designate
configuration specifics, such as
environment, interface names,
transactional support, type of EJB, and
persistence information.

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-5

Figure 1–2 A Client Using an EJB 2.1 Stateless Session Bean by Home and Component
Interface

The client in Figure 1–2 accesses the EJB as follows:

1. The client retrieves the home interface of the bean—normally through JNDI.

2. The client invokes the create method on the home interface reference (home
object). This creates the bean instance and returns a reference to the component
interface (remote or local interface) of the bean.

3. The client invokes a method defined in the component interface (remote or local
interface), which delegates the method call to the corresponding method in the
bean instance (through a stub).

4. The client can destroy the bean instance by invoking the remove method that is
defined in the component interface (remote or local interface).

For some beans, such as stateless session beans, calling the remove method does
nothing: in this case, the container is responsible for removing the bean instance.

What is the Lifecycle of an EJB?
The lifecycle of an EJB involves important events such as creation, passivation,
activation, and removal. Each such event is associated with a callback defined on the
EJB class (see "Callback Methods" on page 1-6). The container invokes the callback
prior to or immediately after the lifecycle event (depending on the event type).

The lifecycle events associated with an EJB and whether or not the container or the
bean provider is responsible for implementing callbacks is determined by the type of
EJB you are developing (as specified in the appropriate EJB interface).

For an EJB 3.0 bean, when the container is responsible for the lifecycle callback, you do
not need to provide an implementation in your bean unless you want to perform some
additional logic.

For an EJB 2.1 bean, even when the container is responsible for the lifecycle callback,
and even if you do not want to perform additional logic, you must at least provide an
empty implementation of the lifecycle methods to satisfy the requirements of the
applicable EJB interface.

For more information, see:

■ "What is the Stateless Session Bean Lifecycle?" on page 1-9

■ "What is the Stateful Session Bean Lifecycle?" on page 1-11

■ "What is the CMP Entity Bean Lifecycle?" on page 1-21

■ "What is the BMP Entity Bean Lifecycle?" on page 1-23

■ "What is the Message-Driven Bean Lifecycle?" on page 1-36

What are Enterprise JavaBeans?

1-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Callback Methods
A lifecycle callback method is a method of an EJB class that you define to handle a
lifecycle event (see "What is the Lifecycle of an EJB?" on page 1-5). The container
invokes the callback associated with a given lifecycle event immediately prior to or
immediately after the lifecycle event (depending on the event type).

You implement a lifecycle callback method to change the default behavior of an EJB.

For an EJB 3.0 bean, you can annotate any EJB class method as a lifecycle method.

For an EJB 2.1 bean, you must at least provide an empty implementation of the
lifecycle methods to satisfy the requirements of the applicable EJB interface.

What is EJB Context?
The EJBContext interface provides an instance with access to the container-provided
runtime context of an EJB 2.1 EJB bean instance. This interface is extended by the
SessionContext, EntityContext, and MessageDrivenContext interfaces to
provide additional methods specific to the enterprise interface Bean type.

The javax.ejb.EJBContext interface has the following definition:

public interface EJBContext {
public EJBHome getEJBHome();
public Properties getEnvironment();
public Principal getCallerPrincipal();
public boolean isCallerInRole(String roleName);
public UserTransaction getUserTransaction();
public boolean getRollbackOnly();
public void setRollbackOnly();

}

A bean needs the EJB context when it wants to perform the operations listed in
Table 1–4.

Do not confuse EJBContext with IntialContext (see "Configuring the Initial
Context Factory" on page 19-17).

For more information, see:

■ "What is Session Context?" on page 1-14

Table 1–4 EJB 2.1 EJBContext Operations

Method Description

getEnvironment Get the values of properties for the bean.

getUserTransaction Get a transaction context, which enables programmatic transaction
demarcation when using bean managed transactions (BMT). This is
valid only for beans that have been designated transactional.

setRollbackOnly Set the current transaction so that it cannot be committed. Applicable
only to container-managed transactions.

getRollbackOnly Check whether the current transaction is marked for rollback only.
Applicable only to container-managed transactions.

getEJBHome Retrieve the object reference to the corresponding EJBHome (home
interface) of the bean.

lookup Use JNDI to retrieve the bean by environment reference name. When
using this method, you do not prefix the bean reference with
"java:comp/env".

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-7

■ "What is Entity Context?" on page 1-25

■ "What is Message Driven Context?" on page 1-36

■ "Accessing an EJB 2.1 EJBContext" on page 29-23

How Do Annotations and Resource Injection Work?
Using the @Resource or @EJB annotation, an EJB 3.0 bean may use dependency
injection mechanisms to acquire references to resources or other objects in its
environment. You use @Resource to inject non-EJB resources and @EJB to inject EJBs.

If an EJB 3.0 bean makes use of dependency injection, OC4J injects these references
after the bean instance is created, and before any business methods are invoked.

If a dependency on the EJB context is declared, the EJB context is also injected (see
"What is EJB Context?" on page 1-6).

If dependency injection fails, OC4J discards the bean instance.

Annotations are another way of specifying an environment reference without having
to use XML. When you annotate a field or property, the container injects the value into
the bean on your behalf by looking it up from JNDI. When a reference is specified
using annotations, you can still look it up normally using JNDI.

Example 1–1 shows how annotations relate to JNDI. The annotations in this example
correspond to the ejb-jar.xml file equivalent in Example 1–2. Your code would
have the exact same behavior if this XML and JNDI was used instead.

Example 1–1 Using Annotations and Resource Injection

@Stateless
@EJB(name="bean1", businessInterface=Bean1.class)
public class MyBean
{

@EJB Bean2 bean2;

public void doSomething()
{

// Bean2 is already injected and available
bean2.foo();
// or it can be looked up from JNDI
((Bean2)(new InitialContext().lookup("java:comp/env/bean2"))).foo();
// Bean1 has not been injected and is only available through JNDI
((Bean1)(new InitialContext().lookup("java:comp/env/bean1"))).foo();

}
}

Example 1–2 Equivalent ejb-jar.xml File Configuration

<ejb-local-ref>
<ejb-ref-name>bean1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Bean1.class</local>

</ejb-local-ref>

<ejb-local-ref>

Note: In this release, OC4J does not support resource injection in the
Web container. For more information, see "Servlet or JSP Client" on
page 29-2).

What is a Session Bean?

1-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<ejb-ref-name>bean2</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Bean2.class</local>
<injection-target>

<injection-target-name>bean2</injection-target-name>
</injection-target>

</ejb-local-ref>

What is a Session Bean?
A session bean is an EJB 3.0 or EJB 2.1 EJB component created by a client for the
duration of a single client/server session. A session bean performs operations for the
client. Although a session bean can be transactional, it is not recoverable should a
system failure occur. Session bean objects are either stateless (see "What is a Stateless
Session Bean?" on page 1-9) or stateful: maintaining conversational state across
method calls and transactions (see "What is a Stateful Session Bean?" on page 1-10). If a
session bean maintains state, then OC4J manages this state if the object must be
removed from memory ("When Does Stateful Session Bean Passivation Occur?" on
page 1-12). However, the session bean object itself must manage its own persistent
data.

From a client’s perspective, a session bean is a non-persistent object that implements
some business logic running on the application server. For example, in an on-line store
application, you can use a session bean to implement a ShoppingCartBean that
provides a Cart interface that the client uses to invoke methods like purchaseItem
and checkout.

Each client is allocated its own session object. A client does not directly access
instances of the session bean’s class: a client accesses a session object through the
session bean’s home ("Implementing the Home Interfaces" on page 11-7) and
component ("Implementing the Component Interfaces" on page 11-9) interfaces. The
client of a session bean may be a local client, a remote client, or a Web service client
(stateless session bean only), depending on the interface provided by the bean and
used by the client.

OC4J maintains a session context for each session bean instance (see "What is Session
Context?" on page 1-14) that you use to make callback requests to the container.

This section describes:

■ What is a Stateless Session Bean?

■ What is a Stateful Session Bean?

■ What is Session Context?

For more information, see:

■ "Implementing an EJB 3.0 Session Bean" on page 4-1

■ "Implementing an EJB 2.1 Session Bean" on page 11-1

What is a Stateless Session Bean?
A stateless session bean is a session bean with no conversational state. All instances of
a particular stateless session bean class are identical.

A stateless session bean and its client do not share state or identity between method
invocations. A stateless session bean is strictly a single invocation bean. It is employed
for reusable business services that are not connected to any specific client, such as
generic currency calculations, mortgage rate calculations, and so on. Stateless session

What is a Session Bean?

Understanding Enterprise JavaBeans 1-9

beans may contain client-independent, read-only state across a call. Subsequent calls
are handled by other stateless session beans in the pool. The information is used only
for the single invocation.

OC4J maintains a pool of these stateless beans to service multiple clients. An instance
is taken out of the pool when a client sends a request. There is no need to initialize the
bean with any information.

The client of a stateless session bean may be a Web service client. Only a stateless
session bean may provide a Web service client view.

For more information, see:

■ "Implementing an EJB 3.0 Stateless Session Bean" on page 4-1

■ "Implementing an EJB 2.1 Stateless Session Bean" on page 11-1

■ "Exposing a Stateless Session Bean as a Web Service" on page 30-1

What is the Stateless Session Bean Lifecycle?
The lifecycle for EJB 3.0 (see Table 1–5) and EBJ 2.1 (see Table 1–6) stateless session
beans are identical. The difference is in how you register lifecycle callback methods.

Table 1–5 lists the optional EJB 3.0 stateless session bean lifecycle callback methods
you can define using annotations. For EJB 3.0 stateless session beans, you do not need
to implement these methods.

Table 1–6 lists the EJB 2.1 lifecycle methods, as specified in the
javax.ejb.SessionBean interface, that a stateful session bean must implement.
For EJB 2.1 stateful session beans, you must at the least provide an empty
implementation for all callback methods.

For more information, see:

Table 1–5 Lifecycle Methods for an EJB 3.0 Stateless Session Bean

Annotation Description

@PostConstruct This optional method is invoked for a stateful session bean before the first business
method invocation on the bean. This is at a point after which any dependency
injection has been performed by the container.

@PreDestroy This optional method is invoked for a stateful session bean when the instance is in
the process of being removed by the container. The instance typically releases any
resources that it has been holding.

Table 1–6 Lifecycle Methods for an EJB 2.1 Stateless Session Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. Use this
method to initialize non-client specific information such as retrieving a data
source.

ejbActivate This method is never called for a stateless session bean. Provide an empty
implementation only.

ejbPassivate This method is never called for a stateless session bean. Provide an empty
implementation only.

ejbRemove The container invokes this method before it ends the life of the stateless session
bean. Use this method to perform any required clean-up—for example, closing
external resources such as a data source.

setSessionContext The container invokes this method after it first instantiates the bean. Use this
method to obtain a reference to the context of the bean. For more information,
see "Implementing the setSessionContext Method" on page 11-10.

What is a Session Bean?

1-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean" on page 5-2

■ "Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean" on
page 12-3

What is a Stateful Session Bean?
A stateful session bean is a session bean that maintains conversational state.

Stateful session beans are useful for conversational sessions, in which it is necessary to
maintain state, such as instance variable values or transactional state, between method
invocations. These session beans are mapped to a single client for the life of that client.

A stateful session bean maintains its state between method calls. Thus, there is one
instance of a stateful session bean created for each client. Each stateful session bean
contains an identity and a one-to-one mapping with an individual client.

When the container determines that it must remove a stateful session bean from
memory (to free up resources), the container maintains its state by passivation:
serializing the bean to disk. This is why the state that you passivate must be
serializable. However, this information does not survive system failures. When the
bean instance is requested again by its client, the container activates the previously
passivated bean instance.

The type of state that is saved does not include resources. The container invokes the
ejbPassivate method within the bean to provide the bean with a chance to clean up
its resources, such as sockets held, database connections, and hash tables with static
information. All these resources can be reallocated and re-created during the
ejbActivate method.

If the bean instance fails, the state can be lost—unless you take action within your bean
to continually save state. However, if you must make sure that state is persistently
saved in the case of failovers, you may want to use an entity bean for your
implementation. Alternatively, you could also use the SessionSynchronization
interface to persist the state transactionally.

For example, a stateful session bean could implement the server side of a shopping
cart on-line application, which would have methods to return a list of objects that are
available for purchase, put items in the customer's cart, place an order, change a
customer's profile, and so on.

For more information, see

■ "Implementing an EJB 3.0 Stateful Session Bean" on page 4-3

■ "Implementing an EJB 2.1 Stateful Session Bean" on page 11-4

What is the Stateful Session Bean Lifecycle?
The lifecycle for EJB 3.0 (see Table 1–7) and EBJ 2.1 (see Table 1–8) stateful session
beans are identical. The difference is in how you register lifecycle callback methods.

Table 1–7 lists the optional EJB 3.0 stateful session bean lifecycle callback methods you
can define using annotations. For EJB 3.0 stateful session beans, you do not need to
implement these methods.

Note: You can turn off passivation for stateful session beans (see
"Configuring Passivation" on page 12-1).

What is a Session Bean?

Understanding Enterprise JavaBeans 1-11

Table 1–8 lists the EJB 2.1 lifecycle methods, as specified in the
javax.ejb.SessionBean interface, that a stateful session bean must implement.
For EJB 2.1 stateful session beans, you must at the least provide an empty
implementation for all callback methods.

For more information, see:

■ "Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean" on page 5-2

■ "Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean" on
page 12-3

When Does Stateful Session Bean Passivation Occur? Passivation enables the container to
preserve the conversational state of an inactive idle bean instance by serializing the
bean and its state into a secondary storage and removing it from memory. Before
passivation, the container invokes the PrePassivate or ejbPassivate method
enabling the bean developer to clean up held resources, such as database connections,
TCP/IP sockets, or any resources that cannot be transparently passivated using object
serialization. Only certain object types can be serialized and passivated (see "What
Object Types Can Be Passivated?" on page 1-13).

Table 1–7 Lifecycle Methods for an EJB 3.0 Stateful Session Bean

Annotation Description

@PostConstruct This optional method is invoked for a stateful session bean before the first business
method invocation on the bean. This is at a point after which any dependency
injection has been performed by the container.

@PreDestroy This optional method is invoked for a stateful session bean when the instance is in
the process of being removed by the container. The instance typically releases any
resources that it has been holding.

@PrePassivate The container invokes this method right before it passivates a stateful session bean.
For more information, see:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-12

■ "What Object Types Can Be Passivated?" on page 1-13

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-14

@PostActivate The container invokes this method right after it reactivates a formerly passivated
stateful session bean.

Table 1–8 Lifecycle Methods for an EJB 2.1 Stateful Session Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. Stateless
session beans must do nothing in this method. Stateful session beans can initiate
state in this method.

ejbActivate The container invokes this method right after it reactivates the bean.

ejbPassivate The container invokes this method right before it passivates the bean. For more
information, see:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-12

■ "What Object Types Can Be Passivated?" on page 1-13

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-14

ejbRemove A container invokes this method before it ends the life of the session object. This
method performs any required clean-up—for example, closing external
resources such as file handles.

setSessionContext The container invokes this method after it first instantiates the bean. Use this
method to obtain a reference to the context of the bean. For more information,
see "Implementing the setSessionContext Method" on page 11-10.

What is a Session Bean?

1-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Passivation is enabled by default. For more information on enabling and disabling
passivation, see "Configuring Passivation" on page 12-1.

OC4J will passivate stateful session beans when any combination of the following
criteria is met:

■ exceed idle timeout

■ exceed threshold for maximum number of instances or exceed absolute maximum
number of instances

■ exceed threshold for maximum JVM memory consumption

■ shutdown OC4J instance

Passivation of beans is performed using the least recently used algorithm: of the beans
eligible for passivation, OC4J passivates the least used first.

In addition, you can specify how frequently OC4J checks this criteria and the number
of instances to passivate when the criteria is met.

For information on configuring this criteria, see "Configuring Passivation Criteria" on
page 12-2.

If the passivation serialization fails, then the container attempts to recover the bean
back to memory as if nothing happened. No future passivation attempts will occur for
any beans that fail passivation. Also, if activation fails, the bean and its references are
completely removed from the container.

When a client invokes one of the methods of the passivated bean instance, the
preserved conversational state data is activated, by de-serializing the bean from
secondary storage, and brought back into memory. Before activation, the container
invokes the ejbActivate method so that the bean developer can restore the
resources released during ejbPassivate. For more information on passivation, see
the EJB specification.

A stateful session bean can passivate only certain object types, as designated in "What
Object Types Can Be Passivated?" on page 1-13. If you do not prepare your stateful
session beans for passivation by releasing all resources and only allowing state to exist
within the allowed object types, then passivation will always fail.

If new bean data is propagated to a passivated bean in a cluster, then the bean instance
data is overwritten by the propagated data.

What Object Types Can Be Passivated? When a stateful session bean is passivated, it is
serialized to secondary storage. To be successful, the conversational state of a bean
must consist of only primitive values and the following data types:

■ serializable object (note that you do not necessarily need to declare the field type
as serializble as long as the field is initialized with a subclass of the field type that
is serializable)

■ null

■ reference to an EJB business interface

■ reference to an EJB remote interface, even if the stub class is not serializable

■ reference to an EJB remote home interface, even if the stub class is not serializable

■ reference to an EJB local interface, even if it is not serializable

■ reference to an EJB local home interface, even if it is not serializable

■ reference to the SessionContext object, even if it is not serializable

What is a Session Bean?

Understanding Enterprise JavaBeans 1-13

■ reference to the environment naming context (that is, the java:comp/env JNDI
context) or any of its subcontexts

■ reference to the UserTransaction interface

■ reference to resource manager connection factory

■ reference to an EntityManager object, even if it is not serializable

■ reference to an EntityManagerFactory object, even if it is not serializable

■ reference to javax.ejb.Timer object

■ An object that is not directly serializable, but becomes serializable by replacing a
reference to an EJB business interface, an EJB home and component interface, the
reference to the SessionContext object, the reference to the java:comp/env JNDI
context and its subcontexts, the reference to the UserTransaction interface, and
the reference to the EntityManager, EntityManagerFactory, or both by
serializable objects during the object’s serialization.

You are responsible for ensuring that all non-transient fields are of these types after
the PrePassivate method (see "Configuring a Lifecycle Callback Method for an EJB
3.0 Session Bean" on page 5-2) or ejbPassivate method (see "Configuring a
Lifecycle Callback Method for an EJB 2.1 Session Bean" on page 12-3) completes.
Within this method, you must set all transient or non-serializable fields to null.

Where is a Passivated Stateful Session Bean Stored? By default, when OC4J passivates a
stateful session bean, it writes the serialized instance to <OC4J_
HOME>\j2ee\home\persistence.

Passivation uses space within this directory to store the passivated beans. If
passivation allocates large amounts of disk space, you may need to change the
directory to a place on your system where you have the space available (see
"Configuring Passivation Location" on page 12-3).

What is Session Context?
OC4J maintains a javax.ejb.SessionContext for each session bean instance and
makes this session context available to the beans. The bean may use the methods in the
session context to make callback requests to the container.

In addition, you can use the methods inherited from EJBContext (see "What is EJB
Context?" on page 1-6).

For more information, see:

■ "Accessing an EJB 3.0 EJBContext" on page 29-16

■ "Accessing an EJB 2.1 EJBContext" on page 29-23

OC4J initializes the session context after it first instantiates the bean. It is the bean
provider’s responsibility to enable the bean to retrieve the session context. The
container will never call this method from within a transaction context. If the bean
does not save the session context at this point, the bean will never gain access to the
session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use.

If the session bean instance stores in its conversational state an object reference to the
SessionContext (either with a setSessionContext method or using resource
injection), OC4J can save and restore the reference across the instance’s passivation.

What is an EJB 3.0 Entity?

1-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OC4J can replace the original SessionContext object with a different and
functionally equivalent SessionContext object during activation.

What is an EJB 3.0 Entity?
An EJB 3.0 entity is an EJB 3.0 compliant light-weight entity object that manages
persistent data, performs complex business logic, potentially uses several dependent
Java objects, and can be uniquely identified by a primary key.

EJB 3.0 entities represent persistent data stored in a relational database automatically
using container-managed persistence.

EJB 3.0 entities are persistent because their data is stored persistently in some form of
data storage system, such as a database: they do survive a server failure, failover, or a
network failure. When an entity is re-instantiated, the state of the previous instance is
automatically restored.

An entity models a business entity or models multiple actions within a business
process. Entity beans are often used to facilitate business services that involve data and
computations on that data. For example, an application developer might implement an
entity bean to retrieve and perform computation on items within a purchase order.
Your entity bean can manage multiple, dependent, persistent objects in performing its
tasks.

EJB 3.0 entities can represent fine-grained persistent objects because they are not
remotely accessible components.

An EJB 3.0 entity can aggregate objects together and effectively persist data and
related objects using container transactional, security, and concurrency services.

This section describes:

■ What are Container-Managed Persistence Fields?

■ What are Container-Managed Relationship Fields?

■ What is the EJB 3.0 Entity Lifecycle?

■ What is an EJB 3.0 Entity Primary Key?

■ How Do You Query for an EJB 3.0 Entity?

For more information, see "Implementing an EJB 3.0 Entity" on page 6-1.

What are Container-Managed Persistence Fields?
A container-managed persistence field is a state-field that represents data that must be
persisted to a database.

By specifying a CMP field, you are instructing OC4J to take responsibility for ensuring
that the field’s value is persisted to the database.

Using EJB 3.0, all data members are by default considered container-managed
persistence fields unless annotated with @Transient.

What are Container-Managed Relationship Fields?
A container-managed relationship (CMR) field is an association-field that represents a
persistent relationship to one or more other EJB 3.0 entities or EJB 2.1 CMP entity
beans. For example, in an order management application the OrderEJB might be
related to a collection of LineItemEJB beans and to a single CustomerEJB bean.

What is an EJB 3.0 Entity?

Understanding Enterprise JavaBeans 1-15

By specifying a CMR field, you are instructing OC4J to take responsiblity for ensuring
that a reference to one or more related EJB 3.0 entities or EJB 2.1 CMP entity beans is
persisted to the database. For this reason, this relationship is often referred to as a
CMR or a mapping from one EJB 3.0 entity or EJB 2.1 CMP entity bean to another.

A container-managed relationship has the following characteristics:

■ Multiplicity - There are four types of multiplicities all of which are supported by
Oracle Application Server:

■ Directionality - The direction of a relationship may be either bi-directional or
unidirectional. In a bi-directional relationship, each entity bean has a relationship
field that refers to the other bean. Through the relationship field, an entity bean's
code can access its related object. If an entity bean has a relative field, then we
often say that it "knows" about its related object. For example, if an ProjectEJB
bean knows what TaskEJB beans it has and if each TaskEJB bean knows what
ProjectEJB bean it belongs to, then they have a bi-directional relationship. In a
unidirectional relationship, only one entity bean has a relationship field that refers
to the other. Oracle Application Server supports both unidirectional and
bi-directional relationships between EJBs.

■ EJB QL query support - EJB QL queries often navigate across relationships. The
direction of a relationship determines whether a query can navigate from one bean
to another. With OC4J, EJB QL queries can traverse CMP Relationships with any
type of multiplicity and with both unidirectional and bi-directional relationships.

For more information, see:

■ "Configuring an EJB 3.0 Entity Container-Managed Relationship Field" on page 7-9

■ "Using EJB 3.0 Query API" on page 8-1

What is the EJB 3.0 Entity Lifecycle?
Table 1–9 lists the optional EJB 3.0 entity lifecycle callback methods you can define
using annotations. For EJB 3.0 entities, you do not need to implement these methods.

Table 1–9 Lifecycle Methods for an EJB 3.0 Entity

Annotation Description

@PrePersist This optional method is invoked for an entity before the corresponding
EntityManager persist operation is executed. This callback will be invoked on all
entities to which these operations are cascaded. If this callback throws an Exception,
it will cause the current transaction to be rolled back.

@PostPersist This optional method is invoked for an entity after the corresponding EntityManager
persist operation is executed. This callback will be invoked on all entities to which
these operations are cascaded. This method will be invoked after the database insert
operation. This may be directly after the persist operation, a flush operation, or at the
end of a transaction. If this callback throws an Exception, it will cause the current
transaction to be rolled back.

@PreRemove This optional method is invoked for an entity before the corresponding
EntityManager remove operation is executed. This callback will be invoked on all
entities to which these operations are cascaded. If this callback throws an Exception,
it will cause the current transaction to be rolled back.

@PostRemove This optional method is invoked for an entity after the corresponding EntityManager
remove operation is executed. This callback will be invoked on all entities to which
these operations are cascaded. This method will be invoked after the database delete
operation. This may be directly after the remove operation, a flush operation, or at
the end of a transaction. If this callback throws an Exception, it will cause the current
transaction to be rolled back.

@PreUpdate This optional method is invoked before the database update operation on entity
data. This may be at the time of the entity state update, a flush operation, or at the
end of a transaction.

What is an EJB 3.0 Entity?

1-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see "Configuring a Lifecycle Callback Method for an EJB 3.0
Entity" on page 7-16.

What is an EJB 3.0 Entity Primary Key?
Each EJB 3.0 entity instance has a primary key that uniquely identifies it from other
instances. The primary key (or the fields contained within a complex primary key)
must be a container-managed persistent fields.

All fields within the primary key are restricted to::

■ primitive object types

■ serializable types

■ types that can be mapped to SQL types

In this release, you can define a primary key made up of a single, well-known
serializable Java primitive or object type. The primary key variable that is declared
within the bean class must be declared as public (see "Configuring an EJB 3.0 Entity
Primary Key Field" on page 7-2).

You can assign primary key values yourself, or more typically, you can create an
auto-generated primary key (see "Configuring EJB 3.0 Entity Automatic Primary Key
Generation").

For more information, see "Configuring an EJB 3.0 Entity Primary Key" on page 7-2

How Do You Query for an EJB 3.0 Entity?
In EJB 3.0, you use a javax.persistence.EntityManager to create, find, merge,
and persist your EJB 3.0 entities (see "Accessing an EJB 3.0 Entity Using an
EntityManager" on page 29-5).

You can express your selection criteria using an appropriate query syntax (see
"Understanding EJB Query Syntax" on page 1-28).

Understanding EJB Query Syntax
Table 1–15 summarizes the types of query syntax you can use to define EJB queries.

@PostUpdate This optional method is invoked after the database update operation on entity data.
This may be at the time of the entity state update, a flush operation, or at the end of a
transaction.

@PostLoad This optional method is invoked after the entity has been loaded into the current
persistence context from the database or after the refresh operation has been applied
to it and before a query result is returned or accessed or an association is traversed.

Note: Once the primary key for an entity bean has been set, the EJB
3.0 specification forbids you from attempting to change it. Therefore,
do not expose the primary key set methods in an entity component
interface.

Table 1–9 (Cont.) Lifecycle Methods for an EJB 3.0 Entity

Annotation Description

What is an EJB 3.0 Entity?

Understanding Enterprise JavaBeans 1-17

Oracle recommends EJB QL because it is both portable and optimizable.

Understanding EJB QL Query Syntax EJB QL is a specification language used to define
query semantics in a portable and optimizable format.

Although similar to SQL, EJB QL offers significant advantages over native SQL. While
SQL applies queries against tables, using column names, EJB QL applies queries
against CMP entity beans, using the abstract schema name and the CMP and CMR
fields of the bean within the query. The EJB QL statement retains the object
terminology. The container translates the EJB QL statement to the appropriate
database SQL statement when the application is deployed. Thus, the container is
responsible for converting the entity bean name, CMP field names, and CMR field
names to the appropriate database tables and column names. EJB QL is portable to all
databases supported by OC4J.

In EJB 3.0, EJB QL syntax includes everything in EJB 2.1 plus additional features such
as bulk update and delete, JOIN operations, GROUP BY, HAVING, projection,
subqueries, and the use of EJB QL in dynamic queries using the EJB 3.0
EntityManager API (see "Understanding the EJB 3.0 EntityManager Query API" on
page 1-18). For complete details, see the EJB 3.0 persistence specification.

Oracle Application Server provides complete support for EJB QL with the following
important features:

■ Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle Application
Server, the container automatically translates the queries into the SQL dialect of
the target data store. Because of this translation, entity beans with
container-managed persistence are portable -- their code is not tied to a specific
type of data store.

■ Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL,
batched statement dispatch, and so on to make database access efficient.

■ Support for Oracle and Non-Oracle Databases: Further, Oracle Application Server
provides the ability to execute EJB QL against any database - Oracle, MS
SQL-Server, IBM DB/2, Informix, and Sybase.

■ Relationships: Oracle Application Server supports EJB QL for both single entity
beans and also with entity beans that have relationships, with support for any type
of multiplicity and directionality.

Using EJB 3.0, OC4J supports all of the enhanced EJB QL features defined in the EJB
3.0 persistence specification, including SQRT and date, time, and timestamp options.

Understanding Native SQL Query Syntax In this release, the TopLink persistence manager
takes the query syntax you specify (see "Understanding EJB Query Syntax" on
page 1-28) and generates Sequential Query Language (SQL) native to your underlying
relational database.

EJB QL is the preferred syntax because it is portable and optimizable.

Table 1–10 OC4J EJB Query Syntax Support

Query Syntax See Also

EJB QL "Understanding EJB Query Syntax" on page 1-28

Native SQL "Understanding Native SQL Query Syntax" on page 1-31

What is an EJB 2.1 Entity Bean?

1-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Native SQL is appropriate for taking advantage of advanced query features of your
underlying relational database that EJB QL does not support.

Using EJB 3.0, you can use EntityManager method createNativeQuery(String
sqlString, Class resultType) to create a native SQL query (see "Creating a
Dynamic Native SQL Query with the EntityManager" on page 29-11).

To use native SQL otherwise, you must use straight JDBC calls.

Understanding the EJB 3.0 EntityManager Query API
In EJB 3.0, you can use the javax.persistence.EntityManager and
javax.persistence.Query API to create and execute named queries (see "What is
an EJB 3.0 Named (Predefined) Query?" on page 1-19) or dynamic queries (see "What
is an EJB 3.0 Dynamic (Ad-Hoc) Query?" on page 1-19).

Using Query API, you can bind parameters, configure hints, and control the number
of results returned.

For more information, see:

■ "How Do You Query for an EJB 3.0 Entity?" on page 1-17

■ "Querying for an EJB 3.0 Entity Using the EntityManager" on page 29-10

What is an EJB 3.0 Named (Predefined) Query? A named query is the EJB 3.0 improvement
of the EJB 2.1 finder method. In EJB 3.0, you can implement a named query using
metadata (see "Implementing an EJB 3.0 Named Query" on page 8-1) and then create
and execute the query by name at runtime (see "Creating a Named Query with the
EntityManager" on page 29-10).

In this release OC4J supports only EJB QL named queries.

What is an EJB 3.0 Dynamic (Ad-Hoc) Query? A dynamic query is a query that you can
compose, configure, and execute at runtime. You can use dynamic queries in addition
to named queries.

OC4J supports both EJB QL ("Creating a Dynamic EJB QL Query with the Entity
Manager" on page 29-11) and native SQL ("Creating a Dynamic Native SQL Query
with the EntityManager" on page 29-11) dynamic queries.

You can also create a dynamic query using the TopLink query and expression
framework (see "Creating a Dynamic TopLink Expression Query with the
EntityManager" on page 29-11).

What is an EJB 2.1 Entity Bean?
An entity bean is an EJB 2.1 EJB component that manages persistent data, performs
complex business logic, potentially uses several dependent Java objects, and can be
uniquely identified by a primary key ("What is a CMP Entity Bean Primary Key?" on
page 1-22 or "What is a BMP Entity Bean Primary Key?" on page 1-24).

Entity beans persist business data using one of the two following methods:

Note: OC4J does not support EntityManager method
createNativeQuery(String sqlString) nor does it support
native SQL named queries (see "Implementing an EJB 3.0 Named
Query" on page 8-1).

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-19

■ Automatically by the container using a container-managed persistent (CMP) entity
bean (see "What is an EJB 2.1 CMP Entity Bean?" on page 1-20)

■ Programmatically through methods implemented in a bean-managed persistent
(BMP) entity bean (see "What is an EJB 2.1 BMP Entity Bean?" on page 1-23). These
methods use JDBC, SQLJ, or a persistence framework (such as TopLink) to
manage persistence.

For information on choosing between CMP and BMP architectures, see "When do you
use Bean-Managed versus Container-Managed Persistence?" on page 1-37.

Entity beans are persistent because their data is stored persistently in some form of
data storage system, such as a database: they do survive a server failure, failover, or a
network failure. When an entity bean is re-instantiated, the state of the previous
instance is automatically restored. OC4J manages this state if the entity bean must be
removed from memory (see "When Does Entity Bean Passivation Occur?" on
page 1-27).

An entity bean models a business entity or models multiple actions within a business
process. Entity beans are often used to facilitate business services that involve data and
computations on that data. For example, an application developer might implement an
entity bean to retrieve and perform computation on items within a purchase order.
Your entity bean can manage multiple, dependent, persistent objects in performing its
tasks.

A common design pattern pairs entity beans with a session bean that acts as the client
interface. The entity bean functions as a coarse-grained object that encapsulates
functionality and represents persistent data and relationships to dependent (typically
find-grained) objects. Thus, you decouple the client from the data so that if the data
changes, the client is not affected. For efficiency, the session bean can be collocated
with entity beans and can coordinate between multiple entity beans through their local
interfaces. This is known as a session facade design. See the http://java.sun.com
Web site for more information on session facade design.

An entity bean can aggregate objects together and effectively persist data and related
objects using container transactional, security, and concurrency services.

This section describes:

■ What is an EJB 2.1 CMP Entity Bean?

■ What is an EJB 2.1 BMP Entity Bean?

■ What is Entity Context?

■ How do You Avoid Database Resource Contention?

■ How Do You Query for an EJB 2.1 Entity Bean?

■ When Does Entity Bean Passivation Occur?

■ What are Entity Bean Commit Options?

For more information, see "Implementing an EJB 2.1 Entity Bean" on page 13-1.

What is an EJB 2.1 CMP Entity Bean?
When you choose to have the container manage your persistent data for an entity
bean, you define a container-managed persistence (CMP) entity bean. A CMP entity
bean class is an abstract class (the container provides the implementation class that is
used at runtime) whose persistent data is specified as container-managed persistence
fields (see "What are Container-Managed Persistence Fields?" on page 1-20) for simple
data or as container-managed relationship fields (see "What are Container-Managed

What is an EJB 2.1 Entity Bean?

1-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Relationship Fields?" on page 1-21) for relationships with other CMP entity beans. In
this case, you do not have to implement some of the callback methods to manage
persistence for your bean's data (see "What is the CMP Entity Bean Lifecycle?" on
page 1-21), because the container stores and reloads your persistent data to and from
the database. When you use container-managed persistence, the container invokes a
persistence manager class that provides the persistence management business logic.
OC4J uses the TopLink persistence manager by default. In addition, you do not have
to provide management for the primary key (see "What is a CMP Entity Bean Primary
Key?" on page 1-22): the container provides this key for the bean.

For more information, see "Implementing an EJB 2.1 CMP Entity Bean" on page 13-1.

What are Container-Managed Persistence Fields?
A container-managed persistence field is a state-field that represents data that must be
persisted to a database.

By specifying a CMP field, you are instructing OC4J to take responsibility for ensuring
that the field’s value is persisted to the database. All other fields in the CMP entity
bean are considered non-persistent (transient).

Using EJB 2.1, you must explicitly specify CMP fields (see "Configuring an EJB 2.1
CMP Entity Bean Container-Managed Persistence Field" on page 14-7).

What are Container-Managed Relationship Fields?
A container-managed relationship field is an association-field that represents a
persistent relationship to one or more other CMP entity beans. For example, in an
order management application the OrderEJB might be related to a collection of
LineItemEJB beans and to a single CustomerEJB bean.

By specifying a CMR field, you are instructing OC4J to take responsiblity for ensuring
that a reference to one or more related CMP entity beans is persisted to the database.
For this reason, a relationship between CMP entity beans is often referred to as
container-managed relationship (CMR) or a mapping from one CMP entity bean to
another.

A container-managed relationship has the following characteristics:

■ Multiplicity - There are four types of multiplicities all of which are supported by
Oracle Application Server:

■ Directionality - The direction of a relationship may be either bi-directional or
unidirectional. In a bi-directional relationship, each entity bean has a relationship
field that refers to the other bean. Through the relationship field, an entity bean's
code can access its related object. If an entity bean has a relative field, then we
often say that it "knows" about its related object. For example, if an ProjectEJB
bean knows what TaskEJB beans it has and if each TaskEJB bean knows what
ProjectEJB bean it belongs to, then they have a bi-directional relationship. In a
unidirectional relationship, only one entity bean has a relationship field that refers
to the other. Oracle Application Server supports both unidirectional and
bi-directional relationships between EJBs.

■ EJB QL query support - EJB QL queries often navigate across relationships. The
direction of a relationship determines whether a query can navigate from one bean
to another. With OC4J, EJB QL queries can traverse CMP Relationships with any
type of multiplicity and with both unidirectional and bi-directional relationships.

For more information, see:

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-21

■ "Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field"
on page 14-8

■ "Using EJB 2.1 Query API" on page 16-1

What is the CMP Entity Bean Lifecycle?
Table 1–11 lists the EJB 2.1 lifecycle methods, as specified in the
javax.ejb.EntityBean interface, that a CMP entity bean must implement. For EJB
2.1 CMP entity beans, you must at the least provide an empty implementation for all
callback methods.

What is a CMP Entity Bean Primary Key?
Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a complex
primary key) as a container-managed persistent field in the deployment descriptor.

All fields within the primary key are restricted to:

■ primitive object types

■ serializable types

■ types that can be mapped to SQL types

You can define a primary key in one of the following ways:

Table 1–11 Lifecycle Methods for an EJB 2.1 CMP Entity Bean

EJB Method Description

ejbCreate You must implement an ejbCreate method corresponding to each create method
declared in the home interface. When the client invokes the create method, the
container first invokes the constructor to instantiate the object, then it invokes the
corresponding ejbCreate method.

For a CMP entity bean, use this method to initialize container-managed persistent
fields.

The return type of all ebjCreate methods is the type of the bean’s primary key.

Optionally, you can initialize the bean with a unique primary key and return it. If you
rely on the container to create and initialize the primary key, return null.

ejbPostCreate The container invokes this method after the environment is set. For each ejbCreate
method, an ejbPostCreate method must exist with the same arguments.

For a CMP entity bean, you can leave this implementation empty or use your
implementation to initialize parameters within or from the entity context.

ejbRemove The container invokes this method before it ends the life of the entity bean.

For a CMP entity bean, you can leave this implementation empty or use your
implementation to perform any required clean-up, for example closing external
resources such as file handles.

ejbStore The container invokes this method right before a transaction commits. It saves the
persistent data to an outside resource, such as a database.

For a CMP entity bean, you can leave this implementation empty.

ejbLoad The container invokes this method when the data should be reinitialized from the
database. This normally occurs after activation of an entity bean.

For a CMP entity bean, you can leave this implementation empty.

ejbActivate The container calls this method directly before it activates an object that was
previously passivated. Perform any necessary reaquisition of resources in this
method.

ejbPassivate The container calls this method before it passivates the object. Release any resources
that can be easily re-created in ejbActivate, and save storage space. Normally, you
want to free resources that cannot be passivated, such as sockets or database
connections. Retrieve these resources in the ejbActivate method.

What is an EJB 2.1 Entity Bean?

1-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Define a simple primary key made up of a single, well-known serializable Java
primitive or object type. The primary key variable that is declared within the bean
class must be declared as public (see "Configuring an EJB 2.1 CMP Entity Bean
Primary Key Field" on page 14-2).

■ Define a composite primary key class made up of one or more well-known
serializable Java primitive and object types within a <name>PK class that is
serializable (see "Configuring an EJB 2.1 CMP Entity Bean Composite Primary Key
Class").

You can assign primary key values yourself, or more typically, you can create an
auto-generated primary key (see "Configuring EJB 2.1 CMP Entity Bean Automatic
Primary Key Generation" on page 14-5).

For more information, see "Configuring an EJB 2.1 CMP Entity Bean Primary Key" on
page 14-1.

What is an EJB 2.1 BMP Entity Bean?
When you choose to manage your persistent data for an entity bean yourself, you
define a bean-managed persistence (BMP) entity bean. A BMP entity bean class is a
concrete class (you provide the implementation that is used at runtime) whose
persistent data is specified as bean-managed persistence fields (see "What are
Bean-Managed Persistence Fields?" on page 1-23) for simple data or as bean-managed
relationship fields (see "What are Bean-Managed Relationship Fields?" on page 1-23)
for relationships with other BMP entity beans. In this case, you must implement all of
the callback methods to manage persistence for your bean's data, including storing
and reloading your persistent data to and from the database (see "What is the BMP
Entity Bean Lifecycle?" on page 1-23). When you use bean-managed persistence, you
must supply the code that provides the persistence management business logic. In
addition, you must provide management for the primary key (see "What is a BMP
Entity Bean Primary Key?" on page 1-24).

You can specify a BMP entity bean as read-only (see "Configuring a Read-Only BMP
Entity Bean" on page 15-2) and take advantage of the optimizations that OC4J
provides read-only BMP entity beans depending on the commit option you choose
(see "What are Entity Bean Commit Options?" on page 1-27)

For more information, see "Implementing an EJB 2.1 BMP Entity Bean" on page 13-6.

What are Bean-Managed Persistence Fields?
 With bean-managed persistence, the code that you write determines what BMP entity
bean fields are persistent.

What are Bean-Managed Relationship Fields?
With bean-managed persistence, the code that you write implements the relationships
between BMP entity beans.

Note: Once the primary key for an entity bean has been set, the EJB
2.1 specification forbids you from attempting to change it. Therefore,
do not expose the primary key set methods in an entity bean
component interface.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-23

What is the BMP Entity Bean Lifecycle?
Table 1–12 lists the lifecycle methods, as specified in the javax.ejb.EntityBean
interface, that a BMP entity bean must implement.

For a BMP entity bean, you must provide a complete implementation of all lifecycle
methods.

For more information, see "Configuring a Lifecycle Callback Method for an EJB 2.1
BMP Entity Bean" on page 15-5.

What is a BMP Entity Bean Primary Key?
An entity bean primary key is a uniquely identifiable value that distinguishes one
instance of a particular type of entity bean class from another. Each entity bean has a
persistent identity associated with it. That is, the entity bean contains a unique identity
that can be retrieved if you have the primary key—given the primary key, a client can
retrieve the entity bean. If the bean is not available, the container instantiates the bean
and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

All fields within the primary key are restricted to:

■ primitive object types

■ serializable types

■ types that can be mapped to SQL types

You can define a primary key in one of the following ways:

■ Define the type of the primary key to be a well-known Java type. The primary key
variable that is declared within the bean class must be declared as public.

Table 1–12 EJB Lifecycle Methods for a BMP Entity Bean

EJB Method Description

ejbCreate You must implement an ejbCreate method corresponding to each create method
declared in the home interface. When the client invokes the create method, the
container first invokes the constructor to instantiate the object, then it invokes the
corresponding ejbCreate method. The ejbCreate method performs the
following:

■ creates any persistent storage for its data, such as database rows

■ initializes a unique primary key and returns it

ejbPostCreate The container invokes this method after the environment is set. For each ejbCreate
method, an ejbPostCreate method must exist with the same arguments. This
method can be used to initialize parameters within or from the entity context.

ejbRemove The container invokes this method before it ends the life of the session object. This
method can perform any required clean-up, for example closing external resources
such as file handles.

ejbStore The container invokes this method right before a transaction commits. It saves the
persistent data to an outside resource, such as a database.

ejbLoad The container invokes this method when the data should be reinitialized from the
database. This normally occurs after activation of an entity bean.

ejbActivate The container calls this method directly before it activates an object that was
previously passivated. Perform any necessary reaquisition of resources in this
method.

ejbPassivate The container calls this method before it passivates the object. Release any resources
that can be easily re-created in ejbActivate, and save storage space. Normally, you
want to free resources that cannot be passivated, such as sockets or database
connections. Retrieve these resources in the ejbActivate method.

What is an EJB 2.1 Entity Bean?

1-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Define the type of the primary key as a serializable object within a <name>PK class
that is serializable.

In either case, for a BMP entity bean, you create the primary key in the ejbCreate
method.

What is Entity Context?
OC4J maintains a javax.ejb.EntityContext for each EJB 2.1 CMP or BMP entity
bean instance and makes this entity context available to the beans. The bean may use
the methods in the entity context to make callback requests to the container.

In addition, you can use the methods inherited from EJBContext (see "What is EJB
Context?" on page 1-6).

For more information, see:

■ "Implementing the setEntityContext and unsetEntityContext Methods" on
page 13-20

■ "Accessing an EJB 2.1 EJBContext" on page 29-23.

How do You Avoid Database Resource Contention?
OC4J and the TopLink EJB 3.0 entity manager and EJB 2.1 persistence manager use a
combination of transaction isolation (see "Transaction Isolation" on page 1-25) and
concurrency mode (see "Concurrency (Locking) Mode" on page 1-26) to avoid
database resource contention and to permit concurrent access to database tables.

Transaction Isolation
The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation as shown in Table 1–13. Each
offers a trade-off between performance and resistance from the following unwanted
actions:

■ Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ Non repeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

■ Phantom read: a transaction re executes a query and the returned data has
changed due to some other transaction that was committed after the initial read
operation.

By default, OC4J and the TopLink persistence manager provide read-committed
transaction isolation.

Table 1–13 Transaction Isolation Levels

Transaction Isolation Level Dirty Read
Nonrepeatable
Read Phantom Read

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-25

To configure the transaction isolation mode, you must customize the TopLink EJB 3.0
entity manager (see "Customizing the TopLink Entity Manager" on page 3-2) or EJB 2.1
persistence manager (see "Customizing the TopLink Persistence Manager" on
page 3-5).

For more information, see:

■ "Unit of Work Transaction Isolation" in the Oracle TopLink Developer’s Guide

■ "Database Transaction Isolation Levels" in the Oracle TopLink Developer’s Guide

Concurrency (Locking) Mode
OC4J also provides concurrency modes for handling resource contention and parallel
execution within EJB 3.0 entities and EJB 2.1 container-managed persistence (CMP)
entity beans.

Bean-managed persistence entity beans manage the resource locking within the bean
implementation themselves.

Concurrency modes include:

■ Optimistic Locking: Multiple users have read access to the data. When a user
attempts to make a change, the application checks to ensure the data has not
changed since the user read the data

By default, the TopLink persistence manager enforces optimistic locking by using
a numeric version field (also known as a write-lock field) that TopLink updates
each time an object change is committed.

TopLink caches the value of this version field as it reads an object from the data
source. When the client attempts to write the object, TopLink compares the cached
version value with the current version value in the data source in the following
way:

■ If the values are the same, TopLink updates the version field in the object and
commits the changes to the data source.

■ If the values are different, the write operation is disallowed because another
client must have updated the object since this client initially read it.

■ Pessimistic Locking: The first user who accesses the data with the purpose of
updating it locks the data until completing the update. This manages resource
contention and does not allow parallel execution. Only one user at a time is
allowed to execute the entity bean at a single time.

■ Read-only: Multiple users can execute the entity bean in parallel. The container
does not allow any updates to the bean's state.

These concurrency modes are defined for each bean and apply on the transaction
boundaries.

By default, OC4J and the TopLink EJB 3.0 entity manager and EJB 2.1 persistence
manager use optimistic locking and all EJB 3.0 entities and CMP entity beans are not
read-only.

To configure the concurrency mode, you must customize the TopLink EJB 3.0 entity
manager (see "Customizing the TopLink Entity Manager" on page 3-2) or EJB 2.1
persistence manager (see "Customizing the TopLink Persistence Manager" on
page 3-5).

For more information, see:

■ "Locking" in the Oracle TopLink Developer’s Guide

What is an EJB 2.1 Entity Bean?

1-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring Locking Policy" in the Oracle TopLink Developer’s Guide

■ "Configuring Read-Only Descriptors" in the Oracle TopLink Developer’s Guide

When Does Entity Bean Passivation Occur?
Entity bean passivation applies only to EJB 2.1 CMP entity beans.

OC4J passivates an instance when the container decides to disassociate the instance
from an entity object identity, and to put the instance back into the pool of available
instances. OC4J calls the instance’s ejbPassivate method to give the instance the
chance to release any resources (typically allocated in the ejbActivate method) that
should not be held while the instance is in the pool. This method executes with an
unspecified transaction context. The entity bean must not attempt to access its
persistent state or relationships using the accessor methods during this method.

What are Entity Bean Commit Options?
Commit options determine entity bean instance state at transaction commit time and
offer the flexibility to allow OC4J to optimize certain application conditions.

Table 1–14 lists the commit options as defined by the EJB 2.1 specification and
indicates which are supported by OC4J.

Commit Options and CMP Applications
For an EJB 2.1 CMP application deployed to OC4J using the TopLink persistence
manager, by default, OC4J uses TopLink configuration to approximate commit option

Table 1–14 OC4J Support for Entity Bean Commit Options

Commit
Option

OC4J
Support Description

Instance
state
written to
database?

Instance
stays
ready

Instance
state
remains
valid Advantages Disadvantages

A 1

1 BMP entity beans only (see "Commit Options and BMP Applications" on page 1-28).

Cached bean: At the end of
the transaction, the
instance stays in the ready
state (cached) and the
instance state is valid
(ejbLoad called once on
activation).

Least database
access.

Exclusive
access required.

Multiple
threads share
same bean
instance (poor
performance).

B Stale bean: At the end of
the transaction, the
instance stays in the ready
state (cached) but the
instance state is not valid:
ejbLoad and ejbStore
called for each transaction.

Moderate
database access.

Allows
concurrent
requests.

Overhead of
multiple bean
instances
representing
the same data.

Each
transaction calls
ejbLoad

C 2

2 CMP entity beans only (see "Commit Options and CMP Applications" on page 1-27).

Pooled bean: At the end of
the transaction, neither the
instance nor its state is
valid (instance will be
passivated and returned to
the pool). Every client call
causes an ejbActivate,
ejbLoad, then the
business method, then
ejbStore, and
ejbPassivate.

Best scalability.

Allows
concurrent
requests.

Need not hold on
to connections.

Most database
access (every
business
method call).

No caching.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-27

C. This option provides the best performance and scalability over the widest range of
applications.

OC4J EJB 2.1 CMP conforms to option C in terms of lifecycle method calls. However,
the TopLink persistence manager introduces the following innovations:

■ It provides caching using the TopLink cache.

■ It does not synchronize the instance with the data source at the beginning of every
transaction if the instance is already in the TopLink cache.

You can use locking or synchronization with a TopLink pessimistic or optimistic
locking policy to handle concurrent services to the same bean. This provides the best
performance for concurrent access of the same instance while guaranteeing an instance
is not updated with stale data.

For more information on making fine-grained TopLink configuration changes, see:

■ "Customizing the TopLink Persistence Manager" on page 3-5

■ "Configuring Locking Policy" in the Oracle TopLink Developer’s Guide

Commit Options and BMP Applications
For an EJB 2.1 BMP application deployed to OC4J, you can configure commit option A
(see "Configuring BMP Commit Options" on page 15-3).

When you configure a BMP entity bean as read-only, OC4J uses a special case of
commit option A to improve performance. In this case, OC4J caches the instance and
and does not update the instance or call ejbStore when the transaction commits. For
more information, see "Configuring a Read-Only BMP Entity Bean" on page 15-2.

You can use BMP commit option A and read-only BMP entity beans independently
(that is, you can configure a BMP entity bean with commit option A without using
read-only and you can use read-only without configuring a BMP entity bean with
commit option A).

How Do You Query for an EJB 2.1 Entity Bean?
To query for an EJB 2.1 entity bean instance, you use a finder or select method (see
"Understanding Finder Methods" on page 1-31 and "Understanding Select Methods"
on page 1-33).

In either case, you express your selection criteria using an appropriate query syntax
(see "Understanding EJB Query Syntax" on page 1-28).

For more information, see "Using EJB 2.1 Query API" on page 16-1.

Understanding EJB Query Syntax
Table 1–15 summarizes the types of query syntax you can use to define EJB queries.

Table 1–15 OC4J EJB Query Syntax Support

Query Syntax See Also

EJB QL "Understanding EJB Query Syntax" on page 1-28

TopLink "Understanding TopLink Query Syntax" on page 1-30

Predefined Finder "Predefined TopLink Finders" on page 1-32

Default Finder "Default TopLink Finders" on page 1-33

Custom Finder "Custom TopLink Finders" on page 1-33

Custom Select "Custom TopLink Select Methods" on page 1-34

What is an EJB 2.1 Entity Bean?

1-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Oracle recommends EJB QL because it is both portable and optimizable.

Understanding EJB QL Query Syntax EJB QL is a specification language used to define
semantics of finder and select methods (see "Understanding Finder Methods" on
page 1-31 and "Understanding Select Methods" on page 1-33) in a portable and
optimizable format. You ensure that an EJB QL statement is associated with each
finder and select method.

Although similar to SQL, EJB QL offers significant advantages over native SQL. While
SQL applies queries against tables, using column names, EJB QL applies queries
against CMP entity beans, using the abstract schema name and the CMP and CMR
fields of the bean within the query. The EJB QL statement retains the object
terminology. The container translates the EJB QL statement to the appropriate
database SQL statement when the application is deployed. Thus, the container is
responsible for converting the entity bean name, CMP field names, and CMR field
names to the appropriate database tables and column names. EJB QL is portable to all
databases supported by OC4J.

In EJB 2.1, EJB QL is a subset of SQL92, that includes extensions that allow navigation
over the relationships defined in an entity bean's abstract schema. The abstract schema
is part of an entity bean's deployment descriptor and defines the bean's persistent
fields and relationships. The term "abstract" distinguishes this schema from the
physical schema of the underlying data store. The abstract schema name is referenced
by EJB QL queries since the scope of an EJB QL query spans the abstract schemas of
related entity beans that are packaged in the same EJB JAR file.

For an entity bean with container-managed persistence, an EJB QL query must be
defined for every finder method (except findByPrimaryKey). Using OC4J with the
TopLink persistence manager, you can take advantage of predefined and default
finder and select methods (see "TopLink Finders" on page 1-32 and "Custom TopLink
Select Methods" on page 1-34). The EJB QL query determines the query that is
executed by the EJB container when the finder or select method is invoked.

Oracle Application Server provides complete support for EJB QL with the following
important features:

■ Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle Application
Server, the container automatically translates the queries into the SQL dialect of
the target data store. Because of this translation, entity beans with
container-managed persistence are portable -- their code is not tied to a specific
type of data store.

■ Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL,
batched statement dispatch, and so on to make database access efficient.

■ Support for Oracle and Non-Oracle Databases: Further, Oracle Application Server
provides the ability to execute EJB QL against any database - Oracle, MS
SQL-Server, IBM DB/2, Informix, and Sybase.

■ CMP with Relationships: Oracle Application Server supports EJB QL for both
single entity beans and also with entity beans that have relationships, with
support for any type of multiplicity and directionality.

Native SQL "Understanding Native SQL Query Syntax" on page 1-31

Table 1–15 (Cont.) OC4J EJB Query Syntax Support

Query Syntax See Also

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-29

Using EJB 2.1, OC4J provides proprietary EJB QL extensions to support SQRT and
date, time, and timestamp options not available in EJB 2.1 (see "OC4J EJB 2.1 EJB QL
Extensions" on page 16-8).

Understanding TopLink Query Syntax In this release, because TopLink is the default
persistence manager (see "TopLink Persistence Manager" on page 3-4), you can
express selection criteria for an EJB 2.1 finder or select method using the TopLink
query and expressions framework. This EJB QL alternative offers numerous
advantages (see "Advantages of TopLink Queries and Expressions" on page 1-30).

You can use the TopLink Workbench to customize your ejb-jar.xml file to create
advanced finder and select methods using the TopLink query and expression
framework.

You also can take advantage of the predefined and default finders and select methods
that the TopLink persistence manager provides (see "TopLink Finders" on page 1-32
and "Custom TopLink Select Methods" on page 1-34).

For more information, see:

■ "Understanding TopLink Queries" in the Oracle TopLink Developer’s Guide

■ "Understanding TopLink Expressions" in the Oracle TopLink Developer’s Guide.

■ "Configuring Named Queries at the Descriptor Level" in the Oracle TopLink
Developer’s Guide

■ "Using EJB Finders" in the Oracle TopLink Developer’s Guide

■ "Working with the ejb-jar.xml File" in the Oracle TopLink Developer’s Guide

Advantages of TopLink Queries and Expressions
Using the TopLink expressions framework, you can specify query search criteria based
on your domain object model.

Expressions offer the following advantages over SQL when you access a database:

■ Expressions are easier to maintain because, like EJB QL, the database is abstracted.

■ Changes to descriptors or database tables do not affect the querying structures in
the application.

■ Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions. For example, the Java code
required to get the street name from the Address object of the Employee class
looks like this:

emp.getAddress().getStreet().equals("Meadowlands");

The expression to get the same information is similar:

emp.get("address").get("street").equal("Meadowlands");

■ Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
TopLink automatically generates the appropriate join statements to return
information from both tables.

■ Expressions simplify complex operations. For example, the following Java code
retrieves all Employees that live on "Meadowlands" whose salary is greater than
10,000:

ExpressionBuilder emp = new ExpressionBuilder();

What is an EJB 2.1 Entity Bean?

1-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Expression exp = emp.get("address").get("street").equal("Meadowlands");
Vector employees = session.readAllObjects(Employee.class,
exp.and(emp.get("salary").greaterThan(10000)));

TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_ID,
t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,t0.SALARY
FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')AND (t0.SALARY
> 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Understanding Native SQL Query Syntax In this release, the TopLink persistence manager
takes the query syntax you specify ("Understanding EJB QL Query Syntax" on
page 1-29 or "Understanding TopLink Query Syntax" on page 1-30) and generates
Sequential Query Language (SQL) native to your underlying relational database.

EJB QL is the preferred syntax because it is portable and optimizable.

Native SQL is appropriate for taking advantage of advanced query features of your
underlying relational database that EJB QL does not support.

Using EJB 2.1 and the TopLink query syntax, you can use:

■ default finders that take a native SQL string (see "Default TopLink Finders" on
page 1-33)

■ custom finder or select methods that use native SQL calls (see "TopLink Finders"
on page 1-32 and "Custom TopLink Select Methods" on page 1-34)

To use native SQL otherwise, you must use straight JDBC calls.

Understanding Finder Methods
A finder method is an EJB method the name of which begins with find that you
define in the Home interface of an EJB (see or "Implementing the EJB 2.1 Home
Interfaces" on page 13-18) and associate with a query to return one or more instances
of that EJB type. At deployment time, OC4J provides an implementation of this
method that executes the associated query.

Finder methods are the means by which clients retrieve EJB 2.1 CMP entity beans.
Using EJB 2.1, you can:

■ Expose any of the predefined and default finders that OC4J and the TopLink
persistence manager provide to all CMP entity beans (see "Predefined TopLink
Finders" on page 1-32 and "Default TopLink Finders" on page 1-33).

■ Define custom EJB QL finders (see "Implementing an EJB 2.1 EJB QL Finder
Method" on page 16-1) and custom TopLink finders (see "Custom TopLink
Finders" on page 1-33).

A finder that returns a single EJB instance has a return type of that EJB instance.

A finder that returns more than one EJB instance has a return type of Collection. If
no matches are found, an empty Collection is returned. To ensure that no
duplicates are returned, specify the DISTINCT keyword in the associated EJB query.

All finders throw FinderException.

At the very least, you must expose the findByPrimaryKey finder method to retrieve
a reference for each entity bean using its primary key.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-31

TopLink Finders The TopLink persistence manager provides OC4J entity beans with a
variety of predefined (see "Predefined TopLink Finders" on page 1-32) and default (see
"Default TopLink Finders" on page 1-33) finders. You can expose these finders to your
clients as you would for any other finder. You do not need to specify a corresponding
query. You can also create custom TopLink finders (see "Custom TopLink Finders" on
page 1-33).

Predefined TopLink Finders
Table 1–16 lists the predefined finders you can expose for EJB 2.1 CMP entity beans.
The TopLink persistence manager reserves the method names listed in Table 1–16.

Example 1–4 shows an EJBHome that defines two predefined finders
(findByPrimaryKey and findManyBySQL). TopLink will provide the query
implementation for these finders.

Example 1–3 Specifying Predefined TopLink Finders

public interface EmpBeanHome extends EJBHome
{

public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
* Finder methods. These are implemented by the container. We can
* customize the functionality of these methods in the deployment
* descriptor through EJB-QL.
**/

// Predefined Finders: <query> element in ejb-jar.xml not required

public Topic findByPrimaryKey(Integer key) throws FinderException;
public Collection findManyBySQL(String sql, Vector args) throws FinderException

}

Table 1–16 Predefined TopLink CMP Finders

Method Arguments Return

findAll () Collection

findManyByEJBQL (String ejbql)
(String ejbql, Vector args)

Collection

findManyByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector args)

Collection

findManyBySQL (String sql)
(String sql, Vector args)

Collection

findByPrimaryKey (Object primaryKeyObject) EJBObject or
EJBLocalObject1

1 Depending on whether or not the finder is defined in the home or component interface.

findOneByEJBQL (String ejbql) Component interface

findOneByEJBQL (String ejbql, Vector args) EJBObject or
EJBLocalObject1

findOneByQuery (DatabaseQuery query) Component interface

findOneByQuery (DatabaseQuery query, Vector args) EJBObject or
EJBLocalObject1

findOneBySQL (String sql) Component interface

findOneBySQL (String sql, Vector args) EJBObject or
EJBLocalObject1

What is an EJB 2.1 Entity Bean?

1-32 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Default TopLink Finders
For each finder method defined in the home interface of an entity bean whose name
matches findBy<CMP-FIELD-NAME> where <CMP-FIELD-NAME> is the name of a
persistent field on the bean, TopLink generates a finder implementation including a
TopLink query that uses the TopLink expressions framework. If the return type is a
single bean type, TopLink creates a
oracle.toplink.queryframework.ReadObjectQuery; if the return type is
Collection, TopLink creates a
oracle.toplink.queryframework.ReadAllQuery. You can expose these
finders to your clients as you would for any other finder. You do not need to specify a
corresponding query.

Example 1–4 shows an EJBHome that defines a default finder (findByEmpNo).
TopLink will provide the query implementation for this finder.

Example 1–4 Specifying Default TopLink Finders

public interface EmpBeanHome extends EJBHome
{

public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
* Finder methods. These are implemented by the container. We can
* customize the functionality of these methods in the deployment
* descriptor through EJB-QL.
**/

// Default Finder: <query> element in ejb-jar.xml not required

public Topic findByEmpNo(Integer empNo);

}

Custom TopLink Finders
You can take advantage of the TopLink query and expression framework to define
advanced finders, including Call, DatabaseQuery, primary key, Expression,
EJB QL, native SQL, and redirect finders (that delegate execution to the
implementation that you define as a static method on an arbitrary helper class).

Using EJB 2.1, to create custom TopLink finders, use your existing
toplink-ejb-jar.xml file with the TopLink Workbench (see "Using TopLink
Workbench" on page 16-4).

Understanding Select Methods
An entity bean select method is a query method intended for internal use within an
EJB 2.1 CMP entity bean instance. You define a select method as an abstract method of
the abstract entity bean class itself and associate an EJB QL query with it. You do not
expose the select method to the client in the home or component interface. You may
define zero or more select methods. The container is responsible for providing the
implementation of the select method based on the EJB QL query you associate with it.

You typically call a select method within a business method to retrieve the value of a
CMP field or entity bean references of container-managed relationship (CMR) fields. A
select method executes in the transaction context determined by the transaction
attribute of the invoking business method.

A select method has the following signature:

public abstract <ReturnType> ejbSelect<MethodName>(...) throws FinderException

■ It must be declared as public and abstract.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-33

■ The return type must conform to the select method return type rules (see "What
Type Can My Select Method Return?" on page 1-34).

■ The method name must start with ejbSelect.

■ The method must throw javax.ejb.FinderException and may also throw
other application-specific exceptions as well.

Although the select method is not based on the identity of the entity bean instance on
which it is invoked, it can use the primary key of an entity bean as an argument. This
creates a query that is logically scoped to a particular entity bean instance.

Using EJB 2.1, you can define custom EJB QL select methods (see "Implementing an
EJB 2.1 EJB QL Select Method" on page 16-5) and you can define custom TopLink
select methods (see "Custom TopLink Select Methods" on page 1-34).

What Type Can My Select Method Return? The select method return type is not restricted to
the entity bean type on which the select is invoked. Instead, it can return any type
corresponding to a CMP or CMR field.

Your select method must conform to the following return type rules:

■ All values must be returned as objects; any primitive types are wrapped in their
corresponding object types (for example, a primitive int is wrapped in an
Integer object).

■ Single object: If your select method returns only a single item, the container
returns the same type as specified in your select method signature.

If multiple objects are returned, a FinderException is raised.

If no objects are found, a FinderException is raised

■ Multiple objects: If your select method returns multiple items, you must define the
return type as a Collection.

Choose the Collection type to suit your needs. For example, a Collection may
include duplicates, a Set eliminates duplicates, and a SortedSet will return an
ordered Collection.

If no objects are found, an empty Collection is returned.

– CMP values: If you return multiple CMP values, the container returns a
Collection of objects whose type it determines from the EJB QL select
statement.

– CMR values: If you return multiple CMR values, then by default, the container
returns a Collection of objects whose type is the local bean interface type.

You can change this to the remote bean interface with annotations or
deployment XML configuration. For more information, see "Implementing an
EJB 2.1 EJB QL Select Method" on page 16-5.

Custom TopLink Select Methods Using EJB 2.1, you can create custom TopLink select
methods.

Using EJB 2.1, you can take advantage of the TopLink query and expression
framework to define advanced select methods that can use any of the TopLink query
and expression framework features, including Call, DatabaseQuery, Expression,
EJB QL, and native SQL. For more information, see "Using TopLink Workbench" on
page 16-7.

What is a Message-Driven Bean?

1-34 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

What is a Message-Driven Bean?
A message-driven bean (MDB) is an EJB 3.0 or EJB 2.1 EJB component that functions as
an asynchronous message consumer. An MDB has no client-specific state but may
contain message-handling state such as an open database connection or object
references to another EJB. A client uses an MDB to send messages to the destination
for which the bean is a message listener.

Using OC4J, you can use an MDB with a variety of message providers (see "What
Message Providers Can I use with My MDB?" on page 2-24). You associate the MDB
with an existing message provider and the container handles much of the setup
required, as follows:

■ The EJB container creates a consumer of type QueueReceiver or
TopicSubscriber for the listener.

■ At deployment time, the EJB container registers the MDB with the consumer,
which is either a QueueReceiver or TopicSubscriber, and its factory.

■ The EJB container specifies the message acknowledgment mode.

■ The EJB container dequeues messages and passes them to the MDB using its
message listener method.

■ The EJB container sends an acknowledgment (if configured to do so).

The purpose of an MDB is to exist within a pool and to receive and process incoming
messages from a message provider. The container invokes a bean from the queue to
handle each incoming message from the queue. No object invokes an MDB directly: all
invocation for an MDB comes from the container. After the container invokes the
MDB, it can invoke other EJBs or Java objects to continue the request.

A MDB is similar to a stateless session bean because it does not save conversational
state and is used for handling multiple incoming requests. Instead of handling direct
requests from a client, MDBs handle requests placed on a queue. Figure 1–3
demonstrates this by showing how clients place requests on a queue. The container
takes the requests off of the queue and gives the request to an MDB in its pool.

Figure 1–3 Message Driven Beans

This section describes:

■ What is the Message-Driven Bean Lifecycle?

■ What is Message Driven Context?

For more information, see:

■ "Implementing an EJB 3.0 MDB" on page 9-1

■ "Implementing an EJB 2.1 MDB" on page 17-1

What is the Message-Driven Bean Lifecycle?
The lifecycle for EJB 3.0 (see Table 1–17) and EBJ 2.1 (see Table 1–18) message-driven
beans are identical. The difference is in how you register lifecycle callback methods.

Which Type of EJB Should You Use?

Understanding Enterprise JavaBeans 1-35

Table 1–17 lists the optional EJB 3.0 message-driven bean lifecycle callback methods
you can define using annotations. For EJB 3.0 message-driven beans, you do not need
to implement these methods.

Table 1–18 lists the EJB 2.1 lifecycle methods, as specified in the
javax.ejb.MessageDrivenBean interface, that a message-driven bean must
implement. For EJB 2.1 message-driven beans, you must at the least provide an empty
implementation for all callback methods.

For more information, see:

■ "Configuring a Lifecycle Callback Method for an EJB 3.0 MDB" on page 10-6

What is Message Driven Context?
OC4J maintains a javax.ejb.MessageDrivenContext for each message-driven
bean instance and makes this message-driven context available to the beans. The bean
may use the methods in the message-driven context to make callback requests to the
container.

In addition, you can use the methods inherited from EJBContext (see "What is EJB
Context?" on page 1-6).

For more information, see:

■ "Accessing an EJB 3.0 EJBContext" on page 29-16

■ "Accessing an EJB 2.1 EJBContext" on page 29-23

Which Type of EJB Should You Use?
This section describes:

■ Which Type of Session Bean Should You Use?

■ When do you use Bean-Managed versus Container-Managed Persistence?

■ What is the Difference Between Session and Entity Beans?

Table 1–17 Lifecycle Methods for an EJB 3.0 Message-Driven Bean

Annotation Description

@PostConstruct This optional method is invoked for a message-driven bean before the first business
method invocation on the bean. This is at a point after which any dependency
injection has been performed by the container.

@PreDestroy This optional method is invoked for a message-driven bean when the instance is in
the process of being removed by the container. The instance typically releases any
resources that it has been holding.

Table 1–18 Lifecycle Methods for an EJB 2.1 Message-Driven Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. A message-driven
bean must do nothing in this method.

ejbRemove A container invokes this method before it ends the life of a MDB. Use this method to
perform any required clean-up—for example, closing external resources such as file
handles.

Which Type of EJB Should You Use?

1-36 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Which Type of Session Bean Should You Use?
Stateless session beans are useful mainly in middle-tier application servers that
provide a pool of beans to process frequent and brief requests.

When do you use Bean-Managed versus Container-Managed Persistence?
In practical terms, Table 1–19 provides a definition for both BMP and CMP, and a
summary of the programmatic and declarative differences between them.

With CMP, you can build components to the EJB 2.0 specification that can save the
state of your EJB to any J2EE supporting application server and database without
having to create your own low-level JDBC-based persistence system.

With BMP, you can tailor the persistence layer of your application at the expense of
additional coding and support effort.

For more information, see:

■ "What is an EJB 2.1 CMP Entity Bean?" on page 1-20

■ "What is an EJB 2.1 BMP Entity Bean?" on page 1-23

What is the Difference Between Session and Entity Beans?
The major differences between session and entity beans are that entity beans involve a
framework for persistent data management, a persistent identity, and complex
business logic. Table 1–20 illustrates the different interfaces for session and entity
beans. Notice that the difference between the two types of EJBs exists within the bean

Table 1–19 Comparison of Bean-Managed and Container-Managed Persistence

Management Issues Bean-Managed Persistence Container-Managed Persistence

Persistence management You are required to implement
the persistence management
within the ejbStore, ejbLoad,
ejbCreate, and ejbRemove
EntityBean methods. These
methods must contain logic for
saving and restoring the
persistent data.

For example, the ejbStore
method must have logic in it to
store the entity bean's data to the
appropriate database. If it does
not, the data can be lost.

The management of the persistent
data is done for you. That is, the
container invokes a persistence
manager on behalf of your bean.

You use ejbStore and ejbLoad
for preparing the data before the
commit or for manipulating the
data after it is refreshed from the
database. The container always
invokes the ejbStore method
right before the commit. In
addition, it always invokes the
ejbLoad method right after
reinstating CMP data from the
database.

Finder methods allowed The findByPrimaryKey
method and other finder methods
are allowed.

The findByPrimaryKey method
and other finder methods clause
are allowed.

Defining CMP fields N/A Required within the EJB
deployment descriptor. The
primary key must also be declared
as a CMP field.

Mapping CMP fields to
resource destination

N/A Required. Dependent on
persistence manager.

Definition of persistence
manager

N/A Required within the Oracle-specific
deployment descriptor. By
default,OC4J uses the TopLink
persistence manager.

Which Type of EJB Should You Use?

Understanding Enterprise JavaBeans 1-37

class and the primary key. All of the persistent data management is done within the
bean class methods.

Table 1–20 Session and Entity Bean Differences

J2EE Subject Entity Bean Session Bean

Local interface Extends
javax.ejb.EJBLocalObject

Extends
javax.ejb.EJBLocalObject

Remote interface Extends
javax.ejb.EJBObject

Extends
javax.ejb.EJBObject

Local Home interface Extends
javax.ejb.EJBLocalHome

Extends
javax.ejb.EJBLocalHome

Remote Home interface Extends javax.ejb.EJBHome Extends javax.ejb.EJBHome

Bean class Extends
javax.ejb.EntityBean

Extends
javax.ejb.SessionBean

Primary key Used to identify and retrieve
specific bean instances

Not used for session beans.
Stateful session beans do have an
identity, but it is not externalized.

Which Type of EJB Should You Use?

1-38 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Understanding EJB Application Development 2-1

2
Understanding EJB Application

Development

This chapter describes:

■ How Should You Develop EJB Applications?

■ What OC4J Services Can You Use with an EJB?

■ How do You Package and Deploy an EJB Application?

■ How Do You Use an EJB in Your Application?

■ Understanding EJB JNDI Services

■ Understanding EJB Data Source Services

■ Understanding EJB Transaction Services

■ Understanding EJB Security Services

■ Understanding Message Services

■ Understanding OC4J EJB Application Clustering Services

■ Understanding EJB Timer Services

How Should You Develop EJB Applications?
This section describes:

■ Understanding the EJB Application Directory Structure

■ Using EJB Development Tools

Understanding the EJB Application Directory Structure
Although you can develop your application in any manner, we encourage you to use
consistent naming to locate your application easily. One method would be to
implement your enterprise Java application under a single parent directory structure,
separating each module of the application into its own subdirectory.

Notice in Figure 2–1 that the EJB and Web modules exist under the hello application
parent directory and are developed separately in their own directory.

How Should You Develop EJB Applications?

2-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure 2–1 Hello Directory Structure

Using EJB Development Tools
This section describes developing EJB applications:

■ Using JDeveloper

■ Using Eclipse

■ Using TopLink Workbench

Using JDeveloper
Oracle JDeveloper greatly simplifies J2EE application development by providing
extensive automation, a built-in OC4J for rapid deployment and testing, and many
other productivity enhancements. For example:

■ Developing session beans:
http://www.oracle.com/technology/products/jdev/101/viewlets/1
01/ejb30sessionbeanviewlet_viewlet_swf.htm

■ Developing entity beans:
http://www.oracle.com/technology/products/jdev/101/viewlets/1
01/ejb30entitybeanviewlet_viewlet_swf.htm

For more information on JDeveloper, see
http://www.oracle.com/technology/products/jdev/index.html.

Using Eclipse
Oracle is developing extensible frameworks and exemplary tools on the Eclipse
platform for the definition and editing of Object-Relational (O/R) mappings for EJB
3.0 Entities. EJB 3.0 O/R mapping support will focus on minimizing the complexity of
mapping by providing creation and automated initial mapping wizards, and
programming assistance such as dynamic problem identification

For more information on EJB 3.0 support in Eclipse, see
http://www.eclipse.org/dali/.

Note: For EJB modules, the top of the module (ejb_module)
represents the start of a search path for classes. As a result, classes
belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to a
package class myapp.Hello.class is expected to be located
in ...hello/ejb_module/myapp/Hello.class.

What OC4J Services Can You Use with an EJB?

Understanding EJB Application Development 2-3

Using TopLink Workbench
You can use the TopLink Workbench to create and configure:

■ EJB 3.0 toplink-ejb-jar.xml and ejb3-toplink-sessions.xml files

■ EJB 2.1 toplink-ejb-jar.xml file

■ ejb-jar.xml file

For more information, see:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Understanding EJB Deployment Descriptor Files" on page 2-7

What OC4J Services Can You Use with an EJB?
Table 2–1 lists some of the important services that OC4J provides and shows the EJB
types you can use them with.

For more information on OC4J services, see the appropriate OC4J guide as shown in
Table 2–2:

Table 2–1 OC4J Services and EJB Support

OC4J Service

Stateful
Session
Bean

Stateless
Session
Bean

CMP
Entity
Bean

BMP
Entity
Bean

Message-
Driven
Bean

"Understanding EJB JNDI Services" on page 2-18

"Understanding EJB Data Source Services" on
page 2-18

"Understanding EJB Transaction Services" on
page 2-21

"Understanding EJB Security Services" on
page 2-24

"Understanding Message Services" on page 2-24

"Understanding OC4J EJB Application Clustering
Services" on page 2-28

"Understanding J2EE Timer Services" on
page 2-31

"Understanding OC4J Cron Timer Services" on
page 2-32

1

1 EJB 2.1 only.

2

2 EJB 2.1 only.

Table 2–2 Location of Information for J2EE Subjects

J2EE Subject The Subject is Documented in this OC4J Documentation Book

JNDI Oracle Containers for J2EE Services Guide

Data Source Oracle Containers for J2EE Services Guide

RMI and RMI/IIOP Oracle Containers for J2EE Services Guide

Transactions (JTA) Oracle Containers for J2EE Services Guide

Security Oracle Containers for J2EE Security Guide

CSiV2 Oracle Containers for J2EE Services Guide

JMS Oracle Containers for J2EE Services Guide

Clustering Oracle Containers for J2EE Services Guide

How do You Package and Deploy an EJB Application?

2-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

How do You Package and Deploy an EJB Application?
This section describes the following:

■ General Packaging and Deployment Procedure

■ Understanding EJB Deployment Descriptor Files

■ Understanding Packaging

■ Understanding Deployment

General Packaging and Deployment Procedure
In general, to package and deploy an EJB application:

1. Create the Deployment Descriptor

After implementing and compiling your classes, you must create the standard
J2EE EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ejb-jar.xml file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The
structure for this file is defined by the XML schema document (XSD) at
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd.

Any EJB container services that you want to configure are designated in the
deployment descriptor. For information, see "What OC4J Services Can You Use
with an EJB?" on page 2-3.

You can also configure OC4J-specific options in the orion-ejb-jar.xml file (or
using Application Server Control after deployment). For more information, see:

■ "Understanding EJB Deployment Descriptor Files" on page 2-7

■ "How Do Specify Vendor-Specific Configuration in an EJB 3.0 Application?"
on page 2-7

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes (see
Figure 2–1).

The following example shows the sections that are necessary for the Hello
example, which implements both a remote and a local interface.

Example 2–1 shows the deployment descriptor for a version of the Hello example
that uses a stateless session bean. This example defines both the local and remote
interfaces. You do not have to define both interface types; you may define only
one of them.

Timers Oracle Containers for J2EE Services Guide

J2CA Oracle Containers for J2EE Services Guide

Java Object Cache Oracle Containers for J2EE Services Guide

Web Services Oracle Application Server Web Services Developer’s Guide

HTTPS Oracle Containers for J2EE Services Guide

Optimization Oracle Application Server Performance Guide

Default Persistence Oracle TopLink Developer’s Guide

Table 2–2 (Cont.) Location of Information for J2EE Subjects

J2EE Subject The Subject is Documented in this OC4J Documentation Book

How do You Package and Deploy an EJB Application?

Understanding EJB Application Development 2-5

Example 2–1 ejb-jar.xml Deployment Descriptor for Hello Bean Application

<?xml version="1.0" encoding="UTF-8" ?>
<ejb-jar

xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
version="2.1">
<enterprise-beans>

<session>
<description>no description</description>
<display-name>HelloBean</display-name>
<ejb-name>HelloBean</ejb-name>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>
<local-home>hello.HelloLocalHome</local-home>
<local>hello.HelloLocal</local>
<ejb-class>hello.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>HelloBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
<security-role>

<role-name>users</role-name>
</security-role>

</assembly-descriptor>
</ejb-jar>

2. Archive the EJB Application

After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should
include all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the Hello
example into a JAR file, perform the following in the .../hello/ejb_module
directory:

% jar cvf helloworld-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the
JAR file.

3. Prepare the EJB Application for Assembly

To prepare the application for deployment, you do the following:

a. Modify the application.xml file with the modules of the enterprise Java
application.

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in the Oracle Containers for J2EE Developer’s Guide.

How do You Package and Deploy an EJB Application?

2-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The application.xml file acts as the manifest file for the application and
contains a list of the modules that are included within your enterprise
application. You use each <module> element defined in the
application.xml file to designate what comprises your enterprise
application as Table 2–3 shows.

As Figure 2–1 shows, the application.xml file is located under a
META-INF directory under the parent directory for the application. The JAR,
WAR, and client JAR files should be contained within this directory. Because
of this proximity, the application.xml file refers to the JAR and WAR files
only by name and relative path—not by full directory path. If these files were
located in subdirectories under the parent directory, then these subdirectories
must be specified in addition to the filename.

Example 2–2 modifies the <ejb>, <web>, and <java> module elements
within application.xml for the Hello EJB application that also contains a
Java client that interacts with the EJB.

Example 2–2 application.xml Deployment Descriptor for Hello Bean

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
<display-name>helloworld j2ee application</display-name>
<description>
 A sample J2EE application that uses a Helloworld Session Bean
 on the server and calls from java/servlet/JSP clients.

</description>
<module>
<ejb>helloworld-ejb.jar</ejb>

</module>
<module>
<web>
<web-uri>helloworld-web.war</web-uri>
<context-root>/helloworld</context-root>

</web>
</module>
<module>
<java>helloworld-client.jar</java>

</module>
</application>

b. Archive all elements of the application into an EAR file.

Create the EAR file that contains the JAR, WAR, and XML files for the
application. Note that the application.xml file serves as the EAR manifest
file.

To create the helloworld.ear file, execute the following in the hello
directory contained in Figure 2–1:

% jar cvf helloworld.ear .

Table 2–3 Module Elements in the application.xml File

Element Contents

<ejb> EJB JAR filename

<web> Web WAR filename in the <web-uri> sub-element, and its context in the
<context> sub-element

<java> Client JAR filename, if any

How do You Package and Deploy an EJB Application?

Understanding EJB Application Development 2-7

This step archives the application.xml, the helloworld-ejb.jar, the
helloworld-web.war, and the helloworld-client.jar files into the
helloworld.ear file.

Understanding EJB Deployment Descriptor Files
This section describes the various EJB deployment descriptor files that you use in EJB
applications deployed to OC4J.

Table 2–4 lists the various EJB deployment descriptor files that you use in EJB
applications deployed to OC4J. For each deployment descriptor file, it indicates the
EJB types the deployment descriptor applies to and whether or not the deployment
descriptor is optional, required, or not applicable to the EJB specification you are
using.

Understanding Packaging
The J2EE architecture provides a variety of ways to package (or assemble) your
application and its various J2EE components.

For more information, see "Packaging an EJB Application" on page 27-1.

Understanding Deployment
After you package your J2EE application, to execute the application and make it
available to end users, you deploy it to OC4J.

This section describes:

■ How Do Specify Vendor-Specific Configuration in an EJB 3.0 Application?

■ How Does OC4J Determine What Type of Persistence to Use?

■ In What Order does OC4J Deploy EJB Modules?

For more information, see "Deploying an EJB Application to OC4J" on page 28-1.

How Do Specify Vendor-Specific Configuration in an EJB 3.0 Application?
When you deploy an EJB 3.0 application, you must specify any vendor-specific
configuration in one of the following ways:

■ Package an orion-ejb-jar.xml with the desired vendor-specific configuration
and deploy.

Table 2–4 OC4J EJB Deployment Descriptor Files

Deployment Descriptor File
Session
Bean Entity

Entity
Bean

Message-
Driven Bean EJB 3.0 EJB 2.1

What is the ejb-jar.xml File? Optional Required

What is the orion-ejb-jar.xml File? Optional Optional

What is the toplink-ejb-jar.xml File? Optional Required

What is the ejb3-toplink-sessions.xml File? Optional Not Applicable

What is the persistence.xml File? Optional Not Applicable

What is the orm.xml File? Optional Not Applicable

How do You Package and Deploy an EJB Application?

2-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ After deployment, use the Application Server Control deployment profile to make
the vendor-specific configuration.

For example, you can use annotations to define security roles but defining
role-to-group mappings requires vendor-specific configuration. In this case, you can
either define the role-to-group mappings in an orion-ejb-jar.xml file and
package that in your application or, you can deploy your application without an
orion-ejb-jar.xml and use Application Server Control to make this
vendor-specific configuration after deployment.

How Does OC4J Determine What Type of Persistence to Use?
OC4J supports the following persistence APIs:

■ TopLink EJB 3.0 entity manager

■ TopLink EJB 2.1 persistence manager

■ Orion EJB 2.0 persistence manager (deprecated)

OC4J infers what type of persistence to use based on the type of object-relational
mappings you define and the presence or absence of certain deployment XML files.

EJB 3.0 Applications
OC4J uses the TopLink entity manager if you deploy EJB 3.0 entities in an ejb.jar
without an ejb-jar.xml file or if OC4J detects one or more EJB 3.0 annotations.

For more information, see:

■ "How do You Define an EJB 3.0 Application?" on page 3-2

■ "Customizing the TopLink Entity Manager" on page 3-2

EJB 2.x Applications
For EJB 2.1 or EJB 2.0 applications, OC4J uses the following algorithm to choose a
persistence manager:

if (there is a <persistence-manager> specified)
{

if (name == "orion")
{

use orion cmp
}
else
{

use TopLink cmp // default
}

}
else
{

if (there is a toplink-ejb-jar.xml)
{

use TopLink cmp
}
else if (there are orion cmp mappings)
{

use orion cmp
}
else
{

use TopLink cmp
}

}

How do You Package and Deploy an EJB Application?

Understanding EJB Application Development 2-9

Table 2–5 summarizes this algorithm by developer action. For example, if you deploy
a CMP application without a toplink-ejb-jar.xml file, OC4J uses the TopLink
persistence manager and creates default TopLink object-relational mappings.

For more information, see:

■ "How do You Define an EJB 2.1 Application?" on page 3-4

■ "Customizing the TopLink Persistence Manager" on page 3-5

In What Order does OC4J Deploy EJB Modules?
OC4J deploys EJB modules in the order in which they appear in the
application.xml deployment descriptor. In general, loading order is
component-specific and based on natural ordering for each component type.

For example, consider the application.xml file shown in Example 2–3.

Example 2–3 application.xml

<application>
<display-name>master-application</display-name>
<module>
<ejb>ejb1.jar</ejb>

</module>
<module>
<ejb>ejb2.jar</ejb>

Table 2–5 OC4J EJB 2.x Persistence Manager Selection

Developer Action toplink-ejb-jar.xml orion-ejb-jar.xml
Persistence
Manager Mapping Type

1. Deploy. Absent Optional; if present, contains
no mappings and no
<persistence-manager>
element.

Toplink Default TopLink
mappings

1. Deploy. Present Optional; if present, contains
no mappings and no
<persistence-manager>
element.

Toplink TopLink mappings as
specified in
toplink-ejb-jar.xml
(default persistence
manager properties)

1. Edit the
orion-ejb-jar.xml file
to set
<persistence-manager>
element name attribute to
toplink1.

2. Edit additional
persistence-manager
subentries1.

3. Deploy.

1 See "Persistence Manager Section (persistence-manager)" on page A-4.

Present Optional; if present, contains
no mappings

Toplink TopLink mappings as
specified in
toplink-ejb-jar.xml
(custom persistence
manager properties)

1. Deploy. Absent Present and contains Orion
mappings;
<persistence-manager>
element is optional.

Orion Orion mappings as
specified in
orion-ejb-jar.xml

1. Edit the
orion-ejb-jar.xml file
to set
<persistence-manager>
element name attribute to
orion1.

2. Deploy.

Absent Optional; if present, contains
no mappings

Orion Default Orion mappings

How do You Package and Deploy an EJB Application?

2-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</module>
<module>
<java>appclient.jar</java>

</module>
<module>
<web>

<web-uri>clientweb.war</web-uri>
<context-root>webapp</context-root>

</web>
</module>
<module>
<ejb>ejb3.jar</ejb>

</module>

Based on this application.xml file, OC4J will load components in the following
order:

1. ejb1

2. ejb2

3. ejb3

4. clientweb.war

5. appclient.jar

What is the ejb-jar.xml File?
The ejb-jar.xml file is an EJB deployment descriptor file, and, when used, it
describes the following:

■ mandatory structural information about all included enterprise beans

■ a descriptor for container managed relationships, if any

■ an optional name of an ejb-client-jar file for the ejb-jar

■ an optional application-assembly descriptor

When it is required, the ejb-jar.xml file describes EJB information applicable to any
J2EE application server. This information may be augmented by application
server-specific EJB deployment descriptor files (see "What is the orion-ejb-jar.xml
File?" on page 2-11 and "What is the toplink-ejb-jar.xml File?" on page 2-11).

For more information, see "Configuring the ejb-jar.xml File" on page 26-1.

EJB 3.0
If you are using EJB 3.0, this deployment descriptor file is optional: you can use
annotations instead. In this release, OC4J supports the use of both EJB 3.0 annotations
and ejb-jar.xml for all options except object-relational entity mapping
configuration (see "Implementing an EJB 3.0 Entity" on page 6-1): all object-relational
entity mapping configuration must done using annotations only. Configuration in the
ejb-jar.xml file overrides annotations.

EJB 2.1
If you are using EJB 2.1, this deployment descriptor file is required.

XML Reference
The XML reference for this deployment descriptor file depends on the EJB version you
are using.

How do You Package and Deploy an EJB Application?

Understanding EJB Application Development 2-11

For EJB 3.0, this deployment descriptor file conforms to the XML schema document
located at http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd.

For EJB 2.1, this deployment descriptor file conforms to the XML schema document
located at http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd.

What is the orion-ejb-jar.xml File?
The orion-ejb-jar.xml file is an EJB deployment descriptor file that contains all
OC4J-proprietary options. This file extends the configuration that you specify in the
ejb-jar.xml file (see "What is the ejb-jar.xml File?" on page 2-10).

For more information, see "Configuring the orion-ejb-jar.xml File" on page 26-2.

EJB 3.0
If you are using EJB 3.0, this file is mandatory for all OC4J-proprietary options because
there are no OC4J-proprietary annotations. Alternatively, you could deploy without
an orion-ejb-jar.xml file and configure OC4J-proprietary options with
Application Server Control (see "How Do Specify Vendor-Specific Configuration in an
EJB 3.0 Application?" on page 2-7).

EJB 2.1
If you are using EJB 2.1, this file is mandatory for all OC4J-proprietary options.

XML Reference
This deployment descriptor file conforms to the XML schema document at
http://www.oracle.com/technology/oracleas/schema/orion-ejb-jar-1
0_0.xsd.

What is the toplink-ejb-jar.xml File?
The toplink-ejb-jar.xml file (also known as the TopLink project.xml file) is a
TopLink persistence configuration descriptor file, and, when used, it describes
TopLink project-level options (see "" in the Oracle TopLink Developer’s Guide) such as
TopLink descriptors and mappings.

For more information, see "Configuring the toplink-ejb-jar.xml File" on page 26-2.

EJB 3.0
If you are using EJB 3.0, this file is only used to customize TopLink persistence
manager configuration (see "Customizing the TopLink Entity Manager" on page 3-2).
If you use this file to customize the TopLink persistence manager, you must also use

Note: In this release (10.1.3.0.0), OC4J support for EJB 3.0 features is
based on a pre-release version of EJB 3.0. Consequently, OC4J support
for some EJB 3.0 features may differ from what is specified in the
ejb-jar_3_0.xsd (for example, interceptors and lifecycle listeners).
For a list of options that OC4J does not support, see the Oracle
Application Server Release Notes.

You may need to make code changes to your EJB 3.0 OC4J application
after the EJB 3.0 specification is finalized and OC4J is updated to full
EJB 3.0 compliance.

How do You Package and Deploy an EJB Application?

2-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

an ejb3-toplink-sessions.xml file (see "What is the ejb3-toplink-sessions.xml
File?" on page 2-12).

EJB 2.1
If you are using EJB 2.1, this file is optional. If you omit this file from your application,
you can configure OC4J to automatically construct it for your (see "Configuring
Default Mappings" on page 14-10). Alternatively, you can use this file to configure
TopLink persistence options yourself (see "Customizing the TopLink Persistence
Manager" on page 3-5).

XML Reference
The toplink-ejb-jar.xml file conforms to the XML schema documents located at
<OC4J_HOME>\toplink\config\xsds. Oracle does not recommend manual
configuration of this file. To create and configure this file, use the TopLink Workbench
(see "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide).

What is the ejb3-toplink-sessions.xml File?
The ejb3-toplink-sessions.xml file is a TopLink persistence configuration
descriptor file, and, when used, it describes TopLink session-level options (see
"Configuring Server Sessions" in the Oracle TopLink Developer’s Guide) such as data
sources, login information, caching options, and logging. It is equivalent to the
sessions.xml file that TopLink users are familiar with.

This file provides a reference to the primary project (see "What is the
toplink-ejb-jar.xml File?" on page 2-11), if used.

For more information, see "Configuring the ejb3-toplink-sessions.xml File" on
page 26-3.

EJB 3.0
If you are using EJB 3.0, this file is only used to customize TopLink persistence
manager configuration (see "Customizing the TopLink Entity Manager" on page 3-2).
If you use this file to customize the TopLink persistence manager, you may also use a
toplink-ejb-jar.xml file (see "What is the toplink-ejb-jar.xml File?" on page 2-11).

EJB 2.1
If you are using EJB 2.1, this file is not used.

XML Reference
The ejb3-toplink-sessions.xml file conforms to the XML schema documents
located at <OC4J_HOME>\toplink\config\xsds. Oracle does not recommend
manual configuration of this file. To create and configure this file, use the TopLink
Workbench (see "Understanding the TopLink Workbench" in the Oracle TopLink
Developer’s Guide).

What is the persistence.xml File?
The persistence.xml file is a persistence descriptor file that you use to define one
or more persistence units in an EJB 3.0 application that uses entities. A persistence unit
defines an entity manager’s configuration. You specify a persistence unit by name
when you acquire an entity manager (see "Acquiring an EntityManager" on page 29-5).
Alternatively, you can take advantage of the OC4J default persistence unit (see
"Understanding the OC4J Default Persistence Unit" on page 2-14).

How do You Package and Deploy an EJB Application?

Understanding EJB Application Development 2-13

A persistence unit is a logical grouping of:

■ Entity manager: including, entity manager provider, the entity managers obtained
from it, and entity manager configuration.

■ Persistent managed classes: the classes you intend to manage using an entity
manager, namely, entity classes, embeddable classes, and mapped superclasses
(see "What Persistent Managed Classes Does this Persistence Unit Include?" on
page 26-4).

■ Mapping metadata: the information that describes how to map persistent
managed classes to database tables. You can specify mapping metadata using
annotations on persistent managed classes and orm.xml files (see "What is the
orm.xml File?" on page 2-15).

You can package a persistence.xml file in any of the following:

■ EJB-JAR file

■ WAR file

– WEB-INF/classes directory

– WEB-INF/lib (in this case, persistence.xml file must be in a JAR)

■ EAR

– persistence.xml file in a JAR in root of EAR

– persistence.xml file in a JAR in the EAR library directory

■ Application client JAR

The JAR file or directory whose META-INF directory contains the persistence.xml
file is called the root of the persistence unit. An EJB 3.0 application that uses entities
must define at least one persistence unit root.

The scope of a persistence unit is determined by where you define its persistence unit
root:

■ EJB-JAR, WAR, or application client jar:

■ Scoped to that EJB-JAR, WAR, or application jar respectively

■ Visible to the components defined in that EJB-JAR, WAR, or application jar

■ Not visible as a persistence unit to other parts of the application

■ EAR:

■ Scoped to application as a whole

■ Generally visible to all components in the application

Each persistence unit must have a name. Only one persistence unit of a given name
may exist in a given EJB-JAR, WAR, EAR, or application client JAR.

For more information, see "Configuring the persistence.xml File" on page 26-3.

Note: A persistence unit of the same name defined at the EJB-JAR,
WAR, or application client JAR level overrides that defined at the
EAR level. That is, the EAR-level persistence unit will not be visible to
the components defined by that EJB-JAR, WAR, or application JAR
file

How do You Package and Deploy an EJB Application?

2-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Understanding the OC4J Default Persistence Unit
OC4J provides a default persistence unit capability that you can use to simplify
deployment descriptor configuration and client code that accesses entity managers.

If you specify one and only one persistence unit in a persistence.xml file, then
when you acquire an entity manager in that persistence unit’s scope, you do not need
to specify the persistence unit by name. In this case, OC4J will use the single
persistence unit you specified.

If your application requires only one persistence unit and you deploy EJB 3.0 entities
without a persistence.xml file, OC4J will create a default persistence unit and use
it to satisfy your application code when it acquires an entity manager (see "Acquiring
the OC4J Default Entity Manager in an EJB 3.0 Stateful Session Bean Client" on
page 29-6). In this case, OC4J assumes that all EJB 3.0 entity classes belong to the
default persistence unit. To disable this feature, set orion-ejb-jar.xml file
attribute disable-default-persistent-unit to true.

If you set disable-default-persistent-unit to true, you can still use the OC4J
default persistence unit if you specify an empty persistence unit (see "Configuring the
persistence.xml File for the OC4J Default Persistence Unit" on page 26-4) in a
persistence.xml file, then when you acquire an entity manager in that persistence
unit’s scope, you do not need to specify a persistence unit name. In this case, OC4J will
use its own default persistence unit and will assume that all EJB 3.0 entity classes in
the persistence unit root belong to that persistence unit. You may specify one and only
one such empty persistence unit in your application.

For more information, see:

■ "Configuring the persistence.xml File for the OC4J Default Persistence Unit" on
page 26-4

■ "Acquiring an EntityManager" on page 29-5

EJB 3.0
If you are using EJB 3.0 entities, this file is mandatory (unless you are using the OC4J
default persistence unit).

EJB 2.1
If you are using EJB 2.1, this file is not used.

XML Reference
For EJB 3.0, this deployment descriptor file conforms to the XML schema document
defined in the EJB 3.0 specification at
http://java.sun.com/products/ejb/docs.html.

What is the orm.xml File?
The orm.xml file is the XML deployment descriptor you use to specify
object/relational mapping configuration. You can use an orm.xml file to as an
alternative to annotations and to override annotations.

You can package an orm.xml file in any of the following:

■ META-INF directory of the persistence unit root (the JAR file or directory whose
META-INF directory contains the persistence.xml file)

■ META-INF directory of any JAR file referenced by the persistence.xml file

How Do You Use an EJB in Your Application?

Understanding EJB Application Development 2-15

■ persistence.xml file <persistence-unit> element <mapping-file>
sub-element

You can specify more than one orm.xml file and these files may be present anywhere
on the class path.

For more information, see:

■ "What is the persistence.xml File?" on page 2-13

EJB 3.0
If you are using EJB 3.0 entities, this file is optional.

EJB 2.1
If you are using EJB 2.1, this file is not used.

XML Reference
For EJB 3.0, this deployment descriptor file conforms to the XML schema document
defined in the EJB 3.0 specification at
http://java.sun.com/products/ejb/docs.html.

How Do You Use an EJB in Your Application?
In general, you use an EJB from a client (see "Understanding Client Access" on
page 2-15).

You can also use EJBs to implement fine-grained control over method invocation flow
(see "Understanding EJB 3.0 Interceptors" on page 2-16).

You can also use EJBs with Web services, either as a Web service client or as a Web
service endpoint (see "Understanding EJBs and Web Services" on page 2-17).

In a deployed EJB application, you can exploit the component nature of a J2EE
application to monitor and control EJB performance and resource utilization (see
"Understanding EJB Administration" on page 2-17).

Understanding Client Access
In general, you use an EJB from a client (see "What Type of Client Do You Have?" on
page 29-1) to perform application tasks such as conducting a session, persistence, or
message handling. For more information, see "Accessing an EJB from a Client" on
page 29-1.

Understanding EJB 3.0 Interceptors
An interceptor is a method that you associate with an EJB 3.0 session bean or
message-driven bean message listener method. When a client invokes a session bean
business method or message-driven bean message listener method, OC4J intercepts
the client invocation and invokes your interceptor method before allowing the client
invocation to proceed.

This section describes:

■ Interceptor Restrictions

■ Interceptors and Invocation Context

For more information, see:

How Do You Use an EJB in Your Application?

2-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring an Interceptor on an EJB 3.0 Session Bean" on page 5-3

■ "Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method" on
page 10-5

Interceptor Restrictions
You can use interceptors with:

■ stateless session beans

■ stateful session beans

■ message driven beans

OC4J applies an interceptor to all business methods of a bean.

In this release, you must define an interceptor as a method of the bean class to which it
applies. You may define only one interceptor method for each class.

An interceptor method may not be a business method.

An interceptor method has the following signature:

public Object <METHOD>(InvocationContext) throws Exception

Within an interceptor, you can use the InvocationContext to access client
invocation metadata (see "Interceptors and Invocation Context" on page 2-17).

An interceptor must observe the following transaction restrictions:

■ Interceptor method invocations occur within the same transaction and security
context as the business method for which they are invoked.

■ Interceptor methods can mark their transaction for rollback by throwing a runtime
exception or by calling setRollbackOnly using its EJBContext object as
follows:

InvocationContext.getEJBContext().setRollbackOnly();

Interceptors may cause this rollback before or after they call
InvocationContext.proceed().

For more information, see "Using a Rollback Strategy" on page 21-7.

■ When using container-managed transactions (see "Container-Managed
Transaction (CMT)" on page 2-21), interceptors must not use any
resource-manager specific transaction management methods that would interfere
with the container’s demarcation of transaction boundaries. For example, the
interceptor must not use the following methods of the java.sql.Connection
interface: commit, setAutoCommit, and rollback; or the following methods of
the javax.jms.Session interface: commit and rollback. Interceptors must
not attempt to obtain or use the javax.transaction.UserTransaction
interface.

Note: In this release, OC4J interceptor support does not comply with
the functionality specified in the EJB 3.0 public review draft. If you use
interceptors, you may need to make code changes to your EJB 3.0
OC4J application after the EJB 3.0 specification is finalized and OC4J is
updated to full EJB 3.0 compliance. For more information, see
"Understanding EJB Support in OC4J" on page 3-1.

Understanding EJB Data Source Services

Understanding EJB Application Development 2-17

Interceptors and Invocation Context
Using the InvocationContext API, you can access (and modify) all the metadata
relevant to the client invocation and implement fine grained control over method
invocation flow by selectively choosing whether or not to allow the client invocation to
proceed. Using EJB 3.0 interceptors, you can:

■ Modify parameters before they're passed to the bean

■ Modify the value returned from the bean

■ Catch and swallow method exceptions

■ Interrupt the call completely (for example, to implement your own security
framework)

■ Provide method profiling

Understanding EJBs and Web Services
You can expose a stateless session bean as a Web service endpoint. Any EJB type can
be the client of a Web service.

For more information, see "Using EJBs and Web Services" on page 30-1.

Understanding EJB Administration
After you deploy your J2EE application, you can use J2EE administration features to
monitor and optimize your application at runtime.

For more information, see:

■ "Administrating an EJB Application" on page 31-1

Understanding EJB JNDI Services
The Java Naming and Directory Interface (JNDI) provides your J2EE application with
a unified interface to multiple naming and directory services. You use JNDI to
organize and locate components in a distributed J2EE environment.

You can define environment references for J2EE components and associated JNDI
properties.

You can use JNDI to look up and retrieve these components using the:

■ JNDI initial context

■ EJB context

■ @Resource injection (EJB 3.0 only)

For more information, see "Configuring JNDI Services" on page 19-1.

Understanding EJB Data Source Services
A data source is a Java object that represents the physical enterprise information
system to which OC4J persists entities. Your application uses a data source object to
retrieve a connection to the enterprise information system the data source represents.

This section describes:

■ What Types of Data Source does OC4J Support?

■ How Do You Define a Connection URL in OC4J?

Understanding EJB Data Source Services

2-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ What Transaction Types Do Data Sources Support?

■ Where Do You Configure Data Source Information in OC4J?

■ What is a Default Data Source?

■ How Does OC4J Handle Multiple Data Sources?

For more information, see:

■ "Configuring Data Sources" on page 20-1

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

What Types of Data Source does OC4J Support?
OC4J supports the following:

■ Managed Data Source

■ Native Data Source

Table 2–6 lists the characteristics of these OC4J data sources.

Managed Data Source
A managed data source (see Example 2–4) is an OC4J-provided implementation of the
java.sql.DataSource interface that acts as a wrapper for a JDBC driver or data
source. You can associate a managed data source with a separate connection pool.
Multiple managed data sources may share the same connection pool.

Example 2–4 A Managed Data Source

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleManagedDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"

/>

For more information, see "Configuring a Data Source for an Oracle Database" on
page 20-1.

Native Data Source
A native data source (see Example 2–5) is a JDBC vendor-provided implementation of
the java.sql.DataSource interface. You use the connection pool provided by the

Table 2–6 OC4J Data Source Type Characteristics

Characteristic Managed Native

Uses OC4J connection pool? Yes No

Connections can participate in global transactions? Yes No

Connections wrapped with an OC4J Connection proxy? Yes No

Understanding EJB Data Source Services

Understanding EJB Application Development 2-19

data source instance you choose. Each native data source must use its own connection
pool.

Example 2–5 A Native Data Source

<native-data-source
name="nativeDataSource"
jndi-name="jdbc/nativeDS"
description="Native DataSource"
data-source-class="com.ddtek.jdbcx.sqlserver.SQLServerDataSource"
user="frank"
password="frankpw"
url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd">

</native-data-source>

For more information, see "Configuring a Data Source for a Third-Party Database" on
page 20-2.

How Do You Define a Connection URL in OC4J?
You specify a connection URL to tell OC4J where to find the underlying physical data
source.

When you define a managed data source (see "Managed Data Source" on page 2-19),
the connection URL is an attribute of the connection pool you associate with it (see
Example 2–4).

When you define a native data source (see "Native Data Source" on page 2-19), the
connection URL is an attribute of the native data source (see Example 2–5).

When specifying the connection URL to an Oracle database, you must use a
service-based URL: that is, of the form host:port/SID (not host:port:SID), as
Example 2–6 shows.

Example 2–6 OC4J Service-Based Connection URL

url="jdbc:oracle:thin:@//localhost:1521/ORCL"

When specifying the connection URL to a non-Oracle database, you use a URL
appropriate for that system. Example 2–7 shows a typical connection URL for an
SQLServer database.

Example 2–7 Non-Oracle Connection URL

url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd">

What Transaction Types Do Data Sources Support?
Managed data sources support both local and global (two-phase commit) transactions.
By default, they are configured to support global transactions. For more information,
see "Configuring a Data Source for an Oracle Database" on page 20-1).

Native data sources support only local transactions.

Where Do You Configure Data Source Information in OC4J?
In OC4J, you configure data source information in a data-sources.xml file.

You can include a data-sources.xml file in your EAR but OC4J does not support
multiple data-sources.xml files.

Understanding EJB Transaction Services

2-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "How Does OC4J Handle Multiple Data Sources?" on page 2-20

■ "What is a Default Data Source?" on page 2-20

What is a Default Data Source?
To simplify application configuration, you can define default data sources.

How you define a default data source depends on the type of application you want to
access the default data source from:

■ "Configuring a Default Data Source for an EJB 3.0 Application" on page 20-3

■ "Configuring a Default Data Source for an EJB 2.1 Application" on page 20-4

How Does OC4J Handle Multiple Data Sources?
OC4J does not support multiple data sources within different entities in
orion-ejb-jar.xml.

If your application is composed of more than one EAR and each EAR contains a
data-sources.xml, then, when you deploy your application, OC4J will use the last
entity bean’s data-source.xml for all entity beans.

To accommodate this scenario, specify the data source in orion-application.xml
or specify a default data source.

For more information, see:

■ "In What Order does OC4J Deploy EJB Modules?" on page 2-9

■ "What is a Default Data Source?" on page 2-20

Understanding EJB Transaction Services
You can enable OC4J to manage transactions by using the Java Transaction API (JTA)
supported by the Java Transaction Service (JTS). Using annotations or the deployment
descriptor, you define the transactional properties of EJBs during design or
deployment and then let OC4J take over the responsibility of transaction management.

Only flat transactions supported; nested transactions are not supported.

This section describes:

■ Who Manages a Transaction?

■ How are Transactions Handled When a Client Invokes a Business Method?

■ How do I Participate in a Global or Two-Phase Commit Transaction?

For more information, see:

■ "Configuring Transaction Services" on page 21-1

■ "Transaction Best Practices" on page 21-6

■ "OC4J Transaction Support" in the Oracle Containers for J2EE Services Guide

Understanding EJB Transaction Services

Understanding EJB Application Development 2-21

Who Manages a Transaction?
A transaction can be managed by either the container (see "Container-Managed
Transaction (CMT)" on page 2-21) or the bean ("Bean-Managed Transaction (BMT)" on
page 2-22).

Container-managed transaction management is the default.

EJB 3.0 entities cannot be configured with a transaction management type. EJB 3.0
entities execute within the transactional context of the caller.

EJB 2.1 or EJB 1.1 entity beans must always use container-managed transaction
demarcation. An EJB 2.1 or EJB 1.1 entity bean must not be designated with
bean-managed transaction demarcation.

For all other EJB types, you can choose either container-managed or bean-managed
transaction management.

Container-Managed Transaction (CMT)
When you use container-managed transactions, your EJB delegates to the container the
responsibility to ensure that a transaction is started and committed when appropriate.

All session and message-driven beans and EJB 2.1 and EJB 1.1 entity beans can use
CMT.

When developing an EJB that uses CMT, consider the following:

■ Do not use resource-manager specific transaction management methods such as
java.sqlConnection methods commit, setAutoCommit, and rollback or
javax.jms.Session methods commit or rollback.

■ Do not obtain or use the javax.transaction.UserTransaction interface.

■ A stateful session bean using CMT may implement the
javax.ejb.SessionSynchronization interface.

■ An EJB that uses CMT may use javax.ejb.EJBContext methods
setRollbackOnly and getRollbackOnly.

For an EJB that uses CMT, for each business method, you can also specify a transaction
attribute that determines how the container manages transactions when a client
invokes the method (see "How are Transactions Handled When a Client Invokes a
Business Method?" on page 2-22).

Bean-Managed Transaction (BMT)
When you use bean-managed transactions, the bean-provider is responsible for
ensuring that a transaction is started and committed when appropriate.

Only session and message-driven beans can use BMT.

When developing an EJB that uses BMT, consider the following:

■ Use the javax.transaction.UserTransaction methods begin and commit
to demarcate transactions.

■ A stateful session bean instance may, but is not required to, commit a started
transaction before a business method returns.

If a transaction has not been completed by the end of a business method, the
container retains the association between the transaction and the instance across
multiple client calls until the instance eventually completes the transaction.

Understanding EJB Transaction Services

2-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ A stateless session bean instance must commit a transaction before a business
method or timeout callback method returns.

■ A message-driven bean instance must commit a transaction before a message
listener method or timeout callback method returns.

■ After starting a transaction, do not use resource-manager specific transaction
management methods such as java.sqlConnection methods commit,
setAutoCommit, and rollback or javax.jms.Session methods commit or
rollback.

■ A BMT bean must not use EJBContext methods getRollbackOnly and
setRollbackOnly. It must use UserTransaction method getStatus and
rollback instead.

How are Transactions Handled When a Client Invokes a Business Method?
For an EJB that uses CMT (see "Container-Managed Transaction (CMT)" on page 2-21),
you can specify a transaction attribute for each of the following methods that
determines how the container must manage transactions when a client invokes the
method:

■ a method of a bean’s business interface

■ a message listener method of a message-driven bean

■ a timeout callback method

■ a stateless session bean’s Web service endpoint method

■ for EJB 2.1 and earlier, a method of a session or entity bean’s home or component
interface

OC4J starts a container-controlled transaction implicitly to satisfy the transaction
attribute configuration when a bean method is invoked in the absence of a
client-controlled transaction.

Table 2–7 shows what transaction (if any) an EJB method invocation uses depending
on how its transaction attribute is configured and whether or not a client-controlled
transaction exists at the time the method is invoked.

Oracle recommends that you do not make modifications to entity beans under
conditions identified as "Use no transaction". Oracle also recommends that you avoid
using the Supports transaction attribute because it leads to a non-transactional state
whenever the client does not explicitly provide a transaction.

Table 2–7 EJB Transaction Support by Transaction Attribute

Transaction
Attribute

Client-Controlled
Transaction Exists

Client-Controlled Transaction
Does Not Exist

NotSupported Use no transaction Use no transaction

Supports Use client-controlled transaction Use no transaction

Required1

1 Default.

Use client-controlled transaction Use container-controlled transaction

RequiresNew Use client-controlled transaction Use container-controlled transaction

Mandatory Use client-controlled transaction Exception raised

Never Exception raised Use no transaction

Understanding Message Services

Understanding EJB Application Development 2-23

How do I Participate in a Global or Two-Phase Commit Transaction?
If all resources enlisted in a transaction are XA-compliant then OC4J automatically
coordinates a global or two-phase commit transaction.

In this release, transaction coordination functionality is now located in OC4J, replacing
in-database coordination, which is now deprecated. Also, the middle-tier coordinator
is now "heterogeneous", meaning that it supports all XA-compatible resources, not just
those from Oracle.

The middle-tier coordinator provides the following features:

■ Supports any XA compliant resource

■ Supports interpositioning and transaction inflow

■ Last resource commit optimization

■ Recovery logging

For more information, see "Middle-Tier Two-Phase Commit (2PC) Coordinator" in the
Oracle Containers for J2EE Services Guide.

Understanding EJB Security Services
You can configure your EJBs to use the J2EE security services that OC4J provides,
including:

■ Java 2 Security Model

■ Java Authentication and Authorization Service (JAAS)

For more information, see:

■ "Configuring Security Services" on page 22-1

■ "Standard Security Concepts" in the Oracle Containers for J2EE Security Guide

Understanding Message Services
A message service provider is responsible for providing a destination to which clients
can send messages and from which message-driven beans (see "What is a
Message-Driven Bean?" on page 1-35) can receive messages for processing.

Using EJB 3.0, message-driven beans can only use a JMS message service provider.

Using EJB 2.1, message-driven beans can use a JMS or non-JMS service provider.

In either case, you can configure a message service provider by specifying message
service provider classes or by using a J2EE Connector Architecture (J2CA) adapter.

For more information, see:

■ "What Message Providers Can I use with My MDB?" on page 2-24

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider" on
page 10-2

■ "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider" on
page 18-1

■ "Configuring Message Services" on page 23-1

Understanding Message Services

2-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

What Message Providers Can I use with My MDB?
Using OC4J, you can use an MDB with the following types of message provider:

■ Oracle Application Server JMS (OracleAS JMS) Provider: File-Based

■ Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based

■ J2EE Connector Architecture (J2CA) Adapter Message Provider

Oracle Application Server JMS (OracleAS JMS) Provider: File-Based
OracleAS JMS is a native Java JMS provider implementation that provides file-based
persistence and is tightly integrated with OC4J. It is the default JMS provider included
with OC4J. Figure 2–2 shows how a client sends an asynchronous request directly to
the OracleAS JMS queue or topic that is located internally within OC4J. The MDB
receives the message directly from OracleAS JMS.

Figure 2–2 Demonstration of an MDB Interacting with an OracleAS JMS Destination

If you do not access OracleAS JMS using the Oracle JMS Connector (see "J2EE
Connector Architecture (J2CA) Adapter Message Provider" on page 2-26), be aware of
the following restrictions:

■ no support for two-phase commit (2PC)

For more information, see

■ "Configuring an OracleAS JMS Message Service Provider" on page 23-1

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider" on
page 10-2

■ "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider" on
page 18-1

■ "Java Message Service (JMS)" in the Oracle Containers for J2EE Services Guide.

Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based
Oracle JMS (OJMS) is the JMS interface to the Oracle Database Streams Advanced
Queueing (AQ) feature. Oracle AQ is the Oracle database-integrated message queuing
feature, built on the Oracle Streams information integration infrastructure that you
install and configure within an Oracle database (see Figure 2–3).

Understanding Message Services

Understanding EJB Application Development 2-25

Figure 2–3 Demonstration of an MDB Interacting with an OJMS Destination

An MDB uses OJMS as follows:

1. The MDB opens a JMS connection to the database using a data source with a
username and password. The data source represents the Oracle JMS provider and
uses a JDBC driver to facilitate the JMS connection.

2. The MDB opens a JMS session over the JMS connection.

3. Any message for the MDB is routed to the onMessage method of the MDB.

At any time, the client can send a message to the Oracle JMS topic or queue on which
MDBs are listening. The Oracle JMS topic or queue is located in the database.

Before using Oracle JMS, you must create the appropriate queue or table in the
database.

For more information, see:

■ "Configuring an OJMS Message Service Provider" on page 23-3

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider" on
page 10-2

■ "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider" on
page 18-1

■ Oracle Streams Advanced Queuing User's Guide and Reference

■ "Java Message Service (JMS)" in the Oracle Containers for J2EE Services Guide

J2EE Connector Architecture (J2CA) Adapter Message Provider
OC4J provides a JMS Connector: a generic Java Message Service (JMS) J2CA resource
adapter that integrates OC4J with OracleAS JMS and OJMS message service providers,
as well as non-Oracle JMS providers as Table 2–8 shows.

Note: MDBs only work with certain versions of the Oracle
database. See the certification matrix in the JMS chapter of the
Oracle Containers for J2EE Services Guide for more information.

Table 2–8 Oracle JMS Connector Support for JMS Message Service Providers

JMS Provider Version

OracleAS JMS all

OJMS all

IBM WebSphere MQ-based JMS Server Version 5.3 and 6.0

Understanding Message Services

2-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You can use other J2CA-compliant adapters with OC4J to integrate with other types of
enterprise information systems (EIS).

Using a J2CA adapter, you can access other JMS and non-JMS message service
providers as Figure 2–4 shows. In this architecture, the client does not access a queue
or topic directly. Instead, to send a message to an EIS by way of a J2CA adapter, you:

1. Obtain a javax.resource.cci.ConnectionFactory.

If the EIS is a JMS message service provider, there will likely be connection factory
choices for queue or topic. For example, the Oracle JMS Connector offers a
QueueConnectionFactory and a TopicConnectionFactory.

2. Use the factory to obtain a javax.resource.cci.Connection.

3. Use the connection to obtain a javax.resource.cci.Interaction.

4. Configure the interaction and use Interaction method execute to send the
message.

Figure 2–4 Demonstration of an MDB Interacting with a J2CA JMS Destination

From the perspective of OC4J, J2CA is only used as a means of accessing a message
service provider for use with message-driven beans.

For more information, see:

■ "Configuring a Message Service Provider Using J2CA" on page 23-6

■ "Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider" on
page 10-3

■ "Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider" on
page 18-2

■ "Introducing Oracle JMS Support and Generic JMS Resource Adapter" in the
Oracle Containers for J2EE Resource Adapter Administrator’s Guide

TIBCO Enterprise for JMS 3.1.0

SonicMQ 6.0

Note: Oracle recommends that newer JMS applications be deployed
using the J2CA 1.5 Resource Adapter mandated by the J2EE 1.4
standard.

Table 2–8 (Cont.) Oracle JMS Connector Support for JMS Message Service Providers

JMS Provider Version

Understanding OC4J EJB Application Clustering Services

Understanding EJB Application Development 2-27

■ "Overview: Administering Resource Adapters" in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide

Understanding OC4J EJB Application Clustering Services
Oracle Application Server provides an extensive suite of high availability and failover
options, including clustering: the distribution of application server and end-user
application components across multiple hosts configured with the appropriate means
of host-to-host communication.

OC4J application clustering is a state management service available to HTTP sessions
and stateful session beans. In this context, a cluster is defined as two or more OC4J
server nodes hosting the same set of applications. In this release, configuration has
been simplified and made identical for both HTTP sessions and stateful session beans.

This section describes OC4J application clustering for stateful session beans, including:

■ State Replication

■ Load Balancing

■ Failover

■ Transactions

■ Performance

For more information, see:

■ "Configuring OC4J EJB Application Clustering Services" on page 24-1

■ "Clustering Overview" in the Oracle Containers for J2EE Configuration and
Administration Guide

■ "Application Clustering in OC4J" in the Oracle Containers for J2EE Configuration and
Administration Guide

■ "Oracle Application Server Cluster (OC4J) in Active-Active Topologies" in the
Oracle Application Server High Availability Guide

■ "Stateful Session EJB State Replication with Oracle Application Server Cluster
(OC4J)" in the Oracle Application Server High Availability Guide

State Replication
When you configure a replication policy for a clustered OC4J EJB application, OC4J
handles the replication of objects and values contained in stateful session bean

Note: For a complete code example of configuring a J2CA message
service provider resource adapter and MDB application, see
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_
to/how-to-gjra-with-oracleasjms/doc/how-to-gjra-with
-oracleasjms.html.

Note: If you have a servlet (or other Web component) that invokes a
stateful session bean, you must configure both HTTP session and
stateful session bean clustering.

Understanding OC4J EJB Application Clustering Services

2-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

instances. Only stateful session beans can be clustered. Because stateless session beans
have no state to be replicated, they need not be clustered.

You must configure a replication policy to take advantage of failover (see "Failover" on
page 2-30). If you only want to take advantage of load balancing, replication is not
required (see "Load Balancing" on page 2-30).

A replication policy determines the conditions (see "State Replication Trigger" on
page 2-29) under which bean state (see "State Replication Scope" on page 2-30) is
broadcast (see "State Replication Mode" on page 2-30) to all other OC4J processes in
the cluster.

Replication can have an impact on application server and network performance. The
fewer times the state is sent out, the better your performance. However, there is a
trade-off between performance and the confidence that the bean state is replicated to
cover for all areas of the bean instance failing.

You can configure a replication policy globally for all applications deployed to an
OC4J instance or at the application level. You can configure a replication policy for all
Web and EJB components and you can configure a replication policy for EJB
components only.

For more information on configuring a replication policy for a stateful session bean,
see "Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy" on
page 24-1.

State Replication Trigger
You can choose the condition that triggers replication as one of the following:

■ inherited — The stateful session bean uses the state replication trigger setting you
configure at the application level. This is the default value.

■ on request end — The state of the stateful session bean is replicated to all hosts in
the cluster (with the same multicast address, port) at the end of each EJB method
call. If the node loses power, then the state has already been replicated. This
method is less performant than the JVM termination replication mode, because the
state is sent out more often. However, the guarantee for reliance is higher.

■ on shutdown — The state of the stateful session bean is replicated to only one
other host in the cluster (with the same multicast address, port) when the JVM is
terminating. This is the most performant option, because the state is replicated
only once. However, it is not very reliable for the following reasons:

– Your state is not replicated if the host is terminated unexpectedly.

– The state of the bean exists only on a single host at any time; you carry a
higher risk that the state does not replicate and is lost.

State Replication Scope
For stateful session beans, when replication is triggered, all the attributes of the
stateful session bean are replicated (regardless of whether or not they have changed).

State Replication Mode
You can configure OC4J EJB application clustering in-memory replication by way of:
multicast communication, peer-to-peer communication, or persistence of state data to
a database. For more information on configuring replication type, see "Application
Clustering in OC4J" in the Oracle Containers for J2EE Configuration and Administration
Guide.

Understanding OC4J EJB Application Clustering Services

Understanding EJB Application Development 2-29

Load Balancing
Load balancing refers to how incoming client requests are distributed over all the
OC4J instances in your cluster.

You can choose from among the following load balancing strategies:

■ Replication-Based Load Balancing

■ Static Retrieval Load Balancing

■ DNS Load Balancing

Replication-Based Load Balancing
When you configure a replication policy for a clustered OC4J EJB application (see
"State Replication" on page 2-29), OC4J can automatically select an OC4J instance at
random from the pool of OC4J instances in the cluster when the first client request is
serviced. You can configure how subsequent requests will be load balanced.

For more information, see "Configuring Replication-Based Load Balancing" on
page 24-3.

Static Retrieval Load Balancing
If you decide not to use EJB replication, but you want to load balance client requests
across several statically specified OC4J processes, you can use static retrieval by
providing the URLs for all of these processes in the JNDI URL property.

For more information, see "Configuring Static Retrieval Load Balancing" on page 24-3.

DNS Load Balancing
If you decide not to use EJB replication, but you want to load balance client requests
across several DNS-managed OC4J processes, you can use DNS retrieval by
configuring your DNS server with a single hostname associated with the desired OC4J
host IP addresses and specifying this hostname in the JNDI URL property.

For more information, see "Configuring DNS Load Balancing" on page 24-4.

Failover
Failover requires that the state of the bean is replicated, so that when the original bean
terminates unexpectedly, the request can be transparently forwarded to another OC4J
process in the cluster.

For more information, see "State Replication" on page 2-29.

Transactions
Transactions cannot failover. There is no reinstating an interrupted transaction in
another bean. Instead, the transaction rolls back and must start over.

For more information, see "Understanding EJB Transaction Services" on page 2-21.

Performance
The performance for clustering stateful session beans is dependent on the type of
replication (see "State Replication" on page 2-29) and load balancing (see "Load
Balancing" on page 2-30) options you choose.

Understanding EJB Timer Services

2-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You must choose the appropriate balance between replication frequency and
robustness: the more frequently you replicate, the smaller the window of opportunity
for losing state but the higher the load on the application server and network.

Understanding EJB Timer Services
You can set up a timer that invokes an EJB at a specified time, after a specified elapsed
time, or at specified intervals. Timers are for use in modeling of application-level
processes, not for real-time events.

Table 2–9 summarizes the timers you can use with enterprise JavaBeans.

For more information, see "Configuring Timer Services" on page 25-1.

Understanding J2EE Timer Services
The EJB timer service is a container-managed service that provides methods to allow
callbacks to be scheduled for time-based events. The container provides a reliable and
transactional notification service for timed events. Timer notifications may be
scheduled to occur at a specific time, after a specific elapsed duration, or at specific
recurring intervals.

The J2EE timer service is implemented by OC4J. An enterprise bean accesses this
service by means of dependency injection, through the EJBContext interface, or
through lookup in the JNDI namespace.

For more information, see:

■ "Configuring an EJB 3.0 EJB with a J2EE Timer" on page 25-1

■ "Configuring an EJB 2.1 EJB with a J2EE Timer" on page 25-2

Understanding OC4J Cron Timer Services
In the UNIX world, you can schedule a timer, known as a cron timer, to execute
regularly at specified intervals. Oracle has extended OC4J to support cron timers with
EJBs. You can use cron expressions for scheduling timer events with EJBs deployed to
OC4J.

For more information, see "Configuring an EJB with an OC4J Cron Timer" on
page 25-3.

Table 2–9 EJB Timers

Timer

Stateful
Session
Bean

Stateless
Session
Bean

CMP
Entity
Bean

BMP
Entity
Bean

Message-
Driven
Bean

"Understanding J2EE Timer Services" on
page 2-31

EJB 3.0

EJB 2.1

"Understanding OC4J Cron Timer Services" on
page 2-32

EJB 3.0

EJB 2.1

Understanding EJB Support in OC4J 3-1

3
Understanding EJB Support in OC4J

This chapter describes:

■ EJB 3.0 Support

■ EJB 2.1 Support

■ Configuration Changes in this Release

EJB 3.0 Support
In this release, OC4J supports a subset of the functionality specified in the EJB 3.0
public review draft
(http://jcp.org/aboutJava/communityprocess/pr/jsr220/index.html).

You may need to make code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0 compliance.

Oracle cannot guarantee backward compatibility in all cases. For example, if the
meaning or purpose of currently supported annotation changes when the EJB 3.0
specification is finalized, then you must make code changes to your EJB 3.0 OC4J
application.

There are no OC4J-proprietary EJB 3.0 annotations. For all OC4J-specific configuration,
you must still use the orion-ejb-jar.xml file. For more information, see
Appendix A, "XML Reference for orion-ejb-jar.xml Elements".

In this release, OC4J supports the use of ejb-jar.xml except for object-relational
entity mapping configuration (see "Implementing an EJB 3.0 Entity" on page 6-1): all
such configuration must done using annotations only. For more information, see
"What is the ejb-jar.xml File?" on page 2-10.

In this release, OC4J does not support resource injection in the Web container. For
more information, see "How Do Annotations and Resource Injection Work?" on
page 1-7.

This section describes:

■ What JDK is Required?

■ How do You Define an EJB 3.0 Application?

■ How does OC4J Manage Persistence in an EJB 3.0 Application?

What JDK is Required?
If you are using EJB 3.0 and annotations, then you must use JDK 5.0.

EJB 3.0 Support

3-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

If you are using EJB 3.0 without annotations, then you may use JDK 1.4. However, in
this case, all EJB configuration must be done using the ejb-jar.xml and
orion-ejb-jar.xml deployment descriptor. For an example of how to use EJB 3.0
with JDK 1.4, see the " Using EJB 3.0 EnityManager API in JDK 1.4" in
http://www.oracle.com/technology/tech/java/ejb30.html.

How do You Define an EJB 3.0 Application?
For entities, OC4J assumes that the application is an EJB 3.0 application if an EJB JAR
is deployed without an ejb-jar.xml file. For more information, see "How Does
OC4J Determine What Type of Persistence to Use?" on page 2-8

For session beans and message-driven beans, OC4J assumes that the application is an
EJB 3.0 application if the ejb-jar.xml file <ejb-jar> element version attribute is
set to "3.0"

How does OC4J Manage Persistence in an EJB 3.0 Application?
In an EJB 3.0 application, OC4J delegates persistence operations to an entity manager.
In this release, OC4J uses the TopLink persistence framework to implement its entity
manager (see "TopLink Entity Manager" on page 3-2).

TopLink Entity Manager
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

In this release, OC4J uses TopLink as the entity manager for EJB 3.0 entities.

For more information about the TopLink, see "What is TopLink?" in the Oracle TopLink
Developer’s Guide.

For EJB 3.0 projects, you configure persistence properties through annotations. OC4J
translates these annotations into TopLink configuration.

You can customize this configuration using an ejb3-toplink-sessions.xml file.
For more information, see:

■ "What is the ejb3-toplink-sessions.xml File?" on page 2-12

■ "Customizing the TopLink Entity Manager" on page 3-2

Customizing the TopLink Entity Manager
At runtime, you can access TopLink API to take advantage of advanced TopLink
features.

Typically, you use object-relational annotations (see "Configuring an EJB 3.0 Entity
Container-Managed Relationship Field" on page 7-9) to specify how you want OC4J to
store a persistent field in the database and rely on the default TopLink configuration
for each such annotation.

Alternatively, you can access the TopLink API in an EJB 3.0 entity application at run
time by creating an ejb3-toplink-sessions.xml (see "What is the
ejb3-toplink-sessions.xml File?" on page 2-12) and toplink-ejb-jar.xml (see
"What is the toplink-ejb-jar.xml File?" on page 2-11) file and packaging them in the
META-INF directory of the EJB-JAR that contains your EJB 3.0 entities:

EJB 3.0 Support

Understanding EJB Support in OC4J 3-3

■ To customize TopLink session-level options, you only need an
ejb3-toplink-sessions.xml file.

■ To customize TopLink persistence-specific options, you need both an
ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file.

You can use the TopLink API to customize persistence by overriding annotations or by
replacing annotations altogether. For example, you might use annotations for most of
your object-relational mappings and an ejb3-toplink-sessions.xml and
toplink-ejb-jar.xml file to specify object-relational mappings for a subset of
complex relationships not suited to annotation.

If the only JDK 1.5 language extension that your entity classes use are annotations, you
can use the TopLink Workbench to create and configure these files. Oracle
recommends using the TopLink Workbench to create and configure these files.

To customize the TopLink persistence manager, do the following:

1. Create a relational TopLink Workbench project.

"Creating a Project" in the Oracle TopLink Developer’s Guide

2. Configure the TopLink Workbench project classpath to include your JDK 1.5
compiled entity classes.

"Configuring Project Classpath" in the Oracle TopLink Developer’s Guide

3. Configure the project deployment XML file name (as toplink-ejb-jar.xml)
and save location.

"Configuring Project Deployment XML Options" in the Oracle TopLink Developer’s
Guide

4. Optionally, configure other TopLink project-level options.

"Configuring a Relational Project" in the Oracle TopLink Developer’s Guide

5. Configure TopLink relational descriptors for the entity classes you want to
customize.

"Creating a Relational Descriptor" in the Oracle TopLink Developer’s Guide

"Configuring a Relational Descriptor" in the Oracle TopLink Developer’s Guide

6. Configure TopLink relational mappings for the persistent fields you want to
customize.

"Creating a Mapping" in the Oracle TopLink Developer’s Guide

"Configuring a Relational Mapping" in the Oracle TopLink Developer’s Guide

7. Export your TopLink Workbench project to the toplink-ejb-jar.xml XML
file.

"Exporting Deployment XML Information" in the Oracle TopLink Developer’s Guide

8. Create a TopLink sessions configuration file named
ejb3-toplink-sessions.xml.

"Creating a Server Session" in the Oracle TopLink Developer’s Guide

9. Set the ejb3-toplink-sessions.xml file primary project to your
toplink-ejb-jar.xml file.

"Configuring a Primary Mapping Project" in the Oracle TopLink Developer’s Guide

10. Optionally, configure any other TopLink session-level options.

EJB 2.1 Support

3-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

"Configuring a Server Session" in the Oracle TopLink Developer’s Guide

11. Save your TopLink Workbench sessions configuration file.

12. Package the ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file
in the META-INF directory of the EJB-JAR that contains your EJB 3.0 entities.

EJB 2.1 Support
In this release, OC4J supports the functionality specified in the EJB 2.1 final release
specification (http://java.sun.com/products/ejb/docs.html).

This section describes:

■ What JDK is Required?

■ How do You Define an EJB 2.1 Application?

■ How does OC4J Manage Persistence in an EJB 2.1 Application?

What JDK is Required?
If you are using EJB 2.1, then you must use JDK 1.4 or higher.

How do You Define an EJB 2.1 Application?
For CMP entity beans, OC4J assumes that the application is an EJB 2.1 application if
the ejb-jar.xml file <cmp-version> element is set to 2.x. For more information,
see "How Does OC4J Determine What Type of Persistence to Use?" on page 2-8.

For session beans and message-driven beans, OC4J assumes that the application is an
EJB 2.1 application if the ejb-jar.xml file <ejb-jar> element version attribute is set
to "2.1".

How does OC4J Manage Persistence in an EJB 2.1 Application?
OC4J delegates persistence operations to a persistence manager. In this release, OC4J
uses the TopLink persistence manager by default (see "TopLink Persistence Manager"
on page 3-4).

The Orion persistence manager is deprecated. Oracle recommends that you use OC4J
and the TopLink persistence manager for new development. Using the migration tool
(see "Migrating to the TopLink Persistence Manager" on page 3-5), you can easily
migrate an existing OC4J application that uses EJB 2.0 entity beans with the Orion
persistence manager to use EJB 2.0 entity beans with the TopLink persistence manager.
For more information about the Orion persistence manager, see the Oracle Containers
for J2EE Orion CMP Developer’s Guide.

TopLink Persistence Manager
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

Note: Alternativley, you can use JDeveloper to create the
ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file
(see "Using EJB Development Tools". on page 2-2).

Configuration Changes in this Release

Understanding EJB Support in OC4J 3-5

In this release, OC4J uses TopLink as the persistence manager for EJB 2.1 CMP entity
beans.

For more information about the TopLink persistence manager, see "What is TopLink?"
in the Oracle TopLink Developer’s Guide.

For EJB 2.1 projects, you use the TopLink Workbench (see "Understanding the
TopLink Workbench" in the Oracle TopLink Developer’s Guide) to configure persistence
properties in the toplink-ejb-jar.xml file (see "What is the toplink-ejb-jar.xml
File?" on page 2-11). When you migrate an Orion CMP application to TopLink
persistence (see "Migrating to the TopLink Persistence Manager" on page 3-5), the
TopLink migration tool automatically creates a TopLink Workbench project for you.

You can customize this configuration at runtime using a TopLink customization class
(see "Customizing the TopLink Persistence Manager" on page 3-5).

Customizing the TopLink Persistence Manager
At runtime, you can access TopLink persistence manager API to take advantage of
advanced TopLink features.

To access the TopLink persistence manager API in an EJB 2.1 CMP application, you
can include a TopLink customization class in your deployment JAR.

This optional Java class implements
oracle.toplink.ejb.cmp.DeploymentCustomization to allow deployment
customization of TopLink mapping and run-time configuration. At deployment time,
the TopLink run time creates a new instance of this class and invokes its methods
beforeLoginCustomization (before the TopLink run time logs into the session)
and afterLoginCustomization (after the TopLink runtime logs into the session),
passing in the TopLink session as a parameter.

Use your implementation of the beforeLoginCustomization method to configure
TopLink session attributes including: cache coordination, parameterized SQL, native
SQL, batch writing/batch size, byte-array/string binding, login, event listeners, table
qualifier, and sequencing.

For EJB 2.1, you can use a TopLink customization class to access TopLink persistence
manager API not accessible from the TopLink Workbench GUI.

For more information, see:

■ "Configuring pm-properties" in the Oracle TopLink Developer’s Guide

■ Oracle TopLink API Reference

Migrating to the TopLink Persistence Manager
Using the TopLink migration tool, you can easily migrate an existing OC4J application
that uses EJB 2.0 entity beans with the Orion persistence manager to use EJB 2.0 entity
beans with the TopLink persistence manager.

For more information on using the TopLink migration tool, see "Migrating OC4J Orion
Persistence to OC4J TopLink Persistence" in the Oracle TopLink Developer’s Guide.

Configuration Changes in this Release
This section lists the following configuration changes introduced in this release:

■ New Package Names for RMI and Application Client Initial Context Factories

■ Unsupported orion-ejb-jar.xml Attributes

Configuration Changes in this Release

3-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For a complete list of new and deprecated OC4J features, see the 10g Release 3 (10.1.3)
Oracle Application Server Release Notes.

New Package Names for RMI and Application Client Initial Context Factories
In this release, note the new package names for the following initial context factories:

■ oracle.j2ee.rmi.RMIInitialContextFactory

■ oracle.j2ee.naming.ApplicationClientInitialContextFactory

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Unsupported orion-ejb-jar.xml Attributes
The following orion-ejb-jar.xml file attributes are unsupported:

■ max-instances-per-pk

■ min-instances-per-pk

■ disable-wrapper-cache

■ instance-cache-timeout

■ locking-mode="old_pessimistic"

For more information, see Appendix A, "XML Reference for orion-ejb-jar.xml
Elements".

Note: Do not use these attributes in this release. Doing so will lead to
deployment failure.

Part II
EJB 3.0 Session Beans

This part provides procedural information on implementing and configuring EJB 3.0
session beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 4, "Implementing an EJB 3.0 Session Bean"

■ Chapter 5, "Using EJB 3.0 Session Bean API"

Implementing an EJB 3.0 Session Bean 4-1

4
Implementing an EJB 3.0 Session Bean

This chapter explains how to implement an EJB 3.0 session bean, including:

■ Implementing an EJB 3.0 Stateless Session Bean

■ Implementing an EJB 3.0 Stateful Session Bean

For more information, see:

■ "What is a Session Bean?" on page 1-8

■ "Using EJB 3.0 Session Bean API" on page 5-1

Implementing an EJB 3.0 Stateless Session Bean
EJB 3.0 greatly simplifies the development of stateless session beans, removing many
complex development tasks. For example:

■ The bean class can be a plain old Java object (POJO); it does not need to implement
javax.ejb.SessionBean.

■ Home (javax.ejb.EJBHome and javax.ejb.EJBLocalHome) and
component (javax.ejb.EJBObject and javax.ejb.EJBLocalObject)
business interfaces are not required.

If you choose to use a remote component interface, you can use a plain old Java
interface (POJI); it does not need to extend javax.ejb.EJBObject.

■ Annotations are used for many features.

■ A SessionContext is not required: you can simply use this to resolve a session
bean to itself.

For more information, see "What is a Stateless Session Bean?" on page 1-9.

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file

Implementing an EJB 3.0 Stateful Session Bean

4-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

To implement an EJB 3.0 stateless session bean:

1. Optionally, create one or more remote component interfaces, local interfaces, or
both for your stateless session bean.

You can create a plain old Java interface (POJI) and define it as a remote interface
with the @Remote annotation or as a local interface using the @Local annotation.

You can specify multiple interfaces using the annotation’s value attribute:

@Stateless
@Local (value={Local1.class})
@Remote (value={Remote1.class, Remote2.class})

2. Create the stateless session bean class.

You can create a plain old Java object (POJO) and define it as a stateless session
bean with the @Stateless annotation.

Implement your remote interface, if used.

3. Implement your business methods.

4. Optionally, define lifecycle callback methods using the appropriate annotations.

You do not need to define lifecycle methods: OC4J provides an implementation for
all such methods. Define a method of your stateless session bean class as a
lifecycle callback method only if you want to take some action of your own at a
particular point in the stateless session bean’s lifecycle.

For more information, see "Configuring a Lifecycle Callback Method for an EJB 3.0
Session Bean" on page 5-2.

5. Complete the configuration of your session bean (see "Using EJB 3.0 Session Bean
API" on page 5-1).

Implementing an EJB 3.0 Stateful Session Bean
EJB 3.0 greatly simplifies the development of stateful session beans, removing many
complex development tasks. For example:

■ The bean class can be a plain old Java object (POJO); it does not need to implement
javax.ejb.SessionBean.

■ Home (javax.ejb.EJBHome and javax.ejb.EJBLocalHome) and
component (javax.ejb.EJBObject and javax.ejb.EJBLocalObject)
business interfaces are not required.

If you choose to use a remote component interface, you can use a plain old Java
interface (POJI); it does not need to extend javax.ejb.EJBObject.

Note: You can download an EJB 3.0 stateless session bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ej
b3/howtos-ejb3/howtoejb30slsb/doc/how-to-ejb30-sta
teless-ejb.html.

Note: A stateless session bean does not need a remove method.

Implementing an EJB 3.0 Stateful Session Bean

Implementing an EJB 3.0 Session Bean 4-3

■ Annotations are used for many features.

■ A SessionContext is not required: you can simply use this to resolve a session
bean to itself.

For more information, see "What is a Stateful Session Bean?" on page 1-10.

To implement an EJB 3.0 stateful session bean:

1. Optionally, create one or more remote component interfaces, local interfaces, or
both for your stateless session bean.

You can create a plain old Java interface (POJI) and define it as a remote interface
with the @Remote annotation or as a local interface using the @Local annotation.

You can specify multiple interfaces using the annotation’s value attribute:

@Stateless
@Local (value={Local1.class})
@Remote (value={Remote1.class, Remote2.class})

2. Create the stateful session bean class.

You can create a plain old Java object (POJO) and define it as a stateful session
bean with the @Stateful annotation.

Extend your remote interface, if used.

3. Implement your business methods.

To define a method of your stateful session bean class as a remove method, use
the @Remove annotation.

4. Optionally, define lifecycle callback methods using the appropriate annotations.

You do not need to define lifecycle methods: OC4J provides an implementation for
all such methods. Define a method of your stateful session bean class as a lifecycle
callback method only if you want to take some action of your own at a particular
point in the stateful session bean’s lifecycle.

For more information, see "Configuring a Lifecycle Callback Method for an EJB 3.0
Session Bean" on page 5-2.

5. Complete the configuration of your session bean (see "Using EJB 3.0 Session Bean
API" on page 5-1).

Note: You can download an EJB 3.0 stateful session bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ej
b3/howtos-ejb3/howtoejb30sfsb/doc/how-to-ejb30-sta
teful-ejb.html.

Implementing an EJB 3.0 Stateful Session Bean

4-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using EJB 3.0 Session Bean API 5-1

5
Using EJB 3.0 Session Bean API

This chapter describes the various options that you must configure in order to use an
EJB 3.0 session bean.

Table 5–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is a Session Bean?" on page 1-8

■ "Implementing an EJB 3.0 Session Bean" on page 4-1

Configuring Passivation
Passivation is an Oracle-specific option that you configure using the EJB 2.1
orion-ejb-jar.xml file.

For more information, see "Configuring Passivation" on page 12-1.

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Table 5–1 Configurable Options for an EJB 3.0 Session Bean

Options Type

"Configuring Passivation" on page 5-2 Advanced

"Configuring Passivation Criteria" on page 5-2 Advanced

"Configuring Passivation Location" on page 5-2 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Session Beans" on page 31-4 Advanced

"Configuring a Transaction Timeout for a Session Bean" on page 21-4 Advanced

"Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean" on page 5-2 Basic

"Configuring an Interceptor on an EJB 3.0 Session Bean" on page 5-3 Advanced

Configuring Passivation Criteria

5-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Passivation Criteria
Passivation criteria is an Oracle-specific option that you configure using the EJB 2.1
orion-ejb-jar.xml file.

For more information, see "Configuring Passivation Criteria" on page 12-2.

Configuring Passivation Location
Passivation location is an Oracle-specific option that you configure using the EJB 2.1
orion-ejb-jar.xml file.

For more information, see "Configuring Passivation Location" on page 12-3.

Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean
You can specify an EJB 3.0 session bean class method as a callback method for any of
the following lifecycle events (see "Using Annotations" on page 5-2):

■ Post-construct: a method called before the first business method invocation on the
session bean and after OC4J performs any dependency injection.

■ Pre-destroy: a method called before OC4J removes the session bean. Typically, you
use this method to release any resources that your session bean is holding.

■ Pre-passivate: a method called before OC4J passivates the session bean. Applicable
to stateful session beans only. Use only if you need to close resources prior to
passivation.

■ Post-activate: a method called immediately after OC4J reactivates a formerly
passivated session bean. Applicable to stateful session beans only. Use only if you
need to reopen resources after reactivation.

The session bean class lifecycle callback method must have the following signature:

public void <MethodName>()

For more information, see "Callback Methods" on page 1-6.

Using Annotations
You can specify an EJB 3.0 session bean class method as a lifecycle callback method
using any of the following annotations:

■ @PostConstruct

■ @PreDestroy

■ @PrePassivate (stateful session beans only)

■ @PostActivate (stateful session beans only)

Example 5–1 shows how to use the @PostConstruct annotation to specify EJB 3.0
stateful session bean class method initialize as a lifecycle callback method.

Note: Do not specify pre-passivate or post-activate lifecycle callback
methods on a stateless session bean.

Configuring an Interceptor on an EJB 3.0 Session Bean

Using EJB 3.0 Session Bean API 5-3

Example 5–1 @PostConstruct

@Stateful
public class CartBean implements Cart
{

private ArrayList items;

@PostConstruct
public void initialize()
{

items = new ArrayList();
}

...
}

Configuring an Interceptor on an EJB 3.0 Session Bean
You can designate one non-business method as the interceptor method for a stateless
or stateful session bean (see "Using Annotations" on page 5-3). The method must have
a signature of:

public Object <MethodName>(InvocationContext) throws Exception

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-16.

Using Annotations
Example 5–2 shows how to designate a method of a session bean class as an
interceptor method using the @AroundInvoke annotation. Each time a client invokes
a business method of this stateless session bean, OC4J intercepts the invocation and
invokes the interceptor method myInterceptor. The client invocation proceeds only
if the interceptor method returns InvocationContext.proceed().

Example 5–2 @AroundInvoke in an EJB 3.0 Session Bean

@Stateless
public class HelloWorldBean implements HelloWorld
{

public void sayHello()
{

System.out.println("Hello!");
}

@AroundInvoke
public Object myInterceptor(InvocationContext ctx) throws Exception
{

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p))
{

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}
}

Configuring an Interceptor on an EJB 3.0 Session Bean

5-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part III
EJB 3.0 Entities

This part provides procedural information on implementing and configuring EJB 3.0
entity beans and entity bean queries. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 6, "Implementing an EJB 3.0 Entity"

■ Chapter 7, "Using EJB 3.0 Persistence API"

■ Chapter 8, "Using EJB 3.0 Query API"

Implementing an EJB 3.0 Entity 6-1

6
Implementing an EJB 3.0 Entity

This chapter explains how to implement an EJB 3.0 entity.

For more information, see:

■ "What is an EJB 3.0 Entity?" on page 1-14

■ "Using EJB 3.0 Persistence API" on page 7-1

Implementing an EJB 3.0 Entity
EJB 3.0 greatly simplifies the development of EJBs, removing many complex
development tasks. For example:

■ The bean class can be a plain old Java object (POJO); it does not need to implement
javax.ejb.EntityBean.

■ Home (javax.ejb.EJBHome) and component (javax.ejb.EJBObject)
interfaces are not required.

If you choose to use a remote component interface, you can use a plain old Java
interface (POJI); it does not need to extend javax.ejb.EJBObject.

■ Annotations are used for many features, including container-managed
relationships (object-relational mapping).

■ An EntityContext is not required: you can simply use this to resolve an entity
to itself.

For more information, see "What is an EJB 3.0 Entity?" on page 1-14.

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Implementing an EJB 3.0 Entity

6-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

To implement an EJB 3.0 entity:

1. Create the entity bean class.

You can create a plain old Java object (POJO) and define it as a CMP entity bean
with the @Entity annotation.

All data members are by default considered container-managed persistence fields
unless annotated with @Transient.

2. Define how OC4J persists your entity bean class to a database using the @Table
and @Column annotations.

If you do not have an existing database schema, you can delegate table and
column definition to OC4J by omitting these annotations: at deployment time,
OC4J will create default table and column names based on class and data member
names.

For more information, see "Configuring Table and Column Information" on
page 7-6.

3. Define one data member as the primary key field with the @Id annotation.

You can annotate the data member itself or its getter method. For more
information, see "Configuring an EJB 3.0 Entity Primary Key" on page 7-2.

4. Define container-managed relationships using the appropriate object-relational
mapping annotations, such as @OneToOne.

For more information, see "Configuring an EJB 3.0 Entity Container-Managed
Relationship Field" on page 7-9.

5. Optionally, define finders and queries using the @NamedQuery annotation.

At runtime, you can use the predefined finders (see "Predefined TopLink Finders"
on page 1-32) and default finders (see "Default TopLink Finders" on page 1-33)
that the TopLink persistence manager provides.

For more information, see "Using EJB 3.0 Query API" on page 8-1.

6. Optionally, define lifecycle callback methods using the appropriate annotations.

You do not need to define lifecycle methods: OC4J provides an implementation for
all such methods. Define a method of your entity bean class as a lifecycle callback
method only if you want to take some action of your own at a particular point in
the entity bean’s lifecycle.

For more information, see "Configuring a Lifecycle Callback Method for an EJB 3.0
Entity" on page 7-16.

7. Complete the configuration of your entity bean (see "Using EJB 3.0 Persistence
API" on page 7-1).

Note: You can download an EJB 3.0 CMP entity code example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30entity/doc/how-to-ejb30-entit
y-ejb.html.

Using EJB 3.0 Persistence API 7-1

7
Using EJB 3.0 Persistence API

This chapter describes the various options that you can configure in order to use an
EJB 3.0 entity.

Table 7–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is an EJB 3.0 Entity?" on page 1-14

■ "Implementing an EJB 3.0 Entity" on page 6-1

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Table 7–1 Configurable Options for an EJB 3.0 Entity

Options Type

"Configuring an EJB 3.0 Entity Primary Key" on page 7-2 Basic

"Configuring Table and Column Information" on page 7-6 Basic

"Configuring an EJB 3.0 Entity Container-Managed Relationship Field" on page 7-9 Basic

"Configuring a Basic Mapping" on page 7-9 Basic

"Configuring a Large Object Mapping" on page 7-10 Advanced

"Configuring a Serialized Object Mapping" on page 7-11 Advanced

"Configuring a One-to-One Mapping" on page 7-11 Basic

"Configuring a Many-to-One Mapping" on page 7-12 Basic

"Configuring a One-to-Many Mapping" on page 7-12 Basic

"Configuring a Many-to-Many Mapping" on page 7-13 Basic

"Configuring an Aggregate Mapping" on page 7-14 Advanced

"Configuring Optimistic Lock Version Field" on page 7-16 Advanced

"Using EJB 3.0 Query API" on page 8-1 Basic

Configuring an EJB 3.0 Entity Primary Key

7-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring an EJB 3.0 Entity Primary Key
Every EJB 3.0 entity must have a primary key field (see "Configuring an EJB 3.0 Entity
Primary Key Field" on page 7-2).

You can specify a primary key as a single primitive or JDK object type.

You can either assign primary key values yourself, or, more typically, you can
associate a primary key field with a primary key value generator (see "Configuring
EJB 3.0 Entity Automatic Primary Key Generation" on page 7-4).

Configuring an EJB 3.0 Entity Primary Key Field
You must specify one entity field as the primary key. You can specify a primary key as
a single primitive or JDK object type or as a composite primary key class made up of
one or more primitive or JDK object types

Typically, you associate the primary key field with a primary key value generator (see
"Configuring EJB 3.0 Entity Automatic Primary Key Generation" on page 7-4).

Using Annotations
Example 7–1 shows how to use the @Id annotation to specify an entity field as the
primary key. In this example, primary key values are generated using a table
generator (see "Configuring EJB 3.0 Entity Automatic Primary Key Generation" on
page 7-4).

Example 7–1 @Id

@Id(generate=TABLE, generator="ADDRESS_TABLE_GENERATOR")
@TableGenerator(

name="ADDRESS_TABLE_GENERATOR",
tableName="EMPLOYEE_GENERATOR_TABLE",
pkColumnValue="ADDRESS_SEQ"

)
@Column(name="ADDRESS_ID")
public Integer getId()
{

return id;
}

"Configuring Inheritance for an EJB 3.0 Entity" on page 7-18 Advanced

"Configuring Lazy Loading on Finder Methods" on page 7-16 Basic

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Entity Beans" on page 31-5 Advanced

"Configuring a Lifecycle Callback Method for an EJB 3.0 Entity" on page 7-16 Advanced

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#id

Table 7–1 (Cont.) Configurable Options for an EJB 3.0 Entity

Options Type

Configuring an EJB 3.0 Entity Primary Key

Using EJB 3.0 Persistence API 7-3

Configuring EJB 3.0 Entity Automatic Primary Key Generation
Typically, you associate a primary key field (see "Configuring an EJB 3.0 Entity
Primary Key Field") with a primary key value generator so that when an entity
instance is created, a new, unique primary key value is assigned automatically.

Table 7–2 lists the types of primary key value generators that you can define.

Using Annotations
Example 7–4 shows how to use the @GeneratedIdTable annotation to specify a
primary key value generator based on a database table. When a new instance of
Employee is created, a new value for entity field id is obtained from EMPLOYEE_
GENERATOR_TABLE.

Example 7–2 @GeneratedIdTable

@Entity
@Table(name="EJB_EMPLOYEE")
@GeneratedIdTable(

name="EMPLOYEE_GENERATOR_TABLE",
table=@Table(name="EJB_EMPLOYEE_SEQ"),
pkColumnName="SEQ_NAME", valueColumnName="SEQ_COUNT"

Table 7–2 EJB 3.0 Entity Primary Key Value Generators

Type Description For more information, see ...

Generated Id Table A database table the container uses to store
generated primary key values for entities.
Typically shared by multiple entity types
that use table-based primary key
generation. Each entity type will typically
use its own row in the table to generate the
primary key values for that entity class.
Primary key values are positive integers.

"Table Sequencing" in the Oracle
TopLink Developer’s Guide

Table Generator A primary key generator which you can
reference by name, defined at one of the
package, class, method, or field level. The
level at which you define it will depend
upon the desired visibility and sharing of
the generator. No scoping or visibility rules
are actually enforced. Oracle recommends
that you define the generator at the level for
which it will be used.

This generator is based on a database table.

"Table Sequencing" in the Oracle
TopLink Developer’s Guide

Sequence Generator A primary key generator which you can
reference by name, defined at one of the
package, class, method, or field level. The
level at which you define it will depend
upon the desired visibility and sharing of
the generator. No scoping or visibility rules
are actually enforced. Oracle recommends
that you define the generator at the level for
which it will be used.

This generator is based on a sequence object
that the database server provides.

"Native Sequencing With an
Oracle Database Platform" in the
Oracle TopLink Developer’s Guide

"Native Sequencing With a
Non-Oracle Database Platform"
in the Oracle TopLink Developer’s
Guide

Note: For an EJB 3.0 automatic primary key generation code
example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#sequencing

Configuring an EJB 3.0 Entity Primary Key

7-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

)
public class Employee implements Serializable
{
...

@Id(generate=TABLE, generator="EMPLOYEE_GENERATOR_TABLE")
@Column(name="EMPLOYEE_ID", primaryKey=true)
public Integer getId()
{

return id;
}

...
}

Example 7–5 shows how to use the @TableGenerator annotation to specify a
primary key value generator based on a database table. When a new instance of
Employee is created, a new value for entity field id is obtained from EMPLOYEE_
GENERATOR_TABLE. You must set the @Id annotation attribute generate to TABLE
in this case.

Example 7–3 @TableGenerator

@Entity
@Table(name="EJB_ADDRESS")
public class Address implements Serializable
{
...

@Id(generate=TABLE, generator="ADDRESS_TABLE_GENERATOR")
@TableGenerator(

name="ADDRESS_TABLE_GENERATOR",
tableName="EMPLOYEE_GENERATOR_TABLE",
pkColumnValue="ADDRESS_SEQ"

)
@Column(name="ADDRESS_ID")
public Integer getId()
{

return id;
}

...
}

Example 7–5 shows how to use the @SequenceGenerator annotation to specify a
primary key value generator based on a sequence object provided by the database.
When a new instance of Employee is created, a new value for entity field id is
obtained from database sequence object ADDRESS_SEQ. You must set the @Id
annotation attribute generate to SEQUENCE in this case.

Example 7–4 @SequenceGenerator

@Entity
@Table(name="EJB_ADDRESS")
public class Address implements Serializable
{
...

@Id(generate=SEQUENCE, generator="ADDRESS_TABLE_GENERATOR")
@SequenceGenerator(

name="ADDRESS_TABLE_GENERATOR",
sequenceName="ADDRESS_SEQ"

)
@Column(name="ADDRESS_ID")
public Integer getId()
{

return id;
}

...

Configuring Table and Column Information

Using EJB 3.0 Persistence API 7-5

}

Configuring Table and Column Information
You can define the characteristics of the database table into which the TopLink
persistence manager persists your entity, including:

■ Configuring the Primary Table

■ Configuring a Secondary Table

■ Configuring a Column

■ Configuring a Join Column

This is particularly important if you have an existing database schema.

If you do not have an existing database schema, you can delegate table and column
definition to OC4J by omitting this configuration: at deployment time, OC4J will create
default table and column names based on class and data member names.

Configuring the Primary Table
The primary table is the table into which the TopLink persistence manager persists
your entity: in particular, it is the table that stores the entity’s primary key (see
"Configuring an EJB 3.0 Entity Primary Key" on page 7-2). Optionally, you can also
specify one or more secondary tables (see "Configuring a Secondary Table" on
page 7-7) if the entity’s persistent data is stored across multiple tables.

You define the primary table at the entity class level.

Using Annotations
Example 7–7 shows how to use the @Table annotation to define the primary table for
the Employee class. The TopLink persistence manager will persist instances of this
entity to a table named EJB_EMPLOYEE.

Example 7–5 @Table

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable
{
...
}

Configuring a Secondary Table
Specifying one or more secondary tables indicates that the entity’s persistent data is
stored across multiple tables. You must first specify a primary table (see "Configuring
the Primary Table" on page 7-6) before you can specify any secondary tables.

Note: You can download an EJB 3.0 entity table and column code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html.

Configuring Table and Column Information

7-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You define a secondary table at the entity class level.

If you specify one or more secondary tables, you can specify the secondary table name
in the column definition (see "Configuring a Join Column" on page 7-8) for persistent
fields that are stored in that table. This enables the distribution of entity persistent
fields across multiple tables.

Using Annotations
Example 7–8 shows how to use the @SecondaryTable annotation to specify that
some of the entity’s persistent data is stored in a table named EJB_SALARY.

Example 7–6 @SecondaryTable

@Entity
@Table(name="EJB_EMPLOYEE")
@SecondaryTable(name="EJB_SALARY")
public class Employee implements Serializable
{
...
}

Configuring a Column
The column is, by default, the name of the column in the primary table (see
"Configuring the Primary Table" on page 7-6) into which the TopLink persistence
manager stores the field’s value.

You define the column at one of the property (getter or setter method) or field level of
your entity.

If you specified one or more secondary tables (see "Configuring a Secondary Table" on
page 7-7), you can specify the secondary table name in the column definition. This
enables the distribution of entity persistent fields across multiple tables.

Using Annotations
Example 7–9 shows how to use the @Column annotation to specify column F_NAME in
the primary table for field firstName.

Example 7–7 @Column for the Primary Table

@Column(name="F_NAME")
public String getFirstName()
{

return firstName;
}

Example 7–10 shows how to use the @Column annotation to specify column SALARY
in secondary table EMP_SALARY for field salary.

Example 7–8 @Column for a Secondary Table

@Column(name="SALARY", secondaryTable="EMP_SALARY")
public String getSalary()
{

return salary;
}

Configuring Table and Column Information

Using EJB 3.0 Persistence API 7-7

Configuring a Join Column
A join column specifies a mapped, foreign key column for joining an entity association
or a secondary table.

You can define a join column with a:

■ secondary table (see Example 7–11)

■ one-to-one mapping (see Example 7–12)

■ many-to-one mapping (see Example 7–13)

■ one-to-many mapping (see Example 7–14)

Using Annotations
Example 7–11 shows how to use the @JoinColumn annotation to specify a join
column with a secondary table. For more information, see "Configuring a Secondary
Table" on page 7-7.

Example 7–9 @JoinColumn with a Secondary Table

@Entity
@Table(name="EJB_EMPLOYEE")
@SecondaryTable(name="EJB_SALARY")
@JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID")
public class Employee implements Serializable
{
...
}

Example 7–12 shows how to use the @JoinColumn annotation to specify a join
column with a one-to-one mapping. For more information, see "Configuring a
One-to-One Mapping" on page 7-11.

Example 7–10 @JoinColumn with a One-to-One Mapping

@OneToOne(cascade=ALL, fetch=LAZY)
@JoinColumn(name="ADDR_ID")
public Address getAddress()
{

return address;
}

Example 7–13 shows how to use the @JoinColumn annotation to specify a join
column with a many-to-one mappiong. For more information, see "Configuring a
Many-to-One Mapping" on page 7-12.

Example 7–11 @JoinColumn with a Many-to-One Mapping

@ManyToOne(cascade=PERSIST, fetch=LAZY)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager()
{

return manager;
}

Example 7–14 shows how to use the @JoinColumn annotation to specify a join
column with a one-to-many mapping. Fore more information, see "Configuring a
One-to-Many Mapping" on page 7-12.

Configuring an EJB 3.0 Entity Container-Managed Relationship Field

7-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 7–12 @JoinColumn with a One-to-Many Mapping

@OneToMany(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Collection getManagedEmployees()
{

return managedEmployees;
}

Configuring an EJB 3.0 Entity Container-Managed Relationship Field
In an EJB 3.0 entity, you define container-managed relationship (CMR) fields (see
"What are Container-Managed Relationship Fields?" on page 1-21) as follows:

■ "Configuring a Basic Mapping" on page 7-9

■ "Configuring a Large Object Mapping" on page 7-10

■ "Configuring a Serialized Object Mapping" on page 7-11

■ "Configuring a One-to-One Mapping" on page 7-11

■ "Configuring a Many-to-One Mapping" on page 7-12

■ "Configuring a One-to-Many Mapping" on page 7-12

■ "Configuring a Many-to-Many Mapping" on page 7-13

Configuring a Basic Mapping
Use a basic mapping to map an field that contains a primitive or JDK object value. For
example, use a basic mapping to store a String attribute in a VARCHAR column.

You define a basic mapping at one of the property (getter or setter method) or field
level of your entity.

For more information, see "Understanding Direct-to-Field Mapping" in the Oracle
TopLink Developer’s Guide.

Using Annotations
Example 7–15 shows how to use the @Basic annotation to specify a basic mapping for
field firstName.

Example 7–13 @Basic

@Basic(fetch=EAGER)
@Column(name="F_NAME")

Note: You can download an EJB 3.0 entity container-managed
relationship field code example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#basic.

Configuring a Serialized Object Mapping

Using EJB 3.0 Persistence API 7-9

public String getFirstName()
{

return firstName;
}

Configuring a Large Object Mapping
Use a large object (LOB) mapping to specify that a persistent property or field should
be persisted as a LOB to a database-supported LOB type. A LOB may be either a
binary (BLOB) or character (CLOB) type.

You define a large object mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see:

■ "Understanding Direct-to-Field Mapping" in the Oracle TopLink Developer’s Guide

■ "Using a Converter Mapping" in the Oracle TopLink Developer’s Guide

■ "Type Conversion Converter" in the Oracle TopLink Developer’s Guide

Using Annotations
Example 7–16 shows how to use the @Lob annotation to specify a large object mapping
for field image.

Example 7–14 @Lob

@Lob(fetch=EAGER, type=BLOB)
@Column(name="IMAGE")
public Byte[] getImage()
{

return image;
}

Configuring a Serialized Object Mapping
Use a serialized object mapping to specify that a persistent property should be
persisted as a serialized stream of bytes.

You define a serialized object at one of the property (getter or setter method) or field
level of your entity.

For more information, see:

■ "Understanding Direct-to-Field Mapping" in the Oracle TopLink Developer’s Guide

■ "Using a Converter Mapping" in the Oracle TopLink Developer’s Guide

■ "Serialized Object Converter" in the Oracle TopLink Developer’s Guide

Using Annotations
Example 7–17 shows how to use the @Serialized annotation to specify a serialized
object mapping for field picture.

Example 7–15 @Serialized

@Serialized(fetch=EAGER)
@Column(name="PICTURE")

Configuring a One-to-One Mapping

7-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public Byte[] getPicture()
{

return picture;
}

Configuring a One-to-One Mapping
Use a one-to-one mapping to represent simple pointer references between two Java
objects. In Java, a single pointer stored in an attribute represents the mapping between
the source and target objects. Relational database tables implement these mappings
using foreign keys.

You define a one-to-one mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-One Mapping" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–18 shows how to use the @OneToOne annotation to specify a one-to-one
mapping for field address.

Example 7–16 @OneToOne

@OneToOne(cascade=ALL, fetch=LAZY)
@JoinColumn(name="ADDR_ID")
public Address getAddress()
{

return address;
}

Configuring a Many-to-One Mapping
Use a many-to-one mapping to represent simple pointer references between two Java
objects. In Java, a single pointer stored in an attribute represents the mapping between
the source and target objects. Relational database tables implement these mappings
using foreign keys.

You define a many-to-one mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-One Mapping" in the Oracle TopLink
Developer’s Guide.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#onetoone.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#manytoone.

Configuring a Many-to-Many Mapping

Using EJB 3.0 Persistence API 7-11

Using Annotations
Example 7–19 shows how to use the @ManyToOne annotation to specify a many-to-one
mapping for field manager.

Example 7–17 @ManyToOne

@ManyToOne(cascade=PERSIST, fetch=LAZY)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager()
{

return manager;
}

Configuring a One-to-Many Mapping
Use a one-to-many mapping to represent the relationship between a single source
object and a collection of target objects. This relationship is a good example of
something that is simple to implement in Java using a Vector (or other collection
types) of target objects, but difficult to implement using relational databases.

You define a one-to-many mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-Many Mapping" in the Oracle
TopLink Developer’s Guide.

Using Annotations
Example 7–20 shows how to use the @OneToMany annotation to specify a one-to-many
mapping for field managedEmployees.

Example 7–18 @OneToMany

@OneToMany(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Collection getManagedEmployees()
{

return managedEmployees;
}

Configuring a Many-to-Many Mapping
Use a many-to-many mapping to represent the relationships between a collection of
source objects and a collection of target objects. This mapping requires the creation of
an intermediate table (the association table) for managing the associations between the
source and target records.

You define a many-to-many mapping at one of the property (getter or setter method)
or field level of your entity.

For more information, see "Understanding Many-to-Many Mapping" in the Oracle
TopLink Developer’s Guide.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#onetomany.

Configuring an Aggregate Mapping

7-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Annotations
Example 7–21 shows how to use the @ManyToMany annotation to specify a
many-to-many mapping for field projects and how to use the
@AssociationTable annotation to specify an association table.

Example 7–19 @ManyToMany

@ManyToMany(cascade=PERSIST)
@AssociationTable(

table=@Table(name="EJB_PROJ_EMP"),
joinColumns=@JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PROJ_ID", referencedColumnName="PROJ_ID")

)
public Collection getProjects()
{

return projects;
}

Configuring an Aggregate Mapping
Two entities–an owning (parent or source) entity and an owned (child or target)
entity–are related by aggregation if there is a strict one-to-one relationship between
them and all the attributes of the owned entity can be retrieved from the same table(s)
as the owning entity. This means that if the owning entity exists, then the owned entity
must also exist and if the owning entity is destroyed, then the owned entity is also
destroyed.

An aggregate mapping allows you to associate data members in the owned entity with
fields in the owning entity’s underlying database tables.

In the owning entity, you designate the owned field or setter as embedded.

In owned entity, you designate the class as embeddable and associate it with the
owning entity’s table name.

In the owning entity, you can override any column specifications (see "Configuring a
Column" on page 7-7) made in the owned entity.

For more information, see "Understanding Aggregate Mapping" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–22 shows how to use the @Embedded annotation to specify an aggregate
mapping for field period. This field contains an instance of EmploymentPeriod.
Example 7–23 shows how to use the @Embeddable annotation to specify the

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#manytomany.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#embedded.

Configuring an Aggregate Mapping

Using EJB 3.0 Persistence API 7-13

EmploymentPeriod entity class as being eligible for use in an aggregate mapping
and how to use the @Table annotation (see "Configuring the Primary Table" on
page 7-6) to associate this class with the owning entity’s table.

Example 7–20 @Embedded

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable
{
...

@Embedded
public EmploymentPeriod getPeriod()
{

return period;
}

...
}

Example 7–21 @Embeddable

@Embeddable
@Table(name="EJB_EMPLOYEE")
public class EmploymentPeriod implements Serializable
{

private Date startDate;
private Date endDate;

...
}

You can use the @AttributeOverride in the owning entity (see Example 7–24) to
override the column definitions made in the owned entity (see Example 7–25).

Example 7–22 @Embedded and @AttributeOverride

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable
{
...

@Embedded(
{

@AttributeOverride(name="startDate", column=@Column("EMP_START")),
@AttributeOverride(name="endDate", column=@Column("EMP_END"))

}
)
public EmploymentPeriod getPeriod()
{

return period;
}

...
}

Example 7–23 @Embeddable and @Column

@Embeddable
@Table(name="EJB_EMPLOYEE")
public class EmploymentPeriod implements Serializable
{

@Column("START_DATE")
private Date startDate;

@Column("END_DATE")

Configuring Optimistic Lock Version Field

7-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

private Date endDate;
...
}

Configuring Optimistic Lock Version Field
You can specify an entity field to function as a version field for use in a TopLink
optimistic version locking policy. OC4J uses this version field to ensure integrity when
reattaching (see "Detaching and Merging an Entity Bean Instance" on page 29-15) and
for overall optimistic concurrency control.

You define the optimistic lock version field at one of the property (getter or setter
method) or field level of your entity.

For more information, see "Optimistic Version Locking Policies" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–26 shows how to use the @Version annotation to define an optimistic
version locking policy using column VERSION.

Example 7–24 @Version

@Version
@Column(name="VERSION")
public int getVersion()
{

return version;
}

Configuring Lazy Loading on Finder Methods
Lazy loading is an Oracle-specific option that you configure using the EJB 2.1
orion-ejb-jar.xml file.

For more information, see "Configuring Lazy Loading on Finder Methods" on
page 14-14.

Configuring a Lifecycle Callback Method for an EJB 3.0 Entity
You can specify an EJB 3.0 entity class method as a callback method for any of the
following lifecycle events:

■ Pre-persist: a method called on an object when that object has the create operation
applied to it.

■ Post-persist: a method called on an object that has just been inserted into the
database. You can use this method to notify any of the object’s dependents or to
update information not accessible until the object has been inserted.

■ Pre-remove: a method called on an object when that object has the remove
operation applied to it.

■ Post-remove: a method called on an object that has just been deleted from the
database. You can use this method to notify or remove any of the object’s
dependents.

Configuring a Lifecycle Callback Method for an EJB 3.0 Entity

Using EJB 3.0 Persistence API 7-15

■ Pre-update: a method called when an object's row is about to be updated.

The TopLink persistence manager calls this method only if it determines that an
actual update is required (only if it is prepared to send SQL to the database).
Contrast this with a post-update callback which is called whether or not an actual
change was required.

You can use this method to modify the row before insert.

■ Post-update: a method called on an object that has just been updated into the
database.

Use this callback to update any dependent objects.

The TopLink persistence manager calls this method even if it determines that no
actual update is required (even if it determines that no SQL needs to be sent to the
database). Use the pre-update callback if you want to be notified only when the
object has actually been changed.

■ Post-load: a method called on an object that has just been built from the database.
This event can be used to correctly initialize an object's non-persistent attributes or
to perform complex optimizations or mappings. This event is called whenever an
object is built.

The entity class method must have the following signature:

public int <MethodName>()

For more information, see:

■ "Callback Methods" on page 1-6

■ "Descriptor Event Manager" in the Oracle TopLink Developer’s Guide

■ "Configuring a Domain Object Method as an Event Handler" in the Oracle TopLink
Developer’s Guide

Using Annotations
You can specify an EJB 3.0 entity class method as a lifecycle callback method using any
of the following annotations:

■ @PrePersist

■ @PostPersist

■ @PreRemove

■ @PostRemove

■ @PreUpdate

■ @PostUpdate

■ @PostLoad

Example 7–27 shows how to use the @PrePersist annotation to specify EJB 3.0 entity
class method initialize as a lifecycle callback method.

Note: For an EJB 3.0 lifecycle callback method code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#callbacks.

Configuring Inheritance for an EJB 3.0 Entity

7-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 7–25 @PrePersist

@PrePersist
public int initialize()
{
 ...
}

Configuring Inheritance for an EJB 3.0 Entity
OC4J supports the following inheritance strategies for mapping a class or class
hierarchy to a relational database schema:

■ Joined Subclass

■ Single Table for each Class Hierarchy

You can configure either approach using annotations (see "Using Annotations" on
page 7-19).

Joined Subclass
In this strategy, fields that are specific to a subclass are mapped to a separate table
than the fields that are common to the parent class, and a join is performed to
instantiate the subclass.

The root of the class hierarchy is represented by a single table. Each subclass is
represented by a separate table that contains the columns that are specific to the
subclass (not inherited from its superclass), as well as the column that represent the
subclass’s primary key. If the subclass does not have any additional state over its
superclass, a separate table is not required.

If the subclass table has primary key column, it serves as a foreign key to the primary
key of the superclass table. If the subclass table primary key column name is the same
as that of the primary key column of the superclass table, OC4J infers this relationship.
If the subclass table primary key column name is not the same as that of the primary
key column of the superclass table (or, if the subclass table does not have primary key
column), you must specify a subclass table column to use to join the primary table of
an entity subclass to the primary table of its superclass.

The primary table of the superclass also has a column that serves as a discriminator
column, that is, a column whose value identifies the specific subclass to which the
instance that is represented by the row belongs.

For more information, see "Configuring Joined Subclass Inheritance with Annotations"
on page 7-19.

Single Table for each Class Hierarchy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table
has a column that serves as a discriminator column. Each subclass that adds additional
state maps to this new state only in this single table. Such columns are only used by
that subclass.

Note: For an EJB 3.0 inheritance code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30inheritance/doc/how-to-ejb30-
inheritance.html.

Configuring Inheritance for an EJB 3.0 Entity

Using EJB 3.0 Persistence API 7-17

For more information, see "Configuring Single Table Inheritance with Annotations" on
page 7-20.

Using Annotations
This section describes the following:

■ Configuring Joined Subclass Inheritance with Annotations

■ Configuring Single Table Inheritance with Annotations

Configuring Joined Subclass Inheritance with Annotations
The following examples show how to configure inheritance using a joined subclass
approach (see "Joined Subclass" on page 7-18): Example 7–28 shows how to use the
@Inheritance annotation in the base class Project. Example 7–29 and
Example 7–30 show how to use the @Inheritance annotation in derived classes
LargeProject and SmallProject, respectively.

The primary table is EJB_PROJECT to which both Project and SmallProject are
mapped. EJB_PROJECT has a discriminator column called PROJ_TYPE that
represents Project, LargeProject and SmallProject with values P, L and S,
respectively. LargeProject adds additional state to Project, so is mapped to its
own table, EJB_LPROJECT, which contains fields specific to LargeProject, such as
BUDGET. Note that EJB_LPROJECT does not have a primary key column; instead it has
a foreign key (PROJ_ID) that has the same name as the primary key of EJB_PROJECT.

Note that in Example 7–29, because the LargeProject class primary key column name
(LARGE_PROJECT_ID) is not the same as that of the primary key column of the
superclass table (ID), you must use the @InheritanceJoinColumn annotation to
specify the column used to join the LargeProject primary table to the primary table of
its superclass.

Example 7–26 @Inheritance: Base Class Project in Joined Subclass Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=JOINED, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable
{
...

@Id()
@Column(name="PROJECT_ID", primaryKey=true)
public Integer getId()
{

return id;
}

...
}

Example 7–27 @Inheritance: Derived Class LargeProject in Joined Subclass Inheritance

@Entity
@Table(name="EJB_LPROJECT")
@Inheritance(discriminatorValue="L")
@InheritanceJoinColumn(name="LARGE_PROJECT_ID")
public class LargeProject extends Project
{
...

@Id()
@Column(name="LARGE_PROJECT_ID", primaryKey=true)

Configuring Inheritance for an EJB 3.0 Entity

7-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public Integer getProjectId()
{

return projectId;
}

...
}

Example 7–28 @Inheritance: Derived Class SmallProject in Joined Subclass Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project
{
...
}

Configuring Single Table Inheritance with Annotations
The following examples show how to configure inheritance using a single table for
each class hierarchy approach (see "Single Table for each Class Hierarchy" on
page 7-19): Example 7–28 shows how to use the @Inheritance annotation in the base
class Project. Example 7–29 and Example 7–30 show how the @Inheritance
annotation is not needed in derived classes LargeProject and SmallProject,
respectively.

The primary table is EJB_PROJECT to which both Project and SmallProject are
mapped. The EJB_PROJECT table would contain all the columns for Project and an
additional column (BUDGET) used only by LargeProject.

Example 7–29 @Inheritance: Base Class Project in Single Table Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=SINGLE_TABLE, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable
{
...
}

Example 7–30 @Inheritance: Derived Class LargeProject in Single Table Inheritance

@Entity
@Inheritance(discriminatorValue="L")
public class LargeProject extends Project
{
...
}

Example 7–31 @Inheritance: Derived Class SmallProject in Single Table Inheritance

@Entity
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project
{
...
}

Using EJB 3.0 Query API 8-1

8
Using EJB 3.0 Query API

This section describes how to create pre-defined, static queries that you can access at
runtime, including:

■ Implementing an EJB 3.0 Named Query

■ Implementing an EJB 3.0 Dynamic Query

For more information, see "How Do You Query for an EJB 3.0 Entity?" on page 1-17.

Implementing an EJB 3.0 Named Query
A named query is a pre-defined query that you create and associate with a CMP entity
(see "Using Annotations" on page 8-1). At deployment time, OC4J stores named
queries on the EntityManager (see "How Do You Query for an EJB 3.0 Entity?" on
page 1-17).

At runtime, you can use the EntityManager to acquire, configure, and execute a
named query (see "Querying for an EJB 3.0 Entity Using the EntityManager" on
page 29-10).

Using Annotations
Example 8–1 shows how to use the @NamedQuery annotation to define an EJB QL
query that you can acquire by name findAllEmployeesByFirstName at runtime
using the EntityManager.

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Note: In this release, OC4J does not support EJB 3.0 named queries
using native SQL. For more information, see "Understanding Native
SQL Query Syntax" on page 1-31.

Implementing an EJB 3.0 Dynamic Query

8-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 8–1 Implementing a Query Using @NamedQuery

@Entity
@NamedQuery(

name="findAllEmployeesByFirstName",
queryString="SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = 'John'"

)
public class Employee implements Serializable
{
...
}

Example 8–2 shows how to use the @NamedQuery annotation to define an EJB QL
query that takes a parameter named firstname. Example 8–3 shows how you use the
EntityManager to acquire this query and use Query method setParameter to set
the firstname parameter. For more information on using the EntityManager with
named queries, see "Querying for an EJB 3.0 Entity Using the EntityManager" on
page 29-10.

Example 8–2 Implementing a Query with Parameters Using @NamedQuery

@Entity
@NamedQuery(

name="findAllEmployeesByFirstName",
queryString="SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

)
public class Employee implements Serializable
{
...
}

Example 8–3 Setting Parameters in a Named Query

Query queryEmployeesByFirstName = em.createNamedQuery("findAllEmployeesByFirstName");
queryEmployeeByFirstName.setParameter("firstName", "John");
Collection employees = queryEmployessByFirstName.getResultList();

Implementing an EJB 3.0 Dynamic Query
Using EntityManager methods createQuery and createNativeQuery(String
sqlString, Class resultType), you can create a Query object dynamically at
runtime (see "Using Java" on page 8-3).

Using the Query methods getResultList, getSingleResult, or
executeUpdate you can execute the query (see "Executing a Query" on page 29-13).

For more information, see:

■ "Acquiring an EntityManager" on page 29-5

■ "Creating a Dynamic EJB QL Query with the Entity Manager" on page 29-11

■ "Creating a Dynamic TopLink Expression Query with the EntityManager" on
page 29-11

■ "Creating a Dynamic Native SQL Query with the EntityManager" on page 29-11

■ "Configuring Query Hints" on page 29-12

■ "Executing a Query" on page 29-13

Implementing an EJB 3.0 Dynamic Query

Using EJB 3.0 Query API 8-3

Using Java
Example 8–4 shows how to create a dynamic EJB QL query with parameters and how
to execute the query. In this example, the query returns multiple results so we use
Query method getResultList.

Example 8–4 Implementing and Executing a Dynamic Query

Query queryEmployees = entityManager.createQuery(
"SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

);

queryEmployeeByFirstName.setParameter("firstName", "Joan");

Collection employees = queryEmployees.getResultList();

Implementing an EJB 3.0 Dynamic Query

8-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part IV
EJB 3.0 Message-Driven Beans

This part provides procedural information on implementing and configuring EJB 3.0
message-driven beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 9, "Implementing an EJB 3.0 MDB"

■ Chapter 10, "Using EJB 3.0 MDB API"

Implementing an EJB 3.0 MDB 9-1

9
Implementing an EJB 3.0 MDB

This chapter explains how to implement an EJB 3.0 message-driven bean.

For more information, see:

■ "What is a Message-Driven Bean?" on page 1-35

■ "Using EJB 3.0 MDB API" on page 10-1

Implementing an EJB 3.0 MDB
EJB 3.0 greatly simplifies the development of EJBs, removing many complex
development tasks. For example:

■ The bean class can be a plain old Java object (POJO); it does not need to implement
javax.ejb.MessageDrivenBean.

■ Annotations are used for many features, including the message destination and
topic (or queue) factory

■ You can use injection to acquire a MessageDrivenEntityContext.

For more information, see "What is a Message-Driven Bean?" on page 1-35.

To implement an EJB 3.0 message-driven bean:

1. Configure your message service provider.

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Note: You can download an EJB 3.0 message-driven bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mdb/doc/how-to-ejb30-mdb.html
.

Implementing an EJB 3.0 MDB

9-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "What Message Providers Can I use with My MDB?" on page 2-24

■ "Configuring Message Services" on page 23-1

2. Create the message-driven bean class.

You can create a plain old Java object (POJO) and define it as a message-driven
bean with the @MessageDriven annotation.

3. Configure message service provider information:

You can define this information with the @ActivationConfigProperty
annotation.

For more information, see:

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider"
on page 10-2

■ "Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider" on
page 10-3

4. Add a data member for the MessageDrivenContext.

You can use resource injection to easily initialize this data member without getter
and setter methods.

5. Implement the appropriate message listener interface:

For a JMS message-driven bean, implement the javax.jms.MessageListener
interface to provide the onMessages method with signature:

public void onMessage(javax.jms.Message message)

This method processes the incoming message. Most MDBs receive messages from
a queue or a topic, then invoke an entity bean to process the request contained
within the message.

In this method, you can use the MessageDrivenContext to acquire and
configure a javax.ejb.TimerService if you implemented the TimedObject
interface (see step 6).

6. Optionally, implement the javax.ejb.TimedObject interface.

Implement the ejbTimeout method with signature:

public void ejbTimeout(javax.ejb.Timer timer)

7. Optionally, define lifecycle callback methods using the appropriate annotations.

You do not need to define lifecycle methods: OC4J provides an implementation for
all such methods. Define a method of your message-driven bean class as a lifecycle
callback method only if you want to take some action of your own at a particular
point in the message-driven bean’s lifecycle.

For more information, see "Configuring a Lifecycle Callback Method for an EJB 3.0
MDB" on page 10-6

8. Complete the configuration of your message-driven bean (see "Using EJB 3.0 MDB
API" on page 10-1).

Using EJB 3.0 MDB API 10-1

10
Using EJB 3.0 MDB API

This chapter describes the various options that you must configure in order to use an
EJB 3.0 message-driven bean.

Table 10–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is a Message-Driven Bean?" on page 1-35

■ "Implementing an EJB 3.0 MDB" on page 9-1

Note: In this release, OC4J supports a subset of the functionality
specified in the EJB 3.0 public review draft. You may need to make
code changes to your EJB 3.0 OC4J application after the EJB 3.0
specification is finalized and OC4J is updated to full EJB 3.0
compliance. For more information, see "Understanding EJB Support in
OC4J" on page 3-1.

There are no OC4J-proprietary EJB 3.0 annotations. For all
OC4J-specific configuration, you must still use the EJB 2.1
orion-ejb-jar.xml file.

Table 10–1 Configurable Options for an EJB 3.0 Message-Driven Bean

Options Type

"Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider" on page 10-2 Basic

"Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider" on page 10-3 Basic

"Configuring an MDB for Fast Undeploy on Windows" on page 18-4 Advanced

"Configuring an MDB for Oracle RAC Failover" on page 18-5 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring a Transaction Timeout for a Message-Driven Bean" on page 21-5 Advanced

"Configuring Listener Threads" on page 10-5 Advanced

"Configuring Maximum Delivery Count" on page 10-5 Advanced

Configuring Dequeue Retry Count and Interval on page 10-5 Advanced

"Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method" on page 10-5 Advanced

"Configuring a Lifecycle Callback Method for an EJB 3.0 MDB" on page 10-6 Basic

Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider

10-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service
Provider

You can configure an EJB 3.0 MDB to use a non-J2CA message service provider using
annotations (see "Using Annotations" on page 10-2) or deployment XML (see "Using
Deployment XML" on page 10-3).

For more information, see:

■ "Oracle Application Server JMS (OracleAS JMS) Provider: File-Based"

■ "Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based"

Using Annotations
You associate an EJB 3.0 MDB with a message service provider using the
@MessageDriven annotation activationConfig attribute.

Example 10–3 shows how to configure a message-driven bean to use a non-J2CA JMS
message service provider. It assumes that connection factory jms/MyQCF and queue
jms/MyQueue are defined in the jms.xml file. For more information on configuring a
non-J2CA message service provider, see "Configuring an OracleAS JMS Message
Service Provider" on page 23-1 or "Configuring an OJMS Message Service Provider" on
page 23-3.

Example 10–1 @MessageDriven Annotation for a Non-J2CA Message Service Provider

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.MessageListener;

@MessageDriven(
messageListenerInterface=MessageListener.class,
activationConfig = {

@ActivationConfigProperty(
propertyName="connectionFactoryJndiName", propertyValue="jms/MyQCF"),

@ActivationConfigProperty(
propertyName="destinationName", propertyValue="jms/MyQueue"),

@ActivationConfigProperty(
propertyName="destinationType", propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(
propertyName="messageSelector", propertyValue="RECIPIENT = 'simple_test'")

})

public class QueueMDB implements MessageListener
{

public void onMessage(Message msg)
{

...
}

}

The @MessageDriven annotation activationConfig attribute contains a list of
@ActivationConfigProperty annotations whose propertyName and
propertyValue attributes you use to specify activation configuration properties.
Table 10–2 lists the mandatory and commonly used activation configuration
properties you must set.

Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider

Using EJB 3.0 MDB API 10-3

For a complete list of all activation configuration properties, download and unzip one
of the how-to-gjra-with-xxx.zip files from
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html, where xxx is the name of the relevant resource provider. The
orion-ejb-jar.xml demo file contains comments describing all activation
configuration properties. For more information, see "JMS Resource Adapter" in the
Oracle Containers for J2EE Services Guide.

The actual names you use depend on your message service provider installation. For
more information, see:

■ "OracleAS JMS Destination and Connection Factory Names" on page 23-2

■ "OJMS Destination and Connection Factory Names" on page 23-3

Using Deployment XML
You can associate an EJB 3.0 MDB with a non-J2CA message service provider by
configuring the ejb-jar.xml file message-driven element with an
activation-config element and orion-ejb-jar.xml file
message-driven-deployment element with an activation-config element as
you would for an EJB 2.1 MDB. Configuration in the orion-ejb-jar.xml file will
override annotations and ejb-jar.xml file configuration.

For more information, see "Using Deployment XML" on page 18-1.

Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider
You can configure an EJB 3.0 MDB to use a J2CA message service provider using
annotations (see "Using Annotations" on page 10-3).

For more information, see "J2EE Connector Architecture (J2CA) Adapter Message
Provider" on page 2-26.

Using Annotations
You associate an EJB 3.0 MDB with a J2CA message service provider using the
@MessageDriven annotation activationConfig attribute and
@MessageDrivenDeployment annotation resourceAdapter attribute. You must
use @MessageDrivenDeployment annotation to specify the resource adapter that
your message-driven bean uses.

Example 10–3 shows how to configure a message-driven bean to use the Oracle JMS
resource adapter named "OracleASjms". It assumes that connection factory

Table 10–2 Mandatory @ActivationConfigProperty Attributes

Property Name Value

connectionFactoryJndiName The JNDI name of the message service provider connection
factory. You define this name when you configure your message
service provider.

destinationName The JNDI name of the message service provider destination name.
You define this name when you configure your message service
provider

destinationType Specify the fully qualified class name of the destination type for
your message service provider. For a JMS MDB, either
javax.jms.Queue or javax.jms.Topic.

messageSelector Specify the boolean expression of message properties that match
the type of message your MDB should receive.

Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider

10-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OracleASjms/MyQCF is defined in oc4j-ra.xml file and destination name
OracleASjms/MyQueue is defined in oc4j-connectors.xml file. For more
information on configuring a J2CA message service provider, see "Configuring a
Message Service Provider Using J2CA" on page 23-6.

Example 10–2 @MessageDriven and @MessageDrivenDeployment Annotation for a
J2CA Message Service Provider

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;

// Oracle deployment annotation for MDB
import oracle.j2ee.ejb.MessageDrivenDeployment;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(
propertyName="ConnectionFactoryJndiName", propertyValue="OracleASjms/MyQCF"),

@ActivationConfigProperty(
propertyName="DestinationName", propertyValue="OracleASjms/MyQueue"),

@ActivationConfigProperty(
propertyName="DestinationType", propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(
propertyName="messageSelector", propertyValue="RECIPIENT = 'simple_jca_test'")

})

// associate MDB with the resource adapter
@MessageDrivenDeployment(resourceAdapter = "OracleASjms")

public class JCAQueueMDB implements MessageListener
{

public void onMessage(Message msg)
{

...
}

}

The @MessageDriven annotation activationConfig attribute contains a list of
@ActivationConfigProperty annotations whose propertyName and
propertyValue attributes you use to specify activation configuration properties.
Table 10–2 lists the mandatory and commonly used activation configuration
properties you must set.

For a complete list of all activation configuration properties, download and unzip one
of the how-to-gjra-with-xxx.zip files from

Table 10–3 Mandatory @ActivationConfigProperty Attributes

Property Name Value

connectionFactoryJndiName The JNDI name of the message service provider connection
factory. You define this name when you configure your message
service provider.

destinationName The JNDI name of the message service provider destination name.
You define this name when you configure your message service
provider

destinationType Specify the fully qualified class name of the destination type for
your message service provider. For a JMS MDB, either
javax.jms.Queue or javax.jms.Topic.

messageSelector Specify the boolean expression of message properties that match
the type of message your MDB should receive.

Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method

Using EJB 3.0 MDB API 10-5

http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html, where xxx is the name of the relevant resource provider. The
orion-ejb-jar.xml demo file contains comments describing all activation
configuration properties. For more information, see "JMS Resource Adapter" in the
Oracle Containers for J2EE Services Guide.

You may also set the optional attributes that Table A–3 lists.

The actual names you use depend on your message service provider installation. For
more information, see "J2CA Message Service Provider Connection Factory Names" on
page 23-7.

Using Deployment XML
You can associate an EJB 3.0 MDB with a J2CA message service provider using the
orion-ejb-jar.xml file by configuring the message-driven-deployment
element with an activation-config element and setting the
message-driven-deployment element resource-adapter attribute as you
would for an EJB 2.1 MDB. Configuration in the orion-ejb-jar.xml file will
override annotations, if present.

For more information, see "Using Deployment XML" on page 18-3.

Configuring Listener Threads
The number of listener threads is an Oracle-specific option that you configure using
the EJB 2.1 orion-ejb-jar.xml file.

For more information, see "Configuring Listener Threads" on page 18-6.

Configuring Maximum Delivery Count
The maximum delivery count is an Oracle-specific option that you configure using the
EJB 2.1 orion-ejb-jar.xml file.

For more information, see "Configuring Maximum Delivery Count" on page 18-7.

Configuring Dequeue Retry Count and Interval
The dequeue retry count and dequeue retry interval are Oracle-specific options that
you configure using the EJB 2.1 orion-ejb-jar.xml file.

For more information, see "Configuring Dequeue Retry Count and Interval" on
page 18-8.

Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method
You can designate one non-business method as the interceptor method for a
message-driven bean (see "Using Annotations" on page 10-6). The method must have a
signature of:

public Object <MethodName>(InvocationContext) throws Exception

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-16.

Configuring a Lifecycle Callback Method for an EJB 3.0 MDB

10-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Annotations
Example 10–3 shows how to designate a method of a message-driven bean class as an
interceptor method using the @AroundInvoke annotation. Each time the onMessage
method is invoked, OC4J intercepts the invocation and invokes the interceptor method
myInterceptor. The onMessage method invocation proceeds only if the interceptor
method returns InvocationContext.proceed().

Example 10–3 @AroundInvoke in an EJB 3.0 Message-Driven Bean

@MessageDriven
public class MessageLogger implements MessageListener
{

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message)
{
....
}

@AroundInvoke
public Object myInterceptor(InvocationContext ctx) throws Exception
{

if (!userIsValid(ctx. getEJBContext().getCallerPrincipal()))
{

throw new SecurityException(
"Caller: '" + ctx.getEJBContext().getCallerPrincipal().getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}
}

Configuring a Lifecycle Callback Method for an EJB 3.0 MDB
You can specify an EJB 3.0 message-driven bean class method as a callback method for
any of the following lifecycle events (see "Using Annotations" on page 10-7):

■ Post-construct: a method called before the first message listener method
invocation on the bean. This is at a point after which any dependency injection has
been performed by the container.

■ Pre-destroy: a method called at the time the bean is removed from the pool or
destroyed.

The message-driven bean class method must have the following signature:

public void <MethodName>()

For more information, see "Callback Methods" on page 1-6.

Using Annotations
You can specify an EJB 3.0 message-driven bean class method as a lifecycle callback
method using any of the following annotations:

■ @PostConstruct

■ @PreDestroy

Example 10–4 shows how to use the @PostConstruct annotation to specify EJB 3.0
message-driven bean class method initialize as a lifecycle callback method.

Configuring a Lifecycle Callback Method for an EJB 3.0 MDB

Using EJB 3.0 MDB API 10-7

Example 10–4 @PostConstruct in an EJB 3.0 Message-Driven Bean

@MessageDriven
public class MessageLogger implements MessageListener
{

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message)
{
....
}

@PostConstruct
public void initialize()
{

// Initialization logic
}

...
}

Configuring a Lifecycle Callback Method for an EJB 3.0 MDB

10-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part V
EJB 2.1 Session Beans

This part provides procedural information on implementing and configuring EJB 2.1
session beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 11, "Implementing an EJB 2.1 Session Bean"

■ Chapter 12, "Using EJB 2.1 Session Bean API"

Implementing an EJB 2.1 Session Bean 11-1

11
Implementing an EJB 2.1 Session Bean

This chapter explains how to implement an EJB 2.1 session bean, including:

■ "Implementing an EJB 2.1 Stateless Session Bean" on page 11-1

■ "Implementing an EJB 2.1 Stateful Session Bean" on page 11-4

For more information, see:

■ "What is a Session Bean?" on page 1-8

■ "Using EJB 2.1 Session Bean API" on page 12-1

Implementing an EJB 2.1 Stateless Session Bean
Table 11–1 summarizes the important parts of an EJB 2.1 stateless session bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 11-2. For more information, see "What is a
Stateless Session Bean?" on page 1-9.

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Table 11–1 Parts of an EJB 2.1 Stateless Session Bean

Part Description

Home Interface (remote or local) Extends javax.ejb.EJBHome and javax.ejb.EJBLocalHome
and requires a single create() factory method, with no
arguments, and a single remove() method.

Component Interface (remote or local) Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

TimedObject Interface Optionally implements the javax.ejb.TimedObject interface.
For more information, see "Understanding EJB Timer Services" on
page 2-31).

Bean implementation Implements SessionBean. This class must be declared as public,
contain a public, empty, default constructor, no finalize()
method, and implements the methods defined in the component
interface. Must contain a single ejbCreate method, with no
arguments, to match the create() method in the home interface.
Contains empty implementations for the container service
methods, such as ejbRemove, and so on.

Implementing an EJB 2.1 Stateless Session Bean

11-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Create the home interfaces for the bean (see "Implementing the Home Interfaces"
on page 11-7).

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 11-7).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 11-8).

2. Create the component interfaces for the bean (see "Implementing the Component
Interfaces" on page 11-9).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 11-9).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 11-9).

3. Implement the stateless session bean:

a. Implement a single ejbCreate method with no parameter that matches the
home interface create method.

b. Implement the business methods that you declared in the home and
component interfaces.

c. Implement the javax.ejb.SessionBean interface to implement the
container callback methods it defines (see "Configuring a Lifecycle Callback
Method for an EJB 2.1 Session Bean" on page 12-3).

d. Implement a setSessionContext method that takes an instance of
SessionContext (see "Implementing the setSessionContext Method" on
page 11-10).

For a stateless session bean, this method usually does nothing (does not
actually add the SessionContext to the session bean’s state).

4. Configure your ejb-jar.xml file to match your bean implementation (see
"Using Deployment XML" on page 11-3).

Using Java
Example 11–1 shows a typical implementation of a stateless session bean.

Example 11–1 EJB 2.1 Stateless Session Bean Implementation

package hello;
import javax.ejb.*;

public class HelloBean implements SessionBean
{

/* --
* Begin business methods. The following methods
* are called by the client code.

Implementing an EJB 2.1 Stateless Session Bean

Implementing an EJB 2.1 Session Bean 11-3

* -------------------------------------- */

public String sayHello(String myName) throws EJBException
{

return ("Hello " + myName);
}

/* --
* Begin private methods. The following methods
* are used internally.
* -------------------------------------- */

...

/* --
* Begin EJB-required methods. The following methods are called
* by the container, and never called by client code.
* --- */

public void ejbCreate() throws CreateException
{

// when bean is created
}

public void setSessionContext(SessionContext ctx)
{
}

// Lifecycle Methods

public void ejbActivate()
{
}

public void ejbPassivate()
{
}

public void ejbCreate()
{
}

public void ejbRemove()
{
}

}

Using Deployment XML
Example 11–2 shows the ejb-jar.xml session element corresponding to the stateless
session bean shown in Example 11–1.

Example 11–2 ejb-jar.xml For a Stateless Session Bean

...
<enterprise-beans>

<session>
<ejb-name>Hello</ejb-name>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>
<ejb-class>hello.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

Implementing an EJB 2.1 Stateful Session Bean

11-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

...

For more information on deployment files, see "Configuring Deployment Descriptor
Files" on page 26-1.

Implementing an EJB 2.1 Stateful Session Bean
Table 11–2summarizes the important parts of an EJB 2.1 stateful session bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 11-5. For more information, see "What is a
Stateful Session Bean?" on page 1-10.

1. Create the home interfaces for the bean (see "Implementing the Home Interfaces"
on page 11-7).

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 11-7).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 11-8).

2. Create the component interfaces for the bean (see "Implementing the Component
Interfaces" on page 11-9).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 11-9).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 11-9).

3. Implement the stateless session bean:

Table 11–2 Pats of an EJB 2.1 Stateful Session Bean

Part Description

Home Interface (remote or local) Extends javax.ejb.EJBHome and javax.ejb.EJBLocalHome
and requires one or more create() factory methods, and a single
remove() method.

Component Interface (remote or local) Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements SessionBean. This class must be declared as public,
contain a public, empty, default constructor, no finalize()
method, and implement the methods defined in the remote
interface. Must contain ejbCreate methods equivalent to the
create() methods defined in the home interface. That is, each
ejbCreate method is matched—by its parameter signature—to a
create method defined in the home interface. Implements the
container service methods, such as ejbRemove, and so on. Also,
optionally implements the SessionSynchronization interface
for Container-Managed Transactions, which includes
afterBegin, beforeCompletion, and afterCompletion.

Implementing an EJB 2.1 Stateful Session Bean

Implementing an EJB 2.1 Session Bean 11-5

a. Implement the ejb* methods that match the home interface create
methods.

For a stateful session bean, provide ejbCreate methods with corresponding
argument lists for each create method in the home interface.

b. Implement the business methods that you declared in the home and
component interfaces.

c. Implement the javax.ejb.SessionBean interface to implement the
container callback methods it defines (see "Configuring a Lifecycle Callback
Method for an EJB 2.1 Session Bean" on page 12-3).

d. Implement a setSessionContext method that takes an instance of
SessionContext (see "Implementing the setSessionContext Method" on
page 11-10).

For a stateful session bean, this method usually adds the SessionContext to
the session bean’s state.

4. Configure your ejb-jar.xml file to match your bean implementation (see
"Using Deployment XML" on page 11-6).

Using Java
Example 11–3 shows a typical implementation of a stateful session bean.

Example 11–3 EJB 2.1 Stateful Session Bean Implementation

package hello;
import javax.ejb.*;

public class HelloBean implements SessionBean
{

/* --
* State
* -------------------------------------- */

private SessionContext ctx;
private Collection messages;
private String defaultMessage = "Hello, World!";

/* --
* Begin business methods. The following methods
* are called by the client code.
* -------------------------------------- */

public String sayHello(String myName) throws EJBException
{

return ("Hello " + myName);
}

public String sayHello() throws EJBException
{

return defaultMessage;
}

/* --
* Begin private methods. The following methods
* are used internally.
* -------------------------------------- */

...

/* --

Implementing an EJB 2.1 Stateful Session Bean

11-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

* Begin EJB-required methods. The following methods are called
* by the container, and never called by client code.
* --- */

public void ejbCreate() throws CreateException
{

// when bean is created
}

public void ejbCreate(String message) throws CreateException
{

this.defaultMessage = message;
}

public void ejbCreate(Collection messages) throws CreateException
{

this.messages = messages;
}

public void setSessionContext(SessionContext ctx)
{

this.ctx = ctx;
}

// Lifecycle Methods

public void ejbActivate()
{
}

public void ejbPassivate()
{
}

public void ejbCreate()
{
}

public void ejbRemove()
{
}

}

Using Deployment XML
Example 11–4 shows the ejb-jar.xml session element corresponding to the stateful
session bean shown in Example 11–3.

Example 11–4 ejb-jar.xml For a Stateful Session Bean

...
<enterprise-beans>

<session>
<ejb-name>Hello</ejb-name>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>
<ejb-class>hello.HelloBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

...

For more information on deployment files, see "Configuring Deployment Descriptor
Files" on page 26-1.

Implementing the Home Interfaces

Implementing an EJB 2.1 Session Bean 11-7

Implementing the Home Interfaces
The home interfaces (remote and local) are used to create the session bean instance;
thus, they define the create method for your bean. As Table 11–3 shows, the type of
create methods you define depends on the type of session bean you are creating:

For each create method, you define a corresponding ejbCreate method in the bean
implementation.

Implementing the Remote Home Interface
A remote client invokes the EJB through its remote interface. The client invokes the
create method that is declared within the remote home interface. The container
passes the client call to the ejbCreate method—with the appropriate parameter
signature—within the bean implementation. The requirements for developing the
remote home interface include:

■ The remote home interface must extend the javax.ejb.EJBHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.RemoteException

– optional application exceptions

■ All create methods should not throw the following exceptions:

– javax.ejb.EJBException

– java.lang.RunTimeException

Example 11–5 shows a remote home interface called HelloHome for a stateless session
bean.

Example 11–5 Remote Home Interface for a Stateless Session Bean

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome
{
 public Hello create() throws CreateException, RemoteException;
}

Example 11–6 shows a remote home interface called HelloHome for a stateful session
bean. You use the arguments passed into the various create methods to initialize the
session bean’s state.

Example 11–6 Remote Home Interface for a Stateful Session Bean

package hello;

Table 11–3 Home Interface Create Methods

Session Bean Type Create Methods

Stateless Session Bean Can have only a single create method, with no parameters.

Stateful Session Bean Can have more one or more create methods with whatever parameters define the
bean’s state.

Implementing the Home Interfaces

11-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome
{
 public Hello create() throws CreateException, RemoteException;
 public Hello create(String message) throws CreateException, RemoteException;
 public Hello create(Collection messages) throws CreateException, RemoteException;
}

Implementing the Local Home Interface
An EJB can be called locally from a client that exists in the same container. Thus, a
collocated bean, JSP, or servlet invokes the create method that is declared within the
local home interface. The container passes the client call to the ejbCreate
method—with the appropriate parameter signature—within the bean implementation.
The requirements for developing the local home interface include:

■ The local home interface must extend the javax.ejb.EJBLocalHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.RemoteException

– optional application exceptions

■ All create methods should not throw the following exceptions:

– javax.ejb.EJBException

– java.lang.RunTimeException

Example 11–7 shows a local home interface called HelloLocalHome for a stateless
session bean.

Example 11–7 Local Home Interface for a Stateless Session Bean

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create() throws CreateException;
}

Example 11–8 shows a local home interface called HelloLocalHome for a stateful
session bean. You use the arguments passed into the various create methods to
initialize the session bean’s state.

Example 11–8 Local Home Interface for a Stateful Session Bean

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create() throws CreateException;
 public HelloLocal create(String message) throws CreateException;
 public HelloLocal create(Collection messages) throws CreateException;
}

Implementing the Component Interfaces

Implementing an EJB 2.1 Session Bean 11-9

Implementing the Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

Implementing the Remote Component Interface
The remote interface defines the business methods that a remote client can invoke. The
requirements for developing the remote component interface include:

■ The remote component interface of the bean must extend the
javax.ejb.EJBObject interface, and its methods must throw the
java.rmi.RemoteException exception.

■ You must declare the remote interface and its methods as public for remote
clients.

■ The remote component interface, all its method parameters, and return types must
be serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshalls the object on both
ends.

■ Any exception can be thrown to the client, as long as it is serializable. Runtime
exceptions, including EJBException and RemoteException, are transferred
back to the client as remote runtime exceptions.

Example 11–9 shows a remote component interface called Hello with its defined
methods, each of which will be implemented in the corresponding session bean.

Example 11–9 Remote Component Interface for EJB 2.1 Session Bean

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface Hello extends EJBObject
{

public String sayHello(String myName) throws RemoteException;
public String sayHello() throws RemoteException;

}

Implementing the Local Component Interface
The local component interface defines the business methods of the bean that a local
(collocated) client can invoke. The requirements for developing the local component
interface include:

■ The local component interface of the bean must extend the
javax.ejb.EJBLocalObject interface.

■ You declare the local component interface and its methods as public.

Example 11–10 shows a local component interface called HelloLocal with its defined
methods, each of which will be implemented in the corresponding session bean.

Example 11–10 Local Component Interface for EJB 2.1 Session Bean

package hello;

import javax.ejb.*;

Implementing the setSessionContext Method

11-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public interface HelloLocal extends EJBLocalObject
{

public String sayHello(String myName);
public String sayHello();

}

Implementing the setSessionContext Method
You use this method to obtain a reference to the context of the bean. A session bean
has a session context that the container maintains and makes available to the bean. The
bean may use the methods in the session context to make callback requests to the
container.

The container invokes setSessionContext method, after it first instantiates the
bean, to enable the bean to retrieve the session context. The container will never call
this method from within a transaction context. If the bean does not save the session
context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use.

Example 11–11 shows a session bean saving the session context in the sessctx
variable.

Example 11–11 Implementing the setSessionContext Method

import javax.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;

public void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in instance variable

}
// other methods in the bean

}

Using EJB 2.1 Session Bean API 12-1

12
Using EJB 2.1 Session Bean API

This chapter describes the various options that you must configure in order to use an
EJB 2.1 session bean.

Table 12–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is a Session Bean?" on page 1-8

■ "Implementing an EJB 2.1 Session Bean" on page 11-1

Configuring Passivation
You can enable and disable passivation for stateful session beans (see "Using
Deployment XML" on page 12-2).

You may choose to disable passivation for any of the following reasons:

■ Incompatible object types: if you cannot represent the non-transient attributes of
your stateful session bean with object types supported by passivation (see "What
Object Types Can Be Passivated?" on page 1-13), you can exchange increased
memory consumption for the use of other object types by disabling passivation.

■ Performance: if you determine that passivation is a performance problem in your
application, you can exchange increased memory consumption for improved
performance by disabling passivation.

■ Secondary storage limitations: if you cannot provide sufficient secondary storage
(see "Configuring Passivation Location" on page 12-3), you can exchange increased
memory consumption for reduced secondary storage requirements by disabling
passivation.

For more information, see:

Table 12–1 Configurable Options for an EJB 2.1 Session Bean

Options Type

"Configuring Passivation" on page 12-1 Advanced

"Configuring Passivation Criteria" on page 12-2 Advanced

"Configuring Passivation Location" on page 12-3 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Session Beans" on page 31-4 Advanced

"Configuring a Transaction Timeout for a Session Bean" on page 21-4 Advanced

"Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean" on page 12-3 Basic

Configuring Passivation Criteria

12-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-12

■ "Configuring Passivation Criteria" on page 12-2

■ "Configuring Passivation Location" on page 12-3

Using Deployment XML
Table 12–2 lists the attributes, values, and defaults for configuring passivation in the
server.xml file element sfsb-config.

Configuring Passivation Criteria
You can specify under what conditions OC4J passivates a stateful session bean (see
"Using Deployment XML" on page 12-2).

For more information, see:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-12

■ "Configuring Passivation" on page 12-1

■ "Configuring Passivation Location" on page 12-3

Using Deployment XML
Table 12–3 lists the attributes, values, and defaults for configuring passivation criteria
in the orion-ejb-jar.xml file element session-deployment.

Table 12–2 server.xml Element sfsb-config Passivation Configuration

Attribute Values Default

enable-passivation "true", "false" "true"

Table 12–3 orion-ejb-jar.xml Element session-deployment Passivation Criteria

Attribute Values Default

idletime Positive, integer number of seconds before passivation
occurs.

To disable this criteria, specify a value of "never".

"300"

memory-threshold Percentage of JVM memory that can be consumed before
passivation occurs.

To disable this criteria, specify a value of "never".

"80"

max-instances Maximum positive integer number of bean instances
allowed in memory—either instantiated or pooled.

When this value is reached, OC4J attempts to passivate
beans using the least recently used (LRU) algorithm. To
allow an infinite number of bean instances, the
max-instances attribute can be set to zero. Default is 0,
which means infinite. This applies to both stateless and
stateful session beans.

To disable instance pooling, set max-instances to any
negative number. This will create a new instance at the
start of the EJB call and release it at the end of the call.

See "Configuring Bean Instance Pool Size" on page 31-4
for more information.

"0" (unlimited)

Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean

Using EJB 2.1 Session Bean API 12-3

Configuring Passivation Location
You can specify the directory and file name to which OC4J serializes a stateful session
bean when passivated (see "Using Deployment XML" on page 12-3).

For more information, see:

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-14

■ "Configuring Passivation" on page 12-1

■ "Configuring Passivation Criteria" on page 12-2

Using Deployment XML
Table 12–4 lists the attributes, values, and defaults for configuring passivation location
in the orion-ejb-jar.xml file element session-deployment.

Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean
Table 12–5 lists the EJB 2.1 session bean callback methods you can specify (see "Using
Java" on page 12-4).

max-instances-threshold Percentage of max-instances number of beans that can
be in memory before passivation occurs.

Specify an integer that is translated as a percentage. If
you define that the max-instances is 100 and the
max-instances-threshold is 90%, then when the
active bean instances is greater than or equal to 90,
passivation of beans occurs. Default: 90%.

To disable, specify "never."

"90"

passivate-count Positive, integer number of beans to be passivated if any
of the resource thresholds (memory-threshold or
max-instances-threshold) have been reached.

Passivation of beans is performed using the least recently
used algorithm.

To disable this option, specify a value of "0".

One-third of
max-instances

resource-check-interval The frequency, as a positive, integer number of seconds,
at which OC4J checks resource thresholds
(memory-threshold or
max-instances-threshold).

To disable this option specify a value of "never".

"180"

Table 12–4 orion-ejb-jar.xml Element session-deployment Passivation Location
Configuration

Attribute Values Default

persistence-filename Fully qualified path and file name of the file into which
OC4J serializes bean instances during passivation.

<OC4J_
HOME>\j2ee\home\a
pplication-deploy
ments\persistence.

Table 12–5 EJB 2.1 Session Bean Lifecycle Callback Methods

Method Description

ejbCreate The container invokes this method to create an instance of the bean.

ejbActivate The container invokes this method right after it reactivates the bean.

Table 12–3 (Cont.) orion-ejb-jar.xml Element session-deployment Passivation Criteria

Attribute Values Default

Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean

12-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Session bean callback method signatures are defined in the
javax.ejb.SessionBean interface.

For more information, see "Callback Methods" on page 1-6.

Using Java
Example 12–1 shows how to implement an EBJ 2.1 session bean callback method.

Example 12–1 EJB 2.1 Session Bean Callback Method Implementation

public void ejbActivate()
{

// when bean is activated
}

ejbPassivate The container invokes this method right before it passivates the bean.
You can turn off passivation for stateful session beans (see
"Configuring Passivation" on page 12-1).

ejbRemove A container invokes this method before it ends the life of the session
object. This method performs any required clean-up—for example,
closing external resources such as file handles.

setSessionContext This method associates a bean instance with its context information.
The container calls this method after the bean creation. The enterprise
bean can store the reference to the context object in an instance
variable, for use in transaction management. Beans that manage their
own transactions can use the session context to get the transaction
context.

Note: Using EJB 2.1, you must implement all session bean callback
methods. If you do not need to take any action, implement an empty
method.

Table 12–5 (Cont.) EJB 2.1 Session Bean Lifecycle Callback Methods

Method Description

Part VI
EJB 2.1 Entity Beans

This part provides procedural information on implementing and configuring EJB 2.1
entity beans and entity bean queries. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 13, "Implementing an EJB 2.1 Entity Bean"

■ Chapter 14, "Using EJB 2.1 CMP Entity Bean API"

■ Chapter 15, "Using EJB 2.1 BMP Entity Bean API"

■ Chapter 16, "Using EJB 2.1 Query API"

Implementing an EJB 2.1 Entity Bean 13-1

13
Implementing an EJB 2.1 Entity Bean

This chapter explains how to implement an EJB 2.1 entity bean, including:

■ "Implementing an EJB 2.1 CMP Entity Bean" on page 13-1

■ "Implementing an EJB 2.1 BMP Entity Bean" on page 13-6

For more information, see:

■ "What is an EJB 2.1 Entity Bean?" on page 1-19

■ "Using EJB 2.1 CMP Entity Bean API" on page 14-1

■ "Using EJB 2.1 BMP Entity Bean API" on page 15-1

Implementing an EJB 2.1 CMP Entity Bean
Table 13–1 summarizes the important parts of an EJB 2.1 CMP entity bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 13-3. For more information, see "What is an
EJB 2.1 CMP Entity Bean?" on page 1-20.

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Table 13–1 Parts of an EJB 2.1 CMP Entity Bean

Part Description

Home Interface (remote or local) Extends javax.ejb.EJBHome for the remote home interface,
javax.ejb.EJBLocalHome for the local home interface, and
requires a single create() factory method, with no arguments,
and a single remove() method.

Component Interface (remote or local) Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements EntityBean. This class must be declared as public,
contain a public, empty, default constructor, no finalize()
method, and implements the methods defined in the component
interface. Must contain one or more ejbCreate methods to match
the create methods in the home interface. Contains empty
implementations for the container service methods, such as
ejbRemove, and so on.

Implementing an EJB 2.1 CMP Entity Bean

13-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Create the home interfaces for the bean (see "Implementing the EJB 2.1 Home
Interfaces" on page 13-18).

The remote home interface defines the create and finder methods that a client
can invoke remotely to instantiate your bean. The local home interface defines the
create and finder methods that a collocated bean can invoke locally to
instantiate your bean.

For more information about finders, see "Understanding Finder Methods" on
page 1-31

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 13-19).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19).

2. Create the component interfaces for the bean (see "Implementing the EJB 2.1
Component Interfaces" on page 13-19).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 13-19).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 13-20).

3. Define the primary key for the bean (see "Configuring an EJB 2.1 CMP Entity Bean
Primary Key" on page 14-1).

The primary key identifies each entity bean instance and is a serializable class. You
can use a simple data type class, such as java.lang.String, or define a
complex class, such as one with two or more objects as components of the primary
key.

4. Implement the CMP entity bean:

a. Implement the abstract get and set methods that correspond to the get and set
method(s) declared in the home interfaces.

For a CMP entity bean, the get and set methods are public abstract
because the container is responsible for their implementation.

b. Implement the business methods that you declared in the home and
component interfaces (if any). The signature for each of these methods must
match the signature in the remote or local interface, except that the bean does
not throw the RemoteException. Since both the local and the remote
interfaces use the bean implementation, the bean implementation cannot
throw the RemoteException.

For an entity bean, these methods are often delegated to a session bean (see
"What is a Session Bean?" on page 1-8).

c. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

d. Implement the ejbCreate methods that correspond to the create
method(s) declared in the home interfaces. The container invokes the

Implementing an EJB 2.1 CMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-3

appropriate ejbCreate method when the client invokes the corresponding
create method.

The return type of all ebjCreate methods is the type of the bean’s primary
key.

For a CMP entity bean, provide create methods that allow the client to pass in
values that the container will persist to your database.

e. Provide an empty implementation for each of the javax.ejb.EntityBean
interface container callback methods

f. Implement a setEntityContext method (that takes an instance of
EntityContext) and unsetEntityContext method (see "Implementing
the setEntityContext and unsetEntityContext Methods" on page 13-20).

g. Optionally, define zero or more public, abstract select methods (see
"Understanding Select Methods" on page 1-33) for use within the business
methods of your entity bean.

5. Create the appropriate database schema (tables and columns) for the entity bean.

For a CMP entity bean, you can specify how persistence attributes should be
stored in the database or you can configure the container to manage table creation
for you.

For more information, see:

■ "Configuring Automatic Database Table Creation" on page 14-6

You can configure the container to create the required tables for CMP beans.

6. Configure your ejb-jar.xml file to match your bean implementation and to
reference a data source defined in your data-sources.xml file (see "Using
Deployment XML" on page 13-5).

7. Complete the configuration of your entity bean (see "Using EJB 2.1 CMP Entity
Bean API" on page 14-1).

Using Java
Example 13–1 shows a typical implementation of an EJB 2.1 CMP entity bean.
Example 13–2 shows the corresponding remote home interface and Example 13–3
shows the corresponding remote component interface.

Example 13–1 EJB 2.1 CMP Entity Bean Implementation

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean
{

private EntityContext ctx;

// cmp fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();

Implementing an EJB 2.1 CMP Entity Bean

13-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public abstract void setSalary(Float salary);

public void EmployeeBean()
{

// Empty constructor, don't initialize here but in the create().
// passivate() may destroy these attributes in the case of pooling

}

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
setEmpNo(empNo);
setEmpName(empName);
setSalary(salary);
return new EmployeePK(empNo);

}

public void ejbPostCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
// when just after bean created

}

public void ejbStore()
{

// when bean persisted
}

public void ejbLoad()
{

// when bean loaded
}

public void ejbRemove()
{

// when bean removed
}

public void ejbActivate()
{

// when bean activated
}

public void ejbPassivate()
{

// when bean deactivated
}

public void setEntityContext(EntityContext ctx)
{

this.ctx = ctx;
}

public void unsetEntityContext()
{

this.ctx = null;
}

}

Example 13–2 EJB 2.1 CMP Remote Home Interface

package cmpapp;

import java.rmi.*;

Implementing an EJB 2.1 CMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-5

import java.util.*;
import javax.ejb.*;

public interface EmployeeHome extends EJBHome
{

 public Employee create(Integer empNo, String empName, Float salary)
 throws CreateException, RemoteException;

 public Employee findByPrimaryKey(EmployeePK pk)
 throws FinderException, RemoteException;

 public Collection findByName(String empName)
 throws FinderException, RemoteException;

 public Collection findAll()
 throws FinderException, RemoteException;

}

Example 13–3 EJB 2.1 CMP Remote Component Interface

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public interface Employee extends EJBObject
{

// cmp fields accessors
public Integer getEmpNo() throws RemoteException;
public void setEmpNo(Integer empNo) throws RemoteException;

public String getEmpName() throws RemoteException;
public void setEmpName(String empName) throws RemoteException;

public Float getSalary() throws RemoteException;
public void setSalary(Float salary) throws RemoteException;

}

Using Deployment XML
Example 13–4 shows the ejb-jar.xml file entity element corresponding to the
CMP entity bean shown in Example 13–1.

Example 13–4 ejb-jar.xml For an EJB 2.1 CMP Entity Bean

...
<enterprise-beans>

<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<home>cmpapp.EmployeeHome</home>
<remote>cmpapp.Employee</remote>
<ejb-class>cmpapp.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>EmployeeBean</abstract-schema-name>
<prim-key-class>cmpapp.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<query>

Implementing an EJB 2.1 BMP Entity Bean

13-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<description></description>
<query-method>
<method-name>findAll</method-name>
<method-params/>
</query-method>
<ejb-ql>Select OBJECT(e) From EmployeeBean e</ejb-ql>

</query>
<query>

<description></description>
<query-method>
<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-ql>Select OBJECT(e) From EmployeeBean e where e.empName = ?1</ejb-ql>

</query>
</entity>

</enterprise-beans>
...

Implementing an EJB 2.1 BMP Entity Bean
Table 13–2 summarizes the important parts of an EJB 2.1 BMP entity bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 13-8. For more information, see "What is an
EJB 2.1 BMP Entity Bean?" on page 1-23.

1. Create the home interfaces for the bean (see "Implementing the EJB 2.1 Home
Interfaces" on page 13-18).

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 13-19).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19).

2. Create the component interfaces for the bean (see "Implementing the EJB 2.1
Component Interfaces" on page 13-19).

Table 13–2 Parts of an EJB 2.1 BMP Entity Bean

Part Description

Home Interface (remote or local) Extends javax.ejb.EJBHome for the remote home interface,
javax.ejb.EJBLocalHome for the local home interface, and
requires a single create() factory method, with no arguments,
and a single remove() method.

Component Interface (remote or local) Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements EntityBean. This class must be declared as public,
contain a public, empty, default constructor, no finalize()
method, and implements the methods defined in the component
interface. Must contain one or more ejbCreate methods to match
the create methods in the home interface. Contains complete
implementations for the container service methods, such as
ejbStore, ejbLoad, ejbRemove, and so on.

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-7

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 13-19).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 13-20).

3. Define the primary key for the bean.

The primary key identifies each entity bean instance and is a serializable class. You
can use a simple data type class, such as java.lang.String, or define a
complex class, such as one with two or more objects as components of the primary
key.

4. Implement the BMP entity bean:

a. Provide a complete implementation of the get and set methods that
correspond to the get and set method(s) declared in the home interfaces.

For a BMP entity bean, the get and set methods are public because you are
responsible for their implementation.

b. Implement the business methods that you declared in the home and
component interfaces (if any). The signature for each of these methods must
match the signature in the remote or local interface, except that the bean does
not throw the RemoteException. Since both the local and the remote
interfaces use the bean implementation, the bean implementation cannot
throw the RemoteException.

For an entity bean, these methods are often delegated to a session bean (see
"What is a Session Bean?" on page 1-8).

c. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

d. Implement the ejbCreate methods that correspond to the create
method(s) declared in the home interfaces. The container invokes the
appropriate ejbCreate method when the client invokes the corresponding
create method.

The return type of all ebjCreate methods is the type of the bean’s primary
key.

For a BMP entity bean, provide create methods that allow the client to pass in
values that the container will persist to your database. You are responsible for
providing an implementation that interacts with your database (usually
through straight JDBC calls) to create an instance in the database.

For more information, see "Implementing an EJB 2.1 BMP ejbCreate Method"
on page 13-15.

e. Provide a complete implementation for each of the javax.ejb.EntityBean
interface container callback methods (see "Configuring a Lifecycle Callback
Method for an EJB 2.1 BMP Entity Bean" on page 15-5).

For a BMP entity bean, you are responsible for providing an implementation
for each these methods that interacts with your database (usually through
straight JDBC calls) to manage persistence in the database.

Implementing an EJB 2.1 BMP Entity Bean

13-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

f. Implement a setEntityContext method that takes an instance of
EntityContext and unsetEntityContext method (see "Implementing
the setEntityContext and unsetEntityContext Methods" on page 13-20).

g. Implement the mandatory findByPrimaryKey finder method and,
optionally, other finders (see "Configuring an EJB 2.1 BMP Entity Bean Query"
on page 15-3).

5. Create the appropriate database schema (tables and columns) for the entity bean.

For a BMP entity bean, you are responsible for creating this schema in the
database (defined in the data-sources.xml file) before your application
attempts to create an instance of your BMP entity bean.

6. Configure your ejb-jar.xml file to match your bean implementation and to
reference a data source defined in your data-sources.xml file (see "Using
Deployment XML" on page 13-14).

7. Complete the configuration of your entity bean (see "Using EJB 2.1 BMP Entity
Bean API" on page 15-1).

Using Java
Example 13–5 shows a typical implementation of an EJB 2.1 BMP entity bean.
Example 13–7 shows the corresponding home interface and Example 13–6 shows the
corresponding remote interface.

Example 13–5 EJB 2.1 BMP Entity Bean Implementation

package bmpapp;

import java.util.*;
import java.rmi.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import javax.ejb.*;

public class EmployeeBean implements EntityBean
{

public Integer empNo;

public EntityContext ctx;
private Connection conn = null;
private PreparedStatement ps = null;
private EmployeePK pk;
private static final String dsName = "jdbc/OracleDS";

private static final String insertStatement =

"INSERT INTO EMP (EMPNO, ENAME, SAL) VALUES (?, ?, ?)";
private static final String updateStatement =

"UPDATE EMP SET ENAME=?, SAL=? WHERE EMPNO=?";
private static final String deleteStatement =

"DELETE FROM EMP WHERE EMPNO=?";
private static final String findAllStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP";
private static final String findByPKStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP WHERE EMPNO = ?";
private static final String findByNameStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP WHERE ENAME = ?";
// or you can define a variable specific to orion to implement finder-method:
// or use <finder-method/> in orion-ejb-jar.xml
public static final String findByNameQuery="full: " +

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-9

"SELECT EMPNO, ENAME, SAL FROM EMP WHERE ENAME = $1";

public EmployeeBean()
{

// Empty constructor, don't initialize here but in the create().
// passivate() may destroy these attributes in the case of pooling

}

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
try {

pk = new EmployeePK(empNo, empName, salary);
conn = getConnection(dsName);
ps = conn.prepareStatement(insertStatement);
ps.setInt(1, empNo.intValue());
ps.setString(2, empName);
ps.setFloat(3, salary.floatValue());
ps.executeUpdate();
return pk;

} catch (SQLException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new CreateException(e.getMessage());

} catch (NamingException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

public void ejbPostCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
}

public EmployeePK ejbFindByPrimaryKey(EmployeePK pk)

throws FinderException
{

if (pk == null || pk.empNo == null) {
throw new FinderException("Primary key cannot be null");

}
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByPKStatement);
ps.setInt(1, pk.empNo.intValue());
ps.executeQuery();
ResultSet rs = ps.getResultSet();
if (rs.next()) {

pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));

} else {
throw new FinderException("Failed to select this PK");

}
} catch (SQLException e) {

throw new FinderException(e.getMessage());
} catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {

Implementing an EJB 2.1 BMP Entity Bean

13-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

try {
ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}
return pk;

}

public Collection ejbFindAll() throws FinderException
{

//System.out.println("EmployeeBean.ejbFindAll(): begin");
Vector recs = new Vector();
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findAllStatement);
ps.executeQuery();
ResultSet rs = ps.getResultSet();
int i = 0;
while (rs.next()) {

pk = new EmployeePK();
pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));
recs.add(pk);

}
} catch (SQLException e) {

throw new FinderException(e.getMessage());
} catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}
return recs;

}

public Collection ejbFindByName(String empName)
throws FinderException

{
//System.out.println("EmployeeBean.ejbFindByName(): begin");
if (empName == null) {

throw new FinderException("Name cannot be null");
}
Vector recs = new Vector();
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByNameStatement);
ps.setString(1, empName);
ps.executeQuery();
ResultSet rs = ps.getResultSet();
int i = 0;
while (rs.next()) {

pk = new EmployeePK();
pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));
recs.add(pk);

}
} catch (SQLException e) {

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-11

throw new FinderException(e.getMessage());
} catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}
return recs;

}

public void ejbLoad() throws EJBException
{

//Container invokes this method to instruct the instance to
//synchronize its state by loading it from the underlying database
//System.out.println("EmployeeBean.ejbLoad(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
ejbFindByPrimaryKey(pk);

} catch (FinderException e) {
throw new EJBException (e.getMessage());

}
}

public void ejbStore() throws EJBException
{

//Container invokes this method to instruct the instance to
//synchronize its state by storing it to the underlying database
//System.out.println("EmployeeBean.ejbStore(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);
ps = conn.prepareStatement(updateStatement);
ps.setString(1, pk.empName);
ps.setFloat(2, pk.salary.floatValue());
ps.setInt(3, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new EJBException("Failed to update record");
}

} catch (SQLException e) {
throw new EJBException(e.getMessage());

} catch (NamingException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

public void ejbRemove() throws RemoveException
{

//Container invokes this method befor it removes the EJB object
//that is currently associated with the instance
//System.out.println("EmployeeBean.ejbRemove(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);

Implementing an EJB 2.1 BMP Entity Bean

13-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

ps = conn.prepareStatement(deleteStatement);
ps.setInt(1, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new RemoveException("Failed to delete record");
}

} catch (SQLException e) {
throw new RemoveException(e.getMessage());

} catch (NamingException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

public void ejbActivate()
{

// Container invokes this method when the instance is taken out
// of the pool of available instances to become associated with
// a specific EJB object
//System.out.println("EmployeeBean.ejbActivate(): begin");

}

public void ejbPassivate()
{

// Container invokes this method on an instance before the instance
// becomes disassociated with a specific EJB object
//System.out.println("EmployeeBean.ejbPassivate(): begin");

}

public void setEntityContext(EntityContext ctx)
{

//Set the associated entity context
//System.out.println("EmployeeBean.setEntityContext(): begin");
this.ctx = ctx;

}

public void unsetEntityContext()
{

//Unset the associated entity context
//System.out.println("EmployeeBean.unsetEntityContext(): begin");
this.ctx = null;

}

/**
 * methods inherited from EJBObject
 */
public Integer getEmpNo()
{

pk = (EmployeePK) ctx.getPrimaryKey();
return pk.empNo;

}

public String getEmpName()
{

pk = (EmployeePK) ctx.getPrimaryKey();
return pk.empName;

}

public Float getSalary()
{

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-13

pk = (EmployeePK) ctx.getPrimaryKey();
return pk.salary;

}

public void setEmpNo(Integer empNo)
{

pk = (EmployeePK) ctx.getPrimaryKey();
pk.empNo = empNo;

}

public void setEmpName(String empName)
{

pk = (EmployeePK) ctx.getPrimaryKey();
pk.empName = empName;

}

public void setSalary(Float salary) {
pk = (EmployeePK) ctx.getPrimaryKey();
pk.salary = salary;

}

public EJBHome getEJBHome()
{

return ctx.getEJBHome();
}

public Handle getHandle() throws RemoteException
{

return ctx.getEJBObject().getHandle();
}

public Object getPrimaryKey() throws RemoteException
{

return ctx.getEJBObject().getPrimaryKey();
}

public boolean isIdentical(EJBObject remote) throws RemoteException
{

return ctx.getEJBObject().isIdentical(remote);
}

public void remove() throws RemoveException, RemoteException{

ctx.getEJBObject().remove();
}

/**
 * Private methods
 */
private Connection getConnection(String dsName)

 throws SQLException, NamingException
{

DataSource ds = getDataSource(dsName);
return ds.getConnection();

}

private DataSource getDataSource(String dsName) throws NamingException
{

DataSource ds = null;
Context ic = new InitialContext();
ds = (DataSource) ic.lookup(dsName);
return ds;

}
}

Implementing an EJB 2.1 BMP Entity Bean

13-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 13–6 EJB 2.1 BMP Remote Home Interface

package bmpapp;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface EmployeeHome extends EJBHome
{

public Employee create(Integer empNo, String empName, Float salary)
throws CreateException, RemoteException;

public Employee findByPrimaryKey(EmployeePK pk)

throws FinderException, RemoteException;

public Collection findByName(String empName)
throws FinderException, RemoteException;

public Collection findAll()

throws FinderException, RemoteException;
}

Example 13–7 EJB 2.1 BMP Remote Component Interface

package bmpapp;

import java.rmi.*;
import javax.ejb.*;

public interface Employee extends EJBObject
{

// getter remote methods
public Integer getEmpNo() throws RemoteException;
public String getEmpName() throws RemoteException;
public Float getSalary() throws RemoteException;

// setter remote methods
public void setEmpNo(Integer empNo) throws RemoteException;
public void setEmpName(String empName) throws RemoteException;
public void setSalary(Float salary) throws RemoteException;

}

Using Deployment XML
Example 13–8 shows the ejb-jar.xml entity element corresponding to the BMP
entity bean shown in Example 13–5.

Example 13–8 ejb-jar.xml For an EJB 2.1 BMP Entity Bean

...
<enterprise-beans>

<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<home>bmpapp.EmployeeHome</home>
<remote>bmpapp.Employee</remote>
<ejb-class>bmpapp.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>bmpapp.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-15

<res-ref-name>jdbc/OracleDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</entity>

</enterprise-beans>
...

Example 13–9 shows the data-sources.xml file data-source element
ejb-location attribute that specifies the res-ref-name (jdbc/OracleDS) used
in the ejb-jar.xml file shown in Example 13–8.

Example 13–9 data-sources.xml For an EJB 2.1 BMP Entity Bean Data Source

<connection-pool name="Example Connection Pool">
<!-- This is an example of a connection factory that emulates XA behavior. -->
<connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"

user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com">

</connection-factory>
</connection-pool>

<managed-data-source name="OracleDS"

connection-pool-name="Example Connection Pool"
jndi-name="jdbc/OracleDS"/>

Implementing an EJB 2.1 BMP ejbCreate Method
The ejbCreate method is responsible primarily for the creation of the primary key.
This includes the following:

1. Creating the primary key.

2. Creating the persistent data representation for the key.

3. Initializing the key to a unique value and ensuring no duplication.

4. Returning this key to the container.

The container maps the key to the entity bean reference.

The following example shows the ejbCreate method for the employee example,
which initializes the primary key, empNo. It should automatically generate a primary
key that is the next available number in the employee number sequence. However, for
this example to be simple, the ejbCreate method requires that the user provide the
unique employee number.

In addition, because the full data for the employee is provided within this method, the
data is saved within the context variables of this instance. After initialization, it returns
this key to the container.

// The create methods takes care of generating a new empNo and returns
// its primary key to the container
public Integer ejbCreate (Integer empNo, String empName, Float salary)

throws CreateException
{
 /* in this implementation, the client gives the employee number, so

Note: For simplicity, the try blocks within the samples have been
removed in this example.

Implementing an EJB 2.1 BMP Entity Bean

13-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

only need to assign it, not create it. */
this.empNo = empNo;
this.empName = empName;
this.salary = salary;

/* insert employee into database */
conn = getConnection(dsName);
ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)
VALUES ("+this.empNo.intValue()+", "+this.empName+","
+this.salary.floatValue()+")");

ps.executeUpdate();
ps.close();

/* return the new primary key.*/
return (empNo);

}

The deployment descriptor defines only the primary key class in the
<prim-key-class> element. Because the bean is saving the data, there is no
definition of persistence data in the deployment descriptor. Note that the deployment
descriptor does define the database the bean uses in the <resource-ref> element.
For more information on database configuration, see "Using Deployment XML" on
page 13-14.

<enterprise-beans>
 <entity>

<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<res-ref-name>jdbc/OracleDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
 </entity>

</enterprise-beans>

Alternatively, you can create a complex primary key based on several data types. You
define a complex primary key within its own class, as follows:

package employee;

import java.io.*;
java.io.Serializable;

...

public class EmployeePK implements java.io.Serializable
{
public Integer empNo;
public String empName;
public Float salary;

public EmployeePK(Integer empNo)
{

Implementing an EJB 2.1 BMP Entity Bean

Implementing an EJB 2.1 Entity Bean 13-17

this.empNo = empNo;
this.empName = null;
this.salary = null;

}

public EmployeePK(Integer empNo, String empName, Float salary)
{
this.empNo = empNo;
this.empName = empName;
this.salary = salary;

}

}

For a primary key class, you define the class in the <prim-key-class> element,
which is the same for the simple primary key definition.

<enterprise-beans>
 <entity>

<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<res-ref-name>jdbc/OracleDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
 </entity>

</enterprise-beans>

The employee example requires that the employee number is given to the bean by the
user. Another method would generate the employee number by computing the next
available employee number, and use this in combination with the employee’s name
and office location.

After defining the complex primary key class, you would create your primary key
within the ejbCreate method, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
pk = new EmployeePK(empNo, empName, salary);
...

}

The other task that the ejbCreate (or ejbPostCreate) should handle is allocating
any resources necessary for the life of the bean. For this example, because we already
have the information for the employee, the ejbCreate performs the following:

1. Retrieves a connection to the database. This connection remains open for the life of
the bean. It is used to update employee information within the database. It should
be released in ejbPassivate and ejbRemove, and reallocated in
ejbActivate.

2. Updates the database with the employee information.

Implementing the EJB 2.1 Home Interfaces

13-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This is executed, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException

{
pk = new EmployeePK(empNo, empName, salary);
conn = getConnection(dsName);
ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES ("+this.empNo.intValue()+", "+this.empName+","
+this.salary.floatValue()+")");

ps.executeUpdate();
ps.close();
return pk;

}

Implementing the EJB 2.1 Home Interfaces
The home interfaces are used to specify what methods a client uses to create or
retrieve an entity bean instance.

The home interface must contain a create method, which the client invokes to create
the bean instance. The entity bean can have zero or more create methods, each with
its own defined parameters. For each create method, you define a corresponding
ejbCreate method in the bean implementation.

All entity beans must define one or more finder methods in the home interface, where
at least one is a findByPrimaryKey method. Optionally, you can define other finder
methods, which are named find<name>, including predefined and default finders.
For more information, see "Understanding Finder Methods" on page 1-31.

In addition to creation and retrieval methods, you can provide home interface
business methods within the home interface. The functionality within these methods
cannot access data of a particular entity object. Instead, the purpose of these methods
is to provide a way to retrieve information that is not related to a single entity bean
instance. When the client invokes any home interface business method, an entity bean
is removed from the pool to service the request. Thus, this method can be used to
perform operations on general information related to the bean.

For example, in an employee application, you might provide the local home interface
with a create, findByPrimaryKey, findAll, and calcSalary methods. The
calcSalary method is a home interface business method that calculates the sum of
all employee salaries. It does not access the information of a particular employee, but
performs a SQL query against the database for all employees.

There are two types of home interface:

■ The remote home interface extends javax.ejb.EJBHome (see "Implementing the
Remote Home Interface" on page 13-19)

■ The local home interface extends javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19)

Implementing the Remote Home Interface
A remote client invokes the EJB through its remote interface. The client invokes the
create method that is declared within the remote home interface. The container
passes the client call to the ejbCreate method—with the appropriate parameter
signature—within the bean implementation. The requirements for developing the
remote home interface include:

Implementing the EJB 2.1 Component Interfaces

Implementing an EJB 2.1 Entity Bean 13-19

■ The remote home interface must extend the javax.ejb.EJBHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.EJBException or another RuntimeException

Example 13–2 shows the remote home interface corresponding to the EJB 2.1 CMP
entity bean in Example 13–1 and Example 13–6 shows the remote home interface
corresponding to the EJB 2.1 BMP entity bean in Example 13–5.

Implementing the Local Home Interface
An EJB can be called locally from a client that exists in the same container. Thus, a
collocated bean, JSP, or servlet invokes the create method that is declared within the
local home interface. The container passes the client call to the ejbCreate
method—with the appropriate parameter signature—within the bean implementation.
The requirements for developing the local home interface include:

■ The local home interface must extend the javax.ejb.EJBLocalHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.EJBException or another RuntimeException

Implementing the EJB 2.1 Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

The entity bean component interface is the interface that the client can invoke its
methods with. The component interface defines the business logic methods for the
entity bean instance.

There are two types of component interface:

■ The remote component interface extends javax.ejb.EJBObject (see
"Implementing the Remote Component Interface" on page 13-19)

■ The local component interface extends javax.ejb.EJBLocalObject (see
"Implementing the Local Component Interface" on page 13-20)

Implementing the Remote Component Interface
The remote interface defines the business methods that a remote client can invoke. The
requirements for developing the remote component interface include:

■ The remote component interface of the bean must extend the
javax.ejb.EJBObject interface, and its methods must throw the
java.rmi.RemoteException exception.

■ You must declare the remote interface and its methods as public for remote
clients.

■ The remote component interface, all its method parameters, and return types must
be serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshalls the object on both
ends.

Implementing the setEntityContext and unsetEntityContext Methods

13-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Any exception can be thrown to the client. Runtime exceptions, including
EJBException and RemoteException, are transferred back to the client as
remote runtime exceptions.

■ A remote component interface can throw user specified application exceptions.

Example 13–3 shows the remote component interface corresponding to the EJB 2.1
CMP entity bean in Example 13–1 and Example 13–7 shows the remote component
interface corresponding to the EJB 2.1 BMP entity bean in Example 13–5.

Implementing the Local Component Interface
The local component interface defines the business methods of the bean that a local
(collocated) client can invoke. The requirements for developing the local component
interface include:

■ The local component interface of the bean must extend the
javax.ejb.EJBLocalObject interface.

■ You declare the local component interface and its methods as public.

Implementing the setEntityContext and unsetEntityContext Methods
An entity bean instance uses this method to retain a reference to its context. Entity
beans have contexts that the container maintains and makes available to the beans.
The bean may use the methods in the entity context to retrieve information about the
bean, such as security, and transactional role. Refer to the Enterprise JavaBeans
specification from Sun Microsystems for the full range of information that you can
retrieve about the bean from the context.

The container invokes the setEntityContext method, after it first instantiates the
bean, to enable the bean to retrieve the context. The container will never call this
method from within a transaction context. If the bean does not save the context at this
point, the bean will never gain access to the context.

When the container calls this method, it passes the reference of the EntityContext
object to the bean. The bean can then store the reference for later use. The following
example shows the bean saving the context in the this.ctx variable.

You use this method to obtain a reference to the context of the bean. Entity beans have
entity contexts that the container maintains and makes available to the beans. The
bean may use the methods in the entity context to make callback requests to the
container.

Example 13–10 shows an entity bean saving the session context in the entityctx
variable.

Example 13–10 Implementing the setEntityContext and unsetEntityContext Methods

import javax.ejb.*;

public class MyBean implements EnityBean {
EntityContext entityctx;

Note: You can also use the setEntityContext and
unsetEntityContext methods to allocate and destroy any
resources that will exist for the lifetime of the instance.

Implementing the setEntityContext and unsetEntityContext Methods

Implementing an EJB 2.1 Entity Bean 13-21

public void setEntityContext(EntityContext ctx) {
entityctx = ctx; // entity context is stored in instance variable

}

public void unsetEntityContext() {
entityctx = null;

}

// other methods in the bean
}

Implementing the setEntityContext and unsetEntityContext Methods

13-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using EJB 2.1 CMP Entity Bean API 14-1

14
Using EJB 2.1 CMP Entity Bean API

This chapter describes the various options that you must configure in order to use an
EJB 2.1 CMP entity bean.

Table 14–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is an EJB 2.1 CMP Entity Bean?" on page 1-20

■ "Implementing an EJB 2.1 CMP Entity Bean" on page 13-1

Configuring an EJB 2.1 CMP Entity Bean Primary Key
Every EJB 2.1 CMP entity bean must have a primary key field.

You can configure the primary key as a well-known Java type (see "Configuring an
EJB 2.1 CMP Entity Bean Primary Key Field" on page 14-2) or as a special type that you
create (see "Configuring an EJB 2.1 CMP Entity Bean Composite Primary Key Class"
on page 14-3).

You can either assign primary key values yourself, or, more typically, you can
associate a primary key field with a primary key value generator (see "Configuring
EJB 2.1 CMP Entity Bean Automatic Primary Key Generation" on page 14-5).

Configuring an EJB 2.1 CMP Entity Bean Primary Key Field
For a simple EJB 2.1 CMP entity bean, you can define your primary key to be a
well-known Java type as follows:

Table 14–1 Configurable Options for an EJB 2.1 CMP Entity Bean

Options Type

"Configuring an EJB 2.1 CMP Entity Bean Primary Key" on page 14-1 Basic

"Configuring Automatic Database Table Creation" on page 14-6

"Configuring an EJB 2.1 CMP Entity Bean Container-Managed Persistence Field" on page 14-7 Basic

"Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field" on
page 14-8

Basic

"Configuring Default Mappings" on page 14-10 Basic

"Configuring Lazy Loading on Finder Methods" on page 14-14 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Entity Beans" on page 31-5 Advanced

Configuring an EJB 2.1 CMP Entity Bean Primary Key

14-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean" on page 13-1)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 14-2)

Once defined, the container may create a column or columns in the entity bean table
for the primary key and maps the primary key defined in the deployment descriptor
to this column.

Once this configuration is complete, the container manages the instantiation of
primary keys of this type and initializes your entity bean primary key field
accordingly.

If you specify your primary key type as java.lang.Object, you can rely on the container
to automatically handle the allocation of primary key values (see "Configuring EJB 2.1
CMP Entity Bean Automatic Primary Key Generation" on page 14-5).

Using Deployment XML
Example 14–1 shows the ejb-jar.xml file entity element attributes
prim-key-class and primkey-field configured to specify a primary key as
well-known Java type Integer.

Example 14–1 ejb-jar.xml for Primary Key Field with Type Integer

<enterprise-beans>
<entity>
<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNo</primkey-field>
</entity>

...
</enterprise-beans>

Within the orion-ejb-jar.xml file, the primary key is mapped to the underlying
database persistence storage by mapping the CMP field or primary key field defined
in the ejb-jar.xml file to the database column name. Example 14–2 shows the
EmpBean persistence storage is defined as the EMP table in the database that is defined
in the jdbc/OracleDS data source. Following the <entity-deployment> element
definition, the primary key, empNo, is mapped to the EMPNO column in the Emp table,
and the empName and salary CMP fields are mapped to EMPNAME and SALARY
columns respectively in the EMP table.

Example 14–2 orion-ejb-jar.xml for Primary Key Field

<entity-deployment name="EmployeeBean" ...table="EMP"
data-source="jdbc/OracleDS"... >

<primkey-mapping>

Configuring an EJB 2.1 CMP Entity Bean Primary Key

Using EJB 2.1 CMP Entity Bean API 14-3

<cmp-field-mapping name="empNo" persistence-name="EMPNO" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="EMPNAME" />
<cmp-field-mapping name="salary" persistence-name="SALARY" />

...

Configuring an EJB 2.1 CMP Entity Bean Composite Primary Key Class
If your primary key is more complex than a well-known Java data type, then you can
define your own primary key class.

Your primary key class must have the following characteristics:

■ be named <name>PK

■ be public and serializable

■ provide a constructor for creating a primary key instance

Your class may contain any number of instance variables used to form the primary
key. Instance variables must have the following characteristics:

■ be public

■ use data types that are either primitive or serializable, or types that can be mapped
to SQL types

Once the primary key class is defined (see "Using Java" on page 14-3), to use it in an
EJB, you must:

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean" on page 13-1)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 14-4)

Once this configuration is complete, the container manages the instantiation of
primary keys of this type and initializes your entity bean primary key field
accordingly.

Using Java
Example 14–3 shows an example primary key class.

Example 14–3 EJB 2.1 CMP Entity Bean Primary Key Class Implementation

package employee;

import java.io.*;
import java.io.Serializable;
...

public class EmployeePK implements java.io.Serializable
{
 public Integer empNo;

 public EmployeePK()
 {
 this.empNo = null;
 }

 public EmployeePK(Integer empNo)
 {
 this.empNo = empNo;

Configuring an EJB 2.1 CMP Entity Bean Primary Key

14-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

 }
}

Using Deployment XML
As Example 14–4 shows, you define the primary key class within the ejb-jar.xml
file <prim-key-class> element. You define each primary key class instance variable
in a <cmp-field><field-name> element using the same variable name as that used
in the primary key class.

Example 14–4 ejb-jar.xml For a Primary Key Class and Its Instance Variables

<enterprise-beans>
<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>

 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.LocalEmployeeHome</home>
 <local>employee.LocalEmployee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>

</entity>
</enterprise-beans>

Once defined, the container may create a column or columns in the entity bean table
for the primary key and maps the primary key class defined in the deployment
descriptor to this column.

The CMP fields are mapped in the orion-ejb-jar.xml in the same manner as
described in "Configuring an EJB 2.1 CMP Entity Bean Primary Key Field" on
page 14-2. However, with a complex primary key, the mapping contains more than a
single field; thus, the <primkey-mapping><cmp-field-mapping> element
contains another subelement: the <fields> element. All of the fields of a primary key
are each defined in a separate <cmp-field-mapping> element within the <fields>
element, as Example 14–5 shows.

Example 14–5 orion-ejb-jar.xml for Primary Key Field

<primkey-mapping>
<cmp-field-mapping>
<fields>
<cmp-field-mapping name="empNo" persistence-name="EMPNO" />

</fields>
</cmp-field-mapping>

</primkey-mapping>

Configuring EJB 2.1 CMP Entity Bean Automatic Primary Key Generation
If you specify the type of your primary key field (see "Configuring an EJB 2.1 CMP
Entity Bean Primary Key Field" on page 14-2) as java.lang.Object but do not

Configuring Automatic Database Table Creation

Using EJB 2.1 CMP Entity Bean API 14-5

specify the primary key name, then the primary key is auto-generated by the container
(see "Using Deployment XML" on page 14-5).

Using Deployment XML
Example 14–6 shows the ejb-jar.xml for an unnamed primary key field of type
Object.

Example 14–6 ejb-jar.xml for Primary Key Field with Type Object

<enterprise-beans>
<entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeLocalHome</local-home>
 <local>employee.EmployeeLocal</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Object</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>

</entity>
...
</enterprise-beans>

Once defined, the container creates a column in the entity bean table for the primary
key of type LONG. The container uses random numbers for the primary key values.
This is generated in the orion-ejb-jar.xml for the bean as Example 14–7. In this
case, the container will create a column named autoid.

Example 14–7 orion-ejb-jar.xml for Automatically Generated Primary Key Field

<primkey-mapping>
<cmp-field-mapping name="auto_id" persistence-name="autoid"/>

</primkey-mapping>

Configuring Automatic Database Table Creation
You can configure OC4J to automatically create (and, optionally, delete) database
tables for your persistent objects (see "Using Deployment XML" on page 14-6).

You can use this feature in conjunction with default mappings (see "Configuring
Default Mappings" on page 14-10).

Using Deployment XML
You can configure automatic database table creation at one of three levels as
Table 14–2 shows. You can override the system level configuration at the application
level and you can override system and application configuration at the EJB module
level.

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Persistence Field

14-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

If you configure automatic table generation at the EJB module level, the value you
assign to the db-table-gen attribute corresponds to the autocreate-tables and
autodelete-tables settings as Table 14–3 shows.

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Persistence
Field

You do not define CMP fields in the entity bean class: CMP fields are virtual only.
OC4J supplies the implementation of the CMP fields.

You must define public, abstract get and set methods for the CMP fields, using
the JavaBeans conventions (see "Using Java" on page 14-7). OC4J supplies the
implementation of these methods. You must not expose these get and set methods in
the remote interface of the entity bean.

You may assign only the following Java types to CMP fields: Java primitive types and
Java serializable types. You may not assign an entity bean local interface type (or a
collection of such) to a CMP field.

The container-managed persistent fields must be specified in the ejb-jar.xml
deployment descriptor using the cmp-field element (see "Using Deployment XML"
on page 14-8). The names of these fields must be valid Java identifiers and must begin
with a lowercase letter, as determined by java.lang.Character.isLowerCase.

The accessor methods must bear the name of the cmp-field that is specified in the
deployment descriptor, and in which the first letter of the name of the cmp-field has
been upper cased and prefixed by get or set.

For more information, see "What are Container-Managed Persistence Fields?" on
page 1-20.

Using Java
Example 14–8 shows the abstract get and set methods for the CMP fields specified in
the ejb-jar.xml file (see "Using Deployment XML" on page 14-8).

Table 14–2 Configuring Automatic Table Generation

Level Configuration File Setting Values

System (global) <OC4J_HOME>/config/
application.xml

autocreate-tables

autodelete-tables

True1 or False

True or False1

1 Default.

Application (EAR) orion-application.xml autocreate-tables

autodelete-tables

True1 or False

True or False1

EJB Module (JAR) orion-ejb-jar.xml pm-properties sub-element
default-mapping attribute
db-table-gen2

2 For more information, see "Customizing the TopLink Persistence Manager" on page 3-5.

Create,
DropAndCreate,
or UseExisting3

3 See Table 14–3.

Table 14–3 Equivalent Settings for db-table-gen

db-table-gen Setting autocreate-tables Setting autodelete-tables Setting

Create True False

DropAndCreate True True

UseExisting False NA

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field

Using EJB 2.1 CMP Entity Bean API 14-7

Example 14–8 EJB 2.1 Container-Managed Persistence Fields

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean
{

private EntityContext ctx;

// cmp fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

...
}

Using Deployment XML
Example 14–9 shows the cmp-field elements for the get and set methods specified in
the bean class (see "Using Java" on page 14-7).

Example 14–9 ejb-jar.xml for an EJB 2.1 CMP Field

<enterprise-beans>
<entity>

<ejb-name>Topic</ejb-name>
<local-home>faqapp.TopicLocalHome</local-home>
<local>faqapp.TopicLocal</local>
<ejb-class>faqapp.TopicBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<primkey-field>topicID</primkey-field>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>TopicBean</abstract-schema-name>
<cmp-field>

<field-name>topicID</field-name>
</cmp-field>
<cmp-field>

<field-name>topicDesc</field-name>
</cmp-field>
...

</entity>
</enterprise-beans>

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship
Field

You do not define CMR fields in the entity bean class: CMR fields are virtual only.
OC4J supplies the implementation of the CMR fields.

You must define public, abstract get and set methods for the CMR fields in the
local interface of the related entity bean, using the JavaBeans conventions (see "Using

Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field

14-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Java" on page 14-9). OC4J supplies the implementation of these methods. You must
not expose these get and set methods in the remote interface of the entity bean.

You may assign only the following Java types to CMP fields: Java primitive types and
Java serializable types. You may assign an entity bean local interface type (or a
collection of such) to a CMR field.

You must specify container-managed relationship fields in the ejb-jar.xml
deployment descriptor using the cmr-field element (see "Using Deployment XML"
on page 14-10). The names of these fields must be valid Java identifiers and must begin
with a lowercase letter, as determined by java.lang.Character.isLowerCase.

The accessor methods must bear the name of the container-managed relationship field
(cmr-field) that is specified in the deployment descriptor, and in which the first
letter of the name of the cmr-field has been upper cased and prefixed by get or
set.

The accessor methods for CMR fields for one-to-many or many-to-many relationships
must utilize one of the following collection interfaces: java.util.Collection or
java.util.Set. The collection interfaces used in relationships are specified in the
deployment descriptor. The implementation of the collection classes used for the CMR
fields is supplied by the container. The collection classes that are used for
container-managed relationships must not be exposed through the remote interface of
the entity bean.

For more information, see:

■ "What are Container-Managed Relationship Fields?" on page 1-21

■ "Configuring Default Mappings" on page 14-10

Using Java
Example 14–10 shows the abstract get and set methods for the CMR fields specified in
the ejb-jar.xml file (see "Using Deployment XML" on page 14-10).

Example 14–10 EJB 2.1 Container-Managed Relationship Fields

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean
{

private EntityContext ctx;

// cmp fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

public abstract void setProjects(Collection projects);
public abstract Collection getProjects();

...
}

Configuring Default Mappings

Using EJB 2.1 CMP Entity Bean API 14-9

Using Deployment XML
Example 14–11 shows the cmr-field elements for the get and set methods specified
in the bean class (see "Using Java" on page 14-9).

Example 14–11 ejb-jar.xml for an EJB 2.1 CMR Field

...
<relationships>

<ejb-relation>
<ejb-relation-name>Topic-Faqs</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Topic-has-Faqs</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>TopicBean</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>faqs</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relation>
...

<relationships>

Configuring Default Mappings
You can configure OC4J to automatically generate all required mappings at
deployment time (see "Using Deployment XML" on page 14-10). To use this feature,
you must:

■ Omit all container-managed relationship configuration (see "Configuring an EJB
2.1 CMP Entity Bean Container-Managed Persistence Field" on page 14-7).

■ Ensure that no toplink-ejb-jar.xml is present in the EJB module (see "What
is the toplink-ejb-jar.xml File?" on page 2-11).

You can use this feature in conjunction with automatic database table creation (see
"Configuring Automatic Database Table Creation" on page 14-6).

Using Deployment XML
To configure default mapping, configure the orion-ejb-jar.xml file element
pm-properties subelement default-mapping as Table 14–4 shows.

Configuring Default Mappings

14-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 14–4 orion-ejb-jar.xml File pm-properties Subentries for default-mapping

Entry Description

db-table-gen Optional element that determines what TopLink will do to prepare the
database tables that are being mapped to. Valid values are:

■ Create (default): This value tells TopLink to create the mapped
tables during the deployment. If the tables already exist, TopLink
will log an appropriate warning messages (such as "Table already
existed...") and keeps processing the deployment.

■ DropAndCreate: This value tells TopLink to drop tables before
creating them during deployment. If a table does not initially exist,
the drop operation will cause anSQLException to be thrown through
the driver. However, TopLink handles the exception (logs and
ignores it) and moves on to process the table creation operation. The
deployment fails only if both drop and create operations fail.

■ UseExisting: This value tells TopLink to perform no table
manipulation. If the tables do not exist, deployment still goes
through without error.

If no orion-ejb-jar.xml file is defined in your EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for db-table-gen, use the TopLink system property
toplink.defaultmapping.dbTableGenSetting. For example:
-Dtoplink.defaultmapping.dbTableGenSetting="DropAndCre
ate".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

This setting overrides autocreate-tables and autodelete-tables
configuration at the application (EAR) or system level. For more
information, see "Configuring Automatic Database Table Creation" on
page 14-6.

extended-table-names An element used if the generated table names are not long enough to be
unique. Values are restricted to true or false (default). When set to
true, the TopLink run time will ensure that generated tables names are
unique.

In default mapping, each entity is mapped to one table. The only
exception is in many-to-many mappings where there is one extra relation
table involved in the source and target entities.

When extended-table-names is set to false (the default), a simple
table naming algorithm is used as follows: table names are defined as TL_
<bean_name>. For example, if the bean name is Employee, the
associated table name would be TL_EMPLOYEE.

However, if the same entity is defined in multiple JAR files in an
application, or across multiple applications, table-naming collision is
inevitable.

To address this problem, set extended-table-names to true. When
set to true, TopLink uses an alternative table-naming algorithm as
follows: table names are defined as <bean_name>_<jar_name>_<app_
name>. This algorithm uses the combination of bean, JAR, and EAR
names to form a table name unique across the application. For example,
given a bean named Employee, which is in Test.jar, which is in
Demo.ear (and the application name is "Demo"), then the corresponding
table name will be EMPLOYEE_TEST_DEMO.

If there is no orion-ejb-jar.xml file defined in the EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for extended-table-names, use the TopLink system property
toplink.defaultmapping.useExtendedTableNames. For example:
-Dtoplink.defaultmapping.useExtendedTableNames="true".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

Configuring Lazy Loading on Finder Methods

Using EJB 2.1 CMP Entity Bean API 14-11

Configuring Lazy Loading on Finder Methods
Each finder method retrieves one or more objects. In the default scenario (which is set
to NO lazy loading), the finder method causes a single SQL select statement to be
executed against the database. For a CMP bean, one or more objects are retrieved with
all of their CMP fields. So, for example, with the findAllEmployees method, this
finder retrieves all employee objects with all of the CMP fields in each employee
object.

If you turn on lazy loading, then only the primary keys of the objects retrieved within
the finder are returned. Then, only when you access the object within your
implementation, OC4J uploads the actual object based on the primary key. With the
findAllEmployees finder method example, all of the employee primary keys are
returned in a Collection. The first time you access one of the employees in the
Collection, OC4J uses the primary key to retrieve the single employee object from
the database. You may want to turn on the lazy loading feature if the number of
objects that you are retrieving is so large that loading them all into your local cache
would be a performance degradation.

You have a performance consideration with lazy loading. If you retrieve multiple
objects, but you only use a few of them, then you should turn on lazy loading. In
addition, if you only use objects through the getPrimaryKey method, then you
should also turn on lazy loading.

Using Deployment XML
To turn on lazy loading in the findByPrimaryKey method, set the
findByPrimaryKey-lazy-loading attribute to true, as follows:

<entity-deployment ... findByPrimaryKey-lazy-loading="true" ... >

To turn on lazy loading in any custom finder method, set the lazy-loading attribute to
true in the <finder-method> element for that custom finder, as follows:

<finder-method ... lazy-loading="true" ...>
...

</finder-method>

Note: If you set this attribute to true, the
min/max-instances-per-pk attribute is ignored.

Configuring Lazy Loading on Finder Methods

14-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using EJB 2.1 BMP Entity Bean API 15-1

15
Using EJB 2.1 BMP Entity Bean API

This chapter describes the various options that you must configure in order to use an
EJB 2.1 BMP entity bean.

Table 15–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is an EJB 2.1 BMP Entity Bean?" on page 1-23

■ "Implementing an EJB 2.1 BMP Entity Bean" on page 13-6

Configuring a Read-Only BMP Entity Bean
You can configure a BMP entity bean as read-only. By doing so, you enter into a
contract with OC4J by which you guarantee not to change the BMP entity bean’s state
after it is activated. Unlike CMP read-only, no exception will be thrown if you do
update a read-only BMP bean.

When you configure a BMP entity bean as read-only, OC4J uses a special case of
commit option A (see "Configuring BMP Commit Options" on page 15-3) to improve
performance by:

■ Caching the instance

■ Not calling ejbLoad after activation

■ Not updating the instance or calling ejbStore when the transaction commits

As Figure 15–1 shows, multiple clients accessing the same read-only BMP entity bean
by primary key are allocated a single instance. Both Client 1 and Client 2 are satisfied
by the same cached read-only BMP entity bean instance. Because the BMP entity bean
is read-only, both transactions can proceed in parallel.

Without this optimization, each client is allocated a separate instance and each
instance requires the execution of all lifecycle methods.

Table 15–1 Configurable Options for an EJB 2.1 BMP Entity Bean

Options Type

"Configuring a Read-Only BMP Entity Bean" on page 15-2 Advanced

"Configuring BMP Commit Options" on page 15-3 Advanced

"Configuring an EJB 2.1 BMP Entity Bean Query" on page 15-3 Basic

"Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean" on page 15-5 Basic

Configuring BMP Commit Options

15-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure 15–1 Read-Only BMP Entity Beans and Commit Option A

Using Deployment XML
Example 15–1 shows the orion-ejb-jar.xml file entity-deployment element
locking-mode attribute mode configured to specify a BMP entity bean as read-only.

Example 15–1 orion-ejb-jar.xml For Read-Only

<entity-deployment
name=EmployeeBean"
location="bmpapp/EmployeeBean"
locking-mode="read-only"

>
...
</entity-deployment>

Configuring BMP Commit Options
For a BMP entity bean, you can choose between commit options A and C.

Commit option A offers a performance improvement by postponing a call to
ejbLoad.

If you configure a read-only BMP entity bean to use commit option A (see
"Configuring a Read-Only BMP Entity Bean" on page 15-2), you can further improve
performance by taking advantage of read-only BMP entity bean caching (see "Commit
Options and BMP Applications" on page 1-28.

Commit option C is the default.

For more information, see "What are Entity Bean Commit Options?" on page 1-27.

Using Deployment XML
Example 15–2 shows the orion-ejb-jar.xml file entity-deployment element
commit-option sub-element attribute mode. Valid settings are A and C. The
number-of-buckets attribute is the maximum number of cached instances allowed
and is applicable only for commit option A.

Example 15–2 orion-ejb-jar.xml For Commit Options

<entity-deployment name=EmployeeBean" location="bmpapp/EmployeeBean" >
<resource-ref-mapping name="jdbc/OracleDS" />
<commit-option mode="A" number-of-buckets="10" />

</entity-deployment>

Configuring an EJB 2.1 BMP Entity Bean Query

Using EJB 2.1 BMP Entity Bean API 15-3

Configuring an EJB 2.1 BMP Entity Bean Query
You must implement an ejbFindByPrimaryKey method for a BMP entity bean (see
"Implementing an EJB 2.1 BMP the ejbFindByPrimaryKey Method" on page 15-3).
Optionally, you may configure other finders (see "Implementing Other EJB 2.1 BMP
Finder Methods" on page 15-4).

For more information, see "Using EJB 2.1 Query API" on page 16-1.

Implementing an EJB 2.1 BMP the ejbFindByPrimaryKey Method
The ejbFindByPrimaryKey implementation is a requirement for all BMP entity
beans. Its primary responsibility is to ensure that the primary key corresponds to a
valid bean. Once it is validated, it returns the primary key to the container, which uses
the key to return the bean reference to the user.

This sample verifies that the employee number is valid and returns the primary key,
which is the employee number, to the container. A more complex verification would
be necessary if the primary key was a class.

public EmployeePK ejbFindByPrimaryKey(EmployeePK pk)
throws FinderException

{
if (pk == null || pk.empNo == null) {

throw new FinderException("Primary key cannot be null");
}
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByPKStatement);
ps.setInt(1, pk.empNo.intValue());
ps.executeQuery();
ResultSet rs = ps.getResultSet();
if (rs.next()) {

pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));

} else {
throw new FinderException("Failed to select this PK");

}
} catch (SQLException e) {

throw new FinderException(e.getMessage());
} catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}
return pk;

}

Implementing Other EJB 2.1 BMP Finder Methods
Optionally, you can create other finder methods in addition to the single
ejbFindByPrimaryKey.

To create other finder methods, do the following:

1. Add the finder method to the home interface.

Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean

15-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. Implement the finder method in the BMP bean implementation.

Finders can retrieve one or more beans according to the WHERE clause. If more than a
single bean is returned, then a Collection of primary keys must be returned by the
BMP finder method. These finder methods need only to gather the primary keys for all
of the entity beans that should be returned to the user. The container maps the
primary keys to references to each entity bean within either a Collection (if
multiple references are returned) or to the single class type.

The following example shows the implementation of a finder method that returns all
employee records.

public Collection ejbFindAll() throws FinderException
{
ArrayList recs = new ArrayList();

ps = conn.prepareStatement("SELECT EMPNO FROM EMPLOYEEBEAN");
ps.executeQuery();
ResultSet rs = ps.getResultSet();

int i = 0;

while (rs.next())
{
 retEmpNo = new Integer(rs.getInt(1));
 recs.add(retEmpNo);
}

 ps.close();
 return recs;
}

Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean
In a BMP entity bean, you are responsible for implementing all of the EJB 2.1 BMP
entity bean lifecycle callback methods:

Implementing an EJB 2.1 BMP ejbStore Method
The ejbStore method is called by the container before the object is passivated or
whenever a transaction is about to end. Its purpose is to save the persistent data to an
outside resource, such as a database

The container invokes the ejbStore method when the persistent data should be
saved to the database. This synchronizes the state of the instance to the entity in the
underlying database. For example, the container invokes before the container
passivates the bean instance or removes the instance. The BMP bean is responsible for
ensuring that all data is stored to some resource, such as a database, within this
method.

public void ejbStore() throws EJBException
{

//Container invokes this method to instruct the instance to
//synchronize its state by storing it to the underlying database
//System.out.println("EmployeeBean.ejbStore(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);
ps = conn.prepareStatement(updateStatement);
ps.setString(1, pk.empName);
ps.setFloat(2, pk.salary.floatValue());

Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean

Using EJB 2.1 BMP Entity Bean API 15-5

ps.setInt(3, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new EJBException("Failed to update record");
}

} catch (SQLException e) {
throw new EJBException(e.getMessage());

} catch (NamingException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

Implementing an EJB 2.1 BMP ejbLoad Method
The ejbLoad method is called by the container before the object is activated or
whenever a transaction has begun, or when an entity bean is instantiated. Its purpose
is to restore any persistent data that exists for this particular bean instance

The container invokes the ejbLoad method whenever it needs to synchronize the
state of the bean with what exists in the database. This method is invoked after
activating the bean instance to refresh it with the state that is in the database. The
purpose of this method is to repopulate the persistent data with the saved state. For
most ejbLoad methods, this implies reading the data from a database into the
instance data variables.

public void ejbLoad() throws EJBException
{

//Container invokes this method to instruct the instance to
//synchronize its state by loading it from the underlying database
//System.out.println("EmployeeBean.ejbLoad(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
ejbFindByPrimaryKey(pk);

} catch (FinderException e) {
throw new EJBException (e.getMessage());

}
}

Implementing an EJB 2.1 BMP ejbPassivate Method
The ejbPassivate method is invoked directly before the bean instance is serialized
for future use. It will be re-activated, through the ejbActivate method, the next
time the user invokes a method on this instance.

Before the bean is passivated, you should release all resources and release any static
information that would be too large to be serialized. Any large, static information that
can be easily regenerated within the ejbActivate method should be released in this
method.

In our example, the only resource that cannot be serialized is the open database
connection. It is closed in this method and reopened in the ejbActivate method.

public void ejbPassivate()
{

// Container invokes this method on an instance before the instance

Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean

15-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

// becomes disassociated with a specific EJB object
conn.close();

}

Implementing an EJB 2.1 BMP ejbActivate Method
The container invokes this method when the bean instance is reactivated. That is, the
user has asked to invoke a method on this instance. This method is used to open
resources and rebuild static information that was released in the ejbPassivate
method.

In addition, the container invokes this method after the start of any transaction.

Our employee example opens the database connection where the employee
information is stored.

public void ejbActivate()
{

// Container invokes this method when the instance is taken out
// of the pool of available instances to become associated with
// a specific EJB object
conn = getConnection(dsName);

}

Implementing an EJB 2.1 BMP ejbRemove Method
The container invokes the ejbRemove method before removing the bean instance
itself or by placing the instance back into the bean pool. This means that the
information that was represented by this entity bean should be removed from within
persistent storage. The employee example removes the employee and all associated
information from the database before the instance is destroyed. Close the database
connection.

public void ejbRemove() throws RemoveException
{

//Container invokes this method befor it removes the EJB object
//that is currently associated with the instance
//System.out.println("EmployeeBean.ejbRemove(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);
ps = conn.prepareStatement(deleteStatement);
ps.setInt(1, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new RemoveException("Failed to delete record");
}

} catch (SQLException e) {
throw new RemoveException(e.getMessage());

} catch (NamingException e) {
System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

} finally {
try {

ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

Using EJB 2.1 Query API 16-1

16
Using EJB 2.1 Query API

This chapter describes:

■ Implementing an EJB 2.1 EJB QL Finder Method

■ Implementing an EJB 2.1 EJB QL Select Method

■ OC4J EJB 2.1 EJB QL Extensions

For more information, see:

■ "How Do You Query for an EJB 2.1 Entity Bean?" on page 1-28

■ "Implementing an EJB 2.1 Entity Bean" on page 13-1

Implementing an EJB 2.1 EJB QL Finder Method
The following procedure describes how to implement an EJB 2.1 EJB QL finder
method.

Before implementing a finder method, consider the predefined and default finders that
OC4J provides (see "Predefined TopLink Finders" on page 1-32 and "Default TopLink
Finders" on page 1-33).

For more information, see "Understanding Finder Methods" on page 1-31.

1. Define the finder method in the home interface (see "Using Java" on page 16-2).

If you are exposing only predefined or default finders (see "Predefined TopLink
Finders" on page 1-32 and "Default TopLink Finders" on page 1-33), you are done.

If you are exposing a custom finder, proceed to step 2.

2. Configure the ejb-jar.xml file (see "Using Deployment XML" on page 16-3).

a. For each entity bean that you plan to reference in your EJB QL query,
configure the <entity> element <abstract-schema-name> sub-element.

Note: For an example OC4J EJB QL application, see:
http://www.oracle.com/technology/sample_
code/tech/java/ejb_corba/ejbql/Readme.html.

Note: You can do this manually as described here or you can use the
TopLink Workbench (see "Using TopLink Workbench" on
page 16-4) to automate this step and to take advantage of advanced
TopLink finder configuration.

Implementing an EJB 2.1 EJB QL Finder Method

16-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The <abstract-schema-name> sub-element defines the name that
identifies the entity bean in the EJB QL statement. For example, given an entity
bean class named EmpBean, if you define its <abstract-schema-name> as
Employee, then in your EJB QL statement, when you use the name
Employee, the container will map that name to the EmpBean entity bean (see
Example 16–2).

b. Define a <query> element for each finder method that you exposed in the EJB
home interface.

The <query> element has the following sub-elements:

– <description>: optional explanatory text

– <query-method>: describes the finder method and includes the
following sub-elements:

<method-name>: identifies the finder method. Configure this element
with the same method name as defined in the home interface.

<method-params>: if the finder takes arguments, define this element
and for each argument, define a <method-param> sub-element that gives
the argument type. The type and order of arguments must match that
specified by this finder’s signature.

– <ejb-ql>: contains the EJB QL statement for this method.

You can define a full query or just the conditional statement (the WHERE
clause).

If the finder method returns a Collection, to ensure that no duplicates
are returned, specify the DISTINCT keyword in the EJB QL statement.

To use parameters (as specified by <method-params>) in your EJB QL,
use the <integer>? notation where <integer> begins with 1. For
example, ?1 corresponds to the first <method-param> element, ?2 corre-
sponds to the second <method-param> element, and so on (see the fin-
dAllByEmpName finder in Example 16–2).

To define an EJB QL statement that relates this EJB with another, you must
first define the appropriate container-managed relationship. The findBy-
DeptNo finder in Example 16–2 requires the relationship with
<ejb-relation-name> Employee-Departments. For more informa-
tion, see "Configuring an EJB 2.1 CMP Entity Bean Container-Managed
Relationship Field" on page 14-8.

Using Java
Example 16–1 shows a remote home interface called EmpBeanHome .

Example 16–1 Finder Methods in an EJB 2.1 CMP Entity Bean Remote Home Interface

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

Note: Do not define a <query> element for predefined or default
finders, including findByPrimaryKey.

Implementing an EJB 2.1 EJB QL Finder Method

Using EJB 2.1 Query API 16-3

public interface EmpBeanHome extends EJBHome
{

public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
 * Finder methods. These are implemented by the container. We can
 * customize the functionality of these methods in the deployment
 * descriptor through EJB-QL.
 **/

// Predefined Finders: <query> element in ejb-jar.xml not required

public Topic findByPrimaryKey(Integer key) throws FinderException;
public Collection findManyBySQL(String sql, Vector args) throws FinderException

// Default Finder: <query> element in ejb-jar.xml not required

public Topic findByEmpNo(Integer empNo) throws FinderException;

// Custom Finders: <query> element is required in ejb-jar.xml

public Collection findAllRegionalEmployees(Integer empNo) throws FinderException;
public Collection findAllByEmpName(String empName) throws FinderException;
public Topic findByDeptNo(Integer deptNo) thorws FinderException
public Collection findAllBetweenSalaries(Integer lowSalary, Integer highSalary);

}

Using Deployment XML
Example 16–2 shows the ejb-jar.xml for the finders declared in the home interface
that Example 16–1 shows.

Example 16–2 ejb-jar.xml For EJB 2.1 EJB QL Finders

<enterprise-beans>
<entity>

<display-name>EmpBean</display-name>
<ejb-name>EmpBean</ejb-name>
...
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNo</primkey-field>
<prim-key-class>java.lang.Integer</prim-key-class>
...
<query>

<description>Regional employees have empNo greater than 10000</description>
<query-method>

<method-name>findAllRegionalEmployees</method-name>
<method-params></method-params>

</query-method>
<ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empNo > 10000</ejb-ql>

</query>
<query>

<description>Find all employees with the given name</description>
<query-method>

<method-name>findAllByEmpName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empName = ?1</ejb-ql>

Implementing an EJB 2.1 EJB QL Finder Method

16-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</query>
<query>

<description>Relationship finder</description>
<query-method>

<method-name>findByDeptNo</method-name>
<method-params>

<method-param>java.lang.Integer</method-param>
</method-params>

</query-method>
<ejb-ql>
SELECT DISTINCT OBJECT(e) From Employee e, IN (e.dept) AS d WHERE d.deptNo = ?1

</ejb-ql>
</query>
<query>

<description>Find all employees with salaries in the given range</description>
<query-method>

<method-name>findAllBetweenSalaries</method-name>
<method-params>

<method-param>java.lang.Integer</method-param>
<method-param>java.lang.Integer</method-param>

</method-params>
</query-method>
<ejb-ql>

SELECT OBJECT (e) FROM Employee e WHERE e.salary BETWEEN ?1 and ?2
</ejb-ql>

</query>
...
</entity>

...
</enterprise-beans>
<relationships>

<ejb-relation>
<ejb-relation-name>Employee-Departments</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Employee-has-Departments</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>Department</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>dept</cmr-field-name>
<cmr-field-type>java.lang.Integer</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relation>
...
<relationships>

Using TopLink Workbench
Using the TopLink Workbench, you can configure your toplink-ejb-jar.xml file
with a custom TopLink finder and update your ejb-jar.xml file.

For more information, see:

■ "Creating a Finder" in the Oracle TopLink Developer’s Guide

■ "Configuring Named Queries at the Descriptor Level" in the Oracle TopLink
Developer’s Guide

Implementing an EJB 2.1 EJB QL Select Method

Using EJB 2.1 Query API 16-5

Implementing an EJB 2.1 EJB QL Select Method
The following procedure describes how to implement an EJB 2.1 EJB QL select
method.

For more information, see "Understanding Select Methods" on page 1-33.

1. Define the select method as a public, abstract method of your abstract entity
bean class (see "Using Java" on page 16-5).

2. In the ejb-jar.xml file (see "Using Deployment XML" on page 16-7):

a. For each entity bean that you plan to reference in your EJB QL query,
configure the <entity> element <abstract-schema-name> sub-element.

The <abstract-schema-name> sub-element defines the name that
identifies the entity bean in the EJB QL statement. For example, given an entity
bean class named EmpBean: if you define your <abstract-schema-name>
as Employee, then in your EJB QL statement, when you use the name
Employee, the container will map that name to the EmpBean entity bean ().

b. Define a <query> element for each select method that you exposed in the EJB
home interface.

You can define a full query or just the conditional statement (the WHERE
clause).

If the select method returns a Collection, to ensure that no duplicates are
returned, specify the DISTINCT keyword in the EJB QL statement.

The <query> element has two main elements:

– The <method-name> element identifies the select method: configure this
element with the same name as defined in the bean class.

– The <ejb-ql> element contains the EJB QL statement for this method.

c. If the query returns a Collection of CMR values, decide on the interface
type you want returned:

The ejb-jar.xml file <result-type-mapping> element determines the
return type for select methods. Set the flag to Remote to return EJBObjects;
set it to Local to return EJBLocalObjects.

Using Java
Example 16–3 shows an abstract entity bean class called UserAccountBean for an EJB
2.1 CMP entity bean with select methods.

Example 16–3 EJB 2.1 CMP Entity Bean Implementation With Select Methods

package oracle.otnsamples.ejbql;

import javax.ejb.*;
import java.util.*;

public abstract class UserAccountBean implements EntityBean
{

/* --
* Non-Persistent State
* -------------------------------------- */

protected EntityContext ctx;

/* --

Implementing an EJB 2.1 EJB QL Select Method

16-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

* Begin abstract get/set methods. Container-managed
persistence fields are specified in the ejb-jar.xml
deployment descriptor.

* --- */

public abstract Long getAccountnumber();
public abstract void setAccountnumber(Long newAccountnumber);

public abstract Long getCreditlimit();
public abstract void setCreditlimit(Long newCreditlimit);

/**
 * Select methods. These are implemented by the container. We can
 * customize the functionality of these methods in the deployment
 * descriptor through EJB-QL.
 *
 * These methods are NOT exposed in the bean’s home interface.
 **/

public abstract Long ejbSelectCreditLimit(Long accountnumber) throws FinderException;
public abstract Collection ejbSelectByTopAccounts() throws FinderException;

/* --
* Begin buisness logic methods that use select methods.
*
* These methods are exposed in the bean’s home interfaces.
* --- */

/**
 * Method to perform post-processing operations on all the
 * UserAccounts retrieved by calling ejbSelectByTopAccounts. This
 * method further process the retrieved UserAccounts and checks
 * for the Accounts with TopCredits (credit limits) and returns the
 * collection of input number of UserAccounts.
 * Post-processing information within the EJB container itself
 * has the following two advantages:
 * 1) It improves performance as the application can now leverage
 * the advantage of the vast resources available to the server.
 * 2) The data-processing code should go into the business logic
 * and not the Web-tier. This helps in maintaining the code.
 * Consider these advantages when deciding between ejbFind and
 * ejbSelect methods.
 *
 * @return Collection of <input number of> Top (credited) UserAccounts
 */
public Collection ejbHomeTopAccounts(String accountNumbers) throws FinderException
{

// Invoke the ejbSelect method and get all the Account Information.
Collection collection = this.ejbSelectByTopAccounts();
...
return topAccounts;

}

/**
 * Method to call ejbSelectCreditLimit and return the credit limit value
 * for the input accountnumber without post-processing.
 * Please note that this method returns a Long instead of a collection
 * that is returned normally by the EJB container. This is a major
 * advantage of ejbSelect methods. Using these methods, we can return
 * an object from 'within' the CMP instead of 'the' CMP. This way, the
 * application uses the server and the EJB container resources more
 * effeciently.
 *
 * @return Credit Limit of the input UserAccount
 */
public Long ejbHomeCreditLimit(Long accountnumber) throws FinderException

Implementing an EJB 2.1 EJB QL Select Method

Using EJB 2.1 Query API 16-7

{
// Return the Credit Limit of the specified Account
return this.ejbSelectCreditLimit(accountnumber);

}
...

}

Using Deployment XML
Example 16–4 shows the ejb-jar.xml for the select methods defined in the abstract
entity bean class that Example 16–3 shows.

Example 16–4 ejb-jar.xml For EJB 2.1 EJB QL Select Methods

<enterprise-beans>
<entity>
<description>Entity Bean (CMP)</description>
<display-name>UserAccount</display-name>
<ejb-name>UserAccount</ejb-name>
<local-home>oracle.otnsamples.ejbql.UserAccountLocalHome</local-home>
<local>oracle.otnsamples.ejbql.UserAccount</local>
<ejb-class>oracle.otnsamples.ejbql.UserAccountBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<abstract-schema-name>UserAccount</abstract-schema-name>
<cmp-field>
<field-name>accountnumber</field-name>

</cmp-field>
<cmp-field>
<field-name>creditlimit</field-name>

</cmp-field>
<primkey-field>accountnumber</primkey-field>
<query>
<description>Selects all accounts and post-process to find top accounts</description>
<query-method>
<method-name>ejbSelectByTopAccounts</method-name>

</query-method>
<ejb-ql>select distinct object(ua) from UserAccount ua</ejb-ql>

</query>
<query>
<description>Retrieves the Credit Limit for an Account</description>
<query-method>
<method-name>ejbSelectCreditLimit</method-name>
<method-params>
<method-param>java.lang.Long</method-param>

</method-params>
</query-method>
<ejb-ql>

select ua.creditlimit from UserAccount ua where ua.accountnumber = ?1
</ejb-ql>

</query>
</entity>

</enterprise-beans>

Using TopLink Workbench
Using the TopLink Workbench, you can configure your toplink-ejb-jar.xml file
with a custom TopLink ejbSelect and update your ejb-jar.xml file.

For more information, see: "Creating a Finder" in the Oracle TopLink Developer’s Guide

OC4J EJB 2.1 EJB QL Extensions

16-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OC4J EJB 2.1 EJB QL Extensions
Although EJB 2.1 does not support square root, date, time, and timestamp types,
OC4J provides proprietary EJB QL extensions to support these types in EJB 2.1, as
follows:

■ SQRT(v): Both the double primitive type and the java.lang.Double types are
supported for arguments (see Example 16–5).

■ You can use the following date, time, and timestamp types in an EJB QL binary
expression, such as equality expressions:

– java.util.Date (see Example 16–6

– java.sql.Date (see Example 16–7)

– java.sql.Time (see Example 16–8)

– java.sql.Timestamp (see Example 16–9)

Example 16–5 Using the EJB 2.1 EJB QL Extension for SQRT

<query>
 <query-method>
 <method-name>ejbSelectDoubleTypeSqrt</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDoubleType = SQRT(?1)
 </ejb-ql>
</query>

Example 16–6 Using the EJB 2.1 EJB QL Extension for java.util.Date

<query>
 <query-method>
 <method-name>ejbSelectDate</method-name>
 <method-params>
 <method-param>java.util.Date</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDate = ?1
 </ejb-ql>
</query>

Example 16–7 Using the EJB 2.1 EJB QL Extension for java.sql.Date

<query>
 <query-method>
 <method-name>ejbSelectSqlDate</method-name>
 <method-params>
 <method-param>java.sql.Date</method-param>
 </method-params>
 </query-method>

Note: These types are fully supported in EJB 3.0 EJB QL.

OC4J EJB 2.1 EJB QL Extensions

Using EJB 2.1 Query API 16-9

 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptSqlDate = ?1
 </ejb-ql>
</query>

Example 16–8 Using the EJB 2.1 EJB QL Extension for java.sql.Time

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>
 <method-param>java.sql.Time</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTime = ?1
 </ejb-ql>
</query>

Example 16–9 Using the EJB 2.1 EJB QL Extension for java.sql.Timestamp

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>
 <method-param>java.sql.Timestamp</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTimestamp = ?1
 </ejb-ql>
</query>

OC4J EJB 2.1 EJB QL Extensions

16-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part VII
EJB 2.1 Message-Driven Beans

This part provides procedural information on implementing and configuring EJB 2.1
message-driven beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 17, "Implementing an EJB 2.1 MDB"

■ Chapter 18, "Using EJB 2.1 MDB API"

Implementing an EJB 2.1 MDB 17-1

17
Implementing an EJB 2.1 MDB

This chapter explains how to implement an EJB 2.1 message-driven bean.

For more information, see:

■ "What is a Message-Driven Bean?" on page 1-35

■ "Using EJB 2.1 MDB API" on page 18-1

Implementing an EJB 2.1 MDB
Table 17–1 summarizes the important parts of an EJB 2.1 MDB entity bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 17-3.

For more information, see "What is a Message-Driven Bean?" on page 1-35.

To implement an EJB 2.1 message-driven bean:

1. Implement the MDB entity bean:

a. Implement a public, zero-argument constructor.

b. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

c. Implement the ejbCreate method. The container invokes this method when
it instantiates the MDB.

Table 17–1 Parts of an EJB 2.1 MDB Entity Bean

Part Description

Bean implementation This class must be declared as public, contain a public, empty,
default constructor, one public, void ejbCreate method with
no arguments, and no finalize() method.

Implements javax.ejb.MessageDrivenBean to provide an
empty implementation for lifecycle method ejbRemove and an
implementation of the setMessageDrivenContext method.

Implements javax.jms.MessageListener to provide an
implementation of the onMessage method.

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Implementing an EJB 2.1 MDB

17-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The return type of the ebjCreate methods is void.

d. Provide an empty implementation for each of the
javax.ejb.MessageDrivenBean interface container callback methods.

e. Implement a setMessageDrivenContext method that takes an instance of
MessageDrivenContext (see "Implementing the setMessageDrivenContext
Method" on page 17-6).

f. Implement the appropriate message listener interface:

For a JMS message-driven bean, implement the
javax.jms.MessageListener interface to provide the onMessages
method with signature:

public void onMessage(javax.jms.Message message)

For a non-JMS message service provider, implement the message listener
interface (or interfaces) it specifies.

This method processes the incoming message. Most MDBs receive messages
from a queue or a topic, then invoke an entity bean to process the request
contained within the message.

2. Configure message service provider information (see "Using Deployment XML"
on page 17-4:

a. Define the message connection factory and Destination used in the EJB
deployment descriptor (ejb-jar.xml). Define if any durable subscriptions
or message selectors are used.

For more information, see:

– "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service
Provider" on page 18-1

– "Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider" on
page 18-2

b. If using resource references, define these in the ejb-jar.xml file and map
them to their actual JNDI names in the OC4J-specific deployment descriptor
(orion-ejb-jar.xml).

c. If the MDB uses container-managed transaction demarcation, specify the
onMessage method in the <container-transaction> element in the
ejb-jar.xml file.

All of the steps for an MDB should be in the onMessage method. Since the
MDB is stateless, the onMessage method should perform all duties.

In general, do not create the message service connection and session in the
ejbCreate method.

Using Java
Example 17–1 shows a typical implementation of an EJB 2.1 MDB.

Note: If you are using OracleAS JMS (see "Oracle Application Server
JMS (OracleAS JMS) Provider: File-Based" on page 2-25), then you can
optimize your MDB by creating the JMS connection and session in the
ejbCreate method and destroying them in the ejbRemove method.

Implementing an EJB 2.1 MDB

Implementing an EJB 2.1 MDB 17-3

Example 17–1 EJB 2.1 MDB Implementation

import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class rpTestMdb implements MessageDrivenBean, MessageListener
{

private QueueConnection m_qc = null;
private QueueSession m_qs = null;
private QueueSender m_snd = null;
private MessageDrivenContext m_ctx = null;

/* Constructor, which is public and takes no arguments.*/
public rpTestMdb()
{
}

/* --
* Begin private methods. The following methods
* are used internally.
* -------------------------------------- */

...

/* --
* Begin EJB-required methods. The following methods are called
* by the container, and never called by client code.
* --- */

/* ejbCreate method, declared as public (but not final or
* static), with a return type of void, and with no arguments.
*/
public void ejbCreate()
{
}

/* setMessageDrivenContext method */
public void setMessageDrivenContext(MessageDrivenContext ctx)
{
 /* As with all EJBs, you must set the context in order to be

 able to use it at another time within the MDB methods. */
 m_ctx = ctx;
}

// Lifecycle Methods

/* ejbRemove method */
public void ejbRemove()
{
}

/* --
* Begin JMS MessageListener-required methods. The following
* methods are called by the container, and never called by
* client code.
* --- */

/**
* Receives the incoming Message and displays the text.
*/
public void onMessage(Message msg)
{

/* An MDB does not carry state for an individual client. */
try

Implementing an EJB 2.1 MDB

17-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

{
Context ctx = new InitialContext();
// 1. Retrieve the QueueConnectionFactory using a
// resource reference defined in the ejb-jar.xml file.
QueueConnectionFactory qcf = (QueueConnectionFactory)

ctx.lookup("java:comp/env/jms/myQueueConnectionFactory");
ctx.close();

// 2. Create the queue connection
m_qc = qcf.createQueueConnection();
// 3. Create the session over the queue connection.
m_qs = m_qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
// 4. Create the sender to send messages over the session.
m_snd = m_qs.createSender(null);

/* When the onMessage method is called, a message has been sent.
You can retrieve attributes of the message using the Message object.

*/
String txt = ("mdb rcv: " + msg.getJMSMessageID());
System.out.println(txt + " redel="

+ msg.getJMSRedelivered() + " cnt="
+ msg.getIntProperty("JMSXDeliveryCount"));

/* Create a new message using the createMessage method.
To send it back to the originator of the other message,
set the String property of "RECIPIENT" to "CLIENT."
The client only looks for messages with string property CLIENT.
Copy the original message ID into new msg's Correlation ID for
tracking purposes using the setJMSCorrelationID method. Finally,
set the destination for the message using the getJMSReplyTo method
on the previously received message. Send the message using the
send method on the queue sender.

*/
// 5. Create a message using the createMessage method
Message rmsg = m_qs.createMessage();
// 6. Set properties of the message.
rmsg.setStringProperty("RECIPIENT", "CLIENT");
rmsg.setIntProperty("count", msg.getIntProperty("JMSXDeliveryCount"));
rmsg.setJMSCorrelationID(msg.getJMSMessageID());
// 7. Retrieve the reply destination.
Destination d = msg.getJMSReplyTo();
// 8. Send the message using the send method of the sender.
m_snd.send((Queue) d, rmsg);
System.out.println(txt + " snd: " + rmsg.getJMSMessageID());
/* close the connection*/
m_qc.close();

}
catch (Throwable ex)
{

ex.printStackTrace();
}

}
}

Using Deployment XML
Using the ejb-jar.xml file, define the MDB name, class, JNDI reference, and JMS
Destination type (queue or topic) in the message-driven element. If a topic is
specified, you define whether it is durable. If you have used resource references,
define the resource reference for both the connection factory and the Destination
object.

Example 17–2 shows the ejb-jar.xml file message-driven element corresponding to the
MDB shown in Example 17–1.

Implementing an EJB 2.1 MDB

Implementing an EJB 2.1 MDB 17-5

Note the following:

■ MDB name specified in the <ejb-name> element.

■ MDB class defined in the <ejb-class> element, which ties the
<message-driven> element to the specific MDB implementation.

■ JMS Destination type is a Queue that is specified in the
<message-driven-destination><destination-type> element.

■ Message selector specifies that this MDB only receives messages where the
RECIPIENT is MDB.

■ The type of transaction to use is defined in the <transaction-type> element.
The value can be Container or Bean. If Container is specified, define the
onMessage method within the <container-transaction> element with the
type of CMT support.

■ The resource reference for the connection factory is defined in the
<resource-ref> element; the resource reference for the Destination object is
defined in the <resource-env-ref> element.

Example 17–2 ejb-jar.xml For an EJB 2.1 MDB

...
<enterprise-beans>

<message-driven>
<display-name>testMdb</display-name>
<ejb-name>testMdb</ejb-name>
<ejb-class>rpTestMdb</ejb-class>
<transaction-type>Container</transaction-type>
<message-selector>RECIPIENT='MDB'</message-selector>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>

<description>description</description>
<res-ref-name>jms/myQueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>jms/persistentQueue
 </resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

</message-driven>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>testMdb</ejb-name>
<method-name>onMessage</method-name>

Note: You could also specify a topic in this type definition. If you
did specify a Topic in the type, then you could also define the
durability of the topic, which is specified in the
<message-driven-destination>
<subscription-durability> element as "Durable" or
"nonDurable."

Implementing an EJB 2.1 MDB

17-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<method-params>
<method-param>javax.jms.Message</method-param>

</method-params>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

...

If you were going to configure a durable Topic instead, then the
<message-driven-destination> element would be configured Example 17–3.

Example 17–3 ejb-jar.xml For an EJB 2.1 MDB for a Durable Topic

<message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
</message-driven-destination>

For more information, see "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message
Service Provider" on page 18-1.

Implementing the setMessageDrivenContext Method
An MDB instance uses this method to retain a reference to its context. Message-driven
beans have contexts that the container maintains and makes available to the beans.
The bean may use the methods in the message-driven context to retrieve information
about the bean, such as security, and transactional role. Refer to the Enterprise
JavaBeans specification from Sun Microsystems for the full range of information that
you can retrieve about the bean from the context.

The container invokes the setMessageDrivenContext method, after it first
instantiates the bean, to enable the bean to retrieve the context. The container will
never call this method from within a transaction context. If the bean does not save the
context at this point, the bean will never gain access to the context.

Example 17–4 shows an MDB saving the message-driven context in the ctx variable.

Example 17–4 Implementing the setMessageDrivenContext Methods

import javax.ejb.*;

public class myBean implements MessageDrivenBean, MessageListener {
MessageDrivenContext m_ctx;

/* setMessageDrivenContext method */
public void setMessageDrivenContext(MessageDrivenContext ctx)
{
 /* As with all EJBs, you must set the context in order to be

 able to use it at another time within the MDB methods. */
 m_ctx = ctx;
}

// other methods in the bean
}

Using EJB 2.1 MDB API 18-1

18
Using EJB 2.1 MDB API

This chapter describes the various options that you must configure in order to use an
EJB 2.1 message-driven bean.

Table 18–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see:

■ "What is a Message-Driven Bean?" on page 1-35

■ "Implementing an EJB 2.1 MDB" on page 17-1

Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service
Provider

You can configure an EJB 3.0 MDB to use a non-J2CA message service provider using
deployment XML (see "Using Deployment XML" on page 18-1).

For more information, see:

■ "Oracle Application Server JMS (OracleAS JMS) Provider: File-Based"

■ "Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based"

Using Deployment XML
You can use the ejb-jar.xml or orion-ejb.jar.xml file. You use the
orion-ejb-jar.xml file configuration to override settings in ejb-jar.xml or to
add OC4J-specific settings. For example, the connection factory and destination name
that you define in ejb-jar.xml may be logical names that may not exist in your local
JNDI environment. The deployer can override these settings in the

Table 18–1 Configurable Options for an EJB 2.1 Message-Driven Bean

Options Type

"Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider" on page 18-1 Basic

"Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider" on page 18-2 Basic

"Configuring an MDB for Fast Undeploy on Windows" on page 18-4 Advanced

"Configuring an MDB for Oracle RAC Failover" on page 18-5 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring a Transaction Timeout for a Message-Driven Bean" on page 21-5 Advanced

"Configuring Listener Threads" on page 18-6 Advanced

"Configuring Dequeue Retry Count and Interval" on page 18-8 Advanced

Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider

18-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

orion-ejb-jar.xml file and map them to the actual names. For more information
on mapping logical names, see "Configuring an Environment Reference to a JMS
Destination or Connection Resource Manager Connection Factory (JMS 1.0)" on
page 19-9.

Example 18–1 shows how to configure ejb-jar.xml to configure a message-driven
bean to use a non-J2CA JMS message service provider. It assumes that you have
defined connection factory jms/MyQCF and queue jms/MyQueue in the jms.xml file.
For more information on configuring a non-J2CA message service provider, see
"Configuring an OracleAS JMS Message Service Provider" on page 23-1 or
"Configuring an OJMS Message Service Provider" on page 23-3.

Example 18–1 ejb-jar.xml for a Non-J2CA Message Service Provider

<message-driven>
<ejb-name>QueueMDB</ejb-name>
<ejb-class>test.QueueMDB</ejb-class>
<message-destination-type>javax.jms.Queue</message-destination-type>
<transaction-type>Container</transaction-type>

<activation-config>
<activation-config-property>

<activation-config-property-name>
ConnectionFactoryJndiName

</activation-config-property-name>
<activation-config-property-value>

jms/MyQCF
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
DestinationName

</activation-config-property-name>
<activation-config-property-value>

jms/MyQueue
</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>

For a complete list of all activation configuration properties, download and unzip one
of the how-to-gjra-with-xxx.zip files from
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html, where xxx is the name of the relevant resource provider. The
orion-ejb-jar.xml demo file contains comments describing all activation
configuration properties. For more information, see "JMS Resource Adapter" in the
Oracle Containers for J2EE Services Guide.

The actual names you use depend on your message service provider installation. For
more information, see:

■ "OracleAS JMS Destination and Connection Factory Names" on page 23-2

■ "OJMS Destination and Connection Factory Names" on page 23-3

Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider
You can configure an EJB 3.0 MDB to use a J2CA message service provider using
deployment XML (see "Using Deployment XML" on page 18-3).

For more information, see "J2EE Connector Architecture (J2CA) Adapter Message
Provider" on page 2-26.

Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider

Using EJB 2.1 MDB API 18-3

Using Deployment XML
You must use both ejb-jar.xml and orion-ejb.jar.xml file. You use the
orion-ejb-jar.xml file configuration to override settings in ejb-jar.xml and to
add the OC4J-specific setting for resource adapter. For example, the connection factory
and destination name that you define in ejb-jar.xml may be logical names that
may not exist in your local JNDI environment. The deployer can override these
settings in the orion-ejb-jar.xml file and map them to the actual names. For more
information on mapping logical names, see "Configuring an Environment Reference to
a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)" on
page 19-9.

To configure an EJB 3.0 MDB to use a J2CA message service provider:

1. Configure the ejb-jar.xml file.

Example 18–2 shows how to configure ejb-jar.xml to configure a
message-driven bean to use the Oracle JMS resource adapter named
OracleASjms. It assumes that you have defined connection factory
OracleASjms/MyQCF in the oc4j-ra.xml file and destination name
OracleASjms/MyQueue in the oc4j-connectors.xml. For more information
on configuring a J2CA message service provider, see "Configuring a Message
Service Provider Using J2CA" on page 23-6. To complete this configuration, you
must

Example 18–2 ejb-jar.xml for a J2CA Message Service Provider

<message-driven>
 <ejb-name>JCA_QueueMDB</ejb-name>
 <ejb-class>test.JCA_MDB</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 <transaction-type>Container</transaction-type>

 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 DestinationType
 </activation-config-property-name>
 <activation-config-property-value>
 javax.jms.Queue
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 DestinationName
 </activation-config-property-name>
 <activation-config-property-value>
 OracleASjms/MyQueue
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 ConnectionFactoryJndiName
 </activation-config-property-name>
 <activation-config-property-value>
 OracleASjms/MyQCF
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
</message-driven>

2. Configure the orion-ejb-jar.xml file.

Configuring an MDB for Fast Undeploy on Windows

18-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 18–3 shows how to configure the orion-ejb-jar.xml to configure this
message-driven bean to use the Oracle JMS resource adapter named
OracleASjms. You must set the resource-adapter attribute. Optionally, you
can override or configure additional activation configuration properties using one
or more config-property elements.

Example 18–3 orion-ejb-jar.xml for a J2CA Message Service Provider

<message-driven-deployment
name="JCA_QueueMDB"
resource-adapter="OracleASjms">
...
<config-property>

<config-property-name>DestinationName</config-property-name>
<config-property-value>OracleASJMSRASubcontext/MyQ</config-property-value>

</config-property>
...

</message-driven-deployment>

For a complete list of all activation configuration properties, download and unzip one
of the how-to-gjra-with-xxx.zip files from
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html, where xxx is the name of the relevant resource provider. The
orion-ejb-jar.xml demo file contains comments describing all activation
configuration properties. For more information, see "JMS Resource Adapter" in the
Oracle Containers for J2EE Services Guide.

You may also set the optional attributes that Table A–3 lists.

The actual names you use depend on your message service provider installation. For
more information, see "J2CA Message Service Provider Connection Factory Names" on
page 23-7.

Configuring an MDB for Fast Undeploy on Windows
When you use an MDB, it is blocked in a receive state waiting for incoming messages.
In a non-Windows environment, if you shutdown OC4J while the MDB is in a wait
state, OC4J shuts down in a timely fashion.

If you are using message-driven beans with the OJMS provider (see "Oracle JMS
(OJMS) Provider: Advanced Queueing (AQ)-Based" on page 2-25) and OC4J is running
in a Windows environment or when the back-end database is running in a Windows
environment and you shutdown OC4J while an MDB is in a wait state, then the OC4J
instance cannot be stopped and the MDB cannot be undeployed in a timely manner: in
this case, the OC4J process will hang for at least 2.5 hours

Using the oracle.mdb.fastUndeploy system property (see "Using System
Properties" on page 18-4), you can modify the behavior of the MDB in the Windows
environment to ensure that your message-driven beans can be undeployed, and OC4J
can be shut down, in a timely manner, when necessary.

Using System Properties
The oracle.mdb.fastUndeploy system property is set to the frequency, as an
integer number of seconds, at which OC4J polls the database (requiring a database
round-trip) to determine whether or not the session is shut down when an MDB is not
processing incoming messages and in a wait state.

For optimal performance, a reasonable value should be 120 seconds or more.

Configuring an MDB for Oracle RAC Failover

Using EJB 2.1 MDB API 18-5

If you set this property to 120 (seconds), then every 120 seconds, OC4J will poll the
database.

Configuring an MDB for Oracle RAC Failover
If your MDB application uses OJMS with an Oracle RAC database, you must configure
your application to handle a database failover scenario, as follows:

■ Configure message-driven beans to retry if message dequeing fails (see "Using
Deployment XML" on page 18-5)

■ Configure the MDB client to retry if connection acquisition fails (see "Using Java"
on page 18-5)

Using Deployment XML
To support RAC failover, you must configure orion-ejb-jar.xml file element
message-driven-deployment attributes dequeue-retry-count and
dequeue-retry-interval as Example 18–4 shows.

The dequeue-retry-count attribute tells the container how many times to retry the
database connection in case a failure happens; the default is 0 seconds.

The dequeue-retry-interval attribute tells the container how long to wait
between retry attempts to accommodate for the time it takes for RAC database failover
to complete; the default value is 60 seconds.

Example 18–4 orion-ejb-jar.xml For Oracle RAC Failover with an MDB

<message-driven-deployment name="MessageBeanTpc"
 connection-factory-location="java:comp/resource/cartojms1/TopicConnectionFactories/aqTcf"
 destination-location="java:comp/resource/cartojms1/Topics/topic1"
 subscription-name="MDBSUB"
 dequeue-retry-count=3
 dequeue-retry-interval=90/>
...

Using Java
To support RAC failover, you must configure a standalone OJMS client running
against an RAC database to retry if connection acquisition fails.

Oracle recommends that you use com.evermind.sql.DbUtil method
oracleFatalError to determine if the connection object is invalid (see
Example 18–5). If so, then reestablish the database connection if necessary.

Example 18–5 Client Retrying After Connection Acquisition Failure

import com.evermind.sql.DbUtil;
...
getMessage(QueueSesssion session)
{

try
{

QueueReceiver rcvr = session.createReceiver(rcvrQueue);

Note: The RAC-enabled attribute of a data source is discussed in
Data Sources chapter in the Oracle Containers for J2EE Services
Guide.

Configuring Listener Threads

18-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Message msgRec = rcvr.receive();
}
catch(Exception e)
{

if (exc instanceof JMSException)
{

JMSException jmsexc = (JMSException) exc;
sql_ex = (SQLException)(jmsexc.getLinkedException());
db_conn = oracle.jms.AQjmsSession)session.getDBConnection();
if ((DbUtil.oracleFatalError(sql_ex, db_conn))
{
 // failover logic
}

}
}

}

Configuring Listener Threads
By configuring the number of listener threads to x, where x is greater than one (see
"Using Deployment XML" on page 18-6), OC4J will instantiate x number of
message-driven bean instances all listening to the message-driven bean’s message
location in parallel.

Topics can only have one thread. Queues can have more than one.

Using Deployment XML
You set the number of listener threads in the orion-ejb-jar.xml file. How you
configure this value depends on the type of message-service provider you are using:

■ Non-J2CA Adapter Message Service Provider

■ J2CA Adapter Message Service Provider

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OracleAS JMS or
Oracle JMS (OJMS), use the listener-threads attribute of the
<message-driven-deployment> element.

For example, if you are using OracleAS JMS or Oracle JMS (OJMS), and you wanted to
set the number of listener threads to 3, you would do as follows:

<message-driven-deployment ... listener-threads="3"
...

</message-driven-deployment>

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the listenerThreads configuration property.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the number of listener threads to 3, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>listenerThreads</config-property-name>
<config-property-value>3</config-property-value>

</config-property>
...

Configuring Maximum Delivery Count

Using EJB 2.1 MDB API 18-7

</message-driven-deployment>

In either case, if you change this property using this method, you must restart OC4J to
apply your changes.

Configuring Maximum Delivery Count
You can configure the maximum number of times OC4J will attempt the immediate re
delivery of a message to a message-driven bean's onMessage method if that method
returns failure: fails to invoke an acknowledgment operation, throws an exception, or
both (see "Using Deployment XML" on page 18-7).

After this number of re deliveries, the message is deemed undeliverable and is
handled according to the policies of your message service provider. For example,
OracleAS JMS will put the message on its exception queue
(jms/Oc4jJmsExceptionQueue).

Using Deployment XML
You set the maximum delivery count in the orion-ejb-jar.xml file. How you
configure this value depends on the type of message-service provider you are using:

■ Non-J2CA Adapter Message Service Provider

■ J2CA Adapter Message Service Provider

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OracleAS JMS or
Oracle JMS (OJMS), use the max-delivery-count attribute of the
<message-driven-deployment> element.

For example, if you are using OracleAS JMS or Oracle JMS (OJMS), and you wanted to
set the maximum delivery count to 3, you would do as follows:

<message-driven-deployment ... max-delivery-count="3"
...

</message-driven-deployment>

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the maxDeliveryCount configuration
property.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the maximum delivery count to 3, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>MaxDeliveryCnt</config-property-name>
<config-property-value>3</config-property-value>

</config-property>
...
</message-driven-deployment>

In either case, if you change this property using this method, you must restart OC4J to
apply your changes.

Configuring Dequeue Retry Count and Interval

18-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Dequeue Retry Count and Interval
You can configure how often a message-driven bean’s listener thread tries to
re-acquire its JMS session once database failover has occurred and how many seconds
to wait between retries (see "Using Deployment XML" on page 18-8.

This value is only for CMT transactions in a message-driven bean.

For more information about failover, see "Understanding OC4J EJB Application
Clustering Services" on page 2-28.

Using Deployment XML
You set the dequeue retry count and interval in the orion-ejb-jar.xml file. How
you configure this value depends on the type of message-service provider you are
using:

■ Non-J2CA Adapter Message Service Provider

■ J2CA Adapter Message Service Provider

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OracleAS JMS or
Oracle JMS (OJMS), use the dequeue-retry-count and
dequeue-retry-interval attribute of the <message-driven-deployment>
element. The default dequeue retry count is zero and the default dequeue retry
interval is 60 seconds.

For example, if you are using OracleAS JMS or Oracle JMS (OJMS), and you wanted to
set the dequeue retry count to 3 and the dequeue retry interval to 90 seconds, you
would do as follows:

<message-driven-deployment ... dequeue-retry-count="3" dequeue-retry-interval="90"
...

</message-driven-deployment>

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the dequeueRetryCount and
dequeueRetryInterval configuration properties.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the number of listener threads to 3, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>DequeueRetryCount</config-property-name>
<config-property-value>3</config-property-value>

</config-property>
<config-property>

<config-property-name>dequeueRetryInterval</config-property-name>
<config-property-value>90</config-property-value>

</config-property>
...
</message-driven-deployment>

In either case, if you change this property using this method, you must restart OC4J to
apply your changes.

Part VIII
OC4J EJB Services

This part provides procedural information on configuring OC4J EJB services for EJB
3.0 and EJB 2.1 enterprise JavaBeans. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 19, "Configuring JNDI Services"

■ Chapter 20, "Configuring Data Sources"

■ Chapter 21, "Configuring Transaction Services"

■ Chapter 22, "Configuring Security Services"

■ Chapter 23, "Configuring Message Services"

■ Chapter 24, "Configuring OC4J EJB Application Clustering Services"

■ Chapter 25, "Configuring Timer Services"

Configuring JNDI Services 19-1

19
Configuring JNDI Services

This chapter describes:

■ Configuring Environment References

■ Configuring the Initial Context Factory

■ Setting JNDI Properties in an EJB

■ Looking up an EJB 3.0 EJB

■ Looking Up an EJB 3.0 Resource Manager Connection Factory

■ Looking Up an EJB 3.0 Environment Variable

■ Looking Up an EJB 2.1 EJB

■ Looking Up an EJB 2.1 Resource Manager Connection Factory

■ Looking Up an EJB 2.1 Enviornment Variable

For more information, see:

■ "Understanding EJB JNDI Services" on page 2-18

■ "Accessing an EJB from a Client" on page 29-1

■ "Oracle JNDI" in the Oracle Containers for J2EE Services Guide

Configuring Environment References
Before you can access essential resources from your EJB at runtime using JNDI, you
must define environment references to them. Environment references are static and
cannot be changed by the bean.

This section describes configuring:

■ EJB Environment References

■ Resource Manager Connection Factory Environment References

■ Environment Variable Environment References

■ Web Service Environment References

■ Persistence Context References

In EJB 3.0, you can use annotations, resource injection, and default JNDI names (based
on class and interface names) instead of defining environment references.

In EJB 2.1, you must define <ejb-ref> or <ejb-local-ref> elements in the
appropriate deployment descriptor (see "Where Do You Configure an EJB
Environment Reference?" on page 19-3).

Configuring Environment References

19-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

When you define an environment reference, you can use the actual JNDI name or use
a logical name ("Should You Use Logical Names?" on page 19-3) associated with it to
increase deployment flexibility.

EJB Environment References
Before one EJB, acting in the role of a client can access another EJB, you must define an
EJB reference to the target EJB.

For more information, see "Configuring an Environment Reference to an EJB" on
page 19-3.

Resource Manager Connection Factory Environment References
You can define an environment reference to resource manager connection factories
that provide connections to such services as a JDBC data source, JMS topic or queue,
Java mail, or an HTTP URL. These references are logical names that OC4J binds at
deployment time to the actual resource manager connection factories that it provides.

For each client in which you want to access a resource manager connection factory,
you must either inject it in the client source code or define an environment reference to
it in the client's deployment descriptor.

For more information, see:

■ "Configuring an Environment Reference to a JDBC Data Source Resource Manager
Connection Factory" on page 19-7

■ "Configuring an Environment Reference to a JMS Destination Resource Manager
Connection Factory (JMS 1.1)"

■ "Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-9

■ "Configuring an Environment Reference to a Java Mail Resource Manager
Connection Factory" on page 19-11

■ "Configuring an Environment Reference to a URL Resource Manager Connection
Factory" on page 19-13

Environment Variable Environment References
You can define an enviornment variable with an enviornment reference to make the
environment variable value accessible using JNDI.

For more information, see "Configuring an Environment Reference to an Environment
Variable" on page 19-14

Web Service Environment References
You can define a Web service with an enviornment reference to make the Web service
accessible using JNDI

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to an EJB

Configuring JNDI Services 19-3

For more information, see "Configuring an Environment Reference to a Web Service"
on page 19-15.

Persistence Context References
The preferred way to access an entity manager is using annotations and dependency
injection (see "Acquiring the OC4J Default Entity Manager in an EJB 3.0 Stateful
Session Bean Client" on page 29-6 and "Acquiring an Entity Manager in Other EJB 3.0
Bean Clients" on page 29-7).

To acquire an entity manager in a class that does not support annotations and
injection, namely helper classes and Web clients, you must first define a persistence
context reference and then lookup the entity manager using JNDI.

For more information, see:

■ "Configuring an Environment Reference to a Persistence Context" on page 19-16

■ "Acquiring an Entity Manager in a Helper Class or Web Client" on page 29-7

Where Do You Configure an EJB Environment Reference?
If you choose to use environment references, where you configure the EJB reference
depends on the type of client as Table 19–1 shows.

Should You Use Logical Names?
When you define an environment reference, you can identify the resource by a logical
name or by its JNDI name.

To maximize application assembly and deployment flexibility, you typically develop
an EJB application by referring to resources by a logical name that you define in your
application environment. This indirection enables the bean developer to refer to EJBs,
other resources (such as a JDBC DataSource), and environment variables without
specifying the actual name, which may change depending on how an application is
assembled and deployed.

The procedures in this chapter explain how to configure either logical or JNDI names.

Configuring an Environment Reference to an EJB
Before one EJB, acting in the role of a client (call it the source EJB), can access another
EJB (call it the target EJB), you must define an EJB reference to the target EJB in the
deployment descriptor of the source EJB.

Table 19–1 Deployment Descriptor by Client Type

Client Type Description Deployment Descriptor
OC4J-Specific Deployment
Descriptor

EJB Another EJB invoking an EJB from
within the container.

ejb-jar.xml orion-ejb-jar.xml

Standalone client A pure-Java client invoking an EJB
from outside of the container.

application-client.xml orion-application-client.xml

Servlet or JSP A servlet or JSP invoking an EJB
from outside of the container.

web.xml orion-web.xml

Configuring an Environment Reference to an EJB

19-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This section describes:

■ Configuring an Environment Reference to a Remote EJB

■ Configuring an Environment Reference to a Local EJB

Configuring an Environment Reference to a Remote EJB
To define an EJB reference to the remote interface of a target EJB, you configure an
<ejb-ref> element in the appropriate deployment descriptor.

For information on looking up a target EJB, see "Accessing an EJB from a Client" on
page 29-1.

To define a reference to the remote interface of an EJB 2.1 EJB:

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where Do You Configure an EJB Environment Reference?" on page 19-3).

2. Within the <ejb-ref> element, define the <home> and <remote> sub-elements
with the package and class name of the target EJB remote home and remote
component interface, respectively.

3. Within the <ejb-ref> element, define the <ejb-ref-type> to the target bean's
type: Session or Entity.

4. Within the <ejb-ref> element, define the <ejb-ref-name> and, optionally, the
<ejb-link> sub-elements.

You can choose one of the following options:

a. Configure <ejb-ref-name> with a logical name and configure <ejb-link>
with the actual name of the target bean as Example 19–1 shows.

This option provides indirection that offers assembly and deployment
flexibility.

Example 19–1 Configuring ejb-ref-name with a Logical Name Resolved by ejb-link

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
 <ejb-link>myBeans/BeanA</ejb-link>

Note: In EJB 3.0, an environment reference to a target EJB is not
needed. You can access a target EJB directly using annotations and
resource injection (see "Accessing an EJB 3.0 EJB" on page 29-4).

Note: In EJB 3.0, an environment reference to a target EJB is not
needed. You can access a target EJB directly using annotations and
resource injection (see "Accessing an EJB 3.0 EJB" on page 29-4).

Note: If the bean interfaces are unique (for example, only one session
bean uses the interface Cart.class) then the <ejb-link> is not
required.

Configuring an Environment Reference to an EJB

Configuring JNDI Services 19-5

</ejb-ref>

b. Configure <ejb-ref-name> with a logical name as Example 19–2 shows
and, in the orion-ejb-jar.xml deployment descriptor, define an
<ejb-ref-mapping> element that maps the logical name to the actual name
of the target bean as Example 19–3 shows.

This option provides indirection that offers the most assembly and
deployment flexibility.

Example 19–2 Configuring ejb-ref-name with a Logical Name Resolved by
ejb-ref-mapping

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

As Figure 19–1 shows, in the <ejb-ref-mapping> element, configure the
name attribute to match the <ejb-ref-name> and configure the location
attribute with the actual name of the target bean. In Example 19–3, the logical
name ejb/nextVal is mapped to the actual name of the target bean
myBeans/BeanA.

Example 19–3 Mapping Logical Name to Actual Name with ejb-ref-mapping

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

Figure 19–1 EJB Reference Mapping

This figure shows a sample EJB reference mapping.

OC4J maps the logical name to the actual JNDI name on the client-side. The
server-side receives the JNDI name and resolves it within its JNDI tree.

Configuring an Environment Reference to a Local EJB
Before you can look up a target EJB from your client, you must define an EJB reference
to the target EJB. To define an EJB reference to the local interface of a target EJB, you
configure an <ejb-local-ref> element in the ejb-jar.xml deployment descriptor.

Note: In EJB 3.0, an environment reference to a target EJB is not
needed. You can access a target EJB directly using annotations and
resource injection (see "Accessing an EJB 3.0 EJB" on page 29-4).

Configuring an Environment Reference to an EJB

19-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For information on looking up a target EJB, see "Accessing an EJB from a Client" on
page 29-1.

To define a reference to the local interface of an EJB:

1. Define an <ejb-local-ref> element in the appropriate client deployment
descriptor (see "Where Do You Configure an EJB Environment Reference?" on
page 19-3).

2. Within the <ejb-local-ref> element, define the <local-home> and <local>
sub-elements with the package and class name of the target EJB remote home and
remote component interface, respectively.

3. Within the <ejb-local-ref> element, define the <ejb-ref-type> to the
target bean's type: Session or Entity.

4. Within the <ejb-local-ref> element, define the <ejb-ref-name> and,
optionally, the <ejb-link> sub-elements.

You can choose one of the following options:

a. Configure <ejb-ref-name> with a logical name and configure <ejb-link>
with the actual name of the target bean as Example 19–1 shows.

This option provides indirection that offers assembly and deployment
flexibility.

Example 19–4 Configuring ejb-ref-name with a Logical Name Resolved by ejb-link

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanAHome</local-home>
 <local>myBeans.BeanA</local>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-local-ref>

b. Configure <ejb-ref-name> with a logical name as Example 19–2 shows
and, in the orion-ejb-jar.xml deployment descriptor, define an
<ejb-ref-mapping> element that maps the logical name to the actual name
of the target bean as Example 19–3 shows.

This option provides indirection that offers the most assembly and
deployment flexibility.

Example 19–5 Configuring ejb-ref-name with a Logical Name Resolved by
ejb-ref-mapping

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanAHome</local-home>
 <local>myBeans.BeanA</local>
</ejb-local-ref>

Note: If the bean interfaces are unique (for example, only one session
bean uses the interface Cart.class) then the <ejb-link> is not
required.

Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection Factory

Configuring JNDI Services 19-7

In the <ejb-ref-mapping> element, configure the name attribute to match
the <ejb-ref-name> and configure the location attribute with the actual
name of the target bean. In Example 19–3, the logical name ejb/nextVal is
mapped to the actual name of the target bean myBeans/BeanA.

Example 19–6 Mapping Logical Name to Actual Name with ejb-ref-mapping

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

OC4J maps the logical name to the actual JNDI name on the client-side. The
server-side receives the JNDI name and resolves it within its JNDI tree.

Configuring an Environment Reference to a JDBC Data Source Resource
Manager Connection Factory

You can access a database through JDBC by creating an environment element for a
JDBC DataSource.

For information on looking up a resource manager connection factory, see:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

To define a reference to a JDBC DataSource:

1. Define a <resource-ref> element in the appropriate client deployment
descriptor (see "Where Do You Configure an EJB Environment Reference?" on
page 19-3) and configure its <res-ref-name> element with a logical name for
the JDBC data source resource manager connection factory.

It is a best practice to prefix the reference name with "jdbc" but it is not required.
If you use the initial context to look up this reference in your bean source code (see
Example 19–48 on page 19-29), always prefix the logical name with
"java:comp/env/".

Figure 19–1 shows a <resource-ref> element in the ejb-jar.xml deployment
descriptor with a logical name of jdbc/OrderDB, of type
javax.sql.DataSource, and the authenticator of Application.

2. In the data-sources.xml file, define the desired DataSource and specify its
actual JNDI name (see "Configuring Data Sources" on page 20-1).

In this example, assume a DataSource is specified in the data-sources.xml
file with the JNDI name of /test/OrderDataSource.

3. In the orion-ejb-jar.xml deployment descriptor, define a
<resource-ref-mapping> element to map the logical name (defined in
ejb-jar.xml) to the JNDI name (defined in data-sources.xml).

Figure 19–2 shows a <resource-ref-mapping> element with the name
attribute set to jdbc/OrderDB (the logical name defined in ejb-jar.xml) and

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to a JMS Destination Resource Manager Connection Factory (JMS 1.1)

19-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

the location attribute set to test/OrderDataSource (the JNDI name defined
in data-sources.xml).

Within the bean's implementation, you can look up the JDBC data source resource
manager connection factory for this data source using the logical name
java:comp/env/jdbc/OrderDB (see Example 19–48 on page 19-29).

Figure 19–2 Mapping Logical to Actual JDBC Data Source Resource Manager
Connection Factory

Configuring an Environment Reference to a JMS Destination Resource
Manager Connection Factory (JMS 1.1)

Using JMS 1.1, you define an environment reference to a JMS connection resource
manager connection factory the same as you do in JMS 1.0 (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-9). However, you can define an environment
reference to a JMS destination using a <message-destination-ref> element in
the client deployment descriptor and a <message-destination-ref-mapping>
element in the corresponding OC4J-specific deployment descriptor (see "Where Do
You Configure an EJB Environment Reference?" on page 19-3).

You use the <message-destination-ref-mapping> to map the client
<message-destination-ref-name> to another location that is available in the
OC4J environment. This provides the means of linking message consumers and
producers to one or more common logical destinations.

You can use <message-destination-ref> in all EJB types, therefore
<message-destination-ref-mapping> is not restricted to
message-driven-deployment.

For more information, see "Oracle Enterprise Messaging Service (OEMS)" in the Oracle
Containers for J2EE Services Guide.

For information on looking up a resource manager connection factory, see:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)

Configuring JNDI Services 19-9

Configuring an Environment Reference to a JMS Destination or
Connection Resource Manager Connection Factory (JMS 1.0)

You can access a JMS destination (queue or topic) and JMS connection resource
manager connection factory by creating an environment reference to them.

For information on looking up a resource manager connection factory, see:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

To define a reference to a JMS destination and JMS connection resource manager
connection factory:

1. Configure your JMS service provider.

For more information, see:

■ "Configuring an OracleAS JMS Message Service Provider" on page 23-1

■ "Configuring an OJMS Message Service Provider" on page 23-3

■ "Configuring a Message Service Provider Using J2CA" on page 23-6

2. Define the JNDI name for the JMS destination and connection factory.

For more information, see:

■ "OracleAS JMS Destination and Connection Factory Names" on page 23-2

■ "OJMS Destination and Connection Factory Names" on page 23-3

■ "J2CA Message Service Provider Connection Factory Names" on page 23-7

3. Define a logical name for the JMS destination and JMS connection factory.

How you define the logical names is the same regardless of what type of JMS
provider you use.

a. Define a <resource-env-ref> element in the appropriate client
deployment descriptor (see "Where Do You Configure an EJB Environment
Reference?" on page 19-3) and configure the following sub-elements:

– <resource-env-ref-name>: a logical name for the JMS destination
resource manager connection factory.

– <resource-env-ref-type>: The destination class type; either
javax.jms.Queue or javax.jms.Topic.

Example 19–7 shows a <resource-env-ref> element for a JMS topic
resource manager connection factory.

Example 19–7 <resource-env-ref> for a JMS Topic Destination

<resource-env-ref>
<resource-env-ref-name>rpTestTopic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)

19-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</resource-env-ref>

b. Define a <resource-ref> element in the same client deployment descriptor
and configure the following sub-elements:

– <res-ref-name>: a logical name for the JMS connection resource
manager connection factory.

– <res-type>: the connection factory class type; either
javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory.

– <res-auth>: the authentication responsibility; either Container or
Bean.

– <res-sharing-scope>: the sharing scope; either Shareable or
Unshareable.

Example 19–8 shows a <resource-ref> element for a JMS topic connection
resource manager connection factory.

Example 19–8 <resource-ref> for a JMS Topic Connection Factory

<resource-ref>
<res-ref-name>myTCF</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

4. Map the logical names to the actual JNDI names.

a. Define a <resource-env-ref-mapping> element in the corresponding
OC4J-specific deployment descriptor (see "Where Do You Configure an EJB
Environment Reference?" on page 19-3) and configure its name attribute to the
JMS destination logical name (defined in the <resource-env-ref>) and its
location attribute to the JNDI name defined when you configured your JMS
provider (see step 2).

Example 19–9 shows a <resource-env-ref-mapping> element for
OracleAS JMS.

Example 19–9 OracleAS JMS <resource-env-ref-mapping>

<resource-env-ref-mapping
name="rpTestTopic"
location="jms/Topic/rpTestTopic">

</resource-env-ref-mapping>

b. Define a <resource-ref-mapping> element in the same OC4J-specific
deployment descriptor (see "Where Do You Configure an EJB Environment
Reference?" on page 19-3) and configure its name attribute to the JMS
connection factory logical name (defined in the <resource-ref>) and its
location attribute to the JNDI name defined when you configured your JMS
provider (see step 2).

Example 19–10 shows a <resource-ref-mapping> element for OracleAS
JMS.

Example 19–10 OracleAS JMS <resource-ref-mapping>

<resource-ref-mapping

Configuring an Environment Reference to a Java Mail Resource Manager Connection Factory

Configuring JNDI Services 19-11

name="myTCF"
location="jms/Topic/myTCF">

</resource-ref-mapping>

Configuring an Environment Reference to a Java Mail Resource Manager
Connection Factory

You can access a Java mail session by creating a resource manager connection factory
reference to it.

For information on looking up a resource manager connection factory, see:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

To define a reference to a Java mail resource manager connection factory:

1. Bind the javax.mail.Session reference within the JNDI name space in the
application.xml file using the <mail-session> element, as follows:

<mail-session location="mail/MailSession"
 smtp-host="mysmtp.oraclecorp.com">
 <property name="mail.transport.protocol" value="smtp"/>
 <property name="mail.smtp.from" value="emailaddress@oracle.com"/>
</mail-session>

The location attribute contains the JNDI name specified in the location attribute of
the <resource-ref-mapping> element in the OC4J-specific deployment
descriptor.

2. Create a logical name within the <res-ref-name> element in the EJB
deployment descriptor.

It is a best practice to start the reference name with "mail" but it is not required. In
the bean code, the lookup of this reference is always prefaced by
"java:comp/env" (for example, "java:comp/env/mail/myMail")

3. Map the logical name within the EJB deployment descriptor to the JNDI name,
created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "java:comp/env/mail"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 19–3, the Session object was bound to the JNDI name
"/test/myMailSession". The logical name that the bean knows this resource as is
"mail/testMailSession". These names are mapped together within the
OC4J-specific deployment descriptor. Thus, within the bean's implementation, the
bean can retrieve the connection to the bound Session object by using the
"java:comp/env/mail/testMailSession" environment element.

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to a Java Mail Resource Manager Connection Factory

19-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure 19–3 Session Resource Manager Mapping

This environment element is defined with the following information:

Example 19–11 Defining an environment element for Java mail Session

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "mail/testMailSession", its type of
javax.mail.Session, and the authenticator of "Application".

The environment element of "mail/testMailSession" is mapped to the JNDI
bound name for the connection, "test/myMailSession" within the OC4J-specific
deployment descriptor.

Once deployed, the bean can retrieve the Session object reference:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("java:comp/env/mail/testMailSession");

//The following uses the mail session object
//Create a message object
MimeMessage msg = new MimeMessage(session);

//Construct an address array
String mailTo = "whosit@oracle.com";
InternetAddress addr = new InternetAddress(mailto);
InternetAddress addrs[] = new InternetAddress[1];
addrs[0] = addr;

//set the message parameters
msg.setRecipients(Message.RecipientType.TO, addrs);

Element Description

<res-ref-name> The logical name of the Session object to be used within the
originating bean. The name should be prefixed with "mail/". In our
example, the logical name for our mail session is
"mail/testMailSession".

<res-type> The Java type of the resource. For the Java mail Session object, this
is javax.mail.Session.

<res-auth> Define who is responsible for signing on to the database. The value
can be "Application" or "Container" based on who provides the
authentication information.

Configuring an Environment Reference to a URL Resource Manager Connection Factory

Configuring JNDI Services 19-13

msg.setSubject("testSend()" + new Date());
msg.setContent(msgText, "text/plain");

//send the mail message
Transport.send(msg);

Configuring an Environment Reference to a URL Resource Manager
Connection Factory

You can access a URL connection by creating a resource manager connection factory
reference to it.

For information on looking up a resource manager connection factory, see:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

To define a reference to a URL resource manager connection factory:

1. Create a logical name within the <res-ref-name> element in the EJB
deployment descriptor.

It is a best practice to start the reference name with "url" but it is not required. In
the bean code, the lookup of this reference is always prefaced by
"java:comp/env" (for example, "java:comp/env/url/myURL")

2. Map the logical name within the EJB deployment descriptor to the URL within the
OC4J-specific deployment descriptor.

3. Lookup the object reference within the bean with the "java:comp/env/url"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 19–4, the URL object was bound to the URL
"http://www.myURL.com". The logical name that the bean knows this resource as is
"url/testURL". These names are mapped together within the OC4J-specific
deployment descriptor. Thus, within the bean's implementation, the bean can retrieve
a reference to the URL object by using the "java:comp/env/url/testURL"
environment element.

Figure 19–4 URL Resource Manager Mapping

This environment element is defined with the following information:

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-24).

Configuring an Environment Reference to an Environment Variable

19-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 19–12 Defining an Environment Element for a URL

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "url/testURL", its type of java.net.URL, and the
authenticator of "Application".

The environment element of "url/testURL" is mapped to the URL
"http://www.myURL.com" within the OC4J-specific deployment descriptor.

Once deployed, the bean can retrieve the URL object reference as follows:

InitialContext ic = new InitialContext();
URL url = (URL) ic.lookup("java:comp/env/url/testURL");

//The following uses the URL object
URLConection conn = url.openConnection();

Configuring an Environment Reference to an Environment Variable
You can create environment variables that your bean accesses through a JNDI lookup
on the InitialContext. These variables are defined within an ejb-jar.xml file
<env-entry> element and can be of the following types: String, Integer,
Boolean, Double, Byte, Short, Long, and Float. The environment variable name
is defined in the <env-entry-name> sub-element, the type is defined in the
<env-entry-type> sub-element, and the value is defined in the
<env-entry-value> sub-element. The <env-entry-name> is relative to the
"java:comp/env" context.

Example 19–13 shows how to define environment variables for
java:comp/env/minBalance and java:comp/env/maxCreditBalance in the
ejb-jar.xml file.

Example 19–13 ejb-jar.xml For Environment Variables

<env-entry>
<env-entry-name>minBalance</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>500</env-entry-value>

Element Description

<res-ref-name> The logical name of the URL object to be used within the originating
bean. The name should be prefixed with "url/". In our example, the
logical name for our URL is "url/testURL".

<res-type> The Java type of the resource. For the Java URL object, this is
java.net.URL.

<res-auth> Define who is responsible for signing on to the database. At this time,
the only value supported is "Application". The application provides
the authentication information.

Configuring an Environment Reference to a Web Service

Configuring JNDI Services 19-15

</env-entry>
<env-entry>

<env-entry-name>maxCreditBalance</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10000</env-entry-value>

</env-entry>

You can override an environment variable value defined in the ejb-jar.xml file by
defining an env-entry-mapping element in your orion-ejb-jar.xml file whose
name attribute matches the env-entry-name defined in the ejb-jar.xml file. The
type specified in the ejb-jar.xml file stays the same.

Figure 19–5 shows how the minBalance environment variable value is overridden by
the orion-ejb-jar.xml file and set to 500.

Figure 19–5 Overriding Environment Variables in ejb-jar.xml with orion-ejb-jar.xml

For more information on looking up environment variables, see:

"Looking Up an EJB 3.0 Environment Variable" on page 19-25

"Looking Up an EJB 2.1 Enviornment Variable" on page 19-29

Configuring an Environment Reference to a Web Service
You can access a Web service from a stateless session bean by creating a resource
manager connection factory reference to the Web service.

For each client in which you want to access a resource manager connection factory,
you must either inject it in the client source code or define an environment reference to
it in the client's deployment descriptor.

To create an environment reference to a Web service:

1. Define a logical name for the Web service.

Define a <service-ref> element in the appropriate client deployment
descriptor (see "Where Do You Configure an EJB Environment Reference?" on
page 19-3) and configure the following sub-elements:

– <service-ref-name>: a logical name for the Web service.

– <service-interface>: the Web service interface.

Example 19–14 shows a <service-ref> element for a Web service.

It is a best practice to start the reference name with "service" but it is not
required. In the bean code, the lookup of this reference (see Example 30–5 on
page 30-3) is always prefaced by "java:comp/env" (for example,
"java:comp/env/service/myService")

Note: In EJB 3.0, an environment reference to a Web service is not
needed. You can access a Web service directly using annotations and
resource injection.

Configuring an Environment Reference to a Persistence Context

19-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 19–14 ejb-jar.xml For a Web Service Logical Name

<service-ref>
<service-ref-name>service/StockQuoteService</service-ref-name>
<service-interface>com.example.StockQuoteService</service-interface>

</service-ref>

2. Map the logical name to the actual JNDI name.

Define a <service-ref-mapping> element in the corresponding OC4J-specific
deployment descriptor (see "Where Do You Configure an EJB Environment
Reference?" on page 19-3) and configure its name attribute to the Web service
logical name (defined in the <service-ref>) and the <service-qname>
sub-element.

Example 19–9 shows a <service-ref-mapping> element for a Web service.

Example 19–15 orion-ejb-jar.xml For a Web Service Logical to JNDI Mapping

<service-ref-mapping name="service/WebServiceBroker">
<service-qname namespaceURI="urn:WebServiceBroker" localpart="WebServiceBroker"/>

</service-ref-mapping>

For information on looking up and using a Web service , see "Using EJBs and Web
Services" on page 30-1.

Configuring an Environment Reference to a Persistence Context
To acquire an entity manager in a class that does not support annotations and
injection, namely helper classes and Web clients, you must first define a
persistence-context-ref in the appropriate deployment descriptor file.

To create an environment reference to a persistence context:

1. Define a logical name for the persistence context.

Define a <persistence-context-ref> element in the appropriate client
deployment descriptor (see "Where Do You Configure an EJB Environment
Reference?" on page 19-3) and configure the following sub-elements:

– <persistence-context-ref-name>: a logical name for the persistence
context.

– <persistence-unit-name>: the name of the persistence unit associated
with this persistence context.

You must define a persistence unit of this name in a persistence.xml file.

For more information, see:

– "What is the persistence.xml File?" on page 2-13

– "Configuring the persistence.xml File" on page 26-3

Example 19–14 shows a <persistence-context-ref> element for a
persistence context in a web.xml file.

It is a best practice to start the reference name with "persistence" but it is not
required. In the bean code, the lookup of this reference (see Example 29–6 on
page 29-8) is always prefaced by "java:comp/env" (for example,
"java:comp/env/persistence/InventoryAppMgr").

Example 19–16 web.xml For a Persistence Context

...

Configuring the Initial Context Factory

Configuring JNDI Services 19-17

<servlet>
<servlet-name>webTierEntryPoint</servlet-name>
<servlet-class>com.sun.j2ee.blueprints.waf.controller.web.MainServlet</servlet-class>
<init-param>

<param-name>default_locale</param-name>
<param-value>en_US</param-value>

</init-param>
<persistence-context-ref>

<description>
Persistence context for the inventory management application.

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

InventoryManagement <!-- Defined in persistenc.xml -->
</persistence-unit-name>

</persistence-context-ref>
</servlet>

...

For information on looking up and using an entity manager , see "Acquiring an Entity
Manager in a Helper Class or Web Client" on page 29-7.

Configuring the Initial Context Factory
You use an initial context factory to obtain an initial context: a reference to a JNDI
namespace. Using the initial context, you can use the JNDI API to look up an EJB,
resource manager connection factory, environment variable, or other JNDI-accessible
object.

The type of initial context factory you use depends on the type of client you are using
it in as Table 19–2 shows.

For more information, see:

■ Oracle Containers for J2EE Security Guide

Table 19–2 Client Initial Context Requirements

Client Type Relationship to Target EJB Initial Context Factory

Any Client Client and target EJB are collocated Default (see "Configuring the Default Initial
Context Factory" on page 19-18)

Any Client Client and target EJB are deployed in the same
application

Default (see "Configuring the Default Initial
Context Factory" on page 19-18)

Any Client Target EJB deployed in an application that is
designated as the client's parent1

1 See the Oracle Containers for J2EE Developer’s Guide for more information on how to set the parent of an application.

Default (see "Configuring the Default Initial
Context Factory" on page 19-18)

EJB Client

Servlet or JSP Client

Client and target EJB are not collocated, not
deployed in the same application, and target EJB
application is not client's parent1.

oracle.j2ee.rmi.
RMIInitialContextFactory (see "Configuring
an Oracle Initial Context Factory" on page 19-18)

Standalone Java Client Client and target EJB are not collocated, not
deployed in the same application, and target EJB
application is not client's parent1.

oracle.j2ee.naming.
ApplicationClientInitialContextFactory
see "Configuring an Oracle Initial Context Factory"
on page 19-18)

Note: In this release, note the new package names for the RMI and
application client initial context factories.

Configuring the Initial Context Factory

19-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Containers for J2EE Services Guide.

Configuring the Default Initial Context Factory
A client that is collocated with the target bean (see Table 19–2) automatically accesses
the JNDI properties for the node. Thus, accessing the EJB is simple: no JNDI properties
are required.

Example 19–17 Configuring the Default Initial Context

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object helloObject = ic.lookup("java:comp/env/ejb/HelloBean");

Configuring an Oracle Initial Context Factory
If your client requires an Oracle initial context factory (see Table 19–2), you must set
the following JNDI properties:

For more information about setting JNDI properties, see "Setting JNDI Properties in an
EJB" on page 19-20.

1. Define the java.naming.factory.initial property with the Oracle initial
context factory appropriate for your client (see Table 19–2).

2. Define the java.naming.provider.url property with the naming provider
URL appropriate for your OC4J installation:

■ "Configuring the Naming Provider URL for OC4J and Oracle Application
Server" on page 19-19

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-19

3. Create a HashTable and populate it with the required properties using
javax.naming.Context fields as keys and String objects as values as
Example 19–18 shows.

Example 19–18 Specifying Initial Context Factory Properties

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",

"oracle.j2ee.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url",

"opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples");

4. When you instantiate the initial context, pass the HashTable into the initial
context constructor as Example 19–19 shows.

Example 19–19 Instantiate the Initial Context Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext (env);

5. Use the initial context to look up a JNDI-accessible resource:

■ Looking Up an EJB 3.0 Resource Manager Connection Factory on page 19-24

■ Looking Up an EJB 3.0 Environment Variable on page 19-25

■ Looking Up an EJB 2.1 Resource Manager Connection Factory on page 19-29

■ Looking Up an EJB 2.1 Enviornment Variable on page 19-29

Configuring the Initial Context Factory

Configuring JNDI Services 19-19

■ "Accessing an EJB from a Client" on page 29-1

Configuring the Naming Provider URL for OC4J and Oracle Application Server
In an Oracle Application Server install, OPMN manages one or more OC4J instances.
In this case the value for java.naming.provider.url should be of the format:

opmn:ormi://<hostname>:<opmn-request-port>:<oc4j-instance-name>/<application-name>

The fields in this provider URL are defined as follows:

■ <hostname>: The name of the host on which the Oracle Application Server is
running.

■ <opmn-request-port>: In this configuration, you have to use the OPMN
request port instead of using the ORMI port. You can find the OPMN request port
in the opmn.xml file, as follows:

<notification-server>
<port local="6003" remote="6200" request="6004"/>
...

</notification-server>

The default OPMN request port is 6003.

■ <oc4j-instance-name>: In this configuration, you may have more than one
OC4J process that OPMN uses for load balancing/failover. You use the name of
the instance to which you deployed your application.

The default instance name is home.

For example, if the hostname is dpanda-us, request port is 6004, and instances name
is home1, then the provider URL would be:

opmn:ormi://dpanda-us:6003:home1/ejbsamples

Configuring the Naming Provider URL for OC4J Standalone
In a standalone OC4J install, the value for java.naming.provider.url should be
of the format:

ormi://<hostname>:<ormi-port>/<application-name>

The fields in this provider URL are defined as follows:

■ <hostname>: The name of the host on which OC4J is running

■ <ormi-port>: The ORMI port as configured in the rmi.xml file, as follows:

<rmi-server
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/rmi-

server-10_0.xsd"
port="23791"
schema-major-version="10"
schema-minor-version="0"

>
...
</rmi-server>

The default port is 23791.

■ <application-name>: The application name as configured in the server.xml
file.

Setting JNDI Properties in an EJB

19-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For example, if the hostname is dpanda-us, ORMI port is 23793, and the application
name is ejb30slsb, then the provider URL would be:

ormi://dpanda-us:23793/ejb30slsb

Setting JNDI Properties in an EJB
If the client is collocated with the target, the client exists within the same application as
the target, or the target exists within its parent, then you do not need to initialize JNDI
properties. Otherwise, you must initialize JNDI properties in one of the following
ways:

This section describes:

■ Setting JNDI Properties with the JNDI Properties File

■ Setting JNDI Properties with System Properties

■ Setting JNDI Properties in the Initial Context

For more information, see:

■ "Specifying Credentials in EJB Clients" on page 22-10

■ Oracle Containers for J2EE Services Guide

Setting JNDI Properties with the JNDI Properties File
You can set JNDI properties in a file named jndi.properties that conforms to the
requirements specified in the java.util.Properties method load.

If setting the JNDI properties within the jndi.properties file, make sure that this
file is accessible from the client CLASSPATH.

Set JNDI properties as follows:

<PropertyName>=<PropertyValue>

For example:

java.naming.factory.initial= oracle.j2ee.server.ApplicationClientInitialContextFactory

For property names, see the field definitions in javax.naming.Context.

For an example, see "Specifying Credentials in JNDI Properties" on page 22-11.

Setting JNDI Properties with System Properties
You can set JNDI properties as system properties specified either on the command line
as a -D argument or as an environment reference (see "Configuring an Environment
Reference to an Environment Variable" on page 19-14).

Setting JNDI Properties in the Initial Context
You can set JNDI properties by creating a HashTable and populating it with the
required properties using javax.naming.Context fields as keys and String
objects as values. When you instantiate the initial context, pass the HashTable into the
the initial context constructor.

For an example, see "Specifying Credentials in the Initial Context" on page 22-11.

Looking up an EJB 3.0 EJB

Configuring JNDI Services 19-21

Looking up an EJB 3.0 EJB
Using EJB 3.0, you can look up an EJB using resource injection (see "Using
Annotations" on page 19-21) or the InitialContext (see "Using Initial Context" on
page 19-21).

Using Annotations
Example 19–20 shows how to use annotations and dependency injection to access an
EJB 3.0 EJB from an EJB client.

Example 19–20 Injecting an EJB 3.0 EJB in an EJB 3.0 EJB Client

@EJB AdminService bean;

public void privilegedTask()
{

bean.adminTask();
}

Example 19–21 shows how to use annotations and dependency injection to access an
EJB 2.1 EJB from an EJB 3.0 EJB client.

Example 19–21 Injecting an EJB 2.1 EJB in an EJB 3.0 EJB Client

@EJB(
name="ejb/shopping-cart", // optional
beanName="cart1", // optional
beanInterface=ShoppingCartHome.class, // optional
description="The shopping cart for this application" //optional

)
private ShoppingCartHome myCartHome;

Using Initial Context
This section describes:

■ Looking Up the Remote Interface of an EJB 3.0 EJB Using ejb-ref

■ Looking Up the Remote Interface of an EJB 3.0 EJB Using location

■ Looking up the Local Interface of an EJB 3.0 EJB Using local-ref

■ Looking up the Local Interface of an EJB 3.0 EJB Using local-location

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up the Remote Interface of an EJB 3.0 EJB Using ejb-ref
To look up the remote interface of an EJB using an ejb-ref:

1. Define an ejb-ref for the EJB in the ejb-jar.xml file.

Example 19–22 ejb-jar.xml For an ejb-ref

<ejb-ref>
<ejb-ref-name>ejb/Test</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-ref>

For more information, see "Configuring an Environment Reference to a Remote
EJB" on page 19-4).

Looking up an EJB 3.0 EJB

19-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the ejb-ref-name and the appropriate prefix (if
required).

Example 19–23 Looking Up Using ejb-ref in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ic.lookup("java:comp/env/ejb/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up the Remote Interface of an EJB 3.0 EJB Using location
To look up the remote interface of an EJB using its location:

1. Define the entity-deployment attribute location in the
orion-ejb-jar.xml file.

Example 19–24 orion-ejb-jar.xml For location

<entity-deployment
name="Test"
location="app/Test"
...

>
...
</entity-deployment>

The default value for location is the value of entity-deployment attribute
name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the location.

Example 19–25 Looking Up Using location in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ic.lookup("java:comp/env/app/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking up the Local Interface of an EJB 3.0 EJB Using local-ref
To look up the remote interface of an EJB using an ejb-local-ref:

1. Define an ejb-local-ref for the EJB in the ejb-jar.xml file.

Example 19–26 ejb-jar.xml For an ejb-local-ref

<ejb-local-ref>
<ejb-ref-name>ejb/Test</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-local-ref>

For more information, see "Configuring an Environment Reference to a Local EJB"
on page 19-5).

Looking Up an EJB 3.0 Resource Manager Connection Factory

Configuring JNDI Services 19-23

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the ejb-ref-name and the appropriate prefix (if
required).

Example 19–27 Looking Up Using local-ref in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ctx.lookup("java:comp/env/ejb/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking up the Local Interface of an EJB 3.0 EJB Using local-location
To look up the local interface of an EJB using its local-location:

1. Define the entity-deployment attribute local-location in the
orion-ejb-jar.xml file.

Example 19–28 orion-ejb-jar.xml For local-location

<entity-deployment
name="Test"
local-location="app/Test"
...

>
...
</entity-deployment>

The default value for location is the value of entity-deployment attribute
name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the local-location.

Example 19–29 Looking Up Using local-location in an EJB 3.0 EJB Client Using Initial
Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ctx.lookup("java:comp/env/app/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 3.0 Resource Manager Connection Factory
Using EJB 3.0, you can look up a resource manage connection using resource injection
(see "Using Annotations" on page 19-24) or the InitialContext (see "Using Initial
Context" on page 19-25).

Using Annotations
Example 19–34 shows how to use annotations and dependency injection to access an
EJB 3.0 resource manager connection factory.

Example 19–30 Injecting an EJB 3.0 Resource Manager Connection Factory

@Stateless public class EmployeeServiceBean implements EmployeeService
{

Looking Up an EJB 3.0 Environment Variable

19-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

...
public void sendEmail(String emailAddress)
{

@Resource Session testMailSession;
...

}
}

Using Initial Context
Example 19–35 shows how to use the initial context to look up an EJB 3.0 resource
manager connection factory.

Example 19–31 Looking Up an EJB 3.0 Resource Manager Connection Factory

@Stateless public class EmployeeServiceBean implements EmployeeService
{

...
public void sendEmail(String emailAddress)
{

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("java:comp/env/mail/testMailSession");
...

}
}

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 3.0 Environment Variable
Using EJB 3.0, you can look up an environment variable using resource injection (see
"Using Resource Injection" on page 19-25) or the InitialContext (see "Using Initial
Context" on page 19-26).

Using Resource Injection
Using resource injection, you can rely on the container to initialize a field or a setter
method (property) using either the:

■ default JNDI name (of the form java:comp/env/<FieldOrPropertyName>)

■ explicit JNDI name that you specify (do not prefix the name with
"java:comp/env")

You cannot inject both field and setter using the same JNDI name.

The following examples show how to initialize the maxExemptions field with the
value specified for the environment variable with the default JNDI name
java:comp/env/maxExemptions.

You can use resource injection at the field level (see Example 19–36) or the set-method
(property) level as Example 19–37 shows.

Example 19–32 Resource Injection at Field Level with Default Environment Variable
Name

@Stateless public class EmployeeServiceBean implements EmployeeService
{

...
// The maximum number of tax exemptions, configured by Deployer
// Assumes JNDI name java:comp/env/maxExemptions.
@Resource int maxExemptions;

Looking Up an EJB 3.0 Environment Variable

Configuring JNDI Services 19-25

...
public void setMaxExemptions(int maxEx)
{

maxExemptions = maxEx;
}
...

}

Example 19–33 Resource Injection at the Property Level with a Default Environment
Variable Name

@Stateless public class EmployeeServiceBean implements EmployeeService
{

...
int maxExemptions;
...
// Assumes JNDI name java:comp/env/maxExemptions.
@Resource
public void setMaxExemptions(int maxEx)
{

maxExemptions = maxEx;
}
...

}

You can specify an explicit JNDI name as Example 19–38 shows.

Example 19–34 Resource Injection with a Specific Environment Variable Name

@Stateless public class EmployeeServiceBean implements EmployeeService
{

...
int maxExemptions;
...
@Resource(name="ApplicationDefaults/maxExemptions")
public void setMaxExemptions(int maxEx)
{

maxExemptions = maxEx;
}
...

}

Using Initial Context
Example 19–39 shows how you look up these environment variables within the bean's
code using the InitialContext.

Example 19–35 Looking Up Environment Variables

InitialContext ic = new InitialContext();
Integer min = (Integer) ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with "java:comp/env/", which is the location that the
container stored the environment variable.

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 2.1 EJB

19-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Looking Up an EJB 2.1 EJB
Using EJB 2.1, you can look up an EJB using the InitialContext (see "Using Initial
Context" on page 19-26).

To look up an EJB 3.0 EJB using the InitalContext, use the same approach.

Using Initial Context
This section describes:

■ Looking Up the Remote Interface of an EJB 2.1 EJB Using ejb-ref

■ Looking Up the Remote Interface of an EJB 2.1 EJB Using location

■ Looking up the Local Interface of an EJB 2.1 EJB Using local-ref

■ Looking up the Local Interface of an EJB 2.1 EJB Using local-location

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up the Remote Interface of an EJB 2.1 EJB Using ejb-ref
To look up the remote interface of an EJB using an ejb-ref:

1. Define an ejb-ref for the EJB in the ejb-jar.xml file.

Example 19–36 ejb-jar.xml For an ejb-ref

<ejb-ref>
<ejb-ref-name>ejb/Test</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-ref>

For more information, see "Configuring an Environment Reference to a Remote
EJB" on page 19-4).

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the ejb-ref-name and the appropriate prefix (if
required).

Example 19–37 Looking Up Using ejb-ref

InitialContext ic = new InitialContext();
Object homeObject = context.lookup("java:comp/env/ejb/Test");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up the Remote Interface of an EJB 2.1 EJB Using location
To look up the remote interface of an EJB using its location:

1. Define the entity-deployment attribute location in the
orion-ejb-jar.xml file.

Example 19–38 orion-ejb-jar.xml For location

<entity-deployment
name=EmployeeBean"
location="app/EmployeeBean"
...

Looking Up an EJB 2.1 EJB

Configuring JNDI Services 19-27

>
...
</entity-deployment>

The default value for location is the value of entity-deployment attribute
name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the location.

Example 19–39 Looking Up Using location

InitialContext ic = new InitialContext();
Object homeObject = context.lookup("java:comp/env/app/EmployeeBean");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking up the Local Interface of an EJB 2.1 EJB Using local-ref
To look up the remote interface of an EJB using an ejb-local-ref:

1. Define an ejb-local-ref for the EJB in the ejb-jar.xml file.

Example 19–40 ejb-jar.xml For an ejb-local-ref

<ejb-local-ref>
<ejb-ref-name>ejb/Test</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-local-ref>

For more information, see "Configuring an Environment Reference to a Local EJB"
on page 19-5).

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the ejb-ref-name and the appropriate prefix (if
required).

Example 19–41 Looking Up

InitialContext ic = new InitialContext();
Object homeObject = context.lookup("java:comp/env/ejb/Test");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking up the Local Interface of an EJB 2.1 EJB Using local-location
To look up the local interface of an EJB using its local-location:

1. Define the entity-deployment attribute local-location in the
orion-ejb-jar.xml file.

Example 19–42 orion-ejb-jar.xml For local-location

<entity-deployment
name=EmployeeBean"
local-location="app/EmployeeBean"
...

Looking Up an EJB 2.1 Resource Manager Connection Factory

19-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

>
...
</entity-deployment>

The default value for location is the value of entity-deployment attribute
name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-3).

3. Look up the EJB using the local-location.

Example 19–43 Looking Up Using local-location

InitialContext ic = new InitialContext();
Object homeObject = context.lookup("java:comp/env/app/EmployeeBean");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 2.1 Resource Manager Connection Factory
Using EJB 2.1, you can look up a resource manager connection factory using the
InitialContext (see "Using Initial Context" on page 19-29).

For more information on configuring resources, see "Resource Manager Connection
Factory Environment References" on page 19-2.

Using Initial Context
Example 19–48 shows how to look up a JDBC data source resource manager
connection factory within the bean's code using the InitialContext with the logical
name defined in the EJB deployment descriptor (see "Configuring an Environment
Reference to a JDBC Data Source Resource Manager Connection Factory" on
page 19-7) prefixed with java:comp/env/jdbc prefix.

Example 19–44 Looking Up a JDBC Data Source Resource Manager Connection Factory

javax.sql.DataSource db;
java.sql.Connection conn;
...
InitialContext ic = new InitialContext();
db = (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/OrderDB");
conn = db.getConnection();

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 2.1 Enviornment Variable
Using EJB 2.1, you can look up an environment variable using the InitialContext
(see "Using Initial Context" on page 19-29).

For more information on configuring enviornment variables, see "Configuring an
Environment Reference to an Environment Variable" on page 19-14.

Using Initial Context
Example 19–39 shows how you look up these environment variables within the bean's
code using the InitialContext.

Looking Up an EJB 2.1 Enviornment Variable

Configuring JNDI Services 19-29

Example 19–45 Looking Up Environment Variables

InitialContext ic = new InitialContext();
Integer min = (Integer) ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with "java:comp/env/", which is the location that the
container stored the environment variable.

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Looking Up an EJB 2.1 Enviornment Variable

19-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Data Sources 20-1

20
Configuring Data Sources

This chapter describes:

■ Configuring a Data Source for an Oracle Database

■ Configuring a Data Source for a Third-Party Database

■ Configuring a Default Data Source for an EJB 3.0 Application

■ Configuring a Default Data Source for an EJB 2.1 Application

For more information, see:

■ "Understanding EJB Data Source Services" on page 2-18

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Configuring a Data Source for an Oracle Database
To create a data source for an Oracle database, you create a managed datasource. You
can create a managed data source using the Application Server Control Console (see
"Using Application Server Control Console" on page 20-1) or deployment XML (see
"Using Deployment XML" on page 20-2).

For more information, see:

■ "What Types of Data Source does OC4J Support?" on page 2-18

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Application Server Control Console
You can use Application Server Control Console to create a managed data source
dynamically without restarting OC4J.

For more information, see
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html.

Note: You can download a data source code example from
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html.

Configuring a Data Source for a Third-Party Database

20-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Deployment XML
You can configure a managed data source for an Oracle database by configuring a
connection-pool element and managed-data-source element in the
data-sources.xml file as Example 20–1 shows.

Example 20–1 data-sources.xml For an Oracle JDBC Data Source

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleManagedDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"
tx-level="global"

/>

Be sure to specify a service-based connection URL in the connection-factory
element (see "How Do You Define a Connection URL in OC4J?" on page 2-19).

By default, a managed data source supports global (two-phase commit) transactions.
To configure a managed data source to support only local transactions, set the
managed-data-source attribute tx-level to local. For more information, see
"What Transaction Types Do Data Sources Support?" on page 2-20).

For more information, see:

■ http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html

■ http://www.oracle.com/technology/tech/java/newsletter/articles/
oc4j_datasource_config.html

If you configure a managed data source using this method, you must restart OC4J to
apply your changes. Alternatively, you can use Application Server Control Console to
create a data source dynamically without restarting OC4J (see Using Application
Server Control Console on page 20-1)

Configuring a Data Source for a Third-Party Database
To create a data source for a third-party (non-Oracle) database, you create a native
datasource. You can create a native data source using the Application Server Control
Console (see "Using Application Server Control Console" on page 20-1) or deployment
XML (see "Using Deployment XML" on page 20-2).

For more information, see:

■ "What Types of Data Source does OC4J Support?" on page 2-18

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Application Server Control Console
You can use Application Server Control Console to create a native data source
dynamically without restarting OC4J.

Configuring a Default Data Source for an EJB 3.0 Application

Configuring Data Sources 20-3

For more information, see
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html.

Using Deployment XML
Example 20–2 shows how to define a native data source element for a third-party
database (in this example, SQLServer).

Example 20–2 data-sources.xml for a Third-Party Database

<native-data-source
name="nativeDataSource"
jndi-name="jdbc/nativeDS"
description="Native DataSource"
data-source-class="com.ddtek.jdbcx.sqlserver.SQLServerDataSource"
user="frank"
password="frankpw"
url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd">

</native-data-source>

By default, a native data source supports only local transactions. For global (two-phase
commit) transactions, configure a managed data source. For more information, see
"What Transaction Types Do Data Sources Support?" on page 2-20).

For more information, see:

■ http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html

■ http://www.oracle.com/technology/tech/java/newsletter/articles/
oc4j_datasource_config.html

If you configure a native data source using this method, you must restart OC4J to
apply your changes. Alternatively, you can use Application Server Control Console to
create a native data source dynamically without restarting OC4J (see "Using
Application Server Control Console" on page 20-2)

Configuring a Default Data Source for an EJB 3.0 Application
You can configure a default data source for an EJB 3.0 application using deployment
XML (see "Using Deployment XML" on page 20-3).

For more information, see:

■ "What is a Default Data Source?" on page 2-20

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Deployment XML
To configure a default data source for an EJB 3.0 application:

1. Set the name of the default data source in the default-data-source attribute
of your orion-application.xml file.

2. Customize your EJB 3.0 application to define a data source of this name in your
ejb3-toplink-session.xml file.

For more information, see:

■ "What is the ejb3-toplink-sessions.xml File?" on page 2-12

Configuring a Default Data Source for an EJB 2.1 Application

20-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Customizing the TopLink Entity Manager" on page 3-2

Configuring a Default Data Source for an EJB 2.1 Application
You can configure a default data source for an EJB 2.1 application using deployment
XML (see "Using Deployment XML" on page 20-4).

For more information, see:

■ "What is a Default Data Source?" on page 2-20

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Deployment XML
To configure a default data source for an EJB 2.1 application:

1. Set the name of the default data source in the default-data-source attribute
of the orion-application element in your orion-application.xml file.

2. Set the name of the default data source in the data-source attribute of the
entity-deployment element in your orion-ejb-jar.xml file.

3. Define the default data source in the <OC4J_
HOME>/j2ee/home/config/data-sources.xml file.

Configuring Transaction Services 21-1

21
Configuring Transaction Services

This chapter describes:

■ Configuring Transaction Timeouts

■ Transaction Best Practices

For more information, see:

■ "Understanding EJB Transaction Services" on page 2-21

■ "Java Transaction API (JTA)" in the Oracle Containers for J2EE Services Guide

Configuring Transaction Timeouts
To improve application performance, you can configure a transaction timeout that
determines how long OC4J will wait for a transaction to commit or rollback.

This section describes:

■ Configuring a Global Transaction Timeout

■ Configuring a Transaction Timeout for a Session Bean

■ Configuring a Transaction Timeout for a Message-Driven Bean

Configuring a Global Transaction Timeout
You can set a transaction timeout that applies globally to all transactions that OC4J
manages for session and entity beans.

You can configure the global transaction timeout:

■ Using Application Server Control Console

■ Using Deployment XML

Using Application Server Control Console
Using the Application Server Control Console (see "Using Oracle Enterprise Manager
10g Application Server Control" on page 31-1), you can set the JTAResource MBean
attribute transactionTimeout.

For more information, see "How to configure the OC4J Transaction Manager" in the
Oracle Containers for J2EE Services Guide.

Configuring Transaction Timeouts

21-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Deployment XML
In the <OC4J_HOME>\j2ee\home\config\transaction-manager.xml file you
set the global transaction timeout with the transaction-timeout attribute of the
<transaction-manager> element.

For example, if you wanted to set the global transaction timeout to 180 seconds, you
would do as follows:

<transaction-manager ... transaction-timeout="180"
...

</transaction-manager>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Application Server
Control Console" on page 21-4).

Configuring a Transaction Timeout for a Session Bean
You can configure a transaction timeout for each session bean (see "Using Deployment
XML" on page 21-4). The session bean transaction timeout overrides the global
transaction timeout (see "Configuring a Global Transaction Timeout" on page 21-4).

Using Deployment XML
In the orion-ejb-jar.xml file you set a session bean transaction timeout with the
transaction-timeout attribute of the <session-deployment> element.

For example, if you wanted to set the global transaction timeout to 180 seconds, you
would do as follows:

<session-deployment ... transaction-timeout="180"
...

</session-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes.

Configuring a Transaction Timeout for a Message-Driven Bean
You can configure a transaction timeout on for each message-driven bean (see "Using
Deployment XML" on page 21-5).

Because the global transaction timeout (see "Configuring a Global Transaction
Timeout" on page 21-4) does not apply to message-driven beans, you must configure
transaction timeout for each message-driven bean if you want to change the default
transaction timeout for a message-driven bean.

The type of message service provider you use (see "What Message Providers Can I use
with My MDB?" on page 2-24) affects your transaction timeout options:

■ Oracle Application Server JMS (OracleAS JMS): you cannot change the transaction
timeout from the default of 86,400 seconds (1 day).

■ Oracle JMS (OJMS): you can change the transaction timeout (see "Non-J2CA
Adapter Message Service Provider" on page 21-5).

■ J2EE Connector Architecture (J2CA) adapter message provider: you can change
the transaction timeout (see "J2CA Adapter Message Service Provider" on
page 21-5).

Transaction Best Practices

Configuring Transaction Services 21-3

Using Deployment XML
You set the transaction timeout in the orion-ejb-jar.xml file. How you configure
this value depends on the type of message-service provider you are using:

■ Non-J2CA Adapter Message Service Provider

■ J2CA Adapter Message Service Provider

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OracleAS JMS or
Oracle JMS (OJMS), use the transaction-timeout attribute of the
<message-driven-deployment> element.

For example, if you are using OracleAS JMS or Oracle JMS (OJMS), and you wanted to
set the transaction timeout to 180 seconds, you would do as follows:

<message-driven-deployment ... transaction-timeout="180"
...

</message-driven-deployment>

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the transactionTimeout configuration
property.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the transaction timeout to 180 seconds, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>transactionTimeout</config-property-name>
<config-property-value>180</config-property-value>

</config-property>
...
</message-driven-deployment>

In either case, if you change this property using this method, you must restart OC4J to
apply your changes.

Transaction Best Practices
This section describes the preferred approach to using transactions in an EJB
application, including:

■ Using Container Managed Transactions with Datasource Connections

■ Using a Rollback Strategy

Using Container Managed Transactions with Datasource Connections
If you are using container-managed transactions, and you use a data source
connection, bear in mind that the connection is not released until the transaction
commits. This is particularly important if you are using the data source connection in a
loop: in this case, you should acquire and release the connection outside of the loop to
avoid inadvertently exhausting your connection pool.

Consider a session bean that you configure for container-managed transactions. This
session bean has method runQueryConnectionEveryTime as Example 21–1 shows.

Transaction Best Practices

21-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

When this method is called, a container-managed transaction is opened. In each
iteration of the for loop, a connection is acquired and closed. However, the closed
connection is not released until the method returns and the container-managed
transaction commits. Depending on the number of iterations, this design can exhaust
your connection pool.

To avoid this problem, you should acquire and close the connection outside of the
loop as Example 21–2 shows. By doing so, you guarantee that only one connection will
be held until the container-managed transaction commits.

Example 21–1 Incorrect: count Number of Connections Held Until Commit

public static long runQueryConnectionEveryTime (int count)
{

InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");

for (int i = 0; i < count; i++)
{

Connection con = ds.getConnection(); //connection created inside loop

PreparedStatement ps = con.prepareStatement(
"select AAA_ID, AAA_A FROM AAA_TABLE where AAA_ID = ? "

);

OracleStatement os = (OracleStatement)ps;
os.defineColumnType(1, Types.BIGINT);
ps.setLong(1, i);
ResultSet rs = ps.executeQuery();
rs.close();
ps.close();

con.close(); //connection closed inside loop
}

}

Example 21–2 Correct: Only One Connection Held Until Commit

public static long runQueryConnectionEveryTime (int count)
{

InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");

Connection con = ds.getConnection(); //connection created outside loop

for (int i = 0; i < count; i++)
{

PreparedStatement ps = con.prepareStatement(
"select AAA_ID, AAA_A FROM AAA_TABLE where AAA_ID = ? "

);

OracleStatement os = (OracleStatement)ps;
os.defineColumnType(1, Types.BIGINT);
ps.setLong(1, i);
ResultSet rs = ps.executeQuery();
rs.close();
ps.close();

}

con.close(); //connection closed outside loop
}

Transaction Best Practices

Configuring Transaction Services 21-5

Using a Rollback Strategy
An enterprise bean with container-managed transaction demarcation can use the
setRollbackOnly method of its javax.ejb.EJBContext object to mark the
transaction such that the transaction can never commit.

Typically, you would do this to protect data integrity before throwing an application
exception when the application exception does not automatically cause the container
to rollback the transaction.

For example, an AccountTransfer bean which debits one account and credits
another account could mark a transaction for rollback if it successfully performs the
debit, but fails during the credit operation.

For more information, see:

■ "What is EJB Context?" on page 1-6

■ "Accessing an EJB 3.0 EJBContext" on page 29-16

■ "Accessing an EJB 2.1 EJBContext" on page 29-23

Transaction Best Practices

21-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security Services 22-1

22
Configuring Security Services

This chapter explains security service configuration as it applies specifically to J2EE
applications, including:

■ Granting Permissions in Browser

■ Defining Users, Groups, and Roles in an EJB Application

■ Specifying Credentials in EJB Clients

■ Using EJB 3.0 Security Annotations

■ Retrieving Credentials from an EJB Using the JAAS API

■ Defining a Custom JAAS Login Module for an EJB Application

For more information, see:

■ "Understanding EJB Security Services" on page 2-24

■ Oracle Containers for J2EE Security Guide

Granting Permissions in Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup", "read,write";

Defining Users, Groups, and Roles in an EJB Application
For EJB authentication and authorization, you define the principals under which each
method executes by configuring of the EJB deployment descriptor. The container
enforces that the user who is trying to execute the method is the same as defined
within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which each
method is allowed to execute. These methods are mapped to users or groups in the
OC4J-specific deployment descriptor. The users and groups are defined within your
designated security user managers, which uses either the Oracle Application Server
Java Authentication and Authorization Service (JAAS) Provider (OracleAS JAAS
Provider) or XML user manager. For a full description of security user managers, see
the Oracle Containers for J2EE Services Guide.

Defining Users, Groups, and Roles in an EJB Application

22-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors, as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

■ The OC4J-specific deployment descriptor maps the logical roles to concrete users
and groups, which are defined either the OracleAS JAAS Provider or XML user
managers.

Users and groups are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 22–1.

Figure 22–1 Role Mapping

This graphic shows the relationship amongst ejb-jar.xml, orion-ejb-jar.xml, and
principals.xml. The ejb-jarj.xml file is responsible for security-role-ref sub-element
role-link which refers to a security_role. The security_role refers to the
orion-ejb-jar.xml security_role_mapping which refers to the principals.xml group. The
group refers to one or more users.

Defining users, groups, and roles are discussed in the following sections:

■ Specifying Users and Groups

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Specifying a Role for an EJB Method

■ Specifying Unchecked Security for EJB Methods

■ Specifying the runAs Security Identity

■ Mapping Logical Roles to Users and Groups

■ Specifying a Default Role Mapping for Undefined Methods

■ Specifying Users and Groups by the Client

<security_role>

<security_role_mapping>

<group>

<user> <user><user>

ejb-jar.xml

orion-ejb-jar.xml

principals.xml

<security-role-ref><role-link>

O
_1

05
2

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-3

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or application-specific
users and groups within either the OracleAS JAAS Provider or XML user managers.
See the Oracle Containers for J2EE Services Guide.for directions.

Specifying Logical Roles in the EJB Deployment Descriptor
As shown in Figure 22–2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct database role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 22-8 for more information.

Figure 22–2 Security Mapping

This graphic shows how the role-link element refers to a security-role sub-element
role-name which in turn, refers to a method-permission sub-element role-name.

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked, within the bean's
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the
bean to not need to be aware of database roles, you can check isCallerInRole
on a logical name, such as POMgr, since only purchase order managers can sign off
on the order. Thus, you would define the logical security role, POMgr within the
<security-role-ref><role-name> element within the
<enterprise-beans> section, as follows:

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>

O
_1

05
3

EJB Deployment Descriptor

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 <security-role-ref
...
</enterprise-beans>
<assembly-descriptor>
...
 <security-role>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

Defining Users, Groups, and Roles in an EJB Application

22-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

 <role-link>myMgr</role-link>
 </security-role-ref>
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can be
the actual database role, which is defined further within the
<assembly-descriptor> section. Alternatively, it can be another logical name,
which is still defined more in the <assembly-descriptor> section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

2. Define the role and the methods that it applies to. In the purchase order example,
any method executed within the PurchaseOrder bean must have authorized
itself as myMgr. Note that PurchaseOrder is the name declared in the <entity
| session><ejb-name> element.

Thus, the following defines the role as myMgr, the EJB as PurchaseOrder, and all
methods by denoting the '*' symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean's implementation
and the container translates POMgr to myMgr.

Specifying a Role for an EJB Method
You can specify which security roles are allowed to invoke an enterprise bean method.

Note: The <security-role-ref> element is not required. You
only specify it when using security context methods within your
bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> element within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Note: If you define different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-5

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-5).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-5).

Using Annotations
In an EJB 3.0 application, you can use the @RolesAllowed annotation to specify the
security roles permitted to access methods in an application as Example 22–1 shows.

Example 22–1 @RolesAllowed

@RolesAllowed("Users")
public class Calculator
{

@RolesAllowed("Administrator")
public void setNewRate(int rate)
{
...
}

}

You can apply this annotation to a class, method, or both.

When applied to a method, the specification overrides class specification, if present.

For more information on security annotations, see "Using EJB 3.0 Security
Annotations" on page 22-12.

Using Deployment XML
The <method-permission><method> element is used to specify the security role
for one or more methods within an interface or implementation. According to the EJB
specification, this definition can be of one of the following forms:

■ Defining all methods within a bean by specifying the bean name and using the '*'
character to denote all methods within the bean, as follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

■ Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethodInMyBean</method-name>

</method>
</method-permission>

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Defining Users, Groups, and Roles in an EJB Application

22-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethod</method-name>
<method-params>
<method-param>javax.lang.String</method-param>
<method-param>javax.lang.String</method-param>

</method-params>
</method>

</method-permission>

The parameters are the fully-qualified Java types of the method's input
parameters. If the method has no input arguments, the <method-params>
element contains no elements. Arrays are specified by the array element's type,
followed by one or more pair of square brackets, such as int[] [].

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked.

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-6).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-7).

Using Annotations
In an EJB 3.0 application, you can use the @PermitAll annotation to specify that all
security roles are permitted to access methods in an application as Example 22–2
shows.

Example 22–2 @PermitAll

@RolesAllowed("Users")
public class Calculator
{

@RolesAllowed("Administrator")
public void setNewRate(int rate)
{
...
}
@PermitAll
public long convertCurrency(long amount)
{
...
}

}

You can apply this annotation to a class or method.

When applied to a class, the specification applies to all methods.

When applied to a method, the specification applies only to that method.

When using this annotation, observe the restrictions described in "Using EJB 3.0
Security Annotations" on page 22-12.

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-7

Using Deployment XML
The <method-permission><unchecked> element is used to specify that all
security roles are permitted to access a method, as follows:

<method-permission>
<unchecked/>
<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>

</method>
</method-permission>

Instead of a <role-name> element defined, you define an <unchecked/> element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity
You can specify that all methods of an EJB execute under a specific identity. That is,
the container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller's identity as the security
identity.

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-7).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-7).

Using Annotations
In an EJB 3.0 application, you can use the @RunAs annotation to specify the role of the
application during execution in a J2EE container as Example 22–1 shows.

Example 22–3 @RunAs

@RunAs("Admin")
public class Calculator
{

...
}

You can apply this annotation to a class.

For more information on security annotations, see "Using EJB 3.0 Security
Annotations" on page 22-12.

Using Deployment XML
Specify the runAs security identity in the <security-identity> element, which is
contained in the <enterprise-beans> section. The following XML demonstrates
that the POMgr is the role under which all the entity bean methods execute.

<enterprise-beans>
<entity>
...
<security-identity>
<run-as>
<role-name>POMgr</role-name>

</run-as>

Defining Users, Groups, and Roles in an EJB Application

22-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</security-identity>
...
</entity>

</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

<enterprise-beans>
<entity>
...
<security-identity>
<use-caller-identity/>

</security-identity>
...
</entity>

</enterprise-beans>

Mapping Logical Roles to Users and Groups
You can use logical roles or actual users and groups in the EJB deployment descriptor.
However, if you use logical roles, you must map them to the actual users and groups
defined either in the OracleAS JAAS Provider or XML User Managers.

Map the logical roles defined in the application deployment descriptors to OracleAS
JAAS Provider or XML User Manager users or groups through the
<security-role-mapping> element in the OC4J-specific deployment descriptor.

■ The name attribute of this element defines the logical role that is to be mapped.

■ The group or user element maps the logical role to a group or user name. This
group or user must be defined in the OracleAS JAAS Provider or XML User
Manager configuration. See the Oracle Containers for J2EE Services Guide for a
description of the OracleAS JAAS Provider and XML User Managers.

Example 22–4 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is considered
to have the POMGR role; thus, it can execute the methods of PurchaseOrderBean.

<security-role-mapping name="POMGR">
<group name="managers" />
</security-role-mapping>

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />
</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />
<user name="guest" />
</security-role-mapping>

Note: You can map a logical role to a single group or to several
groups.

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-9

As shown in Figure 22–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific deployment
descriptor in the <security-role-mapping> element.

Figure 22–3 Security Mapping

This graphic shows how an EJB deployment descriptor security-role sub-element
role-name refers to an OC4J-specific deployment descriptor assembly-descriptor
sub-element security-role-mapping element name attribute.

Notice that the <role-name> in the EJB deployment descriptor is the same as the
name attribute in the <security-role-mapping> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any insecure
methods:

<default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" >
 </security-role-mapping>
</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role. The
impliesAll attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check for
this default role on these methods.

If the impliesAll attribute is false, you must map the default role defined in the
name attribute to a OracleAS JAAS Provider or XML user or group through the
<user> and <group> elements. The following example shows how all methods not
associated with a method permission are mapped to the "others" group.

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" >
 <group name="others" />
 </security-role-mapping>
</default-method-access>

O
_1

05
4

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

...
 <security-role>
 <role-name>POMGR</role-name>
 </security-role>
 <method-permission>
 <role-name>POMGR</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

 <assembly-descriptor>
 <security-role-mapping name="POMGR">
 <group name="managers">

 </assembly-descriptor>

 </security-role-mapping>

Specifying Credentials in EJB Clients

22-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Specifying Users and Groups by the Client
In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the OracleAS
JAAS Provider or XML User Manager recognizes. And the user or group must be the
same one as designated in the security role for the intended method. See "Specifying
Credentials in EJB Clients" on page 22-10 for more information.

Specifying Credentials in EJB Clients
Depending on the type of client, you may need to specify security credentials before
your client can access an EJB or other JNDI-accessible resource.

Table 22–1 classifies EJB clients by where they are deployed relative to the target
enterprise JavaBeans they invoke. Where you deploy the client relative to its target
enterprise JavaBeans determines whether or not you must specify security credentials.

When you access EJBs in a remote container (that is, if the client and target EJB are not
collocated, not deployed in the same application, and the target EJB application is not
the client's parent), you must pass valid credentials to the remote container. How your
client passes its credentials depends on the type of client:

■ EJB Client: pass credentials within the InitialContext, which is created to look
up the remote EJBs (see "Specifying Credentials in the Initial Context" on
page 22-11).

■ Standalone Java Client: define credentials in the jndi.properties file deployed
with the EAR file (see "Specifying Credentials in JNDI Properties" on page 22-11).

■ Servlet or JSP Client: pass credentials within the InitialContext, which is
created to look up the remote EJBs (see "Specifying Credentials in the Initial
Context" on page 22-11).

In addition, all clients can specify security properties in the ejb_sec.properties
file (see "Specifying EJB Client Security Properties in the ejb_sec.properties File" on
page 22-12).

For more information, see:

■ "What Type of Client Do You Have?" on page 29-1

■ Oracle Containers for J2EE Security Guide

Note: For basic OC4J security configuration information,
including CSiV2, see the Oracle Containers for J2EE Security Guide.

Table 22–1 Client Security Credential Requirements

Client Type Relationship to Target EJB Set Credentials?

Any client Client and target EJB are collocated No

Any client Client and target EJB are deployed in the same application No

Any client Target EJB deployed in an application that is designated as the client's
parent1

1 See the Oracle Containers for J2EE Developer’s Guide for more information on how to set the parent of an
application.

No

Any client Client and target EJB are not collocated, not deployed in the same
application, and target EJB application is not client's parent1.

Yes

Specifying Credentials in EJB Clients

Configuring Security Services 22-11

Specifying Credentials in JNDI Properties
To specify credentials in a jndi.properties file:

1. Create or modify an existing jndi.properties file.

2. Configure the appropriate credentials in the jndi.properties file as
Example 22–6 shows.

For property names, see the field definitions in javax.naming.Context.

Example 22–5 Specifying Credentials in JNDI Properties

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=

oracle.j2ee.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples

3. Ensure that the jndi.properties file is on the client's classpath.

4. Use the JNDI API in your client to look up the JNDI-accessible resource as
Example 22–6 shows.

Example 22–6 Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext();
CustomerHome = (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

At runtime, JNDI uses ClassLoader method getResources to locate all application
resource files named jndi.properties in the classpath. In doing so, it will use the
JNDI properties you set in Example 22–6 to access the purchaseOrderBean.

For more information, see "Setting JNDI Properties with the JNDI Properties File" on
page 19-20.

Specifying Credentials in the Initial Context
To specify credentials in the initial context you use to look up JNDI-accessible
resources:

1. Create a HashTable and populate it with the required properties using
javax.naming.Context fields as keys and String objects as values as
Example 22–7 shows.

Example 22–7 Specifying Credentials in the Initial Context

Hashtable env = new Hashtable();
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put("java.naming.factory.initial",

"oracle.j2ee.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url",

"opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples");

2. When you instantiate the initial context, pass the HashTable into the initial context
constructor as Example 22–8 shows.

Example 22–8 Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext (env);
CustomerHome = (CustomerHome) ic.lookup ("java:comp/env/purchaseOrderBean");

Using EJB 3.0 Security Annotations

22-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "Configuring the Initial Context Factory" on page 19-17

■ "Setting JNDI Properties in the Initial Context" on page 19-21

Specifying EJB Client Security Properties in the ejb_sec.properties File
Any client, whether running inside a server or not, has EJB security properties
controlled by an ejb_sec.properties file. You use this file to specify general
security options as well as options specific to the Common Secure Interoperability
Version 2 protocol (CSIv2).

For more information, see "Common Secure Interoperability Protocol" in the Oracle
Containers for J2EE Security Guide.

Using EJB 3.0 Security Annotations
In an EJB 3.0 application, you can use the javax.annotation.security
annotations defined in JSR250 to configure security options on EJB 3.0 session beans.

Table 22–2 summarizes the security annotations that OC4J supports. For an example of
how to use these annotations, see "Using Annotations" on page 22-13.

When using @PermitAll, @DenyAll and @RolesAllowed annotations, observe the
following restrictions:

■ @PermitAll, @DenyAll, and @RolesAllowed annotations must not be applied
on the same method or class.

■ In the following cases, the method level annotations take precedence over the class
level annotation:

Table 22–2 Security Annotations

Annotation Description Applicable To

@RunAs Defines the role of the application during
execution in a J2EE container. The role must map
to the user/group information in the container's
security realm.

For more information, see "Specifying the runAs
Security Identity" on page 22-7.

Class

@RolesAllowed Specifies the security roles permitted to access
methods in an application.

For more information, see "Specifying a Role for
an EJB Method" on page 22-4.

Class, method, or both.

Method specification overrides
class specification if present.

@PermitAll Specifies that all security roles are allowed to
invoke the specified methods.

For more information, see "Specifying Unchecked
Security for EJB Methods" on page 22-6.

Class or method.

Class specification applies to all
methods.

Method specification applies only
to that method.

@DenyAll Specifies that no security roles are allowed to
invoke the specified methods.

Class or method.

Class specification applies to all
methods.

Method specification applies only
to that method.

@DeclareRoles Specifies the security roles used by the
application.

Class

Retrieving Credentials from an EJB Using the JAAS API

Configuring Security Services 22-13

– @PermitAll is specified at the class level and @RolesAllowed or @DenyAll
are specified on methods of the same class

– @DenyAll is specified at the class level and @PermitAll or @RolesAllowed
are specified on methods of the same class

– @RolesAllowed is specified at the class level and @PermitAll or @DenyAll
are specified on methods of the same class

Using Annotations
Example 22–9 shows how to use the @RolesAllowed annotation. For more
information and examples, see the JSR250 specification.

Example 22–9 @RolesAllowed

@RolesAllowed("Users")
public class Calculator
{

@RolesAllowed("Administrator")
public void setNewRate(int rate)
{
...
}

}

Retrieving Credentials from an EJB Using the JAAS API
OC4J supports the use of standard JAAS API to retrieve the Subject, Principal,
and credentials from within business methods and lifecycle methods of session beans
(stateless and stateful) and entity beans.

Example 22–10 shows how you can use the JAAS API to retrieve credentials in a
business method of an EJB deployed to OC4J.

Example 22–10 Using JAAS API to Retrieve Credentials

public class Calculator
{

// Buisness method
public void setNewRate(int rate)
{
...

AccessControlContext actx = AccessController.getContext();
Subject subject = Subject.getSubject(actx);
Set principals = subject.getPrincipals();

...
}

}

Note: You can download an EJB 3.0 security annotation code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30security/doc/how-to-ejb30-sec
urity-ejb.html.

Defining a Custom JAAS Login Module for an EJB Application

22-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Defining a Custom JAAS Login Module for an EJB Application
Within the JAAS pluggable authentication framework, an application server and any
underlying authentication services remain independent from each other.
Authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code. A login module
is primarily responsible for authenticating a user based on supplied credentials (such
as a password), and adding the proper principals (such as roles) to the subject.
Possible types of JAAS login modules include a principal-mapping JAAS module, a
credential-mapping JAAS module, a Kerberos JAAS module, or a custom login
module.

Before you can use a custom JAAS login module with your EJBs, you must configure
the following in the orion-application.xml file:

■ <jazn-loginconfig>

■ <jazn>

■ <namespace-access>

For more information, see "Login Modules" in the Oracle Containers for J2EE Security
Guide.

Configuring Message Services 23-1

23
Configuring Message Services

This chapter describes how to configure Java Message Service (JMS) and non-JMS
message service providers, including:

■ Configuring an OracleAS JMS Message Service Provider

■ Configuring an OJMS Message Service Provider

■ Configuring a Message Service Provider Using J2CA

For more information, see:

■ "What Message Providers Can I use with My MDB?" on page 2-24

■ "Implementing an EJB 3.0 MDB" on page 9-1

■ "Implementing an EJB 2.1 MDB" on page 17-1

■ "Java Message Service" in the Oracle Containers for J2EE Services Guide

Configuring an OracleAS JMS Message Service Provider
To configure the OracleAS JMS message service provider, you must:

1. Choose appropriate JNDI names for your destination and connection factory (see
"OracleAS JMS Destination and Connection Factory Names").

2. Configure the <OC4J_HOME>/j2ee/home/config/jms.xml file (see
"Configuring jms.xml").

3. Optionally, map the actual JNDI names to logical names (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-9).

4. Associate the OracleAS JMS message service provider with the message-driven
beans that will use it.

For more information, see:

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider"
on page 10-2

■ "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider"
on page 18-1

For more information about OracleAS JMS, see "Oracle Application Server JMS
(OracleAS JMS) Provider: File-Based" on page 2-25.

Configuring an OracleAS JMS Message Service Provider

23-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OracleAS JMS Destination and Connection Factory Names
The actual JNDI names for the JMS destination and connection factory are the ones
you specify in the jms.xml file (see "Configuring jms.xml" on page 23-2).

Table 23–1 lists the form of these names.

Configuring jms.xml
You configure OracleAS JMS options in the <OC4J_
HOME>/j2ee/home/config/jms.xml file. In 10.1.3, the jms.xml is defined by the
XML schema document (XSD) located at
http://www.oracle.com/technology/oracleas/schema/jms-server-10_
1.xsd.

Some of the options you can configure in the jms.xml file include:

■ JMS Destination objects used by the MDB.

■ Topic or queue in the jms.xml file to which the client sends all messages that are
destined for the MDB.

■ The name, location, and connection factory for either Destination type must be
specified.

■ If your MDB accesses a database for inquiries and so on, then you can configure
the Data Source used. For information on data source configuration, see the
Data Source chapter in the Oracle Containers for J2EE Services Guide.

■ Path to a file in which OracleAS JMS events and errors are written.

Example 23–1 shows the jms.xml file configuration for an EJB 2.1 MDB that specifies
a queue (named jms/Queue/rpTestQueue) that is used by the message-driven bean
rpTestMdb (see Example 17–1). The queue connection factory is defined as
jms/Queue/myQCF. In addition, a topic is defined named
jms/Topic/rpTestTopic, with a connection factory of jms/Topic/myTCF.

Example 23–1 jms.xml For an EJB 2.1 MDB using OracleAS JMS

<jms>
<jms-server port="9128">

<queue location="jms/Queue/rpTestQueue"></queue>
<queue-connection-factory location="jms/Queue/myQCF"></queue-connection-factory>
<topic location="jms/Topic/rpTestTopic"></topic>
<topic-connection-factory location="jms/Topic/myTCF"></topic-connection-factory>
<log>

<!-- path to the log-file where JMS-events and errors are written -->
<file path="../log/jms.log" />

</log>
</jms-server>

</jms>

Table 23–1 OracleAS JMS Destination and Connection Factory Names

Type Form

Queue jms/Queue/<QName>

Queue Connection Factory jms/Queue/<QCFName>

Topic jms/Topic/<TName>

Topic Connection Factory jms/Topic/<TCFName>

Configuring an OJMS Message Service Provider

Configuring Message Services 23-3

Configuring an OJMS Message Service Provider
To configure the OJMS message service provider, you must:

1. Install and configure the OJMS provider (see "Installing and Configuring the
OJMS Provider" on page 23-4).

2. Choose appropriate JNDI names for your destination and connection factory (see
"OracleAS JMS Destination and Connection Factory Names" on page 23-2).

3. Configure the data-sources.xml file to identify your database (see
"Configuring data-sources.xml" on page 23-5).

4. Optionally, map the actual JNDI names to logical names (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-9).

5. Configure the application.xml (or orion-application.xml) file to identify
the JNDI name of the data source that is to be used as the OJMS provider within
the <resource-provider> element (see "Configuring application.xml or
orion-application.xml" on page 23-6).

6. Associate the OJMS message service provider with the message-driven beans that
will use it.

For more information, see:

■ "Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider"
on page 10-2

■ "Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider"
on page 18-1

For more information, see "Oracle JMS (OJMS) Provider: Advanced Queueing
(AQ)-Based" on page 2-25.

OJMS Destination and Connection Factory Names
The actual JNDI names for the JMS destination and connection factory depend on your
OJMS installation as shown in Table 23–2.

The values for the variables in Table 23–2 are defined as follows:

■ <ProviderName>: the JNDI name of the data source that is providing OJMS
service (see "Configuring application.xml or orion-application.xml" on page 23-6)

■ <QName>: the name of the queue you created in the database (see step 3 b in
"Installing and Configuring the OJMS Provider" on page 23-4).

Table 23–2 OJMS Destination and Connection Factory Names

Type Form

Queue java:comp/resource/<ProviderName>/Queues/<QName>

Queue
Connection
Factory

java:comp/resource/<ProviderName>/QueueConnectionFactories/<QCFName>

Topic java:comp/resource/<ProviderName>/Topics/<TName>

Topic
Connection
Factory

java:comp/resource/<ProivderName>/TopicConnectionFactories/<TCFName>

Configuring an OJMS Message Service Provider

23-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ <QCFName>: the name of the queue connection factory. You may specify any
arbitrary name.

■ <TName>: the name of the topic you created in the database (see step 3 b in
"Installing and Configuring the OJMS Provider" on page 23-4).

■ <TCFName>: the name of the topic connection factory. You may specify any
arbitrary name.

Installing and Configuring the OJMS Provider

1. You or your DBA must install Oracle AQ according to the Oracle Streams Advanced
Queuing User's Guide and Reference. and generic database manuals.

2. You or your DBA should create an RDBMS user through which the MDB connects
to the database and grant this user appropriate access privileges to perform OJMS
operations.

The privileges that you need depend on what functionality you are requesting.
Refer to the Oracle Streams Advanced Queuing User's Guide and Reference. for more
information on privileges necessary for each type of function.

The following example creates jmsuser, which must be created within its own
schema, with privileges required for Oracle AQ operations. You must be a SYS
DBA to execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO jmsuser IDENTIFIED BY jmsuser
;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

connect jmsuser/jmsuser;

You may need to grant other privileges, such as two-phase commit or system
administration privileges, based on what the user needs. See the JTA chapter in
the Oracle Containers for J2EE Services Guide for the two-phase commit
privileges.

3. You or your DBA should create the tables and queues to support the JMS
Destination objects.

Refer to the Oracle Streams Advanced Queuing User's Guide and Reference. for more
information on the DBMS_AQADM packages and Oracle AQ messages types.

a. Create the tables that handle the JMS Destination (queue or topic).

In OJMS, both topics and queues use a queue table. The rpTestMdb JMS
example creates a single table: rpTestQTab for a queue.

To create the queue table, execute the following SQL:

Note: The following sections use SQL for creating queues, topics,
their tables, and assigning privileges that is provided within the
MDB demo on the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Configuring an OJMS Message Service Provider

Configuring Message Services 23-5

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestQTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => false,
 compatible => '8.1.5');

The multiple_consumers parameter denotes whether there are multiple
consumers or not; thus, is always false for a queue and true for a topic.

b. Create the JMS Destination. If you are creating a topic, you must add each
subscriber for the topic. The rpTestMdb JMS example requires a single
queue—rpTestQueue.

The following creates a queue called rpTestQueue within the queue table
rpTestQTab. After creation, the queue is started.

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'rpTestQueue',
 Queue_table => 'rpTestQTab');

DBMS_AQADM.START_QUEUE(
 queue_name => 'rpTestQueue');

If you wanted to add a topic, then the following example shows how you can
create a topic called rpTestTopic within the topic table rpTestTTab. After
creation, two durable subscribers are added to the topic. Finally, the topic is
started and a user is granted a privilege to it.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestTTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 multiple_consumers => true,
 compatible => '8.1.5');
DBMS_AQADM.CREATE_QUEUE('rpTestTopic', 'rpTestTTab');
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB', null, null));
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB2', null, null));
DBMS_AQADM.START_QUEUE('rpTestTopic');

Configuring data-sources.xml
Configure a data source for the database where the OJMS provider is installed. The
JMS topics and queues use database tables and queues to facilitate messaging. The
type of data source you use depends on the functionality you want.

Example 23–2 shows a typical managed data source, which by default, supports global
(two-phase commit) transactions.

Note: Oracle AQ uses the DBMS_AQADM.CREATE_QUEUE method
to create both queues and topics.

Note: The names defined here must be the same names used to
define the queue or topic in the orion-ejb-jar.xml file.

Configuring a Message Service Provider Using J2CA

23-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 23–2 Emulated Data Source With Thin JDBC Driver

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"

/>

For more information, see "Understanding EJB Data Source Services" on page 2-18.

Configuring application.xml or orion-application.xml
Identify the JNDI name of the data source that is to be used as the OJMS provider
within the <resource-provider> element.

■ If this is to be the JMS provider for all applications (global), configure the global
application.xml file.

■ If this is to be the JMS provider for a single application (local), configure the
orion-application.xml file of the application.

The following code sample shows how to configure the JMS provider using XML
syntax for OJMS.

■ class attribute—The OJMS provider is implemented by the
oracle.jms.OjmsContext class, which is configured in the class attribute.

■ property attribute—Identify the data source that is to be used as this JMS
provider in the property element. The topic or queue connects to this data
source to access the tables and queues that facilitate the messaging.

The following example demonstrates that the data source identified by
"jdbc/OracleDS" is to be used as the OJMS provider. This JNDI name is specified in
the managed-data-source element jndi-name attribute in Example 23–2. If this
example used a non-emulated data source, then the name would be the same as in the
location element.

<resource-provider
class="oracle.jms.OjmsContext"
name="myProvider">
<description>OJMS/AQ</description>
<property name="datasource" value="jdbc/OracleDS"></property>

</resource-provider>

Configuring a Message Service Provider Using J2CA
To configure the J2CA message service provider, you must:

1. Install and configure the J2CA adapter (see "Installing and Configuring a J2CA
Adapter" on page 23-7).

2. Choose appropriate JNDI names for your connection factory (see "J2CA Message
Service Provider Connection Factory Names" on page 23-7).

Configuring a Message Service Provider Using J2CA

Configuring Message Services 23-7

3. Configure the appropriate deployment XML files (see "Configuring OC4J
Deployment XML Files" on page 23-7).

4. Associate the J2CA message service provider with the message-driven beans that
will use it.

For more information, see:

■ "Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider" on
page 10-3

■ "Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider" on
page 18-2

For more information, see "J2EE Connector Architecture (J2CA) Adapter Message
Provider" on page 2-26.

J2CA Message Service Provider Connection Factory Names
The actual JNDI names for the destination and connection factory depend on your
J2CA installation as defined in your oc4j-connectors.xml file (see "Configuring
OC4J Deployment XML Files" on page 23-7).

Typically, it will be composed of java:<Prefix>/<FactoryName> where
<Prefix> is an optional JNDI location like comp/env/eis and <FactoryName> is
the name of the javax.cci.ConnectionFactory for your adapter.

Installing and Configuring a J2CA Adapter
OC4J includes the Oracle JMS Connector: a generic JMS J2CA resource adapter that
integrates OC4J with OracleAS JMS and OJMS message service providers, as well as
non-Oracle JMS providers such as WebSphereMQ, Tibco, and SonicMQ.

For more information, see "Overview: Administering Resource Adapters" in the Oracle
Containers for J2EE Resource Adapter Administrator’s Guide.

Configuring OC4J Deployment XML Files
To configure a J2CA message service provider, you must configure the following
deployment XML files:

■ ra.xml

■ oc4j-ra.xml

■ oc4j-connectors.xml

For more information, see:

■ "Binding and Configuring a Connection Factory: Basic Settings" in the Oracle
Containers for J2EE Resource Adapter Administrator’s Guide

■ "OC4J Resource Adapter Configuration Files" in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide

Note: For a complete code example of configuring a J2CA message
service provider resource adapter and MDB application, see
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_
to/how-to-gjra-with-oracleasjms/doc/how-to-gjra-with
-oracleasjms.html.

Configuring a Message Service Provider Using J2CA

23-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring OC4J EJB Application Clustering Services 24-1

24
Configuring OC4J EJB Application

Clustering Services

This chapter describes the OC4J application clustering options you can configure for
your EJB application, including:

■ Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy

■ Configuring Replication-Based Load Balancing

■ Configuring Static Retrieval Load Balancing

■ Configuring DNS Load Balancing

For more information, see "Understanding OC4J EJB Application Clustering Services"
on page 2-28

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy
The general procedure for configuring EJB application clustering for an EJB 3.0 or EJB
2.1 stateful session bean is:

1. Configure your OC4J application cluster (see "Application Clustering in OC4J" in
the Oracle Containers for J2EE Configuration and Administration Guide).

2. Configure a replication policy for stateful session beans on each node (see "Using
Deployment XML" on page 24-1):

3. Deploy your EJB to any one of the nodes in the cluster.

For more information, see "State Replication" on page 2-29.

Using Deployment XML
To configure a replication policy, add a <replication-policy> element to one or
more of the appropriate deployment descriptor files that Table 24–1 lists.

You can specify a single replication policy that OC4J applies globally or specify
finer-grained replication policy at the application level for both Web and EJB
components or EJB components only.

Configure the trigger attribute to one of the following:

■ onRequestEnd — replicate at the end of each EJB method call

■ onShutdown — replicate when the JVM is terminating normally

The scope attribute is always set to allAttributes for a stateful session bean.

For more information, see "State Replication Trigger" on page 2-29.

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy

24-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Global Replication Policy in the application.xml File for Web and EJB
Components
When you configure the application.xml file with a state replication policy (see
Example 24–1), it applies to all Web components and to all stateless session beans
deployed to this instance of OC4J.

Example 24–1 The application.xml For a Global Replication Policy

<application>
...

<replication-policy
trigger="onRequestEnd"
scope="allAttributes"

/>
...
</application>

Configuring Application-Level Replication Policy in the orion-application.xml File
for Web and EJB Components
When you configure the orion-application.xml file with a state replication
policy (see Example 24–2), it applies to all Web components and to all stateless session
beans deployed to this instance of OC4J.

Example 24–2 The orion-application.xml For an Application-Level Replication Policy

<orion-application>
...

<replication-policy
trigger="onShutdown"
scope="allAttributes"

/>
...
</orion-application>

Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB
Components
When you configure the orion-ejb-jar.xml file with a state replication policy for a
stateful session bean (see Example 24–3), each bean can use a different type of
replication independent of the Web component replication type.

Table 24–1 Deployment XML Files for Replication Policy Configuration

Scope
Affected
Components Deployment XML File See also ...

Global Web and EJB application.xml "Configuring Global Replication Policy
in the application.xml File for Web and
EJB Components" on page 24-2

Application-level Web and EJB orion-application.xml "Configuring Application-Level
Replication Policy in the
orion-application.xml File for Web and
EJB Components" on page 24-2

Application-level EJB orion-ejb-jar.xml "Overriding Application-Level
Replication Policy in the
orion-ejb-jar.xml File for EJB
Components" on page 24-2

Configuring Static Retrieval Load Balancing

Configuring OC4J EJB Application Clustering Services 24-3

Example 24–3 The orion-ejb-jar.xml For an Application-Level Replication Policy for
EJBs

<orion-ejb-jar>
...

<session-deployment
name="AirlinePOEndpointBean"
max-tx-retries="0"
location="AirlinePOEndpointBean"
persistence-filename="AirlinePOEndpointBean">

...
<replication-policy

trigger="onRequestEnd"
scope="allAttributes"

/>
...

</session-deployment>
...
</orion-ejb-jar>

Configuring Replication-Based Load Balancing
For both EJB 3.0 and EJB 2.1, to configure how a client’s requests are load balanced
across the OC4J instances in your cluster when you configure a replication policy (see
"Using System Properties" on page 24-3).

For more information, see "Replication-Based Load Balancing" on page 2-30.

Using System Properties
In this release, configure the oracle.j2ee.rmi.loadBalance system property
within each client to specify load balancing in an application cluster. This system
property takes one of the following values:

■ client — The client interacts with the OC4J process that was initially chosen at
the first lookup for the entire conversation (Default).

■ context — The client goes to a new server when a separate context is used
(similar to deprecated dedicated.rmicontext).

■ lookup — The client goes to a new (randomly selected) server for every request.

Configuring Static Retrieval Load Balancing
To use static retrieval of OC4J instances for load balancing, within each client,
configure JNDI properties as follows (see "Using JNDI Properties" on page 24-3:

■ For java.naming.factory.initial, use any initial context factory.

■ For the java.naming.provider.url, use the ormi:// prefix and a comma
separated list of OC4J nodes in the form
<hostname>:<port>/<application-name>

For more information, see "Static Retrieval Load Balancing" on page 2-30.

Using JNDI Properties
Example 24–4 shows a URL definition that provides the client container with three
OC4J nodes (with hostnames s1, s2, and s3 and ports 23791, 23792, and 23793,
respectively) to use for load balancing.

Configuring DNS Load Balancing

24-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 24–4 JNDI Properties for Static Retrieval Load Balancing

java.naming.factory.initial= oracle.j2ee.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://s1:23791/ejbs, ormi://s2:23792/ejbs, ormi://s3:23793/ejbs;
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Configuring DNS Load Balancing
To use DNS load balancing:

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Set up the DNS server to return the
addresses either in a round-robin or random fashion.

The IP address identifies the OC4J running; the port number is an RMI port
number.

2. Turn off DNS caching on the client. For UNIX machines, you must turn off DNS
caching as follows:

a. Kill the NSCD daemon process on the client.

b. Start the OC4J client with the -Dsun.net.inetaddr.ttl=0 option.

3. Within each client, configure JNDI properties as follows (see "Using JNDI
Properties" on page 24-4):

■ For java.naming.factory.initial, use any initial context factory.

■ For the java.naming.provider.url, use the ormi:// prefix, the single
host name to which the OC4J IP addresses are mapped, and the common RMI
port.

Each time the lookup occurs on the DNS server, the DNS server hands back one of the
many IP addresses that are mapped to it.

For more information, see "DNS Load Balancing" on page 2-30.

Using JNDI Properties
In Example 24–5, the initial context factory is RMIInitialContextFactory (however, you
can use any initial context factory for DNS load balancing), myserver is the host
name set up in the DNS server for the list of servers, and the RMI port is the default
port.

Example 24–5 JNDI Properties for DNS Load Balancing

java.naming.factory.initial= oracle.j2ee.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://myserver/applname
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Configuring Timer Services 25-1

25
Configuring Timer Services

This chapter describes:

■ Configuring an EJB 3.0 EJB with a J2EE Timer

■ Configuring an EJB 2.1 EJB with a J2EE Timer

■ Configuring an EJB with an OC4J Cron Timer

■ Troubleshooting Timers

For more information, see "Understanding EJB Timer Services" on page 2-31.

Configuring an EJB 3.0 EJB with a J2EE Timer
You can configure a J2EE timer on an EJB 3.0 stateless session bean or message-driven
bean.

You can access the timer service using annotations and dependency injection (see
"Using Annotations" on page 25-1), using the initial context API (see "Using Initial
Context" on page 25-2).

You can implement the timeout call back by:

■ annotating an existing method (see "Using Annotations" on page 25-1)

■ by implementing the javax.ejb.TimedObjectinterface.

Using Annotations
Example 25–1 shows how to use resource injection to acquire a J2EE timer in an EJB 3.0
EJB.

Example 25–1 Using @Resource to Acquire a J2EE Timer in an EJB 3.0 EJB

@Stateless public class EmployeeServiceBean implements EmployeeService
{

...
@Resource Timer EmpDurationTimer;
...

Note: You can download EJB timer code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos and
http://www.oracle.com/technology/tech/java/oc4j/10
03/how_to/how-to-ejb-timer.html.

Configuring an EJB 2.1 EJB with a J2EE Timer

25-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}
}

Using Initial Context
Example 25–2 shows how to use the initial context to look up a J2EE timer in an EJB 3.0
EJB.

Example 25–2 Using Initial Context to Look Up an EJB 3.0 J2EE Timer

InitialContext ctx = new InitialContext();

TimerService ts = ctx.getTimerService();
Timer myTimer = ts.createTimer(timeout, "EmpDurationTimer");

Configuring an EJB 2.1 EJB with a J2EE Timer
You can configure a J2EE timer on an EJB 2.1 stateless session bean, entity bean, or
message-driven bean.

The EJB that creates the timer first retrieves the timer service—TimerService
interface—through the getTimerService method of the EJBContext interface.
From the TimerService interface, you can create a timer using one of the four
provided createTimer methods that allow you to specify the timer as a single-event
timer or as an interval timer. The timers are defined in milliseconds, even though most
events are for much longer time periods. The expiration of the timer can be defined as
a duration or in absolute time. In addition, the bean can pass some information to
identify the timer, which must be serializable.

TimerService ts = ctx.getTimerService();
Timer myTimer = ts.createTimer(timeout, "EmpDurationTimer");

The timer is created by a bean to designate when a callback method is invoked. The
business logic that is to be executed when the timer expires is implemented in a
callback method—ejbTimeout—within the application bean class. The bean class
that uses the timer service must implement the javax.ejb.TimedObject interface,
which contains the ejbTimeout method.

The created timer is associated with the identity of the bean. For entity beans, the
ejbTimeout is invoked on the bean instance that created the bean; for stateless
session beans and MDBs, the ejbTimeout method is invoked on any bean instance in
the pool.

public abstract class EmployeeBean implements EntityBean, TimedObject
...
 public void ejbTimeout(Timer timer)
 {
 System.out.println("ejbTimeout() called at: " + new
 Date(System.currentTimeMillis()) + " with info: " + timer.getInfo());
 return;
 }

The TimerService provides the following methods for creating the different types of
timers:

Note: There is no guarantee that the timers are executed in any
order; therefore, your implementation within the ejbTimeout
callback must be able to handle the callbacks in any sequence.

Configuring an EJB with an OC4J Cron Timer

Configuring Timer Services 25-3

public interface javax.ejb.TimerService {
 /* After a specified duration*/
 public Timer createTimer(long duration, java.io.Serializable info);
 /* At a specifed interval */
 public Timer createTimer(long initialDuration, long intervalDuration,
 java.io.Serializable info);
 /* At a certain time */
 public Timer createTimer(java.util.Date expiration, java.io.Serializable info);
 /* A certain duration after a specified date and time */
 public Timer createTimer(java.util.Date initialExpiration,
 long intervalDuration, java.io.Serializable info);
 public Collection getTimers();
}

The getTimers method retrieves all active timers associated with the bean.

Configuring an EJB with an OC4J Cron Timer
You can use an OC4J cron timer with:

■ EJB 3.0 stateless session beans and message-driven beans

■ EJB 2.1 EJBs of any type

You can schedule a timer to execute regularly at specified intervals. In the UNIX
world, these are known as cron timers.

The following are examples of the different methods you can use in scheduling a cron
timer. Where there is an asterisk, all values are valid.

Example 25–3 How to Configure Different Timers

20 * * * * --> 20 minutes after every hour, such as 00:20, 01:20, and so on
 5 22 * * * --> Every day at 10:05 P.M.
 0 8 1 * * --> First day of every month at 8:00 A.M.
 0 8 4 7 * --> The fourth of July at 8:00 A.M.
15 12 * * 5 --> Every Friday at 12:15 P.M.

The format of a cron time variable includes five time fields:

■ Minute: 0-59

■ Hour: 0-23

■ Day of the Month: 1-31

■ Month: 1-12 or specify with the following strings: Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

■ Day of the Week: 0-7 or with the following strings: Sun, Mon, Tue, Wed, Thu, Fri,
Sat. Both 0 and 7 signify Sunday.

You can define complex timers by specifying multiple values in a field, separated by
commas or a dash.

Example 25–4 Complex Timers

0 8 * * 1,3,5 --> Every Monday, Wednesday, and Friday at 8:00 A.M.

Note: Timers and their handles are local objects; therefore, they
should not be passed through the bean remote interface.

Troubleshooting Timers

25-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

0 8 1,15 * * --> The first and 15th of every month at 8:00 A.M.
0 8-17 * * 1-5 --> Every hour from 8 A.M. through 5 P.M., Monday through Friday

You can create cron timers either through the createTimer method that takes a
String with the previous five fields in it—separated by spaces—or with the
createTimer method that has variables for each field. To create the cron timers, use
the following Oracle-specific createTimer APIs:

EJBTimer createTimer(String cronline, Serializable info) throws
IllegalArgumentException, IllegalStateException;

EJBTimer createTimer(int minute, int hour, int dayOfMonth, int month, int
dayOfWeek, int year, Serializable info) throws IllegalArgumentException,
IllegalStateException;

Create the cron timers in the same manner as other timers by retrieving the extended
Oracle-specific timer service, and schedule a cron timer using the createTimer
method. However, since cron timers are Oracle-specific, you cast the returned object as
an EJBTimerService object. The following example provides a String with the
five variables separated by spaces. The timer is scheduled to execute every minute.

import oracle.ias.container.timer.EJBTimer;
import oracle.ias.container.timer.EJBTimerService;
...
String cron = "1 * * * *";
EJBTimerService ets = (EJBTimerService) ctx.getTimerService();
EJBTimer et = ets.createTimer(cron, info);

You can also provide a class that is to be invoked within the createTimer method, as
follows:

EJBTimer createTimer(String cronline, String className, Serializable info) throws
IllegalArgumentException, IllegalStateException;

EJBTimer createTimer(int minute, int hour, int dayOfMonth, int month, int
dayOfWeek, String className, Serializable info) throws IllegalArgumentException,
IllegalStateException;

For arbitrary Java classes, the info variable can be either null or be a String[] of
parameters to pass to the main method of the class.

For example, you can have the mypackage.MyClass invoked when the get timer
fires:

EJBTimerService ets = (EJBTimerService) ctx.getTimerService();
EJBTimer et = ets.createTimer(cron,"mypackage.MyClass", info);

You must provide a main method within the mypackage.MyClass, which is used as
the entry point, as follows:

public static void main(String args[])

Troubleshooting Timers
This section describes:

■ How to Retrieve Information About the Timer

■ How to Retrieve a Persisted Timer

■ Executing the Timer Within the Scope of a Transaction

Troubleshooting Timers

Configuring Timer Services 25-5

■ What Does a NoSuchObjectLocalException Mean with Timers?

How to Retrieve Information About the Timer
You can retrieve information and cancel the timer through the Timer object. The
methods available are cancel(), getTimeRemaining(), getNextTimeout(),
getHandle(), and getInfo(). To compare for object equality, use the
Timer.equals(Object obj) method.

How to Retrieve a Persisted Timer
Timers must be able to be persisted so that they can survive the life cycle of the bean
(ejbLoad, ejbStore, and so on). You can retrieve a persisted Timer object through
its handle. Retrieve the TimerHandle through the Timer.getHandle() method.
Then, you can retrieve the persisted Timer object through the
TimerHandle.getTimer() method.

Executing the Timer Within the Scope of a Transaction
The timer is normally created or cancelled within the scope of a transaction. Thus, the
bean normally is configured as being within a transaction. Typically this is configured
with RequiresNew. If the transaction is rolled back, then the container retries the
timeout.

For more information on transactions, see the Oracle Containers for J2EE Services Guide.

What Does a NoSuchObjectLocalException Mean with Timers?
When you try to invoke a method on a timer object that has been either successfully
invoked or cancelled, you will receive a NoSuchObjectLocalException.

Troubleshooting Timers

25-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part IX
Packaging and Deploying an EJB

Application

This part provides procedural information on packaging and deploying a J2EE
application using EJB 3.0 or EJB 2.1 enterprise JavaBeans. For conceptual information,
see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 26, "Configuring Deployment Descriptor Files"

■ Chapter 27, "Packaging an EJB Application"

■ Chapter 28, "Deploying an EJB Application to OC4J"

Configuring Deployment Descriptor Files 26-1

26
Configuring Deployment Descriptor Files

This chapter describes how to configure the various deployment descriptor files an
OC4J application may use, including:

■ Configuring the ejb-jar.xml File

■ Configuring the toplink-ejb-jar.xml File

■ Configuring the orion-ejb-jar.xml File

■ Configuring the ejb3-toplink-sessions.xml File

■ Configuring the persistence.xml File

For more information, see "Understanding EJB Deployment Descriptor Files" on
page 2-7.

Configuring the ejb-jar.xml File
This section describes:

■ Creating ejb-jar.xml During Migration

■ Creating the ejb-jar.xml File at Deployment Time

■ Creating ejb-jar.xml with JDeveloper

For more information, see "What is the ejb-jar.xml File?" on page 2-10.

Creating ejb-jar.xml During Migration
For EJB 2.1 only, you can automatically generate the ejb-jar.xml file during
migration (see "Migrating to the TopLink Persistence Manager" on page 3-5). After
generation, you can use the TopLink Workbench to customize and re-export this file
(see "Using TopLink Workbench" on page 2-3).

Creating the ejb-jar.xml File at Deployment Time
When you deploy an EJB 3.0 application with one or more annotations, OC4J will
write its in-memory ejb-jar.xml file to the same location as the
orion-ejb-jar.xml file in the deployment directory: <ORACLE_
HOME>/j2ee/home/application-deployments/my_application/META-INF.

This ejb-jar.xml file represents configuration obtained from both annotations and
a deployed ejb-jar.xml file (if present).

Configuring the toplink-ejb-jar.xml File

26-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating ejb-jar.xml with JDeveloper
You can use JDeveloper to generate and update the ejb-jar.xml file.

For more information, see "Using JDeveloper" on page 2-2.

Configuring the toplink-ejb-jar.xml File
This section describes:

■ Creating toplink-ejb-jar.xml During Migration

■ Creating toplink-ejb-jar.xml with TopLink Workbench

For more information, see:

■ "What is the toplink-ejb-jar.xml File?" on page 2-11

■ "OC4J and the toplink-ejb-jar.xml File" in the Oracle TopLink Developer’s Guide

Creating toplink-ejb-jar.xml During Migration
EJB 2.1 only; When you migrate an Orion CMP application to TopLink persistence (see
"Migrating to the TopLink Persistence Manager" on page 3-5), the TopLink migration
tool automatically creates a toplink-ejb-jar.xml file for you.

After generation, you can use the TopLink Mapping Workbench to customize and
re-export (see "Understanding the TopLink Workbench" in the Oracle TopLink
Developer’s Guide).

Creating toplink-ejb-jar.xml with TopLink Workbench
For EJB 3.0 projects, if the only JDK 1.5 language extension that your entity classes use
are annotations, you can use the TopLink Workbench to create and configure a
toplink-ejb-jar.xml file. Oracle recommends using the TopLink Workbench to
create and configure this file.

For EJB 2.1 projects, you use the TopLink Workbench to configure persistence
properties in the toplink-ejb-jar.xml file. When you migrate an Orion CMP
application to TopLink persistence (see "Migrating to the TopLink Persistence
Manager" on page 3-5), the TopLink migration tool automatically creates a TopLink
Workbench project for you. You can use the TopLink Workbench project to create a
toplink-ejb-jar.xml file.

For more information, see:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Creating project.xml with TopLink Workbench" in the Oracle TopLink Developer’s
Guide.

Configuring the orion-ejb-jar.xml File
When you deploy an EJB application to sOC4J, you must specify any vendor-specific
configuration in one of the following ways:

■ Package an orion-ejb-jar.xml with the desired vendor-specific configuration
and deploy.

■ After deployment, use the Application Server Control deployment profile to make
the vendor-specific configuration.

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-3

For more information, see "What is the orion-ejb-jar.xml File?" on page 2-11.

Configuring the ejb3-toplink-sessions.xml File
This section describes:

■ "Creating ejb3-toplink-sessions.xml with TopLink Workbench"

For more information, see "What is the ejb3-toplink-sessions.xml File?" on page 2-12.

Creating ejb3-toplink-sessions.xml with TopLink Workbench
For EJB 3.0 applications, if the only JDK 1.5 language extension that your entity classes
use are annotations, you can use the TopLink Workbench to create and configure a
ejb3-toplink-sessions.xml file. Oracle recommends using the TopLink
Workbench to create and configure this file.

For more information, see:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Creating project.xml with TopLink Workbench" in the Oracle TopLink Developer’s
Guide.

Configuring the persistence.xml File
This section describes:

■ Configuring a Named Persistence Unit in the persistence.xml File

■ Configuring the persistence.xml File for the OC4J Default Persistence Unit

For more information, see "What is the persistence.xml File?" on page 2-13.

Configuring a Named Persistence Unit in the persistence.xml File
Example 26–1 shows an example persistence.xml file that contains one persistence
unit.

Example 26–1 Named Persistence Unit

<persistence-unit name="OrderManagement5">
<provider>com.acme.persistence</provider>
<transaction-type>RESOURCE_LOCAL</transaction-type>
<mapping-file>order1.xml</mapping-file>
<jar-file>order.jar</jar-file>
<class>com.acme.Order</class>
<properties>

<property name="com.acme.persistence.sql-logging" value="on"/>
</properties>

</persistence-unit>

This persistence unit is named OrderManagement5 and uses EntityManager
provider com.acme.persistence. Its <transaction-type> specifies that this
persistence unit requires only a non-JTA data source. It defines its set of persistent
managed classes using all of <mapping-file>, <jar-file>, and <class>
elements (see "What Persistent Managed Classes Does this Persistence Unit Include?"
on page 26-4). It sets property com.acem.persistence.sql.logging to a value of
on using a <property> element.

Configuring the persistence.xml File

26-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For detailed descriptions of <persistence-unit> element attributes and
sub-elements, see the EJB 3.0 specification.

What Persistent Managed Classes Does this Persistence Unit Include?
You can specify the persistent managed classes associated with a persistence unit by
using one or more of the following:

■ <mapping-file> element: specifies one or more object/relational mapping XML
files (orm.xml files).

■ <jar-file> element: specifies one or more JAR files that will be searched for
classes.

■ <class> element: specifies an explicit list of classes

■ The annotated managed persistence classes contained in the root of the persistence
unit

The root of the persistence unit is the JAR file or directory whose META-INF
directory contains the persistence.xml file. To exclude managed persistence
classes, add an <exclude-unlisted-classes> element to the persistence unit.

Configuring the persistence.xml File for the OC4J Default Persistence Unit
Using the OC4J default persistence unit, you can acquire an entity manager without
having to specify a persistence unit by name (see "Understanding the OC4J Default
Persistence Unit" on page 2-14).

By default, to use the OC4J default persistence unit, you do not need to deploy a
persistence.xml file at all.

If you set orion-ejb-jar.xml file attribute
disable-default-persistent-unit to true, OC4J will expect a persistence.xml
file. In this case, you can still use the OC4J default persistence unit if you specify an
empty persistence unit: configure your persistence.xml file with an empty
persistence unit using any of the following:

■ Empty <persistence> element:

<persistence>
</persistence>

■ Self-closing <persistence/> element

■ Completely empty (zero length) persistence.xml file

You may specify one and only one such empty persistence unit in your application.

Packaging an EJB Application 27-1

27
Packaging an EJB Application

This section describes:

■ Sharing Classes Between EJB Applications

For more information, see:

■ Oracle Application Server Enterprise Deployment Guide

■ "Understanding Packaging" on page 2-7

Packaging an Application with Both EJB 3.0 and EJB 2.1 EJBs
You can combine both EJB 3.0 and EJB 2.1 beans in your application. For example, you
could have an application that contains three annotated EJB 3.0 entities without
ejb-jar.xml, two EJB 2.1 entity beans with ejb-jar.xml, and three EJB 3.0 session
beans with ebj-jar.xml, annotations, or both (in which case, the ejb-jar.xml
overrides the annotations).

Sharing Classes Between EJB Applications
If you want to share classes between EJBs, you can do one of the following:

■ If two EJBs use the same classes, include all classes and the EJBs in the same JAR
file. After deployment, both EJBs can use the common classes.

■ Place the shared classes in its own JAR file in the application. Reference the shared
JAR file in the class-path of the EJB JAR manifest.mf file, as follows:

Class-Path:shared_classes.jar

The location of the shared_classes.jar is relative to where the JAR that
references is located in the EAR file. In this example, the shared_classes.jar
file is at the same level as the EJB JAR.

■ If all applications reference these classes, archive the shared classes in a JAR file
and place this JAR file in the shared library directory of the default application.
The home/lib is a default shared library. However, you can set shared library
directories using Enterprise Manager in the General Properties page of the
"default" application.

■ If you want only certain applications to reference these classes, archive the shared
classes in its own application, deploy the EAR for the application, and have the
applications that reference the shared classes declare the shared classes application
as its parent. The default parent in OracleAS is the "default" application.

Sharing Classes Between EJB Applications

27-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The children see the namespace of its parent application. This is used in order to
share services such as EJBs among multiple applications. See the Oracle
Containers for J2EE Developer’s Guide for directions on how to specify a parent
application.

If you want to share classes between EJB and Web applications, you should place the
referenced classes in a shared JAR.

If you receive a ClassCastException, then you probably have the following
situation:

■ You copied EJB interfaces into the WAR where the servlet resides for ease in
development and forgot to delete them before creating the WAR file AND

■ You turned on the search_local_classes_first attribute of the
<web-app-class-loader> element in the orion-web.xml file.

To solve this problem, either eliminate the copied classes out of the WAR file or turn
off the search_local_classes_first attribute. This attribute tells the class loader to load in
the classes in the WAR file before loading in any other classes, including the classes
within the EJB JAR file. For more information on this attribute, see the "Loading WAR
File Classes Before System Classes in OC4J" section in the "Servlet Development"
chapter of the Oracle Containers for J2EE Servlet Developer’s Guide.

Handling Out of Memory Exceptions at Runtime
If you see that the OC4J memory is growing consistently while executing, then you
may have invalid symbolic links in your application.xml file. OC4J loads all resources
using the links in the application.xml file. If these links are invalid, then the C heap
continues to grow causing OC4J to run out of memory. Ensure that all symbolic links
are valid and restart OC4J.

In addition, keep the number of JAR files to a minimum in the directories where the
symbolic links point. Eliminate all unused JARs from these directories. OC4J searches
all JARs for classes and resources; thus, taking time and memory consumption by the
file cache, as well as being mapped into the address space.

Handling Class Cast Exceptions at Runtime
When you have an EJB or Web application that references other shared EJB classes,
you should place the referenced classes in a shared JAR. In certain situations, if you
copy the shared EJB classes into WAR file or another application that references them,
you may receive a ClassCastException because of a class loader issue. To be
completely safe, never copy referenced EJB classes into the WAR file of its application
or into another application.

Deploying an EJB Application to OC4J 28-1

28
Deploying an EJB Application to OC4J

This section describes:

■ Deploying a Large EJB Application

■ Deploying Incrementally

■ Troubleshooting Application Deployment

For more information, see:

■ Oracle Application Server Enterprise Deployment Guide

■ "Understanding Deployment" on page 2-7

Deploying a Large EJB Application
This section describes:

■ Tuning the VM to Avoid Out Of Memory Errors During Deployment

■ Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment

For more information, see "Deploying Large Applications" in the Oracle Containers for
J2EE Deployment Guide.

Tuning the VM to Avoid Out Of Memory Errors During Deployment
If a very large application (EAR) is deployed to OC4J, an OutOfMemory exception
may be thrown at deployment time.

Your VM heap and permanent space configuration can cause such an exception. By
default, heap and permanent space is set to 64 MB.

If there is a heap space problem, the heap space should be specified as: java
-Xmx750m -Xms512m.

If there is a permanent space problem, the permanent space should specified as: java
-Xmx750m -Xms512m -XX:PermSize=128m -XX:MaxPermSize=256m.

If the deployment process is interrupted for any reason, you may need to clean up the
temp directory, which by default is /var/tmp, on your system. The deployment
wizard uses 20 MB in swap space of the temp directory for storing information during
the deployment process. At completion, the deployment wizard cleans up the temp
directory of its additional files. However, if the wizard is interrupted, it may not have
the time or opportunity to clean up the temp directory. Thus, you must clean up any
additional deployment files from this directory yourself. If you do not, this directory
may fill up, which will disable any further deployment. If you receive an Out of
Memory error, check for space available in the temp directory.

Deploying Incrementally

28-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

To change the temp directory, set the command-line option for the OC4J process to
java.io.tmpdir=<new_tmp_dir>. You can set this command-line option in the Server
Properties page. Drill down to the OC4J Home Page. Scroll down to the
Administration Section. Select Server Properties. On this page, Scroll down to the
Command Line Options section and add the java.io.tmpdir variable definition to the
OC4J Options line. All new OC4J processes will start with this property.

Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment
If your application (EAR) contains multiple JAR files, you can try disabling batch
deployment to fix OutOfMemory exceptions. However, if your EAR file only has one
JAR file, this approach will not fix such exceptions: in this case, you must tune the VM
(see "Tuning the VM to Avoid Out Of Memory Errors During Deployment" on
page 28-2).

If OC4J throws Out of Memory exceptions at deploy time, and you have already tried
tuning the VM (see "Tuning the VM to Avoid Out Of Memory Errors During
Deployment" on page 28-2), you may also attempt to compile in non-batch mode.
Although non-batch mode requires less memory, this mode will result in a longer
deployment time.

To enable or disable batch compilation, use the <application> element or
<orion-application> attribute batch-compile.

The default value of batch-compile is true.

To disable batch compile, set this attribute to false.

Example 28–1 shows how to configure this attribute in the orion-applicatin.xml
deployment descriptor.

Example 28–1 Disabling Batch Compilation in the orion-application.xml File

<orion-application batch-compile ="false">
...
</orion-application>

If out of memory errors persist, try disabling batch compile.

Deploying Incrementally
OC4J supports incremental or partial redeployment of EJB modules that are part of a
deployed application. This feature makes it possible to redeploy only those beans
within an EJB JAR that have changed to be deployed, without requiring the entire
module to be redeployed. Previously deployed beans that have not been changed will
continue to be used.

This functionality represents a significant enhancement over previous releases of
OC4J, which treated an EJB module as a single unit, requiring that the module first be
undeployed, then redeployed with any updates.

You can use the updateEBJModule command in both the admin.jar and admin_
client.jar utilities to incrementally update a deployed application with one or
more EJBs contained within an EJB JAR file.

A restart of OC4J is required only if changes are made to the EJB configuration data
during the redeployment process. If no changes are made, a hot deployment can be
performed without re-starting OC4J.

Troubleshooting Application Deployment

Deploying an EJB Application to OC4J 28-3

The incremental redeployment operation will automatically stop the application
containing the EJB(s) to be updated, then automatically restart the application when
finished.

The general procedure for using incremental deployment is:

1. Deploy an application with a large number of enterprise JavaBeans.

2. Change a bean-related class file in an EJB module and rebuild the EJB JAR file (for
example, myBeans-ejb.jar).

3. Submit the updated EJB JAR to OC4J using any of the following:

■ JDeveloper

■ EnterpriseManager

■ <OC4J_HOME>\j2ee\home\admin.jar.

Example 28–2 shows how to use the admin.jar:

Example 28–2 Incremental Deployment Using the admin.jar

java -jar admin.jar ormi://localhost:23791 admin welcome -application -updateEJBModule -jar
myBeans-ejb.jar

4. Repeat steps 2 and 3.

For more information see, "Incremental Redeployment of Updated EJB Modules" in
the Oracle Containers for J2EE Deployment Guide.

Troubleshooting Application Deployment
When you deploy an EJB 3.0 application with one or more annotations, OC4J will
write its in-memory ejb-jar.xml file to the same location as the
orion-ejb-jar.xml file in the deployment directory: <ORACLE_
HOME>/j2ee/home/application-deployments/my_application/META-INF.

This ejb-jar.xml file represents configuration obtained from both annotations and
a deployed ejb-jar.xml file (if present).

For more information, see "Troubleshooting an EJB Application" on page 31-6.

Note: During redeployment, all idle client connections to the EJB
being updated will be lost. All existing requests will be allowed to
complete, but no new requests will be allowed until the application is
restarted. It is strongly recommended that you stop the application
before redeploying the EJB.

Troubleshooting Application Deployment

28-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part X
Using an EJB in Your Application

This part provides procedural information on using EJB 3.0 or EJB 2.1 enterprise
JavaBeans in a J2EE application. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 29, "Accessing an EJB from a Client"

■ Chapter 30, "Using EJBs and Web Services"

■ Chapter 31, "Administrating an EJB Application"

Accessing an EJB from a Client 29-1

29
Accessing an EJB from a Client

This chapter explains how to access an EJB from a client, including:

■ What Type of Client Do You Have?

■ Configuring the Client

■ Accessing an EJB 3.0 EJB

■ Accessing an EJB 3.0 EJB in Another Application

■ Accessing an EJB 3.0 Entity Using an EntityManager

■ Accessing an EJB 3.0 EJBContext

■ Accessing an EJB 2.1 EJB

■ Accessing an EJB 2.1 EJB in Another Application

■ Accessing an EJB 2.1 MDB

■ Accessing an EJB 2.1 EJBContext

■ Handling Parameters

■ Handling Exceptions

For more information, see:

■ "How Do You Use an EJB in Your Application?" on page 2-15

■ "Looking up an EJB 3.0 EJB" on page 19-21

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-24

■ "Looking Up an EJB 3.0 Environment Variable" on page 19-25

■ "Looking Up an EJB 2.1 EJB" on page 19-26

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-29

■ "Looking Up an EJB 2.1 Enviornment Variable" on page 19-29

What Type of Client Do You Have?
You can access an EJB from a variety of clients, including:

■ EJB Client

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Configuring the Client

29-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Standalone Java Client

■ Servlet or JSP Client

How you access an EJB, resource, or environment variable is different depending on
the type of client and how the application is assembled and deployed.

For more information, see "Configuring the Client" on page 29-2.

EJB Client
When one EJB (call it the source EJB) accesses another EJB (call it the target EJB), the
source EJB is the client of the target EJB.

If you are using EJB 3.0, using annotations and dependency injection, OC4J initializes
the instance variable that corresponds to the target reference.

If you are using EJB 2.1, you must use JNDI lookup in this scenario.

Standalone Java Client
A standalone Java client is a client that executes outside of OC4J but accesses EJB
resources deployed to OC4J.

Typically, a standalone Java client accesses EJB resources by making use of Java RMI
calls. You must code a standalone Java client so that it honors the security and
authentication requirements that OC4J enforces.

By default, OC4J is configured to assign RMI ports dynamically within a set range. In
this release, you can look up an OC4J-deployed EJB from a standalone Java client
without specifying an exact RMI port. You do not need to configure OC4J to use exact
port numbers.

If you are using EJB 3.0, note that annotations and dependency injection is not
supported for a standalone Java client.

If you are using EJB 2.1, you must configure your initial context to accommodate this
scenario (see "Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client" on
page 29-19).

Servlet or JSP Client
A servlet or JSP can access an EJB.

OC4J does not support dependency injection in the Web container. Consequently, you
can only use JNDI lookup from a servlet or JSP client for both EJB 3.0 and EJB 2.1
applications.

Configuring the Client
Before you can access an EJB from a client, you must consider the following:

■ Configuring the Client Classpath for OC4J

■ Selecting an Initial Context Factory Class

■ Specifying Security Credentials

■ Selecting an EJB Reference

Configuring the Client

Accessing an EJB from a Client 29-3

Configuring the Client Classpath for OC4J
Table 29–1 lists the OC4J-specific JAR files that you must include on your client’s
classpath. The Source column indicates from where you get a copy of the required
JAR.

If you download any of these JAR files into a browser, you must grant certain
permissions (see "Granting Permissions in Browser" on page 22-1).

Selecting an Initial Context Factory Class
You use an initial context factory to obtain an initial context: a reference to the JNDI
namespace. Using the initial context, you can use the JNDI API to look up an EJB,
resource manager connection factory, environment variable, or other JNDI-accessible
object. The type of initial context factory you use depends on your client type and how
you are using OC4J: standalone or as part of Oracle Application Server (see
"Configuring the Initial Context Factory" on page 19-17).

Specifying Security Credentials
If the client and target EJB are not collocated, not deployed in the same application,
and the target EJB application is not the client’s parent, then your client must specify
its credentials before accessing the target EJB (see "Specifying Credentials in EJB
Clients" on page 22-10).

Selecting an EJB Reference
In EJB 3.0, to access an EJB 3.0 EJB or resource in an EJB client, you can use
annotations, resource injection, and default JNDI names (based on class and interface
names) instead of doing a JNDI look up with a predefined environment references.

Table 29–1 OC4J Client Classpath Requirements

OC4J JAR Source
All
Clients

OracleAS
JMS Client

Oracle AQ
JMS Client

J2CA
JMS Client

oc4jclient.jar <OC4J_HOME>/j2ee/<instance>

ejb.jar <OC4J_HOME>/j2ee/<instance>/lib

jndi.jar <OC4J_HOME>/j2ee/<instance>/lib

optic.jar1

1 Required only if you plan to use the opmn:ormi prefix in JNDI look up with Context.PROVIDER_URL (see "Configuring an
Oracle Initial Context Factory" on page 19-18).

<OC4J_HOME>/opmn/lib

jta.jar <OC4J_HOME>/j2ee/<instance>/lib

jms.jar <OC4J_HOME>/j2ee/<instance>/lib

javax77.jar <OC4J_HOME>/j2ee/<instance>/lib

adminclient.jar <OC4J_HOME>/j2ee/<instance>/lib

jdbc.jar <OC4J_HOME>/j2ee/<instance>/../../lib

dms.jar <OC4J_HOME>/j2ee/<instance>/lib

J2CA connector JAR Connector provider

Accessing an EJB 3.0 EJB

29-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

In EJB 2.1 or in EJB 3.0 (for standalone Java clients or servlet or JSP clients), to access an
EJB or resource, you must do a JNDI look up on a predefined environment references
(see "Configuring Environment References" on page 19-1). To access an EJB 2.1 EJB or
resource, choose the appropriate predefined environment reference (actual or logical;
local or remote) and look it up using a JNDI initial context (see "Selecting an Initial
Context Factory Class" on page 29-3).

If you access an EJB by reference from within your client implementation, perform a
JNDI lookup using the <ejb-ref-name> defined in the EJB deployment descriptor.
For more information on defining an EJB reference to a target EJB, see "Configuring an
Environment Reference to an EJB" on page 19-3.

Table 29–2 shows when to prefix the reference with java:comp/env/ejb/, which is
where the container places the EJB references defined in the deployment descriptor.

Example 29–1 shows how to look up an EJB with logical name ejb/HelloWorld
using the java:comp/env/ejb/ prefix and Example 29–2 shows how to look up this
EJB without the prefix.

Example 29–1 Looking Up an EJB with the Prefix

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

Example 29–2 Looking Up an EJB without the Prefix

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

Accessing an EJB 3.0 EJB
You can directly lookup a bean instance from JNDI (or use resource injection in an EJB
3.0 EJB client) and retrieve a bean instance without the home interface. If the <home>
or <local-home> element is removed from an EJB reference, a bean instance is
returned from JNDI instead of the home.

The bean instance is created by executing the no-argument create method on the home
interface. Stateful session beans and entity beans can also use this shortcut, but they
must have a no-argument create method or an exception will be thrown at lookup
time.

In both cases, the syntax used in obtaining the reference to the EJB business interface is
independent of whether the business interface is local or remote. In the case of remote
access, the actual location of a referenced enterprise bean and EJB container are, in
general, transparent to the client using the remote business interface of the bean.

Table 29–2 When to Use the java:comp/env/ejb/ Prefix

Client Initial Context Factory Use Prefix?

EJB Client Default

RMIInitialContext

Optional

Not Used

Standalone Java Client Default

ApplicationClientInitialContext

Optional

Mandatory

Servlet or JSP Client Default

RMIInitialContext

Optional

Not Used

Accessing an EJB 3.0 Entity Using an EntityManager

Accessing an EJB from a Client 29-5

For more information, see "Looking up an EJB 3.0 EJB" on page 19-21.

Accessing an EJB 3.0 EJB in Another Application
Normally, you cannot have EJBs communicating across EAR files, that is, across
applications that are deployed in separate EAR files. The only way for an EJB to access
an EJB that was deployed in a separate EAR file is to declare it to be the parent of the
client. Only children can invoke methods in a parent.

For example, there are two EJBs, each deployed within their EAR file, called sales
and inventory, where the sales EJB needs to invoke the inventory EJB to check
to see if enough widgets are available. Unless the sales EJB defines the inventory
EJB to be its parent, the sales EJB cannot invoke any methods in the inventory EJB,
because they are both deployed in separate EAR files. So, define the inventory EJB
to be the parent of the sales EJB and the sales EJB can now invoke any method in
its parent.

You can only define the parent during deployment with the deployment wizard. See
the "Deploying/Undeploying Applications" section in the "Using the oc4jadmin.jar
Command Line Utility" chapter in the Oracle Containers for J2EE Configuration and
Administration Guide on how to define the parent application of a bean.

Accessing an EJB 3.0 Entity Using an EntityManager
In an EJB 3.0 application, the javax.persistence.EntityManager is the runtime
access point for persisting entities to and loading entities from the database.

This section describes:

■ Acquiring an EntityManager

■ Creating a New Entity Instance

■ Querying for an EJB 3.0 Entity Using the EntityManager

■ Modifying an Entity Instance

■ Detaching and Merging an Entity Bean Instance

For more information, see "How Do You Query for an EJB 3.0 Entity?" on page 1-17.

Acquiring an EntityManager
Before you can use an EntityManager, you must acquire an EntityManager
instance. How you acquire an entity manager depends on your client type ("What
Type of Client Do You Have?" on page 29-1).

When you acquire an entity manager, you specify a persistence unit. The persistence
unit defines the entity manager’s configuration, including details such as which
factories to use, which persistent managed classes the entity manager can manage, and
what object/relational mapping metadata to use. You can only acquire an entity
manager for a particular persistence unit if your client is in the persistence unit’s
scope. For more information, see "What is the persistence.xml File?" on page 2-13.

Note: You can download an EJB 3.0 entity manager code example
from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30entitymanager/doc/how-to-ejb3
0-entitymanager.html.

Accessing an EJB 3.0 Entity Using an EntityManager

29-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You can acquire an entity manager:

■ Acquiring the OC4J Default Entity Manager in an EJB 3.0 Stateful Session Bean
Client

■ Acquiring a Named Entity Manager in an EJB 3.0 Stateful Session Bean Client

■ Acquiring an Entity Manager in Other EJB 3.0 Bean Clients

■ Acquiring an Entity Manager in a Helper Class or Web Client

Acquiring the OC4J Default Entity Manager in an EJB 3.0 Stateful Session Bean
Client
You can use the @PersistenceContext annotation to inject an EntityManager in
an EBJ 3.0 stateful session bean client. You can use @PersistenceContext without
specifying a unitName to use the OC4J default persistence unit as Example 29–3
shows.

Example 29–3 Using @PersistenceContext With the OC4J Default Persistence Unit

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{

@PersistenceContext protected EntityManager entityManager;

public void createEmployee(String fName, String lName)
{

Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

For more information, see "Understanding the OC4J Default Persistence Unit" on
page 2-14.

Acquiring a Named Entity Manager in an EJB 3.0 Stateful Session Bean Client
You can use the @PersistenceContext annotation to inject an EntityManager in
an EBJ 3.0 stateful session bean client. You can use @PersistenceContext attribute
unitName to specify a persistence unit by name as Example 29–4 shows. In this case,
you must configure the persistence unit in a persistence.xml file.

Example 29–4 Using @PersistenceContext With a Named Persistence Unit

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{

@PersistenceContext(unitName="myPersistenceUnit") protected EntityManager entityManager;

public void createEmployee(String fName, String lName)
{

Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

For more information, see:

Accessing an EJB 3.0 Entity Using an EntityManager

Accessing an EJB from a Client 29-7

■ "What is the persistence.xml File?" on page 2-13

■ "Configuring the persistence.xml File" on page 26-3

Acquiring an Entity Manager in Other EJB 3.0 Bean Clients
For all EJB 3.0 bean types other than stateful session beans, you can use annotations to
inject a persistence context but you must use JNDI to look up the entity manager as
Example 29–5 shows. In this case, you must define the persistence unit in a
persistence.xml file.

Example 29–5 Using InitialContext to Lookup an EntityManager in a Stateless Session
Bean

@PersistenceContext(
name=”persistence/InventoryAppMgr”,
unitName=InventoryManagement // defined in a persistence.xml file

)
@Stateless
public class InventoryManagerBean implements InventoryManager
{

EJBContext ejbContext;
public void updateInventory(...)
{

...
// obtain the initial JNDI context
Context initCtx = new InitialContext();
// perform JNDI lookup to obtain container-managed entity manager
javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");
...

}
}

For more information, see:

■ "Configuring the Initial Context Factory" on page 19-17

■ "What is the persistence.xml File?" on page 2-13

■ "Configuring the persistence.xml File" on page 26-3

Acquiring an Entity Manager in a Helper Class or Web Client
To acquire an entity manager in a class that does not support annotations and
injection, namely helper classes and Web clients, you must:

1. Define a persistence unit in a persistence.xml file.

For more information, see:

■ "What is the persistence.xml File?" on page 2-13

■ "Configuring the persistence.xml File" on page 26-3

2. Define a persistence-context-ref in the appropriate deployment descriptor
file (see "Configuring an Environment Reference to a Persistence Context" on
page 19-16).

In the persistence-context-ref, you specify:

■ persistence-context-ref: the name by which you will lookup the entity
manager.

■ persistence-unit-name: the name of the persistence unit you created in
step 1, that defines the characteristics of the returned entity manager.

Accessing an EJB 3.0 Entity Using an EntityManager

29-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

3. Use JNDI to look up the entity manager by the
persistence-context-ref-name as Example 29–6 shows.

Example 29–6 Using InitialContext to Lookup an EntityManager in a Servlet

public class InsertServlet extends HttpServlet
{

private static final String CONTENT_TYPE = "text/html; charset=windows-1252";
...

public void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException

{
...
UserTransaction ut = null;
...
try
{

Context initCtx = new InitialContext();

ut = (UserTransaction)initCtx.lookup("java:comp/UserTransaction");
ut.begin();

Employee employee = new Employee();
employee.setEmpNo(empId);
employee.setEname(name);
employee.setSal(sal);

// obtain the initial JNDI context
Context initCtx = new InitialContext();
// perform JNDI lookup to obtain container-managed entity manager
javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");

entityManager.persist(employee);

ut.commit();

this.getServletContext().getRequestDispatcher("/jsp/success.jsp").forward(
request, response

);
}
catch(Exception e)
{

...
}

...
}

}

For more information, see "Configuring the Initial Context Factory" on page 19-17.

Creating a New Entity Instance
To create a new entity instance, use EntityManager method persist passing in the
entity Object as Example 29–8 shows. When you call this method, it marks the new
instance for insert into the database. This method returns the same instance that you
passed in.

You must call this method within a transaction context.

Note: As Example 29–6 shows, in your Web client, you must
manually demarcate a transaction using the UserTransaction API
because you must use the EntityManager within a transaction.

Accessing an EJB 3.0 Entity Using an EntityManager

Accessing an EJB from a Client 29-9

Example 29–7 Creating a Entity with the EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{

@PersistenceContext protected EntityManager entityManager;
...

public void createEmployee(String fName, String lName)
{

Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

Querying for an EJB 3.0 Entity Using the EntityManager
Using the EntityManager, you can:

■ Finding an Entity by Primary Key with the Entity Manager

■ Creating a Named Query with the EntityManager

■ Creating a Dynamic EJB QL Query with the Entity Manager

■ Creating a Dynamic TopLink Expression Query with the EntityManager

■ Creating a Dynamic Native SQL Query with the EntityManager

■ Configuring Query Hints

■ Executing a Query

For more information, see:

■ "How Do You Query for an EJB 2.1 Entity Bean?" on page 1-28

■ "Using EJB 3.0 Query API" on page 8-1

Finding an Entity by Primary Key with the Entity Manager
As Example 29–9 shows, f you know the primary key, you can use EntityManager
method find to retrieve the corresponding entity from the database without having to
create a query.

Example 29–8 Finding an Entity by Primary Key Using the EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{
...
 public void removeEmployee(Integer employeeId)

{
Employee employee = (Employee)entityManager.find("Employee", employeeId);
...
entityManager.remove(employee);

Note: Only use EntityManager method persist on a new entity.
If you make changes to an existing entity, they are written to the
database when the current transaction commits (see also "Using
Flush" on page 29-15).

Accessing an EJB 3.0 Entity Using an EntityManager

29-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}
...
}

Creating a Named Query with the EntityManager
After you implement a named query (see "Implementing an EJB 3.0 Named Query" on
page 8-1), you can acquire it at runtime using EntityManager method
createNamedQuery as Example 29–10 Creating a Named Query with the
EntityManagershows. If the named query takes parameters, you set them using Query
method setParameter.

Example 29–9 Creating a Named Query with the EntityManager

Query queryEmployeesByFirstName = entityManager.createNamedQuery(
"findAllEmployeesByFirstName"

);
queryEmployeeByFirstName.setParameter("firstName", "John");
Collection employees = queryEmployessByFirstName.getResultList();

Creating a Dynamic EJB QL Query with the Entity Manager
Example 29–11 shows how to create an ad hoc EJB QL query at runtime using
EntityManager method createQuery.

Example 29–10 Creating a Dynamic Query Using the EntityManager

Query queryEmployees = entityManager.createQuery(
"SELECT OBJECT(employee) FROM Employee employee"

);

Example 29–12 shows how to create an ad hoc query that takes a parameter named
firstname using EntityManager method createQuery. You set the parameter
using Query method setParameter.

Example 29–11 Creating a Dynamic EJB QL Query with Parameters Using the
EntityManager

Query queryEmployees = entityManager.createQuery(
"SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

);
queryEmployeeByFirstName.setParameter("firstName", "John");

Creating a Dynamic TopLink Expression Query with the EntityManager
As Example 29–13 shows, using the oracle.toplink.ejb.cmp3.EntityManager
method createQuery(Expression expression, Class resultType), you
can create a query based on a TopLink Expression.

For more information, see "Understanding TopLink Expressions" in the Oracle TopLink
Developer’s Guide.

Alternatively, you can use javax.persistence.EntityManager and specify the
TopLink Expression as a query hint (see "Configuring Query Hints" on page 29-12).

Example 29–12 Creating a Dynamic TopLink Expression Query Using the Entity
Manager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{

Accessing an EJB 3.0 Entity Using an EntityManager

Accessing an EJB from a Client 29-11

...
public Collection findManyProjectsByQuery(Vector params)
{

ExpressionBuilder builder = new ExpressionBuilder();
Query query = ((oracle.toplink.ejb.cmp3.EntityManager)em).createQuery(

builder.get("name").equals(builder.getParameter("projectName")),
Project.class

);
query.setParameter("projectName", params.firstElement());
Collection projects = query.getResultList();
return projects;

}
...
}

Creating a Dynamic Native SQL Query with the EntityManager
Using the EntityManager method createNativeQuery(String sqlString,
Class resultType), you can create a query based on a native SQL String that you
supply as Example 29–14 shows.

Example 29–13 Creating a Dynamic Native SQL Query with the EntityManager

Query queryEmployees = entityManager.createNativeQuery(
"Select * from EMP_TABLE where Salary < 50000", Employee.class

);

Example 29–15 shows how to create an ad hoc native SQL query that takes a
parameter named salary using EntityManager method
createNativeQuer(.(String sqlString, Class resultClass) You set the parameter
using Query method setParameter.

Example 29–14 Creating a Dynamic Native SQL Query with Parameters Using the
EntityManager

Query queryEmployees = entityManager.createNativeQuery(
"Select * from EMP_TABLE where Salary < #salary", Employee.class

);
queryEmployeeByFirstName.setParameter("salary", 50000);

Configuring Query Hints
A query hint is name-value pair that you can use to configure a query with a
vendor-specific option that is not available in the EJB 3.0 specification.

OC4J, using the TopLink persistence manager, provides the hints shown in Table 29–3.

Example 29–16 shows how to use Query method setHint to configure a named
query to always refresh the TopLink cache from the database.

Example 29–15 Configuring a Query with a Hint

Query queryEmployeesByFirstName = entityManager.createNamedQuery(
"findAllEmployeesByFirstName"

);
queryEmployeesByFirstName.setHint("refresh", new Boolean(true));

Note: OC4J does not support EntityManager method
createNativeQuery(String sqlString).

Accessing an EJB 3.0 Entity Using an EntityManager

29-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Executing a Query
As Example 29–17 shows, to execute a query that returns multiple results, use Query
method getResultList. This method returns a java.util.List.

Example 29–16 Executing a Query that Returns Multiple Results

Collection employees = queryEmployees.getResultList();

As Example 29–18 shows, to execute a query that returns a single result, use Query
method getSingleResult. This method returns a java.lang.Object.

Example 29–17 Executing a Query that Returns a Single Result

Object obj = query.getSingleResult();

Table 29–3 Query Hints that OC4J Supports

Hint Name Hint Value Description

fetchSize java.lang.Integer Allows the user to set the fetch size of a TopLink query in bytes.

For more information, see "JDBC Fetch Size" in the Oracle TopLink
Developer’s Guide.

referenceClass java.lang.Class Overrides the target class of the query.

cacheUsage java.lang.Integer Specifies how the query uses the TopLink cache. Values are as
defined for the following fields of
oracle.toplink.queryframework.ObjectLevelReadQuery:

■ CheckCacheByExactPrimaryKey

■ CheckCacheByPrimaryKey

■ CheckCacheOnly

■ CheckCacheThenDatabase

■ ConformResultsInUnitOfWork

For more information, see:

■ "Configuring Cache Usage for In-Memory Queries" in the
Oracle TopLink Developer’s Guide

■ "Understanding the Cache" in the Oracle TopLink Developer’s
Guide

refresh java.lang.Boolean Set to true if the TopLink cache should be refreshed from the
database when this query executes.

For more information, see "Understanding the Cache" in the Oracle
TopLink Developer’s Guide.

lockMode java.lang.Integer Specifies whether or not the query uses pessimistic locking. Values
are as defined for the following fields of
oracle.toplink.queryframework.ObjectLevelReadQuery:

■ LOCK: issues SELECT FOR UPDATE.

■ LOCK_NOWAIT: issues SELECT FOR UPDATE NO WAIT.

■ NO_LOCK: pessimistic locking is not used.

■ DEFAULT_LOCK_MODE: fine grained locking will occur.

For more information, see the Oracle TopLink API Reference.

expression oracle.toplink.expressions.
Expression

Allows querying using the TopLink Expression API

For more information, see:

■ "Understanding TopLink Expressions" in the Oracle TopLink
Developer’s Guide

■ "Creating a Dynamic TopLink Expression Query with the
EntityManager" on page 29-11

timeout java.lang.Integer Sets the query timeout in milliseconds.

Accessing an EJB 3.0 Entity Using an EntityManager

Accessing an EJB from a Client 29-13

As Example 29–19 shows, to execute a query that updates (modifies or deletes)
entities, use Query method executeUpdate. This method returns the number of rows
affected (updated or deleted) as an int.

Example 29–18 Executing an Updating Query

Query queryRenameCity = entityManager.createQuery(
"UPDATE Address add SET add.city = 'Ottawa' WHERE add.city = 'Nepean'"

);
int rowCount = queryRenameCity.executeUpdate();

Modifying an Entity Instance
You can modify an entity instance in one the following ways:

■ Using an Updating Query

■ Using the Entity’s Public API

■ Refreshing from the Database

■ Removing an Entity

You must perform these operations within a transaction context. When the current
transaction commits, your updates will be committed to the database.

You can also send updates to the database within a transaction before commit (see
"Using Flush" on page 29-15).

Using an Updating Query
Create an updating query (see "Creating a Named Query with the EntityManager" on
page 29-10 or "Creating a Dynamic EJB QL Query with the Entity Manager" on
page 29-11) and execute the query using the EntityManager (see "Executing a
Query" on page 29-13).

Using the Entity’s Public API
Use the EntityManager to find or otherwise query for the entity (see "Querying for an
EJB 3.0 Entity Using the EntityManager" on page 29-10).

Use the entity’s public API to change its persistent state.

Refreshing from the Database
As Example 29–20 shows, you can overwrite the current state of an entity instance
with the currently committed state from the database using the EntityManager
method refresh.

Example 29–19 Refreshing an Entity from the Database

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{
...

public void undoUpdateEmployee(Integer employeeId)
{

Employee employee = (Employee)entityManager.find("Employee", employeeId);
em.refresh(employee);

}
...
}

Accessing an EJB 3.0 Entity Using an EntityManager

29-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Removing an Entity
As Example 29–21 shows, you can use EntityManager method remove to delete an
entity from the database.

Example 29–20 Removing an Entity

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{
...

public void removeEmployee(Integer employeeId)
{

Employee employee = (Employee)entityManager.find("Employee", employeeId);
...
entityManager.remove(employee);

}
...
}

Using Flush
As Example 29–22 shows, you can use EntityManager method flush to send
updates to the database within a transaction before the transaction is committed.
Subsequent queries within the same transaction will return the updated data. This is
useful if a particular transaction spans multiple operations.

Example 29–21 Sending Updates to the Database within a Transaction

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{
...

public void terminateEmployee(Integer employeeId, Date endDate)
{

Employee employee = (Employee) entityManager.find("Employee", employeeId);
employee.getPeriod().setEndDate(endDate);
entityManager.flush();

}
...
}

Detaching and Merging an Entity Bean Instance
An EntityManager is said to have a persistence context. When you create (see
"Creating a New Entity Instance" on page 29-9) or find (see "Querying for an EJB 3.0
Entity Using the EntityManager" on page 29-10) an entity using an EntityManager
instance, the entity is said to be part of the persistence context of that
EntityManager.

While an entity is part of the persistence context of an EntityManager, it is said to be
a persistent entity.

When an entity is no longer part of this persistence context, it is said to be a detached
entity.

An entity is detached from the persistence context when the persistence context ends
or when an entity is serialized (for example, to a separate application tier).

As Example 29–23 shows, you can use EntityManager method merge to merge the
state of detached entity into the current persistence context of the EntityManager.

Accessing an EJB 2.1 EJB

Accessing an EJB from a Client 29-15

Example 29–22 Merging an Entity into the Persistence Context of an EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession
{
...

public void updateAddress(Address addressExample)
{

entityManager.merge(addressExample);
}

...
}

For more information about persistence context:

■ "What is the persistence.xml File?" on page 2-13

■ "Configuring the persistence.xml File" on page 26-3

Accessing an EJB 3.0 EJBContext
For EJB 3.0 session and message-driven beans, you can access the EJBContext that
OC4J provides (see "Using Resource Injection" on page 29-16).

For more information, see:

■ "What is EJB Context?" on page 1-6

■ "What is Session Context?" on page 1-14

■ "What is Message Driven Context?" on page 1-36

Using Resource Injection
In an EJB 3.0 EJB client, you can use @Resource injection to access the EJBContext
as Example 29–24 shows.

Example 29–23 Accessing EJBContext Using @Resource

@Resource SessionContext ctx;

Accessing an EJB 2.1 EJB
This section describes:

■ Accessing an EJB 2.1 EJB Remotely

■ Accessing an EJB 2.1 EJB Locally

■ Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client

Accessing an EJB 2.1 EJB Remotely
A remote multitier situation exists when you have the servlets executing in one server
which are to connect and communicate with EJBs in another server. Both the servlets
and EJBs are contained in the same application. When you deploy the application to
two different servers, the servlets normally look for the local EJB first.

In Figure 29–1, the HelloBean application is deployed to both server 1 and 2. In order
to ensure that the servlets only call out from server 1 to the EJBs in server 2, you must
set the remote attribute appropriately in the application before deploying on both
servers.

Accessing an EJB 2.1 EJB

29-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure 29–1 Multitier Example

The remote attribute in the <ejb-module> element in orion-application.xml
for the EJB module denotes whether the EJBs for this application are deployed or not.

1. In server 1, you must set remote=true in the <ejb-module> element of the
orion-application.xml file and then deploy the application. The EJB module
within the application will not be deployed. Thus, the servlets will not look for the
EJBs locally, but will go out to the remote server for the EJB requests.

2. In server 2, you must set remote=false in the <ejb-module> element of the
orion-application.xml file and then deploy the application. The application,
including the EJB module, is deployed as normal. The default for the remote
attribute is false; thus, simply ensure that the remote attribute is not true and
redeploy the application.

3. Configure RMI options:

■ In a standalone OC4J, specify RMI server data in the RMI configuration file,
rmi.xml. Specify the location of this file in server.xml, the OC4J
configuration file. By default, both these files are installed in <ORACLE_
HOME>/j2ee/home/config.

For more information, see "Configuring RMI in a Standalone OC4J
Installation" in the Oracle Containers for J2EE Services Guide.

■ In an Oracle Application Server environment, you must edit the opmn.xml
file to specify the port range on which this local RMI server listens for RMI
requests. Note that manual changes to configuration files in an Oracle
Application Server environment must be manually updated on each OC4J
instance.

For more information, see "Configuring RMI in an Oracle Application Server
Environment" in the Oracle Containers for J2EE Services Guide.

4. Set JNDI properties java.naming.provider.url and
java.naming.factory.initial.

For more information see:

■ "Configuring the Initial Context Factory" on page 19-17

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services
Guide.

5. Look up the remote EJB.

For more information, see:

■ "Looking Up the Remote Interface of an EJB 2.1 EJB Using ejb-ref" on
page 19-27

Accessing an EJB 2.1 EJB

Accessing an EJB from a Client 29-17

■ "Looking Up the Remote Interface of an EJB 2.1 EJB Using location" on
page 19-27

If multiple remote servers are configured, OC4J searches all remote servers for the
intended EJB application.

For more information, see "Using Remote Method Invocation in OC4J" in the Oracle
Containers for J2EE Services Guide.

Accessing an EJB 2.1 EJB Locally
A local multitier situation exists when both the servlets and EJBs are contained in the
same application and deployed to the same server.

The remote attribute in the <ejb-module> element in orion-application.xml
for the EJB module denotes whether the EJBs for this application are deployed or not.

1. In the server to which you deploy your application, you must set remote=false
in the <ejb-module> element of the orion-application.xml file and then
deploy the application. The application, including the EJB module, is deployed as
normal. The default for the remote attribute is false.

2. Set JNDI properties java.naming.provider.url and
java.naming.factory.initial.

For more information see:

■ "Configuring the Initial Context Factory" on page 19-17

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services
Guide.

3. Look up the local EJB.

For more information, see:

■ "Looking up the Local Interface of an EJB 2.1 EJB Using local-ref" on
page 19-28

■ "Looking up the Local Interface of an EJB 2.1 EJB Using local-location" on
page 19-28

Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client
Example 29–25 shows the type of look up that you can use from a standalone Java
client (see "Standalone Java Client" on page 29-2) in this release to look up an
OC4J-deployed EJB without having to specify an RMI port. Example 29–25 shows how
to look up the EJB named MyCart in the J2EE application ejbsamples deployed to
the OC4J instance named oc4j_inst1 running on host myServer.

Example 29–24 Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"oracle.j2ee.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "oc4jadmin");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.PROVIDER_URL,"opmn:ormi://myServer:oc4j_inst1/ejbsamples");

Context context = new InitialContext(env);

Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

Accessing an EJB 2.1 EJB in Another Application

29-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "Configuring an Oracle Initial Context Factory" on page 19-18

■ "Configuring the Naming Provider URL for OC4J and Oracle Application Server"
on page 19-19

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-19

Accessing an EJB 2.1 EJB in Another Application
Normally, you cannot have EJBs communicating across EAR files, that is, across
applications that are deployed in separate EAR files. The only way for an EJB to access
an EJB that was deployed in a separate EAR file is to declare it to be the parent of the
client. Only children can invoke methods in a parent.

For example, there are two EJBs, each deployed within their EAR file, called sales
and inventory, where the sales EJB needs to invoke the inventory EJB to check
to see if enough widgets are available. Unless the sales EJB defines the inventory
EJB to be its parent, the sales EJB cannot invoke any methods in the inventory EJB,
because they are both deployed in separate EAR files. So, define the inventory EJB
to be the parent of the sales EJB and the sales EJB can now invoke any method in
its parent.

You can only define the parent during deployment with the deployment wizard. See
the "Deploying/Undeploying Applications" section in the "Using the oc4jadmin.jar
Command Line Utility" chapter in the Oracle Containers for J2EE Configuration and
Administration Guide on how to define the parent application of a bean.

Accessing an EJB 2.1 MDB
A client never accesses an MDB directly: rather, the client accesses an MDB by sending
a message through the JMS destination (queue or topic) associated with the MDB.

This section describes:

■ Sending a Message to a JMS Destination Using EJB 2.1

■ Sending a Message to a J2CA Destination Using EJB 2.1

Sending a Message to a JMS Destination Using EJB 2.1
To send a message to a JMS destination using EJB 2.1:

1. Look up both the JMS destination (queue or topic) and its connection factory.

You can look up these resources using a predefined logical name (see
"Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-9) or the explicit
JNDI name you defined when you configured your JMS provider (see
"Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider" on
page 18-1).

Oracle recommends that you use logical names as shown in this procedure and its
examples.

2. Use the connection factory to create a connection.

If you are receiving messages for a queue, then start the connection.

3. Create a session over the connection.

Accessing an EJB 2.1 MDB

Accessing an EJB from a Client 29-19

4. Use the retrieved JMS destination to create a sender for a queue or a publisher for
a topic.

5. Create the message.

6. Send the message using either the queue sender or the topic publisher.

7. Close the queue session.

8. Close the connection.

Example 29–26 shows how a servlet client sends a message to a queue.

Example 29–27 shows how a JSP client sends a message over a topic.

Example 29–25 Servlet Client Sends Message to a Queue

public final class testResourceProvider extends HttpServlet
{
private String resProvider = "myResProvider";
private HashMap msgMap = new HashMap();
Context ctx = new InitialContext();

 public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
doPost(req, res);

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
 // Retrieve the name of the JMS provider from the request, which is to be used in creating
 // the JNDI string for retrieval
String rp = req.getParameter ("provider");
if (rp != null) resProvider = rp;

try
{
// 1a. Look up the Queue Connection Factory
QueueConnectionFactory qcf = (QueueConnectionFactory)

ctx.lookup (
"java:comp/resource/" + resProvider + "/QueueConnectionFactories/myQCF"

);
// 1b. Lookup the Queue
Queue queue = (Queue)

ctx.lookup (
"java:comp/resource/" + resProvider + "/Queues/rpTestQueue"

);

// 2a. Create queue connection using the connection factory.
QueueConnection qconn = qcf.createQueueConnection();
// 2a. We're receiving msgs, so start the connection.
qconn.start();

// 3. create a session over the queue connection.
QueueSession sess = qconn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 // 4. Since this is for a queue, create a sender on top of the session.
 //This is used to send out the message over the queue.
QueueSender snd = sess.createSender (q);

drainQueue (sess, q);
TextMessage msg = null;

/* Send msgs to queue. */
for (int i = 0; i < 3; i++)

Accessing an EJB 2.1 MDB

29-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

{
// 5. Create message
msg = sess.createTextMessage();
msg.setText ("TestMessage:" + i);

// Set property of the recipient to be the MDB
// and set the reply destination.
msg.setStringProperty ("RECIPIENT", "MDB");
msg.setJMSReplyTo(q);

//6. send the message using the sender.
snd.send (msg);

// You can store the messages IDs and sent-time in a map (msgMap),
// so that when messages are received, you can verify if you
// *only* received those messages that you were
// expecting. See receiveFromMDB() method where msgMap gets used
msgMap.put(msg.getJMSMessageID(), new Long (msg.getJMSTimestamp()));

}

// receive a reply from the MDB.
receiveFromMDB (sess, q);

 //7. Close sender, session, and connection for queue
 snd.close();
 sess.close();
 qconn.close();
}
catch (Exception e)
{
System.err.println ("** TEST FAILED **"+ e.toString());
e.printStackTrace();

}
finally
{
}

 }

/*
 * Receive any msgs sent to us through the MDB
 */
private void receiveFromMDB (QueueSession sess, Queue q)
throws Exception

{
// The MDB sends out a message (as a reply) to this client. The MDB sets
// the receipient as CLIENT. Thus, we will only receive msgs that have
// RECIPIENT set to 'CLIENT'
QueueReceiver rcv = sess.createReceiver (q, "RECIPIENT = 'CLIENT'");

int nrcvd = 0;
long trtimes = 0L;
long tctimes = 0L;
// First msg needs to come from MDB. May take a little while
//Receiving Messages
for (Message msg = rcv.receive (30000); msg != null; msg = rcv.receive (30000))
{
nrcvd++;
String rcp = msg.getStringProperty ("RECIPIENT");

// Verify if msg in message Map
// We check the msgMap to see if this is the message that we are expecting.
String corrid = msg.getJMSCorrelationID();
if (msgMap.containsKey(corrid))
{
msgMap.remove(corrid);

}

Accessing an EJB 2.1 MDB

Accessing an EJB from a Client 29-21

else
{
System.err.println ("** received unexpected message [" + corrid + "] **");

}
}
rcv.close();

}

/*
 * Drain messages from queue
 */
private int drainQueue (QueueSession sess, Queue q)
throws Exception

{
QueueReceiver rcv = sess.createReceiver (q);
int nrcvd = 0;

// First drain any old msgs from queue
for (Message msg = rcv.receive(1000); msg != null; msg = rcv.receive(1000))
nrcvd++;

rcv.close();

return nrcvd;
}

}

Example 29–26 JSP Client Sends Message to a Topic

<%@ page import="javax.jms.*, javax.naming.*, java.util.*" %>
<%
//1a. Lookup the MessageBean topic
jndiContext = new InitialContext();
topic = (Topic)jndiContext.lookup("rpTestTopic");

//1b. Lookup the MessageBean Connection factory
topicConnectionFactory = (TopicConnectionFactory) jndiContext.lookup("myTCF");

//2 & 3. Retrieve a connection and a session on top of the connection
topicConnection = topicConnectionFactory.createTopicConnection();
topicSession = topicConnection.createTopicSession(true,Session.AUTO_ACKNOWLEDGE);

//5. Create the publisher for any messages destined for the topic
topicPublisher = topicSession.createPublisher(topic);

//6. Send out the message
for (int ii = 0; ii < numMsgs; ii++)
{
message = topicSession.createBytesMessage();
String sndstr = "1::This is message " + (ii + 1) + " " + item;
byte[] msgdata = sndstr.getBytes();
message.writeBytes(msgdata);

topicPublisher.publish(message);
System.out.println("--->Sent message: " + sndstr);

}

//7. Close publisher, session, and connection for topic
topicPublisher.close();
topicSession.close();
topicConnection.close();
%>
Message sent!

Accessing an EJB 2.1 EJBContext

29-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Sending a Message to a J2CA Destination Using EJB 2.1
To send a message to a J2CA destination using EJB 2.1:

1. Look up both the J2CA connection factory.

You can look up this resource using a predefined logical name (see "Configuring
an Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-9) or the explicit JNDI name you defined
when you configured your JMS provider (see "Configuring an EJB 2.1 MDB to Use
a Non-J2CA Message Service Provider" on page 18-1).

Oracle recommends that you use logical names as shown in this procedure and its
examples.

2. Obtain a javax.resource.cci.ConnectionFactory.

If the EIS is a JMS message service provider, there will likely be connection factory
choices for queue or topic. For example, the Oracle JMS Connector offers a
QueueConnectionFactory and a TopicConnectionFactory.

3. Use the factory to obtain a javax.resource.cci.Connection.

4. Use the connection to obtain a javax.resource.cci.Interaction.

5. Configure the interaction and use Interaction method execute to send the
message.

Accessing an EJB 2.1 EJBContext
For EJB 2.1 session, entity, and message-driven beans, you can access the EJBContext
that OC4J provides by providing an appropriate get and set method when you
implement your bean.

For more information, see:

■ "What is EJB Context?" on page 1-6

■ "Implementing the setSessionContext Method" on page 11-10

■ "Implementing the setEntityContext and unsetEntityContext Methods" on
page 13-20

■ "Implementing the setMessageDrivenContext Method" on page 17-6

Handling Parameters
This section describes:

■ Passing Parameters Into an EJB

■ Handling Parameters Returned by an EJB

Passing Parameters Into an EJB
When you implement an EJB or write the client code that calls EJB methods, you must
be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method—or a return value from a bean
method—can be any Java type that is serializable. Java primitive types, such as int,
double, are serializable. Any non-remote object that implements the
java.io.Serializable interface can be passed. A non-remote object that is passed

Handling Exceptions

Accessing an EJB from a Client 29-23

as a parameter to a bean or returned from a bean is passed by value, not by reference.
So, for example, if you call a bean method as follows:

public class theNumber {
int x;

}
...
bean.method1(theNumber);

then method1() in the bean receives a copy of theNumber. If the bean changes the
value of theNumber object on the server, this change is not reflected back to the client,
because of pass-by-value semantics.

If the non-remote object is complex—such as a class containing several fields—only
the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is passed.
A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean, and remote objects as
return values.

Handling Parameters Returned by an EJB
The EmployeeBean getEmployee method returns an EmpRecord object, so this
object must be defined somewhere in the application. In this example, an EmpRecord
class is included in the same package as the EJB interfaces.

The class is declared as public and must implement the java.io.Serializable
interface so that it can be passed back to the client by value, as a serialized remote
object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;
}

Handling Exceptions
This section describes:

■ Recovering From a NamingException While Accessing a Remote EJB

■ Recovering From a NullPointerException While Accessing a Remote EJB

■ Recovering From Deadlock Conditions

Recovering From a NamingException While Accessing a Remote EJB
If you are trying to remotely access an EJB and you receive an
javax.naming.NamingException error, your JNDI properties are probably not

Note: The java.io.Serializable interface specifies no
methods; it just indicates that the class is serializable. Therefore,
there is no need to implement extra methods in the EmpRecord
class.

Handling Exceptions

29-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

initialized properly. See "Load Balancing" on page 2-30 for a discussion on setting up
JNDI properties when accessing an EJB from a remote object or remote servlet.

Recovering From a NullPointerException While Accessing a Remote EJB
When accessing a remote EJB from a Web application, you receive the following error:
"java.lang.NullPointerException: domain was null ". In this case, you
must set an environment property in your client while accessing the EJB set
dedicated.rmicontext to true.

The following demonstrates how to use this additional environment property:

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,
"oracle.j2ee.rmi.RMIInitialContextFactory");

env.put (Context.SECURITY_PRINCIPAL, "oc4jadmin");
env.put (Context.SECURITY_CREDENTIALS, "oc4jadmin");
env.put (Context.PROVIDER_URL, "ormi://myhost-us/ejbsamples");
env.put ("dedicated.rmicontext", "true"); // for 9.0.2.1 and later
Context context = new InitialContext (env);

See "Load Balancing" on page 2-30 for more information on
dedicated.rmicontext.

Recovering From Deadlock Conditions
If the call sequence of several beans cause a deadlock scenario, OC4J notices the
deadlock condition and throws a Remote exception that details the deadlock
condition in one of the offending beans.

Using EJBs and Web Services 30-1

30
Using EJBs and Web Services

This section describes:

■ Exposing a Stateless Session Bean as a Web Service

■ Accessing a Web Service from an EJB

For more information, see the Oracle Application Server Web Services Developer’s Guide.

Exposing a Stateless Session Bean as a Web Service
The client of a stateless session bean may be a Web service client. Only a stateless
session bean may provide a Web service client view. A Web service client makes use
of the enterprise bean’s Web service client view, as described by a WSDL document.
The bean’s client view Web service endpoint interface is a JAX-RPC interface.

Using EJB 3.0, you can use annotations to easily expose a stateless session bean as a
Web service (see "Using Annotations" on page 30-2).

Using EJB 2.1, you can also expose a stateless session bean as a Web service (see
"Assembling a Web Service with EJBs" in the Oracle Application Server Web Services
Developer’s Guide).

Using Annotations
Using the @WebService and @WebMethod annotations, you can define a Web service
endpoint interface as Example 30–1 shows and implement the Web service as a
stateless session bean as Example 30–2 shows.

Example 30–1 Annotated Web Service Endpoint Interface

package oracle.ejb30.ws;

import javax.ejb.Remote;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
/**
* This is an Enterprise Java Bean Service Endpoint Interface
*/
public interface HelloServiceInf extends java.rmi.Remote
{

/**
* @param phrase java.lang.String
* @return java.lang.String
* @throws String The exception description.
*/

Accessing a Web Service from an EJB

30-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@WebMethod
java.lang.String sayHello(java.lang.String name) throws java.rmi.RemoteException;

}

Example 30–2 Implementing the Web Service as a Stateless Session Bean

package oracle.ejb30.ws;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.Stateless;

/**
* This is a Session Bean Class.
*/
@Stateless(name="HelloServiceEJB")
public class HelloServiceBean implements HelloServiceInf
{

public String sayHello(String name)
{

return("Hello "+name +" from first EJB3.0 Web Service");
}

}

OC4J supports J2SE 5.0 Web Service annotations (also known as the Web Services
Metadata for the Java Platform JSR-181) specification). The specification defines an
annotated Java syntax for programming Web services.

For more information on using Web service annotations including Oracle extensions,
see "Assembling Web Services with Annotations" in the Oracle Application Server Web
Services Developer’s Guide.

For other EJB Web service examples see the stateless session EJB Web service how-to
or Adventure Builder how-to at
http://www.oracle.com/technology/tech/java/oc4j/ejb3/howtos-ejb3
.

Accessing a Web Service from an EJB
From within an EJB, you can obtain a Web service and invoke its methods.

Using EJB 3.0, you can use annotations and resource injection (see "Using
Annotations" on page 30-2) without having to create an environment reference for the
Web service.

Using EJB 2.1, you must use the initial context (see "Using Initial Context" on
page 30-3) and you must create an environment reference for the Web service (see
"Configuring an Environment Reference to a Web Service" on page 19-15) before you
can look it up.

For more information, see "Assembling a J2EE Web Service Client " in the Oracle
Application Server Web Services Developer’s Guide.

Using Annotations
Given the Web service that Example 30–3 shows, you can access the Web service from
an EJB 3.0 stateless session bean using resource injection as Example 30–4 shows.

Example 30–3 Annotating a Web Service

import javax.jws.WebService;

Accessing a Web Service from an EJB

Using EJBs and Web Services 30-3

import javax.jws.WebMethod;

@WebService
public class StockQuoteProvider
{

@WebMethod
public Float getLastTradePrice()
{

...
}

}

Example 30–4 Calling Out to a Web Service Obtained by Resource Injection

@Stateless public class InvestmentBean implements Investment
{

public void checkPortfolio(...)
{

...
@Resource StockQuoteProvider sqp;
// Get a quote
Float quotePrice = sqp.getLastTradePrice(...);
...

}
}

Using Initial Context
After you define an environment reference to a Web service (see "Configuring an
Environment Reference to a Web Service" on page 19-15), you can use the initial
context to look up the Web service and invoke its methods from within your stateless
session bean as Example 30–5 shows.

Example 30–5 Calling Out to a Web Service Obtained from the Initial Context

@Stateless public class InvestmentBean implements Investment
{

public void checkPortfolio(...)
{

...
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();
// Look up the stock quote service in the environment.
com.example.StockQuoteService sqs = (com.example.StockQuoteService)initCtx.lookup(

"java:comp/env/service/StockQuoteService"
);
// Get the stub for the service endpoint
com.example.StockQuoteProvider sqp = sqs.getStockQuoteProviderPort();
// Get a quote
float quotePrice = sqp.getLastTradePrice(...);
...

}
}

Accessing a Web Service from an EJB

30-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administrating an EJB Application 31-1

31
Administrating an EJB Application

This chapter describes:

■ OC4J EJB JMX Support

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Configuring EJB Logging

■ Managing the Bean Instance Pool

■ Starting and Stopping an EJB Application

■ Troubleshooting an EJB Application

For more information, see "Understanding EJB Administration" on page 2-17.

OC4J EJB JMX Support
OC4J deploys MBeans to collect JSR77 statistics and Oracle Dynamic Monitoring
System (DMS) sensor data for all types of EJBs.

You can access these statistics and sensors using any JMX-compliant management tool,
such as the Application Server Control (see "Using Oracle Enterprise Manager 10g
Application Server Control" on page 31-1).

Using Oracle Enterprise Manager 10g Application Server Control
The Application Server Control is a JMX-compliant, Web-based user interface for
deploying, configuring and monitoring applications within OC4J, as well as managing
the OC4J server instance and the Web services used by your applications.

Using the Application Server Control JMX administrative task, you can modify
properties of all EJB types deployed to OC4J without having to restart Oracle
Application Server or redploy your application:

1. Launch Application Server Control.

2. Click the Administration link.

3. Click System MBean Browser.

4. Specific MBean instances are accessed through the navigation pane to the left of
the console. Expand a node in the navigation pane and drill down to the MBean
you wish to access.

For example, for a standalone OC4J, select: J2EEServer > standalone >
J2EEApplication > application-name > EJBModule > module-name

Configuring EJB Logging

31-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

5. Select the type of EJB, such as StatelessSessionBean, MessageDrivenBean, or
WebServicePort.

6. Select an MBean instance.

7. Click the appropriate tab in the right-hand pane:

■ Click the Attributes tab to access the MBean's attributes. If you modify any
attribute values, click the Apply Changes button to apply your changes to the
OC4J runtime.

■ Click the Operations tab to access the MBean's operations. After selecting a
specific operation, click the Invoke button to call it

■ Click the Notifications tab to subscribe to the MBean’s notifications. After
selecting a specific notification, click the Apply button to subscribe to it.

■ Click the Statistics tab to view the MBean’s statistics.

You can use Application Server Control for most administration tasks.

For more information, see:

■ "Oracle Enterprise Manager 10g Application Server Control Console" in the Oracle
Containers for J2EE Configuration and Administration Guide

■ the online Help provided with Application Server Control

Configuring EJB Logging
OC4J uses the standard JDK java.util.logging package and, by default, writes
log messages to the <OC4J_HOME>/j2ee/home/log/<group>/oc4j/log.xml file.

This section describes:

■ Logging Namespaces

■ Logging Levels

■ Configuring Logging with Application Server Control Logging MBean

■ Configuring Logging Using the j2ee-logging.xml File

■ Configuring Logging Using System Properties

Logging Namespaces
You can configure loggers for the following java.util.logging namespaces:

■ oracle.j2ee.ejb.annotation

■ oracle.j2ee.ejb.compilation

■ oracle.j2ee.ejb.database

■ oracle.j2ee.ejb.deployment

■ oracle.j2ee.ejb.lifecycle

■ oracle.j2ee.ejb.pooling

■ oracle.j2ee.ejb.runtime

■ oracle.j2ee.ejb.transaction

Managing the Bean Instance Pool

Administrating an EJB Application 31-3

Logging Levels
You can configure log levels of: FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.

Configuring Logging with Application Server Control Logging MBean
The simplest way to configure OC4J logging is to use Application Server Control (see
"Using Oracle Enterprise Manager 10g Application Server Control" on page 31-1).

Application Server Control shows all EJB-related logger names and you can specify
attributes like log level using the Application Server Control interface.

Configuring Logging Using the j2ee-logging.xml File
You can configure OC4J logging using the <OC4J_
HOME>/j2ee/home/config/j2ee-logging.xml file as Example 31–1 shows.

Example 31–1 j2ee-logging.xml File

<logger
name='oracle.j2ee.ejb'
level='NOTIFICATION:1'
useParentHandlers='false'>
<handler name='oc4j-handler'/>
<handler name='console-handler'/>

</logger>

For more information, see:

■ "Logging Namespaces" on page 31-2

■ "Logging Levels" on page 31-3

Configuring Logging Using System Properties
You can configure OC4J logging using the oracle.j2ee.logging system property.
This system property has the form:

oracle.j2ee.logging.<log-level>=<log-namespace>

Where:

■ <log-level> is one of fine, finer, or finest.

■ <log-namspace> is an oracle.j2ee.ejb namespace (see "Logging Namespaces" on
page 31-2).

Example 31–2 shows how to configure the logger for the oracle.j2ee.ejb.deployment
namespace to finest.

Example 31–2 Configuring a Logger with a System Property

oracle.j2ee.logging.finest=oracle.j2ee.ejb.deployment

Managing the Bean Instance Pool
OC4J provides EJB pooling attributes that you can configure to improve performance
by reducing the frequency of bean instance creation.

This section describes:

Managing the Bean Instance Pool

31-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Configuring Bean Instance Pool Size

■ Configuring Bean Instance Pool Timeouts for Session Beans

■ Configuring Bean Instance Pool Timeouts for Entity Beans

Configuring Bean Instance Pool Size
You can set the minimum and maximum number of the bean instance pool for session
beans, entities, and message-driven beans.

You can configure the bean pool size:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Deployment XML

Using Deployment XML
In the orion-ejb-jar.xml file you set the bean pool size with the following
attributes of the <entity-deployment> element, for entities, and the
<session-deployment> element, for session beans:

■ The max-instances attribute sets the maximum number of bean instances
allowed in the pool. The default is 0, which means infinite. To disable bean
pooling, set this value to a negative number.

For example, if you wanted to set the maximum entity implementation instances
to 20, you would do as follows:

<entity-deployment ... max-instances="20"
...

</entity-deployment>

■ The min-instances attribute sets the minimum number of bean instances
allowed in the pool.

For example, if you wanted to set the minimum entity implementation instances to
2, you would do as follows:

<entity-deployment ... min-instances="2"
...

</entity-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Configuring Bean Instance Pool Timeouts for Session Beans
You can set the maximum amount of time that session beans are cached in the bean
instance pool.

You can configure pool timeouts for session beans:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Deployment XML

Managing the Bean Instance Pool

Administrating an EJB Application 31-5

Using Deployment XML
In the orion-ejb-jar.xml file you set the bean pool timeout with the following
attributes of the <session-deployment> element for session beans:

■ The pool-cache-timeout attribute is applicable to stateless session beans and
sets how long to keep stateless sessions cached in the pool. The default is 0
seconds, which means never timeout.

For example, if you wanted to set the pool-cache-timeout to 90 seconds, you
would do as follows:

<session-deployment ... pool-cache-timeout="90"
...

</session-deployment>

■ The timeout attribute is applicable to stateful session beans and sets how long a
stateful session bean can remain inactive before it is removed from the bean
instance pool. The default is 1800 seconds.

For example, if you wanted to set the stateful session bean inactivity timeout to
900 seconds, you would do as follows:

<sessi0n-deployment ... timeout="900"
...

</session-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Configuring Bean Instance Pool Timeouts for Entity Beans
You can set the maximum amount of time that entities are cached in the bean instance
pool.

You can configure pool timeouts for entities:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Deployment XML

Using Deployment XML
In the orion-ejb-jar.xml file you set the bean pool timeout with the following
attributes of the <entity-deployment> element for entities:

■ The pool-cache-timeout attribute sets how long entity bean implementation
instances are to be kept in the "pooled" (unassigned) state. The default is 60
seconds. Setting this attribute to "never" means never timeout.

For example, if you wanted to set the pool-cache-timeout for entities to 90 seconds,
you would do as follows:

<entity-deployment ... pool-cache-timeout="90"
...

</entity-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Starting and Stopping an EJB Application

31-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Starting and Stopping an EJB Application
You can use Application Server Control to stop and start an EJB application.

While an application is stopped, clients cannot access it.

For more information, see "Using Oracle Enterprise Manager 10g Application Server
Control" on page 31-1.

Troubleshooting an EJB Application
This section describes:

■ Validating XML Files

■ Debugging the ejb-jar.xml File

■ Debugging Generated Code

Validating XML Files
To configure OC4J to validate XML files, add the -validateXML option to the
command line used in the OC4J start up script (<OC4J_HOME>/BIN/oc4j.cmd or
oc4j).

Example 31–3 shows how to set this option in the oc4j.cmd file.

Example 31–3 Setting -validateXML in oc4j.cmd

...
"%JAVA_HOME%\bin\java" %JVMARGS% -jar %OC4J_JAR% %CMDARGS% -validateXML
...

With this option set, OC4J strictly validates XML files against their specified schema
when OC4J reads them. OC4J logs any errors (see "Configuring EJB Logging" on
page 31-2).

Debugging the ejb-jar.xml File
You can configure OC4J to write out the ejb-jar.xml file it creates based on your
EJB 3.0 annotations (see "Troubleshooting Application Deployment" on page 28-4).

See also "Validating XML Files" on page 31-6.

Debugging Generated Code
By default, when OC4J deploys an application, it generates wrapper code in <OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated, compiles it, creates a JAR file that contains the compiled classes, and then
deletes the wrapper code it generates.

You can configure OC4J to preserve the wrapper code that it generates. Examining the
wrapper code can aid in debugging some application problems.

This section describes:

■ Preserving Generated Code in the Default Directory

■ Preserving Generated Code in a Directory You Specify

■ Disabling Generated Code Preservation

Troubleshooting an EJB Application

Administrating an EJB Application 31-7

Preserving Generated Code in the Default Directory
If you set system property KeepWrapperCode to true, OC4J preserves the wrapper
code it generates in the default directory <OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated.

If you undeploy your application, OC4J deletes the wrapper code in this directory.

Preserving Generated Code in a Directory You Specify
If you set both system property KeepWrapperCode to true and system property
WrapperCodeDir to a directory (call it <specified-wrapper-dir>), OC4J
generates wrapper code to this directory and preserves the wrapper code even if you
undeploy the application.

The <specified-wrapper-dir> may be absolute (such as C:\wrappers) or
relative (such as ./wrappers): relative paths are relative to <OC4J_
HOME>/j2ee/home.

If OC4J cannot generate to the directory you specify (for example, due to a permission
problem or lack of space), OC4J generates wrapper code to the default directory
<OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated and preserves this wrapper code even if you undeploy the application.

Disabling Generated Code Preservation
If you set system property KeepWrapperCode to false (or leave this system
property unset), OC4J will not preserve the wrapper code it generates.

Troubleshooting an EJB Application

31-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

XML Reference for orion-ejb-jar.xml Elements A-1

A
XML Reference for orion-ejb-jar.xml

Elements

This appendix describes the elements contained within the OC4J-specific EJB
deployment descriptor orion-ejb-jar.xml. This deployment descriptor file
conforms to the XML schema document (XSD) located at
http://www.oracle.com/technology/oracleas/schema/orion-ejb-jar-1
0_0.xsd.

This appendix describes:

■ OC4J and the orion-ejb-jar.xml File

■ TopLink Persistence Support

■ OC4J-Specific Deployment Descriptor for EJBs: Overall description of each
element section.

– Enterprise Beans Section

* Persistence Manager Section (persistence-manager)

* Session Bean Section (session-deployment)

* Entity Bean Section (entity-deployment)

* Message Driven Bean Section (message-driven-deployment)

* EJB 1.1 CMP Field Mapping Section (cmp-field-mapping)

* Method Definition

– Assembly Descriptor Section

■ Element Description: An alphabetical listing and description for each element.

For more information, see "Understanding EJB Deployment Descriptor Files" on
page 2-7

OC4J and the orion-ejb-jar.xml File
Whenever you deploy an application, OC4J automatically generates the OC4J-specific
XML file with the default elements. If you want to change these defaults, you must
copy the orion-ejb-jar.xml file to where your original ejb-jar.xml file is
located and change it in this location. If you change the XML file within the deployed
location, OC4J overwrites these changes when the application is deployed again. The
changes only stay constant when changed in the development directories.

Oracle recommends that you add your OC4J-specific XML files within the
recommended development structure as shown in Figure A–1.

TopLink Persistence Support

A-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure A–1 Development Application Directory Structure

TopLink Persistence Support
Table A–2 describes all the attributes of the orion-ejb-jar.xml file
<entity-deployment> element and indicates which options you configure in the
orion-ejb-jar.xml file and which you configure using TopLink persistence API.

For example:

■ To configure <entity-deployment> attribute call-timeout, you must use
the corresponding TopLink persistence API. If you set the call-timeout
attribute in the orion-ejb-jar.xml file, OC4J will ignore it.

■ To configure <entity-deployment> attribute clustering-schema, you must
use the orion-ejb-jar.xml file; there is no corresponding TopLink persistence
API.

For EJB 3.0 applications, you access TopLink persistence API by augmenting
orion-ejb-jar.xml configuration with TopLink-specific deployment descriptor
files ejb3-toplink-sessions.xml and toplink-ejb-jar.xml. For more
information, see "Customizing the TopLink Entity Manager" on page 3-2.

For EJB 2.1 applications, you access TopLink persistence API using
orion-ejb-jar.xml element pm-properties. For more information, see
"Customizing the TopLink Persistence Manager" on page 3-5.

Note: To modify TopLink deployment descriptor files, use the
TopLink Workbench.

For more information, see:

■ "Migrating OC4J Orion Persistence to OC4J TopLink Persistence"
in the Oracle TopLink Developer’s Guide

■ "Understanding TopLink Workbench" in the Oracle TopLink
Developer’s Guide

■ TopLink-specific deployment descriptor XML schema documents
located at <OC4J_HOME>\toplink\config\xsds.

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-3

OC4J-Specific Deployment Descriptor for EJBs
The OC4J-specific deployment descriptor contains extended deployment information
for session beans, entity beans, message driven beans, and security for these EJBs. The
major element structure within this deployment descriptor has the following structure:

<orion-ejb-jar deployment-time=... deployment-version=...>
<enterprise-beans>
<persistence-manager ...></persistence-manager>
<session-deployment ...></session-deployment>
<entity-deployment ...></entity-deployment>
<message-driven-deployment ...></message-driven-deployment>

</enterprise-beans>
<assembly-descriptor>
 <security-role-mapping ...></security-role-mapping>
 <default-method-access></default-method-access>
 </assembly-descriptor>
</orion-ejb-jar>

Each section under the <orion-ejb-jar> main tag has its own purpose. These are
described in the following sections:

■ Enterprise Beans Section

■ Assembly Descriptor Section

Enterprise Beans Section
The <enterprise-beans> section defines additional deployment information for all
EJBs: session beans, entity beans, and message driven beans. There is a section for each
type of EJB.

The following sections describe the elements within <enterprise-beans> element;

■ Persistence Manager Section (persistence-manager)

■ Session Bean Section (session-deployment)

■ Entity Bean Section (entity-deployment)

■ Message Driven Bean Section (message-driven-deployment)

■ EJB 1.1 CMP Field Mapping Section (cmp-field-mapping)

■ Method Definition

Persistence Manager Section (persistence-manager)
The <persistence-manager> section provides additional deployment information
for the TopLink persistence manager for EJB 2.1 applications only. For EJB 3.0
applications, OC4J always uses the TopLink entity manager.

The <persistence-manager> section contains the following structure:

<persistence-manager name=... class=... descriptor=... >
 <pm-properties>
 <session-name>...</session-name>
 <project-class>...</project-class>
 <db-platform-class>...</db-platform-class>
 <default-mapping db-table-gen=... >...</default-mapping>
 <remote-relationships>...</remote-relationships>
 <cache-synchronization mode=... >...</cache-synchronization>
 <customization-class>...</customization-class>
 </pm-properties>

OC4J-Specific Deployment Descriptor for EJBs

A-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</persistence-manager>

Multiple definitions of the <persistence-manager> element is not valid. If OC4J
detects multiple definitions of the <persistence-manager> element at parse time,
OC4J logs a warning message. In this case, OC4J uses only the first entry and ignores
any subsequent entries.

If you want to explicitly specify the persistence manager, use the
<persistence-manager> element name attribute. Valid values are:

■ toplink: selects the TopLink persistence manager (default).

■ orion: selects the deprecated Orion persistence manager.

If you are using the TopLink persistence manager and you name your TopLink
deployment descriptor something other than toplink-ejb-jar.xml (see "What is
the toplink-ejb-jar.xml File?" on page 2-11), specify the name using the
<persistence-manager> element descriptor attribute.

The <pm-properites> element applies only to the TopLink persistence manager.

For more information, see:

■ "How Does OC4J Determine What Type of Persistence to Use?" on page 2-8

■ "Customizing the TopLink Entity Manager" on page 3-2

■ "Customizing the TopLink Persistence Manager" on page 3-5

■ "Configuring pm-properties" in the Oracle TopLink Developer’s Guide

Session Bean Section (session-deployment)
The <session-deployment> section provides additional deployment information
for a session bean deployed within this JAR file. The <session-deployment>
section contains the following structure:

<session-deployment pool-cache-timeout=... call-timeout=... copy-by-value=...
 location=... max-instances=... min-instances=... max-tx-retries=...
 tx-retry-wait=... name=... persistence-filename=... replication=...
 timeout=... idletime=... memory-threshold=... max-instances-threshold=...
 resource-check-interval=... passivate-count=... wrapper=...
 local-wrapper=...
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>
 </sas-context>
 </ior-security-config>
 <env-entry-mapping name=...> </env-entry-mapping
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-5

 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
 <message-destination-ref-mapping location=... name=... />
</session-deployment>

Table A–1 lists the attributes for the <session-deployment> element and indicates
which are applicable to stateless session beans only, stateful session beans only, or
both.

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

■ A session bean example, which includes the <session-deployment> element
(where relevant), is described in:

– "Implementing an EJB 3.0 Session Bean" on page 4-1

– "Implementing an EJB 2.1 Session Bean" on page 11-1

■ The <ior-security-config> element is an interoperability element, which is
discussed fully in the Interoperability chapter in the Oracle Containers for J2EE
Services Guide.

■ The <env-entry-mapping> element maps environment variables to JNDI
names and is discussed in "Configuring an Environment Reference to an
Environment Variable" on page 19-14.

■ The <ejb-ref-mapping> element maps any EJB references to JNDI names and
is discussed in "Configuring an Environment Reference to an EJB" on page 19-3.

■ The <resource-ref-mapping> element maps any EJB references to JNDI
names and is discussed in "Resource Manager Connection Factory Environment
References" on page 19-2.

■ The <resource-env-ref-mapping> element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS
factory object and a destination object. These objects are retrieved at the same time
from JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Resource Manager Connection Factory Environment References" on page 19-2 for
more information.

■ The <message-destination-ref-mapping> element is only used if you are
using JMS 1.1. Use this element to map the message-destination-ref-name in the
client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to
one or more common logical destinations. For more information, see "Configuring
an Environment Reference to a JMS Destination Resource Manager Connection
Factory (JMS 1.1)" on page 19-8.

OC4J-Specific Deployment Descriptor for EJBs

A-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table A–1 Attributes for the <session-deployment> Element

Attribute Stateless Stateful Description

call-timeout This parameter specifies the maximum time to
wait for any resource to make a
business/life-cycle method invocation. This is
not a timeout for how long a business method
invocation can take.

If the timeout is reached, a
TimedOutException is thrown. This excludes
database connections.

Default Values: 90000 milliseconds. Set to 0 if you
want the timeout to be forever. See the EJB
section in the Oracle Application Server Performance
Guide for more information.

copy-by-value Whether or not to copy (clone) all the incoming
and outgoing parameters in EJB calls. Set to 'false'
if you are certain that your application does not
assume copy-by-value semantics for a speed-up.
The default is 'true'.

idletime You can set an idle timeout for each bean. When
this timeout expires, passivation occurs. Set this
attribute to the appropriate number of seconds.
Default: 300 seconds. (5 min.). To disable, specify
"never."

local-location The local JNDI name to which this EJB will be
bound.

local-wrapper Name of the OC4J local home wrapper class for
this bean. This is an internal server value and
should not be edited.

location The JNDI-name to which this bean will be bound.

max-instances The number of bean instances allowed in
memory—either instantiated or pooled. When
this value is reached, OC4J attempts to passivate
beans using the least recently used (LRU)
algorithm. To allow an infinite number of bean
instances, the max-instances attribute can be
set to zero. Default is 0, which means infinite.
This applies to both stateless and stateful session
beans.

To disable instance pooling, set max-instances
to any negative number. This will create a new
instance at the start of the EJB call and release it
at the end of the call.

For more information, see:

■ "Configuring Passivation Criteria" on
page 12-2

■ "Configuring Bean Instance Pool Size" on
page 31-4

max-instances-threshold Percentage of max-instances number of beans
that can be in memory before passivation occurs.

Specify an integer that is translated as a
percentage. If you define that the
max-instances is 100 and the
max-instances-threshold is 90%, then
when the active bean instances is greater than or
equal to 90, passivation of beans occurs. Default:
90%.

To disable, specify "never."

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-7

max-tx-retries This parameter specifies the number of times to
retry a transaction that was rolled back due to
system-level failures. The default is 0.

For a stateful session bean, if a
RuntimeException, Error, or
RemoteException is thrown, the OC4J does not
do a retry.

Generally, we recommend that you add retries
only where errors are seen that could be resolved
through retries. For example, if you are using
serializable isolation and you want to retry the
transaction automatically if there is a conflict,
you might want to use retries. However, if the
bean wants to be notified when there is a conflict,
then in this case, you should leave
max-tx-retries=0.

See the EJB section in the Oracle Application Server
Performance Guide for more information.

memory-threshold This attribute defines a threshold for how much
used JVM memory is allowed before passivation
should occur.

Specify an integer that is translated as a
percentage.

 When reached, beans are passivated, even if
their idle timeout has not expired. Default: 80%.
To disable, specify "never."

min-instances The number of minimum bean implementation
instances to be kept instantiated or pooled. The
default is 0. This setting is valid for stateless
session beans only.

name The name of the bean, which matches the name
of a bean in the assembly section of the EJB
deployment descriptor (ejb-jar.xml).

passivate-count This attribute is an integer that defines the
number of beans to be passivated if any of the
resource thresholds have been reached.
Passivation of beans is performed using the least
recently used algorithm. Default: one-third of the
max-instances attribute. You can disable this
attribute by setting the count to zero or a
negative number.

persistence-filename Path to the file where sessions are stored across
restarts.

pool-cache-timeout The pool-cache-timeout applies for stateless
session EJBs. This parameter specifies how long
to keep stateless sessions cached in the pool.

For stateless session beans, if you specify a
pool-cache-timeout, then at every
pool-cache-timeout interval, all beans in the pool,
of the corresponding bean type, are removed. If
the value specified is zero or negative, then the
pool-cache-timeout is disabled and beans are not
removed from the pool.

Default Value: 60 (seconds)

replication Configuration of the state replication for stateful
session beans. Values can be inherited
(default) onShutdown, onRequestEnd, or
none. See "State Replication" on page 2-29 for
more information.

Table A–1 (Cont.) Attributes for the <session-deployment> Element

Attribute Stateless Stateful Description

OC4J-Specific Deployment Descriptor for EJBs

A-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Entity Bean Section (entity-deployment)
The <entity-deployment> section provides additional deployment information for
an entity bean deployed within this JAR file. The <entity-deployment> section
contains the following structure:

resource-check-interval The container checks all resources at this time
interval. At this time, if any of the thresholds
have been reached, passivation occurs. Default:
180 sec. (3 min.). To disable, specify "never."

timeout The maximum number of seconds that a stateful
session bean may be inactive before being subject
to pool clean up. If the value is zero or negative,
then all timeouts are disabled.

Every 30 seconds the pool clean up logic is
invoked. Within the pool clean up logic, only the
sessions that timed out, by passing the timeout
value, are deleted.

Adjust the timeout based on your applications
use of stateful session beans. For example, if
stateful session beans are not removed explicitly
by your application, and the application creates
many stateful session beans, then you may want
to lower the timeout value.

If your application requires that a stateful session
bean be available for longer than 1800 seconds
(equal to 30 minutes), then adjust the timeout
value accordingly.

Default Value: 1800 seconds

transaction-timeout The maximum number of seconds that OC4J will
wait for a transaction started by this stateless or
stateful session bean to commit or rollback. If the
value is zero or negative, the timeout is disabled.

tx-retry-wait This parameter specifies the time to wait in
seconds between retrying the transaction. The
default is 60 seconds.

wrapper Name of the OC4J wrapper class for this bean.
This is an internal server value and should not be
edited.

Table A–1 (Cont.) Attributes for the <session-deployment> Element

Attribute Stateless Stateful Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-9

<entity-deployment call-timeout=... clustering-schema=...
 copy-by-value=... data-source=... exclusive-write-access=...
 disable-default-persistent-unit=...
 do-select-before-insert=... isolation=...
 location=... local-location=... locking-mode=...
 max-instances=... min-instances=...
 max-tx-retries=... tx-retry-wait=... update-changed-fields-only=...
 name=... pool-cache-timeout=...
 table=... validity-timeout=... force-update=...
 wrapper=... local-wrapper=... delay-updates-until-commit=...
 findByPrimaryKey-lazy-loading=... >
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>
 </sas-context>
 </ior-security-config>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...> </cmp-field-mapping>
 <finder-method partial=... query=... lazy-loading=... prefetch-size=... >
 <method></method>
 </finder-method>
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
</entity-deployment>

Table A–2 lists the attributes for the <entity-deployment> element.

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

■ Entity bean examples, which include the <entity-deployment> element
(where relevant), are described in:

– "Implementing an EJB 3.0 Entity" on page 6-1

– "Implementing an EJB 2.1 Entity Bean" on page 13-1

■ The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the
Oracle Containers for J2EE Services Guide.

OC4J-Specific Deployment Descriptor for EJBs

A-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ The <primkey-mapping> element maps the primary key to the CMP field it
represents. In this release, this feature is not configured in orion-ejb-jar.xml.
You configure this feature using TopLink persistence API.

For more information, see:

– Oracle TopLink Developer’s Guide

– "Customizing the TopLink Entity Manager" on page 3-2

– "Customizing the TopLink Persistence Manager" on page 3-5

■ The <cmp-field-mapping> element maps each <cmp-field> element to its
database row. For more information, see "What are Container-Managed
Persistence Fields?" on page 1-20.

■ The <finder-method> element is used to create finder methods for EJB 1.1
entity beans. For more information on EJB 3.0 and EJB 2.1, see "How Do You
Query for an EJB 2.1 Entity Bean?" on page 1-28

■ The <env-entry-mapping> element maps environment variables to JNDI
names and is discussed in "Configuring an Environment Reference to an
Environment Variable" on page 19-14.

■ The <ejb-ref-mapping> element maps any EJB references to JNDI names and
is discussed in "Configuring an Environment Reference to an EJB" on page 19-3.

■ The <service-ref-mapping> element maps any EJB references to a Web
service and is discussed in "Configuring an Environment Reference to a Web
Service" on page 19-15

■ The <resource-ref-mapping> element maps any EJB references to JNDI
names and is discussed in "Resource Manager Connection Factory Environment
References" on page 19-2.

■ The <resource-env-ref-mapping> element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS
factory object and a destination object. These objects are retrieved at the same time
from JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Resource Manager Connection Factory Environment References" on page 19-2 for
more information.

■ The <message-destination-ref-mapping> element is only used if you are
using JMS 1.1. Use this element to map the message-destination-ref-name in the
client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to
one or more common logical destinations. For more information, see "Configuring
an Environment Reference to a JMS Destination Resource Manager Connection
Factory (JMS 1.1)" on page 19-8.

■ The <commit-option> element determines an entity bean instance’s state at
transaction commit time and offers the flexibility to allow OC4J to optimize certain
application conditions and is discussed in "What are Entity Bean Commit
Options?" on page 1-27.

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-11

Table A–2 Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

call-timeout Using TopLink persistence API, you can
specify the maximum time OC4J will wait
for a query to return a result. A query
timeout ensures that your application does
not block forever over a hung or lengthy
query that does not return in a timely
fashion.

You can specify a query timeout at the
descriptor and query level.

A descriptor-level query timeout applies to
all queries on the descriptor's reference
class. Specify a descriptor-level query
timeout to apply the same timeout to all
queries on a particular object type.

A query-level query timeout applies to that
query only.

For more information, see:

■ "Configuring Query Timeout at the
Descriptor Level" in the Oracle TopLink
Developer’s Guide

"Configuring Named Query
Advanced Options" in the Oracle
TopLink Developer’s Guide

■ "Configuring Query Timeout at the
Query Level" in the Oracle TopLink
Developer’s Guide

clustering-schema Do not use. Not needed in this release.

copy-by-value Whether or not to copy (clone) all the
incoming and outgoing parameters in EJB
calls. Set to false if you are certain that
your application does not assume
copy-by-value semantics for a speed-up.
The default is true.

data-source The name of the data source used if using
container-managed persistence.

delay-updates-until-commit Using TopLink persistence API, you can
configure OC4J for either deferred or
non-deferred changes. By default, TopLink
defers all changes until commit time: this is
the most efficient approach that produces
the least number of data source
interactions. Alternatively, you can
configure an entity bean's descriptor for
nondeferred changes. This means that as
you change the persistent fields of the
entity bean, OC4J modifies the relational
schema immediately. For more
information, see "Non-Deferred Changes"
in the Oracle TopLink Developer’s Guide.

disable-default-persistent-unit By default, OC4J enables the deployment of
EJB 3.0 entities without a
persistence.xml file if your application
only uses the OC4J default persistence unit.
To disable this feature, set to true. The
default is false.

For more information, see "Understanding
the OC4J Default Persistence Unit" on
page 2-14.

OC4J-Specific Deployment Descriptor for EJBs

A-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

do-select-before-insert TopLink does not perform a select before
writing out changes. Oracle recommends
using optimistic locking to handle the
possibility of concurrent overwrites.

For more information, see "Concurrency
(Locking) Mode" on page 1-26.

exclusive-write-access Using TopLink persistence API, OC4J
assumes exclusive write access to the entity
instances because TopLink uses its unit of
work transaction space to calculate change
sets and write out the changes. The unit of
work transaction space is separate from the
shared session cache.

For more information, see "Unit of Work
Architecture" in the Oracle TopLink
Developer’s Guide.

findByPrimaryKey-lazy-loading Using TopLink persistence API, you can
configure fetch groups, which allow you to
retrieve a subset of a bean’s attributes. This
is equivalent of lazy loading.

For more information, see "Using Queries
with Fetch Groups" in the Oracle TopLink
Developer’s Guide.

force-update Using TopLink persistence API, you can
configure whether or not OC4J executes
persistence-related lifecycle methods even
if OC4J does not believe that any of the
persistence data has changed.

When set to true, this option means that
OC4J will still execute the EJB lifecycle by
invoking the ejbStore method. This
manages data in transient fields and sets
appropriate persistent fields during the
ejbStore method. For example, an image
might be kept in one format in memory, but
stored in a different format in the database.
The default is false.

For more information, see "Configuring a
Descriptor With EJB Information" in the
Oracle TopLink Developer’s Guide

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-13

isolation Using TopLink persistence API, database
transaction isolation levels are not that
relevant to TopLink because it provides an
object cache and unit of work transaction
space. Consider configuring TopLink unit
of work and cache isolation levels instead.

Handling locking through database
isolation levels is rarely done. Typically,
locking is done through optimistic or
pessimistic locking.

You can configure transaction isolation
level on a TopLink database login: this
setting applies to all beans and transactions
that use the database login.

By default, TopLink uses whatever
isolation level is set on the database.

For more information, see:

■ "How do You Avoid Database
Resource Contention?" on page 1-25

■ "Concurrency (Locking) Mode" on
page 1-26

■ "Database Transaction Isolation
Levels" in the Oracle TopLink
Developer’s Guide

■ Oracle Application Server Performance
Guide.

local-location Defines the local JNDI name to which this
EJB will be bound

local-wrapper Name of the OC4J local home wrapper
class for this bean. This is an internal server
value and should not be edited.

location The JNDI-name to which this bean will be
bound.

locking-mode Using TopLink persistence API, you can
configure the following locking modes:

■ Optimistic Locking: Multiple users
have read access to the data. When a
user attempts to make a change, the
application checks to ensure the data
has not changed since the user read
the data. TopLink supports version
(recommended), timestamp, and
field-level locking.

■ Pessimistic Locking: The first user
who accesses the data with the
purpose of updating it locks the data
until completing the update. This
manages resource contention and does
not allow parallel execution. Only one
user at a time is allowed to execute the
entity bean at a single time.

■ Read-only: Multiple users can execute
the entity bean in parallel. The
container does not allow any updates
to the bean's state.

For more information, see "Concurrency
(Locking) Mode" on page 1-26.

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

OC4J-Specific Deployment Descriptor for EJBs

A-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

max-instances The maximum number of bean
implementation instances to be kept
instantiated or pooled. The default is 0,
which means infinite.

To disable instance pooling, set
max-instances to any negative number.
This will create a new instance at the start
of the EJB call and release it at the end of
the call.

See "Configuring Bean Instance Pool Size"
on page 31-4 for more information.

max-tx-retries This parameter specifies the number of
times to retry a transaction that was rolled
back due to system-level failures. The
default is 0.

Generally, we recommend that you add
retries only where errors are seen that
could be resolved through retries. For
example, if you are using serializable
isolation and you want to retry the
transaction automatically if there is a
conflict, you might want to use retries.
However, if the bean wants to be notified
when there is a conflict, then in this case,
you should leave max-tx-retries=0.

Default Value: 0. See the EJB section in the
Oracle Application Server Performance Guide
for more information.

min-instances The minimum number of bean
implementation instances to be kept
instantiated or pooled. The default is 0. See
"Configuring Bean Instance Pool Size" on
page 31-4 for more information.

name The name of the bean, which matches the
name of a bean in the assembly section of
the EJB deployment descriptor
(ejb-jar.xml).

pool-cache-timeout The amount of time in seconds that the
bean implementation instances are to be
kept in the "pooled" (unassigned) state,
specifying 'never' retains the instances until
they are garbage collected. The default is
60. See "Configuring Bean Instance Pool
Timeouts for Entity Beans" on page 31-5 for
more information

table Using TopLink persistence API, you can
specify the name of the database table
associated with this bean.

For more information, see "Configuring
Associated Tables" in the Oracle TopLink
Developer’s Guide

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-15

Message Driven Bean Section (message-driven-deployment)
The <message-driven-deployment> section provides additional deployment
information for a message driven bean deployed within this JAR file. The
<message-driven-deployment> section contains the following structure:

<message-driven-deployment cache-timeout=... connection-factory-location=...
 destination-location=... name=... subscription-name=...
 listener-threads=... transaction-timeout=...
 dequeue-retry-count=... dequeue-retry-interval=... >
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
 <message-destination-ref-mapping location=... name=... />
 <config-property>
 <config-property-name> ... </config-property-name>
 <config-property-value> ... </config-property-value>
 </config-property>
</message-driven-deployment>

Table A–3 lists the attributes for the <message-driven-deployment> element and
their J2CA message service provider resource adapter <config-property>
equivalents (where appropriate).

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

■ A message-driven bean example, which includes the
<message-driven-deployment> element, is described in:

– "Implementing an EJB 3.0 MDB" on page 9-1

update-changed-fields-only Using TopLink persistence API, the
TopLink unit of work always calculates a
change set and generates an update
statement for changed fields only.

validity-timeout Using TopLink persistence API, you can
configure an invalidation policy to

For more information, see "Cache
Invalidation" in the Oracle TopLink
Developer’s Guide.

wrapper Name of the OC4J remote home wrapper
class for this bean. This is an internal server
value and should not be edited.

Note: J2CA message service provider resource adapters read only
certain <message-driven-deployment> attributes (see Table A–3)
and ignore all other attributes. For these other attributes, use the
resource adapter equivalent <config-property> given in
Table A–3.

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

OC4J-Specific Deployment Descriptor for EJBs

A-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

– "Implementing an EJB 2.1 MDB" on page 17-1

■ For information on message service providers that OC4J supports, see "What
Message Providers Can I use with My MDB?" on page 2-24.

■ The <env-entry-mapping> element maps environment variables to JNDI
names and is discussed in "Configuring an Environment Reference to an
Environment Variable" on page 19-14.

■ The <ejb-ref-mapping> element maps any EJB references to JNDI names and
is discussed in "Configuring an Environment Reference to an EJB" on page 19-3.

■ The <resource-ref-mapping> element maps any resource manager references
to JNDI names and is discussed in "Resource Manager Connection Factory
Environment References" on page 19-2.

■ The <resource-env-ref-mapping> element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS
factory object and a destination object. These objects are retrieved at the same time
from JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-9 for more
information.

■ The <message-destination-ref-mapping> element is only used if you are
using JMS 1.1. Use this element to map the message-destination-ref-name in the
client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to
one or more common logical destinations. For more information, see "Configuring
an Environment Reference to a JMS Destination Resource Manager Connection
Factory (JMS 1.1)" on page 19-8.

■ The <config-property> element is only used if you are using a J2CA message
service provider. Use this element to set J2CA resource adapter configuration
properties. When OC4J deploys an MDB configured to use a J2CA message service
provider, OC4J provides the MDB’s activation specification to the resource
adapter. This specification includes the properties you set in the
<config-property> element.

For more information, see:

– "Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider" on
page 10-3

– "Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider" on
page 18-2

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-17

Table A–3 Attributes for the <message-driven-deployment> Element

Attribute <config-property> Equivalent Description

cache-timeout1 Use attribute. This parameter specifies how long to keep message-driven
beans cached in the pool.

If you specify a pool-cache-timeout, then at every
cache-timeout interval, all beans in the pool, of the
corresponding bean type, are removed. If the value specified
is zero or negative, then the cache-timeout is disabled and
beans are not removed from the pool.

Default Value: 60 (seconds)

connection-factory-
location

ConnectionFactoryTimeout The JNDI location of the connection factory to use. The JMS
Destination Connection Factory is specified in this
attribute. The syntax is "java:comp/resource" + resource
provider name + "TopicConnectionFactories" or
"QueueConnectionFactories" + user defined name. The
xxxConnectionFactories details what type of factory is
being defined.

dequeue-retry-count DequeueRetryCount Specifies how often the listener thread tries to re-acquire the
JMS session once database failover has ocurred. The default
is "0." This value is only for CMT transactions in an MDB.

For more information, see:

■ "Configuring Dequeue Retry Count and Interval" on
page 18-8

■ "Understanding OC4J EJB Application Clustering
Services" on page 2-28

dequeue-retry-interval DequeueRetryInterval Specifies the interval between retries. The default is 60
seconds.

For more information, see:

■ "Configuring Dequeue Retry Count and Interval" on
page 18-8

■ "Understanding OC4J EJB Application Clustering
Services" on page 2-28

destination-location DestinationLocation The JNDI location of the destination (queue/topic) to use.
The JMS Destination is specified in the
destination-location attribute. The syntax is
"java:comp/resource" + resource provider name +
"Topics" or "Queues" + Destination name. The Topic
or Queue details what type of Destination is being
defined. The Destination name is the actual queue or
topic name defined in the database.

listener-threads ListenerThreads The listener threads are used to concurrently consume JMS
messages. The default is one thread. Topics can only have
one thread. Queues can have more than one.

For more information, see "Configuring Listener Threads" on
page 18-6.

max-delivery-count MaxDeliveryCnt The maximum number of times OC4J will attempt the
immediate re delivery of a message to a message-driven
bean's onMessage method if that method returns failure
(fails to invoke an acknowledgment operation, throws an
exception, or both). After this number of re deliveries, the
message is deemed undeliverable and is handled according
to the policies of your message service provider. For
example, OracleAS JMS will put the message on its
exception queue (jms/Oc4jJmsExceptionQueue).

For more information, see "Configuring Maximum Delivery
Count" on page 18-7.

OC4J-Specific Deployment Descriptor for EJBs

A-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

EJB 1.1 CMP Field Mapping Section (cmp-field-mapping)
If you still use EJB 1.1 CMP entity beans, use the following elements to map the CMP
fields to the database.

The following are the XML elements used for CMP persistent data field mapping
within the orion-ejb-jar.xml file:

<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...>
 <fields>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </fields>
 <properties>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </properties>
 <entity-ref home=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...

max-instances1 Use attribute. The maximum number of bean implementation instances to
be kept instantiated or pooled. The default is 0, which means
infinite.

To disable instance pooling, set max-instances to any
negative number. This will create a new instance at the start
of the EJB call and release it at the end of the call.

For message-driven beans, the default pooling setting is
typically appropriate. Change this value only if MDB
lifecycle methods are very expensive and you need
fine-grained control over how often instances are created
and managed in the pool.

See "Configuring Bean Instance Pool Size" on page 31-4 for
more information.

min-instances1 Use attribute. The minimum number of bean implementation instances to
be kept instantiated or pooled. The default is 0. See
"Configuring Bean Instance Pool Size" on page 31-4 for more
information.

name1 Use attribute. The name of the bean, which matches the name of a bean in
the assembly section of the EJB deployment descriptor
(ejb-jar.xml).

resource-adapter1 Use attribute. The name of the resource adapter instance that this MDB
uses. Applicable only if this MDB is using a J2CA message
service provider. In order for the MDB to be activated by
messages received by the resource adapter, the MDB and
resource adapter must be connected. For more information,
see "Configuring a Message Service Provider Using J2CA" on
page 23-6.

subscription-name SubscriptionName If this is a topic, the subscription name is defined in the
subscription-name attribute.

transaction-timeout TransactionTimeout This attribute controls the transaction timeout interval (in
seconds) for any container-managed transactional MDB. The
default is one day or 86,400 seconds. If the transaction has
not completed in this time frame, the transaction is rolled
back. This applies to both normal JMS and J2CA resource
adapter-based message providers. For more information, see
"Configuring a Transaction Timeout for a Message-Driven
Bean" on page 21-5

1 J2CA message service provider resource adapters read this attribute but ignore all other <message-driven-deployment>
attributes. For other <message-driven-deployment> attributes, use the resource adapter equivalent <config-property>.

Table A–3 (Cont.) Attributes for the <message-driven-deployment> Element

Attribute <config-property> Equivalent Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for orion-ejb-jar.xml Elements A-19

 persistence-type=...></cmp-field-mapping>
 </entity-ref>
 <collection-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 <set-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </set-mapping>
</cmp-field-mapping>

Method Definition
The following structure is used to specify the methods (and possibly parameters of
that method) of the bean.

<method>
 <description></description>
 <ejb-name></ejb-name>
 <method-intf></method-intf>
 <method-name></method-name>
 <method-params>
 <method-param></method-param>
 </method-params>
</method>

The style used can be one of the following:

1. When referring to all the methods of the specified enterprise bean's home and
remote interfaces, specify the methods as follows:

 <method>
<ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

2. When referring to multiple methods with the same overloaded name, specify the
methods as follows:

 <method>
<ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
</method>>

3. When referring to a single method within a set of methods with an overloaded
name, you can specify each parameter within the method as follows:

<method>

Element Description

A-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>
<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
</method>

The <method> element is used within the security and MDB sections. See "Specifying
Logical Roles in the EJB Deployment Descriptor" on page 22-3 for more information.

Assembly Descriptor Section
In addition to specifying deployment information for individual beans, you can also
specify addition deployment mapping information for security in the
<assembly-descriptor> section. The <assembly-descriptor> section contains
the following structure:

<assembly-descriptor>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 <default-method-access>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 </default-method-access>
</assembly-descriptor>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

■ The <security-role-mapping> element is described in "Mapping Logical
Roles to Users and Groups" on page 22-8.

■ The <default-method-access> element is described in "Specifying a Default
Role Mapping for Undefined Methods" on page 22-9.

Element Description
<assembly-descriptor>
The mapping of the assembly descriptor elements.

<cmp-field-mapping>
Deployment information for a container-managed persistence field. If no subtags are
used to define different behavior, the field is persisted through serialization or native
handling of "recognized" primitive types.

Attributes:

■ ejb-reference-home - The JNDI-location of the fields remote EJB-home if the field is
an entity EJBObject or an EJBHome.

■ name - The name of the field.

■ persistence-name - The name of the field in the database table.

Element Description

XML Reference for orion-ejb-jar.xml Elements A-21

■ persistence-type - The database type (valid values varies from database to
database) of the field.

<collection-mapping>
Specifies a relational mapping of a Collection type. A Collection consists of n
unordered items (order is not specified and not relevant). The field containing the
mapping must be of type java.util.Collection.

Attributes:

■ table - The name of the table in the database.

<context-attribute>
An attribute sent to the context. The only mandatory attribute in JNDI is the
'java.naming.factory.initial' which is the classname of the context factory
implementation.

Attributes:

■ name - The name of the attribute.

■ value - The value of the attribute.

<data-bus>
The name and url of a specific Databus for an OC4J object.

Attributes:

■ data-bus-name - The user-defined name of the Databus.

■ url - The URL of the Databus, which is similar to a JDBC URL.

<default-method-access>
The default method access policy for methods not tied to a method-permission.

<description>
A short description.

<ejb-name>
The ejb-name element specifies an enterprise bean's name. This name is assigned by
the ejb-jar file producer to name the enterprise bean in the ejb-jar file's deployment
descriptor. The name must be unique among the names of the enterprise beans in the
same ejb-jar file. The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without breaking the
enterprise bean's function. There is no architected relationship between the ejb-name
in the deployment descriptor and the JNDI name that the Deployer will assign to the
enterprise bean's home. The name must conform to the lexical rules for an
NMTOKEN.

<ejb-ref-mapping>
The ejb-ref element that is used for the declaration of a reference to another
enterprise bean's home. The ejb-ref-mapping element ties this to a JNDI-location
when deploying.

Attributes:

■ location - The JNDI location to look up the EJB home from.

■ name - The ejb-ref's name. Matches the name of an ejb-ref in ejb-jar.xml.

<enterprise-beans>
The beans contained in this EJB JAR file.

Element Description

A-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<entity-deployment>
Deployment information for an entity bean.

Attributes:

■ call-timeout - The time (long milliseconds in decimal) to wait for any resource that
the EJB uses, except database connections, if it is busy (before throwing a
RemoteException, treating it as a deadlock). This is also used as a SQL query
timeout. If the timeout occurs before the SQL query finishes, a SQL exception is
thrown. If zero, the timeout is disabled. The default is 90 seconds.

■ clustering-schema - Not recommended to use.

■ copy-by-value - Whether or not to copy all the incoming/outgoing parameters for
all incoming and outgoing EJB calls. Set to 'false' if your application does not
assume copy-by-value semantics for these parameters. The default is 'true'.

■ data-source - The name of the data source used if using container-managed
persistence.

■ delay-updates-until-commit - Defers the flushing of transactional data until
commit time or not. The default is true. If you want each change to be updated in
the database, set this element to false.

■ do-select-before insert - If false, you avoid executing a select before an insert. The
extra select normally checks to see if the entity already exists before doing the
insert to avoid duplicates.

If a unique key constraint is defined for the entity, then we recommend setting this
to false. If there is no unique key constraint, setting this to false leads to not
detecting a duplicate insert. To prevent duplicate inserts in this case, leave it set to
true.

For performance, Oracle recommends setting this to false to avoid the extra select
before insert. Default Value: true

■ exclusive-write-access - Whether or not the EJB-server has exclusive write (update)
access to the database back-end. This can be used only for entity beans that use a
"read_only" locking mode. In this case, it increases the performance for common
bean operations and enables better caching. The default is false.

■ findByPrimaryKey-lazy-loading="true|false" - For entity bean finder methods,
lazy loading can cause the select method to be invoked more than once. To turn on
lazy loading and enforce only a single execution of this finder method, set this
property to true. The default is false. See "Configuring Lazy Loading on Finder
Methods" on page 14-14 for more information.

■ isolation - Specifies the isolation-level for database actions. The valid values for
Oracle databases are 'serializable' and 'committed'. The default is 'committed'.
Non-Oracle databases can be the following: 'none', 'committed', 'serializable',
'uncommitted', and 'repeatable_read'. For more information, see "How do You
Avoid Database Resource Contention?" on page 1-25 and Oracle Application Server
Performance Guide.

■ local-wrapper - Name of the OC4J local home wrapper class for this bean. This is
an internal server value and should not be edited.

■ location - The JNDI-name this bean will be bound to.

■ locking-mode - The concurrency modes configure when to block to manage
resource contention or when to execute in parallel. For more information, see
"How do You Avoid Database Resource Contention?" on page 1-25 and Oracle
Application Server Performance Guide. The concurrency modes are as follows:

Element Description

XML Reference for orion-ejb-jar.xml Elements A-23

– PESSIMISTIC: This manages resource contention and does not allow parallel
execution. Only one user at a time is allowed to execute the entity bean at a
single time.

– OPTIMISTIC: Multiple users can execute the entity bean in parallel. It does
not monitor resource contention; thus, the burden of the data consistency is
placed on the database isolation modes. This is the default.

– READ-ONLY: Multiple users can execute the entity bean in parallel. The
container does not allow any updates to the bean's state.

■ max-instances - The number of maximum bean implementation instances to be
kept instantiated or pooled. The default is 0, which means infinite. To disable
instance pooling, set max-instances to any negative number. This will create a new
instance at the start of the EJB call and release it at the end of the call. See
"Configuring Bean Instance Pool Size" on page 31-4 for more information.

■ min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. See "Configuring Bean Instance Pool
Size" on page 31-4 for more information.

■ max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 0. Leave the setting to zero if using the
serializable isolation level. Within a transaction, the container uses the
max-tx-retries value of the first invoked bean within the transaction. The
performance guide recommends that you leave this value at 0 and add retries only
where errors are seen that could be resolved through a retry.

■ tx-retry-wait—This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

■ name - The name of the bean, this matches the name of a bean in the assembly
descriptor (ejb-jar.xml).

■ pool-cache-timeout - The amount of time in seconds that the bean implementation
instances are to be kept in the "pooled" (unassigned) state, specifying 'never'
retains the instances until they are garbage collected. The default is 60.

■ table - The name of the table in the database if using container-managed
persistence.

■ validity-timeout - The maximum amount of time (in milliseconds) that an entity is
valid in the cache (before being reloaded). Useful for loosely coupled
environments where rare updates from legacy systems occur. This attribute is only
valid for entity beans with locking mode of read_only and when
exclusive-write-access="true" (the default).

We recommend that if the data is never being modified externally (and therefore
you've set exclusive-write-access=true), that you can set this to 0 or -1, to disable
this option, since the data in the cache will always be valid for read-only EJBs that
are never modified externally.

If the EJB is generally not modified externally, so you're using
exclusive-write-access=true, yet occasionally the table is updated so you need to
update the cache occasionally, then set this to a value corresponding to the
interval you think the data may be changing externally.

■ update-changed-fields-only - Specifies whether the container updates only
modified fields or all fields to persistence storage for CMP entity beans when
ejbStore is invoked. The default is true, which specifies to only update modified
fields.

Element Description

A-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ wrapper - Name of the OC4J remote home wrapper class for this bean. (internal
server attribute, do not edit)

<entity-ref>
Specified the configuration for persisting an entity reference through it's primary key.
The child-tag of this tag is the specification of how to persist the primary key.

Attributes:

■ home - JNDI location of the EJBHome to get lookup the beans at.

<env-entry-mapping>
Overrides the value of an env-entry in the assembly descriptor. It is used to keep the
EAR clean from deployment-specific values. The body is the value.

Attribute:

■ name - The name of the context parameter.

<fields>
Specifies the configuration of a field-based (java class field) mapping persistence for
this field. The fields that are to be persisted have to be public, non-static, non-final and
the type of the containing object has to have an empty constructor.

<finder-method>
The definition of a container-managed finder method. This defines the selection
criteria in a findByXXX() method in the bean's home.

Attributes:

■ partial - Whether or not the specified query is a partial one. A partial query is the
'where' clause or the 'order' (if it starts with order) clause of the SQL query.
Queries are partial by default. If partial="false" is specified then the full query is to
be entered as value for the query attribute and you need to make sure that the
query produces a result-set containing all of the CMP fields. This is useful when
doing advanced queries involving table joins and similar.

■ query - The query part of an SQL statement. This is the section following the
WHERE keyword in the statement. Special tokens are $number which denotes an
method argument number and $name which denotes a cmp-field name. For
instance the query for "findByAge(int age)" would be (assuming the cmp-field is
named 'age'): "$1 = $age".

■ lazy-loading - For entity bean finder methods, lazy loading can cause the select
method to be invoked more than once. To turn on lazy loading and enforce only a
single execution of this finder method, set this property to true. The default is
false. See "Configuring Lazy Loading on Finder Methods" on page 14-14 for more
information.

■ prefetch-size - Oracle JDBC drivers include extensions that allow you to set the
number of rows to prefetch into the client while a result set is being populated
during a query. This reduces round trips to the database by fetching multiple rows
of data each time data is fetched—the extra data is stored in client-side buffers for
later access by the client. The number of rows to prefetch can be set as desired. The
default number of rows to prefetch to the client is 10. The number set here is
passed along to the JDBC driver. See the Oracle Database JDBC Developer's Guide
and Reference for more information on using prefetch with a JDBC driver.

<group>
A group that this <security-role-mapping> implies. That is, all members of the
specified group are included in this role.

Element Description

XML Reference for orion-ejb-jar.xml Elements A-25

Attributes:

■ name - The name of the group.

<ior-security-config>
The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the Oracle
Containers for J2EE Services Guide.

<lookup-context>
The specification of an optional javax.naming.Context implementation used for
retrieving the resource. This is useful when using third party modules, such as a third
party JMS server. Either use the context implementation supplied by the resource
vendor or, if none exists, write an implementation that negotiates with the vendor
software.

Attribute:

■ location - The name looked for in the foreign context when retrieving the resource.

<map-key-mapping>
Specifies a mapping of the map key. Map keys are always immutable.

Attributes:

■ type - The fully qualified class name of the type of the value. Examples are
com.acme.Product, java.lang.String, and so on.

<message-destination-mapping>
Maps multiple <message-destination-ref> elements to the same destination.
Using the <message-destination-ref> element link attribute, you can associate
multiple <message-destination-ref> elements with the same
<message-destination>. Using the <message-destination-mapping>, you
can bind the <message-destination> with a destination resource.

Attributes:

■ name - The <message-destination> attribute name in the client deployment
descriptor.

■ location - The JNDI location of the destination to bind to.

<message-destination-ref-mapping>
Maps the <message-destination-ref> in the client deployment descriptor to
another location that is available in the OC4J environment. For more information, see
"Configuring an Environment Reference to a JMS Destination Resource Manager
Connection Factory (JMS 1.1)" on page 19-8.

Attributes:

■ name - The <message-destination-ref-name> in the client deployment
descriptor.

■ location - The JNDI location of the destination to bind to.

<message-driven-deployment>
Deployment information for a MDB.

Attributes:

■ connection-factory-location: The JNDI location of the connection factory to use.
The JMS Destination Connection Factory is specified in the
connection-factory-location attribute. The syntax is

Element Description

A-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

"java:comp/resource" + resource provider name +
"TopicConnectionFactories" or "QueueConnectionFactories" + user
defined name. The xxxConnectionFactories details what type of factory is
being defined.

■ destination-location: The JNDI location of the destination (queue/topic) to use.
The JMS Destination is specified in the destination-location attribute.
The syntax is "java:comp/resource" + resource provider name + "Topics" or
"Queues" + Destination name. The Topic or Queue details what type of
Destination is being defined. The Destination name is the actual queue or
topic name defined in the database.

■ name - The name of the bean, this matches the name of a bean in the assembly
descriptor (ejb-jar.xml).

■ subscription-name: If this is a topic, the subscription name is defined in the
subscription-name attribute.

■ listener-threads: The listener threads are used to concurrently consume JMS
messages. The default is one thread. Topics can only have one thread; queues can
have more than one thread.

■ transaction-timeout: This attribute controls the transaction timeout interval (in
seconds) for any container-managed transactional MDB. The default is one day or
86,400 seconds. If the transaction has not completed in this time frame, the
transaction is rolled back.

■ dequeue-retry-count—Specifies how often the listener thread tries to re-acquire
the JMS session once database failover has incurred. This value is only for CMT
transactions in an MDB. The default is "0." See "Understanding OC4J EJB
Application Clustering Services" on page 2-28 for more information.

■ dequeue-retry-interval—Specifies the interval between retries. The default is 60
seconds.

<method>
Specify the methods (and possibly parameters of that method) of the bean.

<method-intf>
The method-intf element allows a method element to differentiate between the
methods with the same name and signature that are defined in both the remote and
home interfaces. The method-intf element must be one of the following: Home or
Remote.

<method-name>
The method-name element contains a name of an enterprise bean method, or the
asterisk (*) character. The asterisk is used when the element denotes all the methods of
an enterprise bean's remote and home interfaces.

<method-param>
The method-param element contains the fully-qualified Java type name of a method
parameter.

<method-params>
The method-params element contains a list of the fully-qualified Java type names of
the method parameters.

Element Description

XML Reference for orion-ejb-jar.xml Elements A-27

<orion-ejb-jar>
An orion-ejb-jar.xml file contains the OC4J-specific deployment information for
an EJB. It is used to specify initial deployment properties. After each deployment the
deployment file is reformatted and altered by the server for additional information.

Attributes:

■ deployment-time - The time (long milliseconds in decimal) of the last deployment,
if not matching the last editing date the JAR will be redeployed. (internal server
value, do not edit)

■ deployment-version - The version of OC4J this JAR was deployed with, if it's not
matching the current version then it will be redeployed. (internal server value, do
not edit)

<primkey-mapping>
Designates how the primary key is mapped.

<properties>
Specifies the configuration of a property-based (bean properties) mapping persistence
for this field. The properties have to adhere to the usual JavaBeans specification and
the type of the containing object has to have an empty constructor This is also
designated within the EJB specification.

<resource-ref-mapping>
The resource-ref element is used for the declaration of a reference to an external
resource such as a data source, JMS queue, or mail session. The
resource-ref-mapping ties this to a JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the resource factory from.

■ name - The resource-ref name. Matches the name of an resource-ref in
ejb-jar.xml.

<resource-env-ref-mapping>
The resource-env-ref-mapping element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory object
and a destination object. These objects are retrieved at the same time from JNDI. The
<resource-ref> element declares the JMS factory and the <resource-env-ref>
element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See "Resource
Manager Connection Factory Environment References" on page 19-2 for more
information.

Attributes:

■ location - The JNDI location from which to look up the administered resource.

■ name - The resource-env-ref name in ejb-jar.xml.

<security-role-mapping>
The runtime mapping (to groups and users) of a role. Maps to a security-role of the
same name in the assembly descriptor.

Attributes:

■ impliesAll - Whether or not this mapping implies all users. The default is false.

■ name - The name of the role

Element Description

A-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<session-deployment>
Deployment information for a session bean.

Attributes:

■ pool-cache-timeout—How long to keep stateless sessions cached in the pool. Only
applies to stateless session beans. Legal values are positive integer values or
'never'. For stateless session beans, if you specify a pool-cache-timeout, then at
every pool-cache-timeout interval, all beans in the pool, of the corresponding bean
type, are removed. If the value specified is zero or negative, then the
pool-cache-timeout is disabled and beans are not removed from the pool.

Default Value: 60 (seconds)

■ call-timeout—The time (long milliseconds in decimal) to wait for any resource that
the EJB uses, excluding database connections, if it is busy. After this times out, a
RemoteException is thrown and the EJB is treated as involved in a deadlock. If
value is set to 0, OC4J waits for the EJB "forever". The default is 90,000.

■ copy-by-value—Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to 'false' if you are certain that your application does
not assume copy-by-value semantics for a speed-up. The default is 'true'.

■ local-wrapper—Name of the OC4J wrapper class for this bean. This is an internal
server value and should not be edited.

■ location—The JNDI-name that this bean will be bound to.

max-instances - This attribute controls the number of bean instances allowed in
memory—either instantiated or pooled. When this value is reached, the container
attempts to passivate the oldest bean instance from memory. If unsuccessful, the
container waits the number of milliseconds set in the call-timeout attribute to
see if a bean instance is removed from memory, either through passivation, its
remove() method, or bean expiration, before a TimeoutExpiredException is
thrown back to the client. To allow an infinite number of bean instances, the
max-instances attribute can be set to zero. To disable instance pooling, set
max-instances to any negative number. This will create a new instance at the start
of the EJB call and release it at the end of the call. Default is 0, which is infinite.
This applies to both stateless and stateful session beans. See "Configuring Bean
Instance Pool Size" on page 31-4 for more information.

■ max-instances-threshold - This attribute defines the percentage of
max-instances number of beans that can be in memory before passivation
occurs. When this threshold is reached, passivation of beans occurs. For example,
if max-instances is 100 beans, when max-instances-threshold reaches 90, OC4J
begins passivation.

■ max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 0. Within a transaction, the container
uses the max-tx-retries value of the first invoked bean within the transaction. The
performance guide recommends that you leave this value to 0 and add retries only
where errors are seen that could be resolved through a retry.

■ tx-retry-wait—This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

■ memory-threshold - This attribute defines a threshold for how much used JVM
memory is allowed before passivation should occur. Specify an integer that is
translated as a percentage. When reached, beans are passivated, even if their idle
timeout has not expired. Default: 80%. To disable, specify "never."

Element Description

XML Reference for orion-ejb-jar.xml Elements A-29

■ min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is zero. This applies only to stateless
session beans.

■ name—The name of the bean, which matches the name of a bean in the assembly
section of the EJB deployment descriptor (ejb-jar.xml).

■ resource-check-interval - The container checks all resources at this time interval.
At this time, if any of the thresholds have been reached, passivation occurs.
Default: 180 sec. (3 min.). To disable, specify "never."

■ passivate-count - This attribute is an integer that defines the number of beans to be
passivated if any of the resource thresholds have been reached. Passivation of
beans is performed using the least recently used algorithm. Default: one-third of
the max-instances attribute. You can disable this attribute by setting the count
to zero or a negative number.

■ persistence-filename—Path to the file where sessions are stored across restarts.

■ timeout—Inactivity timeout in seconds. If the value is zero or negative, then all
timeouts are disabled. The default is 30 minutes. Every 30 seconds, the pool clean
up logic is invoked. Within the pool clean up logic, only the sessions that timed
out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful session beans. For
example, if stateful session beans are not removed explicitly by your application,
and the application creates many stateful session beans, then you may want to
lower the timeout value.

If your application requires that a stateful session bean be available for longer than
30 minutes, then adjust the timeout value accordingly.

■ wrapper—Name of the OC4J wrapper class for this bean. This is an internal server
value and should not be edited.

<set-mapping>
Specifies a relational mapping of a Set type. A Set consists of n unique unordered
items (order is not specified and not relevant). The field containing the mapping must
be of type java.util.Set.

Attributes:

■ table - The name of the table in the database.

<user>
A user that this security-role-mapping implies.

Attributes:

■ name - The name of the user.

<value-mapping>
Specified a mapping of the primary key part of a set of fields.

Attributes:

■ immutable - Whether or not the value can be trusted to be immutable once added
to the Collection. Setting this to true will optimize database operations
extensively. The default value is "true" for set-mapping and "false" for
collection-mapping.

■ type - The fully qualified class name of the type of the value. Examples are
com.acme.OrderEntry, java.lang.String, and so on.

Element Description

A-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Glossary-1

Glossary

This glossary defines terms specific to OC4J. For general, J2EE terminology, see
http://java.sun.com/j2ee/reference/glossary/.

Oracle AQ

AQ is a unique database-integrated message queuing feature, built on the Oracle
Streams information integration infrastructure. It allows diverse applications to
communicate asynchronously through messages. Integration with the database
provides unique message management functionality, such as auditing, tracking, and
message persistence for security, scheduling, and message metadata analysis.

You can access AQ through PL/SQL, Java (using the oracle.AQ package), Java
Message Service (JMS), or over the Internet using transport protocols such as HTTP,
HTTPS, and SMTP. For Internet access, the client - a user or Internet application - and
the Oracle server exchange structured XML messages.

AQ also provides transformations that are useful for enterprise application integration
and a messaging gateway to automatically propagate messages to and from OracleAQ
queues.

For more information, see http://otn.oracle.com/products/aq/index.html.

Glossary-2

Index-1

Index

Symbols
@ActivationConfigurationProperty, 9-2, 10-2, 10-4
@AroundInvoke, 5-3, 10-6
@AttributeOverride, 7-15
@Basic, 7-10
@Column, 7-7
@DeclareRoles, 22-12
@DenyAll, 22-12
@EJB, 1-7
@Embeddable, 7-14
@Embedded, 7-14
@GeneratedIdTable, 7-4
@Id, 7-2
@Inheritance, 7-19
@InheritanceJoinColumn, 7-19
@JoinColumn, 7-8
@Lob, 7-10
@ManyToMany, 7-13
@ManyToOne, 7-12
@MessageDriven, 9-2, 10-2, 10-3
@MessageDrivenDeployment, 10-3
@NamedQuery, 8-1
@OneToMany, 7-13
@OneToOne, 7-12
@PermitAll, 22-6, 22-12
@PersistenceContext, 29-6
@PostActivate, 5-3
@PostConstruct, 5-2, 10-7
@PostLoad, 7-17
@PostPersist, 7-17
@PostRemove, 7-17
@PostUpdate, 7-17
@PreDestroy, 5-2, 10-7
@PrePassivate, 5-2
@PrePersist, 7-17
@PreRemove, 7-17
@PreUpdate, 7-17
@Resource, 1-7
@RolesAllowed, 22-5, 22-12
@RunAs, 22-7, 22-12
@SecondaryTable, 7-7
@SequenceGenerator, 7-5
@Serialized, 7-11
@Table, 7-6
@TableGenerator, 7-5

@Transient, 1-15
@Version, 7-16
@WebMethod, 30-1
@WebService, 30-1

A
<abstract-schema-name> element, 16-1, 16-5
accessing EJBs

in another application, 29-5, 29-19
aggregate object relational mappings

understanding, 7-14
annotations

@ActivationConfigurationProperty, 9-2, 10-2,
10-4

@AroundInvoke, 5-3, 10-6
@AttributeOverride, 7-15
@Basic, 7-10
@Column, 7-7
@DeclareRoles, 22-12
@DenyAll, 22-12
@EJB, 1-7
@Embeddable, 7-14
@Embedded, 7-14
@GeneratedIdTable, 7-4
@Id, 7-2
@Inheritance, 7-19
@InheritanceJoinColumn, 7-19
@JoinColumn, 7-8
@Lob, 7-10
@Local, 4-2, 4-3
@ManyToMany, 7-13
@ManyToOne, 7-12
@MessageDriven, 9-2, 10-2, 10-3
@MessageDrivenDeployment, 10-3
@NamedQuery, 8-1
@OneToMany, 7-13
@OneToOne, 7-12
@PermitAll, 22-6, 22-12
@PersistenceContext, 29-6
@PostActivate, 5-3
@PostConstruct, 5-2, 10-7
@PostLoad, 7-17
@PostPersist, 7-17
@PostRemove, 7-17
@PostUpdate, 7-17

Index-2

@PreDestroy, 5-2, 10-7
@PrePassivate, 5-2
@PrePersist, 7-17
@PreRemove, 7-17
@PreUpdate, 7-17
@Remote, 4-2, 4-3
@Remove, 4-4
@Resource, 1-7
@RolesAllowed, 22-5, 22-12
@RunAs, 22-7, 22-12
@SecondaryTable, 7-7
@SequenceGenerator, 7-5
@Serialized, 7-11
@Stateful, 4-4
@Stateless, 4-2
@Table, 7-6
@TableGenerator, 7-5
@Transient, 1-15
@Version, 7-16
@WebMethod, 30-1
@WebService, 30-1
about, 1-7

application.xml file
example, 2-6
modifying, 2-6
overview, 2-6

archiving
directions, 2-5
EAR file, 2-6
EJBs, 2-5

<assembly-descriptor> element, A-20

B
bean

accessing remotely, 1-3, 1-5
activation, 1-10, 1-12, 12-3
creation, 12-3
environment, 1-7
implementing, CMP, EJB 2.1, 13-2, 13-7, 17-1
passivation, 1-12, 12-4
steps for invocation, 1-4, 1-5

bean implementation
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2

bean-managed transactions
about, 2-22

BMP
commit options, 1-28
database schema, 13-3, 13-8
ejbCreate implementation, 13-15
read-only and commit option A, 1-28, 15-2

BMP entity bean
read-only, 15-2

C
cache-timeout attribute, A-17
call-timeout attribute, A-6, A-11, A-22, A-28
child EJB, 29-5, 29-19

ClassCastException, 27-3
client

accessing EJB 3.0 entity, 29-5
clients

about, 29-1
EJB, 29-2
JSP, 29-2
servlet, 29-2
standalone Java, 29-2

clustering services
about, 2-28
DNS load balancing, about, 2-30
DNS load balancing, configuring, 24-4
failover, 2-30
HTTP and stateful session bean

combination, 2-28
HTTP sessions, 2-28
load balancing, about, 2-30
replication-based load balancing, about, 2-30
replication-based load balancing,

configuring, 24-3
state replication, 2-29
state replication, inherited, 2-29
state replication, on end of request, 2-29
state replication, on shutdown, 2-29
stateful session beans, 2-29
static retrieval load balancing, about, 2-30
static retrieval load balancing, configuring, 24-3

clustering-schema attribute, A-11, A-22
CMP

commit options, 1-27
overview, 1-20, 1-23

<cmp-field-mapping> element, A-10, A-20
CMT

retry JMS message dequeu, A-17, A-26
<collection-mapping> element, A-21
command-line options, 28-2
commit options

A and read-only BMP, 1-28, 15-2
about, 1-27
BMP, 1-28
CMP, 1-27

<commit-option> element, A-10
component interface

EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2

composite primary key
about, 1-22
class, 7-3, 14-3

concurrency mode, 1-26
optimistic, 1-26, A-13
pessimistic, 1-26, A-13
read-only, 1-26, A-13

concurrency modes, 1-25
<config-property> element, A-16
config-property

ConnectionFactoryTimeout, A-17
DequeueRetryCount, A-17
DequeueRetryInterval, A-17
DestinationLocation, A-17

Index-3

ListenerThreads, A-17
MaxDeliveryCnt, A-17
SubscriptionName, A-18
TransactionTimeout, A-18

connection pool
managed data source, 2-19
native data source, 2-19

connection URL
non-Oracle database, 2-20
Oracle database, 2-20
service-based connection URL, 2-20

connectionFactoryJndiName attribute, 10-3, 10-4
connection-factory-location attribute, A-17, A-26
ConnectionFactoryTimeout config-property, A-17
container-managed persistence. see CMP
container-managed transactions

about, 2-21
rollback, 21-7

<container-transaction> element, 17-2, 17-5
context

entity, 1-25
entity bean, 13-20
message-driven bean, 1-36
session, 1-7, 1-14
session bean, 11-10
transaction, 1-7

<context-attribute> element, A-21
copy-by-value attribute, A-6, A-11, A-22, A-28
create method

EJBHome interface, 1-5, 11-7
home interface, 13-18

CreateException, 11-7, 11-8, 13-19
CSIv2, 22-12

D
data sources

about, 2-18
connection pool, managed data source, 2-19
connection pool, native data source, 2-19
connection URL, non-Oracle database, 2-20
connection URL, Oracle database, 2-20
managed, 2-19
native, 2-19
service-based connection URL, 2-20

database resource contention
concurrency mode, 1-26
transaction isolation, 1-25

<data-bus> attribute, A-21
data-source attribute, A-11, A-22
DataSource object, 19-7
data-sources.xml file, 13-8, 13-15
Date, 16-8
DBMS_AQADM package, 23-4
deadlock

recovery, 29-25
debugging

ejb-jar.xml, 31-6
generated code, 31-6
validating XML, 31-6

wrapper code, 31-6
WrapperCodeDir, 31-7

dedicated.rmicontext property, 29-25
default mapping

default table generator, 14-6
default persistence unit

persistence.xml, 26-4
understanding, 2-14

default table generator
default mapping, 14-6

<default-method-access> element, 22-9, A-20, A-21
<delay-updates-until-commit> attribute, A-22
delay-updates-until-commit attribute, A-11
deployment

ejb-jar.xml creation, 26-1
error recovery, 28-2
incremental, 28-3

deployment descriptor, 2-4
EJB 2.1, overview, 1-5
EJB 3.0, overview, 1-3
entity bean, A-8, A-9
message-driven bean, A-15
security, 22-3, 22-9
session bean, A-5

deployment descriptors
ejb3-toplink-sessions.xml, configuration, 26-3
ejb-jar.xml, configuration, 26-1
ejb-jar.xml, creating at deployment time, 26-1
ejb-jar.xml, creating at migration time, 26-1
ejb-jar.xml, creating with JDeveloper, 26-2
orion-ejb-jar.xml, configuration, 26-2
orm.xml, configuration, 26-4
persistence.xml, configuration, 26-3
toplink-ejb-jar.xml, configuration, 26-2
toplink-ejb-jar.xml, creating at migration

time, 26-2
toplink-ejb-jar.xml, creating with TopLink

Workbench, 26-2
dequeue-retry-count attribute, 18-8, A-17, A-26
DequeueRetryCount config-property, A-17
dequeue-retry-interval attribute, 18-8, A-17, A-26
DequeueRetryInterval config-property, A-17
<description> element, A-21
destination-location attribute, A-17, A-26
DestinationLocation config-property, A-17
destinationName attribute, 10-3, 10-4
<destination-type> element, 17-5
destinationType attribute, 10-3, 10-4
disable-default-persistent-unitattribute, 2-14, 26-4,

A-11
do-select-before-insert attribute, A-12, A-22

E
EAR file

creation, 2-6
EJB

archive, 2-5
client

setting JMS port, 29-2

Index-4

setting RMI port, 29-2
deployment descriptor, 2-4
development suggestions, 2-1
difference between session and entity, 1-38
home interface, 11-7
implementing, CMP, EJB 2.1, 13-2, 13-7, 17-1
local interface, 11-9, 13-20
looking up, EJB 2.1, about, 19-26
looking up, EJB 3.0, about, 19-21
looking up, EJB 3.0, using annotations, 19-21,

19-24
looking up, local interface using

ejb-local-ref, 19-23, 19-28
looking up, local interface using

local-location, 19-23, 19-28
looking up, remote interface using ejb-ref, 19-22,

19-27
looking up, remote interface using

location, 19-22, 19-27
parameter passing, 29-24
passivation, 1-12
pool size, entity beans, 31-4
pool size, session beans, 31-4
pool timeouts, entity beans, 31-5
pool timeouts, session beans, 31-4
pool, disabling, 31-4
queries, about, 1-17, 1-28
queries, EJB QL, 1-17, 1-29
queries, EntityManager, 1-18
queries, finder methods, 1-31
queries, select methods, 1-33
queries, SQL, 1-18, 1-31
queries, syntax, 1-17, 1-28
queries, TopLink, 1-30
referencing other EJBs, 27-2, 27-3
remote interface, 11-9, 13-19
replication, 24-2
security, 22-1
standalone client, 29-2

<ejb> element, 2-6
EJB 2.1

CMP entity bean, configuration, 14-1, 15-1
composite primary key, class, 14-3
composite primary key, configuring, 14-3
JDK required, 3-4
MDB, configuration, 18-1
message-driven bean, configuration, 18-1
persistence, 3-4
persistence manager, 3-4
persistence manager customization, 3-5
primary key, configuring, 14-2
sequencing, configuration, 14-5
session bean, configuration, 12-1
stateless session bean, implementing, 11-1, 11-4,

13-1, 13-6, 17-1
support, 3-4

EJB 3.0
CMP entity bean, configuration, 7-1
composite primary key, class, 7-3
composite primary key, configuring, 7-3

defining an EJB 3.0 application, 3-2
entity manager, 3-2
entity manager customization, 3-2
EntityManager, about, 1-17
JDK required, 3-1
MDB, configuration, 10-1
message-driven bean, configuration, 10-1
persistence, 3-2
primary key, automatic generation, 7-4
primary key, configuring, 7-2
primary key, sequencing, 7-4
sequencing, configuration, 7-4
session bean, configuration, 5-1
stateful session bean, implementing, 4-3
stateless session bean, implementing, 4-1
support, 3-1

EJB finders
default finders, about, 1-33

EJB QL
about, 1-17, 1-29

EJB services
clustering, about, 2-28
clustering, DNS load balancing, 2-30, 24-4
clustering, failover, 2-30
clustering, HTTP sessions, 2-28
clustering, load balancing, 2-30
clustering, replication-based load balancing, 2-30,

24-3
clustering, state replication, 2-29
clustering, stateful session beans, 2-29
clustering, static retrieval load balancing, 2-30,

24-3
EJB support

EJB 2.1, 3-4
EJB 3.0, 3-1

ejb_sec.properties file, 22-12
ejb3-toplink-sessions.xml

about, 2-12
configuration, 26-3
XSD, 2-12

ejbActivate method, 1-10, 1-12, 1-22, 1-24, 12-3, 15-6
EJBContext

setRollbackOnly, 21-7
EJBContext interface, 1-6
ejbCreate method, 1-22, 1-24, 11-7, 12-3, 13-15

initializing primary key, 13-15
SessionBean interface, 1-10, 1-12, 1-36

EJBException, 11-7, 11-8, 11-9, 13-19, 13-20
ejbFindByPrimaryKey method, 13-15, 15-3
EJBHome interface, 11-2, 11-4, 11-7, 13-2, 13-6, 13-18,

13-19
create method, 13-18

ejb-jar.xml
about, 2-10
configuration, 26-1
creating at deployment time, 26-1
creating at migration time, 26-1
creating with JDeveloper, 26-2
XSD, EJB 2.1, 2-11
XSD, EJB 3.0, 2-11

Index-5

ejb-jar.xml file, 2-4
<ejb-link> element, 19-5
ejbLoad method, 1-22, 1-24, 15-6
EJBLocalHome interface, 11-2, 11-4, 11-8, 13-2, 13-7,

13-18, 13-19
EJBLocalObject interface, 11-2, 11-4, 11-9, 13-2, 13-7,

13-19, 13-20
<ejb-location> element, 13-15
<ejb-mapping> element, 19-5
<ejb-module> element, 29-17, 29-18
<ejb-name> element, 19-5, A-21
EJBObject interface, 11-2, 11-4, 11-9, 13-2, 13-7, 13-19
ejbPassivate method, 1-10, 1-12, 1-22, 1-24, 12-4, 15-6
ejbPostCreate method, 1-22, 1-24
<ejb-ql> element, 16-2, 16-5
<ejb-ref> element, 19-5
ejb-reference-home attribute, A-20
<ejb-ref-mapping> element, A-5, A-10, A-16, A-21
<ejb-ref-name> element, 19-5, 29-4
ejbRemove method, 1-10, 1-12, 1-22, 1-24, 1-36, 12-4,

15-7
ejbStore method, 1-22, 1-24, 15-5
enable-passivation attribute, 12-2, 12-3
<enterprise-beans> element, A-3, A-21
entity

lifecycle methods, EJB 3.0, 1-16
overview, 1-14
PostLoad annotation, 1-16
PostPersist annotation, 1-16
PostRemove annotation, 1-16
PostUpdate annotation, 1-16
PrePersist annotation, 1-10, 1-11, 1-16, 1-36
PreRemove annotation, 1-16
PreUpdate annotation, 1-16

entity bean
commit options, A, 1-28, 15-2
commit options, about, 1-27
commit options, and CMP, 1-27
commit options, BMP, 1-28
context, 1-25, 13-20
context information, 13-20, 17-6
creating, 13-18
deployment descriptor, A-8, A-9
EJB 2.1 CMP, configuration, 14-1, 15-1
EJB 3.0 CMP, configuration, 7-1
EJB 3.0 see entity, 1-14
finder methods, 13-18

about, 13-15
home interface, 13-18
lifecycle methods, EJB 2.1, 1-21
lifecycle methods, EJB 3.0, 1-16
overview, 1-19
primary key, 1-24
remote interface, 13-19

entity context, 1-25
Entity Manager

queries, about, 1-18
entity manager

about, 3-2
customization, 3-2

TopLink customization, 3-2
EntityBean interface

ejbActivate method, 1-22, 1-24
ejbCreate method, 1-22, 1-24
ejbLoad method, 1-22, 1-24
ejbPassivate method, 1-22, 1-24
ejbPostCreate method, 1-22, 1-24
ejbRemove method, 1-22, 1-24
ejbStore method, 1-22, 1-24
setEntityContext method, 13-20, 17-6

<entity-deployment> element, 14-13, A-8, A-9, A-22
entity-deployment

call-timeout attribute, A-11
clustering-schema attribute, A-11
copy-by-value attribute, A-11
data-source attribute, A-11
delay-updates-until-commit attribute, A-11
disable-default-persistent-unit attribute, 2-14,

26-4, A-11
do-select-before-insert attribute, A-12
exclusive-write-access attribute, A-12
findByPrimaryKey-lazy-loading attribute, A-12
force-update attribute, A-12
isolation attribute, A-13
local-location attribute, A-13
local-wrapper attribute, A-13
location attribute, A-13
locking-mode attribute, A-13
max-instances attribute, A-14
max-tx-retries attribute, A-14
min-instances attribute, A-14
name attribute, A-14
pool-cache-timeout attribute, A-14
table attribute, A-14
update-changed-fields-only attribute, A-15
validity-timeout attribute, A-15
wrapper attribute, A-15

EntityManager
about, 1-17
accessing an EJB 3.0 entity, 29-5

<entity-ref> element, A-24
<env-entry> element, 19-14
<env-entry-mapping> element, A-5, A-10, A-16,

A-24
<env-entry-name> element, 19-14
<env-entry-type> element, 19-14
<env-entry-value> element, 19-14
environment reference

environment variables, 19-14
persistence context, 19-16
resource manager, 19-2
URL, 19-13
Web service, 19-16

environment variables
configuring, 19-14
ejb-jar.xml, 19-14
looking up, EJB 2.1, 19-29
looking up, EJB 3.0, 19-25
orion-ejb-jar.xml, 19-15
overriding, 19-15

Index-6

resource injection, 19-25
environment, retrieval, 1-7
error recovery, 27-3, 28-2

ClassCastException, 27-3
deadlock, 29-25
NamingException thrown, 29-25
NullPointerException thrown, 29-25
out of memory, 28-2

exception queue, 18-7, A-17
exclusive-write-access attribute, 14-13, A-12, A-22

F
features, EJB, 3-6
<fields> element, A-24
findByPrimaryKey-lazy-loading attribute, 14-14,

A-12, A-22
<finder-method> element, A-10
finder

lazy loading, 14-14
finder methods, 13-15

about, 1-31
BMP, 15-4
entity bean, 13-18

<finder-method> element, A-24
flat transactions, 2-21
force-update attribute, A-12

G
generated code

debugging, 31-6
getEJBHome method, 1-7
getEnvironment method, 1-7
getRollbackOnly method, 1-7
getUserTransaction method, 1-7
<group> element, A-25

H
home interface

creating, 11-2, 11-4, 13-2, 13-7
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2

HTTP sessions
state replication, 2-28

I
idletime attribute, A-6
immutable attribute, A-30
impliesAll attribute, 22-9, A-28
incremental deployment, 28-3
injection, 1-7
interceptors

configuring, message-driven bean, 10-5
configuring, session beans

session bean
interceptors, configuring, 5-3

InvocationContext, 2-17

restrictions, 2-16
signature, 2-16
transactions, 2-17
understanding, 2-16

InvocationContext, 2-17
<ior-security-config> element, A-5, A-9, A-25
isCallerInRole method, 22-3
isolation

transaction levels, 1-25
isolation attribute, A-13, A-22
isolation modes, 1-25

J
JAAS, 22-13
JAR

archiving command, 2-5
JAR file

EJB, 2-5
<java> element, 2-6
Java mail

Session object, 19-11
JDeveloper

ejb-jar.xml creation, 26-2
JDK

EJB 2.1, 3-4
EJB 3.0, 3-1

JMS
Destination, 23-5
durable subscriptions, 17-2
exception queue, 18-7, A-17
port, 29-2
retry message dequeue, A-26

<jndi-name> element, 19-5, 19-12, 19-14
JSR250, 22-12

L
lazy loading, 14-14
lazy-loading attribute, 14-14, A-24
lifecycle methods

entity bean, EJB 2.1, 1-21
entity, EJB 3.0, 1-16
message-driven bean, EJB 2.1, 1-36
message-driven bean, EJB 3.0, 1-36
session bean, stateless, 1-23
stateful session bean, EJB 2.1, 1-10, 1-11
stateful session bean, EJB 3.0, 1-9, 1-11

listener threads, 18-6
listener-threads attribute, 18-6, 18-7, A-17, A-26
ListenerThreads config-property, A-17
<list-mapping> element, A-25
load balancing

clustering, and, 2-30
DNS, 2-30, 24-4
replication-based, 2-30, 24-3
static retrieval, 2-30, 24-3

local access, 29-18
local home interface

example, 11-8

Index-7

local interface
creating, 11-9, 13-20
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2
example, 11-9

local-location attribute, A-6, A-13
local-wrapper attribute, A-6, A-13, A-22, A-28
location attribute, A-6, A-13, A-22, A-25, A-26, A-27,

A-28
locking

optimistic, 1-26, A-13
pessimistic, 1-26, A-13

locking-mode attribute, A-13, A-23
look up

EJB 2.1, about, 19-26
EJB 3.0, about, 19-21
EJB 3.0, using annotations, 19-21, 19-24
remote interface using ejb-local-ref, 19-23, 19-28
remote interface using ejb-ref, 19-22, 19-27
remote interface using local-location, 19-23, 19-28
remote interface using location, 19-22, 19-27

<lookup-context> element, A-25

M
mail

Session object, 19-11
managed data sources, 2-19
many-to-many relational mappings

understanding, 7-13
<map-key-mapping> element, A-25
<map-mapping> element, A-25
<mapping> element, 19-5, 19-12, 19-14
mapping, 1-15, 1-21
MaxDeliveryCnt config-property, A-17
max-delivery-count attribute, A-17
max-instances attribute, 31-4, A-6, A-14, A-18, A-23,

A-28
max-instances-threshold attribute, A-7, A-29
max-tx-retries attribute, A-7, A-14, A-23, A-29
MDB

dequeue-retry-count attribute, A-26
dequeue-retry-interval attribute, A-26
EJB 2.1, configuration, 18-1
EJB 3.0, configuration, 10-1
onMessage method, 2-26
overview, 1-35
performance, A-26
transaction timeout, A-26

memory-threshold attribute, A-7, A-29
<message-destination-ref> element, 19-8
<message-destination-ref-mapping> element, 19-8,

A-6, A-10, A-16, A-25, A-26
<message-driven> element, 17-4
message-driven bean

context, 1-36
deployment descriptor, A-15
EJB 2.1, configuration, 18-1
EJB 3.0, configuration, 10-1
interceptors, configuring, 10-5

lifecycle methods, EJB 2.1, 1-36
lifecycle methods, EJB 3.0, 1-36

message-driven beans
listener threads, 18-6
transaction timeouts, 21-5

Message-Driven Beans, see MDB
message-driven context, 1-36
<message-driven-deployment> element, A-15, A-26
message-driven-deployment

cache-timeout attribute, A-17
connection-factory-location attribute, A-17
ConnectionFactoryTimeout

config-property, A-17
dequeue-retry-count attribute, A-17
DequeueRetryCount config-property, A-17
dequeue-retry-interval attribute, A-17
DequeueRetryInterval config-property, A-17
destination-location attribute, A-17
DestinationLocation config-property, A-17
listener-threads attribute, A-17
ListenerThreads config-property, A-17
MaxDeliveryCnt config-property, A-17
max-delivery-count, A-17
max-instances attribute, A-18
min-instances attribute, A-18
name attribute, A-18
resource-adapter attribute, A-18
subscription-name attribute, A-18
SubscriptionName config-property, A-18
transaction-timeout attribute, A-18
TransactionTimeout config-property, A-18

<message-driven-destination> element, 17-5
messageSelector attribute, 10-3, 10-4
<method> element, A-19, A-20, A-27

defined, 22-5
<method-intf> element, A-27
<method-name> element, 16-2, 16-5, A-27
<method-param> element, A-27
<method-params> element, A-27
<method-permission> element, 22-3, 22-4, 22-5, 22-7
middle-tier coordinator, 2-23
migration

ejb-jar.xml creation, 26-1
toplink-ejb-jar.xml creation, 26-2

migration, TopLink persistence manager, 3-5
min-instances attribute, 31-4, A-7, A-14, A-18, A-23,

A-29
<module> element, 2-6
multitier environment

local accessing, 29-18
remote accessing, 29-17

N
name attribute, A-7, A-14, A-18, A-23, A-26, A-28,

A-29
native data sources, 2-19
nested transactions, 2-21
new features, 3-6
non-batch mode, 28-2

Index-8

NoSuchObjectLocalException, 25-5
NullPointerException, 29-25

O
OC4J

command-line options, 28-2
Windows shutdown, 18-4

OJMS
two-phase commit, 23-4

one-to-many relational mappings
understanding, 7-12

onMessage method, 2-26
optimistic concurrency mode, A-23
optimistic locking, 1-26, A-13
OracleAS JMS

exception queue, 18-7, A-17
oracle.j2ee.rmi.loadBalance, 24-3
oracle.mdb.fastUndeploy property, 18-4
orion-application.xml

JAAS login module configuration, 22-14
<orion-ejb-jar> element, A-3, A-27
orion-ejb-jar.xml

about, 2-11
configuration, 26-2
XSD, 2-11

orion-ejb-jar.xml file, 17-2
orm.xml

about, 2-15
configuration, 26-4

out of emory error
during deployment, 28-2

out of memory error
during execution, 27-3

P
packaging

referenced EJB classes, 27-2, 27-3
parameters

object types, 29-24
passing conventions, 29-24

parent application, 27-3
parent EJB, 29-5, 29-19
partial attribute, A-24
pass by reference, 29-24
pass by value, 29-24
passivate-count attribute, A-7, A-29
passivation

about, 1-10
ejbPassivate method, 1-10

passivation criteria, 1-12 to 1-14
permissions, 22-1
persistence

container-managed, 1-20, 1-23
database schema, BMP, 13-3, 13-8

persistence context, environment reference, 19-16
persistence manager

about, 3-4
customization, 3-5

Orion, 3-4
TopLink customization class, 3-5
TopLink, migration, 3-5

persistence unit
about, 2-13
default, persistence.xml, 26-4
default, understanding, 2-14
root, 2-13
scope, 2-13

<persistence-context-ref> element, 19-16
<persistence-context-ref-name> element, 19-16
persistence-filename attribute, A-7, A-29
<persistence-manager> element, A-4
persistence-name attribute, A-20
persistence-type attribute, A-21
<persistence-unit-name> element, 19-16
persistence.xml

about, 2-13
configuration, 26-3
default persistence unit, 2-14, 26-4
XSD, EJB 3.0, 2-14, 2-15

pessimistic concurrency mode, A-23
pessimistic locking, 1-26, A-13
pool

disabling, 31-4
size, entity beans, 31-4
size, session beans, 31-4
timeouts, entity beans, 31-5
timeouts, session beans, 31-4

pool-cache-timeout attribute, 31-5, A-8, A-14, A-23,
A-28

PostLoad annotation, 1-16
PostPersist annotation, 1-16
PostRemove annotation, 1-16
PostUpdate annotation, 1-16
prefetch-size attribute, A-24
PrePersist annotation, 1-10, 1-11, 1-16, 1-36
PreRemove annotation, 1-16
PreUpdate annotation, 1-16
primary key

about, 1-16, 1-22
automatic generation, 7-4
complex class, 13-17
complex definition, 13-16
composite EJB 2.1, configuring, 14-3
composite EJB 3.0, configuring, 7-3
composite, about, 1-22
creating, 13-15
EJB 2.1, configuring, 14-2
EJB 3.0, configuring, 7-2
overview, 1-24
sequencing, 7-4
simple definition, 13-16

<prim-key-class> element, 7-3, 13-16
<primkey-mapping> element, A-10, A-27
<properties> element, A-27
PropertyPermission, 22-1

Index-9

Q
queries

about, 1-17, 1-28
EntityManager, 1-18
finder methods, 1-31
select methods, 1-33
syntax, about, 1-17, 1-28
syntax, EJB QL, 1-17, 1-29
syntax, SQL, 1-18, 1-31
syntax, TopLink, 1-30

<query> element, 16-2, 16-5
query attribute, A-24

R
read-only, 1-26, A-13

BMP entity bean, 15-2
read-only concurrency mode, A-23
relational mappings

aggregate object, understanding, 7-14
many-to-many, understanding, 7-13
one-to-many, understanding, 7-12

remote access, 29-17
remote attribute, 29-17
remote home interface

example, 11-7, 13-19, 16-2, 16-5
remote interface

creating, 11-2, 11-4, 11-9, 13-2, 13-7, 13-19
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2
example, 11-9, 13-20

RemoteException, 11-7, 11-8, 11-9, 13-20
remove method

@Remove annotation, 1-4
EJBHome interface, 1-5

replication
inherited, 2-29
on end of requst, 2-29
on shutdown, 2-29

replication attribute, A-8
<res-auth> element, 19-12, 19-14
resource injection

about, 1-7
environment variables, 19-25

resource manager
environment reference, 19-2

resource-adapter attribute, A-18
resource-check-interval attribute, A-8, A-29
<resource-env-ref> element, 19-9
<resource-env-ref-mapping> element, A-5, A-10,

A-16, A-28
<resource-ref> element, 19-10
<resource-ref-mapping> element, 19-12, 19-14, A-16,

A-27
resources

looking up, EJB 2.1, 19-29
looking up, EJB 3.0, 19-24

<resource-provider> element, 23-3, 23-6
<resource-ref-mapping> element, A-5, A-10
<res-ref-name> element, 19-12, 19-14

<res-type> element, 19-12, 19-14
<result-type-mapping> element, 16-5
RMI

port, 29-2
<role-link> element, 22-3, 22-4
<role-name> element, 22-3
root, persistence unit, 2-13
<run-as> element, 22-7
runAs security identity, 22-7
RunTimeException, 11-7, 11-8
RuntimePermission, 22-1

S
schema manager

table creation, automatic, 14-6
scope

persistence unit, 2-13
security, 22-1

annotations, 22-12
client credentials, ejb_sec.properties, 22-12
client credentials, initial context, 22-11
client credentials, JNDI properties, 22-11
JAAS, 22-13
JAAS login module, 22-14
JSR250, 22-12
orion-application.xml configuration, 22-14
permissions, 22-1
retrieving credentials using JAAS, 22-13

<security-identity> element, 22-7
<security-role> element, 22-3
<security-role-ref> element, 22-3
<security-role-mapping> element, 22-8, 22-9, A-20,

A-28
<security-role-ref> element, 22-3
select methods

about, 1-33
sequencing

configuration, EJB 2.1, 14-5
configuration, EJB 3.0, 7-4

Serializable interface, 29-24
<service-ref> element, 19-16
<service-ref-mapping> element, A-10
session bean

configuration, EJB 2.1, 12-1
configuration, EJB 3.0, 5-1
context, 1-14, 11-10, 12-4
deployment descriptor, A-4, A-5
local home interface, 11-8
remote home interface, 11-7
removing, 1-10, 1-12, 1-36, 12-4
stateful, 1-10
stateless, 1-9
stateless, web services, 1-9

session beans
transaction timeouts, 21-4

session context, 1-14
Session object, 19-11
SessionBean interface

EJB, 11-2, 11-5, 12-4, 13-3, 13-8, 17-2

Index-10

ejbActivate method, 1-10, 1-12, 12-3
ejbCreate method, 1-10, 1-12, 1-36, 12-3
ejbPassivate method, 1-10, 1-12, 12-4
ejbRemove method, 1-10, 1-12, 1-36, 12-4
setSessionContext method, 12-4

<session-deployment> element, A-4, A-5, A-28
session-deployment

call-timeout attribute, A-6
copy-by-value attribute, A-6
idletime attribute, A-6
local-location attribute, A-6
local-wrapper attribute, A-6
location attribute, A-6
max-instances attribute, A-6
max-instances-threshold attribute, A-7
max-tx-retries attribute, A-7
memory-threshold attribute, A-7
min-instances attribute, A-7
name attribute, A-7
passivate-count attribute, A-7
persistence-filename attribute, A-7
pool-cache-timeout attribute, A-8
replication attribute, A-8
resource-check-interval attribute, A-8
timeout attribute, A-8
transaction-timeout attribute, A-8
tx-retry-wait attribute, A-8
wrapper attribute, A-8

setEntityContext method, 13-20, 17-6
<set-mapping> element, A-30
setRollbackOnly, 21-7
setRollbackOnly method, 1-7
setSessionContext method, 1-14, 11-10, 12-4, 13-20,

17-6
<sfsb-config> element, 12-2, 12-3
SocketPermission, 22-1
SQL

queries, about, 1-18, 1-31
SQRT, 16-8
stateful session bean

implementing, EJB 3.0, 4-3
lifecycle methods, EJB 2.1, 1-10, 1-11
lifecycle methods, EJB 3.0, 1-9, 1-11
overview, 1-10

stateful session beans
state replication, 2-29

stateless session bean
implementing, EJB 2.1, 11-1, 11-4, 13-1, 13-6, 17-1
implementing, EJB 3.0, 4-1
overview, 1-9
web services, 1-9

<subscription-durability> element, 17-5
subscription-name attribute, A-18, A-26
SubscriptionName config-property, A-18
system properties

KeepWrapperCode, 31-7
oracle.j2ee.rmi.loadBalance, 24-3
WrapperCodeDir, 31-7

KeepWrapperCode, 31-7

T
table attribute, A-14, A-23, A-25
Time, 16-8
TimedOutException, A-6
timeout attribute, 31-5, A-8, A-29
TimeoutExpiredException, A-28
timeouts

bean instance pool, entity beans, 31-5
bean instance pool, session beans, 31-4
transactions, 21-3

timers, 2-31
callback method implementation, 25-2
cancel, 25-5
creating, 25-2
ejbTimeout method, 25-2
executing within a transaction, 25-5
NoSuchObjectLocalException, 25-5
persistence, 25-5
retrieving information, 25-5
retrieving timer service, 25-2

TimerService object, 25-2, 25-3
Timestamp, 16-8
TopLink

ejb3-toplink-sessions.xml, about, 2-12
ejb3-toplink-sessions.xml, XSD, 2-12
queries, about, 1-30
toplink-ejb-jar.xml File, A-3
toplink-ejb-jar.xml, about, 2-11
toplink-ejb-jar.xml, XSD, 2-12

TopLink migration tool, 3-5
TopLink Workbench

toplink-ejb-jar.xml creation, 26-2
toplink-ejb-jar.xml

about, 2-11
configuration, 26-2
creating at migration time, 26-2
creating with TopLink Workbench, 26-2
XSD, 2-12

toplink-ejb-jar.xml File, A-3
transaction

commit, 1-7
context propagation, 1-7
retrieve status, 1-7
rollback, 1-7

transaction attribute, 2-22
transaction isolation, 1-25
transactions

about, 2-21
bean-managed, about, 2-22
client invocation, 2-22
container-managed, about, 2-21
flat, 2-21
global, about, 2-23
interceptors, 2-17
isolation levels, 1-25
management, about, 2-21
nested, 2-21
propagation, 2-22
rollback, 21-7
timeouts, configuring, 21-3

Index-11

timeouts, global, 21-4
timeouts, message-driven beans, 21-5
timeouts, session beans, 21-4
two-phase commit, about, 2-23
two-phase commit, OJMS, 23-4

transaction-timeout attribute, 21-4, 21-5, A-8, A-18,
A-26

TransactionTimeout config-property, A-18
<transaction-type> element, 17-5
troubleshooting, 27-3, 28-2
two-phase commit, 2-23
tx-retry-wait attribute, A-8, A-23, A-29
type attribute, A-25, A-26, A-30

U
<unchecked> element, 22-7

defined, 22-7
unsetEntityContext method, 13-20
update-changed-fields-only attribute, A-15, A-24
URL, environment reference, 19-13
<use-caller-identity> element, 22-8
<user> element, A-30

V
validating XML, 31-6
validity-timeout attribute, A-15, A-23
<value-mapping> element, A-30

W
<web> element, 2-6
Web service, environment reference, 19-16
web services

annotations, 30-1
calling out to, 30-2
stateless session bean, and, 1-9
stateless session bean, exposing as, 30-1

Windows
shutdown, 18-4

wrapper attribute, A-8, A-15, A-24, A-29
wrapper code

debugging, 31-6

X
XML validation, 31-6
XSD

ejb3-toplink-sessions.xml, 2-12
ejb-jar.xml, EJB 2.1, 2-11
ejb-jar.xml, EJB 3.0, 2-11
orion-ejb-jar.xml, 2-11, A-1
persistence.xml, EJB 3.0, 2-14, 2-15
toplink-ejb-jar.xml, 2-12, A-3

Index-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Part I EJB Overview
	1 Understanding Enterprise JavaBeans
	What are Enterprise JavaBeans?
	What is the Anatomy of an EJB 3.0 EJB?
	What is the Anatomy of an EJB 2.1 EJB?
	What is the Lifecycle of an EJB?
	Callback Methods

	What is EJB Context?
	How Do Annotations and Resource Injection Work?

	What is a Session Bean?
	What is a Stateless Session Bean?
	What is the Stateless Session Bean Lifecycle?

	What is a Stateful Session Bean?
	What is the Stateful Session Bean Lifecycle?
	When Does Stateful Session Bean Passivation Occur?
	What Object Types Can Be Passivated?
	Where is a Passivated Stateful Session Bean Stored?

	What is Session Context?

	What is an EJB 3.0 Entity?
	What are Container-Managed Persistence Fields?
	What are Container-Managed Relationship Fields?
	What is the EJB 3.0 Entity Lifecycle?
	What is an EJB 3.0 Entity Primary Key?
	How Do You Query for an EJB 3.0 Entity?
	Understanding EJB Query Syntax
	Understanding EJB QL Query Syntax
	Understanding Native SQL Query Syntax

	Understanding the EJB 3.0 EntityManager Query API
	What is an EJB 3.0 Named (Predefined) Query?
	What is an EJB 3.0 Dynamic (Ad-Hoc) Query?

	What is an EJB 2.1 Entity Bean?
	What is an EJB 2.1 CMP Entity Bean?
	What are Container-Managed Persistence Fields?
	What are Container-Managed Relationship Fields?
	What is the CMP Entity Bean Lifecycle?
	What is a CMP Entity Bean Primary Key?

	What is an EJB 2.1 BMP Entity Bean?
	What are Bean-Managed Persistence Fields?
	What are Bean-Managed Relationship Fields?
	What is the BMP Entity Bean Lifecycle?
	What is a BMP Entity Bean Primary Key?

	What is Entity Context?
	How do You Avoid Database Resource Contention?
	Transaction Isolation
	Concurrency (Locking) Mode

	When Does Entity Bean Passivation Occur?
	What are Entity Bean Commit Options?
	Commit Options and CMP Applications
	Commit Options and BMP Applications

	How Do You Query for an EJB 2.1 Entity Bean?
	Understanding EJB Query Syntax
	Understanding EJB QL Query Syntax
	Understanding TopLink Query Syntax
	Understanding Native SQL Query Syntax

	Understanding Finder Methods
	TopLink Finders

	Understanding Select Methods
	What Type Can My Select Method Return?
	Custom TopLink Select Methods

	What is a Message-Driven Bean?
	What is the Message-Driven Bean Lifecycle?
	What is Message Driven Context?

	Which Type of EJB Should You Use?
	Which Type of Session Bean Should You Use?
	When do you use Bean-Managed versus Container-Managed Persistence?
	What is the Difference Between Session and Entity Beans?

	2 Understanding EJB Application Development
	How Should You Develop EJB Applications?
	Understanding the EJB Application Directory Structure
	Using EJB Development Tools
	Using JDeveloper
	Using Eclipse
	Using TopLink Workbench

	What OC4J Services Can You Use with an EJB?
	How do You Package and Deploy an EJB Application?
	General Packaging and Deployment Procedure
	Understanding EJB Deployment Descriptor Files
	Understanding Packaging
	Understanding Deployment
	How Do Specify Vendor-Specific Configuration in an EJB 3.0 Application?
	How Does OC4J Determine What Type of Persistence to Use?
	In What Order does OC4J Deploy EJB Modules?

	What is the ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the orion-ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the toplink-ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the ejb3-toplink-sessions.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the persistence.xml File?
	Understanding the OC4J Default Persistence Unit
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the orm.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	How Do You Use an EJB in Your Application?
	Understanding Client Access
	Understanding EJB 3.0 Interceptors
	Interceptor Restrictions
	Interceptors and Invocation Context

	Understanding EJBs and Web Services
	Understanding EJB Administration

	Understanding EJB JNDI Services
	Understanding EJB Data Source Services
	What Types of Data Source does OC4J Support?
	Managed Data Source
	Native Data Source

	How Do You Define a Connection URL in OC4J?
	What Transaction Types Do Data Sources Support?
	Where Do You Configure Data Source Information in OC4J?
	What is a Default Data Source?
	How Does OC4J Handle Multiple Data Sources?

	Understanding EJB Transaction Services
	Who Manages a Transaction?
	Container-Managed Transaction (CMT)
	Bean-Managed Transaction (BMT)

	How are Transactions Handled When a Client Invokes a Business Method?
	How do I Participate in a Global or Two-Phase Commit Transaction?

	Understanding EJB Security Services
	Understanding Message Services
	What Message Providers Can I use with My MDB?
	Oracle Application Server JMS (OracleAS JMS) Provider: File-Based
	Oracle JMS (OJMS) Provider: Advanced Queueing (AQ)-Based
	J2EE Connector Architecture (J2CA) Adapter Message Provider

	Understanding OC4J EJB Application Clustering Services
	State Replication
	State Replication Trigger
	State Replication Scope
	State Replication Mode

	Load Balancing
	Replication-Based Load Balancing
	Static Retrieval Load Balancing
	DNS Load Balancing

	Failover
	Transactions
	Performance

	Understanding EJB Timer Services
	Understanding J2EE Timer Services
	Understanding OC4J Cron Timer Services

	3 Understanding EJB Support in OC4J
	EJB 3.0 Support
	What JDK is Required?
	How do You Define an EJB 3.0 Application?
	How does OC4J Manage Persistence in an EJB 3.0 Application?
	TopLink Entity Manager
	Customizing the TopLink Entity Manager

	EJB 2.1 Support
	What JDK is Required?
	How do You Define an EJB 2.1 Application?
	How does OC4J Manage Persistence in an EJB 2.1 Application?
	TopLink Persistence Manager
	Customizing the TopLink Persistence Manager
	Migrating to the TopLink Persistence Manager

	Configuration Changes in this Release
	New Package Names for RMI and Application Client Initial Context Factories
	Unsupported orion-ejb-jar.xml Attributes

	Part II EJB 3.0 Session Beans
	4 Implementing an EJB 3.0 Session Bean
	Implementing an EJB 3.0 Stateless Session Bean
	Implementing an EJB 3.0 Stateful Session Bean

	5 Using EJB 3.0 Session Bean API
	Configuring Passivation
	Configuring Passivation Criteria
	Configuring Passivation Location
	Configuring a Lifecycle Callback Method for an EJB 3.0 Session Bean
	Using Annotations

	Configuring an Interceptor on an EJB 3.0 Session Bean
	Using Annotations

	Part III EJB 3.0 Entities
	6 Implementing an EJB 3.0 Entity
	Implementing an EJB 3.0 Entity

	7 Using EJB 3.0 Persistence API
	Configuring an EJB 3.0 Entity Primary Key
	Configuring an EJB 3.0 Entity Primary Key Field
	Using Annotations

	Configuring EJB 3.0 Entity Automatic Primary Key Generation
	Using Annotations

	Configuring Table and Column Information
	Configuring the Primary Table
	Using Annotations

	Configuring a Secondary Table
	Using Annotations

	Configuring a Column
	Using Annotations

	Configuring a Join Column
	Using Annotations

	Configuring an EJB 3.0 Entity Container-Managed Relationship Field
	Configuring a Basic Mapping
	Using Annotations

	Configuring a Large Object Mapping
	Using Annotations

	Configuring a Serialized Object Mapping
	Using Annotations

	Configuring a One-to-One Mapping
	Using Annotations

	Configuring a Many-to-One Mapping
	Using Annotations

	Configuring a One-to-Many Mapping
	Using Annotations

	Configuring a Many-to-Many Mapping
	Using Annotations

	Configuring an Aggregate Mapping
	Using Annotations

	Configuring Optimistic Lock Version Field
	Using Annotations

	Configuring Lazy Loading on Finder Methods
	Configuring a Lifecycle Callback Method for an EJB 3.0 Entity
	Using Annotations

	Configuring Inheritance for an EJB 3.0 Entity
	Joined Subclass
	Single Table for each Class Hierarchy
	Using Annotations
	Configuring Joined Subclass Inheritance with Annotations
	Configuring Single Table Inheritance with Annotations

	8 Using EJB 3.0 Query API
	Implementing an EJB 3.0 Named Query
	Using Annotations

	Implementing an EJB 3.0 Dynamic Query
	Using Java

	Part IV EJB 3.0 Message-Driven Beans
	9 Implementing an EJB 3.0 MDB
	Implementing an EJB 3.0 MDB

	10 Using EJB 3.0 MDB API
	Configuring an EJB 3.0 MDB to Use a Non-J2CA Message Service Provider
	Using Annotations
	Using Deployment XML

	Configuring an EJB 3.0 MDB to Use a J2CA Message Service Provider
	Using Annotations
	Using Deployment XML

	Configuring Listener Threads
	Configuring Maximum Delivery Count
	Configuring Dequeue Retry Count and Interval
	Configuring an Interceptor on an EJB 3.0 MDB Message Listener Method
	Using Annotations

	Configuring a Lifecycle Callback Method for an EJB 3.0 MDB
	Using Annotations

	Part V EJB 2.1 Session Beans
	11 Implementing an EJB 2.1 Session Bean
	Implementing an EJB 2.1 Stateless Session Bean
	Using Java
	Using Deployment XML

	Implementing an EJB 2.1 Stateful Session Bean
	Using Java
	Using Deployment XML

	Implementing the Home Interfaces
	Implementing the Remote Home Interface
	Implementing the Local Home Interface

	Implementing the Component Interfaces
	Implementing the Remote Component Interface
	Implementing the Local Component Interface

	Implementing the setSessionContext Method

	12 Using EJB 2.1 Session Bean API
	Configuring Passivation
	Using Deployment XML

	Configuring Passivation Criteria
	Using Deployment XML

	Configuring Passivation Location
	Using Deployment XML

	Configuring a Lifecycle Callback Method for an EJB 2.1 Session Bean
	Using Java

	Part VI EJB 2.1 Entity Beans
	13 Implementing an EJB 2.1 Entity Bean
	Implementing an EJB 2.1 CMP Entity Bean
	Using Java
	Using Deployment XML

	Implementing an EJB 2.1 BMP Entity Bean
	Using Java
	Using Deployment XML
	Implementing an EJB 2.1 BMP ejbCreate Method

	Implementing the EJB 2.1 Home Interfaces
	Implementing the Remote Home Interface
	Implementing the Local Home Interface

	Implementing the EJB 2.1 Component Interfaces
	Implementing the Remote Component Interface
	Implementing the Local Component Interface

	Implementing the setEntityContext and unsetEntityContext Methods

	14 Using EJB 2.1 CMP Entity Bean API
	Configuring an EJB 2.1 CMP Entity Bean Primary Key
	Configuring an EJB 2.1 CMP Entity Bean Primary Key Field
	Using Deployment XML

	Configuring an EJB 2.1 CMP Entity Bean Composite Primary Key Class
	Using Java
	Using Deployment XML

	Configuring EJB 2.1 CMP Entity Bean Automatic Primary Key Generation
	Using Deployment XML

	Configuring Automatic Database Table Creation
	Using Deployment XML

	Configuring an EJB 2.1 CMP Entity Bean Container-Managed Persistence Field
	Using Java
	Using Deployment XML

	Configuring an EJB 2.1 CMP Entity Bean Container-Managed Relationship Field
	Using Java
	Using Deployment XML

	Configuring Default Mappings
	Using Deployment XML

	Configuring Lazy Loading on Finder Methods
	Using Deployment XML

	15 Using EJB 2.1 BMP Entity Bean API
	Configuring a Read-Only BMP Entity Bean
	Using Deployment XML

	Configuring BMP Commit Options
	Using Deployment XML

	Configuring an EJB 2.1 BMP Entity Bean Query
	Implementing an EJB 2.1 BMP the ejbFindByPrimaryKey Method
	Implementing Other EJB 2.1 BMP Finder Methods

	Configuring a Lifecycle Callback Method for an EJB 2.1 BMP Entity Bean
	Implementing an EJB 2.1 BMP ejbStore Method
	Implementing an EJB 2.1 BMP ejbLoad Method
	Implementing an EJB 2.1 BMP ejbPassivate Method
	Implementing an EJB 2.1 BMP ejbActivate Method
	Implementing an EJB 2.1 BMP ejbRemove Method

	16 Using EJB 2.1 Query API
	Implementing an EJB 2.1 EJB QL Finder Method
	Using Java
	Using Deployment XML
	Using TopLink Workbench

	Implementing an EJB 2.1 EJB QL Select Method
	Using Java
	Using Deployment XML
	Using TopLink Workbench

	OC4J EJB 2.1 EJB QL Extensions

	Part VII EJB 2.1 Message-Driven Beans
	17 Implementing an EJB 2.1 MDB
	Implementing an EJB 2.1 MDB
	Using Java
	Using Deployment XML
	Implementing the setMessageDrivenContext Method

	18 Using EJB 2.1 MDB API
	Configuring an EJB 2.1 MDB to Use a Non-J2CA Message Service Provider
	Using Deployment XML

	Configuring an EJB 2.1 MDB to Use a J2CA Message Service Provider
	Using Deployment XML

	Configuring an MDB for Fast Undeploy on Windows
	Using System Properties

	Configuring an MDB for Oracle RAC Failover
	Using Deployment XML
	Using Java

	Configuring Listener Threads
	Using Deployment XML

	Configuring Maximum Delivery Count
	Using Deployment XML

	Configuring Dequeue Retry Count and Interval
	Using Deployment XML

	Part VIII OC4J EJB Services
	19 Configuring JNDI Services
	Configuring Environment References
	EJB Environment References
	Resource Manager Connection Factory Environment References
	Environment Variable Environment References
	Web Service Environment References
	Persistence Context References
	Where Do You Configure an EJB Environment Reference?
	Should You Use Logical Names?

	Configuring an Environment Reference to an EJB
	Configuring an Environment Reference to a Remote EJB
	Configuring an Environment Reference to a Local EJB

	Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection Factory
	Configuring an Environment Reference to a JMS Destination Resource Manager Connection Factory (JMS 1.1)
	Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)
	Configuring an Environment Reference to a Java Mail Resource Manager Connection Factory
	Configuring an Environment Reference to a URL Resource Manager Connection Factory
	Configuring an Environment Reference to an Environment Variable
	Configuring an Environment Reference to a Web Service
	Configuring an Environment Reference to a Persistence Context
	Configuring the Initial Context Factory
	Configuring the Default Initial Context Factory
	Configuring an Oracle Initial Context Factory
	Configuring the Naming Provider URL for OC4J and Oracle Application Server
	Configuring the Naming Provider URL for OC4J Standalone

	Setting JNDI Properties in an EJB
	Setting JNDI Properties with the JNDI Properties File
	Setting JNDI Properties with System Properties
	Setting JNDI Properties in the Initial Context

	Looking up an EJB 3.0 EJB
	Using Annotations
	Using Initial Context
	Looking Up the Remote Interface of an EJB 3.0 EJB Using ejb-ref
	Looking Up the Remote Interface of an EJB 3.0 EJB Using location
	Looking up the Local Interface of an EJB 3.0 EJB Using local-ref
	Looking up the Local Interface of an EJB 3.0 EJB Using local-location

	Looking Up an EJB 3.0 Resource Manager Connection Factory
	Using Annotations
	Using Initial Context

	Looking Up an EJB 3.0 Environment Variable
	Using Resource Injection
	Using Initial Context

	Looking Up an EJB 2.1 EJB
	Using Initial Context
	Looking Up the Remote Interface of an EJB 2.1 EJB Using ejb-ref
	Looking Up the Remote Interface of an EJB 2.1 EJB Using location
	Looking up the Local Interface of an EJB 2.1 EJB Using local-ref
	Looking up the Local Interface of an EJB 2.1 EJB Using local-location

	Looking Up an EJB 2.1 Resource Manager Connection Factory
	Using Initial Context

	Looking Up an EJB 2.1 Enviornment Variable
	Using Initial Context

	20 Configuring Data Sources
	Configuring a Data Source for an Oracle Database
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Data Source for a Third-Party Database
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Default Data Source for an EJB 3.0 Application
	Using Deployment XML

	Configuring a Default Data Source for an EJB 2.1 Application
	Using Deployment XML

	21 Configuring Transaction Services
	Configuring Transaction Timeouts
	Configuring a Global Transaction Timeout
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Transaction Timeout for a Session Bean
	Using Deployment XML

	Configuring a Transaction Timeout for a Message-Driven Bean
	Using Deployment XML

	Transaction Best Practices
	Using Container Managed Transactions with Datasource Connections
	Using a Rollback Strategy

	22 Configuring Security Services
	Granting Permissions in Browser
	Defining Users, Groups, and Roles in an EJB Application
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying a Role for an EJB Method
	Using Annotations
	Using Deployment XML

	Specifying Unchecked Security for EJB Methods
	Using Annotations
	Using Deployment XML

	Specifying the runAs Security Identity
	Using Annotations
	Using Deployment XML

	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Specifying Credentials in JNDI Properties
	Specifying Credentials in the Initial Context
	Specifying EJB Client Security Properties in the ejb_sec.properties File

	Using EJB 3.0 Security Annotations
	Using Annotations

	Retrieving Credentials from an EJB Using the JAAS API
	Defining a Custom JAAS Login Module for an EJB Application

	23 Configuring Message Services
	Configuring an OracleAS JMS Message Service Provider
	OracleAS JMS Destination and Connection Factory Names
	Configuring jms.xml

	Configuring an OJMS Message Service Provider
	OJMS Destination and Connection Factory Names
	Installing and Configuring the OJMS Provider
	Configuring data-sources.xml
	Configuring application.xml or orion-application.xml

	Configuring a Message Service Provider Using J2CA
	J2CA Message Service Provider Connection Factory Names
	Installing and Configuring a J2CA Adapter
	Configuring OC4J Deployment XML Files

	24 Configuring OC4J EJB Application Clustering Services
	Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy
	Using Deployment XML
	Configuring Global Replication Policy in the application.xml File for Web and EJB Components
	Configuring Application-Level Replication Policy in the orion-application.xml File for Web and EJB Components
	Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB Components

	Configuring Replication-Based Load Balancing
	Using System Properties

	Configuring Static Retrieval Load Balancing
	Using JNDI Properties

	Configuring DNS Load Balancing
	Using JNDI Properties

	25 Configuring Timer Services
	Configuring an EJB 3.0 EJB with a J2EE Timer
	Using Annotations
	Using Initial Context

	Configuring an EJB 2.1 EJB with a J2EE Timer
	Configuring an EJB with an OC4J Cron Timer
	Troubleshooting Timers
	How to Retrieve Information About the Timer
	How to Retrieve a Persisted Timer
	Executing the Timer Within the Scope of a Transaction
	What Does a NoSuchObjectLocalException Mean with Timers?

	Part IX Packaging and Deploying an EJB Application
	26 Configuring Deployment Descriptor Files
	Configuring the ejb-jar.xml File
	Creating ejb-jar.xml During Migration
	Creating the ejb-jar.xml File at Deployment Time
	Creating ejb-jar.xml with JDeveloper

	Configuring the toplink-ejb-jar.xml File
	Creating toplink-ejb-jar.xml During Migration
	Creating toplink-ejb-jar.xml with TopLink Workbench

	Configuring the orion-ejb-jar.xml File
	Configuring the ejb3-toplink-sessions.xml File
	Creating ejb3-toplink-sessions.xml with TopLink Workbench

	Configuring the persistence.xml File
	Configuring a Named Persistence Unit in the persistence.xml File
	What Persistent Managed Classes Does this Persistence Unit Include?

	Configuring the persistence.xml File for the OC4J Default Persistence Unit

	27 Packaging an EJB Application
	Packaging an Application with Both EJB 3.0 and EJB 2.1 EJBs
	Sharing Classes Between EJB Applications
	Handling Out of Memory Exceptions at Runtime
	Handling Class Cast Exceptions at Runtime

	28 Deploying an EJB Application to OC4J
	Deploying a Large EJB Application
	Tuning the VM to Avoid Out Of Memory Errors During Deployment
	Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment

	Deploying Incrementally
	Troubleshooting Application Deployment

	Part X Using an EJB in Your Application
	29 Accessing an EJB from a Client
	What Type of Client Do You Have?
	EJB Client
	Standalone Java Client
	Servlet or JSP Client

	Configuring the Client
	Configuring the Client Classpath for OC4J
	Selecting an Initial Context Factory Class
	Specifying Security Credentials
	Selecting an EJB Reference

	Accessing an EJB 3.0 EJB
	Accessing an EJB 3.0 EJB in Another Application
	Accessing an EJB 3.0 Entity Using an EntityManager
	Acquiring an EntityManager
	Acquiring the OC4J Default Entity Manager in an EJB 3.0 Stateful Session Bean Client
	Acquiring a Named Entity Manager in an EJB 3.0 Stateful Session Bean Client
	Acquiring an Entity Manager in Other EJB 3.0 Bean Clients
	Acquiring an Entity Manager in a Helper Class or Web Client

	Creating a New Entity Instance
	Querying for an EJB 3.0 Entity Using the EntityManager
	Finding an Entity by Primary Key with the Entity Manager
	Creating a Named Query with the EntityManager
	Creating a Dynamic EJB QL Query with the Entity Manager
	Creating a Dynamic TopLink Expression Query with the EntityManager
	Creating a Dynamic Native SQL Query with the EntityManager
	Configuring Query Hints
	Executing a Query

	Modifying an Entity Instance
	Using an Updating Query
	Using the Entity’s Public API
	Refreshing from the Database
	Removing an Entity
	Using Flush

	Detaching and Merging an Entity Bean Instance

	Accessing an EJB 3.0 EJBContext
	Using Resource Injection

	Accessing an EJB 2.1 EJB
	Accessing an EJB 2.1 EJB Remotely
	Accessing an EJB 2.1 EJB Locally
	Accessing an EJB 2.1 EJB Using RMI from a Standalone Java Client

	Accessing an EJB 2.1 EJB in Another Application
	Accessing an EJB 2.1 MDB
	Sending a Message to a JMS Destination Using EJB 2.1
	Sending a Message to a J2CA Destination Using EJB 2.1

	Accessing an EJB 2.1 EJBContext
	Handling Parameters
	Passing Parameters Into an EJB
	Handling Parameters Returned by an EJB

	Handling Exceptions
	Recovering From a NamingException While Accessing a Remote EJB
	Recovering From a NullPointerException While Accessing a Remote EJB
	Recovering From Deadlock Conditions

	30 Using EJBs and Web Services
	Exposing a Stateless Session Bean as a Web Service
	Using Annotations

	Accessing a Web Service from an EJB
	Using Annotations
	Using Initial Context

	31 Administrating an EJB Application
	OC4J EJB JMX Support
	Using Oracle Enterprise Manager 10g Application Server Control
	Configuring EJB Logging
	Logging Namespaces
	Logging Levels
	Configuring Logging with Application Server Control Logging MBean
	Configuring Logging Using the j2ee-logging.xml File
	Configuring Logging Using System Properties

	Managing the Bean Instance Pool
	Configuring Bean Instance Pool Size
	Using Deployment XML

	Configuring Bean Instance Pool Timeouts for Session Beans
	Using Deployment XML

	Configuring Bean Instance Pool Timeouts for Entity Beans
	Using Deployment XML

	Starting and Stopping an EJB Application
	Troubleshooting an EJB Application
	Validating XML Files
	Debugging the ejb-jar.xml File
	Debugging Generated Code
	Preserving Generated Code in the Default Directory
	Preserving Generated Code in a Directory You Specify
	Disabling Generated Code Preservation

	A XML Reference for orion-ejb-jar.xml Elements
	OC4J and the orion-ejb-jar.xml File
	TopLink Persistence Support
	OC4J-Specific Deployment Descriptor for EJBs
	Enterprise Beans Section
	Persistence Manager Section (persistence-manager)
	Session Bean Section (session-deployment)
	Entity Bean Section (entity-deployment)
	Message Driven Bean Section (message-driven-deployment)
	EJB 1.1 CMP Field Mapping Section (cmp-field-mapping)
	Method Definition

	Assembly Descriptor Section

	Element Description

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

