
Oracle® Application Server
Web Services Developer's Guide

10g Release 3 (10.1.3)

B14434-01

January 2006

Oracle Application Server Web Services Developer's Guide, 10g Release 3 (10.1.3)

B14434-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Anirban Chattergee, Simeon M. Greene, Sumit Gupta, Bill Jones, Tim Julien, Sunil
Kunisetty, Gigi Lee, Mike Lehmann, Jon Maron, Kevin Minder, Bob Naugle, Eric Rajkovic, Ekkehard
Rohwedder, Shih-Chang Chen, Quan Wang

Contributor: Ellen Siegal, editor

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

 Preface ... xvii

Intended Audience... xvii
Documentation Accessibility .. xvii
Related Documents ... xviii
Conventions .. xxii

1 Web Services Overview

Understanding Web Services ... 1-1
Web Services Standards .. 1-2

Java 2 Enterprise Edition .. 1-2
Simple Object Access Protocol 1.1 and 1.2.. 1-2
Web Service Description Language 1.1... 1-3
Web Service-Interoperability Basic Profile 1.1... 1-3

New and Enhanced Features .. 1-3
Web Service Security for Authentication, Integrity, and Confidentiality.................................. 1-4
Web Services Management Framework and Application Server Control................................. 1-4
Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations) 1-4
REST Web Services .. 1-4
Enhanced Web Service Home Page for Testing... 1-5
Ant Tasks for Configuration and Scripting.. 1-5
Custom Type Mapping Framework for Serialization... 1-5
Database Web Services.. 1-5
SOAP Header Support ... 1-6
MIME and DIME Document Support ... 1-6
Message Delivery Quality of Service .. 1-6
JMS Transport as an Alternative to HTTP.. 1-6
Web Services Provider Support ... 1-7
Web Services Invocation Framework for Describing WSDL Programming Artifacts............. 1-7
SOAP Message Auditing and Logging ... 1-7
Oracle BPEL .. 1-7

Compatibility with Previous Versions of Web Services ... 1-8
Redeploying Applications on OracleAS Web Services 10.1.3 ... 1-8
Deprecated Features .. 1-8

Clustered Environments and High Availability .. 1-8
OC4J in a Standalone Versus Oracle Application Server Environment .. 1-8

iv

2 Oracle Application Server Web Services Architecture and Life Cycle

Architecture ... 2-1
Processing Components .. 2-1

Protocol Handlers ... 2-2
XML Processing... 2-2
Policy Enforcement... 2-2
JAX-RPC Handlers.. 2-3
Data Binding .. 2-3
Endpoint Implementation ... 2-3

Java Management Extensions (JMX) ... 2-4
Development Tools .. 2-4

Web Services Development Life Cycle .. 2-4
Create the Implementation ... 2-5
Generate the Web Service .. 2-5
Generate the Client .. 2-5
Deploy the Web Service .. 2-5
Test the Web Service .. 2-6
Perform Post Deployment Tasks ... 2-6

3 Getting Started

Supported Platforms.. 3-1
Installing OC4J ... 3-1
Setting Up Your Environment for OracleAS Web Services ... 3-1
Setting Up Ant for WebServicesAssembler .. 3-3

Setting Up Ant 1.6.2 Distributed with Oracle Application Server.. 3-3
Setting Up Ant 1.6.2 Using a Previous Installation of Ant... 3-4
Setting Up Ant 1.5.2 Using a Previous Installation of Ant... 3-5
Using the "oracle:" namespace Prefix for Ant Tasks ... 3-6

Database Requirements .. 3-6
Development and Documentation Roadmap ... 3-6

4 Oracle Application Server Web Services Messages

OracleAS Web Services Message Formats... 4-1
Understanding Message Formats .. 4-2

RPC and Document Styles... 4-2
Literal and Encoded Uses .. 4-2

Supported Message Formats .. 4-2
Document-Literal Message Format .. 4-3

Sample Request Message with the Document-Literal Message Format...................... 4-3
RPC-Encoded Message Format... 4-4

Sample Messages with the RPC-Encoded Message Format.. 4-4
The xsi:type Attribute in RPC-Encoded Message Formats ... 4-5
Oracle-Specific Type Support .. 4-6
Restrictions on RPC-Encoded Format ... 4-8

RPC-Literal Message Format... 4-8
Sample Request Message with the RPC-Literal Message Format 4-8

v

Selecting Message Formats ... 4-9
Changing Message Formats in a Service Implementation.. 4-10
Message Format Recommendations... 4-10

Working with SOAP Messages... 4-10
OraSAAJ APIs.. 4-11

Using the OraSAAJ APIs .. 4-12
Using SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly........................ 4-12
Using SOAP 1.2 Formatted Messages in Top Down Web Service Assembly 4-13

Converting XML Elements to SOAP Elements ... 4-14
Limitations.. 4-15
Additional Information.. 4-15

5 Assembling a Web Service from a WSDL

What Is Top Down Assembly?... 5-1
How to Assemble a Web Service Top Down... 5-1

Prerequisites.. 5-1
Generating the Web Service Top Down ... 5-2

Generating a Web Service Top Down with Ant Tasks.. 5-4
Limitations... 5-5
Additional Information... 5-5

6 Assembling a Web Service with Java Classes

Exposing Java Classes as a Stateless Web Service ... 6-1
Prerequisites ... 6-2
How to Assemble a Stateless Web Service ... 6-2

Ant Tasks for Generating a Stateless Web Service .. 6-4
Writing Java Class-Based Web Services ... 6-4

Writing Stateless Web Services ... 6-5
Defining a Java Interface ... 6-6
Defining a Java Class ... 6-6

Exposing Java Classes as a Stateful Web Service ... 6-7
Prerequisites.. 6-7
How to Assemble a Stateful Web Service... 6-7

Ant Tasks for Generating a Stateful Web Service .. 6-9
Writing Stateful Web Services .. 6-10

Defining a Java Interface .. 6-10
Defining a Java Class ... 6-10

Packaging and Deploying Web Services .. 6-11
Tool Support for Exposing Java Classes as Web Services ... 6-11
Limitations.. 6-11
Additional Information.. 6-11

7 Assembling a Web Service with EJBs

Exposing EJBs as Web Services.. 7-1
Prerequisites.. 7-2
How to Assemble a Web Service from an EJB ... 7-2

vi

Ant Tasks for Generating a Web Service ... 7-4
Writing EJBs for Web Services ... 7-5

Writing an EJB Service Endpoint Interface... 7-5
Writing an EJB .. 7-6

Packaging and Deploying Web Services that Expose EJBs .. 7-7
Providing Transport-Level Security.. 7-7
Tool Support for Exposing EJBs as a Web Service ... 7-7
Limitations... 7-8
Additional Information... 7-8

8 Assembling Web Services with JMS Destinations

Understanding JMS Endpoint Web Services .. 8-1
How to Assemble a JMS Endpoint Web Service ... 8-3

Ant Tasks for Generating a Web Service ... 8-5
Message Processing and Reply Messages .. 8-5

Limitations... 8-6
Additional Information... 8-6

9 Developing Database Web Services

Understanding Database Web Services ... 9-1
Type Mapping Between SQL and XML ... 9-3

SQL to XML Type Mappings for Web Service Call-Ins.. 9-4
Changing the SQL to XML Mapping for Numeric Types... 9-5

XML to SQL Type Mapping for Web Service Call-Outs .. 9-5
Developing Web Services that Expose Database Resources.. 9-6

How to Use Life Cycle for Web Service Call-in... 9-6
WebServicesAssembler Support for Web Service Call-in .. 9-7
Exposing PL/SQL Packages as Web Services.. 9-8

Prerequisites .. 9-8
How to Assemble a Web Service from a PL/SQL Package.. 9-8
Ant Tasks for Generating a Web Service .. 9-11
Sample PL/SQL Package.. 9-11
Mapping Between PL/SQL Functions and Web Service Operations 9-12
Mapping PL/SQL IN and IN OUT Parameters to XML IN OUT Parameters................ 9-12
Mapping SQL XMLType to XML any .. 9-13

Exposing a SQL Query or DML Statement as a Web Service... 9-14
Prerequisites ... 9-14
How to Assemble a Web Service from a SQL Statement or Query 9-14
Ant Tasks for Assembling a Web Service from SQL Queries or DML Statements 9-16
Sample SQL Statements .. 9-16
Mapping SQL Queries to Service Operations.. 9-16
Mapping DML Operations to Web Service Operations ... 9-20

Exposing an Oracle Streams AQ as a Web Service .. 9-20
Prerequisites ... 9-20
How to Assemble a Web Service from an Oracle AQ .. 9-21
Ant Tasks for Generating a Web Service .. 9-22
Developing Client Code to Access an AQ Queue Exposed as a Web Service 9-23

vii

Accessing an Oracle AQ Queue with JMS ... 9-23
Sample AQ Queue and Topic Declaration ... 9-23
Sample Web Service for a Queue Generated by WebServicesAssembler 9-24
Sample Web Service for a Topic Generated by WebServicesAssembler 9-25

Exposing a Server-Side Java Class as a Web Service ... 9-28
Prerequisites ... 9-29
How to Assemble a Web Service from a Server-Side Java Class 9-29
Ant Tasks for Generating a Web Service.. 9-31
Sample Server-Side Java Class ... 9-31
Sample Web Service Operations Generated from a Server-Side Java Class 9-31

Developing a Web Service Client in the Database ... 9-32
Tool Support for Web Services that Expose Database Resources .. 9-33
Limitations.. 9-34
Additional Information.. 9-34

10 Assembling Web Services with Annotations

Developing Web Services with J2SE 5.0 Annotations.. 10-1
How to Use J2SE 5.0 Annotations to Assemble a Web Service from Java Classes 10-2
How to Use J2SE 5.0 Annotations to Assemble a Web Service from a Version 3.0 EJB........ 10-3
Supported J2SE 5.0 Annotation Tags ... 10-3
Oracle Additions to J2SE Annotations ... 10-3

Deployment Annotation ... 10-4
Overriding Annotations ... 10-5

Overriding Annotation Values with WebServicesAssembler... 10-5
Overriding Deployment Annotation Values with Deployment Descriptors.................. 10-5

Sample Java File with J2SE 5.0 Annotations.. 10-6
Limitations ... 10-7
Additional Information.. 10-7

11 Assembling REST Web Services

Assembling REST Web Services .. 11-1
How to Assemble a REST Web Service Top Down.. 11-2

Accessing REST Web Service Operations... 11-2
How to Assemble a REST Web Service Bottom Up ... 11-5

Accessing REST Web Service Operations... 11-5
REST Additions to Deployment Descriptors .. 11-6
Using J2SE 5.0 Annotations to Assemble REST Web Services... 11-6
Testing REST Web Services ... 11-6
Building Requests and Responses ... 11-7

HTTP GET Requests ... 11-7
HTTP POST Requests ... 11-8
REST Responses .. 11-9

Tool Support for REST Web Services .. 11-9
Limitations.. 11-9
Additional Information.. 11-9

viii

12 Testing Web Service Deployment

Using the Web Services Home Page .. 12-1
How to Access the Web Services Home Page... 12-1
How to Use the Web Services Home Page .. 12-2

Understanding the Web Service Home Page... 12-2
Understanding the Web Service Editor Page... 12-3

Editing Operation Parameters and Elements ... 12-3
Editing Security and Reliability Settings... 12-4

Understanding the Web Service Invocation Page... 12-5
Using the Web Services Home Page for REST Services .. 12-7

Obtaining a Web Service WSDL Directly .. 12-8
Limitations.. 12-8
Additional Information.. 12-8

13 Assembling a J2EE Web Service Client

Understanding J2EE Web Service Clients .. 13-1
Prerequisites... 13-1
How to Assemble a J2EE Web Service Client .. 13-2

Deploying and Running an Application Client Module.. 13-3
Ant Task for Generating an Interface ... 13-4
Adding J2EE Web Service Client Information to Deployment Descriptors.................... 13-4
Accessing a Web Service ... 13-5

Adding a Port Component Link to a J2EE Client Deployment Descriptor.............. 13-6
Adding OC4J-Specific Platform Information... 13-7
Adding JAX-RPC Handlers to Deployment Descriptors ... 13-11

Writing J2EE Web Service Client Code ... 13-11
Configuring a J2EE Web Service Client for a Stateful Web Service 13-12

Configuring a J2EE Client with Configuration Files .. 13-12
Configuring a J2EE Client Programmatically .. 13-13

Configuring a J2EE Web Service Client to Make JMS Transport Calls 13-13
Enabling Chunked Data Transfer for HTTP 1.1 ... 13-14
Setting a Character Encoding for a SOAP Message ... 13-15

Packaging a J2EE Client ... 13-16
Packaging a Servlet or Web Application Client ... 13-16

Packaging Structure for Servlet or Web Application Clients .. 13-16
Relationship Between Deployment Descriptors and Servlet or Web Application Client EAR
Files 13-16

Packaging an EJB Client ... 13-18
Package Structure for EJB Application Clients.. 13-18
Relationship Between Deployment Descriptors for EJB Application Clients............... 13-18

Limitations.. 13-19
Additional Information.. 13-20

14 Assembling a J2SE Web Service Client

Understanding J2SE Web Service Clients .. 14-1
Using Static Stub Clients .. 14-1

ix

Using the Web Service Dynamic Invocation Interface .. 14-2
Prerequisites... 14-2
How to Assemble a J2SE Web Service Client with a Static Stub.. 14-2

Ant Tasks for Generating a J2SE Web Service Client .. 14-3
Sample WSDL File ... 14-3

Writing Web Service Client Applications... 14-4
Enabling Chunked Data Transfer for HTTP 1.1 ... 14-7
Setting a Character Encoding for a SOAP Message on a J2SE Client 14-7
Setting Cookies in a Client Stub.. 14-7

Tool Support for Assembling J2SE Web Service Clients... 14-8
Additional Information.. 14-8

15 Understanding JAX-RPC Handlers

Message Handler Overview .. 15-1
Writing a JAX-RPC Handler .. 15-2
Configuring a Server-Side JAX-RPC Handler ... 15-2
Registering JAX-RPC Handlers with webservices.xml ... 15-3
Client-Side JAX-RPC Handlers .. 15-4

Registering JAX-RPC Handlers for J2EE Web Service Clients .. 15-4
Using the handler Element in a J2EE Web Service Client.. 15-4

Registering JAX-RPC Handlers for J2SE Web Service Clients ... 15-5
Limitations.. 15-6
Additional Information.. 15-6

16 Processing SOAP Headers

Processing SOAP Headers with Parameter Mapping .. 16-1
Processing SOAP Headers by Using Handlers ... 16-2
Processing SOAP Headers by Using the ServiceLifecycle Interface... 16-3

Getting HTTP Headers with the ServiceLifecycle Interface ... 16-4
Limitations.. 16-4
Additional Information.. 16-4

17 Using WebServicesAssembler

About the WebServicesAssembler Tool.. 17-1
Command Line Syntax... 17-2

Setting Up Ant for WebServicesAssembler ... 17-3
WebServicesAssembler Commands .. 17-3

Web Service Assembly Commands.. 17-3
aqAssemble .. 17-5
assemble.. 17-7
corbaAssemble... 17-9
dbJavaAssemble .. 17-11
ejbAssemble ... 17-13
jmsAssemble .. 17-15
plsqlAssemble ... 17-16
sqlAssemble ... 17-18

x

topDownAssemble.. 17-20
WSDL Management Commands .. 17-21
analyze .. 17-22
fetchWsdl.. 17-23
genConcreteWsdl .. 17-24
genQosWsdl... 17-25
genWsdl .. 17-26
Java Generation Commands.. 17-28
genInterface.. 17-29
genProxy... 17-30
genValueTypes ... 17-31
Deployment Descriptor Generation Commands.. 17-32
genApplicationDescriptor.. 17-32
genDDs ... 17-33
Maintenance Commands ... 17-34
help.. 17-35
version... 17-35

WebServicesAssembler Arguments .. 17-36
General Web Services Assembly Arguments.. 17-36

appName... 17-37
bindingName.. 17-37
classFileName... 17-37
className ... 17-37
classpath .. 17-38
debug ... 17-38
ear ... 17-38
ejbName... 17-40
emptySoapAction... 17-40
help... 17-40
initialContextFactory ... 17-40
input... 17-40
interfaceFileName.. 17-41
interfaceName .. 17-41
jndiName... 17-41
jndiProviderURL.. 17-42
mappingFileName ... 17-42
output .. 17-42
packageName ... 17-42
portName .. 17-43
portTypeName ... 17-43
restSupport.. 17-43
schema ... 17-43
searchSchema.. 17-44
serviceName ... 17-44
strictJaxrpcValidation.. 17-44
useDimeEncoding.. 17-44
war.. 17-45

xi

Session Arguments ... 17-45
callScope .. 17-45
recoverable .. 17-46
session.. 17-46
timeout... 17-46

CORBA Assembly Arguments.. 17-46
corbanameURL... 17-47
corbaObjectPath ... 17-47
idlFile ... 17-47
idlInterfaceName ... 17-47
idljPath... 17-47
ORBInitialHost ... 17-47
ORBInitialPort .. 17-47
ORBInitRef .. 17-47

Database Assembly Arguments ... 17-47
aqConnectionFactoryLocation ... 17-48
aqConnectionLocation .. 17-48
dataSource... 17-48
dbConnection ... 17-48
dbJavaClassName .. 17-48
dbUser.. 17-48
jpubProp.. 17-49
sql ... 17-49
sqlstatement .. 17-49
sqlTimeout .. 17-50
sysUser .. 17-50
useDataSource .. 17-50
wsifDbBinding.. 17-51
wsifDbPort .. 17-51

JMS Assembly Arguments... 17-51
deliveryMode ... 17-52
genJmsPropertyHeader... 17-52
jmsTypeHeader .. 17-52
linkReceiveWithReplyTo .. 17-52
payloadBindingClassName.. 17-53
priority... 17-53
receiveConnectionFactoryLocation... 17-53
receiveQueueLocation... 17-53
receiveTimeout ... 17-53
receiveTopicLocation... 17-53
replyToConnectionFactoryLocation.. 17-53
replyToQueueLocation ... 17-53
replyToTopicLocation ... 17-54
sendConnectionFactoryLocation ... 17-54
sendQueueLocation... 17-54
sendTopicLocation... 17-54
timeToLive .. 17-54

xii

topicDurableSubscriptionName .. 17-54
Proxy Arguments .. 17-55

endpointAddress.. 17-55
genJUnitTest ... 17-55

Deployment Descriptor Arguments... 17-55
appendToExistingDDs .. 17-55
context.. 17-56
ddFileName .. 17-56
uri ... 17-57

WSDL Access Arguments .. 17-57
fetchWsdlImports .. 17-57
httpNonProxyHosts... 17-57
httpProxyHost .. 17-58
httpProxyPort ... 17-58
importAbstractWsdl .. 17-58
wsdl.. 17-58

WSDL Management Arguments... 17-58
createOneWayOperations... 17-58
genQos ... 17-59
singleService .. 17-59
soapVersion .. 17-59
wsdlTimeout... 17-59
targetNamespace.. 17-59
typeNamespace .. 17-59

Message Format Arguments.. 17-60
style .. 17-60
use .. 17-60

Java Generation Arguments .. 17-60
dataBinding... 17-60
mapHeadersToParameters ... 17-61
overwriteBeans... 17-61
unwrapParameters .. 17-61
valueTypeClassName.. 17-61
valueTypePackagePrefix... 17-62
wsifEjbBinding ... 17-62
wsifJavaBinding ... 17-62

Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names
17-63

Java Package Name to WSDL Namespace Mapping Algorithm ... 17-63
Mapping Java Artifacts to WSDL Artifacts .. 17-63
Mapping Java Types to XML Schema Types ... 17-64

WSDL Namespace to Java Package Name Mapping Algorithm ... 17-64
Mapping the WSDL Service Endpoint Interface and Related Endpoint Artifacts to Java
Package and Class Names 17-65
Mapping WSDL Value Types and Related Artifacts to Java Names and Types 17-65

Specifying a Namespace .. 17-65
Specifying a Root Package Name ... 17-66

Establishing a Database Connection ... 17-66

xiii

Additional Ant Support for WebServicesAssembler ... 17-66
Using Multiple Instances of an Argument in Ant .. 17-67
Configuring Proxy Generation in an Ant Task... 17-67

Generating Handler and Port Information into a Proxy.. 17-69
Configuring a Port in an Ant Task ... 17-69
Configuring a Port Type in an Ant Task ... 17-70
Configuring Handlers in an Ant Task.. 17-71

Attributes and Child Tags for handler Tags .. 17-72
Sample Handler Configuration.. 17-73
Ant Tasks that Can Configure Handlers .. 17-73
Configuring Multiple Handlers in an Ant Task .. 17-74

Adding Files to an Archive.. 17-74
Controlling a WebServicesAssembler Build ... 17-75
Assigning Multiple Web Services to an EAR or WAR Archive ... 17-75

Limitations on Assigning Multiple Web Services to a WAR File 17-77
Representing Java Method Parameter Names in the WSDL .. 17-77

Limitations.. 17-78
Additional Information.. 17-78

18 Packaging and Deploying Web Services

Packaging Web Service Applications ... 18-2
Packaging Structure for Web Service Applications ... 18-2

Packaging for a Web Service Based on Java Classes... 18-2
Packaging for a Web Service Based on EJBs .. 18-3

Description of Packaged Files ... 18-3
Relationships Between Deployment Descriptor Files .. 18-4

webservices.xml and ejb-jar.xml... 18-4
webservices.xml and oracle-webservices.xml .. 18-5
webservices.xml and web.xml .. 18-6

Tool Support for Packaging... 18-7
Packaging Support with WebServicesAssembler .. 18-7

WebServicesAssembler Packaging Commands .. 18-7
Managing Deployment Descriptors .. 18-8

Creating Deployment Descriptors .. 18-8
Arguments that Affect Deployment Descriptor Contents.. 18-9

Packaging Support with JDeveloper .. 18-10
Understanding Web Service Deployment .. 18-10
Tool Support for Deployment... 18-10

Command Line Support for Deployment ... 18-11
A Sample Deployment Using admin_client.jar ... 18-11

Ant Task Support for Deployment ... 18-11
Deployment Support with JDeveloper .. 18-12
Deployment Support with Application Server Control .. 18-12

oracle-webservices.xml Deployment Descriptor .. 18-12
Components in oracle-webservices.xml .. 18-13

<oracle-webservices> Element... 18-13
<webservice-description> Element ... 18-14

xiv

<port-component> Element ... 18-15
Securing EJB-Based Web Services at the Transport Level... 18-16

<ejb-transport-security-constraint> Element... 18-16
<ejb-transport-login-config> Element... 18-17

oracle-webservices.xml File Listing.. 18-18
Limitations.. 18-19
Additional Information.. 18-20

A Web Service Client APIs and JARs

Web Services API Packages ... A-1
Setting the Web Service Proxy Client Classpath... A-2

Simplifying the Classpath with wsclient_extended.jar ... A-2
Classpath Components for Clients using a Client-Side Proxy ... A-3
OC4J Security-Related Client JAR Files ... A-4
WS-Security-Related Client JAR Files .. A-4
Reliability-Related Client JAR File ... A-5
JMS Transport-Related Client JAR File .. A-5
Database Web Services-Related Client JAR Files ... A-5
Sample Classpath Commands... A-6

B Oracle Implementation of the WSDL 1.1 API

Understanding the OraWSDL APIs... B-1

C Troubleshooting

OracleAS Web Services Messages.. C-1
Assembling Web Services from a WSDL.. C-4
Assembling Web Services from Java Classes .. C-4
Assembling Web Services From EJBs.. C-5
Assembling Web Services with JMS Destinations ... C-5
Developing Web Services From Database Resources .. C-5
Assembling Web Services with Annotations... C-6
Assembling REST Web Services .. C-6
Testing Web Service Deployment .. C-7
Assembling a J2EE Web Service Client... C-7
Understanding JAX-RPC Handlers.. C-7
Processing SOAP Headers ... C-7
Using WebServicesAssembler .. C-7
Packaging and Deploying Web Services .. C-9
Ensuring Interoperable Web Services ... C-9
Working with Message Attachments... C-9
Managing Web Services ... C-10
Ensuring Web Service Reliability .. C-10
Auditing and Logging Messages.. C-10
Custom Serialization of Java Value Types.. C-10
Using JMS as a Web Service Transport ... C-11
Using the Web Service Invocation Framework ... C-11

xv

Using Dynamic Invocation Interface to Invoke Web Services ... C-11
Basic Calls... C-12
Configured Calls ... C-13
Examples of Web Service Clients that use DII .. C-14

D Third Party Licenses

Apache ... D-1
The Apache Software License ... D-2

Apache SOAP... D-6
Apache SOAP License .. D-6

JSR 110 ... D-9
Jaxen ... D-9

The Jaxen License .. D-10
SAXPath .. D-10

The SAXPath License.. D-10
W3C DOM .. D-11

The W3C License... D-11

Index

xvi

xvii

 Preface

This guide describes how to use Oracle Application Server Web Services and the
Oracle WebServicesAssembler tool to assemble Web services from a variety of
resources: Java classes, EJBs, database resources, JMS destinations and J2SE 5.0
Annotations. You can also assemble REST-style Web services. The Developers Guide also
describes how to assemble J2SE and J2EE clients to access these services. This book
includes descriptions of the message formats and datatypes supported by OracleAS
Web Services.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
Oracle Application Server Web Services Developer's Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

■ Assemble Web services from Java classes, EJBs, Database Resources, and JMS
queues

■ Assemble J2SE and J2EE Web service clients

■ Work with SOAP messages in RPC-literal, RPC-encoded and document-literal
formats

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xviii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Application Server Advanced Web Services Developer's Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

This book also describes how to employ the Web Service Invocation Framework
(WSIF), the Web Service Provider API, message attachments, and management
features (reliability, logging, and auditing). It also describes alternative Web
service strategies, such as using JMS as a transport mechanism.

For your convenience, "Contents of the Oracle Application Server Advanced Web
Services Developer's Guide" on page xix lists the contents of the Oracle Application
Server Advanced Web Services Developer's Guide.

■ Oracle Application Server Web Services Security Guide

This book describes the different security strategies that can be applied to a Web
service in Oracle Application Server Web Services. The strategies that can be
employed are username token, X.509 token, SAML token, XML encryption, and
XML signature. The book describes the configuration options available for the
client and the service, for inbound messages and outbound messages. It also
describes how to configure these options for a number of different scenarios.

■ Oracle Containers for J2EE Security Guide

This book (not to be confused with the Oracle Application Server 10g Security Guide),
describes security features and implementations particular to OC4J. This includes
information about using JAAS, the Java Authentication and Authorization Service,
as well as other Java security technologies.

■ Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

■ Oracle Containers for J2EE Configuration and Administration Guide

xix

This book describes how to configure and administer applications for OC4J,
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4J, and, where
appropriate, direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Deployment Guide

This book covers information and procedures for deploying an application to an
OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Developer's Guide

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

From the Oracle Application Server core documentation group:

■ Oracle Application Server Security Guide

■ Oracle Application Server Administrator's Guide

■ Oracle Application Server Certificate Authority Administrator's Guide

■ Oracle Application Server Single Sign-On Administrator's Guide

■ Oracle Application Server Enterprise Deployment Guide

For Oracle Web Services Manager:

■ Oracle Web Services Manager User and Administrator Guide

■ Oracle Web Services Manager Extensibility Guide

■ Oracle Web Services Manager Installation and Deployment Guide

■ Oracle Web Services Manager Upgrade Guide

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

Contents of the Oracle Application Server Advanced Web Services
Developer's Guide
This book is designed to be used with the Oracle Application Server Advanced Web
Services Developer's Guide. The "Advanced" book describes topics beyond basic Web
service assembly.

For your convenience, the contents of the Oracle Application Server Advanced Web
Services Developer's Guide. are listed here.

■ Chapter 1, "Ensuring Interoperable Web Services"

■ Chapter 2, "Working with Message Attachments"

■ Chapter 3, "Managing Web Services"

■ Chapter 4, "Ensuring Web Services Security"

■ Chapter 5, "Ensuring Web Service Reliability"

■ Chapter 6, "Auditing and Logging Messages"

■ Chapter 7, "Custom Serialization of Java Value Types"

■ Chapter 8, "Using JMS as a Web Service Transport"

xx

■ Chapter 9, "Using Web Services Invocation Framework"

■ Chapter 10, "Using Web Service Providers"

■ Appendix A, "Understanding the Web Services Management Schema"

■ Appendix B, "JAX-RPC Mapping File Descriptor"

■ Appendix C, "Web Service MBeans"

■ Appendix D, "Mapping Java Types to XML and WSDL Types"

■ Appendix E, "Troubleshooting"

Links to Related Specifications
The following sections collate references to documentation that appear in the text of
this manual:

■ Java Technology Documents

■ OC4J-Related Documents

■ SOAP-Related Documents

■ WSDL-Related Documents

■ UDDI-Related Documents

■ Encryption-Related Documents

Java Technology Documents
■ Java 2 Platform Enterprise Edition (J2EE), version 1.4 API specification:

http://java.sun.com/j2ee/1.4/docs/api

■ XML Schemas for J2EE Deployment Descriptors lists the document formats used
by the Java 2 Platform, Enterprise Edition (J2EE) deployment descriptors which
are described by J2EE 1.4 and later specifications:

http://java.sun.com/xml/ns/j2ee/

■ J2EE client schema provides the XSD for a J2EE Web service client:

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_
1.xsd

■ Java API for XML-based RPC (JAX-RPC) to build Web applications and Web
services. This functionality incorporates XML-based RPC functionality according
to the SOAP 1.1 specification.

http://java.sun.com/webservices/jaxrpc/index.jsp

■ Java Servlet 2.4 specification:

http://www.jcp.org/aboutJava/communityprocess/final/jsr154/in
dex.html

OC4J-Related Documents
■ A list of OC4J schemas, including proprietary deployment descriptors:

http://www.oracle.com/technology/oracleas/schema/index.html

■ Oracle UDDI v2.0 server implementation:

http://www.oracle.com/technology/tech/webservices/htdocs/uddi
/index.html

xxi

■ Oracle Database JPublisher User's Guide

SOAP-Related Documents
■ SOAP 1.1 and 1.2 specifications (main page):

http://www.w3.org/TR/SOAP

■ SOAP 1.1 specifications:

– specification:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

– SOAP 1.1 message encoding:

http://schemas.xmlsoap.org/soap/encoding/

– SOAP 1.1 binding schema:

http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd

The SOAP 1.2 binding schema is identical to the SOAP 1.1 binding schema,
except that the target namespace is:

http://schemas.xmlsoap.org/wsdl/soap12/

■ SOAP 1.2 specification:

– SOAP 1.2 Part 1: Primer:

http://www.w3.org/TR/soap12-part0/

– SOAP 1.2 Part 1: Messaging Format:

http://www.w3.org/TR/soap12-part1/

– SOAP 1.2 Part 2 Recommendation (Adjuncts):

http://www.w3.org/TR/soap12-part2/

– SOAP 1.2 message encoding:

http://www.w3.org/2003/05/soap-encoding/

– HTTP transport for SOAP 1.2:

http://www.w3.org/2003/05/soap/bindings/HTTP

– SOAP binding schema:

 http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd

– Definition of the fault code element in the SOAP schema:

http://schemas.xmlsoap.org/soap/envelope/2004-01-21.xsd

WSDL-Related Documents
Web Services Description Language (WSDL) specifications:

http://www.w3.org/TR/wsdl

UDDI-Related Documents
Universal Description, Discovery and Integration specifications:

http://www.uddi.org/

xxii

Encryption-Related Documents
■ Key Transport algorithms:

– RSA-1_5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

– RSA-OAEP-MGF1P:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

■ Signature keys:

– RSA-SHA1:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

– RSA-MD5:

http://www.w3.org/2001/04/xmldsig-more#rsa-md5

– HMAC-SHA1:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

– DSA-SHA1:

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Web Services Overview 1-1

1
Web Services Overview

This chapter provides an overview of Oracle Application Server Web Services for the
10.1.3 release. Chapter 2, "Oracle Application Server Web Services Architecture and
Life Cycle", describes the architecture of Oracle Application Server Web Services.

■ Understanding Web Services

■ Web Services Standards

■ New and Enhanced Features

■ Compatibility with Previous Versions of Web Services

■ Clustered Environments and High Availability

■ OC4J in a Standalone Versus Oracle Application Server Environment

Understanding Web Services
Web services comprise a set of messaging protocols, programming standards, and
network registration and discovery facilities. When they are used together, these
features enable the publication of business functions to authorized parties over the
Internet from any device connected to the Web.

A Web service is a software application identified by a Universal Resource Identifier
(URI), whose interfaces and binding are capable of being defined, described, and
discovered by XML artifacts. A Web service supports direct interactions with other
software applications using XML-based messages and Internet-based products.

A Web service:

■ Exposes and describes itself—A Web service defines its functionality and
attributes so that other applications can understand it. By providing a Web Service
Description Language (WSDL) file, a Web service makes its functionality available
to other applications.

■ Allows other services to locate it on the Web—A Web service can be registered in a
Universal Description, Discover, and Integration (UDDI) Registry so that
applications can locate it.

■ Can be invoked—Once a Web service has been located and examined, the remote
application can invoke the service using an Internet standard protocol.

■ A Web service style is either request or response, or one-way, and it can use either
synchronous or asynchronous communication. However, the fundamental unit of
exchange between a Web service client and a Web service, of either style or type of
communication, is a message.

Web Services Standards

1-2 Web Services Developer's Guide

Web services offer a standards-based infrastructure through which any business can
do the following:

■ Offer appropriate internal business processes as value-added services that can be
used by other organizations

■ Integrate its internal business processes and dynamically link them with those of
its business partners

Web Services Standards
With the current release, Oracle has extended the Web services infrastructure to
implement version 1.4 of the Java 2 Enterprise Edition (J2EE) specification for Web
services. This section lists the standards that this release of Web services complies
with.

■ Java 2 Enterprise Edition

■ Simple Object Access Protocol 1.1 and 1.2

■ Web Service Description Language 1.1

■ Web Service-Interoperability Basic Profile 1.1

Java 2 Enterprise Edition
The current release of Web services is compatible with these Java J2EE standards:

■ JAX-RPC 1.1—defines client APIs, support for message handlers, and ways to
implement service endpoints

■ EJB 2.1—defines the EJB API. The standard JAX-RPC 1.1 specifies how to expose
an EJB as a Web service endpoint

■ SAAJ 1.2—defines how to process SOAP messages with attachments

■ Enterprise Web Services 1.1 specification—(also known as JSRs 109 and 921)
specifies how to deploy and execute Web services

Simple Object Access Protocol 1.1 and 1.2
The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for
exchanging information in a decentralized distributed environment. SOAP supports
different styles of information exchange, including Remote Procedure Call style (RPC)
and message-oriented exchange. RPC style information exchange allows for
synchronous request and response processing, where an endpoint receives a procedure
oriented message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that must exchange
business or other styles of documents in which a message is sent but the sender may
not expect or wait for an immediate response (asynchronous). Message-oriented
information exchange is also called document-style exchange.

SOAP has these features:

■ Protocol independence

■ Language independence

■ Platform and operating system independence

■ Support for RPC/Encoded and Document/Literal message formats

New and Enhanced Features

Web Services Overview 1-3

■ Support for SOAP XML messages incorporating attachments (using the multipart
MIME structure)

The current release of Oracle Application Server Web services supports the SOAP 1.2
protocol and is backward compatible with SOAP 1.1.

See also http://www.w3.org/TR/SOAP for more detailed information on the SOAP
1.1 and 1.2 specifications.

Web Service Description Language 1.1
Web Services Description Language (WSDL) is an XML format for describing network
services containing RPC-oriented and message-oriented information. Programmers or
automated development tools can create WSDL files to describe a service and can
make this description available over the Internet. Client-side programmers and
development tools can use published WSDL descriptions to obtain information about
available Web services and to build and create client proxies or program templates that
access available services.

See also http://www.w3.org/TR/wsdl for information on the WSDL format.

Web Service-Interoperability Basic Profile 1.1
Web Service-Interoperability (WS-I) is an organization that promotes Web services
interoperability across platforms, applications, and programming languages. The
current release conforms to the WS-I Basic Profile 1.1.

New and Enhanced Features
In addition to the preceding standards, the current release of OracleAS Web Services
contains these new and enhanced features:

■ Web Service Security for Authentication, Integrity, and Confidentiality

■ Web Services Management Framework and Application Server Control

■ Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations)

■ REST Web Services

■ Enhanced Web Service Home Page for Testing

■ Ant Tasks for Configuration and Scripting

■ Custom Type Mapping Framework for Serialization

■ Database Web Services

■ SOAP Header Support

■ MIME and DIME Document Support

■ Message Delivery Quality of Service

■ JMS Transport as an Alternative to HTTP

■ Web Services Provider Support

■ Web Services Invocation Framework for Describing WSDL Programming Artifacts

■ SOAP Message Auditing and Logging

■ Oracle BPEL

New and Enhanced Features

1-4 Web Services Developer's Guide

Web Service Security for Authentication, Integrity, and Confidentiality
The WS-Security standard, published and maintained by the Organization of the
Advancement of Structure Information Standards (OASIS), provides profiles for Web
services authentication, message encryption, and digital signatures. The current
release provides an implementation of WS-Security with the following capabilities:

■ XML Signature

■ XML Encryption

■ Username Token

■ X.509 Token

■ SAML Token

For more information on Web service security, see the Oracle Application Server Web
Services Security Guide.

Web Services Management Framework and Application Server Control
The management framework provides configuration and monitoring capabilities for
security, reliability, logging, and auditing through the Web-based Application Server
Control. These features are exposed through a series of Java Management Extensions
(JMX) Management beans (Mbeans).

For more information on Web services management, see "Managing Web Services" in
the Oracle Application Server Advanced Web Services Developer's Guide. For more
information on the Web service features that you can control through MBeans, see
"Web Service MBeans" in the Oracle Application Server Advanced Web Services Developer's
Guide.

Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations)
The current release provides support for J2SE 5.0 Web Service annotations (also known
as the Web Services Metadata for the Java Platform (JSR-181) specification). The
specification defines an annotated Java syntax for programming Web services.
Chapter 10, "Assembling Web Services with Annotations" describes how the
annotations are supported and Oracle extensions to the specification.

REST Web Services
The current release provides support for Representational State Transfer (REST)
services. This architecture leverages the architectural principles of the Web. It uses the
semantics of HTTP whenever possible.

Unlike SOAP Web Services, REST is a "style" and has no standards or tools support
from vendors. Also, REST Web services use XML documents, not SOAP envelopes, for
sending messages.

You can assemble REST Web services with the WebServicesAssembler tool or by
adding J2SE 5.0 Web Service annotations to your source files. You can then use the Web
Service Home Page to see if they deployed successfully and to test their functionality.
Chapter 11, "Assembling REST Web Services" provides more information on
assembling REST Web services.

New and Enhanced Features

Web Services Overview 1-5

Enhanced Web Service Home Page for Testing
The functionality of the Web Service Home Page has been expanded beyond testing
whether the Web Service deployed correctly. The Home Page lets you input parameter
values to the operations you want to test. You can display and edit the SOAP request
that will be sent to the service. It also displays the response returned by the service. If
your Web service defines security and reliability features, then editors in the Home
Page allow you to test the service with different security and reliability values.

The Home page also enables you to test Web Service Providers and REST Web
Services. For a REST Web service, the Home Page provides the same functionality as
for JAX-RPC Web Services however, it also lets you generate and view the REST POST
request and invoke the REST GET URL.

Chapter 12, "Testing Web Service Deployment" provides more information on how to
use the Web Service Home Page.

Ant Tasks for Configuration and Scripting
The current release provides Ant tasks for Web services development, with a focus on
enabling the scripting and automation of Web service client and server development.
Sample Ant tasks are provided throughout this manual. Many of the details for setting
up Ant are described in "Setting Up Ant for WebServicesAssembler" on page 3-3.
Examples of how to write Ant tasks for Web service assembly commands are
presented in Chapter 17, "Using WebServicesAssembler".

Custom Type Mapping Framework for Serialization
Web services in complex systems are often required to map data types beyond the
native types automatically serialized into XML by the Web services runtime. The
current release offers a custom type-mapping framework for mapping custom data
types.

For more information on working with nonstandard data types in your Web service,
see "Custom Serialization of Java Value Types" in the Oracle Application Server Advanced
Web Services Developer's Guide.

Database Web Services
The current release continues to support publishing PL/SQL as a Web service and
using OracleAS Web Services as the Java runtime in the Oracle Database 10g for
call-outs to Web services.

The current release extends the runtime and tool support to declaratively define the
following database artifacts as Web services:

■ PL/SQL stored procedures

■ SQL queries

■ DML statements

■ Java classes loaded within the database virtual Java machine

■ Oracle Streams AQ (Advanced Queues)

For more information on implementing database artifacts as a Web service, see
Chapter 9, "Developing Database Web Services".

New and Enhanced Features

1-6 Web Services Developer's Guide

SOAP Header Support
The current release facilitates advanced manipulation of SOAP headers using two
JAX-RPC-compliant mechanisms:

■ A mechanism to programmatically intercept SOAP headers using JAX-RPC
handlers. This mechanism allows processing SOAP headers out-of-band from the
processing of the main SOAP message.

■ A mechanism to automatically map SOAP headers to member variables in Java
classes. This mechanism enables you to treat SOAP headers as variables in the
Web service implementation through a declarative mapping process instead of a
programmatic process.

For more information on SOAP headers, see Chapter 15, "Understanding JAX-RPC
Handlers". For more information on processing SOAP headers, see Chapter 16,
"Processing SOAP Headers".

MIME and DIME Document Support
To facilitate efficient transfer of binary documents and large XML documents, the
current release supports MIME and DIME attachments:

■ Multipurpose Internet Mail Extensions (MIME) attachments conform to the WS-I
Attachment Profile for both WSDL to Java consumption, and Java to WSDL
publication of Web services requiring SOAP with MIME attachments.

■ Direct Internet Message Encapsulation (DIME) attachments conforming to the
Microsoft Corporation analog to MIME. Oracle offers DIME support for backward
compatibility with other implementations, because Microsoft no longer
encourages DIME for attachments.

For more information on how OracleAS Web Services supports MIME and DIME
attachments, see "Working with Message Attachments" in the Oracle Application Server
Advanced Web Services Developer's Guide.

Message Delivery Quality of Service
The current release provides an OASIS Web Service Reliability (WS-Reliability)
implementation with guaranteed at-least-once message delivery, duplicate message
elimination (at most once delivery), exactly once message delivery (guaranteed
delivery and duplicate elimination), and message ordering within groups of messages.

For more information on reliability, see "Ensuring Web Service Reliability" in the Oracle
Application Server Advanced Web Services Developer's Guide.

JMS Transport as an Alternative to HTTP
As an alternative to HTTP, the current release enables the use of JMS queues as a
transport for SOAP messages. JMS provides a higher level of reliable message delivery
for SOAP messages.

Where HTTP is required as the transport, the current release continues to support the
ability to put and get SOAP messages from JMS queues and topics, and adds the
functionality of correlating messages processed in this manner.

For more information on using JMS to develop Web services, see Chapter 8,
"Assembling Web Services with JMS Destinations".

New and Enhanced Features

Web Services Overview 1-7

For more information on using JMS as a transport mechanism for Web services, see
"Using JMS as a Web Service Transport" in the Oracle Application Server Advanced Web
Services Developer's Guide.

Web Services Provider Support
The Provider API lets you define custom processing logic for a Web services endpoint
that is not tied to any particular service endpoint implementation strategy, such as
JAX-RPC. The Provider model can be used to provide common functionality to a
number of endpoints. Rather than incorporating the same functions into many Web
services, the Provider model enables you to add the logic into the runtime directly

For more information on Web service providers, see "Using Web Service Providers" in
the Oracle Application Server Advanced Web Services Developer's Guide.

Web Services Invocation Framework for Describing WSDL Programming Artifacts
The Web Services Invocation Framework (WSIF) provides a general purpose,
extensible mechanism to describe programmatic artifacts using WSDL and a
framework to invoke those artifacts using their native protocols. The current release
supports an initial implementation of WSIF.

For more information on WSIF, see "Using Web Services Invocation Framework" in the
Oracle Application Server Advanced Web Services Developer's Guide.

SOAP Message Auditing and Logging
The current release provides the ability to record inbound and outbound SOAP
messages into logging and auditing files. Entire messages or parts of messages can be
logged by subquerying through the use of Xpath statements.

For more information on logging and auditing messages, see "Auditing and Logging
Messages" in the Oracle Application Server Advanced Web Services Developer's Guide.

Oracle BPEL
BPEL (Business Process Execution Language) is a standard published by the
Organization of the Advancement of Structure Information Standards (OASIS) and
backed by major vendors including Oracle. BPEL describes an XML syntax for
describing a business process through a "composition of invocations of (other)
Business Processes—typically Web services". A BPEL process definition, therefore, is
an XML document composed according to an XSD that is maintained by OASIS.

A business process, in BPEL terms, is composed of invocations (call-outs to Web
services), receptions (call-ins from external services), decision points with simple
conditional logic and parallel flows or sequences, that in turn consist of invocations,
decision points, and so on. Variables can be defined as part of a business process. They
can be assigned values from parameters passed to the business process at startup,
passed along in invocations, given values from the results of invocations, and returned
as the final result of the business process. A business process itself is also implemented
as a Web service—in the BPEL (runtime) engine.

The Oracle implementation of BPEL uses WSIF technology to directly invoke business
processes. In certain cases, the actual invocation from BPEL can be a direct call to a
Java class without the Web service overhead of marshalling and unmarshalling SOAP
messages.

For more information on Oracle BPEL, see the following Web site:

Compatibility with Previous Versions of Web Services

1-8 Web Services Developer's Guide

http://www.oracle.com/technology/products/ias/bpel/index.html

Compatibility with Previous Versions of Web Services
Applications designed to run with versions 9.0.4 or 10.1.2 of the Oracle Application
Server can be used with version 10.1.3. While you can still deploy your 9.0.4 or 10.1.2
Web Services in the 10.1.3 Application Server, you will not be able to see them in the
management console.

Redeploying Applications on OracleAS Web Services 10.1.3
For backward compatibility, Oracle Application Server 10g Release 3 (10.1.3) includes
the underlying software required to run 10g Release 2 (10.1.2) Web services. As a
result, Web services applications designed to run with Oracle Application Server 10g
(9.0.4) and 10g Release 2 (10.1.2) can be used without modification with Release 3.

However, there are significant advantages to recreating your Web services for 10g
Release 3 (10.1.3). For example, you can take advantage of the all the new features such
as quality of service (QOS), a standard-based development model (JAX-RPC), and
JMX-based management.

Oracle Application Server Upgrade and Compatibility Guide provides more information on
redeploying your existing Web service applications to OracleAS Web Services 10.1.3.

Deprecated Features
The version 10.1.2 Web services stack is being deprecated, however, it is still supported
in version 10.1.3.

The ws.debug system property and its related behavior has been deprecated.

Clustered Environments and High Availability
To use OracleAS Web Services in a clustered environment, you must install the service
on every machine in the cluster. Application Server Control enables you to easily
deploy a service to a group of instances within an Oracle Application Server cluster.
For more information on deploying to a group of instances, see "Deploying to OC4J
Instances Within a Cluster" in the Oracle Containers for J2EE Deployment Guide.

If you install a standard, stateless Web service, then a clustered deployment will result
in multiple instances that can process requests, but cannot share state.

If you install a stateful Web service, then those instances will share state. If the service
is not installed on all machines in a cluster, then the cluster dispatcher might dispatch
a service request to a machine that does not have the service, resulting in an error on
the service invocation.

To support a clustered environment, for stateful Java Web services with serializable
Java classes, the WebServicesAssembler adds a <distributable> tag in the
web.xml of the Web service¹s generated J2EE EAR file.

OC4J in a Standalone Versus Oracle Application Server Environment
During development, it is typical to use OC4J by itself, outside an OracleAS Web
Services environment. We refer to this as standalone OC4J (or, sometimes, as
unmanaged OC4J). In this scenario, OC4J can use its own Web listener and is not
managed by any external Oracle Application Server processes.

OC4J in a Standalone Versus Oracle Application Server Environment

Web Services Overview 1-9

In contrast, a full Oracle Application Server environment (sometimes referred to as
managed OC4J), includes the use of Oracle HTTP Server as the Web listener, and the
Oracle Process Manager and Notification Server (OPMN) to manage the environment.

See the Oracle Containers for J2EE Configuration and Administration Guide for additional
information about Oracle Application Server versus standalone environments and
about the use of Oracle HTTP Server and OPMN with OC4J.

See the Oracle HTTP Server Administrator's Guide for general information about the
Oracle HTTP Server and the related mod_oc4j module. (Connection to the OC4J
servlet container from Oracle HTTP Server is through this module.)

See the Oracle Process Manager and Notification Server Administrator's Guide for general
information about OPMN.

OC4J in a Standalone Versus Oracle Application Server Environment

1-10 Web Services Developer's Guide

Oracle Application Server Web Services Architecture and Life Cycle 2-1

2
Oracle Application Server Web Services

Architecture and Life Cycle

This chapter provides an overview of the components that comprise Oracle
Application Server Web Services and publishable service artifacts. These components
are defined by the Java API for XML-Based RPC (JAX-RPC). This API enables Java
technology developers to build Web applications and Web services incorporating
XML-based RPC functionality according to the SOAP (Simple Object Access Protocol)
1.1 specification.

Architecture
The OracleAS Web Services stack is designed with three primary goals in mind:
performance, interoperability, and manageability. This section describes how the Web
services runtime is structured to provide enterprise-quality infrastructure for
SOAP-based communication endpoints.

Processing Components
Each step in the processing of a Web services request is represented by a logical
component in the runtime infrastructure. As an XML message is delivered to the
system, it flows through the following layers before being delivered to an endpoint
implementation: protocol handlers, XML processor, policy enforcement pipeline,
JAX-RPC handlers, data binding, and the endpoint implementation. Response
messages flow through the same infrastructure following a reverse path.

Figure 2–1 How XML Messages Flow From Client to Service

Web Service
Client

XML
Message
Request

Data
Binding

JAX-RPC
Handlers

XML
Processor

Protocol
Handlers

Policy
Enforcement

XML
Message
Response

Endpoint
Implementation

Web Service

Architecture

2-2 Web Services Developer's Guide

This section describes the purpose of each of these processing layers. Where
appropriate, pointers to other sections are provided for more detailed information on
system functionality and configuration.

Protocol Handlers
A protocol handler provides the entry point to the Web services infrastructure. The
protocol handler is used to send and receive SOAP messages over a transport protocol.
The Web services infrastructure can be configured to send and receive messages over
HTTP or JMS.

If the messages are sent over HTTP, the OracleAS Web Services stack uses the Oracle
HTTP Client libraries for sending Web services messages to services and the OC4J
Servlet engine for receiving Web services messages sent by clients. All of the
capabilities and management infrastructure of the Oracle servlet environment are
available to Web services. For example, a Web service can be accessed with an
encrypted data stream using HTTP or HTTPS.

JMS transport may be configured to work with different JMS providers. It is integrated
into the application server by using the JMS infrastructure provided with the Oracle
Application Server. JMS is often used to gain the full quality of service features of a
message bus during a SOAP message exchange.

XML Processing
Once the SOAP message is retrieved from the transport layer, it is converted into an
XML message representation that is compatible with the SOAP with Attachments API
for Java (SAAJ). The SAAJ message is constructed using Oracle's optimized XML
parsing technologies for performance and efficient memory utilization. This message
is the basis for the JAX-RPC compliant SOAP processing infrastructure provided with
OC4J. Once instantiated, the SAAJ message is delivered to the next layer of the
processing stack.

Some portions of the SOAP request may not be XML. For example, a SOAP message
may be sent with attachments, which are used to package non-XML content along
with a SOAP message. The SAAJ implementation also deals with these attachments.

Though the default processing of XML messages assumes the message payload is
encoded in a SOAP 1.1 or SOAP 1.2 compliant envelope, the OracleAS Web Services
stack can also be configured to accept and dispatch XML messages over HTTP directly
without using SOAP. This allows developers to create applications that integrate
directly with existing HTTP infrastructure that is not aware of the SOAP protocol.
Applications can be built to conform to the REST architecture style, using HTTP and
URLs to define the messages that describe the system.

When configured to use XML-over-HTTP messaging, the infrastructure determines if a
message contains an application message directly or a SOAP envelope as the top level
element of the payload. If the message is "raw" XML, the processing layer will wrap
the message in a SOAP envelope with no headers. This SOAP envelope can then be
processed through the rest of the Web services processing elements and delivered to
the endpoint implementation for processing.

The XML message is next processed by the policy enforcement mechanisms of the Web
services stack.

Policy Enforcement
The OracleAS Web Services stack can be configured with additional information to
enable a management chain that is responsible for enforcing runtime management
policies. These policies include Web services management features like WS-Reliability,

Architecture

Oracle Application Server Web Services Architecture and Life Cycle 2-3

WS-Security, auditing, and logging capabilities."Managing Web Services" in the Oracle
Application Server Advanced Web Services Developer's Guide provides more information
on the setup of these features. The Oracle Application Server Web Services Security Guide
provides more information on setting up security. Enabled policies can be included in
the WSDL document associated with a service to support automated configuration of
client interceptor pipelines.

One of the protocols that the OracleAS Web Services stack supports is the
WS-Reliability standard, which provides delivery guarantees for SOAP messages. The
reliability infrastructure supports additional capabilities that allow the system
infrastructure to send and receive asynchronous acknowledgment messages that
conform to the WS-Reliability protocol. This is supported as an extension to the Oracle
client infrastructure, which is available when using a JAX-RPC Stub or Call object.

The interceptor chain can also be configured to delegate to the OracleAS Web Services
Management agent pipeline. This provides pre-integrated support for OracleAS Web
Services Management product and capabilities that support management of policies
for Web services across a data center.

The management interceptors provide a runtime infrastructure for systems services
that are provided in OC4J. Application-specific interceptors are supported in
conformance with the JAX-RPC 1.1 Handler API.

JAX-RPC Handlers
Handlers are configured to process application-specific SOAP headers according to
specific roles or actor attributes. The handlers have access to a SAAJ representation of
the SOAP message and can perform operations on any level of the SOAP message. Use
of the Handler API is described in Chapter 15, "Understanding JAX-RPC Handlers"
and Chapter 16, "Processing SOAP Headers".

Together, the interceptors and the handlers are used to enforce the SOAP processing
model. This allows Web services endpoints to selectively process SOAP headers that
are intended for a particular node. SOAP messages can then be passed along to other
nodes in the system and SOAP headers are processed as required.

Data Binding
In many applications, portions of the XML payload are converted to Java objects that
are used by the application framework. This capability is often called data binding,
where portions of XML data are bound to members of a Java class hierarchy. The
process of data binding is driven through the serialization framework, which manages
the conversion from XML to Java. The serialization framework is extensible and allows
developers to define custom type mapping from XML data to Java objects.

The OC4J runtime features a special "provider" implementation that is optimized for
processing SAAJ messages. When the provider is used, no data binding is performed.
Providers can be used to implement applications that work directly with XML payload
in a SOAP message.

Endpoint Implementation
After passing through the preceding four layers of the Web services stack, the
endpoint implementation containing the application business logic is invoked. The
endpoint can be a regular Java class, an Enterprise Java Bean, or a provider. The
endpoint can also be a JMS queue when a JMS endpoint configuration is enabled.

In the OracleAS Web Services container, there are very few requirements that a Java
class must conform to in order to be exposed as a Web service. If the endpoint
implementation requires more complex interaction with the container throughout its

Web Services Development Life Cycle

2-4 Web Services Developer's Guide

life cycle, it can implement a JAX-RPC ServiceLifecycle interface, which provides
more information about the Web services requests to the endpoint during initialization
of the service and while handling requests.

Java classes may also be augmented with Web services specific annotations. These
annotations can be used to provide additional configuration information specifying
what methods are exposed as Web services operations, what protocols can be used to
access the service, and so on. Chapter 10, "Assembling Web Services with Annotations"
provides more information about OracleAS Web Services support for J2SE 5.0 JDK
Web Service Annotations.

Java Management Extensions (JMX)
While the interceptor pipeline is used to enforce management policies, systems
management capabilities are exposed in the OracleAS Web Services stack by using the
Java Management Extensions (JMX) standard. JMX allows administrators to gather
important metrics on the health of a running OC4J system and to change the
configuration of a running system. JMX metrics and operations are available in the
Web services console in the Application Server Control tool.

Development Tools
Another key feature of the OracleAS Web Services implementation is the development
tools that allow for the development and deployment of endpoint implementations.
Web services can be developed using either command line tools or a Java Integrated
Development Environment (IDE).

WebServicesAssembler (WSA), the command line tool, is used to generate artifacts
required to deploy a Web service from WSDL or endpoint implementation classes. It is
useful for automating the creation of Web services in a scripted environment since, in
addition to command line, it exposes its functionality as Ant tasks.

JDeveloper, Oracle's full-featured Java IDE, can be used for end-to-end development of
Web services. Developers can build Java classes or EJBs, expose them as Web services,
automatically deploy them to an instance of the Oracle Application Server, and
immediately test the running Web service. Alternatively, JDeveloper can be used to
drive the creation of Web services from WSDL descriptions. Like
WebServicesAssembler, JDeveloper also is Ant-aware. You can use this tool to build
and run Ant scripts for assembling the client and for assembling and deploying the
service.

Web Services Development Life Cycle
This section describes the stages of Web service development.

1. Create the Implementation

2. Generate the Web Service

3. Generate the Client

4. Deploy the Web Service

5. Test the Web Service

6. Perform Post Deployment Tasks

Web Services Development Life Cycle

Oracle Application Server Web Services Architecture and Life Cycle 2-5

Create the Implementation
Create the implementation that you want to expose as a Web service. OracleAS Web
Services allows a variety of artifacts to be exposed as a Web service, including:

■ Java classes

■ Enterprise Java Beans (EJBs)

■ JMS queues or topics

■ PL/SQL procedures

■ SQL Statements

■ Oracle Advanced Queues

■ Java classes in the database

■ CORBA servant objects

You can develop these artifacts using any tool or IDE. Oracle JDeveloper enables you
to create Java classes, JMS queues and topics, PL/SQL procedures, CORBA servant
objects, and EJBs.

Generate the Web Service
OracleAS Web Services provides a variety of commands that let you generate a Web
service by using either a top down (starting with a WSDL) or a bottom up (starting
with Java classes, EJBs, database artifacts, or JMS queues) approach. These commands
are described in "Web Service Assembly Commands" on page 17-3. These commands
can be issued on the command line or they can be written as tasks in an Ant script.

Since JDeveloper is fully Ant-aware, you can use this tool to build and run the Ant
scripts. JDeveloper also has design-time wizards which symmetrically mirror several
of the Web service generation commands. Using these wizards can speed your
development process and save you the steps of creating the build scripts.

Most current Java IDEs (such as Eclipse) are also Ant-aware. You can use any of these
IDEs to run the Ant scripts if you choose not to use JDeveloper.

If you need to invoke other OracleAS Web Services commands, for example, to
generate a WSDL or to add quality of service features, you can invoke them on the
command line or with Ant tasks. While there are no design-time wizards to support
these commands, the Ant tasks can be run directly in JDeveloper.

Generate the Client
OracleAS Web Services provides commands that can be used to generate J2SE and
J2EE client code.

Oracle JDeveloper supports OC4J J2SE Web service clients by allowing developers to
create Java stubs from Web service WSDL descriptions. These stubs can then be used
to access existing Web services.

Deploy the Web Service
Web services deployment can be performed either with Java-language commands or
with Ant tasks. The Ant tasks can reside in a build file or they can be issued directly
from JDeveloper. JDeveloper also has a deployment wizard which configures the
deployable EAR file and deploys it.

Web Services Development Life Cycle

2-6 Web Services Developer's Guide

Deployment can also be performed with Application Server Control. However, this
tool cannot be used to configure the EAR file or change its contents.

Test the Web Service
The OracleAS Web Services stack provides a Web Service Home Page for each
deployed Web service. By entering a service endpoint address in a Web browser, you
can access the operations that the Web service exposes. Interactive pages let you
invoke the operations for values that you enter.

The WebServicesAssembler command line tool can generate tests suitable for the JUnit
framework for every method in the Web service. If you use the WebServicesAssembler
tool to generate JUnit tests for the assemble, plsqlAssemble, and genProxy
commands, then JDeveloper can import them by default.

Perform Post Deployment Tasks
There are a number of tasks you can perform post-deployment. Some of these involve
fine-tuning the performance of the Web service, such as changing security and logging
policies. Others involve larger changes to the Web service, such as changing a key
store configuration. You can make some of these changes dynamically; for others, you
must redeploy the Web service. To perform these tasks, use Oracle Application Server
Control. For more information on these tasks, see the Application Server Control
on-line help.

Getting Started 3-1

3
Getting Started

The README.txt file that is included at the top level of the OC4J distribution
provides instructions for setting up and running OC4J. This chapter serves as an
addendum to the README. It provides information that is specific to setting up Oracle
Application Server Web Services in your environment.

This chapter provides the following sections.

■ Supported Platforms

■ Installing OC4J

■ Setting Up Your Environment for OracleAS Web Services

■ Setting Up Ant for WebServicesAssembler

■ Database Requirements

■ Development and Documentation Roadmap

Supported Platforms
OracleAS Web Services is supported on the following platforms.

■ Redhat Linux

■ Solaris Sparc 32- and 64-bit

■ Microsoft Windows: Windows XP, Windows 2000, Windows Server 2003

Installing OC4J
Follow the instructions in the README.txt file for installing and running OC4J. The
README.txt file can be found at the top-level of the OC4J distribution.

Setting Up Your Environment for OracleAS Web Services
This section lists the software you must install and environment variables you must
define to use OracleAS Web Services.

■ Java2 Standard Edition (J2SE) JDK version 1.4.1 or later

■ Java2 Standard Edition (J2SE) JDK version 5.0 or later, if you are using the JDK 5.0
Web Service Annotations feature

■ Jakarta Ant 1.5.x or 1.6.x (recommended) is required if you will be using Ant tasks
to assemble Web services. Jakarta Ant 1.6.x is included in the OracleAS Web
Services distribution.

Setting Up Your Environment for OracleAS Web Services

3-2 Web Services Developer's Guide

– If you want to have your own installation, you can obtain Ant from the
following Web address.

http://jakarta.apache.org/ant/index.html

– If you are using your own installation of Ant, see "Setting Up Ant for
WebServicesAssembler" on page 3-3 for instructions on setting up Ant to
assemble Web services.

– If you installed the version of Ant that is distributed with Oracle Application
Server, then Ant tasks for OracleAS Web Services will already be configured.
Follow the instructions under "Setting Up Ant 1.6.2 Distributed with Oracle
Application Server" to appropriately modify your environment and build files.

■ Define the following environment variables:

– ORACLE_HOME—define this variable to point to the OC4J installation directory.

– JAVA_HOME—define this variable to point to the J2SE SDK installation
directory.

■ Add the following files or paths to the classpath:

– OracleAS Web Services expects JAVA_HOME/bin/java to point to the Java
VM and JAVA_HOME/bin/javac to point to the Java compiler executables.

– To make assembly of Web services and the processing of XML files more
convenient, add the paths to the WebServicesAssembler JAR, ORACLE_
HOME/webservices/lib/wsa.jar, and the XML parser JAR, ORACLE_
HOME/lib/xmlparserv2.jar, to the classpath.

– If you want to assemble and compile your Web Services programs using Ant,
appropriate CLASSPATH settings can be found in the Ant scripts
accompanying the Web Services example code. If you want to invoke the
WebServicesAssembler and compile generated code on the command line, you
may want to add the full complement of libraries to your CLASSPATH.
"Sample Classpath Commands" on page A-6 provides a sample Windows
platform set CLASSPATH command for all of the OracleAS Web Services
client JAR files. The classpath on the UNIX platform would be set in a similar
manner.

– OracleAS Web Services provides a separate library, wsclient_
extended.jar, for running Web services clients in a J2SE environment. This
library includes everything that would be required by OracleAS Web Services
clients in a J2SE environment and should simplify the packaging and
distribution of your J2SE client applications. You can find the wsclient_
extended.jar file at the following address on the Oracle Technology
Network Web site.

http://download.oracle.com/otn/java/oc4j/1013/wsclient_
extended.zip

If you installed the OC4J companion CD, then the wsclient_extended.jar
file can also be found in the ORACLE_HOME/webservices/lib directory.

"Simplifying the Classpath with wsclient_extended.jar" on page A-2 provides
more information on wsclient_extended.jar file.

■ If you will be enabling reliable messaging between the client and server, you must
run SQL scripts that will install tables for both the client and server. "Installing
SQL Tables for the Client and Server" in the Oracle Application Server Advanced Web
Services Developer's Guide provides more information on how to find and run the
SQL scripts.

Setting Up Ant for WebServicesAssembler

Getting Started 3-3

■ You will need an installed, running Oracle database if you are using reliable
messaging or assembling database Web services. For more information, see
"Database Requirements" on page 3-6.

Setting Up Ant for WebServicesAssembler
The WebServicesAssembler tool assists in assembling OracleAS Web Services. It
enables you to generate the artifacts required to develop and deploy Web services,
regardless of whether you are creating the service using the top down or bottom up
approach. WebServicesAssembler commands can be called either from the command
line or from Ant tasks.

This section describes how to set up your environment and build script files to call
WebServicesAssembler commands from Ant tasks.You can use an Ant installation you
have previously installed or use the Ant that is found in OC4J_HOME/ant. The
following sections describe how to set up Ant, depending on the version you have
installed.

■ Setting Up Ant 1.6.2 Distributed with Oracle Application Server

■ Setting Up Ant 1.6.2 Using a Previous Installation of Ant

■ Setting Up Ant 1.5.2 Using a Previous Installation of Ant

■ Using the "oracle:" namespace Prefix for Ant Tasks

Setting Up Ant 1.6.2 Distributed with Oracle Application Server
The following steps describe how to set up your environment and build files to use
WebServicesAssembler with the Ant 1.6.2 installation found in ORACLE_HOME/ant.
This is the version of Ant distributed with the Oracle Application Server.

1. Enter ORACLE_HOME/ant/bin at the front of your PATH variable.

2. Edit your build script (build.xml). Add the antlib:oracle namespace
declaration for the imported Ant tasks. In the following example, bottomup is the
name of your project.

<project name="bottomup" default="all" basedir="."
xmlns:oracle="antlib:oracle">

3. Add the oracle: namespace as a prefix to all WebServicesAssembler tags. For
example:

<oracle:assemble>
 <oracle:port ... />
</oracle:assemble>
<oracle:genProxy/>

4. (Optional) Copy the ant-oracle.properties files to the same directory as
your build script.

Note: All of the Ant task examples in this book assume that you are
using Ant version 1.6.2 or later. These versions let you use task
namespaces. Hence, all of the Ant tags and subtags corresponding to
WebServicesAssembler commands are prefixed with the oracle:
namespace.

Setting Up Ant for WebServicesAssembler

3-4 Web Services Developer's Guide

Although you can modify the properties file in the j2ee/utilities directory
and reference it from your build scripts, it is better to maintain this file as a
template.

5. (Optional) Edit the ant-oracle.properties file to reflect your installation
environment.

6. (Optional) Edit the build script (build.xml). Reference the
ant-oracle.properties file in the build script. For example:

<property file="ant-oracle.properties"/>

7. (Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

■ If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to
com.sun.org.apache.xalan.int/ernal.xsltc.trax.TransformerF
actoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.int/
ernal.xsltc.trax.TransformerFactoryImpl

■ If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

Setting Up Ant 1.6.2 Using a Previous Installation of Ant
The following steps describe how to set up your environment and build files to use
WebServicesAssembler with a previous installation of Ant 1.6.2 (or later).

1. Navigate to the directory ORACLE_HOME/j2ee/utilities and ensure that the
following files are present:

■ ant-oracle.properties—this file enables you to designate the key
properties for the execution of the Oracle Ant tasks.

■ ant-oracle.xml—this file enables you to use Oracle Ant tasks. Import this
file into your build script by using the Ant <import> task.

2. Copy the ant-oracle.properties and ant-oracle.xml files to the same
directory as your build script (build.xml).

Although you can modify the files in the j2ee/utilities directory and
reference them from your build scripts, it is better to maintain the source files as
templates. Also, if you leave the ant-oracle.xml file in its original location,
then the import reference must be hard coded to specify the full path to the file
(for example, c:/oc4j/j2ee/utilities/ant-oracle.xml).

3. Edit the ant-oracle.properties file to reflect your installation environment.

4. Edit the build script (build.xml).

■ Import the ant-oracle.xml file into the build script.

<!-- Import for OC4J ant integration. -->
<import file="ant-oracle.xml"/>

Setting Up Ant for WebServicesAssembler

Getting Started 3-5

■ Add the antlib:oracle namespace reference for the imported Ant tasks. In
the following example, bottomup is the name of your project.

<project name="bottomup" default="all" basedir="."
xmlns:oracle="antlib:oracle">

5. Include the oracle namespace as a prefix to all WebServicesAssembler
commands. For example:

<oracle:deploy/>
<oracle:genProxy/>

6. (Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

■ If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to
com.sun.org.apache.xalan.int/ernal.xsltc.trax.TransformerF
actoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.int/
ernal.xsltc.trax.TransformerFactoryImpl

■ If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

Setting Up Ant 1.5.2 Using a Previous Installation of Ant
The following steps describe how to set up your environment and build files to use
WebServicesAssembler with a previous installation of Ant 1.5.2.

1. Ensure that your installations of Ant and the Java JDK are already included in the
classpath environment variable.

2. Add the path to the wsa.jar to the classpath environment variable. The path will
typically be:

(OC4J_Home)webservices/lib/wsa.jar

In this example, OC4J_Home is the directory where you installed OC4J.

3. Add the following lines to any Ant build file that will invoke the Ant tasks.

<taskdef resource="orawsa.tasks" />
<typedef resource="orawsa.types" />

These lines can appear anywhere in the build file before the first
WebServicesAssembler task is called.

4. (Optional) If you will be using the junit Ant task for reports, set the ANT_OPTS
system property to the Xalan TransformerFactoryImpl class.

■ If you are using the JDK 1.5, set the ANT_OPTS property for
TransformerFactory to

Database Requirements

3-6 Web Services Developer's Guide

com.sun.org.apache.xalan.int/ernal.xsltc.trax.TransformerF
actoryImpl. For example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.int/
ernal.xsltc.trax.TransformerFactoryImpl

■ If you are using the JDK 1.4, set the ANT_OPTS property for
TransformerFactory to
org.apache.xalan.processor.TransformerFactoryImpl. For
example:

set ANT_
OPTS=-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Tr
ansformerFactoryImpl

Using the "oracle:" namespace Prefix for Ant Tasks
Ant version 1.6.2 and higher requires the oracle: prefix at the beginning of all Ant
tags and subtags for WebServicesAssembler commands. This prefix informs the Ant
interpreter that this is an Oracle Ant task.

The oracle: prefix corresponds to the prefix that is found in the project tag at the
beginning of the Ant build.xml file.

<project name="myproject" default="all" basedir="." xmlns:oracle="antlib:oracle">

If you do not want to use oracle as a prefix, you can change it to any valid XML
QName prefix. For example, if you want to use oracletags as a prefix, then you must
change the value of the project tag.

<project name="myproject" default="all" basedir="."
xmlns:oracletags="antlib:oracle">

If you make this change, then all Ant tags and subtags for WebServicesAssembler
commands must start with oracletags:. For example:

<oracletags:assemble ...>

Database Requirements
You will need an installed running Oracle database (local or remote) if you will be
performing any of the following tasks:

■ assembling any of the database Web Services. Chapter 9, "Developing Database
Web Services" provides more information on the database Web services that can be
run on OracleAS Web Services.

■ enabling reliable messaging between the client and server. "Ensuring Web Service
Reliability" in the Oracle Application Server Advanced Web Services Developer's Guide
provides more information on reliable messaging.

Development and Documentation Roadmap
The following sections provide a suggested roadmap through the documentation that
takes you through the steps of developing a Web service.

■ Setting Up Your Environment

■ Best Coding Practices

Development and Documentation Roadmap

Getting Started 3-7

■ Assembling Web Service Artifacts

■ Deploying the Web Service

■ Testing the Deployed Web Service

■ Assembling a Web Service Client

■ Adding Quality of Service Features to a Web Service

■ Adding Advanced Functionality to a Web Service

■ Alternative Web Service Strategies

■ Reference Chapters and Appendixes

Setting Up Your Environment
The following chapter describes how to set up your environment to use the
functionality provided by OracleAS Web Services.

■ Chapter 3, "Getting Started"

Best Coding Practices
The chapters in this section describe issues that you should consider as you design
your Web service.

The following chapter describes the varieties of message formats that you can employ
in OracleAS Web Services. It describes the advantages and disadvantages of each
message format and suggests which format to use based on the client functionality.

■ Chapter 4, "Oracle Application Server Web Services Messages"

The following chapter in the Oracle Application Server Advanced Web Services Developer's
Guide identifies some of the common areas where interoperability problems can occur.
It provides design suggestions and programming guidelines that increase the
interoperability of your Web service with applications on different platforms.

■ "Ensuring Interoperable Web Services"

Assembling Web Service Artifacts
OracleAS Web Services enables you to assemble Web service artifacts bottom up
starting from Java classes, EJBs, JMS destinations, database resources, or source files
which employ J2SE 5.0 JDK Web Service Annotations. You can also assemble the
artifacts top down starting from a WSDL. In OracleAS Web Services, you use the
WebServicesAssembler tool to perform the assembly. Chapter 17, "Using
WebServicesAssembler" provides a reference guide to the tool.

The following chapters describe how to use the WebServicesAssembler tool to perform
the different types of Web Service assembly supported by OracleAS Web Services.

■ Chapter 5, "Assembling a Web Service from a WSDL"

■ Chapter 6, "Assembling a Web Service with Java Classes"

■ Chapter 7, "Assembling a Web Service with EJBs"

■ Chapter 8, "Assembling Web Services with JMS Destinations"

■ Chapter 9, "Developing Database Web Services"

■ Chapter 10, "Assembling Web Services with Annotations"

Development and Documentation Roadmap

3-8 Web Services Developer's Guide

Deploying the Web Service
While the WebServicesAssembler tool does not perform deployment, it does package
the Web service into a deployable EAR or WAR file. Deploying this file is very similar
to deploying any other EAR or WAR file into a running instance of OC4J. OC4J
provides a separate book that describes how to perform deployment.

■ Oracle Containers for J2EE Deployment Guide

The following chapter provides additional information about the packaging format
and the files required for deployment. The chapter also briefly describes the
deployment support offered by the JDeveloper and Application Server Control tools.

■ Chapter 18, "Packaging and Deploying Web Services"

Testing the Deployed Web Service
The following chapter describes the Web Service Home Page. This page lets you test
whether deployment was successful without the need to write any code.

■ Chapter 12, "Testing Web Service Deployment"

Assembling a Web Service Client
The following chapters describe how to use WebServicesAssembler to assemble a Web
service client for the J2SE and J2EE platforms.

■ Chapter 13, "Assembling a J2EE Web Service Client"

■ Chapter 14, "Assembling a J2SE Web Service Client"

Adding Quality of Service Features to a Web Service
OracleAS Web Services support quality of service features, such as security, reliability,
message logging, and auditing. The following chapters describe how to implement
these features; they can be managed by other tools such as JDeveloper and Application
Server Control. The following chapters appear in the Oracle Application Server Advanced
Web Services Developer's Guide.

■ "Managing Web Services"

■ "Ensuring Web Services Security"

This chapter provides only an overview of the contents of the Oracle Application
Server Web Services Security Guide. The Security Guide describes the Web Services
implementation of message-level security.

■ "Ensuring Web Service Reliability"

■ "Auditing and Logging Messages"

Adding Advanced Functionality to a Web Service
The following chapters describe additional features that can enhance the performance
and functionality of your Web service.

■ Chapter 15, "Understanding JAX-RPC Handlers"

■ Chapter 16, "Processing SOAP Headers"

See also the following chapters in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ "Working with Message Attachments"

■ "Custom Serialization of Java Value Types"

Development and Documentation Roadmap

Getting Started 3-9

Alternative Web Service Strategies
The following chapters describe alternative modes of Web service implementation.

For example, you can write your own infrastructure to make Web service calls, create a
client for non-SOAP protocols, or use a non-HTTP transport mechanism.

■ Chapter 11, "Assembling REST Web Services"

See also the following chapters in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ "Using JMS as a Web Service Transport"

■ "Using Web Service Invocation Framework"

■ "Using Web Service Providers"

Reference Chapters and Appendixes
The following chapters and appendixes provide information to supplement the
implementation and development tasks described in this book.

■ Chapter 1, "Web Services Overview"

■ Chapter 2, "Oracle Application Server Web Services Architecture and Life Cycle"

■ Chapter 17, "Using WebServicesAssembler"

■ Appendix A, "Web Service Client APIs and JARs"

■ Appendix B, "Oracle Implementation of the WSDL 1.1 API"

See also the following reference chapters and appendixes in the Oracle Application
Server Advanced Web Services Developer's Guide.

■ "Understanding the WSMGMT Schema"

■ "JAX-RPC Mapping File Descriptor"

■ "Web Service MBeans"

■ "Mapping Java Types to XML and WSDL Types"

Development and Documentation Roadmap

3-10 Web Services Developer's Guide

Oracle Application Server Web Services Messages 4-1

4
Oracle Application Server Web Services

Messages

Oracle Application Server Web Services supports SOAP 1.1 and 1.2 messages. The
format of the messages can be document or RPC style and literal or encoded use.

This chapter contains these sections:

■ OracleAS Web Services Message Formats

■ Working with SOAP Messages

OracleAS Web Services Message Formats
This section describes the message formats supported by the current release of
OracleAS Web Services. It includes these topics:

■ Understanding Message Formats

■ Supported Message Formats

■ Selecting Message Formats

■ Changing Message Formats in a Service Implementation

■ Message Format Recommendations

To understand the message formats supported by OracleAS Web Services, it is useful
to understand the relationship between the Web Service Description Language
(WSDL) 1.1 and the wire format. The wire format is the physical representation of a
Simple Object Access Protocol (SOAP) message, or payload, for transmission. The
message format is determined by the use and style attributes from the binding defined
in the WSDL. The type of XML schema that defines the message part enhances the
message format. The WSDL, then, can be thought of as a contract. By defining the
various attributes in the WSDL, you affect the format of the message on the wire.

Any interoperability issues that arise are usually noticed at runtime in the wire format.
Often, you can fix these by adjusting the WSDL and regenerating the Web service
artifacts.

The relationship between the message format and the wire format is not one-to-one.
For example, you can define a document-literal style Web service, Service A, with an
XML schema that makes runtime SOAP messages look identical to messages produced
by an RPC-literal style Web service, Service B. If you change the style and use (that is,
the message format) of Service A to be "RPC" and "literal", then Service A will not be
the same as Service B. The runtime SOAP messages would look completely different
after the change, unless you also change the schema used in Service A.

OracleAS Web Services Message Formats

4-2 Web Services Developer's Guide

Understanding Message Formats
The following sections briefly describe the message formats supported by OracleAS
Web Services. For detailed descriptions of the message format options (that is, the full
implications of the use and style WSDL binding attributes) see the SOAP and
WSDL specifications listed in "SOAP-Related Documents" on page xxi and
"WSDL-Related Documents" on page xxi.

RPC and Document Styles
A SOAP payload can be either RPC or document style. An RPC-style payload is
usually used if there is a need to invoke a remote procedure or method call. With RPC
style, the name of the top-most XML element in the SOAP body of the request is
always the name of the WSDL operation. There is no ambiguity, because the names are
unique in a given binding. The SOAP XML message typically consists of a method
name and parameters, all represented in XML.

If the WSDL operation is overloaded, there must be a unique SOAPAction specified
in the corresponding operation binding. Section 7 of the SOAP 1.1 specification
describes the structure of an RPC-style SOAP body element (<body>).

The SOAP body of a document-style payload contains XML that does not have to
conform to Section 7 of the SOAP 1.1 specification, but it uses an XML schema global
element to define the payload of the message. That schema is defined within or
imported into the WSDL's type section.

Literal and Encoded Uses
The SOAP client and server interprets the XML contents of the SOAP payload <body>
element according to the rules specified by the use attribute of the WSDL's binding
section. The client and server must agree on the same encoding rule to ensure that they
can each correctly interpret the data.

For a literal use, the rules for encoding and interpreting the SOAP body of input and
output messages are described entirely in terms of the schema.

For the encoded use, the encodingStyle attribute in the SOAP body identifies the
rules used for encoding and interpreting the message according to the SOAP
specification:

■ For SOAP 1.1, see "SOAP Encoding", Section 5 of the SOAP 1.1 specification:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

■ For SOAP 1.2, see "SOAP Encoding", Section 3 of the SOAP 1.2 specification:
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapenc

You can also use types defined in the SOAP encoding schema extension.

Supported Message Formats
The following sections describe the message formats supported by OracleAS Web
Services.

■ Document-Literal Message Format

■ RPC-Encoded Message Format

■ RPC-Literal Message Format

OracleAS Web Services Message Formats

Oracle Application Server Web Services Messages 4-3

Document-Literal Message Format
Document-literal is the default message format for OracleAS Web Services. The two
common styles of document-literal operations are wrapped and bare.

■ For a wrapped style, a schema definition of a wrapper element wraps the
parameters belonging to a method. The messages are not SOAP encoded and do
not use SOAP RPC conventions.

■ For a bare style, the method must have only one parameter mapped to a SOAP
body. If the method has multiple parameters, then only one can be mapped to the
body part. The other parameters must be mapped to SOAP headers.

Document-literal complies with WS-I Basic Profile 1.0 and 1.1.

Each document-literal operation is uniquely identified from the QName of the top
element of the input message. Document-literal with the wrapped style has the best
interoperability with .NET Web services and is the preferred message format for
OracleAS Web Services.

For information on interoperability and message formats see "Ensuring Interoperable
Web Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

Advantages:
■ Complies with WS-I.

■ Provides support for interoperability.

■ Natural format for SOAP fault handling.

■ Format of the message part is described by the standard XML schema.

Disadvantages:
■ Not fully backward compatible with older stacks.

■ Does not support object graphs.

Sample Request Message with the Document-Literal Message Format Example 4–1 illustrates
a request message in the document-literal message format. Note that the XML element
part (payloadDocument) under the SOAP body (env:Body) must be a document
instance of a global element defined in the WSDL's schema.

The example applies to SOAP 1.1 messages. To change the example to apply to SOAP
1.2 messages, change the value of xmlns:env to
http://www.w3.org/2003/05/soap-envelope.

Example 4–1 Request Message with the Document-Literal Message Format

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://ws.oracle.com/doc-lit">
 <env:Body>
 <ns0:payloadDocument>
 <ns0:name>Scott</ns0:name>
 <ns0:data>Hello</ns0:data>
 </ns0:payloadDocument>
 </env:Body>
</env:Envelope>

OracleAS Web Services Message Formats

4-4 Web Services Developer's Guide

RPC-Encoded Message Format
The RPC-encoded message format uses the encoding rules defined in the SOAP
specification:

■ For SOAP 1.1, see "SOAP Encoding", Section 5 of the SOAP 1.1 specification.

 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

The encodingStyle attribute for the SOAP 1.1 RPC-encoded message format is
expressed with the following value.

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

■ For SOAP 1.2, see "SOAP Encoding", Section 3 of the SOAP 1.2 specification.

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapenc

The encodingStyle attribute for the SOAP 1.2 RPC-encoded message format is
expressed with the following value.

encodingStyle="http://www.w3.org/2003/05/soap-encoding"

For information about the issues of interoperability and message formats, see
"Ensuring Interoperable Web Services" in the Oracle Application Server Advanced Web
Services Developer's Guide.

Advantages:
■ Backward compatible with older stacks, because this was one of the most common

message formats for Web services.

■ Supports object graphs (through id and href attributes).

■ Provides additional Java type mapping support indicated by the namespace
http://www.oracle.com/webservices/internal. For a list of supported
data types, see Table 4–1 on page 4-6.

Disadvantages:
■ Does not comply with the WS-I Basic Profile.

■ More difficult to perform schema validation of the entire message payload

Sample Messages with the RPC-Encoded Message Format Example 4–2 illustrates a request
message that uses the RPC-encoded message format. Note that the tag name of the
XML element part (echoString) sent under the SOAP body (env:Body) must be the
same as the name of the corresponding WSDL operation. The env:encodingStyle
attribute indicates the SOAP encoding style being used. Each XML element part
(stringParam) under the operation element corresponds to a parameter. It must be
an instance of simpleType or a global type definition. If it is a global type definition,
it must be in the WSDL's schema or one of the SOAP encoding extension types.

RPC-encoded request messages to OracleAS Web Services (or RPC-encoded response
messages to OracleAS Web Services-generated stubs) can be consumed without
xsi:type attributes.

Example 4–2 and Example 4–3 apply to SOAP 1.1 messages. To change the examples to
apply to SOAP 1.2 messages:

■ Change the value of xmlns:env to
http://www.w3.org/2003/05/soap-envelope

■ Change the value of env:encodingStyle to
http://www.w3.org/2003/05/soap-encoding

OracleAS Web Services Message Formats

Oracle Application Server Web Services Messages 4-5

Example 4–2 RPC-Encoded Request Message

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://ws.oracle.com/rpc-enc">
 <env:Body>
 <ns0:echoString

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <stringParam>Hello</stringParam>
 </ns0:echoString>
 </env:Body>
</env:Envelope>

Example 4–3 illustrates a response message that uses the RPC-encoded message
format. RPC-encoded response messages from OracleAS Web Services (or the
RPC-encoded request messages from an OracleAS Web Services-generated stub)
always contain xsi:type attributes.

Example 4–3 RPC-Encoded Response Message

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ns0="http://ws.oracle.com/rpc-enc">
 <env:Body>
 <ns0:echoStringResponse

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <stringParam xsi:type="xsd:string">Hello</stringParam>
 </ns0:echoStringResponse>
 </env:Body>
</env:Envelope>

The xsi:type Attribute in RPC-Encoded Message Formats In many SOAP implementations,
messages that use the RPC-encoded message format usually use the xsi:type
attribute on each element in the message payload. This attribute helps object
serialization and deserialization. The xsi:type attribute is optional in most cases.
The xsi:type attribute is required only if the element is an instance of a derived type
of an element type defined in the schema. For inbound SOAP messages, OracleAS Web
Services accepts messages with or without the xsi:type attribute. For outbound
SOAP messages in RPC-Encoded format, OracleAS Web Services always emits the
xsi:type attribute.

Example 4–4 and Example 4–5 apply to SOAP 1.1 messages. To change the examples to
apply to SOAP 1.2 messages:

■ Change the value of xmlns:env to
http://www.w3.org/2003/05/soap-envelope

■ Change the value of env:encodingStyle to
http://www.w3.org/2003/05/soap-encoding

Example 4–4 illustrates a request message for the echo operation in RPC-encoded
message format. Note that the code sample does not contain the
xsi:type="xsd:string" attribute.

Example 4–4 RPC-Encoded Request Message Without the xsi:type Attribute

<env:Envelope

OracleAS Web Services Message Formats

4-6 Web Services Developer's Guide

 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://ws.oracle.com/rpc-enc">
 <env:Body>
 <ns0:echo env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <param>some string</param>
 </ns0:echo>
 </env:Body>
</env:Envelope>

Example 4–5 illustrates the same request message in RPC-encoded format with the
xsi:type attribute.

Example 4–5 RPC-Encoded Request Message With the xsi:type Attribute

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://ws.oracle.com/rpc-enc">
 <env:Body>
 <ns0:echo env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <param xsi:type="xsd:string">some string</param>
 </ns0:echo>
 </env:Body>
</env:Envelope>

Oracle-Specific Type Support For a complete list of the supported types, see Chapters 4
and 5 of the JAX-RPC 1.1 specification. The JAX-RPC 1.1 specification is available
from:

http://java.sun.com/webservices/jaxrpc/index.jsp

For completeness, Table 4–1 describes the all of the Java types and Oracle-proprietary
types supported by OracleAS Web Services RPC-encoded message format. The Java
type mapping support for the types is indicated by the following OracleAS Web
Services-specific namespace:

http://www.oracle.com/webservices/internal

This namespace accommodates nonstandard XML schema definitions for some
standard Java types, such as Collection, that are not supported by JAX-RPC 1.1.

Note: The java.util.Collection family and java.util.Map
family are also supported for the literal use (that is, document-literal
and RPC-literal). The schema types for these Java types are defined
under a different namespace. See "Mapping Java Types to XML and
WSDL Types" in the Oracle Application Server Advanced Web Services
Developer's Guide for more information on how these Java types are
supported.

Table 4–1 Java Types Supported by RPC-Encoded Proprietary Message Format

Java Type Java Classes Mapping Details

Java primitive types boolean, byte, double, float, int, long,
short

See "Mapping Java
Primitive Types to XML
Types" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

OracleAS Web Services Message Formats

Oracle Application Server Web Services Messages 4-7

If you want to use any value types which are not built-in (for example, MyBean) as
items in a Map or Collection, then you must use the value of the

java.lang Object
types

Boolean, Byte, Double, Float, Integer,
Long, Short, String

See "Mapping Java Types to
XML Types" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

basic Java types java.math.BigDecimal

java.math.BigInteger

java.xml.QName

java.util.Calendar

java.util.Date

java.net.URI

See "Mapping Java Types to
XML Types" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

Java array types One-dimensional arrays with elements
of supported type

See "Mapping Java Types to
XML Types" and "Mapping
Java Collection Classes to
XML Types" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

Java value types Java Beans with properties of
supported types

See "OracleAS Web Services
Support for Java Value
Types" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

attachments

Note: attachments
are not interoperable

java.awt.Image

javax.mail.internet.MimeMultipart

javax.xml.transform.Source

javax.activation.DataHandler

See "Working with Message
Attachments" in the Oracle
Application Server Advanced
Web Services Developer's
Guide

java.util.Collection java.util.Collection

java.util.List

java.util.Set

java.util.Vector

java.util.Stack

java.util.LinkedList

java.util.ArrayList

java.util.HashSet

java.util.TreeSet

See "Mapping Java
Collection Classes to XML
Types" and "Additional
Information about Oracle
Proprietary XML Types" in
the Oracle Application Server
Advanced Web Services
Developer's Guide

java.util.Map java.util.Map

java.util.HashMap

java.util.TreeMap

java.util.Hashtable

java.util.Properties

See "Mapping Java
Collection Classes to XML
Types" and "Additional
Information about Oracle
Proprietary XML Types" in
the Oracle Application Server
Advanced Web Services
Developer's Guide

Table 4–1 (Cont.) Java Types Supported by RPC-Encoded Proprietary Message Format

Java Type Java Classes Mapping Details

OracleAS Web Services Message Formats

4-8 Web Services Developer's Guide

valueTypeClassName argument to declare these types to the WebServicesAssembler
tool when generating the WSDL.

java -jar wsa.jar -genWsdl
 -valueTypeClassName hello.MyBean
 -valueTypeClassName hello.MyFoo...

This allows the generated WSDL to include the schema definitions for these value
types. The runtime can then correctly generate the corresponding serialized values. All
WebServicesAssembler commands and Ant tasks that assemble Web services bottom
up (from Java classes, EJBs, database resources, and so on) support the
valueTypeclassName argument. For more information on this argument, see
"valueTypeClassName" on page 17-61

For more information on using value type classes that do not conform to the JAX-RPC
value type requirements, or that cannot be handled by the default JAX-RPC
serialization mechanism, see "Custom Serialization of Java Value Types" in the Oracle
Application Server Advanced Web Services Developer's Guide.

Restrictions on RPC-Encoded Format OracleAS Web Services does not support the
combination of RPC-encoded message formats and databinding=false.

RPC-Literal Message Format
RPC-literal message format complies with WS-I Basic Profile 1.0 and 1.1. This format
uses the RPC style of message payload structure but supports the literal way of
describing the types passed by a procedure. In this case, literal means that there exists
a schema for every parameter type but not for the payload of the message body itself.

For information on interoperability and message formats, see "Ensuring Interoperable
Web Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

Advantages:
■ Complies with WS-I.

■ Format of the message part is described by the standard XML schema.

Disadvantages:
■ Support for RPC-literal is not consistent across all vendors.

■ Does not support object graphs.

■ Is not backward compatible with older stacks.

■ It is not possible to represent null values for Java method parameters when
mapping to WSDL message parts.

Sample Request Message with the RPC-Literal Message Format Example 4–6 illustrates a
request message coded for the RPC-literal message format. Note that the tag name of
the XML element part (echoString) under the SOAP body (env:Body) must be
identical to the name of the corresponding WSDL operation. Each XML element part
(stringParam) under the operation element corresponds to a parameter and must be
an instance of simpleType or a global type definition. If it is a global type definition,
then it must be in the WSDL's schema.

The example applies to SOAP 1.1 messages. For SOAP 1.2 messages, change the value
of xmlns:env to http://www.w3.org/2003/05/soap-envelope.

OracleAS Web Services Message Formats

Oracle Application Server Web Services Messages 4-9

Example 4–6 RPC-Literal Request Message

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://ws.oracle.com/rpc-lit">
 <env:Body>
 <ns0:echoString>
 <stringParam>Hello</stringParam>
 </ns0:echoString>
 </env:Body>
</env:Envelope>

Selecting Message Formats
The WebServicesAssembler tool provides arguments that let you control the message
format used by a Web service. These arguments let you specify whether the message
format is RPC or document (wrapped or bare), encoded or literal.

■ style

■ use

The following WebServicesAssembler commands allow you to use the use and style
arguments to specify the message format for your Web service.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ genInterface

■ genWsdl

■ plsqlAssemble

■ sqlAssemble

The following example uses the assemble command to assemble the Web service
server components. The style and use arguments specify that the message format
used is RPC-literal:

java -jar wsa.jar -assemble
 -appName $(app.name)
 -serviceName HelloServiceWSIF
 -uri $(app.name)
 -interface oracle.demo.hello.HelloInterface
 -className oracle.demo.helllo.HelloImpl
 -input $(service.classes.dir)
 -output build
 -ear dist/$(app.name).ear
 -style rpc
 -use literal

For more information on the WebServicesAssembler tool and its functionality, see
Chapter 17, "Using WebServicesAssembler".

Working with SOAP Messages

4-10 Web Services Developer's Guide

Changing Message Formats in a Service Implementation
You can expose Java service endpoint implementations in RPC-encoded, RPC-literal,
or document-literal format. However, if the service endpoint implementation uses the
attachment data types listed in the Table 4–1, then you can use only RPC-encoded. If
none of these additional types are used, then you can use RPC-literal or
document-literal format to achieve better interoperability. Each of the formats display
similar performance in marshaling between Java objects and XML.

Message Format Recommendations
This section provides some general guidelines for choosing a message format when
designing your Web service. When choosing a message format, consider the
functionality requirements of the client you want to support. Table 4–2 describes some
possible client functionality requirements and suggested message formats.

Working with SOAP Messages
OracleAS Web Services supports SOAP 1.1 and 1.2 messages both programmatically
and by using the WebServicesAssembler tool to assemble Web services bottom up and
top down.

■ OraSAAJ APIs

■ Using SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly

■ Using SOAP 1.2 Formatted Messages in Top Down Web Service Assembly

The SOAP with Attachments API for Java (SAAJ) version 1.2 is the programmatic
model for representing and working with a SOAP message. The standard SAAJ APIs
support SOAP 1.1. You can find more information on SAAJ at the following Web
address:

http://java.sun.com/webservices/saaj/index.jsp

Table 4–2 Message Format Suggestions, Based on Client Functionality

Client Functionality Suggested Message Format

OmniPortlet Use either RPC-encoded or document-literal. The
Omniportlet APIs (wizard) does not support RPC-literal.

Oracle XML Query Service
(XQS) integration

Use either RPC or document style with the literal use. Oracle
XML Query Service does not support SOAP encoding.

XML Schema integration Reuse the schema definition to describe the SOAP message
part of the WSDL operation. This integration can be
achieved with either RPC or document style with the literal
use.

call-out from an Oracle release
9.2 database

Use RPC-encoded. Oracle release 10.1 or later supports all
formats.

expose graph and preserve
object identity

Use RPC-encoded. Although RPC-encoded is the easiest
way, it can be achieved in document-literal if the model
(schema) is well-designed.

WS-I compliance Use either RPC or document style with the literal use.

BPEL processes Use document style with the literal use.

Axis 1.2 client Use either RPC-encoded or document-literal message
formats

Working with SOAP Messages

Oracle Application Server Web Services Messages 4-11

The Oracle extension of the SAAJ 1.2 API (OraSAAJ) allows a Web service to work
with SOAP 1.2 messages.

OraSAAJ APIs
OracleAS Web Services support SAAJ 1.2, which is a specification for modeling SOAP
messages with attachments in Java objects. However, the standard SAAJ 1.2 APIs
support only SOAP 1.1 messages. To provide programmatic support for SOAP 1.2
messages, OracleAS Web Services includes the oracle.webservices.soap
package. The interfaces in this package allow you to work with and add information to
SOAP 1.2 message objects.

The classes in this package, VersionedMessageFactory and
VersionedSOAPFactory, are extensions to standard SAAJ classes
MessageFactory and SOAPFactory. The methods in the
VersionedMessageFactory and VersionedSOAPFactory classes contain an
extra parameter that lets you specify a SOAP message version when using the
standard SAAJ APIs.

For more information on these classes and their methods, see the output of the Javadoc
tool for the oracle.webservices.soap package at the following Web address:

 http://www.oracle.com/technology/index.html

Table 4–3 Interfaces and Classes in the ORASAAJ API

Interface/Class Name Description

Body12
interface

Represents a SOAP 1.2 message Body object.

Fault12
interface

Provides methods to add SOAP 1.2 FaultCode and
FaultReason elements to a SOAP 1.2 Fault element.

FaultCode12
interface

Provides methods to add SOAP 1.2 FaultValue and
FaultSubcode elements to a SOAP 1.2 FaultCode
element.

FaultReason12
interface

Provides methods to add a SOAP 1.2 FaultText element to
a SOAP 1.2 FaultReason element.

FaultSubcode12
interface

This interface is an extension to the FaultCode12 interface.
It is a marker interface for compiler-enforced strong typing.

FaultText12
interface

Provides methods for adding the text node content and locale
information to a FaultText element.

FaultValue12
interface

Provides methods to set the fault code on a FaultValue12
element.

SOAPVersion
interface

Provides constants representing the SOAP versions that are
available to the platform.

VersionedMessageFactory
class

Provides methods for creating a SOAP message. These
methods mimic the standard SAAJ MessageFactory class,
except that they contain an extra parameter for specifying a
SOAP message version. One method creates an empty
message with standard MIME headers. The other method
creates a message based on an input stream and a specified
MIME header.

VersionedSOAPFactory
class

Provides methods for creating SOAP elements. These
methods mimic the standard SAAJ SOAPFactory class,
except that they contain an extra parameter for specifying a
SOAP message version.

Working with SOAP Messages

4-12 Web Services Developer's Guide

Using the OraSAAJ APIs
The OraSAAJ extensions can be used from a javax.xml.rpc.handler.Handler.
In most cases, the standard javax.xml.soap.* classes can be used to manipulate
SOAP 1.2 SAAJ messages. However, if you want to use the functionality provided by
SOAP 1.2, you must use the OraSAAJ APIs.

Example 4–7 illustrates how the standard javax.xml.soap.* classes and the
OraSAAJ classes can be used together. The example code creates a SOAP 1.2 message
from scratch. The VersionedMessageFactory method returns a
javax.xml.soap.SoapMessage object. This enables you to use the standard
javax.xml.soap.* methods such as getBody and getEnvelope on the message.

The addFault method adds a SOAP 1.2 fault to the message. To send SOAP 1.2 faults,
you must use the OraSAAJ Fault12, FaultCode12, FaultValue12, and
FaultReason12 APIs. This is because SOAP 1.2 faults contain more information than
SOAP 1.1 faults.

Example 4–7 Working with the SAAJ and OraSAAJ APIs

public boolean handleResponse(MessageContext context) {
 ...
 // create a SOAP 1.2 message from scratch.
 // Note the use of VersionedMessageFactory to get a SOAPMessage
 // for a specific version of soap
 SOAPMessage message =
((VersionedMessageFactory)MessageFactory.newInstance()).createVersionedMessage(ora
cle.webservices.soap.SOAPVersion.SOAP_1_2);
 // Now standard APIs can be used.
 SOAPBody body = message.getSOAPPart().getEnvelope().getBody();
 // However, if you need to send a fault, you must
 // use Oracle-specific APIs, because SOAP 1.2
 // faults contain more information than SOAP 1.1 faults.
 // Note the use of Fault12, FaultCode12, and FaultReason12
 SOAPFault fault = body.addFault();
 Fault12 soapFault = (Fault12) fault;
 FaultCode12 faultCode = soapFault.addCode();
 FaultValue12 faultValue = faultCode.addFaultValue();
 QNameAdapter faultCodeQName = new QNameAdapter("http://my.foo.com/",
 "myFaultCode",
 "foo");
 faultValue.setFaultCode(faultCodeQName);
 FaultReason12 faultReason = soapFault.addReason();
 faultReason.addFaultText().setValue("An unknown error occurred");
 ...
}

Using SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly
To support SOAP version 1.2 messages in bottom up Web service generation,
WebServicesAssembler provides a soapVersion argument. Values can be "1.1",
"1.2", or "1.1,1.2". Default value is "1.1".

The "1.1,1.2" value means that WebServicesAssembler will create two ports with
two bindings. One port and binding will support version 1.1; the other port and
binding will support version 1.2. Each port must be bound to a different URL. That is,
you cannot support both versions concurrently with the same URL address.

See "soapVersion" on page 17-59 for more information on the WebServicesAssembler
soapVersion argument.

Working with SOAP Messages

Oracle Application Server Web Services Messages 4-13

Using SOAP 1.2 Formatted Messages in Top Down Web Service Assembly
To support SOAP 1.2 messages in top down Web services development, you must
supply a WSDL with a SOAP 1.2 binding. A WSDL with a SOAP 1.2 binding contains
a set of URIs specific to SOAP 1.2. These URIs are listed in Table 4–4.

Example 4–8 displays a WSDL that supports SOAP 1.2 messages. The URIs and
elements that are needed to support SOAP 1.2 are displayed in bold font.

Example 4–8 Sample WSDL with SOAP 1.2 Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="Rpclitbottomup"
 targetNamespace="http://www.oracle.ws/rpcliteral"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.oracle.ws/rpcliteral"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns0="http://www.oracle.ws/rpcliteral/schema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 >
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.oracle.ws/rpcliteral/schema"
 elementFormDefault="qualified"
xmlns:tns="http://www.oracle.ws/rpcliteral/schema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <complexType name="HelloMessage">
 <sequence>
 <element name="longValue" type="long"/>
 <element name="age" type="int"/>
 <element name="greeting" type="string" nillable="true"/>
 <element name="name" type="string" nillable="true"/>
 <element name="id" type="decimal" nillable="true"/>
 </sequence>
 </complexType>
 </schema>
 </types>

Table 4–4 URIs for SOAP 1.2 Messages

URI Description

http://schemas.xmlsoap.org/wsdl/soap12 The namespace of the SOAP 1.2 binding element that goes
into the WSDL binding element.

http://www.w3.org/2003/05/soap-encoding For a SOAP 1.2 message, indicates the encoding rules that
the contents of the containing element follows.

For more information, see the SOAP Version 1.2 Part 2
Recommendation at:
http://www.w3.org/TR/2003/REC-soap12-part2-
20030624/

http://www.w3.org/2003/05/soap/bindings/
HTTP

and

 http://schemas.xmlsoap.org/soap/http

Describes HTTP transport for SOAP 1.2. Both URIs are
accepted by the OracleAS Web Services stack, but the
schemas.xmlsoap.org URI is more interoperable than
the www.w3.org URI. Therefore, the
schemas.xmlsoap.org URI is used when the WSDL is
generated for bottom up Web Service assembly.

Converting XML Elements to SOAP Elements

4-14 Web Services Developer's Guide

 <message name="HelloInterface_hello">
 <part name="msg" type="tns0:HelloMessage"/>
 </message>
 <message name="HelloInterface_helloResponse">
 <part name="result" type="tns0:HelloMessage"/>
 </message>
 <portType name="HelloInterface">
 <operation name="hello" parameterOrder="msg">
 <input message="tns:HelloInterface_hello"/>
 <output message="tns:HelloInterface_helloResponse"/>
 </operation>
 </portType>
 <binding name="HelloInterfacePortBinding" type="tns:HelloInterface">
 <soap12:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="hello">
 <soap12:operation soapAction="http://www.oracle.ws/rpcliteral/hello"
soapActionRequired="false"/>
 <input>
 <soap12:body use="literal"
namespace="http://www.oracle.ws/rpcliteral" parts="msg"/>
 </input>
 <output>
 <soap12:body use="literal"
namespace="http://www.oracle.ws/rpcliteral" parts="result"/>
 </output>
 </operation>
 </binding>
 <service name="Rpclitbottomup">
 <port name="HelloInterfacePort" binding="tns:HelloInterfacePortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
 </service>
</definitions>

Converting XML Elements to SOAP Elements
The oracle.webservices package provides a toSOAPElement method in the
SOAPUtil class to convert XML elements (org.w3c.dom.Element) to SOAP
elements (javax.xml.soap.SOAPElement).

Example 4–9 illustrates a code sample that creates an XML document, converts it to a
SOAP element, and prints it to the standard output.

Example 4–9 Converting an XML Element to a SOAP Element

...
try {
 DOMParser parser = new DOMParser();
 parser.parse(new StringReader(
 "<Flds:CustomerGroup xmlns:Flds=\"http://foo.com/foo.xsd\">
 "<Flds:Customer>xyz</Flds:Customer>
 "</Flds:CustomerGroup>"));

 SOAPElement se = SOAPUtil.toSOAPElement(
 parser.getDocument().getDocumentElement());
 ((XMLElement)se).print(System.out);
} catch (Exception ex) {
 ex.printStackTrace();
}

Additional Information

Oracle Application Server Web Services Messages 4-15

...

Limitations
See "OracleAS Web Services Messages" on page C-1.

Additional Information
For more information on:

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ message attachments, and using attachments in your Web service, see "Working
with Message Attachments" in the Oracle Application Server Advanced Web Services
Developer's Guide

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

Additional Information

4-16 Web Services Developer's Guide

Assembling a Web Service from a WSDL 5-1

5
Assembling a Web Service from a WSDL

This chapter describes how to assemble a Web service, starting with a Web Service
Description Language (WSDL) file. This is also known as top down Web service
generation.

What Is Top Down Assembly?
In top down Web service assembly, you generate a service from an existing WSDL file
that models the business processes you want to expose.

A development tool, such as WebServiceAssembler, uses the WSDL to generate the
service endpoint interface for the service. You can then implement the service for any
supported architecture, such as Java classes. After compiling the implementation, you
generate the service and deploy it to the application server.

Chapter 4, "Oracle Application Server Web Services Messages" provides information
about the message formats you can assign to a Web service.

How to Assemble a Web Service Top Down
This section describes what you must provide to assemble a Web service top down.
Assembling a Web service requires the WebServiceAssembler tool, and Java platform
tools such as the javac compiler, that are found in the J2SE 1.4 SDK distribution.

There are three general steps for generating a Web service top down:

1. Generate the service endpoint interface.

WebServicesAssembler can perform this step.

2. Implement and compile the services.

The developer performs this step.

3. Assemble the services.

WebServicesAssembler can perform this step. "Generating the Web Service Top
Down" on page 5-2 provides more detail on each of these steps.

Prerequisites
Generating a Web service top down with WebServiceAssembler requires you to specify
only the WSDL and an output directory.

Before you generate Web services, consider these issues:

■ WebServicesAssembler places some restrictions on the WSDL that you specify:

How to Assemble a Web Service Top Down

5-2 Web Services Developer's Guide

– The WSDL should comply with Web Services-Interoperability (WS-I) Basic
Profile 1.0. If it does not, WebServiceAssembler provides command-line
arguments that enable you to work around many limitations in the WSDL.
Chapter 17, "Using WebServicesAssembler" provides descriptions of
WebServicesAssembler commands and arguments.

– Only one service element can be implemented. WebServicesAssembler enables
you to generate the artifacts for only one service at a time. If more than one
service is described in the WSDL, a command line argument, serviceName,
enables you to specify the service you want to use.

– The message format is specified in the WSDL. You cannot use
WebServicesAssembler to change the message format in top down Web service
development.

– The WSDL cannot contain multiple message formats. Remove any ports from
the WSDL that reference a binding with a message format that you do not
want to use.

■ If you use nonstandard data types, as described in "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide and Table 4–1 on page 4-6, ensure that the oracle-webservices.xml
deployment descriptor defines how they will be handled. This file can be used to
identify the name of the serialization class that converts the data between XML
and Java, the name of the Java class that describes the Java representation of the
data, and so on.

"oracle-webservices.xml Deployment Descriptor" on page 18-12 provides more
information on this deployment descriptor. "Custom Serialization of Java Value
Types" in the Oracle Application Server Advanced Web Services Developer's Guide for
more information on working with nonstandard data types

■ Decide whether you want to use wrapped or unwrapped parameters. To control
this, WebServicesAssembler provides the unwrapParameters command-line
option.

Generating the Web Service Top Down
The following steps illustrate how to assemble a Web service top down. The Web
service will provide a logging facility that is defined by the WSDL stored at
wsdl/LoggingFacility.wsdl.

1. Provide a WSDL from which the Web service will be generated as input to the
WebServiceAssembler genInterface command. For example:

java -jar wsa.jar -genInterface
 -output build/src/service
 -wsdl wsdl/LoggingFacility.wsdl
 -unwrapParameters false
 -packageName oracle.demo.topdowndoclit.service
 -mappingFileName type-mapping.xml

At a minimum, specify the name of the WSDL. For more information on the
required and optional arguments to genInterface, see "genInterface" on
page 17-29.

The WebServiceAssembler tool generates a Java interface for every port type
specified in the WSDL, and a Java Bean for each complex type. The name of the
directory that stores the generated interface is based on the values of the output
and packageName arguments. For this example, the generated interface is stored

How to Assemble a Web Service Top Down

Assembling a Web Service from a WSDL 5-3

in build/src/service/oracle/demo/topdowndoclit/service. The value
types are stored in the specified output directory, but the package name is based
on the type namespace or values in the JAX-RPC mapping file,
type-mapping.xml.

2. Compile the generated interface and type classes. For example:

javac build/src/service/*.java -destdir build/classes

3. Create the service endpoint implementation for your Web service.

The Java service endpoint must have a method signature that matches every
method in the generated Java interface.

4. Compile the Java service endpoint.

For example, you can use the same command as in Step 2 if the Java service
endpoint interface source was generated in the same directory where the Impl
class was saved. If it was not, then you must change the value of the path
argument.

5. Assemble the service by running the WebServiceAssembler tool with the
topDownAssemble command. For example:

java -jar wsa.jar -topDownAssemble
 -wsdl ./wsdl/LoggingFacility.wsdl
 -unwrapParameters false
 -className oracle.demo.topdowndoclit.service.DocLitLoggerImpl
 -input build/classes/service
 -output build
 -ear dist/doclit_topdown.ear
 -mappingFileName type-mapping.xml
 -packageName oracle.demo.topdowndoclit.service
 -fetchWsdlImports true
 -classPath ./build/classes/client

At a minimum, specify the name of the WSDL, the class name that implements the
service, and the name of the output directory. The WebServiceAssembler tool
outputs an EAR file, and a WAR file within the EAR. The WAR file contains the
service artifacts, the implementation classes, the Web deployment descriptor
(web.xml) and the JAX-RPC deployment descriptor (webservices.xml). For
more information on the required and optional arguments to topDownAssemble,
see "topDownAssemble" on page 17-20.

6. Deploy the service.

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide. The following is a sample deployment command.

java -jar <oc4jHome>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file dist/doclit_topdown.ear
 -deploymentName doclit_topdown
 -bindWebApp default-web-site

The following list describes the parameters in this code example:

■ <oc4j_Home>—the directory containing the OC4J installation.

■ <user>—the user name for the OC4J instance. The user name is assigned at
installation time.

How to Assemble a Web Service Top Down

5-4 Web Services Developer's Guide

■ <password>—the password for the OC4J instance. The password is assigned
at installation time.

■ doclit_topdown—the name of the application.

■ default-web-site—the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <oc4j_home>/j2ee/home/config.

7. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

8. Generate the client code:

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for a J2SE Web service, see Chapter 14, "Assembling a J2SE Web Service
Client".

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code for a J2EE Web
service, see Chapter 13, "Assembling a J2EE Web Service Client".

For example, the following command generates client proxies (stubs) that can be
used for a J2SE client:

java -jar wsa.jar -genProxy
 -wsdl http://localhost:8888/doclit_topdown/doclit_topdown?WSDL
 -unwrapParameters false
 -output build/src/client
 -packageName oracle.demo.topdowndoclit.stubs
 -mappingFileName type-mapping.xml

In this example, doclit_topdown is an application name for the generated Web
service.

At a minimum, specify the name of the WSDL and the name of the output
directory. The WebServiceAssembler tool generates a stub. A client application
uses the stub to invoke operations on a remote service. For more information on
the required and optional arguments to genProxy, see "genProxy" on page 17-30.

9. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

Generating a Web Service Top Down with Ant Tasks
The current release supports Ant tasks for Web services development. The following
examples show how the WebServiceAssembler commands in the preceding examples
can be rewritten as Ant tasks.

Additional Information

Assembling a Web Service from a WSDL 5-5

In these examples, doclit_topdown is an application name for the generated Web
service.

For more information on Ant tasks for WebServiceAssembler commands, see
"WebServicesAssembler Commands" on page 17-3.

For the genInterface command, here is an example Ant task:

<oracle:genInterface wsdl="wsdl/LoggingFacility.wsdl"
 output= "build/src/service"
 packageName= "oracle.demo.topdowndoclit.service"
 mappingFileName="type-mapping.xml"
 dataBinding="true"
 unwrapParameters="false"
/oracle:genInterface>

For the topDownAssemble command, here is an example Ant task:

<oracle:topDownAssemble appName="doclit_topdown"
 wsdl="./wsdl/LoggingFacility.wsdl"
 unwrapParameters="false"
 input="build/classes/service "
 output="build"
 ear="dist/doclit_topdown.ear"
 mappingFileName="type-mapping.xml"
 packageName="oracle.demo.topdowndoclit.service"
 fetchWsdlImports="true"
 >
 <oracle:portType
 className="oracle.demo.topdowndoclit.service.DocLitLoggerImpl"
 </oracle:portType>
 />

For the genProxy command, here is an example Ant task:

<oracle:genProxy
 wsdl="http://localhost:8888/doclit_topdown/doclit_topdown?WSDL"
 unwrapParameters="false"
 output="build/src/client"
 packageName="oracle.demo.topdowndoclit.stubs"
 mappingFileName="type-mapping.xml"
/>

Limitations
See "Assembling Web Services from a WSDL" on page C-4.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building a J2EE client, see Chapter 13, "Assembling a J2EE Web Service Client".

■ building a J2SE client, see Chapter 14, "Assembling a J2SE Web Service Client".

■ JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

Additional Information

5-6 Web Services Developer's Guide

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

■ Web services interoperability, see "Ensuring interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Service" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Assembling a Web Service with Java Classes 6-1

6
Assembling a Web Service with Java Classes

This chapter describes how to assemble stateless and stateful Web services based on
Java classes. The Web service assembly is performed bottom up by
WebServicesAssembler.

A stateless Web service does not carry any local state across calls. In contrast, a stateful
Web service may carry state across calls, and the results of method invocations depend
on the scope. The stateful Web services supported by Oracle Application Server Web
Services is HTTP-based. It works only for SOAP/HTTP endpoints and not for
SOAP/JMS endpoints.

Stateless Web services interoperate with .NET or any vendor's Web services. Stateful
OracleAS Web Services based on Java classes contain Oracle-proprietary extensions
and may not operate with other services unless the service provider makes available
scopes with the same semantics.

This chapter has the following sections:

■ Exposing Java Classes as a Stateless Web Service

■ Writing Java Class-Based Web Services

■ Exposing Java Classes as a Stateful Web Service

■ Tool Support for Exposing Java Classes as Web Services

Exposing Java Classes as a Stateless Web Service
You can use WebServicesAssembler to assemble Web services from Java classes that
conform to the JAX-RPC 1.1 specification. Exposing Java classes as a Web service is
convenient if you want a lightweight system and do not need the transactional
capabilities that an EJB container offers.

WebServicesAssembler assembles the service bottom up. It starts with the Java classes
you want to expose as a Web service and generates a deployable EAR file containing
the WSDL, the mapping files, the implementation files, and the deployment
descriptors.

JAX-RPC requires you to provide a Java class that contains the methods you want to
expose as a service and its interface. For more information on the requirements on the
class and interface, see "Writing Java Class-Based Web Services" on page 6-4.

A Web service based on Java classes can be invoked by a client written in Java, .NET,
or any other programming language. The client can be based on static stub or
Dynamic Invocation Interface (DII).

Exposing Java Classes as a Stateless Web Service

6-2 Web Services Developer's Guide

Prerequisites
Before you begin, provide the following files and information.

■ Supply a compiled Java class and interface that contains the methods that you
want to expose as a service. The class and its interface must conform to the
JAX-RPC standards for a Web service. If you are exposing Java classes as a
stateless Web service, see "Writing Stateless Web Services" on page 6-5. If you are
exposing Java classes as a stateful Web service, see "Exposing Java Classes as a
Stateful Web Service" on page 6-7.

■ Decide whether you want WebServicesAssembler to only generate the service files
or if you want it to package the files into a deployable archive. The ear argument
packages the files into an archive. If you do not specify ear, then the files are
stored in a directory specified by output. For more information on these
arguments, see "ear" on page 17-38, "output" on page 17-42, and "war" on
page 17-45.

■ If the methods in the Java class use nonstandard data types, such as those
described in "Mapping Java Types to XML and WSDL Types" in the Oracle
Application Server Advanced Web Services Developer's Guide and in Table 4–1 on
page 4-6, you must specify a custom serializer to process them. For more
information on using nonstandard data types, see "Custom Serialization of Java
Value Types" in the Oracle Application Server Advanced Web Services Developer's
Guide. For a list of the supported data types, see the JAX-RPC 1.1 specification
available from: http://java.sun.com/webservices/jaxrpc/index.jsp.

■ If your Java classes need to work with any additional message processing
components, for example to provide reliability and security features, you can
specify message handlers. For more information, see "Configuring Handlers in an
Ant Task" on page 17-71 and Chapter 16, "Processing SOAP Headers".

How to Assemble a Stateless Web Service
The following steps describe how to use WebServicesAssembler to expose a stateless
Web service from a Java class:

1. Provide the compiled Java class that you want to expose as a Web service and its
compiled interface.

This example uses the HelloInterface interface and the HelloImpl class. You
can find code listings of these files in "Defining a Java Interface" on page 6-6 and
"Defining a Java Class" on page 6-6.

2. Generate the service artifacts by running the WebServicesAssembler with the
assemble command. This example assumes that the interface and
implementation classes are compiled to the ./build/classes/service
directory.

java -jar wsa.jar -assemble
 -appName hello
 -serviceName HelloService
 -interfaceName oracle.demo.hello.HelloInterface
 -className oracle.demo.hello.HelloImpl
 -input ./build/classes/service
 -output build
 -ear dist/hello.ear
 -uri HelloService
 -targetNamespace http://hello.demo.oracle

Exposing Java Classes as a Stateless Web Service

Assembling a Web Service with Java Classes 6-3

The output of this command is an EAR file that contains the contents of a WAR file
that can be deployed to an OC4J instance. The dist directory contains the J2EE
Web services-compliant application EAR file, hello.ear. For more information
on the required and optional arguments to assemble, see "assemble" on
page 17-7.

3. Deploy the service and bind the application.

Deploy EAR files in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide. The following is a sample deployment command:

java -jar <OC4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file dist/hello.ear
 -deploymentName hello
 -bindWebApp default-web-site

The following list describes the variables used in this code example.

■ <OC4J_Home>—The directory containing the OC4J installation.

■ <user>—The user name for the OC4J instance. The user name is assigned at
installation time

■ <password>—The password for the OC4J instance. The password is assigned
at installation time

■ default-web-site—The Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <OC4J_HOME>/j2ee/home/config.

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
service home page.

5. Generate the client-side code:

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 14, "Assembling a J2SE Web
Service Client".

■ For the J2EE environment, generate a Service Endpoint Interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 13,
"Assembling a J2EE Web Service Client".

For example, the following command generates stubs that can be used for a J2SE
client:

java -jar wsa.jar -genProxy
 -output build/src/client/
 -wsdl http://localhost:8888/hello/HelloService?WSDL
 -packageName oracle.demo.hello

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on

Writing Java Class-Based Web Services

6-4 Web Services Developer's Guide

a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 17-30.

6. Write the client application.

7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

Ant Tasks for Generating a Stateless Web Service
The current release provides Ant tasks for Web services development. The following
code samples show how the WebServicesAssembler commands in the preceding
examples can be rewritten as Ant tasks.

For more information on Ant tasks for WebServicesAssembler commands, see
Chapter 17, "Using WebServicesAssembler".

For the assemble command, here is an example Ant task. In this example,
build/classes/client is the directory where client classes (stubs) will be
generated.

<oracle:assemble appName="hello"
 serviceName="HelloService"
 input="./build/classes/service"
 output="build"
 ear="dist/hello.ear"
 targetNamespace="http://hello.demo.oracle"
 >
 <oracle:porttype
 interfaceName="oracle.demo.hello.HelloInterface"
 className="oracle.demo.hello.HelloImpl">
 <oracle:port uri="HelloService" />
 </oracle:porttype>
 <oracle:classpath>
 <pathelement location="build/classes/client"/>
 </oracle:classpath>
</oracle:assemble>

For the genProxy command, here is a sample Ant task. The client proxies will be
stored in the directory build/src/client.

<oracle:genProxy wsdl="http://localhost:8888/hello/HelloService?WSDL"
 output="build/src/client"
 packageName="oracle.demo.hello"
/>

Writing Java Class-Based Web Services
To use JAX-RPC to create a Web service with Java files, you must provide a public
interface that defines the remote methods that you want to expose as a service. The
interface definition must also extend java.rmi.Remote, and its methods must throw
a java.rmi.RemoteException object. The interface must also reside in a package.

Writing Java Class-Based Web Services

Assembling a Web Service with Java Classes 6-5

You can also use the public interface to list the signatures for the public methods, or
public methods with supported data types, that you want to make available to the
Web service. That is, you can employ the interface to filter the methods that you want
to expose.

The implementation of the interface must satisfy other requirements:

■ The class must contain a default public constructor.

■ The class methods must implement the methods of the Service Endpoint Interface.

■ Class methods must not be final.

■ For stateful Web services, the class must implement java.io.Serializable.

■ The class must reside in a package.

■ All methods in the interface must throw java.rmi.RemoteException. In
addition, methods can declare other, specific exceptions. These must extend
java.lang.Exception directly or indirectly but must not be a
RuntimeException.

■ Method parameters and return types must be JAX-RPC supported Java types.
"Mapping Java Types to XML and WSDL Types" in the Oracle Application Server
Advanced Web Services Developer's Guide provides a list of supported Java types.

■ Holder classes can be used as method parameters. These holder classes are either
generated or derived from the javax.xml.rpc.holders package.

■ The implementation class must not include public final static declarations.

■ A service endpoint interface must not include a remote reference (a class that
implements RemoteInterface) as either a parameter or a return type. A Java
array or JAX-RPC value type must not include a remote reference as a contained
element.

For a description of all of the requirements on the interface, see the Enterprise Web
Services 1.1 specification at the following Web address:
http://www.jcp.org/aboutJava/communityprocess/final/jsr109/index
.html

When a Web service client makes a service request, OC4J runs the corresponding
method in that class. There are very few restrictions on what actions the Web service
can perform. At a minimum, the Web services generate some data that is sent to the
client or perform an action specified by a Web service request.

The following sections illustrate how to write stateless Web services based on Java
classes. For information on writing stateful Web services based on Java classes, see
"Exposing Java Classes as a Stateful Web Service" on page 6-7.

Writing Stateless Web Services
OracleAS Web Services supports stateless implementations for Java classes running as
Web services. For a stateless Java implementation, OracleAS Web Services creates
multiple instances of the Java class in a pool; any one of the instances can be used to
service a request. After servicing the request, the object is returned to the pool for use
by a subsequent request.

Developing a stateless Java Web service consists of the following steps:

■ Defining a Java Interface

■ Defining a Java Class

Writing Java Class-Based Web Services

6-6 Web Services Developer's Guide

Defining a Java Interface
Example 6–1 displays the HelloInterface.java interface for the stateless Web
service. To comply with the JAX-RPC 1.1 specification, the interface must reside in a
package. It must also extend java.rmi.Remote, and its methods must throw a
java.rmi.RemoteException object.

Example 6–1 Defining an Interface for a Stateless Web Service

package oracle.demo.hello;

import java.rmi.RemoteException;
import java.rmi.Remote;

public interface HelloInterface extends Remote {
 public String sayHello(String name) throws RemoteException;
}

Defining a Java Class
Create a Java class by implementing the methods in the interface that you want to
expose as a Web service. A Java class for a Web service usually defines one or more
public methods. To comply with the JAX-RPC 1.1 specification, the implementation
class must reside in a package. It must also import java.rmi.Remote and
java.rmi.RemoteException.

Example 6–2 displays the public class, HelloImpl. This class defines a public method,
sayHello, that returns the string "Hello name!" where name is an input value.

Example 6–2 Defining a Public Class for a Stateless Web Service

package oracle.demo.hello;

import java.rmi.RemoteException;
import java.rmi.Remote;

public class HelloImpl {
 public HelloImpl() {
 }
 public String sayHello(String name) {
 return ("Hello " + name + "!");
 }
}

Notice that Java class Web service implementations must include a public constructor
that takes no arguments.

When an error occurs while running a method on the Java class, it throws a
RemoteException. In response to the exception, OracleAS Web Services returns a
Web service (SOAP) fault. Use standard J2EE and OC4J administration facilities to
view errors for a Web service that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web service, the
methods, parameters, and return values must use supported types or nonstandard
types supported by OracleAS Web Services. For a list of the supported data types, see
the JAX-RPC 1.1 specification available from the following Web site:

http://java.sun.com/webservices/jaxrpc/index.jsp

Exposing Java Classes as a Stateful Web Service

Assembling a Web Service with Java Classes 6-7

"Mapping Java Types to XML and WSDL Types" in the Oracle Application Server
Advanced Web Services Developer's Guide and Table 4–1 on page 4-6 provides lists of
supported data types and supported nonstandard types.

If methods, parameters, and return values use unsupported types, then you must
handle them in either of the following ways.

■ Use the interface class to limit the exposed methods to only those using JAX-RPC
supported types and the supported non-standard types.

■ Use the custom serializer to map unsupported types. For more information on
working with unsupported types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

Exposing Java Classes as a Stateful Web Service
OC4J supports stateful Web services based on Java classes. The Java object that
implements the service persists for the duration of the HTTP session. To maintain
state, these services contain Oracle-proprietary extensions. Because of these extensions,
you should not consider stateful OracleAS Web Services to be interoperable unless the
service provider makes available scopes with the same semantics.

The stateful Web services supported by OracleAS Web Services is HTTP-based. It
works only for SOAP/HTTP endpoints and does not work for SOAP/JMS endpoints.

Prerequisites
The prerequisites for generating a stateful Web service from Java classes are identical
to those described for a stateless Web service. For a description of the information and
files you must provide, see "Prerequisites" on page 6-2.

How to Assemble a Stateful Web Service
The following instructions describe how to use WebServicesAssembler to create a
stateful Web service from a Java class. The Java object that implements the service
persists for the duration of the HTTP session.

1. Provide the Java class that you want to expose as a Web service and its interface.

2. Generate the service artifacts by running the WebServicesAssembler with the
assemble command. For example:

java -jar wsa.jar -assemble
 -appName counter
 -serviceName counterService
 -interfaceName oracle.demo.count.CounterInterface
 -className oracle.demo.count.CounterImpl
 -input build/classes/service
 -output build
 -ear dist/counter.ear
 -recoverable true
 -timeout 30
 -uri counterService

Note the timeout argument on the command line. In addition to indicating the
number of seconds an HTTP session should last before it times out, it also
implicitly sets the session argument to true. When session is true, the
service instance is stored in an HTTP session. The recoverable argument

Exposing Java Classes as a Stateful Web Service

6-8 Web Services Developer's Guide

indicates that this stateful application is distributable. For more information on the
required and optional arguments to assemble, see "assemble" on page 17-7.

This command generates all the files required to create a deployable archive. The
output build directory contains separate directories for the EAR file and the Java
classes. The dist directory contains the J2EE Web services-compliant application
EAR file, counter.ear.

3. Deploy the service and bind the application.

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide. The following is a sample deployment command.

java -jar <OC4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file dist/counter.ear
 -deploymentName counter
 -bindWebApp default-web-site

The following list describes the parameters used in this code example.

■ <OC4J_HOME>—The directory containing the OC4J installation.

■ <user>—the user name for the OC4J instance. The user name is assigned at
installation time.

■ <password>—the password for the OC4J instance. The password is assigned
at installation time.

■ default-web-site— the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <OC4J_HOME>/j2ee/home/config.

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
service home page.

5. Generate the client code:

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 14, "Assembling a J2SE Web
Service Client".

■ For the J2EE environment, generate a Service Endpoint Interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 13,
"Assembling a J2EE Web Service Client".

For example, the following command generates client proxies (stubs) that can be
used for a J2SE client:

java -jar wsa.jar -genProxy
 -output build/src/client/
 -wsdl http://localhost:8888/counter/counterService?WSDL
 -packageName oracle.demo.count

Exposing Java Classes as a Stateful Web Service

Assembling a Web Service with Java Classes 6-9

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on
a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 17-30.

6. Write the client application.

Ensure that the client participates in the session by setting the SESSION_
MAINTAIN_PROPERTY runtime property
(javax.xml.rpc.session.maintain) to true either on the stub, the DII call,
or the endpoint client instance.

Instead of setting this property directly, OracleAS Web Services provides a helpful
wrapper class with a setMaintainSession(boolean) method. Set this
method to true to maintain sessions. The wrapper takes care of setting the
property inside of the client. For example, in the client code, enter:

CounterServicePortClient c = new CounterServicePortClient();
//sets Maintain Session to true, as the endpoint is stateful.
c.setMaintainSession(true);

7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

Ant Tasks for Generating a Stateful Web Service
The current release provides Ant tasks for Web service development. The following
code samples show how the WebServicesAssembler commands in the preceding
examples can be rewritten as Ant tasks.

For the assemble command, here is an example Ant task. In this example,
${wsdemo.common.class.path} represents the classpath.

<oracle:assemble appName="counter"
 serviceName="counterService"
 input="build/classes/service"
 output="build"
 ear="dist/service.ear"
 recoverable="true"
 timeout="30 "
 >
 <oracle:porttype
 interfaceName="oracle.demo.count.CounterInterface"
 className="oracle.demo.count.CounterImpl">
 <oracle:port uri="counterService" />
 </oracle:porttype>
 <oracle:classpath>
 <pathelement path="${wsdemo.common.class.path}"/>

Note: On systems such as Unix or Linux, the URL might need to be
quoted (" ") on the command line.

Exposing Java Classes as a Stateful Web Service

6-10 Web Services Developer's Guide

 <pathelement location="build/classes/client"/>
 </oracle:classpath>
 </oracle:assemble>

For the genProxy command, here is an example Ant task.

<oracle:genProxy wsdl="http://stadp54.us.oracle.com:8888/counter/counter?WSDL"
 output="build/src/client"
 packageName="oracle.demo.count"/>

Writing Stateful Web Services
Java implementations for a stateful Web service must meet the same requirements as
implementations for a stateless service. "Writing Java Class-Based Web Services", on
page 6-4 describes these requirements.

In addition, OC4J supports the call, session, and endpoint scope for a stateful
Java implementation:

■ call—The class instance is created for each call. The instance is garbage collected
after each call. The value of the callScope argument determines whether the class
instance is created for each call.

■ session—The class instance is stored in an HTTP session. This applies only for
HTTP transport. Session timeout can be tuned by the timeout argument. The
value of the session argument determines whether the class instance is stored in an
HTTP session.

■ endpoint—The service endpoint implementation class instance is a singleton
instance for each endpoint. This is the default scope.

Developing a stateful Java Web service consists of the following steps:

■ Defining a Java Interface

■ Defining a Java Class

Defining a Java Interface
Example 6–3 displays the CountInterface.java interface for the stateful Web
service. This example also shows that the service class does not have to implement the
Service Endpoint Interface directly. To comply with the JAX-RPC 1.1 specification, the
interface must reside in a package. It must also extend java.rmi.Remote and its
methods must throw a java.rmi.RemoteException object.

Example 6–3 Defining an Interface for a Stateful Web Service

package oracle.demo.count;

import java.rmi.RemoteException;
import java.rmi.Remote;

public interface CounterInterface extends Remote {
 // gets the current counter value
 public int getCurrentCounter() throws RemoteException;
}

Defining a Java Class
Create a Java class by implementing the methods in the interface that you want to
expose as a Web service. A Java class for a Web service usually defines one or more
public methods. To comply with the JAX-RPC 1.1 specification, the implementation

Additional Information

Assembling a Web Service with Java Classes 6-11

class must reside in a package. It must also import java.rmi.Remote and
java.rmi.RemoteException.

Example 6–4 displays the public class, CounterImpl. The class initializes the count
and defines the public method, getCurrentCounter.

Example 6–4 Defining a Public Class for a Stateful Web Service

package oracle.demo.count;

import java.rmi.RemoteException;
import java.rmi.Remote;

public class CounterImpl implements java.io.Serializable {
 private int counter = 0;

 public CounterImpl() {
 }

 public int getCurrentCounter() {
 System.out.println("Current counter value is: " + (++counter));
 return (counter);
 }
}

Packaging and Deploying Web Services
The packaging of Web services that expose Java classes is described in "Packaging for a
Web Service Based on Java Classes" on page 18-2.

For a detailed description of Web module deployment, see the Oracle Containers for
J2EE Deployment Guide.

Tool Support for Exposing Java Classes as Web Services
With Oracle JDeveloper, you can create, modify, and deploy J2EE-compliant Java class
files as Web services. When you create Java classes in JDeveloper, you use the
modeling tools and wizards. The wizards can perform the following tasks.

■ Import or create Java classes and interfaces in a project.

■ Package and deploy the Java classes exposed as Web services.

For more information on using JDeveloper to create Java classes and expose them as
Web services, see the JDeveloper on-line help.

Limitations
See "Assembling Web Services from Java Classes" on page C-4.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building a J2EE client, see Chapter 13, "Assembling a J2EE Web Service Client".

■ building a J2SE client, see Chapter 14, "Assembling a J2SE Web Service Client".

Additional Information

6-12 Web Services Developer's Guide

■ JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Service" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Assembling a Web Service with EJBs 7-1

7
Assembling a Web Service with EJBs

This chapter describes how to use the WebServicesAssembler tool to expose version
2.1 Enterprise Java Beans (EJBs) as Web services.

This chapter has the following sections.

■ Exposing EJBs as Web Services

■ Writing EJBs for Web Services

■ Tool Support for Exposing EJBs as a Web Service

Exposing EJBs as Web Services
You can use WebServicesAssembler to expose version 2.1 EJBs as Web services that
conform to J2EE 1.4 standards. Many EJBs have been written to encapsulate business
functions in the middle tier. If you use EJBs in your enterprise applications, you can
expose them as Web services.

EJB components, by design, are meant for distributed computing and are well-suited
for exposure as Web services. The EJB specification supports declarative transactions,
thread management, and role-based security. You can leverage these benefits if you
decide to use EJB components as Web services. EJBs exposed as Web services can still
be accessed by traditional RMI EJB clients as well as by SOAP protocols. J2EE 1.4
allows exposing only stateless session beans as Web services.

By their nature, SOAP and Web services are stateless. Therefore, stateless session beans
are an ideal medium for exposure as Web services. Stateless session beans can be used
for checking someone's credit, charging a bank account, or placing an order. Session
beans that implement a business function to be used by other remote applications are a
perfect fit for exposure as Web services.

Writing an EJB Web service using JAX-RPC involves writing an EJB that implements a
service and provides an interface for it. The EJB should contain the business logic that
a client can invoke when it makes a Web service request.

An EJB Web service does not differ from any other Web service and can be invoked by
a client written in Java, .NET, or any other programming language. The client of an EJB
Web service can leverage static stubs, dynamic proxies, or Dynamic Invocation
Interfaces (DII).

These are the general steps for exposing an EJB as a Web service.

Note: WebServicesAssembler cannot be used to expose version 3.0
EJBs as a Web service.

Exposing EJBs as Web Services

7-2 Web Services Developer's Guide

1. Create the service endpoint interface for the stateless EJB component.

The developer performs this step.

2. Assemble the service artifacts. This includes generating the WSDL and mapping
files, and packaging the application into a deployable archive.

WebServicesAssembler can be used to perform this step.

"How to Assemble a Web Service from an EJB" describes these steps in greater detail.

Working with Version 2.0 EJBs
Although this chapter focuses on exposing version 2.1 EJBs as Web services, version
2.0 EJBs can also be exposed. All the functionality in Oracle Application Server Web
Services for working with version 2.1 EJBs is also available for version 2.0 EJBs.
OracleAS Web Services and WebServicesAssembler can detect version 2.0 EJBs and
ensure that they are processed correctly. Its remote interface methods must define the
methods to be exposed as a Web service.

For more information on the J2EE Web Services requirements for EJBs, see "Writing
EJBs for Web Services" on page 7-5.

Prerequisites
Before you begin, provide the following files and information.

■ Write an Enterprise Java Bean that contains the business functions that you want
to expose and its interface. The EJB and its interface must conform to EJB 2.1
standards and the J2EE 1.4 standard for a Web service. For more information on
these requirements, see "Writing EJBs for Web Services" on page 7-5.

■ Decide whether you want WebServicesAssembler to only generate the service files
or generate and package the files into a deployable archive. The ear argument
packages the files into an archive. If you do not specify ear, the files are stored in
a directory specified by output. For more information on output and packaging
arguments, see "ear" on page 17-38, "output" on page 17-42, and "war" on
page 17-42.

■ If the methods in the EJB use nonstandard data types, such as those described in
"Mapping Java Types to XML and WSDL Types" in the Oracle Application Server
Advanced Web Services Developer's Guide and in Table 4–1 on page 4-6, you must
specify a custom serializer to process them. For more information on
implementing a custom serializer, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ If your EJB needs to work with any additional message processing components,
for example to process SOAP header information, you can specify message
handlers. For more information, see "Configuring Handlers in an Ant Task" on
page 17-71 and Chapter 16, "Processing SOAP Headers".

How to Assemble a Web Service from an EJB
The following steps describe how to use WebServicesAssembler to expose a session
bean as a Web service.

1. Write the EJB that you want to expose as a Web service and its service endpoint
interface.

2. Inspect the ejb-jar.xml deployment descriptor.

Exposing EJBs as Web Services

Assembling a Web Service with EJBs 7-3

Enter a <service-endpoint> element and a value if it is not already in the file.
This element identifies the service endpoint interface for this Web service. In the
following ejb-jar.xml fragment the <service-endpoint> element is
highlighted in bold.

<enterprise-beans>
 <session>
 <ejb-name>HelloServiceBean</ejb-name>
 <service-endpoint>oracle.demo.ejb.HelloServiceIntf</service-endpoint>
 <ejb-class>oracle.demo.ejb.HelloserviceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
</enterprise-beans>

3. Generate the service artifacts by running the WebServicesAssembler tool with the
ejbAssemble command. For example:

java -jar wsa.jar -ejbAssemble
 -appName helloServices-ejb
 -ear dist/helloServices-ejb.ear
 -output build
 -targetNamespace http://oracle.j2ee.ws/ejb/Hello
 -typeNamespace http://oracle.j2ee.ws/ejb/Hello/types
 -input dist/HelloServiceejb.jar
 -ejbName HelloServiceBean

This command assembles the EJB 2.1 Web service by generating the WSDL and
mapping files, and packaging the application into a deployable archive,
dist/helloServices-ejb.ear. This archive contains the
helloService-ejb.jar, which stores all of the service artifacts, such as the EJB
implementation classes, the generated WSDL and mapping file, standard Web
service descriptor file, webservices.xml, and the Oracle-proprietary
deployment descriptor file oracle-webservices.xml. For more information
on the ejbAssemble command, see "ejbAssemble" on page 17-13.

4. Deploy the service and bind the application.

EAR files are deployed into a running instance of OC4J. For more information on
deployment, see the Oracle Containers for J2EE Deployment Guide. The following is a
sample deployment command.

java -jar <OC4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file dist/ejbApp.ear
 -deploymentName ejbApp
 -bindWebApp default-web-site

The following list describes the parameters in this code example.

■ <OC4J_HOME>—the directory containing the OC4J installation.

■ <user>—the user name for the OC4J instance. The user name is assigned at
installation time.

■ <password>—the password for the OC4J instance. The password is assigned
at installation time.

■ ejbApp—the name of the application.

Exposing EJBs as Web Services

7-4 Web Services Developer's Guide

■ default-web-site—the Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <OC4J_HOME>/j2ee/home/config.

After deployment, this Web service's WSDL will be available at the following Web
address. The values for context-root and endpoint-address-uri can be found in the
META-INF/oracle-webservices.xml file.

http://host:port/context-root/endpoint-address-uri

5. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

6. Generate the client-side code:

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling a stub, see
Chapter 14, "Assembling a J2SE Web Service Client".

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling a client for a J2EE Web service, see
Chapter 13, "Assembling a J2EE Web Service Client".

For example, the following command generates stubs that can be used for a J2SE
client:

java -jar wsa.jar -genProxy
 -output build/src/client/
 -wsdl http://localhost:8888/hello/HelloService?WSDL
 -packageName oracle.demo.hello

This command generates the client proxies and stores them in the directory
build/src/client. The client application will use the stub to invoke operations
on a remote service. For more information on the required and optional arguments
to genProxy, see "genProxy" on page 17-30.

7. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

Ant Tasks for Generating a Web Service
The current release provides Ant tasks for Web services development. The following
code samples show how the WebServicesAssembler commands in the preceding
examples can be rewritten as Ant tasks.

For the ejbAssemble command, here is an example Ant task:

<oracle:ejbAssemble appName="ejbApp"
 targetNamespace="http://oracle.j2ee.ws/ejb/Hello"

Writing EJBs for Web Services

Assembling a Web Service with EJBs 7-5

 ear="dist/ejbApp.ear"
 output="build"
 typeNamespace="http://oracle.j2ee.ws/ejb/Hello/types"
 input dist/HelloServiceejb.jar
 ejbName HelloServiceBean
/>

For the genProxy command, here is an example Ant task:

<oracle:genProxy wsdl="http://localhost:8888/hello/HelloService?WSDL"
 output="build/src/client"
 packageName="oracle.demo.hello"
/>

Writing EJBs for Web Services
Writing EJB-based Web services using JAX-RPC involves writing an EJB that
implements a service and providing an interface for it. The EJB should contain the
business functions that OracleAS Web Services can invoke when a client makes a Web
service request.

This section provides information on how to write an EJB Web service that returns a
string, "HELLO!! You just said:phrase", where phrase is input from a client. The
EJB Web service receives a client request with a single String parameter and
generates a response that it returns to the Web service client.

Writing a J2EE 1.4-compliant EJB implementation for Web services consists of these
tasks.

■ Writing an EJB Service Endpoint Interface

■ Writing an EJB

Writing an EJB Service Endpoint Interface
To use JAX-RPC to create a Web service with EJBs, you must write a public service
endpoint interface to which the EJB must conform. The requirements for creating a
service endpoint interface for a stateless session bean are summarized in Section 5.3.2.1
of the Enterprise Web Services 1.1 specification. The specification is available from the
following Web address.

http://www.jcp.org/en/jsr/detail?id=921

The interface must extend java.rmi.Remote, and all methods must throw a
java.rmi.RemoteException. You can use only Java primitives and classes that are
JAX-RPC value types and nonstandard data types as parameters or return types for
the EJB methods defined in the service endpoint interface.

Some examples of JAX-RPC value types are non-primitives such as
java.lang.String or java.lang.Double and Java mappings of Multipurpose
Internet Mail Extensions (MIME) types such as java.awt.Image or
javax.xml.transform.Source. The nonstandard types are defined in "Mapping
Java Types to XML and WSDL Types" in the Oracle Application Server Advanced Web
Services Developer's Guide and in Table 4–1 on page 4-6.

You can use custom Java data types in the service endpoint interface, but then you
must also provide a serializer to process them. For more information on using custom
data types and their serialization, see "Custom Serialization of Java Value Types" in the
Oracle Application Server Advanced Web Services Developer's Guide.

Writing EJBs for Web Services

7-6 Web Services Developer's Guide

Example 7–1 Sample Service Endpoint Interface

package oracle.demo.ejb;

import java.rmi.Remote;
import java.rmi.RemoteException;
/**
 * This is an Enterprise Java Bean Service Endpoint Interface
 */
public interface HelloServiceInf extends java.rmi.Remote {
 /**
 * @param phrase java.lang.String
 * @return java.lang.String
 * @throws String The exception description.
 */
 java.lang.String sayHello(java.lang.String phrase)
 throws java.rmi.RemoteException;
}

Writing an EJB
Create an Enterprise Java Bean by implementing the business functions that you want
the Web service to expose.

The HelloServiceBean described in this section is a sample session bean. The class
defines a public method, sayHello, that returns HELLO!! You just said: phrase,
where phrase was input from a client. In general, a Java bean for a Web service defines
one or more public methods.

An Enterprise Java Bean, for the purposes of Web services, is any Java class that
conforms to the following requirements:

■ It must have a constructor that takes no arguments.

■ All properties that you want to use must be exposed through accessors.

The EJB's parameters and return types must be JAX-RPC supported data types or
nonstandard data types as described in "Mapping Java Types to XML and WSDL
Types" in the Oracle Application Server Advanced Web Services Developer's Guide and in
Table 4–1 on page 4-6.

To comply with the JAX-RPC standard, all the methods in HelloServiceBean throw
a java.rmi.RemoteException. They must also follow all the requirements of the
version 2.1 EJB specification and Enterprise Web Services 1.1 specification.

Example 7–2 Sample HelloService Session Bean

package oracle.demo.ejb;

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;

/**
 * This is a Session Bean Class.
 */
public class HelloServiceBean implements SessionBean {
 public String sayHello(String phrase) {
 return "HELLO!! You just said :" + phrase;
 }

Tool Support for Exposing EJBs as a Web Service

Assembling a Web Service with EJBs 7-7

 public void setSessionContext(javax.ejb.SessionContext ctx)
 throws java.rmi.RemoteException {
 }

 public void ejbActivate() throws java.rmi.RemoteException {
 }

 public void ejbCreate()
 throws javax.ejb.CreateException,
 java.rmi.RemoteException {
 }
 public void ejbPassivate() throws java.rmi.RemoteException {
 }

 public void ejbRemove() throws java.rmi.RemoteException {
 }
}

Packaging and Deploying Web Services that Expose EJBs
The packaging structure of Web services that expose EJBs is described in "Packaging
for a Web Service Based on EJBs" on page 18-3.

For a detailed description of the deployment of EJBs, see the Oracle Containers for J2EE
Deployment Guide.

Providing Transport-Level Security
You can use the <ejb-transport-security-constraint> and
<ejb-transport-login-config> elements in the oracle-werbservices.xml
deployment descriptor to configure transport-level security constraints for a version
2.1 or 3.0 EJB. These elements are described in "Securing EJB-Based Web Services at the
Transport Level" on page 18-16.

For more information on providing transport-level security for EJBs, and how to write
clients to access Web services secured on the transport level, see "Adding
Transport-level Security for Web Services Based on EJBs" and "Accessing Web Services
Secured on the Transport Level" in the Oracle Application Server Web Services Security
Guide.

Tool Support for Exposing EJBs as a Web Service
With Oracle JDeveloper, you can use modeling tools and wizards to create, modify,
and deploy J2EE-compliant EJBs. The EJB wizards can be used to perform the
following tasks.

■ Create the Enterprise Bean class for several types of Enterprise JavaBeans,
including stateless session beans.

■ Generate the home interface needed to create an EJB object. The inclusion of the
ejbCreate() method enables you to deploy the EJB to Oracle Applications
Server immediately, without having to manually code the method.

■ Enable a selection of home interface methods (and create a default method).

■ Generate the remote interface.

■ Enable a selection of remote interface methods.

■ Deploy the EJB exposed as a Web service.

Limitations

7-8 Web Services Developer's Guide

For more information on using JDeveloper to create EJBs and expose them as a Web
service, see the JDeveloper on-line help.

Limitations
See "Assembling Web Services From EJBs" on page C-5.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building a J2EE client, see Chapter 13, "Assembling a J2EE Web Service Client".

■ building a J2SE client, see Chapter 14, "Assembling a J2SE Web Service Client".

■ using JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding transport-level security to Web services based on EJBs, see "Securing
EJB-Based Web Services at the Transport Level" on page 18-16.

See also "Adding Transport-level Security to a Web Service" and "Accessing Web
Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Assembling Web Services with JMS Destinations 8-1

8
Assembling Web Services with JMS

Destinations

This chapter describes how to expose a JMS destination as a Web service. A JMS
endpoint Web service exposes JMS destinations, either queues or topics, as
document-literal style operations in the WSDL. The operation can be in either send or
receive mode.

A JMS endpoint Web service can be considered to be a special case of the Java
endpoint Web service. In a JMS endpoint Web service, the JMS endpoint implements
Web service operations by sending and receiving JMS message objects.

Understanding JMS Endpoint Web Services
OracleAS Web Services enables you to create Web service endpoints that let you put
messages on and take messages off JMS destinations. A JMS Web service endpoint is
configured to transfer messages to and from a specific JMS destination or pair of
destinations.

A JMS endpoint Web service can have the following operations.

■ send—the XML payload (SOAP body element) is sent to the corresponding JMS
destination. A send operation can be configured so that JMS message properties
can be set on each sent message to indicate the JMS reply-to destination, priority,
expiration, and so on.

■ receive—a message is retrieved from the corresponding JMS destination, the
content of the JMS message is used to create the SOAP response message body
payload.

■ both—a service can offer both operations.

Note: There are differences between a Web service based on queues
(or Oracle Streams Advanced Queuing (AQ)) in the database and a
Web service based on a JMS destination. The AQ Web service is based
on a configuration of queues that reside in the database. The JMS
destination Web service is based on the configuration of a JMS
provider in the middle tier. The JMS queues reside in a backend data
source. This data source could be a database, a file-based system, or
some other data repository.

If you want to construct a Web service from a queue or an AQ in the
database, see "Exposing an Oracle Streams AQ as a Web Service" on
page 9-20.

Understanding JMS Endpoint Web Services

8-2 Web Services Developer's Guide

A JMS endpoint Web service can be configured so that message-ID, correlation-ID, and
reply-to-destination JMS message properties can be transmitted as SOAP headers.
With this configuration, the message property headers and their types are explicitly
declared on the generated WSDL and schema so that the Web service client can use
them.

■ If the destination is a JMS queue, then invoking the send operation means
enqueue. Invoking the receive operation means dequeue.

■ If the destination is a topic, then the send operation means publish and the
receive operation means subscribe.

An individual JMS endpoint Web service can support just the send operation, just the
receive operation, or both operations, as determined by the service developer.

JMS endpoint Web services use javax.jms.ObjectMessage as the JMS message
type. As content, it can carry an instance of javax.xml.soap.SOAPElement or a
String representation of an XML fragment.

The WSDL generated for a send JMS endpoint Web service follows the Web
Service-Interoperability (WS-I) Basic Profile 1.0 and should be interoperable.

Figure 8–1 shows an MDB-based JMS endpoint Web service application that, from the
JMS endpoint Web service's view, handles both the message send and the message
receive operations. The figure also includes an MDB that is configured to listen to a
JMS destination.

Figure 8–1 MDB-Based JMS Endpoint Web Service

The following steps describe how the MDB-based JMS endpoint Web service
application illustrated in Figure 8–1 works.

1. A Web service client sends a SOAP request to invoke the send operation on the
JMS endpoint Web service.

2. The JMS endpoint Web service processes the incoming message and directs it to a
JMS destination, JMS Destination 1.

3. The EJB container invokes the MDB listening on JMS Destination 1.

OC4J

EJB Container

MDB

JMS Endpoint
Web Service

Send

JMS
Destination 1

JMS
Destination 2

25

34

1

6

Web Service
Client

Receive SOAP on HTTP

SOAP on HTTP

Understanding JMS Endpoint Web Services

Assembling Web Services with JMS Destinations 8-3

4. After processing the message an MDB produces a new message on JMS
Destination 2. Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and
the same MDB could also send the message to JMS Destination 2.

5. (Arrows 5 and 6) A Web service client sends a SOAP request to perform a
receive operation on the JMS endpoint Web service to retrieve a message. The
JMS endpoint Web service consumes a message from the JMS destination, encloses
it in a SOAP response message, and passes the outgoing SOAP response message
to the client.

How to Assemble a JMS Endpoint Web Service
The following steps describe how to assemble a JMS Endpoint Web service with the
WebServicesAssembler tool.

1. Generate the Web service EAR file by running the WebServicesAssembler with the
jmsAssemble command. The J2EE EAR file produced by this command includes
the JMS endpoint Web service configuration information, including the WSDL and
the generated web.xml file. For example:

java -jar wsa.jar -jmsAssemble
 -sendConnectionFactoryLocation jms/ws/mdb/theQueueConnectionFactory
 -sendQueueLocation jms/ws/mdb/theQueue
 -replyToConnectionFactoryLocation jms/ws/mdb/logQueueConnectionFactory
 -replyToQueueLocation jms/ws/mdb/logQueue
 -linkReceiveWithReplyTo true
 -targetNamespace http://oracle.j2ee.ws/jms-doc
 -typeNamespace http://oracle.j2ee.ws/jms-doc/types
 -serviceName JmsService
 -appName jms_service
 -context jms_service
 -input ./build/mdb_service.jar
 -uri JmsService
 -output ./dist

For the jmsAssemble command you must specify as a minimum, either a
sendConnectionFactoryLocation or
replyToConnectionFactoryLocation. For more information on this
command, see "jmsAssemble" on page 17-15.

In this example, jms/ws/mdb/theQueueConnectionFactory is the JNDI
name of the JMS connection factory used to produce connections to the JMS queue
for the JMS send operation.

■ jms/ws/mdb/theQueue—the JNDI name of the JMS queue to which the
send operation sends the SOAP message payload.

■ jms/ws/mdb/logQueueConnectionFactory—the JNDI name of the JMS
connection factory to be used for the reply-to queue.

■ jms/ws/mdb/logQueue—the JNDI name of the JMS queue that will be set to
each send message as the default reply-to destination. Because the
linkReceiveWithReplyTo argument is enabled in this example, this
reply-to destination is also used by the receive operation of the JMS
endpoint Web service to retrieve messages.

2. Deploy all of the JMS destinations.

3. Deploy the service and bind the application.

Understanding JMS Endpoint Web Services

8-4 Web Services Developer's Guide

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see Chapter 18, "Packaging and
Deploying Web Services" and the Oracle Containers for J2EE Deployment Guide. The
following is a sample deployment command:

java -jar <OC4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file dist/jms_service.ear
 -deploymentName jms_service
 -bindWebApp default-web-site

The following list describes the parameters in this code example.

■ <oc4jHome>—The directory containing the OC4J installation.

■ <user>—The user name for the OC4J instance. The user name is assigned at
installation time.

■ <password>—The password for the OC4J instance. The password is assigned
at installation time.

■ default-web-site —The Web site to which the application will be bound.
This is usually default-web-site. To configure Web sites, see the
server.xml file in <OC4J_HOME>/j2ee/home/config.

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

5. Generate the client-side code.

There is no difference between generating a client-side proxy from a JMS endpoint
Web service WSDL and any other Web service WSDL. The JMS endpoint Web
service WSDL is interoperable, in that it should be consumed by WS-I Basic Profile
1.0-compliant WSDL tools. For example, you can use a .NET WSDL tool to
generate C# client stubs to communicate with an Oracle JMS endpoint Web
service.

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 14, "Assembling a J2SE Web
Service Client".

■ For the J2EE environment, generate a service endpoint interface and a
mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 13,
"Assembling a J2EE Web Service Client".

For example, the following command generates stubs that can be used for a J2SE
client:

java -jar wsa.jar -genProxy
 -output build/src/client/
 -wsdl http://localhost:8888/hello/JmsService?WSDL
 -packageName oracle.demo.jms_service

This command generates the client proxies and stores them in the directory
build/src/client. The client application uses the stub to invoke operations on

Understanding JMS Endpoint Web Services

Assembling Web Services with JMS Destinations 8-5

a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 17-30.

6. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

Ant Tasks for Generating a Web Service
This release provides Ant tasks for Web service development. The following code
sample shows how the jmsAssemble command can be rewritten as an Ant task.

<oracle:jmsAssemble
 linkReceiveWithReplyTo="true"
 targetNamespace="http://oracle.j2ee.ws/jms-doc"
 typeNamespace="http://oracle.j2ee.ws/jms-doc/types"
 serviceName="JmsService"
 appName="jms_service"
 context="jms_service"
 input="./build/mdb_service.jar"
 uri="JmsService"
 output="./dist"
 sendConnectionFactoryLocation="jms/ws/mdb/theQueueConnectionFactory"
 sendQueueLocation="jms/ws/mdb/theQueue"
 replyToConnectionFactoryLocation="jms/ws/mdb/logQueueConnectionFactory"
 replyToQueueLocation="jms/ws/mdb/logQueue"/>

Message Processing and Reply Messages
The JMS endpoint Web service processes an incoming SOAP message and places the
payload (the body element of the SOAP message) on a JMS destination. This section
covers details that a developer needs to know to consume and process the JMS
messages that originate from a JMS endpoint Web service.

The JMS message content associated with a JMS endpoint Web service can be either an
instance of javax.xml.soap.SOAPElement (which is also a subclass of
org.w3c.dom.Element), or java.lang.String which is the string representation
of the XML payload. The JMS endpoint Web service may set certain JMS message
header values before it places the message on a JMS destination. Depending on the
values of optional configuration arguments specified when the JMS endpoint Web
service is assembled, the JMS endpoint Web service sets the following JMS message
headers.

JMSType
JMSReplyTo
JMSExpiration
JMSPriority
JMSDeliveryMode

When the JMS endpoint Web service sets the JMSReplyTo header, it uses either the
value specified with the replyToTopicLocation or the replyToQueueLocation
(only one of these should be configured for any given JMS endpoint Web service). The
value specified with the replyToConnectionFactoryLocation argument is set on

Limitations

8-6 Web Services Developer's Guide

the message as a standard string property. The property name is OC4J_REPLY_TO_
FACTORY_NAME.

Example 8–1 provides a code segment that shows where the onMessage() method
gets the reply-to information for a message generated from a JMS endpoint Web
service send operation:

Example 8–1 Getting Reply-To Information for a Message Generated by a Send
Operation

...
public void onMessage(Message inMessage) {
 // Do some processing
 ObjectMessage msg = null;
 String factoryName;
 Destination dest;
 Element el;
 try {
 // Message should be of type objectMessage
 if (inMessage instanceof ObjectMessage) {
 // retrieve the object
 msg = (ObjectMessage) inMessage;
 el = (Element)msg.getObject();
 System.out.println("MessageBean2::onMessage() => Message received: ");
 ((XMLElement)el).print(System.out);
 processElement(el);
 factoryName = inMessage.getStringProperty("OC4J_REPLY_TO_FACTORY_NAME");
 dest = inMessage.getJMSReplyTo();
...

Limitations
See "Assembling Web Services with JMS Destinations" on page C-5.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building J2EE Web service clients, see Chapter 13, "Assembling a J2EE Web Service
Client".

■ building J2SE Web service clients, see Chapter 14, "Assembling a J2SE Web Service
Client".

■ JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

Additional Information

Assembling Web Services with JMS Destinations 8-7

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Additional Information

8-8 Web Services Developer's Guide

Developing Database Web Services 9-1

9
Developing Database Web Services

This chapter describes how you can develop Oracle Application Server Web Services
that interact with an Oracle database. There are two ways in which OracleAS Web
Services can interact with a database: call-in and call-out. Web service call-in refers to
providing a Web service that provides access to a database resource. The Web service
runs in an OC4J instance and accesses the database resource through JDBC.

Web services call-out refers to invoking an external Web service from inside the
database. The invocation can be performed by PL/SQL, SQL, or Java code running in
the database.

This chapter contains these sections.

■ Understanding Database Web Services

■ Developing Web Services that Expose Database Resources

■ Developing a Web Service Client in the Database

■ Tool Support for Web Services that Expose Database Resources

Understanding Database Web Services
Web service technology enables application-to-application interaction over the
Web—regardless of platform, language, or data formats. The key ingredients,
including XML, SOAP, WSDL, UDDI, WS-Security, and WS-Reliability have been
adopted across the entire software industry. Web service technology usually refers to
services implemented and deployed in middle-tier application servers. However, in
heterogeneous and disconnected environments, there is an increasing need to access
stored procedures, data and metadata, through Web service interfaces. Database Web
service technology is a database approach to Web services. It works in two directions:

■ accessing database resources as a Web service (database call-in)

■ consuming external Web services from the database itself (database call-out)

Database Call-In
Turning the Oracle database into a Web service provider leverages your investment in
Java stored procedures, PL/SQL packages, Advanced Queues, pre-defined SQL
queries and DML. Client applications can query and retrieve data from Oracle
databases and invoke stored procedures using standard Web service protocols. There
is no dependency on Oracle-specific database connectivity protocols. Applications can
employ any cached OC4J connection. This approach is very beneficial in
heterogeneous, distributed, and non-connected environments.

Understanding Database Web Services

9-2 Web Services Developer's Guide

Since database Web services are a part of OracleAS Web Services, they can participate
in a consistent and uniform development and deployment environment. Messages
exchanged between the database and the Web service can take advantage of all of the
management features provided by OracleAS Web Services, such as security, reliability,
auditing and logging.

Figure 9–1 illustrates Web service call-in. The following steps describe the process.

1. A request for a type of database service arrives at the application server. The
service endpoint implicitly specifies the type of service requested.

2. The OC4J JAX-RPC processing servlet references the SOAP libraries and XML
parser to decode the request.

3. The servlet passes the request to the WebServicesAssembler-generated classes that
correspond to the exposed database operations. WebServicesAssembler generates
these classes by silently calling Oracle JPublisher. The generated classes can
represent PL/SQL packages, queries, DML, AQ Streams, or Java classes in the
database.

4. The database passes the response to the OC4J JAX-RPC processing servlet, which
references the SOAP libraries and XML parser to encode it.

5. A SOAP response formed in accordance with the WSDL is returned to the client.

See "Developing Web Services that Expose Database Resources" on page 9-6 for more
information on exposing PL/SQL packages, SQL queries, DML statements, Oracle AQ
Streams, or server-side Java classes database operations as a Web service.

Figure 9–1 Web Service Calling-In to the Database

Database Call Out
You can extend a relational database's storage, indexing, and searching capabilities to
include Web Services. By calling a Web service, the database can track, aggregate,
refresh, and query dynamic data produced on-demand, such as stock prices, currency
exchange rates, and weather information.

An example of using the database as a service consumer would be to call an external
Web service from a predefined database job to obtain inventory information from
multiple suppliers, then update your local inventory database. Another example is
that of a Web Crawler: a database job can be scheduled to collate product and price
information from a number of sources.

Figure 9–2 illustrates database call out.

OC4J JAX-RPC
Processing
Servlet

QueryPL/SQL

DMLJava

Oracle
Database

Encoding

Decoding WebServicesAssembler
Generated Java

Classes

Endpoint implicity
specifies the type
of service
provided by
the server

SOAP response
per WSDL

Soap
Libraries

XML
Parser

Oracle Application Server

Type Mapping Between SQL and XML

Developing Database Web Services 9-3

■ SQL and PL/SQL call specs—Invoke a Web service through a user-defined
function call (generated through Oracle JPublisher) either directly within a SQL
statement or view or through a variable.

■ Dynamic Web service invocation using the UTL_DBWS PL/SQL package. A Call
object can be dynamically created based on a WSDL and subsequently, Web
services operations can be invoked. This is described in the Oracle Database PL/SQL
Packages and Types Reference.

■ Pure Java static proxy class—Use Oracle JPublisher to pre-generate a client proxy
class. which uses JAX-RPC. This method simplifies the Web service invocation as
the location of the service is already known without needing to look up the service
in the UDDI registry. The client proxy class does all of the work to construct the
SOAP request, including marshalling and unmarshalling parameters.

■ Pure Java using DII (dynamic invocation interface) over JAX-RPC—Dynamic
invocation provides the ability to construct the SOAP request and access the
service without the client proxy.

Which method to use depends on whether you want to execute from SQL or PL/SQL,
from Java classes, or whether the service is known ahead of time (static invocation) or
only at runtime (DII). See "Developing a Web Service Client in the Database" on
page 9-32 for more information about the support OracleAS Web Services offers for
PL/SQL and Java call-outs from the database.

Figure 9–2 Calling Web Services From Within the Database

Type Mapping Between SQL and XML
The following sections describe the type mappings between SQL and XML for call-ins
and call-outs when the Web service is known ahead of time (static invocation).

■ SQL to XML Type Mappings for Web Service Call-Ins

■ XML to SQL Type Mapping for Web Service Call-Outs

When the Web service is known at runtime you can use only the Dynamic Invocation
Interface (DII) or the UTL_DBWS PL/SQL package. For more information on using the
JAX-RPC DII, see the API at the following Web address.

http://java.sun.com/j2ee/1.4/docs/#api

For more information on using the UTL_DBWS package, see the Oracle Database PL/SQL
Packages and Types Reference.

Oracle
DatabaseWeb

Services WSDL

Database
module as

a Web
Service

Requestor

Static Java Wrapper

PL / SQL
Operations

PL / SQL
Table

FunctionsPL / SQL
DII

Java Proxy Class

SOAP

Type Mapping Between SQL and XML

9-4 Web Services Developer's Guide

SQL to XML Type Mappings for Web Service Call-Ins
In a database Web service call-in, a SQL operation, such as a PL/SQL stored procedure
or a SQL statement, is mapped into one or more Web service operations. The
parameters to the SQL operation are mapped from SQL types into XML types.

Table 9–1 illustrates the SQL to XML mappings for Web service call-ins. The first
column lists the SQL types. The second column of the table, XML Type (Literal),
shows SQL-to-XML type mappings for the default literal value of the use
attribute. The third column, XML Type (Encoded), shows the mappings for the
encoded value of the use attribute. The literal and encoded values refer to the
rules for encoding the body of a SOAP message. See "Literal and Encoded Uses" on
page 4-2 for more information on these rules.

Note: The reason there may be more than one operation is because
OracleAS Web Services may be providing additional data
representation choices for the SQL values in XML, such as different
representations of SQL result sets.

Table 9–1 SQL-to-XML Type Mappings for Web Services Call-Ins

SQL Type XML Type (Literal) XML Type (Encoded)

INT int int

INTEGER int int

FLOAT double double

NUMBER decimal decimal

VARCHAR2 string string

DATE dateTime dateTime

TIMESTAMP dateTime dateTime

BLOB byte[] byte[]

CLOB String String

LONG String String

RAW byte[] byte[]

SQL object complexType complexType

PL/SQL record complexType complexType

Primitive PL/SQL
indexby table

Array Array

SQL table complexType complexType

PL/SQL indexby table complexType complexType

PL/SQL Boolean boolean boolean

REF CURSOR

(nameBeans)

Array Array

REF CURSOR

(nameXML)

any text_xml

REF CURSOR

(nameXMLRowSet)

swaRef text_xml

Type Mapping Between SQL and XML

Developing Database Web Services 9-5

A query or a PL/SQL function returning REF CURSOR will be mapped into three
methods, nameBeans, nameXMLRowSet, and nameXML, where name is the name of the
query or the PL/SQL function.

■ nameBeans—this method returns an array, where each element is an instance of
an XSD complex type that represents one row in the cursor. A complex type
subelement corresponds to a column in that row.

■ nameXMLRowSet—this method returns a swaRef or text_xml response that
contains an OracleWebRowSet instance in XML format. "Working with MIME
Attachments" in the Oracle Application Server Advanced Web Services Developer's
Guide provides more information on the swaRef MIME format

■ nameXML—this method returns an XML any or text_xml response that contains
an Oracle XDB row set.

"Exposing a SQL Query or DML Statement as a Web Service" on page 9-14 shows
examples of returning a result set which is similar to REF CURSOR.

Both OUT and IN OUT PL/SQL parameters are mapped to IN OUT parameters in the
WSDL file. See "Mapping PL/SQL IN and IN OUT Parameters to XML IN OUT
Parameters" on page 9-12 for an example of how parameters are generated into the
WSDL and then accessed from client code.

Note that Table 9–1 provides two different mappings: one for literal and another for
encoded use. The default mapping is literal. From a database Web service's
perspective, there is no special reason why encoded should be used. The mapping for
encoded is provided in case you encounter scenarios which call for the encoded use
setting. All of the descriptions in this chapter assume that you will be using the literal
use setting unless otherwise specified.

Changing the SQL to XML Mapping for Numeric Types
Table 9–1 defines SQL to XML type mappings used for call-ins. The mappings for the
numeric types is determined by how Oracle JPublisher maps SQL types to Java types.
By default, the WebServicesAssembler tool uses the Oracle JPublisher option
-numbertypes=objectjdbc. As a result, the XML types corresponding to the SQL
numeric types are all declared nillable in the generated WSDL file. To change the
Oracle JPublisher mappings, and hence change the XML types, you can use the
WebServicesAssembler jpubProp argument. For example, if you specify the
following argument in the database WebServicesAssembler Ant task, then the XML
types generated for SQL numeric types will not be declared nillable.

jpubProp="numbertypes=jdbc"

On the other hand, if you specify either oracle or bigdecimal as the target of the
numbertypes option, then the XML types generated for SQL numeric types will all
be decimal and nillable.

XML to SQL Type Mapping for Web Service Call-Outs
In database Web services call-outs, XML types are mapped into SQL types. Table 9–2
lists the XML-to-SQL type mappings used in call-outs.

SYS.XMLTYPE any text_xml

Table 9–1 (Cont.) SQL-to-XML Type Mappings for Web Services Call-Ins

SQL Type XML Type (Literal) XML Type (Encoded)

Developing Web Services that Expose Database Resources

9-6 Web Services Developer's Guide

Developing Web Services that Expose Database Resources
This section describes how to develop Web services implemented as PL/SQL stored
procedures, SQL statements, Oracle Streams AQ queues, and server-side Java classes.

■ How to Use Life Cycle for Web Service Call-in

■ WebServicesAssembler Support for Web Service Call-in

■ Exposing PL/SQL Packages as Web Services

■ Exposing a SQL Query or DML Statement as a Web Service

■ Exposing an Oracle Streams AQ as a Web Service

■ Exposing a Server-Side Java Class as a Web Service

How to Use Life Cycle for Web Service Call-in
Creating a database Web service call-in application is a bottom up process. In many
cases, you will want to reuse existing database applications (such as PL/SQL packages
or Java applications) or operational scripts (such as SQL query, DML, or AQ). You can
also populate the database with the resources to be exposed as a Web service. Web
service call-ins typically follow these steps:

1. Determine which database resources to expose and make them available.

For example, you can provide the resources in any of the following ways.

■ load the PL/SQL package into the database

■ create the schema used by SQL query or DML statement Web service

■ load the Java class into the database, for a database server-side Java Web
service

2. Run the WebServicesAssembler tool to assemble the Web service, based on the
specified resources.

Note that you could also use JDeveloper to assemble the Web service.

3. If the Web service assembly generates a PL/SQL wrapper, load it into the
database.

Table 9–2 XML-to-SQL Type Mappings for Web Services Call-Outs

XML Type SQL Type

int NUMBER

float NUMBER

double NUMBER

decimal NUMBER

dateTime DATE

String VARCHAR2

byte[] RAW

complexType SQL OBJECT

Array SQL TABLE

text_xml XMLType

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-7

PL/SQL Web service assembly may generate a wrapper if a PL/SQL record or
INDEX BY table type is included in the PL/SQL package. You must load the
wrapper into the database. Server-side Java call-in assembly always generates a
PL/SQL wrapper. WebServicesAssembler will load the wrapper automatically if
the sysUser argument is set. For more information, see sysUser on page 17-50.

Note that you could also use JDeveloper to load the PL/SQL wrapper into the
database.

4. Configure the OC4J data sources to ensure that the Oracle JPublisher-generated
Java classes that constitute the Web service implementation can connect to the
database and the resource it is exposing.

Add a data source entry in the J2EE data source file, so that the Web service
application can connect to the database.

5. Deploy the Web service application into a running instance of OC4J.

6. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

7. Use the WebServicesAssembler tool to generate the Web services client proxy and
incorporate it into your client application.

8. Invoke the Web service using the client proxy.

WebServicesAssembler Support for Web Service Call-in
For all Web service call-in types, the WebServicesAssembler tool requires the following
arguments.

■ appName—the application name

■ dataSource—the data source JNDI name; used at runtime

■ dbConnection—the database connection URL; used at code generation time

■ dbUser—the database user and password; used at code generation time

The appName argument specifies the Web service application name. The dataSource
argument defines the data source's JNDI location for the database being accessed. At
runtime, the Web service code accesses the database through that data source.

The WebServicesAssembler tool uses the dbConnection and dbUser arguments to
define the connection to the database during Web service creation. The values of these
arguments are used at code generation time, not at runtime. The dbConnection
argument is used to access the information on the resource that is to be exposed. For
example, it accesses information about the PL/SQL package, the schema, or the query.

The database used at Web service creation time and the one used at runtime do not
have to be the same database. However, both should include the schema that contains
the database resources being exposed.

At runtime, database Web services obtain the database connection from the data
source. The database Web service deals with connection loss by reconnecting to the
database. When the connection is in an invalid state, the Web service will attempt to
reestablish the connection. If the Web service fails to re-connect, it will return a fault.
The next time the client invokes the Web service, the Web service will attempt to
connect to the database. Therefore, it is possible for the Web service to return a fault at
one moment, but succeed later, due to connection failure handling.

Developing Web Services that Expose Database Resources

9-8 Web Services Developer's Guide

The following arguments are optional and can be used in all Web service call-in
scenarios.

■ context—root context for the web application

■ debug—displays detailed diagnostic messages

■ ear—name and location of the generated EAR

■ jpubProp—specifies Oracle JPublisher options to fine-tune Oracle JPublisher code
generation

■ output—location for storing generated files

■ portName—the name of the port in the generated WSDL

■ serviceName—local part of the service name in the generated WSDL

■ style—the style part of the message format used in the generated WSDL

■ uri—URI to use for the Web service in the deployment descriptors

■ use—the use part of the message format used in the generated WSDL

The common prerequisite for all call-in types is that the database is populated with the
resource to be exposed. The WebServicesAssembler employs Oracle JPublisher to
generate Java code to access database resources. The jpubProp argument, which can
appear more than once on the command line or in an Ant task, lets you pass options to
Oracle JPublisher. Refer to the Oracle Database JPublisher User's Guide for the list of
options and for information on how Oracle JPublisher maps PL/SQL, SQL types, SQL
statements, and server-side Java into client-side Java wrappers.

Exposing PL/SQL Packages as Web Services
Use the plsqlAssemble command to assemble Web services from a PL/SQL stored
procedure. In the generated Web service, each Web service operation corresponds to a
PL/SQL stored procedure.

Prerequisites
Before you begin, provide the following files and information.

■ The PL/SQL package that you want to expose as a Web service

See "Sample PL/SQL Package" on page 9-11 for the stored procedure that is used
in this example.

■ A name for the Web service application

■ A JNDI location for the JDBC data source

■ The JDBC database connection URL, and the username and password

How to Assemble a Web Service from a PL/SQL Package
The following steps describe how to assemble a Web service for the PL/SQL package
echo_plsql.

1. Provide the PL/SQL package and the information described in the Prerequisites
section as input to the WebServicesAssembler plsqlAssemble command.

java -jar wsa.jar
 -plsqlAssemble
 -appName Echo
 -sql echo_plsql
 -dataSource jdbc/OracleManagedDS

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-9

 -dbConnection jdbc:oracle:thin:@stacd15:1521:lsqlj
 -dbUser scott/tiger
 -style rpc
 -use encoded

The arguments that can be used with the plsqlAssemble command are
described in "plsqlAssemble" on page 17-16.

By default, WebServicesAssembler generates services using document-wrapped
style. However, JAX-RPC clients that use document-wrapped style do not support
IN OUT parameters directly. Instead, WebServicesAssembler packages IN and IN
OUT parameters separately. Since the PL/SQL package used in this example
contains IN OUT parameters, the plsqlAssemble command includes the -style
rpc argument. For more information on parameters and different document
styles, see "Mapping PL/SQL IN and IN OUT Parameters to XML IN OUT
Parameters" on page 9-12.

The command generates a Web service application, EchoPlsql.ear, and
optionally, the following PL/SQL scripts.

■ Echo_plsql_wrapper.sql—the PL/SQL wrapper generated to support
PL/SQL record and INDEX BY table.

■ Echo_plsql_dropper.sql—the PL/SQL script to tear down the types and
packages created by the wrapper script.

2. Install any PL/SQL wrappers created during Web service generation into the
database.

Not all PL/SQL Web services assembly generates PL/SQL wrappers. If it does,
you must load them into the appropriate user schema in the database before
running the Web service.

The wrappers can be loaded automatically or manually. To load the wrappers
automatically, add the following line to the plsqlAssemble command:

-jpubProp plsqload (for the command line), or

jpubprop="plsqlload" (for an Ant task)

To manually load the wrapper package after Web service assembly, use
SQL*PLUS. The following command line provides a sample SQL*PLUS command
to load a wrapper package.

SQL>@Echo_plsql_wrapper.sql

3. Deploy the service into a running instance of OC4J and bind the application.

The data source referenced by the -dataSource argument in Step 1 must be set
up in this OC4J instance.

The following command lines provide sample deployment and bind commands.

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –deploy -file dist/echo.ear –deploymentName echo

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –bindWebApp plsql plsql-web default-web-site /plsql

In this example, <J2EE_HOME> is the directory where J2EE is installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

Developing Web Services that Expose Database Resources

9-10 Web Services Developer's Guide

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

5. Generate the client-side code.

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. See Chapter 14, "Assembling a J2SE Web Service Client" for more
information on generating and assembling client-side code for the J2SE
environment.

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. See
Chapter 13, "Assembling a J2EE Web Service Client" for more information on
generating and assembling client-side code.

For example, the following command uses the genProxy command to generate a
J2SE client in the build/classes/client directory.

% java –jar wsa.jar –genProxy
 –wsdl http://locahost:8888/plsql/echo?WSDL
 -output build/src/client
 –mappingFileName ./mapping.xml
 –packageName oracle.demo.db.plsql.stub
 -unwrapParameters true

6. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

The following command line provides sample compile and run commands.

 % javac –classpath path:
 <ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
 :<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar EchoClient.java

% java -classpath path:
 <ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
 <ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
 <J2EE_HOME>/lib/jax-qname-namespace.jar:
 <J2EE_HOME>/lib/activation.jar:
 <J2EE_HOME>/lib/mail.jar:
 <J2EE_HOME>/lib/http_client.jar:
 <ORACLE_HOME>/lib/xmlparserv2.jar EchoClient

In this example, <J2EE_HOME> is the directory where J2EE is installed, <ORACLE_
HOME> is the directory where OracleAS Web Services is installed.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-11

Ant Tasks for Generating a Web Service
This release provides Ant tasks for Web services development. The following example
shows how the WebServicesAssembler plsqlAssemble command can be rewritten
as an Ant task.

<oracle:plsqlAssemble
 dbUser="scott/tiger"
 sql="echo_plsql"
 dbConnection="jdbc:oracle:thin:@stacd15:1521:1sqlj"
 dataSource="jdbc/OracleManagedDS"
 appName="EchoPlsql"
 style="rpc"
 use="encoded"
/>

Sample PL/SQL Package
Example 9–1 illustrates a PL/SQL package in the database that can be exposed as a
Web service. The package contains procedures and functions that exercise various SQL
and PL/SQL data types.

Example 9–1 Sample PL/SQL Package

create or replace type address as object(
 street varchar2(30), city varchar2(30), state varchar2(2), zip varchar2(5));
create or replace type employee as object (eid int, efirstname varchar(30),
 elastname varchar(30), addr address, salary float);
create table employees (eid int, emp employee);
create table employee_espp (eid int, status int);
create table employee_accounts (eid int, accounts sys.xmltype);
create table employee_biodata (eid int, biodata CLOB);
create table employee_image (eid int, image BLOB);
create table employee_hiredate(eid int, hiredate TIMESTAMP);

create or replace package echo_plsql as
procedure set_object (emp IN employee);
function get_object1(id IN int) return employee;
function get_object2(id IN int) return address;
function hold_varchar(id IN int, firstname OUT varchar2, lastname OUT varchar2)
return float;
procedure set_boolean(id IN int , status IN boolean);
function get_boolean(id IN int) return boolean;
procedure hold_float_inout(id IN int, newsalary IN OUT float);
procedure clear_object (id IN int);
procedure set_clob (id int, biodata IN CLOB);
function get_clob(id IN int) return CLOB;
procedure set_blob(id int, image IN BLOB);
function get_blob(id IN int) return BLOB;
procedure set_xmltype(id IN number, accounts sys.xmltype);
function get_xmltype(id IN number) return sys.xmltype;
procedure set_date(id IN int, hiredate IN TIMESTAMP);
function get_date(id IN int) return TIMESTAMP;
TYPE rec is RECORD (emp_id int, manager_id int);
TYPE index_tbl is TABLE OF rec INDEX BY BINARY_INTEGER;
function echo_rec(mrec rec) return rec;
function echo_index_tbl(mtbl index_tbl) return index_tbl;
end echo_plsql;

Developing Web Services that Expose Database Resources

9-12 Web Services Developer's Guide

Mapping Between PL/SQL Functions and Web Service Operations
PL/SQL functions or procedures are mapped into Web service operations, often with
adjusted names. Typically, the underscore in a PL/SQL name is removed and the letter
following the underscore is capitalized. For example, notice the PL/SQL function
echo_index_tbl in Example 9–1. This function is mapped into the Web service
operation echoIndexTbl. The WSDL fragment in Example 9–2 shows how the
PL/SQL function echo_index_tbl is expressed as the echoIndexTbl Web service
operation.

Example 9–2 WSDL Fragment, Illustrating the Mapping of a PL/SQL Function

<operation name="echoIndexTbl" parameterOrder="EchobaseIndexTblBase_1">
<input message="tns:Echo_echoIndexTbl"/>
<output message="tns:Echo_echoIndexTblResponse"/>
</operation>

Mapping PL/SQL IN and IN OUT Parameters to XML IN OUT Parameters
The PL/SQL parameters OUT and IN OUT in Example 9–1 on page 9-11 are represented
as XML IN OUT parameters, as shown by the holder parameters of holdVarchar. The
entries in the WSDL fragment in Example 9–3 illustrate the holdVarchar operation.
The second and third parameters appear in both the input and output messages,
which indicates that both parameters are IN OUT parameters.

Example 9–3 WSDL Fragment, Illustrating IN OUT Parameters

<operation name="holdVarchar"
 parameterOrder="Integer_1 String_2 String_3">
 <input message="tns:Echo_holdVarchar"/>
 <output message="tns:Echo_holdVarcharResponse"/>
</operation>
<message name="Echo_holdVarchar">
<part name="Integer_1" type="xsd:int"/>
<part name="String_2" type="xsd:string"/>
<part name="String_3" type="xsd:string"/>
</message>
<message name="Echo_holdVarcharResponse">
<part name="result" type="ns1:double"/>
<part name="String_2" type="xsd:string"/>
<part name="String_3" type="xsd:string"/>
</message>

To access the IN OUT parameters in JAX-RPC client code, you must use JAX-RPC
holders. For example, the code in Example 9–4 retrieves the returned values as
firstName.value and lastName.value, where firstName and lastName are
both String holders. The actual values in the holders are accessed by the member
value, as shown in the println statement.

Example 9–4 Accessing IN OUT Parameters in Client Code by Using JAX-RPC Holders

System.out.println("holdVarchar");
StringHolder firstName = new StringHolder("Tom");
StringHolder lastName = new StringHolder("Gordon");
System.out.println("Holder returned: empid="
+ ci.holdVarchar(id, firstName, lastName)
+ ", name="
+ firstName.value
+ "."
+ lastName.value);

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-13

Note that the plsqlAssemble command line specified -style rpc. The RPC style
supports holders. The default document-wrapped style does not support holders.

If the Web service had been created with the default document-wrapped style, then a
different holdVarchar signature would have been generated. The OUT arguments
would be captured as attributes on the return value.

The following WSDL segment shows the holdVarchar operation in the
document-wrapped style. In the return type, EchoUser_holdVarchar_Out, the
attributes lastnameOut and firstnameOut record the OUT value of the PL/SQL
parameters firstname and lastname.

Example 9–5 WSDL Fragment, Illustrating IN OUT Parameters Handled in
Document-Wrapped Style

<operation name="holdVarchar" parameterOrder="Integer_1">
 <input message="tns:Echo_holdVarchar"/>
 <output message="tns:Echo_holdVarcharResponse"/>
 </operation>

<message name="Echo_holdVarchar">
 <part name="Integer_1" type="xsd:int"/>
</message>
<message name="Echo_holdVarcharResponse">
 <part name="result" type="tns:Echo_holdVarchar_Out"/>
</message>

<complexType name="Echo_holdVarchar_Out">
 <sequence>
 <element name="return" type="double" nillable="true"/>
 <element name="lastnameOut" type="string" nillable="true"/>
 <element name="firstnameOut" type="string" nillable="true"/>
 </sequence>
</complexType>

Mapping SQL XMLType to XML any
The SQL XMLType in Example 9–1 on page 9-11 is mapped into the XML any type.
The getXmltype operation in the WSDL fragment in Example 9–6 illustrates this
mapping.

Example 9–6 WSDL Fragment, Illustrating the Mapping of SQL XMLType into text_xml

<message name="Echo_getXmltypeResponse">
<part name="result" type="ns2:any"/>
</message>
<operation name="getXmltype" parameterOrder="BigDecimal_1">
<input message="tns:Echo_getXmltype"/>
<output message="tns:Echo_getXmltypeResponse"/>
</operation>

WebServicesAssembler generates a proxy that maps XML any to the Java type
org.w3c.org.dom.Element. Therefore, a Java client accesses a SQL XMLType
instance as an Element instance.

Developing Web Services that Expose Database Resources

9-14 Web Services Developer's Guide

Exposing a SQL Query or DML Statement as a Web Service
Use the sqlAssemble command to generate Web services from a SQL statement. The
statement can include SQL queries and DML (Data Manipulation Language)
statements.

Unlike PL/SQL Web services generation, SQL statement assembly does not generate
PL/SQL wrappers. PL/SQL wrappers are generated only to handle PL/SQL record
or INDEX BY table types. These types cannot be used in a SQL statement.

Prerequisites
Before you begin, provide the following files and information.

■ The SQL statements or queries. Example 9–7, "Sample SQL Statements" on
page 9-16 illustrates the SQL statements used in the following example.

Multiple sqlstatement arguments can be specified on the command line or Ant
task. For information on the format of the sqlstatement argument, see
"sqlstatement" on page 17-49.

■ A name for the Web service application.

■ The JNDI location of the JDBC data source. This information is used at runtime.

■ The JDBC database connection URL. This information is used at compile time.

■ The name and password of the schema which the query or statement is based on.
This information is used at compile time.

How to Assemble a Web Service from a SQL Statement or Query
The following steps use the sqlAssemble command to assemble a Web service for
the queries and statements on the SCOTT schema.

1. Provide the SQL statements or query, the name and password for the database that
they are based on, and the other information described in the Prerequisites section
as input to the WebServicesAssembler sqlAssemble command.

For example, the following command generates the Web service application
query.ear.

java -jar wsa.jar
 -sqlAssemble
 -appName query
 -dataSource jdbc/OracleManagedDS
 -sqlstatement "getEmpCount=select ename, sal from emp where
 sal>:{mysal NUMBER}"
 -sqlstatement "getEmpBySal=select ename, sal from emp where
 sal>:{mysal NUMBER}"
 -sqlstatement "updateEmp=update emp SET sal=sal+500 where
 ename=:{myname VARCHAR}"
 -dbConnection jdbc:oracle:thin:@stacd15:1521:lsqlj
 -dbUser scott/tiger

2. Deploy the service into a running instance of OC4J and bind the application.

The data source referenced in the -dataSource argument must have been set up
for this OC4J instance.

The following command lines provide sample deployment and bind commands.

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –deploy -file dist/query.ear –deploymentName query

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-15

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –bindWebApp plsql plsql-web default-web-site /query

In these sample command lines, <J2EE_HOME> is the directory where J2EE is
installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

3. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

4. Generate the client-side code.

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 14, "Assembling a J2SE Web
Service Client".

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 13,
"Assembling a J2EE Web Service Client".

For example, the following command uses genProxy to generate code for a J2SE
client.

% java –jar wsa.jar –genProxy
 –wsdl http://locahost:8888/query/query?WSDL
 -output build/src/client
 –mappingFileName ./mapping.xml
 –packageName oracle.demo.db.query.stub
 -unwrapParameters true

The command generates the client in the build/src/client directory.

5. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

The following command lines provide sample compile and run commands.

% javac –classpath path:
 <ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
 :<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar QueryClient.java

% java -classpath path
 <ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
 <ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
 <J2EE_HOME>/lib/jax-qname-namespace.jar:

Developing Web Services that Expose Database Resources

9-16 Web Services Developer's Guide

 <J2EE_HOME>/lib/activation.jar:
 <J2EE_HOME>/lib/mail.jar:
 <J2EE_HOME>/lib/http_client.jar:
 <ORACLE_HOME>/webservices/lib/commons-logging.jar:
 <ORACLE_HOME>/lib/xmlparserv2.jar QueryClient

In this example, <J2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where the OC4J is installed.

Ant Tasks for Assembling a Web Service from SQL Queries or DML Statements
The current release provides Ant tasks for Web services development. The following
example shows how the WebServicesAssembler sqlAssemble command can be
rewritten as an Ant task.

<oracle:sqlAssemble
 appName="query"
 dataSource="jdbc/OracleManagedDS"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
 dbUser="scott/tiger">
 <sqlstatement="getEmpCount=select ename, sal from emp where sal>:{mysal
NUMBER}"/>
 <sqlstatement="getEmpBySal=select ename, sal from emp where sal>:{mysal
NUMBER}"/>
 <sqlstatement="updateEmp=update emp SET sal=sal+500 where ename=:{myname
VARCHAR}"/>
/>

Sample SQL Statements
Example 9–7 illustrates the SQL statements that are exposed as a Web service.

Example 9–7 Sample SQL Statements

getEmpCount=select ename, sal from emp where sal>:{mysal NUMBER}
getEmpBySal=select ename, sal from emp where sal>:{mysal NUMBER}
updateEmp=update emp SET sal=sal+500 where ename=:{myname VARCHAR}

Mapping SQL Queries to Service Operations
A SQL query, when exposed as a Web service, is mapped to three service operations.
For example, the getEmpBySal query in Example 9–7 generates these service
operations.

■ getEmpBySalBeans—returns an array. The array element is an object type with
attributes corresponding to the columns in the row of the query result.

■ getEmpBySalXMLRowSet—returns an XML document with the query result in
the WebRowSet format.

■ getEmpBySalXML—returns an XML document with the query result in Oracle
XDB rowset format.

Providing three operations from one query is a convenience. The return values differ
only in format. Note the naming convention is to attach Beans, XMLRowSet, and XML
to the original query name.

The WSDL fragment in Example 9–8 describes the return types of the three operations
in the WSDL file.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-17

Example 9–8 WSDL Fragment, Illustrating Service Operations for a SQL Query

<complexType name="getEmpBySalBeansResponse">
<sequence>
<element name="result" type="tns:Query_getEmpBySalRowUser" nillable="true"
 minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
<complexType name="Query_getEmpBySalRowUser">
<sequence>
<element name="ename" type="string" nillable="true"/>
<element name="sal" type="decimal" nillable="true"/>
</sequence>
</complexType>

<complexType name="getEmpBySalXMLRowSetResponse">
<sequence>
<element name="result" type="ns1:swaRef" nillable="true"/>
</sequence>
</complexType>

<complexType name="getEmpBySalXMLResponse">
<sequence>
<element name="result" type="xsd:any" nillable="true"/>
</sequence>
</complexType>

Two of the methods, getEmpBySalXMLRowSetResponse and
getEmpBySalXMLResponse, have parameters of swaRef type. For this type, the
assembler generates javax.xml.soap.AttachmentPart in the client proxy.
Example 9–9 illustrates the client code to access the returned query result.

Example 9–9 Accessing Returned Query Results from a swaRef Type in Client Code

import oracle.jdbc.pool.OracleDataSource;
import oracle.jdbc.rowset.OracleWebRowSet;
import javax.xml.soap.AttachmentPart;
import org.w3c.org.Element;
import javax.xml.transform.dom.*;
import java.io.*;
 ...

/* Access the query result as Oracle XDB RowSet */
Element element = eme.getEmpBySalXML(new BigDecimal(500));
DOMSource doms = new javax.xml.transform.doc.DOMSource(element);
buf = new jav.io.ByteArrayOutputStream();
StreamResult streamr = new StreamResult(buf);
trnas.transform(doms, streamr);
System.out.println(buf, toString());

/* Access the query result as Oracle WebRowSet */
ap = eme.getEmpBySalXMLRowSet(new BigDecimal(500));
source = (Source) ap.getContent();
trans = TransformerFactory.newInstance().newTransformer();
buf = new ByteArrayOutputStream();
streamr = new StreamResult(buf);
trans.transform(source, streamr);
InputStream istream = new ByteArrayInputStream(buf.toString().getBytes());
OracleWebRowSet rowset = new OracleWebRowSet();
System.setProperty("http.proxyHost", "www-proxy.us.oracle.com");

Developing Web Services that Expose Database Resources

9-18 Web Services Developer's Guide

System.setProperty("http.proxyPort", "80");
 System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
"oracle.xml.jaxp.JXDocumentBuilderFactory");
rowset.readXml(new InputStreamReader(istream));
rowset.writeXml(new PrintWriter(System.out));

The code in Example 9–9 emits the query result in two formats: Oracle XDB row set
(ROWSET) and Oracle Web row set (OracleWebRowSet). Example 9–10 shows the
query result as an Oracle XDB row set. Example 9–11 prints the result in WebRowSet
format. In practice, you can access the variable rowset OracleWebRowSet instance in
Example 9–9 using oracle.jdbc.rowset.OracleWebRowSet APIs. For more
information on these data types, see the Oracle Database JDBC Developer's Guide and
Reference.

Example 9–10 Query Results as an Oracle XDB Row Set

<ROWSET>
<ROW num="1">
<ENAME>SMITH</ENAME><SAL>800</SAL>
</ROW>
<ROW num="2">
<ENAME>ALLEN</ENAME><SAL>1600</SAL>
</ROW>
<ROW num="3">
<ENAME>WARD</ENAME><SAL>1250</SAL>
</ROW>
</ROWSET>

Example 9–11 Query Results as a JDBC Web Row Set

<?xml version="1.0" encoding="UTF-8"?>
 <webRowSet xmlns="http://java.sun.com/xml/ns/jdbc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/jdbc
http://java.sun.com/xml/ns/jdbc/webrowset.xsd">
 <properties>
<command></command>
<concurrency>1007</concurrency>
<datasource></datasource>
<escape-processing>true</escape-processing>
<fetch-direction>1002</fetch-direction>
<fetch-size>10</fetch-size>
<isolation-level>2</isolation-level>
<key-columns>
</key-columns>
<map>
</map>
<max-field-size>0</max-field-size>
<max-rows>0</max-rows>
<query-timeout>0</query-timeout>
<read-only>false</read-only><rowset-type>1005</rowset-type>
<show-deleted>false</show-deleted>
<table-name></table-name>
<url>jdbc:oracle:thin:@stacd15:1521:lsqlj1</url>
<sync-provider>

<sync-provider-name>com.sun.rowset.providers.RIOptimisticProvider</sync-provider-n
ame>
 <sync-provider-vendor>Sun Microsystems Inc.</sync-provider-vendor>
 <sync-provider-version>1.0</sync-provider-version>

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-19

 <sync-provider-grade>2</sync-provider-grade>
 <data-source-lock>1</data-source-lock>
</sync-provider>
 </properties>
 <metadata>
<column-count>2</column-count>
<column-definition>
 <column-index>1</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>10</column-display-size>
 <column-label>ENAME</column-label>
 <column-name>ENAME</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>

<column-definition>
 <column-index>2</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>10</column-display-size>
 <column-label>SAL</column-label>
 <column-name>SAL</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>2</column-type>
 <column-type-name>NUMBER</column-type-name>
</column-definition>
 </metadata>
 <data>
<currentRow>
 <columnValue>SMITH</columnValue>
 <columnValue>800</columnValue>
</currentRow>
<currentRow>
 <columnValue>ALLEN</columnValue>
 <columnValue>1600</columnValue>
 </currentRow>
 <currentRow>
 <columnValue>WARD</columnValue>
 <columnValue>1250</columnValue>
 </currentRow>
 </data>

Developing Web Services that Expose Database Resources

9-20 Web Services Developer's Guide

 </webRowSet>

Mapping DML Operations to Web Service Operations
A DML statement is an UPDATE, DELETE, or INSERT SQL statement. The
sqlAssemble command can expose DML statements into operations in a Web
Service. DML operations are automatically committed when successful and
automatically rolled back when they are not.

Example 9–12 illustrates a WSDL fragment that exposes the DML statement in
Example 9–7:

updateEmp=update emp SET sal=sal+500 where ename=:{myname
VARCHAR}

The DML statement is exposed as two operations. In this example, updateEmp
executes the statement; updateEmpiS executes it in batch mode. The batched
operation takes an array for each original DML argument. Each element in the array is
used for one execution in the batch. The result of a batched operation reflects the total
number of rows updated by the batch.

Example 9–12 WSDL Fragment, Illustrating the Response Type of a DML Operation

 <message name="SqlStmts_updateEmp">
 <part name="salary" type="xsd:string"/>
 </message>
 <message name="SqlStmts_updateSchemaResponse">
 <part name="result" type="xsd:int"/>
 </message>
 <message name="SqlStmts_updateEmpiS">
 <part name="salary" type="tns:ArrayOfstring"/>
 </message>
 <message name="SqlStmts_updateEmpiSResponse">
 <part name="result" type="xsd:int"/>
 </message>

Exposing an Oracle Streams AQ as a Web Service
Oracle Streams Advanced Queuing is an asynchronous messaging system provided by
Oracle databases. By exposing an Advanced Queue (AQ) as a Web service, the client
can send a message to a receiver inside the database, or eventually, to another client of
the same Web service.

The WebServicesAssembler tool can generate a Web service from an AQ existing in a
database. An AQ can have a single consumer or multiple consumers. A single
consumer is often referred to as a queue. A multiple consumer AQ is often referred to
as a topic. Each Oracle Streams AQ belongs to a queue table, which defines the
payload type of all its AQs, and whether the AQs support only queues or topics. The
generated Java code employs the Oracle Streams AQ JMS APIs.

Example 9–15 on page 9-24 and Example 9–16 on page 9-27 illustrate the Web service
operations that the WebServicesAssembler exposes for a queue and a topic,
respectively. The assembler creates the operations based on Oracle Streams AQ and
AQ JMS APIs. For information regarding Oracle Streams AQ and AQ JMS APIs, refer
to the Oracle Streams Advanced Queuing Java API Reference.

Prerequisites
Before you begin, provide the following files and information.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-21

■ A database connection URL to the database where the AQ resides. As an
alternative to JDBC, WebServicesAssembler gives you the flexibility of using a JMS
queue instance to access an Oracle AQ. For more information, see "Accessing an
Oracle AQ Queue with JMS" on page 9-23.

■ The name of the schema where the AQ resides and the user name and password to
access it. This is used at compile time.

■ The name of the queue or topic that you want to expose as a Web service. You can
publish only a single queue or topic to be exposed by a Web service. See "Sample
AQ Queue and Topic Declaration" on page 9-23 for a sample queue and topic.

■ A name for the Web service application.

■ The data source JNDI name. This information is used at runtime.

How to Assemble a Web Service from an Oracle AQ
The following steps describe how to use WebServicesAssembler to assemble a Web
service from an Oracle AQ queue.

1. Provide the files and other information described in the Prerequisites section as
input to WebServicesAssembler -aqAssemble command.

For example, the following command creates a Web service application with the
queue.ear file generated in the current directory. The WebServicesAssembler
tool generates Java files to access the queue at runtime. "Sample AQ Queue and
Topic Declaration" on page 9-23 illustrates the AQ sample_queue declaration.

java -jar $ORACLE_HOME/webservices/lib/wsa.jar
 -aqAssemble
 -appName queue
 -dataSource jdbc/OracleManagedDS
 -portName assembleQueuePort
 -sql sample_queue
 -dbConnection jdbc:oracle:thin:@stacd15:1521:lsqlj
 -dbUser scott/tiger

You can publish the sample topic in the declaration, sample_topic, in the same
way as sample_queue (but in a different WebServicesAssembler invocation). The
only difference would be the values for sql and appName arguments in the
aqAssemble command.

2. Deploy the service into a running instance of OC4J and bind the application.

This step assumes that the AQ has been set up as a data source in the OC4J
instance.

The following command lines provide sample deployment and bind commands.

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –deploy -file dist/queue.ear –deploymentName queue

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –bindWebApp queue queue-web default-web-site /queue

In this example, <J2EE_HOME> is the directory where J2EE is installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

3. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web

Developing Web Services that Expose Database Resources

9-22 Web Services Developer's Guide

Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

4. Generate the client-side code.

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. For more information on generating and assembling client-side
code for the J2SE environment, see Chapter 14, "Assembling a J2SE Web
Service Client".

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. For more
information on generating and assembling client-side code, see Chapter 13,
"Assembling a J2EE Web Service Client".

For example, the following command uses genProxy to generate code for a J2SE
client.

% java –jar wsa.jar –genProxy
 –wsdl http://locahost:8888/queue/queue?WSDL
 -output build/src/client
 –mappingFileName ./mapping.xml
 –packageName oracle.demo.db.queue.stub
 -unwrapParameters true

5. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

The following command lines provide sample compile and run commands.

% javac –classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar QueueClient.java

% java -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/lib/jax-qname-namespace.jar:
<J2EE_HOME>/lib/activation.jar:<J2EE_HOME>/lib/mail.jar:
<J2EE_HOME>/lib/http_client.jar:
<ORACLE_HOME>/webservices/lib/commons-logging.jar:
<ORACLE_HOME>/lib/xmlparserv2.jar QueueClient

In this example, <J2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where OracleAS Web Services is installed.

Ant Tasks for Generating a Web Service
This release provides Ant tasks for Web services development. The following example
shows how the WebServicesAssembler aqAssemble command can be rewritten as an
Ant task.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-23

<aqAssemble
 appName="queue"
 dataSource="jdbc/OracleManagedDS"
 sql="sample_queue"
 portName="assembleQueuePort"
 dbConnection="jdbc:oracle:thin:@stacd15:1521:lsqlj"
 dbUser="scott/tiger"
/>

Developing Client Code to Access an AQ Queue Exposed as a Web Service
Example 9–13 illustrates a sample client that accesses the published Web service.
"Sample Web Service for a Topic Generated by WebServicesAssembler" on page 9-25
illustrates the operations exposed by the queues and topics.

Example 9–13 Client Code to Access an AQ Queue Exposed as a Web Service

SampleQueuePortClient queue = new SampleQueuePortClient();
 QueueMessageUser m;
 queue.send(new QueueMessageUser("star chopper", "sample 1"));
 queue.send(new QueueMessageUser("easy blocks", "sample 2"));
 queue.send(new QueueMessageUser("back to future", "sample 3"));
 m = queue.receive();
 while (m != null) {
 System.out.println("Message received from SampleQueue: " + m.getSubject()
+ ": " + m.getText());
 m = queue.receiveNoWait();
 }

This client returns the following responses.

 Message received from SampleQueue: sample 1: star chopper
 Message received from SampleQueue: sample 2: easy blocks
 Message received from SampleQueue: sample 3: back to future

Accessing an Oracle AQ Queue with JMS
By default, the Web service interface code uses the data source to get a JDBC
connection. It then uses the connection to access the queue inside the database.

As an alternative to JDBC, you can use JMS to access the queue. The
WebServicesAssembler tool provides these specialized arguments to the aqAssemble
command that let you access the exposed Oracle AQ with a JMS queue instance.

■ aqConnectionLocation—the JDNI location of the Oracle Streams AQ JMS queue
connection connecting to the exposed AQ.

■ aqConnectionFactoryLocation—the JNDI location of the Oracle Streams AQ JMS
queue connection factory for the exposed AQ.

Instead of specifying the dataSource argument in the aqAssemble command, you
can specify either of the parameters above. The Web service will use a JMS queue at
runtime instead of a JDBC-based queue.

Sample AQ Queue and Topic Declaration
The PL/SQL script in Example 9–14 defines a queue, sample_queue, and a topic,
sample_topic. The queue payload type is queue_message, a SQL object type. The
topic payload type is topic_message, also a SQL object type.

Developing Web Services that Expose Database Resources

9-24 Web Services Developer's Guide

Example 9–14 Sample Queue and Topic Declaration

create type scott.queue_message as object (
 Subject VARCHAR2(30),
 Text VARCHAR2(80));
create type scott.topic_message as object (
 Subject VARCHAR2(30),
 Text VARCHAR2(80));
BEGIN
 dbms_aqadm.create_queue_table (
 Queue_table => 'scott.queue_queue_table',
 Queue_payload_type => 'scott.queue_message');
 dbms_aqadm.create_queue(
 queue_name => 'scott.sample_queue',
 queue_table => 'scott.queue_queue_table');
 dbms_aqadm.start_queue(queue_name => 'scott.sample_queue');

 dbms_aqadm.create_queue_table (
 Queue_table => 'scott.topic_queue_table',
 Multiple_consumers => TRUE,
 Queue_payload_type => 'scott.topic_message');
 dbms_aqadm.create_queue(
 queue_name => 'scott.sample_topic',
 queue_table => 'scott.topic_queue_table');
 dbms_aqadm.start_queue(queue_name => 'scott.sample_topic');
END;
/

Sample Web Service for a Queue Generated by WebServicesAssembler
For the queue described in "Sample AQ Queue and Topic Declaration", Example 9–15
lists the Web service operations exposed by WebServicesAssembler.

In this example, the send operation enqueues a payload to the queue. The payload
type is the complex type tns:QueueMessageUser, which corresponds to the SQL
type QUEUE_MESSAGE, as shown by <send/> element.

The receive operation returns a payload from the queue. The
<receiveResponse/> element shows that the type of the returned payload is
tns:QueueMessage. The operation blocks until a message becomes available.

The receiveNoWait operation returns a payload from the queue. If no message is
available in the queue, the operation returns null without waiting.

The receive2 operation has two arguments.

■ selector of type xsd:string

■ noWait of type xsd:boolean

The selector is a filter condition specified in the AQ convention. It allows the
receive operation to return only messages that satisfies that condition. For example,
the JMSPriority < 3 AND PRICE < 300 selector exposes only messages with
priority 3 or higher, and the attribute PRICE is lower than 300. If the parameter
noWait is true, the operation does not block.

Example 9–15 Web Service Operations Exposed for a Queue

<operation name="receive">
 <input message="tns:SampleQueue_receive" />
 <output message="tns:SampleQueue_receiveResponse" />
 </operation>
<operation name="receive2">

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-25

 <input message="tns:SampleQueue_receive2" />
 <output message="tns:SampleQueue_receive2Response" />
 </operation>
<operation name="receiveNoWait">
 <input message="tns:SampleQueue_receiveNoWait" />
 <output message="tns:SampleQueue_receiveNoWaitResponse" />
 </operation>
<operation name="send">
 <input message="tns:SampleQueue_send" />
 <output message="tns:SampleQueue_sendResponse" />
 </operation>

<complexType name="receive">
 <sequence />
 </complexType>
<complexType name="receiveResponse">
<sequence>
 <element name="result" type="tns:QueueMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="QueueMessageUser">
<sequence>
 <element name="text" type="string" nillable="true" />
 <element name="subject" type="string" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receive2">
<sequence>
 <element name="String_1" type="string" nillable="true" />
 <element name="boolean_2" type="boolean" />
 </sequence>
 </complexType>
<complexType name="receive2Response">
<sequence>
 <element name="result" type="tns:QueueMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receiveNoWait">
 <sequence />
 </complexType>
<complexType name="receiveNoWaitResponse">
<sequence>
 <element name="result" type="tns:QueueMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="send">
<sequence>
 <element name="QueueMessageUser_1" type="tns:QueueMessageUser" nillable="true"
/>
 </sequence>
 </complexType>
<complexType name="sendResponse">
 <sequence />
 </complexType>

Sample Web Service for a Topic Generated by WebServicesAssembler
For the topic described in "Sample AQ Queue and Topic Declaration" on page 9-23,
Example 9–16 lists the Web service operations exposed by WebServicesAssembler.

Developing Web Services that Expose Database Resources

9-26 Web Services Developer's Guide

In this example, the publish operation enters a payload to the topic. The argument is
a payload type, for instance, tns:TopicMessageUser, as shown in Example 9–16.
The message will be received by all topic subscribers.

The publish2 operation sends the payload to all the subscribers in the recipients list.
This operation takes the following arguments.

■ payload of type tns:TopicMessageUser

■ recipients of String array type

The publish3 operation broadcasts the payload to the topic. This operation takes the
following arguments.

■ payload, the message to be sent

■ deliveryMode, of type xsd:int—can be either
javax.jms.DeliveryMode.PERSISTENT or
javax.jms.DeliveryMode.NON_PERSISTENT. However, only
DeliveryMode.PERSISTENT is supported in this release. The interface
javax.jms.DeliveryMode is from the JMS APIs

■ priority, of type xsd:int—specifies the priority of the message. Values can be
from 0 to 9, with 0 as lowest priority and 9 as highest.

■ timeToLive, of type xsd:long—indicates the life span of the message in
milliseconds. Zero means no limit.

The receive operation returns a message sent to the receiver. This operation takes
one argument: receiver.

The receiveNoWait operation returns a message sent to the specified recipient
without waiting.

The receive2 operation returns a filtered message sent to the specified recipient. This
operation takes the following arguments.

■ receiver, of type xsd:string—recipient of the filtered message.

■ selector, of type xsd:string—a filter condition specified in the AQ
convention.

The receive3 operation returns filtered payload for the specified recipient. This
operation takes the following arguments.

■ receiver, of type xsd:string—recipient of the filtered message.

■ selector, of type xsd:string—a filter condition specified in the AQ
convention.

■ timeout, of type xsd:long—specifies the timeout for the operation in
milliseconds. Zero means no timeout.

The subscribe operation subscribes a user to the topic. The underlying connection
supporting the Web service must have appropriate privileges to subscribe a consumer.
Otherwise, this operation has no effect.

The unsubscribe operation unsubscribes a user from the topic. Again, the
underlying connection supporting the Web service must have appropriate privileges to
unsubscribe a consumer. Otherwise, this operation has no effect.

For more information on the privileges needed for subscribing and unsubscribing
consumers, see the Oracle Streams Advanced Queuing Java API Reference.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-27

Example 9–16 Web Service Operations Exposed for a Topic

<operation name="publish">
 <input message="tns:SampleTopic_publish" />
 <output message="tns:SampleTopic_publishResponse" />
 </operation>
<operation name="publish2">
 <input message="tns:SampleTopic_publish2" />
 <output message="tns:SampleTopic_publish2Response" />
 </operation>
<operation name="publish3">
 <input message="tns:SampleTopic_publish3" />
 <output message="tns:SampleTopic_publish3Response" />
 </operation>
<operation name="receive">
 <input message="tns:SampleTopic_receive" />
 <output message="tns:SampleTopic_receiveResponse" />
 </operation>
<operation name="receive2">
 <input message="tns:SampleTopic_receive2" />
 <output message="tns:SampleTopic_receive2Response" />
 </operation>
<operation name="receive3">
 <input message="tns:SampleTopic_receive3" />
 <output message="tns:SampleTopic_receive3Response" />
 </operation>
<operation name="receiveNoWait">
 <input message="tns:SampleTopic_receiveNoWait" />
 <output message="tns:SampleTopic_receiveNoWaitResponse" />
 </operation>
<complexType name="publish">
<sequence>
 <element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>
 </sequence>
 </complexType>
<complexType name="TopicMessageUser">
<sequence>
 <element name="text" type="string" nillable="true" />
 <element name="subject" type="string" nillable="true" />
 </sequence>
 </complexType>
<complexType name="publishResponse">
 <sequence />
 </complexType>
<complexType name="publish2">
<sequence>
 <element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>
 <element name="arrayOfString_2" type="string" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
 </sequence>
 </complexType>
<complexType name="publish2Response">
 <sequence />
 </complexType>
<complexType name="publish3">
<sequence>
 <element name="TopicMessageUser_1" type="tns:TopicMessageUser" nillable="true"
/>
 <element name="int_2" type="int" />

Developing Web Services that Expose Database Resources

9-28 Web Services Developer's Guide

 <element name="int_3" type="int" />
 <element name="long_4" type="long" />
 </sequence>
 </complexType>
<complexType name="publish3Response">
 <sequence />
 </complexType>
<complexType name="receive">
<sequence>
 <element name="String_1" type="string" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receiveResponse">
<sequence>
 <element name="result" type="tns:TopicMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receive2">
<sequence>
 <element name="String_1" type="string" nillable="true" />
 <element name="String_2" type="string" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receive2Response">
<sequence>
 <element name="result" type="tns:TopicMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receive3">
<sequence>
 <element name="String_1" type="string" nillable="true" />
 <element name="String_2" type="string" nillable="true" />
 <element name="long_3" type="long" />
 </sequence>
 </complexType>
<complexType name="receive3Response">
<sequence>
 <element name="result" type="tns:TopicMessageUser" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receiveNoWait">
<sequence>
 <element name="String_1" type="string" nillable="true" />
 </sequence>
 </complexType>
<complexType name="receiveNoWaitResponse">
<sequence>
 <element name="result" type="tns:TopicMessageUser" nillable="true" />
 </sequence>
 </complexType>

Exposing a Server-Side Java Class as a Web Service
Use the dbJavaAssemble command to generate Web services that invoke a Java class
inside the Java VM in an Oracle database. You can expose either static or instance
methods as Web service operations. An instance method can be invoked through
either a default or singleton instance in the session.

The Java class that you want to expose can contain any of the following parameters
and return types.

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-29

■ primitive types (except char)

■ serializable types

■ Java Beans whose attributes are supported types

■ JDBC types; that is, oracle.sql.* types

■ arrays of supported types

Prerequisites
Before you begin, supply the following information.

■ The fully-qualified class name of the server-side Java class

■ A database connection URL; used at code generation time

■ The name and password of the schema which contains the Java class; used at code
generation time

■ A name for the Web service application

■ The data source JNDI name; used at runtime

How to Assemble a Web Service from a Server-Side Java Class
The following steps describe how to use WebServicesAssembler to assemble a Web
service from a server-side Java class.

1. Supply the information described in the Prerequisites section as input to
WebServicesAssembler dbJavaAssemble command.

For example, in the following dbAssemble command, the server-side class,
oracle.sqlj.checker.JdbcVersion, is part of the SQLJ server-side
translator. This command assembles a Web service application for the class,
javacallin.ear. It also generates a PL/SQL wrapper and a Java stored
procedure wrapper. The purpose of the Java stored procedure wrapper is to
convert signature types in the server-side Java class into types can be exposed to
PL/SQL stored procedures. Since the sysUser argument is declared, the
WebServicesAssembler automatically loads the generated wrappers into the
database.

java -jar wsa.jar
 -dbJavaAssemble
 -appName javacallin
 -dbJavaClassName oracle.sqlj.checker.JdbcVersion
 -dbConnection jdbc:oracle:thin:@stacd15:1521:lsqlj
 -dataSource jdbc/OracleManagedDS
 -dbUser scott/tiger
 -sysUser sys/knl_test7

At run time, the Web service code uses JDBC to invoke the PL/SQL wrapper,
which in turns calls the Java stored procedure wrapper, which eventually calls the
server-side class. Example 9–18 on page 9-31 illustrates some Web service
operations generated by this command.

2. Deploy the service into a running instance of OC4J and bind the application.

This step assumes that the data source specified in Step 1 has been installed in this
instance of OC4J.

The following command lines provide sample deployment and bind commands.

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin

Developing Web Services that Expose Database Resources

9-30 Web Services Developer's Guide

welcome –deploy -file dist/javacallin.ear –deploymentName javacallin

% java –jar <J2EE_HOME>/admin_client.jar deployer:oc4j:localhost:port admin
welcome –bindWebApp javacallin javacallin-web default-web-site /javacallin

In this example, <J2EE_HOME> is the directory where J2EE is installed.

For more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

3. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

4. Generate the client-side code.

■ For the J2SE environment, generate stubs (client proxies) for a J2SE Web
service client by running the WebServicesAssembler tool with the genProxy
command. See Chapter 14, "Assembling a J2SE Web Service Client" for more
information on generating and assembling client-side code for the J2SE
environment.

■ For the J2EE environment, generate a service endpoint interface and a
JAX-RPC mapping file for a J2EE Web service client by running the
WebServicesAssembler tool with the genInterface command. See
Chapter 13, "Assembling a J2EE Web Service Client" for more information on
generating and assembling client-side code.

For example, the following command uses genProxy to generate code for a J2SE
client.

% java –jar wsa.jar –genProxy
 –wsdl http://locahost:8888/javacallin/javacallin?WSDL
 -output build/src/client
 –mappingFileName ./mapping.xml
 –packageName oracle.demo.db.queue.stub
 -unwrapParameters true

5. Compile and run the client.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar
on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

The following command lines provide sample compile and run commands.

% javac –classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
:<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar JavacallinClient.java

% java -classpath path
<ORACLE_HOME>/webservices/lib/wsclient_extended.jar:
<ORACLE_HOME>/webservices/lib/jaxrpc-api.jar:
<J2EE_HOME>/lib/jax-qname-namespace.jar:
<J2EE_HOME>/lib/activation.jar:<J2EE_HOME>/lib/mail.jar:
<J2EE_HOME>/lib/http_client.jar:

Developing Web Services that Expose Database Resources

Developing Database Web Services 9-31

<ORACLE_HOME>/webservices/lib/commons-logging.jar:
<ORACLE_HOME>/lib/xmlparserv2.jar JavacallinClient

In this example, <J2EE_HOME> is the directory where J2EE is installed; <ORACLE_
HOME> is the directory where the OC4J is installed.

Ant Tasks for Generating a Web Service
The current release provides Ant tasks for Web services development. The following
sample shows how the WebServicesAssembler dbJavaAssemble command can be
rewritten as an Ant task.

<oracle:dbJavaAssemble
 appName="javacallin"
 dbJavaClassName="oracle.sqlj.checker.JdbcVersion"
 dbConnection="jdbc:oracle:thin:@stacd15:1521:lsqlj"
 dataSource="jdbc/OracleManagedDS"
 dbUser="scott/tiger"
 sysUser="sys/knl_test7"
/>

Sample Server-Side Java Class
Example 9–17 illustrates two APIs in oracle.sqlj.checker.JdbcVersion, a
server-side Java class distributed with Oracle9i and 10g databases. The
dbJavaAssemble command exposes these APIs as a Web service.

Example 9–17 Sample Server-Side Java Class

public class oracle.sqlj.checker.JdbcVersion extends java.lang.Object {
 public static int getDriverMajorVersion();
 public static int getDriverMinorVersion();
 ...
}

Sample Web Service Operations Generated from a Server-Side Java Class
The WSDL fragment in Example 9–18 illustrates the Web service operations generated
for the JdbcVersion APIs getDriverMajorVersion and
getDriverMinorVersion in Example 9–17.

Example 9–18 WSDL Fragment, Illustrating Operations Generated for a Server-Side Java
Class

<complexType name="getDriverMajorVersion">
 <sequence />
 </complexType>
<complexType name="getDriverMajorVersionResponse">
<sequence>
 <element name="result" type="decimal" nillable="true" />
 </sequence>
 </complexType>
<complexType name="getDriverMinorVersion">
 <sequence />
 </complexType>
<complexType name="getDriverMinorVersionResponse">
<sequence>
 <element name="result" type="decimal" nillable="true" />
 </sequence>
 </complexType>

Developing a Web Service Client in the Database

9-32 Web Services Developer's Guide

<portType name="JdbcVersion">
<operation name="getDriverMajorVersion">
 <input message="tns:JdbcVersion_getDriverMajorVersion" />
 <output message="tns:JdbcVersion_getDriverMajorVersionResponse" />
 </operation>
<operation name="getDriverMinorVersion">
 <input message="tns:JdbcVersion_getDriverMinorVersion" />
 <output message="tns:JdbcVersion_getDriverMinorVersionResponse" />
 </operation>
 </portType>

Developing a Web Service Client in the Database
Oracle JPublisher supports PL/SQL and Java Web service call-outs by creating the
appropriate stub code. This enables you to use PL/SQL or Java to invoke a Web
service client from inside the database. For a Web service call-out, you supply a WSDL
file or location to Oracle JPublisher. Oracle JPublisher generates a PL/SQL wrapper
and the necessary database server-side Java classes that implement the PL/SQL
wrapper. The generated PL/SQL wrapper contains a PL/SQL procedure or function
for each Web service operation.

As an alternative, Oracle JPublisher has the ability to generate Java client proxies only.
These Java client proxies can be used for Web service call-outs by Java code in the
database.

Figure 9–3 illustrates the stub code that Oracle JPublisher can generate.

Figure 9–3 Creating Web Service Call Out Stubs

Note: A server-side Java class can also be invoked through JDBC
(rather than through Web services). If this is the case, refer to the
Oracle Database JPublisher User's Guide to find out how to generate a
proxy class for invoking database server-side Java.

Note: If you must dynamically construct invocations of external
Web services based on a WSDL which is available only at runtime, use
the JAX-RPC Dynamic Invocation Interface API for Java or the
PL/SQL UTL_DBWS package.

Web
Services

WSDL JPublisher Static Java

JPublisher

PL/SQL Call Spec

Tool Support for Web Services that Expose Database Resources

Developing Database Web Services 9-33

The client proxy which Oracle JPublisher generates is based on the simplified client
code generated for Java proxies in OracleAS Web Services 10.1.3. Therefore, the Java
and PL/SQL client which Oracle JPublisher generates is fully supported by OracleAS
Web Services 10.1.3. In addition, Oracle JPublisher can also generate OracleAS Web
Services 9.0.4-style Web service clients.

Web service call-out requires these utilities and tools.

■ Database Release 9.2 or later

■ Database Web Service call-out Utilities

Load the JAR and SQL files into the database as instructed. These utilities are
available from the Oracle Database Web Services Web site.

http://www.oracle.com/technology/tech/webservices/database.ht
ml

■ Oracle JPublisher 10g

If you do not have Oracle JPublisher installed, you can obtain it from the JDBC,
SQLJ, and Oracle JPublisher download Web site.

http://www.oracle.com/technology/tech/java/java_db/index.html

These are the required Oracle JPublisher options for Web service call-outs.

■ proxywsdl—the URL of the WSDL file for the Web service to be invoked

■ user—the database schema (and password) for which the PL/SQL wrapper is
generated

These are the optional Oracle JPublisher parameters.

■ httpproxy—the HTTP proxy host and port for accessing the WSDL file

■ sysuser—the database user (and password) with SYSDBA privileges

■ proxyopts—a list of options specific to proxywsdl

■ dir—the directory storing all the generated files

The sysUser argument allows Oracle JPublisher to load the generated file into the
database. If this argument is not declared, you must manually load the generated file
into the database to invoke the Web service from PL/SQL.

See the Oracle Database JPublisher User's Guide for examples and options related to Web
service call-out, such as proxywsdl, proxyopts, and httpproxy.

Tool Support for Web Services that Expose Database Resources
With Oracle JDeveloper, you can create a Web service based on program units in a
PL/SQL package that is stored in an Oracle database. You can use the wizards in
JDeveloper to perform the following tasks.

■ Create the PL/SQL Package in the Database

■ Create the PL/SQL Web service

■ Deploy the PL/SQL Web service

■ Create a stub to use the Web service

For more information on using JDeveloper to create PL/SQL package units and expose
them as a Web service, see the JDeveloper on-line help.

Limitations

9-34 Web Services Developer's Guide

Limitations
See "Developing Web Services From Database Resources" on page C-5.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building J2SE clients, see Chapter 14, "Assembling a J2SE Web Service Client".

■ building J2EE clients, see Chapter 13, "Assembling a J2EE Web Service Client".

■ JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services"

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Assembling Web Services with Annotations 10-1

10
Assembling Web Services with Annotations

This chapter describes how to use annotations to quickly develop Web services from
Java classes. You can use the annotations feature only when you are performing
bottom up development of a Web service from Java classes.

The standard Java mechanisms for the design, development, and deployment of Web
services require you to leverage a substantial amount of information. For example, to
deploy a service based on a Java class you must provide the class itself, an associated
service endpoint interface, and potentially, additional metadata files. For more
information on generating a Web service with Java classes, see Chapter 6, "Assembling
a Web Service with Java Classes".

Oracle Application Server Web Services provides support for J2SE 5.0 JDK Web
Services Annotations. J2SE 5.0 Web Services annotations is part of an ongoing standard
and is supported by other platforms. The following lists describe the advantages and
disadvantages of using the J2SE 5.0 Web Services annotations.

J2SE 5.0 Web Services Annotations Advantages

■ Based on a community standard.

■ Supported by the J2SE 5.0 JDK. The metadata is stored directly in the class file,
making them portable.

■ Language-level IDE support. IDEs that support the J2SE 5.0 JDK will recognize
J2SE 5.0 Web Service annotations and be able to provide things like
auto-completion and syntax checking.

J2SE 5.0 Web Services Annotations Disadvantages

■ Requires you to use the J2SE 5.0 JDK.

■ See the limitations described in the following section.

Developing Web Services with J2SE 5.0 Annotations
OracleAS Web Services provides support for J2SE 5.0 Web Service annotations (also
known as the Web Services Metadata for the Java Platform (JSR-181) specification). The
specification defines an annotated Java syntax for programming Web services. The
specification is available from the following Web site.

http://www.jcp.org/en/jsr/detail?id=181

Using the annotated Java syntax requires the J2SE 5.0 JDK. The J2SE 5.0 JDK also
provides documentation on the language-level support for annotations, such as how to
define them, their syntax, and how to create new annotations. The J2SE 5.0 JDK is
available from the following Web site.

Developing Web Services with J2SE 5.0 Annotations

10-2 Web Services Developer's Guide

http://java.sun.com/j2se/1.5.0/download.jsp

Java Metadata Annotations is a feature in J2SE 5.0 JDK that enables you to add special
tags to your Java classes. These tags are then compiled into the class byte code and
made accessible to third party annotation processors. The Web Services Metadata for
the Java Platform specification further extends this feature with metadata tags for Web
services. OracleAS Web Services supports this specification and allows developers to
customize the Web services generation process through the use of annotations.

Since metadata annotations are a J2SE 5.0 feature, you must have the JVM from the
J2SE 5.0 JDK to use Web service annotations in OracleAS Web Services. The
WebServicesAssembler tool can generate Web services from Java classes that have J2SE
5.0 annotations. When the tool is used in a J2SE 5.0 JDK JVM, the assemble and
genWsdl commands will process annotations in a given Java class.

The EJB 3.0 specification has extended the Web Services Metadata for the Java
Platform specification by adding metadata tags for EJBs. The specification supports the
Web Services Metadata for the Java Platform tags, allowing EJBs to be exposed as Web
services. EJB 3.0 annotations are processed when an EAR file containing EJBs is
deployed to a running Oracle Application Server. Any interfaces with J2SE 5.0
annotations that are implemented by session beans will be processed. Note that you
cannot use the WebServicesAssembler tool to process EJB 3.0 annotations.

How to Use J2SE 5.0 Annotations to Assemble a Web Service from Java Classes
To assemble a Web service from a Java class with J2SE 5.0 annotations, follow these
steps.

1. Add Web service metadata annotations to the implementation class.

Example 10–1 illustrates a sample annotated Java file.

a. At a minimum, the @WebService metadata tag must be present in the class.

b. Add the endpointInterface property to the @WebService metadata tag
in the implementation class if you want to reference a service endpoint
interface. Note that if the service endpoint interface also has an @WebService
tag, the annotations will be processed at that starting point instead.

c. Add the @WebMethod annotation to each method you want to expose in the
Web service. Note that if your annotations are in the service endpoint
interface, then all of the methods will be exposed, regardless of whether they
have the @WebMethod annotation.

2. Compile the annotated classes.

The classes must be compiled with a JDK 5.0-compliant compiler.

3. Generate the Web service artifacts (such as the WSDL, the deployment descriptors,
and so on) by using the WebServicesAssembler assemble command

a. You must specify the implementation class as the value of the assemble
command's className argument. This is true even if all of your annotations
are in the service endpoint interface. The implementation class must have an
@WebService annotation.

b. If you only want to generate a WSDL from an annotated Java class, use the
genWsdl command and supply the implementation class as the value of the
className argument.

Developing Web Services with J2SE 5.0 Annotations

Assembling Web Services with Annotations 10-3

How to Use J2SE 5.0 Annotations to Assemble a Web Service from a Version 3.0 EJB
Web services can be assembled from EJB 3.0-compliant beans at deployment time. To
generate a Web service endpoint from an EJB 3.0 bean, follow these steps.

1. Add an @Stateless metadata tag to the bean.

Only stateless EJB session beans are supported.

The name property of the @Stateless annotation provides the name of the Web
service endpoint. If this property is not specified, then the default endpoint name
will be the unqualified class name of the EJB bean class.

2. Add the @WebService tag to the interface that the bean implements.

a. Enter the tag in the interface. Do not enter it in the actual bean class.

b. At a minimum, the interface must contain the @WebService tag.

c. Add the @WebMethod annotation to each method you want to expose in the
Web service.

d. The interface must be implemented by the EJB bean class.

3. (Optional) Add the @Deployment tag to the interface with values for the
uriPath and portName attributes.

By default, the port name and default URI for an EJB 3.0 bean is the EJB name.
This name is found in the @Stateless annotation of the bean. If the name of the
bean is not specified in the @Stateless annotation, the short class name of the
bean will be used instead. You can override this by providing values for the
uriPath and portName attributes of the @Deployment tag.

4. Compile the EJB classes and package them into an EAR file. Deploy the EAR file to
a running instance of OC4J.

Supported J2SE 5.0 Annotation Tags
OracleAS Web Services provides support for the entire set of annotation tags described
in the Web Services Metadata for the Java Platform specification. The tags appear in
the following list.

■ javax.jws.WebMethod

■ javax.jws.Oneway

■ javax.jws.WebParam

■ javax.jws.WebResult

■ javax.jws.HandlerChain

■ javax.jws.soap.SOAPBinding

■ javax.jws.soap.SOAPMessageHandlers

Oracle Additions to J2SE Annotations
This section describes the Oracle-proprietary annotations that can be read and
processed by the Java Metadata Annotations feature in the J2SE 5.0 JDK.

Developing Web Services with J2SE 5.0 Annotations

10-4 Web Services Developer's Guide

Deployment Annotation
The @Deployment annotation can be used to supply the deployment attributes to an
endpoint implementation or to a service endpoint interface. It is an optional
annotation that has only optional properties.

The oracle.webservices.annotations.Deployment class defines the
@Deployment annotation.

Table 10–1 describes the attributes supported by the @Deployment annotation. All the
attributes of this tag are optional.

The following example illustrates an interface that uses the @Deployment annotation.
In this example, the Web service will be accessed by the URL
http://$HOST:$PORT/ejb30/ejb30-simple after it is deployed.

...
@WebService(name="CustomSession",
 targetNamespace="http://ejb.oracle.com/targetNamespace",
 serviceName="CustomSessionBeanService")

Table 10–1 Deployment Annotation Attributes

Attribute Description

contextPath This value specifies the default context for the Web service. If
you want to package multiple Web services in a WAR file and
each endpoint class has an @Deployment annotation, then the
value of the contextPath attribute must be the same for all of
the services. This is because contextPath is global to a Web
service deployment. If the Web services have differing
contextPath values, then their behavior will be unpredictable.
If only one contextPath property is set, then that will be the
root context for all Web services in the same EAR or WAR file.

You can override the value of this attribute by providing a valid
value for the <context-root> element in the
oracle-webservices.xml deployment descriptor that is
deployed with the EAR file. Setting <context-root> in the
deployment descriptor overrides all contextPath properties in
all Web services that have the Deployment annotation.

portName This value specifies the portName element in the generated
WSDL. Each Web service can have a different portName value.

You can override the value of the portName attribute by
entering a value for the <port-component[name]> attribute
in the oracle-webservices.xml deployment descriptor
deployed with the EAR file.

restSupport This Boolean value identifies whether the service is a REST Web
service. If true, the port will supports REST-style GET and POST
requests and responses. Default is false.

uriPath This value is appended to the value of the contextPath
attribute. Each Web service can have a different uriPath value.

You can override the value of this attribute by providing a URI
in the <endpoint-address-uri> element for the
corresponding <port-component[name]>. These elements
must appear in the same service element in the
oracle-webservices.xml deployment descriptor deployed
with the EAR file.

Note: if there is a conflict in between the values of
<url-pattern> in the web.xml deployment descriptor and
the value of uriPath, then the value of <url-pattern> will
take precedence.

Developing Web Services with J2SE 5.0 Annotations

Assembling Web Services with Annotations 10-5

@Deployment(contextPath="ejb30",
 uriPath="ejb30-simple",
 portName="Custom")
public interface CustomSessionIntf extends Remote{
...

Overriding Annotations
This section describes how you can override annotation values in a Java file by using
deployment descriptors or WebServicesAssembler.

■ Overriding Annotation Values with WebServicesAssembler

■ Overriding Deployment Annotation Values with Deployment Descriptors

Overriding Annotation Values with WebServicesAssembler
Command line arguments passed to the WebServicesAssembler assemble and
genWsdl commands will override any annotations in the Java class file that perform
the same function. For example, if you pass the portName argument to the assemble
or genWsdl command, then its value will override the value of the
@Deployment.portName annotation.

Overriding Deployment Annotation Values with Deployment Descriptors
If you want to override any of the properties specified by the Oracle-proprietary
@Deployment annotation, you can package a deployment descriptor that provides an
override in the EAR file in META-INF/oracle-webservices.xml (or
WEB-INF/oracle-webservices.xml for Web modules).

When you use an oracle-webservices.xml deployment descriptor to override
@Deployment annotation properties, each <webservice-description> element
in the descriptor must match a Web service being deployed based on the
serviceName of the Web service. The serviceName is specified by
@WebService.serviceName annotation.

Note that if you are assembling multiple Web services that use the @Deployment
annotation and you specify a deployment descriptor that overrides the properties for
only one of the services, then the other services will not be affected. In the deployment
descriptor, you should specify only those properties you want to override.

For example, the values in the following XML fragment from an
oracle-webservices.xml deployment descriptor override the @Deployment
annotation properties. Since this fragment provides values for the <port-component
name> attribute and the <endpoint-address-uri> element, the annotation's
portName and uriPath attributes will be overridden. The <context-root>
element was not specified in this example, so the annotation's contextPath property
will not be overridden.

<webservice-description name="CustomSessionBeanService">
 <port-component name="CustomSession">
 <endpoint-address-uri>/custom-session</endpoint-address-uri>
 </port-component>
</webservice>

Of course, instead of annotating the class you could just provide an
oracle-webservices.xml deployment descriptor to specify the deployment
properties.

Developing Web Services with J2SE 5.0 Annotations

10-6 Web Services Developer's Guide

Sample Java File with J2SE 5.0 Annotations
To generate Web services from Java classes, you can enter J2SE 5.0 annotations in either
of these files.

■ the endpoint class only

■ the endpoint class and the service endpoint interface

If you choose to enter the annotations in both the endpoint class and the service
endpoint interface, then you need to enter only minimal annotations in the endpoint
class.

Example 10–1 illustrates an example of an implementation class with Web service
metadata annotations. Note how the @WebService, @WebMethod, and @WebParam
annotations are used in the example.

■ The @WebService annotation specifies the serviceName and
targetNamespace. These properties are used to populate the wsdl:service
name and wsdl:targetNamespace elements in the generated WSDL file.

Optionally, you can specify the endpointInterface property with the
fully-qualified class name of an service endpoint interface. In this case, provide the
following annotations.

■ Enter only the @WebService annotations in the endpoint class, and enter the
correct value for endpointInterface. In the case where
endpointInterface is used, all Web service-related annotations are
ignored, except for the @WebService annotation on the endpoint class.

■ Enter the @WebMethod and @WebParam annotations in the service endpoint
interface.

■ The @WebMethod annotations identify the methods that should be present in the
Web service. These annotated methods will be assembled into wsdl:operation
elements in the generated WSDL. If a value for the operationName property is
specified in the @WebMethod annotation, then it will be used as the operation
name for the wsdl:operation. If a value is not provided, then the name of the
method is used by default.

■ The @WebParam annotations identify message parts or parameters to
wsdl:operations. An optional Mode can be specified for each parameter. The
INOUT or OUT modes can be specified only for parameters that implement the
javax.xml.rpc.holders.Holder interface. By default, a parameter that
implements the Holder interface becomes an INOUT parameter, unless Mode.OUT
is explicitly specified by an annotation. All other parameters must be IN
parameters.

Example 10–1 Sample Java File with J2SE 5.0 Web Service Metadata Annotations

package oracle.webservices.examples.annotations;

import java.rmi.RemoteException;
import javax.jws.*;
import javax.jws.WebParam.Mode;

@WebService (
 serviceName = "annotatedBank",
 targetNamespace = "http://service.annotatedBank"
)
public class BankServiceImpl {
 @WebMethod (operationName="create-account")

Additional Information

Assembling Web Services with Annotations 10-7

 public String createAccount(@WebParam(name="accountName") String acctName,
 float initBalance)
 throws RemoteException, AccountException {
 return m_bank.addNewAccount(acctName,initBalance);
 }

 @WebMethod
 public void deposit(@WebParam(name="accountID", mode=Mode.IN) String acctID,
 float amount)
 throws RemoteException, AccountException {
 Account theAccount = m_bank.getAccount(acctID);
 if (theAccount == null) {
 throw new AccountException("No account found for " + acctID);
 }
 theAccount.deposit(amount);
 }
 //class truncated…
}

Limitations
See "Assembling Web Services with Annotations" on page C-6.

Additional Information
For more information on:

■ using the Home Page to test Web service deployment, see Chapter 12, "Testing
Web Service Deployment".

■ building J2SE clients, see Chapter 14, "Assembling a J2SE Web Service Client".

■ building J2EE clients, see Chapter 13, "Assembling a J2EE Web Service Client".

■ JAX-RPC handlers, see Chapter 15, "Understanding JAX-RPC Handlers".

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

Additional Information

10-8 Web Services Developer's Guide

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Assembling REST Web Services 11-1

11
Assembling REST Web Services

REST (Representational State Transfer) Web services architecture conforms to the Web
architecture defined by the World Wide Web Consortium (W3C), and leverages its
architectural principles. It uses the semantics of HTTP whenever possible. REST Web
services use XML documents, not SOAP envelopes, for sending messages. Unlike
SOAP Web Services, REST is a "style" and has no standards or tools support from
vendors.

When you use Oracle Application Server Web Services to expose an endpoint by using
REST support, that endpoint is also exposed as a SOAP port. OracleAS Web Services
limits the support of HTTP commands to GET and POST. REST Web services deploy
like any other OracleAS Web Services.

Web service management features, such as security and reliability, are not available
with REST Web services. This is because SOAP headers, which are typically used to
carry this information, cannot be used with REST Web service invocations.

Assembling REST Web Services
You can use WebServicesAssembler to add REST Web service capabilities to any Web
application that can use HTTP as a protocol. This includes Web service applications
built on Java classes, EJBs, and database resources. WebServicesAssembler provides a
Boolean restSupport argument that will allow any of the following commands to
assemble a REST Web service.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

Note: OracleAS Web Services can assemble REST Web services only
where the use, or encoding mechanism, is literal (use=literal). It
does not support REST Web services where the message format is
encoded.

Assembling REST Web Services

11-2 Web Services Developer's Guide

How to Assemble a REST Web Service Top Down
The following steps illustrate assembling a REST Web service from a WSDL. This
example provides only an outline of the steps required for top down Web service
assembly. For a detailed description of each of the steps, see Chapter 5, "Assembling a
Web Service from a WSDL"

1. Provide a WSDL from which the Web service will be generated as input to the
WebServicesAssembler genInterface command. Example 11–1 illustrates the
WSDL used in this example.

java -jar wsa.jar -genInterface
 -output build/src/service
 -wsdl wsdl/MovieFacility.wsdl
 -unwrapParameters false

2. Compile the generated interface and type classes.

3. Implement the Java service endpoint for the Web service you want to provide.

4. Compile the Java service endpoint.

5. Generate the service by running the WebServicesAssembler tool with the
topDownAssemble command. Set the restSupport argument to true. For
example:

java -jar wsa.jar -topDownAssemble
 -wsdl ./wsdl/MovieFacility.wsdl
 -unwrapParameters false
 -className oracle.webservices.examples.rest.RpcLitMovieImpl
 -input build/classes/service
 -output build
 -ear dist/rpclit_topdown.ear
 -restSupport true

6. Deploy the service.

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

7. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. The Home Page enables
you to generate and invoke any REST POST or GET requests. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

Accessing REST Web Service Operations
Example 11–1 illustrates a fragment of the WSDL used to assemble the RPC-Literal
service in "How to Assemble a REST Web Service Top Down".

Example 11–1 WSDL Fragment for an RPC-Literal Web Service

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns0="http://www.oracle.com/rest/doc/types"

Note: REST Web services do not use J2EE or J2SE clients. However,
since every REST endpoint is also a SOAP endpoint, you can assemble
a J2SE or J2EE clients for those endpoints. For examples of how to
create GET or POST REST messages, use the Web Services Home Page.

Assembling REST Web Services

Assembling REST Web Services 11-3

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.oracle.com/rest" name="rest-service"
targetNamespace="http://www.oracle.com/rest"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://www.oracle.com/rest/doc/types" elementFormDefault="qualified"
targetNamespace="http://www.oracle.com/rest/doc/types">
 <complexType name="Movie">
 <sequence>
 <element name="Title" type="xsd:string"/>
 <element name="Director" type="xsd:string"/>
 <element name="Year" type="xsd:int" />
 </sequence>
 </complexType>
 <complexType name="ArrayOfMovie">
 <sequence>
 <element name="Movie" type="tns:Movie"
 maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="FindMoviesRequest">
 <part name="TitleWords" type="xsd:string" />
 <part name="Year" type="xsd:int" />
 </message>
 <message name="FindMoviesResponse">
 <part name="Movies" type="tns0:ArrayOfMovie" />
 </message>
 <message name="AddMovieRequest">
 <part name="Movie" type="tns0:Movie" />
 </message>
 <message name="AddMovieResponse">
 <part name="Added" type="xsd:boolean" />
 </message>
 <portType name="MovieDB">
 <operation name="findMovies">
 <input message="tns:FindMoviesRequest" />
 <output message="tns:FindMoviesResponse" />
 </operation>
 <operation name="addMovie">
 <input message="tns:AddMovieRequest" />
 <output message="tns:AddMovieResponse" />
 </operation>
 </portType>

 <binding name="HttpSoap11Binding" type="tns:MovieDB">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="findMovies">
 <soap:operation soapAction="http://www.oracle.com/rest/findMovies"/>
 <input>
 <soap:body use="literal" parts="TitleWords Year"
namespace="http://www.oracle.com/rest"/>

Assembling REST Web Services

11-4 Web Services Developer's Guide

 </input>
 <output>
 <soap:body use="literal" parts="Movies"
namespace="http://www.oracle.com/rest"/>
 </output>
 </operation>
 <operation name="addMovie">
 <soap:operation soapAction="http://www.oracle.com/rest/addMovie"/>
 <input>
 <soap:body use="literal" parts="Movie"
namespace="http://www.oracle.com/rest"/>
 </input>
 <output>
 <soap:body use="literal" parts="Added"
namespace="http://www.oracle.com/rest"/>
 </output>
 </operation>
 </binding>
 <service name="rest-service">
 <port name="HttpSoap11" binding="tns:HttpSoap11Binding">
 <soap:address
location="http://localhost:8888/webservice/webservice/"/>
 </port>
 </service>
</definitions>

Using the preceding WSDL, the procedure described in "How to Assemble a REST
Web Service Top Down" produces the following generated interface:

interface MovieDb {
 public Movie[] findMovies (String titleWords, int year);
 public boolean addMovie (Movie movie);
}

The first method in the generated interface has only simple parameters. This method
can be invoked with an HTTP GET. For example:

http://{yourhost}/{context-path}/{service-url}/findMovie?TitleWords=Star+Wars&Year
=1977

This query string returns the following XML response:

<ns0:findMoviesResponse xmlns:ns0="http://www.oracle.com/rest">
 <Movies>
 <ns1:Movie xmlns:ns1="http://www.oracle.com/rest/doc/types">
 <ns1:Title>tim</ns1:Title>
 <ns1:Director>tim</ns1:Director>
 <ns1:Year>1978</ns1:Year>
 </ns1:Movie>
 </Movies>

</ns0:findMoviesResponse>

The addMovie method in the generated interface takes a complex parameter; it can
only be invoked with an HTTP POST. For example, you can POST the following XML
message to the URL of your Web service,
http://{yourhost}/{context-path}/{service-url}.

<ns0:addMovieResponse xmlns:ns0="http://www.oracle.com/rest">
 <Added>true</Added>
</ns0:addMovieResponse>

Assembling REST Web Services

Assembling REST Web Services 11-5

How to Assemble a REST Web Service Bottom Up
The following steps illustrate assembling a REST Web service from Java classes. This
example provides only an outline of the steps required for bottom up Web service
assembly. For a detailed description of each of the steps, Chapter 6, "Assembling a Web
Service with Java Classes".

1. Provide the compiled Java class that you want to expose as a Web service and its
compiled interface. Example 11–2 illustrates the StringTools interface that is
used in this example.

2. Generate the service artifacts by running the WebServicesAssembler tool with the
assemble command. Set the restSupport argument to true.

java -jar wsa.jar -assemble
 -appName tools
 -serviceName StringTools
 -interfaceName oracle.webservices.examples.rest.StringTools
 -className oracle.webservices.examples.StringToolsImpl
 -input ./build/classes/service
 -output build
 -use literal
 -ear dist/tools.ear
 -uri StringToolsService
 -restSupport true

3. Deploy the service and bind the application.

Deploy EAR files in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

4. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service. The Home Page enables
you to generate and invoke any REST POST or GET requests. See "Using the Web
Services Home Page" on page 12-1 for information on accessing and using the Web
Service Home Page.

Accessing REST Web Service Operations
Example 11–2 illustrates the StringTools interface that is used to assemble the REST
Web service in Step 2 above.

Example 11–2 Interface Used to Assemble REST Web Services

interface StringTools {
package oracle.webservices.examples.rest;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface StringTools extends Remote{
 public String appendStrings (String a, String b) throws RemoteException;
 public String toUpperCase (String c) throws RemoteException;
 public String concatArrayOfStrings (String s[]) throws RemoteException;

Note: REST Web services do not use J2EE or J2SE clients. However,
since every REST endpoint is also a SOAP endpoint, you can assemble
J2SE or J2EE clients for those endpoints. For examples of how to create
GET or POST REST messages, use the Web Services Home Page.

REST Additions to Deployment Descriptors

11-6 Web Services Developer's Guide

The first two methods in the interface, appendStrings and toUpperCase, use
atomic parameters. As REST Web service operations, these operations can be accessed
with HTTP GET. The following example illustrates a call to the appendStrings
operation, if document style is specified at assembly time:

http://{yourserver}/{context-path}/{service-URL}/appendStrings?String_
1=Hello+&String_2=World

This query string would return the following XML response:

<appendStringsResponseElement xmlns="{yournamespace}">
 <result>Hello World</result>
</appendStringsResponseElement>

The third method in the interface, concatArrayOfStrings takes a non-atomic
parameter. As a REST Web service operation, it cannot be called using HTTP GET. It
can only be called with HTTP POST. For example:

<ns1:concatArrayOfStringsElement
xmlns:ns1="http://oracle.webservices.examples.rest/">
 <ns1:arrayOfString_1>a,</ns1:arrayOfString_1>
 <ns1:arrayOfString_1>b.</ns1:arrayOfString_1>
</ns1:concatArrayOfStringsElement>
<concatArrayOfStringsRequest xmlns="{yournamespace}">

This request string would return the following XML code:

<ns0:concatArrayOfStringsResponseElement
xmlns:ns0="http://oracle.webservices.examples.rest/">
 <ns0:result>a,b.</ns0:result>
</ns0:concatArrayOfStringsResponseElement>

REST Additions to Deployment Descriptors
If REST support is enabled for a Web service, then an optional Boolean
<rest-support> subelement is added to the <port-component> element of the
oracle-webservices.xml deployment descriptor. If <rest-support> is set to
true, then the port to which the subelement is applied will support REST-style GET
and POST requests and responses. The default value is false. For more information
on this subelement, see "<port-component> Element" on page 18-15.

Using J2SE 5.0 Annotations to Assemble REST Web Services
An optional Boolean restSupport attribute can be applied to the @Deployment tag
in J2SE 5.0 annotations. Its value indicates whether the service is a REST Web service.
If true, the port to which the annotation is applied will support REST-style GET and
POST requests and responses. For more information on this attribute and the Deploy
tag, see "Oracle Additions to J2SE Annotations" on page 10-3.

Testing REST Web Services
You can use the Web Services Home Page to test whether REST Web services deployed
successfully. See "Using the Web Services Home Page for REST Services" on page 12-7
for more information.

Building Requests and Responses

Assembling REST Web Services 11-7

Building Requests and Responses
The following sections describe how REST Web service requests are formed on the
client side and how they are processed on the server side.

HTTP GET Requests
Suppose a SOAP endpoint is deployed at the following URL:

http://example.com/my-app/my-service

If this endpoint is REST enabled, then HTTP GET requests will be accepted at the
following URL:

http://example.com/my-app/my-service/{operationName}?{param1}={value1}&{param2}={v
alue2}

In this example, {operationName} is one of the operation names in the WSDL for
the service. For RPC-literal operations, {param1}, {param2}, and so on, are the part
names defined in the operation's input wsdl:message. Note that these must be
simpleTypes (xsd:int, and so on).

For document-literal operations, messages have only a single parameter. To simulate
multiple parameters, the WSDL specifies a single parameter that is defined in the
schema as a sequence. Each member of the sequence is considered a parameter. In
this case, {param1}, {param2}, and so on, will be the members of the sequence type,
instead of message parts. As with RPC, these must be simpleTypes.

Example 11–3 illustrates the request message defined for an operation named
addNumbers.

Example 11–3 GET Request on an Operation

<wsdl:message name="AddNumbersRequest">
 <wsdl:part name="a" type="xsd:int" />
 <wsdl:part name="b" type="xsd:int" />
</wsdl:Message>

This request can be invoked by using a GET with the following URL:

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b=24

Example 11–4 illustrates the SOAP envelope that the OracleAS Web Services platform
will create on the server side from the GET request. This message will be processed
like any other incoming SOAP request.

Example 11–4 SOAP Envelope Created from a GET Request

<soap:Envelope>
 <soap:Body>
 <ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
 </ns:addNumbers>
 <soap:Body>

Note: Some browsers limit the size of the HTTP GET URL. Try to
keep the size of the URL small by using a limited number of
parameters and short parameter values.

Building Requests and Responses

11-8 Web Services Developer's Guide

<soap:Envelope>

Example 11–5 illustrates the request message sent for the addNumbers service when it
is defined as a document-literal operation.

Example 11–5 Sample GET Request on an Document-Literal Wrapped Operation

<wsdl:message name="AddNumbersRequest">
 <wsdl:part name="params" type="tns:AddNumbersRequstObject" />
</wsdl:Message>

Example 11–6 illustrates the definition of the AddNumbersRequestObject as it
would be defined in the schema.

Example 11–6 XML Definition of a Document-Literal Wrapped Operation

<xsd:complexType name="AddNumbersRequestObject">
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element name="a" type="xsd:int"/>
 <xsd:element name="b" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexContent>
</xsd:complexType>

This operation can be invoked by a GET request with the following URL. Note that
this is the same URL that is used for the RPC-literal request in Example 11–3.

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b+24

HTTP POST Requests
REST Web services support HTTP POST requests that are simple XML messages—not
SOAP envelopes. REST requests do not support messages with attachments. Since the
service also supports SOAP requests, the implementation must determine if a given
request is meant to be SOAP or REST.

When a SOAP service receives a POST request, it looks for a SOAPAction header. If it
exists, the implementation will assume that it is a SOAP request. If it does not, it will
find the QName of the root element of the request. If it is the SOAP Envelope QName, it
will process the message as a SOAP request. Otherwise it will process it as a REST
request.

REST requests will be processed by wrapping the request document in a SOAP
envelope. The HTTP headers will be passed through as received, except for the
Content-Type header in a SOAP 1.2 request. This Content-Type header will be changed
to the proper content type for SOAP 1.2, application/soap+xml.

For example, the following REST request illustrated in Example 11–7 will be wrapped
in the SOAP envelope illustrated in Example 11–8.

Example 11–7 REST Request

<ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
</ns:addNumbers>

The request illustrated in Example 11–8 will be processed as a normal SOAP request.

Additional Information

Assembling REST Web Services 11-9

Example 11–8 SOAP Envelope Wrapping the REST Request

<soap:Envelope>
 <soap:Body>
 <ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
 </ns:addNumbers>
 </soap:Body>
</soap:Envelope>

REST Responses
For any request (either GET or POST) that was processed as a REST request, the
response must also be in REST style. The OracleAS Web Services platform will
transform the SOAP response on the server into a REST response before sending it to
the client. The REST response will be an XML document whose root Element is the
first child Element of the SOAP Body. For example, assume that the SOAP envelope
illustrated in Example 11–9 exists on the server.

Example 11–9 SOAP Response

<soap:Envelope>
 <soap:Body>
 <ns0:result xmlns:nso="…">
 <ns:title>How to Win at Poker</ns:title>
 <ns:author>John Doe</ns:author>
 </ns0:result>
 </soap:Body>
</soap:Envelope>

Example 11–10 illustrates the response sent back to the client. Note that the
Content-Type will always be text/xml. Any SOAP Headers or attachments will not
be sent back to the client.

Example 11–10 REST Response

<ns0:result xmlns:ns0="…">
 <ns:title>How to Win at Poker</ns:title>
 <ns:author>John Doe</ns:author>
</ns0:result>

Tool Support for REST Web Services
The Create Java Web Service wizard in JDeveloper provides an option for enabling
REST functionality for a Web service. For more information on using JDeveloper to
enable REST functionality in a Web Service, see the JDeveloper on-line help.

Limitations
See "Assembling REST Web Services" on page C-6.

Additional Information
For more information on:

■ assembling a Web service from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

Additional Information

11-10 Web Services Developer's Guide

■ assembling a Web service from Java classes, see Chapter 6, "Assembling a Web
Service with Java Classes".

■ assembling a Web service from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling a Web service from database resources, see Chapter 9, "Developing
Database Web Services".

■ testing REST Web services, see Chapter 12, "Testing Web Service Deployment".

Testing Web Service Deployment 12-1

12
Testing Web Service Deployment

This chapter provides information on how to test if your Web Service deployed
successfully. You can do this by either accessing the Web service by using the Web
Service Home Page or by accessing the WSDL by using the Web service URL.

■ Using the Web Services Home Page

■ Obtaining a Web Service WSDL Directly

Using the Web Services Home Page
Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web service. The Home Page can be used for either JAX-RPC Web services
or REST services.

■ How to Access the Web Services Home Page

■ How to Use the Web Services Home Page

■ Using the Web Services Home Page for REST Services

How to Access the Web Services Home Page
To access a Home Page, enter the address of a service endpoint in a Web browser. The
address has the format:

http://host:port/context-root/service

Table 12–1 describes the components of the address.

Note: The Web Services Page in the Application Server Control tool
lists all of the available Web Services, and links to their Home Pages.
For more information, see the topic "Web Services Page" in the
Application Server Control on-line help.

Table 12–1 URL Components for Accessing the Home Page

URL Component Description

context-root The value specified in the <context-root> element for the
web module associated with the Web service. See the
META-INF/application.xml in the Web service's EAR file to
determine this value.

host The host name of the Web service's server running OracleAS
Web Services.

Using the Web Services Home Page

12-2 Web Services Developer's Guide

How to Use the Web Services Home Page
The following steps describe how to access and use the functionality in the Web
Services Home Page.

1. Enter the address of the service endpoint in a Web browser.

The Web Service Home Page for the service appears in the browser. Figure 12–1
illustrates a sample Home Page. For more information on how to perform this
step, see "How to Access the Web Services Home Page". For more information on
the Home Page see "Understanding the Web Service Home Page".

2. Click the link belonging to the operation you want to test.

The operation's Editor Page opens. Figure 12–2 illustrates the Editor Page.

3. Enter the parameter values, if any, for the operation.

If the parameter or element is optional or nillable, then a checkbox will appear
next to the parameter or element name. If the checkbox is clear, then the parameter
or element will not be included in the Test Page. See "Understanding the Web
Service Editor Page" on page 12-3 for more information on how to use this page.

4. Click the Preview SOAP button.

The Invocation Page opens The Invocation Page contains two text boxes. The top
text box displays the SOAP message created by the entries made in the Editor
Page. The lower text box contains an empty text area that will contain the SOAP
response from the server. See "Understanding the Web Service Invocation Page" on
page 12-5 for more information on how to use this page.

5. Click the Invoke button to send the test message to the endpoint.

The response to the test message will appear in the lower text box in the
Invocation Page. See "Understanding the Web Service Invocation Page" on
page 12-5 for more information on how to use this page.

The following sections describe the components of the Web Services Home Page:

■ Understanding the Web Service Home Page

■ Understanding the Web Service Editor Page

■ Understanding the Web Service Invocation Page

Understanding the Web Service Home Page
The Home Page displays the list of operations available for the Web service, and links
to the Web service's WSDL and the service's JavaScript stub.

Each operation name on the Home Page links to the Editor Page where you can input
the parameter values that you want to test. "Understanding the Web Service Editor
Page" provides more information on this page.

port The port name of the Web service's server running OracleAS
Web Services.

service The value specified in the <url-pattern> element for the
servlet associated with the Web service. This is the service name.
See the WEB-INF/web.xml file in the Web service's WAR file to
determine this value.

Table 12–1 (Cont.) URL Components for Accessing the Home Page

URL Component Description

Using the Web Services Home Page

Testing Web Service Deployment 12-3

The Service Description link opens the WSDL for the Web service. You can save the
file locally.

Figure 12–1 shows the Web Service Home Page for HelloService, at the endpoint:

http://localhost:8888/hello/HelloService

This example also displays a link for this Web service's one operation: hello.

Figure 12–1 Web Service Home Page

Understanding the Web Service Editor Page
The Editor Page opens when you click an operation name in the Web Service Home
Page. Use the Editor Page to test a Web service operation for different parameter
values. You can also use this page to test security and reliability settings if these
management features have been enabled for the service. The following sections
describe how you can use the Editor Page to test these operation parameters and
management features with different values.

■ Editing Operation Parameters and Elements

■ Editing Security and Reliability Settings

Editing Operation Parameters and Elements The Editor Page displays a table containing the
operation's parameters or elements, their data types, and an editable text box where
you can enter parameter values. If the parameter or element is optional or nillable,
then a checkbox will appear next to the parameter or element name.

■ Mark the checkbox if you want the parameter or element to participate in the test.

■ Clear the checkbox if you do not want to input values to the optional parameter or
element.

■ Click the Preview SOAP button to view the SOAP request for the operation with
the parameter or element values.

Click the Preview SOAP button to open the Invocation Page and display the SOAP
request that will be sent to the service. For more information on this page, see
"Understanding the Web Service Invocation Page".

Figure 12–2 illustrates a sample Editor Page. In this figure, the hello operation is
being tested, with the string_1 parameter set to Anonymous.

Using the Web Services Home Page

12-4 Web Services Developer's Guide

Figure 12–2 Editor Page for Testing a Web Service Operation

Editing Security and Reliability Settings if Web service security and/or reliability have
been enabled for the service, then the Editor Page also enables you to test the service
for different settings for these management features.

If WS-Reliability has been enabled for the service, the Editor Page displays a table
containing the WS-Reliability Header label and the reliability features you can test.
Figure 12–3 illustrates an Editor Page that displays the entries for WS-Reliability
features.

A checkbox next to the WS-Reliability Header label indicates whether the reliability
features will participate in the test.

■ Mark the checkbox if you want the test to include reliability features. The
reliability SOAP header will be inserted into the SOAP envelope.

■ Clear the checkbox if you do not want the test to include reliability features. The
reliability SOAP header will not be inserted into the SOAP envelope.

If you want the test to include reliability, then you can choose different settings for
these features:

■ duplicate elimination—turning this feature "on" will insert the
DuplicateElimination reliability header into the message. This tells the
reliable endpoint to eliminate duplicates of the message that will be sent.

■ guaranteed delivery—turning this feature "on" will insert the
GuaranteedDelivery reliability header into the message. This tells the reliable
endpoint that it must acknowledge receiving the message.

■ reply to URL—the URL to which acknowledgments and faults will be sent for
messages that want asynchronous acknowledgements. The URL is typically the
host name of the client, with the port that the listener is on.

■ reply pattern—indicates how the client can interact with the endpoint. The values
can be Callback (asynchronous acknowledgment/fault), Response
(synchronous acknowledgement/fault), or Polling (the acknowledgment or
fault must be polled for).

See "Ensuring Web Service Reliability" in the Oracle Application Server Advanced Web
Services Developer's Guide for more information on these reliability features.

If WS-Security has been enabled for the service, the Editor Page displays a table
containing the WS-Security Header label and the security features you can test.
Figure 12–3 illustrates an Editor page that displays the entries for WS-Security
features.

Using the Web Services Home Page

Testing Web Service Deployment 12-5

A checkbox next to the WS-Security Header label indicates whether the security
features will participate in the test.

■ Mark the checkbox if you want the test to include security features. The security
SOAP header will be inserted into the SOAP envelope.

■ Clear the checkbox if you do not want the test to include security features. The
security SOAP header will not be inserted into the SOAP envelope.

For WS-Security, you can enter values for these parameters:

■ user name

■ password

For more information on the security features that are available for OracleAS Web
Services, see the Oracle Application Server Web Services Security Guide.

Figure 12–3 Editor Page for Testing Web Service Management Features

Understanding the Web Service Invocation Page
The Invocation Page opens when you click the Preview SOAP button in the Editor
Page. The Invocation Page contains two text boxes. The upper text box displays the
SOAP message created by the values you provide in the Editor page. The lower text
box contains an empty text area that will contain the SOAP response from the server.
The page also contains a link to return you to the list of the service's operations.

Click the Invoke button to send the request to the service. The lower text box will
display the SOAP response from the service.

Figure 12–4 illustrates a sample Invocation Page that will send the Anonymous value
for the hello operation to the service.

Using the Web Services Home Page

12-6 Web Services Developer's Guide

Figure 12–4 Invocation Page Displaying a SOAP Request

Figure 12–5 illustrates the Invocation Page after clicking Invoke. The lower text box
contains the response from the service.

Figure 12–5 Invocation Page Displaying a SOAP Request and Response

Using the Web Services Home Page

Testing Web Service Deployment 12-7

Using the Web Services Home Page for REST Services
You can use the Web Services Home Page to test REST Services. REST Services are
described in Chapter 11, "Assembling REST Web Services".

The Home Page and Invocation Page for REST Services provide the same functionality
as for JAX-RPC Web Services. However, if you select an operation on the Home Page
that is REST-enabled, then the Editor Page provides two additional buttons that allow
you to preview the XML REST POST request and to invoke the GET URL.

■ Preview REST POST—enables you to generate and invoke a REST POST request.

■ Invoke REST GET—redirects the page to the GET URL.

Figure 12–6 illustrates an Editor Page for a REST-enabled operation.

Figure 12–6 Editor Page for Testing a REST Web Service Operation

Click Preview REST POST on the Editor Page to open the Invocation Page for REST
Services. The upper text box displays the XML message created by the values you
provide in the Editor Page. The lower text box contains an empty text area that will
contain the XML response from the service.

Click the Invoke button to send the XML request to the service. The lower text box
will display the XML response from the service.

Click Invoke REST GET on the Editor Page to display the XML REST GET invocation.
The correct URL will be displayed in the browser. Figure 12–7 illustrates an XML REST
GET invocation.

Obtaining a Web Service WSDL Directly

12-8 Web Services Developer's Guide

Figure 12–7 REST GET Invocation

Obtaining a Web Service WSDL Directly
If you do not use the Web Service Home Page to get the WSDL file for a Web service,
you can obtain this file directly.

To obtain the WSDL, use the Web service URL and append a query string. The format
for the URL to obtain the WSDL service description is:

http://host:port/context-root/service?WSDL

WSDL can be either uppercase or lowercase. Table 12–1 on page 12-1 contains a
description of the URL components.

This URL returns a WSDL description in the form service.wsdl. The service.wsdl
description contains the WSDL for the Web service named service, located at the
specified URL. Using the WSDL, you can build a client application to access the Web
service.

Limitations
See "Testing Web Service Deployment" on page C-7.

Additional Information
For more information on Web services that can use the Web Services Home Page, see
the following chapters:

■ Chapter 5, "Assembling a Web Service from a WSDL"

■ Chapter 6, "Assembling a Web Service with Java Classes"

■ Chapter 7, "Assembling a Web Service with EJBs"

■ Chapter 9, "Developing Database Web Services"

■ Chapter 11, "Assembling REST Web Services"

■ "Using Web Service Providers" in the Oracle Application Server Advanced Web
Services Developer's Guide.

For more information on Web service security and reliability, see these resources:

Additional Information

Testing Web Service Deployment 12-9

■ for adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ for adding reliability to a Web service, see "Ensuring Web Service Reliability" in
the Oracle Application Server Advanced Web Services Developer's Guide.

Additional Information

12-10 Web Services Developer's Guide

Assembling a J2EE Web Service Client 13-1

13
Assembling a J2EE Web Service Client

This chapter describes how to develop a Web service client from within a J2EE
container. Any component of a J2EE 1.4-compliant container, such as a version 2.4
servlet, 2.1 EJB, or 2.0 JSP application can act as a J2EE Web service client.

This chapter contains the following sections:

■ Understanding J2EE Web Service Clients

■ Writing J2EE Web Service Client Code

■ Packaging a J2EE Client

For information on assembling a Web service client that runs in the J2SE environment,
see Chapter 14, "Assembling a J2SE Web Service Client".

Understanding J2EE Web Service Clients
The J2EE platform provides an environment that allows client applications to access
Web services. In a J2EE environment, the deployment descriptors define the client-side
Web service access information. This access information can be changed at deployment
time. In addition, the J2EE platform handles the underlying work of creating and
initializing access to Web services.

J2EE Web service clients inherit the advantages of the J2EE platform, such as
declarative security, transactions, and instance management. In addition to these
platform characteristics, the OracleAS Web Services management framework makes it
possible to configure SOAP logging and auditing, WS-Reliability, and WS-Security.

Unlike the J2SE Web service client, the J2EE client resides in and is managed by the
OC4J container. It requires no proxy code generation or packaging. You get a portable
client application with Web service access that is easy to embed in JSPs, servlets, and
EJBs. EJB variants such as Container Managed Persistence (CMP), Bean Managed
Persistence (BMP), and Message-Driven Beans (MDB) can call out to Web service
endpoints.

Prerequisites
Before you begin, supply the following files and information.

■ The WSDL file or location from which the service endpoint interface and JAX-RPC
mapping file will be generated.

■ The location where the generated service endpoint interface and JAX-RPC
mapping file will be stored.

Understanding J2EE Web Service Clients

13-2 Web Services Developer's Guide

How to Assemble a J2EE Web Service Client
Use the WebServicesAssembler tool to assemble a service endpoint interface and the
J2EE Web service client. Then, edit the deployment descriptor to add Web service
access information. The following steps describe these tasks in more detail.

1. Provide the WSDL and the information described in the Prerequisites section as
input to the WebServicesAssembler genInterface command. For example:

java -jar wsa.jar
 -genInterface
 -wsdl HelloService.wsdl
 -output build -packageName oracle.demo.hello

This command line uses HelloService.wsdl to generate HelloInterface in
the oracle.demo.hello package.

2. Edit the deployment descriptor of the J2EE component to add a <service-ref>
element. This element captures all of the Web service access information.

See "Adding J2EE Web Service Client Information to Deployment Descriptors" on
page 13-4 for a sample of the <service-ref> element and its sub-elements.

If the client also provides message processing in the form of JAX-RPC handlers,
then these also must be added to the deployment descriptor. See "Adding
JAX-RPC Handlers to Deployment Descriptors" on page 13-11 for more
information on adding handler information to the deployment descriptor.

3. Assemble the client deployment module into an EAR file:

a. Compile all the client files.

b. Copy deployment descriptor files to their appropriate locations. For example,
for an EJB, copy the WSDL to META-INF/wsdl/, the JAX-RPC mapping file
and the deployment files such as ejb-jar.xml and orion-ejb-jar.xml
to META-INF, and so on. For a description of where files should reside for
servlet, EJB, or JSP Web service clients, see "Packaging Structure for Web
Service Applications" on page 18-2.

c. Package the client deployment module.

4. Deploy the client deployment module.

The following steps will deploy an EJB, JSP, or other J2EE client. If you are
deploying an application client, skip these steps and continue with "Deploying
and Running an Application Client Module".

a. Start OC4J. The following is a sample command to start OC4J.

java -jar oc4j.jar

b. Deploy the client module into OC4J. The following is a sample deployment
command.

java -jar admin_client.jar deployer:oc4j:<oc4jHost>:<oc4jPort> <adminID>
<adminPassword>
 -deploy

Note: The current tool set cannot package J2EE Web service clients.
You must package the client manually. "Packaging a J2EE Client" on
page 13-16 provides more information on how to package a J2EE Web
service client.

Understanding J2EE Web Service Clients

Assembling a J2EE Web Service Client 13-3

 -file .\client\myClient.ear
 -deploymentName myClient
 -bindWebApp default-web-site

The oc4jHost and oc4jPort variables are the host name and port number
of the OC4J server. The adminID and adminPassword are the OC4J server
user name and password. The following are sub-switches of the -deploy
switch.

■ file—path and filename of the EAR file to deploy.

■ deploymentName—user-defined application deployment name, used to
identify the application within OC4J.

■ bindWebApp—specifies the Web site to which the web application should be
bound. This is the Web site that will be used to access the application.

5. Run the EJB or JSP client.

If you are running an application client, see "Deploying and Running an
Application Client Module".

Deploying and Running an Application Client Module
The following steps describe how to deploy and run an application client module.
Unlike EJB, JSP, or other J2EE clients, you must specify the directory where the
generated deployment-cache.jar will be stored. You must also specify the location
of the deployment-cache.jar in the run command.

1. Start OC4J. The following is a sample command to start OC4J.

java -jar oc4j.jar

2. Deploy the application client module into OC4J. The following is a sample
deployment command.

java -jar admin_client.jar deployer:oc4j:<oc4jHost>:<oc4jPort> <adminID>
<adminPassword>
 -deploy
 -file .\client\myAppClient.ear
 -deploymentName myAppClient
 -deploymentDirectory C:\home\myDir

This command creates a deployment-cache.jar file and stores it in
C:\home\myDir.

The oc4jHost, oc4jPort, adminID, and adminPassword variables and the
file and deploymentName sub-switches of -deploy are described in Step 4b of
the previous section.

The deploymentDirectory sub-switch indicates the location where OC4J
deploys deployment-cache.jar. In this example, OC4J deploys it into
C:\home\myDir. If you do not specify this sub-switch, OC4J deploys the
application into the OC4J_HOME/application-deployments/ directory. If you
supply the empty string (" "), OC4J will always read the deployment
configurations from the EAR file each time the application is deployed.

3. Run the client deployment module. For an application client, the location of the
deployment-cache.jar must be present in the classpath. The following is a
sample run command:

java -classpath .:C:\home\myDir\deployment-cache.jar:'oc4jclient.jar'
 :appclient.jar oracle.myappclient.classname

Understanding J2EE Web Service Clients

13-4 Web Services Developer's Guide

In this sample, it is assumed that appclient.jar contains the class
oracle.myappclient.classname.

Ant Task for Generating an Interface
The current release provides Ant tasks for Web service development. The following
sample code shows how the genInterface command in the preceding example can
be rewritten as an Ant task.

<oracle:genInterface wsdl="${etc.web1.dir}/HelloService.wsdl"
 output="build"
 packageName="oracle.demo.hello"
/>

Adding J2EE Web Service Client Information to Deployment Descriptors
You must edit the J2EE component's deployment descriptor to add information that
allows the component to access the Web service endpoint.

■ For an EJB 2.1 Web service client, edit the META-INF/ejb-jar.xml deployment
descriptor.

■ For a JSP 2.0 or servlet Web service client, edit the WEB-INF/web.xml
deployment descriptor.

■ For an application client, edit the META-INF/application-client.xml
deployment descriptor.

Edit the deployment descriptor to add a <service-ref> element. By adding this
element, you can employ an EJB, JSP, or servlet as a Web service client that can invoke
a remote Web service. The <service-ref> element and its subelements capture all
the Web service access information, such as the location of the WSDL and mapping
file, the service interface, the service ports, their related service endpoint interfaces,
and so on. For a complete listing of all the information that can be included in the
<service-ref> element, see the service-ref (J2EE client) schema.

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_1.xsd

Example 13–1 illustrates a sample <service-ref> element that has been added to a
web.xml deployment descriptor for the MyHelloService Web service. The
<service-ref> subelements in this example are described in Table 13–1. Note that
this sample <service-ref> uses only a subset of all of the Web service access
information available in the schema.

Example 13–1 Contents of a Sample service-ref Element

<service-ref>
 <service-ref-name>service/MyHelloServiceRef</service-ref-name>
 <service-interface>javax.xml.rpc.Service</service-interface>
 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/HelloService-java-wsdl-mapping.xml
 </jaxrpc-mapping-file>
 <service-qname xmlns:service-qname_ns__="http://hello.demo.oracle/">
 service-qname_ns__:HelloService</service-qname>
 <port-component-ref>
 <service-endpoint-interface>oracle.demo.hello.HelloInterface
 </service-endpoint-interface>
 <port-component-link></port-component-link>
 </port-component-ref>
</service-ref>

Understanding J2EE Web Service Clients

Assembling a J2EE Web Service Client 13-5

Table 13–1 describes the <service-ref> sub-elements used in this sample.

Accessing a Web Service
To enable the Oracle Application Server to access a Web service that resides in the
same module as the client, add the <port-component-link> element to the
<service-ref> clause of the client deployment descriptor and add the
PortComponentLinkResolver property to the system-application.xml
configuration. The following steps summarize these tasks.

1. Add the <port-component-link> element to the <service-ref> clause in
the J2EE client deployment descriptor.

"Adding a Port Component Link to a J2EE Client Deployment Descriptor"
provides more information on this step.

2. Shut down the Oracle Application Server.

3. Add the PortComponentLinkResolver property to the
system-application.xml server configuration file. This file resides in the
directory ORACLE_HOME/j2ee/home/config.

Add the following lines to this file.

<ejb-module id="PortComponentLinkResolver"
path="../../../webservices/lib/wsserver.jar"/>

Table 13–1 Sub-elements of the <service-ref> Element

service-ref Subelement Description

<service-ref-name> Specifies the JNDI path and service name assigned by
the client.

<service-interface> Specifies the fully-qualified class name of the JAX-RPC
Service interface the client depends on. In most cases
the value will be javax.xml.rpc.Service. A
JAX-RPC generated Service Interface class may also be
specified.

<wsdl-file> Specifies the fully-qualified path to the WSDL file.

<jaxrpc-mapping-file> Specifies the fully-qualified path to the JAX-RPC
mapping file.

<service-qname> Specifies the service QName for the service:

■ xmlns:ns—maps to the targetNamespace
value in the WSDL.

■ ns—maps to the service name attribute in the
WSDL.

<port-component-ref> Declares a client dependency on the container for
resolving a service endpoint interface to a WSDL port.
It optionally associates the service endpoint interface
with a particular port-component. The container uses
this only for a Service.getPort(Class) method
call.

<service-endpoint-interface> Specifies the fully-qualified Java class that represents
the service endpoint interface of a WSDL port.

<port-component-link> (optional) If the Web service is implemented in the same module
as the client, you can add this element to access the
service. For more information on this element, see
"Accessing a Web Service".

Understanding J2EE Web Service Clients

13-6 Web Services Developer's Guide

4. Re-start the Oracle Application Server.

Adding a Port Component Link to a J2EE Client Deployment Descriptor If the Web service
resides in the same container as the client, then you can access the service by adding
the <port-component-link> element to the <service-ref> clause of the J2EE
client deployment descriptor (web.xml, ejb-jar.xml, or
application-client.xml).

The <port-component-link> element links a <port-component-ref> to a
specific port component in the server-side deployment descriptor. The
<port-component-name> element resides in the server-side deployment descriptor,
webservices.xml.

The following examples illustrate this relationship. The webservices.xml fragment
in Example 13–2 illustrates the deployment configuration for the Web service that
exposes the EJB InterModuleEjb. In this fragment, the port component is named
InterPC. Example 13–3 illustrates a fragment of a client-side deployment descriptor
where this name is referenced from the <port-component-link> element in the
<service-ref> clause. The presence of this element allows the J2EE client to look up
the Web service.

These examples assume that the Web service is running in the same container as the
J2EE Web service client.

Example 13–2 webservices.xml Fragment, Identifying a Port Component Name

<webservices>
 <webservice-description>
 <webservice-description-name>InterModuleEjb</webservice-description-name>
 <wsdl-file>META-INF/wsdl/InterModuleService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>META-INF/InterModuleService.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>InterPC</port-component-name>
 <wsdl-port
 xmlns:wsdl1="http://PortCompLink.org/ejb/inter">wsdl1:InterModuleSeiPort
 </wsdl-port>
 <service-endpoint-interface>oracle.demo.InterModuleSei
 </service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>InterModuleEjb</ejb-link>
 </service-impl-bean>
 </port-component>
</webservices>

Example 13–3 illustrates a fragment of a client-side deployment descriptor where the
value of the <port-component-name> element in the server-side deployment
descriptor is referenced from the <port-component-link> element in the
<service-ref> clause. The presence of this element allows the client to look up the
Web service.

Note that the value of the port component name in the <port-component-link> is
prefixed by PortCompLinkEjb-ejb.jar#. This value qualifies the name of the EJB
with the JAR file where it resides.

Example 13–3 <port-component-link> Element in the Client-Side Deployment Descriptor

 <service-ref>
 <service-ref-name>service/portcomplink/inter</service-ref-name>
 <service-interface>javax.xml.rpc.Service</service-interface>
 <wsdl-file>META-INF/wsdl/InterModuleService.wsdl</wsdl-file>

Understanding J2EE Web Service Clients

Assembling a J2EE Web Service Client 13-7

 <jaxrpc-mapping-file>META-INF/InterModuleService.xml</jaxrpc-mapping-file>
 <port-component-ref>
 <service-endpoint-interface>oracle.demo.InterModuleSei
 </service-endpoint-interface>
 <port-component-link>PortCompLinkEjb-ejb.jar#InterPC</port-component-link>
 </port-component-ref>
 </service-ref>

Adding OC4J-Specific Platform Information
The <service-ref-mapping> element can appear as a subelement of the
<orion-web-app> element in the orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml proprietary deployment descriptor files. It
defines OC4J-specific runtime and deployment-time generated settings for a Web
service reference. It also specifies security, logging, and auditing quality of service
(QOS) features for the corresponding Web service.

The <service-ref-mapping> element is used in conjunction with the
<service-ref> element that appears in the standard deployment descriptors. The
<service-ref> element contains the information that lets you employ an EJB, JSP, or
servlet as a Web service client that can invoke a remote Web service.

Note that whenever a <service-ref> element can appear in a web.xml,
ejb-jar.xml, or application-client.xml file, a corresponding
<service-ref-mapping> element can appear in an orion-web.xml,
orion-ejb-jar.xml, or orion-application-client.xml file.

The <service-ref-mapping> element's supported features are described in the
service-ref-mapping-10_0.xsd that is imported into the orion-web,
orion-ejb-jar, and orion-application-client XSDs. Currently, there is no
tool support, such as JDeveloper wizards, for providing values to
service-ref-mapping-10_0.xsd. You must refer to the schema and edit the XML
file by hand.

In its simplest case, the <service-ref-mapping> element contains only
deployment information. Do not add run-time or quality of service elements if you do
not want your client to be managed. A managed client is more expensive in terms of
performance.

Example 13–4 contains a sample <service-ref-mapping> segment. So that you can
see this element's hierarchy, all the subelements are displayed. The tables following the
XML sample describe the sub-elements.

Example 13–4 Sample <service-ref-mapping> Segment

<service-ref-mapping name="service/MyJAXRPCTime">
 <service-impl-class>oracle.demo.MyTime_Impl</service-impl-class>
 <wsdl-file final-location="file:/myhome/mytime/client-wsdl/MyJAXRPCTime.wsdl">
 <wsdl-location wsdl-override-last-modified=19NOV>
 <service-qname namespaceURI="urn:oracle-ws" localpart="MyService" />
 <stub-property>
 <name>...</name>
 <value>...</value>
 </stub-property>
 <call-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>http://myhost:8888/time-ejb/timeport</value>
 </call-property>
 <port-info>
 <wsdl-port>

Understanding J2EE Web Service Clients

13-8 Web Services Developer's Guide

 <service-endpoint-interface>time.TimeService</service-endpoint-interface>
 <stub-property>
 <name>another.endpoint.address</name>
 <value>http://anotherhost:8888/time-ejb/timeport</value>
 </stub-property>
 <call-property>
 <name>...</name>
 <value>...</value>
 </call-property>
 <runtime>...</runtime>
 <operations>
 <operation name="echo">
 <runtime>
 <auditing request="true" response="false" fault="false"/>
 <reliability><reject-non-reliable-messages
value="false"/></reliability>
 ...
 </runtime>
 </operation>
 </operations>
 </port-info>
</service-ref-mapping>

Table 13–2 describes the subelements of <service-ref-mapping>.

Table 13–2 Subelements of the <service-ref-mapping> Element

Element Name Description

<service-impl-class> Defines a deployment-time generated name of a Service
implementation.

<wsdl-file> Defines a deployment-time generated name for the WSDL file.
This element has this attribute:

■ final-location—points to the copy of the WSDL
document associated with the service-ref in the
standard deployment descriptor.

<wsdl-location> (Optional) Contains a valid URL pointing to a WSDL document.
If a URL is specified, then the WSDL document at this URL will
be used during deployment instead of the WSDL document
associated with the service-ref in the standard deployment
descriptor. Sample values for <wsdl-location> include:
http://hostname:port/myservice/myport?WSDL and
file:/home/user1/myfinalwsdl.wsdl.

This element has this attribute:

■ wsdl-override-last-modified—this optional string
value is generated at deployment time and lists the time
when the WSDL file was last modified.

<service-qname> Derived at deployment-time, this element contains the QName of
the Web service.

<stub-property> Defines the stub property values applicable to all ports. This is a
convenient way to specify a property without specifying the
port name. The name and value subelements of
<stub-property> are described in Table 13–6 on page 13-10.

Note that the <port-info> element also contains a
<stub-property> element. If stub property values are
specified for a particular port inside the <port-info> tag, then
they will override the values set here.

Understanding J2EE Web Service Clients

Assembling a J2EE Web Service Client 13-9

Table 13–3 describes the sub-elements for the <port-info> element. This element
provides all of the information for a port within a service reference. You can specify
either <service-endpoint-interface> or <wsdl-port> to indicate the port that
the container will use for container-managed port selection. If you specify both, then
the container will use the <wsdl-port> value. If you do not specify <wsdl-port> or
<service-endpoint-interface>, then the <port-info> property values will
apply to all available ports.

The <port-info> element also contains subelements that let you specify quality of
service features that are available for the port and its operations.

<call-property> Defines the call property values applicable to all ports. This is a
convenient way to specify a property without specifying the
port name. The name and value subelements of
<call-property> are described in Table 13–6 on page 13-10.

Note that the <port-info> element also contains a
<call-property> element. If call property values are
specified for a particular port inside the <port-info> tag, then
they will override the values set here.

<port-info> Defines a port within a service-reference. See Table 13–3 on
page 13-9 for a description of the subelements of <port-info>.

Table 13–3 Subelements of the <port-info> Element

Element Name Description

<wsdl-port> Specifies the name of a port in the WSDL that the container will
use for container-managed port selection.

In container-managed port selection, the container manages
calls to the instance directly, and the client requests a generic
port that might be used to access multiple different instances.

<service-endpoint-interface> Specifies the fully-qualified path to the service endpoint
interface of a WSDL port. The container uses this port for
container-managed port selection.

<stub-property> Defines the stub property values applicable to the port defined
by the <port-info> element. The name and value
subelements of <stub-property> are described in Table 13–6
on page 13-10.

Note that the <service-ref-mapping> element also
contains a <stub-property> subelement (described in
Table 13–2 on page 13-8). If stub property values are specified
for a particular port inside the <port-info> tag, then they
override the <stub-property> element values set under
<service-ref-mapping>.

<call-property> Defines the call property values applicable to the port defined
by the <port-info> element. The name and value
sub-elements of <call-property> are described in
Table 13–6 on page 13-10.

Note that the <service-ref-mapping> element also
contains a <call-property> subelement (described in
Table 13–2 on page 13-8). If call property values are specified
for a particular port inside the <port-info> tag, then they
override the <call-property> element values set under
<service-ref-mapping>.

Table 13–2 (Cont.) Subelements of the <service-ref-mapping> Element

Element Name Description

Understanding J2EE Web Service Clients

13-10 Web Services Developer's Guide

Table 13–4 describes the <operation> subelement of the <operations> element.

Table 13–5 describes the <runtime> subelement of the <operation> element.

Table 13–6 describes the name and value subelements of the <stub-property> and
<call-property> elements.

<runtime> Contains client-side quality of service runtime information
(security and/or reliability) applicable to all the operations
provided by the referenced Web service. Each child element
contains configuration for a specific feature.

<operations> Contains a sequence of elements, one for each operation. The
<operation> subelement indicates an individual operation.
Each of these subelements contain client-side quality of service
configuration for a single operation provided by the referenced
Web service. For a description of the <operations>
subelement, see Table 13–4 on page 13-10.

Table 13–4 Subelement of the <operations> Element

Element Name Description

<operation> Specifies client-side quality of service configuration for a
particular operation provided by the referenced Web service.
The configuration appears within this element's <runtime>
subelement. The <runtime> subelement is described in
Table 13–5.

This <operation> element has these attributes:

■ name—associates the contained quality of service
configuration to a specific operation. The value of the
attribute must match the operation name from the WSDL.

■ inputName—contains the input name of the operation
from the WSDL. It is required only if the name attribute
cannot be used to uniquely identify the operation.

■ outputName—contains the output name of the operation
from the WSDL. It is required only if the name and input
attributes cannot be used to uniquely identify the operation.

Table 13–5 Subelement of the <operation> Element

Element Name Description

<runtime> Contains client-side quality of service configuration for
individual operations within the port. Each child element
contains configuration for one of the quality of services features
(security, reliability, and/or auditing).

Table 13–6 Subelements of <stub-property> and <call-property> Elements

Element Name Description

<name> Defines the name of any property supported by the JAX-RPC
Call or Stub implementation. See the output of the Javadoc
tool for the valid properties for javax.xml.rpc.Call and
javax.xml.rpc.Stub.

Table 13–3 (Cont.) Subelements of the <port-info> Element

Element Name Description

Writing J2EE Web Service Client Code

Assembling a J2EE Web Service Client 13-11

Adding JAX-RPC Handlers to Deployment Descriptors
J2EE Web service clients can support JAX-RPC handlers to provide additional message
processing facilities for Web service endpoints. For example, you can use a handler to
process a SOAP message.

You must enter the handler information as a subelement of <service-ref> in a J2EE
Web service client's deployment descriptor. The <handler> element encapsulates this
information. For more information on client-side handlers and registering them with
the deployment descriptor, see "Client-Side JAX-RPC Handlers" on page 15-4.

Writing J2EE Web Service Client Code
This section describes some of the common code that allows a J2EE component to
access a Web service. At runtime, all J2EE Web service clients use a standard JNDI
lookup to find Web services. The following steps describe the general pattern for
coding a JNDI lookup that could be used within a servlet, EJB, or a JSP.

1. Create the initial JNDI context.

Context ic = new InitialContext();

The OC4J container sets up the initial context properties.

2. Locate the service using the lookup method from the initial context. The
comp/env/service/MyHelloServiceRef in Example 13–5 provides the
service reference. The JNDI call returns a reference to a service object.

Service service = (Service)
ic.lookup("java:comp/env/service/MyHelloServiceRef");

The client always accesses the service implementation by using a JNDI lookup.
This lookup returns a container-managed service reference. This allows the
container to intervene and provide the client with additional service functionality,
such as logging, security, and management.

3. Get a handle to the service port using the getPort method on the
container-managed service object. Cast the return value to the interface type.

HelloInterface helloPort = (HelloInterface) service.getPort(portQName,
oracle.demo.hello.HelloInterface.class);

Note that this step assumes that a QName has already been defined. For example:

QName portQName = new QName("http://hello.demo.oracle/", "HelloInterfacePort");

Instead of getPort, the client can make a DII Web service call by using the
service object to get a handle on the Call object.

Call call = service.createCall(new QName("http://hello.demo.oracle/",
"HelloInterfacePort");

4. Call a method on the remote object.

resultFromService = helloPort.sayHello(name);

<value> Defines a JAX-RPC property value that should be set on a Call
object or a Stub object before it is returned to the Web service
client.

Table 13–6 (Cont.) Subelements of <stub-property> and <call-property> Elements

Element Name Description

Writing J2EE Web Service Client Code

13-12 Web Services Developer's Guide

Example 13–5 illustrates code that a servlet or JSP Web service client can use to look up
a Web service.

Example 13–5 Servlet or JSP Code to Look Up a Web Service

public String consumeService (String name)
{

 Context ic = new InitialContext();
 Service service =
(Service)ic.lookup("java:comp/env/service/MyHelloServiceRef");
 // declare the qualified name of the port, as specified in the wsdl
 QName portQName= new QName("http://hello.demo.oracle/","HelloInterfacePort");
 //get a handle on that port : Service.getPort(portQName,SEI class)
 HelloInterface helloPort =
(HelloInterface)
service.getPort(portQName,oracle.demo.hello.HelloInterface.class);
 //invoke the operation : sayHello()
 resultFromService = helloPort.sayHello(name);

}

Configuring a J2EE Web Service Client for a Stateful Web Service
J2EE Web service clients can be configured, either by using configuration files or
programmatically, to consume stateful Web services.

■ Configuring a J2EE Client with Configuration Files

■ Configuring a J2EE Client Programmatically

See "Exposing Java Classes as a Stateful Web Service" on page 6-7 for more information
on stateful Web services.

Configuring a J2EE Client with Configuration Files
A J2EE client can be configured to consume stateful Web services by editing the
<service-ref-mapping> clause of the appropriate Oracle-proprietary deployment
descriptor (either orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml).

Within the <service-ref-mapping> clause, add a <stub-property> element
with its <name> sub-element set to the javax.xml.rpc.session.maintain
property and its <value> sub-element set to true.

The value of the J2EE standard property javax.xml.rpc.session.maintain
indicates to the client whether it wants to participate in a session with a service
endpoint. If this property is set to true, the client indicates that it wants the session to
be maintained.

Example 13–6 illustrates a Web service client configuration for a stateful Web service.
The definition of the <stub-property> allows the client to participate in a session
with the port identified by the CycleCounterInterface service endpoint. The
<stub-property> element, with its setting for
javax.xml.rpc.session.maintain, is highlighted in bold.

Example 13–6 Configuration for a Client Participating with a Stateful Web Service

 <service-ref-mapping name="service/CycleCounter">
 <port-info>

Writing J2EE Web Service Client Code

Assembling a J2EE Web Service Client 13-13

<service-endpoint-interface>test.oracle.stateful.CycleCounterInterface</service-en
dpoint-interface>
 <!-- set the javax.xml.rpc.session.maintain property to true for a
stateful client -->
 <stub-property>
 <name>javax.xml.rpc.session.maintain</name>
 <value>true</value>
 </stub-property>
 <stub-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>http://%J2EE_HOST%:%HTTP_
PORT%/testsfWS-session/testsfWS-session</value>
 </stub-property>
 </port-info>
 </service-ref-mapping>

Configuring a J2EE Client Programmatically
A J2EE client can be configured programmatically to consume stateful Web services.
To do this, ensure that the client participates in the session by setting the SESSION_
MAINTAIN_PROPERTY runtime property (javax.xml.rpc.session.maintain) to
true either on the stub, the DII call, or the endpoint client instance.

For example, you can set the value of this property inside the generated
implementation _port of javax.xml.rpc.Stub:

((Stub)__port)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.valueOf
(maintainSession));

Instead of setting this property directly, OracleAS Web Services provides a helpful
wrapper class with a setMaintainSession(boolean) method. When this method
is set to true the session is maintained. The wrapper takes care of setting the property
inside of the client. For example, in the client code, you can enter the following:

HttpSoap11Client c = new HttpSoap11Client(); // client wrapper class
c.setMaintainSession(true);

Configuring a J2EE Web Service Client to Make JMS Transport Calls
You can statically configure the J2EE client to make JMS transport calls. To do this, add
a <service-ref-mapping> clause to the appropriate Oracle-proprietary J2EE client
deployment descriptor file for your Web service (orion-web.xml,
orion-ejb-jar.xml, or orion-application-client.xml). Within the clause,
configure a <stub-property> element with name and value attributes for each of
these items.

■ ReplyTo queue—Enter a <stub-property> element with the name attribute set
to the ReplyToQueueName API
(oracle.webservices.transport.ReplyToQueueName) and the value
attribute set to the JNDI name of the ReplyTo queue.

■ ReplyTo factory name—Enter a <stub-property> element with the name
attribute set to the ReplyToFactoryName API
(oracle.webservices.transport.ReplyToFactoryName) and the value
attribute set to the JNDI name of the ReplyTo factory.

■ service endpoint address—Enter a <stub-property> element with name
attribute set to the service endpoint address API

Writing J2EE Web Service Client Code

13-14 Web Services Developer's Guide

(javax.xml.rpc.service.endpoint.address) and the value attribute set
to the service endpoint interface file.

Example 13–7 illustrates a sample configuration.

Example 13–7 J2EE Client Configuration for JMS Transport Calls

<service-ref-mapping name="service/MyJMSService">
 <stub-property>
 <name>oracle.webservices.transport.ReplyToQueueName</name>
 <value>jms/receiverQueue</value>
 </stub-property>
 <stub-property>
 <name>oracle.webservices.transport.ReplyToFactoryName</name>
 <value>jms/receiverQueueConnectionFactory</value>
 </stub-property>
 <stub-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>/bank/soap12bank</value>
 </stub-property>
</service-ref-mapping>

Enabling Chunked Data Transfer for HTTP 1.1
OracleAS Web Services permits the chunked transfer encoding of messages when the
protocol is HTTP 1.1. Chunked data transfer can be invoked on J2SE stub, J2EE stub
and DII Web service clients.

Chunking can increase performance by breaking the payload into smaller pieces.
These pieces can be sent over the wire faster than one large payload. Chunked transfer
encoding includes all of the information that the recipient needs to verify that it has
received the entire message. Chunked transfer encoding happens at the transport
level; it is not detected or handled by the invoker of a Web services call or the server.

The following properties in the oracle.webservices.ClientConstants class
can be set on the Stub or Call object to enable chunking and set the chunk size.

■ DO_NOT_CHUNK—if this property is not set, or set to true, then chunking is
turned off by default. If this property is set to false, then chunking is enabled.

■ CHUNK_SIZE—sets the chunk size in bytes. If this property is not set, then the
default chunk size is 4096 bytes.

Example 13–8 illustrates setting the chunking and chunk size property in client proxy
stub code.

Example 13–8 Stub Code to Set Data Chunk Size

import oracle.webservices.ClientConstants
...
((OracleStub)port)._setProperty(ClientConstants.DO_NOT_CHUNK (true));
((OracleStub)port)._setProperty(ClientConstants.CHUNK_SIZE (1024));
...

Example 13–9 illustrates using the DO_NOT_CHUNK and CHUNK_SIZE properties in DII
client code to set the chunk size to 1024 bytes.

Example 13–9 DII Client Code to Set Data Chunk Size

import oracle.webservices.ClientConstants
...

Writing J2EE Web Service Client Code

Assembling a J2EE Web Service Client 13-15

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(new
QName("http://whitemesa.net/wsdl/rpc-lit-test", "tns"));
QName stringType = new QName("http://www.w3.org/2001/XMLSchema", "string");
Call call = service.createCall();
...
call.setProperty(ClientConstants.DO_NOT_CHUNK (false));
call.setProperty(ClientConstants.CHUNK_SIZE (1024));
...

Setting a Character Encoding for a SOAP Message
By default, a J2EE client (either static stub or DII) assembled under OracleAS Web
Services sends a request message with a SOAP envelope encoded with UTF-8
characters. To override this behavior, you can set the following Oracle proprietary
property:

oracle.webservices.ClientConstants.CHARACTER_SET_ENCODING

You can apply this property to the javax.xml.rpc.Stub or javax.xml.rpc.Call
object with the setProperty method.

The value of the CHARACTER_SET_ENCODING property can be of type
java.lang.String or java.nio.charset.Charset. The set of supported
character encodings depends on the underlying Java Virtual Machine (JVM). Use the
Charset.availableCharsets method to return the list of character encodings that
are supported by your JVM. for more information on the
Charset.availableCharsets method, see the output of the Javadoc tool for the
java.nio.charset.Charset class.

This property can also be used for J2SE Web service clients.

Example 13–10 illustrates Stub client code that sets Shift_JIS as the character
encoding that will be used by the SOAP envelope.

Example 13–10 Setting Shift_JIS Characters for a SOAP Envelope on a Stub Client

include oracle.webservices.ClientConstants
...
((OracleStub)port)._setProperty(ClientConstants.CHARACTER_SET_ENCODING, "Shift_
JIS");
...

Example 13–11 illustrates DII client code that sets Shift_JIS as the character
encoding that will be used by the SOAP envelope.

Example 13–11 Setting Shift_JIS Characters for a SOAP Envelope on a DII Client

include oracle.webservices.ClientConstants
...
ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(new URL("path to wsdl"),
new QName("service namespace", "service name"));
Call call = service.createCall();
call.setProperty(ClientConstants.CHARACTER_SET_ENCODING, Charset.forName("Shift_
JIS"));
...

Packaging a J2EE Client

13-16 Web Services Developer's Guide

Packaging a J2EE Client
JDeveloper creates a standard packaging for Web application and EJB client files. This
section describes that packaging structure in case you need to customize the contents
of the client EAR file.

■ Packaging a Servlet or Web Application Client

■ Packaging an EJB Client

Packaging a Servlet or Web Application Client
This section describes the packaging of servlet or Web application clients. The values
for a number of elements in the deployment descriptors reflect the names of the files
and their storage position in the EAR file. If you change the content of the EAR file,
you might need to change the content of the deployment descriptors.

■ Packaging Structure for Servlet or Web Application Clients

■ Relationship Between Deployment Descriptors and Servlet or Web Application
Client EAR Files

Packaging Structure for Servlet or Web Application Clients
Servlet or Web application clients are packaged in an EAR file with the name <ear_
file_name>.ear. At the top level, the EAR file contains a META-INF directory for
the manifest file and the application.xml file and <war_file_name>.war file for
the servlet or Web application files, the JAX-RPC mapping file, the WSDL file, and the
deployment descriptors. Example 13–12 illustrates the standard package structure of
the EAR file.

Example 13–12 Structure of a Servlet or Web Application Client EAR File

./META-INF
 ./MANIFEST.MF
 ./application.xml
./<war file>.war
 ./WEB-INF/
 /orion-web.xml
 /web.xml
 /wsdl/<wsdl file name>.wsdl
 /<mapping file>.xml
 /classes
 /class files
 /lib
 /.jar files
 ./*.jsp or html files

Relationship Between Deployment Descriptors and Servlet or Web Application
Client EAR Files
This section identifies the relationships between the J2EE standard deployment
descriptor web.xml, the OC4J deployment descriptor for servlets or Web applications
orion-web.xml, and the packaging structure of the client EAR file. These
relationships are important because if you edit the structure or contents of the client
EAR file, you might have to edit the content of the deployment descriptors.

The client information is contained in the <service-ref> element in web.xml. This
element contains information about the Web service that can be looked up and
consumed from inside a servlet or JSP. For example, it contains the locations for the

Packaging a J2EE Client

Assembling a J2EE Web Service Client 13-17

WSDL (<wsdl-file>), the JAX-RPC mapping file (<jaxrpc-mapping-file>), the
service interface used for JNDI lookup (<service-ref-name>), the service interface
class (<service-interface>), and the service endpoint interface
(<service-endpoint-interface>). Note that the <service-ref-name> in
web.xml also appears as an attribute in the <service-ref-mapping> element in
orion-web.xml. If you change the names and locations of any of these items in the
EAR, then you must make the corresponding changes in the deployment descriptors.

See "Adding J2EE Web Service Client Information to Deployment Descriptors" on
page 13-4 for more information on the <service-ref> and
<service-ref-mapping> elements and their subelements.

Example 13–13 lists the contents of web.xml for a servlet or Web application client.
The <service-ref> element is highlighted in bold.

Example 13–13 web.xml Contents for a Servlet or Web Application Client

<web-app>
 <servlet>
 <servlet-name>consumer</servlet-name>
 <servlet-class>oracle.ServiceConsumerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>consumer</servlet-name>
 <url-pattern>/consumer</url-pattern>
 </servlet-mapping>
 <service-ref>
 <service-ref-name>service/MyHelloServiceRef</service-ref-name>
 <service-interface>javax.xml.rpc.Service</service-interface>
 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>WEB-INF/HelloService-java-wsdl-mapping.xml</jaxrpc-mapping-fi
le>
 <service-qname
xmlns:service-qname_ns__="http://hello.demo.oracle/">service-qname_ns__
:HelloService</service-qname>
 <port-component-ref>

<service-endpoint-interface>oracle.demo.hello.HelloInterface</service-endpoint-int
erface>
 </port-component-ref>
 </service-ref>
</web-app>

Example 13–14 lists the contents of OC4J proprietary orion-web.xml deployment
descriptor for Web applications and servlets. The <service-ref-mapping> element
is highlighted in bold.

Example 13–14 orion-web.xml Contents for a Client-Side Servlet or Web Application

<orion-web-app
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-web-1
0_0.xsd">
 <service-ref-mapping name="service/MyHelloServiceRef">
 <!-- stub proprty applicable across all ports -->
 <stub-property>

<name>javax.xml.rpc.service.endpoint.address</name>

Packaging a J2EE Client

13-18 Web Services Developer's Guide

<value>http://localhost:8888/hello/HelloService</value>
 </stub-property>
 </service-ref-mapping>
</orion-web-app>

Packaging an EJB Client
This section describes the packaging of EJB clients. The values for a number of
elements in the deployment descriptors reflect the names of the files and their storage
position in the EAR file. If you change the content of the EAR file, you might need to
change the content of the deployment descriptors.

■ Package Structure for EJB Application Clients

■ Relationship Between Deployment Descriptors for EJB Application Clients

Package Structure for EJB Application Clients
EJB clients are packaged in an EAR file with the name <ear_file_name>.ear. At
the top level, the EAR file contains a META-INF directory for the manifest file and the
application.xml file, the EJB class files, and <ejb_jar_file_name>.jar file.
The JAR file contains the JAR manifest file, the JAX-RPC mapping file, the WSDL file,
and the deployment descriptors. Example 13–15 illustrates the packaging structure of
an EJB client EAR file.

Example 13–15 Package Structure for a Client-Side EJB Application EAR File

./META-INF
 ./MANIFEST.MF
 ./application.xml
./<ejb jar file name>.jar
 ./class files
 ./META-INF/
 /MANIFEST.MF
 /ejb-jar.xml
 /orion-ejb-jar.xml
 /wsdl/<wsdl file name>.wsdl
 /<mapping file>.xml

Relationship Between Deployment Descriptors for EJB Application Clients
This section identifies the relationships between the J2EE standard deployment
descriptor ejb-jar.xml, the OC4J deployment descriptor for servlets or Web
applications orion-ejb-jar.xml, and the packaging structure of the EJB client EAR
file. These relationships are important because if you edit the structure or contents of
the client EAR file, you might have to edit the content of the deployment descriptors.

The client information is contained in the <service-ref> element in ejb-jar.xml.
This element contains information about the servlet or Web application that can be
used as a Web service client. For example, it contains the locations for the WSDL
(<wsdl-file>), the JAX-RPC mapping file (<jaxrpc-mapping-file>), the service
interface used for JNDI lookup (<service-ref-name>), the service interface class
(<service-interface>), and the service endpoint interface
(<service-endpoint-interface>). Note that the <service-ref-name> in
ejb-jar.xml also appears as an attribute in the <service-ref-mapping> element
in orion-ejb-jar.xml. If you change the names and locations of any of these items
in the EAR, then you must make the corresponding changes in the deployment
descriptors.

Limitations

Assembling a J2EE Web Service Client 13-19

See "Adding J2EE Web Service Client Information to Deployment Descriptors" on
page 13-4 for more information on the <service-ref> and
<service-ref-mapping> elements and their subelements.

Example 13–16 lists the contents of ejb-jar.xml for an EJB client. The
<service-ref> element is highlighted in bold.

Example 13–16 ejb-jar.xml Contents for a Client-Side EJB Application

<ejb-jar>
 <display-name>serviceConsumerEJB</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>ServiceConsumer</ejb-name>
 <home>oracle.ServiceConsumerHome</home>
 <remote>oracle.ServiceConsumerRemote</remote>
 <ejb-class>oracle.ServiceConsumerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <service-ref>
 <service-ref-name>service/MyHelloService</service-ref-name>
 <service-interface>javax.xml.rpc.Service</service-interface>
 <wsdl-file>META-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/HelloService-java-wsdl-mapping.xml</jaxrpc-mapping-f
ile>

<service-qnamexmlns:ns="http://hello.demo.oracle/">ns:HelloService</service-qname>
 <port-component-ref>

<service-endpoint-interface>oracle.demo.hello.HelloInterface</service-endpoint-int
erface>
 </port-component-ref>
 </service-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

Example 13–17 lists the contents of OC4J proprietary orion-ejb-jar.xml
deployment descriptor for Web applications and servlets. The
<service-ref-mapping> element is highlighted in bold.

Example 13–17 orion-ejb-jar.xml Contents for a Client-Side EJB Application

<orion-ejb-jar>
 <enterprise-beans>
 <session-deployment name="ServiceConsumer">
 <service-ref-mapping name="service/MyHelloService">
 <stub-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>http://localhost:8888/hello/HelloService</value>
 </stub-property>
 </service-ref-mapping>
 </session-deployment>
 </enterprise-beans>
</orion-ejb-jar>

Limitations
See "Assembling a J2EE Web Service Client" on page C-7.

Additional Information

13-20 Web Services Developer's Guide

Additional Information
For more information on:

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

■ assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

■ building J2SE clients, see Chapter 14, "Assembling a J2SE Web Service Client".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services"

■ jar files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ how to write clients to access Web services secured on the transport level, see
"Adding Transport-level Security for Web Services Based on EJBs" and "Accessing
Web Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

Additional Information

Assembling a J2EE Web Service Client 13-21

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Additional Information

13-22 Web Services Developer's Guide

Assembling a J2SE Web Service Client 14-1

14
Assembling a J2SE Web Service Client

This chapter provides information on developing a Web services client for the J2SE
platform. This chapter has the following sections.

■ Understanding J2SE Web Service Clients

■ Writing Web Service Client Applications

■ Tool Support for Assembling J2SE Web Service Clients

Understanding J2SE Web Service Clients
The J2SE client, unlike the J2EE client, is responsible for much of the underlying work
of looking up the service, and creating and maintaining the instances of classes that
access the Web service. Since developers cannot rely on the container, they must create
and manage their own services, and ensure the availability of all runtime
environments needed to access the Web service.

The following sections describe static stub clients and Dynamic Invocation Interface
(DII) clients.

■ Using Static Stub Clients

■ Using the Web Service Dynamic Invocation Interface

Using Static Stub Clients
The WebServicesAssembler command genProxy generates static stubs from a
supplied WSDL document. The generated stubs implement the
javax.xml.rpc.Stub interface and a service endpoint interface. Additionally, the
generated stubs are specifically bound to the HTTP transport and SOAP protocol. You
can instantiate the generated stubs and invoke their methods directly to send requests
to the associated Web service.

In addition, WebServicesAssembler generates a client utility class that demonstrates
how a client leverages the static stubs to interact with a Web service. The name of the
utility client class is <WSDL_port_name>Client.java. This class handles all steps
necessary for creating a stub instance. You may want to instantiate the utility client
and use it to invoke the remote service's operations.

Note: The client utility class file is regenerated every time
WebServicesAssembler is executed, it is strongly recommended that
you place your own code in a separate file. Otherwise, you will lose
your changes.

Understanding J2SE Web Service Clients

14-2 Web Services Developer's Guide

Using the Web Service Dynamic Invocation Interface
The JAX-RPC Dynamic Invocation Interface supports the invocation of a remote Web
service operation even if the name of the service or the signature of the remote method
is unknown prior to runtime.

Support for DII is provided through OC4J's implementation of the
javax.xml.rpc.Call interface. The javax.xml.rpc.Service class acts as a
factory for Call instances by using the overloaded
javax.xml.rpc.Service.createCall() method. Once created, the various
getters and setters that the Call interface provides are used to configure the port type,
the operation name, the service endpoint address, and other attributes required for
executing the remote method.

For examples of using DII clients to invoke Web services, see "Using Dynamic
Invocation Interface to Invoke Web Services" on page C-11.

Prerequisites
Before you begin, provide the following files and information.

■ Supply the URI to the WSDL you want to employ to generate the client. This
chapter uses the WSDL file described in "Sample WSDL File" on page 14-3.

■ Decide on the destination location for generated artifacts.

■ Decide on a package name for the client files.

How to Assemble a J2SE Web Service Client with a Static Stub
You can use WebServicesAssembler to create a J2SE Web service client using static
stubs. To create the static stub, follow these steps.

1. Provide the URI to the WSDL, the name of the output directory, the package name,
and the other information and files described in the Prerequisites section as input
to the WebServicesAssembler genProxy command. For example:

java -jar wsa.jar -genProxy
 -output build/src/client/
 -wsdl http://localhost:8888/hello/HelloService?WSDL
 -packageName oracle.demo.hello

This command generates the client proxies and stores them in
build/src/client. The client application uses the stub to invoke operations on
a remote service. For more information on the required and optional arguments to
genProxy, see "genProxy" on page 17-30.

2. Use the client utility class file created by genProxy as your application client, or
use it as a template to write your own client code. The client utility class file is one
of a number of files created by genProxy.

You can also use the client utility class file to test your endpoint. Example 14–2,
"HelloInterfacePortClient.java Listing" on page 14-5, illustrates the client utility
class file created in this example. For more information about this file, see "Writing
Web Service Client Applications" on page 14-4.

3. Compile the client files and put them in the classpath.

List the appropriate JARs on the classpath before compiling the client. Table A–2,
" Classpath Components for a Client Using a Client-Side Proxy" lists all of the JAR
files that can possibly be used on the client classpath. As an alternative to listing
individual JARs, you can include the client-side JAR, wsclient_extended.jar

Understanding J2SE Web Service Clients

Assembling a J2SE Web Service Client 14-3

on the client classpath. This JAR file contains all the classes necessary to compile
and run a Web service client. The classes are from the individual JAR files listed in
Table A–2. See "Setting the Web Service Proxy Client Classpath" on page A-2 for
more information on wsclient_extended.jar and the client classpath.

4. Run the J2SE client from the command line.

Ant Tasks for Generating a J2SE Web Service Client
The current release provides Ant tasks for Web services development. The following
code sample shows how the WebServicesAssembler genProxy command can be
rewritten as an Ant task.

<oracle:genProxy
 wsdl="http://localhost:8888/hello/HelloService?WSDL"
 output="build/src/client"
 packageName="oracle.demo.hello"/>

Sample WSDL File
Example 14–1 contains a partial listing of the HelloService.wsdl used to generate
the client. One of the files generated from this WSDL is the client utility class file listed
in Example 14–2.

This partial listing illustrates a number of entries in the WSDL file that are employed
in the generation of the client utility class file. For example:

■ The name of the client utility class file, HelloInterfacePortClient.java, is
derived from the value of the <port name> element.

■ The operation name, sayHello, which appears under the <portType> element,
becomes a method in the client utility class file.

■ The parameter and data type belonging to sayHello is defined by the
complexType defining the sayHello request:

<complexType name="sayHello">
 <sequence>
 <element name="name" nillable="true" type="string"/>
 </sequence>
</complexType>

The preceding elements appear in bold in the partial listing of HelloService.wsdl.

Example 14–1 WSDL Fragment, With Elements Used in the Client Utility Class File

<definitions
 ...
 >
 <types>
 <schema targetNamespace="http://hello.demo.oracle/" ...
xmlns="http://www.w3.org/2001/XMLSchema"
 ...
 <complexType name="sayHello">
 <sequence>
 <element name="name" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="sayHelloResponse">
 <sequence>
 <element name="result" nillable="true" type="string"/>
 </sequence>

Writing Web Service Client Applications

14-4 Web Services Developer's Guide

 </complexType>
 <element name="sayHelloElement" type="tns:sayHello"/>
 <element name="sayHelloResponseElement" type="tns:sayHelloResponse"/>
 </schema>
 </types>
 <message name="HelloInterface_sayHelloResponse">
 <part name="parameters" element="tns:sayHelloResponseElement"/>
 </message>
 <message name="HelloInterface_sayHello">
 <part name="parameters" element="tns:sayHelloElement"/>
 </message>
 <portType name="HelloInterface">
 <operation name="sayHello">
 <input message="tns:HelloInterface_sayHello"/>
 <output message="tns:HelloInterface_sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="HelloInterfacePortBinding" type="tns:HelloInterface">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="http://hello.demo.oracle/:sayHello"/>
 <input>
 <soap:body use="literal" parts="parameters"/>
 </input>
 <output>
 <soap:body use="literal" parts="parameters"/>
 </output>
 </operation>
 </binding>
 <service name="HelloService">
 <port name="HelloInterfacePort" binding="tns:HelloInterfacePortBinding">
 <soap:address location="HelloService"/>
 </port>
 </service>
</definitions>

Writing Web Service Client Applications
The genProxy command generates a client utility class file that enables you to invoke
Web service methods. You can use this file as your application client, or use it as a
template to write your own application client code.

The command derives the name of the file by appending the suffix Client to the port
name. For example, for the HelloInterfacePort port name, genProxy generates
the HelloInterfacePortClient.java file. Example 14–2,
"HelloInterfacePortClient.java Listing" on page 14-5 illustrates the sample client utility
class file generated by genProxy.

The client utility class serves as a proxy to the Web service implementation. The
client-side proxy code constructs a SOAP request and marshals and unmarshals
parameters for you. Using the proxy classes saves you the work of creating SOAP

Note: The client utility class file is regenerated each time you run
genProxy. If you add code to this file for testing purposes, then your
changes will be lost if you regenerate the proxy. For production code,
your client code should exist outside of this utility class.

Writing Web Service Client Applications

Assembling a J2SE Web Service Client 14-5

requests and data marshalling for accessing a Web service or processing Web service
responses.

The most important part of the client utility class file is the factory code for creating
javax.xml.rpc.Service objects and obtaining the operations available on the
service. The Service object acts as an instance of the generated stub class.

Note the following lines of code in the client utility class file:

public HelloInterfaceClient() throws Exception {
 ServiceFactory factory = ServiceFactory.newInstance();
 _port = ((HelloService)factory.loadService
 (HelloService.class)).getHelloInterfacePort();
}

If you write your own application client, you must supply this code. The following
steps describe the code.

1. Instantiate a new javax.xml.rpc.ServiceFactory instance or use an existing
instance.

ServiceFactory factory = ServiceFactory.newInstance();

2. Load the service for a particular service endpoint interface using the
loadService method. This returns an object of type Service that also
implements the requested service endpoint interface.

(HelloService)factory.loadService(HelloService.class)

In this example, the returned Service is cast to the service endpoint interface
HelloService.

3. Use the get...() method to get the desired port. The ellipsis ("...") represents the
value of the port name element in the WSDL.

HelloService.getHelloInterfacePort();

In this example, the method name is getHelloInterfacePort(), where
HelloInterfacePort is the port name in the WSDL. The method returns a
Java implementation for HelloInterfacePort.

Example 14–2 displays the client utility class file,
HelloInterfacePortClient.java, which was generated from the
HelloService.wsdl in Example 14–1 by the genProxy command. The lines of code
that create the Service objects and obtain the operations available on the service
appear in bold.

Also note the presence of the SESSION_MAINTAIN_PROPERTY in this example. This
property is used to alert the client that the Web service is stateful. You will want to
maintain the session when the client is operating in conjunction with a server side,
stateful Web service. By maintaining the session, subsequent requests to the service are
faster.

Example 14–2 HelloInterfacePortClient.java Listing

import oracle.webservices.transport.ClientTransport;
import oracle.webservices.OracleStub;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Stub;

public class HelloInterfacePortClient {
 private HelloInterface _port;

Writing Web Service Client Applications

14-6 Web Services Developer's Guide

 public HelloInterfacePortClient() throws Exception {
 ServiceFactory factory = ServiceFactory.newInstance();
 _port =((HelloService)factory.loadService(
 HelloService.class)).getHelloInterfacePort();
 }

 /**
 * @param args
 */
 public static void main(String[] args) {
 try {
 HelloInterfacePortClient myPort = new HelloInterfacePortClient();
 System.out.println("calling " + myPort.getEndpoint());
 // Add your own code here

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 /**
 * delegate all operations to the underlying implementation class.
 */
 // sayHello
 public String sayHello(String name) throws java.rmi.RemoteException {
 return _port.sayHello(name);
 }

 /**
 * used to access the JAX-RPC level APIs
 * returns the interface of the port instance
 */
 public oracle.demo.hello.HelloInterface getPort() {
 return _port;
 }

 public String getEndpoint() {
 return (String) ((Stub)
_port)._getProperty(Stub.ENDPOINT_ADDRESS_PROPERTY);
 }

 public void setEndpoint(String endpoint) {
 ((Stub) _port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
endpoint);
 }

 public String getPassword() {
 return (String) ((Stub) _port)._getProperty(Stub.PASSWORD_PROPERTY);
 }

 public void setPassword(String password) {
 ((Stub) _port)._setProperty(Stub.PASSWORD_PROPERTY, password);
 }

 public String getUsername() {
 return (String) ((Stub) _port)._getProperty(Stub.USERNAME_PROPERTY);
 }

 public void setUsername(String username) {

Writing Web Service Client Applications

Assembling a J2SE Web Service Client 14-7

 ((Stub) _port)._setProperty(Stub.USERNAME_PROPERTY, username);
 }

 public void setMaintainSession(boolean maintainSession) {
 ((Stub) _port)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, new
Boolean(maintainSession));
 }

 public boolean getMaintainSession() {
 return ((Boolean) ((Stub)
_port)._getProperty(Stub.SESSION_MAINTAIN_PROPERTY)).booleanValue();
 }

 /**
 * returns the transport context
 */
 public ClientTransport getClientTransport() {
 return ((OracleStub) _port).getClientTransport();
 }
}

Enabling Chunked Data Transfer for HTTP 1.1
OracleAS Web Services permits the chunked transfer encoding of messages when the
protocol is HTTP 1.1. Chunked data transfer can be invoked on J2SE stub, J2EE stub
and DII Web service clients.

For more information on how to enable this feature, see "Enabling Chunked Data
Transfer for HTTP 1.1" on page 13-14.

Setting a Character Encoding for a SOAP Message on a J2SE Client
By default, a client assembled under Oracle Application Server Web Services sends a
request message with a SOAP envelope encoded with UTF-8 characters. To override
this behavior, you can set the following Oracle proprietary property:

oracle.webservices.ClientConstants.CHARACTER_SET_ENCODING

This property can be used to set the character encoding for a J2SE client or a J2EE
client. For more information on how to use this property, see "Setting a Character
Encoding for a SOAP Message" on page 13-15.

Setting Cookies in a Client Stub
A client stub can be used to set the cookies used in an HTTP request.

To do this, follow these general steps:

1. Construct a cookie, using the Cookie class from the Oracle Applications Server
10g HTTPClient package.

The Cookie class represents an HTTP cookie. Cookie has the following
constructor:

Cookie (java.lang.String name, java.lang.String value,
java.lang.String domain, java.lang.String path, java.util.Date
expires, boolean secure)

All parameters except expires are required to the Cookie constructor.

2. Set the property oracle.webservices.ClientConstants.COOKIE_MAP.

Tool Support for Assembling J2SE Web Service Clients

14-8 Web Services Developer's Guide

The value of the property is a java.util.Map object that contains items and
keys of type HTTPClient.Cookie.

3. Set the javax.xml.rpc.session.SESSION_MAINTAIN_PROPERTY runtime
property set to true.

This property alerts the client that the Web service is stateful. If this property is not
set to true, then the cookies will be ignored.

Example 14–3 illustrates stub code that sets the value of two cookies. The cookieMap
variable is declared to be of type java.util.Map and obtains its contents from a
HashMap. The Cookie constructor is used to define two cookies, cookie and
cookie2. The cookieMap.put lines add the cookies to the hashmap. The
Stub.SESSION_MAINTAIN_PROPERTY is present and set to true and the
ClientConstants.COOKIE_MAP is set to cookieMap.

Example 14–3 Setting a Cookie in a Client Stub

import HTTPClient.Cookie;
 Map cookieMap = new HashMap();

 Cookie cookie = new Cookie("name", "value", "oracle.com", "/", null, false);
 Cookie cookie2 = new Cookie("name2", "value2", "oracle.com", "/", null, false);
 cookieMap.put(cookie, cookie);
 cookieMap.put(cookie2, cookie2);

 ((Stub) port)._setProperty(ClientConstants.COOKIE_MAP, cookieMap);
 ((Stub) port)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);
...

Tool Support for Assembling J2SE Web Service Clients
Oracle JDeveloper enables you to build client applications that use Web services. It
supports OC4J J2SE Web service clients by allowing you to create Java stubs from Web
service WSDL descriptions. You can use these stubs to access existing Web services.
For more information, see the JDeveloper on-line help.

Additional Information
For more information on:

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

■ assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

■ building J2EE clients, see Chapter 13, "Assembling a J2EE Web Service Client".

Additional Information

Assembling a J2SE Web Service Client 14-9

■ improving performance by data chunking, see "Enabling Chunked Data Transfer
for HTTP 1.1" on page 13-14.

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ how to write clients to access Web services secured on the transport level, see
"Adding Transport-level Security for Web Services Based on EJBs" and "Accessing
Web Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the JAX-RPC mapping file, see "JAX-RPC Mapping File Descriptor" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Additional Information

14-10 Web Services Developer's Guide

Understanding JAX-RPC Handlers 15-1

15
Understanding JAX-RPC Handlers

This chapter provides an overview of working with JAX-RPC message handlers.

■ Message Handler Overview

■ Writing a JAX-RPC Handler

■ Configuring a Server-Side JAX-RPC Handler

■ Registering JAX-RPC Handlers with webservices.xml

■ Client-Side JAX-RPC Handlers

Message Handler Overview
SOAP message handlers are used to process messages to and from a Web service.
There are two kinds of handlers: client and server.

■ Client handlers can intercept messages sent from a client application, the "request",
and the corresponding message returned by the service, the "response".

■ Server handlers can intercept messages sent to a Web service, the "request", and
the corresponding message returned by the service, the "response".

Because handlers gain privileged access to the entire SOAP envelope, they are
commonly used for SOAP header processing. Some other common uses for handlers
are:

■ logging

■ auditing

■ encryption/decryption

Much of this functionality is provided by the OracleAS Web Services management
infrastructure. In many cases, a user-written handler might not be necessary.

For any given Web service or Web service client, there can be zero or more handlers. A
collection of handlers constitutes a handler chain. The handler chain is maintained by
the JAX-RPC runtime implementation. The default behavior of the runtime
implementation is to call each handler in order from the chain. However, a handler can
change this processing model based on its implementation of the
javax.xml.rpc.handler.Handler interface. For example, returning false in the
handleRequest message will halt the runtime from proceeding to the next handler
in the chain. Throwing an exception will have a similar effect. For more information on
handlers and the handler model, see the JAX-RPC 1.1 specification.

http://java.sun.com/webservices/jaxrpc/index.jsp

Writing a JAX-RPC Handler

15-2 Web Services Developer's Guide

Writing a JAX-RPC Handler
To build a JAX-RPC handler, implement the javax.xml.rpc.handler.Handler
interface.

package javax.xml.rpc.handler;
public interface Handler{
 public boolean handleRequest(javax.xml.rpc.handler.MessageContext context);
 public boolean handleResponse(javax.xml.rpc.handler.MessageContext context);
 public boolean handleFault(javax.xml.rpc.handler.MessageContext context);
 public void destroy();
 public void init(javax.xml.rpc.handler.HandlerInfo config);
 public javax.xml.namespace.QName[] getHeaders();
}

For more information on the Handler interface, see the output of the Javadoc tool at
the following Web address.

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/handler/Hand
ler.html

As an alternative to implementing the Handler interface, you can extend the
javax.xml.rpc.handler.GenericHandler class. This class provides default
implementations for all of the interface's methods so there is no need to redefine them
in your handler implementation.

Configuring a Server-Side JAX-RPC Handler
Handlers are ultimately configured and registered in the Web services deployment
descriptor (webservices.xml). However, instead of editing the file yourself, you can
have WebServicesAssembler generate the proper configuration by specifying the
handler classes, that is, classes that implement the Handler interface, at development
time.

For example, to add server handlers for a Web service described by the WSDL in
Example 16–1, you could use the following Ant task. The server handler appears in
bold:

<oracle:topDownAssemble appName="hello-service"
 wsdl="Hello.wsdl"
 input="./classes"
 output="build"
 ear="dist/hello-service.ear"
 packageName="oracle.demo"
 >
 <oracle:porttype className="oracle.demo.HelloImpl" />
 <oracle:handler name="ServerHandler"
 handlerClass="oracle.demo.ServerHelloHandler"/>
</oracle:topDownAssemble>

In this example, the server handler oracle.demo.ServerHelloHandler will be
configured for the hello-service Web service. Any number of handlers can be
added by adding <handler> tags, each with unique names. The order in which the
handler elements are listed is the order in which they will be added to the handler

Note: WebServicesAssembler provides Ant tasks that let you
configure JAX-RPC message handlers. Handlers cannot be configured
by using the WebServicesAssembler command line.

Registering JAX-RPC Handlers with webservices.xml

Understanding JAX-RPC Handlers 15-3

chain. Although this example is for top down development, handlers can also be
added to other Ant tasks using the same <handler> tag. The following is a list of Ant
tasks that can include the <handler> tag. "Configuring Handlers in an Ant Task" on
page 17-71 provides more information on configuring handlers.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ genDDs

■ genProxy (for client-side generation only)

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

To add client-side handlers, the configuration is almost identical. For more
information, see "Client-Side JAX-RPC Handlers" on page 15-4.

Registering JAX-RPC Handlers with webservices.xml
If you use Ant tasks to add handlers while generating your Web service, there should
be no need to add handlers to the webservices.xml file. If you use the command
line or are manually creating a Web service deployment, you can add handlers to
webservices.xml by adding child elements to the <port-component> element.
Example 15–1 illustrates a <port-component> element with multiple handlers.

Example 15–1 Sample JAX-RPC Handlers in webservices.xml

<port-component>
 ...
<handler>
 <handler-name>First Handler</handler-name>
 <handler-class>oracle.xx.AccountTransactionHandler</handler-class>
 <init-param>
 <param-name>test</param-name>
 <param-value>testValue</param-value>
 </init-param>
</handler>
<handler>
 <handler-name>Second Handler</handler-name>
 <handler-class>oracle.xx.NewAccountHandler</handler-class>
</handler>
 ...
</port-component>

Table 15–1 describes the <handler> subelements that can be used to specify a
server-side handler:

Client-Side JAX-RPC Handlers

15-4 Web Services Developer's Guide

For more information on the contents of webservices.xml, see its schema at the
following Web address:

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd

Client-Side JAX-RPC Handlers
On the Web service client, JAX-RPC handlers can intercept and process messages sent
from a client application and the corresponding message returned by the service.
These handlers can, for example, process the SOAP message. The following sections
describe how to register the handlers for use in Web service clients:

■ Registering JAX-RPC Handlers for J2EE Web Service Clients

■ Registering JAX-RPC Handlers for J2SE Web Service Clients

Registering JAX-RPC Handlers for J2EE Web Service Clients
For J2EE Web service clients, JAX-RPC handler information appears within the
<service-ref> element in the deployment descriptor for a given J2EE client. The
<service-ref> element captures all of the service's J2EE client-related information,
such as the location of the WSDL and mapping file, the service interface, the ports the
service will run on and their related service endpoint interfaces, and so on.

Unlike server-side handlers, client-side handlers are associated with service references
(<service-ref>) instead of port component references (<port-component>).
Client-side handlers have a configurable <port-name> parameter that associates a
handler with the port of the invoked service. When a service endpoint (WSDL port) is
invoked, the value of <port-name> determines which handler is run.

To register a handler for a J2EE Web service client, enter the handler information in the
<service-ref> section of its deployment descriptor. The following list identifies the
J2EE deployment descriptors for each J2EE component that can act as a Web service
client.

■ WEB-INF/web.xml for a JSP or servlet

■ META-INF/application-client.xml for an application client

■ META-INF/ejb-jar.xml for an EJB

Using the handler Element in a J2EE Web Service Client
The <handler> element encapsulates the handler information for a J2EE Web service
client. Table 15–2 describes the sub-elements that it can use:

Table 15–1 <handler> Subelements for a Server-Side Handler

Subelement Description

<handler-name> A unique name that identifies the handler.

<handler-class> The fully-qualified name of the class to which the handler
belongs. The class must implement:
javax.xml.rpc.handler.Handler.

<init-param> A subelement containing one param-name, param-value pair.

The param-name, param-value pair represents a single parameter
and value that will be passed to the handler's init method.
There is no limit on the number of init-param subelements
that can be used in a <handler> element.

Client-Side JAX-RPC Handlers

Understanding JAX-RPC Handlers 15-5

Enter the handler information at the end of the <service-ref> section, after any
port component information. Example 15–2 illustrates a <service-ref> tag with
two defined handlers. In this example, First Handler is associated with the class
oracle.xx.AccountTransactionHandler and runs on portA. Second
Handler is associated with the class oracle.xx.NewAccountHandler and runs on
portB. First Handler runs only if PortA is invoked and Second Handler runs
only if PortB is invoked.

Example 15–2 Sample JAX-RPC Handler for a J2EE Client

<service-ref>
 <service-ref-name>service/MyHelloServiceRef</service-ref-name>

 <port-component-ref>

 </port-component-ref>
 <handler>
 <handler-name>First Handler</handler-name>
 <handler-class>oracle.xx.AccountTransactionHandler</handler-class>
 <port-name>portA</port-name>
 </handler>
 <handler>
 <handler-name>Second Handler </handler-name>
 <handler-class>oracle.xx.NewAccountHandler</handler-class>
 <port-name>portB</port-name>
 </handler>
</service-ref>

For more information on the contents of <service-ref> element, see the
service-ref (J2EE client) schema.

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_1.xsd

Registering JAX-RPC Handlers for J2SE Web Service Clients
Client-side JAX-RPC handlers for J2SE clients can be registered using the genProxy
Ant task for WebServicesAssembler. In Example 15–3, the handler
oracle.demo.ClientHelloHandler will be available to the J2SE client. Unlike
J2EE Web service clients, J2SE clients do not use a deployment descriptor.

Example 15–3 Registering a Handler for a J2SE Web Service Client

<oracle:genProxy
 wsdl="http://localhost:8888/hello-service/hello-service?WSDL"
 output="build/src/client"
 packageName="oracle.demo">
 <oracle:handler
 name="ClientHelloHandler"
 handlerClass="oracle.demo.ClientHelloHandler" />

Table 15–2 <handler> Subelements for a J2EE Web Service Client Handler

Subelement Description

<handler-name> The unique name that identifies the handler.

<handler-class> The fully-qualified name of the class to which the handler
belongs. The class must implement
javax.xml.rpc.handler.Handler.

<port-name> The name of the port on which the handler will operate.

Limitations

15-6 Web Services Developer's Guide

 </oracle:genProxy>

Limitations
See "Understanding JAX-RPC Handlers" on page C-7.

Additional Information
For more information on:

■ processing messages directly, see the SAAJ APIs available from:

http://java.sun.com/webservices/saaj/index.jsp

■ OracleAS Web Services extensions to the SAAJ APIs that allow you to work with
SOAP 1.2 messages, see "Working with SOAP Messages" on page 4-10.

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

Processing SOAP Headers 16-1

16
Processing SOAP Headers

This chapter describes the ways in which you can process SOAP headers:

■ Processing SOAP Headers with Parameter Mapping

■ Processing SOAP Headers by Using Handlers

■ Processing SOAP Headers by Using the ServiceLifecycle Interface

Processing SOAP Headers with Parameter Mapping
The WebServicesAssembler tool can be used to map SOAP header blocks defined in a
wsdl:binding element of a WSDL file to method parameters in the generated
service endpoint interface (SEI). This allows the SOAP header blocks to be accessed
directly inside methods implementing the service endpoint interface.

Example 16–1 illustrates a simple WSDL that explicitly defines a SOAP header.

Example 16–1 Simple WSDL That Explicitly Defines a SOAP Header

<definition xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://test.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xs="http://www.w3.
org/2001/XMLSchema"
>
 <types/>
 <message name="HelloHeader">
 <part name="header" type="xs:string"/>
 </message>
 <message name="HelloMessage">
 <part name="body" type="xs:string"/>
 </message>
 message name="HelloMessageResponse"/>
 <portType name="HelloPortType">
 <operation name="sayHello">
 <input message="tns:HelloMessage"/>
 <output message="tns:HelloMessageResponse/>
 </operation>
 </portType>
 <binding name="HelloBinding" type="tns:HelloPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.
org/soap/http" />
 <operation name="sayHello">
 <input>
 <soap:body use="literal" namespace="http://test.com"/>
 <!--the SOAP header must be defined here -->
 <soap:header message=""tns:HelloHeader" part="header"
use="literal"/>

Processing SOAP Headers by Using Handlers

16-2 Web Services Developer's Guide

 </input>
 <output>
 <soap:body use="literal" namespace="http://test.com"/>
 </output>
 </operation>
 </binding>
 <service name="HelloService">
 <port name="HelloPort" binding="tns:HelloBinding">
 <soap:address
location="http://localhost:8888/hello-service/hello-service"/>
 </port>
 </service>
</definition>

The WebServicesAssembler argument for mapping SOAP headers to parameters is
mapHeadersToParameters. The default for this argument is true, so there is no
need to explicitly provide it unless you want to suppress the SOAP headers.

You can generate the service endpoint interface with parameter mapping by using
either Ant tasks or the WebServicesAssembler tool. The following sample Ant task
maps SOAP headers to parameters for the hello-service Web service.

<oracle:topDownAssemble appName="hello-service"
 wsdl="Hello.wsdl"
 input="./classes"
 output="build"
 ear="dist/hello-service.ear"
 packageName="oracle.demo "
 mapHeadersToParameters="true"
 >
 <oracle:porttype className="oracle.demo.HelloImpl" />
/>

The following is the WebServicesAssembler command line version of the previous
example.

java -jar wsa.jar -topDownAssemble
 -wsdl Hello.wsdl
 -output build
 -ear dist/hello-services.ear
 -mapHeadersToParameters true
 -packageName oracle.demo

Processing SOAP Headers by Using Handlers
JAX-RPC Handlers can be used to process both explicit and implicit SOAP headers.
Explicit SOAP headers are those defined in the WSDL document. Example 16–1
illustrates a simple WSDL that defines a SOAP header. Implicit SOAP headers are
those that are not necessarily defined in any particular WSDL document, but may be
present in a SOAP envelope.

Handlers gain access to a SOAP header using the methods defined in the javax.
xml.rpc.handler.Handler interface (see the JAX-RPC 1.1 specification available
from: http://java.sun.com/webservices/jaxrpc/index.jsp). These
methods are:

boolean handleRequest(MessageContext context);
boolean handleResponse(MessageContext context);
boolean handleFault(MessageContext context);

Processing SOAP Headers by Using the ServiceLifecycle Interface

Processing SOAP Headers 16-3

The context argument in each of these messages can be used to view the SOAP
headers in the SOAP envelope. The following is an example of a handler
implementation viewing the headers on a SOAP request:

boolean handleRequest(MessageContext context){
 javax.xml.rpc.handler.soap.SOAPMessageContext smc = (javax.xml.rpc.handler.
soap.SOAPMessageContext)context;
 javax.xml.soap.SOAPHeader sh = smc.getSOAPMessage.getSOAPHeader();
 //the SOAPHeader will contain a list of SOAPHeaderElements (header blocks)
 Iterator it = sh.examineAllHeaderElements();
 //iterate through all the SOAP header elements and print their names
 while(it.hasNext()){
 javax.xml.soap.SOAPHeaderElement elem = (SOAPHeaderElement)it.next();
 System.out.println(elem.getElementName().getQualifiedName());
 }
 return true;
}

For information on processing messages directly, see the SOAP with Attachments API
for Java (SAAJ) at the following Web address:

http://java.sun.com/webservices/saaj/index.jsp

Processing SOAP Headers by Using the ServiceLifecycle Interface
You can manage the life cycle of the service endpoint by implementing the javax.
xml.rpc.server.ServiceLifecycle interface. The interface has the following
methods.

void init(Object context);
void destroy();

The runtime system will invoke the init method and pass a context object.
Example 16–2 demonstrates how to use the javax.xml.rpc.server.
ServiceLifecycle interface to access SOAP headers:

Example 16–2 Using ServiceLifecycle to Access SOAP Headers

public class HelloImpl implements HelloPortType,ServiceLifecycle{
 private Object m_context;

 public void sayHello(String body){
 javax.xml.rpc.server.ServletEndpointContext sec =
(ServletEndpointContext)m_context;
 javax.xml.rpc.handler.soap.SOAPMessageContext mc =
(SOAPMessageContext)sec.getMessageContext();
 javax.xml.soap.SOAPHeader sh = mc.getSOAPMessage().getSOAPHeader();
 // from here you can process all the header
 // blocks in the SOAP header.
}

 //this will be called by the runtime system.
 public void init(Object context){
 m_context = context;
 }
 public void destroy(){
 }
}

Limitations

16-4 Web Services Developer's Guide

Implementing this interface enables you to process both implicit and explicit SOAP
headers, although it is more useful for the implicit headers.

Getting HTTP Headers with the ServiceLifecycle Interface
The HTTP_SERVLET_REQUEST property in the oracle.webservices.
ServerConstants class enables you to access the HTTP message header. This
property can be used by a service implementation class to get the HTTP servlet request
when the caller of the Web service uses HTTP transport.

To use this property, the service implementation must implement javax.xml.rpc.
server.ServiceLifecyle and store the Object passed into the init method
which is an instance of javax.xml.rpc.server.ServletEndpointContext.

When a method in the service implementation class is invoked, the
ServletEndpointContext.getMessageContext method returns a javax.xml.
rpc.handler.MessageContext. The MessageContext.getProperty method
can use HTTP_SERVLET_REQUEST as a property name. The returned object is an
instance of javax.servlet.http.HttpServletRequest.

Example 16–3 illustrates how to get an HTTP header to obtain the IP address. In the
example, the HelloImpl class implements the ServiceLifecycle interface. In this
case, the context object passed to the init method is cast to the
ServletEndpointContext object. The destroy method destroys the service
lifecycle. In the implementation of the getIPAddress method, the
getMessageContext method pulls the message context from the
ServletEndpointContext object. The getProperty method uses the HTTP_
SERVLET_REQUEST property to return the request as an HttpServletRequest
object. The getRemoteAddr method returns the IP address.

Example 16–3 Getting an HTTP Header

public class HelloImpl implements ServiceLifecycle {
 ServletEndpointContext m_context;
 public void init(Object context) throws ServiceException {
 m_context = (ServletEndpointContext)context;
 }

 public void destroy() {
 }

 public String getIPAddress(){
 HttpServletRequest request = (HttpServletRequest)m_context.
 getMessageContext().getProperty(ServerConstants.HTTP_SERVLET_REQUEST);
 return request.getRemoteAddr();
 }

}

Limitations
See "Processing SOAP Headers" on page C-7.

Additional Information
For more information on:

Additional Information

Processing SOAP Headers 16-5

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

Additional Information

16-6 Web Services Developer's Guide

Using WebServicesAssembler 17-1

17
Using WebServicesAssembler

This chapter describes the functionality provided by the WebServicesAssembler tool.

■ About the WebServicesAssembler Tool

■ Setting Up Ant for WebServicesAssembler

■ WebServicesAssembler Commands

■ WebServicesAssembler Arguments

■ Default Algorithms to Map Between Target WSDL Namespaces and Java Package
Names

■ Additional Ant Support for WebServicesAssembler

About the WebServicesAssembler Tool
The WebServicesAssembler tool assists in assembling Oracle Application Server Web
Services. It enables you to generate the artifacts required to develop and deploy Web
services, regardless of whether you are creating the service top down or bottom up.
The WebServicesAssembler can also be invoked to create Web service client objects
based on a WSDL.

Support for Top Down Web Service Generation
In the top down case, you provide WebServicesAssembler with a WSDL and it creates
the service endpoint interfaces. You can then fill in the implementation for the service
for any required architecture, such as Java classes. For an example of top down Web
service development that uses WebServicesAssembler, see Chapter 5, "Assembling a
Web Service from a WSDL".

Support for Bottom Up Web Service Generation
In the bottom up case, you start with existing business logic, such as Java classes,
Enterprise Java Beans (EJBs), CORBA objects, JMS queues, or database artifacts such as
PL/SQL procedures. WebServicesAssembler uses these artifacts to assemble a WSDL,
a mapping file, and the necessary deployment descriptors. For examples of bottom up
Web service assembly that use WebServicesAssembler, see the following chapters.

■ Chapter 6, "Assembling a Web Service with Java Classes"

■ Chapter 7, "Assembling a Web Service with EJBs"

■ Chapter 8, "Assembling Web Services with JMS Destinations"

■ Chapter 9, "Developing Database Web Services"

About the WebServicesAssembler Tool

17-2 Web Services Developer's Guide

Support for XML Schema-Driven Web Service Generation
In the schema-driven case, you start with an XML schema and generate Java beans.
Once you have the Java beans, you write the interface that uses the beans as
arguments and use the bottom up paradigm to generate the WSDL, mapping file and
deployment descriptors.

While you could use JAX-B or Toplink to generate beans from XML schemas, you
could also use WebServicesAssembler or Ant tasks. For more information on using
WebServicesAssembler or Ant tasks to generate a Web service from a schema, see
"Using Custom Serialization in Schema-Driven Web Service Development" in the
Oracle Application Server Advanced Web Services Developer's Guide.

Support for Deployment
Although the OC4J container handles deployment, the WebServicesAssembler tool
assists you by ensuring that the application archives it generates are properly prepared
for deployment. WebServicesAssembler handles the generation of all relevant
deployment descriptors and maps proprietary configuration needed by the
applications into Oracle-specific deployment files. Applications based on Java classes
or EJB 2.1 are deployable across different containers. These Web services are in a J2EE
standard deployable form and adhere to industry standards, such as the JAX-RPC,
Enterprise Web Services 1.1, and Web Services-Interoperability (WS-I) specifications.

Support for Command Line Invocation and Ant Tasks
The WebServicesAssembler tool can be invoked either on the command line or by Ant
tasks. WebServicesAssembler allows you flexibility in how you assemble your Web
service. You can break the assembly process into a number of steps that let you more
closely control how the Web service is created. For example, you can perform the
following tasks.

■ Use another mechanism to create deployment descriptors

To do this, WebServicesAssembler provides command line arguments to add and
delete services from deployment descriptors. This means that you can start with a
set of hand-coded deployment descriptors that contain information that
WebServicesAssembler does not generate. You can then use
WebServicesAssembler to append information to these descriptors.

■ Control when artifacts are compiled and which classpath to use

■ Control when artifacts are packaged into an archive

■ Control the content of the archive

■ Create platform-independent build files

Command Line Syntax
The WebServicesAssembler tool supports a number of commands. When you invoke
WebServicesAssembler, only one command can appear on the command line.

A typical command line has the following syntax.

java -jar [OC4J_HOME]/webservices/lib/wsa.jar -[command] -[argument name][argument
value]...

In this example, OC4J_HOME is where OC4J was installed and wsa.jar is the name of
the WebServicesAssembler JAR file. Note the following command line syntax rules.

■ A command must be specified first on the command line.

WebServicesAssembler Commands

Using WebServicesAssembler 17-3

■ Commands and arguments must be preceded with a dash "-".

■ A space must separate an argument name from its value.

■ All argument names are case-sensitive.

■ If a white space is required in an argument value, the value must be escaped.

For example, on Windows and Linux, white space must be double-quoted. Other
operating systems may require a different way to pass white space as parameters
to a Java executable.

■ All arguments that are used after the command can be placed in any order.

■ Typically, an argument can appear only once on the command line. Exceptions to
this rule are noted in the individual argument descriptions.

Setting Up Ant for WebServicesAssembler
To call WebServicesAssembler commands from Ant tasks, you may need to make
some changes and additions to your installation of Ant. These changes and additions
are described in "Setting Up Ant for WebServicesAssembler" on page 3-3.

WebServicesAssembler Commands
This section describes the commands available for the WebServicesAssembler tool. The
commands are organized into the following categories based on the functionality they
provide.

■ Web Service Assembly Commands—assemble Web services. These commands
create all of the files necessary to create a deployable archive such as a WAR, an
EAR, or an EJB JAR.

■ WSDL Management Commands—perform actions on a WSDL, such as generate a
WSDL for bottom up development, manage its contents and location, and
determine whether it can be processed by WebServicesAssembler.

■ Java Generation Commands—generate code to create a Java interface from a
WSDL, a proxy/stub, or JAX-RPC value type classes.

■ Deployment Descriptor Generation Commands—generate deployment descriptors
for EARs, WARs, or EJB JARs.

■ Maintenance Commands—return a short description of WebServicesAssembler
commands and the version number of the tool.

Web Service Assembly Commands
The following commands can be used to assemble a Web service.

■ aqAssemble—Assembles a Web service from a Advanced Queue in the database

■ assemble—Assembles a deployable archive for a Web service

■ corbaAssemble—Assembles a Web service endpoint from a CORBA servant object

■ dbJavaAssemble—Assembles Web services from a Java class in a database

■ ejbAssemble—Assembles an EJB as a Web service

■ jmsAssemble—Assembles a JMS Endpoint Web service

■ plsqlAssemble—Assembles a Web service from a PL/SQL package

WebServicesAssembler Commands

17-4 Web Services Developer's Guide

■ sqlAssembles—Assembles a Web service from SQL query or DML statements

■ topDownAssemble—Assembles Web service classes and deployment descriptors
from a WSDL specification

These commands share the following functionality and behavior:

■ Each of the *Assemble commands creates all of the files required for a deployable
archive.

■ Each of the *Assemble commands, except topDownAssemble, calls the
assemble command after they generate a Java class.

■ The files created by the *Assemble commands are placed in the staging directory
structure under the directory specified by the output argument. Figure 17–1
illustrates the staging directory structure created by the *Assemble commands.

■ The names and contents of the ear and war directories are affected by the values
you provide for the ear and war arguments. For more information, see the
arguments "ear" on page 17-38 and "war" on page 17-45.

■ The output of each of the *Assemble commands, except ejbAssemble, is an
EAR and a WAR file, and an optional directory that contains the contents of a
WAR that can be deployed into an OC4J instance.

■ The contents of the classpath are not copied to the archive. If you specify the
classpath or input arguments to any of the *Assemble commands, you must
be sure that the classes found in the classpath are also available in the server.

■ You can add files to an EAR or WAR file before it is archived by the *Assemble
commands. For more information, see "Adding Files to an Archive" on page 17-74.

Figure 17–1 illustrates the staging directory structure created by the *Assemble
commands. Beneath the specified output directory, the commands create three
subdirectories: ear, src, and war.

■ The ear subdirectory contains the contents of the generated EAR file. It also
contains a META-INF subdirectory that contains the application.xml file.

■ The src subdirectory contains the generated source files. It also contains a proxy
subdirectory that contains the Java proxy files. If the Web Service is assembled
from a WSDL (top down), src also contains subdirectory with a skeleton of the
generated service endpoint interface and value type classes.

■ The war subdirectory contains the contents of the generated WAR file. This
subdirectory also contains a WEB-INF subdirectory. WEB-INF contains the
mapping files and the standard and Oracle-proprietary deployment descriptors.
These files include the web-service_name_java_wsdl_mapping.xml, web.xml,
oracle-webservices.xml and webservices.xml files.

WEB-INF also contains the classes and wsdl subdirectories. The classes
subdirectory contains the implementation classes. The wsdl subdirectory contains
the Web service's WSDL file.

WebServicesAssembler Commands

Using WebServicesAssembler 17-5

Figure 17–1 Staging Directory Structure Created by the *Assemble Commands

aqAssemble
Use the aqAssemble command to generate Web services from an advanced queue in
the database. To use this command, you must connect to a database. "Establishing a
Database Connection" on page 17-66 describes the arguments that allow you to do this.

The aqAssemble command can also add WSIF bindings for an advanced queue to the
WSDL. Use the wsifDbBinding argument to add WSIF bindings to the WSDL when
you are exposing a database resource as a Web service. You must specify the
className of the resource's Oracle JPublisher-generated Java class and a database
connection. "Configuring a WSIF Endpoint for Database Resources" in the Oracle
Application Server Advanced Web Services Developer's Guide provides more information
on adding bindings for database resources to the WSDL.

"Exposing an Oracle Streams AQ as a Web Service" on page 9-20 provides more
information about using the aqAssemble command to expose an advanced queue as
a Web service.

Command Line Example:
java -jar wsa.jar -aqAssemble
 -dbUser scott/tiger
 -sql ToyQueue
 -dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
 -dataSource jdbc/OracleManagedDS
 -appName query

Note: WebServicesAssembler does not remove files from the war
and ear staging directories by default. If you use the same output
directory for multiple invocations of WebServicesAssembler, then you
may find extra, unwanted files in the WAR and EAR archives. If you
want to avoid this behavior, do one of the following:

■ specify a different output directory for each invocation of
WebServicesAssembler

■ delete the contents of the output directory in between calls to the
WebServicesAssembler invocations

output directory

src
generated
source files

war
content of
war file

ear
content of
ear file

wsdl
web_service_name.wsdl

classes
implementation classes

skeleton
(topdown Assemble only)

generated Service
Endpoint Interface
 and value type
 classes

WEB-INFproxy
Java proxy files

META-INF
application.xml web_service_name-java-wsdl-mapping.xml

web.xml
oracle-webservices.xml
webservices.xml

WebServicesAssembler Commands

17-6 Web Services Developer's Guide

Ant Task Example:
<oracle:aqAssemble
 dbUser="scott/tiger"
 sql="ToyQueue"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
 dataSource="jdbc/OracleManagedDS"
 appName="query"
/>

Required Arguments:
To use the aqAssemble command, you must specify the following arguments.

■ Database Assembly Arguments: sql

You must also connect to the database. To do this, use one of the following
combinations of arguments.

– dataSource, dbConnection, and dbUser

– dataSource

All Arguments:
The following list identifies all of the arguments that can be used with the
aqAssemble command.

■ Database Assembly Arguments: aqConnectionFactoryLocation,
aqConnectionLocation, dataSource, dbConnection, dbUser, jpubProp, sql
(required), sqlTimeout, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 17-47.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, debug, ear, emptySoapAction, help,
interfaceName, mappingFileName, output, packageName, portName,
restSupport, schema, serviceName, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 17-60.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ Session Arguments: timeout

For more information on this argument, see "Session Arguments" on page 17-45.

WebServicesAssembler Commands

Using WebServicesAssembler 17-7

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, aqAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

assemble
Use the assemble command to generate a Web service bottom up. The command
creates all of the files required to create a deployable archive. These files include the
proprietary oracle-webservices.xml deployment descriptor.

To find the Java implementation class, you must specify an input or classpath
argument. If you specify either of these arguments, you must be sure that the classes
found in the classpath are also available in the server. This is because the contents of
the classpath are not copied to the archive.

In addition to generating a Web service, the assemble command can also add WSIF
bindings to the WSDL. Use the wsifJavaBinding argument to add WSIF bindings
to the WSDL when you are exposing a Java class as a Web service. You must also
specify the Java class with the className argument. For more information, see
"Configuring a WSIF Endpoint for Multiple Java Ports" in the Oracle Application Server
Advanced Web Services Developer's Guide. For more information on WSIF, see "Using
Web Services Invocation Framework" in the Oracle Application Server Advanced Web
Services Developer's Guide.

Assembling a Web Service with J2SE 5.0 Annotations
If you are using the assemble command to assemble a Web service from Java classes
that contain J2SE 5.0 Annotations, then use the className argument to identify the
implementation class. The @WebService annotation must be present on the class
declaration.

J2SE 5.0 annotations require a class name because annotations can appear in either the
interface or the implementation class. If the annotations appear only in the interface,
WebServicesAssembler can obtain them through its referenced implementation class. If
the implementation class also contains annotations, WebServicesAssembler will
process them.

The following example illustrates the assemble command being used to generate a
Web service from a Java class that contains J2SE 5.0 annotations. The className
argument specifies the com.mycompany.HelloImpl class.

java -jar wsa.jar assemble -appName myService -className com.mycompany.HelloImpl
-output wsdl

If you want WebServicesAssembler to process only the annotations in the interface,
then enter the @WebService annotation with the serviceEndpointInterface

WebServicesAssembler Commands

17-8 Web Services Developer's Guide

property in the implementation class file. J2SE 5.0 annotations will expect all
remaining annotations to appear in the service endpoint interface class. For example, if
you enter the following annotation in the implementation class file, then
WebServicesAssembler will process only the annotations in the demo.myInterface
interface.

@WebService(serviceEndpointInterface="demo.myInterface")

The following command line and Ant task examples demonstrate how to use the
assemble command to generate a Web service bottom up. The command will create
an EAR file named build/myService.ear.

Command Line Example:
java -jar wsa.jar -assemble
 -input myservice.jar
 -className com.mycompany.HelloImpl
 -interfaceName com.myCompany.myService.Hello
 -output build
 -appName myService

Ant Task Example:
<oracle:assemble appName="myService"
 output="build"
 input="myservice.jar
 >
 <oracle:porttype
 interfaceName="com.myCompany.myService.Hello"
 className="com.mycompany.HelloImpl"/>
</oracle:assemble>

Required Arguments:
To use the assemble command, you must specify the following arguments.

■ General Assembly Arguments: className

All Arguments
The following list identifies all of the arguments that can be used with the assemble
command.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, bindingName, className (required),
classpath, debug, ear, emptySoapAction, help, input, interfaceFileName,
interfaceName, mappingFileName, output, portName, portTypeName,
restSupport, schema, serviceName, strictJaxrpcValidation, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ Java Generation Arguments: valueTypeClassName, wsifJavaBinding

For more information on these arguments, see "Java Generation Arguments" on
page 17-60.

■ JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

WebServicesAssembler Commands

Using WebServicesAssembler 17-9

For more information on these argument, see "JMS Assembly Arguments" on
page 17-51.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ Session Arguments: callScope, recoverable, session, timeout

For more information on these arguments, see "Session Arguments" on page 17-45.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Supports:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, assemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <porttype> tags. For more information, see "Configuring a Port Type in an Ant
Task" on page 17-70.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

■ tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple Java Ports" in the Oracle Application
Server Advanced Web Services Developer's Guide.

corbaAssemble
Use the corbaAssemble command to expose a CORBA servant object as a Web
service. The command takes a CORBA IDL file and CORBA naming properties as
input. It outputs all of the files required to create a deployable archive.

Internally, WebServicesAssembler will invoke the IDL-to-Java compiler (idlj) that
can be found in the environment. The JDK bin directory must be part of the path
environment variable. WebServicesAssembler uses the IDL-to-Java compiler to
compile the IDL file into Java classes.

Command Line Example
java -jar wsa.jar -corbaAssemble
 -idlInterfaceName oraclecorba.Hello
 -corbanameURL corbaname::corba.orbd.host:1050#oracle.corba/Hello
 -idlFile ./Hello.idl
 -uri /corba_hello
 -output dist
 -context corba_hello
 -targetNamespace http://oracle.j2ee.ws/corba/Hello

WebServicesAssembler Commands

17-10 Web Services Developer's Guide

 -typeNamespace http://oracle.j2ee.ws/corba/Hello/types
 -serviceName Corba_hello
 -appName corba_hello
 -style rpc
 -use literal

Ant Task Example:
<oracle:corbaAssemble idlInterfaceName="oraclecorba.Hello"
 corbanameURL="corbaname::corba.orbd.host:1050#oracle.corba/Hello"
 idlFile="./Hello.idl"
 output="dist"
 context="corba_hello"
 targetNamespace="http://oracle.j2ee.ws/corba/Hello"
 typeNamespace="http://oracle.j2ee.ws/corba/Hello/types"
 serviceName="Corba_hello"
 appName="corba_hello"
 style="rpc"
 use="literal"
 >
 <oracle:port uri="/corba_hello" />
 </oracle:corbaAssemble>

Required Arguments:
To use the corbaAssemble command, you must specify the following arguments.

■ CORBA Assembly Arguments: idlInterfaceName

All Arguments:
The following list identifies all of the arguments that can be used with the
corbaAssemble command.

■ CORBA Assembly Arguments: corbanameURL, corbaObjectPath, idlFile,
idlInterfaceName (required), idljPath, ORBInitialHost, ORBInitialPort, ORBInitRef

For more information on these arguments, see "CORBA Assembly Arguments" on
page 17-46.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, bindingName, className, classpath,
debug, ear, emptySoapAction, help, mappingFileName, output, packageName,
portName, portTypeName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments" on
page 17-51.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ Message Format Arguments: style, use

WebServicesAssembler Commands

Using WebServicesAssembler 17-11

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, corbaAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

dbJavaAssemble
Use the dbJavaAssemble command to generate Web services from a Java class inside
the Java VM in an Oracle database. To use this command, you must connect to a
database. "Establishing a Database Connection" on page 17-66 describes the arguments
that allow you to connect to a database.

The dbJavaAssemble command can also add WSIF bindings for a Java class inside
the Java VM to the WSDL. Use the wsifDbBinding argument to add WSIF bindings
to the WSDL when you are exposing a database resource as a Web service. You must
specify the className of the resource's Oracle JPublisher-generated Java class and a
database connection. "Configuring a WSIF Endpoint for Database Resources" in the
Oracle Application Server Advanced Web Services Developer's Guide provides more
information on adding bindings for database resources to the WSDL.

"Exposing a Server-Side Java Class as a Web Service" on page 9-28 provides more
information on using the dbJavaAssemble command to generate Web services from
a Java class inside the Java VM in an Oracle database.

Command Line Example:
java -jar wsa.jar -dbJavaAssemble
 -dbJavaClassName oracle.sqlj.checker.JdbcVersion
 -dbUser scott/tiger
 -dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
 -dataSource jdbc/OracleManagedDS
 -appName javacallin

Ant Task Example:
<oracle:dbJavaAssemble
 dbUser="scott/tiger"
 dbJavaClassName="oracle.sqlj.checker.JdbcVersion"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
 dataSource="jdbc/OracleManagedDS"
 appName="javacallin"
/>

WebServicesAssembler Commands

17-12 Web Services Developer's Guide

Required Arguments:
To use the dbJavaAssemble command, you must specify the following arguments.

■ Database Assembly Arguments: dbJavaClassName, dbUser

You must also connect to the database. To do this, use one of the following
combinations of arguments:

– dataSource, dbConnection, and dbUser

– dataSource

All Arguments:
The following list identifies all of the arguments that can be used with the
dbJavaAssemble command.

■ Database Assembly Arguments: dataSource, dbConnection, dbJavaClassName
(required), dbUser, jpubProp, sysUser, useDataSource, wsifDbBinding,
wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 17-47.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 17-60.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ Session Arguments: timeout

For more information on this argument, see "Session Arguments" on page 17-45.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

WebServicesAssembler Commands

Using WebServicesAssembler 17-13

Ant Task Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, dbJavaAssemble can use these arguments:
bindingName, portName (or name), sendConnectionFactoryLocation,
sendQueueLocation, soapVersion, and uri. For more information, see "Configuring
a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

ejbAssemble
Use the ejbAssemble command to create an EAR or EJB JAR that can expose an EJB
as a Web service. You must specify a valid version 2.1 EJB JAR as input; the system will
create a WSDL and the proprietary oracle-webservices.xml deployment
descriptor.

By default, this command creates an EAR file that contains a version 2.1 EJB file that
can be deployed directly. The oracle-webservices.xml file specifies the context
and URL pattern that can be used to access the EJB as a Web service.

If you do not want to deploy the EJB as an EAR file, you can create an EJB JAR file
instead. For example, this enables you to deploy the EJB as a JAR file to a J2EE
container, or to use other J2EE application deployment tools, such as Ant. To save the
EJB as a JAR file, specify a directory for the ear argument. See "ear" on page 17-38 for
a description of the different ways in which you can specify this parameter.

The ejbAssemble command can also add WSIF bindings to the WSDL. Use the
wsifEjbBinding argument to add WSIF bindings when you are exposing an EJB as
a Web service. You must specify the EJB's home interface in the className argument
and its JNDI name in the jndiName argument. "Using Web Services Invocation
Framework" in the Oracle Application Server Advanced Web Services Developer's Guide
provides more information on WSIF. "Configuring a WSIF Endpoint for EJBs" in the
Oracle Application Server Advanced Web Services Developer's Guide provides information
on adding WSIF bindings for individual and for multiple ports.

Chapter 7, "Assembling a Web Service with EJBs" provides more information on using
the ejbAssemble command to expose a version 2.1 EJB as a Web service.

The following command line and Ant task examples create the EAR file
build/myService.ear.

Command Line Example:
java -jar wsa.jar -ejbAssemble
 -output build
 -input myEjb.jar
 -ejbName myEjb
 -appName myService

Ant Task Example:
<oracle:ejbAssemble output="build"
 input="myEjb.jar"
 ejbName="myEjb"
 appName="myService"
 />

WebServicesAssembler Commands

17-14 Web Services Developer's Guide

Required Arguments:
To use the ejbAssemble command, you must specify the following arguments.

■ General Assembly Arguments: ejbName, input

All Arguments:
The following list identifies all of the arguments that can be used with the
ejbAssemble command.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, bindingName, className, classpath,
debug, ear, ejbName (required), emptySoapAction, help, initialContextFactory,
input (required), interfaceName, jndiName, jndiProviderURL, mappingFileName,
output, portName, portTypeName, restSupport, schema, serviceName,
strictJaxrpcValidation, useDimeEncoding

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ Java Generation Arguments: valueTypeClassName, wsifEjbBinding

For more information on these arguments, see "Java Generation Arguments" on
page 17-60.

■ JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments" on
page 17-51.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Additional Ant Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, ejbAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

WebServicesAssembler Commands

Using WebServicesAssembler 17-15

■ tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple EJB Ports" in the Oracle Application
Server Advanced Web Services Developer's Guide.

jmsAssemble
Use the jmsAssemble command to expose a JMS destination (queue or topic) as a
Web service. JMS Web services have two types of operations: send and receive. The
send operation sends a message to the JMS destination. The receive operation retrieves
a message from the destination. Some of the JMS message properties (for example,
correlation ID) can be exposed as SOAP headers.

Chapter 8, "Assembling Web Services with JMS Destinations" provides more
information on using the jmsAssemble command to expose a JMS destination as a
Web service.

Command Line Example:
java -jar wsa.jar -jmsAssemble
 -sendConnectionFactoryLocation jms/ws/mdb/theQueueConnectionFactory
 -sendQueueLocation jms/ws/mdb/theQueue
 -replyToConnectionFactoryLocation jms/ws/mdb/logQueueConnectionFactory
 -replyToQueueLocation jms/ws/mdb/logQueue
 -linkReceiveWithReplyTo true
 -targetNamespace http://oracle.j2ee.ws/jms-doc
 -typeNamespace http://oracle.j2ee.ws/jms-doc/types
 -serviceName JmsService
 -appName jms_service
 -context jms_service
 -input ./demo/build/mdb_service.jar
 -uri JmsService
 -output ./demo/dist

Ant Task Example:
<oracle:jmsAssemble
 linkReceiveWithReplyTo="true"
 targetNamespace="http://oracle.j2ee.ws/jms-doc"
 typeNamespace="http://oracle.j2ee.ws/jms-doc/types"
 serviceName="JmsService"
 appName="jms_service"
 context="jms_service"
 input="./demo/build/mdb_service.jar"
 output="./demo/dist"
 >
 <oracle:port uri="JmsService"
 sendConnectionFactoryLocation="jms/ws/mdb/theQueueConnectionFactory"
 sendQueueLocation="jms/ws/mdb/theQueue"
 replyToConnectionFactoryLocation="jms/ws/mdb/logQueueConnectionFactory"
 replyToQueueLocation="jms/ws/mdb/logQueue"/>
</oracle:jmsAssemble>

Required Arguments:
To use the jmsAssemble command, you must specify the following arguments.

■ JMS Assembly Arguments: either replyToConnectionFactoryLocation or
sendConnectionFactoryLocation

WebServicesAssembler Commands

17-16 Web Services Developer's Guide

All Arguments:
The following list identifies all of the arguments that can be used with the
jmsAssemble command.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, bindingName, debug, ear,
emptySoapAction, help, input, output, portName, portTypeName, serviceName,
useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ JMS Assembly Arguments: deliveryMode, genJmsPropertyHeader,
jmsTypeHeader, linkReceiveWithReplyTo, payloadBindingClassName, priority,
receiveConnectionFactoryLocation, receiveQueueLocation, receiveTimeout,
receiveTopicLocation, replyToConnectionFactoryLocation, replyToQueueLocation,
replyToTopicLocation, sendConnectionFactoryLocation, sendQueueLocation,
sendTopicLocation, timeToLive, topicDurableSubscriptionName

For more information on these arguments, see "JMS Assembly Arguments" on
page 17-51.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Supports:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, jmsAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

plsqlAssemble
Use the plsqlAssemble command to generate Web services from a PL/SQL stored
procedure. To use this command, you must connect to a database. "Establishing a
Database Connection" on page 17-66 describes the arguments that allow you to do this.

The plsqlAssemble command can also add WSIF bindings for a PL/SQL stored
procedure to the WSDL. Use the wsifDbBinding argument to add WSIF bindings to
the WSDL when you are exposing a database resource as a Web service. You must
specify the className of the resource's Oracle JPublisher-generated Java class and a
database connection. "Configuring a WSIF Endpoint for Database Resources" in the
Oracle Application Server Advanced Web Services Developer's Guide provides more
information on adding bindings for database resources to the WSDL.

"Exposing PL/SQL Packages as Web Services" on page 9-8 provides more information
on using the plsqlAsemble command to expose PL/SQL packages as Web services.

WebServicesAssembler Commands

Using WebServicesAssembler 17-17

Command Line Example:
java -jar wsa.jar -plsqlAssemble
 -appName query
 -dbUser scott/tiger
 -sql Company
 -dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
 -dataSource jdbc/OracleManagedDS

Ant Task Example:
<oracle:plsqlAssemble
 dbUser="scott/tiger"
 appName="query"
 sql="Company"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
 dataSource="jdbc/OracleManagedDS"
/>

Required Arguments:
To use the plsqlAssemble command, you must specify the following arguments.

■ Database Assembly Arguments: sql

You must also connect to the database. To do this, use one of the following
combinations of arguments.

– dataSource, dbConnection, and dbUser

– dataSource

All Arguments:
The following list identifies all of the arguments that can be used with the
plsqlAssemble command.

■ Database Assembly Arguments: dataSource, dbConnection, dbUser, jpubProp,
sql, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 17-47.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 17-60.

WebServicesAssembler Commands

17-18 Web Services Developer's Guide

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ Session Arguments: timeout

For more information on this argument, see "Session Arguments" on page 17-45.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, plsqlAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

sqlAssemble
Use the sqlAssemble command to generate Web services from SQL statements,
including SQL queries and DMLs (Data Manipulation Language). To use this
command, you must connect to a database. "Establishing a Database Connection" on
page 17-66 describes the arguments that allow you to do this.

"Exposing a SQL Query or DML Statement as a Web Service" on page 9-14 provides a
full example of generating Web services from SQL statements.

The sqlAssemble command can also add WSIF bindings for SQL queries to the
WSDL. Use the wsifDbBinding argument to add WSIF bindings to the WSDL when
you are exposing a database resource as a Web service. You must specify the
className of the resource's Oracle JPublisher-generated Java class and a database
connection. "Configuring a WSIF Endpoint for Database Resources" in the Oracle
Application Server Advanced Web Services Developer's Guide provides more information
on adding bindings for database resources to the WSDL.

The following command line and Ant task examples establish a database connection
and run two SQL commands.

Command Line Example:
java -jar wsa.jar -sqlAssemble
 -dbUser scott/tiger
 -sqlstatement "getEmp=select ename, sal from emp where empno=:{id NUMBER}"
 -sqlstatement "getEmpBySal=select ename, sal from emp where sal>:{mysal NUMBER}"
 -dbConnection jdbc:oracle:thin:@dsunrde22:1521:sqlj
 -dataSource jdbc/OracleManagedDS

Ant Task Example:
<oracle:sqlAssemble
 dbUser="scott/tiger"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"

WebServicesAssembler Commands

Using WebServicesAssembler 17-19

 dataSource="jdbc/OracleManagedDS"
 appName="query">
 <sqlstatement value="getEmp=select ename, sal from emp where empno=:{id
NUMBER}"/>
 <sqlstatement value="getEmpBySal=select ename, sal from emp where
sal>:{mysal NUMBER}"/>
</oracle:sqlAssemble>

Required Arguments:
To use the sqlAssemble command, you must specify the following arguments.

■ Database Assembly Arguments: sqlstatement

You must also connect to the database. To do this, use one of the following
combinations of arguments.

– dataSource, dbConnection, and dbUser

– dataSource

All Arguments:
The following list identifies all of the arguments that can be used with the
sqlAssemble command.

■ Database Assembly Arguments: dataSource, dbConnection, dbUser, jpubProp,
sql, sqlstatement, sysUser, useDataSource, wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 17-47.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, className, classpath, debug, ear,
emptySoapAction, help, interfaceName, mappingFileName, output,
packageName, portName, restSupport, schema, serviceName, useDimeEncoding,
war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ Java Generation Arguments: valueTypeClassName

For more information on this argument, see "Java Generation Arguments" on
page 17-60.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ Session Arguments: timeout

For more information on this argument, see "Session Arguments" on page 17-45.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

WebServicesAssembler Commands

17-20 Web Services Developer's Guide

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Ant Task Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, sqlAssemble can use these arguments:
bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

topDownAssemble
Use the topDownAssemble command to create the required classes and deployment
descriptors for a Web service based on a WSDL description. The files can be stored in
either an EAR file, a WAR file, or a directory. You must specify a value for either the
input or classpath arguments to allow for the proper loading of the specified
implementation class.

This command is typically used with genInterface to generate a Web service top
down. If these commands are used together to generate a Web service, then they must
share the same value for the unwrapParameters argument.

If the WSDL contains references to multiple port types, then the topDownAssemble
command must specify a <porttype> tag for each port type.

In top down Web service development, you cannot use WebServicesAssembler to
change the message format. You can do this only by editing the WSDL.

Chapter 5, "Assembling a Web Service from a WSDL" provides more information on
using the topDownAssemble command to generate a Web service based on a WSDL
description.

The following command line and Ant task create required classes and deployment
descriptors for a Web service. It creates an EAR build/myService.ear. The target
of the input argument should contain the implementation classes. These classes will
be copied to the generated archive for you.

Command Line Example:
java -jar wsa.jar -topDownAssemble
 -output build
 -wsdl my.wsdl
 -input myClasses
 -className com.mycompany.HelloImpl
 -appName myService

Ant Task Example:
<oracle:topDownAssemble output="build"
 wsdl="my.wsdl"
 input="myClasses"
 appName="myService">
 <porttype
 className="com.mycompany.HelloImpl"/>
 </oracle:topDownAssemble>

WebServicesAssembler Commands

Using WebServicesAssembler 17-21

Required Arguments:
To use the topDownAssemble command, you must specify the following arguments.

■ General Assembly Arguments: className; (input and/or classpath)

■ WSDL Management Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the
topDownAssemble command.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: appName, classFileName, className (required),
classpath, debug, ear, emptySoapAction, help, input, interfaceName,
mappingFileName, output, packageName, portName, restSupport, searchSchema,
serviceName, useDimeEncoding, war

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

For more information on these arguments, see "Java Generation Arguments" on
page 17-60.

■ WSDL Access Arguments: fetchWsdlImports, httpNonProxyHosts,
httpProxyHost, httpProxyPort, wsdl (required)

For more information on this argument, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
■ <proxy> tags. For more information, see "Configuring Proxy Generation in an

Ant Task" on page 17-67.

■ <port> tags. In the <port> tag, topDownAssemble can use these arguments:
name (same as portName), portName, and uri. For more information, see
"Configuring a Port in an Ant Task" on page 17-69.

■ <porttype> tags. For more information, see "Configuring a Port Type in an Ant
Task" on page 17-70.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

WSDL Management Commands
The following commands perform actions on a WSDL. The fetchWsdl and
genQosWsdl commands are used in top down Web service development to manage
the contents and location of the WSDL. The genWsdl command is used to generate a
WSDL for bottom up Web service development. The analyze command can be used

WebServicesAssembler Commands

17-22 Web Services Developer's Guide

at any time to determine whether WebServicesAssembler supports the functionality
described in the WSDL.

■ analyze—Determines whether WebServicesAssembler supports the functionality
described in the WSDL

■ fetchWsdl—Copies the WSDL and its imports to an output directory

■ genConcreteWsdl—Creates a concrete WSDL by determining the message format
from the abstract part of the WSDL

■ genQosWsdl—Inserts assertions about Quality of Service (capability assertions)
into the WSDL

■ genWsdl—Generates a WSDL based on a Java interface

analyze
Use the analyze command to confirm whether the WSDL can be processed by this
version of the WebServicesAssembler. The analyze command determines whether
the specified WSDL can be used to generate a proxy or create an interface for top
down assembly. The command also checks that the WSDL uses valid XML and
whether it complies with the JAX-RPC requirements of OC4J.

This command returns a message if the WSDL cannot be processed.

The following command line and Ant task examples demonstrate using analyze to
see if the specified WSDL can be processed.

Command Line Example:
java -jar wsa.jar -analyze
 -wsdl myservice.wsdl

Ant Task Example:
<oracle:analyze wsdl="myservice.wsdl"
 />

Required Arguments:
To use the analyze command, you must specify the following argument.

■ WSDL Access Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the analyze
command.

■ General Assembly Arguments: debug, help

Note: The analyze command does not check conformance to the
Web Services Interoperability (WS-I) specification or general
interoperability of your WSDL. You may want to use the WS-I
Analyzer tool either directly, or from inside JDeveloper to check
conformance. For more information on tools that you can use to check
interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

WebServicesAssembler Commands

Using WebServicesAssembler 17-23

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on this argument, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
None

fetchWsdl
Use the fetchWsdl command in top down Web service generation to copy the base
(or top level) WSDL file and all of its imported and included WSDLs and schemas into
a specified output directory.

All of the WSDLs and schemas are downloaded into the same directory. Any naming
conflicts are resolved by appending a number to the name of the file before the
extension. For example, if three myschema.xsd files are downloaded, they will be
named myschema.xsd, myschema1.xsd, and myschema2.xsd.

The following command line and Ant task examples will fetch the base WSDL
specified by the URL, and any other WSDL fragments and schemas it imports. The
results are then stored in the wsdl directory.

Command Line Example:
java -jar wsa.jar -fetchWdsl
 -wsdl http://someserver/services/aservice?WSDL
 -output wsdl

Ant Task Example:
<oracle:fetchWsdl wsdl="http://someserver/services/aservice?WSDL"
 output="wsdl"
 />

Required Arguments:
To use the fetchWsdl command, you must specify the following argument.

■ WSDL Access Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the fetchWsdl
command.

■ General Assembly Arguments: debug, help, output

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

WebServicesAssembler Commands

17-24 Web Services Developer's Guide

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
None

genConcreteWsdl
While an abstract WSDL is enough to define the API for a Web service,
WebServicesAssembler needs a concrete WSDL to deploy a Web service or to generate
client proxies that can communicate with a Web service.

If you have only an abstract WSDL, use the genConcreteWsdl command. In top
down Web service development, this command enables you to generate a concrete
WSDL given an abstract WSDL. The command does this by analyzing the
wsdl:portType part of the WSDL and determining whether the bindings for the
Web service (that is, the use and style values) should be document/literal or
RPC/literal. The command writes these values into the binding element of the
WSDL, and saves it with the name determined by the value of the output argument.

The following command line and Ant task examples take an abstract WSDL
myAbstract.wsdl as input and generate a concrete WSDL myConcrete.wsdl in
the outputDir directory.

Command Line Example:
java -jar wsa.jar -genConcreteWsdl
 -output outputDir/myConcrete.wsdl
 -wsdl myAbstract.wsdl

Ant Task Example:
<oracle:genConcreteWsdl output="outputDir/myConcrete.wsdl"
 wsdl="myAbstract.wsdl" />

Required Arguments:
To use the genConcreteWsdl command, you must specify the following argument.

■ WSDL Access Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the
genConcreteWsdl command.

■ Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: debug, help, output

For more information on these arguments, see "General Web Services Assembly
Arguments" on page 17-36.

WebServicesAssembler Commands

Using WebServicesAssembler 17-25

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
importAbstractWsdl, wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: singleService, wsdlTimeout

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Additional Ant Support:
None.

genQosWsdl
In top down Web service development, use the genQosWsdl command to add
capability assertions for security and reliability into a specified WSDL. Capability
assertions are descriptions of Web service management policies that allow consumers
of Web services to discover which management policies are enabled for the Web
service. "Working with Capability Assertions" in the Oracle Application Server Advanced
Web Services Developer's Guide describes how capability assertions are derived and how
they are inserted into the WSDL.

Usually, the capability assertions are defined in the deployment descriptor. Use the
ddFileName argument to specify the file that contains the capability assertions and
the wsdl argument to specify the name of the WSDL into which they will be inserted.
The output argument specifies where the modified WSDL file will be stored. If you
do not specify the output argument, then the original WSDL will be overwritten.

The following command line and Ant task examples add assertions to my.wsdl and
store the results in the build directory.

Command Line Example:
java -jar wsa.jar -genQosWsdl
 -wsdl my.wsdl
 -ddFileName oracle-webservices.xml
 -output build

Ant Task Example:
<oracle:genQosWsdl wsdl="my.wsdl"
 ddFileName="oracle-webservices.xml"
 output="build"
 />

Required Arguments:
To use the genQosWsdl command, you must specify the following arguments.

■ Deployment Descriptor Arguments: ddFileName

■ WSDL Management Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the
genQosWsdl command.

■ Deployment Descriptor Arguments: ddFileName (required)

WebServicesAssembler Commands

17-26 Web Services Developer's Guide

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: debug, help, output

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument, see "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
None

genWsdl
Use the genWsdl command to generate a WSDL and a JAX-RPC mapping file for
assembling Web services bottom up from a Java interface. This command requires
either an interfaceName argument or a className argument that points to an
annotated Java class to provide the WSDL with a value for the service endpoint
interface.

The following example illustrates the genWsdl command. The interfaceName
argument specifies the oracle.j2ee.demo.HelloIntf interface.

java -jar wsa.jar genWSDL -interfaceName oracle.j2ee.demo.HelloIntf -output wsdl
-classpath classes

Generating WSDLs with WSIF Bindings
The genWsdl command can use the following arguments to add WSIF bindings to the
generated WSDL.

■ the wsifJavaBinding argument adds WSIF bindings to the WSDL when you are
exposing a Java class as a Web service. You must also specify the Java class with
the className argument.

■ the wsifEjbBinding argument adds WSIF bindings to the WSDL when you are
exposing an EJB as a Web service. You must specify the EJB's home interface in the
className argument and its JNDI name in the jndiName argument.

■ the wsifDbBinding argument adds WSIF bindings to the WSDL when you are
exposing a database resource as a Web service. You must specify the className
of the resource's Oracle JPublisher-generated Java class and a database connection.

You can also use the genWsdl command to add WSIF bindings for multiple ports in
the WSDL. For more information, see "Using Web Services Invocation Framework" in
the Oracle Application Server Advanced Web Services Developer's Guide.

Generating WSDLs for use with J2SE 5.0 Annotations
If you are generating a WSDL from J2SE 5.0 Annotations, then use the className
argument instead of the interfaceName argument. The className argument must

WebServicesAssembler Commands

Using WebServicesAssembler 17-27

identify the implementation class and the @WebService annotation must be present
on the class declaration.

Use the interfaceName argument if the specified className does not contain any
J2SE 5.0 Annotations.

J2SE 5.0 Annotations require a class name because annotations can appear in either the
interface or the implementation class. If the annotations appear only in the interface,
WebServicesAssembler can obtain them through its referenced implementation class. If
the implementation class also contains annotations, WebServicesAssembler will
process them.

In the following example, the genWsdl command is used to generate a WSDL for use
with J2SE 5.0 annotations. The className argument specifies the
oracle.j2ee.demo.HelloImpl class.

java -jar wsa.jar genWsdl -className oracle.j2ee.demo.HelloImpl -output wsdl
-classpath classes

If you want WebServicesAssembler to process only the J2SE 5.0 annotations in the
interface, then enter the @WebService annotation with the
serviceEndpointInterface property in the implementation class file. J2SE 5.0
Annotations will expect all remaining annotations to appear in the service endpoint
interface class. For example, if you enter the following annotation in the
implementation class file, then WebServicesAssembler will process only the
annotations in the demo.myInterface interface.

@WebService(serviceEndpointInterface="demo.myInterface")

The following command line and Ant task output a JAX-RPC mapping file and a
WSDL that corresponds to the Java interface specified by interfaceName. The
results are stored in the etc directory.

Command Line Example:
java -jar wsa.jar -genWsdl
 -classpath myservice.jar
 -output etc
 -interfaceName com.mycompany.myservice.Hello

Ant Task Example:
<oracle:genWsdl output="etc"
 >
 <oracle:porttype interfaceName="com.mycompany.myservice.Hello"/>
 <oracle:classpath>
 <pathelement path="myservice.jar" />
 </oracle:classpath>
</oracle:genWsdl>

Required Arguments:
To use the genWsdl command, you must specify the following arguments.

■ General Assembly Arguments: classpath; when generating a WSDL using J2SE
5.0 Annotations, genWsdl requires either interfaceName or a className that
points to an annotated Java class

All Arguments:
The following list identifies all of the arguments that can be used with the genWsdl
command.

WebServicesAssembler Commands

17-28 Web Services Developer's Guide

■ Database Assembly Arguments: dataSource, dbConnection, dbUser,
wsifDbBinding, wsifDbPort

For more information on these arguments, see "Database Assembly Arguments"
on page 17-47.

■ Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: bindingName, className (required for J2SE 5.0
Annotations), classpath (required), debug, emptySoapAction, help,
initialContextFactory, interfaceName (required for J2SE 5.0 Annotations),
jndiName, jndiProviderURL, mappingFileName, output, portName,
portTypeName, schema, serviceName, strictJaxrpcValidation

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ Java Generation Arguments: valueTypeClassName, wsifEjbBinding,
wsifJavaBinding

For more information on these arguments, see "Java Generation Arguments" on
page 17-60.

■ JMS Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments, see "JMS Assembly Arguments" on
page 17-51.

■ Message Format Arguments: style, use

For more information on these arguments, see "Message Format Arguments" on
page 17-60.

■ WSDL Management Arguments: createOneWayOperations, genQos, soapVersion,
targetNamespace, typeNamespace

For more information on these arguments, see "WSDL Management Arguments"
on page 17-58.

Additional Ant Support:
■ <port> tags. In the <port> tag, genWsdl can use these arguments:

bindingName, name (same as portName), portName,
sendConnectionFactoryLocation, sendQueueLocation, soapVersion, and uri. For
more information, see "Configuring a Port in an Ant Task" on page 17-69.

■ <porttype> tags. For more information, see "Configuring a Port Type in an Ant
Task" on page 17-70.

■ tags to specify WSIF bindings for multiple ports. For more information, see
"Configuring a WSIF Endpoint for Multiple Java Ports", "Configuring a WSIF
Endpoint for Multiple EJB Ports", and "Configuring a WSIF Endpoint for Multiple
Database Resource Ports", in the Oracle Application Server Advanced Web Services
Developer's Guide.

Java Generation Commands
The following commands generate code to create a Java interface, a proxy/stub, or
JAX-RPC value type classes.

■ genInterface—Generates a Java interface from a WSDL file

WebServicesAssembler Commands

Using WebServicesAssembler 17-29

■ genProxy—Generates a proxy/stub from a WSDL file

■ genValueTypes—Generates JAX-RPC value type classes from an XML schema

genInterface
For top down Web service development, this command creates a service endpoint
interface for each port type and a Java value type class (beans) for any complex type
defined in a WSDL. It also creates a JAX-RPC mapping file that describes the mapping
between the XML schema types and the Java value type classes. These files can then be
used to construct a J2EE Web service client or to create an implementation that can run
on the server. See Chapter 13, "Assembling a J2EE Web Service Client" for more
information on how to use genInterface to construct a J2EE Web service client. See
Chapter 5, "Assembling a Web Service from a WSDL" for more information on how to
use genInterface to create a server-side implementation.

For more information on how WebServicesAssembler performs package-to-namespace
mappings, see "Default Algorithms to Map Between Target WSDL Namespaces and
Java Package Names" on page 17-63. For information on how WebServicesAssembler
maps special characters in the WSDL, such as periods (.) and dashes (-) see the
JAX-RPC 1.1 specification.

http://java.sun.com/webservices/jaxrpc/index.jsp

The following command line and Ant task examples create a service endpoint
interface in the src directory (src/oracle/demo/service).

Command Line Example:
java -jar wsa.jar -genInterface
 -output src
 -wsdl myservice.wsdl
 -packageName oracle.demo.service

Ant Task Example:
<oracle:genInterface output="src"
 wsdl="myservice.wsdl"
 packageName="oracle.demo.service"
 />

Required Arguments:
To use the genInterface command, you must specify the following argument.

■ WSDL Access Arguments: wsdl

All Arguments
The following list identifies all of the arguments that can be used with the
genInterface command.

■ Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: classpath, debug, help, mappingFileName,
packageName, output, searchSchema, serviceName

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

WebServicesAssembler Commands

17-30 Web Services Developer's Guide

■ Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

For more information on these arguments see, "Java Generation Arguments" on
page 17-60.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments see, "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
 None

genProxy
Use the genProxy command to create a static proxy stub that can be used by a J2SE
Web service client. This command creates all of the Java files required to contact the
ports specified in the WSDL. To use the proxy, you must first compile the code. For
more information on using genProxy to create proxy stub code, see Chapter 14,
"Assembling a J2SE Web Service Client".

The following command line and Ant task examples create all of the proxy code and
store it in the proxysrc directory.

Command Line Example:
java -jar wsa.jar -genProxy
 -output proxysrc
 -wsdl myservice.wsdl

Ant Task Example:
<oracle:genProxy output="proxysrc"
 wsdl="myservice.wsdl"
 />

Required Arguments:
To use the genProxy command, you must specify the following argument.

■ WSDL Access Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the genProxy
command.

■ Deployment Descriptor Arguments: ddFileName

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: classpath, debug, help, mappingFileName,
packageName, output, searchSchema, serviceName, useDimeEncoding

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

WebServicesAssembler Commands

Using WebServicesAssembler 17-31

■ Java Generation Arguments: dataBinding, mapHeadersToParameters,
overwriteBeans, unwrapParameters, valueTypePackagePrefix

For more information on these arguments see, "Java Generation Arguments" on
page 17-60.

■ JMS Assembly Arguments: replyToConnectionFactoryLocation,
replyToQueueLocation

For more information on these arguments see, "JMS Assembly Arguments" on
page 17-51.

■ Proxy Arguments: endpointAddress, genJUnitTest

For more information on these arguments see, "Proxy Arguments" on page 17-55.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments, see "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
■ <handler> tags—For more information, see "Configuring Handlers in an Ant

Task" on page 17-71.

■ <port> tags—In the <port> tag, genProxy can use these arguments:
endpointAddress, name (same as portName), portName,
replyToConnectionFactoryLocation, and replyToQueueLocation. For more
information, see "Configuring a Port in an Ant Task" on page 17-69.

genValueTypes
Use the genValueTypes command to create JAX-RPC value type classes (beans) from
the specified schemas. This command creates the beans for schema-driven Web service
development.

WebServicesAssembler can create more than one value type class for each
genValueTypes invocation. The command supports more than one schema
argument on the command line or <schema value=""> line in an Ant task.

In addition to the beans, this command creates the custom-type-mappings.xml
and jaxrpc-mappings.xml files. The custom-type-mappings.xml file makes it
easier to configure the custom serializer. The generated custom type mapping file
conforms to the service side schema, but it can be modified slightly to be used on the
client side. For an example of an edited service side custom type mapping file, see
"Editing the Server Side Custom Type Mapping File" in the Oracle Application Server
Advanced Web Services Developer's Guide. For more information on the custom serializer,
see "Custom Serialization of Java Value Types" in the Oracle Application Server Advanced
Web Services Developer's Guide.

The jaxrpc-mappings.xml file is a partial JAX-RPC mapping file that can be
supplied when generating the WSDL for bottom up Web service development.

The following command line and Ant task examples create a value type (bean) for
every complex type defined in the schemas mySchema.xsd and otherSchema.xsd

WebServicesAssembler Commands

17-32 Web Services Developer's Guide

and creates the files custom-type-mappings.xml and jaxrpc-mappings.xml.
The beans and files are stored in the build directory.

Command Line Example:
java -jar wsa.jar -genValueTypes
 -schema mySchema.xsd
 -schema otherSchema.xsd
 -packageName com.mycompany
 -output build

Ant Task Example:
<oracle:genValueTypes packageName="com.mycompany" output="build">
 <oracle:schema value="otherSchema.xsd"/>
 <oracle:schema value="mySchema.xsd"/>
 </oracle:genValueTypes>

Required Arguments:
To use the genValueTypes command, you must specify the following argument.

■ General Assembly Arguments: schema

All Arguments:
The following list identifies all of the arguments that can be used with the
genValueTypes command.

■ General Assembly Arguments: debug, help, packageName, output, schema
(required)

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort

For more information on these arguments see, "WSDL Access Arguments" on
page 17-57.

Additional Ant Support:
None

Deployment Descriptor Generation Commands
The following commands create deployment descriptors or files that are used in
generating descriptors for the EAR.

■ genApplicationDescriptor—Creates an application.xml file

■ genDDs—Creates deployment descriptors

genApplicationDescriptor
Use the genApplicationDescriptor command to create an application.xml
file that can be used when generating an EAR.

The input argument must be a directory that contains the WARs and EJB JARs that
will be placed in the EAR. The generated application.xml will contain tags for
each of the WARs and EJB JARs found in the specified input directory.

WebServicesAssembler Commands

Using WebServicesAssembler 17-33

Command Line Example:
java -jar wsa.jar -genApplicationDescriptor
 -input src/ejb
 -output build

Ant Task Example:
<oracle:genApplicationDescriptor
 input="src/ejb"
 output="build"
/>

Required Arguments:
To use the genApplicationDescriptor command, you must specify the following
argument.

■ General Assembly Arguments: input

All Arguments:
The following list identifies all of the arguments that can be used with the
genApplicationDescriptor command.

■ Deployment Descriptor Arguments: context

For more information on this argument, see "Deployment Descriptor Arguments"
on page 17-55.

■ General Assembly Arguments: debug, help, input (required), output

For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

Additional Ant Support:
None

genDDs
Use the genDDs command in top down or bottom up Web service generation to create
the web.xml, webservices.xml, and oracle-webservices.xml deployment
descriptors.

The following command line and Ant task examples create the deployment
descriptors and store them in the WEB-INF directory.

Command Line Example:
java -jar wsa.jar -genDDs
 -output WEB-INF
 -wsdl myservice.wsdl
 -classpath myservice.jar
 -interfaceName com.mycompany.myservice.Hello
 -className com.mycompany.myservice.HelloImpl

Ant Task Example:
<oracle:genDDs output="WEB-INF"
 wsdl="myservice.wsdl"
 classpath="myservice.jar"
 >
 <oracle:porttype
 interfaceName="com.mycompany.myservice.Hello"

WebServicesAssembler Commands

17-34 Web Services Developer's Guide

 className="com.mycompany.myservice.HelloImpl"/>
 </oracle:genDDs>

Required Arguments
To use the genDDs command, you must specify the following arguments.

■ General Assembly Arguments: className, interfaceName

■ WSDL Access Arguments: wsdl

All Arguments:
The following list identifies all of the arguments that can be used with the genDDs
command.

■ Deployment Descriptor Arguments: appendToExistingDDs, context,
ddFileName, uri

For more information on these arguments, see "Deployment Descriptor
Arguments" on page 17-55.

■ General Assembly Arguments: className (required), classpath, debug, ejbName,
help, interfaceName (required), mappingFileName, output, serviceName,
strictJaxrpcValidation, useDimeEncoding

 For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

■ JMS Assembly Arguments: sendConnectionFactoryLocation, sendQueueLocation

For more information on these arguments see, "JMS Assembly Arguments" on
page 17-51.

■ WSDL Access Arguments: httpNonProxyHosts, httpProxyHost, httpProxyPort,
wsdl (required)

For more information on these arguments see, "WSDL Access Arguments" on
page 17-57.

■ WSDL Management Arguments: wsdlTimeout

For more information on this argument see, "WSDL Management Arguments" on
page 17-58.

Additional Ant Support:
■ <port> tags. In the <port> tag, genDDs can use these arguments: name (same as

portName), portName, sendConnectionFactoryLocation, sendQueueLocation,
and uri. For more information, see "Configuring a Port in an Ant Task" on
page 17-69.

■ <porttype> tags. For more information, see "Configuring a Port Type in an Ant
Task" on page 17-70.

■ <handler> tags. For more information, see "Configuring Handlers in an Ant
Task" on page 17-71.

Maintenance Commands
The following commands return a short description of WebServicesAssembler
commands and the version number of the tool.

■ help—Returns a list of WebServicesAssembler commands

WebServicesAssembler Commands

Using WebServicesAssembler 17-35

■ version—Returns the version of the WebServicesAssembler tool

help
Use the help command to return a list of WebServicesAssembler commands and a
brief description. WebServicesAssembler will also return help when it is run:

■ without any commands or arguments. For example,

java -jar wsa.jar

■ with incorrect commands or arguments. For example,

java -jar wsa.jar -myProxy -ootput proxysrc -wsdl myservice.wsdl

You can get help on a specific command by running WebServicesAssembler with the
command followed by -help. For example, the following command returns detailed
help on the genProxy command and its required and optional arguments.

java -jar wsa.jar -genProxy -help

The help command is supported only on the command line. There is no comparable
Ant task. The following command line example returns help text on the commands
and arguments supported by WebServicesAssembler.

Command Line Example:
java -jar wsa.jar -help

Ant Task Example:
No Ant support provided.

Required Arguments:
None

All Arguments:
The following argument can be used with the help command:

■ General Assembly Arguments: debug

For more information on this argument see, "General Web Services Assembly
Arguments" on page 17-36.

Additional Ant Support:
None

version
Use the version command to obtain the version number of the
WebServicesAssembler tool.

Command Line Example:
java -jar wsa.jar -version

Ant Task Example:
No Ant support provided.

WebServicesAssembler Arguments

17-36 Web Services Developer's Guide

Required Arguments:
None

All Arguments:
■ General Assembly Arguments: debug, help

 For more information on these arguments see, "General Web Services Assembly
Arguments" on page 17-36.

Additional Ant Support:
None

WebServicesAssembler Arguments
This section describes the arguments that can be called for WebServicesAssembler
commands.

■ General Web Services Assembly Arguments

■ Session Arguments

■ CORBA Assembly Arguments

■ Database Assembly Arguments

■ JMS Assembly Arguments

■ Proxy Arguments

■ Deployment Descriptor Arguments

■ WSDL Management Arguments

■ Message Format Arguments

■ Java Generation Arguments

General Web Services Assembly Arguments
This section describes common arguments that can be used by many of the
WebServicesAssembler commands. They include file-related input and output
arguments, WSDL-related arguments, and mapping-related arguments.

■ appName

■ bindingName

■ classFileName

■ className

■ classpath

■ debug

■ ear

■ ejbName

■ emptySoapAction

■ help

■ initialContextFactory

■ input

WebServicesAssembler Arguments

Using WebServicesAssembler 17-37

■ interfaceFileName

■ interfaceName

■ jndiName

■ jndiProviderURL

■ mappingFileName

■ output

■ packageName

■ portName

■ portTypeName

■ schema

■ searchSchema

■ serviceName

■ strictJaxrpcValidation

■ useDimeEncoding

■ war

appName
appName <String>
Specifies the name of an application. Usually, this name is used as a base value for
other arguments like context and uri. The value of this argument is also used to
name the EAR and the WAR files if the ear and war arguments are not specified.

bindingName
bindingName <String>
The name of the binding to use in the generated WSDL.

classFileName
classFileName <String>
Identifies the Java file name of the implementation class specified in the className
argument. If necessary, this file will be compiled during an assembly.

className
className <String>
Specifies the name of the class (including the package name) that is the
implementation class for the Web service.

Using this argument adds the <servlet-class> element to web.xml.

If you are exposing an EJB as a Web service, the value of the className argument
must be the EJB's home interface. For more information, see "ejbAssemble" on
page 17-13.

If this argument is used with the wsifJavaPort argument, a classname attribute is
added to the java:address element in the port component of the WSDL.

If this argument is used with the wsifEjbPort argument, a classname attribute is
added to the ejb:address element in the port component of the WSDL.

WebServicesAssembler Arguments

17-38 Web Services Developer's Guide

classpath
classpath <String>
Specifies the classpath that contains any user-created classes given to
WebServicesAssembler. One reason to specify this argument is if you have already
created some value type classes or exceptions and you do not want
WebServicesAssembler to overwrite them.

For commands that generate a WAR file, such as the *Assemble commands, this
argument enables you to point to classes the Web service has a dependency on and
that should not be placed in the generated WAR.

This argument does not cause any additional classes to be copied to a generated WAR
file. Any classes needed at runtime or deployment time must either be copied to the
WAR or EAR manually or made available on the application server classpath using
server configuration options.

To include classes in the WAR file, you also have the option of using the input
argument. For more information, see "input" on page 17-40.

If you list multiple paths on the classpath, separate them with a colon (:) if you are
using the UNIX operating system. If you are using the Windows operating system,
separate multiple paths with a semicolon (;).

debug
debug <true|false>
Indicates whether all detailed diagnostic messages should be printed for a given
command. Default value is false.

The following command line and Ant task examples will display diagnostic messages
on the performance of the assemble command.

Command Line Example:

java -jar -wsa.jar -assemble -debug true...

Ant Task Example:

<oracle:assemble debug="true"

 />

ear
ear <file name>
Specifies the name and location of the generated EAR. The following example creates
the EAR file myService.ear in the dist directory.

-ear dist/myService.ear

The following list describes how WebServicesAssembler interprets the value of the
ear argument.

■ If the value of the ear argument ends with a file name with the extension ".ear"
(as in the preceding example), then an EAR file with the specified name is created
at the location specified by the ear argument. The output argument is not used
to determine the location of the EAR file.

■ In all other cases, the name is assumed to be a directory name. An EAR file is not
created. Instead, the contents of the EAR will be written to the indicated directory.

■ If you specify a value for the output argument and do not provide the ear
argument, then the EAR file will be given the value of the appName argument as

WebServicesAssembler Arguments

Using WebServicesAssembler 17-39

its default name. For example, if the value of output is build and the value of
appName is myService, and ear is not specified, then the EAR file will be
created as build/myService.ear.

The ear and war arguments can be used together in the same command line or Ant
task. Table 17–1 describes the behavior of these arguments based on whether they
specify a file or a directory.

Note: If you specify the same directory for the ear and the output
argument, then WebServicesAssembler will return an error.

Table 17–1 Behavior of ear and war Arguments for File and Directory Values

ear and war Argument
Combination Behavior

ear directory1

war directory2

If the ear and war arguments are set to different directories, the
following behavior will occur:

■ no .ear file will be created

■ the contents of the .ear file will be generated into directory1

■ a .war file will be created in directory1

■ the contents of the .war file will be generated into directory2

ear directory1

war file

If the ear argument is set to a directory and the war argument is
set to a file, the following behavior will occur:

■ no .ear file will be created

■ the contents of the .ear file will be generated into directory1

■ a .war file will be created in directory1

■ a .war file will be created with the user-specified name (the
value of the file parameter)

ear file

war directory2

If the ear argument is set to a file and the war argument is set to
a directory, the following behavior will occur:

■ a .ear file will be created with the user-specified name
(value of the file parameter)

■ a .war file will be created in the .ear file

■ the contents of the .war will be generated into directory2

ear file1

war file2

If the ear argument is set to a file and the war argument is set to
a file, the following behavior will occur:

■ a .ear file will be created with the user-specified name
(value of the file1 parameter)

■ a .war file will be created in the .ear file

■ a .war file will be created with the user-specified name (the
value of the file2 parameter)

ear argument not specified

war argument not specified

If neither the ear nor the war argument are specified, the
following behavior will occur:

■ a .ear file will be generated with the default name
application_name.ear

■ a .war file will be generated with the default name
application_name_web.war

In these examples, application_name represents the value of the
appName argument.

WebServicesAssembler Arguments

17-40 Web Services Developer's Guide

ejbName
ejbName <String>
The name of the EJB to be exposed as a Web service. Note that this is not a class name;
it is the unique name of the EJB that is specified in the <ejb-name> tag in the
ejb-jar.xml file.

If the EJB is version 2.1, using this argument adds the <ejb-link> element to
webservices.xml.

emptySoapAction
emptySoapAction <true|false>
If true, the value of the soapAction attribute for each SOAP binding operation in
the generated WSDL will be set to an empty string. If false (default), the target
namespace and the operation name (<target-namespace>/<operation-name>) is used as
the value of the soapAction attribute.

Tools from other vendors that use OracleAS Web Services WSDLs to generate the
client-side proxy may not be able to recognize or honor the default soapAction
value. Setting this argument to true increases the chances of interoperability with
these tools.

help
help
Displays a help message for a given command. The help argument can either precede
or follow the command.

The following command line and Ant task examples will display a help message on
the assemble command.

Command Line Example:

java -jar -wsa.jar -assemble -help ...

or

java -jar -wsa.jar -help -assemble ...

Ant Task Example:

<oracle:assemble debug="help"

 />

initialContextFactory
initialContextFactory <String>
Specifies the name of the factory that will provide the initial context. This is an
optional argument that can be called by the genWsdl or ejbAssemble command
when configuring an EJB WSIF port with wsifEjbBinding or wsifEjbPort. If you
not provide a value for this attribute, the value in the jndi.properties file will be
used.

input
input <String>
Specifies the directory or JAR containing the classes that should be copied to
WEB-INF/classes. This argument will be added to the classpath used by the
WebServicesAssembler. The ejbAssemble command assumes the value of the input
is an EJB JAR file or a directory that contains the contents of an EJB JAR.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-41

If this argument specifies a JAR, then it will be expanded and its contents copied to the
WEB-INF/classes directory.

This argument can be used only once in a command line or Ant task. If the specified
file name cannot be found, WebServicesAssembler will stop processing.

The input argument can be used more than once on the command line or in an Ant
task. In an Ant task, write the multiple occurrences in separate tags and include the
value attribute. Example 17–1 illustrates multiple instances of input in an Ant task.

Example 17–1 Multiple Instances of input in an Ant Task

<oracle:jmsAssemble
 linkReceiveWithReplyTo="true"
 targetNamespace="http://oracle.j2ee.ws/jms-doc"
 typeNamespace="http://oracle.j2ee.ws/jms-doc/types"
 serviceName="JmsService"
 appName="jms_service"
 context="jms_service"
 input="./demo/build/mdb_service.jar"
 output="./demo/dist"
 input="first.jar"
 >
 <oracle:input value="second.jar"/>
 <oracle:input value="third.jar"/>
</oracle:jmsAssemble>

interfaceFileName
interfaceFileName <String>
Specifies the path and name of the service endpoint interface (SEI) Java source code
file. If the specified file name cannot be found, WebServicesAssembler will stop
processing.

The presence of the interfaceFileName argument can play a role in how
WebServicesAssembler represents the parameter names of Java methods in the
generated WSDL. "Representing Java Method Parameter Names in the WSDL" on
page 17-77 provides more information on this topic.

interfaceName
interfaceName <String>
Specifies the path and name of a Java class (including the package name) that contains
the service endpoint interface (SEI).

Using this argument adds a
<service-endpoint-interface>String</service-endpoint-interface>
element to WEB-INF/webservices.xml, where String is the value provided for
interfaceName.

Using this argument with any of the commands which assemble a Web service from
database resources (plsqlAssemble, sqlAssemble, dbJavaAssemble, or
aqAssemble), adds the
<service-endpoint-interface>String</service-endpoint-interface>
element to query-java-wsdl-maping.xml, where String is the value provided for
interfaceName.

jndiName
jndiName <String>
Specifies a JNDI name for an EJB.

WebServicesAssembler Arguments

17-42 Web Services Developer's Guide

jndiProviderURL
jndiProviderURL <String>
Specifies the URL for the JNDI Provider. This is an optional argument that can be
called by the genWsdl or ejbAssemble command when configuring an EJB WSIF
port with wsifEjbBinding or wsifEjbPort. If you do not provide a value for this
attribute, the value in the jndi.properties file will be used.

mappingFileName
mappingFileName <String>
Specifies a file location that points to a JAX-RPC mapping file. If the specified file
name cannot be found, WebServicesAssembler will stop processing.

For more information on the contents of the JAX-RPC mapping file and how it is used,
see "JAX-RPC Mapping File Descriptor" in the Oracle Application Server Advanced Web
Services Developer's Guide.

Using this argument adds the <jaxrpc-mapping-file> element to
webservices.xml. Note that the location and name of the file may be changed when
it is written to the deployment descriptor. The contents of the file may be modified
before being placed in the archive if some mappings were not defined in the original
file.

output
output <String>
Specifies the directory where generated files will be stored. If the directory does not
exist, it will be created. If you do not specify the output argument, then the output
will be stored in the current directory.

Except when used with the genConcreteWsdl command, the target of the output
argument is always assumed to be a directory. In the case of the genConcreteWsdl
command, the target is assumed to be a file.

The output argument is typically used with the ear and war arguments. For more
information on the behavior of output when it is used with these arguments, see the
descriptions of "ear" on page 17-38 and "war" on page 17-45.

packageName
packageName <String>
Specifies the package name that will be used for generated classes if no package name
is declared in the JAX-RPC mapping file. If packageName is not specified and not
declared in the mapping file, then the package name will be derived from the target
namespace of the WSDL.

For more information on namespace to package mappings see "Default Algorithms to
Map Between Target WSDL Namespaces and Java Package Names" on page 17-63.

Note: If you specify the same directory for the output and the ear
(or war) argument, then WebServicesAssembler will return an error.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-43

portName
portName <String>
Specifies the name of a port in a WSDL document. This argument populates the
<port name="..."> WSDL element.

If a port name is not specified, then the default will be based on either the transport
and SOAP version, or on the WSIF type. The default port name will be one of the
following values.

■ HttpSoap11

■ HttpSoap12

■ JmsSoap11

■ JmsSoap12

■ WsifEjb

■ WsifJava

portTypeName
portTypeName <String>
Specifies the name of the port type to use in the generated WSDL. This argument
populates the <portType name="..."> WSDL element.

restSupport
restSupport <true|false>
Specifies whether REST (Representational State Transfer) support will be enabled for
this Web service. The default value is false.

REST services allow you to get and modify service objects with the HTTP GET and
POST commands. Another feature of REST Web services is the use of XML documents,
not SOAP envelopes, for sending messages. See Chapter 11, "Assembling REST Web
Services" for more information on implementing Web services with REST support.

schema
schema <String>
Specifies the relative path or URL to an XML schema document. This argument
enables you to specify a schema for value types instead of letting
WebServicesAssembler generate them. This argument must be used in conjunction
with a JAX-RPC mapping file. For information on specifying a mapping file, see
"mappingFileName" on page 17-42.

The schema argument can be used more than once on the command line or in an Ant
task. In an Ant task, write the multiple occurrences in separate tags and include the
value attribute. Example 17–2 illustrates multiple instances of schema in an Ant task.

Note: The packageName argument affects only the package name
for the service endpoint interface and any schema types that have the
same target namespace as the WSDL. If there are schema value types
in a different namespace, then WebServicesAssembler generates them
into a different package by default. For information on generating the
code into a single package, see "Generating Code into a Single
Package from a WSDL with Multiple Namespaces" in the Oracle
Application Server Advanced Web Services Developer's Guide.

WebServicesAssembler Arguments

17-44 Web Services Developer's Guide

Example 17–2 Multiple Instances of schema in an Ant Task

<oracle:genValueTypes packageName="com.mycompany"
 output="build">
 <oracle:schema value="otherSchema.xsd"/>
 <oracle:schema value="mySchema.xsd"/>
 </oracle:genValueTypes>

searchSchema
searchSchema <true|false>
Indicates whether all of the types in the schemas listed in the WSDL should be
processed. When this argument is set to true (default), all of the types will be
processed. This is useful when using a Web service implementation that uses types
found in the schemas, but are not directly referenced by the WSDL. When this
argument is set to false, the types that are not referenced by the WSDL will not be
processed.

serviceName
serviceName <String>
Specifies the service name. The serviceName argument is used to identify the
generated or packaged WSDL file (serviceName.wsdl) and the mapping file
(serviceName-java-wsdl-mapping.xml). In bottom up Web service assembly, this
argument also provides a value for the <service name="..."> WSDL element.

When this argument is used in top down Web service and proxy assembly, the WSDL
will expect to find a service with this name. In this case, the value of the <service
name="..."> WSDL element will not be changed.

strictJaxrpcValidation
strictJaxrpcValidation <true|false>
Determines whether the service endpoint interface, exceptions, and value types will be
validated according to all of the JAX-RPC validation rules. If this argument is not
specified or set to true (default), the following validation checks are performed:

■ the service endpoint interface implements java.rmi.Remote

■ all methods throw java.rmi.RemoteException

■ all value types and properties in exceptions follow JAX-RPC rules

If any of these validation checks fail, then processing stops and an error is thrown
describing what is wrong with the interface.

If this argument is set to false, then a service endpoint interface does not have to
implement java.rmi.Remote and methods do not have to throw
java.rmi.RemoteException. However, if any method has parameters or
exceptions that do not follow JAX-RPC rules, then the method will be ignored and will
not be processed.

In the case of Beans and exceptions, if this argument is set to false, any invalid
property in the Bean (or exception) will be ignored. Valid properties will be processed
and included in the WSDL. Note that this behavior might produce a wire-level format
that the user is not expecting. For invalid properties, WebServicesAssembler will
throw a warning.

useDimeEncoding
useDimeEncoding <true|false>

WebServicesAssembler Arguments

Using WebServicesAssembler 17-45

Specifies whether DIME encoding will be used for streaming SOAP messages with
attachments over the wire. If useDimeEncoding is set to true, DIME encoding is
used for attachments instead of MIME. The default value is false. "Working with
DIME Attachments" in the Oracle Application Server Advanced Web Services Developer's
Guide provides more information about working with DIME encoding and
attachments.

Using this argument adds the <use-dime-encoding> element to
oracle-webservices.xml.

war
war <file name or directory name>
Specifies the name of the WAR to generate. If a file is specified, it must have the .war
extension. If a directory is specified, the contents of the WAR will be written to the
indicated directory. The following example creates the WAR file myService.war in
the dist directory.

-war dist/myService.war

The following list describes how WebServicesAssembler interprets the value of the
war argument.

■ If the value of the war argument ends with a file name with the extension ".war"
(see the preceding example), then a WAR file with the specified name is created at
the location specified by the war argument. The output argument is not used to
determine the location of the WAR file.

■ In all other cases, the value is assumed to be a directory name. The WAR file will
be written to the indicated directory.

■ If you specify a value for the output argument and do not provide the war
argument, then the WAR will be placed inside of an EAR. The name of the WAR
file inside of the EAR will be appName.war. See "ear" on page 17-38 for a
description of how WebServicesAssembler interprets values for the ear argument.

The war and ear arguments can be used together in the same command line or Ant
task. See Table 17–1 for a description of the behavior of these arguments based on
whether they specify a file or a directory.

Session Arguments
These arguments can be used to control the behavior of session state.

■ callScope

■ recoverable

■ session

■ timeout

callScope
callScope <true|false>

Note: If you specify the same directory for the war and the output
argument, then WebServicesAssembler will return an error.

WebServicesAssembler Arguments

17-46 Web Services Developer's Guide

Indicates that the servant is to be created for each call and is garbage-collected after
each call. Default value is false. An error will be thrown if both callScope and
session are set to true.

Using this argument with the value set to true adds the <param
name="scope">call</param> element to oracle-webservices.xml.

recoverable
recoverable <true|false>
Indicates whether applications with session state are recoverable. This argument can
be used only when the service is exposed as a stateful web services with session scope.
The default, true, causes session state to be preserved. If it is recoverable, then a
Boolean <distributable> element is added to web.xml. If it is false, the
distributable element will not be added.

session
session <true|false>
Indicates that the servant instance is to be preserved for the duration of the HTTP
session. This argument is valid only for HTTP transport. Session timeout can be tuned
by the timeout argument. Default value is false. If timeout is set, then session is
set to true by default. An error will be thrown if both callScope and session are
set to true.

Using this argument adds the <param name="scope">session</param> element
to oracle-webservices.xml.

timeout
timeout <int>
Specifies the number of seconds a session should last before it times out. The default
value is 60 seconds. If the value is 0 or a negative number, then the session will not
time out.

If a value is set for this argument, then the session argument is automatically set to
true. If the session argument is true and timeout is not set, then the session will
time out after 60 seconds.

Using this argument adds the <param name="session-timeout">value</param>
element to oracle-webservices.xml, where value is the integer value given to
timeout.

CORBA Assembly Arguments
The following arguments can be used by the corbaAssemble command. They can be
used to control how a Web service is assembled using CORBA servant objects.

■ corbanameURL

■ corbaObjectPath

■ idlFile

■ idlInterfaceName

■ idljPath

■ ORBInitialHost

■ ORBInitialPort

■ ORBInitRef

WebServicesAssembler Arguments

Using WebServicesAssembler 17-47

corbanameURL
corbanameURL <String>
Specifies a URL for locating the CORBA object using a CORBA Naming Service.

corbaObjectPath
corbaObjectPath <String>
Specifies a path to the CORBA object.

idlFile
idlFile <String>
Specifies the location of the CORBA idl file.

idlInterfaceName
idlInterfaceName <String>
Specifies the name of the interface in the idl from which the Web service will be
generated.

idljPath
idljPath <String>
Specifies the path to the directory containing the IDL-to-Java compiler (idlj) if it is
not already specified in the path.

ORBInitialHost
ORBInitialHost <String>
Specifies the host name of the ORB.

ORBInitialPort
ORBInitialPort <String>
Specifies the port for the ORB.

ORBInitRef
ORBInitRef <String>
Specifies an ORB initial reference.

Database Assembly Arguments
These arguments are used by the commands that assemble a Web service from
database artifacts such as PL/SQL stored procedures, SQL statements, Oracle
Advanced Queues (AQ), and Java classes inside the Java VM in an Oracle database.

For more information on assembling Web services from database artifacts, see
Chapter 9, "Developing Database Web Services".

■ aqConnectionFactoryLocation

■ aqConnectionLocation

■ dataSource

■ dbConnection

■ dbJavaClassName

■ dbUser

■ jpubProp

WebServicesAssembler Arguments

17-48 Web Services Developer's Guide

■ sql

■ sqlstatement

■ sqlTimeout

■ sysUser

■ useDataSource

■ wsifDbBinding

■ wsifDbPort

aqConnectionFactoryLocation
aqConnectionFactory <String>
Specifies the JNDI location of the Oracle Streams AQ JMS queue connection factory for
the exposed AQ.

aqConnectionLocation
aqConnectionLocation <String>
Specifies the JDNI location of the Oracle Streams AQ JMS queue connection
connecting to the exposed AQ.

dataSource
dataSource <String>
Specifies the JNDI location of the data source used by the Web services at runtime.

Using this argument adds the following param attribute to the <implementor>
element in oracle-webservices.xml. The dataSource value variable is the path
specified with the dataSource argument.

<param name="databaseJndiName">dataSource value</param>

For example, if you specify dataSource="ws/dbws/src/query/datasource" in
an Ant task, the <implementor> element will be written as follows.

<implementor type="database">
 <param name="databaseJndiName">ws/dbws/src/query/datasource</param>
</implementor>

dbConnection
dbConnection <String>
Specifies the JDBC URL for the database. This argument is used with the dbUser
argument to connect to a database at code-generation time.

dbJavaClassName
dbJavaClassname <String>
Specifies the name of the server-side Java class to be published as a Web service.

dbUser
dbUser <String>
Specifies the database schema and password in the form of user/password. This
argument is used with the dbConnection argument to connect to a database at
code-generation time.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-49

If you attempt to access the database by invoking WebServicesAssembler on the
command line and do not specify a password with -dbUser, you will be prompted
for a password. This is to protect the password being shown in clear text.

jpubProp
jpubProp <String>
Specifies the name of a file with properties to control the Oracle JPublisher translation
process. For examples of how you might use the jpubProp argument, see "Changing
the SQL to XML Mapping for Numeric Types" on page 9-5. For more information on
Oracle JPublisher, see the Oracle Database JPublisher User's Guide.

sql
sql <String>
The value of the sql argument has a different meaning depending on whether it is
used with aqAssemble or plsqlAssemble.

■ aqAssemble—When used with aqAssemble, the value of sql is an AQ queue
name.

■ plsqlAssemble—When used with plsqlAssemble, the value of sql is a
PL/SQL package name.

The sql argument can handle case-sensitive names in SQL statements. For example,
the use of quotes in the following SQL statement indicates that the package name,
SIMple, is case sensitive.

create package "SIMple" as
procedure foo;
end;

To use the SIMple package name as the target of the sql argument on the command
line, enter:

 -sql '"SIMple"'

To use it in an Ant task, enter:

 sql=""SIMple""

Note that in each case, the quotations enclosing SIMple are required. The quotations
and the package name are passed to Oracle JPublisher. Oracle JPublisher uses the
quotations to resolve the identifier against the name in the database.

sqlstatement
sqlstatement <String>
Specifies the DML statement or SQL query to be published as a Web service.

■ SQL statements must be either queries or DML statements.

■ SQL statements are tagged with the name that will be used in the WSDL and in
generated Java code.

methodName=<statement>

The methodName indicates the Java method name for the SQL statement in the
generated Web services.

■ SQL statements may contain embedded host variables with a parameter name and
corresponding SQL type. The parameter name is used in the WSDL and in the
generated Java code. The parameter is given in the following form.

WebServicesAssembler Arguments

17-50 Web Services Developer's Guide

:{param_name param_sql_type}

In this example, param_name defines the Java identifier for the parameter in the
generated Web service, and param_sql_type defines the SQL type name for that
parameter.

■ The sqlstatement argument cannot be used to specify stored procedures.

When you pass a SQL statement on the WebServicesAssembler Ant task, you must
ensure that it is correctly quoted. The value of sqlstatement can be quoted using
standard XML quotations as shown in Table 17–2:

Multiple sqlstatement arguments can be specified on the command line or Ant
task. In an Ant task, write the multiple occurrences in separate tags and use the value
attribute. Example 17–3 illustrates multiple instances of the sqlstatement argument
in an Ant task.

Example 17–3 Multiple Instances of sqlstatement in an Ant Task

<oracle:sqlAssemble
 dbUser="scott/tiger"
 dbConnection="jdbc:oracle:thin:@dsunrde22:1521:sqlj"
 dataSource="jdbc/OracleManagedDS"
 appName="query">
 <sqlstatement value="getEmp=select ename, sal from emp where empno=:{id
NUMBER}"/>
 <sqlstatement value="getEmpBySal=select ename, sal from emp where
sal>:{mysal NUMBER}"/>
</oracle:sqlAssemble>

sqlTimeout
sqlTimeout <int>
Specifies timeout, in seconds, for the database operation. Database operations can
include PL/SQL stored function or procedure invocations, SQL queries, and DML
statements. The default is 0, which means the service never times out.

sysUser
sysUser <String>
Specifies the name and password of a user with SYS privileges in the form of
dbSysUser/syspassword. Using this argument allows PL/SQL and Java wrapper
code to be installed automatically into the database at code-generation time.

useDataSource
useDataSource <true|false>
The useDataSource argument can be specified on the command line or in the Ant
task only when the wsifDbBinding or wsifDbPort argument is also present. If

Table 17–2 Valid Quoting Symbols for the sqlstatement Ant Task

Symbol Quotation

& &

" "

< <

> >

' '

WebServicesAssembler Arguments

Using WebServicesAssembler 17-51

useDataSource is specified and neither of these arguments are present, then an error
is thrown.

The useDataSource argument determines whether the value of the dataSource
argument will be used in the WSDL port tag. If useDataSource is not specified, or
specified with the value of true, then the dataSource value used in the command
line or Ant task is used in the WSDL port tag. If useDataSource is specified with the
value of false, then the dbConnection value used in the command line or Ant task
is used in the WSDL port tag.

wsifDbBinding
wsifDbBinding <true|false>
This argument is used in bottom up Web services assembly to add WSIF SQL bindings
to the WSDL. WebServicesAssembler will generate native WSIF SQL bindings in
addition to SOAP bindings in the WSDL. This argument's default value is false.

For information on the segments this argument adds to the WSDL, see "WSIF SQL
Extensions to the WSDL" in the Oracle Application Server Advanced Web Services
Developer's Guide.

If you need more control over the definition of the WSIF SQL bindings or need to
specify multiple ports, OracleAS Web Services provides additional arguments that are
available only by using Ant tasks. These arguments are described in "Configuring a
WSIF Endpoint for Multiple Database Resource Ports" in the Oracle Application Server
Advanced Web Services Developer's Guide.

wsifDbPort
wsifDbPort <true|false>
This argument is used in bottom up Web services assembly to add WSIF bindings for
database resources for multiple ports to the WSDL. It can be used only in Ant tasks.
"Configuring a WSIF Endpoint for Multiple Database Resource Ports" in the Oracle
Application Server Advanced Web Services Developer's Guide provides more information
on how to use wisfDbPort.

JMS Assembly Arguments
The following arguments can be used by the jmsAssemble command and by JMS
transport. The jmsAssemble command assembles a JMS Endpoint Web service EAR
or WAR directory. For more information assembling a JMS Endpoint Web service, see
Chapter 8, "Assembling Web Services with JMS Destinations".

Of the arguments listed, replyToConnectionFactoryLocation,
replyToQueueLocation, sendConnectionFactoryLocation, and
sendQueueLocation can be used by either JMS assembly or by JMS transport.

You can find the JMS specification at the following Web address.

http://java.sun.com/products/jms/docs.html

■ deliveryMode

■ genJmsPropertyHeader

■ jmsTypeHeader

■ linkReceiveWithReplyTo

■ payloadBindingClassName

■ priority

WebServicesAssembler Arguments

17-52 Web Services Developer's Guide

■ receiveConnectionFactoryLocation

■ receiveQueueLocation

■ receiveTimeout

■ receiveTopicLocation

■ replyToConnectionFactoryLocation

■ replyToQueueLocation

■ replyToTopicLocation

■ sendConnectionFactoryLocation

■ sendQueueLocation

■ sendTopicLocation

■ timeToLive

■ topicDurableSubscriptionName

deliveryMode
deliveryMode <String>
Specifies the default value of the JMSDeliveryMode header field. This field contains
the delivery mode specified when the message was sent. The values for
deliveryMode supported by the JMS specification are PERSISTENT and NON_
PERSISTENT.

genJmsPropertyHeader
genJmsPropertyHeader <true|false>
By default, JMS Endpoint Web services always publish the following JMS message
properties of SOAP headers defined on the generated WSDL.

■ message ID

■ correlation ID

■ the ReplyTo destination, including its name, type, and factory

The corresponding schema definition of the JMS-specific header and its binding will
be included in the WSDL. Set this argument to false and the
OracleJmsProperties on the wire SOAP message will be ignored at runtime.
Default value is true.

jmsTypeHeader
jmsTypeHeader <String>
The value of this argument is used to specify the default value of the JMSType header
field for the JMS messages that are propagated by the send operation to a JMS
destination. For example, a possible value for jmsTypeHeader could be My Quote
Message. No default value is provided.

linkReceiveWithReplyTo
linkReceiveWithReply <true|false>
Determines whether the receive operation will be linked to the reply-to destination.
When this argument is true, either receive destination/connection-factory or reply-to
destination/connection-factory must be set. Default value is false.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-53

payloadBindingClassName
payloadBindingClassname <String>
The fully-qualified Java class name of the content object of
javax.jms.ObjectMessage instance if no data binding is used. The content is not a
Java value type but an XML fragment. The only valid values are java.lang.String
and javax.xml.soap.SOAPElement. Default value is java.lang.String.

priority
priority <int>
Specifies the default integer value of the JMS message priority header field for the JMS
messages that are propagated by the send operation to a JMS destination. Values can
range from 0 to 9, with 0 as lowest priority and 9 as highest.

receiveConnectionFactoryLocation
receiveConnectionFactoryLocation <String>
JNDI name of the JMS ConnectionFactory used for the receive operation. The
type of ConnectionFactory must be consistent with the receive destination. No
default value is provided.

receiveQueueLocation
receiveQueueLocation <String>
JNDI name of the JMS Queue used for the receive operation. The
receiveQueueLocation and receiveTopicLocation arguments are mutually
exclusive and cannot both be set. No default value is provided.

receiveTimeout
receiveTimeout <int>
The value of this argument is used to specify the default value for the amount of time
that the receive method is blocked to get a message. The receiveTimeout value is
expressed in seconds. The default value, 0, means that blocking never expires and the
call blocks indefinitely.

receiveTopicLocation
receiveTopicLocation <String>
JNDI name of the JMS Topic used for the receive operation. No default value is
provided. The receiveQueueLocation and receiveTopicLocation arguments
are mutually exclusive and cannot both be set.

replyToConnectionFactoryLocation
replyToConnectionFactoryLocation <String>
Specifies the JNDI name of the JMS connection factory to be used as the default
reply-to of all send operation JMS messages. The type of ConnectionFactory must
be consistent with the reply-to destination. No default value is provided. This
argument can be used for JMS Web service assembly or for JMS transport.

When this argument is used for JMS transport, it specifies the JNDI name of the JMS
ConnectionFactory to be used as the default reply-to of all Web service operations
that send SOAP messages over the wire.

replyToQueueLocation
replyToQueueLocation <String>

WebServicesAssembler Arguments

17-54 Web Services Developer's Guide

Specifies the JNDI name of the JMS queue to be used as the default reply-to of all send
operation JMS messages. No default value is provided. The replyToQueueLocation
and replyToTopicLocation arguments are mutually exclusive and cannot both be
set. This argument can be used for JMS Web service assembly or for JMS transport.

When this argument is used for JMS transport, it specifies the JNDI name of the JMS
queue to be used as the default reply-to of all Web service operations that send SOAP
messages over the wire.

replyToTopicLocation
replyToTopicLocation <String>
Specifies the JNDI name of the JMS Topic to be used as the default reply-to of all send
operation JMS messages. No default value is provided. The replyToQueueLocation
and replyToTopicLocation arguments are mutually exclusive and cannot both be
set.

sendConnectionFactoryLocation
sendConnectionFactoryLocation <String>
Specifies the JNDI name of the JMS ConnectionFactory used to obtain a connection
for the JMS send operation. The type of ConnectionFactory must be consistent
with the send destination. No default value is provided. This argument can be used
for JMS Web service assembly or for JMS transport.

When this argument is used for JMS transport, it specifies the JNDI name of the JMS
ConnectionFactory used to obtain a connection for the Web service operation that
sends the SOAP messages over the wire.

sendQueueLocation
sendQueueLocation <String>
Specifies the JNDI name of the JMS queue to be used for the JMS send operation. No
default value is provided. The sendQueueLocation and sendTopicLocation
arguments are mutually exclusive and cannot both be set. This argument can be used
for JMS Web service assembly or for JMS transport.

When this argument is used for JMS transport, it specifies the JMS queue to be used for
the Web service operation that sends the SOAP messages over the wire.

sendTopicLocation
sendTopicLocation <String>
JNDI name of JMS Topic used for send operation. No default value is provided. The
sendQueueLocation and sendTopicLocation arguments are mutually exclusive
and cannot both be set.

timeToLive
timeToLive <int>
The value of this argument specifies the default time-to-live value of a JMS send
operation. The value of timeToLive, expressed in seconds, is a relative value—not
absolute. When a message is sent, its expiration time is calculated as the sum of the
time-to-live value specified on the JMS send method and the current GMT value. If
the argument is not set or if it is set to 0, then the message will never expire.

topicDurableSubscriptionName
topicDurableSubscriptionName <String>

WebServicesAssembler Arguments

Using WebServicesAssembler 17-55

The value of this argument is used as a unique identity to register a durable
subscription for the Topic receive operation. No default value is provided. See the
JMS specification for more information on durable subscriptions.

http://java.sun.com/products/jms/docs.html

Proxy Arguments
These arguments can be used to control the contents of the generated proxy code.

■ endpointAddress

■ genJUnitTest

endpointAddress
endpointAddress <URL>
Specifies the URL of the endpoint address used to contact the Web service. If you use
this argument, then the endpoint address in the WSDL is ignored.

genJUnitTest
genJUnitTest <true|false>
If genJUnitTest is set to true, then a JUnit test will be created for each exposed
method in the Web service and stored in the same directory as the service endpoint
interface. The JUnit test which is created is only a template; you must provide the
actual test code for the method. The default value is false.

Deployment Descriptor Arguments
The following arguments can be used to control how Web service deployment is
performed.

■ appendToExistingDDs

■ context

■ ddFileName

■ uri

appendToExistingDDs
appendToExistingDDs <true|false>
Determines whether entries for a new Web service will be appended to the existing
deployment descriptors or whether they will be overwritten. The deployment
descriptors that can be affected by this argument are oracle-webservices.xml,
web.xml, and webservices.xml.

If the argument is set to true, any deployment descriptors in the output location will
be updated with the entries needed for a new service. If false, any existing
deployment descriptors in the output location will be overwritten. Default value is
false.

"Assigning Multiple Web Services to an EAR or WAR Archive" on page 17-75 describes
how appendToExistingDDs is used to append a new Web service to an existing
deployment descriptor.

WebServicesAssembler Arguments

17-56 Web Services Developer's Guide

context
context <String>
Specifies the root context for the web application. You cannot specify an empty string
for context. If you do not provide a value for context, then its default value is
determined as follows:

■ If the command supports the appName argument, then the default value for
context is the value of the appName argument. If the command does not support
the appName argument, then the default value is the name of the first service in
the WSDL.

■ If the command does not use a WSDL, for example
genApplicationDescriptor, then the default value for context is the name
of the WAR file without the -web.war or .war extension.

For version 2.1 EJBs, the value of context is placed in the <context-root> element
in the oracle-webservices.xml deployment descriptor file.

For Web applications, the value of context is placed in the <context-root>
element in the application.xml deployment descriptor file.

The URL is built from the protocol, the host and the port. For example,

http://localhost:8888/host/port

The protocol, http://localhost:8888/ is set at deployment time and is used to
contact the Web service. The second part, the host is provided by the context
argument. The third part, the port, is provided by the uri argument. The full URL is
created by concatenating the protocol with the values of the context and uri
arguments. See "uri" on page 17-57 for an example of using the context and uri
arguments to form an HTTP URL.

ddFileName
ddFileName <String>
Specifies the oracle-webservices.xml deployment descriptor that contains the
settings you want to assign to the Web service. If this argument is not used, then an
oracle-webservices.xml deployment descriptor will be generated. For more
information on this file, see "oracle-webservices.xml Deployment Descriptor" on
page 18-12.

Note: The appendToExistingDDs and the ddFileName argument
can be used in the same invocation or Ant task. The ddFileName
argument points to a file that contains management configuration. All
of the management configuration found in this file that corresponds to
the service that is generating deployment descriptors will be included
in the generated oracle-webservices.xml file. When
appendToExistingDDs is false (default), then any deployment
descriptor file (web.xml, oracle-webservices.xml, or
webservices.xml) in the output directory will be overwritten.
When appendToExistingDDs is true then WebServicesAssembler
will add the entries for the current service to the existing deployment
descriptor file.

Note that WebServicesAssembler does not try to resolve conflicts. If
you append the same service to a deployment descriptor file twice,
then an invalid deployment descriptor may be the result.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-57

When this argument is used with the *Assemble commands, management and
custom serialization information will be copied from the specified file to the
oracle-webservices.xml file in the archive.

If the specified file name cannot be found, WebServicesAssembler will stop processing.

The appendToExistingDDs and the ddFileName arguments can be used in the
same command line invocation or Ant task. See the Note under
"appendToExistingDDs" on page 17-55 for more information on the impact of using
these arguments together.

uri
uri <String>
Specifies the URI to use for the Web service. This is the third part of the URL used to
contact the Web service. The first part is the protocol, which is set at deployment time.
The second part is provided by the context argument. The full URL is created by
concatenating the protocol, the context, and the uri arguments.

The default value for uri is the value of the appName argument. You cannot specify
an empty string for uri.

Using this argument adds the <url-pattern> element to web.xml (for web
applications) and the <endpoint-address-uri> element to
oracle-webservices.xml for EJB 2.1.

WSDL Access Arguments
The following arguments can be used to access the WSDL. The Http* arguments help
to access the WSDL if it is a URL and resides on a network that uses an HTTP proxy
server.

■ fetchWsdlImports

■ httpNonProxyHosts

■ httpProxyHost

■ httpProxyPort

■ importAbstractWsdl

■ wsdl

fetchWsdlImports
fetchWsdlImports <true|false>
Indicates if you want to make a local copy of the WSDL and everything it imports.
When fetchWsdlImports is true, the specified WSDL and everything it imports
will be copied to the WAR. When false, only the specified WSDL will be copied to
the WAR. Default value is false.

This argument is typically used when the WSDL must be packaged with the
deployment. This avoids the overhead, un-reliability, security, or threat-of-change
issues that may arise when calling out for each runtime invocation requires a remote
schema. The only time you would package a WSDL and its schema imports with a
Web service is in a top down assembly.

httpNonProxyHosts
httpNonProxyHosts <String>

WebServicesAssembler Arguments

17-58 Web Services Developer's Guide

Specifies the name of the host that should not use an HTTP proxy. If there are multiple
hosts they should be separated by a '|', for example localhost|127.0.0.1. This
argument can help to get the WSDL if it is a URL that resides on a network that uses
an HTTP proxy server.

httpProxyHost
httpProxyHost <String>
Specifies the name of the HTTP proxy host. This argument can help to get the WSDL if
it is a URL that resides on a network that uses an HTTP proxy server.

httpProxyPort
httpProxyPort <int>
Specifies the port number for the HTTP proxy. This argument can help to get the
WSDL if it is a URL that resides on a network that uses an HTTP proxy server.

importAbstractWsdl
importAbstractWsdl <true|false>
Specifies whether the generated WSDL will import the WSDL specified with the wsdl
argument. If true, the generated WSDL will import the WSDL file. If false, the
generated WSDL elements and the elements in the original WSDL will be written to a
single output file. Default value is false.

wsdl
wsdl <String>
Specifies the absolute file path, relative file path, or URL to a WSDL document. For
example, http://host:80/services/myservice?WSDL and myservice.wsdl
are valid values for this argument.

If the network uses an HTTP proxy server, and the WSDL is a URL, you may need to
set the httpNonProxyHosts, httpProxyHost and httpProxyPort arguments.

WSDL Management Arguments
The following options can be used to control the contents of the generated WSDL.

■ createOneWayOperations

■ genQos

■ singleService

■ soapVersion

■ wsdlTimeout

■ targetNamespace

■ typeNamespace

createOneWayOperations
createOneWayOperations <true|false>
When this argument is set to true, methods that return void will have no response
message. If it is not specified or set to false, the response message will be empty.
Default value is false.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-59

genQos
genQosWsdl <true|false>
Determines whether QOS (quality of service) information will be added to the WSDL
in the form of capability assertions. Capability assertions are derived from the Web
service management configuration in the oracle-webservices.xml deployment
descriptor. If you set genQos to true, then capability assertions will be generated into
the WSDL. You must also set the ddFilename argument to an
oracle-webservices.xml deployment descriptor that contains the Web services
management configuration. The default value of this argument is false.

"Working with Capability Assertions" in the Oracle Application Server Advanced Web
Services Developer's Guide provides more information on providing capability
assertions to the server- and client-side of a Web service.

singleService
singleService <true|false>
Determines whether a single port or multiple ports will be generated for each service
defined in the WSDL. If true, WebServicesAssembler generates a single service with
multiple ports (one for each port type). If false, WebServicesAssembler generates
multiple services, each with a single port. Default is false.

soapVersion
soapVersion <1.1|1.2|1.1,1.2>
Specifies the SOAP version to the WSDL document. Values can be 1.1, 1.2, or
1.1,1.2. Default value is 1.1.

The "1.1,1.2" value means that WebServicesAssembler will create two ports with
two bindings. One port and binding will support version 1.1; the other port and
binding will support version 1.2. Each port must be bound to a different URL. That is,
you cannot support both versions concurrently with the same URL address.

wsdlTimeout
wsdlTimeout <int>
Specifies the number of seconds WebServicesAssembler should wait for a response to
an HTTP or HTTPS request for a remote WSDL resource. The default value is 60
seconds.

By default, WebServicesAssembler will wait as long as one minute to receive the
response to a HTTP request for a WSDL definition from a host. This argument is used
to override the default wait limit. A value of zero indicates that WebServicesAssembler
will wait for a period of time determined by the platform.

This argument applies only to requests made through HTTP or HTTPS. It will be
ignored if the request is made through another protocol.

targetNamespace
targetNamespace <String>
Specifies the target namespace to be used in the generated WSDL.

typeNamespace
typeNamespace <String>
Specifies the type namespace to be used in the schema types in the generated WSDL.
The name that you specify will always be used and it will not be reversed. For more
information on this argument and the default namespace-to-package name mapping

WebServicesAssembler Arguments

17-60 Web Services Developer's Guide

conventions, see "Default Algorithms to Map Between Target WSDL Namespaces and
Java Package Names" on page 17-63.

Message Format Arguments
The following arguments can be used to control the message format used by the
generated WSDL, and hence, the Web service.

■ style

■ use

style
style <document-bare|document-wrapped|rpc>
For bottom up Web service assembly, this argument specifies the style attribute of
the message format in the generated WSDL. Possible values are document-bare ,
document-wrapped, and rpc. The default value is document-wrapped.

"OracleAS Web Services Message Formats" on page 4-1 provides more information on
the RPC and document (wrapped and bare) message styles.

use
use <literal|encoded>
For bottom up Web service assembly, this argument specifies the use attribute of the
message format in the generated WSDL. Possible values are literal and encoded.
The default value is literal.

"OracleAS Web Services Message Formats" on page 4-1 provides more information on
the literal and encoded message uses.

Java Generation Arguments
The following options can be used to control how Java files are generated.

■ dataBinding

■ mapHeadersToParameters

■ overwriteBeans

■ unwrapParameters

■ valueTypeClassName

■ valueTypePackagePrefix

■ wsifEjbBinding

■ wsifJavaBinding

dataBinding
dataBinding <true|false>
If true, WebServicesAssembler will attempt to generate Java value types that follow
the JAX-RPC default type mapping rules for every element in the schema. If
WebServicesAssembler encounters an unsupported type, it will use the
javax.xml.soap.SOAPElement to represent it. If false, WebServicesAssembler
uses a SOAPElement for every schema type it encounters. Default value is true.

WebServicesAssembler Arguments

Using WebServicesAssembler 17-61

mapHeadersToParameters
mapHeadersToParameters <true|false>
Indicates if SOAP headers defined in the WSDL should be mapped to parameters for
each of the methods in the generated Java code. Default value is true.

overwriteBeans
overwriteBeans <true|false>
Indicates if beans should be generated for schema types even if the class already exists
in the classpath. Default value is false.

unwrapParameters
unwrapParameters <true|false>
This argument can be set only for document-literal operations and will be ignored for
other message formats. Typically a document-literal operation has a single input
schema type and a single output schema type. The schema types are sometimes called
wrappers. When unwrapParameters is set to false the generated service endpoint
interface will be generated with wrappers around the input parameter and the return
type. For example, a method with wrapped parameters may look like this.

public EchoResponse echo(EchoRequest p) throws RemoteException;

When unwrapParameters is set to true, which is the default, the return type and
response type will be unwrapped. This is usually easier to use, especially if the types
are simple. For example, a method with unwrapped parameters may look like this.

public String echo(String string) throws RemoteException;

valueTypeClassName
valueTypeClassName <String>
Specifies the fully-qualified class name of the JAX-RPC value type which is used for
java.util.Collection and java.util.Map. This argument enables you to
generate schemas for these classes since the service endpoint interface does not refer to
them directly.

"Oracle-Specific Type Support" on page 4-6 provides an example of using
valueTypeClassName to declare non-built-in value types as items in a Map or
Collection.

The valueTypeClassName argument can be used multiple times on the command
line or in an Ant task. In an Ant task, write the multiple occurrences in separate tags
and use the name attribute. Example 17–4 illustrates the use of multiple instances of
valueTypeClassName to generate schemas for the tClass1, tClass2, and
tClass3 type classes.

Example 17–4 Multiple Instances of valueTypeClassName in an Ant Task

<oracle:assemble appName="myService"
 output="build"
 input="myservice.jar"
 style="rpc"
 use="encoded">

Note: OracleAS Web Services does not support the combination of
RPC-encoded message formats and databinding=false. This
combination is not considered a "best practice" within the industry.

WebServicesAssembler Arguments

17-62 Web Services Developer's Guide

 <oracle:porttype
 interfaceName="com.myCompany.myService.Hello"
 className="com.mycompany.HelloImpl"/>
 <oracle:valueTypeClassName name="tClass1"/>
 <oracle:valueTypeClassName name="tClass2"/>
 <oracle:valueTypeClassName name="tClass3"/>
</oracle:assemble>

valueTypePackagePrefix
valueTypePackagePrefix <String>
Specifies the package name prefix for all value types that are to be created from a
WSDL. This argument enables you to group value type package names by service.

All value type classes will start with the specified package name. By default, the
package name for value types is based on the namespace of the complex type in the
schema. This argument can be used to prefix the package name that is derived from
the namespace.

For example, if valueTypePackagePrefix is set to myapp, and the type's target
namespace is http://ws-i.org/, then the package name will be
myapp.org.ws-i.

See "Specifying a Root Package Name" on page 17-66 for more information on how to
use this argument.

If you need more control over the WSDL namespace to Java package mapping, then
use a JAX-RPC mapping file. The valueTypePackagePrefix argument is ignored if
there is a namespace to package mapping defined in the JAX-RPC mapping file. For
more information on the mapping between WSDL namespaces and Java package
names, see "Default Algorithms to Map Between Target WSDL Namespaces and Java
Package Names" on page 17-63.

wsifEjbBinding
wsifEjbBinding <true|false>
This argument is used in bottom up Web services assembly to add WSIF EJB bindings
to the WSDL. If true, you must also specify the EJB's home interface className and
jndiName. WebServicesAssembler will generate native WSIF EJB bindings in addition
to SOAP bindings in the WSDL. The default value is false.

For information on the segments this argument adds to the WSDL, see "WSIF EJB
Extensions to the WSDL" in the Oracle Application Server Advanced Web Services
Developer's Guide.

If you need more control over the definition of the WSIF EJB bindings or need to
specify multiple ports, OracleAS Web Services provides additional arguments that are
available only by using Ant tasks. These arguments are described in "Configuring a
WSIF Endpoint for Multiple EJB Ports" in the Oracle Application Server Advanced Web
Services Developer's Guide.

The wsifEjbBinding, wsifJavaBinding, and wsifDbBinding arguments are
mutually exclusive. An exception will be thrown if two or more of these arguments are
used in a single command line or Ant task.

wsifJavaBinding
wsifJavaBinding <true|false>
This argument is used in bottom up Web services assembly to add WSIF Java bindings
to the WSDL. If true, you must also specify the className of the Java

Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names

Using WebServicesAssembler 17-63

implementation class. WebServicesAssembler will generate native WSIF Java bindings
in addition to SOAP bindings in the WSDL. The default value is false.

For information on the segments this argument adds to the WSDL, see "WSIF Java
Extensions to the WSDL" in the Oracle Application Server Advanced Web Services
Developer's Guide.

If you need more control over the definition of the WSIF Java bindings or need to
specify multiple ports, OracleAS Web Services provides additional arguments that are
available only by using Ant tasks. These arguments are described in "Configuring a
WSIF Endpoint for Multiple Java Ports" in the Oracle Application Server Advanced Web
Services Developer's Guide.

The wsifEjbBinding, wsifJavaBinding, and wsifDbBinding arguments are
mutually exclusive. An exception will be thrown if two or more of these arguments are
used in a single command line or Ant task.

Default Algorithms to Map Between Target WSDL Namespaces and Java
Package Names

The following sections describe the default algorithms that WebServicesAssembler
uses to map between namespaces and package names.

■ Java Package Name to WSDL Namespace Mapping Algorithm

■ WSDL Namespace to Java Package Name Mapping Algorithm

Java Package Name to WSDL Namespace Mapping Algorithm
The WebServicesAssembler constructs a default type namespace from the package
name. If the package name starts with a standard top-level domain name or an
International Organization for Standardization (ISO) country code, the
WebServicesAssembler "reverses" the package name and places it into an HTTP URL.
Otherwise, the package name is directly placed into an HTTP URL.

For example, the package com.oracle.mytypes will have the type namespace
http://mytypes.oracle.com/. The package examples.chapter1 will have the
type namespace http://examples.chapter1/.

The following sections describe the order in which the mapping algorithm in
WebServicesAssembler attempts to map Java artifacts and types to WSDL artifacts and
XML schema types.

■ Mapping Java Artifacts to WSDL Artifacts

■ Mapping Java Types to XML Schema Types

Mapping Java Artifacts to WSDL Artifacts
The following steps represent the order in which the WebServicesAssembler tool
attempts to map Java artifacts to WSDL artifacts.

Note: The standard top level domain names are defined by the
Internet Corporation For Assigned Names and Numbers
(http://www.icann.org/tlds/). ISO Country codes are defined
by the International Organization for Standardization
(http://www.iso.org/).

Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names

17-64 Web Services Developer's Guide

1. Use the value of the targetNamespace WebServicesAssembler argument to get
the target namespace to be used in the generated WSDL. See "targetNamespace"
on page 17-59 for more information on this argument.

2. Look up the value of the Java <package-mapping> element in the JAX-RPC
mapping file.

3. Derive the name of the WSDL namespace from the Java package name of the
service endpoint interface.

Mapping Java Types to XML Schema Types
The following steps represent the order in which the WebServicesAssembler tool
attempts to map Java types to XML schema types.

1. Look up the value of the Java <package-mapping> element in the JAX-RPC
mapping file.

2. Use the value of typeNamespace WebServicesAssembler argument to get the
type namespace for the schema types in the generated WSDL. See
"typeNamespace" on page 17-59 for more information on this argument.

3. Derive the WSDL namespace from the Java package of the value type.

4. Use the value of the targetNamespace attribute defined in the WSDL.

WSDL Namespace to Java Package Name Mapping Algorithm
The WSDL namespace to Java package name mapping is based on the algorithm in the
Java Architecture for XML Data Binding (JAXB) specification, version 2.0
(http://www.jcp.org/en/jsr/detail?id=222/). The following are exceptions
to the algorithm defined in the specification:

■ The algorithm in the JAXB specification states that the scheme part of the URI
should be removed only if it is either http or urn. The current implementation
has expanded the set of schemes to remove. The set includes the following: http,
https, ftp, mailto, file, nntp, telnet, ldap, nfs, urn, and tftp.

■ The algorithm in the JAXB specification does not specify what action to take when
NLS characters are present in the URI. In the current implementation, any
non-ASCII characters are encoded in the form uxxxx, where xxxx is the four-digit
UTF8 encoding.

■ The JAXB specification states that Step 6 of the algorithm should be skipped if the
top-level domain name is not a standard country code or top level domain name.
The specification does not further clarify what processing should be done in this
case. In the current implementation, the host string of the URI is tokenized with
the delimiter ".", even when the string does not end with a top-level domain name
or country code.

Table 17–3 lists some examples of package name to namespace mappings.

Table 17–3 Examples of Namespace to Package Name Mappings

Namespace Package Name

http://toplink.oracle.com com.oracle.toplink

http://somecompany.jp/ jp.somecompany

http://army.mil/ mil.army

http://oracle/j2ee/ws_example/ oracle.j2ee.ws_example

Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names

Using WebServicesAssembler 17-65

The following lists describe the order in which the mapping algorithm in
WebServicesAssembler attempts to map the service endpoint interface, value types,
and their related artifacts in the WSDL to Java names and types.

Mapping the WSDL Service Endpoint Interface and Related Endpoint Artifacts to
Java Package and Class Names
The following steps represent the order in which the WebServicesAssembler tool
attempts to map the service endpoint interface and its related artifacts in the WSDL to
Java names.

1. For the service endpoint interface, look up the value of the
<service-interface-mapping> element in the JAX-RPC mapping file. See
"JAX-RPC Mapping File Descriptor" in the Oracle Application Server Advanced Web
Services Developer's Guide for more information on this file.

2. Use the value of the packageName WebServicesAssembler argument to get the
Java package name for the generated classes. See "packageName" on page 17-42
for more information on this argument.

3. Look up the value of the <package-mapping> element in the JAX-RPC mapping
file.

4. Derive the Java package name from WSDL namespace.

Mapping WSDL Value Types and Related Artifacts to Java Names and Types
The following steps represent the order in which the WebServicesAssembler tool
attempts to map the value types and their related artifacts in the WSDL to Java names
and types.

1. Look up the <java-xml-type-mapping> element in the JAX-RPC mapping file.
See "JAX-RPC Mapping File Descriptor" in the Oracle Application Server Advanced
Web Services Developer's Guide for more information on this file.

2. If the schema type is defined under the same namespace as the
targetNamespace of the targeting document (a WSDL or schema), then use the
value of the packageName WebServicesAssembler argument. See "packageName"
on page 17-42 for more information on this argument.

3. Look up the value of the Java <package-mapping> element in the JAX-RPC
mapping file.

4. Derive the Java package name from the WSDL namespace and the value of the
valueTypePackagePrefix WebServicesAssembler argument as described in
"valueTypePackagePrefix" on page 17-62. See also "Specifying a Root Package
Name" on page 17-66 for more information on this argument.

Specifying a Namespace
Use the typeNamespace argument to explicitly specify a namespace. The name that
you specify will always be used and it will not be reversed.

http://www.acme.com/go/espeak.xsd com.acme.go.espeak

urn:dime/types.xsd dime.types_xsd

Table 17–3 (Cont.) Examples of Namespace to Package Name Mappings

Namespace Package Name

Establishing a Database Connection

17-66 Web Services Developer's Guide

Specifying a Root Package Name
Use the valueTypePackagePrefix argument to specify a root package name for all
types in the schema(s) in the specified WSDL. All package names will start with this
value. The specified value will be used only if there is no type namespace-to-package
mapping declared in the JAX-RPC mapping file.

If the generated package name starts with the same value, it will not be added to the
package name. This will avoid packages looking like com.oracle.mytypes.
com.oracle.mytypes.

Establishing a Database Connection
The aqAssemble, dbJavaAssemble, plsqlAssemble, and sqlAssemble commands
require a database connection to generate a Web service. A connection can be made to
the database at Web service assembly time and at runtime. At Web service assembly
time, the WebServicesAssembler connects to the database to get information on the
database entities such as PL/SQL packages or AQ queues. At Web service runtime, the
user application uses the data source JNDI location to get the JDBC connection for
database operations. WebServicesAssembler ensures that this information will be
provided to the Web service runtime code.

The following arguments can be used to provide connection information to a Web
service.

■ dbUser

■ dbConnection

■ dataSource

To provide assembly time and runtime access to the database, use either the
dataSource argument or the dbConnection and dbUser combination on the
command line or in an Ant task.

■ The dbConnection and dbUser arguments usually appear together. They
provide the JDBC URL and the database schema and password to
WebServicesAssembler for assembly time and runtime access to the database.

■ The dataSource argument provides the JNDI location that allows
WebServicesAssembler to provide assembly time and runtime access to the
database.

■ If all three arguments appear in an Ant task or on the command line, then the
values of dbConnection and dbUser will be used for assembly time access and
dataSource will be used for runtime access to the database.

Additional Ant Support for WebServicesAssembler
This section describes additional functionality that is available for
WebServicesAssembler through Ant tasks. This functionality is not available on the
WebServicesAssembler command line.

■ Using Multiple Instances of an Argument in Ant

■ Configuring Proxy Generation in an Ant Task

■ Configuring a Port in an Ant Task

■ Configuring a Port Type in an Ant Task

■ Configuring Handlers in an Ant Task

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-67

■ Adding Files to an Archive

■ Controlling a WebServicesAssembler Build

Using Multiple Instances of an Argument in Ant
The following arguments to WebServicesAssembler commands can be declared more
than once on the command line or in an Ant task.

■ input

■ schema

■ sqlstatement

■ valueTypeClassName

In an Ant task, you must list multiple instances of any of these arguments as separate
tags. When they are listed as separate tags, the input, schema, and sqlstatement
arguments require a value attribute. The valueTypeClassName argument requires
a name attribute.

For example, the following assemble command uses multiple instances of the input
argument to generate an EAR file which includes first.jar, second.jar, and
third.jar.

<oracle:assemble
 appName="myService"
 output="build">
 <oracle:porttype
 interfaceName="com.myCompany.myService.Hello"
 className="com.mycompany.HelloImpl"
 </oracle:porttype>
 <oracle:input value="first.jar"/>
 <oracle:input value="second.jar"/>
 <oracle:input value="third.jar"/>
</oracle:assemble>

The following jmsAssemble command uses multiple instances of the
valueTypeClassName argument to identify class names of the JAX-RPC value types
which can be items in java.util.Collection and java.util.Map.

<oracle:jmsAssemble
 linkReceiveWithReplyTo="true"
 targetNamespace="http://oracle.j2ee.ws/jms-doc"
 typeNamespace="http://oracle.j2ee.ws/jms-doc/types"
 serviceName="JmsService"
 appName="jms_service"
 context="jms_service"
 input="./demo/build/mdb_service.jar"
 output="./demo/dist"
 >
 <oracle:valueTypeClassName name="tClass1"/>
 <oracle:valueTypeClassName name="tClass2"/>
 <oracle:valueTypeClassName name="tClass3"/>
</oracle:jmsAssemble>

Configuring Proxy Generation in an Ant Task
The proxy subtag enables you to generate a client proxy at the same time the server
code is assembled. This is most useful during bottom up assembly when the name of

Additional Ant Support for WebServicesAssembler

17-68 Web Services Developer's Guide

the WSDL is not necessarily known ahead of time. You can use the proxy subtag in
Ant tasks for the following commands.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

The proxy subtask provides functionality similar to the genProxy
WebServicesAssembler command. Except for wsdl, any of the supported genProxy
arguments can be used as attributes in the proxy subtag.

The output argument is supported as an attribute, but is not required as it is for
genProxy. If output is not specified in the proxy subtag, then the value of output
provided for the parent tag will be used with the src/proxy directory path appended
to it. For example if the parent tag sets output="build", then the output for the
proxy subtag will be placed in build/src/proxy.

The following arguments can be used as attributes to the proxy subtag.

■ classpath

■ dataBinding

■ ddFileName

■ endpointAddress

■ genJUnitTest

■ mapHeadersToParameters

■ mappingFileName

■ output

■ overwriteBeans

■ packageName

■ replyToConnectionFactoryLocation

■ replyToQueueLocation

■ searchSchema

■ unwrapParameters

■ useDimeEncoding

■ valueTypePackagePrefix

Example 17–5 illustrates the use of a <proxy> subtag with a packageName attribute.
In this example, assemble is used as the parent tag.

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-69

Example 17–5 Using the proxy Subtag in an Ant Task

<oracle:assemble...> (or any command that supports the proxy tag)
 <oracle:proxy packageName="myproxy"/>
</oracle:assemble>

Generating Handler and Port Information into a Proxy
You can add message processing information and port-specific information to a proxy
by using the <handler> and <port> tags.

■ <handler>—to examine and potentially modify a request before it is sent to the
remote host, or before the client processes the response, you can configure a
<handler> tag as a sub tag of <proxy>. "Configuring Handlers in an Ant Task"
on page 17-71 provides more information on the <handler> tag.

■ <port>—to generate a proxy for a particular port, you can configure a <port>
tag as a sub tag of <proxy>. "Configuring a Port in an Ant Task" on page 17-69
provides more information on the <port> tag.

Configuring a Port in an Ant Task
The port identifies the network address of the endpoint hosting the Web service. For
some WebServiceAssembler commands, Ant tasks allow you to specify a port tag as a
child. This enables you to have a different configuration for each port. For example,
you can assign two different transports or two different SOAP versions.

These Ant tasks allow you to specify a port tag.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

■ genWsdl

■ genDDs

These arguments can be used in a port tag (note: arguments in the context of Ant
tasks are "attributes").

■ bindingName

■ endpointAddress

■ portName (or name)

■ replyToConnectionFactoryLocation

■ replyToQueueLocation

■ sendConnectionFactoryLocation

■ sendQueueLocation

Additional Ant Support for WebServicesAssembler

17-70 Web Services Developer's Guide

■ soapVersion

■ uri

In addition to these arguments, the port tag also enables you to specify a name
argument which is the local part of the port name.

Within the port tag, each command can specify zero or more optional arguments.
Each command supports a different subset of arguments. For the list of arguments that
can be used for a particular command, see the command's "Additional Ant Support"
section.

Example 17–6 illustrates using the port tag to specify a JMS and an HTTP transport to
different ports. Note that the port declaration for the HTTP transport uses the name
attribute. The name attribute is optional if you specify only one port in an Ant task. If
you specify multiple port tags in an Ant task, then the name attribute is required.

Example 17–6 Assigning Different Transports to Different Ports

<oracle:port
 uri="/echo"
 sendQueue="jms/senderQueue"
 sendConnectionFactoryLocation="jms/senderQueueConnectionFactory"
 replyToConnectionFactoryLocation="jms/receiverQueueConnectionFactory"
 replyToQueue="jms/receiverQueue"/>
<oracle:port uri="echo2" name="EchoHttpPort"/>

Example 17–7 illustrates using the port tag to specify different SOAP message
versions to different ports. When you specify multiple ports in the same Ant task, then
each port tag will require a name attribute:

Example 17–7 Assigning Different SOAP Message Versions to Different Ports

<oracle:assemble
 ...
 <oracle:port uri="soap11" soapVersion="1.1" name="httpSoap11Port" />
 <oracle:port uri="soap12" soapVersion="1.2" name="httpSoap12Port" />
 ...
/>

Configuring a Port Type in an Ant Task
Some Ant tasks allow you to specify a porttype tag as a child task. This enables you
to configure different interfaces to a Web service. The Ant tasks for these
WebServicesAssembler commands allow you to specify porttype as a child task:

■ assemble

■ genDDs

■ genWsdl

■ topDownAssemble

A porttype tag must have an interfaceName argument to identify the interface to
the Web service. If you are specifying multiple <porttype> tags, then each tag must
contain a <port> subtag. For more information on port tags, see "Configuring a Port
in an Ant Task" on page 17-69.

When configuring a porttype with the assemble, topDownAssemble, genDDs,
and genWsdl commands, you must specify a className attribute. For the

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-71

assemble and topDownAssemble commands, you can specify a classFileName
attribute instead of a className attribute.

Additionally, for the topDownAssemble command, if the WSDL contains references
to multiple port types, then you must specify a <porttype> tag for each port type.

 Table 17–4 summarizes the valid attributes and subtags that can be used with the
<porttype> tag.

Example 17–8 illustrates assigning a port type to a Web service.

Example 17–8 Associating a Port Type to a Web Service

...
<oracle:porttype
 interfaceName="my.company.MyInterface"
 className="my.company.MyImpl">
</oracle:porttype>
...

Configuring Handlers in an Ant Task
This section has the following subsections.

■ Attributes and Child Tags for handler Tags

■ Sample Handler Configuration

■ Ant Tasks that Can Configure Handlers

■ Configuring Multiple Handlers in an Ant Task

WebServicesAssembler lets you configure handlers and client handlers in Ant tasks.
You can use the Ant tasks to configure all of the information defined for handlers by
the Enterprise Web Services 1.1 specification.

Table 17–4 Attributes and Subtags for the <porttype> Tag

Attributes and Subtags Description

classFileName attribute This attribute can be specified for the assemble and
topDownAssemble commands if a className is not specified.
It identifies the Java file name of the implementation class
specified in the className argument.

className attribute This attribute is required for the assemble,
topDownAssemble, genDDs, and genWsdl commands. It
specifies the name of the class (including the package name) that
is the implementation class for the Web service.

interfaceName attribute An interfaceName attribute is required. It identifies the
interface to the Web service.

<port> subtag A <port> subtag is required if you are specifying multiple
<porttype> tags. It identifies the port to which the Web service
interface applies. If you are specifying only one <porttype>
tag, then a <port> tag is not required.

Note: Handlers and client handlers can be declared and configured
only in Ant tasks. They cannot be declared or configured on the
command line.

Additional Ant Support for WebServicesAssembler

17-72 Web Services Developer's Guide

A handler can examine and potentially modify a request, response, or fault before it is
processed by a Web service component. It can also examine and potentially modify the
response or fault after the component has processed the request. A client handler, as its
name implies, runs on the client before the request is sent to the remote host, and
before the client processes the response.

The handler tag defines a handler in a WebServicesAssembler Ant task. Attributes
define details about the handler. These tags and attributes correspond to the
<handler> tag and its sub-elements defined by the Enterprise Web Services 1.1
specification. Declaring a handler and its attributes in an Ant task will set
corresponding elements in webservices.xml.

Attributes and Child Tags for handler Tags
The following sections describe the attributes and child tags that can be used with the
handler tag.

■ class attribute

■ initparam child tag

■ name attribute

■ soapheader child tag

■ soaprole attribute

class
class="class_name"
This attribute defines a fully-qualified class name for the handler implementation.

Using this attribute sets the <handler-class>class_name</handler-class>
element in webservices.xml.

initparam
<oracle:initparam name="myName" value="myValue" />
This child tag defines a name-value pair that a handler can use as an initialization
parameter. The name attribute contains the name of a parameter. Each parameter name
must be unique in the Web application. The value attribute contains the value of the
corresponding parameter.

You can define multiple initparam declarations as children of a handler Ant task
invocation.

Using the initparam child tag sets the following <init-param> structure in
webservices.xml.

<init-param>
 <param-name>myName</param-name>
 <param-value>myValue</param-value>
</init-param>

name
name="handler_name"
This attribute defines the name of the handler. The name must be unique within the
module.

Using this attribute sets the <handler-name>handler_name</handler-name>
element in webservices.xml.

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-73

soapheader
<oracle:soapheader value="{namespace_URI}local_part"/>
This child tag defines the QName of a SOAP header that will be processed by the
handler. The value attribute takes a local part of a QName and a namespace URI. You
can define multiple soapheader declarations as children of a handler Ant task.

The value of the soapheader child tag is written to the soap-header tag in
webservices.xml. For example, if the namespace URI is
http://oracle.j2ee.ws/Header and the local part is authenticateHeader,
then the soapheader child tag has the following value.

<oracle:soapheader value="{http://oracle.j2ee.ws/Header}authenticateHeader"/>

This value will have the following representation in the webservices.xml file.

<soap-header
xmlns:wsa1="http://oracle.j2ee.ws/Header">wsa1:authenticateHeader</soap-header>

In this example, wsa1 is a unique prefix for the given namespace.

soaprole
soaprole ="Some_SoapRole"
This attribute defines a SOAP-actor that the handler will play as a role.

Using this attribute sets the <soap-role>Some_SoapRole</soap-role> element in
webservices.xml.

Sample Handler Configuration
To illustrate how to construct a handler configuration that can be used in an Ant task,
Example 17–9 provides a sample configuration for the StaticStateHandlerName
handler. The handler in implemented by the
myApp.handler.StaticStateHandler class, and it requires two initialization
parameters, SCOTT and TIGER. The handler will process two types of SOAP headers:
authenticateHeader and authenticateHeader2.

Example 17–9 A Sample Handler Configuration

<some tag that supports handlers>
 <oracle:handler soaprole="Some_SoapRole"
 name="StaticStateHandlerName"
 class="myApp.handler.StaticStateHandler">
 <oracle:initparam name="id" value="SCOTT"/>
 <oracle:initparam name="password" value="TIGER"/>
 <oracle:soapheader value="{http://oracle.j2ee.ws/Header}authenticateHeader"/>
 <oracle:soapheader value="{http://oracle.j2ee.ws/Header2}
authenticateHeader2"/>
 </oracle:handler>
</some tag that supports handlers>

Ant Tasks that Can Configure Handlers
The Ant tasks for the following WebServiceAssembler commands allow you to specify
a handler tag as a child task.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

Additional Ant Support for WebServicesAssembler

17-74 Web Services Developer's Guide

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

■ genProxy

■ genDDs (can specify a handler tag for the server side only)

Configuring Multiple Handlers in an Ant Task
You can specify multiple handlers for any command that supports handlers. Each
handler can have a different configuration.

Example 17–10 illustrates a multiple handler configuration. The parent tag can be any
tag which supports handlers.

■ The first handler tag configures the StaticStateHandlerName handler. The
handler is implemented by the myApp.handler.StaticStateHandler class,
and it requires two initialization parameters, SCOTT and TIGER. The handler will
process two types of SOAP headers: authenticateHeader and
authenticateHeader2.

■ The second handler tag shows a very basic handler tag. It configures the
MyOtherHandler handler that is implemented by the
myapp.handler.MyOtherHandler class.

Example 17–10 Sample Multiple Headers

<some tag that supports handlers>
 <handler soaprole="Some_SoapRole" name="StaticStateHandlerName"
 class="myApp.handler.StaticStateHandler">
 <initparam name="id" value="SCOTT"/>
 <initparam name="password" value="TIGER"/>
 <soapheader namespace="http://oracle.j2ee.ws/Header"
 localpart="authenticateHeader"/>
 <soapheader namespace="http://oracle.j2ee.ws/Header2"
 localpart="authenticateHeader2"/>
 </handler>
 <handler name="MyOtherHandler" class="myApp.handler.MyOtherHandler"/>
</some tag that supports handlers>

Adding Files to an Archive
To add a file to an EAR or WAR archive, copy the file to the directory that
WebServicesAssembler uses as a staging area where it jars the archive before calling
the *Assemble task. Figure 17–1 illustrates the layout of the staging area.

The default staging area is <output>/war for a WAR archive and <output>/ear for an
EAR archive. The <output> variable indicates the value of the output argument. For
example, if the value of the output argument is outputDir, then the files are stored
in outputDir/war and outputDir/ear.

For example, the following Ant task will place a key store oraks.jks into the
generated EAR.

<copy file="oraks.jks" todir="build/ear/META-INF/>
<oracle:assemble output="build"

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-75

 ...
 />

Controlling a WebServicesAssembler Build
WebServicesAssembler provides a Boolean failonerror argument that will allow
you to continue a build even though there are errors. If the value of failonerror is
true, the build fails if WebServicesAssembler encounters an error. If the value is
false, then the build will continue. The default value is true.

The failonerror argument can be used with any WebServicesAssembler command.
In the following example, WebServicesAssembler will continue to process if the
assemble command encounters an error.

<oracle:assemble failonerror="false"
 ...
/>

Assigning Multiple Web Services to an EAR or WAR Archive
To assign multiple Web services in a single archive (EAR or WAR) the assemble or
topDownAssemble task must be called for each Web service that is going in the WAR.
The arguments defined for each assemble task must follow these rules.

■ All output arguments must have the same value.

■ Only the last assemble task can define an ear argument. The reason for this is
when an ear argument is specified, the contents of the WAR staging directory
(/war) will be archived and put in the EAR. When an archive is created, the files
in the staging area are deleted.

■ The war argument for all tasks except the last, must have the same value as the
output argument with the directory name /war appended to it. This is because
WebServicesAssembler's default behavior is to use the output directory,
directory/war, as the staging area for the WAR. For example, if the output
argument is set to dist then the war argument should be set to dist/war.

■ All tasks except the first must set appendToExistingDDs to true. The first
assemble task can set appendToExistingDDs to true only if the output
directory/war, already contains deployment descriptors that you want
WebServicesAssembler to modify (for example a web.xml with resource
references).

■ The last assemble task should not define a war argument unless you want
WebServicesAssembler to create a WAR instead of an EAR.

■ The appName argument must be unique in all of the assemble tasks.

■ If a uri argument is specified it must be unique in all of the assemble tasks.

Example 17–11 displays the Ant tasks to assign two Web services, firstApp and
nextApp to the myApps.ear EAR file. Note the following details in the example
code.

■ the output arguments for the two assemble commands are assigned the same
value for the output directory path: ${out.dir}.

■ the first assemble command stores its output in a /war directory, while the last
assemble argument specifies the EAR file that will store the two Web services.

Additional Ant Support for WebServicesAssembler

17-76 Web Services Developer's Guide

■ the last Web service specifies the appendToExistingDDs so that its deployment
descriptor will be appended to the descriptor generated by the previous
command.

The ellipsis indicates additional Ant commands.

Example 17–11 Ant Tasks to Assign Two Web Services to an EAR

 <oracle:assemble appName="firstApp"
 output="${out.dir}"
 war="${out.dir}/war"
 ...
 />
 <oracle:assemble appName="nextApp"
 output="${out.dir}
 appendToExistingDDs="true"
 ear="myApps.ear"
 ...
 />

Example 17–12 displays the Ant tasks to assign three Web services, firstApp,
nextApp, and lastApp to the myApps.ear EAR file. Note the following details in
the example code.

■ the output arguments for the three assemble commands are assigned the same
value for the output directory path: ${out.dir}.

■ the first two assemble commands store their output in a /war directory, while
the last assemble argument specifies the EAR file that will store the three Web
services.

■ the second and last Web services also specify the appendToExistingDDs so that
their deployment descriptors will be appended to the descriptor generated by the
previous command.

The ellipsis indicates additional Ant commands.

Example 17–12 Ant Tasks to Assign Three Web Services to an EAR

<oracle:assemble appName="firstApp"
 output="${out.dir}"
 war="${out.dir}/war"
 ...
 />
 <oracle:assemble appName="nextApp"
 output="${out.dir}
 appendToExistingDDs="true"
 war="${out.dir}/war"
 ...
 />
 <oracle:assemble appName="lastApp"
 output="${out.dir}
 appendToExistingDDs="true"
 ear="myApps.ear"
 ...
 />

Additional Ant Support for WebServicesAssembler

Using WebServicesAssembler 17-77

Limitations on Assigning Multiple Web Services to a WAR File
WebServicesAssembler does not check for conflicts when adding multiple Web
services to a single WAR. The following conflicts will cause an invalid assembly that
will not be detected until deployment time or runtime.

■ The different Web services contain WSDL files that have the same name.

If the WSDL files in different Web services have the same name, then one of the
WSDL files will overwrite the others. To avoid this conflict, ensure that WSDL file
names in different Web services are unique.

■ The different Web services contain class files that have the same name.

If class files use the same name (including package name) in different Web
services, then one of the classes will overwrite the other. In some cases, these files
really are the same. For example, value type classes from the same schema types
can be shared between two different services. This type of conflict will not cause a
problem.

Classes that cannot be the same include the service endpoint interface and the
implementation class. If the class files are not the same, then they should either be
renamed or placed in a different package.

Representing Java Method Parameter Names in the WSDL
When you are generating a Web service bottom up from Java classes or EJBs,
WebServicesAssembler generates a WSDL. For a Java method's <element
name="..." /> attribute in the generated WSDL, WebServicesAssembler attempts to
use the method's actual parameter names. Using the method's actual parameter names
in the WSDL and SOAP messages makes it easier for you to determine which
parameter corresponds to which element.

WebServicesAssembler uses these techniques to attempt to retrieve the method's
parameter names in the following order.

1. If the interface source file is provided, WebServicesAssembler will parse the code
for parameter names. To do this, the full path name of the Java interface file must
be specified with the interfaceFileName argument.

2. If the interface source file is not provided, WebServicesAssembler will attempt to
load and parse the Java class file that implements the methods in the interface. To
be able to extract the parameter names, the class file must have been compiled
with the -g option to javac.

If these techniques fail to retrieve the parameter names, or if the class is not loadable or
obfuscated, then WebServicesAssembler uses the parameter's datatype and a number
(for example, string_1) by default.

Example 17–13 and Example 17–14 provide WSDL fragments that represent the
following method.

public String sayHello(String name)

Example 17–13 illustrates a WSDL fragment where WebServicesAssembler was able to
retrieve the sayHello method's parameter name. The <element name="..."/>
attribute and its value are highlighted in bold.

Example 17–13 WSDL Fragment With a Generated Parameter Name

<definitions name="HelloService" targetNamespace="http://hello.demo.oracle/">
 <types>

Limitations

17-78 Web Services Developer's Guide

 <schema elementFormDefault="qualified"
targetNamespace="http://hello.demo.oracle/">
 <complexType name="sayHello">
 <sequence>
 <element name="name" nillable="true" type="string"/>
 </sequence>
 </complexType>
...

Example 17–14 illustrates a WSDL fragment where the sayHello method's parameter
name could not be determined. WebServicesAssembler uses string_1 value for the
element name attribute. The <element name="..."/> attribute and its value are
highlighted in bold.

Example 17–14 WSDL Fragment With a Default Parameter Name

<definitions name="HelloService" targetNamespace="http://hello.demo.oracle/">
 <types>
 <schema elementFormDefault="qualified"
targetNamespace="http://hello.demo.oracle/">
 <complexType name="sayHello">
 <sequence>
 <element name="string_1" nillable="true" type="string"/>
 </sequence>
 </complexType>
...

Limitations
See "Using WebServicesAssembler" on page C-7.

Additional Information
For more information on:

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

■ assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

■ assembling REST Web services, see Chapter 11, "Assembling REST Web Services".

■ building J2EE clients, see Chapter 13, "Assembling a J2EE Web Service Client".

■ building J2SE clients, see Chapter 14, "Assembling a J2SE Web Service Client".

■ packaging and deploying Web services, see Chapter 18, "Packaging and Deploying
Web Services".

Additional Information

Using WebServicesAssembler 17-79

■ JAR files that are needed to assemble a client, see Appendix A, "Web Service Client
APIs and JARs".

■ Web services interoperability, see "Ensuring Interoperable Web Services" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ how to write clients to access Web services secured on the transport level, see
"Adding Transport-level Security for Web Services Based on EJBs" and "Accessing
Web Services Secured on the Transport Level" in the Oracle Application Server Web
Services Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

■ processing nonstandard data types, see "Custom Serialization of Java Value Types"
in the Oracle Application Server Advanced Web Services Developer's Guide.

■ using the JAX-RPC mapping file and its contents, see "JAX-RPC Mapping File
Descriptor" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ data types supported by OracleAS Web Services, see "Mapping Java Types to XML
and WSDL Types" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ using the Web Service Invocation Framework, see "Using Web Services Invocation
Framework" in the Oracle Application Server Advanced Web Services Developer's
Guide.

■ JDeveloper tool support for Web service development, see the JDeveloper on-line
help.

Additional Information

17-80 Web Services Developer's Guide

Packaging and Deploying Web Services 18-1

18
Packaging and Deploying Web Services

This chapter describes the packaging of Web service files and deployment support
offered by Oracle Application Server Web Services. Except for a few details, Web
services are packaged and deployed in the same manner as any other J2EE application.

This chapter does not describe deployment itself. The deployment of Web modules
and EJBs is covered in detail in the Oracle Containers for J2EE Deployment Guide. For
more information, see the Oracle Containers for J2EE Deployment Guide.

Web service files can be assembled and packaged by using either JDeveloper or
WebServicesAssembler. The tools ensure that the correct files and deployment
descriptors are included for the packaged application. Options in JDeveloper wizards
and arguments to WebServicesAssembler commands allow you to configure values in
the deployment descriptors that the Web service will use at runtime. The files are
packaged into a deployable EAR file according to the rules outlined in the Enterprise
Web Services 1.1 specification.

You can also assemble and package a Web service application by hand. Although this
chapter describes Web service package structure and contents, it does not describe the
details of manual assembly.

Deployment can be performed by using admin_client.jar on the command line,
Ant tasks, or by using the JDeveloper or Application Server Control tools.

Table 18–1 summarizes the Oracle tools that can perform Web service packaging and
deployment.

As a final step, you can publish your deployed Web service to the Universal
Description, Discovery, and Integration (UDDI) registry. Discussion of UDDI is beyond
the scope of this documentation. For more information about working with UDDI, see
the following Web address.

http://www.uddi.org/specification.html

This chapter has the following sections.

■ Packaging Web Service Applications

■ Tool Support for Packaging

Table 18–1 Packaging and Deployment Support Offered by Oracle Tools

WebServices-
Assembler

JDeveloper Application
Server Control

admin_client.jar Ant
Tasks

Packaging Yes Yes No No No

Deployment No Yes Yes Yes Yes

Packaging Web Service Applications

18-2 Web Services Developer's Guide

■ Understanding Web Service Deployment

■ Tool Support for Deployment

■ oracle-webservices.xml Deployment Descriptor

Packaging Web Service Applications
The Web service files which are intended for deployment to OC4J are included in a
component deployment module. This component deployment module can be a JAR
file for an EJB or a WAR file for Java classes. The component deployment module is
then stored in a deployable EAR. The following sections provide more detail on the
packaging of Web service files.

■ Packaging Structure for Web Service Applications

■ Description of Packaged Files

Packaging Structure for Web Service Applications
The package structure for Web service files in an EAR file follows the rules defined by
the Enterprise Web Services 1.1 specification. The following sections describe the
packaging structure for Web services based on Java classes and EJBs.

■ Packaging for a Web Service Based on Java Classes

■ Packaging for a Web Service Based on EJBs

Packaging for a Web Service Based on Java Classes
For a Web service based on Java classes, the EAR file contains a WAR file. The
deployment and class files reside under the WEB-INF directory in the WAR. The
WEB-INF directory contains the web.xml, webservices.xml,
oracle-webservices.xml, and the JAX-RPC mapping file. It also contains a
classes directory for the class files, a lib directory for the JAR files, and a wsdl
directory for the WSDL.

The META-INF directory contains the MANIFEST.MF manifest file which defines
extension and package related data and the application.xml file which specifies
the components of a J2EE application.

Example 18–1 illustrates the packaging structure for a Web service based on Java
classes.

Example 18–1 Packaging Structure for a Web Service Based on Java Classes

<serviceName>.ear contains
 META-INF/
 |--MANIFEST.MF
 |--application.xml

 <serviceName>.war contains
 WEB-INF/
 |--web.xml
 |--webservices.xml
 |--oracle-webservices.xml
 |--<mapping file>
 |--wsdl/
 |--<serviceName>.wsdl
 |--classes/
 |--class files

Packaging Web Service Applications

Packaging and Deploying Web Services 18-3

 |--lib/
 |--*jar files

Packaging for a Web Service Based on EJBs
The packaging structure for a Web service based on EJBs is similar to Java classes,
except the EAR file contains a META-INF directory for the manifest and a JAR file.
Within the JAR file is another META-INF directory which contains the deployment and
class files for the EJB. The META-INF directory within the JAR contains the
ejb-jar.xml, webservices.xml, oracle-webservices.xml, and the JAX-RPC
mapping file. It also contains the class files and a wsdl directory for the WSDL.
Example 18–2 illustrates the packaging structure for a Web service based on EJBs.

Example 18–2 Packaging Structure for a Web Service Based on EJBs

<serviceName>.ear contains
 META-INF/
 |--MANIFEST.MF
 |--application.xml

 <serviceName>.jar contains
 class files
 META-INF/
 |--ejb-jar.xml
 |--webservices.xml
 |--oracle-webservices.xml
 |--<mapping file>
 |--wsdl/
 |--<serviceName>.wsdl

Description of Packaged Files
The following list describes the files that are packaged for deployment.

■ application.xml—describes all of the WARs and EJB JARs in the EAR. It
specifies the components of a J2EE application, such as EJB and Web modules, can
specify additional configuration for the application as well. This descriptor must
be included in the /META-INF directory of the application's EAR file. The
application.xml file is defined by the application_1_4.xsd schema
located at the following Web site.

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd

■ ejb-jar.xml—the deployment descriptor for an EJB component. It defines the
specific structural characteristics and dependencies of the Enterprise JavaBeans
within a JAR, and provides instructions for the EJB container about how the beans
expect to interact with the container.

There is a relationship between the contents of webservices.xml and
ejb-jar.xml to identify the EJB exposed as a Web service. Figure 18–1 illustrates
this relationship.

The ejb-jar.xml file is defined by the schema located at the following Web site.

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

■ <mapping file>.xml (for example, serviceName_java-wsdl-mapping.xml)—the
JAX-RPC mapping file that maps Java interfaces, methods, and parameters to the
WSDL. For more information on this file, see JAX-RPC Mapping File Descriptor in
the Oracle Application Server Advanced Web Services Developer's Guide.

Packaging Web Service Applications

18-4 Web Services Developer's Guide

■ oracle-webservices.xml—a deployment descriptor that defines deployment
properties specific to a Web service application running on OracleAS Web
Services. For more information on the contents of this file, see
"oracle-webservices.xml Deployment Descriptor" on page 18-12.

■ web.xml—this deployment descriptor is defined by the Java Servlet 2.4
specification. This deployment descriptor can be used to deploy a Web application
on any J2EE-compliant application server. For more information on the web.xml
file, see the Java Servlet 2.4 specification at the following Web site.

http://jcp.org/aboutJava/communityprocess/final/jsr154/index.
html

There is a relationship between the contents of webservices.xml and web.xml
to identify the servlet exposed as a Web service. Figure 18–2 illustrates this
relationship.

The web.xml file is defined by the web-app_2_4.xsd schema located at the
following Web site:

http://java.sun.com/xml/ns/j2ee/

■ webservices.xml—a standard configuration file for a Web Service application
packaged within a component deployment module. It defines the Web service
endpoint, associated configuration files, WSDL information, and JAX-RPC
mapping data. It provides the location of the WSDL file (<wsdl-file>), the
mapping file (<jaxrpc-mapping-file>), the <port-component>
corresponding to the ports in the WSDL, the Java service endpoint interface
(<service-endpoint-interface>), the Java representation of the WSDL, and
the servlet name (<servlet-link>) or EJB name (<ejb-link>).

There is a relationship between the contents of webservices.xml and the
ejb-jar.xml, oracle-webservices.xml, and web.xml files. These
relationships identify the component being exposed as a Web service and to pass
metadata between files. "Relationships Between Deployment Descriptor Files"
provides more information on these relationships.

The webservices.xml file is defined by the j2ee_web_services_1_1.xsd
schema located at the following Web site:

http://java.sun.com/xml/ns/j2ee/

■ WSDL file—describes the interface of the Web service and the format of the
messages used to invoke it. If an archive containing a Web service does not include
a Web Services Description Language (WSDL) document, OracleAS Web Services
will generate a WSDL document at deployment time. The WSDL is defined by the
specification located at the following Web site.

http://www.w3.org/TR/wsdl

Relationships Between Deployment Descriptor Files
This section illustrates the relationships between the webservices.xml file and the
ejb-jar.xml, oracle-webservices.xml, and web.xml files.

webservices.xml and ejb-jar.xml Figure 18–1 illustrates the relationship between the
contents of webservices.xml and ejb-jar.xml for Web services based on EJBs.
The <ejb-link> element in webservices.xml provides the same value as
<ejb-name> in ejb-jar.xml. This mapping identifies the EJB that is to be exposed
as a Web service and hence over HTTP (SOAP over HTTP). The
<service-endpoint-interface> element in webservices.xml provides the

Packaging Web Service Applications

Packaging and Deploying Web Services 18-5

same value as <service-endpoint> element in ejb-jar.xml. This serves as an
additional uniqueness constraint on the EJB.

Figure 18–1 Relationship Between webservices.xml and ejb-jar.xml

webservices.xml and oracle-webservices.xml Figure 18–2 illustrates the relationship
between the contents of the J2EE standard webservices.xml deployment descriptor
and the oracle-webservices.xml proprietary deployment descriptor. This
relationship allows metadata to be mapped between files. The
<port-component-name> element in webservices.xml provides the same value
as the name attribute in <port-component name="..."> in
oracle-webservices.xml. The <webservice-description-name> element in
webservices.xml provides the same value as the name attribute in
<webservice-description name="..."> in oracle-webservices.xml.

META-INF/ejb-jar.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar
 <enterprise-beans>
 <session>
 <home>…</home>
 <remote>…</remote>
 <ejb-name>HelloServiceEJB</ejb-name>
 <service-endpoint>oracle.demo.ejb.HelloServiceInf</service-endpoint>
 <ejb-class> …</ejb-class>
 <session-type>…</session-type>
 </session>
 </enterprise-beans>
</ejb-jar>

META-INF/webservices.xml:

<webservices>
 <webservice-description>
 <webservice-description-name>HelloServiceEJB</webservice-description-name>
 <wsdl-file>…</wsdl-file>
 <jaxrpc-mapping-file>… </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>HttpSoap11</port-component-name>
 <wsdl-port>…</wsdl-port>
 <service-endpoint-interface>oracle.demo.ejb.HelloServiceInf</service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>HelloServiceEJB</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

Packaging Web Service Applications

18-6 Web Services Developer's Guide

Figure 18–2 Relationship Between webservices.xml and oracle-webservices.xml

webservices.xml and web.xml Figure 18–3 illustrates the relationship between the
contents of webservices.xml and web.xml to identify the servlet that is to be
exposed as a Web service The <servlet-link> element in webservices.xml
provides the same value as the <servlet-name> present in web.xml. This allows
the Web service implementation to be exposed as a servlet and hence over HTTP
(SOAP over HTTP). This generalized approach allows application packages to be
portable across J2EE containers implementing JAX-RPC and the Enterprise Web
Services 1.1 specification. An application adhering to these standards can be deployed
to any container that complies with the Enterprise Web Services 1.1 specification and
can be invoked using any Web service client.

META-INF/oracle-webservices.xml:

<oracle-webservices>
 <context-root>… </context-root>
 <webservice-description name="HelloServiceEJB">
 <port-component name="HttpSoap11">
 <endpoint-address-uri>… </endpoint-address-uri>
 </port-component>
 </webservice-description>
</oracle-webservices>

META-INF/webservices.xml:

<webservices>
 <webservice-description>
 <webservice-description-name>HelloServiceEJB</webservice-description-name>
 <wsdl-file>…</wsdl-file>
 <jaxrpc-mapping-file>… </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>HttpSoap11</port-component-name>
 <wsdl-port>…</wsdl-port>
 <service-endpoint-interface>oracle.demo.ejb.HelloServiceInf</service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>HelloServiceEJB</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

Tool Support for Packaging

Packaging and Deploying Web Services 18-7

Figure 18–3 Relationship Between webservices.xml and web.xml

Tool Support for Packaging
This section describes the tool support for packaging Web service files offered by
OracleAS Web Services. Packaging can be performed by WebServicesAssembler and
by JDeveloper.

■ Packaging Support with WebServicesAssembler

■ Packaging Support with JDeveloper

Packaging Support with WebServicesAssembler
This section describes the packaging support offered by WebServicesAssembler. The
commands that assemble a Web service also package it in a deployable EAR file. In the
course of assembling the files, many of these commands also create the deployment
descriptors. The deployment descriptors contain the declarative data required to
deploy the components as well as the assembly instructions that describe how the
components are composed into an application.

■ WebServicesAssembler Packaging Commands

■ Managing Deployment Descriptors

WebServicesAssembler Packaging Commands
WebServicesAssembler provides several commands that assemble all of the files
needed for a Web service.

WEB-INF/web.xml:

<web-app >
 <servlet>
 <description>…</description>
 <display-name>…</display-name>
 <servlet-name>HttpSoap11</servlet-name>
 <servlet-class>oracle.demo.hello.HelloImpl</servlet-class>
 <!--note: servlet-class is the Java class being exposed as Web service-->
 <load-on-startup>…</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>…</servlet-name>
 <url-pattern>…</url-pattern>
 </servlet-mapping>
</web-app>

WEB-INF/webservices.xml:

<webservices >
 <webservice-description>
 <webservice-description-name>…</webservice-description-name>
 <wsdl-file>…</wsdl-file>
 <jaxrpc-mapping-file>… </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>…</port-component-name>
 <wsdl-port > …</wsdl-port>
 <service-endpoint-interface>oracle.demo.hello.HelloInterface</service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>HttpSoap11</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>
~
~
~I

Tool Support for Packaging

18-8 Web Services Developer's Guide

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

WebServicesAssembler handles the generation of all relevant deployment descriptors
and maps the proprietary configuration needed by the applications into
Oracle-specific deployment files. It also packages all of the relevant files so that they
can be deployed to an application server. For more information on these commands,
see "Web Service Assembly Commands" on page 17-3.

These commands support arguments that let you package or save the generated files
in a number of ways. The ear argument saves the files as a deployable EAR file. The
war argument saves the files as a WAR file. The files can also be saved un-archived, in
a directory that contains the contents of a WAR. For more information on these
arguments, see "ear" on page 17-38 and "war" on page 17-45.

Managing Deployment Descriptors
A number of WebServicesAssembler commands create deployment descriptors in the
course of assembling a Web service. WebServicesAssembler does not perform
deployment, but arguments to WebServicesAssembler commands will allow you to set
values in the deployment descriptors.

■ Creating Deployment Descriptors

■ Arguments that Affect Deployment Descriptor Contents

Creating Deployment Descriptors Several of the WebServicesAssembler commands
generate the application.xml, web.xml, webservices.xml, and
oracle-webservices.xml deployment descriptors as part of their output. The
commands that generate these files are:

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ topDownAssemble

■ genApplicationDescriptor (generates application.xml only)

■ genDDs

Tool Support for Packaging

Packaging and Deploying Web Services 18-9

Arguments that Affect Deployment Descriptor Contents Calling WebServicesAssembler
commands with the following arguments will affect the content of elements in the
following deployment descriptors.

application.xml:

■ context—when used for web applications, adds the <context-root> element.

oracle-webservices.xml:

■ callScope—adds the <param name="scope">call</param> element.

■ context—when used for EJB 2.1, adds the <context-root> element.

■ dataSource—adds the following param name attribute to the <implementor>
element. In the following example, dataSource value is the value specified for the
dataSource argument.

<param name="databaseJndiName">dataSource value</param>

■ ddFileName—when used with the *Assemble commands, management and
custom serialization information will be copied from the specified file to the
oracle-webservices.xml file in the archive.

■ restSupport—adds a Boolean <rest-support> subelement to the
<port-component> element and the <provider-port> element.

■ session—adds the <param name="scope">session</param> element.

■ timeout—adds the <param name="session-timeout">integer</param>
element.

■ uri—when used for EJB 2.1, adds the <endpoint-address-uri> element.

■ useDimeEncoding—adds the <use-dime-encoding> element.

query-java-wsdl-mapping.xml:

■ interfaceName—when used with the commands to assemble a Web service from
database resources (plsqlAssemble, sqlAssemble, dbJavaAssemble, or
aqAssemble) adds the <service-endpoint-interface> element.

web.xml:

■ className—adds the <servlet-class> element.

■ recoverable—adds a Boolean <distributable> element.

■ uri—when used for web applications, adds the <url-pattern> element.

webservices.xml:

■ ejbName—adds the <ejb-link> element to webservices.xml for EJB 2.1 only.

■ interfaceName—adds the <service-endpoint-interface> element.

■ mappingFileName—adds the <jaxrpc-mapping-file> element. Note that the
location and name of the file may be changed when put in the deployment
descriptor. The contents of the file may be modified before being placed in the
archive if some mappings were not defined in the original file.

■ <handler> tags—the data in handler tags are added to webservices.xml.
These tags can be used only in Ant tasks.

Understanding Web Service Deployment

18-10 Web Services Developer's Guide

Packaging Support with JDeveloper
JDeveloper provides wizards that can package your Web service application for
deployment. For more information on the support offered by JDeveloper, see the
following topics in the JDeveloper on-line help.

■ About J2EE Archive Formats

Lists the archive types and their associated module types and contents, as
supported by JDeveloper.

■ Configuring Applications for Deployment

Provides links to topics dealing with the configuration and packaging of
deployment descriptors, client applications, EJBs, and applets.

■ Configuring EJBs for Deployment

Takes you through the steps of creating a EJB JAR File deployment profile and
adding an ejb-jar.xml deployment descriptor.

■ Configuring a Client Application for Deployment

Takes you through the steps of creating a client JAR file deployment profile and
creating the application-client.xml deployment descriptor file.

■ Configuring an Applet for Deployment

Takes you through the steps of creating a WAR File deployment profile and
adding a web.xml deployment descriptor.

Understanding Web Service Deployment
Deployment is the process which transfers application files to the server where the
application will run. The deployment of Web modules and EJBs is covered in detail in
the following chapters of the Oracle Containers for J2EE Deployment Guide.

■ For guidelines on deploying WAR files into OracleAS Web Services, see
"Deploying Web Modules".

■ For guidelines on deploying EJB archives, see "Deploying Enterprise JavaBeans".

■ For guidelines on deploying applications from the command line, see "Deploying
Applications with admin_client.jar".

■ For guidelines on deploying applications from Ant tasks, see "Deploying with the
OC4J Ant Tasks".

Web services can be deployed by using JDeveloper or Application Server Control. You
can also deploy Web services by using Ant tasks or by using admin_client.jar on
the command line. For more information on using these tools for deployment, see
"Tool Support for Deployment".

Tool Support for Deployment
This section describes the tool support for deployment offered by OracleAS Web
Services. Deployment can be performed through the command line, JDeveloper, and
Application Server Control.

■ Command Line Support for Deployment

■ Ant Task Support for Deployment

■ Deployment Support with JDeveloper

Tool Support for Deployment

Packaging and Deploying Web Services 18-11

■ Deployment Support with Application Server Control

Command Line Support for Deployment
The admin_client.jar command-line utility provided with OC4J can be used to
deploy Web services packaged within an EAR file. You may want to use this utility if
you plan to script the application deployment process. However, deploying
standalone modules, such as a Web module packaged in a WAR file, is not supported
using admin_client.jar.

See "Deploying Applications with admin_client.jar" in the Oracle Containers for J2EE
Deployment Guide for instructions on deploying applications with this tool.

A Sample Deployment Using admin_client.jar
An EAR file containing files for a Web service can be deployed in the same way as
other J2EE applications. The following is a sample deployment command.

java -jar <oc4jHome>/j2ee/home/admin_client.jar
deployer:oc4j:<oc4jHost>:<oc4jOrmiPort> <adminId><adminPassword>
 -deploy
 -file dist/hello.ear
 -deploymentName hello
 -bindWebApp default-web-site

The following list describes the parameters in this code example.

■ <oc4jHome>—The directory containing the OC4J installation.

■ <oc4jHost>:<oc4jOrmiPort>—The host name and port of the OC4J server to
which you are deploying the EAR file or J2EE application.

■ <adminId>—The user name for the OC4J instance. The user assigns this value
when OC4J is installed.

■ <adminPassword>—The password for the OC4J instance. The user assigns this
value when OC4J is installed.

■ default-web-site —The Web site to which the application will be bound. This
is usually default-web-site. To configure Web sites, see the server.xml file
in <oc4jHome>/j2ee/home/config.

Ant Task Support for Deployment
OracleAS Web Services provides a set of Ant tasks for deploying and undeploying
J2EE applications and modules to an OC4J instance. "Deploying with the OC4J Ant
Tasks" in the Oracle Containers for J2EE Deployment Guide describes the Ant tasks and
provides guidelines for integrating the tasks into your application build process. This
chapter includes the following topics.

■ "Incorporating the OC4J Ant Tasks into the Build Environment" outlines the
procedure for incorporating the OC4J Ant tasks into the build environment.

■ "Invoking the OC4J Ant Tasks" includes descriptions of how to invoke the
following Ant tasks:

– deploy task—The deploy task deploys a J2EE application or module
packaged in an archive.

– bindWebApp task—The bindWebApp task binds the application to the Web
site that will be used to access it.

oracle-webservices.xml Deployment Descriptor

18-12 Web Services Developer's Guide

– undeploy task—The undeploy task removes the specified application or
module from the OC4J instance. This task also unbinds the application from
the Web site automatically.

Deployment Support with JDeveloper
The following list describes the topics available in the JDeveloper online help for
deploying Web services. For more information on each of these topics, see the
JDeveloper on-line help

■ Simple JAR Deployment

Takes you through the steps of deploying your application to an executable JAR
file, or a JAR file on your file system.

■ Deploying Web Services to Embedded OC4J

Takes you through the steps of deploying your Web service to Oracle Application
Server or an embedded instance of OC4J that runs on your local server.

■ Deploying Web Services to External OC4J

Takes you through the steps of deploying your Web service to Oracle Application
Server or an external instance of OC4J that runs on a remote server.

■ Deploying Secure Oracle Application Server Web Services

Takes you through the steps of deploying a J2EE 1.4 Web service that uses security.
The steps describe how to bundle the keystore with the Web service for
deployment.

Deployment Support with Application Server Control
The following list describes the topics available in the Application Server Control
on-line help for deploying Web services. For more information on each of these topics,
see the Application Server Control on-line help

■ Deploy: Deployment Settings Page

The deployment plan page provided with the Application Server Control Console
includes the ability to set values in the OracleAS Web Services deployment
descriptor (oracle-webservices.xml) at deployment time.

■ Deploy: Application Attributes Page

Describes the deployment attributes that you can configure by using Application
Sever Control.

■ Deploying an Application

 Takes you through the steps of deploying an application.

■ Redeploying and Undeploying Applications

 Takes you through the steps of redeploying or undeploying an application.

oracle-webservices.xml Deployment Descriptor
The oracle-webservices.xml deployment descriptor is used in conjunction with
the standard webservices.xml. It contains deployment and run-time information
that is specific to OracleAS Web Services. For example, it contains the context-URI, the
Web service end-point address, and so on. All of the elements in

oracle-webservices.xml Deployment Descriptor

Packaging and Deploying Web Services 18-13

oracle-webservices.xml are optional. If the file is not provided, the application
will still deploy and run, with appropriate default values for the unspecified elements.

Although you could manually create oracle-webservices.xml by examining the
schema, you will typically use the version of the file created by WebServicesAssembler.
You can edit this file to produce the functionality you want.

The oracle-webservices.xml deployment descriptor contains the Web services
management information for security, reliability, auditing, and logging. On
deployment, the file is parsed and its object representation is cached. The Web service
management information is extracted from the file and saved as wsmgmt.xml in the
OC4J container.

Components in oracle-webservices.xml
The following sections describe the configuration elements in the
oracle-webservices.xml deployment descriptor. Some elements in the file can be
changed by WebServicesAssembler command line arguments. These arguments are
listed in "Arguments that Affect Deployment Descriptor Contents" on page 18-9.

This file also includes the configuration elements for Web services management:
security, reliability, logging, and auditing. These configuration elements are described
in "Understanding the Web Services Management Schema" in the Oracle Application
Server Advanced Web Services Developer's Guide.

<oracle-webservices> Element
The <oracle-webservices> element captures information local to the Oracle
container for Web services. It has one attribute: noNamespaceSchemaLocation. This
attribute is the "standard" way of telling the parser which schema the XML document
should adhere to.

Table 18–2 describes the sub-elements contained in the <oracle-webservices>
element.

Table 18–2 oracle-webservices Sub-elements

Sub-element Description

<web-site> Type web-site

Default: the location where the service endpoint interface is
installed

(Optional) This sub-element provides a name for the host and
the port name which will be substituted inside the updated
WSDL port location.

For example, you might need to enter this sub-element in the
oracle-webservices.xml file if you are accessing the Web
service by port-component-link resolution, or if you are
publishing the WSDL to a location specified by
wsdl-publish-location.

This sub-element has the following attributes:

■ host—the name for the host

■ port—the name for the port

If this sub-element is not used, the host and port values of the
HTTP request used to get the WSDL will be substituted.

oracle-webservices.xml Deployment Descriptor

18-14 Web Services Developer's Guide

<webservice-description> Element
This element extends the <webservice-description> element in the standard
deployment descriptor, webservices.xml. The name attribute maps to the name
element in webservices.xml. Table 18–3 describes the sub-elements contained in
<webservice-description>.

<context-root> Type string

Default: the EJB archive file name without the.jar extension

This sub-element specifies the root context of the exposed Web
service. It is required only for a version 2.1 EJB exposed as a Web
service. If context-root is not specified, it defaults to the EJB
archive file name without the.jar extension. For example, if the
EJB archive file is named foo-ejb.jar, then the context root
will be /foo-ejb.

For Java-class Web services, the context root is specified inside
application.xml.

The Oracle Containers for J2EE Configuration and Administration
Guide provides more information on the <context-root>
element.

<webservice-description> See "<webservice-description> Element".

Table 18–3 <webservice-description> Sub-elements

Sub-element Description

<expose-wsdl> Type Boolean

Default: true

This sub-element specifies whether the WSDL should be
exposed.

<expose-testpage> Type Boolean

Default: true

This sub-element specifies whether the test-page should be
exposed.

<resolve-relative-imports> Type Boolean

Default: false

This sub-element is used to specify whether you want to
resolve from relative imports to absolute URLs.

<download-external-imports> Type Boolean

Default: false

This sub-element specifies whether the relative imports
should be downloaded and resolved to absolute URLs. Note:
if download-external-imports is set to true, then
resolve-relative-imports is automatically set to true.

<wsdl-file> Type wsdl-file

Default: n/a

This sub-element is generated at deployment time and cannot
be specified by an end-user. Its final-location attribute
specifies the location of the final updated WSDL.

Table 18–2 (Cont.) oracle-webservices Sub-elements

Sub-element Description

oracle-webservices.xml Deployment Descriptor

Packaging and Deploying Web Services 18-15

<port-component> Element
This <port-component> element is used as a reference to map to similar elements in
the standard deployment descriptor webservices.xml with a -name appended to
them. The elements contain information pertaining to a particular port. The name
attribute of <port-component> maps to the name element in webservices.xml.
Table 18–4 describes the sub-elements contained in the <port-component> tag.

<wsdl-publish-location> Type: anyURI

Default: n/a

(Optional) This element is used to specify the location where
the final WSDL and its dependent files (imports) can be
placed. The value should be of the form file:/location/'

<port-component> See "<port-component> Element".

Table 18–4 <port-component> Sub-elements

Sub-element Description

<endpoint-address-uri> Type: string

Default: n/a

This sub-element, needed only for an EJB 2.1 Web service,
specifies the sub-context of the HTTP URL at which this
EJB is exposed as a Web service. If none is provided, it
defaults to the port-component name. Two
transport-level elements are provided to secure this URI.
For more information on these elements, see
"<ejb-transport-security-constraint> Element" on
page 18-16 and "<ejb-transport-login-config> Element" on
page 18-17.

For a Web module, (Web services derived from Java
classes), this information is already present in the
web.xml file and is not required.

<implementor> Type: implementor

Default: n/a

This sub-element captures information about OC4J's
proprietary Web services. This sub-element has a param
attribute.

<max-request-size> Type: long integer

Default: -1

This sub-element enables you to configure a maximum
size, in bytes, for a message passed to the Web service. If
the Web service reads a message that passes this number
of bytes, then the transmission will fail and the
connection will close.

If a non-positive value is assigned, then it is assumed
there is no limit. The default, -1 means unlimited. There
is no limit as to the size.

<ejb-transport-security-constraint> Defines transport-level security for a Web service based
on EJBs. See "<ejb-transport-security-constraint>
Element" on page 18-16.

Table 18–3 (Cont.) <webservice-description> Sub-elements

Sub-element Description

oracle-webservices.xml Deployment Descriptor

18-16 Web Services Developer's Guide

Securing EJB-Based Web Services at the Transport Level
The oracle-webservices.xml deployment descriptor provides two elements that
allow you to define transport-level security for Web services that are based on EJBs.
These elements are described in the following sections. For more information on this
topic, see also "Adding Transport-level Security for Web Services Based on EJBs" and
"Accessing Web Services Secured on the Transport Level" in the Oracle Application
Server Web Services Security Guide.

■ <ejb-transport-security-constraint> Element

■ <ejb-transport-login-config> Element

<ejb-transport-security-constraint> Element
This element is used to associate transport-level security constraints for a version 2.1
EJB exposed as Web service. The URL of the EJB exposed as a Web service is indicated
by the <endpoint-address-uri> element in the port component.

The sub-elements <wsdl-url> and <soap-port> are identifiers that let you choose
whether the security constraints will apply to a WSDL URL or to a SOAP port. If
<wsdl-url> and <soap-port> are both present or both absent in
<ejb-transport-security-constraint> then the security constraints will
apply to both the WSDL and the SOAP port. Table 18–5 describes the sub-elements of
<ejb-transport-security-constraint>.

<runtime> Denotes the start of the Web services management
information. For more information, see "Understanding
the Web Services Management Schema" in the Oracle
Application Server Advanced Web Services Developer's Guide.

<use-dime-encoding> Type: Boolean

Default: false

If set to true, any SOAP responses returned from this
service that have attachments will be encoded in DIME. If
false (default), any SOAP responses with attachments will
be returned in MIME encoding. See "Working with DIME
Attachments" in the Oracle Application Server Advanced
Web Services Developer's Guide for more information on
DIME-encoded attachments.

<jms-address> Type: jms-address

Default: n/a

The address element used for providing JMS destination
information. This is used when JMS transport is specified
to send SOAP messages over JMS.

<rest-support> Type: Boolean

Default: false

The rest element indicates whether this port supports
REST-style GET and POST requests and responses.

Table 18–4 (Cont.) <port-component> Sub-elements

Sub-element Description

oracle-webservices.xml Deployment Descriptor

Packaging and Deploying Web Services 18-17

<ejb-transport-login-config> Element
The <ejb-transport-login-config> element is used to configure the
transport-level authentication method and the realm name that should be used for this
EJB application. The URL of the EJB application exposed as a Web service is indicated
by the <endpoint-address-uri> element in the port component. Table 18–6
describes the sub-elements of <ejb-transport-login-config>.

Table 18–5 <ejb-transport-security-constraint> Sub-elements

Sub-element Description

<wsdl-url> Type: (element identifier)

Default: n/a

If present, this sub-element specifies that the security constraints
must apply only to the WSDL URL.

<soap-port> Type: (element identifier)

Default: n/a

If present, this sub-element specifies that the security constraints
must apply only to the SOAP port.

<role-name> Type: string

Default: n/a

This sub-element identifies the name of a security role. The
name must conform to the lexical rules for a token. The
role-name used here must correspond to either:

■ the role name of one of the security role elements defined
for this EJB application, or

■ the reserved role-name "*" that indicates all roles in the EJB
application.

If both "*" and role names are entered in this sub-element, the
container interprets this as all roles. If no roles are defined, then
no user is allowed access to the portion of the Web application
described by the containing security constraint. The container
matches role names in a case-sensitive manner.

<transport-guarantee> Type: transport-guarantee

Default: n/a

This sub-element specifies constraints on the access to data
transmitted between the client and server. This sub-element can
have one of the following values:

■ NONE—the application does not require any transport
guarantees.

■ INTEGRAL—the application requires that the data sent
between the client and server must be sent in such a way
that it cannot be changed in transit.

■ CONFIDENTIAL—the application requires that the data be
transmitted in a fashion that prevents other entities from
observing the contents of the transmission.

In most cases, the presence of the INTEGRAL or CONFIDENTIAL
flag will indicate that SSL must be used.

oracle-webservices.xml Deployment Descriptor

18-18 Web Services Developer's Guide

oracle-webservices.xml File Listing
Example 18–3 provides a listing of a sample oracle-webservices.xml deployment
descriptor. Note that this sample file also includes the Web services management
elements. These elements are described in the sections indicated in the file.

Example 18–3 Sample oracle-webservices.xml File

<?xml version="1.0" encoding="UTF-8"?>
<oracle-webservices xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/oracle-webs
ervices-10_0.xsd"
 deployment-version="String" deployment-time="String" schema-major-version="10"
 schema-minor-version="0">
 <web-site host="String" port="String"/>
 <context-root>String</context-root>
 <webservice-description name="String">
 <expose-wsdl>true</expose-wsdl>
 <expose-testpage>true</expose-testpage>
 <resolve-relative-imports>false</resolve-relative-imports>
 <download-external-imports>false</download-external-imports>
 <port-component name="String">
 <endpoint-address-uri>String</endpoint-address-uri>
 <ejb-transport-security-constraint>
 <wsdl-url/>
 <soap-port/>
 <role-name>Manager</role-name>
 <role-name>Administrator</role-name>
 <transport-guarantee>NONE</transport-guarantee>
 </ejb-transport-security-constraint>
 <!-- For a listing and description of elements that define transport-level
security constraints for EJBs, see "<ejb-transport-security-constraint> Element" on
page 18-16. -->

 <implementor type="database">
 <param name="String">String</param>
 </implementor>
 <runtime enabled="String">
 <owsm/>

Table 18–6 <ejb-transport-login-config> Sub-elements

Sub-element Description

<auth-method> Type: auth-method

Default: n/a

This sub-element is used to configure the authentication
mechanism for an EJB application. As a prerequisite to gaining
access to any Web resources which are protected by an
authorization constraint, a user must have authenticated using
the configured mechanism. Legal values for this sub-element are
BASIC, DIGEST, CLIENT-CERT, or a vendor-specific single
sign-on authentication scheme.

<realm-name> Type: string

Default: n/a

This sub-element specifies the realm name to use in HTTP Basic
authorization for an EJB exposed as Web service.

Limitations

Packaging and Deploying Web Services 18-19

 <!-- For a description of the element for the Oracle Web Services Manager
(<owsm>) see the Oracle Web Services Manager User and Administrator Guide -->

 <security>
 <!-- For a description and listing of security elements, see the Oracle
Application Server Web Services Security Guide. -->

 </security>
 <reliability>
 <repository jndiLocation="..." name="..." type="..."/>
 <!-- For a description and listing of port-level reliability elements, see
"Port-Level Reliability Elements on the Server" in the Oracle Application Server Advanced
Web Services Developer's Guide. -->

 </reliability>
 <logging/>
 </runtime>
 <operations>
 <operation name="String" input="String">
 <runtime>
 <security>
 <!-- For a description and listing of security elements, see the Oracle
Application Server Web Services Security Guide. -->

 </security>
 <reliability>
 <duplication-elimination-required/>
 <guaranteed-delivery-required/>
 <!-- For a listing and description of operation-level reliability elements, see
"Operation Level Reliability Elements on the Server" in the Oracle Application Server
Advanced Web Services Developer's Guide. -->

 </reliability>
 <auditing request="false" response="false" fault="false"/>
 <!-- For a listing and description of operation-level auditing elements, see
"Server-Side Auditing Configuration Elements" in the Oracle Application Server
Advanced Web Services Developer's Guide. -->

 <logging>
 <!-- For a listing and description of operation-level logging elements, see
"Operation Level Logging Elements on the Server" in the Oracle Application Server
Advanced Web Services Developer's Guide. -->

 </logging>
 </runtime>
 </operation>
 </operations>
 </port-component>
 </webservice-description>
 <ejb-transport-login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>sec-ejb</realm-name>
 </ejb-transport-login-config>
 <!-- For a listing and description of elements that define transport-level
security for EJBs, see "<ejb-transport-login-config> Element" on page 18-17. -->

</oracle-webservices>

Limitations
See "Packaging and Deploying Web Services" on page C-9.

Additional Information

18-20 Web Services Developer's Guide

Additional Information
For more information on:

■ assembling Web services from a WSDL, see Chapter 5, "Assembling a Web Service
from a WSDL".

■ assembling stateful Web services, see Chapter 6, "Assembling a Web Service with
Java Classes".

■ assembling Web services from EJBs, see Chapter 7, "Assembling a Web Service
with EJBs".

■ assembling Web services from a JMS queue or topic, see Chapter 8, "Assembling
Web Services with JMS Destinations".

■ assembling Web services from database resources, see Chapter 9, "Developing
Database Web Services".

■ assembling Web services with J2SE 5.0 Annotations, see Chapter 10, "Assembling
Web Services with Annotations".

■ building J2EE clients, see Chapter 13, "Assembling a J2EE Web Service Client".

■ building J2SE clients, see Chapter 14, "Assembling a J2SE Web Service Client".

■ using the WebServicesAssembler tool to assemble Web services, see Chapter 17,
"Using WebServicesAssembler".

■ using the JAX-RPC mapping file and its contents, see "JAX-RPC Mapping File
Descriptor" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ the contents of wsmgmt.xml management policy file, see "Understanding the Web
Services Management Schema" in the Oracle Application Server Advanced Web
Services Developer's Guide.

■ working with DIME attachments, see "Working with Attachments" in the Oracle
Application Server Advanced Web Services Developer's Guide.

■ adding transport-level security to Web services based on EJBs, see "Adding
Transport-level Security to a Web Service" and "Accessing Web Services Secured
on the Transport Level" in the Oracle Application Server Web Services Security Guide.

■ the Oracle Web Services Manager tool, see the Oracle Web Services Manager User
and Administrator Guide.

■ using quality of service features in Web service clients, see "Managing Web
Services" in the Oracle Application Server Advanced Web Services Developer's Guide.

■ adding security to a Web service, see the Oracle Application Server Web Services
Security Guide.

■ adding reliability to a Web service, see "Ensuring Web Service Reliability" in the
Oracle Application Server Advanced Web Services Developer's Guide.

■ adding an auditing and logging configuration to a Web service, see "Auditing and
Logging Messages" in the Oracle Application Server Advanced Web Services
Developer's Guide.

Web Service Client APIs and JARs A-1

A
Web Service Client APIs and JARs

This appendix contains high-level descriptions of the Web services client API
packages. It also identifies the JAR files that are required to run a Web service client.

This appendix contains these sections:

■ Web Services API Packages

■ Setting the Web Service Proxy Client Classpath

Web Services API Packages
Table A–1 lists the public Oracle APIs available in the current release of Oracle
Application Server Web Services. The provider package can be used only in the
OC4J container. The other APIs can be used in the container or in a Web services client.
For more information on the APIs listed in this table, see the Oracle Technology
Network: http://www.oracle.com/technology/index.html.

Table A–1 Client API Packages

Package Name Description

oracle.webservices Contains the Oracle-specific extension classes and interfaces
that are common for all modules.

oracle.webservices.attachments Contains classes and interfaces to support streaming
attachments. For more information on using this package,
see "Working with Message Attachments" in the Oracle
Application Server Advanced Web Services Developer's Guide.

oracle.webservices.databinding Contains the SOAPElementSerializer interface which
you can use for custom serialization. For more information
on using the functionality provided by the databinding
package, see "Custom Serialization of Java Value Types" in
the Oracle Application Server Advanced Web Services
Developer's Guide.

oracle.webservices.provider Contains the interfaces and classes needed to implement
provider-based endpoints. For more information on using
the provider package, see "Using Web Service Providers"
in the Oracle Application Server Advanced Web Services
Developer's Guide.

oracle.webservices.reliability Contains the interfaces and classes needed to implement
reliable SOAP message exchange using WS-Reliability. For
more information see "Dynamically Configuring Client Side
Reliability" in the Oracle Application Server Advanced Web
Services Developer's Guide.

oracle.webservices.security.callb
ack

Provides classes to support Web Services security call back.

Setting the Web Service Proxy Client Classpath

A-2 Web Services Developer's Guide

Setting the Web Service Proxy Client Classpath
When you build a Web service client, you must use the correct classpath setting to run
it. The following sections list the JAR files that can be included on the classpath. The
tables in this section use the OC4J_HOME environment variable to specify the location
where the Oracle Application Server or the standalone OC4J is installed.

■ Simplifying the Classpath with wsclient_extended.jar

■ Classpath Components for Clients using a Client-Side Proxy

■ WS-Security-Related Client JAR Files

■ Reliability-Related Client JAR File

■ JMS Transport-Related Client JAR File

Simplifying the Classpath with wsclient_extended.jar
To simplify your configuration of J2SE environments, OracleAS Web Services provides
a wsclient_extended.jar file that contains all the classes necessary to compile
and run a Web service client. This file can be listed on the classpath as an alternative to
listing individual JARs.

The wsclient_extended.jar file contains these class files:

■ class files in the individual JAR files listed in Table A–2

■ OC4J Security-related class files in the JARs listed in Table A–3

■ WS-Security-related class files in the JARs listed in Table A–4

■ WS-Reliability-related class files in the JARs listed in Table A–5

■ JMS transport-related class files in the JAR listed in Table A–6

You do not have to include any of these JAR files on the classpath if you run the client
with the wsclient_extended.jar file.

The wsclient_extended.jar file is available as a separate download from the
Oracle Technology network:

http://download.oracle.com/otn/java/oc4j/1013/wsclient_
extended.zip

The file can also be installed from the OC4J companion CD. In this case, you will find
it in the ORACLE_HOME/webservices/lib directory.

oracle.webservices.soap Contains the Oracle extension classes and interfaces to
support SOAP 1.2. For more information on this API, see
"OraSAAJ APIs" on page 4-11.

oracle.webservices.transport Contains the classes and interfaces to support multiple
transport bindings. "Writing Client Code to Support JMS
Transport" in the Oracle Application Server Advanced Web
Services Developer's Guide provides information on how
classes in this package are used in JMS transport.

oracle.webservices.wsdl Contains the Oracle-specific interface to support SOAP 1.2
operations in WSDL 1.1. For more information on this
interface, see Appendix B, "Oracle Implementation of the
WSDL 1.1 API".

Table A–1 (Cont.) Client API Packages

Package Name Description

Setting the Web Service Proxy Client Classpath

Web Service Client APIs and JARs A-3

Classpath Components for Clients using a Client-Side Proxy
Table A–2 lists the JAR files that can be included in the classpath for a J2SE Web
services client.

Note: The wsclient.jar listed in this table contains only the core
Web service client classes. At compilation and runtime, the Web
service client requires many other classes such as those for the XML
parser, the WSDL parser, and quality of service (QOS). All of these
required classes are packaged into wsclient_extended.jar to
simplify classpath set up.

Note: Note that not all JAR files are required in all cases.

Table A–2 Classpath Components for a Client Using a Client-Side Proxy

Component JAR Description

ORACLE_HOME/diagnostics/lib/ojdl.jar and
ORACLE_HOME/diagnostics/lib/ojdl2.jar

ODL implements APIs to be used by Oracle
products to emit error diagnostics and a LogLoader
tool that collects error diagnostic logs for analysis.

ORACLE_HOME/j2ee/home/oc4j-api.jar Contains the public OC4J APIs.

ORACLE_HOME/j2ee/home/oc4jclient.jar Contains the files needed by the OC4J client.

ORACLE_HOME/j2ee/home/lib/activation.jar Usually, this component is available in the JRE. If it
is not, then include it in the classpath. This JAR is
needed only for processing attachments.

ORACLE_HOME/j2ee/home/lib/adminclient.jar Contains J2EE APIs for platform management and
application deployment.

OC4J_HOME/j2ee/home/lib/ejb.jar Contains class files for Enterprise Java Beans.

OC4J_HOME/j2ee/home/lib/http_client.jar Contains the Oracle HTTP client transport
implementation.

OC4J_HOME/j2ee/home/lib/javax77.jar Contains the J2EE management specification (JSR 77)
APIs.

OC4J_HOME/j2ee/home/lib/jax-qname-namespace.jar Contains the QName definition.

OC4J_HOME/j2ee/home/lib/jmxri.xml Contains the JMX APIs.

OC4J_HOME/j2ee/home/lib/jmx_remote_api.jar Contains the JMX Remote APIs.

OC4J_HOME/j2ee/home/lib/mail.jar Contains the JavaMail API and all service providers.
Usually, this component is available in the JRE. If it
is not, then include it in the classpath.

OC4J_HOME/j2ee/home/lib/oc4j-schemas.jar Contains the OracleAS Web Services public schemas.

OC4J_HOME/j2ee/home/lib/servlet.jar Contains the servlet implementation.

OC4J_HOME/lib/dms.jar Contains the DMS implementation for Oracle
Diagnostics and Monitoring.

OC4J_HOME/lib/xml.jar Contains the JAXB implementation.

OC4J_HOME/lib/xmlparserv2.jar Contains the Oracle XML parser JAR.

OC4J_HOME/lib/xsu12.jar Contains the Oracle XDK SQL utility.

OC4J_HOME/webservices/lib/commons-logging.jar Contains a logging library package.

Setting the Web Service Proxy Client Classpath

A-4 Web Services Developer's Guide

OC4J Security-Related Client JAR Files
Table A–3 lists the JAR files that must be included in the classpath when a J2SE Web
service client supports OC4J Security. The wsclient_extended.jar file contains
the OC4J Security-related class files in the JARs listed in this table. There is no need to
include these JARs if you run the client with the wsclient_extended.jar file.

WS-Security-Related Client JAR Files
Table A–4 lists the JAR files that must be included in the classpath when a J2SE Web
service client supports WS-Security. The wsclient_extended.jar file contains the
WS-Security-related class files in the JARs listed in this table. There is no need to
include these JARs if you run the client with the wsclient_extended.jar file.

OC4J_HOME/webservices/lib/jaxrpc-api.jar Contains the JAX-RPC API, including
javax.xml.rpc and java.xml.namespace.

OC4J_HOME/webservices/lib/orasaaj.jar Contains the Oracle implementation of the SAAJ
API.

OC4J_HOME/webservices/lib/orawsdl.jar Contains the Oracle implementation (OraWSDL) of
the Java APIs for the WSDL specification (JSR 110).

OC4J_HOME/webservices/lib/relaxngDatatype.jar Contains the RELAX NG data type library shared by
several JAX* technologies.

OC4J_HOME/webservices/lib/saaj-api.jar Contains the SAAJ API 1.1 for processing messages
with attachments.

OC4J_HOME/webservices/lib/wsclient.jar Contains the classes that are required by the Web
service client runtime.

OC4J_HOME/webservices/lib/wsdl-api.jar Contains the Java APIs for WSDL (JSR 110).

OC4J_HOME/webservices/lib/wsif.jar Contains the Oracle WSIF implementation.

OC4J_HOME/webservices/lib/xsdlib.jar Contains the XML Schema type library shared by
several JAX* technologies.

Table A–3 OC4J Security CLASSPATH Components for a Client Using a Client-Side Proxy

Component Name Description

OC4J_HOME/j2ee/home/lib/jta.jar Contains JTA (Java Transaction API) Specification APIs.

OC4J_HOME/j2ee/home/lib/jaas.jar Contains the Java Authorization and Authentication Specification
(JAAS) APIs.

OC4J_HOME/j2ee/home/lib/jazn.jar Contains the JAZN (Oracle JAAS provider) implementation.

OC4J_HOME/j2ee/home/lib/jazncore.jar Contains the JAZN (Oracle JAAS provider) implementation.

Table A–4 WS-Security CLASSPATH Components for a Client Using a Client-Side Proxy

Component Name Description

OC4J_HOME/jlib/javax-ssl-1_1.jar Contains transport-level security support.

OC4J_HOME/jlib/jaxen.jar Contains the classes that define Jaxen—a Java XPath Engine
capable of evaluating XPath expressions across multiple modes
(such as dom4j, JDOM, and so on).

OC4J_HOME/jlib/ojpse.jar Contains the core encryption implementation.

Table A–2 (Cont.) Classpath Components for a Client Using a Client-Side Proxy

Component JAR Description

Setting the Web Service Proxy Client Classpath

Web Service Client APIs and JARs A-5

Reliability-Related Client JAR File
Table A–5 lists the JAR files that must be included in the classpath when a J2SE Web
service client supports WS-Reliability. The wsclient_extended.jar file contains
the WS-Reliability-related class files in the JAR listed in this table. There is no need to
include this JAR if you run the client with the wsclient_extended.jar file.

JMS Transport-Related Client JAR File
Table A–6 lists the JAR file that must be included in the classpath when a J2SE Web
service client supports JMS as a transport mechanism. The wsclient_
extended.jar file contains the JMS transport-related class files in the JAR listed in
this table. There is no need to include this JAR if you run the client with the
wsclient_extended.jar file.

Database Web Services-Related Client JAR Files
The JAR files listed in Table A–7 must be needed in the classpath when a J2SE Web
service client wants to invoke a service that uses parameters or returns in SQL/XML
format, or are of type WebRowSet. The client must also include these libraries when
invoking a database Web service using a native WSIF binding.

OC4J_HOME/jlib/oraclepki.jar Contains the Oracle orapki keytool utility.

OC4J_HOME/jlib/osdt_core.jar Contains the Oracle Security Developer's Toolkit (OSDT) APIs.

OC4J_HOME/jlib/osdt_cert.jar Contains the Oracle Security Developer's Toolkit cryptography
APIs.

OC4J_HOME/jlib/osdt_saml.jar Contains Oracle Security Developer's Toolkit Security
Assertion Markup Language (SAML) APIs.

OC4J_HOME/jlib/osdt_wss.jar Contains Oracle Security Developer's Toolkit Web services
security (WS-Security) APIs.

OC4J_HOME/jlib/osdt_xmlsec.jar Contains Oracle Security Developer's Toolkit XML signing and
encryption APIs.

OC4J_HOME/webservices/lib/wssecurity.jar Contains the WS-Security APIs.

Table A–5 Reliability CLASSPATH Components for a Client Using a Client-Side Proxy

Component Name Description

OC4J_HOME/webservices/lib/orawsrm.jar Contains Web service Reliability (WS-Reliability) APIs and their
implementation.

Table A–6 CLASSPATH Components for a Client Using JMS as a Transport Mechanism

Component Name Description

J2EE_HOME/j2ee/home/lib/jms.jar Contains the JMS APIs.

Note: The class files in the JARs listed in this table are not included
in the wsclient_extended.jar file. If the client needs the
functionality provided by these files, then they must be listed
explicitly on the classpath.

Table A–4 (Cont.) WS-Security CLASSPATH Components for a Client Using a Client-Side Proxy

Component Name Description

Setting the Web Service Proxy Client Classpath

A-6 Web Services Developer's Guide

Sample Classpath Commands
Example A–1 provides sample Windows platform set CLASSPATH commands for all
of the Oracle Application Server Web Services client JAR files. The classpath on the
UNIX platform would be set in a similar manner.

Example A–1 set CLASSPATH Commands for the Windows Platform

set CLASSPATH=%ORACLE_HOME%\j2ee\home\oc4jclient.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\adminclient.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\ejb.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\mail.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\activation.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jms.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\http_client.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jaas.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jazn.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\javax77.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jax-qname-namespace.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jta.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jazncore.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\servlet.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jmx_remote_api.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\jmxri.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\j2ee\home\lib\oc4j-schemas.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\lib\xmlparserv2.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\xdk\lib\xml.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\orawsrm.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\xsdlib.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\relaxngDatatype.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\lib\dms.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\commons-logging.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\jaxrpc-api.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\wsclient.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\wsdl-api.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\wsif.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\wssecurity.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\saaj-api.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\orasaaj.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\webservices\lib\orawsdl.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\osdt_wss.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\osdt_xmlsec.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\ojpse.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\osdt_saml.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\oraclepki.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\osdt_core.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\osdt_cert.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\jaxen.jar;%CLASSPATH%
set CLASSPATH=%ORACLE_HOME%\jlib\javax-ssl-1_1.jar;%CLASSPATH%

Table A–7 Database-Related CLASSPATH Components for a Client Using a Client-Side Proxy

Component Name Description

ORACLE_HOME/rdbms/jlib/aqapi.jar Contains the Oracle Advanced Queueing API

ORACLE_HOME/jdbc/lib/ocrs12.jar Contains the Oracle WebRowSet implementation

ORACLE_HOME/jdbc/lib/ojdbc14dms.jar Contains the Oracle JDBC driver

OC4J_HOME/lib/xsu12.jar Contains the Oracle SQL/XML format implementation

Oracle Implementation of the WSDL 1.1 API B-1

B
Oracle Implementation of the WSDL 1.1 API

This appendix describes the Oracle implementation of the Java APIs for WSDL version
1.1 (OraWSDL). These APIs allow you to read, modify, write, create, and re-organize
WSDL documents in memory.

The key Java API for WSDL is the javax.wsdl.factory.WSDLFactory class. This
abstract class enables applications to obtain a WSDL factory capable of producing new
definitions, new WSDLReaders, and new WSDLWriters.

For more information on the Java APIs for WSDL version 1.1, see:

http://www.jcp.org/en/jsr/detail?id=110

Understanding the OraWSDL APIs
The OracleAS Web Services implementation of the javax.wsdl.factory.
WSDLFactory class is oracle.webservices.wsdl.WSDLFactoryImpl. Use this
class to create new WSDL factory instances. As the abstract WSDLFactory class
requires, OracleAS Web Services provides extensions to support XMLSchema, SOAP,
HTTP, and MIME.

The WSDL_READ_TIMEOUT property specifies the maximum amount of time, in
seconds, that the WSDLReader implementation waits to receive a response to a request
for a remote WSDL definition. The location of the WSDL must be specified by an
HTTP or HTTPS URL. No other protocols are supported.

Here are a few examples of where you can use the functionality provided by the
WSDLFactory class.

■ writing a WSDL manipulation tool

■ programmatically analyzing a WSDL

■ writing WSIF provider

Example B–1 provides sample code that uses the Java APIs for WSDL to get and
manipulate a WSDL file. The samples illustrate the following tasks.

■ getting a WSDL factory instance

■ creating a WSDL file reader and registering the standard extensions

■ setting a timeout for reading the WSDL definition

■ reading a WSDL file

■ getting information from a WSDL file

In the code lines that get a WSDL factory, note that the WSDLFactory.newInstance
method uses the Oracle WSDLFactoryImpl class to create the WSDL factory instance.

Understanding the OraWSDL APIs

B-2 Web Services Developer's Guide

Example B–1 Using the Java APIs for WSDL to Manipulate a WSDL

 ...
//--Get the WSDLFactory. You must specifiy Oracle's implementation class name
 WSDLFactory wsdlFactory = WSDLFactory.newInstance("oracle.webservices.wsdl.
WSDLFactoryImpl");
 ...
//--Create a reader and register the standard extensions
 WSDLReader wsdlReader = wsdlFactory.newWSDLReader();
 ExtensionRegistry extensionRegistry = wsdlFactory.
newPopulatedExtensionRegistry();
 wsdlReader.setExtensionRegistry(extensionRegistry);
 ...
 //--Set a sixty-second timeout for reading the WSDL definition
 System.setProperty(oracle.webservices.wsdl.WSDLFactoryImpl.WSDL_READ_
TIMEOUT, "60");
 ...
//--Read a WSDL file, including any imports
 Definition def = wsdlReader.readWSDL("http://some.com/someservice?WSDL");
 ...
//--You can now explore the WSDL definition, for example,
 Map services = def.getServices();
 String targetNamespace = def.getTargetNamespace();
 ...

The code in Example B–2 demonstrates how you can get the WSDL by using methods
in the javax.xml.rpc.server.ServletEndpointContext and javax.
servlet.ServletContext classes. The WSDL is obtained and stored as an
InputStream. This technique works not only for the WSDL, but for any resource.

The // code to handle the input stream section indicates where you can
insert OraWSDL API code similar to the samples in Example B–1 to get and
manipulate the WSDL file.

Example B–2 Getting the WSDL as a Resource

public class HelloImpl implements javax.xml.rpc.server.ServiceLifecycle {
 // default constructor
 public HelloImpl() {
}
 public init(Object context){
 javax.xml.rpc.server.ServletEndpointContext ctx = (javax.xml.rpc.server.
ServletEndpointContext) context;
 javax.servlet.ServletContext servletContext= ctx.getServletContext();
 //we can read any other resource the same way.
 java.io.InputStream wsdlDocument = servletContext.
getResourceAsStream("/WEB-INF/wsdl/MyWsdl.wsdl")) ;

 // code to handle the input stream
 ...
 }

 //empty implementation
 public void destroy() {}

 // sayHello method
 public String sayHello(String name) {
 return ("Hello " + name + "!");
 }
}

Troubleshooting C-1

C
Troubleshooting

This appendix provides solutions to possible problems that may occur when working
with Oracle Application Server Web Services. The section titles in this appendix
correspond to chapter titles in the Oracle Application Server Web Services Developer's
Guide and the Oracle Application Server Advanced Web Services Developer's Guide.

OracleAS Web Services Messages

Cannot Serialize or Deserialize Array-Valued Elements to Collection Types
If you use a Java Collection type (such as java.util.Map,
java.util.Collection, or a subclass of these) as a parameter or return type in
your RPC-encoded Web service, then the runtime cannot properly serialize or
deserialize array-valued elements to these collection parameters.

To ensure that serializers and deserializers are registered for Java array types when
using the RPC-encoded message format, create a Java value type to represent each
Java array.

1. Create a Java value type for each Java array type that you want to use.

The following example represents the contents of the demo/StringAry.java
file. A wrapper class, StringAry, represents the Java String[] array. Note that
the name of the class uses the suffix "Ary".

package demo;
public class StringAry
{ public StringAry() { }
 public String[] getValue() { return m_value; }
 public void setValue(String[] value) { m_value=value; }
 private String[] m_value;
}

2. Ensure that the proper serializers and deserializers are registered for all of your
value types.

To do this, use the valueType argument when you assemble the Web service. In
the following example, the argument specifies the demo/StringAry.java file
created in Step 1.

java wsa.jar -assemble -valueType demo.StringAry ...

Note: Ensure that the Java value type does not contain the word
"Array" in its name. "Array" is a recognized pattern.

OracleAS Web Services Messages

C-2 Web Services Developer's Guide

3. Use the value types you defined for setting and retrieving array-valued elements
in your collection type parameter.

For example, assume that you have the following class definition.

package demo;
public class Service extends java.rmi.Remote
{ java.util.Map getMap(String input)throws java.rmi.RemoteException
 { ... }
}

You can write the following code to return a String[] value as one of the
elements in the map.

HashMap map = new HashMap();
String[] str_array = new String[]{"a","b","c"};
StringAry sa = new StringAry();
sa.setValue(str_array);
map.put("myArray", sa);
return map;

Errors Occur When Publishing a Web Service that Uses Multi-Dimensional Arrays
An error occurs when attempting to publish a Web service that uses multidimensional
arrays. For example, an error can be returned when you attempt to publish a Java class
that contains a method which takes a multidimensional array as an input or as a return
argument.

There are two possible solutions to this problem:

■ Create a Java Bean for each dimension of the array

■ Use RPC-encoded message format to publish the Web service

Creating a Java Bean for each Dimensional of the Array: You can wrap each
dimension of the array into a Java value type and work around the limitation.

In the following example, the public static class StringAry wraps the inner
array of strings. The public StringAry[] represents an array of the inner array.
That is, it contains an array of String Java value types. Note that the code sample
uses the suffix "Ary".

package demo;
public interface SampleItf extends java.rmi.Remote

 // wrap the inner array as a Java value type
{ public static class StringAry
 { public StringAry() { }
 public String[] getValue() { return m_value; }
 public void setValue(String[] value) { m_value=value; }
 private String[] m_value;
 }

 // create an array of the inner array elements
 public StringAry[] echoString2(StringAry[] input)
 throws java.rmi.RemoteException;
}

Note: Ensure that the Java value type does not contain the word
"Array" in its name. "Array" is a recognized pattern.

OracleAS Web Services Messages

Troubleshooting C-3

The Service class illustrates how you can then publish the StringAry[] array of
String Java value types.

package demo;
public class Sample implements java.rmi.Remote, SampleItf
{ public SampleItf.StringAry[] echoString2(SampleItf.StringAry[] input)
 throws java.rmi.RemoteException
 { return input; }
}

Using RPC-Encoded Style to Publish a Web Service: You can use the RPC-encoded
style to publish a Web service that uses multidimensional arrays. For example:

package demo;
public interface SampleItf extends java.rmi.Remote
{ public String[][] echoString2(String[][] input)
 throws java.rmi.RemoteException;
}

package demo;
public class Sample implements java.rmi.Remote, SampleItf
{ public String[][] echoString2(String[][] input)
 throws java.rmi.RemoteException
 { return input; }
}

Restrictions on RPC-Encoded Format and Data Binding
OracleAS Web Services does not support the combination of RPC-encoded message
formats and databinding=false. This combination is not considered a "best
practice" within the industry.

Document-Encoded Message Format is not Supported by OracleAS Web Services
Even though the combination of style="document" and use="encoded" is valid
according to the SOAP specification, it is not supported by any of the major Web
Services platforms, including OracleAS Web Services.

Document-Literal Bare Message Format is Limited to One Input Part
OracleAS Web Services supports only one part as input in the bare case. All other
input parameters must be mapped into SOAP header parts.

Serialization of BigDecimal Values May Introduce Rounding Errors
There are several constructors available for java.Math.BigDecimal. The
constructors can take the following types of input.

■ a double-precision floating point

■ an integer and a scale factor

■ a String representation of a decimal number

You should be careful when you use the BigDecimal(double) constructor. It can
allow rounding errors to enter into your calculations. Instead, use the integer or
String-based constructors.

For example, consider the following statements which take the value 123.45.

...
double d = 1234.45;

Assembling Web Services from a WSDL

C-4 Web Services Developer's Guide

System.out.println(d);
System.out.println(new BigDecimal(d));
...

These statements produce the following output. The second value might not be the
value you expected.

1234.45
1234.450000000000045474735088646411895751953125

Assembling Web Services from a WSDL

Restrictions on Using Document Literal Message Formats
If you attempt to assemble a Web service top down that uses a document-literal
message format, WebServicesAssembler will return a warning if it detects two or more
operations in the WSDL that use the same input message. This is because the OC4J
runtime will not be able to distinguish which method is being invoked.

For example, the following WSDL fragment will cause WebServicesAssembler to
return a warning. The fragment defines the addRelationship and
addRelationship3 operations. Each of these operations use the
addRelationshipRequest input message.

...
<operation name="addRelationship">
 <input name="addRelationship1Request"
message="tns:addRelationship1Request"/>
 <output name="addRelationship1Response"
message="tns:addRelationship1Response"/>
 </operation>
 <operation name="addRelationship3">
 <input name="addRelationship1Request"
message="tns:addRelationship1Request"/>
 <output name="addRelationship1Response"
message="tns:addRelationship1Response"/>
 </operation>
...

If you were to invoke the addRelationship operation from your client, then
depending on the order in which the operations appear in your implementation class,
either addRelationship or addRelationship3 would be invoked.

Assembling Web Services from Java Classes

Limitations on Stateful Web Services
The support that OracleAS Web Services offers for stateful Web services is limited to
services based on Java classes. These services contain Oracle-proprietary extensions
and you should not consider them to be interoperable unless the service provider
makes scopes with the same semantics available.

The support that OracleAS Web Services offers for stateful Web services is
HTTP-based. Stateful Web services will work only for SOAP/HTTP endpoints and
will not work for SOAP/JMS endpoints.

Developing Web Services From Database Resources

Troubleshooting C-5

Assembling Web Services from Java Classes—Differences Between Releases
10.1.3 and 10.1.2
Note the following differences between Oracle Web Services release 10.1.2 (and earlier)
and release 10.1.3.

■ In release 10.1.2 there was no requirement to extend RemoteInterface or for
methods to throw RemoteException. This is now required in release 10.1.3.

■ In release 10.1.2 it was possible to publish a class by itself without providing an
interface. In release 10.1.3 you must provide an interface to publish a class.

Assembling Web Services From EJBs

Setting the Transaction Demarcation for EJBs
An EJB exposed as a Web service should not have TX_REQUIRED or TX_MANDATORY
set as its transaction demarcation.

Assembling Web Services with JMS Destinations

Supported Types for Message Payloads
For JMS endpoint Web services, OracleAS Web Services supports only instances of
java.lang.String or javax.xml.soap.SOAPElement as the payload of JMS
messages.

JMS Properties in the SOAP Message Header
Only a limited number of JMS properties can be transmitted by the SOAP header. If
the value of the genJmsPropertyHeader argument is true (default), then the
following JMS properties can be transmitted by the SOAP header.

■ message-ID

■ correlation-ID

■ the reply-to-destination, including its name, type, and factory

Developing Web Services From Database Resources

Datatype Restrictions
■ Streams are not supported in Oracle Streams AQ Web services.

■ SQL Type SYS.ANYDATA is not supported in PL/SQL Web services.

■ REF CURSOR as a parameter is not supported in PL/SQL Web services.

■ REF CURSOR returned as Oracle WebRowSet and XDB RowSet does not support
complex types in the result.

■ Due to a limitation in JDBC, PL/SQL stored procedures do not support the
following SQL types as OUT or INOUT parameters.

– char types, including char, character, and nchar

– long types including long and long raw

Assembling Web Services with Annotations

C-6 Web Services Developer's Guide

Differences Between Database Web Services for 10.1.3 and Earlier Releases
A Web service client written for a database Web service generated under release 9.0.4
or 10.1.2, will fail if you try to use it against a database Web service generated bottom
up under release 10.1.3. This will be true even if the PL/SQL structures have remained
the same.

One of the reasons for this is that the SQL collection type was mapped into a complex
type with a single array property in releases 9.0.4 and 10.1.2. In release 10.1.3, it is
mapped directly into array instead.

If you regenerate the Web service client, you will have to rewrite the client code. This
is because the regenerated code will now be employing an array[] instead of a
BeanWrappingArray.

Assembling Web Services with Annotations

Web Service Metadata Features that are Not Supported
There are parts of the Web Services Metadata for the Java Platform specification that
OracleAS Web Services does not support. For example, OracleAS Web Services does
not support the "Start With WSDL" or "Start With WSDL and Java" modes defined in
sections 2.2.2 and 2.2.3 of the "Java Architecture for XML Binding" (JAXB)
specification. OracleAS Web Services supports only the "Start With Java" mode.

If you use the assemble or the genWsdl WebServicesAssembler commands to
generate a WSDL to use with J2SE 5.0 Web Service annotations, you must specify them
differently than if you were using them to process files that do not contain annotations.
See "assemble" on page 17-7 and "genWsdl" on page 17-26 for more information on
using these commands to generate WSDLs for use with J2SE 5.0 Web Service
annotations.

Assembling REST Web Services

Restrictions on REST Web Services Support
The following list describes the limitations in OracleAS Web Services support for REST
Web Services.

■ REST support is available only for Web service applications with literal operations
(both request and response should be literal).

■ HTTP GET is supported only for Web service operations without (required)
complex parameters.

■ Some browsers limit the size of the HTTP GET URL. Try to keep the size of the
URL small by using a limited number of parameters and short parameter values.

■ REST Web services send only simple XML messages. You cannot send messages
with attachments.

■ Many management features, such as security and reliability, are not available with
REST Web services. This is because SOAP headers, which are typically used to
carry this information, cannot be used with REST invocations of services.

■ REST invocations cannot be made from generated Stubs or DII clients. Invocations
from those clients will be made in SOAP.

■ There is no REST support for the Provider framework.

■ Operation names in REST cannot contain multibyte characters.

Using WebServicesAssembler

Troubleshooting C-7

■ REST services cannot be managed through Application Server Control.

Testing Web Service Deployment
The Web Service Home Page has the following limitations:

■ The Web Service Home Page offers only basic support for WS-Security. The editors
can enter only a username and password into the SOAP envelope. To enter any
other complex or advanced WS-Security features, such as encryption and signing,
in the SOAP request, you must edit the request directly in the Invocation Page.

■ The Web Service Home Page does not allow you to upload attachments.

■ You cannot invoke WSIF services using the test page.

■ WSDL files that contain proprietary extensions may not work properly in the Web
Service Home Page. For example, services that use JMS as a transport cannot be
tested by using the Home Page.

Assembling a J2EE Web Service Client

Client Applications and Thread Usage
If the client application creates its own threads for its processing (for example, if it
enables an asynchronous call using a separate thread), the application server must be
started with the -userThreads option.

java -jar oc4j.jar -userThreads

The -userThreads option enables context lookup and class loading support from
user-created threads.

Understanding JAX-RPC Handlers
WebServicesAssembler provides Ant tasks that let you configure JAX-RPC message
handlers. Handlers cannot be configured by using the WebServicesAssembler
command line.

Processing SOAP Headers

Strong Typing and the ServiceLifecycle Interface
Although the ServiceLifecycle interface enables you to access SOAP header
blocks that may not have been declared in the WSDL file, the blocks are not strongly
typed. You may also need to know the XML structure of a SOAP header in order to
process it. For strong typing of SOAP header blocks, make sure that the
mapHeadersToParameters argument for WebServicesAssembler is set to true
(true is the default value). This is only possible if the SOAP header has been declared
in the WSDL file and the type of the SOAP header is a supported JAX-RPC type.

Using WebServicesAssembler

Long file names cause deployment to fail
If the combined length of the generated file and directory names passes a certain size
limit, then deployment will fail and throw an error. This size limit varies for different

Using WebServicesAssembler

C-8 Web Services Developer's Guide

operating systems. For example, on the Windows operating system, the size limit is
255 characters

The length of the names is controlled by WebServicesAssembler and the deployment
code. WebServicesAssembler generates file names based on the method name in the
Java class or the operation name in the WSDL. The deployment code creates
directories for code generation based on the names of the EAR and the WAR files.

To avoid the generation of file and directory names that are too long, limit the number
of characters in the following names to a reasonable length.

■ method names in Java classes

■ operation names in the WSDL

■ directory name for the location of the OC4J installation

■ file name for a WAR file

■ file name for a EAR file

You can also avoid this problem by upgrading to a more recent version of the J2SE 5.0
JDK (jdk-1_5_0_06 or later).

Getting More Information on WebServicesAssembler Errors
You can get detailed diagnostic information on errors returned by
WebServicesAssembler by including the debug argument in the command line or Ant
task. For more information on this argument, see "debug" on page 17-38.

WebServicesAssembler Cannot Compile Files
If WebServicesAssembler cannot compile files successfully, it will return the error:

java? java.io.IOException: CreateProcess: javac -encoding UTF-8 -classpath

The javac compiler must be available so that WebServicesAssembler can compile
your Java files. Make sure that JAVA_HOME/bin is in your path.

WebServicesAssembler Cannot Find Required Classes
You may need to use some classes that are common to all J2EE 1.4 applications. All
standard J2EE 1.4 classes and Oracle database classes are included automatically.
When using Ant tasks, WebServicesAssembler must search for the JARs that contain
these classes.

A WebServicesAssembler Ant task tries to load these extra classes by searching for
wsa.jar. The task searches for the following Ant properties or environment variables
in the following order. If the task does not find wsa.jar, or if a property is not
defined, it searches the next property.

1. oc4j.home—an Ant property that specifies the root installation directory for
OC4J. This property can be used instead of an environment variable.

2. OC4J_HOME—an environment variable that specifies the root installation directory
for OC4J.

3. oracle.home—an Ant property that specifies the root installation directory for
Oracle products. This property can be used instead of an environment variable.

4. ORACLE_HOME—an environment variable that specifies the root installation
directory for Oracle products.

When the Ant task finds wsa.jar, it loads all of the classes listed in its manifest file,
relative to the location of wsa.jar.

Working with Message Attachments

Troubleshooting C-9

Packaging and Deploying Web Services

Packaging for J2EE Clients
The current tool set cannot package J2EE Web service clients. You must package the
client manually. "Packaging a J2EE Client" on page 13-16 provides more information
on how to package a J2EE Web service client.

Getting the Correct Endpoint Address when the WSDL Has More than One HTTP
Port
If a you want to enter values for the <web-site> or <wsdl-publish-location>
elements in oracle-webservices.xml, then the returned WSDL may not have the
correct endpoint addresses if the WSDL has more than one HTTP port.

The WebServicesAssembler tool does not insert the <web-site> or
<wsdl-publish-location> elements into the oracle-webservices.xml file
that it creates. You must insert these elements manually.

Ensuring Interoperable Web Services

Leading Underscores in WebServicesAssembler Generated Names
The default behavior of the WebServicesAssembler tool is to generate namespaces
from the Java package name. If the Java package name begins with a leading
underscore ("_"), then the generated namespace URI will contain an underscore. Some
versions of the .NET WSDL tool may not be able to consume these namespaces, even
though the generated namespace is valid.

To work around this .NET issue, use the WebServicesAssembler arguments
targetNamespace and/or mappingFileName to avoid the default package-derived
namespace.

Working with Message Attachments

Adding Faults with swaRef Attachments to a Web Service
In OracleAS Web Services, you can add only swaRef MIME type attachments to
SOAP fault messages. It does not support the adding of SWA type attachments.

Faults with attachments can be added to a Web service only when you are assembling
it from a WSDL (top down). They cannot be added when assembling a Web service
bottom up.

Supported Message Formats for Attachments
Only RPC-literal and document-literal Web services are supported by the WS-I
Attachments Profile 1.0. Thus, only those types of services can use swaRef MIME
type.

WebServicesAssembler will not be able to assemble a Web service that can pass
swaRef MIME attachments if you specify an RPC-encoded message format. To
assemble the service, you must select a different format.

Managing Web Services

C-10 Web Services Developer's Guide

Managing Web Services

Limitations on Application Server Control
Application Server Control cannot modify everything that can be expressed in the
wsmgmt.xml file. For example, it cannot be used to change parts of the reliability
configuration.

Ensuring Web Service Reliability

Reliability Limitations for OracleAS Web Services
■ The reliability process on the client lives only as long as the client process. If the

client process becomes permanently unavailable, then any messages that needed
to be retried will be ignored.

■ Asynchronous polling capabilities can be enabled only at the port level and only
by using a configuration.

Auditing and Logging Messages

Limitations on xpath Queries
An xpath query must return a primitive type. This means that the query must return
the context of text nodes or attribute values.

The primitive type that the xpath query returns should have a small number of
characters. For example, it should not exceed 120 characters.

Custom Serialization of Java Value Types
This section describes limitations on the custom serialization of non-standard data
types.

Literal Use
This release supports only literal as the use part of the message format. This includes
RPC-literal and document-literal. RPC-encoded is not supported in this release.

Object Graph
Because RPC-encoded is not supported in this release, the initial support of
serialization and deserialization does not allow object graph marshalling using href.
If a Java Object has multiple references either in the parameters of a request or in the
return value of a response, then serialization and deserialization might not preserve
the object graph.

WSDL- and Service-Level Configuration
SoapElementSerializer is configured for each Service or for each WSDL. For
example, a SoapElementSerializer implementation representing the mapping of
dateTime to oracle.sql.DATE can be configured to replace the default mapping of
dateTime to java.util.Calendar. Under this configuration, every instance of the
mapping is replaced. Configuration for each operation or message level is not
supported in this release.

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting C-11

Sub Tree Serialization
Each custom serializer gets the full XML sub-tree, and performs the serialization and
deserialization of the entire XML element object model. For example, assume you have
two custom serializers developed and configured for two top-level complexTypes,
TypeA and TypeB. TypeA has a sub-element of TypeB. Even though a custom
serializer has been configured for TypeB, this custom serializer cannot be
automatically invoked by the OC4J runtime when the sub-element of TypeB is
serialized inside the custom serializer for TypeA. The custom serializer of TypeA must
handle the sub-element of TypeB by itself. The custom serializer of TypeA can, in turn,
call the custom serializer of TypeB, but it is up to the implementation strategy.

Document-Literal Wrapper
Assume that a a custom serializer is used to handle a global complexType that is
referred by a global element to define the single part of a document-literal operation. If
you use the unwrapParameters argument to unwrap the return type and response
type, it will be ignored for the operation(s) that use the global element as the body part
of the input message.

Using JMS as a Web Service Transport

Interoperability of Messages when using JMS as a Transport Mechanism
The WSDL extensions that enable JMS as a transport mechanism are
Oracle-proprietary. The messages produced by the Web service may not be
interoperable with applications or services provided by other vendors.

Retrieving Client Responses from JMS Web Service Transport
If the client process becomes unavailable without receiving its response and later
returns, there is no facility provided for it to retrieve its old responses from the queue.

Using the Web Service Invocation Framework
This section describes limitations in the OracleAS Web Services support for the Web
Services Invocation Framework (WSIF).

■ Database WSIF can pass only the data source, not the JDBC connection, to the
provider for database access.

■ Database WSIF is stateless. Each operation obtains a JDBC connection when it
begins and closes it when it ends. Autocommit is always on for the JDBC
connection. It is recommended that you use connection pooling when setting up
data sources to reduce database overhead.

■ Oracle's Application Server Control Web Services Management and Monitoring
can only directly monitor SOAP services; it cannot monitor any service
interactions that utilize WSIF bindings, such as Java, EJB, or database WSIF
bindings. By bypassing the SOAP protocol entirely, you are also bypassing the
management infrastructure for Web services provided by Oracle Application
Server Control.

Using Dynamic Invocation Interface to Invoke Web Services
To invoke a Web service by using the Dynamic Invocation Interface (DII) requires a
number of steps. At each step, you typically have to make some choices. The examples
at the end of this section display choices made at each of the steps.

Using Dynamic Invocation Interface to Invoke Web Services

C-12 Web Services Developer's Guide

Using DII to invoke a Web Service consists of the following general steps:

1. Create the call object.

2. Register parameters.

3. Invoke the Web service.

You can create the call object either with or without a WSDL. If you do not have a
WSDL, or decide not to use the WSDL for creating the call dynamically, then follow
the steps under "Basic Calls". If you do have a WSDL to construct the call, then follow
the instructions under "Configured Calls".

Basic Calls
For a basic call, the call object is created dynamically without a WSDL. The following
steps provide more information on how to construct a basic call.

1. You are constructing a call object dynamically, without a WSDL. For examples, see:

■ Example C–1, "Basic Call with parameter registration and Java bindings"

■ Example C–4, "Basic Call with SOAPElement, but without parameter
registration"

■ Example C–6, "Basic Call with document-literal invocation and SOAPElement,
but without parameter registration"

2. Register parameters.

■ Case 1: You are constructing the SOAP request yourself as a SOAPElement,
and are receiving the response as a SOAPElement. In this case, you do not
have to register parameters or return types. For examples of this case, see:

– Example C–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example C–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: You are explicitly registering the parameters and returns (parts) that
are being used in the Web service invocation in your Basic Call, including the
part name, the XML and Java type names, and the parameter mode. In this
case, you can furnish the individual parameters as Java object instances. For
an example of this case, see:

– Example C–1, "Basic Call with parameter registration and Java bindings"

3. Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

■ Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it
to the invoke() method. Note that this invocation employs the public,
Oracle-specific API from OracleCall. For examples of this case, see:

– Example C–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example C–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting C-13

the invoke() method and cast the return object to the anticipated return
type. For examples of this case, see:

– Example C–1, "Basic Call with parameter registration and Java bindings"

– Example C–2, "Configured Call with Java bindings, but without parameter
registration"

– Example C–3, "Configured Call with registration of wrapper parameters
and Java bindings"

– Example C–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example C–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Configured Calls
For a configured call, the call object is constructed from a WSDL. The following steps
provide more information on how to construct a configured call.

1. Provide the WSDL for constructing the call object. For examples, see:

■ Example C–2, "Configured Call with Java bindings, but without parameter
registration"

■ Example C–3, "Configured Call with registration of wrapper parameters and
Java bindings"

■ Example C–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

■ Example C–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

2. Register parameters. For a Configured Call, you must register parameters for the
following cases:

■ Case 1: You are employing a complex or other type that is not being mapped
to a primitive Java type (or an Object variant of a primitive Java type). For
examples of this case, see:

– Example C–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example C–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings".

■ Case 2: You are using a document-literal wrapped style and do not want to
create a SOAPElement like the ones illustrated in Example C–4 and
Example C–6 for Basic Call. In this case, the name of the parameter must be
the QName of the wrapper. For an example of this case, see:

– Example C–3, "Configured Call with registration of wrapper parameters
and Java bindings"

■ Case 3: If Case 1 and Case 2 do not apply, then you do not have to register
parameters or returns. For an example of this case, see:

– Example C–2, "Configured Call with Java bindings, but without parameter
registration"

3. Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

Using Dynamic Invocation Interface to Invoke Web Services

C-14 Web Services Developer's Guide

■ Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it
to the invoke() method. Note that this invocation employs the public,
Oracle-specific API from OracleCall. For examples of this case, see:

– Example C–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example C–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in
the invoke() method and cast the return object to the anticipated return
type. For examples of this case, see:

– Example C–1, "Basic Call with parameter registration and Java bindings"

– Example C–2, "Configured Call with Java bindings, but without parameter
registration"

– Example C–3, "Configured Call with registration of wrapper parameters
and Java bindings"

– Example C–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example C–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Examples of Web Service Clients that use DII
This section provides a variety of client examples that use basic calls or configured
calls to invoke a Web service.

The following code snippet illustrates an import statement that can be used by the
following code examples.

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPElement;
import java.net.URL;
import oracle.webservices.OracleCall;
import oracle.xml.parser.v2.XMLElement;

Example C–1 Basic Call with parameter registration and Java bindings

// (1) Creation of call object without WSDL.
String endpoint = "http://localhost:8888/echo/DiiDocEchoService";
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();

// (2) Configuration of call and registration of parameters.
call.setTargetEndpointAddress(endpoint);
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting C-15

call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/");
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");
QName QNAME_TYPE_STRING = new QName("http://www.w3.org/2001/XMLSchema", "string");
call.addParameter("s", QNAME_TYPE_STRING, ParameterMode.IN);
call.setReturnType(QNAME_TYPE_STRING);

// (3) Invocation.
System.out.println("Response is " + call.invoke(new Object[]{"hello"}));

Example C–2 Configured Call with Java bindings, but without parameter registration

/// (1) Creation of call object using WSDL.
String namespace = "http://www.xmethods.net/sd/CurrencyExchangeService.wsdl";
URL wsdl=new URL(namespace);
ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName(namespace, "CurrencyExchangeService");
Service service = factory.createService(wsdl, serviceName);
QName portName = new QName(namespace, "CurrencyExchangePort");
Call call = service.createCall(portName);

// (2) Registration of parameters.
// -> taken from the WSDL

// (3) Configuration of operation and invocation.
QName operationName = new QName("urn:xmethods-CurrencyExchange", "getRate");
call.setOperationName(operationName);
Float rate = (Float) call.invoke(new Object[]{"usa", "canada"});
System.out.println("getRate: " + rate);

Example C–3 Configured Call with registration of wrapper parameters and Java
bindings

// (1) Creation of call object using WSDL.
String namespace = "http://server.hello/jaxws";
ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName(namespace, "HelloImplService");
URL wsdl=new URL(namespace+"?WSDL");
Service service = factory.createService(wsdl, serviceName);
QName portName = new QName(namespace, "HelloImpl");
Call call = service.createCall(portName);

// (2) Registration of SayHello and SayHelloResponse wrapper classes
// These must be available in the classpath.
String TYPE_NAMESPACE_VALUE = "http://server.hello/jaxws";
QName reqQname = new QName(TYPE_NAMESPACE_VALUE,"sayHelloElement");
QName respQName = new QName(TYPE_NAMESPACE_VALUE,"sayHelloResponseElement");
call.addParameter("name", reqQname, SayHello.class, ParameterMode.IN);
call.setReturnType(respQName, SayHelloResponse.class);

// (3) Invocation
SayHello input = new SayHello("Duke");
Object[] params = new Object[] { input };
SayHelloResponse result = (SayHelloResponse) call.invoke(params);
String response = result.getResult();

Using Dynamic Invocation Interface to Invoke Web Services

C-16 Web Services Developer's Guide

Example C–4 Basic Call with SOAPElement, but without parameter registration

// (1) Creation of call object without WSDL
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();
call.setTargetEndpointAddress("http://localhost:8888/echo/DiiDocEchoService");

// (2) No registration of parameters

// (3a) Direct creation of payload as SOAPElement
SOAPFactory soapfactory = SOAPFactory.newInstance();
SOAPElement m1 = soapfactory.createElement("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",
"http://echo.demo.oracle/");
m2.addTextNode("Bob");
m1.addChildElement(m2);
System.out.println("Request is: ");
((XMLElement) m1).print(System.out);

// (3b) Invocation
SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke(m1);
System.out.println("Response is: ");
((XMLElement) resp).print(System.out);

Example C–5 Configured Call with a WSDL, complex return parameter registration, and
Java bindings

// (0) Preparing a complex argument value
Integer req_I = new Integer(Integer.MAX_VALUE);
String req_s = "testDocLitBindingAnonymAll & <body>";
Integer req_inner_I = new Integer(Integer.MIN_VALUE);
String req_inner_s = "<inner> & <body>";
int[] req_inner_i = {0,Integer.MAX_VALUE, Integer.MIN_VALUE};
InnerSequence req_inner = new InnerSequence();
req_inner.setVarInteger(req_inner_I);
req_inner.setVarString (req_inner_s);
req_inner.setVarInt (req_inner_i);
EchoAnonymAllElement req = new EchoAnonymAllElement();
req.setVarInteger (req_I);
req.setVarString (req_s);
req.setInnerSequence(req_inner);

// (1) Creation of call object using the WSDL
String TARGET_NS = "http://soapinterop.org/DocLitBinding";
String TYPE_NS = "http://soapinterop.org/xsd";
String XSD_NS = "http://www.w3.org/2001/XMLSchema";
QName SERVICE_NAME = new QName(TARGET_NS, "DocLitBindingService");
QName PORT_NAME = new QName(TARGET_NS, "DocLitBindingPort");
String wsdlUrl = "http://"+getProperty("HOST")+
 ":"+getProperty("HTTP_PORT")+
 "/doclit_binding/doclit_binding";

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting C-17

QName operation = new QName(TARGET_NS, "echoAnonymAll");
ServiceFactory factory = ServiceFactory.newInstance();
Service srv = factory.createService(new URL(wsdlUrl + "?WSDL"), SERVICE_NAME);
Call call = srv.createCall(PORT_NAME, operation);

// (2) Registration of complex return parameter
call.setReturnType(new QName(TYPE_NS, "EchoAnonymAllElement"),
EchoAnonymAllElement.class);

// (3) Invocation
EchoAnonymAllElement res = (EchoAnonymAllElement) call.invoke(new Object[]{req}
);
System.out.println("AnonymAll body : " +res.getVarString());
System.out.println("AnonymAll inner : " +res.getInnerSequence());

Example C–6 Basic Call with document-literal invocation and SOAPElement, but without
parameter registration

// (1) Creation of Basic Call
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
String endpoint="http://localhost:8888/test/echo";
Call call = service.createCall();
call.setTargetEndpointAddress(endpoint);

// (2) No parameter registration

// (3) Invocation using SOAPElement
SOAPFactory soapfactory = SOAPFactory.newInstance();
SOAPElement m1 = soapfactory.createElement("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",
"http://echo.demo.oracle/");
m2.addTextNode("Bob");
m1.addChildElement(m2);
System.out.println("Request is: ");
((XMLElement) m1).print(System.out);
SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke(m1);
System.out.println("Response is: ");
((XMLElement) resp).print(System.out);

Example C–7 Configured Call with RPC-encoded invocation, complex parameter
registration, and Java bindings

// (1) Creation of ConfiguredCall using WSDL
ServiceFactory sf = ServiceFactory.newInstance();
String endpoint="http://localhost:8888/test/echo";
Service service = sf.createService(new java.net.URL(endpoint + "?WSDL"), new
QName("http://echo.demo.oracle/", "DiiRpcEchoService"));
Call call = service.createCall(new QName("http://echo.demo.oracle/",
"HttpSoap11"), new QName("http://echo.demo.oracle/", "echoStrings"));
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/");
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");

Using Dynamic Invocation Interface to Invoke Web Services

C-18 Web Services Developer's Guide

// (2) Registration of complex input and return arguments
QName stringArray = new QName("http://echo.demo.oracle/", "stringArray");
call.addParameter("s", stringArray, String[].class, ParameterMode.IN);
call.setReturnType(stringArray, String[].class);

// (3) Invocation
String[] request = new String[]{"bugs", "little_pieces", "candy"};
String[] resp = (String[]) call.invoke(new Object[]{request});
System.out.println("Response is: ");
for (int i = 0; i < resp.length; i++) {
 System.out.print(resp[i] + " ");
}
System.out.println();

Third Party Licenses D-1

D
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server Web Services Security.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

Apache

D-2 Web Services Developer's Guide

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Apache

Third Party Licenses D-3

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,

Apache

D-4 Web Services Developer's Guide

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

Apache

Third Party Licenses D-5

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

Apache SOAP

D-6 Web Services Developer's Guide

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

Apache SOAP

Third Party Licenses D-7

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses

Apache SOAP

D-8 Web Services Developer's Guide

 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,

Jaxen

Third Party Licenses D-9

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

JSR 110
This program contains third-party code from IBM Corporation ("IBM"). Under the
terms of the IBM license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the IBM software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the IBM software is provided
by Oracle "AS IS" and without warranty or support of any kind from Oracle or IBM.

Copyright IBM Corporation 2003 – All rights reserved

Java APIs for the WSDL specification are available at:
http://www-124.ibm.com/developerworks/projects/wsdl4j/

Jaxen
This program contains third-party code from the Apache Software Foundation
("Apache") and from the Jaxen Project ("Jaxen"). Under the terms of the Apache and
Jaxen licenses, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Apache and Jaxen software, and the terms
contained in the following notices do not change those rights.

SAXPath

D-10 Web Services Developer's Guide

The Jaxen License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "Jaxen" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jaxen.org.

Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

SAXPath
This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

W3C DOM

Third Party Licenses D-11

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "SAXPath" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@saxpath.org.

Products derived from this software may not be called "SAXPath", nor may "SAXPath"
appear in their name, without prior written permission from the SAXPath Project
Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made
by many individuals on behalf of the SAXPath Project and was originally created by
bob mcwhirter and James Strachan . For more information on the SAXPath Project,
please see http://www.saxpath.org/.

W3C DOM
This program contains third-party code from the World Wide Web Consortium
("W3C"). Under the terms of the W3C license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the W3C
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the W3C
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or W3C.

The W3C License
W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby

W3C DOM

D-12 Web Services Developer's Guide

granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.
Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed
or derivative code.
Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is
derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission.
Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Index-1

Index

Symbols
*Assemble commands, behavior, 17-4
<auth-method> element, 18-18
<call-property> element, 13-9
<context-root> element, 12-1, 17-56, 18-9, 18-14
<distributable> element, 17-46, 18-9
<download-external-imports> element, 18-14
<ejb-link> element, 17-40, 18-4, 18-9
<ejb-name> element, 17-40, 18-4
<ejb-transport-login-config> element, 7-7, 18-17
<ejb-transport-security-constraint> element, 7-7,

18-15
<endpoint-address-uri> element, 17-57, 18-9, 18-15,

18-16
<expose-testpage> element, 18-14
<expose-wsdl> element, 18-14
<handler> Ant tag, 15-2, 17-71, 18-9
<handler> Ant task, 15-3
<handler> element, 13-11
<handler-class> element, 15-4, 15-5, 17-72
<handler-name> element, 15-4, 15-5, 17-72
<implementor> element, 17-48, 18-9, 18-15
<init-param> element, 15-4, 17-72
<jaxrpc-mapping-file> element, 13-5, 13-17, 13-18,

17-42, 18-4, 18-9
<jms-address> element, 18-16
<mapping file>.xml file, described, 18-3
<max-request-size> element, 18-15
<name> element, 13-10
<operation> element, 13-10
<operations> element, 13-10
<oracle-webservices> element, 18-13
<orion-web-app> element, 13-7
<param name="databaseJndiName"> element, 18-9
<param name="scope"> element, 17-46, 18-9
<param name="session-timeout"> element, 17-46,

18-9
<param="scope"> element, 17-46
<port name> element, 14-3
<port> Ant tag, 17-69
<port>, porttype Ant subtag, 17-71
<port-component> element, 11-6, 15-3, 15-4, 18-4,

18-9, 18-15
<port-component-link> element, 13-5
<port-component-name> element, 18-5

<port-component-ref> element, 13-5, 13-6
<port-info> element, 13-9
<port-name> element, 15-4, 15-5
<porttype> Ant tag, 17-20, 17-70
<portType> element, 14-3, 17-43
<provider-port> element, 18-9
<proxy> Ant tag, 17-67
<realm-name> element, 18-18
<rest-support> element, 11-6, 18-9, 18-16
<role-name> element, 18-17
<runtime> element, 13-10, 18-16
<service> element, 17-44
<service-endpoint> element, 7-3, 18-5
<service-endpoint-interface> element, 13-5, 13-9,

13-17, 13-18, 17-41, 18-4, 18-9
<service-impl-class> element, 13-8
<service-interface> element, 13-5, 13-17, 13-18
<service-qname> element, 13-5, 13-8
<service-ref> element, 13-2, 13-4, 13-7, 13-18, 15-4,

15-5
<service-ref-mapping> element, 13-7, 13-12
<service-ref-name> element, 13-5, 13-18
<servlet-class> element, 17-37, 18-9
<servlet-link> element, 18-4, 18-6
<servlet-name> element, 18-6
<soap-header> element, 17-73
<soap-port> element, 18-17
<soap-role> element, 17-73
<stub-property> element, 13-8, 13-9, 13-12
<transport-guarantee> element, 18-17
<url-pattern> element, 12-2, 17-57, 18-9
<use-dime-encoding> element, 17-45, 18-9, 18-16
<value> element, 13-11
<webservice-description> element, 18-14
<webservice-description-name> element, 18-5
<web-site> element, 18-13
<WSDL_port_name>Client.java utility client

class, 14-1
<wsdl-file> element, 13-5, 13-8, 13-17, 13-18, 18-4,

18-14
<wsdl-location> element, 13-8
<wsdl-port> element, 13-9
<wsdl-url> element, 18-17

Index-2

A
admin_client.jar file, 18-1, 18-11
analyze command, 17-22
annotations

developing a Web service, 10-1
J2SE 5.0 Web Services Annotations, 10-5

advantages and disadvantages, 10-1
and EJB version 3.0, 10-2
annotating and compiling a Java file, 10-2
annotating and compiling a version 3.0

EJB, 10-3
Deployment tag, 10-4
limitations, C-6
sample Java file with annotations, 10-6
specification, 10-1
support for REST services, 11-6
supported Oracle-proprietary annotation

tags, 10-3
supported tags, 10-3
using to assemble a Web service, 10-1

Ant
setting up for WebServicesAssembler, 3-3
setting up version 1.5.2 with a previous

installation, 3-5
setting up version 1.6.2, 3-3
setting up version 1.6.2 with a previous

installation, 3-4
Ant tasks

assembling a J2SE client proxy, 7-5
assembling a stateful Web service from Java

classes, 6-9
assembling a stateless Web service from Java

classes, 6-4
assembling a Web Service from a PL/SQL

package, 9-11
assembling a Web service from a SQL query or

DML statement, 9-16
assembling a Web service from an EJB, 7-4
assembling a Web service from an Oracle Streams

AQ, 9-22
assembling a Web service from JMS

destinations, 8-5
assembling server-side Java classes as a Web

service, 9-31
configuring a port type, 17-70
configuring handlers, 17-71
configuring ports, 17-69
deployment, 18-11
for configuration and scripting, 1-5
generating a Web service top down, 5-4
generating handler information into a

proxy, 17-69
proxy generation, 17-67
using multiple instances of an argument, 17-67
using oracle namespace, 3-6

Apache software
license, D-2

APIs
OraSAAJ 1.2, 4-11, 4-12
packages for J2SE Web service clients, A-1

appendToExistingDDs argument, 17-55
interactions with ddFileName argument, 17-55

application client module
deploying and running, 13-3

Application Server Control
support for deployment, 18-12

application-client.xml deployment descriptor, 15-4
application.xml file, 17-32
application.xml file, described, 18-3
appName argument, 9-7, 9-21, 17-37
aqAssemble command, 17-5
aqAssemble command example, 9-21
aqConnectionFactoryLocation argument, 9-23, 17-48
aqConnectionLocation argument, 9-23, 17-48
architecture of Web services, 2-1
archive

assigning multiple services, 17-75
limitations, 17-77

assemble command, 17-7
assemble command example, 6-2, 6-7
assemble command, and J2SE 5.0 Annotations, 17-7
ASWSV06300|Chapter 6, describes Exposing Java

Classes as a Stateful Web Service, 6-7
ASWSV09100|Chapter 9, describes Database Web

Services, 9-1
attachment data types, 4-10
attachments package, A-1

B
bindingName argument, 17-37
bottom up assembly

REST services, 11-5
bottom up Web service assembly

Java classes, 6-1
using SOAP 1.2 messages, 4-12

C
Call interface, 14-2
call scope, 6-10
callback package, A-1
call-in

database, 9-1
optional WebServicesAssembler arguments, 9-8
required WebServicesAssembler arguments, 9-7
SQL to XML type mappings, 9-4
Web service life cycle, 9-6

call-out
database, 9-2
optional JPublisher options

dir, 9-33
httpproxy, 9-33
proxyopts, 9-33
sysuser, 9-33

required JPublisher options
proxywsdl, 9-33
user, 9-33

XML to SQL type mappings, 9-5
call-outs

Index-3

requirements for Web services, 9-33
callScope argument, 17-46
CHUNK_SIZE property, 13-14
chunked data transfer, 13-14

CHUNK_SIZE property, 13-14
DO_NOT_CHUNK property, 13-14

class, handler Ant tag attribute, 17-72
classFileName argument, 17-37
classFileName, porttype Ant attribute, 17-71
className argument, 17-26, 17-37
className, porttype Ant attribute, 17-71
classpath

components for a J2SE client proxy, A-3
Database Web services-related client JARs, A-5
JMS transport-related client JARs, A-5
OC4J security-related client JARs, A-4
sample commands, A-6
setting for a client proxy, A-2
WS-Reliability-related client JARs, A-5
WS-Security-related client JARs, A-4

classpath argument, 17-38
client

Web services client in the database, 9-32
client code

for accessing an AQ Queue exposed as a Web
service, 9-23

client handlers
configuring in an Ant task, 17-71

client stub code
generated by JPublisher, 9-32

client utility class, 14-4
client utility class file, 14-2
ClientConstants.COOKIE_MAP property, 14-7
clients

J2EE
<service-ref> element, 13-2
about, 13-1
accessing a Web service, 13-5
adding client information to deployment

descriptors, 13-4
adding handlers, 13-11
adding OC4J-specific information, 13-7
application client module, 13-3
assembling, 13-2
EJB packaging, 13-18
for stateful web services, 13-12
JMS transport calls, 13-13
managed, 13-7
packaging, 13-16
schema, 13-4
servlet packaging, 13-16
Web application packaging, 13-16
writing client code, 13-11

J2SE
dynamic invocation interface (DII)

clients, 14-2
setting cookies, 14-7
static stub clients, 14-1
tool support, 14-8
writing client applications, 14-4

managed, 13-7
thread usage, C-7

compatibility with previous Oracle Application
Server versions, 1-8

context argument, 9-8, 16-3, 17-56
context-root, URI component, 12-1
Cookie class, 14-7
cookie, setting in a client stub, 14-7
corbaAssemble command, 17-9
corbanameURL argument, 17-47
corbaObjectPath argument, 17-47
correlation-ID

JMS message property, 8-2, C-5
createOneWayOperations argument, 17-58
custom type mapping framework for

serialization, 1-5
custom-type-mappings.xml file, 17-31

D
data binding, described, 2-3
data transfer, chunked, 13-14
database connection, establishing, 17-66
database requirements for OracleAS Web

Services, 3-6
database resources

assembling as Web services, 9-1
assembling as Web services with

JDeveloper, 9-33
limitations on exposing as a Web service, C-5

database Web services, 1-5
Database Web services-related client JARs, A-5
dataBinding argument, 17-60
databinding package, A-1
dataSource argument, 9-7, 9-23, 17-48, 17-66
dbConnection argument, 9-7, 17-48, 17-66
dbJavaAssemble command, 9-28, 17-11
dbJavaAssemble command example, 9-29
dbJavaClassname argument, 17-48
dbUser argument, 9-7, 17-48, 17-66
ddFileName Argument

interactions with appendToExistingDDs
argument, 17-56

ddFileName argument, 17-25, 17-56
debug argument, 9-8, 17-38
defining

Java classes for Web services, 6-6
Java interfaces for Web services, 6-6

deliveryMode argument, 17-52
deployment

Ant task support, 18-11
Application Server Control support, 18-12
command line example, 18-11
command line support, 18-11
JDeveloper support, 18-12
testing, 12-1
testing REST services, 11-2, 11-5
tool support, 18-10

Deployment annotation tag, 10-4
overriding, 10-5

Index-4

deployment descriptor
application-client.xml, 15-4
ejb-jar.xml, 15-4
webservices.xml, 7-3, 15-2, 15-3
web.xml, 5-3, 15-4

deployment descriptors
adding J2EE client information, 13-4
additions for REST services, 11-6
managing with WebServicesAssembler, 18-8
relationship with EJB application client EAR

files, 13-18
relationship with servlet client EAR files, 13-16
relationship with Web application client EAR

files, 13-16
deployment descriptors, relationships between, 18-4
deployment resources, 18-10
Deployment tag, 10-5
deployment-cache.jar file, 13-3
designing message formats, 4-9
Determines, 17-59
DIME attachment support, 1-6
dir

JPublisher option for call-outs, 9-33
DO_NOT_CHUNK property, 13-14
document style

message format, 4-2
documentation roadmap, 3-6
document-literal message format, 4-3

request message, 4-3
sample messages, 4-3

dynamic invocation interface (DII) clients, 14-2

E
EAR archive

adding a file, 17-74
assigning multiple services, 17-75

ear argument, 6-2, 7-2, 9-8, 17-38
interactions with output and war

arguments, 17-38, 17-42, 17-45
Editor Page, 12-3
EJB

writing, 7-6
writing as a service endpoint interface, 7-5

EJB application client EAR files, relationship with
deployment descriptors, 13-18

EJB version 3.0
and J2SE 5.0 Web Services Annotations, 10-2
annotating and compiling with J2SE 5.0 Web

Services Annotations, 10-3
ejbAssemble command, 17-13
ejbAssemble command example, 7-3
ejb-jar.xml deployment descriptor, 15-4
ejb-jar.xml file, described, 18-3
ejbName argument, 17-40
EJBs

adding transport level security, 7-7
assembling a Web service, 7-2
packaging for a Web service, 18-3
requirements for Web Services, 7-5

support for version 2.0, 7-2
emptySoapAction argument, 17-40
encoded use

message formats, 4-2
encodingStyle SOAP body attribute, 4-2
endpoint implementation, described, 2-3
endpoint scope, 6-10
endpointAddress argument, 17-55
errors

and Java classes, 6-6
exposing as a Web service, 9-14

F
failonerror argument, 17-75
fetchWsdl command, 17-23
fetchWsdlImports argument, 17-57
final-location attribute, 13-8
fragment, 11-2

G
genApplicationDescriptor command, 17-32
genConcreteWsdl command., 17-24
genDDs command, 17-33
GenericHandler class, 15-2
genInterface command, 5-4, 6-3, 6-8, 7-4, 8-4, 9-10,

9-15, 9-22, 9-30, 13-2, 17-29
genInterface command example, 5-2, 11-2
genJmsPropertyHeader argument, 17-52, C-5
genJUnitTest argument, 17-55
genProxy command, 7-4, 8-4, 9-10, 9-15, 9-22, 9-30,

14-2, 14-3, 17-30
genProxy command example, 5-4, 6-3, 6-8, 7-4, 8-4,

9-10, 9-15, 9-22, 9-30
genQos argument, 17-59
genQosWsdl command, 17-25
genValueTypes command, 17-31
genWsdl command, 17-26

J2SE 5.0 Annotations, 17-26
GET requests, for REST services, 11-7

H
handler

generating into a proxy, 17-69
handler Ant tag

attributes and child tags, 17-72
class attribute, 17-72
initparam child tag, 17-72
name attribute, 17-72
soapheader child tag, 17-73
soaprole attribute, 17-73

handler chain, processing, 15-1
Handler interface, 15-1, 16-2

implementing, 15-2
handleRequest message, 15-1
handlers

adding to deployment descriptors, 13-11
configuring in an Ant task, 17-71
configuring multiple handlers in an Ant

Index-5

task, 17-74
processing SOAP headers, 16-2

header processing
limitations, C-7
with handlers, 16-2
with parameter mapping, 16-1
with the ServiceLifecycle interface, 16-3

help argument, 17-40
help command, 17-35
Home Page for Web Service testing, 12-1
host, URI component, 12-1
HTTPClient.Cookie class, 14-7
httpproxy

JPublisher option for call-outs, 9-33
httpProxyHost argument, 17-58
httpProxyPort argument, 17-58

I
idlFile argument, 17-47
idlInterfacename argument, 17-47
idljPath argument, 17-47
IDL-to-Java compiler (idlj), 17-9
If, 17-55
importAbstractWsdl argument, 17-58
IN OUT PL/SQL parameter, 9-9
IN PL/SQL parameter, 9-9

mapping to XML INOUT parameter, 9-12
initialContextFactory argument, 17-40
initparam, handler Ant child tag, 17-72
INOUT parameter

limitations on SQL types, C-5
INOUT PL/SQL parameter

mapping to XML IN OUT parameter, 9-12
INOUT PL/SQL parameter, XML mapping for, 9-5
input argument, 17-40, 17-67
inputName attribute, 13-10
installing OC4J, 3-1
interfaceFileName argument, 17-41
interfaceName argument, 17-26, 17-41
interfaceName, porttype Ant attribute, 17-71

J
J2EE client

<service-ref> element, 13-2
about, 13-1
accessing a Web service, 13-5
adding client information to deployment

descriptors, 13-4
adding JAX-RPC handlers, 13-11
adding OC4J-specific information, 13-7
application client module, 13-3
assembling, 13-2
EJB packaging, 13-18
for stateful web services, 13-12
JMS transport calls, 13-13
managed, 13-7
packaging, 13-16
registering message handlers, 15-4

schema, 13-4
servlet packaging, 13-16
Web application packaging, 13-16
writing client code, 13-11

J2SE 5.0 Annotations, and assemble command, 17-7
J2SE 5.0 Annotations, and genWsdl command, 17-26
J2SE client

registering message handlers, 15-5
J2SE clients

API packages, A-1
Database Web services-related client JARs, A-5
JMS transport-related client JARs, A-5
OC4J security-related client JARs, A-4
possible classpath components, A-3
sample classpath commands, A-6
setting the classpath, A-2
wsclient_extended.jar file, A-2
WS-Reliability-related client JARs, A-5
WS-Security-related client JARs, A-4

Java 2 Enterprise Edition (J2EE) supported
standards, 1-2

Java class-based Web services
writing, 6-4

Java classes
and unsupported types, 6-7
assembling stateful Web services, 6-7
assembling stateless Web services, 6-1
defining, 6-6, 6-10
errors, 6-6
packaging for a Web service, 18-2
return values, 6-6

Java interfaces
defining, 6-6, 6-10
requirements, 6-5

Java Management Extensions, 2-4
Java type support for RPC-encoded message

format, 4-6
java.rmi.Remote, 7-5
java.rmi.Remote class, 6-4
java.rmi.RemoteException, 7-5
java.rmi.RemoteException class, 6-4
java.util.Map class, 14-8
javax.jms.ObjectMessage, 8-2
javax.servlet.ServletContext, B-2
javax.wsdl.factory.WSDLFactory class, WSDLFactory

class, B-1
javax.xml.rpc.Call interface, 14-2
javax.xml.rpc.handler.GenericHandler class, 15-2
javax.xml.rpc.handler.Handler interface, 15-1, 16-2

implementing, 15-2
javax.xml.rpc.holders package, 6-5
javax.xml.rpc.server.ServiceLifecycle interface, 16-3
javax.xml.rpc.server.ServletEndpointContext, B-2
javax.xml.rpc.Service class, 14-2, 14-5
javax.xml.rpc.service.endpoint.address, 13-14
javax.xml.rpc.session.maintain property, 13-12
javax.xml.rpc.Stub interface, 14-1
javax.xml.soap.AttachmentPart, 9-17
JAX-RPC handlers, described, 2-3
JAX-RPC holders, for accessing IN OUT PL/SQL

Index-6

parameters, 9-12
JAX-RPC mapping file, type-mapping.xml, 5-3
jaxrpc-mappings.xml file, 17-31
JDBC web row set format, 9-18
JDeveloper

packaging Web services, 18-10
support for assembling Web services from

database resources, 9-33
support for assembling Web services with Java

classes, 6-11
support for deployment, 18-12
support for J2SE clients, 14-8

JMS destinations
assembling Web services, 8-1

JMS endpoint Web service
limitations, C-5
receive operation, 8-1
send operation, 8-1

JMS endpoint Web services
message processing, 8-5
reply messages, 8-5

JMS message headers
JMSDeliveryMode, 8-5
JMSExpiration, 8-5
JMSPriority, 8-5
JMSReplyTo, 8-5
JMSType, 8-5

JMS message property
correlation-ID, 8-2, C-5
message-ID, 8-2, C-5
reply-to-destination, 8-2, C-5

JMS queue
accessing an Oracle AQ queue, 9-23

JMS transport, 1-6
JMS transport calls, from J2EE clients, 13-13
JMS transport-related client JARs, A-5
jmsAssemble command, 17-15
jmsAssemble command example, 8-3
JMSDeliveryMode, JMS message header, 8-5
JMSExpiration, JMS message header, 8-5
JMSPriority, JMS message header, 8-5
JMSReplyTo, JMS message header, 8-5
JMSType, JMS message header, 8-5
jmsTypeHeader argument, 17-52
JMX, 2-4
jndiName argument, 17-13, 17-41
jndiProviderURL argument, 17-42
JPublisher, 9-3

for generating client stub code, 9-32
JPublisher options

dir, 9-33
httpproxy, 9-33
numbertypes, 9-5
proxyopts, 9-33
proxywsdl, 9-33
sysuser, 9-33
user, 9-33

jpubProp argument, 9-5, 9-8, 17-49

L
limitations

for Web service management, C-10
for WSIF, C-11
packaging, C-9

linkReceiveWithReplyTo argument, 17-52
literal use

message formats, 4-2
logging and auditing support, 1-7

M
managed client, 13-7
management framework, 1-4
management policy enforcement, 2-2
mapHeadersToParameters argument, 16-2, 17-61
mapping type namespaces, 17-63
mappingFileName argument, 17-42
MBeans, 1-4
message formats

changing, 4-10
designing, 4-9
document style, 4-2
document-literal format, 4-3
encoded use, 4-2
literal use, 4-2
recommendations, 4-10
relationship to wire format, 4-1
RPC style, 4-2
RPC-encoded format, 4-4
RPC-literal format, 4-8
SOAP 1.2 support, 4-10

message formats, summarized, 4-1
message handler

server-side configuration, 15-2
message handlers, 15-1

registering, 15-3
registering with J2EE clients, 15-4
registering with J2SE clients, 15-5

message processing
for a JMS endpoint Web service, 8-5

message processing components, 2-1
message-ID

JMS message property, 8-2, C-5
method parameters

representing in the WSDL, 17-77
MIME attachment support, 1-6

N
name attribute, 13-10
name, handler Ant tag attribute, 17-72
namespace, specifying, 17-65
.NET, 6-1, 7-1
new features

Ant tasks for configuration and scripting, 1-5
custom type mapping framework for

serialization, 1-5
database Web services, 1-5
DIME attachment support, 1-6

Index-7

J2SE 5.0 Web Service annotations (Web Services
Metadata for the Java Platform), 1-4

JMS transport, 1-6
MBeans support, 1-4
message delivery quality of service (QOS), 1-6
MIME attachment support, 1-6
SOAP header support, 1-6
Web Service Invocation Framework (WSIF)

support, 1-7
Web service logging and auditing support, 1-7
Web service provider support, 1-7
Web Service Reliability (WS-Reliability)

support, 1-6
Web services management framework, 1-4
Web Services-Security (WS-Security) support, 1-4

nonstandard datatypes
and top down Web service assembly, 5-2

numbertypes
JPublisher option, 9-5

O
OC4J

setting up your environment, 3-1
OC4J security-related client JARs, A-4
OC4J Standalone Environment, defined, 1-8
OC4J, installing, 3-1
OC4J_REPLY_TO_FACTORY_NAME property, 8-6
operations

generated from server-side Java classes, 9-31
Oracle Application Server Environment,

defined, 1-8
Oracle Application Server new features, 1-3
Oracle AQ queue

accessing via a JMS queue instance, 9-23
accessing via a Web service client, 9-23
sample queue and topic declaration, 9-23
sample Web service generated from an AQ

queue, 9-24
sample Web service generated from an AQ

topic, 9-25
Oracle HTTP Server

third party licenses, D-1
oracle namespace, using for Ant tasks, 3-6
Oracle Streams AQ

exposing as a Web service, 9-20
oracle.jdbc.rowset.OracleWebRowSet, 9-18
OracleWebRowSet format, 9-5, 9-16
oracle.webservices package, A-1
oracle.webservices.annotations.Deployment

class, 10-4
oracle.webservices.attachments package, A-1
oracle.webservices.ClientConstants.COOKIE_MAP

property, 14-7
oracle.webservices.databinding package, A-1
oracle.webservices.provider package, A-1
oracle.webservices.reliability package, A-1
oracle.webservices.security.callback package, A-1
oracle.webservices.soap package, 4-11, 4-12, A-2
oracle.webservices.transport package, A-2

oracle.webservices.transport.ReplyToFactoryName,
13-13

oracle.webservices.transport.ReplyToQueueName, 1
3-13

oracle.webservices.wsdl package, A-2
oracle.webservices.wsdl.WSDLFactoryImpl, B-1
oracle-webservices.xml deployment descriptor

described, 18-12
listing, 18-18

oracle-webservices.xml deployment descriptor,
described, 18-4

oracle-werbservices.xml deployment descriptor, 7-7
OraSAAJ APIs, 4-11, 4-12
ORBInitialHost argument, 17-47
ORBInitialPort argument, 17-47
ORBInitRef argument, 17-47
OUT parameter

limitations on SQL types, C-5
OUT PL/SQL parameter, 9-9
OUT PL/SQL parameter, XML mapping for, 9-5
output argument, 6-2, 7-2, 9-8, 17-42

interactions with ear and war arguments, 17-38,
17-42, 17-45

outputName attribute, 13-10
overwriteBeans argument, 17-61

P
packageName argument, 17-42
packaging

limitations, C-9
WebServicesAssembler tool, 18-7
with JDeveloper, 18-10
with WebServicesAssembler, 18-7

packaging structure
Web service based on EJBs, 18-3
Web service based on Java classes, 18-2

packaging, available tools, 18-1
parameter mapping

processing SOAP headers, 16-1
payloadBindingClassName argument, 17-53
platforms, supported, 3-1
PL/SQL functions, mapping to Web service

operations, 9-12
PL/SQL package, sample, 9-11
PL/SQL packages, exposing as Web services, 9-8
plsqlAssemble command, 17-16
plsqlAssemble command example, 9-8
port

configuring in an Ant task, 17-69
generating into a proxy, 17-69

port type
configuring in an Ant task, 17-70

port, URI component, 12-2
PortComponentLinkResolver property, 13-5
portName argument, 9-8, 17-43
portNameType argument, 17-43
POST requests, for REST services, 11-8
Preview Page, 12-5
priority argument, 17-53

Index-8

protocol handlers, described, 2-2
provider package, A-1
proxy

including handler information, 17-69
including port information, 17-69

proxy generation from Ant tasks, 17-67
proxyopts

JPublisher option for call-outs, 9-33
proxywsdl

JPublisher option for call-outs, 9-33

Q
quality of service (QOS), 1-6
quoting symbols for sqlstatement argument, 17-49

R
receive operation

JMS endpoint Web service, 8-1
receiveConnectionFactoryLocation argument, 17-53
receiveQueueLocation argument, 17-53
receiveTimeout argument, 17-53
receiveTopicLocation argument, 17-53
recoverable argument, 6-7, 17-46
REF CURSOR parameter, C-5

Java mapping for, 9-5
reliability package, A-1
reply messages

for a JMS endpoint Web service, 8-5
replyToConnectionFactoryLocation argument, 8-5,

17-53
reply-to-destination

JMS message property, 8-2, C-5
replyToQueueLocation argument, 8-5, 17-54
replyToTopicLocation argument, 8-5, 17-54
responses, for REST services, 11-9
REST GET URL, invoking, 12-7
REST POST request, previewing, 12-7
REST Services

invoking a GET URL, 12-7
previewing an XML REST POST request, 12-7

REST services
accessing operations, 11-2, 11-5
additions to deployment descriptors, 11-6
assembling, 11-1
bottom up assembly, 11-5
defined, 11-1
HTTP GET requests, 11-7
HTTP POST requests, 11-8
J2SE 5.0 Annotation support, 11-6
REST responses, 11-9
testing deployment, 11-2, 11-5
tool support, 11-9
top down assembly, 11-2

restSupport argument, 11-2, 11-5, 17-43
return values

for Java classes, 6-6
root package name, specifying, 17-66
RPC style

message format, 4-2
RPC-encoded message format, 4-4

Oracle-specific Java type support, 4-6
request message, 4-4
response message, 4-5
sample messages, 4-4
with and without the xsi:type attribute, 4-5
with xsi:type attribute, 4-6
without xsi:type attribute, 4-5

RPC-literal message format, 4-8
request message, 4-8
sample messages, 4-8

S
SAAJ 1.2 APIs, 4-11, 4-12
SAAJ API, 4-11
schema argument, 17-43, 17-67
schemas

J2EE client, 13-4
service-ref-mapping-10_0.xsd, 13-7

scope, for stateful Java implementations, 6-10
searchSchema argument, 17-44
send operation

JMS endpoint Web service, 8-1
sendConnectionFactoryLocation argument, 17-54
sendQueueLocation argument, 17-54
sendTopicLocation argument, 17-54
server-side Java classes

exposing as a Web service, 9-28
generating Web service operations, 9-31
sample classes, 9-31
supported data and return types, 9-28

server.xml file, 7-4
Web site configuration file, 6-8

Service class, 14-2, 14-5
service endpoint interface, writing an EJB, 7-5
service operations, mapping SQL queries into, 9-16
service, URI component, 12-2
ServiceLifecycle interface, 2-4

processing SOAP headers, 16-3
serviceName argument, 9-8, 17-44
service-ref-mapping-10_0.xsd schema, 13-7
services

assigning multiple services to an archive, 17-75
limitations on assigning multiple services to a

WAR, 17-77
servlet client EAR files, relationship with deployment

descriptors, 13-16
ServletContext class, B-2
ServletEndpointContext class, B-2
session argument, 6-7, 17-46
session scope, 6-10
SESSION_MAINTAIN_PROPERTY property, 14-5,

14-8
SESSION_MAINTAIN_PROPERTY runtime

property, 6-9, 13-13
setting up your environment, 3-1
Simple Object Access Protocol (SOAP) 1.1 and 1.2,

supported standard, 1-2

Index-9

singleService argument, 17-59
SOAP 1.2 messages

in bottom up Web service assembly, 4-12
in top down Web service assembly, 4-13
message format support, 4-10

SOAP header support, 1-6
soap package, A-2
SOAP with Attachments API (SAAJ), 4-11
SOAPAction header, use with REST services, 11-8
soapheader handler Ant child tag, 17-73
soaprole, handler Ant attribute, 17-73
soapVersion argument, 4-12, 17-59
specifying a namespace, 17-65
sql argument, 9-21, 17-49
SQL DML, 9-14
SQL numeric types

changing SQL to XML type mapping, 9-5
SQL query

exposing as a Web service, 9-14
mapping to service operations, 9-16

SQL statements, samples, 9-16
SQL*PLUS, command for loading a wrapper

package, 9-9
sqlAssemble command, 9-14, 17-18
sqlAssemble command example, 9-14
sqlstatement argument, 9-14, 17-49, 17-67

valid quoting symbols, 17-49
sqlTimeout argument, 17-50
staging directory structure, 17-4
stateful Java implementations, supported

scope, 6-10
stateful Web services

and interoperability, 6-7
assembling with Java classes, 6-7
defining Java classes, 6-10
writing Java classes, 6-10

stateless Web services
assembling with an EJB session bean, 7-2
assembling with Java classes, 6-2
defining Java classes, 6-6
defining Java interfaces, 6-6
writing Java classes, 6-5

static stub clients, 14-1
strictJaxrpcValidation argument, 17-44
Stub interface, 14-1
style argument, 4-9, 9-8, 9-9, 17-60
supported platforms, 3-1
supported standards

Java 2 Enterprise Edition (J2EE), 1-2
Simple Object Access Protocol (SOAP) 1.1 and

1.2, 1-2
Web Service Description Language (WSDL)

1.1, 1-3
Web Service Reliability (WS-Reliability), 1-6
Web Service-Interoperability Basic Profile (WS-I)

1.1, 1-3
Web Services-Security (WS-Security), 1-4

system-application.xml file, 13-5
sysUser argument, 9-29, 9-33, 17-50
sysuser, JPublisher option for call-outs, 9-33

T
targetNamespace argument, 17-59
testing deployment, 12-1
third party licenses, D-1
timeout argument, 6-7, 17-46
timeToLive argument, 17-54
tool support

deployment, 18-10
exposing EJBs as a Web service, 7-7
for J2SE clients, 14-8
for Web service packaging, 18-1

JDeveloper, 18-10
WebSevicesAssembler, 18-7

REST services, 11-9
top down assembly

REST services, 11-2
top down Web service assembly, 5-1

and nonstandard types, 5-2
defined, 5-1
limitations, C-4
using SOAP 1.2 messages, 4-13

topDownAssemble command, 17-20
topDownAssemble command example, 5-3, 11-2
topicDurableSubscriptionName argument, 17-55
transport level security, for EJBs, 7-7
transport package, A-2
type mappings

changing mappings for SQL numeric types, 9-5
for Web service call-ins, 9-4
for Web service call-outs, 9-5

type namespaces, mapping, 17-63
type-mapping.xml, JAX-RPC mapping file, 5-3
typeNamespace argument, 17-59, 17-65

U
unsupported types

and Java classes, 6-7
unwrapParameters argument, 5-2, 17-20, 17-61, C-11
uri argument, 9-8, 17-57
URI components, 12-1
use argument, 4-9, 9-8, 17-60
useDataSource argument, 17-50
useDimeEncoding argument, 17-45
user, JPublisher option for call-outs, 9-33
userThreads option (Oracle Application Server), C-7

V
valueTypeClassName argument, 17-61, 17-67
valueTypePackagePrefix argument, 17-62, 17-66
version command, 17-35

W
WAR archive

adding a file, 17-74
assigning multiple services, 17-75
limitations on assigning multiple services, 17-77

war argument, 17-45

Index-10

interactions with output and ear
arguments, 17-38, 17-42, 17-45

Web application client EAR files, relationship with
deployment descriptors, 13-16

Web Service Description Language (WSDL) 1.1,
supported standard, 1-3

Web Service Home Page, 12-1
described, 12-2
Editor Page, described, 12-3
for REST Services, 11-6, 12-7
limitations, C-7
obtaining a WSDL file, 12-8
Preview Page, described, 12-5
using, 12-1

Web Service Home page
using, 12-2

Web Service Invocation Framework (WSIF)
support, 1-7

Web service management
limitations, C-10

Web service mangement
policy enforcement, 2-2

Web service provider support, 1-7
Web Service Reliability support, 1-6
Web Service-Interoperability Basic Profile (WS-I) 1.1

standard, 1-3
Web services

architecture, 2-1
assembling from database resources, 9-1
assembling from DML statements, 9-14
assembling from Oracle Streams AQ, 9-20
assembling from PL/SQL packages, 9-8
assembling from server-side Java classes, 9-28
assembling from SQL queries, 9-14
assembling with JMS destinations, 8-1
defined, 1-1
deployment resources, 18-10
development life cycle, 2-4
EJBs

assembling, 7-1
stateless, 7-1

Java classes
assembling, 6-1
limitations, C-4
stateful, 6-1
stateless, 6-1
tool support, 6-11

message flow, 2-1
operations generated from server-side Java

classes, 9-31
packaging, 18-1
processing components, 2-1
top down assembly, 5-1

Web Services-Security (WS-Security) supported
standards, 1-4

WebRowSet format, C-5
webservices package, A-1
WebServicesAssembler

limitations, C-7
setting up Ant, 3-3

WebServicesAssembler arguments
appendToExistingDDs, 17-55
appName, 17-37
aqConnectionFactoryLocation, 17-48
aqConnectionLocation, 17-48
bindingName, 17-37
callScope, 17-46
classFileName, 17-37
className, 17-26, 17-37
classpath, 17-38
context, 16-3, 17-56
corbanameURL, 17-47
corbaObjectPath, 17-47
createOneWayOperations, 17-58
dataBinding, 17-60
dataSource, 17-48, 17-66
dbConnection, 17-48, 17-66
dbJavaClassName, 17-48
dbUser, 17-48, 17-66
ddFileName, 17-25, 17-56
debug, 17-38
deliveryMode, 17-52
ear, 17-38
ejbName, 17-40
emptySoapAction, 17-40
endpointAddress, 17-55
failonerror, 17-75
fetchWsdlImports, 17-57
genJmsPropertyHeader, 17-52
genJUnitTest, 17-55
genQos, 17-59
help, 17-40
httpProxyHost, 17-58
httpProxyPort, 17-58
idlFile, 17-47
idlInterfaceName, 17-47
idljPath, 17-47
importAbstractWsdl, 17-58
initialContextFactory, 17-40
input, 17-40, 17-67
interfaceFileName, 17-41
interfaceName, 17-26, 17-41
jmsTypeHeader, 17-52
jndiName, 17-13, 17-41
jndiProviderURL, 17-42
jpubProp, 17-49
linkReceiveWithReplyTo, 17-52
mapHeadersToParameters, 16-2, 17-61
mappingFileName, 17-42
optional for Web service call-in, 9-8
ORBInitialHost, 17-47
ORBInitialPort, 17-47
ORBInitRef, 17-47
output, 17-42
overwriteBeans, 17-61
packageName, 17-42
payloadBindingClassName, 17-53
portName, 17-43
portNameType, 17-43
priority, 17-53

Index-11

receiveConnectionFactoryLocation, 17-53
receiveQueueLocation, 17-53
receiveTimeout, 17-53
receiveTopicLocation, 17-53
recoverable, 17-46
replyToConnectionFactoryLocation, 17-53
replyToQueueLocation, 17-54
replyToTopicLocation, 17-54
required for Web service call-in, 9-7
restSupport, 17-43
schema, 17-43, 17-67
searchSchema, 17-44
sendConnectionFactoryLocation, 17-54
sendQueueLocation, 17-54
sendTopicLocation, 17-54
serviceName, 17-44
session, 17-46
singleService, 17-59
soapVersion, 17-59
sql, 17-49
sqlstatement, 17-49, 17-67
sqlTimeout, 17-50
strictJaxrpcValidation, 17-44
style, 17-60
sysUser, 17-50
targetNamespace, 17-59
timeout, 17-46
timeToLive, 17-54
topicDurableSubscriptionName, 17-55
typeNamespace, 17-59, 17-65
unwrapParameters, 17-20, 17-61
uri, 17-57
use, 17-60
useDataSource, 17-50
useDimeEncoding, 17-45
valueTypeClassName, 17-61, 17-67
valueTypePackagePrefix, 17-62, 17-66
war, 17-45
wsdl, 17-58
wsdlTimeout, 17-59
wsifDbBinding, 17-5, 17-16, 17-18, 17-26, 17-51
wsifDbPort, 17-51
wsifEjbBinding, 17-13, 17-26, 17-62
wsifJavaBinding, 17-7, 17-26, 17-62
wsifJDbBinding, 17-11

WebServicesAssembler commands
analyze, 17-22
aqAssemble, 17-5
assemble, 17-7
corbaAssemble, 17-9
dbJavaAssemble, 17-11
ejbAssemble, 17-13
fetchWsdl, 17-23
genApplicationDescriptor, 17-32
genConcreteWsdl, 17-24
genDDs, 17-33
genInterface, 17-29
genProxy, 17-30
genQosWsdl, 17-25
genValueTypes, 17-31

genWsdl, 17-26
help, 17-35
jmsAssemble, 17-15
plsqlAssemble, 17-16
sqlAssemble, 17-18
topDownAssemble, 17-20
version, 17-35

WebServicesAssembler tool
Ant task support, 17-2
bottom up assembly support, 17-1
command line syntax, 17-2
deployment support, 17-2
managing deployment descriptors, 18-8
packaging commands, 18-7
packaging Web services, 18-7
top down assembly support, 17-1
XML schema driven assembly support, 17-2

WebServicesAssembler tool, described, 17-1
webservices.xml configuration file, described, 18-4
webservices.xml deployment descriptor, 5-3, 7-3,

15-2, 15-3
web.xml deployment descriptor, 5-3, 15-4
web.xml deployment descriptor, described, 18-4
wsclient_extended.jar client class file, A-2

contents, A-2
wsclient_extended.jar file, 5-4, 6-4, 6-9, 7-4, 8-5, 9-10,

9-15, 9-22, 9-30, 14-2
WSDL API

creating WSDL factory instances, B-1
creating WSDL file reader, B-1
extracting information, B-1
getting a WSDL factory instance, B-1
getting the WSDL as a resource, B-2
reading a WSDL file, B-1
setting a timeout, B-1

wsdl argument, 17-58
WSDL factory instances, creating, B-1
WSDL file

obtaining directly, 12-8
representing Java method parameters, 17-77

WSDL file, described, 18-4
wsdl package, A-2
WSDL_READ_TIMEOUT property, B-1
WSDLFactoryImpl class, B-1
wsdl-override-last-modified attribute, 13-8
wsdlTimeout argument, 17-59
WSIF

limitations, C-11
wsifDbBinding argument, 17-5, 17-11, 17-16, 17-18,

17-26, 17-51
wsifDbPort argument, 17-51
wsifEjbBinding argument, 17-13, 17-26, 17-62
wsifJavaBinding argument, 17-7, 17-26, 17-62
wsmgmt.xml management policy file, C-10
WS-Reliability-related client JARs, A-5
WS-Security-related client JARs, A-4

X
XDB rowset format, 9-5, 9-16, 9-18, C-5

Index-12

XMLprocessing, described, 2-2
XMLType SQL type, mapping to XML any, 9-13
xpath queries, C-10
xsi:type attribute, 4-5, 4-6

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Web Services Overview
	Understanding Web Services
	Web Services Standards
	Java 2 Enterprise Edition
	Simple Object Access Protocol 1.1 and 1.2
	Web Service Description Language 1.1
	Web Service-Interoperability Basic Profile 1.1

	New and Enhanced Features
	Web Service Security for Authentication, Integrity, and Confidentiality
	Web Services Management Framework and Application Server Control
	Web Services Metadata for the Java Platform (J2SE 5.0 Web Service Annotations)
	REST Web Services
	Enhanced Web Service Home Page for Testing
	Ant Tasks for Configuration and Scripting
	Custom Type Mapping Framework for Serialization
	Database Web Services
	SOAP Header Support
	MIME and DIME Document Support
	Message Delivery Quality of Service
	JMS Transport as an Alternative to HTTP
	Web Services Provider Support
	Web Services Invocation Framework for Describing WSDL Programming Artifacts
	SOAP Message Auditing and Logging
	Oracle BPEL

	Compatibility with Previous Versions of Web Services
	Redeploying Applications on OracleAS Web Services 10.1.3
	Deprecated Features

	Clustered Environments and High Availability
	OC4J in a Standalone Versus Oracle Application Server Environment

	2 Oracle Application Server Web Services Architecture and Life Cycle
	Architecture
	Processing Components
	Protocol Handlers
	XML Processing
	Policy Enforcement
	JAX-RPC Handlers
	Data Binding
	Endpoint Implementation

	Java Management Extensions (JMX)
	Development Tools

	Web Services Development Life Cycle
	Create the Implementation
	Generate the Web Service
	Generate the Client
	Deploy the Web Service
	Test the Web Service
	Perform Post Deployment Tasks

	3 Getting Started
	Supported Platforms
	Installing OC4J
	Setting Up Your Environment for OracleAS Web Services
	Setting Up Ant for WebServicesAssembler
	Setting Up Ant 1.6.2 Distributed with Oracle Application Server
	Setting Up Ant 1.6.2 Using a Previous Installation of Ant
	Setting Up Ant 1.5.2 Using a Previous Installation of Ant
	Using the "oracle:" namespace Prefix for Ant Tasks

	Database Requirements
	Development and Documentation Roadmap

	4 Oracle Application Server Web Services Messages
	OracleAS Web Services Message Formats
	Understanding Message Formats
	RPC and Document Styles
	Literal and Encoded Uses

	Supported Message Formats
	Document-Literal Message Format
	Sample Request Message with the Document-Literal Message Format

	RPC-Encoded Message Format
	Sample Messages with the RPC-Encoded Message Format
	The xsi:type Attribute in RPC-Encoded Message Formats
	Oracle-Specific Type Support
	Restrictions on RPC-Encoded Format

	RPC-Literal Message Format
	Sample Request Message with the RPC-Literal Message Format

	Selecting Message Formats
	Changing Message Formats in a Service Implementation
	Message Format Recommendations

	Working with SOAP Messages
	OraSAAJ APIs
	Using the OraSAAJ APIs

	Using SOAP 1.2 Formatted Messages in Bottom Up Web Service Assembly
	Using SOAP 1.2 Formatted Messages in Top Down Web Service Assembly

	Converting XML Elements to SOAP Elements
	Limitations
	Additional Information

	5 Assembling a Web Service from a WSDL
	What Is Top Down Assembly?
	How to Assemble a Web Service Top Down
	Prerequisites
	Generating the Web Service Top Down
	Generating a Web Service Top Down with Ant Tasks

	Limitations
	Additional Information

	6 Assembling a Web Service with Java Classes
	Exposing Java Classes as a Stateless Web Service
	Prerequisites
	How to Assemble a Stateless Web Service
	Ant Tasks for Generating a Stateless Web Service

	Writing Java Class-Based Web Services
	Writing Stateless Web Services
	Defining a Java Interface
	Defining a Java Class

	Exposing Java Classes as a Stateful Web Service
	Prerequisites
	How to Assemble a Stateful Web Service
	Ant Tasks for Generating a Stateful Web Service

	Writing Stateful Web Services
	Defining a Java Interface
	Defining a Java Class

	Packaging and Deploying Web Services
	Tool Support for Exposing Java Classes as Web Services
	Limitations
	Additional Information

	7 Assembling a Web Service with EJBs
	Exposing EJBs as Web Services
	Prerequisites
	How to Assemble a Web Service from an EJB
	Ant Tasks for Generating a Web Service

	Writing EJBs for Web Services
	Writing an EJB Service Endpoint Interface
	Writing an EJB

	Packaging and Deploying Web Services that Expose EJBs
	Providing Transport-Level Security
	Tool Support for Exposing EJBs as a Web Service
	Limitations
	Additional Information

	8 Assembling Web Services with JMS Destinations
	Understanding JMS Endpoint Web Services
	How to Assemble a JMS Endpoint Web Service
	Ant Tasks for Generating a Web Service

	Message Processing and Reply Messages

	Limitations
	Additional Information

	9 Developing Database Web Services
	Understanding Database Web Services
	Type Mapping Between SQL and XML
	SQL to XML Type Mappings for Web Service Call-Ins
	Changing the SQL to XML Mapping for Numeric Types

	XML to SQL Type Mapping for Web Service Call-Outs

	Developing Web Services that Expose Database Resources
	How to Use Life Cycle for Web Service Call-in
	WebServicesAssembler Support for Web Service Call-in
	Exposing PL/SQL Packages as Web Services
	Prerequisites
	How to Assemble a Web Service from a PL/SQL Package
	Ant Tasks for Generating a Web Service
	Sample PL/SQL Package
	Mapping Between PL/SQL Functions and Web Service Operations
	Mapping PL/SQL IN and IN OUT Parameters to XML IN OUT Parameters
	Mapping SQL XMLType to XML any

	Exposing a SQL Query or DML Statement as a Web Service
	Prerequisites
	How to Assemble a Web Service from a SQL Statement or Query
	Ant Tasks for Assembling a Web Service from SQL Queries or DML Statements
	Sample SQL Statements
	Mapping SQL Queries to Service Operations
	Mapping DML Operations to Web Service Operations

	Exposing an Oracle Streams AQ as a Web Service
	Prerequisites
	How to Assemble a Web Service from an Oracle AQ
	Ant Tasks for Generating a Web Service
	Developing Client Code to Access an AQ Queue Exposed as a Web Service
	Accessing an Oracle AQ Queue with JMS
	Sample AQ Queue and Topic Declaration
	Sample Web Service for a Queue Generated by WebServicesAssembler
	Sample Web Service for a Topic Generated by WebServicesAssembler

	Exposing a Server-Side Java Class as a Web Service
	Prerequisites
	How to Assemble a Web Service from a Server-Side Java Class
	Ant Tasks for Generating a Web Service
	Sample Server-Side Java Class
	Sample Web Service Operations Generated from a Server-Side Java Class

	Developing a Web Service Client in the Database
	Tool Support for Web Services that Expose Database Resources
	Limitations
	Additional Information

	10 Assembling Web Services with Annotations
	Developing Web Services with J2SE 5.0 Annotations
	How to Use J2SE 5.0 Annotations to Assemble a Web Service from Java Classes
	How to Use J2SE 5.0 Annotations to Assemble a Web Service from a Version 3.0 EJB
	Supported J2SE 5.0 Annotation Tags
	Oracle Additions to J2SE Annotations
	Deployment Annotation

	Overriding Annotations
	Overriding Annotation Values with WebServicesAssembler
	Overriding Deployment Annotation Values with Deployment Descriptors

	Sample Java File with J2SE 5.0 Annotations

	Limitations
	Additional Information

	11 Assembling REST Web Services
	Assembling REST Web Services
	How to Assemble a REST Web Service Top Down
	Accessing REST Web Service Operations

	How to Assemble a REST Web Service Bottom Up
	Accessing REST Web Service Operations

	REST Additions to Deployment Descriptors
	Using J2SE 5.0 Annotations to Assemble REST Web Services
	Testing REST Web Services
	Building Requests and Responses
	HTTP GET Requests
	HTTP POST Requests
	REST Responses

	Tool Support for REST Web Services
	Limitations
	Additional Information

	12 Testing Web Service Deployment
	Using the Web Services Home Page
	How to Access the Web Services Home Page
	How to Use the Web Services Home Page
	Understanding the Web Service Home Page
	Understanding the Web Service Editor Page
	Editing Operation Parameters and Elements
	Editing Security and Reliability Settings

	Understanding the Web Service Invocation Page

	Using the Web Services Home Page for REST Services

	Obtaining a Web Service WSDL Directly
	Limitations
	Additional Information

	13 Assembling a J2EE Web Service Client
	Understanding J2EE Web Service Clients
	Prerequisites
	How to Assemble a J2EE Web Service Client
	Deploying and Running an Application Client Module
	Ant Task for Generating an Interface
	Adding J2EE Web Service Client Information to Deployment Descriptors
	Accessing a Web Service
	Adding a Port Component Link to a J2EE Client Deployment Descriptor

	Adding OC4J-Specific Platform Information
	Adding JAX-RPC Handlers to Deployment Descriptors

	Writing J2EE Web Service Client Code
	Configuring a J2EE Web Service Client for a Stateful Web Service
	Configuring a J2EE Client with Configuration Files
	Configuring a J2EE Client Programmatically

	Configuring a J2EE Web Service Client to Make JMS Transport Calls
	Enabling Chunked Data Transfer for HTTP 1.1
	Setting a Character Encoding for a SOAP Message

	Packaging a J2EE Client
	Packaging a Servlet or Web Application Client
	Packaging Structure for Servlet or Web Application Clients
	Relationship Between Deployment Descriptors and Servlet or Web Application Client EAR Files

	Packaging an EJB Client
	Package Structure for EJB Application Clients
	Relationship Between Deployment Descriptors for EJB Application Clients

	Limitations
	Additional Information

	14 Assembling a J2SE Web Service Client
	Understanding J2SE Web Service Clients
	Using Static Stub Clients
	Using the Web Service Dynamic Invocation Interface
	Prerequisites
	How to Assemble a J2SE Web Service Client with a Static Stub
	Ant Tasks for Generating a J2SE Web Service Client
	Sample WSDL File

	Writing Web Service Client Applications
	Enabling Chunked Data Transfer for HTTP 1.1
	Setting a Character Encoding for a SOAP Message on a J2SE Client
	Setting Cookies in a Client Stub

	Tool Support for Assembling J2SE Web Service Clients
	Additional Information

	15 Understanding JAX-RPC Handlers
	Message Handler Overview
	Writing a JAX-RPC Handler
	Configuring a Server-Side JAX-RPC Handler
	Registering JAX-RPC Handlers with webservices.xml
	Client-Side JAX-RPC Handlers
	Registering JAX-RPC Handlers for J2EE Web Service Clients
	Using the handler Element in a J2EE Web Service Client

	Registering JAX-RPC Handlers for J2SE Web Service Clients

	Limitations
	Additional Information

	16 Processing SOAP Headers
	Processing SOAP Headers with Parameter Mapping
	Processing SOAP Headers by Using Handlers
	Processing SOAP Headers by Using the ServiceLifecycle Interface
	Getting HTTP Headers with the ServiceLifecycle Interface

	Limitations
	Additional Information

	17 Using WebServicesAssembler
	About the WebServicesAssembler Tool
	Command Line Syntax

	Setting Up Ant for WebServicesAssembler
	WebServicesAssembler Commands
	Web Service Assembly Commands
	aqAssemble
	assemble
	corbaAssemble
	dbJavaAssemble
	ejbAssemble
	jmsAssemble
	plsqlAssemble
	sqlAssemble
	topDownAssemble
	WSDL Management Commands
	analyze
	fetchWsdl
	genConcreteWsdl
	genQosWsdl
	genWsdl
	Java Generation Commands
	genInterface
	genProxy
	genValueTypes
	Deployment Descriptor Generation Commands
	genApplicationDescriptor
	genDDs
	Maintenance Commands
	help
	version

	WebServicesAssembler Arguments
	General Web Services Assembly Arguments
	appName
	bindingName
	classFileName
	className
	classpath
	debug
	ear
	ejbName
	emptySoapAction
	help
	initialContextFactory
	input
	interfaceFileName
	interfaceName
	jndiName
	jndiProviderURL
	mappingFileName
	output
	packageName
	portName
	portTypeName
	restSupport
	schema
	searchSchema
	serviceName
	strictJaxrpcValidation
	useDimeEncoding
	war

	Session Arguments
	callScope
	recoverable
	session
	timeout

	CORBA Assembly Arguments
	corbanameURL
	corbaObjectPath
	idlFile
	idlInterfaceName
	idljPath
	ORBInitialHost
	ORBInitialPort
	ORBInitRef

	Database Assembly Arguments
	aqConnectionFactoryLocation
	aqConnectionLocation
	dataSource
	dbConnection
	dbJavaClassName
	dbUser
	jpubProp
	sql
	sqlstatement
	sqlTimeout
	sysUser
	useDataSource
	wsifDbBinding
	wsifDbPort

	JMS Assembly Arguments
	deliveryMode
	genJmsPropertyHeader
	jmsTypeHeader
	linkReceiveWithReplyTo
	payloadBindingClassName
	priority
	receiveConnectionFactoryLocation
	receiveQueueLocation
	receiveTimeout
	receiveTopicLocation
	replyToConnectionFactoryLocation
	replyToQueueLocation
	replyToTopicLocation
	sendConnectionFactoryLocation
	sendQueueLocation
	sendTopicLocation
	timeToLive
	topicDurableSubscriptionName

	Proxy Arguments
	endpointAddress
	genJUnitTest

	Deployment Descriptor Arguments
	appendToExistingDDs
	context
	ddFileName
	uri

	WSDL Access Arguments
	fetchWsdlImports
	httpNonProxyHosts
	httpProxyHost
	httpProxyPort
	importAbstractWsdl
	wsdl

	WSDL Management Arguments
	createOneWayOperations
	genQos
	singleService
	soapVersion
	wsdlTimeout
	targetNamespace
	typeNamespace

	Message Format Arguments
	style
	use

	Java Generation Arguments
	dataBinding
	mapHeadersToParameters
	overwriteBeans
	unwrapParameters
	valueTypeClassName
	valueTypePackagePrefix
	wsifEjbBinding
	wsifJavaBinding

	Default Algorithms to Map Between Target WSDL Namespaces and Java Package Names
	Java Package Name to WSDL Namespace Mapping Algorithm
	Mapping Java Artifacts to WSDL Artifacts
	Mapping Java Types to XML Schema Types

	WSDL Namespace to Java Package Name Mapping Algorithm
	Mapping the WSDL Service Endpoint Interface and Related Endpoint Artifacts to Java Package and Class Names
	Mapping WSDL Value Types and Related Artifacts to Java Names and Types

	Specifying a Namespace
	Specifying a Root Package Name

	Establishing a Database Connection
	Additional Ant Support for WebServicesAssembler
	Using Multiple Instances of an Argument in Ant
	Configuring Proxy Generation in an Ant Task
	Generating Handler and Port Information into a Proxy

	Configuring a Port in an Ant Task
	Configuring a Port Type in an Ant Task
	Configuring Handlers in an Ant Task
	Attributes and Child Tags for handler Tags
	Sample Handler Configuration
	Ant Tasks that Can Configure Handlers
	Configuring Multiple Handlers in an Ant Task

	Adding Files to an Archive
	Controlling a WebServicesAssembler Build
	Assigning Multiple Web Services to an EAR or WAR Archive
	Limitations on Assigning Multiple Web Services to a WAR File

	Representing Java Method Parameter Names in the WSDL

	Limitations
	Additional Information

	18 Packaging and Deploying Web Services
	Packaging Web Service Applications
	Packaging Structure for Web Service Applications
	Packaging for a Web Service Based on Java Classes
	Packaging for a Web Service Based on EJBs

	Description of Packaged Files
	Relationships Between Deployment Descriptor Files
	webservices.xml and ejb-jar.xml
	webservices.xml and oracle-webservices.xml
	webservices.xml and web.xml

	Tool Support for Packaging
	Packaging Support with WebServicesAssembler
	WebServicesAssembler Packaging Commands
	Managing Deployment Descriptors
	Creating Deployment Descriptors
	Arguments that Affect Deployment Descriptor Contents

	Packaging Support with JDeveloper

	Understanding Web Service Deployment
	Tool Support for Deployment
	Command Line Support for Deployment
	A Sample Deployment Using admin_client.jar

	Ant Task Support for Deployment
	Deployment Support with JDeveloper
	Deployment Support with Application Server Control

	oracle-webservices.xml Deployment Descriptor
	Components in oracle-webservices.xml
	<oracle-webservices> Element
	<webservice-description> Element
	<port-component> Element

	Securing EJB-Based Web Services at the Transport Level
	<ejb-transport-security-constraint> Element
	<ejb-transport-login-config> Element

	oracle-webservices.xml File Listing

	Limitations
	Additional Information

	A Web Service Client APIs and JARs
	Web Services API Packages
	Setting the Web Service Proxy Client Classpath
	Simplifying the Classpath with wsclient_extended.jar
	Classpath Components for Clients using a Client-Side Proxy
	OC4J Security-Related Client JAR Files
	WS-Security-Related Client JAR Files
	Reliability-Related Client JAR File
	JMS Transport-Related Client JAR File
	Database Web Services-Related Client JAR Files
	Sample Classpath Commands

	B Oracle Implementation of the WSDL 1.1 API
	Understanding the OraWSDL APIs

	C Troubleshooting
	OracleAS Web Services Messages
	Assembling Web Services from a WSDL
	Assembling Web Services from Java Classes
	Assembling Web Services From EJBs
	Assembling Web Services with JMS Destinations
	Developing Web Services From Database Resources
	Assembling Web Services with Annotations
	Assembling REST Web Services
	Testing Web Service Deployment
	Assembling a J2EE Web Service Client
	Understanding JAX-RPC Handlers
	Processing SOAP Headers
	Using WebServicesAssembler
	Packaging and Deploying Web Services
	Ensuring Interoperable Web Services
	Working with Message Attachments
	Managing Web Services
	Ensuring Web Service Reliability
	Auditing and Logging Messages
	Custom Serialization of Java Value Types
	Using JMS as a Web Service Transport
	Using the Web Service Invocation Framework
	Using Dynamic Invocation Interface to Invoke Web Services
	Basic Calls
	Configured Calls
	Examples of Web Service Clients that use DII

	D Third Party Licenses
	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	JSR 110
	Jaxen
	The Jaxen License

	SAXPath
	The SAXPath License

	W3C DOM
	The W3C License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

