
Oracle® Containers for J2EE
Security Guide

10g Release 3 (10.1.3)

B14429-01

January 2006

Oracle Containers for J2EE Security Guide, 10g Release 3 (10.1.3)

B14429-01

Copyright © 2003, 2006, Oracle. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Elizabeth Hanes Perry

Contributor: Ganesh Kirti, Raymond Ng, Rachel Chan, Nithya Muralidharan, Kumar Valendhar,
Moushmi Banerjee, Dheeraj Goswami, Sam Zhou, Srikant Tirumalai, Bill Bathurst, Debu Panda, Tom Snyder,
Jeff Trent, Bob Nettleton, Vinay Shukla, Michael Hwa, Jayanthi Kulkarni, Kavita Tippani, Helen Zhao,
Sandeep Bangera, Cania Lee Chung, Deepika Damojipurapu, Lakshmi Thiyagarajan, Serouj Ourishian, Phil
Varner, Chaya Ramanujam, Jyotsna Laxminarayanan, Lelia Yin, Raghav Srinivisan, Dan Hynes, Alfred
Franci

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documentation.. xviii
Conventions ... xx

What’s New .. xxi

Changes Since Release 10.1.2 ... xxi

1 Standard Security Concepts

Introducing the Java 2 Security Model and JAAS ... 1-1
Authentication and Authorization.. 1-2

Authentication and Authorization Concepts... 1-2
Capability Model of Access Control.. 1-3
JAAS Security Model Versus J2EE Security Model... 1-3

About Principals and Subjects .. 1-4
About Permissions, Policies, and Realms ... 1-4

Security Permissions.. 1-5
Security Policies.. 1-5
Protection Domains.. 1-6
Security Managers and Access Control .. 1-6
Security Realms .. 1-7

Login Module Authentication ... 1-7
Role-Based Access Control: Roles and Role Hierarchy .. 1-9
Secure Communications .. 1-10

Secure Sockets Layer and HTTPS ... 1-10
Certificates.. 1-10
Key Encryption and Exchange .. 1-10
Identity Propagation... 1-12

Developing Secure J2EE Applications .. 1-12

2 Overview of OC4J Security

Introducing the OracleAS JAAS Provider and Security Providers .. 2-1
Overview of the OracleAS JAAS Provider ... 2-2
Summary of JAAS Framework Features .. 2-2

iv

Supported Security Providers .. 2-3
Support for DataSourceUserManager... 2-5

Authentication in the OC4J Environment .. 2-5
Authorization in the OC4J Environment... 2-7

J2EE Authorization .. 2-7
JAAS Authorization and JAAS Mode ... 2-7

Introduction to JAAS Mode... 2-8
OracleAS JAAS Provider Realm and Policy Features ... 2-9
Features for Granting Permissions .. 2-10
Features for Checking Permissions ... 2-11

OracleAS JAAS Provider Permission Classes ... 2-11
Implementation of Java Authorization Contract for Containers ... 2-12

Overview of Security Role Mapping... 2-13

3 Overview of Security Administration and Configuration

General OC4J Deployment and Configuration Features ... 3-1
Tools for Oracle Application Server and OracleAS JAAS Provider... 3-2

Overview of Enterprise Manager .. 3-2
Overview of the OracleAS JAAS Provider Admintool... 3-3
Overview of Oracle Identity Management and Oracle Internet Directory Tools..................... 3-4

Overview of Delegated Administration Services... 3-4
Overview of Oracle Directory Manager .. 3-4

JMX and MBeans Administration... 3-5
Overview of Configuration Files and Key Elements .. 3-5

The orion-application.xml File (<jazn> and <jazn-web-app> Elements) 3-6
The system-application.xml File .. 3-6
The system-jazn-data.xml File.. 3-7
Application-Specific jazn-data.xml File (Optional)... 3-8
The jazn.xml File .. 3-9

OC4J System Application .. 3-10
Summary of OC4J Accounts.. 3-11

Predefined OC4J Accounts .. 3-11
Activation of the oc4jadmin Account... 3-12
Configuring a New Administration Account ... 3-12
Configuring an Anonymous User .. 3-12

Summary of Configuration Repositories and Security Management Tools.............................. 3-12

4 Java VM Security Settings for OC4J

Specifying an Alternate JAAS Policy Provider .. 4-1
Specifying a Java 2 Security Manager and Policy File .. 4-2

Creating a Java 2 Policy File ... 4-2
Using PrintingSecurityManager to Debug Java 2 Policy ... 4-3

Enabling Subject Propagation for ORMI .. 4-4

5 Tasks and Guidelines in Setting Security

Guidelines for Password Management.. 5-1

v

Creating an Indirect Password... 5-2
Specifying a Password Manager in system-application.xml ... 5-2
Password Obfuscation in OC4J Configuration Files... 5-3

Tasks and Guidelines for Using Security Realms in OC4J .. 5-3
Default Realm with the File-Based Provider or Oracle Identity Management 5-4
Evaluation of the Default Realm for File-Based Provider or Oracle Identity Management ... 5-4
Using the Default Realm ... 5-5
Using a Nondefault Realm ... 5-5
Using Multiple Realms.. 5-5
Omitting the Realm Name When Retrieving an Authenticated Principal 5-6

Tasks for JAAS Mode and Authorization.. 5-6
Use J2EE Authorization... 5-7
Use OracleAS JAAS Provider Policy Management... 5-7
Use OracleAS JAAS Provider JAAS Mode ... 5-8

Using the Java Authorization Contract for Containers... 5-9
System Properties to Enable Java ACC Features... 5-9
System Properties to Specify the Java ACC Provider... 5-9

Packaging Considerations for OC4J Configuration Files ... 5-10
Configuration Tasks and Considerations in the Deployment Descriptors 5-10

Configuration to Use the Instance-Level File-Based Provider .. 5-10
Configuration to Automatically Create jazn-data.xml ... 5-10

Supplying an Application-Specific jazn-data.xml File .. 5-10
Deployment Tasks and Guidelines for Security ... 5-10

Overview of Deployment Considerations... 5-11
Deploying an Application.. 5-11

Deploying an Application through Application Server Control 5-11
Specifying a Security Provider .. 5-12

Considering the File-Based Provider Versus Oracle Identity Management 5-12
Specifying the Security Provider through Application Server Control 5-13

Mapping J2EE Security Roles to JAAS Roles .. 5-13
Application Role Definitions and References .. 5-14
Specifying Security Role Mapping through Application Server Control........................ 5-14
Mapping J2EE Roles to JAAS Roles in OC4J Configuration Files..................................... 5-15
Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users 5-16

Post-Deployment Considerations .. 5-17
Navigating to the Security Provider Page for Your Application ... 5-17

Tasks for DataSourceUserManager.. 5-17
DataSourceUserManager Properties .. 5-17
Configuring an Application to Use DataSourceUserManager... 5-18

6 Oracle Identity Management Security Provider

Realm Management in LDAP-Based Environments ... 6-2
LDAP-Based Realm Types.. 6-2
About Distinguished Names .. 6-3
LDAP-Based Realm Data Storage.. 6-4

Realm Hierarchy ... 6-4
Access Control Lists and OracleAS JAAS Provider Directory Entries................................ 6-5

vi

Overview of Oracle Identity Management Key Components... 6-5
Overview of Oracle Internet Directory ... 6-6
Overview of Oracle Application Server Single Sign-On .. 6-6
SSO-Enabled J2EE Environment: Typical Scenario... 6-6

Prerequisites: Oracle Application Server Infrastructure .. 6-8
Supported Versions for Oracle Internet Directory and OracleAS Single Sign-On................... 6-8
Considerations for 9.0.4.x Infrastructure: Access Control List Settings 6-8

Steps to Use the Oracle Identity Management Security Provider .. 6-9
Associate Oracle Internet Directory with OC4J ... 6-9

Associating Oracle Internet Directory with OC4J .. 6-9
Changing the Oracle Internet Directory Association ... 6-10
Required OC4J Accounts Created in Oracle Internet Directory 6-11
Oracle Internet Directory Association in jazn.xml.. 6-11
Associating the OC4J System Application with Oracle Internet Directory..................... 6-12

Configure Oracle Identity Management as the Security Provider .. 6-13
Specifying Oracle Identity Management during Deployment.. 6-14
Changing to Oracle Identity Management after Deployment .. 6-15

Configure SSO (Optional) .. 6-15
Run the SSO Registration Tool... 6-16
Transfer the osso.conf File to the OC4J Instance ... 6-17
Run the osso1013 Script .. 6-17
Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions........ 6-17
Restart the Oracle HTTP Server and OC4J Instances ... 6-18

LDAP-Based Provider Settings in OC4J Configuration Files .. 6-18
Configuring LDAP User and SSL Properties .. 6-18
Configuring LDAP Connection Properties ... 6-19
Configuring LDAP Caching Properties ... 6-20

7 File-Based Security Provider

Tools for File-Based Provider Policy and Realm Management ... 7-1
Configuring the File-Based Provider in Application Server Control .. 7-2

Configuring the File-Based Provider during Application Deployment 7-3
Changing to the File-Based Provider after Deployment .. 7-3
Managing Application Realms through Application Server Control .. 7-4

Search for a Realm .. 7-4
Create a Realm... 7-4
Delete a Realm... 7-5

Managing Application Users through Application Server Control ... 7-5
Search for a User ... 7-5
Create a User.. 7-5
Delete a User.. 7-6
Edit a User.. 7-6

Managing Application Roles through Application Server Control.. 7-6
Search for a Role.. 7-7
Create a Role .. 7-7
Delete a Role .. 7-7
Edit a Role .. 7-8

vii

Administering Instance-Level Security through Application Server Control 7-8
File-Based Provider Settings in OC4J Configuration Files .. 7-9

Scenarios for <jazn> Settings in orion-application.xml.. 7-9
Realm Configuration in the Repository File.. 7-10
Policy Configuration in the Repository File.. 7-11
Predefined OC4J Accounts in system-jazn-data.xml ... 7-12

OracleAS JAAS Provider Migration Tool ... 7-12
Overview of the Migration Tool ... 7-12
Migration Tool Command Syntax .. 7-13
Migration Tool APIs ... 7-14

Migrating Principals from the principals.xml File ... 7-15

8 Login Modules

Configuring RealmLoginModule .. 8-2
Introducing Custom JAAS Login Modules... 8-3
Packaging and Deploying Login Modules.. 8-4

Deploying Login Modules within the J2EE Application.. 8-5
Deploying Login Modules as Optional Packages ... 8-5
Using Login Modules as OC4J Shared Libraries ... 8-6

Configuring the Custom Security Provider in Application Server Control 8-6
Specifying and Configuring a Custom Security Provider during Deployment 8-7

Editing a Custom Login Module Configuration during Deployment 8-8
Adding a Custom Login Module during Deployment ... 8-9

Changing to a Custom Security Provider after Deployment... 8-9
Adding a Login Module to the Custom Security Provider... 8-10
Updating a Login Module in the Custom Security Provider ... 8-10
Deleting a Login Module in the Custom Security Provider ... 8-11

Configuring Login Modules through the Admintool .. 8-11
Login Module Configuration in OC4J Configuration Files.. 8-12

Login Module Settings in system-jazn-data.xml .. 8-12
Login Modules Settings in orion-application.xml.. 8-13

Settings in <jazn-loginconfig> in orion-application.xml.. 8-13
Settings in <jazn> for Login Modules... 8-13
Settings in <namespace-access> for Login Modules .. 8-14

Configuring oc4j-ra.xml for Login Modules (J2EE Connector Architecture)......................... 8-14
Simple Login Module J2EE Integration.. 8-14

Development of Simple Login Module.. 8-14
Packaging of Simple Login Module ... 8-15
Deployment of Simple Login Module.. 8-15

Custom Login Module Example... 8-16

9 External LDAP Security Providers

Overview of External LDAP Provider Configuration and Administration.................................. 9-1
Configuring External LDAP Providers in Application Server Control ... 9-3

Specifying and Configuring an External LDAP Provider during Deployment........................ 9-3
Changing to an External LDAP Provider after Deployment... 9-5

viii

External LDAP Provider Settings in system-jazn-data.xml ... 9-5
Granting RMI Permission to an LDAP Principal .. 9-7
Sample Configuration for Sun Java System Directory Server .. 9-8

Sample LDIF Description.. 9-8
Sample Entries in OC4J Configuration Files .. 9-9

Settings in system-jazn-data.xml for Sun Java System Directory Server............................ 9-9
Settings in orion-application.xml for External LDAP Server .. 9-10

10 COREid Access Security Provider

Getting Started with Oracle COREid Access and Identity ... 10-2
Overview of Oracle COREid Access and Identity.. 10-2
COREid Prerequisites ... 10-3
COREid Architecture.. 10-4
Top-Level Summary of Configuration Stages .. 10-5
Running the Access Manager.. 10-5

Oracle COREid Access and Identity Concepts .. 10-6
About COREid Resource Types.. 10-6
About COREid Authentication ... 10-6
About the COREid Single Sign-On Cookie ... 10-7
About Using HTTP Header Variables for Authentication.. 10-7

Configuring COREid Access... 10-8
Configure COREid Form-Based Authentication .. 10-8

Create a Login Form .. 10-8
Define Form-Based Authentication in Access Manager .. 10-9
Configure the credential_mapping Plug-In for Form-Based Authentication 10-10
Configure the validate_password Plug-In for Form-Based Authentication 10-10

Configure COREid Basic Authentication .. 10-10
Define Basic Authentication in Access Manager... 10-11
Configure the credential_mapping Plug-In for Basic Authentication 10-11

Configure the Resource Type .. 10-12
Configure the Name and Operation of the Resource Type ... 10-12
Configure and Protect the URL of the Configured Resource Type................................ 10-12
Configure the Return Action Attributes... 10-13

Protect the Action URL... 10-13
Configuring OC4J with the Access SDK .. 10-14

Create OC4J Instances as Needed... 10-14
Configure the Access SDK to Each OC4J Instance ... 10-14
Configure the Access SDK Library Path for Each OC4J Instance .. 10-15

Configuring the Application... 10-15
Protect the Application URLs in web.xml ... 10-15
Settings for Application Deployment .. 10-15
Configure COREid SSO in orion-application.xml.. 10-16
Protect the Application URLs in COREid Access... 10-16
Configure the COREid JAAS Login Module... 10-16
Test the Application.. 10-19

COREid Examples for J2EE Applications... 10-20
Web Application Using HTTP Header Variables through COREid...................................... 10-20

ix

Configure HTTP Header Variables in Access Manager... 10-20
Configure HTTP Header Variables for the COREid Login Module 10-20
Secure the Web Application ... 10-21

Web Application Using the COREid ObSSOCookie.. 10-21
Configure User Name and Password for the COREid Login Module........................... 10-21
Secure the Web Application ... 10-22

EJB Application Using COREid .. 10-22
COREid Support and Examples for Web Services.. 10-23

Web Service with Username Token Authentication for COREid .. 10-23
Web Service with X.509 Token Authentication for COREid... 10-25
Web Service with SAML Token Authentication for COREid... 10-26

Troubleshooting the Oracle COREid Access and Identity Setup .. 10-27

11 Integration with SSL and ORMIS

Using Keys and Certificates with OC4J and Oracle HTTP Server .. 11-2
Integrating the Security Provider with SSL-Enabled Applications .. 11-4
Using SSL with Standalone OC4J.. 11-5
Using SSL with OC4J in Oracle Application Server .. 11-8

Configure OC4J with SSL... 11-9
Use Oracle HTTP Server with SSL.. 11-9
Configure AJP over SSL ... 11-9
Configure OPMN to Enable HTTPS and Use SSL.. 11-10
Sample Configuration Files for SSL.. 11-11

Requesting Client Authentication ... 11-12
Resolving Common SSL Problems .. 11-13

Common SSL Errors and Solutions .. 11-13
General SSL Debugging ... 11-14

Enabling ORMIS for OC4J .. 11-14
Configuring ORMIS for Standalone OC4J... 11-14

Configure server.xml for the RMI Configuration File Location 11-15
Configure rmi.xml for ORMIS ... 11-15
Disabling ORMI with ORMIS Enabled... 11-16

Configuring ORMIS for OC4J in an Oracle Application Server Environment 11-16
Configuring ORMIS Access Restrictions ... 11-17
Configuring Clients to Use ORMIS .. 11-18

Specify the Appropriate Java Naming Provider URL .. 11-18
Specify the Keystore and Password .. 11-18

12 Oracle HTTPS for Client Connections

Oracle HTTPS and Clients .. 12-1
HTTPConnection Class .. 12-2
OracleSSLCredential Class .. 12-2

Overview of Oracle HTTPS Features .. 12-2
SSL Cipher Suites .. 12-3

Choosing a Cipher Suite ... 12-3
SSL Cipher Suites Supported by OracleSSL... 12-4

x

SSL Cipher Suites Supported by JSSE... 12-4
Accessing Information for Established SSL Connections.. 12-5
Security-Aware Applications Support... 12-5
Support for java.net.URL Framework.. 12-5

Specifying Default System Properties .. 12-6
Property javax.net.ssl.KeyStore... 12-6
Property javax.net.ssl.KeyStorePassword ... 12-6

Potential Security Risk with Storing Passwords in System Properties 12-6
Property Oracle.ssl.defaultCipherSuites.. 12-7

Oracle HTTPS Example.. 12-7
Initializing SSL Credentials In OracleSSL ... 12-9
Verifying Connection Information ... 12-9
Transferring Data through HTTPS ... 12-10

Using HTTPClient with JSSE ... 12-10

13 Web Application Security Configuration

Specifying the Authentication Method (auth-method) ... 13-1
Specifying auth-method in web.xml .. 13-2
Configuring OC4J for OracleAS Single Sign-On .. 13-3
Using Digest Authentication with Oracle Internet Directory... 13-3
Using Form-Based Authentication ... 13-4

Setting Standard Configuration for Form-Based Authentication..................................... 13-4
Setting the OC4J Flag for Client-Side Redirects .. 13-4

Using Client-Cert Authentication... 13-5
Configuring OC4J for Client-Cert Authentication .. 13-5
Client-Cert Execution Flow in OC4J ... 13-5

Web Application Security Role Configuration ... 13-6
J2EE Security Roles ... 13-6
Mapping of Application Roles to J2EE Roles.. 13-7
Definition of JAAS Roles and Users ... 13-7
OC4J Mapping of J2EE Roles to JAAS Roles ... 13-7

14 EJB Security Configuration

EJB JNDI Security Properties.. 14-1
JNDI Properties in jndi.properties .. 14-1
JNDI Properties within Implementation ... 14-2

Configuring EJB Security .. 14-2
Granting Permissions in the Browser... 14-2
Authenticating and Authorizing EJB Applications.. 14-2

Specifying Logical Roles in the EJB Deployment Descriptor .. 14-3
Specifying Unchecked Security for EJB Methods.. 14-6
Specifying the Run-As Security Identity .. 14-6
Mapping Logical Roles to Users and Roles.. 14-7
Specifying a Default Role Mapping for Undefined Methods.. 14-8

Specifying Credentials in EJB Clients... 14-9
Credentials in JNDI Properties .. 14-9
Credentials in the InitialContext.. 14-9

xi

Configuring Anonymous EJB Lookup... 14-9
Permitting EJB RMI Client Access .. 14-11
Enabling and Configuring Subject Propagation for ORMI.. 14-11

Overview of Subject Propagation in OC4J .. 14-12
Enabling Subject Propagation for ORMI ... 14-13
Sharing Principal Classes for Subject Propagation .. 14-13
Removing and Configuring Subject Propagation Restrictions... 14-14

15 Common Secure Interoperability Protocol

EJB Server Security Properties in internal-settings.xml .. 15-1
EJB Client Security Properties in ejb_sec.properties ... 15-3
Introduction to CSIv2 Security Properties .. 15-4
CSIv2 Security Properties in internal-settings.xml .. 15-4
CSIv2 Security Properties in ejb_sec.properties ... 15-5
CSIv2 Security Properties in orion-ejb-jar.xml ... 15-6

The <transport-config> element .. 15-6
The <as-context> element ... 15-7
The <sas-context> element ... 15-7
Example: <ior-security-config>... 15-7

16 Security Support for Resource Adapters

Overview of Security and Authentication Setup for EIS Connections 16-1
Summary of J2EE Connector Architecture Security Contract .. 16-1
Summary of Component-Managed Versus Container-Managed Sign-On 16-2
Summary of Security-Related Resource Adapter Configuration Elements 16-4

The oc4j-ra.xml File <security-config> Element.. 16-4
The oc4j-connectors.xml File <security-permission> Element.. 16-4

Understanding Component-Managed Sign-On.. 16-5
Understanding Container-Managed Sign-On ... 16-6
Authentication in Container-Managed Sign-On .. 16-8
Using Declarative Container-Managed Sign-On .. 16-8
Using Programmatic Container-Managed Sign-On ... 16-11

Using a Principal Mapping Class ... 16-11
Understanding the PrincipalMapping Interface APIs.. 16-11
Extending the AbstractPrincipalMapping Class ... 16-12
Configuring a Principal Mapping Class ... 16-14

Using a JAAS Login Module for an EIS Connection.. 16-15
The InitiatingPrincipal and InitiatingGroup Classes.. 16-15
JAAS and the <connector-factory> Element .. 16-16

A Tips and Troubleshooting for OC4J Security

Best Practices for OC4J Security ... A-1
HTTPS Best Practices .. A-1
Overall Security Best Practices .. A-2
JAAS Best Practices ... A-2

OC4J Security Issues and Hints.. A-3

xii

File jazn.xml Not Found... A-4
Issues for Custom Login Modules .. A-4

Subject-Based Authorization.. A-4
J2EE Security Integration .. A-4

Issues for Oracle Identity Management... A-4
Checking Configuration (JAZN-LDAP) ... A-4
Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory A-5
Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect................. A-5

Failure to Specify OracleAS JAAS Provider as the JAAS Provider ... A-6
Realm Issues... A-6

Realm Names Omitted from User Names.. A-6
Specifying Default Realm to Solve Authentication Failure ... A-6

Logging.. A-6
Using Oracle Diagnostic Logging with OracleAS JAAS Provider... A-7
Using Standard JDK Logging with the OracleAS JAAS Provider Admintool......................... A-8

B OracleAS JAAS Provider Samples

Security Configuration for Sample Servlet.. B-1
Configuration in system-jazn-data.xml ... B-1
Configuration in web.xml.. B-2
Configuration in orion-application.xml... B-3

Sample Servlet: Invoking J2EE Security APIs ... B-3
Sample Servlet: Granting Permissions ... B-4
Sample Servlet: Checking Permissions .. B-5

JAAS Mode Configuration in orion-application.xml... B-5
Servlet Code for Authorization... B-5

C OracleAS JAAS Provider Admintool Reference

Authentication to Run the Admintool .. C-1
Summary of Admintool Command-Line Syntax and Options .. C-2
Admintool Shell .. C-4

Shell Support for Admintool Command-Line Options... C-4
Admintool Shell Directory Structure ... C-5
Summary of Admintool Special Shell Commands... C-6

add, mkdir, and mk: Creating Provider Data ... C-6
cd: Navigating Provider Data .. C-7
clear: Clearing the Screen.. C-7
exit: Exiting the Admintool Shell... C-7
help: Listing Admintool Shell Commands... C-7
ls: Listing Data.. C-7
man: Viewing Admintool man Pages ... C-7
pwd: Displaying the Working Directory.. C-7
rm: Removing Provider Data ... C-7
set: Updating Values.. C-8

Admintool Administrative Functions ... C-8
Adding and Removing Login Modules ... C-8
Adding and Removing Realms... C-9

xiii

Adding and Removing Roles (File-Based Provider).. C-9
Adding and Removing Users (File-Based Provider) ... C-9
Checking Passwords (File-Based Provider) .. C-10
Administrative Operations .. C-10
Granting and Revoking Permissions.. C-11
Granting and Revoking Roles ... C-12
Listing Login Modules ... C-12
Listing Permissions ... C-12
Listing Realms ... C-13
Listing Roles... C-13
Listing Users .. C-13
Converting from the principals.xml File to JAAS .. C-14
Setting Passwords (File-Based Provider)... C-14

D Third Party Licenses

Apache ... D-1
The Apache Software License ... D-2

Apache SOAP... D-6
Apache SOAP License .. D-6

mod_mm and mod_ssl.. D-9
OpenSSL ... D-10

OpenSSL License ... D-10
Perl.. D-12

Perl Kit Readme... D-12
mod_perl 1.29 License .. D-13
mod_perl 1.99_16 License .. D-13
Perl Artistic License .. D-17

Preamble.. D-17
Definitions... D-17

Index

xiv

List of Examples

8–1 Example jazn-loginconfig element .. 8-12
8–2 SampleLoginModule.java... 8-16
8–3 SamplePrincipal example ... 8-22
9–1 Sample LDIF Defining a User and Role .. 9-8
9–2 JAAS Login Module Configuration Corresponding to Example 9–1.................................. 9-9
11–1 HTTPS Communication with Client Authentication.. 11-8
12–1 Using JSSE with HTTPClient ... 12-10
14–1 Mapping Logical Role to Actual Role ... 14-7
16–1 Extending AbstractPrincipalMapping .. 16-13

xv

List of Figures

1–1 Java 2 Security Model ... 1-6
1–2 Login Modules... 1-8
1–3 Role-Based Access Control .. 1-9
2–1 OC4J Security Architecture.. 2-5
6–1 Simplified Directory Information Tree for the Identity Management Realm.................... 6-3
6–2 Global JAZNContext Subtree.. 6-4
6–3 Realm-Specific Subtree... 6-5
6–4 Subscriber JAZNContext Subtree ... 6-5
6–5 OracleAS Single Sign-On and J2EE Environments .. 6-7
10–1 COREid Architecture... 10-5
11–1 Oracle Component Integration in SSL-Enabled J2EE Environments 11-4
14–1 End-to-End Security Role Configuration ... 14-3
14–2 Security Role References ... 14-4
14–3 Security Role Mapping.. 14-8
14–4 Subject Propagation ... 14-12
16–1 Flow Chart of Choices for OC4J Container-Managed Sign-On .. 16-3
16–2 Component-Managed Sign-On.. 16-6
16–3 Container-Managed Sign-On ... 16-7
C–1 Admintool Shell Directory Structure .. C-5
C–2 Sample Shell Directory Structure .. C-6

xvi

List of Tables

1–1 User Permissions.. 1-3
1–2 J2EE Security Pros and Cons .. 1-4
1–3 JAAS Security Pros and Cons... 1-4
1–4 Java Permission Instance Elements ... 1-5
1–5 Policy File Parameters ... 1-6
2–1 JAAS Framework Features ... 2-3
2–2 OracleAS JAAS Provider Permission Classes... 2-12
3–1 Configuration Repositories and Preferred Management Tools 3-13
5–1 System Properties for the Java ACC Provider ... 5-9
5–2 DataSourceUserManager Properties.. 5-18
6–1 Identity Management Realm Responsibilities ... 6-3
6–2 Key ssoreg Options... 6-16
6–3 LDAP SSL Properties and Related Properties .. 6-19
6–4 LDAP Connection Properties.. 6-20
6–5 LDAP JNDI Connection Pool Properties... 6-20
6–6 LDAP Cache Properties ... 6-21
7–1 OracleAS JAAS Provider Migration Tool Options... 7-13
7–2 JAZNMigrationTool Constants... 7-14
8–1 RealmLoginModule Options.. 8-2
8–2 Login Module Control Flags .. 8-8
9–1 Application Server Control External LDAP Provider Options... 9-3
9–2 Application Server Control External LDAP Connection Pool Options 9-4
9–3 Application Server Control External LDAP User Options .. 9-4
9–4 Application Server Control External LDAP Role and Member Options........................... 9-5
9–5 External LDAP Provider Options.. 9-6
9–6 External LDAP User Options ... 9-7
9–7 External LDAP Role and Member Options.. 9-7
10–1 COREid Login Module Options ... 10-17
10–2 Oracle COREid Access and Identity Troubleshooting .. 10-27
12–1 Cipher Suites Supported by OracleSSL ... 12-4
12–2 Cipher Suites Supported by JSSE ... 12-4
13–1 Values for auth-method in web.xml... 13-2
15–1 EJB Server Security Properties .. 15-1
15–2 EJB Client Security Properties ... 15-3
16–1 Properties for Declarative Container-Managed Sign-On.. 16-9
16–2 Method Descriptions for PrincipalMapping Interface .. 16-11
16–3 Method Descriptions for AbstractPrincipalMapping Class ... 16-13

xvii

Preface

This manual discusses Oracle Containers for J2EE (OC4J) security features.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
This manual is intended for experienced Java developers, deployers, and application
managers who want to understand the security features of OC4J. It discusses the
Oracle Application Server Java Authentication and Authorization Service (JAAS)
Provider in detail, as well as discussing security implications of individual J2EE
features, including Web applications, Enterprise JavaBeans (EJBs), the J2EE Connector
Architecture, Secure Sockets Layer, and the Common Secure Interoperability Version 2
protocol (CSIv2).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Developer’s Guide

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

■ Oracle Containers for J2EE Deployment Guide

This covers information and procedures for deploying an application to an OC4J
environment. This includes discussion of the deployment plan editor that comes
with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Configuration and Administration Guide

This discusses how to configure and administer applications for OC4J, including
use of the Oracle Enterprise Manager 10g Application Server Control Console, use
of standards-compliant MBeans provided with OC4J, and, where appropriate,
direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This provides information for servlet developers regarding use of servlets and the
servlet container in OC4J, including basic servlet development and use of JDBC
and EJBs.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This provides information about JavaServer Pages development and the JSP
implementation and container in OC4J. This includes discussion of Oracle features
such as the command-line translator and OC4J-specific configuration parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This provides conceptual information as well as detailed syntax and usage
information for tag libraries and JavaBeans provided with OC4J.

■ Oracle Containers for J2EE Services Guide

This provides information about standards-based Java services supplied with
OC4J, such as JTA, JNDI, JMS, JAAS, the Oracle Application Server Java Object
Cache, and the XML Query Service.

■ JAAS Provider API Reference

This is a Javadoc set for the OracleAS JAAS Provider.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

xix

This provides information about Enterprise JavaBeans development and the EJB
implementation and container in OC4J.

■ Oracle Application Server Web Services Developer’s Guide

This describes Web services development and configuration in OC4J and Oracle
Application Server.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

■ Oracle Application Server Web Services Security Guide

This describes Web services security and configuration in OC4J and Oracle
Application Server.

From the Oracle Application Server core documentation group:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Enterprise Deployment Guide

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Process Manager and Notification Server Administrator’s Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

For Oracle Identity Management, Oracle Internet Directory, and OracleAS Single
Sign-On:

■ Oracle Identity Management Administrator’s Guide

■ Oracle Identity Management Integration Guide

■ Oracle Identity Management Guide to Delegated Administration

■ Oracle Identity Management Application Developer’s Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Internet Directory API Reference

■ Oracle Application Server Single Sign-On Administrator’s Guide

For Oracle COREid Access and Identity:

■ Oracle COREid Access and Identity Introduction

■ Oracle COREid Access and Identity Installation Guide

■ Oracle COREid Access and Identity Administration Guide

■ Oracle COREid Access and Identity Developer Guide

■ Oracle COREid Access and Identity Deployment Guide

For additional information, see:

■ The Sun Java and J2EE Web pages, especially the Java Authentication and
Authorization Service (JAAS) Web site at :

http://java.sun.com/products/jaas/overview.html

xx

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type within a paragraph indicates commands, URLs, Java
class names and method names, file and directory names, text that
appears on the screen, or text that you enter.

xxi

What’s New

This section describes new features in this release:

■ Changes Since Release 10.1.2

Changes Since Release 10.1.2
The following security features and enhancements are added for the OC4J 10.1.3
implementation:

■ Support for the COREid Access security provider

■ Support for the LDAP-based provider in standalone OC4J

■ Digest authentication support, and client certification authentication and
authorization support

■ Implementation of the Java Authorization Contract for Containers (JSR-115).

■ JAAS integration with EJBs

■ ORMI enhancements for SSL (ORMIS)

■ Support for subject propagation (with ORMI or ORMIS)

■ JMX and MBeans support (JSR-77) for security configuration

■ New OC4J user and role accounts (see below)

■ Enhanced Java 2 security support

■ Web services security (described in another document)

In addition, note the following changes since the OC4J 10.1.2 implementation:

■ There is a new consolidated "JAAS mode" for authorization, for both servlets and
EJBs. This replaces previous runas-mode and dosasprivileged-mode
functionality for servlets, and USE_JAAS functionality (introduced in preliminary
10.1.3 releases) for EJBs. The previous functionality is supported but deprecated in
the OC4J 10.1.3 implementation.

■ The instance-level jazn-data.xml configuration file used in previous releases to
store user and role configuration (for the file-based provider), policy configuration
(for the file-based, external LDAP, or custom security provider), and login module
configuration (for all security providers) has been renamed
system-jazn-data.xml. However, an application can optionally use an
application-specific jazn-data.xml repository file to store user and role
configuration for the file-based provider.

xxii

■ The XMLUserManager class and its data store, principals.xml, are deprecated
and will no longer be supported at a future release. We strongly encourage you to
migrate your existing applications. For instructions, see "Migrating Principals
from the principals.xml File" on page 7-15.

■ The com.evermind package has been largely replaced by oracle.j2ee.
Although the com.evermind.* classes continue to exist, they are deprecated; we
encourage you to move your applications to oracle.j2ee.*.

■ Custom UserManager classes are still supported at this release, but will be
deprecated at a future release. We recommend that you use JAAS custom login
modules instead of custom UserManager implementations.

■ For the Oracle Identity Management security provider, the application realm and
external realm are deprecated.

■ The external.synchronization property is no longer supported.

■ The default setting of the jaas.username.simple property is now "true"; in
the 10.1.2 implementation the default setting was "false". This now means that
by default, realm names are omitted from the names of authenticated principals
returned by such methods as getUserPrincipal() and getRemoteUser() for
servlets, and getCallerPrincipal() for EJBs.

■ There have been some OC4J account name changes: the admin account is now
oc4jadmin; the administrators role is now oc4j-administrators; the
jmx-users role is now oc4j-app-administrators. For the file-based
provider in standalone OC4J, oc4jadmin is initially deactivated. See "Predefined
OC4J Accounts" on page 3-11.

■ Required OC4J accounts are created automatically in Oracle Internet Directory
when you associate an OC4J instance with an OID instance. See "Required OC4J
Accounts Created in Oracle Internet Directory" on page 6-11.

■ Setting LD_LIBRARY_PATH is no longer necessary in the 10.1.3 implementation.

■ The jazn.debug.log.enable flag is no longer supported for logging. Use
regular OC4J logging features. See "Logging" on page A-6.

Standard Security Concepts 1-1

1
Standard Security Concepts

This chapter provides an overview of the Java 2 security model, Java Authentication
and Authorization Service (JAAS), and related security concepts. The following topics
are covered:

■ Introducing the Java 2 Security Model and JAAS

■ Authentication and Authorization

■ About Principals and Subjects

■ About Permissions, Policies, and Realms

■ Login Module Authentication

■ Role-Based Access Control: Roles and Role Hierarchy

■ Secure Communications

■ Developing Secure J2EE Applications

Introducing the Java 2 Security Model and JAAS
The Java 2 Security Model is fundamental to the Oracle Application Server security
implementation. The Java 2 Security Model enables configuration of security at all
levels of restriction. This provides developers and administrators with increased
control over many aspects of enterprise applet, component, servlet, and application
security. The Java 2 Security Model is capability-based and enables you to establish
protection domains and to set security policies for these domains.

The Java 2 Security Model by itself, however, has certain limitations. It is code-based
only, as opposed to being declarative in deployment descriptors. It also has no policy
management API, and uses a file-based implementation that does not scale well.

The Java Authentication and Authorization Service (JAAS) is a Java package that
enables applications to authenticate and enforce access controls upon users. It is
designed to complement the existing code-based Java 2 security. JAAS implements a
Java version of the standard Pluggable Authentication Module (PAM) framework.
This enables an application to remain independent from the authentication service.

JAAS extends the access control architecture of the Java 2 Security Model to support
principal-based authorization. It also supports declarative security settings, in
deployment descriptors, instead of being limited to code-based security settings.

Authentication and Authorization

1-2 Oracle Containers for J2EE Security Guide

Authentication and Authorization
This section covers the following topics regarding authentication and authorization.

■ Authentication and Authorization Concepts

■ JAAS Security Model Versus J2EE Security Model

Authentication and Authorization Concepts
Software security depends on two fundamental concepts: authentication and
authorization.

■ Authentication deals with the question "Who is trying to access my services?" In
any system and application it is paramount to ensure that the identity of the entity
or caller trying to access your application is identified in a secure manner. In a
multitier application, the entity or caller can be a human user, a business
application, a host, or one entity acting on behalf of (or impersonating) another
entity.

Authentication information, such as user names and passwords, is stored in a user
repository, such as an XML file, database, or directory service. When a subject
attempts to access a J2EE application, such as by logging in, it is the role of a
security provider to look up the subject in the user repository and verify the
subject’s identity. A security provider is a module that provides an
implementation of a specific security service such as authentication or
authorization. The Oracle Internet Directory (OID) is an example of a user
repository.

Although each J2EE application determines which user can use the application, it
is the security provider that authenticates the user’s identity through the user
repository.

OC4J supports several different authentication methods, both standard and
Oracle-specific. For details, see "Authentication in the OC4J Environment" on
page 2-5.

See Also:

■ "About Principals and Subjects" on page 1-4

■ For a tutorial on Java 2 Security:

http://java.sun.com/docs/books/tutorial/security1.2/in
dex.html

■ For full information on Java 2 Security:

http://java.sun.com/security

■ JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun.com/products/jaas/

See Also:

■ Oracle Internet Directory Administrator’s Guide for information
about Oracle Internet Directory.

Authentication and Authorization

Standard Security Concepts 1-3

■ Authorization regards the question "Who can access what resources offered by
which components?" In a J2EE application, resources are typically expressed in
terms of URL patterns for Web applications, and method permissions for EJBs.
Authorization is on a per-role basis, with appropriate permissions being assigned
to each defined role in an application. This is further discussed in "Role-Based
Access Control: Roles and Role Hierarchy" on page 1-9.

Developers specify authorization for subjects in the application deployment
descriptors.

Capability Model of Access Control
The capability model is a method for organizing authorization information. The Java 2
Security Model uses the capability model to control access to permissions. With this
model, authorization is associated with an entity (referred to as a principal, defined
shortly), such as a user named frank in the following example. Table 1–1 shows the
permissions that user frank is authorized to use:

When user frank logs in and is successfully authenticated, the permissions described
in Table 1–1 are retrieved and granted to user frank. User frank is then free to
execute the actions permitted by these permissions.

An access control list (ACL) is a table with information about which access rights each
user has for a particular protected resource, such as a directory or individual file. Each
resource has a security attribute that identifies its access control list. The list has an
entry for each system user with access privileges.

JAAS Security Model Versus J2EE Security Model
J2EE defines a declarative authorization model for container-managed security that
decouples applications from the underlying security infrastructure. Authorization
policy is expressed statically in the application deployment descriptors, rather than in
application code. Authorization is role-based and is granted at access-level, typically
protecting resources such as a Web URL or an EJB method. Once access is granted, any
functionality of the resource is available. This model is relatively coarse-grained, but
suffices for many purposes.

By contrast, JAAS supports customized authentication and has an authorization model
that is more dynamic and relatively fine-grained, where authorization is according to an
adaptable security policy. The JAAS model is more customizable and extensible than
the J2EE model, with features such as custom permission types.

For example, while J2EE security is sufficient for general protection of a Web URL or
EJB method, JAAS security would be required to control who may access a file in the
file system, or who may access security policy, create a user, or change a password.

As appropriate and necessary, you can use either model or both with an application.
Both models are fully supported in OC4J. It is advisable to limit yourself to the J2EE
authorization model whenever it meets your needs, given that the JAAS authorization
model is more complicated to deploy and administer. Table 1–2 and Table 1–3
summarize the pros and cons.

Table 1–1 User Permissions

User Has These File Permissions

frank Read and write permissions on a file named salaries.txt in the
/home/user directory

About Principals and Subjects

1-4 Oracle Containers for J2EE Security Guide

About Principals and Subjects
A principal is a specific identity, such as a user named frank or a role named hr. A
principal is represented by an instance of a class that implements the
java.security.Principal interface. A principal class must define a namespace
that contains a unique name for each instance of the class.

A subject represents a grouping of related information for a single user of a computing
service, such as a person, computer, or process. This related information includes the
subject's identities and security-related attributes such as passwords and
cryptographic keys or other credentials. A subject is represented by an instance of the
javax.security.auth.Subject class.

A subject can contain multiple identities, each represented by a principal. For example,
a subject that represents a person, user frank, may have two principals:

■ One binds frank doe (name on his driver license) to the subject.

■ Another binds 999-99-9999 (number on his student identification card) to the
subject.

After authentication of a user, a Subject instance represents the authenticated user,
and then appropriate Principal instances are added to the Subject instance. The
Principal instances are used in authorizing the authenticated user to perform
specific privileged actions.

About Permissions, Policies, and Realms
This section provides an overview of permissions, policies, and related topics,
covering the following:

■ Security Permissions

■ Security Policies

■ Protection Domains

■ Security Managers and Access Control

Table 1–2 J2EE Security Pros and Cons

J2EE Security: Pros J2EE Security: Cons

■ Easier to use.

■ Deploys within standard deployment
descriptors.

■ Platform-independent.

■ Authentication managed by container.

■ Role-based with no permissions for defined
roles.

■ Static: cannot be changed at runtime.

Table 1–3 JAAS Security Pros and Cons

JAAS Security: Pros JAAS Security: Cons

■ Allows custom authentication modules.

■ You can authenticate to multiple user
repositories.

■ Allows finer-grained access and
authorization control.

■ You can define your own policy store.

■ More difficult to implement; more
code-centric.

■ More difficult to administer and deploy.

About Permissions, Policies, and Realms

Standard Security Concepts 1-5

■ Security Realms

Security Permissions
Permissions are the basis of the Java 2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission represents a
specific access to a particular resource.

The java.security.Permission class is an abstract class that represents access to
a given resource, and optionally a specified action on that resource. A key method of
this class is implies(Permission permission), which checks if the actions of the
specified permission are implied by the actions of the permission instance upon which
the method is called.

Here are common types of permissions and the classes that represent them (all
extending Permission, either directly or indirectly):

■ java.security.AllPermission

■ java.lang.RuntimePermission (includes only a resource target)

■ java.io.FilePermission (includes a resource and actions)

Table 1–4 identifies the elements that comprise a Java permission instance.

Security Policies
A policy is an association between resources and users or roles. More specifically, a
policy is a repository of JAAS authorization rules, containing information that answers
the question: Given a grantee, what are the granted permissions of the grantee?

A policy is represented in Java by a Policy object (java.security.Policy or
javax.security.auth.Policy); a policy object stores a set of permissions.

Policies are declared in .policy files, such as java.policy or java2.policy. A
policy contains a collection of permission grants to principals, and may contain a
reference to a keystore (described in "Key Encryption and Exchange" on page 1-10).
The following are typical locations for policy files:

■ JAVA_HOME/lib/security/java.policy

■ USER_HOME/java.policy

■ ORACLE_HOME/j2ee/home/config/java2.policy

Table 1–5 describes the Sun Microsystems implementation of policy file parameters. A
codesource is represented by a java.security.CodeSource instance.

Table 1–4 Java Permission Instance Elements

Element Description Example

Class name Permission class java.io.FilePermission

Target Target name (resource) to which this
permission applies

Directory /home/*

Actions Actions associated with this target Read, write, and execute permissions
on directory/home/*

About Permissions, Policies, and Realms

1-6 Oracle Containers for J2EE Security Guide

Protection Domains
A protection domain groups permissions with a codesource, essentially representing
the permissions granted to the codesource. (The policy currently in effect is what
determines protection domains. In the default implementation of the Policy class, a
protection domain is one grant entry in the file.)

Each Java class is associated with a protection domain when it is loaded. Specifically,
each class being loaded is associated with a java.security.ProtectionDomain
instance. The permissions granted to this protection domain may be statically bound
or dynamically determined when an access control check is performed. Each
protection domain is assigned a set of permissions based on a configured security
policy when the JVM is started.

A ProtectionDomain instance contains a codesource (described in the preceding
section). It may also contain a Principal array describing who is executing the code,
a classloader reference, and a permission collection
(java.security.PermissionCollection instance) representing a collection of
Permission objects.

The permission collection is effectively defined as the intersection of all permission
sets assigned to protection domains at the moment of the security check.

Figure 1–1 shows how protection domains fit into the basic model for authorization
checking at runtime.

Figure 1–1 Java 2 Security Model

Security Managers and Access Control
A security manager (java.lang.SecurityManager instance) allows an application
to implement security policies. For any given operation that is attempted, the security
manager allows the application to determine what the operation is and whether it
should be allowed in the current security context. The SecurityManager class has a
number of checkXxx() methods, each of which checks whether the operation Xxx is
allowed, and throws an exception if it is not. This includes the instance method
checkPermission(Permission), which throws an exception if a requested access,
specified by the given permission, is not permitted by the security policy currently in
effect.

Table 1–5 Policy File Parameters

Parameter Definition Examples

Subject One or more principal(s) duke

Codesource A URL location (codebase) and
optionally an array of
certificates (stored in a Java
keystore .jks file)

file: (any file on the local file system)

http://*.oracle.com (any file on any host at oracle.com)

file:${j2ee.home}/lib/oc4j-internal.jar

Login Module Authentication

Standard Security Concepts 1-7

An access controller (java.security.AccessController instance) is also involved
in access-control operations and decisions. The default implementation of the
SecurityManager method checkPermission(Permission) actually calls the
AccessController static method checkPermission(Permission).

Basically, an access controller is used to do the following:

■ Decide whether access to a system resource should be allowed or denied, based on
the security policy currently in effect.

■ Mark code as being privileged, thus affecting subsequent access determinations.

■ Obtain a snapshot of the current calling context so access-control decisions from a
different context can be made with respect to the saved context.

Any application that controls access to system resources should invoke
AccessController methods if it is to use the specific security model and access
control algorithm utilized by these methods. If, on the other hand, the application
wishes to defer the security model to that of the SecurityManager installed at
runtime, then it should instead invoke corresponding methods in the
SecurityManager class.

In comparison, SecurityManager represents the concept of a central point of access
control, while AccessController implements a particular access control algorithm,
with special features such as the doPrivileged() method, which performs a
specified privileged action with privileges enabled.

Security Realms
The JAAS framework does not explicitly define user communities. However, J2EE has
the concept of user communities called realms.

A realm is a collection of users and roles that are controlled by the same authentication
policy. In other words, a realm is a protection domain, or security domain, that defines
a set of permissions for authenticated users.

Each realm includes a set of configured users, roles, and policies. (In OC4J
configuration, users, roles, and policies can all be configured within a realm
definition.) At runtime, a realm defines an enterprise scope over which certain identity
management policies (such as those corresponding to users and roles) are enforced.

Login Module Authentication
Within the JAAS pluggable authentication framework, an application server and any
underlying authentication services remain independent from each other.
Authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code. A login module

See Also:

■ For more information about security management and
comparison between security managers and access controllers:

http://java.sun.com/j2se/1.5.0/docs/guide/security/spe
c/security-spec.doc6.html

See Also:

■ "Tasks and Guidelines for Using Security Realms in OC4J" on
page 5-3

■ "Realm Management in LDAP-Based Environments" on page 6-2

Login Module Authentication

1-8 Oracle Containers for J2EE Security Guide

is primarily responsible for authenticating a user based on supplied credentials (such
as a password), and adding the proper principals (such as roles) to the subject. Possible
types of JAAS login modules include a principal-mapping JAAS module, a
credential-mapping JAAS module, or a Kerberos JAAS module.

A login module is an instance of a class that implements the
javax.security.auth.spi.LoginModule interface, and is plugged in under an
application to provide a particular type of authentication.

Within this framework, the javax.security.auth.login.LoginContext class
provides the basic methods used to authenticate subjects such as users, roles, or
computing services (when a user tries to log in to the application, for example). An
application instantiates this class with a name and a callback handler (described
shortly). When the login() method of a LoginContext instance is invoked by an
application that a subject is trying to access, the LoginContext instance consults
configuration settings, using a mechanism that employs the name that was passed in,
to determine the appropriate login module to invoke for the application. Figure 1–2
summarizes this.

Figure 1–2 Login Modules

A callback handler is a javax.security.auth.callback.CallbackHandler
instance that allows a login module to interact with a user to obtain login information.
The only method specified by CallbackHandler is the handle(Callback[])
method, which takes an array of callbacks, which are instances of a class that
implements the java.security.auth.callback.Callback interface. Callbacks
do not retrieve or display requested information from the underlying security service,
but simply provide the functionality to pass the requests to an application and, as
applicable, to return the requested information back to the security service. Callback
implementations in the javax.security.auth.callback package include: a
name callback handler (NameCallback) to handle a user name, a password callback
handler (PasswordCallback) to handle a password, and a text input callback
handler (TextInputCallback) to handle any field in a login form other than a user
name or password field.

If authentication succeeds, then the authenticated subject can be retrieved by invoking
the getSubject() method of the LoginContext instance.

Different login modules can be configured with different applications, and a single
application can use multiple login modules. The JAAS framework defines a two-phase
authentication process to coordinate the login modules configured for an application.

Custom or external (third-party) login modules may be used with any given
application. Oracle provides the login modules RealmLoginModule (for the

Role-Based Access Control: Roles and Role Hierarchy

Standard Security Concepts 1-9

file-based and LDAP-based providers), LDAPLoginModule (for external LDAP
providers), and CoreIDLoginModule (for the COREid Access provider).

Role-Based Access Control: Roles and Role Hierarchy
A role is equivalent to a logical group of users. Wherever a role is discussed in this
document, you can think of it as a group of users who will be performing the same
tasks and therefore be given the same access capabilities. Roles are the identities that
each application uses to indicate access rights to its different objects and functions. A
user assumes a role to gain access to an appropriate set of these resources.

Role-based access control is a JAAS feature that simplifies the management problems
created by direct assignment of permissions to users. Assigning permissions directly to
multiple users is potentially a major management task. If multiple users no longer
require access to a specific permission, you must individually remove that permission
from each user.

Instead of directly assigning permissions to users, permissions are assigned to a role,
and users are granted their permissions by being made members of that role. Multiple
roles can be granted to a user. Figure 1–3 provides an example of role-based access
control.

Figure 1–3 Role-Based Access Control

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user,
instead of by updating all access control lists containing entries for that individual
user.

For example, if multiple users no longer require write permissions on a file named
salaries in the /home/user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

A role can also be granted to another role, thus forming a role hierarchy that provides
administrators with a tool to model enterprise security policies.

Note: An application that uses declarative J2EE authentication with
OC4J and the OracleAS JAAS Provider does not have to create a
LoginContext instance; it is created by OC4J implicitly.

See Also:

■ Chapter 8, "Login Modules"

See Also:

■ "Overview of Security Role Mapping" on page 2-13

Secure Communications

1-10 Oracle Containers for J2EE Security Guide

Secure Communications
To communicate securely, applications must satisfy the following goals:

■ Secure communications: The data transmitted over the network cannot be
intercepted, read, or altered by a third party. OC4J supports secure
communications using the HTTP protocol over the Secure Sockets Layer.

■ Network authentication: Clients and servers must be able to authenticate
themselves to one another over the network. This is achieved using digital
certificates, single sign-on, or user name / password combinations.

■ Identity propagation: This allows one client to act as the agent of another client,
using the identity of the original client.

Secure Sockets Layer and HTTPS
The Secure Sockets Layer (SSL) is the industry-standard point-to-point protocol which
provides confidentiality through encryption, authentication, and data integrity.
Although SSL is used by many protocols, it is most important for OC4J when used
with the HTTP browser protocol and in the Apache JServ Protocol link between the
Oracle HTTP Server and OC4J processes.

For convenience, this book uses "HTTPS" as shorthand when discussing HTTP
running over SSL. Although there is an https: URL prefix, there is no HTTPS
protocol as such.

Certificates
Applications need to transmit authentication and authorization information over the
network. A digital certificate, as specified by the X.509 v3 standard, contains data
establishing a principal’s authentication and authorization information. A certificate
contains:

■ A public key, which is used in public key infrastructure (PKI) operations

■ Identity information (for example, name, company, and country)

■ Optional digital rights, which grant privileges to the owner of the certificate

Each certificate is digitally signed by a trustpoint. The trustpoint signing the certificate
can be a certificate authority such as VeriSign, a corporation, or an individual.

Key Encryption and Exchange
In SSL communication between two entities, such as companies or individuals, the
server has a public key and an associated private key. Each key is a number, with the
private key of an entity being kept secret by that entity, and the public key of an entity
being publicized to any other parties with which secure communication might be
necessary. The security of the data exchanged is guaranteed by keeping the private key
secret, and by the complex encryption algorithm. This system is known as asymmetric
encryption, because the key used to encrypt data is not the same as the key used to
decrypt data.

Asymmetric encryption has a performance cost due to its complexity. A much faster
system is symmetric encryption, where the same key is used to encrypt and decrypt
data. But the weakness of symmetric encryption is that the same key has to be known
by both parties, and if anyone intercepts the exchange of the key, then the
communication becomes insecure.

Secure Communications

Standard Security Concepts 1-11

SSL uses both asymmetric and symmetric encryption to communicate. An asymmetric
key—PKI public key—is used to encode a symmetric encryption key—the bulk
encryption key; the bulk encryption key is then used to encrypt subsequent
communication. After both sides agree on the bulk encryption key, faster
communication is possible without losing security and reliability.

When an SSL session is negotiated, the following steps take place:

1. The server sends the client its public key.

2. The client creates a bulk encryption key, often a 128 bit RC4 key, using a specified
encryption suite.

3. The client encrypts the bulk key with the public key of the server, and sends the
encrypted bulk key to the server.

4. The server decrypts the bulk encryption key using the private key of the server.

This set of operations is called key exchange. After key exchange has taken place, the
client and the server use the bulk encryption key to encrypt all exchanged data.

In SSL the public key of the server is sent to the client in a data structure known as an
X.509 certificate. This certificate, created by a certificate authority (CA), contains a public
key, information concerning the owner of the certificate, and optionally some digital
rights of the owner. Certificates are digitally signed by the CA which created them
using that CA's digital certificate public key.

In SSL, the CA's signature is checked by the receiving process to ensure that it is on the
approved list of CA signatures. This check is sometimes performed by analysis of
certificate chains. This occurs if the receiving process does not have the signing CA's
public key on the approved list. In that case the receiving process checks to see if the
signer of the CA's certificate is on the approved list, or if the signer of the signer is on
the approved list, and so on. This chain of certificate, signer of certificate, signer of
signer of certificate, and so on, is a certificate chain. The highest certificate in the chain
(the original signer) is called the root certificate of the certificate chain.

The root certificate is often on the approved list of the receiving process. Certificates in
the approved list are considered to be trusted certificates. A root certificate can be
signed by a CA or can be self-signed, meaning that the digital signature that verifies the
root certificate is encrypted through the private key that corresponds with the public
key that the certificate contains, rather than through the private key of a higher CA.
(Note that certificates of the CAs themselves are always self-signed.)

Functionally, a certificate acts as a container for public keys and associated signatures.
A single certificate file can contain one or multiple chained certificates, up to an entire
chain. Private keys are normally kept separately to prevent them from being
inadvertently revealed, although they can be included in a separate section of the
certificate file for convenient portability between applications.

A keystore is used to store certificates, including the certificates of all trusted parties, for
use by a program. Through its keystore, an entity such as OC4J can authenticate other
parties as well as authenticate itself to other parties. The keystore password is
obfuscated. Oracle HTTP Server has what is called a wallet for the same purpose. Sun's
SSL implementation introduces the notion of a truststore, which is a keystore file that
includes the trusted certificate authorities that a client will implicitly accept during an
SSL handshake.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file.

In Oracle Application Server, an Oracle wallet is equivalent to a keystore.

Developing Secure J2EE Applications

1-12 Oracle Containers for J2EE Security Guide

Identity Propagation
Identify propagation, or subject propagation, refers to propagating the identity of
principals from context to context. A Web client can establish its identity to a servlet;
the servlet can then use that identity to communicate with other EJBs and servlets.

In OC4J, subject propagation is used with IIOP, in accordance with the CSIv2
specification. It is also used with ORMI if it is enabled on the client and server.

Developing Secure J2EE Applications
J2EE software development is based on a develop-deploy-manage cycle. The Oracle
Application Server security implementation plays an important role in the
deploy-manage part of the cycle. Developers can use a declarative security model
instead of having to integrate security programmatically, unburdening the developer.

The following list summarizes the J2EE development cycle, with an emphasis on the
tasks specific to developing secure applications.

1. The developer creates Web components, enterprise beans, applets, servlets, and
application clients.

The Oracle Application Server security implementation offers programmatic
interfaces, but the developer can create components without making use of those
interfaces.

2. The developer defines J2EE logical roles and assigns them privileges through
security constraints.

3. The assembler takes these components and combines them into an Enterprise
Archive (EAR) file.

As part of this process, the application assembler specifies options appropriate to
the environment.

4. The assembler defines application-level security constraints and resolves potential
conflicts between module-level configurations.

5. The deployer installs the EAR into an instance of OC4J.

As part of the deployment process, the deployer may map roles to users.

6. The system administrator maintains and manages the deployed application.

This task includes creating and managing JAAS roles and users as required by the
application customers.

See Also:

■ "Enabling and Configuring Subject Propagation for ORMI" on
page 14-11

Overview of OC4J Security 2-1

2
Overview of OC4J Security

This chapter introduces the Oracle Containers for J2EE (OC4J) security
implementation. This implementation allows developers to integrate authentication,
authorization, and delegation services with their applications.

The key component of this implementation is the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider, which supports the JAAS
specification.

This chapter introduces OC4J security, including the OracleAS JAAS Provider, and
related key topics:

■ Introducing the OracleAS JAAS Provider and Security Providers

■ Authentication in the OC4J Environment

■ Authorization in the OC4J Environment

■ Overview of Security Role Mapping

Introducing the OracleAS JAAS Provider and Security Providers
The JAAS framework and the Java 2 Security model form the foundation of JAAS,
which Oracle supports through the Oracle Application Server Java Authentication and
Authorization Service (JAAS) Provider. The OracleAS JAAS Provider is easily
integrated with J2SE and J2EE applications that use the Java 2 Security model, and
implements user authentication, authorization, and delegation services that
developers can integrate into their application environments. Instead of devoting
resources to developing these services, application developers can focus on the
presentation and business logic of their applications.

In addition to the OracleAS JAAS Provider, the other key aspect of the security
framework for OC4J applications is support for several particular security providers:
file-based, LDAP directory-based, external LDAP directory, and custom.

The rest of this section covers the following topics:

■ Overview of the OracleAS JAAS Provider

See Also:

■ For Oracle Application Server general security information and
infrastructure, the 10.1.2 version of the Oracle Application Server
Security Guide, a document that is not part of the 10.1.3
documentation set but is available at the following location:

http://www.oracle.com/technology/documentation/appserv
er1012.html

Introducing the OracleAS JAAS Provider and Security Providers

2-2 Oracle Containers for J2EE Security Guide

■ Summary of JAAS Framework Features

■ Supported Security Providers

■ Support for DataSourceUserManager

Overview of the OracleAS JAAS Provider
The OracleAS JAAS Provider implements the JAAS Login Configuration Provider
interface and the JAAS Policy Provider interface:

■ The Login Configuration Provider implementation is involved in retrieving login
module configuration information and ensuring that the appropriate login module
is invoked for authentication. An XML file is used to store JAAS login module
configurations.

■ The Policy Provider implementation supports either of two repositories to store
policies for authorization: an XML file or directory service. (This is as opposed to
the Sun Microsystems Policy Provider implementation, for example, which uses
the file java2.security as a policy repository.) Policies contain the rules,
referred to as the permissions or privileges, that authorize a user to access and use
resources, such as reading from or writing to a file.

Using OracleAS JAAS Provider, applications can enforce fine-grained access control
upon resource users. The three key steps when a security-aware application is running
in OC4J are the following:

1. Set up and invoke the login module, which involves the OracleAS JAAS Provider.

2. Authenticate the user attempting to log in, which is the role of the security
provider.

3. Authorize the user by checking permissions for whatever the user is attempting to
accomplish, which involves the OracleAS JAAS Provider.

By default, OracleAS JAAS Provider is configured as part of the OC4J product.

Summary of JAAS Framework Features
Table 2–1 summarizes JAAS framework features implemented by the OracleAS JAAS
Provider.

Note: In earlier releases, the term "JAZN" was used to refer to the
OracleAS JAAS Provider. This term is no longer used in general, but
still appears in code (such as class and package names) and the
Admintool shell prompt.

Introducing the OracleAS JAAS Provider and Security Providers

Overview of OC4J Security 2-3

Supported Security Providers
Oracle Application Server supports the following security providers. Each security
provider is associated with an appropriate login module (RealmLoginModule for the
file-based and LDAP-based providers), which is effectively part of the security
provider. In addition, each security provider uses a repository for secure and
centralized storage, retrieval, and administration of data that consists of realm
information (users and roles) and JAAS policy information (permissions).

■ File-based (XML-based) provider

The file-based provider, discussed in Chapter 7, "File-Based Security Provider", is a
fast, lightweight JAAS login module implementation that uses an XML repository.
User, role, and policy information is typically stored in the OC4J instance-level file
system-jazn-data.xml.

This is the default security provider.

■ LDAP-based provider: Oracle Identity Management

This is the security provider if you want to use the Oracle Internet Directory (OID)
as your user repository, with or without Oracle Application Server Single Sign-On,
as described in Chapter 6, "Oracle Identity Management Security Provider". The
Oracle Identity Management provider stores user, role, realm, and policy
information in Oracle Internet Directory, which is based on the Lightweight
Directory Access Protocol (LDAP) for centralized storage of information.

This security provider, intended for production environments, is scalable, secure,
enterprise-ready, and integrated with OracleAS Single Sign-On.

Table 2–1 JAAS Framework Features

Feature Description See Also

Authentication ■ Integrates with OracleAS Single Sign-On for login
authentication in J2EE application environments.

■ Supplies an out-of-the-box RealmLoginModule
class for non-SSO environments, such as OracleAS
Core or Java Edition.

■ Supports any JAAS-compliant custom login module.

"Authentication in the OC4J
Environment" on page 2-5

Declarative model ■ Integrates J2EE deployment descriptors, such as.
web.xml, with JAAS security.

Authorization ■ Supports the J2EE authorization model.

■ Supports the JAAS authorization model.

■ Supports the Java Authorization Contract for
Containers

"Authorization in the OC4J
Environment" on page 2-7

Realm management ■ The package oracle.security.jazn.realm is
provided to support user and role management.

Policy management ■ The package oracle.security.jazn.policy is
provided for administration of authorization policy.

Administration ■ Supports administration and configuration using
Oracle Enterprise Manager 10g or a command-line
tool (the OracleAS JAAS Provider Admintool).

"Tools for Oracle Application
Server and OracleAS JAAS
Provider" on page 3-2

JAZNUserManager ■ Supplies a security provider implementation that
integrates with the file-based provider, Oracle
Identity Management, and COREid Access. This
class is in the oracle.security.jazn.oc4j
package.

Introducing the OracleAS JAAS Provider and Security Providers

2-4 Oracle Containers for J2EE Security Guide

OC4J must be associated with an Oracle Internet Directory instance in order to use
Oracle Identity Management.

■ External LDAP providers

Oracle Application Server supports external (third-party) LDAP providers such as
Sun Java System Directory Server or Microsoft Active Directory, as described in
Chapter 9, "External LDAP Security Providers". The external LDAP provider
implements a custom login module, LDAPLoginModule.

■ Custom security providers

Oracle Application Server allows you or a third party to implement a custom
security provider using custom login modules to implement special authentication
functionality for an application, as described in Chapter 8, "Login Modules". A
custom login module implements the standard JAAS login module interface. You
can configure custom login modules when you deploy an application through
Oracle Enterprise Manager 10g. The configuration is stored in the OC4J
system-jazn-data.xml file.

Support for custom login modules is implemented through an extension of the
file-based provider.

■ COREid Access

Beginning with the OC4J 10.1.3 implementation, an additional choice for security
provider is COREid Access, part of Oracle COREid Access and Identity, as
described in Chapter 10, "COREid Access Security Provider". This is an
enterprise-class authentication, authorization, and auditing solution that provides
centralized security administration. This includes functionality for access control,
single sign-on (separate from OracleAS Single Sign-On), personalization, and user
profile management in heterogeneous application environments across a variety of
application servers, legacy applications, and databases. Use
CoreIDLoginModule with this security provider.

Figure 2–1 shows how the supported security providers interact with the overall
security provider framework.

Note: Note the following terminology in this document:

■ The terms "file-based provider" and "XML-based provider"
(sometimes referred to as "JAZN-XML") are equivalent.

■ In the context of Oracle Application Server, the term "LDAP-based
provider" (also sometimes "JAZN-LDAP") refers to Oracle Identity
Management and its repository, the Oracle Internet Directory.

■ In the OC4J 10.1.3 implementation, the term "custom security
provider" is essentially synonymous with "custom login module".

Authentication in the OC4J Environment

Overview of OC4J Security 2-5

Figure 2–1 OC4J Security Architecture

Support for DataSourceUserManager
As an alternative to using security providers introduced in the preceding section, the
OC4J 10.1.3 implementation continues to support the DataSourceUserManager
class, for retrieving and managing user data from a database. The database must be
specified as a data source, for which you provide a JNDI location in your
configuration. The configuration also specifies the relevant database tables and fields.

Authentication in the OC4J Environment
Authentication is the process of verifying the identity of a user in a computing system,
often as a prerequisite to granting access to resources in a system. User authentication
in the OC4J environment is performed by one of the following:

■ OracleAS Single Sign-On

■ COREid Access (optionally including single sign-on)

■ OracleAS JAAS Provider RealmLoginModule login module or desired custom
login module (for non-SSO environments)

Before HTTP requests can be dispatched to the target servlet, the OracleAS JAAS
Provider JAZNUserManager (or, alternatively, a developer-supplied UserManager
implementation), which coordinates authentication, gets the authenticated user

Important: The DataSourceUserManager class is deprecated in
the OC4J 10.1.3 implementation, but is still supported for backward
compatibility. In future releases, it will be replaced by a JAAS-based
login module.

See Also:

■ "Tasks for DataSourceUserManager" on page 5-17 for information
about DataSourceUserManager methods, initialization
parameters, and configuration

Authentication Authorization User/Role
Management

Policy
Management

Security Provider Framework

OC4J

Oracle HTTP Server

File-based
Provider

(JAZN-XML)

LDAP-based
Provider

(JAZN-LDAP)

External LDAP
Provider

Custom
Provider

COREid Access
 Provider

Authentication in the OC4J Environment

2-6 Oracle Containers for J2EE Security Guide

information (set by mod_osso for SSO, for example) from the HTTP request object,
and sets the JAAS subject in OC4J.

Several different methods of authentication can be used for a J2EE Web application.
The following are standard:

■ Basic

With basic authentication, the user is prompted directly for a user name and
password, without going through OracleAS Single Sign-On. A login module (such
as RealmLoginModule, for example) is used to generate a login dialog.

■ Digest

With the digest authentication mechanism, the password that a client presents to
authenticate itself is encrypted through the use of an MD5 digest. This is
transmitted in the request message. From a user perspective, digest authentication
behaves in the same way as basic authentication. (The digest method is not
supported for an external LDAP provider or custom provider.)

■ Form

When the user attempts to access a protected resource through form-based
authentication, OC4J displays an application-specific login screen, prompting for
user name and password. (The form method is not supported for a custom
provider.)

■ Client-cert

This method authenticates the client through HTTPS. The user must possess a
public key certificate.

The following are Oracle-specific:

■ SSO

For this authentication method, OracleAS Single Sign-On is used to authenticate
users.

■ COREIDSSO

For this authentication method, COREid single sign-on (distinct from OracleAS
Single Sign-On) is used to authenticate users.

Important: Developer-supplied UserManager classes are
deprecated in the OC4J 10.1.3 implementation and will be
desupported in a future release. Use custom login modules instead.

Note: For either the file-based provider or Oracle Identity
Management, we recommend digest authentication as a more secure
solution than basic authentication.

See Also:

■ "Specifying the Authentication Method (auth-method)" on
page 13-1

Authorization in the OC4J Environment

Overview of OC4J Security 2-7

Authorization in the OC4J Environment
There are three main aspects of authorization in OC4J:

■ J2EE authorization

■ OracleAS JAAS Provider authorization and "JAAS mode"

■ Java Authorization Contract for Containers (an enhancement of the J2EE
authorization model)

J2EE Authorization
There are standard J2EE implementations that allow servlets and EJBs to retrieve
information about a user or caller. You can use these methods in determining if a user
or caller should be allowed to access a resource.

A Web application can use the following methods in a
javax.servlet.http.HttpServletRequest instance:

■ User getUserPrincipal()

Returns a principal object containing the name of the authenticated user making
the request. The OC4J implementation returns an instance of
oracle.j2ee.security.User, which extends the standard
java.security.Principal.

■ String getRemoteUser()

Returns the login name of the authenticated user making the request (or null if
the user is not authenticated).

■ boolean isUserInRole(String rolename)

Determines whether the authenticated user making the request is a member of the
specified role.

An EJB application can use the following methods in a javax.ejb.EJBContext
instance:

■ Principal getCallerPrincipal()

Returns a principal object that identifies the caller. The OC4J implementation
returns an instance of oracle.j2ee.security.User, which extends the
standard java.security.Principal.

■ boolean isCallerInRole(String rolename)

Determines whether the caller is a member of the specified role.

JAAS Authorization and JAAS Mode
OracleAS JAAS Provider allows any protected resource to be modeled using Java
permissions. The Java permission model (and associated
java.security.Permission class) is extensible and allows a flexible way to define
fine-grained access control.

See Also:

■ "JAAS Security Model Versus J2EE Security Model" on page 1-3
for an overview of fine-grained versus coarse-grained
authorization

Authorization in the OC4J Environment

2-8 Oracle Containers for J2EE Security Guide

OracleAS JAAS Provider supports the following features related to fine-grained
authorization:

■ JAAS mode, which is related to standard Subject.doAs() and
Subject.doAsPrivileged() functionality for either servlets or EJBs

■ OracleAS JAAS Provider realm and policy API features

■ Features for granting permissions

■ Features for checking permissions

Introduction to JAAS Mode
The OC4J 10.1.3 implementation provides a fine-grained authorization feature called
JAAS mode, which is related to standard functionality of the static methods doAs()
and doAsPrivileged() in the Subject class. These methods work as follows:

■ Object doAs(Subject, PrivilegedAction)

Performs the specified privileged action (a computation to be performed with
privileges enabled) as the specified subject. This method associates the subject
with the access control context (AccessControlContext instance) of the current
thread, appending the subject’s permissions to the permission of that access
control context. The returned object is what is returned by the run() method of
the privileged action. There is also a variation that takes
java.security.PrivilegedExceptionAction instead of
java.security.PrivilegedAction, for computations that can throw checked
exceptions.

■ Object doAsPrivileged(Subject, PrivilegedAction,
AccessControlContext)

This method has the same functionality as the doAs() method, but within the
specified access control context instead of using the access control context of the
thread, appending the subject’s permissions to the permissions of the specified
context.

These methods are used in your application according to your JAAS mode setting. Set
JAAS mode in the jaas-mode attribute of the <jazn> element in the
orion-application.xml file of your application. JAAS mode determines doAs()
or doAsPrivileged() usage as follows:

■ With the setting jaas-mode="doAs", application modules are executed under
Subject.doAs().

See Also:

■ "Tasks for JAAS Mode and Authorization" on page 5-6 for related
task-oriented steps and examples

■ For standard JAAS programming reference information:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaa
s/JAASRefGuide.html

■ For detailed JAAS API information, java.security.* packages
and javax.security.auth.* packages:

http://java.sun.com/j2se/1.4.2/docs/api/

■ JAAS Provider API Reference for Javadoc for the OracleAS JAAS
Provider

Authorization in the OC4J Environment

Overview of OC4J Security 2-9

■ With the setting jaas-mode="doAsPrivileged", modules are executed under
Subject.doAsPrivileged(), therefore not being limited by the access-control
restrictions of the server.

■ With the setting jaas-mode="null" (default), modules are executed under
neither method.

Because jaas-mode is set in the application-level orion-application.xml file, it
will affect any Web module or EJB in the application.

OracleAS JAAS Provider Realm and Policy Features
This section discusses OracleAS JAAS Provider classes and methods related to JAAS
authorization.

An instance of the oracle.security.jazn.JAZNConfig class represents a
configuration of the <jazn> element. This class includes the following methods:

■ JAZNConfig getJAZNConfig()

This static method of the JAZNConfig class returns a JAZNConfig instance.

■ RealmManager getRealmManager()

This instance method of the JAZNConfig class returns a RealmManager instance,
which is used to manage realms.

The oracle.security.jazn.realm.RealmManager class includes the following
instance method:

■ Realm getRealm(String)

This method returns a realm object for the specified realm name.

An instance of the oracle.security.jazn.realm.Realm class provides access to
the store of users and roles for the particular realm. In the realm package, user
management is defined by the UserManager interface and role management is
defined by the RoleManager interface. The Realm class includes the following
instance methods:

■ UserManager getUserManager()

Note: JAAS mode replaces runas-mode and
doasprivileged-mode settings in the <jazn-web-app> element
of orion-application.xml or orion-web.xml.

These settings are deprecated in the OC4J 10.1.3 implementation, but
still supported for backward compatibility.

The setting jaas-mode="null" is equivalent to
runas-mode="false"; jaas-mode="doas" is equivalent to
runas-mode="true" with doasprivileged-mode="false";
jaas-mode="doAsPrivileged" is equivalent to
runas-mode="true" with doasprivileged-mode="true".

See Also:

■ "Security Managers and Access Control" on page 1-6 for an
introduction to access controllers and access control contexts

■ "Tasks for JAAS Mode and Authorization" on page 5-6

Authorization in the OC4J Environment

2-10 Oracle Containers for J2EE Security Guide

This method returns a UserManager instance, which you can use to manage
users in this realm.

■ RoleManager getRoleManager()

This method returns a RoleManager instance, which you can use to manage roles
in this realm.

Use an oracle.security.jazn.realm.UserManager instance to manage (add,
retrieve, or remove) users in the realm. This interface includes the following method:

■ RealmUser getUser(String)

This method returns a user object, for the specified name of a user in the realm.

Features for Granting Permissions
The JAZNConfig class, mentioned in the preceding section, also has the following
method:

■ JAZNPolicy getPolicy()

This method returns an oracle.security.jazn.policy.JAZNPolicy
instance, which represents the repository of authorization policies.

The JAZNPolicy interface includes the following methods:

■ void grant(Grantee, Permission)

This method grants the specified permission to the specified grantee, taking as
input an oracle.security.jazn.policy.Grantee instance and a
java.security.Permission instance.

■ void revoke(Grantee, Permission)

This method revokes the specified permission for the specified grantee.

■ boolean hasPermission(Grantee, Permission)

This method determines whether the specified grantee has the specified
permission.

The Grantee constructor takes a Principal instance as input:

■ new Grantee(Principal)

There are various types of permissions that can be constructed, including the
following. (These are all standard JDK features.)

■ new Permission(String permname)

The java.security.Permission constructor takes a string to specify the name
of the permission.

■ new BasicPermission(String permname)

The java.security.Permission constructor takes a string to specify the name
of the permission.

■ new FilePermission(String path, String actions)

The java.security.FilePermission constructor takes one string to specify
the path of the file in question, and another string that is a comma-delimited list of
permissible actions. Supported actions are "read", "write", "execute", and "delete".

■ new AllPermission()

Authorization in the OC4J Environment

Overview of OC4J Security 2-11

An instance of the java.security.AllPermission class is a permission that
represents all other permissions. Its constructor takes no parameters.

Features for Checking Permissions
Access control, such as checking permissions, was introduced in "Security Managers
and Access Control" on page 1-6. You can retrieve and check permissions using a
policy object.

The abstract class javax.security.auth.Policy includes the following methods:

■ Policy getPolicy()

This static method returns a Policy instance.

■ PermissionCollection getPermissions(Subject, CodeSource)

This method, given a javax.security.auth.Subject instance and a
java.security.CodeSource instance, returns a
java.security.PermissionCollection instance that indicates the set of
permissions allowed, given the characteristics of the protection domain. The
codesource field can be null.

The PermissionCollection class includes the following method:

■ boolean implies(Permission)

This abstract method indicates whether the specified permission is implied by the
set of permissions in the permission collection.

OracleAS JAAS Provider Permission Classes
Table 2–2 summarizes permission classes supplied by the OracleAS JAAS Provider.

Notes:

■ While there are standard mechanisms for checking permissions
(as described in the next section), JAAS does not provide standard
mechanisms for managing users and granting permissions. This is
why the classes and methods described in this section are
Oracle-specific.

■ You can also grant, list, and revoke permissions using the
OracleAS JAAS Provider Admintool, as discussed in Appendix C,
"OracleAS JAAS Provider Admintool Reference".

Note: The javax.security.auth.Policy class is deprecated in
JDK 1.4 but fully supported in the OC4J 10.1.3 implementation and
still supported by the Sun Microsystems JDK and J2SE. As of this
release, the replacement java.security.Policy class is not yet
supported by OC4J.

See Also:

■ "Security Policies" on page 1-5 for an introduction to codesources

See Also:

■ For information about the classes discussed, the OracleAS JAAS
Provider Javadoc: JAAS Provider API Reference.

Authorization in the OC4J Environment

2-12 Oracle Containers for J2EE Security Guide

Implementation of Java Authorization Contract for Containers
The OC4J 10.1.3 implementation supports the Java Authorization Contract for
Containers (Java ACC), as specified in JSR-115. This is a contract between containers
and authorization service providers, allowing authorization to be decoupled from the
container. OC4J authorization functionality is delegated to a standard Java ACC
provider. The contract defined in JSR-115 interacts with an application server
container, deployment tools, and policy provider, and is divided into the following
subcontracts:

■ Provider configuration subcontract

■ Policy configuration subcontract

■ Policy decision and enforcement subcontract

Java ACC provides new java.security.Permission class implementations that
adhere to the J2EE authorization model. Under Java ACC, access decisions by the
container are made according to operations on instances of these Permission classes.
Java ACC defines the ways that policy providers make use of the new permission
classes to address requirements of the J2EE authorization model, as follows:

■ Roles defined as collections of permissions

■ Granting the permissions of a role to a principal

■ Determining whether a principal has been granted the permissions of a role

Note that as a result of the Java ACC contract, J2EE security constraints are translated
into Java 2 permissions, so that the J2EE security model now fully leverages the J2SE
security model. Yet Java ACC still fully preserves the existing J2EE declarative security
model as well as the J2EE security API.

Table 2–2 OracleAS JAAS Provider Permission Classes

Permission Part of Package Description

AdminPermission oracle.security.jazn.
policy

Represents the right to administer a
permission (that is, grant or revoke
another user’s permission
assignment).

RoleAdminPermission oracle.security.jazn.
policy

The grantee of this permission is
granted the right to further
grant/revoke the target role.

JAZNPermission oracle.security.jazn For authorization permissions.
JAZNPermission contains a name
(also called a target name), but no
actions list; you either have or do not
have the named permission.

RealmPermission oracle.security.jazn.
realm

Represents permission actions for a
realm (such as createRealm and
dropRealm). RealmPermission
extends the class
java.security.Permission, and
is used like any regular Java
permission. A RealmPermission
instance associates a realm name
(target name) with a list of actions.

Overview of Security Role Mapping

Overview of OC4J Security 2-13

Overview of Security Role Mapping
Two distinct role types are available to application developers creating secure
applications in J2EE environments: J2EE roles and JAAS roles. OC4J allows you to map
a J2EE role to a JAAS role, so that a user who is a member of a given J2EE role has
access to resources that are accessible from the associated JAAS role.

The basic steps in security roles and mapping are as follows:

1. Specify logical J2EE security roles, through standard J2EE functionality, in
deployment descriptors such as web.xml and ejb-jar.xml. There is nothing
OC4J-specific in this step. A role is declared in a <security-role> element.

2. As applicable, specify security role references to link roles in your application code
to roles declared through <security-role> elements. This is accomplished in
standard deployment descriptors through <security-role-ref> elements.
Through this mechanism, you can adjust your definitions of logical security roles
without having to change your application code, then simply map logical roles to
application roles as desired. There is nothing OC4J-specific in this step.

3. Configure JAAS roles, or use default roles. For the file-based provider, for
example, JAAS roles are reflected in the OC4J system-jazn-data.xml file, or
optionally in an application-specific jazn-data.xml file.

4. Map J2EE roles to JAAS roles. You can accomplish this through Application Server
Control, and mappings are reflected in <security-role-mapping> elements in
orion-application.xml, orion-ejb-jar.xml, or orion-web.xml.

See Also:

■ "Using the Java Authorization Contract for Containers" on
page 5-9

■ For general information about Java ACC:

http://java.sun.com/j2ee/javaacc/

See Also:

■ "Mapping J2EE Security Roles to JAAS Roles" on page 5-13

■ "Web Application Security Role Configuration" on page 13-6

■ "Authenticating and Authorizing EJB Applications" on page 14-2

Overview of Security Role Mapping

2-14 Oracle Containers for J2EE Security Guide

Overview of Security Administration and Configuration 3-1

3
Overview of Security Administration and

Configuration

This section provides an overview of features and tools for security administration and
configuration in OC4J and Oracle Application Server, covering the following topics:

■ General OC4J Deployment and Configuration Features

■ Tools for Oracle Application Server and OracleAS JAAS Provider

■ JMX and MBeans Administration

■ Overview of Configuration Files and Key Elements

■ OC4J System Application

■ Summary of OC4J Accounts

■ Summary of Configuration Repositories and Security Management Tools

General OC4J Deployment and Configuration Features
OC4J supports the following standards for deploying and managing applications in a
J2EE environment:

■ Java Management Extensions (JMX) 1.2 specification allows standard interfaces to be
created for managing resources, such as services and applications, in a J2EE
environment. The OC4J implementation of JMX provides a user interface that you
can use to completely manage an OC4J server and applications running within it.

■ Java 2 Platform, Enterprise Edition Management Specification (JSR-77) allows objects
known as MBeans (managed beans) to be created for runtime management of
applications in a J2EE environment. In OC4J, you can directly access MBeans
through the System MBean Browser in Oracle Enterprise Manager 10g, but many
of their properties are exposed in a more user-friendly way through other features
of Enterprise Manager.

■ Java 2 Enterprise Edition Deployment API Specification (JSR-88) defines a standard
API for configuring and deploying J2EE applications and modules into a
J2EE-compatible environment. The OC4J implementation includes the ability to
create or edit a deployment plan containing the OC4J-specific configuration data
needed to deploy a component into OC4J.

Tools for Oracle Application Server and OracleAS JAAS Provider

3-2 Oracle Containers for J2EE Security Guide

Tools for Oracle Application Server and OracleAS JAAS Provider
Managing security in the J2SE and J2EE environments involves creating and managing
realms, users, roles, permissions, and policy. The following Oracle tools are involved
in managing security configuration:

■ Oracle Enterprise Manager 10g Application Server Control is used for overall
security administration and configuration during and after deployment, and to
manage the file-based provider.

■ OracleAS JAAS Provider Admintool is used to manage the file-based provider,
and also to manage policies and login modules for any security provider.

■ Oracle Identity Management and Oracle Internet Directory tools: Oracle Delegated
Administration Services (DAS) and Oracle Directory Manager (oidadmin) are
used to manage users and roles in Oracle Internet Directory for Oracle Identity
Management.

These tools will be summarized more thoroughly in the subsections that follow.

Overview of Enterprise Manager
Typically, you should use Oracle Enterprise Manager 10g Application Server Control
to deploy and administer your applications. The user interface for this is the
Application Server Control Console. Application Server Control includes features for
the following:

■ Deploying an application to OC4J. This includes a deployment plan editor. For
security, this also includes features to specify the security provider and security
role mapping during deployment.

■ Using the System MBean Browser for MBean configuration and operations
(further discussed in "JMX and MBeans Administration" on page 3-5). Also be
aware, however, that many parameters corresponding to MBeans properties are
exposed through other pages of the Application Server Control Console. Avoid
direct manipulation of OC4J MBeans whenever possible.

See Also:

■ Oracle Containers for J2EE Deployment Guide and Oracle Containers
for J2EE Configuration and Administration Guide for general
information about OC4J deployment, configuration, and
administration

Note: Wherever possible, Oracle Enterprise Manager 10g
Application Server Control should be your first-choice tool to
administer OC4J, including OC4J security. For features that the
Application Server Control does not support, you can, as applicable,
use the OracleAS JAAS Provider Admintool. Occasionally, you will
have to directly manipulate a configuration file, particularly the
instance-level jazn.xml file (discussed in "The jazn.xml File" on
page 3-9).

See Also:

■ "Summary of Configuration Repositories and Security
Management Tools" on page 3-12

Tools for Oracle Application Server and OracleAS JAAS Provider

Overview of Security Administration and Configuration 3-3

■ Changing to a different security provider after deployment, or updating security
provider settings.

■ Performing OC4J runtime administration and configuration.

OC4J-specific XML configuration files are updated automatically by OC4J when you
use the Application Server Control Console.

Overview of the OracleAS JAAS Provider Admintool
The OracleAS JAAS Provider Admintool, for use during development, is a lightweight
Java application with the following management features:

■ For the file-based provider: administration for users, roles, policies, and login
modules

■ For Oracle Identity Management: administration for policies and login modules,
plus read-only access to users and roles

■ For external LDAP providers: administration for policies and login modules

■ For custom security providers: administration for policies and login modules

Admintool functions can be called directly from a command line or through an
interactive shell. The Admintool is located in ORACLE_HOME/j2ee/home/jazn.jar.

The general command-line syntax is as follows:

% java -jar jazn.jar [-user username -password pwd] [option1 option2 ...]

When you use the Admintool for the file-based provider, by default it updates the
system-jazn-data.xml file in the ORACLE_HOME/j2ee/home/config directory.

Notes:

■ In standalone OC4J you also have the option of using the
command-line OC4J admin_client.jar tool, which operates
through the OC4J system application, to deploy and bind your
J2EE applications. Alternatively, if you use the Oracle JDeveloper
tool to develop your application, you can use it to deploy the
application and any resource adapters as well.

■ Whenever a configuration change is made using Application
Server Control or the OC4J security provider MBean, the
application must be restarted. Until the application is restarted, all
other operations of the security provider MBean are invalidated
and will return an error message.

See Also:

■ Oracle Application Server Administrator’s Guide for more
information about Application Server Control

■ Oracle Containers for J2EE Configuration and Administration Guide
for information about the admin_client.jar utility

■ "OC4J System Application" on page 3-10

Note: In general, changes made by the Admintool are not effective
until you restart OC4J.

Tools for Oracle Application Server and OracleAS JAAS Provider

3-4 Oracle Containers for J2EE Security Guide

Overview of Oracle Identity Management and Oracle Internet Directory Tools
This section provides an overview of tools to manage Oracle Internet Directory, when
using Oracle Identity Management as your security provider.

Overview of Delegated Administration Services
Delegated administration is an important feature of the Oracle Identity Management
infrastructure. It enables you to store all data for users, groups, and services in a
central directory, while distributing the administration of that data to various
administrators and end users. It does this in a way that respects the various security
requirements in your environment.

Suppose, for example, that your enterprise stores all user, group, and services data in a
central directory, and requires one administrator for user data, and another for the
e-mail service. Delegated administration as provided by the Oracle Identity
Management infrastructure enables different administrators with different security
requirements to administer centralized data in a way that is both secure and scalable.
Privileges can be delegated with Oracle Delegated Administration Services to (among
other things) create, edit, and delete users and groups; assign privileges to users and
groups; and manage services and accounts.

Oracle Delegated Administration Services is a set of pre-defined, Web-based units for
performing directory operations on behalf of a user. It frees directory administrators
from the more routine directory management tasks by enabling them to delegate
specific functions to other administrators and to end users. It provides most of the
functionality that directory-enabled applications require, such as creating a user entry,
creating a group entry, searching for entries, and changing user passwords.

You can use Oracle Delegated Administration Services to develop your own tools for
administering application data in the directory. Alternatively, you can use the Oracle
Internet Directory Self-Service Console, a tool based on Delegated Administration
Services. This tool comes ready to use with Oracle Internet Directory.

Overview of Oracle Directory Manager
Oracle Directory Manager is an online administration tool with a Java-based graphical
user interface that you can use to administer Oracle Internet Directory. The executable
file is located in the ORACLE_HOME/bin directory, and you can run it from the
command line as follows:

% oidadmin

In general, any directory-specific configuration or maintenance task not available
through Application Server Control can be accomplished through Oracle Directory
Manager (as well as various command-line interfaces supplied with Oracle Internet
Directory).

You can use Oracle Directory Manager for tasks such as the following:

■ Configuring realms

■ Specifying password policies

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

See Also:

■ Oracle Identity Management Guide to Delegated Administration

Overview of Configuration Files and Key Elements

Overview of Security Administration and Configuration 3-5

■ Configuring the Oracle Directory Synchronization Service and Oracle Internet
Directory connectors and agents

You can also manage features such as attribute uniqueness, plug-ins, garbage
collection, change logs, replication, query optimization, debug logging, and access
control lists.

JMX and MBeans Administration
OC4J support for the JMX specification allows standard interfaces to be created for
managing resources dynamically in a J2EE environment. The OC4J implementation of
JMX provides a JMX client, the System MBean Browser, that you can use to manage an
OC4J instance through MBeans that are provided with OC4J.

An MBean is a Java object that represents a JMX manageable resource. Each
manageable resource within OC4J is managed through an instance of the appropriate
MBean. Each MBean provided with OC4J exposes a management interface that is
accessible through the System MBean Browser in the Application Server Control
Console. You can set MBean attributes, execute operations to call methods on an
MBean, subscribe to notifications of errors or specific events, and display execution
statistics.

To access the browser from the OC4J Home page, select the Administration tab and
then, under the list of tasks, go to the JMX task "System MBean Browser". From the
browser, you can do the following:

■ Select the MBean of interest in the left-hand frame.

■ Use the Attributes tab in the right-hand frame to view or change attributes. A
settable attribute has a field where you can type in a new value. Then apply the
change.

■ Use the Operations tab in the right-hand frame to invoke methods on the MBean.
Select the operation of interest. In the Operation window, you can invoke it with
specified parameter settings.

■ Use the Notifications tab (where applicable) in the right-hand frame to subscribe
to notifications. You can select each item for which you want notification, and then
apply the changes.

■ Use the Statistics tab (where applicable) in the right-hand frame to display
execution statistics.

Be aware that MBeans and their attributes vary regarding when changes take effect. In
the runtime model, changes take effect immediately. In the configuration model, some
changes take effect when the resource is restarted, others when the application is
restarted, and still others when OC4J is restarted. There is also variation in whether
changes are persisted.

Overview of Configuration Files and Key Elements
This section provides an overview of the following key XML files and elements for
security configuration:

■ The orion-application.xml File (<jazn> and <jazn-web-app> Elements)

See Also:

■ Oracle Internet Directory Administrator’s Guide for general
information about Oracle Directory Manager

Overview of Configuration Files and Key Elements

3-6 Oracle Containers for J2EE Security Guide

■ The system-application.xml File

■ The system-jazn-data.xml File

■ Application-Specific jazn-data.xml File (Optional)

■ The jazn.xml File

The orion-application.xml File (<jazn> and <jazn-web-app> Elements)
The OC4J orion-application.xml file is for general (not just security-related)
application-level configuration. Settings in this file apply across a single J2EE
application (EAR file).

For security settings in orion-application.xml, there is the <jazn> element. In
particular, this element can specify the security provider, the user and role repository
location, and the default realm for the application, as in the following example to use
the file-based provider:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com" >
 ...
</jazn>

(The system-jazn-data.xml file, discussed in "The system-jazn-data.xml File" on
page 3-7, would actually be the repository by default, but is specified here for
illustrative purposes.)

A subelement of <jazn> in orion-application.xml is the <jazn-web-app>
element, which is where you specify OC4J-specific authentication methods (using the
auth-method attribute) for Web applications.

The system-application.xml File
The OC4J configuration file is associated with the OC4J system application, which is
described in "OC4J System Application" on page 3-10. For the system application,
system-application.xml is equivalent to the orion-application.xml file for
a deployed application.

The system-application.xml file, through its <jazn> element, specifies the
file-based security provider for OC4J instance-level user and role settings (including

Note: In general, you should use the Application Server Control
Console or OracleAS JAAS Provider Admintool (both discussed
earlier in this chapter) for configuration and administration, instead of
manipulating configuration files directly. Using these tools results in
the appropriate entries automatically being made in the configuration
files.

See Also:

■ "Summary of Configuration Repositories and Security
Management Tools" on page 3-12

Note: If there is no <jazn> element in orion-application.xml,
the security provider settings defer to those of the instance-level
jazn.xml file (where the file-based provider with the
system-jazn-data.xml repository and jazn.com default realm
are the default settings).

Overview of Configuration Files and Key Elements

Overview of Security Administration and Configuration 3-7

some used for special OC4J functionality). The system-application.xml file
points to the system-jazn-data.xml file (described in the next section), which is
also instance-level, as the repository for these settings, which are located under the
<jazn-realm> element.

By default, OC4J expects the system-application.xml to be in the
ORACLE_HOME/j2ee/instance_name/config directory.

The system-jazn-data.xml File
The system-jazn-data.xml file is a new file in the OC4J 10.1.3 implementation.
This file (as well as system-application.xml) is associated with the OC4J system
application, which is described in "OC4J System Application" on page 3-10.

The system-application.xml file points to the system-jazn-data.xml file as
the repository for OC4J instance-level user and role settings (located under the
<jazn-realm> element) for the file-based provider, which uses
system-jazn-data.xml for authentication and authorization. (Note that the
file-based provider is the default security provider.)

The system-jazn-data.xml file also stores JAAS login module configuration
(under the <jazn-loginconfig> element). In addition, by default, it stores
instance-level policy and permission configuration (under the <jazn-policy> and
<jazn-permission-classes> elements).

By default, OC4J expects the system-jazn-data.xml file to be in the
ORACLE_HOME/j2ee/instance_name/config directory.

There is a persistence mode that governs how often changes are written to the
system-jazn-data.xml file and, if applicable (for the file-based provider), to an
application-level jazn-data.xml file There are three possible values for persistence,
according to the <jazn> element persistence attribute in either the instance-level
jazn.xml file or application-level orion-application.xml file:

■ "NONE": Do not write changes to system-jazn-data.xml.

■ "ALL": Write changes after every modification.

■ "VM_EXIT" (default): Write changes when the Java Virtual Machine exits.

Here is an example:

<jazn provider="XML" persistence="ALL" ... >
 ...
</jazn>

Overview of Configuration Files and Key Elements

3-8 Oracle Containers for J2EE Security Guide

Application-Specific jazn-data.xml File (Optional)
When you use the file-based provider, you can optionally still use a jazn-data.xml
file as the user and role repository, but this file is application-specific. You can specify
its location in the <jazn> element of the orion-application.xml file:

<jazn provider="XML" location="path/jazn-data.xml">
 ...
</jazn>

Here is the default location:

ORACLE_HOME/j2ee/instance_name/application-deployments/app_name

Note that if orion-application.xml is configured exactly as follows, but the
jazn-data.xml file is not packaged with the application, then one will be created
during deployment:

<jazn provider="XML" location="./jazn-data.xml" />

Persistence mode for changes to the repository, described in the preceding section for
system-jazn-data.xml, also affects jazn-data.xml.

Notes:

■ In previous releases, system-jazn-data.xml was named
jazn-data.xml. For the file-based provider, you can still use a
file named jazn-data.xml to store user and role information,
but this file would be application-specific. See the next section,
"Application-Specific jazn-data.xml File (Optional)".

■ Settings in the system-jazn-data.xml file can be manipulated
using Application Server Control or the OracleAS JAAS Provider
Admintool.

■ Changes made to the system-jazn-data.xml file are visible to
all applications that use it.

■ The system-jazn-data.xml file contains accounts for
predefined OC4J users and roles. See "Predefined OC4J Accounts
in system-jazn-data.xml" on page 7-12.

■ White space in element settings is significant, such as the
differences between the following:

<name>scott</name>
<name>scott </name>
<name> scott</name>
<name> scott </name>

Overview of Configuration Files and Key Elements

Overview of Security Administration and Configuration 3-9

The jazn.xml File
The jazn.xml file, located in the ORACLE_HOME/j2ee/instance_name/config
directory, is an OC4J instance-level configuration file for the OracleAS JAAS Provider.
It specifies the instance-level security provider and repository for policy and
permission settings. The main element of the jazn.xml file is the <jazn> element,
with largely the same functionality as discussed earlier for the
orion-application.xml file for application-level settings.

By default, jazn.xml specifies the file-based provider, with
system-jazn-data.xml as the repository and jazn.com as the default realm:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com">
 ...
</jazn>

The jazn.xml file for the OC4J home instance, referred to as the bootstrap jazn.xml
file, is typically located in the ORACLE_HOME/j2ee/home/config directory. It is
read at OC4J startup and used by the OracleAS JAAS Provider runtime. Without a
valid jazn.xml file, the OracleAS JAAS Provider cannot begin running.

If you use Application Server Control to associate OC4J with an Oracle Internet
Directory instance in order to use the Oracle Identity Management security provider,
then the <jazn> element of the bootstrap jazn.xml file is updated appropriately for
the Oracle Internet Directory instance. For example:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 ...
</jazn>

You can optionally use a system property to specify an alternative location for the
bootstrap jazn.xml file. When the OracleAS JAAS Provider starts, it searches for
jazn.xml in the following order, stopping the search as soon as it finds one:

1. Location specified by the system property oracle.security.jazn.config

2. Location specified by the system property java.security.auth.policy

3. J2EE_HOME/config, where J2EE_HOME is specified by the system property
oracle.j2ee.home

Notes:

■ Think of the application-specific jazn-data.xml file as a
repository, not as a configuration file.

■ White space in element settings is significant, such as the
differences between the following:

<name>scott</name>
<name>scott </name>
<name> scott</name>
<name> scott </name>

Note: If changes are made to jazn.xml after OC4J starts up, they
have no effect on the OracleAS JAAS Provider.

OC4J System Application

3-10 Oracle Containers for J2EE Security Guide

4. ORACLE_HOME/j2ee/home/config, where ORACLE_HOME is specified by the
system property oracle.home (this is generally the same location as
J2EE_HOME/config)

5. ./config

Sample jazn.xml Files
Here are sample jazn.xml files, first with the default configuration for the file-based
provider:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>

And for the LDAP-based provider:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>

OC4J System Application
Be aware that the OC4J system application is a new internal component in the OC4J
10.1.3 implementation. It is auto-deployed to the OC4J instance the first time OC4J is
started. This application was added primarily to address issues related to deploying or
redeploying applications to OC4J.

The system application is at the root of the application hierarchy, and provides classes
and configuration required at OC4J startup, including shared libraries imported by
default by all other deployed applications. It is an OC4J internal component only.
Applications cannot be deployed to it, nor can it be declared the parent of another
application. The OC4J default application continues to serve as the default parent of
all deployed applications.

The system application is configured to use the file-based provider for user and role
settings, using system-jazn-data.xml for the repository. These settings should not
be altered.

The OC4J-specific application descriptor for the system application is
system-application.xml, with the same functionality as
orion-application.xml for a deployed application. (For the default application,
the OC4J-specific application descriptor is application.xml, not to be confused
with the J2EE standard application.xml file for deployed applications.) These files
are located in the ORACLE_HOME/j2ee/instance_name/config directory.

Summary of OC4J Accounts

Overview of Security Administration and Configuration 3-11

Summary of OC4J Accounts
This section provides a summary of key OC4J accounts, covering the following topics:

■ Predefined OC4J Accounts

■ Activation of the oc4jadmin Account

■ Configuring a New Administration Account

■ Configuring an Anonymous User

Predefined OC4J Accounts
The OC4J 10.1.3 implementation includes predefined "bootstrap" users and roles for
Oracle Internet Directory (when you use Oracle Identity Management) or the
file-based provider.

For the file-based provider, the accounts are predefined in the
system-jazn-data.xml file. For Oracle Internet Directory, they are created
automatically as default accounts as part of the OC4J-OID association process.

The following predefined accounts are common to both providers:

■ oc4jadmin user (formerly admin)

■ oc4j-administrators role (formerly administrators), with member
oc4jadmin, RMI permission "login" granted, and administration permission
"administration" granted

■ oc4j-app-administrators role (formerly jmx-users), with RMI permission
"login" granted, to allow access to JMX application-level connectors

The following additional accounts are predefined for the file-based provider:

■ anonymous user, initially deactivated

Activate anonymous directly in the system-jazn-data.xml file, by changing
the deactivated attribute of the <user> element from "true" to "false".
Unlike for oc4jadmin, there is no support in the OracleAS JAAS Provider
Admintool for activating anonymous.

■ users role, for RMI/EJB access

■ jtaadmin user, to allow transaction propagation over ORMI

Do not remove any of these accounts, or the administrative functions of the OracleAS
JAAS Provider will not work.

Note: By default, the OC4J default application also uses
system-jazn-data.xml.

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for information about the OC4J system and default
applications

See Also:

■ The next section, "Activation of the oc4jadmin Account"

Summary of Configuration Repositories and Security Management Tools

3-12 Oracle Containers for J2EE Security Guide

Activation of the oc4jadmin Account
The oc4jadmin account (formerly the admin account) is activated during Oracle
Application Server installation, but is initially deactivated for the file-based provider
in standalone OC4J. It is activated under the following circumstances:

■ When standalone OC4J is first started (and you are prompted for a password)

■ When you run the OracleAS JAAS Provider Admintool with the
-activateadmin option

You also specify the password as part of this command:

% java -jar jazn.jar -activateadmin password

Configuring a New Administration Account
By default, oc4jadmin is the administration account for OC4J. When using either the
file-based provider or Oracle Identity Management, you can specify a different
administration account by setting the admin.user property in the instance-level
jazn.xml file, as follows:

<jazn ... >
 ...
 <property name="admin.user" value="desired_admin_user_name" />
 ...
</jazn>

Then configure the account in the user repository with correct group membership and
privileges, as appropriate. In Oracle Internet Directory, you can use DAS to create
users and roles grant roles to users. To assign permissions, you can use the OracleAS
JAAS Provider Admintool (or the OracleAS JAAS Provider MBean).

Configuring an Anonymous User
When using either the file-based provider or Oracle Identity Management, you can
map an anonymous user to an existing user by setting the anonymous.user property
in the instance-level jazn.xml file. For example, assuming there is a user PUBLIC in
Oracle Internet Directory:

<jazn ... >
 ...
 <property name="anonymous.user" value="PUBLIC" />
 ...
</jazn>

Summary of Configuration Repositories and Security Management Tools
Management tools and configuration repositories have been discussed previously, but
Table 3–1 summarizes the configuration repositories and the preferred management
tools to use for the various types of configuration for each security provider.

Where applicable, Application Server Control is the preferred tool.

Summary of Configuration Repositories and Security Management Tools

Overview of Security Administration and Configuration 3-13

Table 3–1 Configuration Repositories and Preferred Management Tools

Security Provider

Repository and
Management Tool for
Users and Roles

Repository and
Management Tool for
Policies

Repository and
Management Tool for
JAAS Login Modules

File-based system-jazn-data.xml
(or application-specific
jazn-data.xml)

Use Application Server
Control Console.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

n/a

Oracle Identity
Management

Oracle Internet
Directory

Use DAS (or OracleAS
JAAS Provider
Admintool for
read-only).

Oracle Internet Directory

Use OracleAS JAAS
Provider Admintool.

n/a

External LDAP External (third-party)
LDAP server

Use tool supplied by
provider.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

system-jazn-data.xml

Use Application Server
Control Console or
OracleAS JAAS
Provider Admintool.

Custom security
provider

Custom security
repository

Use tool supplied by
provider.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

system-jazn-data.xml

Use Application Server
Control Console or
OracleAS JAAS
Provider Admintool.

COREid Access Oracle COREid Access
and Identity

Use COREid Access
Manager.

system-jazn-data.xml

Use OracleAS JAAS
Provider Admintool.

n/a

Summary of Configuration Repositories and Security Management Tools

3-14 Oracle Containers for J2EE Security Guide

Java VM Security Settings for OC4J 4-1

4
Java VM Security Settings for OC4J

This chapter discusses tasks related to configuring the security system at the OC4J
instance level. It contains the following topics:

■ Specifying an Alternate JAAS Policy Provider

■ Specifying a Java 2 Security Manager and Policy File

■ Enabling Subject Propagation for ORMI

Specifying an Alternate JAAS Policy Provider
If you use the Java virtual machine shipped with Oracle Application Server, the
OracleAS JAAS Provider is automatically specified as the JAAS policy provider. If you
use another JVM, you must explicitly specify
oracle.security.jazn.spi.PolicyProvider as the policy provider, because
by default, the JVM uses the Sun Microsystems JAAS provider.

You can specify Oracle-specific JAAS properties in a separate file that you supply to
the JVM when you run OC4J.

Oracle supplies a default file,
ORACLE_HOME/j2ee/home/config/jazn.security.props, that specifies the
OracleAS JAAS Provider.

■ To replace all security properties with the Oracle properties (note the two equals
signs, "=="):

java -Djava.security.properties==propfile

■ To append the Oracle-specific properties to existing security properties:

java -Djava.security.properties=propfile

Note: Set system properties by using the -D command-line option
when starting OC4J, as described in the Oracle Containers for J2EE
Configuration and Administration Guide.

Note: When you use OC4J, the JAAS configuration properties are set
by default during OC4J startup, so in most circumstances there is no
need to worry about setting these properties. You set them only when
you are running a J2SE application outside OC4J.

Specifying a Java 2 Security Manager and Policy File

4-2 Oracle Containers for J2EE Security Guide

Specifying a Java 2 Security Manager and Policy File
The OracleAS JAAS Provider checks permissions only when a security manager
(java.lang.SecurityManager instance) has been installed. Specify a security
manager in one of two ways:

■ Calling System.setSecurityManager()

■ Setting the system property java.security.manager when starting OC4J (or
using this property with no setting to use the standard default security manager)

You can use either mechanism to install the default security manager or a custom
security manager.

The permissions granted to particular classes by the default security manager are
determined by reading a policy file. The default policy file is supplied as part of J2SE.
You can specify a policy file explicitly using the system property
java.security.policy, as in:

 -Djava.security.policy=policyfilepath

Within an Oracle Application Server installation, OC4J instances run by default with
no security manager. If you choose to install a security manager, you must specify one
that does not interfere with normal OC4J functions.

The following example starts OC4J with the default security manager:

% java -Doracle.home=ORACLE_HOME -Djava.security.manager \
 -Djava.security.policy=ORACLE_HOME/j2ee/home/config/java2.policy \
 -jar oc4j.jar

See the following subsections for related information:

■ Creating a Java 2 Policy File

■ Using PrintingSecurityManager to Debug Java 2 Policy

Creating a Java 2 Policy File
The Java 2 policy file grants permissions to trusted code or applications that you run.
This enables code or applications to access Oracle support for JAAS or JDK APIs
requiring specific access privileges.

A preconfigured Java 2 policy (java2.policy) is provided in
ORACLE_HOME/j2ee/home/config.

Modify the Java 2 policy file to grant permissions to trusted code or applications. For
example, the following section of a java2.policy file grants
java.security.AllPermission to the trusted jazn.jar:

/* grant the JAAS library AllPermission */
grant codebase "file:${oracle.home}/j2ee/home/jazn.jar" {
 permission java.security.AllPermission;
};

The following example grants specific permissions to all applications running in the
ORACLE_HOME/appdemo directory:

/* Assuming you are running your application demo in $ORACLE_HOME/appdemo/, */

See Also:

■ "Security Managers and Access Control" on page 1-6 for an
overview of security managers

Specifying a Java 2 Security Manager and Policy File

Java VM Security Settings for OC4J 4-3

/* Grant JAAS permissions to the demo to run JAAS APIs*/
grant codebase "file:/${oracle.ons.oraclehome}/appdemo/-" {
 permission oracle.security.jazn.JAZNPermission "getPolicy";
 permission oracle.security.jazn.JAZNPermission "getRealmManager";
 permission oracle.security.jazn.policy.AdminPermission;
}

Note the use of "${oracle.home}" to specify the location of ORACLE_HOME. You can
set oracle.home by specifying the system property:

 -Doracle.home=ORACLE_HOME

Path canonicalization follows the rules of java.io.File. On UNIX, the path cannot
contain any symbolic links. If you do not specify a canonical path, then the default
security manager will not apply the codebase specification in the policy file.

You may need to grant additional permissions to your application code and to classes
generated by OC4J. The sample java2.policy file contains at the bottom a block
that was required to run a demo with Java 2 security enabled. The required
permissions will depend on the details of your application and the required codebase
will depend on the details of your installation.

Using PrintingSecurityManager to Debug Java 2 Policy
To assist you in identifying all the required permissions for an application running on
OC4J, Oracle provides a custom security manager, PrintingSecurityManager,
that does not throw security exceptions. Instead, it prints a message specifying what
exceptions the default security manager would have thrown.
PrintingSecurityManager also generates the policy grants that would avoid the
security exceptions.

Run PrintingSecurityManager as follows, assuming you run OC4J from
ORACLE_HOME/j2ee/home:

% java -Xbootclasspath/p:lib/oc4j-psm.jar -Doracle.home=ORACLE_HOME \
 -Djava.security.manager=oracle.oc4j.security.PrintingSecurityManager \
 -Djava.security.policy=ORACLE_HOME/j2ee/home/config/java2.policy -jar oc4j.jar

(-Xbootclasspath puts PrintingSecurityManager into the boot classpath,
where it runs with all the permissions.)

PrintingSecurityManager generates output that lists the following:

■ Which code source requires which permissions

■ A policy grant that you can copy and paste into the policy file

By default, these outputs go to System.out, but you can specify output files through
the following system properties, the first for messages about missing permissions, and
the second for policy grants:

-Doracle.oc4j.security.manager.printing.file=filenamepath
-Doracle.oc4j.security.manager.printing.generated.grants.file=filenamepath

Note: PrintingSecurityManager is not tied to OC4J, so you
can use it outside of OC4J.

Enabling Subject Propagation for ORMI

4-4 Oracle Containers for J2EE Security Guide

Enabling Subject Propagation for ORMI
Subject propagation is always used in OC4J with IIOP, in accordance with the CSIv2
specification. It is also used with ORMI if you specifically enable it on the client and
server. You can accomplish this with the following system property setting at each
end:

-Dsubject.propagation=true

In the current release, this setting controls subject propagation at a global OC4J level.

See Also:

■ "Enabling and Configuring Subject Propagation for ORMI" on
page 14-11 for complete information about subject propagation
in OC4J

Tasks and Guidelines in Setting Security 5-1

5
Tasks and Guidelines in Setting Security

This chapter discusses key tasks and related guidelines to consider when setting up
security for your applications:

■ Guidelines for Password Management

■ Tasks and Guidelines for Using Security Realms in OC4J

■ Tasks for JAAS Mode and Authorization

■ Using the Java Authorization Contract for Containers

■ Packaging Considerations for OC4J Configuration Files

■ Deployment Tasks and Guidelines for Security

■ Post-Deployment Considerations

■ Tasks for DataSourceUserManager

Guidelines for Password Management
Many OC4J components require passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially if
the permissions on the files allow them to be read by any user. To avoid this problem,
OC4J provides two solutions:

■ Password indirection, which replaces cleartext passwords with information
necessary to look up the password in another location (system-jazn-data.xml
in OC4J).

■ Password obfuscation, which replaces passwords stored in cleartext files with an
encrypted version of the password.

The rest of this discussion covers these topics:

■ Creating an Indirect Password

■ Specifying a Password Manager in system-application.xml

■ Password Obfuscation in OC4J Configuration Files

See Also:

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Guidelines for Password Management

5-2 Oracle Containers for J2EE Security Guide

Creating an Indirect Password
The following configuration files support password indirection in one or more
elements:

■ data-sources.xml: password attribute of <data-source> element

■ ra.xml: <res-password> element

■ rmi.xml: keystore-password attribute of <ssl-config> element

■ application.xml: password attributes of <resource-provider> and
<commit-coordinator> elements

■ jms.xml: <password> element

■ *-web-site.xml: keystore-password attribute of <ssl-config> element

To make any of these passwords indirect, replace the literal password string with a
string containing "->" followed by either the user name or by the realm and user name
separated by a slash ("/").

Here are some examples of indirect versus direct passwords.

■ <data-source password="->Scott">

Look up Scott in the default realm, and use the password stored in the password
manager.

■ <res-password="->customers/Scott">

Look up Scott in the customers realm, and use the password stored there.

■ <cluster password="martha">

The literal string "martha" is the password; the password is not indirect.

Specifying a Password Manager in system-application.xml
The <password-manager> element in the OC4J-specific
system-application.xml file (associated with the OC4J system application)
specifies the security provider that is used to look up indirect passwords (discussed in
the preceding section, "Creating an Indirect Password"). If this element is omitted, the
security provider of the global application is used for authentication and authorization
of indirect passwords. The <jazn> element within a <password-manager> element
in system-application.xml can be different from the <jazn> element at the top
level.

Note that for security reasons, credentials stored in Oracle Internet Directory cannot
usually be retrieved in decrypted (cleartext) format, which means that Oracle Internet
Directory cannot be used as a password manager for your application. To resolve this,
you can specify the file-based provider as your application password manager, even
when your application uses Oracle Identity Management as the security provider.

To do this, add an entry such as the following to the OC4J-specific
system-application.xml file:

<password-manager>
 <jazn provider="XML"
 location=ORACLE_HOME/j2ee/instance_name/config/system-jazn-data.xml>
 </jazn>
</password-manager>

Tasks and Guidelines for Using Security Realms in OC4J

Tasks and Guidelines in Setting Security 5-3

Password Obfuscation in OC4J Configuration Files
The JAAS configuration files jazn.xml and system-jazn-data.xml (or optionally
an application-specific jazn-data.xml file) contain user names and passwords for
JAAS authorization. To protect these files, OC4J uses password obfuscation.

Generally, whenever you update jazn.xml or system-jazn-data.xml, OC4J reads
the file, then rewrites it with obfuscated (encrypted) versions of all passwords.

In addition (relevant for Oracle Identity Management), a setting for the
ldap.password property within a <jazn> element, such as in
orion-application.xml, is obfuscated. For example:

<jazn ... >
 <property name="ldap.password" value="welcome123"/>
 ...
</jazn>

In other OC4J configuration, you can avoid exposing password cleartext by using
password indirection, as explained in "Creating an Indirect Password" on page 5-2.

Tasks and Guidelines for Using Security Realms in OC4J
In OC4J, both the file-based provider and LDAP-based Oracle Identity Management
use the concept of security realms, introduced in "Security Realms" on page 1-7. You
can configure a single realm or multiple realms, and the default realm is specified
through your OC4J configuration. Note that the concept of realms is not supported
when you use external LDAP providers such as Active Directory or Sun Java System
Directory Server.

This section discusses key details for using security realms to control authentication
and authorization in OC4J, covering the following topics:

■ Default Realm with the File-Based Provider or Oracle Identity Management

■ Using the Default Realm

■ Using a Nondefault Realm

■ Using Multiple Realms

■ Omitting the Realm Name When Retrieving an Authenticated Principal

Note: By default, system-jazn-data.xml is used as the password
manager.

Note: In system-jazn-data.xml or an application-specific
jazn-data.xml file, you can use clear (human-readable)
passwords by setting the clear attribute of the <credentials>
element to "true", though this is discouraged:

<credentials clear="true">welcome</credentials>

To explicitly specify password obfuscation, precede the password
with "!" (in which case "!" is not considered part of the password):

<credentials>!welcome</credentials>

Tasks and Guidelines for Using Security Realms in OC4J

5-4 Oracle Containers for J2EE Security Guide

Default Realm with the File-Based Provider or Oracle Identity Management
A default realm is specified in the default-realm attribute of the <jazn> element.
For the file-based provider, this is either at application level in your
orion-application.xml file, or at the OC4J level in the instance-level jazn.xml
file. For Oracle Identity Management, this is in the bootstrap jazn.xml file.

For the file-based provider, jazn.com is configured as the default realm by default, at
the instance level:

<jazn provider="XML" location="./system-jazn-data.xml" default-realm="jazn.com" />

For Oracle Identity Management, the default realm is according to the Oracle Internet
Directory, where it is determined during Oracle Internet Directory installation. After
you associate OC4J with an Oracle Internet Directory instance, the default realm is
reflected at the OC4J instance level, such as in the following example:

<jazn provider="LDAP" location="ldap://www.example.com:636" default-realm="us"/>

"Using the Default Realm" on page 5-5, discusses guidelines to be aware of when you
use the default realm.

Evaluation of the Default Realm for File-Based Provider or Oracle Identity Management
As noted in the preceding section, a default realm should always be configured.
However, for reference purposes only, this section discusses the progression that is
followed to determine the default realm if one is not specified, when using the
file-based provider or Oracle Identity Management.

If your application uses the file-based provider:

1. OracleAS JAAS Provider looks for default realm configuration at the application
level, in the orion-appliation.xml file. If a default realm is found there, it is
used as the default realm for your application.

2. If there is no default realm setting at the application level, OracleAS JAAS
Provider looks for default realm configuration at the OC4J instance level, in the
jazn.xml file:

■ If jazn.xml sets provider="XML", OracleAS JAAS Provider uses the
default realm specified in jazn.xml, if one is specified, as the default realm
for your application. If none is specified, an error is thrown to indicate that
you are missing the default realm attribute.

■ If jazn.xml sets provider="LDAP", OracleAS JAAS Provider uses
jazn.com as the default realm for your application.

If your application uses Oracle Identity Management:

Important:

■ A default realm should always be specified, even if you use
only one realm. For the file-based provider, this means you
should specify a default realm when you configure your
security provider during application deployment.

■ Do not remove configuration of the jazn.com realm from
system-jazn-data.xml; it is there by default and must
remain there for use by the OC4J system application.

Tasks and Guidelines for Using Security Realms in OC4J

Tasks and Guidelines in Setting Security 5-5

1. If configuration specifies the LDAP-based provider both for your application and
at the OC4J instance level (in jazn.xml), then OracleAS JAAS Provider looks for
default realm configuration in jazn.xml. If a default realm is found there, it is
used as the default realm for your application.

2. If configuration does not specify the LDAP-based provider at the OC4J instance
level, or if there is no default realm setting at the instance level, the Oracle Internet
Directory default subscriber is used as the default realm. (This is configured in the
Oracle Internet Directory server.)

Using the Default Realm
For authentication, when you use the default realm, there is no need to prefix the
realm name with a user name. For example, if a user scott is in the default realm
jazn.com, for authentication the user name need only be specified as "scott".

This is also true for applicable OC4J components and services such as JNDI, JMS, and
J2CA.

Similarly, for password indirection, the OC4J deployment descriptor need not prefix
the realm name in the user name specified for indirection: "scott".

Using a Nondefault Realm
If you are using a nondefault realm—such as acme.com, for this discussion—you
must always prefix user names with the realm name. To authenticate the user scott
in acme.com, for example, you would have to specify "acme.com/scott", not just
"scott".

This is also the case for applicable OC4J components and services such as JNDI, JMS,
and J2CA.

Similarly, for password indirection, the OC4J deployment descriptor must prefix the
realm name in the user name specified for indirection, if the user is in a nondefault
realm: "acme.com/scott".

Using Multiple Realms
When multiple realms are configured, you must prefix user names with the realm
name for any nondefault realm that you use. For this discussion, assume the realms
jazn.com, acme.com, and example.org are configured, with jazn.com being the
default realm. Further assume user scott is in jazn.com, while user ralph is in
example.org.

To specify scott for authentication, you need only specify the user as "scott",
because he is in the default realm jazn.com.

To specify ralph for authentication, you must specify "example.org/ralph".

This is also the case for applicable OC4J components and services such as JNDI, JMS,
and J2CA. The realm name must be specified for a user in any nondefault realm.

Similarly, for password indirection, the OC4J deployment descriptor must prefix the
realm name in the user name specified for indirection if the user is in any nondefault
realm: "example.org/ralph". But you need not specify the realm name for any user
in the default realm, such as "scott".

Tasks for JAAS Mode and Authorization

5-6 Oracle Containers for J2EE Security Guide

Omitting the Realm Name When Retrieving an Authenticated Principal
Unless you configure custom realms, it is typically desirable to omit the realm name
from the authenticated principal that is returned by key methods for servlets, EJBs,
and Web services. In OC4J, use the jaas.username.simple property to control this
behavior. This property affects the following methods:

■ getUserPrincipal() method of any HTTPServletRequest instance
(servlets)

■ getRemoteUser() method of any HTTPServletRequest instance (servlets)

■ getCallerPrincipal() method of any EJBContext instance (EJBs)

■ getUserPrincipal() method of any ServletEndpointContext instance
(Web services)

With a "true" property setting, which is the default, principal names returned by
these methods do not include the realm name: for example, "scott".

If you set the property to "false", then principal names returned by these methods
are prefixed with the realm name: for example, "jazn.com/scott".

To specify a "false" setting, use a <property> subelement of the <jazn> element
(in orion-application.xml for application level, or in the instance-level
jazn.xml file for OC4J instance level) as follows:

<jazn ... >
 ...
 <property name="jaas.username.simple" value="false" />
 ...
</jazn>

Tasks for JAAS Mode and Authorization
This section provides sample code for the following steps, to use J2EE and JAAS
authorization in an application:

1. Use J2EE Authorization

2. Use OracleAS JAAS Provider Policy Management

3. Use OracleAS JAAS Provider JAAS Mode

The samples here use a servlet method, but the basic functionality is similar for EJBs.

Important: Always set jaas.username.simple to "false"
when multiple realms are configured. (See the next section,
"Omitting the Realm Name When Retrieving an Authenticated
Principal".)

Important: Always set jaas.username.simple to "false"
when multiple realms are configured.

Tasks for JAAS Mode and Authorization

Tasks and Guidelines in Setting Security 5-7

Use J2EE Authorization
This sample servlet doGet() method uses standard J2EE authorization methods to
retrieve a user and principal, and determine whether a user is in the specified role.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println("request.getUserPrincipal = " +
 request.getUserPrincipal() + "
");
 out.println("</BODY>");
 out.println("</HTML>");
}

Use OracleAS JAAS Provider Policy Management
In this example, the doGet() method shown in the preceding section, "Use J2EE
Authorization", is expanded to use the OracleAS JAAS Provider policy management
API to grant file permissions to a user.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println("request.getUserPrincipal = " +
 request.getUserPrincipal() + "
");

//Grant Permissions to a user developer

//get JAZNConfiguration related info
 JAZNConfig jc = JAZNConfig.getJAZNConfig();

 //create a Grantee for "developer"
 RealmManager realmmgr = jc.getRealmManager();
 Realm realm = realmMgr.getRealm("jazn.com");
 UserManager userMgr = realm.getUserManager();
 final RealmUser user = userMgr.getUser("developer");

 //grant scott file permission
 JAZNPolicy policy = jc.getPolicy();

See Also:

■ "JAAS Authorization and JAAS Mode" on page 2-7 for an
overview of features shown here

■ Appendix B, "OracleAS JAAS Provider Samples" for the
complete example

Tasks for JAAS Mode and Authorization

5-8 Oracle Containers for J2EE Security Guide

 if (policy != null) {
 Grantee gtee = new Grantee((Principal) user);
 java.io.FilePermission fileperm =
 new java.io.FilePermission("foo.txt", "read");
 policy.grant(gtee, fileperm);
 }

 out.println("</BODY>");
 out.println("</HTML>");
}

Use OracleAS JAAS Provider JAAS Mode
In this example, the doGet() method shown in "Use J2EE Authorization" on page 5-7
is expanded to create and check permissions. Furthermore, assume the JAAS mode
doAsPrivileged, which is set with configuration such as the following in the
application orion-application.xml file (which specifies the file-based provider in
this example):

<orion-application ... >
 ...
 <jazn provider="XML" jaas-mode="doAsPrivileged" />
 ...
</orion-application>

The code follows. Because of the JAAS mode setting, the action method, in this case
doGet(), will be executed by OC4J within a Subject.doAsPrivileged() block
for the authenticated subject.

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 //create Permission
 FilePermission perm = new FilePermission("/home/developer/foo.txt","read");
 {
 //get current AccessControlContext
 AccessControlContext acc = AccessController.getContext();

 javax.security.auth.Policy currPolicy =
 javax.security.auth.Policy.getPolicy();

 // Query policy now
 out.println("Policy permissions for this subject are " +
 currPolicy.getPermissions(Subject.getSubject(acc),null));

See Also:

■ Oracle Identity Management Application Developer’s Guide for
details about JAAS policy management APIs.

Using the Java Authorization Contract for Containers

Tasks and Guidelines in Setting Security 5-9

 //Check Permissions
 out.println("Policy.impiles permission: "+ perm +" ? " +
 currPolicy.getPermissions(Subject.getSubject(acc),null).implies(perm));
 }
 out.println("</BODY>");
 out.println("</HTML>");
 }

Using the Java Authorization Contract for Containers
This section describes what you must do to use the Oracle Java ACC provider in OC4J,
covering the following topics:

■ System Properties to Enable Java ACC Features

■ System Properties to Specify the Java ACC Provider

System Properties to Enable Java ACC Features
By default, Java ACC is disabled in OC4J. It can be enabled with the following system
property setting at OC4J startup:

-Doracle.oc4j.security.jacc=true

Java ACC trace logging can be enabled with the following system property setting at
OC4J startup:

-Doracle.oc4j.security.jacc.debug=true

System Properties to Specify the Java ACC Provider
To employ a Java ACC provider, the system properties described in Table 5–1 must be
set appropriately at application server startup. For the Oracle Java ACC provider, this
happens automatically when you enable Java ACC, with the properties being set as
shown in parentheses.

Note: Java ACC is supported only for the file-based provider.
Generated policies are stored in system-jazn-data.xml.

See Also:

■ "Implementation of Java Authorization Contract for
Containers" on page 2-12 for an overview

Table 5–1 System Properties for the Java ACC Provider

Property Description

javax.security.jacc.policy.provider Class name of the policy provider
(oracle.security.jacc.provider.J2SEPolicy)

javax.security.jacc.policy.
PolicyConfigurationFactory.provider

Class name of the policy mapping
configuration factory
(oracle.security.jacc.provider.
JACCPolicyConfigurationFactory)

oracle.security.jacc.provider.
RoleMappingConfigurationFactory.provider

Class name of the role mapping configuration
factory
(oracle.security.jacc.provider.
JACCRoleMappingConfigurationFactoryImpl)

Packaging Considerations for OC4J Configuration Files

5-10 Oracle Containers for J2EE Security Guide

Packaging Considerations for OC4J Configuration Files
This section discusses packaging considerations for OC4J-specific configuration files:

■ Configuration Tasks and Considerations in the Deployment Descriptors

■ Supplying an Application-Specific jazn-data.xml File

Configuration Tasks and Considerations in the Deployment Descriptors
When you package your application, you will include standard deployment
descriptors such as application.xml, web.xml, and ejb-jar.xml. You can also
optionally provide OC4J descriptors such as orion-application.xml,
orion-web.xml, and orion-ejb-jar.xml, or they may be provided for you, such
as according to your settings in Application Server Control Console when you deploy.

This section summarizes some considerations for your deployment descriptors before
you package your application.

Configuration to Use the Instance-Level File-Based Provider
If there is no <jazn> element in the orion-application.xml file when you deploy
your application (neither placed there automatically by Application Server Control or
other deployment processing, nor placed there manually), the default is as follows:

<jazn provider="XML" />

This results in use of the instance-level file-based provider with
system-jazn-data.xml as the repository.

Alternatively, you can explicitly place this configuration in
orion-application.xml in order to use the instance-level file-based provider.

Configuration to Automatically Create jazn-data.xml
If orion-application.xml is configured exactly as follows:

<jazn provider="XML" location="./jazn-data.xml" />

But the jazn-data.xml file is not packaged with the application, then one will be
created during deployment.

Supplying an Application-Specific jazn-data.xml File
If you supply a jazn-data.xml file with your application, then you must specify its
location through the <jazn> element location attribute in the
orion-application.xml file for your application. For example:

1. In orion-application.xml, specify the following:

<jazn provider="XML" location="./jazn-data.xml default-realm="myrealm" />

2. Package the jazn-data.xml file in the /META-INF directory of the EAR file.

Deployment Tasks and Guidelines for Security
This section discusses security issues to consider when deploying your application,
covering the following topics:

■ Overview of Deployment Considerations

■ Deploying an Application

Deployment Tasks and Guidelines for Security

Tasks and Guidelines in Setting Security 5-11

■ Specifying a Security Provider

■ Mapping J2EE Security Roles to JAAS Roles

Overview of Deployment Considerations
The security provider is designed to work with the J2EE declarative security model.
This declarative model requires little or no programming to use JAAS security in your
application. Instead, most security decisions are made as part of the deployment
process, making it easy to make changes without requiring re-coding. If the declarative
model is not sufficient, the security provider also supports programmatic security in
the same manner that JAAS is used in any J2SE environment.

Using the declarative security model, the deployer must make the following
security-related decisions:

■ Decide which security provider you want to use. The Oracle Application Server
includes Oracle Identity Management, which uses the LDAP-based Oracle Internet
Directory as the repository, and the file-based provider, which uses an XML file as
the repository. OC4J also supports external (third-party) LDAP providers, custom
security providers (custom login modules), and, beginning in the OC4J 10.1.3
implementation, the COREid Access provider.

■ Determine the J2EE logical roles that are assumed in the application, then define
these roles in the deployment descriptors. For example, an HR application may
assume that the J2EE logical role hr_manager is running the application; the
deployer must define that role.

■ Determine the authorization constraints that apply to these roles and define them
in the deployment descriptors. For web modules, these constraints typically apply
to URL patterns as defined in the J2EE specification. EJB modules typically have
constraints at the EJB-method level.

■ Map the security roles (including the application-specific roles, if they exist) to
users and roles defined by the OracleAS JAAS Provider. For example, the J2EE
logical role called hr_manager may be mapped to a given set of users defined by
the OracleAS JAAS Provider.

■ Consider whether you have any code that you will want to load as shared libraries
(login modules, for example).

Deploying an Application
This section discusses how to deploy an application, focusing on the functionality of
the Application Server Control Console.

Deploying an Application through Application Server Control
Details about deploying an application to OC4J, including information about
deployment plans, are provided in the Oracle Containers for J2EE Deployment Guide.
This section reviews the basic steps:

1. In the OC4J Home page, select the Applications tab.

2. In the resulting Applications page, choose Deploy.

See Also:

■ Oracle Containers for J2EE Deployment Guide for a full discussion of
deployment and related considerations

Deployment Tasks and Guidelines for Security

5-12 Oracle Containers for J2EE Security Guide

3. In the resulting Deploy: Select Archive page (page 1 of 3), specify the archive file
to deploy and your desired choice for a deployment plan.

4. In the Deploy: Application Attributes page (page 2 of 3), specify the desired
application name, parent application, Web site, and context root.

5. In the Deploy: Deployment Settings page (page 3 of 3), you can choose any of the
following tasks:

■ Map Environment References (if applicable)

■ Select Security Provider

■ Map Security Roles (if applicable)

■ Configure EJBs (if applicable)

■ Configure Clustering

■ Configure Class Loading

For security, selecting a security provider and mapping security roles are of
particular interest. You may also want to configure class loading in order to import
shared libraries, such as if you have login modules that you want to load as shared
libraries.

6. In the Deploy: Deployment Settings page, when you are done with any applicable
tasks mentioned in the previous step, select Deploy.

Specifying a Security Provider
This section discusses how to specify the security provider using Application Server
Control Console, as well as considerations for using the file-based provider versus the
LDAP-based provider.

Considering the File-Based Provider Versus Oracle Identity Management
Generally, use the file-based provider in development environments and in deployed
applications with a small user population. Use Oracle Identity Management in larger
production environments.

Compared to the file-based provider, Oracle Identity Management offers better
security and performance. The centralized Oracle Internet Directory server scales well
as the number of applications and users grows, and enables you to configure cache
parameters to improve overall performance of authentication and authorization.

In addition, Oracle Internet Directory offers features such as centralized account
creation and management, single passwords, and credential management.

See Also:

■ "Specifying the Security Provider through Application Server
Control" on page 5-13

■ "Specifying Security Role Mapping through Application Server
Control" on page 5-14

■ "Using Login Modules as OC4J Shared Libraries" on page 8-6

Note: To use Oracle Identity Management, the OC4J instance must
have been previously associated with Oracle Internet Directory
through Application Server Control.

Deployment Tasks and Guidelines for Security

Tasks and Guidelines in Setting Security 5-13

Specifying the Security Provider through Application Server Control
In Application Server Control Console, specify the security provider during
deployment, from the Deploy: Deployment Settings page (see "Deploying an
Application through Application Server Control" on page 5-11 for how to get to this
page), as follows:

1. Choose the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose the
desired security provider from the dropdown list. The choices are:

■ File-Based

■ Oracle Identity Management

■ Third Party LDAP Server (for an external LDAP provider)

■ Custom (for a custom login module)

3. Each type of security provider involves its own set of configuration tasks,
documented in the following locations:

■ "Specifying Oracle Identity Management during Deployment" on page 6-14

■ "Configuring the File-Based Provider during Application Deployment" on
page 7-3

■ "Specifying and Configuring an External LDAP Provider during Deployment"
on page 9-3

■ "Specifying and Configuring a Custom Security Provider during Deployment"
on page 8-7

4. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11.

Mapping J2EE Security Roles to JAAS Roles
This section discusses various aspects of the following:

■ Defining security roles in an application and referencing them to logical J2EE
security roles in the standard deployment descriptor

■ Mapping J2EE security roles to JAAS security roles in the OC4J configuration, and
how to accomplish this mapping in Application Server Control

The information is organized as follows:

■ Application Role Definitions and References

■ Specifying Security Role Mapping through Application Server Control

■ Mapping J2EE Roles to JAAS Roles in OC4J Configuration Files

■ Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users

Note: Security role mappings are not inherited from a parent
application.

Deployment Tasks and Guidelines for Security

5-14 Oracle Containers for J2EE Security Guide

Application Role Definitions and References
The process of role definitions and references includes the following steps:

1. During development, define roles as classes that implement the
java.security.Principal interface.

2. In your standard deployment descriptor (web.xml or ejb-jar.xml), use
<security-role> elements to define logical security roles, such as in the
following example:

<security-role>
 <role-name>sr_developer</role-name>
</security-role>

3. Use <security-role-ref> elements in the standard deployment descriptor to
map from the roles you have developed in your application to the logical roles you
have defined in the descriptors, such as in the following example (where
ar_developer is defined in the application):

<security-role-ref>
 <role-name>ar_developer</role-name>
 <role-link>sr_developer</role-link>
</security-role-ref>

After these steps, mappings from the logical roles to roles defined in the OC4J
container are defined in the OC4J descriptors (orion-web.xml,
orion-ejb-jar.xml, or orion-application.xml). These files are updated, as
appropriate, through the mappings you define when you deploy an application
through Application Server Control, for example, and are reflected in
<security-role-mapping> elements. These mappings are discussed in the next
two sections, "Specifying Security Role Mapping through Application Server Control"
and "Mapping J2EE Roles to JAAS Roles in OC4J Configuration Files".

Specifying Security Role Mapping through Application Server Control
In Application Server Control Console, map security roles during deployment, from
the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 5-11 for how to get to this page), as follows:

1. Select the Map Security Roles task.

2. In the resulting Deployment Settings: Map Security Roles page, choose the Map
Role task for each role you want to map. (You can also choose Clear All
Mappings.)

See Also:

■ "Overview of Security Role Mapping" on page 2-13

■ "Web Application Security Role Configuration" on page 13-6

■ "Mapping Logical Roles to Users and Roles" on page 14-7 (for
EJBs)

See Also: The preceding discussion leaves out some details, which
differ between Web applications and EJBs. Refer to the following for
additional information:

■ "Web Application Security Role Configuration" on page 13-6

■ "Authenticating and Authorizing EJB Applications" on page 14-2

Deployment Tasks and Guidelines for Security

Tasks and Guidelines in Setting Security 5-15

3. In the resulting page for the role, you can do any of the following:

■ Map all users and groups to the role.

■ Map selected users to the role. Choose Add Existing User, then specify the
desired users in the Select and Search: Users page, then choose Select. If Add
Existing User does not list the desired user, then use the Add User feature.

■ Map selected groups to the role. Choose Add Existing Group, then specify the
desired groups in the Select and Search: Groups page, then choose Select. If
Add Existing Group does not list the desired group, then use the Add Group
feature.

■ Choose Continue when you are finished mapping users and groups.

4. Back in the Deployment Settings: Map Security Roles page, choose OK.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11

These actions create <security-role-mapping> elements in the applicable OC4J
configuration file, such as orion-application.xml, orion-web.xml,
orion-ejb-jar.xml, as shown in the next section, "Mapping J2EE Roles to JAAS
Roles in OC4J Configuration Files".

Mapping J2EE Roles to JAAS Roles in OC4J Configuration Files
Portable J2EE security roles defined in a standard J2EE deployment descriptor are
mapped to JAAS roles in OC4J through <security-role-mapping> settings in the
orion-application.xml file (to apply throughout a J2EE application),
orion-web.xml file (to apply to a particular Web application), or
orion-ejb-jar.xml file (to apply to a particular EJB application).

In this example, the JAAS sr_developer security role is mapped to the OC4J
developer role. Note that a <group> subelement under a
<security-role-mapping> element corresponds to a role in the OracleAS JAAS
Provider. You can also have <user> subelements to map to individual users.

<security-role-mapping name="sr_developer">
 <group name="developer" />
</security-role-mapping>

This association permits the developer role to access resources that are accessible for
the sr_developer role.

Consider a user john, for example, who is a member of the developer role. Because
this role is mapped to the J2EE role sr_developer, john has access to the
application resources available to the sr_developer role.

Note: There is no way to alter security mappings through
Application Server Control after deployment. You would have to
update the configuration manually (as shown in "OC4J Mapping of
J2EE Roles to JAAS Roles" on page 13-7 and "Mapping Logical
Roles to Users and Roles" on page 14-7) and then restart or
redeploy the application.

Deployment Tasks and Guidelines for Security

5-16 Oracle Containers for J2EE Security Guide

Using the OC4J PUBLIC Role to Allow General Access by Authenticated Users
For situations where you care only about authentication, not authorization, OC4J
supports a mode where any authenticated user is allowed access to a given application
or resource. This is supported through the PUBLIC role, and can be configured down
to a per-URL or per-method basis as desired. This involves the following steps:

1. If you do not already have a logical role intended for public access, you can define
such a role in web.xml (for a Web application) or in ejb-jar.xml (for an EJB).

For example, in web.xml:

<web-app>
 ...
 <security-role>
 <role-name>public_role</role-name>
 </security-role>
 ...
 <auth-constraint>
 <role-name>public_role</role-name>
 </auth-constraint>
 ...
</web-app>

Or, in ejb-jar.xml:

<assembly-descriptor>
 ...
 <security-role>
 <role-name>public_role</role-name>
 </security-role>
 ...
 <method-permission>
 <role-name>public_role</role-name>
 <method>method</method>
 </method-permission>
 ...
</assembly-descriptor>

2. Map your public role to the PUBLIC role in orion-application.xml (for a
Web application) or orion-ejb-jar.xml (for an EJB).

To map the role defined in web.xml above, include the following in
orion-application.xml:

<orion-application>
 ...
 <security-role-mapping name="public_role">
 <group name="{{PUBLIC}}"/>
 </security-role-mapping>
 ...
</orion-application>

Or, for an EJB, use the <security-role-mapping> element in
orion-ejb-jar.xml instead (where it is a subelement of the
<assembly-descriptor> element).

Note: This example assumes the default setting of "{{PUBLIC}}"
for the OC4J public group. This may be overridden through the
OracleAS JAAS Provider public.group property.

Tasks for DataSourceUserManager

Tasks and Guidelines in Setting Security 5-17

Post-Deployment Considerations
This section discusses the following consideration for after you have deployed your
application:

■ Navigating to the Security Provider Page for Your Application

Navigating to the Security Provider Page for Your Application
After you have deployed your application, you can go to the Security Provider page
for your application in the Application Server Control Console to examine or update
the application-level security settings. Starting from the OC4J Home page for your
OC4J instance:

1. Choose the Administration tab.

2. In the Administration page, go to the Security Providers task (under "Security").

3. In the Security Providers page, under "Application Level Security", go to the Edit
task for your application.

This brings you to the Security Provider page, displaying information on the provider
for your application and allowing you to update settings or change to a different
security provider.

Tasks for DataSourceUserManager
As an alternative to using security providers documented elsewhere in this manual,
the OC4J 10.1.3 implementation continues to support the DataSourceUserManager
class, in package com.evermind.sql, for retrieving user data from a database. This
section discusses features of this class, and how to configure your application to use it.
The following topics are covered:

■ DataSourceUserManager Properties

■ Configuring an Application to Use DataSourceUserManager

DataSourceUserManager Properties
When you configure DataSourceUserManager (as described later, in "Configuring
an Application to Use DataSourceUserManager" on page 5-18), you can specify values
for the properties described in Table 5–2, as appropriate. The
DataSourceUserManager instance uses these properties to access the user-defined
database table that lists the current users and their associated credentials.

Important:

■ The DataSourceUserManager class is deprecated in the
OC4J 10.1.3 implementation, but is still supported for backward
compatibility. In future releases, it will be replaced with
equivalent functionality using a custom login module.

■ In the 10.1.3 implementation, DataSourceUserManager
obtains group information only from the database, which
differs from the behavior in previous implementations.
Therefore, you must now map groups to users in the database,
as applicable.

Tasks for DataSourceUserManager

5-18 Oracle Containers for J2EE Security Guide

Configuring an Application to Use DataSourceUserManager
To use DataSourceUserManager, configure it in a <user-manager> element in
your orion-application.xml file. This is a subelement of
<orion-application>, and must be configured manually. There is no
UserManager support in the Application Server Control 10.1.3 implementation.

Specify the DataSourceUserManager fully qualified name in the class attribute of
<user-manager>. Use a <property> subelement to specify the name and value of
each property you want to set.

Here is an example:

<orion-application ... >
 ...

Table 5–2 DataSourceUserManager Properties

Property Description

dataSource A JNDI location for the installed data source
(database) to use

table Name of the database table containing user data

usernameField Name of the column for user names in the database
table

passwordField Name of the column for passwords in the database
table

certificateIssuerField An identifier for the certificate issuer, if applicable

certificateSerialField The serial ID of the certificate issuer, if applicable

localeField The locale, if applicable

defaultGroups Comma-delimited list of groups that the users are
members of

groupMembershipTableName Name of an optional database table that maps users to
groups, if the use of defaultGroups is not sufficient

groupMembershipUserNameFieldName Name of the column for user names in the group
membership database table, if applicable

groupMembershipGroupFieldName Name of the column for group names in the group
membership database table, if applicable

staleness Number of milliseconds for which a fetched set of
user data will be valid. The default setting is -1
(forever)

casing Flag that controls how DataSourceUserManager
handles character case for user names (but not group
names) when trying to match a name against the list
of known users in the database

The default "sensitive" setting results in
case-sensitive matching. For the "toupper" and
"tolower" settings, the name is converted to all
uppercase or all lowercase, respectively, for purposes
of matching.

debug Flag to enable output of debug information

See Also:

■ The preceding section, "DataSourceUserManager Properties"

Tasks for DataSourceUserManager

Tasks and Guidelines in Setting Security 5-19

 <user-manager class="com.evermind.sql.DataSourceUserManager">
 <property name="dataSource" value="jdbc/OracleCoreDS" />
 <property name="table" value="j2ee_users" />
 <property name="usernameField" value="username" />
 <property name="passwordField" value="password" />
 <property name="groupMembershipTableName" value="second_table" />
 <property name="groupMembershipGroupFieldName" value="group" />
 <property name="groupMembershipUserNameFieldName" value="userId" />
 </user-manager>
 ...
</orion-application>

Tasks for DataSourceUserManager

5-20 Oracle Containers for J2EE Security Guide

Oracle Identity Management Security Provider 6-1

6
Oracle Identity Management Security

Provider

In Oracle Application Server, Oracle Identity Management with Oracle Internet
Directory and (optionally) OracleAS Single Sign-On is the LDAP-based security
provider.

This chapter is for those who use or plan to use Oracle Identity Management as the
security provider, and covers the integration of Oracle Identity Management with
OC4J. It begins with some overview of LDAP realm management, then discusses
configuration and use of these features, covering the following topics:

■ Realm Management in LDAP-Based Environments

■ Overview of Oracle Identity Management Key Components

■ Prerequisites: Oracle Application Server Infrastructure

■ Steps to Use the Oracle Identity Management Security Provider

■ LDAP-Based Provider Settings in OC4J Configuration Files

Notes:

■ Beginning with the OC4J 10.1.3 implementation, the LDAP-based
provider is supported in standalone OC4J as well as in an Oracle
Application Server environment.

■ Be aware that with the LDAP-based provider, role comparisons
for authorization are not case-sensitive.

■ Managing users and roles in Oracle Internet Directory is beyond
the scope of this document. Consult the Oracle Identity
Management Guide to Delegated Administration.

■ After you add or modify a user account in Oracle Internet
Directory, you should be able to log in without restarting OC4J,
assuming you have associated Oracle Internet Directory with
OC4J as described in "Associate Oracle Internet Directory with
OC4J" on page 6-9.

■ OC4J provides a login module, LDAPLoginModule, for use with
non-Oracle LDAP servers. Do not configure this login module for
use with Oracle Internet Directory. Doing so would result in the
loss of optimizations and integrations that are otherwise available.
The only login module for use with Oracle Internet Directory is
RealmLoginModule.

Realm Management in LDAP-Based Environments

6-2 Oracle Containers for J2EE Security Guide

Realm Management in LDAP-Based Environments
A realm is a collection of users and roles. In the OC4J 10.1.3 implementation, manage
users and roles in an LDAP-based (Oracle Internet Directory) realm by using
administrative features of the Oracle Delegated Administration Services (DAS).

This section discusses the following topics for realm management in Oracle Internet
Directory:

■ LDAP-Based Realm Types

■ LDAP-Based Realm Data Storage

LDAP-Based Realm Types
The OracleAS JAAS Provider supports the identity management realm for
LDAP-based environments. (The external realm and application realm are
deprecated.) A realm provides different user and role management capabilities.

A realm type consists of:

■ A role manager for role management

■ A user manager for user management

The identity management realm:

■ Is created through provisioning tools.

■ Is used in hosting environments, and is well suited for a hosting environment in
which multiple customers or companies subscribe to shared services.

■ Supports external, read-only user and role management.

When you use Oracle Internet Directory with OracleAS Single Sign-On, you must use
the identity management realm.

Figure 6–1 shows a sample LDAP DIT containing an identity management realm that
is registered as an instance with the OracleAS JAAS Provider. The realm type is
created below a realms container.

Notes:

■ Specifically, regarding external and application realms: in
package oracle.security.jazn.realm,
APPLICATION_REALM and EXTERNAL_REALM are deprecated
in the RealmType class; _extRealm and _appRealm are
deprecated in the InitRealmInfo class. External realms and
application realms will be desupported in future releases.

■ Use the DAS tool for user and role management with Oracle
Internet Directory.

Realm Management in LDAP-Based Environments

Oracle Identity Management Security Provider 6-3

Figure 6–1 Simplified Directory Information Tree for the Identity Management Realm

Table 6–1 describes the user and role management responsibilities of the identity
management realm.

About Distinguished Names
The term distinguished name, or DN, is used frequently in this chapter. This is a
standard LDAP concept. A DN comprises a set of one or more relative distinguished
names (RDNs) separated by commas. An RDN can be any of the following:

■ DC (domain component)

■ CN (common name)

■ OU (organizational unit name)

■ O (organization name)

■ STREET (street address)

■ L (locality name)

■ ST (state or province)

■ C (country)

■ UID (user ID)

RDNs most often consist of common names or domain components in the discussion
in this chapter. A common name could be something like "Jeff Smith" or "Oracle", for
example.

Table 6–1 Identity Management Realm Responsibilities

Identity Management
Realm Name Role Management User Management

BestCOMRealm Retrieves external,
read-only roles of a
subscriber

Retrieves external, read-only users

See Also:

■ The next section, "LDAP-Based Realm Data Storage"

Realm Management in LDAP-Based Environments

6-4 Oracle Containers for J2EE Security Guide

LDAP-Based Realm Data Storage
The realm framework provides a means for registering realm instances with the
OracleAS JAAS Provider and managing their information.

By default, Oracle Internet Directory has one default identity management realm.
OracleAS JAAS Provider creates a corresponding realm that it linked to it. For example
(a typical scenario), an OracleAS JAAS Provider realm called "us" is linked to the
default identity management realm in Oracle Internet Directory, which has the
distinguished name "dc=us,dc=oracle,dc=com". Each time you create a new
identity management realm in Oracle Internet Directory, a corresponding OracleAS
JAAS Provider realm is created to link to it.

A realms container object is created under the site-wide JAAS context. For each
registered realm instance, a corresponding realm entry is created under the realms
container that stores the realm attributes. This directory hierarchy is known to the
OracleAS JAAS Provider, which enables it to create new realm instances in the
desirable directory location and find all the registered realms in runtime.

For example, the distinguished name for a realm called oracle can be
"cn=oracle,cn=realms,cn=JAZNContext,cn=site root".

During runtime, the OracleAS JAAS Provider finds all the registered realms and their
attributes (name, user manager implementation class, role manager implementation
class, and their properties) from Oracle Internet Directory and instantiates the realm
implementation class with the properties for initialization.

Realm Hierarchy
As Figure 6–2 illustrates, the OracleAS JAAS Provider stores its entries within the
product container cn=JAZNContext. Beneath cn=JAZNContext is a cn=Realms
container, which stores realm entries, and a cn=Policy container, which stores global
OracleAS JAAS Provider policies. The cn=Policy container in turn stores two types
of entries, cn=Permissions and cn=Grantees.

Note that the OracleAS JAAS Provider has its own Groups and Users containers. The
Groups container contains the role JAZNAdminGroup. The Users container contains
the users that populate this role.

Figure 6–2 Global JAZNContext Subtree

Figure 6–3 shows the directory entries that are placed under the example realm
cn=sampleRealm. The entry cn=usermgr stores information related to user
management while the entry cn=rolemgr stores information related to role
management. The policy-related entries under cn=sampleRealm store realm-specific
policies.

Overview of Oracle Identity Management Key Components

Oracle Identity Management Security Provider 6-5

Figure 6–3 Realm-Specific Subtree

In an identity management-based environment, a subscriber is registered as a realm.
Using the subscriber DN, the OracleAS JAAS Provider locates the subscriber-specific
Oracle context and creates a cn=JAZNContext subtree. In this case, the OracleAS
JAAS Provider stores the entries cn=usermgr and cn=rolemgr and policy-related
entries under the subscriber’s JAZNContext.

In Figure 6–4, cn=oracle is a subscriber.

Figure 6–4 Subscriber JAZNContext Subtree

Access Control Lists and OracleAS JAAS Provider Directory Entries
OracleAS JAAS Provider directory entries are protected by access control lists (ACLs)
at the root of the product subtree. These ACLs grant the role JAZNAdminGroup and
the OracleAS JAAS Provider superuser JAZNAdminUser full privileges (read, write)
for OracleAS JAAS Provider directory objects. Non-superusers who are not
JAZNAdminGroup members are denied access to OracleAS JAAS Provider entries.

Because identity management JAZNContext subtrees are mirror images of their
site-wide parents, the security measures that they use to protect entries are the same.

Overview of Oracle Identity Management Key Components
Oracle Identity Management provides an enterprise infrastructure for securing
distributed enterprise applications. It is an integrated package that includes the
LDAP-based Oracle Internet Directory, Oracle Application Server Single Sign-On, and
additional security and user management functionality.

To use Oracle Identity Management as your security provider, you must consider the
underlying Oracle Internet Directory and OracleAS Single Sign-On. This section
provides an overview of these features:

■ Overview of Oracle Internet Directory

Overview of Oracle Identity Management Key Components

6-6 Oracle Containers for J2EE Security Guide

■ Overview of Oracle Application Server Single Sign-On

■ SSO-Enabled J2EE Environment: Typical Scenario

Overview of Oracle Internet Directory
Oracle Internet Directory provides Windows integration, password policy options,
partial replication, and other important security features, including the following.

■ Windows integration capabilities: Provides a preconfigured directory
synchronization solution for Windows Active Directory Services. This feature
allows users to have a single identity and password credential across Oracle and
Windows environments. It also includes directory plug-ins that support mastering
and changing passwords stored in the Windows environment, relieving customers
of overhead and potential security concerns associated with synchronizing
passwords across the two environments.

■ Flexible password policy: Supports password policy options. In addition, Oracle
Internet Directory plug-in support allows customers to implement an almost
unlimited variety of site-specific password policies.

■ Partial replication: Supports replication models, enabling improved scalability and
performance in large network configurations.

■ Other features include support for dynamic groups, an expanded Oracle Internet
Directory Self-Service Console, easy synchronization of directory data with
database tables, and features to permit user identity synchronization with the
Oracle e-Business Suite Release 11i.

When using Oracle Internet Directory with the OC4J 10.1.3 implementation, the basic,
digest, client-cert, username token, X.509 token, and SAML token authentication
methods are supported.

Overview of Oracle Application Server Single Sign-On
OracleAS Single Sign-On supports multilevel authentication. This allows customers to
establish more than one authentication mechanism, and indicates the way in which a
user is authenticated to single sign-on enabled applications. Applications can take
advantage of this to grant different degrees of privilege to users, depending on how
they authenticated.

For example, users may get partial privileges if they authenticate using a password,
but more complete privileges if they use stronger authentication, such as X.509v3.

SSO-Enabled J2EE Environment: Typical Scenario
OracleAS Single Sign-On lets a user access multiple applications with a single set of
login credentials. Figure 6–5 shows JAAS integration in an application running in an
SSO-enabled J2EE environment.

See Also:

■ Oracle Identity Management Administrator’s Guide

See Also:

■ Oracle Internet Directory Administrator’s Guide

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide

Overview of Oracle Identity Management Key Components

Oracle Identity Management Security Provider 6-7

Figure 6–5 OracleAS Single Sign-On and J2EE Environments

The following steps describe the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment with OracleAS Single Sign-On
enabled.

1. An HTTP client attempts to access a Web application, WebApp A1, hosted by
OC4J (the Web container for executing servlets). Oracle HTTP Server (using an
Apache listener) handles the request.

2. Oracle HTTP Server/mod_osso receives the request and:

■ Determines that WebApp A1 application requires Web-based OracleAS Single
Sign-On for authenticating HTTP clients.

■ Redirects the HTTP client request to the Web-based OracleAS Single Sign-On
(because it has not yet been authenticated).

3. The HTTP client is authenticated by OracleAS Single Sign-On through a user name
and password or through a user certificate. OracleAS Single Sign-On then:

■ Validates the user's stored login credentials.

■ Sets the OracleAS Single Sign-On cookie (including the user’s distinguished
name and realm).

■ Redirects back to the WebApp A1 application (in OC4J).

4. The security provider retrieves the OracleAS Single Sign-On user.

Note: For full details on OracleAS Single Sign-On, see the Oracle
Application Server Single Sign-On Administrator’s Guide.

Oracle
HTTP
Server

HTTP
Client

Java Plug-in
mod_oc4j

mod_osso

Apache JServ
Protocol

HTTP

HTTP

OracleAS
Single
Sign-On

OC4J

Oracle
Internet
Directory

WebApp A1

servlet
s1

servlet
s2

Security Provider
Framework

LDAP-based Security
Provider

Prerequisites: Oracle Application Server Infrastructure

6-8 Oracle Containers for J2EE Security Guide

Prerequisites: Oracle Application Server Infrastructure
Oracle Identity Management is part of the Oracle Application Server infrastructure.
Using Oracle Identity Management as security provider requires the 10.1.2 or 9.0.4
infrastructure to be installed. This is in a separate ORACLE_HOME from OC4J.

For information about installing Oracle Application Server infrastructure, refer to the
appropriate Oracle Application Server Installation Guide for your platform.

The rest of this section provides additional information, organized as follows:

■ Supported Versions for Oracle Internet Directory and OracleAS Single Sign-On

■ Considerations for 9.0.4.x Infrastructure: Access Control List Settings

Supported Versions for Oracle Internet Directory and OracleAS Single Sign-On
For using Oracle Identity Management (with Oracle Internet Directory) as the security
provider under OracleAS JAAS Provider in the OC4J 10.1.3 implementation, the
supported versions of the Oracle Application Server infrastructure are 10.1.2.0.2,
10.1.2.0.1, and 9.0.4.x.

Using OracleAS Single Sign-On as well, however, requires version 10.1.2.0.1 or 9.0.4.3
of the infrastructure. You must upgrade to the appropriate version if you want to use
SSO and are currently using 10.1.2.0.0, or 9.0.4.2 or prior.

Considerations for 9.0.4.x Infrastructure: Access Control List Settings
Prior to the Oracle Internet Directory 10.1.2 implementation, access control list (ACL)
features were not set up properly for JAZNAdminGroup. To use the Oracle Internet
Directory 9.0.4 implementation with a 10.1.x OracleAS JAAS Provider implementation,
place the following contents into a file, replacing %s_MgmtRealmDN% with the
appropriate ID management realm (for example, dc=us,dc=oracle,dc=com), then
execute the steps that follow.

dn: cn=JAZNContext,cn=Products,cn=OracleContext,%s_MgmtRealmDN%
changetype: modify
replace: orclaci
orclaci: access to entry
 by group= "cn=JAZNAdminGroup,cn=Groups,cn=JAZNContext,cn=Products,cn=OracleContext"
(browse, add, delete)
 by group= "cn=IASAdmins,cn=Groups,cn=OracleContext,%s_MgmtRealmDN%
added_object_constraint=(objectclass=orclApplicationEntity) (add, delete, browse)
 by * (none)
orclaci: access to attr=(*)
 by group= "cn=JAZNAdminGroup,cn=Groups,cn=JAZNContext,cn=Products,cn=OracleContext"
(search, read, write, compare)
 by group= "cn=IASAdmins,cn=Groups,cn=OracleContext,%s_MgmtRealmDN%"
(read, search, write, compare)
 by * (none)

1. Name the file with the .ldif extension, such as jaznacl.ldif.

2. Run the ldapmodify utility with the newly created file as input, specifying
oidport, oidhost, adminuser_dn, password, and filename, as appropriate:

% ldapmodify -c -a -p oidport -h oidhost -D adminuser_dn -w password \
 -f filename.ldif

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management Security Provider 6-9

Steps to Use the Oracle Identity Management Security Provider
This section documents the steps involved in setting up Oracle Identity Management
as your security provider, optionally using OracleAS Single Sign-On for
authentication:

1. Associate Oracle Internet Directory with OC4J

2. Configure Oracle Identity Management as the Security Provider

3. Configure SSO (Optional)

Associate Oracle Internet Directory with OC4J
This section discusses the step of associating an Oracle Internet Directory instance
with your OC4J instance, which you must do before you can specify Oracle Identity
Management as the security provider. It also shows the corresponding XML
configuration. The following subtopics are covered:

■ Associating Oracle Internet Directory with OC4J

■ Changing the Oracle Internet Directory Association

■ Required OC4J Accounts Created in Oracle Internet Directory

■ Oracle Internet Directory Association in jazn.xml

■ Associating the OC4J System Application with Oracle Internet Directory

Associating Oracle Internet Directory with OC4J
Use the Application Server Control Console to associate your OC4J instance with an
instance of the LDAP-based Oracle Internet Directory, the repository for Oracle
Identity Management. Here are the steps:

1. In the OC4J Home page for your instance, choose the Administration tab.

2. In the resulting Administration page, choose the Identity Management task (one of
the Security tasks).

3. In the resulting Identity Management page, choose Configure. (This assumes no
Oracle Internet Directory instance was previously associated with the OC4J
instance, so that the Oracle Internet Directory host name and port are listed as "not
configured". If a different Oracle Internet Directory instance was previously

Note: The ldapmodify tool is a standard LDAP utility and is
provided with Oracle Internet Directory in ORACLE_HOME/bin in
your Oracle Application Server infrastructure installation.

See Also:

■ "Access Control Lists and OracleAS JAAS Provider Directory
Entries" on page 6-5

See Also: For additional information about installing and using
Oracle Application Server infrastructure:

■ Oracle Application Server Installation Guide (appropriate version for
your platform)

■ Oracle Application Server Administrator’s Guide

Steps to Use the Oracle Identity Management Security Provider

6-10 Oracle Containers for J2EE Security Guide

associated with this OC4J instance, see the next section, "Changing the Oracle
Internet Directory Association".)

4. In the resulting Configure Identity Management: Connection Information page, do
the following:

■ Specify the fully qualified host name for the Oracle Internet Directory instance
(myoid.oracle.com, for example).

■ Specify the distinguished name for the Oracle Internet Directory user, such as
cn=orcladmin (see note below). The user specified here must belong to the
iASAdmins role in the Oracle Internet Directory instance.

■ Specify the password for the Oracle Internet Directory user. This will also be
set as the default password for the oc4jadmin user created in Oracle Internet
Directory (unless the oc4jadmin account had previously been created, due to
associating a different OC4J instance with the Oracle Internet Directory
instance).

■ Specify whether to use SSL connections or non-SSL connections to the Oracle
Internet Directory instance, and the appropriate port to use. The port for SSL is
typically 636; for non-SSL it is typically 389. (To change the SSL or port setting
later, you would have to redo the OC4J-OID association, as described in the
next section, "Changing the Oracle Internet Directory Association".)

■ When you are done, go to the next page.

5. In the Configure Identity Management: Application Server Control page, you can
specify whether Application Server Control uses Oracle Identity Management as
its security provider. (If you do this, only users and roles defined in the Oracle
Internet Directory instance will be able to access Application Server Control.)

When you are done, go to the next page.

6. In the Configure Identity Management: Deployed Applications page, you can
optionally specify Oracle Internet Directory, with or without SSO, as the security
provider for each deployed application in the OC4J instance.

When you are done, choose Configure. This completes the OC4J-OID association
process and takes you back to the Identity Management page.

Changing the Oracle Internet Directory Association
This section describes the steps to change the OC4J-OID association to use a different
Oracle Internet Directory instance, or to change the port or SSL configuration. A new
JAZNAdminUser account is created in Oracle Internet Directory.

1. As in the previous section, "Associating Oracle Internet Directory with OC4J",
navigate to the Identity Management page.

2. In the Identity Management page, choose Change. (This is in the same place as
Configure would be if there had been no previous OC4J-OID association.)

Notes:

■ Because Oracle Internet Directory is associated at OC4J instance
level, OracleAS JAAS Provider picks up the Oracle Internet
Directory host, port, password, and SSL settings only from the
jazn.xml file of a given OC4J instance, not from any
application-level configuration.

■ Each user in a directory must have a unique distinguished name.

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management Security Provider 6-11

3. In the Change Identity Management page, as for the Configure Identity
Management page in the previous section, specify the Oracle Internet Directory
host name, the distinguished name and password of the Oracle Internet Directory
user, whether to use SSL connections, and the port number for connections.

4. Choose OK. This completes the OC4J-OID reassociation process and brings you
back to the Identity Management page.

Required OC4J Accounts Created in Oracle Internet Directory
The Oracle Internet Directory 10.1.2 implementation does not by default include
certain accounts that are required by OC4J and Application Server Control 10.1.3
implementations. Therefore, the accounts listed below are created automatically as
default accounts in Oracle Internet Directory, under the default identity management
realm, as part of the OC4J-OID association process. This occurs the first time an OC4J
instance is associated with the Oracle Internet Directory instance. On any subsequent
associations of the same or any other OC4J instance with the same Oracle Internet
Directory instance, these accounts are not changed.

■ oc4jadmin user

■ oc4j-administrators role

■ oc4j-app-administrators role

(Also during OC4J-OID association, the ascontrol_admin, ascontrol_appadmin,
and ascontrol_monitor roles are created for Application Server Control.)

Oracle Internet Directory Association in jazn.xml
OC4J-OID association is effective at the level of the OC4J home instance. After you
have associated OC4J with Oracle Internet Directory, the location, user, password, and
LDAP protocol configurations are reflected in the bootstrap jazn.xml file. Here is a
sample entry:

<jazn provider="LDAP" location="ldap://myoid.oracle.com:389" default-realm="us" >
 <property
 name="ldap.user"
 value="orclApplicationCommonName=jaznadmin1,cn=JAZNContext,cn=products,
 cn=OracleContext"/>
 <property name="ldap.password"
 value="{903}3o4PTHbgMzVlzbVfKITIO5Bgio6KK9kD"/>
 <property name="ldap.protocol" value="no-ssl"/>
</jazn>

Note: The file oidConfigForOc4j.sbs in directory
ORACLE_HOME/j2ee/home/jazn/install contains the OC4J
accounts and permissions for default users and roles that are created
in Oracle Internet Directory the first time an OC4J instance is
associated with that Oracle Internet Directory instance. Do not modify
or delete this file, as these accounts are required for normal OC4J
operations. Also, do not modify or delete any of these default
accounts or their permissions once they are created.

See Also:

■ "Predefined OC4J Accounts" on page 3-11 for additional
information about the OC4J accounts

■ "Activation of the oc4jadmin Account" on page 3-12

Steps to Use the Oracle Identity Management Security Provider

6-12 Oracle Containers for J2EE Security Guide

The default realm "us" corresponds to the default identity management realm in
Oracle Internet Directory. Supported ldap.protocol settings are "ssl" or "no-ssl",
according to whether you use SSL connections. The default is to use SSL, so if you
specify SSL when you use Application Server Control, this does not actually result in
any ldap.protocol setting.

Associating the OC4J System Application with Oracle Internet Directory
There may be situations where, after associating OC4J with Oracle Internet Directory,
you also need to specifically associate the OC4J system application with Oracle
Internet Directory. This would be the case, for example, if you want to perform
operations on your application (such as startup and shutdown) with
admin_client.jar, which executes through the system application, and have
admin_client.jar be aware of Oracle Internet Directory user accounts. This
requires the following manual steps:

1. Copy the <jazn> element from the instance-level jazn.xml file (discussed in the
preceding section, "Oracle Internet Directory Association in jazn.xml") to the
system-application.xml file, overwriting the existing <jazn> element in
system-application.xml. This results in the system application using Oracle
Identity Management (instead of the default file-based provider) as its security
provider.

2. Map or create an anonymous user in Oracle Internet Directory. You have two
choices:

■ Map an anonymous user to an existing Oracle Internet Directory user.

■ Create an anonymous Oracle Internet Directory user.

These procedures are described immediately below.

Map an Anonymous User You can map an anonymous user to an existing Oracle Internet
Directory user through a <property> element under the <jazn> element in the
instance-level jazn.xml file, for the anonymous.user property. For example,
assuming there is a user myoiduser in Oracle Internet Directory: You can map an
anonymous user to an existing Oracle Internet Directory user through a <property>
element under the <jazn> element in the instance-level jazn.xml file, for the
anonymous.user property. For example, assuming there is a user myoiduser in
Oracle Internet Directory:

<jazn ... >
 <property name="anonymous.user" value="myoiduser" />
 ...
</jazn>

Note: In runtime, the LDAP-based provider connects as user
jaznadmin to Oracle Internet Directory. This user is a member of
JAZNAdminGroup.

See Also:

■ "Configuring LDAP User and SSL Properties" on page 6-18

See Also:

■ "OC4J System Application" on page 3-10

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management Security Provider 6-13

Create an Anonymous User You can use the ldapmodify utility to create an anonymous
user account in Oracle Internet Directory.

First, create an LDIF (lightweight directory interchange format) file to use as input for
ldapmodify. Here is an example of an appropriate LDIF file:

dn: cn=anonymous, cn=Users, yourDistinguishedName
changetype: add
uid: anonymous
givenName: anonymous
cn: anonymous
sn: anonymous
description: This entry is used as the identification for unauthenticated users.
orclisenabled: disabled
objectClass: top
objectclass: person
objectclass: organizationalPerson
objectClass: inetorgperson
objectClass: orcluser
objectClass: orcluserV2

Note that you must replace yourDistinguishedName by the distinguished name of
the default identity management realm in Oracle Internet Directory.

After you have created the anony.ldif file, use ldapmodify to add the anonymous
user, as follows:

% ORACLE_HOME/bin/ldapmodify -D cn=orcladmin -w password -h hostname -p port \
 -f anony.ldif

When you issue this command, replace password, hostname, and port with the
password, host name, and port for your installation.

Configure Oracle Identity Management as the Security Provider
This section covers the step of specifying Oracle Identity Management as the security
provider for your application, using the Application Server Control Console. The
following subtopics are covered:

■ Specifying Oracle Identity Management during Deployment

■ Changing to Oracle Identity Management after Deployment

Notes:

■ The anonymous account is a special user account created in the
Oracle Internet Directory server for OC4J server usage purpose
only. Because this account is created without a password, this
account cannot be used by an end user to log in to the
applications.

■ The ldapmodify tool is a standard LDAP utility and is provided
with Oracle Internet Directory in ORACLE_HOME/bin in your
Oracle Application Server infrastructure installation.

Steps to Use the Oracle Identity Management Security Provider

6-14 Oracle Containers for J2EE Security Guide

Specifying Oracle Identity Management during Deployment
Assuming you have satisfied appropriate requirements discussed earlier, in "Steps to
Use the Oracle Identity Management Security Provider" on page 6-9, you can specify
Oracle Identity Management (the LDAP-based provider) when you deploy an
application through Application Server Control.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 5-11 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose Oracle
Identity Management from the Security Provider dropdown list.

3. Under "Configuration of Oracle Identity Management Security Provider" (which
appears after you choose Oracle Identity Management from the dropdown), do the
following:

■ Confirm the Oracle Internet Directory host and port are correct, as established
earlier when you associated the Oracle Internet Directory instance with your
OC4J instance.

■ Optionally enable SSO authentication. This results in the configuration
auth-method="SSO" in orion-application.xml for your application, as
discussed in "Configuring OC4J for OracleAS Single Sign-On" on page 13-3.

4. Choose OK to finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11.

Notes:

■ Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

■ To enable fat client access to EJBs using RMI, you must grant RMI
permission "login" to your user or role. When using the Oracle
Identity Management security provider, you can accomplish this
through the OracleAS JAAS Provider Admintool. For example:

% java -jar jazn.jar -grantperm myrealm -role myrole \
 com.evermind.server.rmi.RMIPermission login

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management Security Provider 6-15

Changing to Oracle Identity Management after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. Assuming you have completed the prerequisites outlined in "Steps to Use
the Oracle Identity Management Security Provider" on page 6-9, you can change to
Oracle Identity Management as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, choose "Change Security Provider".

3. In the Change Security Provider page, select Oracle Identity Management Security
Provider from the Security Provider Type dropdown.

4. Under "Security Provider Attributes: Oracle Identity Management Security
Provider" (which appears after you select Oracle Identify Management in the
dropdown):

■ Confirm the Oracle Internet Directory host and port are correct, as established
earlier when you associated the Oracle Internet Directory instance with your
OC4J instance.

■ Optionally enable SSO authentication. This results in the configuration
auth-method="SSO" for your application, as discussed in "Configuring
OC4J for OracleAS Single Sign-On" on page 13-3.

5. Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine the settings.

Configure SSO (Optional)
This step is required only if you want to use OracleAS Single Sign-On functionality
with Oracle Identity Management. The following subtopics are covered:

1. Run the SSO Registration Tool

2. Transfer the osso.conf File to the OC4J Instance

3. Run the osso1013 Script

4. Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions

5. Restart the Oracle HTTP Server and OC4J Instances

Notes:

■ Specifying Oracle Identity Management as the security provider
for your application results in the setting provider="LDAP" in
the <jazn> element in orion-application.xml.

■ During deployment, there is no need to specify the Oracle Internet
Directory location, since this was already specified when you
associated OC4J with Oracle Internet Directory (and is reflected in
the <jazn> element in jazn.xml).

■ The default realm is the default Oracle Identity Management
realm. This is determined when Oracle Internet Directory is
installed.

Steps to Use the Oracle Identity Management Security Provider

6-16 Oracle Containers for J2EE Security Guide

Run the SSO Registration Tool
The first task in configuring OracleAS Single Sign-On is to register your application as
a partner application with the single sign-on server in your infrastructure. This is a
post-installation step. Accomplish this by running the ssoreg utility in your
infrastructure installation (the SSO server system) to create an (obfuscated)
osso.conf file.

 The ssoreg utility is ORACLE_HOME/sso/bin/ssoreg.sh in a Linux installation
or ORACLE_HOME\sso\bin\ssoreg.bat in a Windows installation.

Here is the 10.1.2.0.2 syntax for ssoreg options required for this usage, with options
described in Table 6–2:

-oracle_home_path path
-site_name name
-config_mod_osso TRUE
-mod_osso_url url
-remote_midtier
-config_file path

Here is a Linux example (assume that $ORACLE_HOME has been set properly).

% $ORACLE_HOME/sso/bin/ssoreg.sh -oracle_home_path $ORACLE_HOME \
 -site_name myhost.mydomain.com -config_mod_osso TRUE \
 -mod_osso_url http://myhost.mydomain.com:7777 -remote_midtier \
 -config_file $ORACLE_HOME/Apache/Apache/conf/osso/osso.conf

See Also:

■ Oracle Application Server Administrator’s Guide, which also
documents these steps

Table 6–2 Key ssoreg Options

Option Description

oracle_home_path The absolute path to the ORACLE_HOME location in your infrastructure
installation.

site_name Name of the Web site, such as www.example.com.

config_mod_osso A TRUE setting (which is what you want) indicates that mod_osso, the
Apache mod for OracleAS Single Sign-On, is effectively the application
being registered. (Actually, your application is being registered through
mod_osso.) This results in an obfuscated osso.conf file being
generated.

mod_osso_url A URL consisting of the host name and port where your application
will run:

http://www.example.com:7777

remote_midtier When present on the command line, specifies that the application being
registered is on a remote middle tier. Because your OC4J installation is
on a different tier (with a different ORACLE_HOME) than your
infrastructure, including OracleAS Single Sign-On, you must include
this option.

config_file Desired location of the osso.conf file, typically something like:

ORACLE_HOME/Apache/Apache/conf/osso/osso.conf

Steps to Use the Oracle Identity Management Security Provider

Oracle Identity Management Security Provider 6-17

Transfer the osso.conf File to the OC4J Instance
Transfer, such as by FTP, the osso.conf file produced during SSO registration (at
your infrastructure installation, after installation) to a desired location on the OC4J
middle tier.

Run the osso1013 Script
At your OC4J installation, run a script called osso1013 to complete the SSO
registration process, specifying the location where you placed the osso.conf file.

% osso1013 path/osso.conf

This script is located in the ORACLE_HOME/Apache/Apache/bin directory.

On Windows, you may have to run it through Perl:

% perl osso1013 path/osso.conf

Synchronization of OracleAS JAAS Provider User Context with Servlet Sessions
For situations where a Web application is used with the Oracle Identity Management
security provider and with OracleAS Single Sign-On (acting as the login, timeout, and
logout service), the OC4J 10.1.3 implementation supports synchronization between the
OracleAS JAAS Provider user context and the servlet session.

With this synchronization, if there is an SSO logout or timeout, after which the user
tries to access a protected resource, he or she receives the SSO login prompt again.
(This does not occur if the user is only trying to access a public resource.)

Important:

■ To use OracleAS Single Sign-On with Oracle Identity
Management as the security provider under OracleAS JAAS
Provider in a 10.1.2.0.x infrastructure, you must upgrade to
10.1.2.0.1 or higher. In a 9.0.4.x infrastructure, you must upgrade
to 9.0.4.3. (This is also noted in "Supported Versions for Oracle
Internet Directory and OracleAS Single Sign-On" on page 6-8.)
Older versions do not support the -remote_midtier option,
and ignoring this option may cause unintended changes in Oracle
Application Server Distributed Configuration Management
(DCM) on the host where you run the command.

■ In a 9.0.4 infrastructure, the utility is ossoreg.jar, but the
functionality is essentially the same. You must still have a version
that supports -remote_midtier.

■ In a 9.0.4 infrastructure, you must include a -u setting for
ssoreg, to set the user ID to start the Apache process:

-u SYSTEM (for Windows)
-u root (for Linux)

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide for
additional information about the ssoreg utility, including
options not mentioned here

LDAP-Based Provider Settings in OC4J Configuration Files

6-18 Oracle Containers for J2EE Security Guide

This synchronization is disabled by default. You can enable it (or explicitly disable it)
through the property sso.session.synchronize under the <jazn-web-app>
element in the orion-application.xml file. The following example enables it:

<orion-application ... >
 ...
 <jazn ... >
 ...
 <jazn-web-app ... >
 <property name="sso.session.synchronize" value="true" />
 </jazn-web-app>
 ...
 </jazn>
 ...
</orion-application>

Restart the Oracle HTTP Server and OC4J Instances
You must restart Oracle HTTP Server and OC4J for the registration to take effect.

LDAP-Based Provider Settings in OC4J Configuration Files
This section describes how to configure aspects of the LDAP-based Oracle Internet
Directory, covering the following topics:

■ Configuring LDAP User and SSL Properties

■ Configuring LDAP Connection Properties

■ Configuring LDAP Caching Properties

Configuring LDAP User and SSL Properties
Table 6–3 summarizes LDAP user and SSL properties, supported through
<property> subelements under the <jazn> element in the bootstrap jazn.xml file.
These parameters are set as appropriate through your configuration in Application
Server Control Console when you associate OC4J with Oracle Internet Directory,
described earlier in this chapter.

The resulting configuration is as follows:

Notes:

■ The orion-web.xml file, used to configure a single Web
application, also supports the <jazn-web-app> element, as a
subelement of <orion-web-app>. In the event of competing
settings, the orion-web.xml setting takes precedence for the
particular Web application.

■ For SSO timeout to work, you must enable the SSO timeout
header in OracleAS Single Sign-On. Refer to the Oracle Application
Server Single Sign-On Administrator’s Guide for details.

See Also:

■ Oracle Identity Management Guide to Delegated Administration for
information about creating users and roles, through the Oracle
Delegated Administration Services (DAS), when using Oracle
Identity Management

LDAP-Based Provider Settings in OC4J Configuration Files

Oracle Identity Management Security Provider 6-19

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...
</jazn>

You must restart OC4J for the changes to take effect.

Oracle Internet Directory supports NULL authentication for SSL communication. Data
are encrypted with the Anonymous Diffie-Hellman cipher suite, but no certificates are
used for authentication.

Here is a sample configuration:

<?xml version = '1.0' encoding = 'UTF-8'?>
<jazn provider="LDAP" location="ldap://www.example.com:389" default-realm="us">
 <property name="ldap.protocol" value="no-ssl"/>
</jazn>

Configuring LDAP Connection Properties
Table 6–4 summarizes LDAP connection properties. Table 6–5 summarizes properties
for the LDAP JNDI connection pool. You can set these properties in <property>
subelements under the <jazn> element in the instance-level jazn.xml file, as
follows:

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...
</jazn>

Table 6–3 LDAP SSL Properties and Related Properties

Property Name Property Definition

ldap.user LDAP user name or distinguished name. This element is
populated automatically; you should not change the contents.
For example:

orclApplicationCommonName=jaznadmin1,cn=JAZNContext,
cn=products,cn=OracleContext

ldap.password Obfuscated password for the LDAP user name. For example:

{903}oZZYqmGc/iyCaDrD4qs2FHbXf3LAWtMN

See Also: "Password Obfuscation in OC4J Configuration
Files" on page 5-3 for details on obfuscation.

ldap.protocol Determines whether to use SSL. (By default, SSL is used.)
Supported settings are "ssl" (typically used with port 636) or
"no-ssl" (typically used with port 389).

Note: As an alternative to the "ssl" setting, you can use the
protocol "ldaps://" in the LDAP URL.

See Also:

■ Table 12–1, " Cipher Suites Supported by OracleSSL" for a list of
supported cipher suites

See Also:

■ Oracle Internet Directory Administrator’s Guide

LDAP-Based Provider Settings in OC4J Configuration Files

6-20 Oracle Containers for J2EE Security Guide

You must restart OC4J for the changes to take effect.

Configuring LDAP Caching Properties
Oracle Internet Directory supports caching, providing improved performance and
scalability. There are three separate caches:

■ Policy cache, which stores grantees and permissions

■ Realm cache, which stores realms, users and roles, and a role graph

■ Session cache, which stores users and role graphs in an HTTP session object
(available only to Web-based clients with cookies enabled)

The caching service maintains a global hashmap (java.util.HashMap instance)
that is used to store and retrieve cached objects. Expired objects in the hashmap are
periodically invalidated and cleaned up automatically, as appropriate. Objects in the
cache expire based on a time-to-live algorithm; expiration time can be set through the
cache properties described below.

Table 6–6 describes LDAP caching properties and their default values. You can set
these properties in <property> subelements under the <jazn> element in the
instance-level jazn.xml file, as follows:

<jazn ... >
 ...
 <property name="propname" value="propvalue" />
 ...

Table 6–4 LDAP Connection Properties

Property Name Property Definition
Default
Value

ldap.connect.max.retry Number of times the security provider attempts
to create an LDAP connection before giving up

5

ldap.connect.sleep.time Number of milliseconds the security provider
waits before retrying a failed LDAP connection
attempt

5000

Table 6–5 LDAP JNDI Connection Pool Properties

Property Name Property Definition
Default
Value

jndi.ctx_pool.init_size Initial size for the LDAP JNDI connection pool 5

jndi.ctx_pool.inc_size Pool increment size for the LDAP JNDI
connection pool—number of connections added
to pool whenever the supply of connections in
the pool is exhausted

10

Note: The configurations discussed here must be performed
manually; there is currently no support for these in Application Server
Control.

Note: Only Oracle Internet Directory supports these caches. The
file-based provider defaults to caching the entire XML document.

LDAP-Based Provider Settings in OC4J Configuration Files

Oracle Identity Management Security Provider 6-21

</jazn>

Caching is enabled by default. You should disable the caches when performing
management and administrative tasks. In particular:

■ Disable the policy cache when managing policy. If the policy cache is enabled,
calling Policy.grant() or Policy.revoke() causes an
UnsupportedOperationException.

■ Disable the realm cache when managing realms. This includes adding realms,
dropping realms, granting roles, and revoking roles.

■ Disable the session cache when you disable HTTP session cookies.

The following example disables all three caches:

<jazn provider="LDAP" location="ldap://myhost.example.com:636" >
 ...
 <property name="ldap.cache.session.enable" value="false" />
 <property name="ldap.cache.realm.enable" value="false" />
 <property name="ldap.cache.policy.enable" value="false" />
 ...
</jazn>

Or, as startup parameter settings:

-Dldap.cache.session.enable=false
-Dldap.cache.realm.enable=false
-Dldap.cache.policy.enable=false

Table 6–6 LDAP Cache Properties

Property Description Default

ldap.cache.policy.enable If set to true, enables policy cache; if
set to false, disables cache.

true

ldap.cache.realm.enable If set to true, enables realm cache; if
set to false, disables cache.

true

ldap.cache.session.enable If set to true, enables session cache; if
set to false, disables cache.

true

ldap.cache.initial.capacity Initial capacity for the hashmap. This
property affects performance; it is
important to not set it too low.

20

ldap.cache.load.factor Load factor for the hashmap. This is a
measure of how full to allow the cache
to get before the capacity is
automatically increased. This property
affects performance; it is important to
not set it too high.

0.7

ldap.cache.purge.initial.delay String containing an integer that
represents the number of milliseconds
the daemon thread waits before it starts
checking for expired objects.

3600000
(one hour)

ldap.cache.purge.timeout The string representation of an integer
that represents the number of
milliseconds an object remains in cache
before being invalidated and removed.
It is also the sleep time for the daemon
thread between each run looking for
expired objects.

3600000
(one hour)

LDAP-Based Provider Settings in OC4J Configuration Files

6-22 Oracle Containers for J2EE Security Guide

The following example leaves all caches enabled, and sets a cache size of 100 and a
10,000-millisecond timeout:

< jazn provider="LDAP" location="ldap://myhost.example.com:636" >
 < property name="ldap.cache.initial capacity" value="100" />
 < property name="ldap.cache.purget.timeout" value="10000" />
</jazn>

Notes:

■ The OracleAS JAAS Provider Admintool automatically disables
caching while it is in operation, then reenables caching when it
finishes.

■ The configurations discussed here must be performed manually;
there is currently no support for these in Application Server
Control.

File-Based Security Provider 7-1

7
File-Based Security Provider

OC4J supplies a file-based security provider, where an XML-based file is used as the
repository for users, roles, and policies. This is the default security provider.
Specifically, OracleAS JAAS Provider supports the following tasks for the file-based
(XML-based) provider:

■ Create realms, users, and roles.

■ Grant roles to users and to other roles.

■ Assign permissions to specific users and roles (principals).

This information is stored in an XML repository, typically, system-jazn-data.xml,
although you have the option of using an application-specific jazn-data.xml file
instead.

This chapter discusses basic user, role, and realm management tasks for the file-based
provider, focusing on features of the Application Server Control Console.

The chapter is divided into the following sections:

■ Tools for File-Based Provider Policy and Realm Management

■ Configuring the File-Based Provider in Application Server Control

■ File-Based Provider Settings in OC4J Configuration Files

■ OracleAS JAAS Provider Migration Tool

■ Migrating Principals from the principals.xml File

Tools for File-Based Provider Policy and Realm Management
To manage users and roles for the file-based provider, use Application Server Control
Console, as described in "Managing Application Realms through Application Server
Control" on page 7-4. This updates the user repository, either

Notes:

■ Be aware that with the file-based provider, role comparisons for
authorization are case-sensitive.

■ By default, the file-based provider is the security provider, the
system-jazn-data.xml file is the repository, and jazn.com is
the default realm. The system-jazn-data.xml file is located in
the ORACLE_HOME/j2ee/instance_name/config directory.
Changes made to this repository are visible to all applications that
use it.

Configuring the File-Based Provider in Application Server Control

7-2 Oracle Containers for J2EE Security Guide

system-jazn-data.xml or an application-specific jazn-data.xml file that you
provide.

To manage policies for the file-based provider, use the OracleAS JAAS Provider
Admintool. Refer to the policy options listed in "Summary of Admintool
Command-Line Syntax and Options" on page C-2.

Generally avoid direct manipulation of the system-jazn-data.xml or
jazn-data.xml file.

Configuring the File-Based Provider in Application Server Control
This section covers the following administration tasks, using the Application Server
Control Console, for an application using the file-based provider. There is also a
section at the end for instance-level administration.

■ Configuring the File-Based Provider during Application Deployment

■ Changing to the File-Based Provider after Deployment

■ Managing Application Realms through Application Server Control

■ Managing Application Users through Application Server Control

■ Managing Application Roles through Application Server Control

■ Administering Instance-Level Security through Application Server Control

Note: There is one exception regarding the tool for policy
management: Granting RMI permission or Administration permission
to a role in the file-based provider is something you can do as part of
editing or adding the role through Application Server Control, as
described later in this chapter.

Note that to enable fat client access to EJBs using RMI, you must grant
RMI permission "login" to your user or role. If you do not enable this
through Application Server Control, you can use the OracleAS JAAS
Provider Admintool. For example:

% java -jar jazn.jar -grantperm myrealm -role myrole \
 com.evermind.server.rmi.RMIPermission login

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

Note:

■ Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

■ Security provider settings, optionally including specification of
the repository file, affect settings in the <jazn> element of the
orion-application.xml file. Realm, user, and role settings
affect settings under the <jazn-realm> element in the repository
file. Examples of the XML settings are in "File-Based Provider
Settings in OC4J Configuration Files" on page 7-9.

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-3

Configuring the File-Based Provider during Application Deployment
You can specify the file-based provider when you deploy an application through
Application Server Control. Optionally, you can also specify a jazn-data.xml file
location and a default realm.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 5-11 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose
File-Based from the Security Provider dropdown list.

3. Under "Configuration of File-Based Security Provider" (which appears after you
choose the file-based provider in the dropdown), you can accomplish the
following:

■ Specify the location of your repository, optionally an application-specific
jazn-data.xml file for user and role configuration. Otherwise, the
system-jazn-data.xml file will be used, unless jazn.xml also specifies
the file-based provider and has a location setting for a jazn-data.xml file.

■ Specify a default realm. Otherwise, the default realm is jazn.com, unless
there is a different setting in the instance-level jazn.xml file.

4. Choose OK to finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11.

Changing to the File-Based Provider after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. You can change to the file-based provider as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, choose "Change Security Provider".

3. In the Change Security Provider page, select File-Based Security Provider from the
Security Provider Type dropdown.

4. Under "Security Provider Attributes: File-Based Security Provider" (which appears
after you select "File-Based Security Provider"):

■ Optionally specify the location of your repository file, such as an
application-specific jazn-data.xml file. Otherwise, the
system-jazn-data.xml file will be used, unless jazn.xml also specifies
the file-based provider and has a location setting for a jazn-data.xml file.

■ Optionally specify a default realm. Otherwise, the default realm is jazn.com,
unless there is a different setting in the instance-level jazn.xml file.

See Also:

■ "File-Based Provider Settings in OC4J Configuration Files" on
page 7-9, for examples of the XML configuration that results from
the steps described in this section

Configuring the File-Based Provider in Application Server Control

7-4 Oracle Containers for J2EE Security Guide

5. Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine your
settings.

Managing Application Realms through Application Server Control
This section describes how to configure realms for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 5-17.

The tasks here create or modify subelements under the <jazn-realm> element in
your repository file. There is a <realm> subelement under <jazn-realm> for each
realm.

Search for a Realm
From the Security Provider page for your application, execute the following steps to
search for a realm:

1. Choose the Realms tab.

2. In the Realms page, under "Search", specify a search string then choose Go.

3. Realms matching the search string appear under "Results". (An empty search
string displays all existing realms.)

Create a Realm
From the Security Provider page for your application, execute the following steps to
create a realm:

1. Choose the Realms tab.

2. Above the list of existing realms, choose Create.

3. In the resulting Add Realm page:

■ Specify the desired name of the realm.

■ Specify the desired name for the administrator user of the realm.

■ Specify and confirm the desired password for the administrator user.

■ Specify the desired administrator role of the realm. The administrator user you
specified will belong to this realm.

4. Choose OK to create the realm.

This takes you back to the Security Provider page, where you can see the new realm in
the list of realms.

Note: There is no "Edit" task for realms. Editing a realm includes
updating users, roles, or both, as described in "Managing Application
Users through Application Server Control" on page 7-5 and
"Managing Application Roles through Application Server Control" on
page 7-6.

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-5

Delete a Realm
From the Security Provider page for your application, execute the following steps to
delete a realm:

1. In the list of existing realms, choose the Delete task for the realm you want to
delete.

2. In the resulting Confirmation page, choose Yes to delete the realm.

This takes you back to the Security Provider page.

Managing Application Users through Application Server Control
This section describes how to configure users for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 5-17.

The tasks here create or modify subelements under a <users> element in your
repository file. Each <realm> element has a <users> subelement for the users in that
realm.

Search for a User
From the Security Provider page for your application, execute the following steps to
search for a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, under "Search", specify a search string then choose Go.

4. Users matching the search string appear under "Results". (An empty search string
displays all users in the realm.)

Create a User
From the Security Provider page for your application, execute the following steps to
create a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, above the list of existing users in the realm, choose Create.

4. In the resulting Add User page:

■ Specify the desired user name.

■ Specify and confirm the desired password for the user.

■ Under "Assign Roles", for any available role you want the user to belong to,
move the role name into the "Selected Roles" column.

■ Choose OK to add the user.

This takes you back to the Users page, where you can see the new user in the list of
users.

Configuring the File-Based Provider in Application Server Control

7-6 Oracle Containers for J2EE Security Guide

Delete a User
From the Security Provider page for your application, execute the following steps to
delete a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, choose the Delete task for the user you want to delete.

4. In the resulting Confirmation page, choose Yes to delete the user.

This takes you back to the Users page.

Edit a User
From the Security Provider page for your application, execute the following steps to
edit the properties of a user:

1. Choose the Realms tab.

2. In the Realms page, under "Users" in the list of realms, and in the row for the
realm of interest, select the number that shows how many users are in the realm.
This is a link to the Users page for the realm.

3. In the Users page, select the user you want to edit.

4. In the resulting User page:

■ If you want to change the user password, enter the old password, then specify
and confirm the desired new password.

■ If you want to add the user to any roles or remove the user from any roles,
under "Assign Roles", move role names into or out of the "Selected Roles"
column as desired.

■ Choose Apply to edit the user.

This takes you back to the Users page.

Managing Application Roles through Application Server Control
This section describes how to configure roles for the file-based provider.

The first step for any of these instructions is to go to the Application Server Control
Console Security Provider page for your application, as described in "Navigating to
the Security Provider Page for Your Application" on page 5-17.

The tasks here create or modify subelements under a <roles> element in your
repository file. Each <realm> element has a <roles> subelement for the roles in that
realm.

Note: Do not create user names that contain slash (/) characters, as
in a/b/c.

Note: You can also reach the User page for a given user from the
Role page (see "Edit a Role" on page 7-8) for any role that the user
belongs to. In the Role page, under "Users", select the user of interest.

Configuring the File-Based Provider in Application Server Control

File-Based Security Provider 7-7

Search for a Role
From the Security Provider page for your application, execute the following steps to
search for a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, under "Search", specify a search string then choose Go.

4. Roles matching the search string appear under "Results". (An empty search string
displays all roles in the realm.)

Create a Role
From the Security Provider page for your application, execute the following steps to
create a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, above the list of existing users in the realm, choose Create.

4. In the resulting Add Role page:

■ Specify the desired role name.

■ Choose the permissions you want to grant to the role (essentially, to users or
other entities belonging to the role)—RMI permission, administration
permission, neither, or both.

A user needs RMI (remote method invocation) permission to be able to access
objects on OC4J through RMI, such as when using a remote EJB client.

A user needs administration permission to perform administrative functions
such as startup, shutdown, and configuration changes.

■ Under "Assign Roles", for any available role you want the new role to inherit
from, move the role name into the "Selected Roles" column.

■ Choose OK to add the role.

This takes you back to the Roles page, where you can see the new role in the list of
roles.

Delete a Role
From the Security Provider page for your application, execute the following steps to
delete a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, choose the Delete task for the role you want to delete.

4. In the resulting Confirmation page, choose Yes to delete the role.

This takes you back to the Roles page.

Configuring the File-Based Provider in Application Server Control

7-8 Oracle Containers for J2EE Security Guide

Edit a Role
From the Security Provider page for your application, execute the following steps to
edit the properties of a role:

1. Choose the Realms tab.

2. In the Realms page, under "Roles" in the list of realms, and in the row for the realm
of interest, select the number that shows how many roles are in the realm. This is a
link to the Roles page for the realm.

3. In the Roles page, select the role you want to edit.

4. In the resulting Role page:

■ Update permissions for the role as desired, by selecting or unselecting RMI
permission and administration permission.

■ Under "Assign Roles", move role names into or out of the "Selected Roles"
column, depending on which roles you want this role (the role you are
editing) to inherit from.

■ Choose Apply to edit the role.

This takes you back to the Roles page.

Administering Instance-Level Security through Application Server Control
In the OC4J 10.1.3 implementation, instance-level security uses the file-based provider
for realm settings (users and roles). This is according to settings in the <jazn> element
of the OC4J system-application.xml file, which points to the
system-jazn-data.xml file for the user and role repository. You can administer the
file-based provider for instance-level security in much the same was as you would
administer the file-based provider for an application. You can navigate to the
Application Server Control Console Instance Level Security page as follows:

1. From the OC4J Home page for the OC4J instance, choose the Administration tab.

2. In the Administration page, choose the Security Providers task (under "Security").

3. In the Security Providers page, choose Instance Level Security.

4. From the resulting Instance Level Security page, you can manage instance-level
realms, users, and roles using essentially the same steps as documented earlier in
this chapter, in "Managing Application Realms through Application Server
Control" on page 7-4, "Managing Application Users through Application Server
Control" on page 7-5, and "Managing Application Roles through Application
Server Control" on page 7-6.

Instance-level security settings here will always affect the system-jazn-data.xml
file (as opposed to application-level security settings, which would affect an
application-level jazn-data.xml file if the user has specified one).

See Also:

■ "Edit a User" on page 7-6 for how to add a user to a role

File-Based Provider Settings in OC4J Configuration Files

File-Based Security Provider 7-9

File-Based Provider Settings in OC4J Configuration Files
This section provides reference information for important security configuration for
the file-based provider in key OC4J configuration files. In general, you should use the
Application Server Control Console or OracleAS JAAS Provider Admintool (both
discussed earlier in this chapter) for configuration and administration, instead of
manipulating the files directly. Using these tools results in the appropriate entries
automatically being made in the configuration files.

The rest of this discussion covers the following:

■ Scenarios for <jazn> Settings in orion-application.xml

■ Realm Configuration in the Repository File

■ Policy Configuration in the Repository File

■ Predefined OC4J Accounts in system-jazn-data.xml

Scenarios for <jazn> Settings in orion-application.xml
The <jazn> element, which appears in both the jazn.xml file and the
orion-application.xml file, includes configuration for the security provider,
repository, and default realm. By default, the system-jazn-data.xml file is the
repository for user, role, and policy configuration for the file-based provider, but OC4J
can be configured to use an application-specific jazn-data.xml file instead.

There are three typical deployment scenarios for an application, as determined by
<jazn> element settings in the orion-application.xml file and instance-level
jazn.xml file, in using the file-based provider:

■ Delegate to the instance-level jazn.xml file for the repository and default realm.
If the <jazn> element in jazn.xml has the setting provider="XML", then its
settings for the repository (location attribute) and default realm
(default-realm attribute) are used if the orion-application.xml file has
the following <jazn> element:

<jazn provider="XML" />

Or, if the jazn.xml file has no location and default-realm settings, this
would use the default repository system-jazn-data.xml and the default realm
jazn.com.

■ Delegate to the instance-level jazn.xml file for the repository. If the <jazn>
element in jazn.xml has the setting provider="XML", then its setting for the

Note: Be aware that OC4J has some dependencies on the
instance-level security provider settings in
system-application.xml and system-jazn-data.xml. For
example, admin_client.jar uses accounts in
system-jazn-data.xml. Do not delete or alter default settings in
these files regarding the instance-level security provider and related
accounts.

Note: This becomes the default <jazn> setting if there is no <jazn>
element in orion-application.xml when the application is
deployed.

File-Based Provider Settings in OC4J Configuration Files

7-10 Oracle Containers for J2EE Security Guide

repository (location attribute) is used, but the orion-application.xml file
setting for the default-realm (default-realm attribute) is used, if
orion-application.xml has a <jazn> element such as the following:

<jazn provider="XML" default-realm="abc.com" />

Or, if the jazn.xml file has no location setting, this would use the default
repository system-jazn-data.xml.

■ Do not delegate; specify both the repository and the default realm in
orion-application.xml. In this example, orion-application.xml
specifies the repository jazn-data.xml and the default realm myrealm:

<jazn provider="XML" location="./jazn-data.xml" default-realm="myrealm" />

Realm Configuration in the Repository File
This section shows configuration for users and roles in the system-jazn-data.xml
file for the jazn.com realm. The general structure would be the same for
configuration of any realm in system-jazn-data.xml or a jazn-data.xml file.
This configuration is created automatically when you manage realms through
Application Server Control.

 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user deactivated="true">
 <name>anonymous</name>
 <description>The default guest/anonymous user</description>
 </user>
 <user deactivated="true">
 <name>oc4jadmin</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>!welcome</credentials>
 </user>
 <user>
 <name>JtaAdmin</name>
 <display-name>JTA Recovery User</display-name>
 <description>Used to recover propagated OC4J transactions</description>
 <credentials>!defaultJtaPassword</credentials>
 </user>
 </users>

Note: This example assumes the abc.com realm is defined in the
system-jazn-data.xml repository.

Notes: Note the following for situations where the application uses
the file-based provider (provider="XML" in
orion-application.xml) but the jazn.xml file has the setting
provider="LDAP":

■ If orion-application.xml specifies no repository file, then
system-jazn-data.xml will be the repository.

■ If orion-application.xml specifies no default realm, then
jazn.com file will be the default realm.

File-Based Provider Settings in OC4J Configuration Files

File-Based Security Provider 7-11

 <roles>
 <role>
 <name>oc4j-administrators</name>
 <display-name>OC4J Admin Role</display-name>
 <description>Administrative role for OC4J</description>
 <members>
 <member>
 <type>user</type>
 <name>oc4jadmin</name>
 </member>
 <member>
 <type>user</type>
 <name>JtaAdmin</name>
 </member>
 </members>
 </role>
 <role>
 <name>oc4j-app-administrators</name>
 <display-name>OC4J Application Administrators</display-name>
 <description>OC4J application-level administrators</description>
 <members>
 </members>
 </role>
 <role>
 <name>users</name>
 <display-name>users</display-name>
 <description>users role for rmi/ejb access</description>
 <members>
 </members>
 </role>
 </roles>
 </realm>
 </jazn-realm>

Policy Configuration in the Repository File
You can use the OracleAS JAAS Provider Admintool to grant JAAS permissions to
custom principals, using the -grantperm option, as described in "Granting and
Revoking Permissions" on page C-11.

Policy data is stored in the file system-jazn-data.xml. In the following example, a
segment of this file grants the admin principal permission to log in.

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>

OracleAS JAAS Provider Migration Tool

7-12 Oracle Containers for J2EE Security Guide

</jazn-policy>

Predefined OC4J Accounts in system-jazn-data.xml
The following accounts are predefined in system-jazn-data.xml for the file-based
provider:

■ oc4jadmin user (initially deactivated in standalone OC4J)

■ oc4j-administrators role

■ oc4j-app-administrators role

■ anonymous user, initially deactivated

■ users role

■ jtaadmin user

OracleAS JAAS Provider Migration Tool
OC4J includes a tool for migrating from a file-based repository to either an Oracle
Internet Directory repository or an alternative file-based repository. (Do not confuse
this with the tool for migrating from principals.xml; that is separate, and is
documented later in this chapter.)

When migrating to an Oracle Internet Directory repository, the output is an LDIF file,
which can be imported into Oracle Internet Directory using commands such as
ldapmodify or bulkload.

Overview of the Migration Tool
The migration tool supports the migration of users, roles, role memberships, and
policies (permissions granted to roles, users, custom principals, or codebases).

There are three modes for migration:

■ Realm mode migrates only users and roles. All users and roles in the source realm,
other than deactivated users, are migrated. Migrated roles include membership
information.

■ Policy mode migrates grantees and the permissions that have been granted to them.
Grantees can be realm grantees, such as users and roles, or non-realm grantees,
such as custom principals and codebases. When migrating to Oracle Internet
Directory, realm grantees and their permissions are migrated to the policy that is
specific to the destination realm, while non-realm grantees and their permissions
are migrated to the global policy.

■ All mode combines realm mode and policy mode.

See Also:

■ "Predefined OC4J Accounts" on page 3-11 for additional
information about these accounts

■ "Activation of the oc4jadmin Account" on page 3-12

OracleAS JAAS Provider Migration Tool

File-Based Security Provider 7-13

Migration Tool Command Syntax
Command-line options and syntax of the migration tool are as follows:

% java JAZNMigrationTool [-st xml] [-dt ldap|xml]
 [-D binddn] [-w passwd] [-h ldaphost] [-p ldapport]
 [-sf sourcefilename] [-df destfilename]
 [-sr source_realm] [-dr dest_realm]
 [-m policy|realm|all]
 [-help]

Table 7–1 describes these options.

Notes:

■ When output to an LDIF file is generated, passwords are in clear
text. It is your responsibility to take proper care in protecting this
information.

■ When migrating to Oracle Internet Directory, passwords may
have to be modified to conform to Oracle Internet Directory
requirements (such as having at least one numeric character).

■ If you are migrating custom permissions, the JAR file containing
the class files for the custom permissions must be available in the
classpath.

■ The migration tool is not intended for migration of indirect
password accounts to Oracle Internet Directory.

■ Be aware of the possibility of conflict—migrated users and roles
may already exist in the destination realm. When migrating to
Oracle Internet Directory, for example, commands such as
ldapmodify and bulkload can be used in conjunction with
standard JDK logging to obtain information that will help you to
recover from conflicts.

Table 7–1 OracleAS JAAS Provider Migration Tool Options

Option Description Default (where applicable)

-help To display option information

-st Type of provider at the source

Currently only the setting xml is supported,
for migrating from a file-based provider.

xml

-dt Type of provider at the destination—either
xml (to migrate to a file-based repository) or
ldap (to migrate to Oracle Internet Directory)

ldap

-D Oracle Internet Directory user name (for
migration to Oracle Internet Directory only)

-w Oracle Internet Directory user password (for
migration to Oracle Internet Directory only)

-h Oracle Internet Directory host system (for
migration to Oracle Internet Directory only)

According to <jazn> element
location setting in jazn.xml

-p Oracle Internet Directory port (for migration
to Oracle Internet Directory only)

According to <jazn> element
location setting in jazn.xml

OracleAS JAAS Provider Migration Tool

7-14 Oracle Containers for J2EE Security Guide

The following example migrates in all mode to the default subscriber realm in Oracle
Internet Directory on the specified host:

% java oracle.security.jazn.tools.JAZNMigrationTool -D cn=orcladmin -w welcome1 \
 -h myhost.example.com -p 389 -sf /tmp/jazn-data.xml -df /tmp/dest.ldif \
 -sr jazndemo.com

Migration Tool APIs
You can also invoke the migration tool (class JAZNMigrationTool in package
oracle.security.jazn.tools) from an application. Oracle provides the
following APIs:

/**
 * Create an instance with the provided parameters. These parameters are
 * equivalent to the options supported by the executable utility version.
 */
public JAZNMigrationTool(Map params)

/**
 * Perform the migration operation
 */
public void migrateData() throws JAZNException

The params parameter in the constructor supports the same options as described in
Table 7–1 in the preceding section, with the same defaults. Parameter keys are defined
as constants in the JAZNMigrationTool class. Table 7–2 shows the correlation
between constants defined in JAZNMigrationTool and command-line options.

-sf Source file—path to the file-based repository
you are migrating from

ORACLE_HOME/j2ee/home/config/
system-jazn-data.xml

-df Destination file—path to the LDIF output file
(if migrating to Oracle Internet Directory) or
to the destination file-based repository (if
migrating to file-based)

If migrating to a file-based repository,
ORACLE_HOME/j2ee/home/config/
system-jazn-data.xml (otherwise
no default)

-sr Source realm—the realm you are migrating
from

Name of the realm in the source
repository, if there is only one realm

-dr Destination realm—the realm you are
migrating to

If migrating to a file-based repository,
name of the realm in the destination
repository, if there is only one realm; if
migrating to Oracle Internet Directory,
the default subscriber realm

-m The desired migration mode—realm mode
(realm), policy mode (policy), or both
(all)

all

Table 7–2 JAZNMigrationTool Constants

Key Constant Corresponds to Option

SRC_TYPE -st

DEST_TYPE -dt

OID_USER -D

OID_PASSWORD -w

Table 7–1 (Cont.) OracleAS JAAS Provider Migration Tool Options

Option Description Default (where applicable)

Migrating Principals from the principals.xml File

File-Based Security Provider 7-15

Migrating Principals from the principals.xml File
Use the OracleAS JAAS Provider Admintool convert option to migrate your data out
of the principals.xml file, which is deprecated.

-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path
name of the input file (typically
ORACLE_HOME/j2ee/home/config/principals.xml).

The migration converts principals.xml users to JAAS users and converts
principals.xml groups to JAAS roles. All permissions that were previously
granted to a principals.xml group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

Before you convert principals.xml, you must make sure that you have an
administrative user that is authorized to manage realms. To do this:

1. Activate the administrative user in principals.xml, which is deactivated by
default. Be sure to create a password for the administrator.

2. Create the realm principals.com with a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addrealm principals.com u1 welcome r1

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in principals.xml. This is necessary
because the convert option does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

3. Migrate principals.xml to the principals.com realm, as in:

% java -jar jazn.jar -convert config/principals.xml principals.com

4. Change the <default-realm> to principals.com; see "Scenarios for <jazn>
Settings in orion-application.xml" on page 7-9.

5. Stop OC4J and restart it.

OID_HOST -h

OID_PORT -p

SRC_FILE -sf

DEST_FILE -df

SRC_REALM -sr

DEST_REALM -dr

MIGRATE_OPT -m

Note: The principals.xml file is deprecated in the OC4J 10.1.3
implementation and will be desupported in a future release.

Table 7–2 (Cont.) JAZNMigrationTool Constants

Key Constant Corresponds to Option

Migrating Principals from the principals.xml File

7-16 Oracle Containers for J2EE Security Guide

Login Modules 8-1

8
Login Modules

This chapter discusses how to configure the default login module, or how to
implement, install, and configure a custom login module. The following topics are
covered:

■ Configuring RealmLoginModule

■ Introducing Custom JAAS Login Modules

■ Packaging and Deploying Login Modules

■ Configuring the Custom Security Provider in Application Server Control

■ Configuring Login Modules through the Admintool

■ Login Module Configuration in OC4J Configuration Files

■ Simple Login Module J2EE Integration

■ Custom Login Module Example

Notes:

■ Note the setting provider="XML" is used for custom providers
(custom login modules) as well as for the file-based provider.

■ Be aware that when you use a custom login module, role
comparisons for authorization are not case-sensitive unless you
add the following property setting to the <jazn> element in
orion-application.xml:

<property name="role.compare.ignorecase" value="false" />

■ Because the JAAS specification does not cover user management,
when you configure your application to use a custom login
module, the use of the UserManager API within your application
is not supported. The J2EE API, however, will continue to function
within your application.

■ OC4J provides a login module, LDAPLoginModule, for use with
external LDAP providers, as noted in "External LDAP Provider
Settings in system-jazn-data.xml" on page 9-5.

■ OC4J provides a login module, CoreIDLoginModule, for use
with Oracle COREid Access and Identity, as discussed in
"Configure the COREid JAAS Login Module" on page 10-16.

Configuring RealmLoginModule

8-2 Oracle Containers for J2EE Security Guide

Configuring RealmLoginModule
The RealmLoginModule class is the default login module, for use with the file-based
provider or Oracle Identity Management, and is configured through the
system-jazn-data.xml file. The RealmLoginModule class authenticates user
login credentials before the user can access J2EE applications. Authentication is
performed using OC4J container-based authentication (HTTP basic, form-based, and
so on).

You can configure RealmLoginModule by using Application Server Control or the
OracleAS JAAS Provider Admintool.

The <login-module> element, under the <jazn-loginconfig> element in
system-jazn-data.xml, supports the options shown in Table 8–1 for
RealmLoginModule (through <name> and <value> subelements of an <option>
element).

See Also:

■ "Login Module Authentication" on page 1-7

Notes:

■ You do not need to enable the RealmLoginModule class if your
application uses OracleAS Single Sign-On authentication.

■ The use of RealmLoginModule as a custom login module—in
other words, as a custom security provider—is not supported.
However, as already noted, it is used by default as the login
module when an application is configured to use the file-based
provider (using system-jazn-data.xml or jazn-data.xml
as the user repository) or Oracle Identity Management (using
Oracle Internet Directory as the user repository).

See Also:

■ "Login Module Settings in system-jazn-data.xml" on page 8-12

■ "Configuring Login Modules through the Admintool" on
page 8-11 for information on using the Admintool

Table 8–1 RealmLoginModule Options

Name Meaning Default

debug If set to true, debugging messages are printed. false

addRoles If set to true, the RealmLoginModule adds all
directly granted roles of the user to the subject
after successful authentication.

true

addAllRoles If set to true, the RealmLoginModule adds all
directly or indirectly granted roles of the user to
the subject after successful authentication.

true

storePrivateCredentials If set to true, the RealmLoginModule adds all
private credentials (for example, password
credentials) to the subject after successful
authentication.

false

Introducing Custom JAAS Login Modules

Login Modules 8-3

Here is sample configuration of RealmLoginModule, in system-jazn-data.xml.
(We recommend that you not alter RealmLoginModule configuration manually; this
example is just for illustrative purposes.)

<jazn-loginconfig>
 <application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 <application>
 <name>oracle.security.jazn.oc4j.JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

Introducing Custom JAAS Login Modules
Because OC4J support for JAAS fully complies with the JAAS 1.0 specification, users
can plug in any JAAS-compliant LoginModule implementation, if desired. (OC4J

supportCSIv2 If set to true, the RealmLoginModule supports
CSIv2.

See Also: Chapter 15, "Common Secure
Interoperability Protocol" for details.

false

supportNullPassword (Oracle Identity Management only) If set to true,
the RealmLoginModule does not check to see if
the supplied password is null or empty. If set to
false, authentication fails if the supplied
password is null or empty.

false

Table 8–1 (Cont.) RealmLoginModule Options

Name Meaning Default

Packaging and Deploying Login Modules

8-4 Oracle Containers for J2EE Security Guide

includes the RealmLoginModule class as its default login module implementation.
This class combines J2EE security constraints with either the file-based provider or
Oracle Identity Management.)

A custom login module may be desirable, for example, when users and roles are
defined in an external repository. When you create a custom login module, consider
the following preliminary questions:

■ Development: Do you want to take advantage of J2EE security constraints?

■ Debugging: Do you want the login module to support a debugging option for use
during development? (As noted previously, RealmLoginModule, for example,
supports a debug option that provides diagnostic output. Also, "Custom Login
Module Example" on page 8-16 includes debugging functionality.)

■ Packaging and deployment: Are you using the login modules that come with J2SE
1.4? Or are you deploying custom or third-party login modules?

When you associate a custom login module with an application, the subject and the
principals it contains are used as the sole basis for all authorization tasks, including
evaluating J2EE security constraints. To ensure that all relevant principals are
considered during authorization, the login module must add the relevant principals,
including all roles that the authenticated user participates in, to the subject during the
commit phase of the authentication process. (The role.mapping.dynamic property,
discussed in "Settings in <jazn> for Login Modules" on page 8-13, is related to
subject-based authorization.)

The custom login module framework supports the J2EE declarative security model.
This means that subject-based authorization enforces the J2EE security constraints
declared in application deployment descriptors (web.xml and ejb-jar.xml, for
example).

Custom login modules are configured through the OC4J system-jazn-data.xml
file, which can be updated automatically through use of tools such as Application
Server Control Console and OracleAS JAAS Provider Admintool.

Packaging and Deploying Login Modules
If you are using one or more of the default login modules provided with the J2SE (such
as com.sun.security.auth.module.Krb5LoginModule), then no additional
configuration is needed. The OracleAS JAAS Provider can locate the default login
modules.

If you are deploying your application with one or more custom login modules, then
you must deploy the login modules and configure the OracleAS JAAS Provider
properly so that the module can be found at runtime. The following sections discuss
ways to accomplish this:

■ Deploying Login Modules within the J2EE Application

■ Deploying Login Modules as Optional Packages

■ Using Login Modules as OC4J Shared Libraries

See Also:

■ Sun Microsystems JAAS documentation for general information
about login modules:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaa
s/JAASLMDevGuide.html

Packaging and Deploying Login Modules

Login Modules 8-5

The remainder of this section discusses these options in greater detail.

Deploying Login Modules within the J2EE Application
If your login modules are used by only a single J2EE application, then you can simply
package the login modules as part of your application by including the login module
JAR file in the application EAR file.

The login modules must be configured through <jazn-loginconfig> settings, in
one of two places:

■ In the system-jazn-data.xml file, as discussed in "Login Module Settings in
system-jazn-data.xml" on page 8-12

■ In the orion-application.xml file in your application EAR file, as discussed
in "Settings in <jazn-loginconfig> in orion-application.xml" on page 8-13

Using the Application Server Control Console, you can configure custom login
modules as you deploy an application, or later if you change the security provider to
custom. This results in system-jazn-data.xml being updated automatically.

Administering custom login modules through the OracleAS JAAS Provider Admintool
will also update system-jazn-data.xml settings for you.

Deploying Login Modules as Optional Packages
If you deploy your login modules as an optional package (formerly known as a
"standard extension"), the OracleAS JAAS Provider will be able to find them. No
additional configuration is necessary. Deploying login modules as an optional package
allows multiple applications to share them.

There are two ways to use the optional package mechanism:

■ Use the login module classes as an installed optional package. Place the login module
JAR file in jre/lib/ext directory. Classes in JAR files in this directory can be
used by applications without having to be included in the classpath.

■ Use the login module classes as a download optional package. Specify the login
module JAR file in the Class-Path header field in the manifest of other JAR files,
as desired. In this way, classes in the login module JAR file can be used by classes
in the other JAR files that reference it.

The login modules must also be configured in system-jazn-data.xml, as
discussed in "Login Module Settings in system-jazn-data.xml" on page 8-12.

Note: If a different application needs the same login module, you
must repackage the login module and any relevant classes with the
new application.

See Also:

■ "Configuring the Custom Security Provider in Application Server
Control" on page 8-6

■ "Configuring Login Modules through the Admintool" on
page 8-11

Configuring the Custom Security Provider in Application Server Control

8-6 Oracle Containers for J2EE Security Guide

Using Login Modules as OC4J Shared Libraries
The OracleAS JAAS Provider is integrated with the OC4J class loading architecture.
Because of this, you can make login modules available to applications by loading them
as OC4J shared libraries. There are two main steps to this (considering functionality of
the Application Server Control Console in particular):

1. Load the library as an OC4J shared library. From the Application Server Control
Console Administration tab for the OC4J instance, use the Shared Libraries task.

This results in configuration such as the following in the OC4J server.xml file:

<application-server ... >
 ...
 <shared-library name="mylib.lib" version="1.0" library-compatible="true">
 <code-source path="../mypath" />
 </shared-library>
 ...
</application-server>

2. Import the library into your application. In deploying an application through
Application Server Control, when you reach the Deploy: Deployment Settings
page (as discussed in "Deploying an Application through Application Server
Control" on page 5-11), you have the opportunity to import shared libraries.

This results in configuration such as the following in your application
orion-application.xml file:

<orion-application ... >
 ...
 <imported-shared-libraries>
 <import-shared-library name="mylib.lib" />
 ...
 </imported-shared-libraries>
 ...
</orion-application>

Configuring the Custom Security Provider in Application Server Control
This section discusses the following administration tasks for login modules using the
Application Server Control Console:

■ Specifying and Configuring a Custom Security Provider during Deployment

See Also:

■ For general information about the standard "optional package"
mechanism:

http://java.sun.com/j2se/1.4.2/docs/guide/extensions

Note: The <library> element and
ORACLE_HOME/j2ee/home/applib location are still supported for
OC4J shared libraries, but are discouraged.

See Also:

■ Oracle Containers for J2EE Developer’s Guide for more information
about OC4J class loading and shared libraries.

Configuring the Custom Security Provider in Application Server Control

Login Modules 8-7

■ Changing to a Custom Security Provider after Deployment

■ Adding a Login Module to the Custom Security Provider

■ Updating a Login Module in the Custom Security Provider

■ Deleting a Login Module in the Custom Security Provider

Specifying and Configuring a Custom Security Provider during Deployment
When you plan to use the custom security provider and you deploy an application
through Application Server Control, you have the opportunity to configure your
custom login modules during deployment.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 5-11 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose
Custom from the Security Provider dropdown list.

3. Under "Configuration of Custom Security Provider" (which appears after you
choose Custom), you can edit or delete any custom login module that is found
with your application, or add a new custom login module.

■ To add a new custom login module, choose Add Login Module. See "Adding
a Custom Login Module during Deployment" on page 8-9.

■ To edit an existing custom login module, choose the Edit task for the
appropriate module. See "Editing a Custom Login Module Configuration
during Deployment" on page 8-8.

■ To delete an existing custom login module, choose the Delete task for the
appropriate module.

4. Still in the Deployment Settings: Select Security Provider page, choose OK to
finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11.

Deploying with a custom login module results in the following automatic settings in
the orion-application.xml file:

<jazn provider="XML">
 <property name="role.mapping.dynamic" value="true" />
 <property name="custom.loginmodule.provider" value="true" />
</jazn>

Note: Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

Configuring the Custom Security Provider in Application Server Control

8-8 Oracle Containers for J2EE Security Guide

Editing a Custom Login Module Configuration during Deployment
To edit a custom login module while deploying an application using the Custom
Security Provider, take the following steps, starting under "Configuration of Custom
Security Provider" in the Deployment Settings: Select Security Provider page (see
"Specifying and Configuring a Custom Security Provider during Deployment" on
page 8-7 for how to get to this point):

1. Choose the Edit task for the appropriate login module in the list of login module
classes.

2. In the Deployment Settings: Select Security Provider: Edit Login Module page:

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. Table 8–2 describes these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose Continue to go back to the Deployment Settings: Select Security
Provider page to continue the deployment steps in "Specifying and
Configuring a Custom Security Provider during Deployment" on page 8-7.

Notes:

■ Grants for custom login modules, which are stored in
system-jazn-data.xml, cannot be configured through
Application Server Control Console.

■ Custom login modules, as well as the file-based provider, use a
setting of provider="XML".

■ Custom login module configuration settings are reflected under
the <jazn-loginconfig> element in the
system-jazn-data.xml file, as shown in "Login Module
Settings in system-jazn-data.xml" on page 8-12

■ The properties role.mapping.dynamic and
custom.loginmodule.provider must be set to true for any
application that uses custom login modules.

See Also:

■ "Login Module Configuration in OC4J Configuration Files" on
page 8-12 and "Simple Login Module J2EE Integration" on
page 8-14 for information and examples regarding the resulting
XML configuration for login modules

Table 8–2 Login Module Control Flags

 Flag Meaning

Required The login module must succeed. Whether or not it succeeds,
authentication proceeds down the login module list.

Requisite The login module must succeed. If it succeeds, authentication
continues down the login module list. If it fails, control
immediately returns to the application (authentication does not
continue down the login module list).

Configuring the Custom Security Provider in Application Server Control

Login Modules 8-9

Adding a Custom Login Module during Deployment
To add a custom login module while deploying an application using the Custom
Security Provider, take the following steps, starting under "Configuration of Custom
Security Provider" in the Deployment Settings: Select Security Provider page (see
"Specifying and Configuring a Custom Security Provider during Deployment" on
page 8-7 for how to get to this point):

1. Choose Add Login Module.

2. In the Deployment Settings: Select Security Provider: Add Login Module page:

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. See the preceding section, "Editing
a Custom Login Module Configuration during Deployment", for information
about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose Continue to go back to the Deployment Settings: Select Security
Provider page to continue the deployment steps in "Specifying and
Configuring a Custom Security Provider during Deployment" on page 8-7.

Changing to a Custom Security Provider after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. You can change to a custom security provider as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, choose "Change Security Provider".

3. In the Change Security Provider page, select "Custom Security Provider" from the
dropdown.

4. Under "Login Modules" (which appears after you select Custom Security Provider
in the dropdown), specify the first login module to be used, as follows. Later you
can go back to the Security Provider to add more login modules, as described in
the next section, "Adding a Login Module to the Custom Security Provider".

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown
list)—Required, Requisite, Optional, or Sufficient. See "Editing a Custom

Sufficient The login module is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the login module list. If
it fails, authentication continues down the login module list.

Optional The login module is not required to succeed. Whether or not it
succeeds, authentication proceeds down the login module list.

Table 8–2 (Cont.) Login Module Control Flags

 Flag Meaning

Configuring the Custom Security Provider in Application Server Control

8-10 Oracle Containers for J2EE Security Guide

Login Module Configuration during Deployment" on page 8-8 for information
about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine the settings.

Adding a Login Module to the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can add custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, under "Login Modules", choose Create.

3. In the Add Login Module page:

■ Specify your login module package and class name.

■ Specify a value for the login module control flag (from the dropdown list):
Required, Requisite, Optional, or Sufficient. See "Editing a Custom Login
Module Configuration during Deployment" on page 8-8 for information about
these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine the settings.

Updating a Login Module in the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can update custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, in the list of login module classes, choose the Edit
task for the login module you want to update.

3. In the Edit Login Module page:

■ As desired, update the value for the login module control flag (from the
dropdown list): Required, Requisite, Optional, or Sufficient. See "Editing a
Custom Login Module Configuration during Deployment" on page 8-8 for
information about these settings.

■ As desired, choose Add Another Row to create properties.

■ As desired, edit the name or value of any property in the Properties list.

■ As desired, use the Delete task for a property to remove that property.

■ Choose Apply to finish the change.

Configuring Login Modules through the Admintool

Login Modules 8-11

This leaves you in the Edit Login Module page. You can use the breadcrumbs at the
top of the page to go back to the Security Provider page.

Deleting a Login Module in the Custom Security Provider
Once you have established a custom security provider, either during or after
deployment, you can delete custom login modules as follows:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, in the list of login module classes, choose the Delete
task for the login module you want to delete.

3. Choose Yes in the Confirmation page.

This takes you back to the Security Provider page, where you can see that the login
module was deleted.

Configuring Login Modules through the Admintool
Although Application Server Control is the preferred and recommended tool for
adding and configuring custom login modules, it is also possible to use the OracleAS
JAAS Provider Admintool. The following information is presented for reference:

■ -addloginmodule: Configures a new login module for the named application.
This includes specifying a control flag: one of required, requisite,
sufficient or optional, as specified by
javax.security.auth.login.Configuration and in "Editing a Custom
Login Module Configuration during Deployment" on page 8-8.

If the login module accepts its own options, specify each option and its value as an
optionname=value pair. Each login module has its own individual set of
options.

For example, to add MyLoginModule, which we will assume supports a debug
option, to the application myapp as a required module with debug set to true:

% java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

■ -remloginmodule: Removes the specified login module.

To remove MyLoginModule from myapp:

% java -jar jazn.jar -remloginmodule myapp MyLoginModule

■ -listloginmodules: Displays all login modules for a specified application, or,
if no application name is specified, displays login modules for all applications.
Specifying a login module class after the application name displays information on
only the specified class within the application.

For example, to display all login modules for the application myapp:

% java -jar jazn.jar -listloginmodules myapp

You can also execute these commands from the Admintool shell.

Also note that to access an EJB using a custom login module, you must grant "login"
permission to the user (JDOE_ENDUSER, for example). To grant login permission to
the user through the Admintool:

% java -jar jazn.jar -grantperm login -user JDOE_ENDUSER com.evermind.server.rmi.RMIPermission

Login Module Configuration in OC4J Configuration Files

8-12 Oracle Containers for J2EE Security Guide

Login Module Configuration in OC4J Configuration Files
This section discusses files that contain configuration for custom login modules:

■ Login Module Settings in system-jazn-data.xml

■ Login Modules Settings in orion-application.xml

■ Configuring oc4j-ra.xml for Login Modules (J2EE Connector Architecture)

Login Module Settings in system-jazn-data.xml
The system-jazn-data.xml file is the repository for login module configuration.

Note that settings in system-jazn-data.xml are updated automatically when you
administer login modules through Application Server Control or the OracleAS JAAS
Provider Admintool.

The <jazn-loginconfig> element contains information that associates applications
with login modules.

If this information is in the orion-application.xml file during deployment, as
discussed in "Settings in <jazn-loginconfig> in orion-application.xml" on page 8-13, the
system-jazn-data.xml file will be updated accordingly.

Example 8–1 Example jazn-loginconfig element

<jazn-loginconfig>
 <application>
 <name>sampleLM</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.samples.SampleLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

Important: Restart OC4J for changes to take effect.

See Also:

■ "Adding and Removing Login Modules" on page C-8

■ "Listing Login Modules" on page C-12

Note: Where there are multiple OC4J instances, login module
configuration is added to the instance-specific
system-jazn-data.xml file, not
ORACLE_HOME/j2ee/home/system-jazn-data.xml.

Login Module Configuration in OC4J Configuration Files

Login Modules 8-13

This fragment associates the application sampleLM with the login module
sample.SampleLoginModule.

Login Modules Settings in orion-application.xml
This section discusses particular settings for login modules in the OC4J
application-level descriptor orion-application.xml. The following topics are
covered:

■ Settings in <jazn-loginconfig> in orion-application.xml

■ Settings in <jazn> for Login Modules

■ Settings in <namespace-access> for Login Modules

Settings in <jazn-loginconfig> in orion-application.xml
Settings in the <jazn-loginconfig> element in system-jazn-data.xml were
documented earlier, in "Login Module Settings in system-jazn-data.xml" on page 8-12.
You can add this element to orion-application.xml for deployment, and the
settings will be written to the system-jazn-data.xml file automatically.

In addition, when you undeploy the application, the <jazn-loginconfig> settings
will be removed from system-jazn-data.xml automatically.

Settings in <jazn> for Login Modules
The following <jazn> properties are specific to login module configuration:

■ role.mapping.dynamic

This property, when set to true, instructs the OracleAS JAAS Provider to base
authorization checks on the authenticated subject instead of basing checks on the
users and roles defined in system-jazn-data.xml or the application-specific
jazn-data.xml file.

A LoginModule instance must ensure that the appropriate principals (users or
roles) are associated with the Subject instance during the commit phase of the
authentication process, in order for the principals to be taken into consideration
during the authorization process. This association of principals to the subject is
typically implemented using the standard JAAS API.

Note: Do not remove login configuration information for
RealmLoginModule from the system-jazn-data.xml file.

See Also:

■ "The system-application.xml File" on page 3-6

■ "Configuring the Custom Security Provider in Application Server
Control" on page 8-6

■ "Configuring Login Modules through the Admintool" on
page 8-11

Note: This section discusses only elements relevant to security. For a
full discussion of this file, see the Oracle Containers for J2EE Developer’s
Guide.

Simple Login Module J2EE Integration

8-14 Oracle Containers for J2EE Security Guide

■ custom.loginmodule.provider

This property, when set to true, instructs Application Server Control that the
security provider is the custom provider. Without this setting, because the custom
security provider uses the setting provider="XML", Application Server Control
would mistakenly report that the security provider is the file-based provider
(although custom login modules you provide in your EAR file would still work).

These properties are automatically set to "true" in orion-application.xml, as
shown in the following example, when you have a <jazn-loginconfig> element in
orion-application.xml.

<jazn provider="XML" ... >
 <property name="role.mapping.dynamic" value="true" />
 <property name="custom.loginmodule.provider" value="true" />
</jazn>

Settings in <namespace-access> for Login Modules
To access an EJB using a custom login module, you must also grant namespace access
to the user in orion-application.xml, as in the following example for
JDOE_ENDUSER:

<namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping>
 <user name="JDOE_ENDUSER" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
</namespace-access>

Configuring oc4j-ra.xml for Login Modules (J2EE Connector Architecture)
When you configure resource adapters, each <connector-factory> element in the
oc4j-ra.xml file can specify a different JAAS login module, as in the following
example. This also shows <config-property> setup to connect to a database
through Oracle JDBC.

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521/myservice" />
 <security-config use="jaas-module">
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

Simple Login Module J2EE Integration
Developing a simple login module follows the standard development, packaging, and
deployment cycle. The following sections discuss each step in the cycle.

Development of Simple Login Module
Develop a JAAS-compliant LoginModule implementation according to the JAAS
service provider interface.

Simple Login Module J2EE Integration

Login Modules 8-15

Packaging of Simple Login Module
Package your login module classes in one of the ways described in "Packaging and
Deploying Login Modules" on page 8-4.

Deployment of Simple Login Module
Configuration for login modules is specified in the system-jazn-data.xml file:

1. Register your application login module. This occurs automatically when you
deploy an application through Application Server Control.

The following fragment from system-jazn-data.xml shows the registration of
the login module oracle.security.jazn.samples.SampleLoginModule,
to be used for authenticating users accessing the sampleLM application.

 <jazn-loginconfig>
 <application>
 <name>sampleLM</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.samples.SampleLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 ...
 </jazn-loginconfig>

2. Optional. Grant relevant permissions to your users and roles. You can use the
OracleAS JAAS Provider Admintool to accomplish this. For example, if the
principal developer needs EJB access, then you must grant the permission
com.evermind.server.rmi.RMIPermission to developer.

This results in configuration such as the following in system-jazn-data.xml:

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>developer</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>

See Also:

■ javax.security.auth.spi.LoginModule Javadoc:

http://java.sun.com/j2se/1.4.2/docs/api/

■ "Custom Login Module Example" on page 8-16

Custom Login Module Example

8-16 Oracle Containers for J2EE Security Guide

 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
 ...
</jazn-policy>

To deploy your login module, ensure the following settings are in the
orion-application.xml file:

1. The <jazn> properties role.mapping.dynamic and
custom.loginmodule.provider (described in "Settings in <jazn> for Login
Modules" on page 8-13) are set to "true":

<jazn provider="XML" ... >
 <property name="role.mapping.dynamic" value="true" />
 <property name="custom.loginmodule.provider" value="true" />
</jazn>

This occurs automatically if there is a <jazn-loginconfig> element in
orion-application.xml.

2. Appropriate <security-role-mapping> entries exist:

<security-role-mapping name="sr_developer">
 <user name="developer" />
</security-role-mapping>
<security-role-mapping name="sr_manager">
 <group name="managers" />
</security-role-mapping>

You can set these mappings through Application Server Control.

Custom Login Module Example
This section gives source code for a simple custom login module to be used by the
CallerInfo example.

Example 8–2 SampleLoginModule.java

package oracle.security.jazn.samples;

import java.util.Set;
import java.util.Iterator;
import java.util.Map;
import java.security.Principal;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

public class SampleLoginModule implements LoginModule {

 // initial state
 protected Subject _subject;
 protected CallbackHandler _callbackHandler;
 protected Map _sharedState;

Custom Login Module Example

Login Modules 8-17

 protected Map _options;

 // configuration options
 protected boolean _debug;

 // the authentication status
 protected boolean _succeeded;
 protected boolean _commitSucceeded;

 // username and password
 protected String _name;
 protected char[] _password;

 protected Principal[] _authPrincipals;

 /**
 * Initialize this <code>LoginModule</code>.
 * <p/>
 * <p/>
 *
 * @param subject the <code>Subject</code> to be authenticated. <p>
 * @param callbackHandler a <code>CallbackHandler</code> for communicating
 * with the end user (prompting for usernames and
 * passwords, for example). <p>
 * @param sharedState shared <code>LoginModule</code> state. <p>
 * @param options options specified in the login
 * <code>Configuration</code> for this particular
 * <code>LoginModule</code>.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options) {
 this._subject = subject;
 this._callbackHandler = callbackHandler;
 this._sharedState = sharedState;
 this._options = options;

 // initialize any configured options
 _debug = "true".equalsIgnoreCase((String) _options.get("debug"));

 if (debug()) {
 printConfiguration(this);
 }
 }

 final public boolean debug() {
 return _debug;
 }

 protected Principal[] getAuthPrincipals() {
 return _authPrincipals;
 }

 /**
 * Authenticate the user by prompting for a username and password.

Custom Login Module Example

8-18 Oracle Containers for J2EE Security Guide

 * <p/>
 * <p/>
 *
 * @return true if the authentication succeeded, or false if this
 * <code>LoginModule</code> should be ignored.
 * @throws FailedLoginException if the authentication fails. <p>
 * @throws LoginException if this <code>LoginModule</code>
 * is unable to perform the authentication.
 */
 public boolean login() throws LoginException {
 if (debug())
 System.out.println("\t\t[SampleLoginModule] login");

 if (_callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " +
 "to garner authentication information from the user");

 // Setup default callback handlers.
 Callback[] callbacks = new Callback[] {
 new NameCallback("Username: "),
 new PasswordCallback("Password: ", false)
 };

 try {
 _callbackHandler.handle(callbacks);
 } catch (Exception e) {
 _succeeded = false;
 throw new LoginException(e.getMessage());
 }

 String username = ((NameCallback)callbacks[0]).getName();
 String password = new
 String(((PasswordCallback)callbacks[1]).getPassword());
 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] username : " + username);
 }

 // Authenticate the user. On successfull authentication add principals
 // to the Subject. The name of the principal is used for authorization by
 // OC4J by mapping it to the value of the name attribute of the group
 // tag in the security-role-mapping for the application.
 if(username.equals("developer") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "developer";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[2];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("developer");
 //Adding role developers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 }

 if(username.equals("manager") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "manager";
 _password = password.toCharArray();

Custom Login Module Example

Login Modules 8-19

 _authPrincipals = new SamplePrincipal[3];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("manager");
 //Adding roles developers and managers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 _authPrincipals[2] = new SamplePrincipal("managers");
 }

 ((PasswordCallback)callbacks[1]).clearPassword();
 callbacks[0] = null;
 callbacks[1] = null;

 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] success : " + _succeeded);
 }

 if (!_succeeded)
 throw new LoginException
 ("Authentication failed: Password does not match");

 return true;
 }

 /**
 * <p> This method is called if the LoginContext's
 * overall authentication succeeded
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * succeeded).
 * <p/>
 * <p> If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> method), then this method associates a
 * <code>Principal</code>
 * with the <code>Subject</code> located in the
 * <code>LoginModule</code>. If this LoginModule's own
 * authentication attempted failed, then this method removes
 * any state that was originally saved.
 * <p/>
 * <p/>
 *
 * @return true if this LoginModule's own login and commit
 * attempts succeeded, or false otherwise.
 * @throws LoginException if the commit fails.
 */
 public boolean commit()
 throws LoginException {
 try {

 if (_succeeded == false) {
 return false;
 }

 if (_subject.isReadOnly()) {
 throw new LoginException("Subject is ReadOnly");
 }

 // add authenticated principals to the Subject

Custom Login Module Example

8-20 Oracle Containers for J2EE Security Guide

 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 if(!_subject.getPrincipals().contains(getAuthPrincipals()[i]))
{
 _subject.getPrincipals().add(getAuthPrincipals()[i]);
 }
 }
 }

 // in any case, clean out state
 cleanup();
 if (debug()) {
 printSubject(_subject);
 }

 _commitSucceeded = true;
 return true;

 } catch (Throwable t) {
 if (debug()) {
 System.out.println(t.getMessage());
 t.printStackTrace();
 }
 throw new LoginException(t.toString());
 }
 }

 /**
 * <p> This method is called if the LoginContext's
 * overall authentication failed.
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * did not succeed).
 * <p/>
 * <p> If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> and <code>commit</code> methods),
 * then this method cleans up any state that was originally saved.
 * <p/>
 * <p/>
 *
 * @return false if this LoginModule's own login and/or commit attempts
 * failed, and true otherwise.
 * @throws LoginException if the abort fails.
 */
 public boolean abort() throws LoginException {
 if (debug()) {
 System.out.println
 ("\t\t[SampleLoginModule] aborted authentication attempt.");
 }

 if (_succeeded == false) {
 cleanup();
 return false;
 } else if (_succeeded == true && _commitSucceeded == false) {
 // login succeeded but overall authentication failed
 _succeeded = false;
 cleanup();
 } else {
 // overall authentication succeeded and commit succeeded,

Custom Login Module Example

Login Modules 8-21

 // but someone else's commit failed
 logout();
 }
 return true;
 }

 protected void cleanup() {
 _name = null;
 if (_password != null) {
 for (int i = 0; i < _password.length; i++) {
 _password[i] = ' ';
 }
 _password = null;
 }
 }

 protected void cleanupAll() {
 cleanup();

 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 _subject.getPrincipals().remove(getAuthPrincipals()[i]);
 }
 }
 }

 /**
 * Logout the user.
 * <p/>
 * <p> This method removes the <code>Principal</code>
 * that was added by the <code>commit</code> method.
 * <p/>
 * <p/>
 *
 * @return true in all cases since this <code>LoginModule</code>
 * should not be ignored.
 * @throws LoginException if the logout fails.
 */
 public boolean logout() throws LoginException {
 _succeeded = false;
 _commitSucceeded = false;
 cleanupAll();
 return true;
 }

 // helper methods //

 protected static void printConfiguration(SampleLoginModule slm) {
 if (slm == null) {
 return;
 }
 System.out.println("\t\t[SampleLoginModule] configuration options:");
 if (slm.debug()) {
 System.out.println("\t\t\tdebug = " + slm.debug());
 }
 }

Custom Login Module Example

8-22 Oracle Containers for J2EE Security Guide

 protected static void printSet(Set s) {
 try {
 Iterator principalIterator = s.iterator();
 while (principalIterator.hasNext()) {
 Principal p = (Principal) principalIterator.next();
 System.out.println("\t\t\t" + p.toString());
 }
 } catch (Throwable t) {
 }
 }

 protected static void printSubject(Subject subject) {
 try {
 if (subject == null) {
 return;
 }
 Set s = subject.getPrincipals();
 if ((s != null) && (s.size() != 0)) {
 System.out.println
 ("\t\t[SampleLoginModule] added the following Principals:");
 printSet(s);
 }

 s = subject.getPublicCredentials();
 if ((s != null) && (s.size() != 0)) {
 System.out.println
 ("\t\t[SampleLoginModule] added the following Public Credentials:");
 printSet(s);
 }
 } catch (Throwable t) {
 }
 }
}
The Principal that this LoginModule uses is in Example 8–3.

Example 8–3 SamplePrincipal example

package oracle.security.jazn.samples;

import java.security.Principal;

public class SamplePrincipal implements Principal {

 private String _name = null;

 public SamplePrincipal(String name) {
 _name = name;
 }

 public boolean equals(Object another) {
 return ((SamplePrincipal)another).getName().equals(_name);
 }

 public String getName() {
 return _name;

Custom Login Module Example

Login Modules 8-23

 }

 public int hashCode() {
 return _name.hashCode();
 }

 public String toString() {
 return "[SamplePrincipal] : " + _name;
 }
 }

Custom Login Module Example

8-24 Oracle Containers for J2EE Security Guide

External LDAP Security Providers 9-1

9
External LDAP Security Providers

This chapter discusses how to configure OC4J to use a non-Oracle ("third-party" or
"external") LDAP server as the user repository. It is divided into the following sections:

■ Overview of External LDAP Provider Configuration and Administration

■ Configuring External LDAP Providers in Application Server Control

■ External LDAP Provider Settings in system-jazn-data.xml

■ Granting RMI Permission to an LDAP Principal

■ Sample Configuration for Sun Java System Directory Server

The OC4J 10.1.3 implementation supports the following external LDAP providers:

■ Active Directory (for Windows Server 2003)

■ Sun Java System Directory Server (version 5.2)

Overview of External LDAP Provider Configuration and Administration
When you deploy an application using Application Server Control Console, you have
the opportunity to specify an external (third-party) LDAP provider, as noted in
"Specifying the Security Provider through Application Server Control" on page 5-13.

(This assumes that you have already completed the prerequisite of installing and
configuring Sun Java System Directory Server, formerly iPlanet, or Active Directory.)

Specifying an external LDAP provider automatically results in the following setting in
orion-application.xml:

<jazn provider="XML">
 <property name="custom.ldap.provider" value="true" />
</jazn>

Notes:

■ Support for external LDAP providers requires JDK 1.4 or later.

■ The concept of security realms is not supported when using
external LDAP providers.

See Also:

■ Chapter 8, "Login Modules"

Overview of External LDAP Provider Configuration and Administration

9-2 Oracle Containers for J2EE Security Guide

OC4J provides a login module, LDAPLoginModule, to use for authentication and
authorization with an external LDAP provider. (Alternatively, you can provide a
custom login module to use with any custom repository.) Configurable options for an
external LDAP provider include the following:

■ URL of the external LDAP provider

■ LDAP principal DN to connect (user must have privileges to query role
information for any user in the LDAP directory)

■ Credential of the LDAP principal DN

■ LDAP attribute that uniquely identifies a user

■ User object classes, search bases, search scope

■ Role object classes, search bases, search scope

■ Enabling or disabling of connection pooling

■ Enabling or disabling of login module caching

Option settings are reflected within a <login-module> element in
system-jazn-data.xml, which configures LDAPLoginModule.

Notes:

■ Note the setting provider="XML" is used for external LDAP
providers as well as for the file-based provider.

■ Be aware that when you use an external LDAP provider, role
comparisons for authorization are not case-sensitive unless you
add the following property setting to the <jazn> element in
orion-application.xml:

<property name="role.compare.ignorecase" value="false" />

Troubleshooting Tips: Note the following potential issues if you
have trouble using an external LDAP provider:

■ Be sure you are using the Distinguished Name (DN) of the LDAP
user to connect to the LDAP server. This user must be an
administrator with privileges to search users and groups.

■ If you provide the correct user name and password for login, but
still get an authentication failure for invalid credentials, ensure
that the LDAP host and port are configured correctly. Using the
ldapbind command to bind against the configured LDAP host
and port will be a good way to check.

Note: Sample login module entries for Sun Java System Directory
Server and Microsoft Active Directory are provided in the directory
ORACLE_HOME/j2ee/home/jazn/config. A non-provider-specific
login module entry is provided in the file
ldap_login_module.template in the
ORACLE_HOME/j2ee/home/jazn/config directory.

Configuring External LDAP Providers in Application Server Control

External LDAP Security Providers 9-3

Configuring External LDAP Providers in Application Server Control
This section discusses the following topics for administering external LDAP providers
using the Application Server Control Console:

■ Specifying and Configuring an External LDAP Provider during Deployment

■ Changing to an External LDAP Provider after Deployment

Specifying and Configuring an External LDAP Provider during Deployment
When you plan to use an external LDAP provider and deploy an application through
Application Server Control, you have the opportunity to configure the external LDAP
provider when you specify it as the security provider.

From the Deploy: Deployment Settings page (see "Deploying an Application through
Application Server Control" on page 5-11 for how to get to this page):

1. Go to the Select Security Provider task.

2. In the resulting Deployment Settings: Select Security Provider page, choose Third
Party LDAP Server from the Security Provider dropdown list.

3. Under "Configuration of Oracle Security Provider for 3rd Party LDAP Server"
(which appears after you choose Third Party LDAP Server), specify settings for the
options documented in:

■ Table 9–1, " Application Server Control External LDAP Provider Options"

■ Table 9–2, " Application Server Control External LDAP Connection Pool
Options" (if you enable connection pooling)

■ Table 9–3, " Application Server Control External LDAP User Options"

■ Table 9–4, " Application Server Control External LDAP Role and Member
Options"

Or, alternatively, choose Set Values to Vendor Defaults.

4. Choose OK to finish the security provider selection.

5. Back in the Deploy: Deployment Settings page, choose Deploy to complete the
deployment, or choose another task, as desired. The list of tasks is noted in
"Deploying an Application through Application Server Control" on page 5-11.

Note: Procedures discussed throughout this section assume you are
logged in to Application Server Control as a user with required
administrative permissions (as oc4jadmin, for example).

Table 9–1 Application Server Control External LDAP Provider Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 9–5 (see for
description)

LDAP Location Required oracle.security.jaas.ldap.provider.url

LDAP Directory Vendor Active Directory, Sun
Directory Server, or Other
(from dropdown menu)

oracle.security.jaas.ldap.provider.type

User DN Required oracle.security.jaas.ldap.provider.principal

Configuring External LDAP Providers in Application Server Control

9-4 Oracle Containers for J2EE Security Guide

User Password Required oracle.security.jaas.ldap.provider.credential

Enable Caching (checkbox) Default: true oracle.security.jaas.ldap.lm.cache_enabled

Enable Connection Pooling
(checkbox)

Default: true oracle.security.jaas.ldap.provider.connect.pool

Table 9–2 Application Server Control External LDAP Connection Pool Options

Option Default Description

Initial Size of Connection Pool 2 Number of connections initially created in the pool
for each connection identity

Maximum Size of Connection Pool 25 Maximum number of connections that can be
concurrently maintained in the pool for each
connection identity

Preferred Size of Connection Pool 10 Preferred number of connections in the pool for
each connection identity

Idle Connection Timeout (milliseconds) 300000 (5 minutes) The amount of time that an idle connection can
remain in the pool before being removed

Note: The above connection pooling properties correspond to the
following:

com.sun.jndi.ldap.connect.pool.initsize
com.sun.jndi.ldap.connect.pool.maxsize
com.sun.jndi.ldap.connect.pool.prefsize
com.sun.jndi.ldap.connect.pool.timeout

As described at:

http://java.sun.com/products/jndi/tutorial/ldap/connect/c
onfig.html

Table 9–3 Application Server Control External LDAP User Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 9–6 (see for
description)

User Search Base Required oracle.security.jaas.ldap.user.searchbase

User Search Scope Subtree (default) or One Level
(from dropdown menu)

Note: Although the default in the
dropdown menu is Subtree, the
vendor default is One Level.

oracle.security.jaas.ldap.user.searchscope

LDAP User Name Attribute Required oracle.security.jaas.ldap.user.name.attribute

LDAP User Object Class Required oracle.security.jaas.ldap.user.object.class

Table 9–1 (Cont.) Application Server Control External LDAP Provider Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 9–5 (see for
description)

External LDAP Provider Settings in system-jazn-data.xml

External LDAP Security Providers 9-5

Changing to an External LDAP Provider after Deployment
You can select a security provider for your application at deployment time, as
described above. You can also change to a different security provider after
deployment. In particular, to change to an external LDAP provider:

1. Go to the Security Provider page for your application, as described in "Navigating
to the Security Provider Page for Your Application" on page 5-17.

2. In the Security Provider page, choose "Change Security Provider".

3. In the Change Security Provider page, select Oracle Security Provider for 3rd Party
LDAP Server from the Security Provider Type dropdown.

4. Under "Security Provider Attributes: Oracle Security Provider for 3rd Party LDAP
Server" (which appears after you select 3rd Party LDAP Server in the dropdown),
specify settings for the options documented in:

■ Table 9–1, " Application Server Control External LDAP Provider Options"

■ Table 9–2, " Application Server Control External LDAP Connection Pool
Options" (if you enable connection pooling)

■ Table 9–3, " Application Server Control External LDAP User Options"

■ Table 9–4, " Application Server Control External LDAP Role and Member
Options"

Or, alternatively, choose Set Values to Vendor Defaults.

5. Choose OK to finish the change.

This takes you back to the Security Provider page, where you can examine the settings.

External LDAP Provider Settings in system-jazn-data.xml
Configuration of an external LDAP provider is reflected in a <login-module>
element in system-jazn-data.xml that configures the LDAPLoginModule, the
login module used for external LDAP providers in OracleAS JAAS Provider. Any
<login-module> elements are subelements of the <login-modules> element
under <jazn-loginconfig>.

Table 9–4 Application Server Control External LDAP Role and Member Options

Option
Required?
Or Settings / Default

Equivalent Option in Table 9–7 (see for
description)

Group Search Base Required oracle.security.jaas.ldap.role.searchbase

Group Search Scope Subtree (default) or One Level
(from dropdown menu)

Note: Although the default in
the dropdown menu is Subtree,
the vendor default is One
Level.

oracle.security.jaas.ldap.role.searchscope

LDAP Group Name Attribute Required oracle.security.jaas.ldap.role.name.attribute

LDAP Group Object Class Required oracle.security.jaas.ldap.role.object.class

LDAP Group Member Attribute Required oracle.security.jaas.ldap.member.attribute

Group Membership Scope
Search

Direct (default) or Nested (from
dropdown menu)

oracle.security.jaas.ldap.membership.searchscope

External LDAP Provider Settings in system-jazn-data.xml

9-6 Oracle Containers for J2EE Security Guide

Each option in a <login-module> element is represented by the <name> subelement
of an <option> element and corresponds to a configuration setting in the external
LDAP provider.

You can specify settings of these options through Application Server Control, as
documented in "Specifying and Configuring an External LDAP Provider during
Deployment" on page 9-3, which also documents the correspondence between options
listed in this section and what you see in the Application Server Control Console.

Supported options are listed in Table 9–5, Table 9–6 , and Table 9–7. Where applicable,
the tables indicate default values that are used when you configure an external LDAP
provider through Application Server Control and choose Set Values to Vendor
Defaults. Except where noted otherwise, these options are required, either by
specifying them directly or using vendor defaults.

Note: The <jazn-loginconfig> element can also appear in the
orion-application.xml file, in which case it is copied from there
into the system-jazn-data.xml file.

See Also:

■ "Settings in system-jazn-data.xml for Sun Java System Directory
Server" on page 9-9 for examples of some option settings

Table 9–5 External LDAP Provider Options

Option Name Meaning

oracle.security.jaas.ldap.provider.url The URL of the LDAP provider, in the format ldap://host:port,
such as:

ldap://myhost.example.com:389

oracle.security.jaas.ldap.provider.principal The Distinguished Name (DN) of the LDAP user that is used to
connect to the LDAP server. This user must be an administrator with
privileges to search users and roles, and to invoke ldapcompare on
a user password if the target directory supports that functionality.

oracle.security.jaas.ldap.provider.credential The credential (generally a password) used to authenticate the
LDAP user defined in:

oracle.security.jaas.ldap.provider.principal

oracle.security.jaas.ldap.provider.type (Optional) The product name of the LDAP provider. Supported
values are sun directory server, active directory, and
other. If you supply sun directory server or active
directory, the login module is able to infer some LDAP properties
and do some optimizations.

oracle.security.jaas.ldap.provider.connect.pool (Optional) Boolean indicating whether connection pooling is
enabled. A true setting (default) enables connection pooling;
false disables it.

oracle.security.jaas.ldap.lm.cache_enabled (Optional) Boolean indicating whether login module caching is
enabled. A true setting (default) enables caching, false disables it.

Granting RMI Permission to an LDAP Principal

External LDAP Security Providers 9-7

Granting RMI Permission to an LDAP Principal
When using an external LDAP provider, it may be necessary to grant RMI "login"
permission for an LDAP principal.

The following example uses the OracleAS JAAS Provider Admintool to accomplish
this:

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.LDAPPrincipal hobbes \
 com.evermind.server.rmi.RMIPermission login

This example would result in the following configuration in the
system-jazn-data.xml file:

<jazn-policy>

Table 9–6 External LDAP User Options

Option Name Meaning

oracle.security.jaas.ldap.user.name.attribute The name of the LDAP attribute that uniquely identifies the name of
the user. The default for Sun Java System Directory Server is uid; for
Active Directory, it is sAMAccountName.

oracle.security.jaas.ldap.user.object.class A list of one or more space-delimited LDAP schema object classes to
represent a user. The default for either Sun Java System Directory
Server or Active Directory is inetOrgPerson.

oracle.security.jaas.ldap.user.searchbase A list of space-delimited distinguished names (DNs) in the LDAP
directory that contains users. Here is a sample DN:

cn=users,dc=us,dc=abc,dc=com

oracle.security.jaas.ldap.user.searchscope Specifies how deep in the LDAP directory tree to search for users.
Supported values are subtree or onelevel (default).

Table 9–7 External LDAP Role and Member Options

Option Name Meaning

oracle.security.jaas.ldap.role.name.attribute The name of the LDAP attribute that uniquely identifies the
name of the role. For either Sun Java System Directory
Server or Active Directory, the default is "cn".

oracle.security.jaas.ldap.role.object.class A list of one or more space-delimited LDAP schema object
classes that is used to represent a role. The default for Sun
Java System Directory Server is groupOfUniqueNames; for
Active Directory, it is group.

oracle.security.jaas.ldap.role.searchbase A list of space-delimited distinguished names (DN) in the
LDAP directory that contains a role. For example:

cn=groups,dc=us,dc=abc,dc=com

oracle.security.jaas.ldap.role.searchscope Specifies how deep in the LDAP directory tree to search for
roles. Supported values are subtree or onelevel
(default).

oracle.security.jaas.ldap.membership.searchscope Specifies how deep in the LDAP directory tree to search for
role membership. Supported values are direct (default) or
nested. A direct setting means the runtime will only get
the roles directly assigned to the role or user in question, as
opposed to nested roles within roles.

oracle.security.jaas.ldap.member.attribute The attribute of a static LDAP role object specifying the
distinguished names (DNs) of the members of the role. The
default for Sun Java System Directory Server is
uniqueMember; for Active Directory, it is member.

Sample Configuration for Sun Java System Directory Server

9-8 Oracle Containers for J2EE Security Guide

 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.realm.LDAPPrincipal</class>
 <name>hobbes</name>
 </principal>
 </principals>
 </grantee>
 ...
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
</jazn-policy>

Sample Configuration for Sun Java System Directory Server
This section provides the following sample configuration to use the Sun Java System
Directory Server as an external LDAP provider:

■ Sample LDIF Description

■ Sample Entries in OC4J Configuration Files

The orion-application.xml and system-jazn-data.xml settings would be
made automatically if you use Application Server Control Console as described earlier
in this chapter.

Sample LDIF Description
Assume the following LDIF description is used for the Sun Java System Directory
Server example:

Example 9–1 Sample LDIF Defining a User and Role

An example user object entry
uid= jdoe,dc=us,dc=example,dc=com
uid= jdoe
givenName=John
sn=Doe
cn=John Doe
userPassword={SSHA}zD/44JbZY33osry4mzfLn0du7nBhIIAHKDG5Fg==
uidNumber=1

Note: A template file containing a sample login module entry for
Sun Java System Directory Server is provided in the file
sample_login_module.sun in the
ORACLE_HOME/j2ee/home/jazn/config directory. (Similarly, a
template file containing a sample login module entry for Active
Directory is provided in the file sample_login_module.ad in the
ORACLE_HOME/j2ee/home/jazn/config directory.)

Sample Configuration for Sun Java System Directory Server

External LDAP Security Providers 9-9

gidNumber=1
homeDirectory=c:\
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass= inetOrgPerson
objectClass=posixAccount

An example role object entry
cn=managers,ou=groups,dc=us,dc=example,dc=com
objectClass=top
objectClass= groupOfUniqueNames
cn=managers
uniqueMember=uid=jdoe,dc=us,dc=example,dc=com

Sample Entries in OC4J Configuration Files
This section shows OC4J configuration in the following files for an external LDAP
provider:

■ Settings in system-jazn-data.xml for Sun Java System Directory Server

■ Settings in orion-application.xml for External LDAP Server

Settings in system-jazn-data.xml for Sun Java System Directory Server
Assume your Sun Java System Directory Server installation is described by the set of
LDIF entries shown in Example 9–1. The corresponding <jazn-loginconfig>
entries in the system-jazn-data.xml file are shown in the following example:

Example 9–2 JAAS Login Module Configuration Corresponding to Example 9–1

<jazn-data ... >
 ...
 <jazn-loginconfig>
 <application>
 <name>callerInfo</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.login.module.LDAPLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>oracle.security.jaas.ldap.user.name.attribute</name>
 <value>uid</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.user.object.class</name>
 <value>inetOrgPerson</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.user.searchbase</name>
 <value>dc=us,dc=example,dc=com</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.name.attribute</name>
 <value>cn</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.object.class</name>
 <value>groupOfUniqueNames</value>

Sample Configuration for Sun Java System Directory Server

9-10 Oracle Containers for J2EE Security Guide

 </option>
 <option>
 <name>oracle.security.jaas.ldap.role.searchbase</name>
 <value>ou=groups,dc=us,dc=example,dc=com</value>
 </option>
 <option>
 <name>oracle.security.jaas.ldap.member.attribute</name>
 <value> uniqueMember </value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>
 ...
</jazn-data>

Settings in orion-application.xml for External LDAP Server
The following settings in orion-application.xml are used for any external LDAP
provider:

<jazn provider="XML">
 <property name="custom.ldap.provider" value="true" />
</jazn>

You must restart OC4J to synchronize the login module information from
system-jazn.data.xml.

Note: An option setting for an external LDAP location would look
like the following:

 ...
 <options>
 ...
 <option>
 <name>oracle.security.jaas.ldap.provider.url</name>
 <value>ldap://myhost.example.com:389</value>
 </option>
 ...
 </options>
 ...

COREid Access Security Provider 10-1

10
COREid Access Security Provider

This chapter discusses Oracle COREid Access and Identity and describes how to use
the COREid Access security provider for authentication, authorization, and single
sign-on. The chapter is useful for those who have already deployed, or plan to deploy,
the Oracle COREid Access and Identity system. It describes integration between the
COREid 7.0.4 implementation and the OC4J 10.1.3 implementation, and how to secure
applications deployed on OC4J through features of COREid. This includes detailed
configuration steps for Web applications, and examples for Web applications, EJBs,
and Web Service authentication schemes (including username token, X.509 token, and
SAML token).

This chapter covers the following topics:

■ Getting Started with Oracle COREid Access and Identity

■ Oracle COREid Access and Identity Concepts

■ Configuring COREid Access

■ Configuring OC4J with the Access SDK

■ Configuring the Application

■ COREid Examples for J2EE Applications

■ COREid Support and Examples for Web Services

■ Troubleshooting the Oracle COREid Access and Identity Setup

Notes:

■ The emphasis in this chapter is on what you must do from an
OC4J and OracleAS JAAS Provider perspective to enable the use
of Oracle COREid Access and Identity with Oracle Application
Server. Some prior familiarity with Oracle COREid Access and
Identity is assumed, and there is no attempt to thoroughly
document the use of COREid features or tools, such as Access
Manager. In terms of what to do for necessary COREid setup, the
emphasis is on required settings, and how they map to OracleAS
JAAS Provider configuration, rather than on how to accomplish
the settings. Please consult COREid documentation for details on
COREid features and administration.

■ Only the 7.0.4 implementation of Oracle COREid Access and
Identity is supported with the 10.1.3 implementation of OC4J.

Getting Started with Oracle COREid Access and Identity

10-2 Oracle Containers for J2EE Security Guide

Getting Started with Oracle COREid Access and Identity
This section provides an overview of Oracle COREid Access and Identity and
discusses prerequisites and architecture:

■ Overview of Oracle COREid Access and Identity

■ COREid Prerequisites

■ COREid Architecture

■ Top-Level Summary of Configuration Stages

Overview of Oracle COREid Access and Identity
Oracle COREid Access and Identity is an enterprise-class authentication,
authorization, and auditing solution that provides centralized security administration.
This includes functionality for access control, single sign-on (separate from OracleAS
Single Sign-On), personalization, and user profile management in heterogeneous
application environments across a variety of application servers, legacy applications,
and databases. COREid provides key features for creating, managing, and enforcing
access policies. If you have different sets of users that require access to different data
sets, while all require access to a common set of data, COREid can allow the right
levels of access to each group so that everyone can access only the data that is
appropriate for them.

In comparing Oracle COREid Access and Identity to other authentication, single
sign-on, and authorization services, note the following differentiating features.

■ You can centralize authentication and authorization for multiple OC4J instances
through a single Oracle COREid Access and Identity instance, allowing
centralized single sign-on and auditing functionality, as well as more robust
authentication options.

■ COREid offers superior identity administration through workflow, fine-grained
attribute control, and delegation of administration.

■ COREid supports access control based on dynamic groups, with members based
on a given identity profile.

■ COREid allows realtime access and identity integration, with runtime changes
made through COREid being automatically populated into the Access Server
cache to eliminate security loopholes.

In the OC4J 10.1.3 implementation, OracleAS JAAS Provider supports Oracle COREid
Access and Identity integration through a custom login module and a special
authentication method setting.

See Also:

■ Oracle COREid Access and Identity Installation Guide

■ Oracle COREid Access and Identity Administration Guide

■ Oracle COREid Access and Identity Developer Guide

These and other COREid documents are available from:

http://www.oracle.com/technology/documentation/appserver1
012.html

(Scroll down the page until you see the entry for COREid
documentation.)

Getting Started with Oracle COREid Access and Identity

COREid Access Security Provider 10-3

Oracle COREid Access and Identity includes the following components:

■ WebGate, the policy enforcer, is a Web server plug-in access client (with an
associated Apache mod for use on Oracle HTTP Server) that intercepts HTTP
requests and forwards them to the Access Server for authentication and
authorization. In comparison, an AccessGate is a custom access client, built with
the COREid Access SDK, that processes Web and non-Web resource requests from
users or applications. It intercepts user requests and forwards them to the Access
Server for authentication and authorization. The terms WebGate and AccessGate
can be used interchangeably in most situations.

■ WebPass is a Web server plug-in that passes information between a Web server
and a COREid server.

■ COREid Identity Server processes all user identity, group, organization, and
credential-management requests.

■ Access Server, the policy decision-maker, receives requests, responds to the access
client, and manages the login session. The Access Server receives requests from
WebGate and queries the authentication, authorization, and auditing rules in
Oracle Internet Directory. The Access Server also manages the login session by
helping WebGate terminate sessions, set user session timeouts, reauthenticate
when timeouts occur, and track session activity.

■ Access Manager writes policy data to Oracle Internet Directory, and updates the
Access Server with policy modifications. It includes an Access System Console
that enables administrators to manage policies and the system configuration.

COREid Prerequisites
This section describes what you must have installed to use Oracle COREid Access and
Identity. Oracle COREid Access and Identity components are version 7.0.4.

At a high level, prerequisites include installing Oracle COREid Access and Identity
and Oracle Application Server, and configuring the Access SDK and your applications
on OC4J.

Detailed requirements on the COREid side:

1. A suitable LDAP repository, such as Oracle Internet Directory (included in the
Oracle Application Server 10.1.2 infrastructure).

2. A Web server, such as Oracle HTTP Server (included in the Oracle Application
Server 10.1.3 middle-tier infrastructure).

3. The COREid Identity Server and Access Server. When you install Oracle COREid
Access and Identity, you will be asked to specify the LDAP repository you are
using, which must be accessible for communication with COREid Identity Server
and Access Server during runtime.

4. COREid WebGate, WebPass, and Access Manager installed on the Web server.
WebGate is the SSO interceptor and communicates with Access Server during

Note: In the 10.1.3 implementation, Application Server Control does
not support configuration of Oracle COREid Access and Identity.

See Also:

■ Oracle COREid Access and Identity Installation Guide for installation
instructions

Getting Started with Oracle COREid Access and Identity

10-4 Oracle Containers for J2EE Security Guide

runtime. WebPass communicates with COREid Identity Server. Access Manager
communicates with the LDAP repository. When you install WebGate and
WebPass, you will be asked to specify the Access Server and COREid Identity
Server you are using.

Detailed requirements on the OC4J side:

1. Oracle Application Server 10.1.3 middle-tier installation, with OC4J and Oracle
HTTP Server, including the mod_oc4j Apache mod. Note that this is separate
from the Web server you install on the COREid side, which may or may not be
Oracle HTTP Server.

Using the COREid Access security provider requires Oracle HTTP Server; you
cannot use standalone OC4J.

2. COREid WebGate installed on this Oracle HTTP Server.

3. Additional OC4J instances as needed. Typically, when using COREid SSO,
multiple OC4J instances are used in the topology, so the Oracle HTTP Server
instance must be configured to route and maintain multiple OC4J instances.

4. COREid Access SDK, one for each OC4J instance, on the same system as OC4J. The
Access SDK is required by OC4J at runtime to communicate with Access Server.

The next section, "COREid Architecture", shows how the Oracle COREid Access and
Identity components fit with key components of the Oracle Application Server
middle-tier infrastructure.

COREid Architecture
Figure 10–1 shows the Oracle COREid Access and Identity architecture.

Getting Started with Oracle COREid Access and Identity

COREid Access Security Provider 10-5

Figure 10–1 COREid Architecture

Top-Level Summary of Configuration Stages
There are three stages of configuration steps to use OC4J applications with the COREid
Access security provider:

1. One-time configurations for the COREid installation. This includes setting up
authentication schemes and configuring a COREid resource type. Refer to
"Configuring COREid Access" on page 10-8.

2. Configurations for each OC4J instance. This includes configuring each OC4J
instance with an Access SDK installation. Refer to "Configuring OC4J with the
Access SDK" on page 10-14.

3. Configurations for your application. This includes web.xml settings,
deployment-time settings, orion-application.xml settings (pre- or
post-deployment), and JAAS login module settings. Refer to "Configuring the
Application" on page 10-15.

Running the Access Manager
Several of the configuration steps documented later in this chapter involve running the
COREid Access Manager. Run it with a URL such as the following, then log in:

http://host:port/access/oblix

This will put you at the Access System Console, used frequently in this chapter.

Oracle COREid Access and Identity Concepts

10-6 Oracle Containers for J2EE Security Guide

Oracle COREid Access and Identity Concepts
This section provides background on some COREid concepts that will be relevant later
in this chapter:

■ About COREid Resource Types

■ About COREid Authentication

■ About Using HTTP Header Variables for Authentication

■ About the COREid Single Sign-On Cookie

About COREid Resource Types
In Oracle COREid Access and Identity, a resource type describes the kind of resource
to be protected, including its associated operations. Operations associated with a
resource are tied to its type. Before you can add resources to a policy domain, you
must define their types and the operation or operations associated with them that you
want to protect.

For example, by default Oracle COREid Access and Identity supports resource types
that are named "HTTP" and "EJB". The HTTP resource type supports operations such
as CONNECT, DELETE, GET, POST, PUT, and TRACE. The EJB resource type supports the
operation EXECUTE, which executes a bean. For a custom resource type, you can
specify a custom operation name.

To create a session to the Access Server, OC4J uses the Access SDK, and the SDK
expects some resource type and resource operation to be specified. For this reason,
when you configure the COREid login module, you must configure a custom COREid
resource type, including the following:

■ Desired name of the resource type (can be arbitrary)

■ Desired name of the operation (can be arbitrary)

You will specify just a single resource operation, but this will encompass whatever
you want to execute against the protected resource.

■ URL of the protected resource

About COREid Authentication
In order to validate any user, COREid must be configured with an authentication
scheme. An authentication scheme consists of plug-ins.

OC4J support for Oracle COREid Access uses the COREid credential_mapping
plug-in, which maps user credentials to profiles, and, where applicable, the
validate_password plug-in, which validates user passwords. You must configure
these plug-ins as shown later in this chapter.

Additionally, OC4J supports two modes of integrating end-user authentication
(identity assertion) with COREid Access:

■ Use of the COREid SSO cookie, ObSSOCookie, discussed further in the next
section, "About the COREid Single Sign-On Cookie"

See Also:

■ Oracle COREid Access and Identity Administration Guide for
information about COREid resource types

Oracle COREid Access and Identity Concepts

COREid Access Security Provider 10-7

■ Use of a user name and password that are passed in HTTP headers, discussed
further in "About Using HTTP Header Variables for Authentication" on page 10-7

About the COREid Single Sign-On Cookie
Oracle COREid Access implements single-domain and multi-domain single sign-on
through an encrypted session cookie called the ObSSOCookie. (This is one of two
possible modes of end-user authentication, the other involving HTTP header variables
as discussed in the next section.) WebGate sends this cookie to the user’s browser
upon successful authentication. This cookie can then act as an authentication
mechanism for other protected resources that require the same or a lower level of
authentication.

When a user requests access to a resource, the request flows from WebGate to the
Access Server. Once the user is validated, the ObSSOCookie is set, and then passed to
OC4J. With this single sign-on functionality, COREid uses the cookie for subsequent
requests instead of prompting the user to supply authentication credentials.

OC4J uses the ObSSOCookie to connect to the COREid Access Server and retrieve
user roles.

About Using HTTP Header Variables for Authentication
COREid supports the use of HTTP header variables for authentication, where a user
name and password are passed in HTTP headers to assert an end user. (This is one of
two possible modes of end-user authentication, the other being the use of the COREid
ObSSOCookie as discussed in the preceding section.)

To use this mode, you must configure the COREid login module with this user name
and password (as discussed in "Configure the COREid JAAS Login Module" on
page 10-16) for OC4J to use in accessing the COREid Access Server.

Consider the 4K size limit of the HTTP header when you use HTTP header variables
and cookies to pass information to downstream applications. This HTTP header size
limit includes all cookies, server variables, and environment variables—that is, all of
the content of the HTTP header. There is no constraint on the number of individual
elements an HTTP header can contain if the content does not exceed the 4K limit.
Therefore, when assessing the amount of available space in the HTTP header, take into
account the byte size of the data used by COREid and other applications. For example,
if COREid and other applications combine to use 1K in the HTTP header, you would
have 3K for your data.

See Also:

■ Oracle COREid Access and Identity Administration Guide for
information about COREid plug-ins

Note: ObSSOCookie is a session cookie by default, but can be made
persistent.

See Also:

■ Oracle COREid Access and Identity Administration Guide for
information about the ObSSOCookie

Configuring COREid Access

10-8 Oracle Containers for J2EE Security Guide

Configuring COREid Access
This section discusses one-time configurations to your COREid Access installation:

1. Configure COREid Form-Based Authentication

2. Configure COREid Basic Authentication

3. Configure the Resource Type

4. Protect the Action URL

Configure COREid Form-Based Authentication
For single sign-on functionality, a form-based authentication scheme must be used in
protecting your resources, due to limitations in the basic authentication scheme. (Some
aspects of your configuration will have to use a no-password authentication, however,
as discussed in "Configure COREid Basic Authentication" on page 10-10.)

The steps here are to create and protect a login page for form-based authentication in
Oracle COREid Access and Identity, for use by WebGate in protecting your resource.
You will later configure your application to be protected by this form-based
authentication.

1. Create a Login Form

2. Define Form-Based Authentication in Access Manager

3. Configure the credential_mapping Plug-In for Form-Based Authentication

4. Configure the validate_password Plug-In for Form-Based Authentication

Create a Login Form
Create a login page for form-based authentication. As will be pointed out, some of the
parameters you set in this page correspond to settings you will make in Access
Manager and the COREid plug-ins.

Put the login page under the OHS_HOME/document_root directory, typically
ORACLE_HOME/Apache/Apache/htdocs, on the middle-tier system.

Here is a sample login page, login.html. Assume it is in the
ORACLE_HOME/Apache/Apache/htdocs/login directory.

<html>
<head>
<title> COREid SSO Login Page</title>
<body bgcolor="white">
<h1 align="center">COREid SSO Provider Example : Sign in</h1>
<form method="POST" action="/coreid/access/test.html" >
 <table border="0" cellspacing="5">
 <tr>
 <th align="right">Username:</th>
 <td align="left"><input type="text" name="usernamevar"></td>
 </tr>
 <tr>
 <th align="right">Password:</th>
 <td align="left"><input type="password" name="passwordvar"></td>

See Also:

■ Discussion of how to configure form-based authentication in the
Oracle COREid Access and Identity Administration Guide for
additional information about the steps described here

Configuring COREid Access

COREid Access Security Provider 10-9

 </tr>
 <tr>
 <td align="right"><input type="submit" value="Log In"></td>
 <td align="left"><input type="reset"></td>
 </tr>
 </table>
</form>
</body>
</html>

The action URL for the POST method can be arbitrary, but must match the action URL
you specify when you configure authentication management in Access Manager in the
next step.

The variable for the user name (usernamevar here) must match what you specify in
the COREid credential_mapping plug-in. The variable for the password
(passwordvar here) must match what you specify in the COREid
validate_password plug-in.

Define Form-Based Authentication in Access Manager
This step uses the COREid Access Manager to define form-based authentication.
Navigate as follows in Access Manager:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose to add a new scheme. In the General tab
to define a new authentication scheme, makes entries such as the following:

Name: COREidSSOform
Description: COREid SSO Form Based
Level: 1
Challenge Method: Form
Challenge Parameter: form: /login/login.html
 creds: usernamevar passwordvar
 action: /coreid/access/test.html
 passthrough: No

SSL Required: No
Challenge Redirect
Enabled: Yes

You can choose any name and description; here "COREidSSOform" and "COREid SSO
Form Based" are just examples. The challenge parameter specifies
login/login.html as the form because that is the path relative to the Oracle HTTP
Server document root where we created the login page in the previous step. Leave
"Challenge Redirect" blank.

Note that the entries for "creds" here must match the variables specified for user and
password in your login page in the previous step, and these variables are used in the
credential_mapping plug-in and validate_password plug-in, respectively, for
form-based authentication.

Also note that the action URL (/coreid/access/test.html here) can be arbitrary,
but must match the action URL for the POST method in your login page. Protect this
URL with the basic (no password) authentication scheme described in "Configure
COREid Basic Authentication" on page 10-10.

Configuring COREid Access

10-10 Oracle Containers for J2EE Security Guide

Configure the credential_mapping Plug-In for Form-Based Authentication
Next, you must configure the COREid credential_mapping plug-in for form-based
authentication in Access Manager. This is to protect the login form.

Navigate to the appropriate page as follows:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose the form-based scheme, then go to the
Plugins tab.

Modify the credential_mapping plug-in with entries such as the following:

obMappingBase="cn=users,dc=us,dc=oracle,dc=com",obMappingFilter="(&(&
(objectclass=inetorgperson)(uid=%usernamevar%))(|(!
(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"

The value entered for uid (usernamevar here) must match the variable you specified
for the user name in the login form, and when defining form-based authentication in
Access Manager, shown in previous steps.

This also corresponds to the value of the coreid.name.attribute option in the
COREid login module configuration in OC4J.

Configure the validate_password Plug-In for Form-Based Authentication
Now configure the COREid validate_password plug-in for form-based
authentication in Access Manager. This is to protect the login form.

Navigate as for the credential_mapping plug-in in the previous step. Modify the
validate_password plug-in with an entry such as the following:

obCredentialPassword="passwordvar"

The value entered for obCredentialPassword (passwordvar here) must match
the password variable specified in the login page, and when defining form-based
authentication in Access Manager, shown in previous steps.

This also corresponds to the value of the coreid.password.attribute option in
the COREid login module configuration.

Configure COREid Basic Authentication
You must configure the COREid basic authentication scheme, which must not be
password protected. (It will use only the credential_mapping plug-in, not the
validate_password plug-in.) This scheme will be used to protect two resources:

■ A URL associated with the resource type that you configure, as discussed in
"Configure and Protect the URL of the Configured Resource Type" on page 10-12.
The COREid login module will use this URL to communicate to the Access Server
through the Access SDK.

■ The action URL for the form page, noted in "Create a Login Form" on page 10-8
and "Define Form-Based Authentication in Access Manager" on page 10-9. This is
so submitted form requests can be intercepted by WebGate in order to enforce
rules for submitted credentials.

See Also:

■ Oracle COREid Access and Identity Administration Guide for more
information about the credential_mapping plug-in

Configuring COREid Access

COREid Access Security Provider 10-11

(Your application itself, however, must be protected by form-based authentication,
described in "Configure COREid Form-Based Authentication" on page 10-8.)

These steps define basic authentication, without a password, to protect the resource.

1. Define Basic Authentication in Access Manager

2. Configure the credential_mapping Plug-In for Basic Authentication

Define Basic Authentication in Access Manager
This step uses the COREid Access Manager to configure basic authentication. Navigate
as follows in Access Manager:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose to add a new scheme. In the General tab
to define a new authentication scheme, makes entries such as the following:

Name: COREidSSONoPwd
Description: Authentication without Password
Level: 1
Challenge Method: Basic
Challenge Parameter: realm:NetPoint Basic Over LDAP
SSL Required: No
Challenge Redirect
Enabled: Yes

You can choose any name and description; here "COREidSSONoPwd" and
"Authentication without Password" are just examples. The challenge parameter entry
indicated here is one of the choices available from a dropdown list. Leave "Challenge
Redirect" blank.

Configure the credential_mapping Plug-In for Basic Authentication
Next, configure the COREid credential_mapping plug-in for basic authentication
in Access Manager. This is to protect your resource, but without a password so
WebGate can intercept results.

Navigate to the appropriate page as follows:

Access System Console > Access System Configuration > Authentication Management

List all authentication schemes, then choose the basic scheme, then go to the Plugins
tab.

Modify the credential_mapping plug-in with entries such as the following:

obMappingBase="cn=users,dc=us,dc=oracle,dc=com",obMappingFilter="(&(&
(objectclass=inetorgperson)(uid=%usernamevar%))(|(!
(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"

These are the same entries as for the credential_mapping plug-in for form-based
authentication. The value entered for uid (usernamevar here) must match the user
name variable specified in the login form.

This also corresponds to the value of the coreid.name.attribute option in the
COREid login module configuration.

See Also:

■ Oracle COREid Access and Identity Administration Guide for more
information about the credential_mapping plug-in

Configuring COREid Access

10-12 Oracle Containers for J2EE Security Guide

Configure the Resource Type
In Oracle COREid Access and Identity, a resource type describes the kind of resource
to be protected, including its associated operations. Operations associated with a
resource are tied to its type. You must configure an Oracle COREid Access and
Identity resource type for your resource, and then protect your resource type, action
URL, and application.

There are three parts to configuring the resource type for your resource, accomplished
through Access Manager and described below:

1. Configure the Name and Operation of the Resource Type

2. Configure and Protect the URL of the Configured Resource Type

3. Configure the Return Action Attributes

The COREid login module will need information for the resource type, as will be
noted. OC4J uses the resource type to retrieve user information based on the Oracle
COREid Access and Identity ObSSOCookie or the user name, using APIs of the
Access SDK.

Once these configuration steps are complete, the resource URL will be associated with
the resource type and protected by the no-password basic authentication method you
configured.

Configure the Name and Operation of the Resource Type
To configure the name and operation of the resource type in Access Manager, navigate
as follows:

Access System Console > Access System Configuration > Common Information
Configuration > Resource Type Definitions

On the page that lists all resource types, choose to add a new resource type.

Make entries such as the following to define a new resource type:

Resource Name: myresourcetype
Display Name: My Resource Type Display Name
Resource Matching: Case Insensitive
Resource Operation: myresourceoperation

You can choose any names for the resource type and resource operation, but you must
use the same names for the coreid.resource.type and
coreid.resource.operation option values in the COREid login module
configuration.

Configure and Protect the URL of the Configured Resource Type
To configure and protect the URL of your configured resource type in Access Manager,
navigate as follows:

Access Manager > Create Policy Domains

Choose the link for your policy domain. In the Resources tab, use entries such as the
following:

Resource Type: myresourcetype
Host Identifiers: myhost

See Also:

■ "About COREid Resource Types" on page 10-6

Configuring COREid Access

COREid Access Security Provider 10-13

URL Prefix: /myresourceurl
Description: My Description

This configuration must be protected using a no-password scheme. Use the basic
scheme that you configured in "Define Basic Authentication in Access Manager" on
page 10-11.

Choose your resource type (myresourcetype in these examples) from the dropdown
list, then choose the appropriate host name.

The URL prefix must start with a "/" and is the designated URL of the resource type.
This must match the value of the coreid.resource.name option in the COREid
login module configuration.

The description can be anything; "My Description" is just an example.

Configure the Return Action Attributes
After authentication, OC4J requires access to the user’s roles in order to check for
authorization. To enable this, you must set up a COREid "return action" that allows
COREid to return the appropriate roles to OC4J for the user after successful
authentication.

To set up the return action in COREid, navigate as follows:

Access Manager > My Policy Domains > Select myresourcetype > Authorization Rules
tab > Choose role name > Actions tab

Under the Authorization Success section, add the following entries (continuing the
preceding example using myresourcetype):

Return Type: myresourcetype
Return Name: myresourcetype
Return Attribute: ObMyGroups

ObMyGroups is an action attribute defined in Oracle COREid Access and Identity for
use in returning all the roles of an authenticated user.

Protect the Action URL
Using Access Manager, protect the action URL you specified in "Configure COREid
Form-Based Authentication" on page 10-8. Use similar steps as for protecting the
resource type URL, as described in "Configure and Protect the URL of the Configured
Resource Type" on page 10-12.

■ This configuration must be under a no-password authentication scheme. Use the
basic authentication scheme that you configured in "Configure COREid Basic
Authentication" on page 10-10.

■ Use "HTTP" as the resource type.

■ Specify the action URL (/coreid/access/test.html in the examples).

Note: Do not confuse the URL specified here with the "action URL"
specified when setting up authentication in earlier steps. The two are
separate.

See Also:

■ Oracle COREid Access and Identity Administration Guide for
information about the ObMyGroups action attribute

Configuring OC4J with the Access SDK

10-14 Oracle Containers for J2EE Security Guide

Configuring OC4J with the Access SDK
This section describes configuration steps for each OC4J instance on the middle tier.

As a prerequisite to this, you must install WebGate on the Oracle HTTP Server
instance in the middle tier. This Oracle HTTP Server instance, in turn, can (and
typically does) support multiple OC4J instances.

This section covers the following steps:

1. Create OC4J Instances as Needed

2. Configure the Access SDK to Each OC4J Instance

3. Configure the Access SDK Library Path for Each OC4J Instance

Create OC4J Instances as Needed
Typically, when using COREid SSO, multiple OC4J instances are used in the topology,
so the Oracle HTTP Server instance must be configured to route and maintain multiple
OC4J instances:

1. Create new OC4J instances as desired, using the createinstance utility as
described in the Oracle Containers for J2EE Configuration and Administration Guide.

2. Each OC4J instance should be tied to the Oracle HTTP Server instance. Each
application deployed to an OC4J instance must be configured in the mod_oc4j
configuration file, ORACLE_HOME/Apache/Apache/conf/mod_oc4j.conf, so
that requests are properly routed to the OC4J instance. This should occur
automatically when you create the OC4J instance.

Configure the Access SDK to Each OC4J Instance
You will need COREid Access SDK, one installation for each OC4J instance, on the
same system as OC4J. The Access SDK is required by OC4J at runtime to communicate
with Access Server. OC4J must be given the Access SDK location during startup
(through the java.library.path property, as shown later in this chapter), so that it
can initialize the SDK. Note this initialization occurs only if at least one application is
using COREid Access as the security provider. Also note the following:

1. Create a separate Access SDK installation for each OC4J instance, on the same
system as OC4J. You can have multiple Access SDK installations on the same
system.

2. Configure each Access SDK to work with the appropriate Access Server. From the
Access_SDK_Home/access/oblix/tools/configureAccessGate

See Also: For information about how to protect resources:

■ Oracle COREid Access and Identity Administration Guide (volume 2,
chapter 3)

Note: Your middle-tier and OC4J installation can be on the same
system as COREid, but would typically not be.

See Also:

■ Oracle COREid Access and Identity Installation Guide for
information about installing AccessGate/WebGate

Configuring the Application

COREid Access Security Provider 10-15

directory, run the command configureAccessGate. This utility requires the
Access Server ID, AccessGate ID, and other related parameters.

3. Copy the COREid file jobaccess.jar from the Access SDK to the OC4J path.
You will find this file in the
Access_SDK_Home/AccessServerSDK/oblix/lib directory. Create the
directory ORACLE_HOME/j2ee/home/lib/ext (if it does not already exist) and
copy the jobaccess.jar to that directory.

Configure the Access SDK Library Path for Each OC4J Instance
You must configure the java.library.path property for each OC4J instance, in the
ORACLE_HOME/opmn/conf/opmn.xml file, so that the OC4J instance has access to
the Access SDK at runtime. Set the property so that it points to the SDK location.

For example, on a Windows system:

-Djava.library.path=C:\CoreID\AccessSDK\AccessServerSDK\oblix\lib

Configuring the Application
Instructions in this section are geared toward a Web application, consisting of the
following steps:

1. Protect the Application URLs in web.xml

2. Settings for Application Deployment

3. Configure COREid SSO in orion-application.xml

4. Protect the Application URLs in COREid Access

5. Configure the COREid JAAS Login Module

6. Test the Application

Protect the Application URLs in web.xml
The first step in protecting your application is to protect appropriate URLs or URL
prefixes through settings in the web.xml file, using standard J2EE features.

These are the same URLs that you will you protect through COREid configuration in
"Protect the Application URLs in COREid Access" on page 10-16.

Settings for Application Deployment
In the Oracle Application Server 10.1.3 implementation, Application Server Control
does not yet support COREid Access as a security provider. When you deploy your
application using the Application Server Control Console, choose the file-based

See Also:

■ Oracle COREid Access and Identity Developer Guide for information
about installing the Access SDK

■ Oracle COREid Access and Identity Administration Guide for
information about the configureAccessGate utility

See Also:

■ Oracle Process Manager and Notification Server Administrator’s Guide
for information about OPMN and the opmn.xml file

Configuring the Application

10-16 Oracle Containers for J2EE Security Guide

provider. This will be overridden through the configuration steps documented in this
chapter.

Configure COREid SSO in orion-application.xml
To use COREid Single Sign-On as the authentication method for Web applications, set
the auth-method attribute to "COREIDSSO" in the <jazn-web-app> element in the
OC4J orion-application.xml file. You can do this as either a pre-deployment step
(packaged in the EAR file) or a post-deployment step.

Here is a sample entry in orion-application.xml, where <jazn-web-app> is a
subelement of the <jazn> element:

<orion-application ... >
 ...
 <jazn provider="XML" >
 <jazn-web-app auth-method="COREIDSSO"/>
 ...
 </jazn>
 ...
</orion-application>

Protect the Application URLs in COREid Access
Use Access Manager to protect your application URLs or URL prefixes through
form-based authentication. These will be the same URLs as in "Protect the Application
URLs in web.xml" on page 10-15. Use the following navigation:

Access Manager > Create Policy Domains

Then choose the appropriate public policy domain. You should protect each URL or
URL prefix you protected in web.xml, as follows:

1. Use "HTTP" as the resource type.

2. Specify the URL (for example, /foo).

3. The configuration must be under the form-based authentication scheme that you
defined in "Configure COREid Form-Based Authentication" on page 10-8.

Configure the COREid JAAS Login Module
For a Web application, the OC4J implementation to support Oracle COREid Access
and Identity requires the login module CoreIDLoginModule, supplied by Oracle.

Notes:

■ You do not need an <auth-method> setting in the web.xml file.
Any setting in web.xml would be overridden by the
"COREIDSSO" setting in orion-application.xml.

■ The <jazn-web-app> element is also supported in the
orion-web.xml file. In the event of conflict, orion-web.xml
takes precedence over orion-application.xml for the
particular Web application in question.

See Also: For information about how to protect resources:

■ Oracle COREid Access and Identity Administration Guide (volume 2,
chapter 3)

Configuring the Application

COREid Access Security Provider 10-17

The following template shows the general form of the configuration, in the
system-jazn-data.xml file. Note the <class> and <control-flag> element
settings. Table 10–1 describes the available options. Examples of specific scenarios and
their configurations are shown later in this chapter.

<application>
 <name>yourappname</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>option1name</name>
 <value>option1value</value>
 </option>
 <option>
 <name>option2name</name>
 <value>option2value</value>
 </option>

 ...

 </options>
 </login-module>
 </login-modules>
</application>

Note: As with other custom login modules, the setting
provider="XML" is used with the COREid login module.

Table 10–1 COREid Login Module Options

Option Name Required/Optional Option Value

addAllRoles Required This flag should be set to true so the
authenticated user will have
permissions for all his/her roles. With a
false setting, there are permissions
only for top-level roles, not nested roles.

coreid.resoure.type Required Name of the resource type you defined
through Access Manager.

See Also: "About COREid Resource
Types" on page 10-6 and "Configure the
Name and Operation of the Resource
Type" on page 10-12

coreid.resource.operation Required Name of the resource operation
associated with the resource type
specified in coreid.resource.type,
as defined through Access Manager.

See Also: "Configure the Name and
Operation of the Resource Type" on
page 10-12

Configuring the Application

10-18 Oracle Containers for J2EE Security Guide

The following sample corresponds to the example that runs throughout "Configure
COREid Form-Based Authentication" on page 10-8, "Configure COREid Basic
Authentication" on page 10-10, and "Configure the Resource Type" on page 10-12:

coreid.resource.name Required The URL prefix associated with the
resource type specified in
coreid.resource.type, and
protected using the no-password basic
authentication scheme defined through
Access Manager.

See Also: "Configure and Protect the
URL of the Configured Resource Type"
on page 10-12

coreid.name.attribute Required Variable for the user name for
authentication, as defined in the
credential_mapping plug-in.

See Also: "About COREid
Authentication" on page 10-6 and
"Configure the credential_mapping
Plug-In for Form-Based Authentication"
on page 10-10

coreid.password.attribute Required (except
when using X.509
token or SAML
authentication)

Variable for the password for
authentication, as defined in the
validate_password plug-in.

See Also: "Configure the
validate_password Plug-In for
Form-Based Authentication" on
page 10-10

coreid.name.header Optional If you use HTTP header variables for
authentication, this parameter is the
user name that OC4J should use to
authenticate against the COREid Access
Server.

See Also: "About Using HTTP Header
Variables for Authentication" on
page 10-7 and "Web Application Using
HTTP Header Variables through
COREid" on page 10-20

coreid.password.header Optional If you use HTTP header variables for
authentication, this parameter is the
password that OC4J should use with
the user name specified in
coreid.name.header to authenticate
against the COREid Access Server.

Note: The values of coreid.resource.type,
coreid.resource.operation, and coreid.resource.name are
determined during one-time COREid configuration, as described in
"Configure the Resource Type" on page 10-12, and are the same for
any application using the same installation of Oracle COREid Access
and Identity. Each application must configure these property values in
its configuration for the COREid login module.

Table 10–1 (Cont.) COREid Login Module Options

Option Name Required/Optional Option Value

Configuring the Application

COREid Access Security Provider 10-19

<application>
 <name>foo</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>usernamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>passwordvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

(This uses all supported options for the COREid login module except for
coreid.name.header and coreid.password.header. Examples for these are
shown later in this chapter.)

Test the Application
After you have deployed your Web application, restarted OC4J, and restarted Oracle
HTTP Server, run the application. This example assumes Oracle HTTP Server listens
on port 6666:

http://www.example.com:6666/foo

WebGate will intercept this request and will check the authentication scheme for this
URL. The configuration shown earlier in this chapter will result in the user being
prompted with the login.html login form from "Create a Login Form" on page 10-8.
Then the following sequence will take place:

1. WebGate will capture the user name and password from the login form and
communicate to Access Server.

2. Access Server will communicate to Oracle Internet Directory (or other repository
that you use).

COREid Examples for J2EE Applications

10-20 Oracle Containers for J2EE Security Guide

3. After the user is authenticated, the COREid SSO token will be returned to
WebGate.

4. WebGate will set the ObSSOCookie and pass the cookie and other HTTP headers
to mod_oc4j, which will route the request to the appropriate OC4J instance.

5. OC4J will take the cookie and validate it, or retrieve roles for the user associated
with this cookie from Access Server using the Access SDK configured on OC4J.

COREid Examples for J2EE Applications
This section discusses the following COREid usages for Web applications and EJBs:

■ Web Application Using HTTP Header Variables through COREid

■ Web Application Using the COREid ObSSOCookie

■ EJB Application Using COREid

Web Application Using HTTP Header Variables through COREid
You can optionally configure a Web application to use HTTP header variables for
authentication. The header variable for user name corresponds to the
coreid.name.header option in the COREid login module configuration. The
header variable for password corresponds to the coreid.password.header option.

You must execute the following steps to use these header variables:

1. Configure HTTP Header Variables in Access Manager

2. Configure HTTP Header Variables for the COREid Login Module

3. Secure the Web Application

Configure HTTP Header Variables in Access Manager
Use Access Manager to create an HTTP header variable for passing the user name,
and, as appropriate, a header variable for passing the password. Whether to include
the password depends on whether your COREid authentication scheme uses just the
credential_mapping plug-in, or also uses the validate_password plug-in.

Configure HTTP Header Variables for the COREid Login Module
Include option settings for coreid.name.header and (as appropriate)
coreid.password.header in the COREid login module configuration in
system-jazn-data.xml. In the following example, password authentication is
used, and the HTTP header variables you created in the previous step are
myhttpuservar and myhttppwdvar:

See Also:

■ "COREid Support and Examples for Web Services" on page 10-23

See Also:

■ "About Using HTTP Header Variables for Authentication" on
page 10-7

See Also: For information about using HTTP header variables:

■ Oracle COREid Access and Identity Administration Guide (volume 2,
chapters 4 and 5)

COREid Examples for J2EE Applications

COREid Access Security Provider 10-21

<options>
 ...
 <option>
 <name>coreid.name.header</name>
 <value>myhttpuservar</value>
 </option>
 <option>
 <name>coreid.password.header</name>
 <value>myhttppwdvar</value>
 </option>
 ...
</options>

Secure the Web Application
Define appropriate security constraints in your standard Web application
configuration, and set auth-method="COREIDSSO" in orion-application.xml
as shown in "Configure COREid SSO in orion-application.xml" on page 10-16.

Web Application Using the COREid ObSSOCookie
When no HTTP header variables are provided for a secure Web application, the
COREid ObSSOCookie is used to retrieve authentication information. By default, this
cookie contains the cookie in the HTTP header.

You must execute the following steps to use the cookie:

1. Configure User Name and Password for the COREid Login Module

2. Secure the Web Application

Configure User Name and Password for the COREid Login Module
Include option settings for coreid.name.attribute and (as appropriate)
coreid.password.attribute in the COREid login module configuration in
system-jazn-data.xml. In the following example, password authentication is
used, and the user name and password variables you defined for the
credential_mapping and validate_password plug-ins are usernamevar and
passwordvar:

<options>
 ...
 <option>
 <name>coreid.name.attribute</name>
 <value>usernamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>passwordvar</value>
 </option>
 ...
</options>

Note: When using HTTP header variables, be aware that option
settings for coreid.name.attribute and
coreid.password.attribute are still required, in addition to
settings for coreid.name.header and
coreid.password.header.

COREid Examples for J2EE Applications

10-22 Oracle Containers for J2EE Security Guide

Secure the Web Application
Define appropriate security constraints in your standard Web application
configuration, and set auth-method="COREIDSSO" in orion-application.xml
as shown in "Configure COREid SSO in orion-application.xml" on page 10-16.

EJB Application Using COREid
For EJB authentication, OC4J gets the user name and password from the EJB context
and passes them to the COREid login module. The same user name and password are
used to authenticate against Oracle COREid Access and Identity.

The EJB scenario requires both the credential_mapping plug-in and the
validate_password plug-in, discussed earlier in this chapter. The user name and
password variables you define for the plug-ins must be reflected in option settings for
the COREid login module, as discussed in "Configure COREid Form-Based
Authentication" on page 10-8.

The client must send the user name and password for authenticating itself before it can
access the EJB.

Configure the COREid login module, where COREid Access authentication variables
are as follows:

■ myejbappname is the name of the EJB application.

■ myejbusernamevar is the variable name for the EJB user name, as you define in
the credential_mapping plug-in.

■ myejbpwdvar is the variable name for the EJB user password, as you define in the
validate_password plug-in.

<application>
 <name>myejbappname</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>myejbusernamevar</value>
 </option>
 <option>

COREid Support and Examples for Web Services

COREid Access Security Provider 10-23

 <name>coreid.password.attribute</name>
 <value>myejbpwdvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

COREid Support and Examples for Web Services
Web services can use Oracle COREid Access and Identity for authenticating Web
service clients. With respect to COREid, OC4J supports username token
authentication, X.509 token authentication, and SAML token authentication, as
follows:

■ Username token: OC4J extracts the user name and password, and uses them to
authenticate against COREid.

■ X.509 token: OC4J uses the CN value of the X.509 entry to authenticate against
COREid.

■ SAML token: OC4J uses the subject name to authenticate against COREid.

The following usages are shown below:

■ Web Service with Username Token Authentication for COREid

■ Web Service with X.509 Token Authentication for COREid

■ Web Service with SAML Token Authentication for COREid

Web Service with Username Token Authentication for COREid
A username token client uses the user name and password for authentication. You
must configure variables for the user name and password through the COREid

Note: In the current release there is no direct support for a scenario
where COREid ObSSOCookie is sent instead of the user name and
password for authentication.

See Also:

■ "Configure the Resource Type" on page 10-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

Note: In the current release there is no direct support for a scenario
where the COREid ObSSOCookie is sent instead of the user name and
password for authentication.

See Also:

■ "COREid Examples for J2EE Applications" on page 10-20

■ Oracle Application Server Web Services Security Guide for general
information about username token, X.509 token, and SAML token
authentication

COREid Support and Examples for Web Services

10-24 Oracle Containers for J2EE Security Guide

credential_mapping and validate_password plug-ins, with corresponding
settings for the coreid.name.attribute and coreid.password.attribute
options in the COREid login module configuration, as discussed in "Configure
COREid Form-Based Authentication" on page 10-8.

Configure the COREid login module as follows, where:

■ UsernameAppName is the name of the Web service application using username
token authentication.

■ UsernameNamevar is the variable name for the user name, as you define in the
credential_mapping plug-in.

■ UsernamePwdvar is the variable name for the user password, as you define in the
validate_password plug-in.

<application>
 <name>UsernameAppName</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>UsernameNamevar</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>UsernamePwdvar</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

See Also:

■ "Configure the Resource Type" on page 10-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

COREid Support and Examples for Web Services

COREid Access Security Provider 10-25

Web Service with X.509 Token Authentication for COREid
An X.509 client uses the CN value from the X.509 entry for authentication. You must
configure a variable for the CN user name through the COREid
credential_mapping plug-in, with a corresponding setting for the
coreid.name.attribute option in the COREid login module configuration, as
discussed in "Configure COREid Form-Based Authentication" on page 10-8.

You do not configure the COREid validate_password plug-in or set the login
module coreid.password.attribute option when X.509 token authentication is
used.

Configure the COREid login module as follows, where:

■ X509AppName is the name of the Web service application using X.509 token
authentication.

■ cn_name_var is the variable name for the CN user name, as you define in the
credential_mapping plug-in.

<application>
 <name>X509AppName</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>cn_name_var</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

See Also:

■ "Configure the Resource Type" on page 10-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

COREid Support and Examples for Web Services

10-26 Oracle Containers for J2EE Security Guide

Web Service with SAML Token Authentication for COREid
For a SAML client, OC4J determines the subject name, and you must configure a
variable name for SAML subject authentication through the COREid
credential_mapping plug-in. This credential_mapping setting must be
reflected in the setting of the coreid.name.attribute option in the COREid login
module configuration, as discussed in "Configure COREid Form-Based
Authentication" on page 10-8. OC4J passes the subject name and
credential_mapping variable name to COREid for authentication.

You do not configure the COREid validate_password plug-in or set the login
module coreid.password.attribute option when SAML authentication is used.

Configure the COREid login module as shown below, where:

■ SAMLAppName is the name of the Web service application using SAML token
authentication.

■ subject_name_var is the variable for the subject name, as you define in the
credential_mapping plug-in.

In the SAML scenario, there is also a SAML login module, SAMLLoginModule, that
you must configure along with the COREid login module, as follows. This example
uses www.example.com for the issuer name.

<application>
 <name>SAMLAppName</name>
 <login-modules>

 <login-module>
 <class>
 oracle.security.jazn.login.module.saml.SAMLLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>issuer.name.1</name>
 <value>www.example.com</value>
 </option>
 </options>
 </login-module>

 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>

Important: The SAMLLoginModule configuration must precede the
CoreIDLoginModule configuration in system-jazn-data.xml.

Troubleshooting the Oracle COREid Access and Identity Setup

COREid Access Security Provider 10-27

 <name>coreid.resource.type</name>
 <value>myresourcetype</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>myresourceoperation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/myresourceurl</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>subject_name_var</value>
 </option>
 </options>
 </login-module>

 </login-modules>
</application>

Troubleshooting the Oracle COREid Access and Identity Setup
Table 10–2 provides some troubleshooting tips for your Oracle COREid Access and
Identity setup and configuration.

See Also:

■ "Configure the Resource Type" on page 10-12 for information
about coreid.resource.type,
coreid.resource.operation, and
coreid.resource.name

■ Oracle Application Server Web Services Security Guide for
information about the SAMLLoginModule

Table 10–2 Oracle COREid Access and Identity Troubleshooting

Problem Cause/Solution

The application is configured to use
COREid SSO. When you try to
access the application, Access
Server crashes and restarts.

This will happen if you have configured the incorrect
search base in Oracle Internet Directory, or the group
name is not properly created.

When you try to access the COREid
SSO application, it throws a Class
Not Found exception.

Confirm you copied the COREid file jobaccess.jar
from the Access SDK to the OC4J path, as described in
"Configure the Access SDK to Each OC4J Instance" on
page 10-14.

When you try to access the COREid
SSO application, it gives an internal
server error.

Confirm that the Access SDK installed on the OC4J server
is configured to use the appropriate Access Server, as
discussed in "Configure the Access SDK to Each OC4J
Instance" on page 10-14. Also confirm that OC4J is
running.

When you try to access the COREid
SSO application, it does not appear
in the login page.

Confirm you have enabled your authentication scheme
with proper settings, using Access Manager, as discussed
in "Configure COREid Form-Based Authentication" on
page 10-8.

Troubleshooting the Oracle COREid Access and Identity Setup

10-28 Oracle Containers for J2EE Security Guide

When you try to access the COREid
SSO application, the login page
keeps coming back.

Confirm that the form-based authentication scheme is
enabled, and that the form variable names (for user and
password) in your login page are the same as you
configured in the COREid form-based authentication
scheme, and that the credential mapping scheme and
password validation scheme are configured for the
form-based authentication scheme. Refer to "Configure
COREid Form-Based Authentication" on page 10-8.

You have configured the
application to use Oracle COREid
Access and Identity, but you
always get an "unauthorized" or
"unauthenticated" error.

Confirm that the COREid login module is correctly
configured for this application in
system-jazn-data.xml. Refer to "Configure the
COREid JAAS Login Module" on page 10-16.

You have configured the
application to use Oracle COREid
Access and Identity, but you get an
internal server error.

Confirm that the LDAP server (Oracle Internet Directory,
for example) that is configured with the COREid Identity
Server is running and accessible.

You have configured the
application to use COREid SSO, but
when you attempt to access it, after
you enter the user name and
password, the application hangs.

Confirm that the action URL used in the form page is
protected with an authentication scheme without
password, such as the basic scheme. (Protecting the
action URL with a password-protected authentication
scheme results in an execution loop.) See "Create a Login
Form" on page 10-8.

Table 10–2 (Cont.) Oracle COREid Access and Identity Troubleshooting

Problem Cause/Solution

Integration with SSL and ORMIS 11-1

11
Integration with SSL and ORMIS

OC4J supports Secure Socket Layer (SSL) communication between Oracle HTTP
Server and OC4J in an Oracle Application Server environment, using AJPS. This is the
secure version of Apache JServ Protocol, the protocol that Oracle HTTP Server uses to
communicate with OC4J. (Note, however, that the AJPS protocol used between Oracle
HTTP Server and OC4J is not visible to the end user.)

OC4J also supports ORMI over SSL, or ORMIS. With this feature, OC4J now supports
RMI communication over SSL between objects across OC4J server instances.

This chapter covers the following topics:

■ Using Keys and Certificates with OC4J and Oracle HTTP Server

■ Integrating the Security Provider with SSL-Enabled Applications

■ Using SSL with Standalone OC4J

■ Using SSL with OC4J in Oracle Application Server

■ Requesting Client Authentication

■ Resolving Common SSL Problems

■ Enabling ORMIS for OC4J

Notes:

■ Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J.

■ This chapter assumes some prior knowledge of security and
SSL concepts.

See Also:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Administrator’s Guide for information
about configuring additional Oracle Application Server
components to take advantage of SSL

■ Oracle Containers for J2EE Services Guide for general information
about using ORMI in OC4J

Using Keys and Certificates with OC4J and Oracle HTTP Server

11-2 Oracle Containers for J2EE Security Guide

Using Keys and Certificates with OC4J and Oracle HTTP Server
The steps below describe using keys and certificates for SSL communication in OC4J.
These are server-level steps, typically executed prior to deployment of an application
that will require secure communication, perhaps when you first set up an Oracle
Application Server instance.

Note that a keystore stores certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties, as well as authenticate itself to other parties. Oracle HTTP
Server uses what is called a wallet for the same purpose.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file.

The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to
the functionality of keytool for keystores.

Here are the steps in using certificates between OC4J and Oracle HTTP Server:

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two approaches.

Generate your own signature:

a. Use keytool to "self-sign" the certificate. This is appropriate if your clients
trust you as, in effect, your own certificate authority.

Alternatively, obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keytool to generate a certificate request,
which is a request to have the certificate signed by a certificate authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority and import it into the
keystore, again using keytool. In the keystore, the signature is matched with
the associated certificate.

See Also:

■ For information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keyto
ol.html

■ For information on Oracle Wallet Manager, the Oracle Application
Server Administrator’s Guide

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). OCA enables customers to
create and issue certificates for themselves and their users,
although these certificates would probably be unrecognized outside
a customer’s organization without prior arrangements.

Using Keys and Certificates with OC4J and Oracle HTTP Server

Integration with SSL and ORMIS 11-3

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle Application
Server, this document does not cover it. You can go to the Web site of any certificate
authority for information. (Any browser should have a list of trusted certificate
authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte, Inc., for
example:

http://www.verisign.com/

http://www.thawte.com/

For SSL communication between OC4J and Oracle HTTP Server, execute the preceding
steps for Oracle HTTP Server, but use a wallet and Oracle Wallet Manager instead of a
keystore and the keytool utility.

In addition to steps 1 and 2 above, execute the following steps as necessary:

1. If the OC4J certificate is signed by an entity that Oracle HTTP Server does not
yet trust, obtain the certificate of the entity and import it into Oracle HTTP Server.
The specifics depend on whether the OC4J certificate in question is self-signed, as
follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not yet
trust OC4J):

a. From OC4J, use keytool to export the OC4J certificate. This step places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Alternatively, if OC4J has a certificate that is signed by another entity (that Oracle
HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the certificate
of the entity.

2. If the Oracle HTTP Server certificate is signed by an entity that OC4J does not
yet trust, and OC4J is in a mode of operation that requires client authentication:

(This is discussed in "Requesting Client Authentication" on page 11-12.)

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From OC4J, use keytool to import the certificate of the entity.

See Also:

■ Oracle Application Server Certificate Authority Administrator’s Guide
for information about OCA

Integrating the Security Provider with SSL-Enabled Applications

11-4 Oracle Containers for J2EE Security Guide

Integrating the Security Provider with SSL-Enabled Applications
SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 11–1 shows an application running in an
SSL-enabled J2EE environment.

Figure 11–1 Oracle Component Integration in SSL-Enabled J2EE Environments

This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in an SSL-enabled J2EE environment. In this environment,
OracleAS Single Sign-On is not used. A login module (for example,
RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1) hosted
by OC4J. Oracle HTTP Server handles the request.

2. The mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp A1 application requires SSL server authentication for HTTP clients.

3. If a server or client wallet certificate is configured, the HTTP client is prompted to
accept the server certificate of Oracle HTTP Server and provide the client
certificate.

4. OC4J security provider retrieves the SSL client certificate.

5. The security provider retrieves the SSL user from the certificate.

6. The final step or steps depend on the jaas-mode setting in the <jazn> element.
Refer to "JAAS Authorization and JAAS Mode" on page 2-7 and "Tasks for JAAS
Mode and Authorization" on page 5-6 for information about how JAAS mode
works.

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed:

1. The OC4J certificate chain is authenticated to Oracle HTTP Server
during establishment of the encrypted channel.

2. Optionally, if OC4J is in client-authentication mode, Oracle HTTP
Server is authenticated to OC4J. This process also occurs during
establishment of the encrypted channel.

3. Any further communication after this initial exchange will be
encrypted.

Oracle
HTTP
Server

HTTP
Client

Java Plug-in
mod_oc4j

mod_ossl

Apache JServ
Protocol

OC4J
HTTP

WebApp A1

servlet
s1

servlet
s2

Security Provider

Using SSL with Standalone OC4J

Integration with SSL and ORMIS 11-5

Using SSL with Standalone OC4J
This section describes how to use SSL in a standalone OC4J environment, without
Oracle HTTP Server. Use the following steps:

1. Create a keystore.

a. Change the directory to ORACLE_HOME/j2ee.

b. Create a keystore with an RSA private/public keypair using the keytool
command. In our example, we generate a keystore to reside in a file named
mykeystore, which has a password of 123456 and is valid for 21 days, using
the RSA key pair generation algorithm with the following syntax:

% keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 \
 -validity 21

In this tool:

■ The keystore option sets the filename where the keys are stored.

■ The storepass option sets the password for protecting the keystore.

■ The validity option sets number of days the certificate is valid.

The keytool prompts you for more information, as follows:

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

Always press RETURN for the key password. In the OC4J 10.1.3 implementation,
the keystore password must be the same as the key entry password.

The mykeystore file is created in the current directory. The default alias of the
key is mykey.

Note: To determine your two-letter country code, use the ISO
country code list at the following URL:

http://www.bcpl.net/~jspath/isocodes.html

See Also:

■ For detailed information about the keytool utility:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/k
eytool.html

Using SSL with Standalone OC4J

11-6 Oracle Containers for J2EE Security Guide

2. If you do not have a secure-web-site.xml file, copy the
default-web-site.xml to
ORACLE_HOME/j2ee/home/config/secure-web-site.xml (by convention).

(Also remember to change the display-name setting appropriately.)

3. Update secure-web-site.xml with the following elements:

a. Add secure="true" to the <web-site> element, as follows:

<web-site port="8888"
 display-name="Default OracleAS Containers for J2EE Web Site"
 secure="true" >

 ...

</web-site>

b. Add the following under the <web-site> element to define the keystore and
password.

<ssl-config keystore="your_keystore" keystore-password="your_password" />

Where your_keystore is the path to the keystore—either absolute, or
relative to ORACLE_HOME/j2ee/home/config (where the Web site XML file
is located)—and your_password is the keystore password. For example:

<!-- Enable SSL -->
<ssl-config keystore="../../keystore" keystore-password="123456"/>

c. Change the <web-site> port setting to some available port. For example,
port="4443". (To use the default of 443, you have to be a super user.)

d. Also see "Optional Steps in secure-web-site.xml" below.

e. Save the changes to secure-web-site.xml.

4. Ensure that server.xml points to the secure-web-site.xml file.

a. As necessary, uncomment or add the following line in server.xml:

<web-site path="./secure-web-site.xml" />

b. Save the changes to server.xml.

5. Stop and restart OC4J to initialize the secure-web-site.xml file additions. Test
the SSL port by accessing the site in a browser on the SSL port. If successful, you
will be asked to accept the certificate, because it is not signed by an accepted
authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests on
another. You can disable either SSL requests or non-SSL requests, by commenting out
the appropriate *-web-site.xml pointer in the server.xml configuration file:

<web-site path="./secure-web-site.xml" /> - comment this to remove SSL
<default-site path="./default-web-site.xml" /> - comment this to remove non-SSL

(These Web sites must use different ports.)

Note: You can hide the password through password indirection, as
described in "Creating an Indirect Password" on page 5-2.

Using SSL with Standalone OC4J

Integration with SSL and ORMIS 11-7

Optional Steps in secure-web-site.xml
In addition to the steps outlined above for configuring secure-web-site.xml, the
following may be appropriate as well:

1. Optionally, turn on the needs-client-auth flag, an attribute of the
<ssl-config> element, to specify that client authentication is required, as
follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This step sets up a mode where OC4J accepts or rejects a client entity for secure
communication, depending on its identity. The needs-client-auth attribute
instructs OC4J to request the client certificate chain upon connection. If the root
certificate of the client is recognized, then the client is accepted.

The keystore specified in the <ssl-config> element must contain the certificates
of any clients that are authorized to connect to OC4J through HTTPS.

2. Optionally, specify each application in the Web site as shared. The shared
attribute of the <web-app> element indicates whether multiple bindings
(different Web sites, or ports, and context roots) can be shared. Supported values
are "true" and "false" (default).

Sharing implies the sharing of everything that makes up a Web application,
including sessions, servlet instances, and context values. A typical use for this
mode is to share a Web application between an HTTP site and an HTTPS site at the
same context path, when SSL is required for some but not all of the
communications. Performance is improved by encrypting only sensitive
information, rather than all information.

If an HTTPS Web application is marked as shared, then instead of using the SSL
certificate to track the session, the cookie is used to track the session. This is
beneficial in that the SSL certificate uses 50K to store each certificate when tracking
it, which sometimes results in an "out of memory" problem for the session before
the session times out. This could possibly make the Web application less secure,
but might be necessary to work around issues such as SSL session timeouts not
being properly supported in some browsers.

3. Optionally, set the cookie domain if shared="true" and the default ports are not
used. When the client interacts with a Web server over separate ports, the cookie

See Also:

■ "Requesting Client Authentication" on page 11-12 for related
information

Note: Set shared="true" in the <default-web-app> element if
you intend to use HTTPS tunneling.

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for more information about shared applications

Using SSL with OC4J in Oracle Application Server

11-8 Oracle Containers for J2EE Security Guide

believes that each separate port denotes a separate Web site. If you use the default
ports of 80 for HTTP and 443 for HTTPS, the client recognizes these as two
different ports of the same Web site and creates only a single cookie. However, if
you use nondefault ports, the client does not recognize these ports as part of the
same Web site and will create separate cookies for each port, unless you specify
the cookie domain.

Cookie domains track the client’s communication across multiple servers within a
DNS domain. If you use nondefault ports for a shared environment with HTTP
and HTTPS, set the cookie-domain attribute in the <session-tracking>
element in the orion-web.xml file for the application. The cookie-domain
attribute contains the DNS domain with at least two components of the domain
name provided:

<session-tracking cookie-domain=".oracle.com" />

Example 11–1 HTTPS Communication with Client Authentication

The following configures a Web site for HTTPS secure communication with client
authentication:

<web-site display-name="OC4J Web Site" protocol="http" port="4443" secure="true" >
 <default-web-app application="default" name="defaultWebApp" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always "http"
for HTTP communication, whether or not you use secure communication. A protocol
value of http with secure="false" indicates HTTP protocol; http with
secure="true" indicates HTTPS protocol.

The needs-client-auth flag instructs OC4J to request the client certificate chain
upon connection. If OC4J recognizes the root certificate of the client, then the client is
accepted.

The keystore that is specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through HTTP and
SSL.

Using SSL with OC4J in Oracle Application Server
This section describes how to use SSL with OC4J in an Oracle Application Server
environment using Oracle HTTP Server and managed by Oracle Process Manager and
Notification Server (OPMN). This involves the following:

1. Configure OC4J with SSL (mostly as documented earlier for standalone OC4J)

2. Use Oracle HTTP Server with SSL (available by default)

3. Configure AJP over SSL (mod_oc4j settings)

4. Configure OPMN to Enable HTTPS and Use SSL

This discussion concludes with sample configuration files.

Using SSL with OC4J in Oracle Application Server

Integration with SSL and ORMIS 11-9

Configure OC4J with SSL
Configuring OC4J with SSL in an Oracle Application Server environment is largely the
same as for standalone OC4J, as covered above in "Using SSL with Standalone OC4J"
on page 11-5. Refer there for details; only differences are highlighted here.

1. Create a keystore.

2. Copy default-web-site.xml to secure-web-site.xml (by convention).

3. Update secure-web-site.xml to set secure="true" and configure an
<ssl-config> element. Use protocol="ajp13" (instead of "http"). Typically,
the choice of port defers to OPMN (as indicated by the port="0" setting, which is
added automatically).

4. Ensure that server.xml points to secure-web-site.xml.

5. Stop and restart OC4J to initialize secure-web-site.xml.

Here is an example:

<web-site display-name="OC4J Web Site" protocol="ajp13" port="0" secure="true" >
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always
"ajp13" for communication through Oracle HTTP Server, whether or not you use
secure communication. A protocol value of ajp13 with secure="false" indicates
AJP protocol; ajp13 with secure="true" indicates AJPS protocol.

Use Oracle HTTP Server with SSL
In the Oracle Application Server 10.1.3 implementation, SSL is enabled by default for
Oracle HTTP Server. No special steps are required.

Configure AJP over SSL
Configuring OC4J to use AJPS involves the following steps:

1. Use Oracle Wallet Manager to create an auto-login wallet (otherwise known as an
SSO wallet) to use with Oracle HTTP Server.

2. In Oracle HTTP Server, verify proper SSL settings in the mod_oc4j.conf file for
secure communication. SSL must be enabled, and you must specify a path to the
wallet you created in step 1. (It is not necessary to specify a wallet password here.)

Oc4jEnableSSL on
Oc4jSSLWalletFile wallet_path

Note: It is possible to enter a real port here, rather than port 0, if you
configure OPMN to not override the setting in this Web site XML file.

See Also:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Administrator’s Guide for additional
information about SSL configuration in Oracle Application Server

Using SSL with OC4J in Oracle Application Server

11-10 Oracle Containers for J2EE Security Guide

The wallet_path value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.)

3. Use the keytool utility to export a certificate from your keystore. (It is assumed
you already have a keystore in OC4J from the step of configuring OC4J with SSL,
described earlier.)

% keytool -export -file cert_file_name -keystore keystore_file_name

Where cert_file_name is the desired file name for the certificate that is
produced, and keystore_file_name is the name of the keystore you already
created.

You will be prompted for the keystore password, and will receive a message
confirming the certificate file name if the command is successful.

4. Use Oracle Wallet Manager to import the generated certificate into your wallet.

Configure OPMN to Enable HTTPS and Use SSL
In an Oracle Application Server environment, configuration steps are also required for
the OPMN. Update the file ORACLE_HOME/opmn/conf/opmn.xml as follows:

1. Under component ID "OC4J", configure the security parameters (wallet
information):

<ias-component id="OC4J">
 ...
 <category id="security-parameters">
 <data id="wallet-file" value="file:walletfile"/>
 <data id="wallet-password" value="pwd"/>
 </category>
 ...
</ias-component>

2. Also under component ID "OC4J", specify AJPS protocol for the Web site:

<ias-component id="OC4J">
 ...
 <port id="secure-web-site" range="12501-12600" protocol="ajps"/>
 ...
</ias-component>

3. Under component ID "HTTP_Server", confirm SSL is enabled with the default
"ssl-enabled" setting. (A setting of "ssl-disabled" would disable it.)

<ias-component id="HTTP_Server">
 ...
 <data id="start-mode" value="ssl-enabled"/>
 ...
</ias-component>

See Also:

■ Oracle HTTP Server Administrator’s Guide for information about
mod_oc4j.conf

See Also:

■ For steps 1 and 4, Oracle Application Server Administrator’s Guide
for details about managing wallets and certificates

Using SSL with OC4J in Oracle Application Server

Integration with SSL and ORMIS 11-11

Sample Configuration Files for SSL
This section presents samples relating to the configuration discussed in the preceding
sections.

Sample <web-site> Element
This shows a sample <web-site> element from the secure-web-site.xml file:

<web-site port="0" protocol="ajp13" secure="true">
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <web-app application="default" name="dms" root="/dmsoc4j" />
 ...
 <ssl-config
 keystore="C:\demotest\j2eetest\tsrc\shiphome\sslfiles\KEYSTORE\keystore"
 keystore-password="welcome1"/>
</web-site>

Sample mod_oc4j.conf File
This shows a sample mod_oc4j.conf file:

<IfModule mod_oc4j.c>

 Oc4jEnableSSL on
 Oc4jSSLWalletFile C:\demotest\j2eetest\tsrc\shiphome\sslfiles\ssl.wlt\default
 Oc4jSSLWalletPassword welcome1

 <Location /oc4j-service>
 SetHandler oc4j-service-handler
 Order deny,allow
 Deny from all
 Allow from localhost ani-pc.us.oracle.com ani-pc
 </Location>

</IfModule>

Sample opmn.xml File
This shows sample opmn.xml configuration for component IDs "OC4J" and
"HTTP_Server".

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-Xrs -server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>
 </category>
 <category id="security-parameters">
 <data id="wallet-file" value=
 "file:C:/demotest/j2eetest/tsrc/shiphome/sslfiles/ssl.wlt/default"/>
 <data id="wallet-password" value="welcome"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options" value=

See Also:

■ Oracle Process Manager and Notification Server Administrator’s Guide
for details about OPMN and opmn.xml

Requesting Client Authentication

11-12 Oracle Containers for J2EE Security Guide

 "-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="secure-web-site" range="12501-12600" protocol="ajps"/>
 <port id="rmi" range="3201-3300"/>
 <port id="jms" range="3701-3800"/>
 <process-set id="default_island" numprocs="1"/>
 </process-type>
</ias-component>

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-enabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
</ias-component>

Requesting Client Authentication
OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticate itself by sending a certificate and a certificate chain that ends with a root
certificate. OC4J can be configured to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate that OC4J encounters that matches
one in its own keystore. There are three ways to establish trust:

■ The client certificate is in the keystore.

■ One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

■ The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute, perform
the following steps. See "Using SSL with Standalone OC4J" on page 11-5 for how to
configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

Resolving Common SSL Problems

Integration with SSL and ORMIS 11-13

3. Execute the steps to create the client certificate, documented in "Using SSL with
Standalone OC4J" on page 11-5. The client certificate includes the intermediate or
root certificate that is installed in the server. If you wish to trust another certificate
authority, obtain a certificate from that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

During secure communication between the client and OC4J, the following
functionality is executed:

■ All communications between the two is encrypted.

■ OC4J is authenticated to the client. A "secret key" is securely exchanged and used
for the encryption of the link.

■ Optionally, if OC4J is in client-authentication mode, the client is authenticated to
OC4J.

Resolving Common SSL Problems
This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

Common SSL Errors and Solutions
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keytool utility does not allow.

Action: Delete all trailing white space. If the error still occurs, add a newline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keytool utility from an older JDK.

Action: Use the keytool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool utility cannot locate the root CA certificates in your
keystore, and therefore cannot build the certificate chain from your server key to
the trusted root certificate authority.

Action: Execute the following command:

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Note: By contrast, to provide a certificate in a standalone OC4J
environment, you would set the certificate in the client browser
security area if the client is a browser, or programmatically present the
client certificate and the certificate chain when initiating the HTTPS
connection for a Java client.

Enabling ORMIS for OC4J

11-14 Oracle Containers for J2EE Security Guide

% keytool -keystore keystore -import -alias cacert -file cacert.cer
 (keytool -keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keytool utility, then execute these commands:

% keytool -keystore keystore -genkey -keyalg RSA -alias serverkey
% keytool -keystore keystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following command:

% keytool -keystore keystore -import -file my.host.com.cer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL Debugging
While you are developing in OC4J standalone, you can display verbose debug
information from the Java Secure Socket Extension (JSSE) implementation. To get a list
of options, start OC4J as follows:

% java -Djavax.net.debug=help -jar oc4j.jar

Start it as follows to enable full verbosity:

% java -Djavax.net.debug=all -jar oc4j.jar

This will display the browser request header, server HTTP header, server HTTP body,
content length (before and after encryption), and SSL version.

Enabling ORMIS for OC4J
ORMI over SSL (ORMIS) is disabled by default in OC4J, because it is recommended
that client and server keystores or Oracle Wallets be created before ORMIS is used.

This section describes the configuration to enable ORMIS with OC4J in a standalone
environment, or in a clustered environment in Oracle Application Server. Once these
steps are complete, the "ormis:" protocol can be used wherever the "ormi:" protocol
was used previously.

In all, the following topics are discussed:

■ Configuring ORMIS for Standalone OC4J

■ Configuring ORMIS for OC4J in an Oracle Application Server Environment

■ Configuring ORMIS Access Restrictions

■ Configuring Clients to Use ORMIS

Configuring ORMIS for Standalone OC4J
ORMIS configuration, and related RMI configuration, requires updates to the
server.xml file and rmi.xml file on each OC4J instance. This section covers the
following topics:

■ Configure server.xml for the RMI Configuration File Location

■ Configure rmi.xml for ORMIS

Enabling ORMIS for OC4J

Integration with SSL and ORMIS 11-15

■ Disabling ORMI with ORMIS Enabled

Configure server.xml for the RMI Configuration File Location
To enable ORMIS in an OC4J instance, the first step is to ensure that server.xml, the
OC4J server configuration file, has an <rmi-config> element that specifies the path
to rmi.xml, the OC4J RMI configuration file.

Specify the path to rmi.xml as follows:

<rmi-config path="rmi_path" />

Because both the server.xml file and the rmi.xml file are typically in the
ORACLE_HOME/j2ee/home/config directory, the typical value for rmi_path is
"./rmi.xml".

Configure rmi.xml for ORMIS
To use ORMIS, take the following steps to define the SSL configuration in rmi.xml on
each OC4J instance:

1. Use the ssl-port attribute in the <rmi-server> element to specify the SSL
listener port. For example:

<rmi-server ... port="23791" ssl-port="23943">
 ...
</rmi-server>

(This also sets the ORMI listener port to 23791.)

2. Add an <ssl-config> subelement under the <rmi-server> element. This is
for keystore configuration, as desired, and results in an ORMIS listener (in
addition to the non-secure ORMI listener) when OC4J is restarted. There are two
techniques, described below. One is to specify a keystore and password; the other
is to use an anonymous cipher suite.

Using a Keystore and Password The following example sets the SSL port to 23943 and
configures OC4J to use Oracle Wallet-based certificates (as well as specifying an RMI
log file):

<rmi-server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/rmi-server-10_0.xsd"
 port="23791" ssl-port="23943">
 <ssl-config keystore="/wallets/wallet-server-a/ewallet.p12"
 keystore-password="serverkey-a" />
 ...

See Also:

■ Oracle Containers for J2EE Configuration and Administration Guide
for additional information about server.xml

Note: The default RMI port is 23791; the default ORMIS port is
23943.

See Also:

■ Oracle Containers for J2EE Services Guide for additional information
about rmi.xml

Enabling ORMIS for OC4J

11-16 Oracle Containers for J2EE Security Guide

 <log>
 <file path="../log/rmi.log" />
 </log>
</rmi-server>

The value of the keystore attribute specifies the keystore location (absolute path, or
path relative to ORACLE_HOME/j2ee/home/config, where the Web site XML file is
located) and file name.

To use a Java keystore instead of an Oracle Wallet, configure the <ssl-config>
element as follows:

<ssl-config keystore="/keystores/keystore_a.jks" keystore-password="serverkey-a"/>

When using keystores and passwords, the server keystore must contain the signed
certificate of any client that is authorized to connect to OC4J through ORMIS, or
contain the root CA-issued certificate of the client.

Using an Anonymous Cipher Suite Alternatively, you can enable ORMIS using
anonymous cipher suites. To accomplish this, omit the keystore and
keystore-password attributes from the <ssl-config> element:

<ssl-config/>

In this mode, any ORMIS client can connect to the server without certification checks
being performed.

Disabling ORMI with ORMIS Enabled
In standalone OC4J, ORMI can be disabled while ORMIS is enabled. To do this, set the
ORMI port to -1:

<rmi-server ... port="-1" ssl-port="23943">
 <ssl-config keystore="keystore" keystore-password="password" />
 ...
</rmi-server>

With this configuration, the non-secure ORMI listener will be disabled when OC4J is
restarted.

Configuring ORMIS for OC4J in an Oracle Application Server Environment
To enable ORMIS in a clustered Oracle Application Server environment managed by
OPMN, do the following:

1. Generally complete the steps documented for standalone OC4J above, in
"Configure server.xml for the RMI Configuration File Location" on page 11-15 and
"Configure rmi.xml for ORMIS" on page 11-15. The exception is to not set
ssl-port in the <rmi-server> element in rmi.xml. This is not required in an
OPMN-managed environment; in fact, the OPMN-managed RMIS port will
override the ssl-port attribute in rmi.xml.

Important: Use this mode judiciously, given that it allows SSL
communication without regard for a client’s transport-level
authenticity.

Note: This is not supported for an OPMN-managed OC4J instance.

Enabling ORMIS for OC4J

Integration with SSL and ORMIS 11-17

2. For each Oracle Application Server instance that belongs to the cluster, update the
opmn.xml file to add a <port> element with the rmis port range shown below:

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
 -Dhttp.webdir.enable=false"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options" value=
 "-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true -Dhttp.webdir.enable=false"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="default-web-site" range="12501-12600" protocol="ajp"/>
 <port id="rmi" range="12401-12500"/>
 <port id="rmis" range="12701-12800"/>
 <port id="jms" range="12601-12700"/>
 <process-set id="default_group" numprocs="1"/>
 </process-type>
 ...
</ias-component>

Configuring ORMIS Access Restrictions
ORMIS (like ORMI) supports the ability to restrict incoming IP access by defining
access control list (ACL) masks, through settings in the <access-mask> element and
its <host-access> and <ip-access> subelements in rmi.xml.

Access controls can be either exclusive or inclusive:

■ In the exclusive mode, access is denied to all IP addresses or hosts except those
specifically included. Use mode="deny" in <access-mask>, then specify which
particular hosts or IP addresses to allow by using mode="allow" in a
<host-access> subelement, <ip-access> subelement, or both.

■ In the inclusive mode, access is available to all IP addresses or hosts except those
specifically excluded. Use mode="allow" in <access-mask>, then specify
which particular hosts or IP addresses to deny by using mode="deny" in a
<host-access> subelement, <ip-access> subelement, or both.

The following example configures an exclusive mode, allowing access to only
localhost and 192.168.1.0. (255.255.255.0 is the applicable subnet mask.)

<rmi-server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/rmi-server-10_0.xsd"
 port="23791" ssl-port="23943">

 <ssl-config keystore="../wallets/wallet-server-a/ewallet.p12"

See Also:

■ Oracle Application Server Administrator’s Guide for general
information about OPMN and the opmn.xml file

Enabling ORMIS for OC4J

11-18 Oracle Containers for J2EE Security Guide

 keystore-password="serverkey-a" />

 <access-mask default="deny">
 <host-access domain="localhost" mode="allow"/>
 <ip-access ip="192.168.1.0" netmask="255.255.255.0" mode="allow"/>
 </access-mask>

 ...

</rmi-server>

Configuring Clients to Use ORMIS
This section discusses the following client-side configurations for ORMIS:

■ Specify the Appropriate Java Naming Provider URL

■ Specify the Keystore and Password

Specify the Appropriate Java Naming Provider URL
For an application in a standalone OC4J environment, specify the ormis protocol in
the setting of the java.naming.provider.url environment property, which
defines the URI of the system and application:

java.naming.provider.url=ormis://hostname/appname

For an application in an Oracle Application Server (OPMN-managed) environment,
specify the opmn:ormis protocol:

java.naming.provider.url=opmn:ormis://hostname/appname

Specify the Keystore and Password
To call an EJB over ORMIS, you must also specify the following on the client side, as
applicable:

■ Path to client keystore (absolute path is recommended)

This is the location of the client-side keystore, where server certificates have been
imported.

■ Keystore password

There are two choices for where to specify these settings, in order of precedence:

■ As JSSE properties:

-Djava.net.ssl.keystore=keystore_path
-Djava.net.ssl.keyStorePassword=keystore_password

■ As properties in ejb_sec.properties (ignored if JSSE property settings are
used):

See Also:

■ Oracle Containers for J2EE Servlet Developer’s Guide for additional
information about the <access-mask> element, which is
supported with the same functionality in orion-web.xml

Note: It is not necessary to include a port number in the URL. The
protocol determines what port will be used.

Enabling ORMIS for OC4J

Integration with SSL and ORMIS 11-19

oc4j.keyStoreLoc=keystore_path
oc4j.keyStorePass=keystore_password

Note: To use ejb_sec.properties, place it in the current
directory, from which the client Java VM was launched.

Enabling ORMIS for OC4J

11-20 Oracle Containers for J2EE Security Guide

Oracle HTTPS for Client Connections 12-1

12
Oracle HTTPS for Client Connections

This chapter describes the OC4J implementation of HTTPS that provides Secure
Sockets Layer functionality to client HTTP connections. This includes using Oracle
HTTPS with standard Java Secure Socket Extension (JSSE) features. The following
topics are included:

■ Oracle HTTPS and Clients

■ Overview of Oracle HTTPS Features

■ Specifying Default System Properties

■ Oracle HTTPS Example

■ Using HTTPClient with JSSE

Oracle HTTPS and Clients
HTTPS is vital to securing client/server interactions. For many server applications,
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the server.
Java application developers who are familiar with either the HTTPClient package or
the Sun Microsystems java.net package can easily use Oracle HTTPS to secure client
interactions with a server.

Note: Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4J is not visible to the
end user.) This chapter covers only secure communication between
OC4J and the client.

This chapter assumes that you have already obtained keys and
certificates. For general information about configuring OC4J to use
the Secure Sockets Layer, see Chapter 11, "Integration with SSL and
ORMIS".

Standalone OC4J supports SSL communication directly between a
client and OC4J, using HTTPS. This is discussed in "Using SSL with
Standalone OC4J" on page 11-5.

See Also:

■ "Requesting Client Authentication" on page 11-12

Overview of Oracle HTTPS Features

12-2 Oracle Containers for J2EE Security Guide

Oracle HTTPS has functionality based on the HTTPConnection class of the
HTTPClient package, which provides a complete HTTP client library. To support
client HTTPS connections, several methods have been added to the HTTPConnection
class that use the OracleSSL class, OracleSSLCredential.

HTTPConnection Class
The HTTPConnection class is used to create new connections that use HTTP, with or
without SSL. To provide support for PKI (public key infrastructure) digital certificates
and wallets, the methods described in "Oracle HTTPS Example" on page 12-7 have
been added to this class.

OracleSSLCredential Class
Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, OracleSSLCredential, to load
user certificates and trustpoints from base64 or DER-encoded certificates. (DER, part of
the X.690 ASN.1 standard, stands for Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the HTTP
connection before the connection is established. The OracleSSLCredential class is
used to store these security credentials. Typically, a wallet generated by Oracle Wallet
Manager is used to populate the OracleSSLCredential object. Alternatively,
individual certificates can be added by using an OracleSSLCredential class API.
After the credentials are complete, they are passed to the connection with the
setCredentials() method.

Overview of Oracle HTTPS Features
Oracle HTTPS supports HTTP 1.0 and HTTP 1.1 connections between a client and a
server. To provide SSL functionality, new methods have been added to the
HTTPConnection class of this package. These methods are used in conjunction with

Important: The Oracle implementation of HTTPClient has
diverged from the original open source version upon which it was
based. The Oracle version should be considered as a distinct
product. Even though there are still many similarities, the two are
not necessarily compatible with each other.

Note: Oracle HTTPClient supports two different SSL
implementations: JSSE and OracleSSL. This documentation discusses
the two implementations separately.

See Also:

■ Documentation for JSSE and the java.net package:

http://java.sun.com/products/jsse/index.jsp

http://java.sun.com/j2se/1.4.2/docs/api/

See Also:

■ HTTPClient Javadoc: Oracle Application Server HTTPClient API
Reference

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 12-3

Oracle Java SSL to support cipher suite selection, security credential management with
Oracle Wallet Manager, security-aware applications, and other features that are
described in the following sections. Oracle HTTPS uses the Oracle Java SSL class,
OracleSSLCredential, and it extends the HTTPConnection class of the
HTTPClient package. HTTPClient supports two SSL implementations, OracleSSL
and JSSE.

In addition to the functionality included in the HTTPClient package, Oracle HTTPS
supports the following:

■ Multiple cryptographic algorithms

■ Certificate and key management with Oracle Wallet Manager

■ Limited support for the java.net.URL framework

■ Both the OracleSSL and JSSE SSL implementations

In addition, Oracle HTTPS uses the HTTPClient package to support:

■ HTTP tunneling through proxies

■ HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

■ SSL Cipher Suites

■ Accessing Information for Established SSL Connections

■ Security-Aware Applications Support

■ Support for java.net.URL Framework

SSL Cipher Suites
Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection establish
the appropriate level for their communications.

HTTPClient supports the OracleSSL and JSSE SSL implementations, each of which
supports a number of cipher suites.

The rest of this section discusses the following topics:

■ Choosing a Cipher Suite

■ SSL Cipher Suites Supported by OracleSSL

■ SSL Cipher Suites Supported by JSSE

Choosing a Cipher Suite
In general, you should prefer:

■ RSA to Diffie-Hellman, because RSA defeats many security attacks

■ 3DES or RC4 128 to other encryption methods, because 3DES and RC4 128 have
strong keys

■ SHA1 digest to MD5, because SHA1 produces a stronger digest

Overview of Oracle HTTPS Features

12-4 Oracle Containers for J2EE Security Guide

SSL Cipher Suites Supported by OracleSSL
OracleSSL supports the cipher suites listed in Table 12–1. Note that with NULL
encryption, SSL is used only for authentication and data-integrity purposes.

SSL Cipher Suites Supported by JSSE
JSSE supports the cipher suites listed in Table 12–2. Note that with NULL encryption,
SSL is used only for authentication and data integrity purposes.

Table 12–1 Cipher Suites Supported by OracleSSL

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Table 12–2 Cipher Suites Supported by JSSE

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 12-5

Accessing Information for Established SSL Connections
Users can access information regarding established SSL connections using the
getSSLSession() method in the HTTPConnection class of the Oracle
HTTPClient package. After a connection is established, users can retrieve the cipher
suite used for the connection, the peer certificate chain, and other information about
the current connection.

Security-Aware Applications Support
Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows them
to perform their own validation, letting the handshake complete successfully only if a
complete certificate chain is sent by the peer. When applications authenticate to the
trustpoint level, they are responsible for authenticating individual certificates below
the trustpoint.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that require the trust point check must ensure that trust
points are set in the HTTPS infrastructure.

Support for java.net.URL Framework
The HTTPClient package provides basic support for the java.net.URL framework
with the HTTPClient.HttpUrlConnection class. However, many of the Oracle
HTTPS features are supported through system properties only.

Features that are supported only through system properties are:

■ Cipher suites selection option

■ Confidentiality-only option

■ Server authentication option

■ Mutual authentication option

■ Security credential management with Oracle Wallet Manager

SSL_DHE_DSS_WITH_DES_CBC_SHA DH DES CBC SHA1

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA DH 3DES EDE CBC SHA1

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA DH DES40 CBC SHA1

See Also:

■ Oracle Advanced Security Administrator’s Guide for information
about Oracle Java SSL

Note: If the java.net.URL framework is used, set the
java.protocol.handler.pkgs system property to select the
HTTPClient package as a replacement for the JDK client, as follows:

java.protocol.handler.pkgs=HTTPClient

Table 12–2 (Cont.) Cipher Suites Supported by JSSE

Cipher Suite Authentication Encryption
Hash Function
(Digest)

Specifying Default System Properties

12-6 Oracle Containers for J2EE Security Guide

Specifying Default System Properties
For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the java.lang.System class. These
properties are the only way for users of the java.net.URL framework to set security
credential information. Oracle HTTPS recognizes the following properties:

■ Property javax.net.ssl.KeyStore

■ Property javax.net.ssl.KeyStorePassword

■ Property Oracle.ssl.defaultCipherSuites

The following sections describe how to set these properties.

Property javax.net.ssl.KeyStore
This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection. For
example:

javax.net.ssl.KeyStore=/etc/ORACLE/WALLETS/Default/default.txt

Where default.txt is the name of the text wallet file that contains the credentials.

If no other credentials have been set for the HTTPS connection, then the file indicated
by this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an IOException is thrown.

If you do not set this property, the application is responsible for verifying that the
certificate chain contains a certificate that can be trusted. However, HTTPClient using
Oracle SSL does verify that all of the certificates in the certificate chain, from the user
certificate to the root CA, have been sent by the server and that all of these certificates
contain valid signatures.

Property javax.net.ssl.KeyStorePassword
This property can be set to the password that is necessary to open the wallet file. For
example:

javax.net.ssl.KeyStorePassword=welcome1

Where welcome1 is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties
Storing the wallet file password as a Java system property can result in a security risk
in some environments. To avoid this risk, use one of the following alternatives:

See Also:

■ The next section, "Specifying Default System Properties", for
information about configuring your client to use JSSE.

■ Javadoc for the java.net.URL class, at:

http://java.sun.com/j2se/1.4.2/docs/api/

■ Oracle Application Server Administrator’s Guide for information
about wallets and Oracle Wallet Manager

Oracle HTTPS Example

Oracle HTTPS for Client Connections 12-7

■ If mutual authentication is not required for the application, use a text wallet that
contains no private key. No password is needed to open these wallets.

■ If a password is necessary, then do not store it in a clear text file. Instead, load the
property dynamically before the HTTPConnection is started by using
System.setProperty(). Unset the property after the handshake is completed.

Property Oracle.ssl.defaultCipherSuites
For OracleSSL, this property can be set to a comma-delimited list of cipher suites. For
example:

Oracle.ssl.defaultCipherSuites=
 SSL_RSA_WITH_DES_CBC_SHA,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5,
 SSL_RSA_WITH_RC4_128_MD5

The cipher suites that you set this property to are used as the default cipher suites for
new HTTPS connections.

Oracle HTTPS Example
The following is a simple program that uses Oracle HTTPS, HTTPClient, and
OracleSSL to connect to a Web server, send a GET request, and fetch a Web page. The
complete code for this program is presented here followed by sections that explain
how Oracle HTTPS is used to set up secure connections.

import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import oracle.security.ssl.OracleSSLCredential;
import java.io.IOException;

public class HTTPSConnectionExample
{
 public static void main(String[] args)
 {
 if(args.length < 4)
 {
 System.out.println(
 "Usage: java HTTPSConnectionTest [host] [port] " +
 "[wallet] [password]");
 System.exit(-1);
 }

 String hostname = args[0].toLowerCase();
 int port = Integer.decode(args[1]).intValue();
 String walletPath = args[2];
 String password = args[3];

 HTTPConnection httpsConnection = null;
 OracleSSLCredential credential = null;

 try
 {
 httpsConnection = new HTTPConnection("https", hostname, port);

See Also:

■ Table 12–1, " Cipher Suites Supported by OracleSSL" on
page 12-4

Oracle HTTPS Example

12-8 Oracle Containers for J2EE Security Guide

 }
 catch(IOException e)
 {
 System.out.println("HTTPS Protocol not supported");
 System.exit(-1);
 }

 try
 {
 credential = new OracleSSLCredential();
 credential.setWallet(walletPath, password);
 }
 catch(IOException e)
 {
 System.out.println("Could not open wallet");
 System.exit(-1);
 }
 httpsConnection.setSSLCredential(credential);

 try
 {
 httpsConnection.connect();
 }
 catch (IOException e)
 {
 System.out.println("Could not establish connection");
 e.printStackTrace();
 System.exit(-1);
 }

 javax.servlet.request.X509Certificate[] peerCerts = null;
 try
 {
 peerCerts =
 (httpsConnection.getSSLSession()).getPeerCertificateChain();
 }
 catch(javax.net.ssl.SSLPeerUnverifiedException e)
 {
 System.err.println("Unable to obtain peer credentials");
 System.exit(-1);
 }

 String peerCertDN =
 peerCerts[peerCerts.length -1].getSubjectDN().getName();
 peerCertDN = peerCertDN.toLowerCase();
 if(peerCertDN.lastIndexOf("cn="+ hostname) == -1)
 {
 System.out.println("Certificate for " + hostname + " is issued to "
 + peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
 }

 try
 {
 HTTPResponse rsp = httpsConnection.Get("/");
 System.out.println("Server Response: ");
 System.out.println(rsp);
 }
 catch(Exception e)

Oracle HTTPS Example

Oracle HTTPS for Client Connections 12-9

 {
 System.out.println("Exception occured during Get");
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

Initializing SSL Credentials In OracleSSL
This example uses a wallet created by Oracle Wallet Manager to set up credential
information.

1. First, create the credentials and load the wallet:

mycredential = new OracleSSLCredential();
mycredential.setWallet(wallet_path, password);

2. After the credentials are created, pass them to your HTTPConnection instance
(here called httpsConnection) through its setSSLCredential() method.
This method takes the OracleSSLCredential instance, created in the first step,
as input:

httpsConnection.setSSLCredential(mycredential);

The private key, user certificate, and trust points located in the wallet can now be used
for the connection.

Verifying Connection Information
Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name. Then
it is the responsibility of the client to perform this validation after the SSL connection
is established.

To perform this validation in this sample program, HTTPSConnectionExample
establishes a connection to the server without transferring any data, as follows:

httpsConnection.connect();

After the connection is established, the connection information, in this case the server
certificate chain, is obtained as follows:

peerCerts = (httpsConnection.getSSLSession()).getPeerCertificateChain();

Finally the server certificate common name is obtained as follows:

String peerCertDN = peerCerts[peerCerts.length -1].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted as follows:

if(peerCertDN.lastIndexOf("cn="+ hostname) == -1)
{
 System.out.println("Certificate for " + hostname + " is issued to " +
 peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);

Using HTTPClient with JSSE

12-10 Oracle Containers for J2EE Security Guide

}

Transferring Data through HTTPS
It is important to verify the connection information before data is transferred from the
client or from the server. The data transfer is performed in the same way for HTTPS as
it is for HTTP. In this sample program a GET request is made to the server as follows:

HTTPResponse rsp = httpsConnection.Get("/");

Using HTTPClient with JSSE
Oracle Application Server supports HTTPS client connections using the Java Secure
Socket Extension (JSSE). A client can configure HTTPClient to use JSSE as the
underlying SSL provider as follows:

1. Create a truststore using the keytool.

2. Set the truststore property. A client wishing to use JSSE must specify the client
truststore location through the javax.net.ssl.trustStore property. Unlike
OracleSSL, the client is not required to set the javax.net.ssl.keyStore
property.

3. Obtain the JSSE SSL socket factory (javax.net.ssl.SSLSocketFactory
instance) by calling the static SSLSocketFactory.getDefault() method.

4. Create an HTTPClient connection (HTTPConnection instance).

5. Configure the HTTPClient connection to use the JSSE implementation of SSL.
HTTPClient can be configured to use JSSE in either of the following ways:

■ (For each connection) The client calls the following method on the
HTTPConnection instance, specifying the JSSE SSL socket factory retrieved
by the getDefault() method in step 3:

void setSSLSocketFactory(SSLSocketFactory factory)

In this case, the SSL socket factory is set for only this connection instance.
Example 12–1 below demonstrates this technique.

■ (Entire VM) The client calls the following static method on the
HTTPConnection class:

void HttpConnection.setDefaultSSLSocketFactory(SSLSocketFactory factory)

In this case, the SSL socket factory is set for all connection instances in the Java
VM, until the method is called again with a different setting. This method
must be called before instantiating any HTTPConnection instances that are to
be affected.

6. Call HTTPConnection.connect() before sending any HTTPS data. This allows
the connection to verify the SSL handshaking that must occur between client and
server before any data can be encrypted and sent.

7. Use the HTTPConnection instance normally. At this point, the client is set up to
use HTTPClient with JSSE. There is no additional configuration necessary and
basic usage is the same.

Example 12–1 Using JSSE with HTTPClient

public void obtainHTTPSConnectionUsingJSSE() throws Exception
{

Using HTTPClient with JSSE

Oracle HTTPS for Client Connections 12-11

 // set the trust store to the location of the client's trust store file
 // this value specifies the certificate authorities the client accepts
 System.setProperty("javax.net.ssl.trustStore", KEYSTORE_FILE);
 // creates the HTTPS URL
 URL testURL = new URL("https://" + HOSTNAME + ":" + HTTPS_PORTNUM);
 // call SSLSocketFactory.getDefault() to obtain the default JSSE implementation
 // of an SSLSocketFactory
 SSLSocketFactory socketFactory =
 (SSLSocketFactory)SSLSocketFactory.getDefault();
 HTTPConnection connection = new HTTPConnection(testURL);

 // configure HTTPClient to use JSSE as the underlying
 // SSL provider
 connection.setSSLSocketFactory(socketFactory);
 // call connect to setup SSL handshake
 try
 {
 connection.connect();
 }
 catch (IOException e)
 {
 e.printStackTrace(); }

 HTTPResponse response = connection.Get("/index.html");

}

Notes:

■ If no SSL socket factory is specified, JSSE would be used
anyway, by default, if OracleSSL classes are not found in the
application classpath. If no SSL socket factory is specified and
OracleSSL classes are found in the classpath, then OracleSSL is
used by default.

■ The JSSE SSL implementation is not thread-safe; if you must
use SSL in a threaded application, use OracleSSL.

■ The JSSE implementation of SSL has some subtle differences
from the Oracle implementation. Unlike in OracleSSL, if no
truststore is set, the JDK default truststore will be used. This
default will accept known certificate authorities, such as
VeriSign and Thawte. Many self-signed certificates will be
rejected by this default.

See Also:

■ For complete information on JSSE:

http://java.sun.com/products/jsse/

■ For details on using the keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keyto
ol.html

Using HTTPClient with JSSE

12-12 Oracle Containers for J2EE Security Guide

Web Application Security Configuration 13-1

13
Web Application Security Configuration

This chapter discusses security issues affecting Web applications, covering the
following topics:

■ Specifying the Authentication Method (auth-method)

■ Web Application Security Role Configuration

Specifying the Authentication Method (auth-method)
This section discusses configuration settings to specify the authentication method for
Web applications. The following topics are covered:

■ Specifying auth-method in web.xml

■ Configuring OC4J for OracleAS Single Sign-On

■ Using Client-Cert Authentication

■ Using Form-Based Authentication

■ Using Digest Authentication with Oracle Internet Directory

See Also:

■ Oracle Containers for J2EE Servlet Developer’s Guide for general
information about Web applications

■ "Synchronization of OracleAS JAAS Provider User Context
with Servlet Sessions" on page 6-17 for information relevant
when using Oracle Identity Management as the security
provider with OracleAS Single Sign-On

■ "Introduction to JAAS Mode" on page 2-8 and "Use OracleAS
JAAS Provider JAAS Mode" on page 5-8 for information about
JAAS mode, which can be used with Web applications

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

See Also:

■ "Authentication in the OC4J Environment" on page 2-5 for an
overview of supported authentication methods

Specifying the Authentication Method (auth-method)

13-2 Oracle Containers for J2EE Security Guide

Specifying auth-method in web.xml
To specify a standard authentication method at the Web application level, use the
<login-config> element in web.xml. For example:

<web-app ... >
 ...
 <login-config>
 <auth-method>BASIC</auth-method>
 ...
 </login-config>
 ...
</web-app>

 Table 13–1 shows the supported <auth-method> settings in web.xml.

Be aware of the following:

■ To use OracleAS Single Sign-On as the authentication method, configure the OC4J
<jazn-web-app> element as described in the next section, "Configuring OC4J for
OracleAS Single Sign-On".

■ To use COREid Single Sign-On, as the authentication method, configure the OC4J
<jazn-web-app> element as described in "Configure COREid SSO in
orion-application.xml" on page 10-16.

■ Other than for OracleAS Single Sign-On or COREid Single Sign-On, all
authentication method configuration should be in the web.xml file, not in any
OC4J-specific file (which differs in some cases from proprietary functionality in
earlier releases, although that functionality is still supported for backward
compatibility).

■ When you use DIGEST with Oracle Identity Management as your security
provider, you must take preparatory steps as described in "Using Digest
Authentication with Oracle Internet Directory" on page 13-3.

■ When you use FORM, you can optionally set an OC4J flag for appropriate
client-side redirects, as described in "Using Form-Based Authentication" on
page 13-4. (This section also discusses standard configuration for form-based
authentication.)

Table 13–1 Values for auth-method in web.xml

Setting Meaning

BASIC The application uses basic authentication.

DIGEST The application uses digest authentication (not supported for
an external LDAP provider or custom provider).

FORM The application uses custom form-based authentication (not
supported for a custom provider).

CLIENT-CERT The application requires the client to supply its own HTTPS
certificate for use with SSL.

Note: For either the file-based provider or Oracle Identity
Management, we recommend digest authentication as a more
secure solution than basic authentication.

Specifying the Authentication Method (auth-method)

Web Application Security Configuration 13-3

■ To use CLIENT-CERT, you must also configure the OracleAS JAAS Provider
property x509cert.mapping.attribute, as described in "Using Client-Cert
Authentication" on page 13-5.

Configuring OC4J for OracleAS Single Sign-On
To use OracleAS Single Sign-On for authentication, set the auth-method attribute to
"SSO" in the <jazn-web-app> element (a subelement of the <jazn> element) in the
OC4J orion-application.xml file.

Here is a sample entry:

<orion-application ... >
 ...
 <jazn provider="LDAP" >
 <jazn-web-app auth-method="SSO"/>
 ...
 </jazn>
 ...
</orion-application>

Using Digest Authentication with Oracle Internet Directory
Before using digest authentication with Oracle Identity Management as your security
provider, you must complete the following preparatory steps:

1. Using Oracle Directory Manager, update the Oracle Internet Directory password
policy for your realm:

a. Launch Oracle Directory Manager with the oidadmin command.

b. In the Oracle Directory Manager "System Objects" window, under "Oracle
Internet Directory Servers", look for the appropriate server (if there are more
than one).

c. For the appropriate server, under "Password Policy Management", select
"Password Policy" for the appropriate realm that you have configured for the
security provider. If your realm is "us", for example, this would be "Password
Policy for Realm dc=us,dc=oracle,dc=com".

d. In the Oracle Directory Manager "Password Policy for Realm..." window,
enable Userpassword Reversible Encryption.

Notes:

■ You do not need an <auth-method> setting in the web.xml
file. Any setting in web.xml would be overridden by the "SSO"
setting in orion-application.xml.

■ The auth-method="SSO" setting is automatically written to
the orion-application.xml file when you specify Oracle
Identity Management with single sign-on when deploying an
application through Application Server Control.

■ The <jazn-web-app> element is also supported in the
orion-web.xml file. In the event of conflict, orion-web.xml
takes precedence over orion-application.xml for the
particular Web application in question.

Specifying the Authentication Method (auth-method)

13-4 Oracle Containers for J2EE Security Guide

2. Create users and assign roles in Oracle Internet Directory. Do not do this until you
have completed step 1. You can administer users and roles through Delegated
Administration Services (DAS).

3. In the OracleAS JAAS Provider configuration, ensure that SSL has not been
disabled for LDAP. Under the <jazn> element in the bootstrap jazn.xml file, be
sure that the ldap.protocol property does not have a setting of "no-ssl". (SSL
is enabled by default.)

Using Form-Based Authentication
This section discusses standard and OC4J-specific aspects of form-based
authentication.

Setting Standard Configuration for Form-Based Authentication
A setting of FORM requires additional configuration within the <login-config>
element in web.xml to specify the URLs for the login page and error page. There is
nothing OC4J-specific about this functionality. Here is an example:

<login-config>
 <auth-method>FORM</auth-method>
 ...
 <form-login-config>
 <form-login-page>mylogin.jsp</form-login-page>
 <form-error-page>myerror.jsp</form-error-page>
 </form-login-config>
</login-config>

Setting the OC4J Flag for Client-Side Redirects
If you set the oc4j.formauth.redirect property to true when you start OC4J,
then OC4J will execute an appropriate client-side redirect after a user has entered their
credentials for form-based authentication, affecting the request URI that is listed in the
browser. The property is set as follows:

-Doc4j.formauth.redirect=true

The default setting is false.

With a true setting, if a user enters a user name and password with sufficient
credentials to pass the form-based authentication, the content of the protected resource
will be displayed, and the request URI listed in the browser is the same as the URI that
triggered the form-based authentication. (If the form-based authentication does not
succeed, the client will instead be redirected to the error page specified in the
configuration, described in the preceding section, "Setting Standard Configuration for
Form-Based Authentication".)

Without a true setting, an OC4J-specific j_security_check request URI is listed in
the browser after any form-based authentication.

As an example, assume the following resource is protected by form-based
authentication:

http://myhost:8888/testapp/SecureServlet

See Also:

■ "Overview of Oracle Identity Management and Oracle Internet
Directory Tools" on page 3-4

■ "Configuring LDAP User and SSL Properties" on page 6-18

Specifying the Authentication Method (auth-method)

Web Application Security Configuration 13-5

If oc4j.formauth.redirect=true and form-based authentication succeeds, then
the SecureServlet URI shown above will be listed in the browser when the content
of the protected resource is displayed after form-based authentication. Without the
true flag setting, though, the request URI listed in the browser would be the
following:

http://myhost:8888/testapp/j_security_check

Using Client-Cert Authentication
This section describes how to configure OC4J to authenticate a client through HTTPS,
and describes the OC4J logic flow for this authentication method.

Configuring OC4J for Client-Cert Authentication
To use client authentication through HTTPS:

1. Set <auth-method> to CLIENT-CERT in web.xml, as described in "Specifying
auth-method in web.xml" on page 13-2.

2. Set the OC4J x509cert.mapping.attribute property in the <jazn> element
of the application orion-application.xml file, as necessary.

3. If you use a default realm other than jazn.com (the default realm specified in
jazn.xml), specify that through the default-realm attribute in the <jazn>
element.

For the file-based provider, the default x509cert.mapping.attribute value is
"CN". For Oracle Identity Management (LDAP-based provider) or an external LDAP
provider, the default value is "DN". Here is an example that explicitly sets it to "CN" for
the file-based provider, and also specifies a default realm:

<orion-application ... >
 ...
 <jazn provider="XML" ... default-realm="myrealm" ... >
 <property name="x509cert.mapping.attribute" value="CN"/>
 ...
 </jazn>
 ...
</orion-application>

Client-Cert Execution Flow in OC4J
Here is how CLIENT-CERT authentication works in OC4J:

1. A user tries to access a protected resource.

2. OracleAS JAAS Provider retrieves the distinguished name of the certificate user
from the certificate.

3. According to the value of x509cert.mapping.attribute, OracleAS JAAS
Provider retrieves the appropriate value from the distinguished name. For
example, if the attribute setting is "CN", OracleAS JAAS Provider retrieves the
common name from the distinguished name.

See Also:

■ "Using SSL with Standalone OC4J" on page 11-5, including
information about the needs-client-auth flag

■ "Using SSL with OC4J in Oracle Application Server" on
page 11-8

Web Application Security Role Configuration

13-6 Oracle Containers for J2EE Security Guide

4. OracleAS JAAS Provider searches for the certificate user in the relevant user
repository (such as jazn-data.xml for the file-based provider, or Oracle Internet
Directory for the LDAP-based provider). The setting of
x509cert.mapping.attribute determines what is searched for. If the
attribute setting is "CN", for example, the common name is what is searched for in
the user repository.

Note, however, that the exact behavior differs between the file-based provider and
the LDAP-based or an external LDAP provider. If johndoe is the common name,
for example:

■ For the file-based provider, OracleAS JAAS Provider looks for "johndoe" in
the repository.

■ For the LDAP-based provider or an external LDAP provider, OracleAS JAAS
Provider looks for "cn=johndoe" in the repository.

5. OracleAS JAAS Provider loads the certificate principal and its granted roles, and
populates a Subject instance with this information.

6. Authorization is performed against the subject.

Web Application Security Role Configuration
This section describes role types and how they are mapped together:

■ J2EE Security Roles

■ Mapping of Application Roles to J2EE Roles

■ Definition of JAAS Roles and Users

■ OC4J Mapping of J2EE Roles to JAAS Roles

J2EE Security Roles
The J2EE development environment includes a feature for portable security roles
defined in the web.xml file for servlets and JavaServer Pages. Security roles define a
set of resource access permissions for an application. Associating a principal (in this
case, a JAAS user) with a security role assigns the defined access permissions to that
principal for as long as they are mapped to the role. For example, an application
defines a security role called sr_developer:

<security-role>
 <role-name>sr_developer</role-name>
</security-role>

You also define the access permissions for the sr_developer role. A role is tied to
capabilities and constraints through additional standard descriptor elements, such as
under the <security-constraint> element in web.xml:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>access to the entire application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developer</role-name>
 </auth-constraint>
 </security-constraint>

Web Application Security Role Configuration

Web Application Security Configuration 13-7

Mapping of Application Roles to J2EE Roles
So that you do not have to update application code to change role definitions, J2EE
provides a way in the web.xml file to map from roles defined in your application to
roles defined in web.xml. This is accomplished through the <security-role-ref>
element:

<security-role-ref>
 <role-name>DEV</role-name>
 <role-link>sr_developer</role-link>
</security-role-ref>

The <role-name> element indicates a role in the application code. The
<role-link> element specifies that this application role (DEV in the example) should
be linked to a J2EE role (sr_developer) described by a <security-role> element.

In this example, if a servlet running as a user belonging to sr_developer invokes the
HttpServletRequest method isUserInRole("DEV"), the method will return
true. (Whenever the container finds no <security-role-ref> element matching a
particular security role, the container checks the <role-name> value against the
entire list of security roles for the application.)

Definition of JAAS Roles and Users
For the file-based provider, JAAS users and roles are defined in the
system-jazn-data.xml file.

For example, the following configures the developers role:

<role>
 <name>developers</name>
 <members>
 <member>
 <type>user</type>
 <name>john</name>
 </member>
 </members>
</role>

OC4J Mapping of J2EE Roles to JAAS Roles
OC4J enables you to map portable J2EE security roles defined in the web.xml file to
JAAS roles. You can accomplish this through Application Server Control during
deployment, as described in "Specifying Security Role Mapping through Application
Server Control" on page 5-14. Mappings are reflected in
<security-role-mapping> settings in the orion-application.xml file (for a
J2EE application) or orion-web.xml file (for a single Web application).

For example, the following maps the J2EE role sr_developer to the JAAS role
developers.

<security-role-mapping name="sr_developer">
 <group name="developers" />
</security-role-mapping>

This association permits the developers role to access resources that are accessible
for the sr_developer role.

Consider a user john, for example, who is a member of the developers role.
Because this role is mapped to the J2EE role sr_developer, john has access to the
application resources available to the sr_developer role.

Web Application Security Role Configuration

13-8 Oracle Containers for J2EE Security Guide

Note: A <group> subelement under a
<security-role-mapping> element in
orion-application.xml corresponds to a role in the OracleAS
JAAS Provider.

EJB Security Configuration 14-1

14
EJB Security Configuration

This chapter discusses security issues affecting EJBs, covering the following topics:

■ EJB JNDI Security Properties

■ Configuring EJB Security

■ Permitting EJB RMI Client Access

■ Enabling and Configuring Subject Propagation for ORMI

Note that beginning with the OC4J 10.1.3 implementation, the EJB container supports
the OracleAS JAAS Provider.

EJB JNDI Security Properties
There are two JNDI properties that are specific to security. You can either set these
within the jndi.properties file or within your client implementation.

JNDI Properties in jndi.properties
If setting the JNDI properties within the jndi.properties file, set the properties as
follows. Make sure that this jndi.properties file is accessible from the classpath.

See Also:

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
for general information about EJBs

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
also for information about EJB 3.0 security annotations

■ Oracle Containers for J2EE Services Guide for information about
ORMI

■ "Enabling ORMIS for OC4J" on page 11-14 (in this document)
for information about ORMIS

■ "Introduction to JAAS Mode" on page 2-8 and "Use OracleAS
JAAS Provider JAAS Mode" on page 5-8 for information about
JAAS mode, which can be used with EJB applications

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Configuring EJB Security

14-2 Oracle Containers for J2EE Security Guide

When you access EJBs in a remote container, you must pass valid credentials to this
container. standalone clients define their credentials in the jndi.properties file
deployed with the client’s code.

java.naming.security.principal=username
java.naming.security.credentials=password

JNDI Properties within Implementation
JavaBeans running within the container pass their credentials within the
InitialContext instance, which is created to look up the remote EJBs.

For example, to pass JNDI security properties within the Hashtable environment:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",
 "oracle.j2ee.naming.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject, EmployeeHome.class);

Configuring EJB Security
EJB security involves two realms: granting permissions if you download into a
browser, and configuring your application for authentication and authorization. This
section covers the following:

■ Granting Permissions in the Browser

■ Authenticating and Authorizing EJB Applications

■ Specifying Credentials in EJB Clients

■ Configuring Anonymous EJB Lookup

Granting Permissions in the Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup", "read,write";

Authenticating and Authorizing EJB Applications
You can define security constraints and J2EE security roles in the EJB deployment
descriptor to protect your EJB methods (or in the orion-application.xml
descriptor for the overall J2EE application). These J2EE security roles must be mapped

Note: ApplicationClientInitialContextFactory is in the
file oc4jclient.jar.

Configuring EJB Security

EJB Security Configuration 14-3

to deployment users and roles in the OracleAS JAAS Provider. This security role
mapping can be accomplished through Application Server Control during
deployment, as described in "Specifying Security Role Mapping through Application
Server Control" on page 5-14.

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors, as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

■ The OC4J-specific deployment descriptor maps the logical roles to deployment
users and roles, made available to OC4J through the OracleAS JAAS Provider.

Users and roles are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The user name /
password pairs can be digital certificates and, in the case of SSL, private key pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 14–1.

Figure 14–1 End-to-End Security Role Configuration

Defining users and roles are discussed in the following sections:

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Specifying Unchecked Security for EJB Methods

■ Specifying the Run-As Security Identity

■ Mapping Logical Roles to Users and Roles

■ Specifying a Default Role Mapping for Undefined Methods

Specifying Logical Roles in the EJB Deployment Descriptor
As shown in Figure 14–2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct security role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Roles" on page 14-7
for more information.

Configuring EJB Security

14-4 Oracle Containers for J2EE Security Guide

Figure 14–2 Security Role References

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole(), you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section in a
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked within the bean implementation
to see if the caller had authorization to sign a purchase order. Thus, the caller
would have to be signed in under a correct role. For the bean to not require
awareness of database roles, you can check isCallerInRole() on a logical
name, such as POMgr, because only purchase order managers can sign off on the
order. Thus, you would specify the logical security role, POMgr, in the
<role-name> subelement of a <security-role-ref> element within the
<enterprise-beans> section, as follows:

<enterprise-beans>
 ...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
 ...
</enterprise-beans>

The <role-link> setting within the <security-role-ref> element can be
the actual database role, which is defined further within the

Configuring EJB Security

EJB Security Configuration 14-5

<assembly-descriptor> section. Alternatively, it can be another logical name,
which is still defined more in the <assembly-descriptor> section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

2. Define the role and the methods that it applies to. In the purchase order example,
any method executed within the PurchaseOrder bean must have authorized
itself as myMgr. Note that PurchaseOrder is the name declared in the
<ejb-name> element, a subelement of the <session> or <entity> element.

Thus, the following defines the role as myMgr, the EJB as PurchaseOrder, and all
methods by denoting the "*" symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean implementation,
and the container translates POMgr to myMgr.

The <method> subelement of <method-permission> is used to specify the security
role for one or more methods within an interface or implementation. According to the
EJB specification, this definition can be of one of the following forms:

1. Defining all methods within a bean by specifying the bean name and using the "*"
character to denote all methods within the bean, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>EJBNAME</ejb-name>

Note: The <security-role-ref> element is required only
when you use security context methods within your bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> setting within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Note: If you define different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Configuring EJB Security

14-6 Oracle Containers for J2EE Security Guide

 <method-name>*</method-name>
 </method>
</method-permission>

2. Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethodInMyBean</method-name>
 </method>
</method-permission>

3. Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>javax.lang.String</method-param>
 <method-param>javax.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

The parameters are the fully-qualified Java types of the input parameters of the
method. If the method has no input arguments, the <method-params> element
contains no subelements.

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Instead of defining a <role-name> element, you define an <unchecked/> element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the Run-As Security Identity
You can specify that all methods of an EJB execute under a specific identity. That is, the
container does not check different roles for permission to run specific methods;

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Configuring EJB Security

EJB Security Configuration 14-7

instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller identity as the security identity.

Specify the "run-as" security identity in the <security-identity> element, which
is contained in the <enterprise-beans> section. The following XML demonstrates
that POMgr is the role under which all the entity bean methods execute:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <run-as>
 <role-name>POMgr</role-name>
 </run-as>
 </security-identity>
...
 </entity>
</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
...
 </entity>
</enterprise-beans>

Mapping Logical Roles to Users and Roles
As noted earlier, you can define security constraints and J2EE security roles in the EJB
deployment descriptor to protect your EJB methods. These J2EE security roles must be
mapped to deployment users and roles in the OracleAS JAAS Provider. This security
role mapping can be accomplished through Application Server Control during
deployment, as described in "Specifying Security Role Mapping through Application
Server Control" on page 5-14.

Mappings are reflected in <security-role-mapping> settings in Oracle-specific
descriptors, as shown in the examples that follow.

Example 14–1 Mapping Logical Role to Actual Role

While we recommend that you use Application Server Control for role mapping, this
example provides reference information for the resulting configuration in
orion-ejb-jar.xml when you map the logical role POMGR to the managers role.
Any user that can log in as part of this role is considered to have the POMGR role, and
so can execute the methods of PurchaseOrderBean.

<security-role-mapping name="POMGR">
 <group name="managers" />

See Also:

■ Oracle Containers for J2EE Developer’s Guide for information
about the orion-application.xml file

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about the orion-ejb-jar.xml file

Configuring EJB Security

14-8 Oracle Containers for J2EE Security Guide

</security-role-mapping>

For mapping to a specific user:

<security-role-mapping name="POMGR">
 <user name="guest" />
</security-role-mapping>

For mapping to a specific user within a specific role:

<security-role-mapping name="POMGR">
 <group name="managers" />
 <user name="guest" />
</security-role-mapping>

As shown in Figure 14–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific deployment
descriptor, in the <security-role-mapping> element.

Figure 14–3 Security Role Mapping

Notice that the <role-name> setting in the EJB deployment descriptor is the same as
for the name attribute in the <security-role-mapping> element in the
OC4J-specific deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any unsecured
methods:

<default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role. The
impliesAll attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to "true", which states that no security role checking
occurs for these methods. If you set this attribute to "false", the container will check
for this default role on these methods.

If the impliesAll attribute is "false", you must map the default role defined in the
name attribute to a deployment user or role through the <user> and <group>

Configuring EJB Security

EJB Security Configuration 14-9

elements. The following example shows how all methods not associated with a
method permission are mapped to the "others" role.

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" />
 <group name="others" />
 </security-role-mapping>
</default-method-access>

Specifying Credentials in EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this
container.

■ Standalone clients define their credentials in the jndi.properties file deployed
with the EAR file.

■ Servlets or JavaBeans running within the container pass their credentials within
the InitialContext, which is created to look up the remote EJBs.

Credentials in JNDI Properties
Indicate the user name (principal) and password (credentials) to use when looking up
remote EJBs in the jndi.properties file.

For example, if you want to access remote EJBs as POMGR/welcome, define the
following properties. The java.naming.factory.initial setting indicates that
you will use the Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=
 oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/ejbsamples

In your application program, authenticate and access the remote EJBs as shown in the
following example:

InitialContext ic = new InitialContext();
CustomerHome =
 (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Credentials in the InitialContext
To access remote EJBs from a servlet or JavaBean, pass the credentials in the
InitialContext object as follows:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",
 "oracle.j2ee.naming.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
CustomerHome = (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Configuring Anonymous EJB Lookup
Anonymous EJB lookup is a mode you may consider, presumably only during early
development or very special circumstances. In this mode, you do not specify the
principal and credential when creating the InitialContext, and therefore do not

Configuring EJB Security

14-10 Oracle Containers for J2EE Security Guide

have to specify a principal or credential to remotely access EJBs. Your
jndi.properties file would look like this:

java.naming.factory.initial=
 oracle.j2ee.naming.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost:23791/ejb30slsb
java.naming.security.principal=
java.naming.security.credentials=

You can enable this mode as follows:

1. Confirm that the anonymous user is configured in system-jazn-data.xml,
and that this user is activated, as described in "Predefined OC4J Accounts" on
page 3-11.

2. Also in system-jazn-data.xml, under the appropriate realm, assign the
anonymous user to a role that has been granted RMI permissions, as described in
the next section, "Permitting EJB RMI Client Access". For example, assuming the
users role is granted RMI permissions:

<jazn-data>
 ...
 <jazn-realm>
 <realm>
 <name>myrealm</name>
 ...
 <roles>

 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 </members>
 </role>
 ...
 </roles>
 ...
 </realm>
 ...
 </jazn-realm>
 ...
</jazn-data>

3. Give the role (users in this example) appropriate namespace access so that it can
execute read and write operations on the EJB. Use configuration such as the
following in the orion-application.xml file for the application:

<orion-application>
 ...
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="administrators" />

Important: Oracle strongly discourages this practice, except in
special circumstances, as it leaves EJBs completely unsecured.

Enabling and Configuring Subject Propagation for ORMI

EJB Security Configuration 14-11

 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 <write-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="administrators" />
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </write-access>
 </namespace-access>
 ...
</orion-application>

With this configuration, you can access remote EJBs without specifying principals or
credentials.

Permitting EJB RMI Client Access
To enable fat client access to EJBs using RMI, you must grant RMI permission "login"
to the appropriate role. You can accomplish this in one of the following ways:

■ For the file-based provider, through Application Server Control by selecting the
role and checking the "Grant RMI Permission" checkbox. (Also refer to "Create a
Role" on page 7-7 or "Edit a Role" on page 7-8.)

■ Or through the OracleAS JAAS Provider Admintool:

% java -jar jazn.jar -grantperm myrealm -role myrole \
 com.evermind.server.rmi.RMIPermission login

Restart OC4J for changes to take effect.

For an application to access EJBs, you must create the end user JDOE_ENDUSER in the
system-jazn-data.xml file and grant it RMI permission "login".

Enabling and Configuring Subject Propagation for ORMI
This section discusses subject propagation in OC4J, and documents how to enable it
with ORMI. (It is always used with IIOP, in accordance with the CSIv2 specification.)
The following topics are covered:

■ Overview of Subject Propagation in OC4J

■ Enabling Subject Propagation for ORMI

■ Sharing Principal Classes for Subject Propagation

■ Removing and Configuring Subject Propagation Restrictions

See Also:

■ Appendix C, "OracleAS JAAS Provider Admintool Reference"

Enabling and Configuring Subject Propagation for ORMI

14-12 Oracle Containers for J2EE Security Guide

Overview of Subject Propagation in OC4J
OC4J supports subject propagation, as summarized in Figure 14–4. Through this
feature, a Web client can establish its identity to a servlet, and the servlet can then use
that identity to communicate with other EJBs and servlets, where the identity is the
appropriate JAAS subject (javax.security.auth.Subject instance).

Figure 14–4 Subject Propagation

After the client’s current subject is obtained, through a Subject.getSubject() call,
subject propagation works as follows:

1. The subject is serialized over to the RMI server.

2. The RMI server deserializes the subject and uses it to set up the server-side JAAS
context.

Subjects may be propagated through a series of EJB invocations, for example. The EJB
incorporates the client identity if the EJB is configured to use the client’s identity. The
EJB cannot be configured to use run-as mode with a specific role.

The authenticated subject (from supplied JNDI credentials) is then merged with the
propagated subject to form a combined subject.

Note: Subject propagation is a powerful feature that should be
used only in environments where the server is secure from
untrusted client access. It is therefore advised, in order to ensure
proper integrity of client requests, that appropriate safeguards be
established before this feature is used in production environments.
For example, consider using application or network firewalls, RMI
access restrictions (through the <access-mask> element in
rmi.xml, as documented in "Configuring ORMIS Access
Restrictions" on page 11-17), or RMI subject-propagation
restrictions (through the <subject-propagation-mask>
element in rmi.xml, as documented in "Removing and
Configuring Subject Propagation Restrictions" on page 14-14).

J2EE Container

Enterprise Information
System Tier

EJB

Messaging
System

ERP, SAP
Applications

Username

Password

Caller ID

Database

J2EE Container
Web Client

(such as browser)

Caller ID
EJB EJB

JSP / Servlet

Enabling and Configuring Subject Propagation for ORMI

EJB Security Configuration 14-13

Enabling Subject Propagation for ORMI
In OC4J, you can use subject propagation with ORMI if you specifically enable it on
the client and server. You can accomplish this with the following system property
setting at each end:

-Dsubject.propagation=true

In the current release, this setting controls subject propagation at a global OC4J level.

Be aware that for subject propagation to work properly, JAAS mode must be enabled
for the Web application where the subject is being propagated from, and for the EJB
where the subject is being propagated to. So for each, there must be a setting of
jaas-mode="doAs" or jaas-mode="doAsPrivileged" in the
orion-application.xml file.

Sharing Principal Classes for Subject Propagation
While java.security.Subject is a class provided with the JDK,
java.security.Principal is an interface that you can implement as desired. For
subject propagation to work properly with ORMI, you must ensure that the remote
client, application, and OC4J all have access to any Principal class definitions.

You can accomplish this by putting them in a library that is loaded as an OC4J shared
library. There are two main steps to this (considering functionality of the Application
Server Control Console in particular):

1. Load the library as an OC4J shared library. From the Application Server Control
Console Administration tab for the OC4J instance, use the Shared Libraries task.

This results in configuration such as the following in the OC4J server.xml file:

<application-server ... >
 ...
 <shared-library name="mylib.jar" version="1.0" library-compatible="true">
 <code-source path="../mypath" />
 </shared-library>
 ...
</application-server>

2. Import the library into your application. In deploying an application through
Application Server Control, when you reach the Deploy: Deployment Settings
page (as discussed in "Deploying an Application through Application Server
Control" on page 5-11), you have the opportunity to import shared libraries.

This results in configuration such as the following in your application
orion-application.xml file:

<orion-application ... >
 ...
 <imported-shared-libraries>
 <import-shared-library name="mylib.jar" />
 ...
 </imported-shared-libraries>
 ...
</orion-application>

See Also:

■ "Introduction to JAAS Mode" on page 2-8

Enabling and Configuring Subject Propagation for ORMI

14-14 Oracle Containers for J2EE Security Guide

Removing and Configuring Subject Propagation Restrictions
By default, access to subject propagation is denied to all ORMI clients. You can
configure desired access through settings in the <subject-propagation-mask>
element and its <host-access> and <ip-access> subelements in rmi.xml.

Subject propagation access can be either exclusive or inclusive:

■ In the exclusive mode, access is denied to all IP addresses or hosts except those
specifically included. Use mode="deny" in <subject-propagation-mask>,
then specify which particular hosts or IP addresses to allow by using
mode="allow" in a <host-access> subelement, <ip-access> subelement, or
both.

■ In the inclusive mode, access is available to all IP addresses or hosts except those
specifically excluded. Use mode="allow" in <subject-propagation-mask>,
then specify which particular hosts or IP addresses to deny by using
mode="deny" in a <host-access> subelement, <ip-access> subelement, or
both.

The following example configures an exclusive mode, allowing subject propagation
for only localhost and 192.168.1.0. (255.255.255.0 is the applicable subnet
mask.)

<rmi-server ... >
 ...
 <subject-propagation-mask default="deny">
 <host-access domain="localhost" mode="allow"/>
 <ip-access ip="192.168.1.0" netmask="255.255.255.0" mode="allow"/>
 </subject-propagation-mask>
 ...
</rmi-server>

The default setting is as follows:

<subject-propagation-mask default="deny"/>

Note: This is the preferred way to use shared libraries in OC4J;
however, the <library> element and
ORACLE_HOME/j2ee/home/applib directory are still supported.

See Also:

■ Oracle Containers for J2EE Developer’s Guide for more information
about OC4J class loading and shared libraries

Common Secure Interoperability Protocol 15-1

15
Common Secure Interoperability Protocol

OC4J supports the Common Secure Interoperability Version 2 protocol (CSIv2). CSIv2
specifies different conformance levels; OC4J complies with the EJB specification, which
requires conformance level 0.

 This chapter covers the following topics:

■ EJB Server Security Properties in internal-settings.xml

■ EJB Client Security Properties in ejb_sec.properties

■ Introduction to CSIv2 Security Properties

■ CSIv2 Security Properties in internal-settings.xml

■ CSIv2 Security Properties in ejb_sec.properties

■ CSIv2 Security Properties in orion-ejb-jar.xml

EJB Server Security Properties in internal-settings.xml
Specify server security properties in internal-settings.xml.

This file specifies certain properties as values within <sep-property> entities.
Table 15–1 contains a list of properties.

The table refers to keystore and truststore files, which use the Java Key Store (JKS), a
JDK-specified format, to store keys and certificates. A keystore stores a map of private
keys and certificates. A truststore stores trusted certificates for the certificate
authorities (CAs, such as VeriSign and Thawte).

Note: If your application uses JAAS, you must configure the
OracleAS JAAS Provider to use CSIv2. See information about the
supportCSIv2 option in "Configuring RealmLoginModule" on
page 8-2.

Note: You cannot update internal-settings.xml with the
Application Server Control.

Table 15–1 EJB Server Security Properties

Property Meaning

port IIOP port number (defaults to 5555).

ssl A true setting indicates IIOP/SSL is supported.

EJB Server Security Properties in internal-settings.xml

15-2 Oracle Containers for J2EE Security Guide

■ If OC4J is started by the Oracle Process Manager and Notification Server (OPMN)
in an Oracle Application Server environment, then ports specified in
internal-settings.xml are overridden. Note that IIOP SSL ports may fail to
start if the keystore or truststore location or password is missing or incorrect. In
such a case, you are advised to look at the appropriate OPMN log file to see the
exact nature of the failure.

■ If OPMN is configured to disable IIOP for a particular OC4J instance, then, even
though IIOP may be enabled through internal-settings.xml (as pointed to
by server.xml), IIOP is not enabled.

■ Keystore and truststore settings are supported in internal-settings.xml for
both standalone OC4J and a full Oracle Application Server environment. In Oracle
Application Server, there are no OPMN options to set these values, so they must
be configured manually.

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="true" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />
 <sep-property name="keystore" value="keystore.jks" />
 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

ssl-port IIOP/SSL port number (defaults to 5556). This port is
used for server-side authentication only. If your
application uses client and server authentication, you
also need to set ssl-client-server-auth-port.

ssl-client-server-auth-port Port used for client and server authentication (defaults
to 5557). This is the port on which OC4J listens for SSL
connections that require both client and server
authentication. If not set, OC4J will listen on ssl-port
+ 1 for client-side authentication.

keystore Name and path of the keystore (used only if ssl is
true). An absolute path is recommended.

keystore-password Keystore password (used only if ssl is true).

trusted-clients Comma-delimited list of hosts whose identity assertions
can be trusted. Each entry in the list can be an IP
address, a host name, a host name pattern (for example,
*.example.com), or * (where "*" alone means that all
clients are trusted). The default is to trust no clients.

truststore Name and path of the truststore. An absolute path is
recommended. If you do not specify a truststore for a
server, OC4J uses the keystore as the truststore (used
only if ssl is true).

truststore-password Truststore password (used only if ssl is true).

Table 15–1 (Cont.) EJB Server Security Properties

Property Meaning

EJB Client Security Properties in ejb_sec.properties

Common Secure Interoperability Protocol 15-3

Here is the DTD for internal-settings.xml:

<!-- A server extension provider that is to be plugged in to the server. -->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

EJB Client Security Properties in ejb_sec.properties
Any client, whether running inside a server or not, has EJB security properties.
Table 15–2 lists the EJB client security properties controlled by the
ejb_sec.properties file. By default, OC4J searches for this file in the current
directory when running as a client, or in ORACLE_HOME/j2ee/home/config when
running in the server. You can specify the location of this file explicitly with the system
property setting -Dejb_sec_properties_location=pathname.

Note: Although here the default value of port is one less than the
default value for ssl-port, this relationship is not required.

See Also:

■ "CSIv2 Security Properties in internal-settings.xml" on page 15-4

Table 15–2 EJB Client Security Properties

Property Meaning

oc4j.iiop.keyStoreLoc The path and name of the keystore. An absolute path is
recommended.

oc4j.iiop.keyStorePass The password for the keystore.

oc4j.iiop.trustStoreLoc The path name and name of the truststore. An absolute path is
recommended.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side authentication. If this
property is set to true, you must specify a keystore location and
password.

oc4j.iiop.ciphersuites Which cipher suites are to be enabled. The valid cipher suites are:

TLS_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_MD5
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Introduction to CSIv2 Security Properties

15-4 Oracle Containers for J2EE Security Guide

Introduction to CSIv2 Security Properties
CSIv2 is an Object Management Group (OMG) standard for a secure interoperable
wire protocol that supports authorization and identity delegation. Configure CSIv2
properties in three different locations:

■ internal-settings.xml (server side)

■ ejb_sec.properties (client side)

■ orion-ejb-jar.xml

These configuration files are discussed in "CSIv2 Security Properties in
internal-settings.xml" (the next section), "CSIv2 Security Properties in
ejb_sec.properties" on page 15-5, and "CSIv2 Security Properties in orion-ejb-jar.xml"
on page 15-6.

CSIv2 Security Properties in internal-settings.xml
This section discusses the semantics of the values you set within the
<sep-property> element in internal-settings.xml. For details of the syntax,
see "EJB Server Security Properties in internal-settings.xml" on page 15-1.

To use the CSIv2 protocol with OC4J, you must both set ssl to true and specify an
IIOP/SSL port (ssl-port).

nameservice.useSSL Whether to use SSL when making the initial connection to the
server.

client.sendpassword Whether to send user name and password in clear form
(unencrypted) in the service context when not using SSL. If this
property is set to true, the user name and password are sent only
to servers listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive passwords sent in
clear form. This has no effect if client.sendpassword is set to
false. The list is comma-delimited. Each entry in the list can be
an IP address, a host name, a host name pattern (for example,
*.example.com), or * (where "*" alone means that all servers
are trusted.

Notes:

■ The ejb_sec.properties file is used for client-side
operations, where internal-settings.xml would not be
present.

■ The properties marked with # can be set either in
ejb_sec.properties or as system properties. The settings
in ejb_sec.properties override settings specified as
system properties.

See Also:

■ "CSIv2 Security Properties in ejb_sec.properties" on page 15-5

Table 15–2 (Cont.) EJB Client Security Properties

Property Meaning

CSIv2 Security Properties in ejb_sec.properties

Common Secure Interoperability Protocol 15-5

■ If you do not set ssl to true, then CSIv2 is not enabled. Setting ssl to true
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

■ If you do not specify ssl-port, then no CSIv2 component tag is created, even if
you configure an <ior-security-config> entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, OC4J listens on two different sockets—one
for server authentication alone and one for server and client authentication. Specify
the server authentication port number within the <sep-property> element. OC4J
adds 1 to this for the server and client authentication port number.

For SSL clients using server authentication alone, you can specify:

■ Truststore only

■ Both keystore and truststore

■ Neither

If you specify neither keystore nor truststore, the handshake may fail if there are no
default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties in ejb_sec.properties
This section discusses usage of the ejb_sec.properties file for CSIv2 security
settings. See "EJB Client Security Properties in ejb_sec.properties" on page 15-3 for
general information about this file and its syntax.

If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file in order for the client
runtime to insert a security context and send the user name and password. You must
also set server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the DN from
the client's certificate and then looks it up in the corresponding security provider; it
does not perform password authentication.

Two types of trust relationships exist:

■ Clients trusting servers to transmit user names and passwords using non-SSL
connections

■ Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers. See
Table 15–2, " EJB Client Security Properties" on page 15-3 for details. Servers list
trusted clients in the trusted-client property of the <sep-property> element in
internal-settings.xml. See "EJB Server Security Properties in
internal-settings.xml" on page 15-1 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

Note: Server-side authentication takes precedence over a user
name and password.

CSIv2 Security Properties in orion-ejb-jar.xml

15-6 Oracle Containers for J2EE Security Guide

■ Presumed trust, in which the server presumes that the logical client is trustworthy,
even if the logical client has not authenticated itself to the server, and even if the
connection is not secure

■ Authenticated trust, in which the target trusts the intermediate server based on
authentication, either at the transport level or in the trusted-client list or both

OC4J supports both kinds of trust. Configure trust using the bean
<ior-security-config> element in orion-ejb-jar.xml. See the next section,
"CSIv2 Security Properties in orion-ejb-jar.xml", for details.

CSIv2 Security Properties in orion-ejb-jar.xml
This section discusses the CSIv2 security properties for an EJB. Configure the CSIv2
security policies of each individual bean in its orion-ejb-jar.xml file. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> subelement, an <as-context>
subelement, and a <sas-context> subelement.

The DTD for the <ior-security-config> element is as follows:

<!ELEMENT ior-security-config (transport-config?, as-context? sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >
<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

The rest of this section covers the following elements:

■ The <transport-config> element

■ The <as-context> element

■ The <sas-context> element

The <transport-config> element
This element specifies the transport security level. Each subelement under
<transport-config> must be set to supported, required, or none. The setting
none means that the bean neither supports nor uses that feature; supported means
that the bean permits the client to use the feature; required means that the bean
insists that the client use the feature. The subelements are:

■ <integrity>: Is there a guarantee that all transmissions are received exactly as
they were transmitted?

Note: You can also configure the server to both require SSL
client-side authentication and specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

CSIv2 Security Properties in orion-ejb-jar.xml

Common Secure Interoperability Protocol 15-7

■ <confidentiality>: Is there a guarantee that no third party was able to read
transmissions?

■ <establish-trust-in-target>: Does the server authenticate itself to the
client? This element may be set to either supported or none; it cannot be set to
required.

■ <establish-trust-in-client>: Does the client authenticate itself to the
server?

The <as-context> element
This element specifies the message-level authentication properties. Its subelements are:

■ <auth-method>: Must be set to either username_password or none. If it is set
to username_password, beans use user names and passwords to authenticate
the caller.

■ <realm>: Must be set to default in the current implementation.

■ <required>: If this is set to true, the bean requires the caller to specify a user
name and password.

The <sas-context> element
This element specifies the identity delegation properties. It has one subelement,
<caller-propagation>, which can be set to supported, required, or none, as
follows:

■ If it is set to supported, the bean accepts delegated identities from intermediate
servers.

■ If it is set to required, the bean requires all other beans to transmit delegated
identities.

■ If it is set to none, the bean does not support identity delegation.

Example: <ior-security-config>
The following example uses the <ior-security-config> element and its
subelements:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>

Notes:

■ If you set <establish-trust-in-client> to required,
this overrides setting <auth-method> to
username_password under <as-context>. If you do this,
you must also set the <required> element in the
<as-context> section to false; otherwise access permission
issues will arise.

■ Setting any of the <transport-config> properties to
required means that the bean will use RMI/IIOP/SSL to
communicate.

CSIv2 Security Properties in orion-ejb-jar.xml

15-8 Oracle Containers for J2EE Security Guide

 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

Security Support for Resource Adapters 16-1

16
Security Support for Resource Adapters

This chapter discusses security considerations and how to configure security and
authentication when using resource adapters for an enterprise information system
(EIS) connection. The following topics are covered:

■ Overview of Security and Authentication Setup for EIS Connections

■ Understanding Component-Managed Sign-On

■ Understanding Container-Managed Sign-On

■ Using Declarative Container-Managed Sign-On

■ Using Programmatic Container-Managed Sign-On

Overview of Security and Authentication Setup for EIS Connections
To ensure secure interactions between a J2EE application and an EIS, the J2EE
Connector Architecture allows application components to associate a security context
with connections established to the EIS. To accomplish this, the J2EE Connector
Architecture security contract can work in conjunction with standard JAAS. The
following sections provide an overview:

■ Summary of J2EE Connector Architecture Security Contract

■ Summary of Component-Managed Versus Container-Managed Sign-On

Summary of J2EE Connector Architecture Security Contract
The J2EE Connector Architecture security contract, between an application server and
a resource adapter, extends the connection management contract with functionality
relating to secure connections. The security contract supports standard JAAS
interfaces, allowing it to be independent of any particular security framework or
mechanism. In particular, the security contract includes features for the following:

■ Propagating a security context, or subject, directly from a J2EE component to a
resource adapter (for component-managed sign-on)

■ Propagating a security context, or subject, from an application server to a resource
adapter (for container-managed sign-on)

The security contract supports two particular authentication mechanisms:

■ The commonly used basic password mechanism relies on a user name / password
pair, contained together in a password credential object. The application server
passes this object to the resource adapter for authentication.

Overview of Security and Authentication Setup for EIS Connections

16-2 Oracle Containers for J2EE Security Guide

■ The Kerberos version 5 mechanism ("Kerbv5" for short) is an authentication
protocol distributed by the Massachusetts Institute of Technology. This mechanism
uses a "generic credential" object that encapsulates credential information such as
a Kerberos ticket. The application server passes this object to the resource adapter
for verification.

Security contract functionality includes use of the following key interfaces:

■ javax.security.auth.Subject

■ java.security.Principal

■ javax.security.auth.spi.LoginModule

■ javax.resource.spi.security.PasswordCredential

This J2EE Connector Architecture class represents a user name / password pair for
basic password authentication.

■ org.ietf.jgss.GSSCredential (in J2SE version 1.4)

This interface represents a generic credential object for Kerberos version 5
authentication. (This replaces the J2EE Connector Architecture
javax.resource.spi.security.GenericCredential interface, which is
deprecated.)

Summary of Component-Managed Versus Container-Managed Sign-On
Sign-on from a J2EE application to an EIS can be managed either by the application
component or by the J2EE container (OC4J). Component-managed sign-on must be set
up programmatically and does not involve OC4J-specific configuration.
Container-managed sign-on can be set up either declaratively, through OC4J-specific
configuration without any programming requirements, or programmatically,
involving a combination of OC4J-specific configuration and programming
requirements. Programmatic container-managed sign-on can use either a principal
mapping class or a JAAS login module.

The following list summarizes the options and the type of setup required for
component-managed and container-managed sign-on. Bullets at each level represent
choices.

■ Component-managed sign-on: Requires web.xml or ejb-jar.xml <res-auth>
setting of Application; programmatic setup for sign-on; no OC4J-specific
configuration.

■ Container-managed sign-on: Requires web.xml or ejb-jar.xml <res-auth>
setting of Container; setup for sign-on may be declarative or programmatic; use
OC4J-specific configuration, as follows, for each of the container-managed sign-on
modes:

– None: Implies either component-managed sign-on or no security; specify by
disabling security for container-managed sign-on through Application Server
Control (as described in "Using Declarative Container-Managed Sign-On" on

Note: Reauthentication may be supported in the ra.xml file of a
resource adapter, through a value of true in the
<reauthentication-support> element. In this case, it is possible
for a managed connection to be reused even for a connection request
with a security context that differs from the security context with
which the managed connection was initially created.

Overview of Security and Authentication Setup for EIS Connections

Security Support for Resource Adapters 16-3

page 16-8); reflected as use="none" in <security-config> element of
oc4j-ra.xml.

– Declarative: OC4J configuration through principal mapping entries; specify by
enabling security for container-managed sign-on through Application Server
Control (as described in "Using Declarative Container-Managed Sign-On" on
page 16-8); reflected as use="principal-mapping-entries" with
appropriate subelements in <security-config> element of oc4j-ra.xml.

– Programmatic, using either a principal mapping class or a JAAS login module:

* Principal mapping class: Implement PrincipalMapping interface
directly or extend AbstractPrincipalMapping class (both in package
oracle.j2ee.connector); configure directly through oc4j-ra.xml
(no Application Server Control support) with
use="principal-mapping-interface" and appropriate subelements
in <security-config> element.

* JAAS login module: Use a JAAS login module; configure directly through
oc4j-ra.xml (no Application Server Control support) with
use="jaas-module" and appropriate subelements in
<security-config> element.

Choices for container-managed sign-on in OC4J are also illustrated in Figure 16–1.

Figure 16–1 Flow Chart of Choices for OC4J Container-Managed Sign-On

Developer

Develop JAAS
Login Module

(As Applicable)

Administrator

Configure JAAS
Login Module

Instance

Developer

Extend
AbstractPrincipalMapping

Class

Administrator

Configure Principal
Mapping Instance

Developer

Implement
PrincipalMapping

Interface

Administrator

Configure Principal
Mapping Instance

Administrator

Configure Principal
Mapping Instance

How to
Implement

Principal Mapping
Class?

Implement Interface
Directly

Extend Abstract
Class

Which
OC4J-Managed

Sign-On
Mode?

Declarative Programmatic

Which
Programmatic

OC4J-Managed
Sign-On
Mode?

Principal Mapping
Class

JAAS Login
Module

Overview of Security and Authentication Setup for EIS Connections

16-4 Oracle Containers for J2EE Security Guide

Summary of Security-Related Resource Adapter Configuration Elements
This section discusses the following key resource adapter configuration elements for
security:

■ The oc4j-ra.xml File <security-config> Element

■ The oc4j-connectors.xml File <security-permission> Element

For additional information about the files and elements discussed here, refer to the
Oracle Containers for J2EE Resource Adapter Administrator’s Guide.

The oc4j-ra.xml File <security-config> Element
The oc4j-ra.xml descriptor provides OC4J-specific deployment information (JNDI
path name and connector properties) for resource adapters. For each resource
adapter, oc4j-ra.xml contains one or more <connector-factory> elements
specifying a JNDI name corresponding to a set of configuration parameter values.
OC4J binds each connection into the proper JNDI namespace location as a
ConnectionFactory instance.

A <connector-factory> element can contain an optional <security-config>
element that describes how to supply user names and passwords to the EIS.

The <security-config> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <security-config>
element of the oc4j-ra.xml file:

■ Specify mapping subelements explicitly (in the
<principal-mapping-entries> subelement).

■ Specify the name of a user-created mapping class that either implements
oracle.j2ee.connector.PrincipalMapping or inherits from
oracle.j2ee.AbstractPrincipalMapping (in the
<principal-mapping-interface> subelement).

Authentication issues are discussed in detail in "Authentication in Container-Managed
Sign-On" on page 16-8. This section discusses only the syntax for the
<security-config> element.

A <security-config> element contains one of the following:

■ A <principal-mapping-entries> element, specifying user names and
passwords explicitly

■ A <principal-mapping-interface> element, specifying the name of the
mapping class

■ A <jaas-module> element, specifying the JAAS module to be used for
authentication

The oc4j-connectors.xml File <security-permission> Element
The oc4j-connectors.xml descriptor configures the resource adapters that are
deployed by oc4j-ra.xml. The oc4j-connectors.xml descriptor lists the
standalone resource adapters that are deployed in this OC4J instance, as well as the
resource adapters that are embedded within applications. This descriptor contains, for
each individual connector, a <connector> element that specifies the name and path
name for the connector. Each <connector> element contains a
<security-permission> element that defines the permissions granted to each
resource adapter. The syntax is:

Understanding Component-Managed Sign-On

Security Support for Resource Adapters 16-5

<security-permission enabled="booleanvalue">

This element specifies the permissions to be granted to each resource adapter. Each
<security-permission> element contains a <security-permission-spec>
setting that conforms to the Java 2 Security policy file syntax.

OC4J automatically generates a <security-permission> element in
oc4j-connectors.xml for each <security-permission> element in ra.xml.
Each generated element has the enabled attribute set to "false". Setting the
enabled attribute to "true" grants the named permission.

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 . . .
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary", *’};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Understanding Component-Managed Sign-On
When deploying an application that is to manage its EIS sign-on, use a <res-auth>
setting of Application in the appropriate descriptor file (web.xml for a Web
component or ejb-jar.xml for an EJB component). The application component is
then responsible for providing explicit security information for the sign-on. Here is an
example:

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

No OC4J-specific configuration is required for component-managed sign-on.

Figure 16–2 shows the steps in component-managed sign-on, with the text that follows
providing further detail.

Understanding Container-Managed Sign-On

16-6 Oracle Containers for J2EE Security Guide

Figure 16–2 Component-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context
for the initiating principal.

2. As part of servicing the request, the application component maps the incoming
security context to an outgoing security context for the resource principal, or
hard-codes an outgoing security context, then uses the outgoing security context
to request a connection to the EIS.

3. As part of the connection acquisition, the resource adapter signs on to the EIS
using the outgoing security context provided by the application component.

4. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that performs
component-managed sign-on:

Context initctx = new InitialContext();
// Perform JNDI lookup to obtain a connection factory.
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup
 ("java:com/env/eis/MyEIS");
// Assume a custom class ConnectionSpecImpl, used to store sign-on credentials.
com.myeis.ConnectionSpecImpl connSpec = ...
connSpec.setUserName("EISuser");
connSpec.setPassword("EISpassword");
// Pass sign-on credentials through getConnection() method call.
javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

Understanding Container-Managed Sign-On
When deploying an application that is to depend on OC4J to manage EIS sign-on, use
a <res-auth> setting of Container in the appropriate descriptor file (web.xml for
a Web component or ejb-jar.xml for an EJB component). OC4J is then responsible
for providing security information for the sign-on. Here is an example:

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

OC4J

Get connection
with explicit
outgoing security
context determined
by component

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

3

Interact with EIS under
explicit outgoing security
context

4

Request with
incoming
security context

1

Client

Application
Component

Understanding Container-Managed Sign-On

Security Support for Resource Adapters 16-7

For declarative container-managed sign-on, OC4J uses configuration information that
you specify through Application Server Control, as described in "Using Declarative
Container-Managed Sign-On" on page 16-8. For programmatic container-managed
sign-on, through either a principal mapping class or a JAAS login module, OC4J uses
configuration information that you specify directly through the oc4j-ra.xml file.
When an application tries to obtain a connection, OC4J uses the applicable mechanism
to determine the outgoing security context and to perform authentication.

Figure 16–3 illustrates the steps in container-managed sign-on. These steps are detailed
following the diagram.

Figure 16–3 Container-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context
for the initiating principal.

2. As part of servicing the request, the application component requests a connection
to the EIS.

3. As part of the connection acquisition, the container (the OC4J security context
manager shown in Figure 16–3) maps the incoming security context to the
outgoing security context for the resource principal. This is based on principal
mapping entry elements, a principal mapping class, or a JAAS login module.

4. The resource adapter logs in to the EIS using the outgoing security context
provided by OC4J.

5. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

OC4J

Get connection
without explicit
outgoing security
context

OC4J Security
Context Manager
For Resource
Adapters

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

4

Interact with EIS
under established
outgoing security
context

5

Request with
incoming
security context

1

Client

Application
Component

Map incoming
security context
to outgoing
security context

3

Custom
Authentication
Mechanism

Authentication in Container-Managed Sign-On

16-8 Oracle Containers for J2EE Security Guide

The following example is an excerpt from an application that depends on
container-managed sign-on:

Context initctx = new InitialContext();

// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
// For container-managed sign-on, no security information is passed in the
// getConnection call
javax.resource.cci.Connection cx = cxf.getConnection();

Authentication in Container-Managed Sign-On
When using container-managed sign-on, OC4J must provide a resource principal and
its credentials to the EIS. The principal and credentials can be obtained in one of the
following ways:

■ Configured identity: The resource principal is independent of the initiating or
caller principal and can be configured at deployment time in a deployment
descriptor.

■ Principal mapping: The resource principal is determined by a mapping from the
identity and security attributes of the initiating or caller principal.

■ Caller impersonation: The resource principal acts on behalf of an initiating or
caller principal by delegating the caller identity and credentials to the EIS.

■ Credentials mapping: The resource principal is identical to the initiating or caller
principal, but with its credential mapped from the authentication type that OC4J
uses to the authentication type that the EIS uses. An example would be to map a
public key certificate-based credential associated with a principal to a Kerberos
credential.

OC4J supports all these methods through JAAS pluggable authentication, user-created
authentication classes, or appropriate settings in the oc4j-ra.xml file.

Using Declarative Container-Managed Sign-On
This section describes how to set up authentication through OC4J-specific
configuration of principal mapping entries. We refer to this as "declarative
container-managed sign-on" (as opposed to "programmatic container-managed
sign-on"). You can configure this through Application Server Control.

Specify a default resource user and a set of principal mapping entries. Each principal
mapping entry specifies an initiating principal and a corresponding resource principal.
If the actual initiating principal (OC4J user) during program execution matches one of
the initiating principals you specified, then the corresponding resource principal is
used for sign-on to the EIS. If the actual initiating principal does not match any you
specified, then the default resource user is used for sign-on to the EIS, assuming one is
provided or defined. If no default resource user is specified, then a null subject will
be passed to the EIS. In this case, the EIS has the option of signing on with its own
default.

Use the following steps in the Application Server Control Console:

1. From the Connection Factories tab of the appropriate Resource Adapter page,
choose the connection factory you want to edit.

2. In the Edit Connection Factory page, go to the Security tab.

Using Declarative Container-Managed Sign-On

Security Support for Resource Adapters 16-9

3. Choose to enable security for container-managed sign-on.

4. Specify declarative principal mappings. This is to specify the default resource user.

a. Specify the default resource user name.

b. Specify a password for the default resource user. You can choose to do this
either indirectly or by typing the desired password in clear text. For an
indirect password, specify a key (which might just be the user name, for
example). OC4J uses the key to do a lookup in the security provider (such as
through the system-jazn-data.xml file).

5. Specify initiating user mappings. Specify a mapping for each initiating principal
that you want to map to a resource principal. You can edit an existing row or
change an existing mapping, or add another row to specify a new mapping. For
each mapping:

a. Specify the initiating user, which is the user name of an initiating principal.

b. Specify the resource user, which is the user name for a corresponding resource
principal.

c. Specify the resource password, which is a password for the mapped resource
principal. As with the default principal mapping, you can choose to do this
either indirectly or by typing the password directly.

Table 16–1 summarizes how these settings correspond to XML entities in the
oc4j-ra.xml file. An example follows the table.

Note: To get to the Resource Adapter page for a standalone resource
adapter:

1. From the OC4J Home page, select the Applications tab.

2. View "Standalone Resource Adapters".

3. Select the resource adapter of interest.

To get to the Resource Adapter page for a resource adapter deployed
with an application:

1. From the OC4J Home page, select the Applications tab.

2. View "Applications".

3. Select the desired application.

4. From the resulting Application Home page, under "Modules", select the
resource adapter of interest.

Table 16–1 Properties for Declarative Container-Managed Sign-On

Application Server
Control Property Corresponding XML Entity Description

Enable security for
container-managed
sign-on

<security-config> element
use attribute

Being enabled corresponds to
use="principal-mapping-entries"
(assuming declarative container-managed
sign-on). Being disabled corresponds to
use="none".

Default Resource
User

<res-user> subelement of
<default-mapping>

User name for the default resource
principal.

Using Declarative Container-Managed Sign-On

16-10 Oracle Containers for J2EE Security Guide

<oc4j-connector-factories ... >
 <connector-factory ... >
 ...
 <security-config use="principal-mapping-entries">
 <principal-mapping-entries>
 <default-mapping>
 <res-user>scott</res-user>
 <res-password>->tiger</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>servletuser1</initiating-user>
 <res-user>jmsuser1</res-user>
 <res-password>->jmsuser1</res-password>
 </principal-mapping-entry>
 <principal-mapping-entry>
 <initiating-user>servletuser2</initiating-user>
 <res-user>jmsuser2</res-user>
 <res-password>->jmsuser2</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 </connector-factory>
 ...
</oc4j-connector-factories>

Indirect Password
or Password (for
Declarative
Principal Mappings)

<res-password> subelement
of <default-mapping>

Password for the default resource principal,
specified either indirectly or directly.

Initiating User <initiating-user> subelement
of <principal-mapping-entry>

User name for an initiating principal that
you want to map to a resource principal.
This may be a simple user name, or a realm
name followed by a slash and the user
name.

Resource User <res-user> subelement of
<principal-mapping-entry>

User name for a resource principal that you
want to map to an initiating principal.
Each initiating-user/resource-user pair uses
a separate <principal-mapping-entry>
element.

Resource Password <res-password> subelement
of <principal-mapping-entry>

Password for the resource principal,
specified either indirectly or directly.

Note: At this release, the initiating user’s name can be specified in
the <initiating-user> element either as a simple name (scott)
or as a realm name / user name pair separated by a slash, as in
myRealm/scott. The user name must be a valid OracleAS JAAS
Provider user.

In either case, you must specify a OracleAS JAAS Provider default
realm. If you supply a simple user name, that name must be a member
of the default realm.

Table 16–1 (Cont.) Properties for Declarative Container-Managed Sign-On

Application Server
Control Property Corresponding XML Entity Description

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 16-11

Using Programmatic Container-Managed Sign-On
OC4J can manage programmatic authentication, either through an OC4J-specific
mechanism that uses a principal mapping class, or through a pluggable JAAS
mechanism that uses a JAAS login module. The following sections discuss these
mechanisms plus additional features:

■ Using a Principal Mapping Class

■ Using a JAAS Login Module for an EIS Connection

Using a Principal Mapping Class
One option in OC4J for programmatic container-managed sign-on is to use an Oracle
feature that implements principal mapping. The application must include a principal
mapping class, which is a class that implements the
oracle.j2ee.connector.PrincipalMapping interface. A developer can
accomplish this by implementing the interface directly, or by extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, supplied by
Oracle for convenience. You must configure a principal mapping class through the
oc4j-ra.xml file. The following sections describe aspects of using a principal
mapping class:

■ Understanding the PrincipalMapping Interface APIs

■ Extending the AbstractPrincipalMapping Class

■ Configuring a Principal Mapping Class

Understanding the PrincipalMapping Interface APIs
Table 16–2 describes how OC4J uses methods of the PrincipalMapping interface.

Table 16–2 Method Descriptions for PrincipalMapping Interface

Method Signature Use by OC4J

 void init (java.util.Properties prop) OC4J calls init() to initialize the settings for the
PrincipalMapping instance, passing in property values
specified under the <principal-mapping-interface>
element in oc4j-ra.xml. (See "Configuring a Principal Mapping
Class" on page 16-14.) The implementation class can use the
properties to set either a default user name and password,
information for LDAP connection, or a default mapping.

Using Programmatic Container-Managed Sign-On

16-12 Oracle Containers for J2EE Security Guide

Extending the AbstractPrincipalMapping Class
As a convenience, OC4J provides the abstract class AbstractPrincipalMapping,
which implements the PrincipalMapping interface. This class provides default
implementations of the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
accomplish the following:

■ Retrieve the managed connection factory used for connections to the EIS.

■ Retrieve the authentication mechanisms supported by the resource adapter.

■ Determine whether the resource adapter supports the basic password
authentication mechanism.

■ Determine whether the resource adapter supports the Kerberos version 5
authentication mechanism.

■ Extract a Principal instance from a Subject instance.

When extending the AbstractPrincipalMapping class, developers need only
implement the init() and mapping() methods.

The methods exposed by the AbstractPrincipalMapping class are summarized in
Table 16–3.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

OC4J calls setManagedConnectionFactory() to provide the
PrincipalMapping instance with a
ManagedConnectionFactory instance (for connections to the
EIS), which is used in creating a PasswordCredential instance.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

OC4J calls setAuthenticationMechanisms() to pass the
authentication mechanisms supported by the resource adapter to
the PrincipalMapping instance. The key in the map that is
passed is a string containing the supported mechanism type, such
as "BasicPassword" or "Kerbv5". The value corresponding to
the key is a string containing the fully qualified name of the
corresponding credentials interface, as declared in a
<credential-interface> element in ra.xml, such as for the
PasswordCredential interface. The map can contain multiple
entries if the resource adapter supports multiple authentication
mechanisms.

Subject mapping (Subject initiatingSubject) OC4J calls mapping() to instruct the PrincipalMapping
instance to perform the principal mapping. A Subject instance
for the OC4J user (initiating principal) is passed in, and this
method returns a Subject instance for the resource principal, for
use by the resource adapter for sign-on to the EIS. (The
implementation may return null if the proper resource principal
cannot be determined.)

Table 16–2 (Cont.) Method Descriptions for PrincipalMapping Interface

Method Signature Use by OC4J

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 16-13

Example 16–1 extends the AbstractPrincipalMapping class to provide a principal
mapping from the OC4J user to the EIS default user and password. This assumes a
default user and password are specified under the
<principal-mapping-interface> element in oc4j-ra.xml, as shown in
"Configuring a Principal Mapping Class" on page 16-14.

Example 16–1 Extending AbstractPrincipalMapping

package com.example.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

Table 16–3 Method Descriptions for AbstractPrincipalMapping Class

Method Signature Description

abstract void init (java.util.Properties prop) The subclass must implement the init() method. See Table 16–2
for a description.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

The subclass need not implement the
setManagedConnectionFactory() method. See Table 16–2 for
a description.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

The subclass need not implement the
setAuthenticationMechanisms() method. See Table 16–2 for
a description. Note that the subclass can use the
isBasicPasswordSupported() and isKerbv5Supported()
methods (described later in this table) to determine which
authentication mechanism is supported by the resource adapter.
The subclass can also use the
getAuthenticationMechanisms() method to retrieve the
authentication mechanisms.

abstract Subject mapping (Subject
initiatingSubject)

The subclass must implement the mapping() method. See
Table 16–2 for a description.

ManagedConnectionFactory
getManagedConnectionFactory ()

The getManagedConnectionFactory() utility method returns
the ManagedConnectionFactory instance (for connections to
the EIS), which might be required to create a
PasswordCredential instance.

java.util.Map getAuthenticationMechanisms () The getAuthenticationMechanisms() utility method returns
a map of all authentication mechanisms supported by the resource
adapter. See setManagedConnectionFactory() in Table 16–2
for a description of the map.

boolean isBasicPasswordSupported () The isBasicPasswordSupported() utility method determines
whether the basic password authentication mechanism is
supported by the resource adapter.

boolean isKerbv5Supported () The isKerbv5Supported() utility method determines whether
the Kerbv5 authentication mechanism is supported by the
resource adapter.

Principal getPrincipal (Subject) The getPrincipal() utility method extracts the Principal
instance from the OC4J user Subject instance passed from OC4J.

Note: In cases where there are multiple principals in a subject
(which is not typical), this method would retrieve the first
principal. (There is also a getPrincipals() method, and the
"first" principal is the first element of the collection of principals
that this method would return.)

Using Programmatic Container-Managed Sign-On

16-14 Oracle Containers for J2EE Security Guide

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;
 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }
 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation is for BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;
 // Use the utility method to retrieve the Principal from the incoming Subject
 // (security context), corresponding to the OC4J user.
 // This code is included here only as an example.
 // The principal obtained is not actually used in this example.
 Principal principal = getPrincipal(initiatingSubject);
 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();
 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject, as in "Option A" in the
 // J2EE Connector Architecture specification.
 PasswordCredential cred =
 new PasswordCredential(m_defaultUser, resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

Configuring a Principal Mapping Class
To use a principal mapping class, you must update oc4j-ra.xml to include a
<principal-mapping-interface> element for the class. This is a subelement of
the <security-config> element and must include the following:

■ An <impl-class> subelement to specify the fully qualified name of the principal
mapping class.

■ Property settings appropriate to the principal mapping class implementation. For
the class shown in the preceding section, there would be a <property>
subelement with name="user" and a value setting to specify the default user
name for EIS sign-on, and a <property> subelement with name="password"
and a value setting to specify the password for the default user, as shown in the
following example.

<oc4j-connector-factories>
 <connector-factory name="..." location="...">
 ...
 <security-config use="principal-mapping-interface">
 <principal-mapping-interface>

Using Programmatic Container-Managed Sign-On

Security Support for Resource Adapters 16-15

 <impl-class>com.example.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...
 </connector-factory>
</oc4j-connector-factories>

Using a JAAS Login Module for an EIS Connection
Alternatively, you can manage sign-on to an EIS programmatically through JAAS.

OC4J furnishes a JAAS pluggable authentication framework that conforms to
Appendix C in the Connector Architecture 1.0 specification. With this framework, an
application server and its underlying authentication services remain independent from
each other, and new authentication services can be plugged in without requiring
modifications to the application server.

Authentication services can obtain resource principals and credentials using any of the
following modules:

■ Principal mapping JAAS module

■ Credential mapping JAAS module

■ Kerberos JAAS module (for caller impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendor, or the
resource adapter vendor. Login modules implement the
javax.security.auth.spi.LoginModule interface.

OC4J provides initiating user subjects to login modules by passing an instance of the
javax.security.auth.Subject class containing any public certificates and an
instance of oracle.j2ee.connector.InitiatingPrincipal representing the
OC4J user. OC4J can pass a null subject if there is no authenticated user (that is, an
anonymous user). The login method of the JAAS login module must, based on the
initiating user, find the corresponding resource principal and create new
PasswordCredential or GenericCredential instances for the resource principal.
The resource principal and credential objects are then added to the initiating Subject
instance in the commit() method. The resource credential is passed to the
createManagedConnection() method in the
javax.resource.spi.ManagedConnectionFactory implementation that is
provided by the resource adapter. If a null Subject instance is passed, the JAAS login
module is responsible for creating a new Subject instance containing the resource
principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes
The oracle.j2ee.connector.InitiatingPrincipal class represents OC4J
users to a JAAS login module. OC4J creates instances of InitiatingPrincipal and

Note: You can use password indirection to hide the password. For a
full discussion of password indirection, see "Guidelines for Password
Management" on page 5-1.

See Also:

■ Chapter 8, "Login Modules"

Using Programmatic Container-Managed Sign-On

16-16 Oracle Containers for J2EE Security Guide

incorporates them into the subject that is passed to the initialize() method of a
login module. The InitiatingPrincipal class implements the
java.security.Principal interface and adds the method getGroups().

The oracle.j2ee.connector.InitiatingGroup class also implements the
Principal interface, but represents OC4J roles. OC4J creates an
InitiatingPrincipal instance and incorporates it into the subject that is passed
either to the initialize() method of a login module, or to the mapping() method
of a principal mapping class. The InitiatingPrincipal class also has a
getGroups() method.

The getGroups() method returns a set (java.util.Set instance) of
InitiatingGroup objects, representing the OC4J roles or OracleAS JAAS Provider
roles for this OC4J user. The role membership is defined in an OC4J-specific descriptor
file, typically system-jazn-data.xml.

Login modules can use getGroups() to provide mappings between OC4J roles and
EIS users. The Principal interface methods support mappings between OC4J users
and EIS users. Login modules are not required to refer to the InitiatingPrincipal
and InitiatingGroup classes if they do not provide mappings between OC4J roles
and EIS users.

JAAS and the <connector-factory> Element
Each <connector-factory> element in oc4j-ra.xml can specify a different JAAS
login module. Specify a name for the connector factory configuration in the
<jaas-module> element. Here is an example of a <connector-factory> element
in oc4j-ra.xml that uses a JAAS login module for container-managed sign-on:

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521/myservice" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

With JAAS, you must specify which login module to use for a particular application,
and in what order to invoke the login modules. JAAS uses values specified in
<jaas-application-name> elements to look up login modules.

Tips and Troubleshooting for OC4J Security A-1

A
Tips and Troubleshooting for OC4J Security

This appendix discusses best practices for the OC4J security, as well as issues to be
aware of and related hints:

■ Best Practices for OC4J Security

■ OC4J Security Issues and Hints

■ Logging

Best Practices for OC4J Security
This section describes best practices in the following areas:

■ HTTPS Best Practices

■ Overall Security Best Practices

■ JAAS Best Practices

HTTPS Best Practices
Oracle HTTP Server has several features that provide security to an application
without requiring you to modify the application. You should evaluate and leverage
these features before coding similar features yourself. HTTP security features include:

■ Authentication: Oracle HTTP Server can authenticate users and pass the
authenticated user ID to an application in a standard manner (REMOTE_USER). It
also supports single sign-on, thus reusing existing login mechanisms.

■ Authorization: Oracle HTTP Server has directives that can allow access to your
application only if the end user is authenticated and authorized. Again, no code
change is required.

■ Encryption: Oracle HTTP Server can provide transparent SSL communication to
end customers without any code change on the application.

Other suggestions for securing HTTPS:

■ Configure Oracle Application Server to fail attempts to use weak encryption. You can
configure Oracle Application Server to use only specified encryption ciphers for
HTTPS connections. For example, your application could reject connections from
non-128-bit client-side SSL libraries. This ability is especially useful for banks and
other financial institutions because it provides server-side control of the
encryption strength for each connection.

Best Practices for OC4J Security

A-2 Oracle Containers for J2EE Security Guide

■ Use HTTPS to HTTP appliances for accelerating HTTP over SSL. Use HTTPS
everywhere you need to. However, the huge performance overhead of HTTPS
forces a trade-off in some situations.

These appliances provide much better solutions than adding mathematics or
cryptography cards to UNIX, Windows, or Linux systems.

■ Ensure that sequential HTTPS transfers are requested through the same Web server. Most
CPU time in initiating SSL sessions is spent in the key exchange logic, where the
bulk encryption key is exchanged. If the accesses are routed to the same Web
server, caching the bulk encryption will significantly reduce CPU overhead on
subsequent accesses.

■ Keep secure pages on separate servers from pages not requiring security. Although it may
be easier to place all pages for an application on one HTTPS server, this strategy
has enormous performance costs. Reserve your HTTPS server for pages needing
SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files to be displayed on
the same screen, it is probably not worth the effort to segregate secure from
unsecured static content. The SSL key exchange (a major consumer of CPU cycles)
is likely to be called exactly once in any case, and the overhead of bulk encryption
is not that high.

Overall Security Best Practices
The following general security practices are recommended.

■ When assigning privileges to modules, use the lowest levels that are adequate to perform
the module functions. Using low-level privileges provides "fault containment"; if
security is compromised, it is contained within a small area of the network and
cannot invade the entire intranet.

■ Tune the SSLSessionCacheTimeout directive if you are using SSL. Oracle HTTP Server
caches a client's SSL session information by default. With session caching, only the
first connection to the server incurs high latency.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of
an SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessionCacheTimeout directive in the httpd.conf file to meet
your application needs.

JAAS Best Practices
The following JAAS practices are recommended:

■ Migrate your user management from principals.xml to the OracleAS JAAS Provider. In
earlier releases of Oracle Application Server, the J2EE application server
component stored all user information in a file called principals.xml
(including storing passwords in cleartext). The OracleAS JAAS Provider uses a
similar security model as a default, without storing passwords in cleartext. The
OracleAS JAAS Provider also offers tight integration with Oracle Application
Server infrastructure (including OracleAS Single Sign-On and Oracle Internet
Directory) out of the box.

■ Avoid writing custom UserManager classes. The OC4J container continues to supply
several methods and levels of extending security providers. Although you can still
implement the UserManager interface (deprecated in the 10.1.3 release),
leveraging the rich functionality provided by the OracleAS JAAS Provider,
OracleAS Single Sign-On, and Oracle Internet Directory gives you more time to

OC4J Security Issues and Hints

Tips and Troubleshooting for OC4J Security A-3

focus on business logic instead of infrastructure code. Both OracleAS Single
Sign-On and Oracle Internet Directory provide APIs to integrate with external
authentication servers and directories, respectively. If you require custom
functionality, you can use a custom login module instead of a custom
UserManager implementation.

■ Use Oracle Internet Directory as the central repository for the OracleAS JAAS Provider in
production environments. Although the OracleAS JAAS Provider supports a
file-based repository, it should be configured to use Oracle Identity Management,
which uses Oracle Internet Directory as its repository, for most production
environments. Oracle Internet Directory provides standard LDAP features for
modeling administrative meta data and is built on the Oracle database platform,
inheriting all the database properties of scalability, reliability, manageability, and
performance.

■ Use OracleAS Single Sign-On as the authentication mechanism with the OracleAS JAAS
Provider. Various authentication options are available; however, we strongly
recommend leveraging the OracleAS Single Sign-On server whenever possible
because:

– It is the default mechanism for most Oracle Application Server components,
such as Portal, Forms, Reports, and Wireless.

– It is easy to set up in a declarative fashion and does not require any custom
programming.

– It provides seamless PKI integration.

■ Use the OracleAS JAAS Provider declarative features to reduce programming. Because
most of the features in the OracleAS JAAS Provider are controlled declaratively,
particularly in the area of authentication, developers can postpone setup until
deployment time. This not only reduces the programming tasks for integrating a
JAAS-based application, it enables the deployer to use environment-specific
security models for that application.

■ Use the fine-grained access control offered by the OracleAS JAAS Provider and the Java
permission model. Unlike the J2EE authorization model as it exists today, the
OracleAS JAAS Provider integrated with OC4J allows any protected resource to be
modeled using Java permissions. The Java permission model (and associated
Permission class) is extensible and allows a flexible way to define access control.

■ Take advantage of the authorization features of the OracleAS JAAS Provider. In addition
to the authorization functionality defined in the JAAS 1.0 specification, the
OracleAS JAAS Provider supports:

– Hierarchical, role-based access control

– Ability to partition security policy by subscriber (that is, each user
community)

These extensions provide a more scalable and manageable framework for security
policies covering a large user population.

OC4J Security Issues and Hints
Be aware of the following issues and how to handle them:

■ File jazn.xml Not Found

■ Issues for Custom Login Modules

■ Issues for Oracle Identity Management

OC4J Security Issues and Hints

A-4 Oracle Containers for J2EE Security Guide

■ Failure to Specify OracleAS JAAS Provider as the JAAS Provider

■ Realm Issues

File jazn.xml Not Found
Without a valid jazn.xml file, the OracleAS JAAS Provider cannot begin running. If
no jazn.xml file is found, the following error message is generated.

"JAZN has not been properly configured"

Issues for Custom Login Modules
When implementing a custom login module, you should be aware of the following
issues:

■ Subject-Based Authorization

■ J2EE Security Integration

Subject-Based Authorization
When an application uses a custom login module, the subject (and the principals it
contains) are used as the sole basis for authorization, including the evaluation of J2EE
security constraints. To ensure that all relevant principals are taken into consideration
during authorization, the login module should add the relevant principals (including
any roles that the authenticated user belongs to) to the subject during the commit
phase of the authentication process.

J2EE Security Integration
The custom login module framework supports the J2EE declarative security model.
That is, the J2EE security constraints declared in application deployment descriptors,
such as web.xml and ejb-jar.xml, are enforced using subject-based authorization.

We encourage J2EE developers to take advantage of the J2EE security model whenever
possible, rather than writing their own security implementation; this ensures forward
compatibility with future releases.

Issues for Oracle Identity Management
Important issues when troubleshooting the Oracle Identity Management LDAP-based
provider include:

■ Checking Configuration (JAZN-LDAP)

■ Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory

■ Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect

Checking Configuration (JAZN-LDAP)
To verify that your usage of Oracle Identity Management has been configured
properly, do the following:

1. Use Application Server Control to verify that OC4J is associated with an Oracle
Internet Directory instance and that the security provider is specified as Oracle
Identity Management.

See Also:

■ "The jazn.xml File" on page 3-9

OC4J Security Issues and Hints

Tips and Troubleshooting for OC4J Security A-5

a. Go to the Security Provider page, as described in "Navigating to the Security
Provider Page for Your Application" on page 5-17.

b. In the Security Provider page, confirm that the security provider type is listed
as Oracle Identity Management Security Provider, and that the host and port
listed for Oracle Internet Directory under the security provider attributes are
correct.

2. Issue the Admintool -listrealms command to verify that data can be retrieved
from Oracle Internet Directory.

% java -jar jazn.jar -listrealms

3. If the Admintool responds with the message "Communication Error", then it is
likely that Oracle Internet Directory is down.

4. If the Admintool responds with the message "Invalid Credentials", then the
LDAP users and credentials are incorrectly configured.

Using ldapsearch to Retrieve Realm Names from Oracle Internet Directory
In case the OracleAS JAAS Provider Admintool is unavailable, you can use LDAP
search commands to retrieve a realm name from Oracle Internet Directory, as follows.
(If the Admintool is available, use its -listrealms command instead, as shown in
the preceding section.)

1. Start with a command such as the following, specifying the port, host, user DN,
and password. This will return values for
orclSubscriberNicknameAttribute and orclSubscriberSearchbase.

% ldapsearch -p port -h host -D dn_of_user -w password \
 -b "cn=common, cn=products,cn=oraclecontext" -s base "objectclass=*" \
 orclSubscriberNicknameAttribute orclSubscriberSearchbase

2. Next, use the values of orclSubscriberNicknameAttribute and
orclSubscriberSearchbase to get the realm name:

% ldapsearch -p port -h host -D dn_of_user -w password \
 -b "orclSubscriberSearchbase" \
 -s sub "orclSubscriberNicknameAttribute=*" \
 orclSubscriberNicknameAttribute

This will return the Oracle Internet Directory realm, which is useful if you use multiple
identity management realms in Oracle Internet Directory and would like to configure
a specific nondefault realm for J2EE applications.

Avoiding OC4J Restart for Oracle Internet Directory Changes to Take Effect
When doing administration to Oracle Internet Directory, such as adding grantees,
permissions, or groups, you should disable LDAP caching. If caching is left enabled,
your changes will not take effect until you stop and restart OC4J. See "Configuring
LDAP Caching Properties" on page 6-20 for how to disable caching.

Note: The Oracle Internet Directory location and port are reflected in
the bootstrap jazn.xml file.

See Also:

■ Oracle Identity Management Guide to Delegated Administration

Logging

A-6 Oracle Containers for J2EE Security Guide

Failure to Specify OracleAS JAAS Provider as the JAAS Provider
If you receive an exception and stack trace similar to:

Exception in thread "main" java.lang.SecurityException: Unable to locate a login
configuration
at com.sun.security.auth.login.ConfigFile.<init>(ConfigFile.java:97)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance

You have probably failed to specify the OracleAS JAAS Provider as the JAAS provider.

Realm Issues
This section discusses the following troubleshooting issues related to the use of realms:

■ Realm Names Omitted from User Names

■ Specifying Default Realm to Solve Authentication Failure

Realm Names Omitted from User Names
The OC4J property jaas.username.simple determines whether realm names are
prefixed in user names for returned principals from key methods such as
getUserPrincipal() or getRemoteUser() for servlets, or
getCallerPrincipal() for EJBs. With the default "true" setting, realm names are
not prefixed.

If you configure and use custom realms, you must explicitly set this property to
"false" to ensure that OracleAS JAAS Provider authentication and authorization
work properly. See "Omitting the Realm Name When Retrieving an Authenticated
Principal" on page 5-6 for details.

Specifying Default Realm to Solve Authentication Failure
If authentication fails but your configuration seems correct, confirm whether you need
to specify your default realm. You must configure a default realm (in the <jazn>
element of the orion-application.xml file) if you use a default realm other than
what is specified in the instance-level jazn.xml file.

This can apply to either the file-based provider or LDAP-based provider.

Logging
This section discusses logging features to aid in debugging:

■ Using Oracle Diagnostic Logging with OracleAS JAAS Provider

■ Using Standard JDK Logging with the OracleAS JAAS Provider Admintool

See Also:

■ "Specifying an Alternate JAAS Policy Provider" on page 4-1

Logging

Tips and Troubleshooting for OC4J Security A-7

Using Oracle Diagnostic Logging with OracleAS JAAS Provider
OC4J and OracleAS JAAS Provider support the Oracle Diagnostic Logging framework,
or ODL, which provides plug-in components that complement the standard Java
logging framework to automatically integrate log data with Oracle log analysis tools.

As with OC4J in general, change the logging level in
ORACLE_HOME/j2ee/home/config/j2ee-logging.xml from the default
NOTIFICATION:1 to some appropriate error or debug level. Two levels often used
with OracleAS JAAS Provider are FINE and FINER, which correspond to TRACE:1
and TRACE:16, respectively.

OracleAS JAAS Provider logging entries are in
ORACLE_HOME/j2ee/instance_name/logs/oc4j/log.xml, where relevant
entries are the ones with a COMPONENT_ID of j2ee and a MODULE_ID of security,
as in the following sample message:

<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2005-12-14T11:41:08.974-08:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>j2ee</COMPONENT_ID>
 <MSG_TYPE TYPE="TRACE"></MSG_TYPE>
 <MSG_LEVEL>16</MSG_LEVEL>
 <HOST_ID>www.example.com</HOST_ID>
 <HOST_NWADDR>555.55.5.555</HOST_NWADDR>
 <MODULE_ID>security</MODULE_ID>
 <THREAD_ID>10</THREAD_ID>
 <USER_ID>nmuralid</USER_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>555.55.5.555:30508:1134589268971:0</UNIQUE_ID><SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>location=system-jazn-data.xml</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>

Alternatively, if you want only OracleAS JAAS Provider messages logged in the first
place, you can add configuration to j2ee-logging.xml to set the logger name to
oracle.j2ee.security, as in the following example:

<logger name="oracle.j2ee.security" level="NOTIFICATION:32"
 useParentHandlers="false">
 <handler name="oc4j-handler"/>
 <handler name="console-handler"/>
</logger>

See Also:

■ Oracle Containers for J2EE Developer’s Guide for an introduction and
overview of standard Java logging features

■ Oracle Containers for J2EE Configuration and Administration Guide
for information for about logging configuration and logging levels

■ Javadoc for the java.util.logging package:

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logg
ing/package-summary.html

Logging

A-8 Oracle Containers for J2EE Security Guide

Using Standard JDK Logging with the OracleAS JAAS Provider Admintool
OracleAS JAAS Provider supports standard JDK logging. To run logging with the
OracleAS JAAS Provider Admintool, change the logging level from INFO to FINE,
FINER, or FINEST. You can accomplish this either by editing the
JAVA_HOME/jre/lib/logging.properties file, or by providing an updated
copy of the file on the Admintool command line. The following command executes the
Admintool and provides a properties file to set an appropriate logging level. Messages
will be logged according to the configured log handler.

% java -jar jazn.jar -Djava.util.logging.config.file=modified_logging_properties

Note: The jazn.debug.log.enable flag, used in previous
releases, is no longer supported.

OracleAS JAAS Provider Samples B-1

B
OracleAS JAAS Provider Samples

This appendix shows various versions of a sample servlet, first using standard J2EE
security APIs, then adding code to manage policy by granting permissions to a user,
and finally adding code to check permissions of a user (JAAS mode and JAAS
authorization):

■ Security Configuration for Sample Servlet

■ Sample Servlet: Invoking J2EE Security APIs

■ Sample Servlet: Granting Permissions

■ Sample Servlet: Checking Permissions

Security Configuration for Sample Servlet
The various versions of the sample servlet in this appendix use the file-based provider
and depend on the following configurations:

■ In system-jazn-data.xml, a user developer belonging to a role
developers

■ In web.xml, a role sr_developer and a security constraint for the servlet

■ In orion-application.xml, a role mapping between developers and
sr_developer

These configurations are shown in the subsections that follow.

Configuration in system-jazn-data.xml
The system-jazn-data.xml file defines the developer user and the developers
role to which the user belongs, in the jazn.com realm.

The recommended way to define users and roles for the file-based provider is through
Application Server Control. You can also use the OracleAS JAAS Provider Admintool.

<jazn-data>
 ...
 <jazn-realm>
 <realm>
 <name>jazn.com</name>

See Also:

■ The following Web site for OC4J "how-to" examples:

http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html

Security Configuration for Sample Servlet

B-2 Oracle Containers for J2EE Security Guide

 <users>
 ...
 <user>
 <name>developer</name>
 <display-name>developer</display-name>
 <credentials>{903}CafGQDjOlPMyMiwJEwUfyjhGLAbQkzhR</credentials>
 </user>
 ...
 </users>

 <roles>
 ...
 <role>
 <name>developers</name>
 <display-name>Developer Role</display-name>
 <members>
 <member>
 <type>user</type>
 <name>developer</name>
 </member>
 </members>
 </role>
 ...
 </roles>
 </realm>
 </jazn-realm>
 ...
</jazn-data>

Configuration in web.xml
The web.xml file sets up the security constraint and defines the role sr_developer.
There is also a setting for the authentication method. (Note that it is possible to
override the authentication method in web.xml with settings in the
<jazn-web-app> element in orion-application.xml.)

<web-app>
 ...
 <security-role>
 <role-name>sr_developer</role-name>
 </security-role>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>CallerInfoA</web-resource-name>
 <url-pattern>/callerInfoA</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developer</role-name>
 </auth-constraint>
 </security-constraint>
 ...
 <!-- authentication -->
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 ...
</web-app>

Sample Servlet: Invoking J2EE Security APIs

OracleAS JAAS Provider Samples B-3

Configuration in orion-application.xml
The orion-application.xml file specifies the file-based provider, and maps the
security role sr_developer to the role developers that is defined in the identity
store (in this case, system-jazn-data.xml).

Specify the security provider and security role mappings through Application Server
Control.

<orion-application>
 ...
 <security-role-mapping name="sr_developer">
 <group name="developers" />
 </security-role-mapping>
 ...
 <!-- use JAZN-XML by default -->
 <jazn provider="XML" />
 ...
</orion-application>

Sample Servlet: Invoking J2EE Security APIs
This first version of the servlet uses standard J2EE security APIs to get a user,
determine if the user is in a role, and get a user principal.

import java.io.IOException;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CallerInfo extends HttpServlet {

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("sr_developer") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");
 out.println("</BODY>");
 out.println("</HTML>");
 }

Sample Servlet: Granting Permissions

B-4 Oracle Containers for J2EE Security Guide

Sample Servlet: Granting Permissions
This version of the servlet adds code to grant permissions to a user. Alternatively, you
could use the OracleAS JAAS Provider Admintool to grant permissions.

import java.io.*;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;
import oracle.security.jazn.oc4j.*;
import oracle.security.jazn.spi.Grantee;
import oracle.security.jazn.Policy.*;
import javax.security.auth.*;
import java.security.*;

public class CallerInfo extends HttpServlet {

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 //Grant Permissions to a user developer

 //get JAZNConfiguration related info
 JAZNConfig jc = JAZNConfig.getJAZNConfig();

 //create a Grantee for "developer"
 RealmManager realmmgr = jc.getRealmManager();
 Realm realm = realmMgr.getRealm("jazn.com");
 UserManager userMgr = realm.getUserManager();
 final RealmUser user = userMgr.getUser("developer");

 //grant scott file permission
 JAZNPolicy policy = jc.getPolicy();
 if (policy != null) {
 Grantee gtee = new Grantee((Principal) user);
 java.io.FilePermission fileperm = new java.io.FilePermission
 ("foo.txt","read");

Sample Servlet: Checking Permissions

OracleAS JAAS Provider Samples B-5

 policy.grant(gtee, fileperm);
 }

out.println("</BODY>");
 out.println("</HTML>");
}

Sample Servlet: Checking Permissions
This version of the servlet adds configuration and code for JAAS mode and JAAS
authorization, to check permissions.

JAAS mode controls whether a J2EE application is executed in a Subject.doAs()
block or a Subject.doAsPrivileged() block. Once this mode is set, the
authenticated subject is associated with the appropriate access control context. After
this, authorization checks may be incorporated into applications using standard JAAS
and J2SE APIs.

JAAS Mode Configuration in orion-application.xml
This example expands the previously shown orion-application.xml
configuration to also set the JAAS mode to "doasprivileged". With this setting,
OC4J will execute the servlet inside a Subject.doAsPrivileged() block.

<orion-application>
 ...
 <security-role-mapping name="sr_developer">
 <group name="developers" />
 </security-role-mapping>
 ...
 <!-- use JAZN-XML by default -->
 <jazn provider="XML" jaas-mode="doasprivileged" />
 ...
</orion-application>

Servlet Code for Authorization
Here is the servlet code, checking whether the user has permission to read foo.txt.

import java.io.*;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;
import oracle.security.jazn.oc4j.*;
import oracle.security.jazn.spi.Grantee;
import oracle.security.jazn.Policy.*;

import javax.security.auth.*;
import java.security.*;

public class CallerInfo extends HttpServlet {

See Also:

■ "Introduction to JAAS Mode" on page 2-8

Sample Servlet: Checking Permissions

B-6 Oracle Containers for J2EE Security Guide

 public CallerInfo() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println
 ("request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println
 ("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 //create Permission
 FilePermission perm = new FilePermission("/home/developer/foo.txt","read");
 {
 //get current AccessControlContext
 AccessControlContext acc = AccessController.getContext();

 javax.security.auth.Policy currPolicy =
 javax.security.auth.Policy.getPolicy();

 // Query policy now
 out.println("Policy permissions for this subject are " +
 currPolicy.getPermissions(Subject.getSubject(acc),null));

 //Check Permissions
 out.println("Policy.impiles permission: "+ perm +" ? " +
 currPolicy.getPermissions(Subject.getSubject(acc),null).implies(perm));
 }
 out.println("</BODY>");
 out.println("</HTML>");
 }
}

OracleAS JAAS Provider Admintool Reference C-1

C
OracleAS JAAS Provider Admintool

Reference

This chapter provides reference information for the OracleAS JAAS Provider
Admintool. It is divided into the following sections:

■ Authentication to Run the Admintool

■ Summary of Admintool Command-Line Syntax and Options

■ Admintool Shell

■ Admintool Administrative Functions

Authentication to Run the Admintool
Run the Admintool by executing the OracleAS JAAS Provider jazn.jar file using the
java -jar option.

When you run the Admintool, you must authenticate yourself, optionally using the
-user and -password command-line options. You can authenticate yourself in one
of two ways:

■ The recommended way is to not supply -user and -password settings on the
command line; Admintool will then prompt you for a user name and password:

% java -jar jazn.jar ...
AbstractLoginModule username: username
AbstractLoginModule password: password
...

In this mode, any options you specify are executed only after you have been
prompted for and have supplied the user name and password. For example:

% java -jar jazn.jar -listrealms

When an example such as this is presented in this appendix, what is left unsaid is
that you will be prompted for the user name and password before the command is
executed (in this example, before the realms are listed).

■ Alternatively, you can use the -user and -password options on the command
line:

% java -jar jazn.jar -user username -password password...

See Also:

■ "Overview of the OracleAS JAAS Provider Admintool" on
page 3-3

Summary of Admintool Command-Line Syntax and Options

C-2 Oracle Containers for J2EE Security Guide

This is generally undesirable, because specifying passwords on command lines
creates security vulnerabilities.

In this mode, a command such as the following would immediately list the realms:

% java -jar jazn.jar -user myname -password mypassword -listrealms

In either of these modes, once the options you specify on the command line have been
executed, you are returned to your system prompt. To execute any further Admintool
commands, you will have to rerun the tool and be authenticated again.

To run multiple commands without reauthenticating, you can use the Admintool shell
mode, where you can repeatedly run commands from the Admintool prompt until you
exit the shell, as described in "Admintool Shell" on page C-4.

Summary of Admintool Command-Line Syntax and Options
The Admintool provides a number of command options for administrative functions.
The general syntax is as follows:

% java -jar jazn.jar [-user username -password password] [option1 option2 ...]

This section lists all the Admintool command options, with cross-references for further
information. You can also list all the options and their syntax with the -help option:

% java -jar jazn.jar -help

Command line options are summarized below:

■ Administrative option

-activateadmin

■ Authentication options

-user username -password password

■ Login module options

Note: If you specify the -user and -password options on the
command line, they must be positioned before all other
command-line options.

Important:

■ If you use the -user and -password options (which is not
recommended, as discussed in the preceding section), you must
specify them before all other options on the command line.

■ Restart OC4J for Admintool changes to take effect.

See Also:

■ "Administrative Operations" on page C-10

See Also:

■ "Authentication to Run the Admintool" on page C-1

Summary of Admintool Command-Line Syntax and Options

OracleAS JAAS Provider Admintool Reference C-3

-addloginmodule application_name login_module_name control_flag [options]
-listloginmodules [application_name] [login_module_class]
-remloginmodule application_name login_module_name

■ Migration option

-convert filename realm

■ Password management options (file-based provider only)

-checkpasswd realm user [-pw password]
-setpasswd realm user old_pwd new_pwd

■ Policy options

-grantperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-listperms {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-revokeperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]

■ Realm options

-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype }
-addrole realm role
-adduser realm username password
-grantrole role realm {user | -role to_role}
-listrealms realm
-listroles [realm [user | -role role]]
-listusers [realm [-role role | -perm permission]]
-remrealm realm
-remrole realm role
-remuser realm user
-revokerole role realm {user|-role from_role}

See Also:

■ "Adding and Removing Login Modules" on page C-8

■ "Listing Login Modules" on page C-12

See Also:

■ "Converting from the principals.xml File to JAAS" on page C-14

See Also:

■ "Checking Passwords (File-Based Provider)" on page C-10

■ "Setting Passwords (File-Based Provider)" on page C-14

See Also:

■ "Granting and Revoking Permissions" on page C-11

■ "Listing Permissions" on page C-12

Admintool Shell

C-4 Oracle Containers for J2EE Security Guide

■ Shell option

-shell

Admintool Shell
The Admintool shell provides interactive administration of JAAS principals and
policies through a UNIX-like interface. The -shell option starts the shell. For
example (entering oc4jadmin user and password when prompted):

% java -jar jazn.jar -shell
AbstractLoginModule username: oc4jadmin
AbstractLoginModule password: password
JAZN>

The shell responds with the JAZN> prompt. To leave the interface shell, use the exit
shell command. To see a list of shell commands, use the help command. For
information about a particular shell command, the shell supports the man command:

JAZN> man command

The rest of this discussion covers the following topics:

■ Shell Support for Admintool Command-Line Options

■ Summary of Admintool Special Shell Commands

■ Admintool Shell Directory Structure

Shell Support for Admintool Command-Line Options
The Admintool shell supports the same options as the Admintool command line, but
you do not have to include the hyphen ("-") in front of the option name. (If you do, it
will be ignored.) Once you have launched the Admintool shell, a shell command line
such as the following:

JAZN> option1 option2 ... optionN

See Also:

■ "Adding and Removing Realms" on page C-9

■ "Adding and Removing Roles (File-Based Provider)" on page C-9

■ "Adding and Removing Users (File-Based Provider)" on page C-9

■ "Granting and Revoking Roles" on page C-12

■ "Listing Realms" on page C-13

■ "Listing Roles" on page C-13

■ "Listing Users" on page C-13

See Also:

■ The next section, "Admintool Shell"

Note: Multiple-word arguments must be enclosed in quotation
marks. For example:

% java -jar jazn.jar -user "Oracle DBA" ...

Admintool Shell

OracleAS JAAS Provider Admintool Reference C-5

Is equivalent to an Admintool command line (from your system prompt) such as the
following:

% java -jar jazn.jar -option1 -option2 ... -optionN

Admintool Shell Directory Structure
The Admintool shell is an interactive interface to the OracleAS JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent properties of the parent node. Figure C–1 illustrates the node structure.

Figure C–1 Admintool Shell Directory Structure

In this structure, the user and role nodes are linked together. This means that the
roles link under user is the same link as the roles link under realm. In Unix
terms, the role at numeral 1 in the diagram is a symbolic link to role at numeral 2 in
the diagram.

Figure C–2 shows nodes of a realm abcRealm.

Note: In this release, the policy directory is always empty.

Admintool Shell

C-6 Oracle Containers for J2EE Security Guide

Figure C–2 Sample Shell Directory Structure

Summary of Admintool Special Shell Commands
This section summarizes the following Admintool shell commands:

■ add, mkdir, and mk: Creating Provider Data

■ cd: Navigating Provider Data

■ clear: Clearing the Screen

■ exit: Exiting the Admintool Shell

■ help: Listing Admintool Shell Commands

■ ls: Listing Data

■ man: Viewing Admintool man Pages

■ pwd: Displaying the Working Directory

■ rm: Removing Provider Data

■ set: Updating Values

All the Admintool commands support relative and absolute paths.

add, mkdir, and mk: Creating Provider Data
add directory_name [other_parameter]
mkdir directory_name [other_parameter]
mk directory_name [other_parameter]

The add, mkdir, and mk commands are synonyms: they create a subdirectory or node
in the current directory. For example, if the current directory is the root, then mk
creates a realm. If the current directory is /realm/users, then mk creates a user. The
effect of add depends upon the current directory. Some commands require parameters
in addition to the name.

Admintool Shell

OracleAS JAAS Provider Admintool Reference C-7

cd: Navigating Provider Data
cd path

The cd command enables users to navigate the directory tree. Relative and absolute
path names are supported.

The path "/" returns the user to the root node.

An error message is displayed if the specified directory does not exist.

clear: Clearing the Screen
clear

The clear command clears the terminal screen by displaying 80 blank lines.

exit: Exiting the Admintool Shell
exit

The exit command exits the Admintool shell.

help: Listing Admintool Shell Commands
help

The help command displays a list of all valid shell commands.

ls: Listing Data
ls [path]

The ls command lists the contents of the current directory or node. For example, if the
current directory is the root, then ls lists all realms. If the current directory is
/realm/users, then ls lists all users in the realm. The results of the listing depends
on the current directory. The ls command can operate with the * wildcard.

man: Viewing Admintool man Pages
man command_option
man shell_command

The man command displays detailed usage information for the specified shell
command or Admintool command option. Where information presented by the man
page and this document conflict, this document contains the correct usage for the
command.

pwd: Displaying the Working Directory
pwd

The pwd command displays the current location of the user in the directory tree.
Undefined values are left blank in this listing.

rm: Removing Provider Data
rm directory_name

The rm command removes the directory or node in the current directory. For example,
if the current directory is the root, then rm removes the specified realm. If the current
directory is /realm/users, it removes the specified user. The effect of rm depends on

Admintool Administrative Functions

C-8 Oracle Containers for J2EE Security Guide

the current directory. An error message is displayed if the specified directory does not
exist.

The rm command accepts the * wildcard.

set: Updating Values
set name=value

The set command updates the value of the specified name. For example, use this
command to update the login module class, or a login module control flag, or a login
module class option, depending on the working directory.

Admintool Administrative Functions
This section documents administrative features of the Admintool. The following topics
are covered:

■ Adding and Removing Login Modules

■ Adding and Removing Realms

■ Adding and Removing Roles (File-Based Provider)

■ Adding and Removing Users (File-Based Provider)

■ Checking Passwords (File-Based Provider)

■ Administrative Operations

■ Granting and Revoking Permissions

■ Granting and Revoking Roles

■ Listing Login Modules

■ Listing Permissions

■ Listing Realms

■ Listing Roles

■ Listing Users

■ Converting from the principals.xml File to JAAS

■ Setting Passwords (File-Based Provider)

Adding and Removing Login Modules
-addloginmodule application_name login_module_name
 control_flag [optionname=value ...]
-remloginmodule application_name login_module_name

The -addloginmodule option configures a new login module for the named
application.

The control_flag must be one of required, requisite, sufficient or
optional, as specified in the standard
javax.security.auth.login.Configuration class. The meanings of these flag
values are summarized in "Editing a Custom Login Module Configuration during
Deployment" on page 8-8.

If the login module accepts its own options, specify each option and its value as an
optionname=value pair. Each login module has its own individual set of options.

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-9

For example, to add MyLoginModule to the application myapp as a required module
with debug set to true:

% java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

To delete MyLoginModule from myapp:

% java -jar jazn.jar -remloginmodule myapp MyLoginModule

Admintool shell:

JAZN> addloginmodule myapp MyLoginModule required debug=true
JAZN> remloginmodule myapp MyLoginModule

Adding and Removing Realms
-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype}
-remrealm realm

The -addrealm option creates a realm of the specified type with the specified name,
and -remrealm deletes a realm.

For example, using the file-based provider, the administrator martha with password
mypass using role hr would add the realm employees as follows:

% java -jar jazn.jar -addrealm employees martha mypass hr

The administrator would delete employees as follows:

% java -jar jazn.jar -remrealm employees

Admintool shell:

JAZN> addrealm employees martha mypass hr
JAZN> remrealm employees

Adding and Removing Roles (File-Based Provider)
-addrole realm role
-remrole realm role

The -addrole option creates a role in the specified realm; the -remrole option
deletes a role from the realm.

For example, to add the role roleFoo to the realm foo:

% java -jar jazn.jar -addrole foo fooRole

To delete the role from the realm:

% java -jar jazn.jar -remrole foo fooRole

Admintool shell:

JAZN> addrole foo fooRole
JAZN> remrole foo fooRole

Adding and Removing Users (File-Based Provider)
-adduser realm username password
-remuser realm username

Admintool Administrative Functions

C-10 Oracle Containers for J2EE Security Guide

The -adduser option adds a user to a specified realm; the -remuser option deletes a
user from the realm.

It is recommended that you add users through the Admintool shell instead of on the
command line, as in the following example:

% java -jar jazn.jar -shell
AbstractLoginModule username : oc4jadmin
AbstractLoginModule password : adminpassword
JAZN> adduser jazn.com my_user my_password

Entering a user on the Admintool command line is less secure. For example, on a
UNIX system, any other user on the system could see the password by using the "ps
-ef" command to list all processes. By contrast, commands entered in the Admintool
shell are read only by the Admintool.

However, adding a user on the command line is supported as well. For example, to
add the user martha to the realm foo with the password mypass:

% java -jar jazn.jar -adduser foo martha mypass

To insert a user with no password, end the command line with the -null option:

jazn -jar jazn.jar -adduser foo martha -null

To delete martha from the realm:

% java -jar jazn.jar -remuser foo martha

Admintool shell:

JAZN> adduser foo martha mypass
JAZN> remuser foo martha

Checking Passwords (File-Based Provider)
-checkpasswd realm user [-pw password]

The -checkpasswd option indicates whether the given user requires a password for
authentication.

When you specify -checkpasswd alone, the Admintool responds "A password exists
for this principal" if the user has a password, or "No password exists for tis principal"
if the user has no password.

When you specify -checkpasswd together with a -pw parameter for a password, the
Admintool responds "Successful verification of user/password pair" if the user name
and password pair are correct, or "Unsuccessful verification of user/password pair" if
user name or password is incorrect.

For example, to check whether the user martha in realm foo uses the password
Hello:

% java -jar jazn.jar -checkpasswd foo martha -pw Hello

Admintool shell:

JAZN> checkpasswd foo martha -pw Hello

Administrative Operations
-activateadmin

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-11

Use the -activateadmin option to activate the oc4jadmin account (formerly
admin) in the default realm, and to set its password. (This account is initially
deactivated for the file-based provider in standalone OC4J.)

% java -jar jazn.jar -activateadmin password

Admintool shell:

JAZN> activateadmin password

Granting and Revoking Permissions
-grantperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-listperms {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
-revokeperm {realm {-user user|-role role} | principal_class principal_params}
 permission_class [permission_params]
In this syntax, principal_class is the fully qualified name of a class that
implements the principal interface (such as
com.sun.security.auth.NTDomainPrincipal) and principal_params is a
single String parameter.

The -grantperm option grants the specified permission to a user (when called with
-user) or a role (when called with -role) or a principal. The -revokeperm option
revokes the specified permission from a user or role or principal.

A permission_descriptor consists of the explicit class name of a permission (for
example, oracle.security.jazn.realm.RealmPermission), its action, and its
action and target parameters (for RealmPermission, realmname action). Note
that there may be multiple action and target parameters.

For example, to grant RuntimePermission to the principal LDAPPrincipal (with
principal parameter hobbes and permission parameter getProtectionDomain,
values that are understood by LDAPPrincipal):

% java -jar jazn.jar -grantperm oracle.security.jazn.realm.LDAPPrincipal hobbes
 java.lang.RuntimePermission getProtectionDomain

As another example, to grant FilePermission with target a.txt and actions
"read, write" to user martha in realm foo:

% java -jar jazn.jar -grantperm foo -user martha java.io.FilePermission
 a.txt read,write

To revoke the permission:

% java -jar jazn.jar -revokeperm foo -user martha java.io.FilePermission
 a.txt read,write

Note: The -activateadmin command is a one-time command.
If the administrative account is already active, an error will be
thrown to indicate that.

Note: If the Admintool gives the error message "Permission class not
found," it means that the permission you wish to grant is not in the
classpath. You must place the JAR containing the permission class in
the jdk/jre/lib/ext directory so the Admintool can locate it.

Admintool Administrative Functions

C-12 Oracle Containers for J2EE Security Guide

Admintool shell:

JAZN> grantperm foo -user martha java.io.FilePermission a.txt read,write
JAZN> revokeperm foo -user martha java.io.FilePermission a.txt read,write

Granting and Revoking Roles
-grantrole role realm {user|-role role}
-revokerole role realm {user|-role role}

The -grantrole option grants the specified role to a user (when called with a user
name) or a role (when called with -role). The -revokerole option revokes the
specified role from a user or role.

For example, to grant the role editor to the user martha in realm foo:

% java -jar jazn.jar -grantrole editor foo martha

Or, to grant the role financial to the role finreporter:

% java -jar jazn.jar -grantrole financial foo -role finreporter

Admintool shell:

JAZN> grantrole editor foo martha
JAZN> revokerole editor foo martha

Listing Login Modules
-listloginmodules [application_name] [login_module_class]

The -listloginmodules option displays all login modules either in the specified
application_name or, if no application_name is specified, in all applications.
Specifying login_module_class after application_name displays information
on only the specified class within the application.

For example, to display all login modules for the application myapp:

% java -jar jazn.jar -listloginmodules myapp

Admintool shell:

JAZN> listloginmodules myapp

Listing Permissions
-listperms {realm {-user user | -role role} | principal_class principal_params
 permission_class [permission_params]

The -listperms option displays all permissions that match the list criteria, as
follows:

■ Permissions that are granted to a user when the -user option is used

■ Permissions that are granted to a role when a -role option is used

■ Permissions that are granted to a principal

Important: PermissionClassManager and related classes and
operations, including -listperms, are deprecated in the OC4J 10.1.3
implementation and will be desupported in a future release.

Admintool Administrative Functions

OracleAS JAAS Provider Admintool Reference C-13

For example, to display all permissions for the user martha in realm foo:

% java -jar jazn.jar -listperms foo -user martha

Admintool shell:

JAZN> listperms foo -user martha

Listing Realms
-listrealms [realm]

The -listrealms option displays all realms in the current JAAS environment; or, if a
realm argument is specified, the option lists only that realm.

For example, to list all realms:

% java -jar jazn.jar -listrealms

Admintool shell:

JAZN> listrealms

Listing Roles
-listroles [realm [user | -role role]]

The -listroles option displays a list of roles that match the list criteria. This option
lists:

■ All roles in all realms, when called without any parameters

■ All roles granted to a user, when called with a realm name and user name

■ Roles that are granted the specified role, when called with a realm name and the
option -role

For example, to list all roles in realm foo:

% java -jar jazn.jar -listroles foo

Admintool shell:

JAZN> listroles foo

Listing Users
-listusers [realm [-role role | -perm permission]]

The -listusers option displays a list of users that match the list criteria. This option
lists:

■ All users in all realms, when called without any parameters

■ All users in a realm, when called with a realm name

■ Users that are granted a certain role or permission, when called with a realm name
and the option -role or -perm

For example, to list all users in realm foo:

% java -jar jazn.jar -listusers foo

To list all users in realm foo using permission bar:

Admintool Administrative Functions

C-14 Oracle Containers for J2EE Security Guide

% java -jar jazn.jar -listusers foo -perm bar

The Admintool lists users one to a line, such as:

scott
admin
anonymous

Admintool shell:

JAZN> listusers foo

Converting from the principals.xml File to JAAS
-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path
name of the input file (typically
ORACLE_HOME/j2ee/home/config/principals.xml). For example:

% java -jar jazn.jar \
 -convert $ORACLE_HOME/j2ee/home/config/principals.xml jazn.com

Admintool shell:

JAZN> convert ORACLE_HOME/j2ee/home/config/principals.xml jazn.com

Setting Passwords (File-Based Provider)
-setpasswd realm user old_pwd new_pwd

The -setpasswd option enables administrators to reset the password of a user, given
the old password.

For example, to change the user martha in realm foo from password mypass to
password a2d3vn:

% java -jar jazn.jar -setpasswd foo martha mypass a2d3vn

Admintool shell:

JAZN> setpasswd foo martha mypass a2d3vn

See Also:

■ "Migrating Principals from the principals.xml File" on page 7-15
for important additional information

Third Party Licenses D-1

D
Third Party Licenses

This appendix includes the Third Party License for third party products included with
Oracle Application Server.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

Apache

D-2 Oracle Containers for J2EE Security Guide

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Apache

Third Party Licenses D-3

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,

Apache

D-4 Oracle Containers for J2EE Security Guide

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

Apache

Third Party Licenses D-5

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

Apache SOAP

D-6 Oracle Containers for J2EE Security Guide

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

Apache SOAP

Third Party Licenses D-7

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses

Apache SOAP

D-8 Oracle Containers for J2EE Security Guide

 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,

mod_mm and mod_ssl

Third Party Licenses D-9

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

mod_mm and mod_ssl
This program contains third-party code from Ralf S. Engelschall ("Engelschall").
Under the terms of the Engelschall license, Oracle is required to provide the following
notices. Note, however, that the Oracle program license that accompanied this
product determines your right to use the Oracle program, including the Engelschall
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the mod_mm
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Engelschall.

mod_mm
Copyright (c) 1999 - 2000 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

mod_ssl
Copyright (c) 1998-2001 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

OpenSSL

D-10 Oracle Containers for J2EE Security Guide

OpenSSL
This program contains third-party code from the OpenSSL Project. Under the terms of
the OpenSSL Project license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the OpenSSL software, and the terms
contained in the following notices do not change those rights.

OpenSSL License
/* ==
 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim

OpenSSL

Third Party Licenses D-11

 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be

Perl

D-12 Oracle Containers for J2EE Security Guide

 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

Perl
This program contains third-party code from the Comprehensive Perl Archive
Network ("CPAN"). Under the terms of the CPAN license, Oracle is required to
provide the following notices. Note, however, that the Oracle program license that
accompanied this product determines your right to use the Oracle program, including
the CPAN software, and the terms contained in the following notices do not change
those rights.

Perl Kit Readme
Copyright 1989-2001, Larry Wall

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of either:

1. the GNU General Public License as published by the Free Software Foundation;
either version 1, or (at your option) any later version, or

2. the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See either the GNU General Public License
or the Artistic License for more details.

You should have received a copy of the Artistic License with this Kit, in the file named
"Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License along with
this program in the file named "Copying". If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA or visit their
Web page on the internet at http://www.gnu.org/copyleft/gpl.html.

For those of you that choose to use the GNU General Public License, my interpretation
of the GNU General Public License is that no Perl script falls under the terms of the
GPL unless you explicitly put said script under the terms of the GPL yourself.
Furthermore, any object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions of subroutines and
variables, and does not otherwise impair the resulting interpreter from executing any
standard Perl script. I consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You may sell such an
object file as proprietary provided that you provide or offer to provide the Perl source,
as specified by the GNU General Public License. (This is merely an alternate way of
specifying input to the program.) You may also sell a binary produced by the dumping
of a running Perl script that belongs to you, provided that you provide or offer to
provide the Perl source as specified by the GPL. (The fact that a Perl interpreter and
your code are in the same binary file is, in this case, a form of mere aggregation.) This
is my interpretation of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License spells all this out for
your protection, so you may prefer to use that.

Perl

Third Party Licenses D-13

mod_perl 1.29 License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1996-2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 */

mod_perl 1.99_16 License
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

Perl

D-14 Oracle Containers for J2EE Security Guide

CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the

Perl

Third Party Licenses D-15

 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution

Perl

D-16 Oracle Containers for J2EE Security Guide

 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Perl

Third Party Licenses D-17

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

Perl

D-18 Oracle Containers for J2EE Security Guide

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt
is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

Index-1

Index

Symbols
<as-context> element, 15-7
<confidentiality> element, 15-7
<default-method-access> element, 14-8
<establish-trust-in-client> element, 15-7
<establish-trust-in-target> element, 15-7
<integrity> element, 15-6
<jazn> element

and <password-manager> element, 5-2
<jazn-loginconfig>, 8-12
<login-module> entity

options, 8-2
<method-permission> element, 14-3, 14-5
<password-manager> element, 5-2
<role-link> element, 14-3, 14-4
<role-name> element, 14-3
<run-as> element, 14-7
<sas-context> element, 15-7
<security-identity> element, 14-7
<security-role> element, 14-3
<security-role-mapping> element, 14-8
<security-role-ref> element, 14-3, 14-4
<session-tracking> element, 11-8
<ssl-config> element, 11-7
<transport-config> element, 15-6
<unchecked/> element, 14-6
<use-caller-identity/> element, 14-7
<web-app> element, 11-7

A
access control context (AccessControlContext), 1-6
access control lists

definition, 1-3
settings for 9.0.4 infrastructure, 6-8

access controller (AccessController), 1-6
Access Manager, COREid

introduction, 10-3
running, 10-5

Access SDK, COREid, 10-14, 10-15
AccessGate vs. WebGate (COREid), 10-3
accounts, OC4J

accounts created in OID, 6-11
predefined and required, 3-11
predefined for file-based provider, 7-12

activating users, file-based provider, 3-11
add command, C-6
adding and removing realms, C-8
adding and removing roles, C-9
adding and removing users, C-9
-addloginmodule option to JAZN Admintool, 8-11
-addperm option to JAZN Admintool, C-8
-addrealm option to JAZN Admintool, C-9
-addrole option to JAZN Admintool, C-9
-adduser option to JAZN Admintool, C-9
admin account

activate in Admintool, C-10
oc4jadmin account, 3-12
specifying new admin account, 3-12

administering
JAAS provider, 3-2 to ??

administration
JSR-77 support, 3-1
MBean browser, 3-2
MBeans, definition, 3-1
specifying new admin account, 3-12

AdminPermission class
definition, 2-11, 2-12

Admintool
invoking, 3-3
overview, 3-3

anonymous lookup, EJBs, 14-9
anonymous user

create in Oracle Internet Directory, 6-13
map to user in Oracle Internet Directory, 6-12

Application Server Control
console, introduction, 3-2
overview, 3-2
specifying security provider, 5-12
specifying security role mappings, 5-14

authentication, 1-2
BASIC, 13-2
CLIENT-CERT, 13-5
DIGEST, 13-2
DIGEST (using OID), 13-3
failure, specify default realm, A-6
FORM, 13-4
J2EE, 2-5
SSO, 13-3
supported authentication methods, 2-6
using login modules, 1-7

Index-2

using OracleAS Single Sign-On, 2-3
using RealmLoginModule class, 2-3
with OracleAS Single Sign-on, 2-3
with SSL, 11-4
with SSO, 6-6

authorization
coarse-grained vs. fine-grained, 1-3
defined, 1-3
JAAS model vs. J2EE model, 1-3
to any authenticated user (PUBLIC role), 5-16

B
BASIC authentication, 13-2
basic authentication, in COREid, 10-10
bootstrap accounts, 3-11
bootstrap jazn.xml file, 3-9

C
cache properties, 6-21
caching, 6-20

disabling, 6-21
caching properties, 6-20
callback handler, 1-8
capability model

definition, 1-3
case-sensitivity for roles

custom login modules, 8-1
external LDAP providers, 9-2
file-based provider, 7-1
LDAP-based provider, 6-1

certificate authorities, 1-10
certificates (SSL), 1-10
checking

passwords, C-10
-checkpasswd option to JAZN Admintool, C-10
cipher suites

supported by Oracle HTTPS, 12-4
class names

definition, 1-5
clear command, C-7
CLIENT-CERT authentication, 13-5
CN (common name), 6-3
coarse-grained authorization, 1-3
common name (CN), 6-3
Common Secure Interoperability version 2--see CSIv2
configuring

external LDAP providers, 9-1 to ??
file-based provider, 7-1 to 7-15
LoginModules, 8-12

connection properties, 6-19
connector-factory element, 8-14
cookie domain, 11-7
cookie-domain attribute, 11-8
COREid

Access Manager, introduction, 10-3
Access Manager, running, 10-5
Access SDK, 10-14, 10-15
action URL, protecting, 10-13

application, protecting, 10-16
architecture, 10-4
auth-method setting, 10-16
basic authentication, 10-10
credential_mapping plug-in, 10-10, 10-11
EJB application, use case, 10-22
form-based authentication, 10-8
login module configuration, 10-16
overview, 10-2
plug-ins, overview, 10-6
prerequisites, 10-3
resource types, configuration, 10-12
resource types, overview, 10-6
single sign-on cookie, 10-7
validate_password plug-in, 10-10
Web app using HTTP header variables, use

case, 10-20
Web app using SSO cookie, use case, 10-21
Web service with SAML token, use case, 10-26
Web service with username token, use case, 10-23
Web service with X.509 token, use case, 10-25

credential_mapping plug-in, COREid, 10-10, 10-11
credentials, 5-3
CSIv2

and EJBs, 15-4
internal-settings.xml, 15-4
introduction, 15-4
properties in orion-ejb-jar.xml, 15-6
security properties, 15-6

custom Loginmodules
troubleshooting, A-4

custom security providers (custom login
modules), 2-4

D
DAS (Delegated Administration Services for

OID), 3-4
data storage

in LDAP-based environments, 6-4
DataSourceUserManager

configuring application to use it, 5-18
initialization parameters, 5-17
overview, 2-5

deactivated users, file-based provider, 3-11
debugging

general SSL debugging, 11-14
logging, A-6
PrintingSecurityManager, 4-3

default realm, 5-4
file-based provider, 7-9

Delegated Administration Services (DAS for
OID), 3-4

deploying
LoginModule, 8-4

deployment
deployment plan, 3-1
deployment plan editor, 3-2
JSR-88 support, 3-1

deployment descriptors

Index-3

security, 14-3
DER, 12-2
DIGEST authentication, 13-2
DIGEST authentication (using OID), 13-3
digital certificates, 1-10
directory information tree (DIT)

Java Authorization Service, 6-5
directory information tree Identity Management

Realm, 6-2
disabling caching, 6-21
Distinguished Encoding Rules, 12-2
distinguished name (DN), 6-3
DN (distinguished name), 6-3
DTDs

internal-settings.xml, 15-3

E
EIS connections

JCA, 16-1 to 16-16
EJB

anonymous lookup, 14-9
CSIv2, 15-4
interoperability, 15-1
server security properties, 15-1

ejb_sec.properties, 15-3
Enterprise Manager, overview, 3-2
exit command, C-7
external LDAP provider, 2-4
external.synchronization (no longer supported), xxii

F
file-based provider

configuring, 7-1 to 7-15
file-based provider type, 2-3
fine-grained authorization, 1-3
FORM authentication, 13-4
form-based authentication, in COREid, 10-8

G
granting permissions, C-11
-grantperm option to JAZN Admintool, C-11

H
help command, C-7
HTTPClient.HttpUrlConnection, 12-5
HTTPConnection, 12-2
HTTPS tunneling, 11-7

I
identify propagation--see subject propagation
Identity Management Realm

role management, 6-3
sample LDAP directory information tree, 6-2
user management, 6-3

impliesAll attribute, 14-8
instance-level jazn.xml file, 3-9

instance-level security
administering, 7-8
provider, 7-8

integrating
custom LoginModule, 8-4

internal-settings.xml file, 15-1
CSIv2 entities, 15-4
DTD, 15-3
<sep-property> element, 15-1, 15-4

interoperability, 15-1
invoking Admintool, 3-3
invoking JAZN Admintool, C-2
isCallerInRole method, 14-4

J
JAAS

login modules, 1-7
JAAS mode

introduction, 2-7
JAAS Provider

integration with SSL-enabled applications, 11-4
integration with SSO-enabled applications, 6-6
locations for jazn.xml, 3-9, A-4
overview, 2-2
permission classes, 2-11
security role, 13-7

JAAS. See Java Authentication and Authorization
Service (JAAS)

jaas.username.simple (omit realm name from
principals), 5-6

Java 2 Platform, Enterprise Edition (J2EE), 1-1
Oracle component responsibilities in SSL-enabled

environments, 11-4
Java 2 Platform, Standard Edition (J2SE)

creating applications using the Java 2 Security
Model, 1-1

Java 2 Security Model, 1-1
definition, 1-1
using access control capability model, 1-3
using with J2EE applications, 1-1
using with J2SE applications, 1-1

Java Authentication and Authorization Service (JAAS)
definition, 2-2
principals, 1-4
subjects, 1-4

Java Authorization Contract for Containers
introduction, 2-12

Java Key Store (JKS), 15-1
Java Platform, Enterprise Edition (J2EE)

security role, 2-13
java.net.URL framework, 12-5
java.security.policy system property, 4-2
java.security.Principal, 2-3, 5-14
java.security.Principal interface

using with principals, 1-4
javax.net.ssl.KeyStore, 12-6
javax.net.ssl.KeyStorePassword, 12-6
JAZN Admintool

adding and removing login modules, 8-11

Index-4

adding and removing permissions, C-8
adding realms, C-9
adding roles, C-9
adding users, C-9
checking passwords, C-10
command options, C-2
granting and revoking permissions, C-11
granting roles, C-12
invoking, C-2
listing login modules, 8-11
listing permissions, C-12
listing roles, C-13
listing users, C-13
migrating principals, 7-15, C-14
navigating shell, C-6
revoking roles, C-12
setting passwords, C-14
shell commands, C-4 to C-7
starting shell, C-4

JAZN Admintool shell commands
add, C-6
clear, C-7
exit, C-7
help, C-7
man, C-7
mk, C-6
pwd, C-7
rm, C-7
set, C-8

JAZN term, 2-2
JAZNAdminUser, JAZNAdminGroup, 6-5
jazn-data.xml

deploying LoginModules, 8-15
persistence mode, 3-7

JAZNPermission class
definition, 2-11, 2-12

JAZNUserManager
definition, 2-3

jazn.xml
file location, 3-9, A-4

JCA
component-managed vs. container-managed

sign-on, 16-2
EIS connections, 16-1 to 16-16
security contract, 16-1

JNDI connection pool, 6-19
JSR-77 support, 3-1
JSR-88 support, 3-1
JVM, 4-1

K
keys (SSL), 1-10
keystore

definition, 15-1
keystores, 1-10

L
LDAP

caching properties, 6-20
configuring external providers, 9-1 to ??
connection properties, 6-19
Oracle Internet Directory used as provider

type, 2-3
SSL properties, 6-18

LDAP provider
creating users with OID DAS, 6-18
Sun Java System Directory Server, 9-8

LDAP-based provider (Oracle Identity Management
with Oracle Internet Directory), 2-3

LDAPLoginModule, 2-4, 9-5
ldapmodify

create anonymous user in Oracle Internet
Directory, 6-13

for ACL settings, 9.0.4 infrastructure, 6-8
ldap.password property name, 6-19
ldap.protocol, 6-19
ldapsearch to retrieve realm names from OID, A-5
ldap.user property name, 6-19
LDIF (lightweight directory interchange

format), 6-13
Lightweight Directory Access Protocol

(LDAP)-based, 6-4
Lightweight Directory Access Protocol (LDAP)-based

environments
realm contents, 6-2
realm management, 6-2
sample Identity Management Realm directory

information tree, 6-2
Lightweight Directory Access Protocol. See LDAP.
listing

permissions, C-12
roles, C-13
users, C-13

listing realms, C-13
-listloginmodules option to JAZN Admintool, 8-11
-listperm option to JAZN Admintool, C-12
-listrealms option to Admintool, C-13
-listroles option to JAZN Admintool, C-13
-listusers option to JAZN Admintool, C-13
logging, A-6
login modules

adding and removing in JAZN Admintool, 8-11
deployed as optional packages, 8-5
listing in JAZN Admintool, 8-11

login-config element, 13-2
LoginContext class, 1-8

authenticating subjects, 1-7
login-module element

and third-party LDAP provider, 9-5
LoginModules, 8-1 to 8-16, 9-5

configuring, 8-12
configuring with different applications, 1-7
COREid login module, 10-16
definition, 1-7
deploying, 8-15
integrating, 8-14
integration with OC4J, 8-4
LDAPLoginModule, 2-4, 9-5

Index-5

packaging and deployment, 8-4
RealmLoginModule, 8-2
troubleshooting custom, A-4

M
man command, C-7
MBeans

definition, 3-1
MBean browser, 3-2

-migrate option to JAZN Admintool, 7-15, C-14
migrating

principals, 7-15
mk command, C-6

N
navigating

JAZN Admintool shell, C-6

O
obfuscation, 5-3

LDAP password, 6-19
ObSSOCookie, COREid SSO cookie, 10-7
OC4J

interoperability, 15-1
oc4j-ra.xml, 8-14
oidadmin (Oracle Directory Manager), 3-4
OID--see Oracle Internet Directory
omitting realm names from principals, 5-6
OPMN (Oracle Process Manager and Notification

Server), 11-16
optional packages, used for login modules, 8-5
Oracle COREid Access and Identity--see COREid
Oracle Directory Manager (oidadmin), 3-4
Oracle Enterprise Manager, overview, 3-2
Oracle HTTPS, 12-1 to 12-10

default system properties, 12-6
example, 12-7
feature overview, 12-2
supported cipher suites, 12-4

Oracle Identity Management
(with Oracle Internet Directory)--the LDAP-based

provider, 2-3
Oracle Internet Directory

(with Oracle Identity Management)--the
LDAP-based provider, 2-3

Delegated Administration Services (DAS), 3-4
Oracle Directory Manager (oidadmin), 3-4
overview, 6-6
retrieving realm names using ldapsearch, A-5
supported versions, 6-8

OracleAS Single Sign-On, 2-3
overview, 6-6
servlet session synchronization, 6-17
supported versions, 6-8

oracle.home system property, 4-3
oracle.security.jazn.realm package

use of, 2-3
OracleSSLCredential, 12-2

Oracle.ssl.defaultCipherSuites, 12-7
orion-application.xml

and LoginModule, 8-13
deploying LoginModules, 8-16
mapping security roles to JAAS Provider users and

roles, 13-7
orion-ejb-jar file

<establish-trust-in-target> element, 15-7
<sas-context> element, 15-7

orion-ejb.jar file
<transport-config> element, 15-6

orion-ejb-jar.xml, 15-6
<as-context> element, 15-7
<establish-trust-in-client> element, 15-7
<integrity> element, 15-6
security properties, 15-6

orion-ejb-jar.xml file
<confidentiality> element, 15-7

ORMIS
configuring access restrictions, 11-17
configuring clients to use ORMIS, 11-18
configuring for OC4J in OAS, 11-16
configuring for standalone OC4J, 11-14

P
password indirection

definition, 5-1
password obfuscation

definition, 5-1
passwords, 5-3

checking, C-10
checking in JAZN Admintool, C-10
obfuscating, 5-3
setting in JAZN Admintool, C-14

permissions, 14-2
actions, 1-5
adding and removing in JAZN Admintool, C-8
class definitions, 2-12
class name, 1-5
defined, 1-5
granting and revoking in JAZN Admintool, C-11
in Java 2 Security Model, 1-5
JAAS Provider, 2-11
Java permission instance contents, 1-5
listing in JAZN Admintool, C-12
listing with the JAZN Admintool, C-12
target, 1-5

persistence mode, 3-7, 5-3
Pluggable Authentication Module (PAM), 1-1
plug-ins (COREid)

credential_mapping, 10-10, 10-11
overview, 10-6
validate_password, 10-10

policy
definition, 1-5

policy cache, 6-20
policy file

creating, 4-2
specifying, 4-2

Index-6

ports
LDAP with or without SSL, 6-10, 6-19

principals
definition, 1-4
migrating, 7-15
migrating in JAZN Admintool, 7-15, C-14
with JAAS, 1-4

principals.xml file
converting from, 7-15

PrintingSecurityManager, 4-3
private keys (SSL), 1-10
privileges, 1-9
properties

connection, 6-19
JNDI connection pool, 6-19
LDAP caching, 6-20
LDAP SSL, 6-18

property names
ldap.password, 6-19
ldap.user, 6-19

PropertyPermission, 14-2
protection domain

in Java 2 Security Model, 1-6
provider types

retrieving permissions from, 1-3
public keys (SSL), 1-10
PUBLIC role (for access by any authenticated

user), 5-16
pwd command, C-7

R
RBAC (role-based access control), 1-9
realm cache, 6-20
RealmLoginModule class, 2-3, 2-5, 8-2
RealmPermission class

definition, 2-11, 2-12
RealmPrincipal interface, 2-3
realms

adding and removing with the JAZN
Admintool, C-8

adding in JAZN Admintool, C-9
creation of realm container in LDAP-based

environments, 6-4
data storage in LDAP-based environments, 6-4
default realm, 5-4
definition, 1-7, 2-3
JAAS Provider support, 2-3
listing in Admintool, C-13
managing in LDAP-based environments, 6-2
managing in XML-based provider type, 7-10
omitting realm name from principals, 5-6
overview, 1-7
realm contents in LDAP-based environments, 6-2
retrieving realm names from OID using

ldapsearch, A-5
retrieving realm names using Admintool, C-13
tasks and guidelines in OC4J, 5-3
troubleshooting issues, A-6
using multiple realms, 5-5

using nondefault realm, 5-5
-remloginmodule option to JAZN Admintool, 8-11
-remperm option to JAZN Admintool, C-8
-remrealm option to JAZN Admintool, C-9
-remrole option to JAZN Admintool, C-9
-remuser option to JAZN Admintool, C-9
resource types (COREid)

configuration, 10-12
overview, 10-6

-revokeperm option to JAZN Admintool, C-11
revoking

roles in JAZN Admintool, C-12
revoking permissions, C-11
rm command, C-7
RMI/IIOP, 15-1
role management, 6-2
role manager, 6-2
role mapping to JAAS Provider users and roles, 13-7
RoleAdminPermission class

definition, 2-11, 2-12
roles

adding and removing with the JAZN
Admintool, C-9

adding in JAZN Admintool, C-9
case-sensitivity, custom login modules, 8-1
case-sensitivity, external LDAP providers, 9-2
case-sensitivity, file-based provider, 7-1
case-sensitivity, LDAP-based provider, 6-1
creating, editing, deleting (file-based

provider), 7-6
definition, 1-9
granting in JAZN Admintool, C-12
listing in JAZN Admintool, C-13
listing with the JAZN Admintool, C-13
management in Identity Management

Realms, 6-3
revoking in JAZN Admintool, C-12
role-based access control, 1-9
using the J2EE security roles, 2-13

run-as
example, 14-7

run-as security identity, 14-6
RuntimePermission, 14-2

S
Secure Sockets Layer. See SSL
security

keys and certificates, 1-10
permissions, 14-2
requesting client authentication, 11-12
SSL common problems and solutions, 11-13
SSL debugging, 11-14
using certificates with OC4J and OHS, 11-2

security managers
overview, SecurityManager class, 1-6
PrintingSecurityManager, 4-3
specifying, enabling, 4-2

security provider
definition, 1-2

Index-7

supported providers, 2-3
security role

using in the web.xml file, 2-13
<sep-property> element, 15-1, 15-4
servlet session synchronization (with SSO), 6-17
session cache, 6-20
session synchronization for servlets (with SSO), 6-17
set command, C-8
-setpasswd option to JAZN Admintool, C-14
-shell option to JAZN Admintool, C-4
signon

component-managed vs.
container-managed, 16-2

single sign-on, 2-5
COREid SSO cookie, 10-7
COREid SSO, configure Web apps, 10-16
integration with JAAS Provider, 6-6
OracleAS Single Sign-On overview, 6-6

SocketPermission, 14-2
SSL, 1-10

common problems, 11-13
enabling SSL in OC4J, 11-5
integration with JAAS Provider, 11-4
LDAP properties, 6-18
ORMI over SSL, 11-14
port for LDAP with SSL, 6-10, 6-19

SSO authentication, 13-3
starting

Admintool, 3-3
JAZN Admintool, C-2

subject propagation
enabling, 14-13
introduction, 1-12
overview in OC4J, 14-12
removing/configuring restrictions, 14-14
sharing principal classes, 14-13

Subject.doAs method
associating a subject with

AccessControlContext, 1-4
invoking, 1-7

subjects, 1-4
definition, 1-4
with JAAS, 1-4

Sun Java System Directory Server
as LDAP provider, 9-8

system application
associating with Oracle Internet Directory, 6-12
overview, 3-10

system properties
java.security.manager, 4-2
java.security.policy, 4-2
oracle.home, 4-3

system-jazn-data.xml
and Admintool, 3-3
and LoginModule, 8-12
for policy data, 7-11
persistence mode, 3-7

T
target names

definition, 1-5
third-party LDAP provider, login-module element

options, 9-5
<transport-config> element, 15-6
troubleshooting

custom LoginModules, A-4
trustpoint, 1-10
truststore

definition, 15-1
tunneling, HTTPS, 11-7

U
user repository

definition, 1-2
users

activating/deactivating, file-based provider, 3-11
adding and removing with the JAZN

Admintool, C-9
adding in JAZN Admintool, C-9
creating, editing, deleting (file-based

provider), 7-5
creating, with OID DAS for LDAP provider, 6-18
listing in JAZN Admintool, C-13
listing with the JAZN Admintool, C-13
management in Identity Management

Realms, 6-3

V
validate_password plug-in, COREid, 10-10

W
Web services, use cases with COREid, 10-23
WebGate vs. AccessGate (COREid), 10-3
web.xml

using the J2EE security role, 2-13

X
XML-based provider, 2-3
XML-based provider type, 2-3

realm management, 7-10
XML-based provider--see file-based provider

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	What’s New
	Changes Since Release 10.1.2

	1 Standard Security Concepts
	Introducing the Java 2 Security Model and JAAS
	Authentication and Authorization
	Authentication and Authorization Concepts
	Capability Model of Access Control
	JAAS Security Model Versus J2EE Security Model

	About Principals and Subjects
	About Permissions, Policies, and Realms
	Security Permissions
	Security Policies
	Protection Domains
	Security Managers and Access Control
	Security Realms

	Login Module Authentication
	Role-Based Access Control: Roles and Role Hierarchy
	Secure Communications
	Secure Sockets Layer and HTTPS
	Certificates
	Key Encryption and Exchange
	Identity Propagation

	Developing Secure J2EE Applications

	2 Overview of OC4J Security
	Introducing the OracleAS JAAS Provider and Security Providers
	Overview of the OracleAS JAAS Provider
	Summary of JAAS Framework Features
	Supported Security Providers
	Support for DataSourceUserManager

	Authentication in the OC4J Environment
	Authorization in the OC4J Environment
	J2EE Authorization
	JAAS Authorization and JAAS Mode
	OracleAS JAAS Provider Permission Classes
	Implementation of Java Authorization Contract for Containers

	Overview of Security Role Mapping

	3 Overview of Security Administration and Configuration
	General OC4J Deployment and Configuration Features
	Tools for Oracle Application Server and OracleAS JAAS Provider
	Overview of Enterprise Manager
	Overview of the OracleAS JAAS Provider Admintool
	Overview of Oracle Identity Management and Oracle Internet Directory Tools

	JMX and MBeans Administration
	Overview of Configuration Files and Key Elements
	The orion-application.xml File (<jazn> and <jazn-web-app> Elements)
	The system-application.xml File
	The system-jazn-data.xml File
	Application-Specific jazn-data.xml File (Optional)
	The jazn.xml File

	OC4J System Application
	Summary of OC4J Accounts
	Predefined OC4J Accounts
	Activation of the oc4jadmin Account
	Configuring a New Administration Account
	Configuring an Anonymous User

	Summary of Configuration Repositories and Security Management Tools

	4 Java VM Security Settings for OC4J
	Specifying an Alternate JAAS Policy Provider
	Specifying a Java 2 Security Manager and Policy File
	Creating a Java 2 Policy File
	Using PrintingSecurityManager to Debug Java 2 Policy

	Enabling Subject Propagation for ORMI

	5 Tasks and Guidelines in Setting Security
	Guidelines for Password Management
	Creating an Indirect Password
	Specifying a Password Manager in system-application.xml
	Password Obfuscation in OC4J Configuration Files

	Tasks and Guidelines for Using Security Realms in OC4J
	Default Realm with the File-Based Provider or Oracle Identity Management
	Evaluation of the Default Realm for File-Based Provider or Oracle Identity Management
	Using the Default Realm
	Using a Nondefault Realm
	Using Multiple Realms
	Omitting the Realm Name When Retrieving an Authenticated Principal

	Tasks for JAAS Mode and Authorization
	Use J2EE Authorization
	Use OracleAS JAAS Provider Policy Management
	Use OracleAS JAAS Provider JAAS Mode

	Using the Java Authorization Contract for Containers
	System Properties to Enable Java ACC Features
	System Properties to Specify the Java ACC Provider

	Packaging Considerations for OC4J Configuration Files
	Configuration Tasks and Considerations in the Deployment Descriptors
	Supplying an Application-Specific jazn-data.xml File

	Deployment Tasks and Guidelines for Security
	Overview of Deployment Considerations
	Deploying an Application
	Specifying a Security Provider
	Mapping J2EE Security Roles to JAAS Roles

	Post-Deployment Considerations
	Navigating to the Security Provider Page for Your Application

	Tasks for DataSourceUserManager
	DataSourceUserManager Properties
	Configuring an Application to Use DataSourceUserManager

	6 Oracle Identity Management Security Provider
	Realm Management in LDAP-Based Environments
	LDAP-Based Realm Types
	About Distinguished Names
	LDAP-Based Realm Data Storage

	Overview of Oracle Identity Management Key Components
	Overview of Oracle Internet Directory
	Overview of Oracle Application Server Single Sign-On
	SSO-Enabled J2EE Environment: Typical Scenario

	Prerequisites: Oracle Application Server Infrastructure
	Supported Versions for Oracle Internet Directory and OracleAS Single Sign-On
	Considerations for 9.0.4.x Infrastructure: Access Control List Settings

	Steps to Use the Oracle Identity Management Security Provider
	Associate Oracle Internet Directory with OC4J
	Configure Oracle Identity Management as the Security Provider
	Configure SSO (Optional)

	LDAP-Based Provider Settings in OC4J Configuration Files
	Configuring LDAP User and SSL Properties
	Configuring LDAP Connection Properties
	Configuring LDAP Caching Properties

	7 File-Based Security Provider
	Tools for File-Based Provider Policy and Realm Management
	Configuring the File-Based Provider in Application Server Control
	Configuring the File-Based Provider during Application Deployment
	Changing to the File-Based Provider after Deployment
	Managing Application Realms through Application Server Control
	Managing Application Users through Application Server Control
	Managing Application Roles through Application Server Control
	Administering Instance-Level Security through Application Server Control

	File-Based Provider Settings in OC4J Configuration Files
	Scenarios for <jazn> Settings in orion-application.xml
	Realm Configuration in the Repository File
	Policy Configuration in the Repository File
	Predefined OC4J Accounts in system-jazn-data.xml

	OracleAS JAAS Provider Migration Tool
	Overview of the Migration Tool
	Migration Tool Command Syntax
	Migration Tool APIs

	Migrating Principals from the principals.xml File

	8 Login Modules
	Configuring RealmLoginModule
	Introducing Custom JAAS Login Modules
	Packaging and Deploying Login Modules
	Deploying Login Modules within the J2EE Application
	Deploying Login Modules as Optional Packages
	Using Login Modules as OC4J Shared Libraries

	Configuring the Custom Security Provider in Application Server Control
	Specifying and Configuring a Custom Security Provider during Deployment
	Changing to a Custom Security Provider after Deployment
	Adding a Login Module to the Custom Security Provider
	Updating a Login Module in the Custom Security Provider
	Deleting a Login Module in the Custom Security Provider

	Configuring Login Modules through the Admintool
	Login Module Configuration in OC4J Configuration Files
	Login Module Settings in system-jazn-data.xml
	Login Modules Settings in orion-application.xml
	Configuring oc4j-ra.xml for Login Modules (J2EE Connector Architecture)

	Simple Login Module J2EE Integration
	Development of Simple Login Module
	Packaging of Simple Login Module
	Deployment of Simple Login Module

	Custom Login Module Example

	9 External LDAP Security Providers
	Overview of External LDAP Provider Configuration and Administration
	Configuring External LDAP Providers in Application Server Control
	Specifying and Configuring an External LDAP Provider during Deployment
	Changing to an External LDAP Provider after Deployment

	External LDAP Provider Settings in system-jazn-data.xml
	Granting RMI Permission to an LDAP Principal
	Sample Configuration for Sun Java System Directory Server
	Sample LDIF Description
	Sample Entries in OC4J Configuration Files

	10 COREid Access Security Provider
	Getting Started with Oracle COREid Access and Identity
	Overview of Oracle COREid Access and Identity
	COREid Prerequisites
	COREid Architecture
	Top-Level Summary of Configuration Stages
	Running the Access Manager

	Oracle COREid Access and Identity Concepts
	About COREid Resource Types
	About COREid Authentication
	About the COREid Single Sign-On Cookie
	About Using HTTP Header Variables for Authentication

	Configuring COREid Access
	Configure COREid Form-Based Authentication
	Configure COREid Basic Authentication
	Configure the Resource Type
	Protect the Action URL

	Configuring OC4J with the Access SDK
	Create OC4J Instances as Needed
	Configure the Access SDK to Each OC4J Instance
	Configure the Access SDK Library Path for Each OC4J Instance

	Configuring the Application
	Protect the Application URLs in web.xml
	Settings for Application Deployment
	Configure COREid SSO in orion-application.xml
	Protect the Application URLs in COREid Access
	Configure the COREid JAAS Login Module
	Test the Application

	COREid Examples for J2EE Applications
	Web Application Using HTTP Header Variables through COREid
	Web Application Using the COREid ObSSOCookie
	EJB Application Using COREid

	COREid Support and Examples for Web Services
	Web Service with Username Token Authentication for COREid
	Web Service with X.509 Token Authentication for COREid
	Web Service with SAML Token Authentication for COREid

	Troubleshooting the Oracle COREid Access and Identity Setup

	11 Integration with SSL and ORMIS
	Using Keys and Certificates with OC4J and Oracle HTTP Server
	Integrating the Security Provider with SSL-Enabled Applications
	Using SSL with Standalone OC4J
	Using SSL with OC4J in Oracle Application Server
	Configure OC4J with SSL
	Use Oracle HTTP Server with SSL
	Configure AJP over SSL
	Configure OPMN to Enable HTTPS and Use SSL
	Sample Configuration Files for SSL

	Requesting Client Authentication
	Resolving Common SSL Problems
	Common SSL Errors and Solutions
	General SSL Debugging

	Enabling ORMIS for OC4J
	Configuring ORMIS for Standalone OC4J
	Configuring ORMIS for OC4J in an Oracle Application Server Environment
	Configuring ORMIS Access Restrictions
	Configuring Clients to Use ORMIS

	12 Oracle HTTPS for Client Connections
	Oracle HTTPS and Clients
	HTTPConnection Class
	OracleSSLCredential Class

	Overview of Oracle HTTPS Features
	SSL Cipher Suites
	Accessing Information for Established SSL Connections
	Security-Aware Applications Support
	Support for java.net.URL Framework

	Specifying Default System Properties
	Property javax.net.ssl.KeyStore
	Property javax.net.ssl.KeyStorePassword
	Property Oracle.ssl.defaultCipherSuites

	Oracle HTTPS Example
	Initializing SSL Credentials In OracleSSL
	Verifying Connection Information
	Transferring Data through HTTPS

	Using HTTPClient with JSSE

	13 Web Application Security Configuration
	Specifying the Authentication Method (auth-method)
	Specifying auth-method in web.xml
	Configuring OC4J for OracleAS Single Sign-On
	Using Digest Authentication with Oracle Internet Directory
	Using Form-Based Authentication
	Using Client-Cert Authentication

	Web Application Security Role Configuration
	J2EE Security Roles
	Mapping of Application Roles to J2EE Roles
	Definition of JAAS Roles and Users
	OC4J Mapping of J2EE Roles to JAAS Roles

	14 EJB Security Configuration
	EJB JNDI Security Properties
	JNDI Properties in jndi.properties
	JNDI Properties within Implementation

	Configuring EJB Security
	Granting Permissions in the Browser
	Authenticating and Authorizing EJB Applications
	Specifying Credentials in EJB Clients
	Configuring Anonymous EJB Lookup

	Permitting EJB RMI Client Access
	Enabling and Configuring Subject Propagation for ORMI
	Overview of Subject Propagation in OC4J
	Enabling Subject Propagation for ORMI
	Sharing Principal Classes for Subject Propagation
	Removing and Configuring Subject Propagation Restrictions

	15 Common Secure Interoperability Protocol
	EJB Server Security Properties in internal-settings.xml
	EJB Client Security Properties in ejb_sec.properties
	Introduction to CSIv2 Security Properties
	CSIv2 Security Properties in internal-settings.xml
	CSIv2 Security Properties in ejb_sec.properties
	CSIv2 Security Properties in orion-ejb-jar.xml
	The <transport-config> element
	The <as-context> element
	The <sas-context> element
	Example: <ior-security-config>

	16 Security Support for Resource Adapters
	Overview of Security and Authentication Setup for EIS Connections
	Summary of J2EE Connector Architecture Security Contract
	Summary of Component-Managed Versus Container-Managed Sign-On
	Summary of Security-Related Resource Adapter Configuration Elements

	Understanding Component-Managed Sign-On
	Understanding Container-Managed Sign-On
	Authentication in Container-Managed Sign-On
	Using Declarative Container-Managed Sign-On
	Using Programmatic Container-Managed Sign-On
	Using a Principal Mapping Class
	Using a JAAS Login Module for an EIS Connection

	A Tips and Troubleshooting for OC4J Security
	Best Practices for OC4J Security
	HTTPS Best Practices
	Overall Security Best Practices
	JAAS Best Practices

	OC4J Security Issues and Hints
	File jazn.xml Not Found
	Issues for Custom Login Modules
	Issues for Oracle Identity Management
	Failure to Specify OracleAS JAAS Provider as the JAAS Provider
	Realm Issues

	Logging
	Using Oracle Diagnostic Logging with OracleAS JAAS Provider
	Using Standard JDK Logging with the OracleAS JAAS Provider Admintool

	B OracleAS JAAS Provider Samples
	Security Configuration for Sample Servlet
	Configuration in system-jazn-data.xml
	Configuration in web.xml
	Configuration in orion-application.xml

	Sample Servlet: Invoking J2EE Security APIs
	Sample Servlet: Granting Permissions
	Sample Servlet: Checking Permissions
	JAAS Mode Configuration in orion-application.xml
	Servlet Code for Authorization

	C OracleAS JAAS Provider Admintool Reference
	Authentication to Run the Admintool
	Summary of Admintool Command-Line Syntax and Options
	Admintool Shell
	Shell Support for Admintool Command-Line Options
	Admintool Shell Directory Structure
	Summary of Admintool Special Shell Commands

	Admintool Administrative Functions
	Adding and Removing Login Modules
	Adding and Removing Realms
	Adding and Removing Roles (File-Based Provider)
	Adding and Removing Users (File-Based Provider)
	Checking Passwords (File-Based Provider)
	Administrative Operations
	Granting and Revoking Permissions
	Granting and Revoking Roles
	Listing Login Modules
	Listing Permissions
	Listing Realms
	Listing Roles
	Listing Users
	Converting from the principals.xml File to JAAS
	Setting Passwords (File-Based Provider)

	D Third Party Licenses
	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	mod_mm and mod_ssl
	OpenSSL
	OpenSSL License

	Perl
	Perl Kit Readme
	mod_perl 1.29 License
	mod_perl 1.99_16 License
	Perl Artistic License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

