
Oracle® Business Rules
User’s Guide

10g Release 3 (10.1.3)

B15986-01

January 2006

Oracle Business Rules User’s Guide 10g Release 3 (10.1.3)

B15986-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Thomas Van Raalte

Contributing Author: Kevin Yu Hwang

Contributors: Qun Chen, Ching Luan Chung, David Clay, Kathryn Gruenefeldt, Gary Hallmark, Phil
Varner, Neal Wyse, Lance Zaklan

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

1 Overview of Oracle Business Rules

1.1 Introduction to Oracle Business Rules... 1-2
1.1.1 What Are Business Rules? .. 1-2
1.1.2 What Is a Data Model?.. 1-2
1.1.3 What Is a Rule-Based System? ... 1-3
1.2 Oracle Business Rules Components ... 1-4
1.2.1 Introducing Oracle Business Rules Rule Author .. 1-4
1.2.2 Introducing Oracle Business Rules Rules SDK ... 1-5
1.2.3 Introducing Oracle Business Rules RL Language... 1-5
1.2.4 Introducing Oracle Business Rules Rules Engine ... 1-5
1.3 Oracle Business Rules Rule Author Terms and Concepts .. 1-6
1.3.1 Working with Rules... 1-6
1.3.2 Working with Rule Sets .. 1-6
1.3.3 Working with Repositories and Dictionaries .. 1-7
1.3.4 Working with Facts ... 1-7
1.3.5 Working with Functions Variables and Constraints .. 1-8
1.4 Steps for Rule Enabling a Java Application .. 1-9
1.4.1 Identify Application Areas to Rule Enable .. 1-9
1.4.2 Provide Rule Author Definitions for the Data Model .. 1-9
1.4.3 Develop a Business Vocabulary for the Data Model .. 1-9
1.4.4 Write and Customize Rules... 1-10
1.4.5 Modify or Create Application Logic that Uses the Rules Engine.............................. 1-10
1.4.6 Test the Rule Enabled Application... 1-10

2 Getting Started with Rule Author

2.1 Creating a Rule Author User... 2-1
2.2 Starting Rule Author .. 2-2
2.3 Rule Author Home Page.. 2-4
2.4 Creating and Saving a Dictionary for the Car Rental Sample.. 2-4
2.4.1 Connecting to a Rule Author Repository ... 2-5
2.4.2 Creating a Rule Author Dictionary ... 2-7
2.4.3 Saving a Rule Author Dictionary with a Version ... 2-8
2.4.4 Saving a Rule Author Dictionary .. 2-8
2.5 Defining a Data Model for the Car Rental Sample .. 2-9
2.5.1 Using Java Objects as Facts in the Car Rental Sample.. 2-9

iv

2.5.2 Adding Java Classes and Packages to Rule Author ... 2-9
2.5.3 Importing Java Classes to a Data Model ... 2-11
2.5.4 Saving the Current State of Definitions... 2-13
2.6 Defining Business Vocabulary for the Car Rental Sample... 2-13
2.6.1 Specifying the Business Vocabulary for Java Fact Definitions................................... 2-13
2.6.2 Specifying the Business Vocabulary for Functions.. 2-14
2.6.3 Specifying the Visibility for Properties and Methods ... 2-14
2.7 Defining a Rule for the Car Rental Sample .. 2-15
2.7.1 Creating a Rule Set for the Car Rental Sample... 2-15
2.7.2 Creating a Rule for the Car Rental Sample ... 2-16
2.8 Customizing Rules for the Car Rental Sample .. 2-24
2.9 Creating a Java Application Using Oracle Business Rules .. 2-25
2.9.1 Importing the Rules SDK and Rules RL Classes.. 2-26
2.9.2 Initialize the Repository with Rules SDK.. 2-26
2.9.3 Loading a Dictionary with Rules SDK... 2-27
2.9.4 Specifying a Rule Set and Generating RL with Rules SDK .. 2-27
2.9.5 Initializing and Executing a Rule Session ... 2-28
2.9.6 Asserting Business Objects Within a Rule Session .. 2-28
2.9.7 Using the Run Function with a Rule Session.. 2-29
2.10 Running the Car Rental Sample Using the Test Program.. 2-29

3 Working With Rule Author Features

3.1 Working with Variables ... 3-1
3.2 Working with Constraints ... 3-2
3.3 Working with RLFacts.. 3-5
3.4 Working with Functions .. 3-6
3.5 Viewing Java Objects in a Data Model .. 3-8
3.5.1 Specifying Visibility and Object Chaining for Rule Author Drop Down Lists 3-9
3.6 Generating Oracle Business Rules RL Language Text ... 3-10
3.6.1 Generating and Viewing an RL Language Program ... 3-10
3.7 Configuring Rule Author Dictionary Properties... 3-10
3.7.1 Using the Advanced Test Expression Option... 3-11
3.7.2 Using the Logging Option... 3-12
3.8 Deleting a Rule Author Dictionary ... 3-12
3.9 Importing and Exporting a Dictionary ... 3-13
3.10 Working with Test Rulesets ... 3-14
3.11 Invoking Rules.. 3-17
3.11.1 Overview of Results Examples ... 3-18
3.11.2 Using a Global Variable to Obtain Results.. 3-18
3.11.3 Using Container Objects to Obtain Results... 3-19
3.11.4 Using Reasoned On Objects to Obtain Results... 3-20

4 Using XML Facts with Rule Author

4.1 Overview of Using XML Documents and Schemas with Rule Author 4-1
4.2 Creating and Saving a Dictionary for the XML Car Rental Sample 4-2
4.2.1 Connecting to a Rule Author Repository ... 4-2
4.2.2 Creating a Rule Author Dictionary ... 4-3

v

4.2.3 Saving a Rule Author Dictionary with a Version ... 4-4
4.2.4 Saving a Rule Author Dictionary .. 4-5
4.3 Defining a Data Model for the XML Car Rental Sample... 4-6
4.3.1 Using XML Schema as Facts in the XML Car Rental Sample.. 4-6
4.3.2 Adding XML Facts for the Car Rental Sample (XML Schema Processing) 4-6
4.3.3 Importing XML Schema Elements to a Data Model ... 4-9
4.3.4 Viewing XML Facts in a Data Model ... 4-11
4.3.5 Saving the Current State of XML Fact Definitions... 4-11
4.4 Defining Business Vocabulary for the XML Car Rental Sample....................................... 4-11
4.4.1 Specifying the Business Vocabulary for XML Fact Definitions 4-12
4.4.2 Specifying the Business Vocabulary for Functions.. 4-12
4.5 Defining a Rule for the XML Car Rental Sample .. 4-13
4.5.1 Creating a Rule Set for the XML Car Rental Sample ... 4-13
4.5.2 Creating a Rule for the XML Car Rental Sample ... 4-14
4.6 Customizing Rules for the XML Car Rental Sample .. 4-22
4.7 Creating a Java Application with a Rule Session Using XML Facts................................. 4-23
4.7.1 Importing the Rules SDK and Rules RL Classes .. 4-24
4.7.2 Creating a JAXB Context and Unmarshalling the XML Document 4-24
4.7.3 Loading a Dictionary with Rules SDK... 4-25
4.7.4 Loading a Ruleset and Generating RL Language for Data Model and Rule Set 4-25
4.7.5 Initializing and Executing a Rule Session ... 4-26
4.7.6 Asserting XML Data from Within a Rule Session.. 4-26
4.7.7 Using the Run Function with a Rule Session.. 4-27
4.8 Running the XML Car Rental Sample Using the Test Program.. 4-27

5 Using JSR-94

5.1 Oracle Business Rules with JSR-94 Rule Execution Sets .. 5-1
5.1.1 Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository 5-1
5.1.2 Creating a JSR-94 Rule Execution Set from a WebDAV Repository 5-2
5.1.3 Creating a Rule Execution Set from Oracle Business Rules RL Language Text 5-3
5.1.4 Creating a Rule Execution Set from RL Text Specified in a URL 5-5
5.1.5 Creating Rule Execution Sets with Rule Sets from Multiple Sources 5-6
5.2 Using the JSR-94 Interface with Oracle Business Rules... 5-6
5.2.1 Creating a Rule Execution Set with CreateRuleExecutionSet 5-6
5.2.2 Creating a Rule Session with createRuleSession... 5-7
5.2.3 Working with JSR-94 Metadata ... 5-7
5.2.4 Using Oracle Business Rules JSR-94 Extensions ... 5-8

6 Using Oracle Business Rules SDK

6.1 Rules SDK building blocks .. 6-1
6.2 Working with a Repository and a Dictionary... 6-2
6.2.1 Establishing Contact with a WebDAV Repository ... 6-2
6.2.2 Establishing Contact with a File Repository.. 6-3
6.2.3 Loading a Dictionary... 6-3
6.3 Working with a Data Model.. 6-3
6.3.1 Creating a DataModel ... 6-4

vi

6.3.2 Creating DataModel Components .. 6-4
6.3.3 Creating a Function Argument List .. 6-5
6.3.4 Creating an Initializing Expression... 6-5
6.3.5 Creating RL Function Bodies ... 6-6
6.4 Using RuleSets and Creating and Modifying Rules .. 6-6
6.4.1 Creating a RuleSet ... 6-7
6.4.2 Adding a Rule to a Ruleset... 6-7
6.4.3 Adding a Pattern to a Rule ... 6-8
6.4.4 Adding a Test to a Pattern.. 6-8
6.4.5 Adding an Action to a Rule.. 6-9
6.4.6 Notes for Adding RuleSets and Rules ... 6-10

A Oracle Business Rules Files and Limitations

A.1 Rule Author Naming Conventions ... A-1
A.1.1 Ruleset Naming... A-1
A.1.2 Dictionary Naming... A-1
A.1.3 Version Naming.. A-1
A.1.4 Alias Naming... A-1
A.1.5 XML Schema Target Package Naming .. A-2
A.2 Rule Author Session Timeout .. A-2
A.3 Rules SDK and Rule Author Temporary Files... A-2

B Using Rule Author and Rules SDK with Repositories

B.1 Working with a WebDAV Repository .. B-1
B.1.1 Setting up a WebDAV Repository.. B-1
B.1.2 Connecting to a WebDAV Repository... B-2
B.2 WebDAV Repository Security ... B-2
B.2.1 Communicating with a WebDAV Repository Over SSL from Rule Author.............. B-3
B.2.2 Setting the Location of your Oracle Wallet ... B-3
B.2.3 Configuring Rule Author for WebDAV Repository Authentication B-3
B.2.4 Storing Data in an Oracle Wallet for WebDAV Repository Authentication.............. B-4
B.3 Working with a File Repository... B-5
B.3.1 Setting up a File Repository .. B-5
B.3.2 File Repository Updates and Temporary Files... B-5
B.4 High Availability for your Repository.. B-6

C Oracle Business Rules Frequently Asked Questions

C.1 Frequently Asked Questions About Rules Operations .. C-1
C.1.1 Why is the State of a Fact in a Rule Action Inconsistent with the Rule Condition? . C-1
C.1.2 A Changed Java Object was Asserted as a Fact, but no Rules Fired. Why?............... C-2
C.1.3 What are the Differences Between Oracle Business Rules RL Language and Java?. C-2
C.2 What JAR Files are Required for Working with Oracle Business Rules? C-2

D Oracle Business Rules Troubleshooting

D.1 Public Fact Variables are not Accessible with Rule Author .. D-1
D.2 Global Variables may not be Used in RL Functions ... D-2

vii

D.3 Importing JDK 1.4.2 Classes ... D-2
D.4 Managing Popup Windows on Firefox .. D-2
D.5 Using the String Data Type with Methods... D-2
D.6 Preserving Class Order and Hierarchies in the Data Model ... D-2
D.7 Validating Generated RL from Rule Author.. D-3
D.8 Using RL Reserved Words as Part of a Java Package Name ... D-3
D.9 Getter and Setter Methods are not Visible ... D-3
D.10 XML Facts not Asserted at Runtime ... D-3

Index

viii

Preface

This Preface contains these topics:

� Audience

� Documentation Accessibility

� Related Documentation

� Conventions

Audience
Oracle Business Rules User’s Guide is intended for application programmers, system
administrators, and other users who perform the following tasks:

� Create Oracle Business Rules programs

� Modify or customize existing Oracle Business Rules programs

� Create new Java applications using rules programs

� Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.
ix

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
x

Overview of Oracle Business Rules 1-1

1
Overview of Oracle Business Rules

This guide provides information on using Oracle Business Rules. Oracle Business
Rules is a component of Oracle Application Server that enables applications to rapidly
adapt to regulatory and competitive pressures. This increased agility is possible
because business analysts using Oracle Business Rules can create and change business
rules that are separated from the application code. Using Oracle Business Rules,
business rules can change without stopping business processes. Also, externalizing
business rules allows business analysts to manage business rules directly, without
involving programmers.

This guide shows you how to work with Oracle Business Rules Rule Author (Rule
Author), describes the Oracle Business Rules SDK (Rules SDK) and describes how to
create a rule enabled Java program.

This chapter covers the following topics:

� Introduction to Oracle Business Rules

� Oracle Business Rules Components

� Oracle Business Rules Rule Author Terms and Concepts

� Steps for Rule Enabling a Java Application

Introduction to Oracle Business Rules

1-2 Oracle Business Rules User’s Guide

1.1 Introduction to Oracle Business Rules
This section introduces the concept of business rules and covers the following:

� What Are Business Rules?

� What Is a Data Model?

� What Is a Rule-Based System?

1.1.1 What Are Business Rules?
Business rules are statements that describe business policies. For example, a car rental
company might use the following business rule:

If a driver's age is younger than 21, then decline to rent.

An airline might use a business rule such as the following:

If a frequent flyer’s total miles for the year are greater than 100,000, then status is Gold.

A financial institution could use a business rule such as:

If annual income is less than $10,000, then deny loan.

These examples represent individual business rules. In practice, using Oracle Business
Rules you can combine many business rules.

For the car rental example, you can name the driver age rule the Under Age rule.
Traditionally, business rules such as the Under Age rule are buried in application code,
and might appear in a Java application as follows:

public boolean checkUnderAgeRule (Driver driver) {
 boolean declineRent = false;
 int age = driver.getAge();
 if(age < 21) {
 declineRent = true;
 }
 return declineRent;
}

This code is not easy for non-technical users to read and can be difficult to understand
and modify. For example, suppose that the rental company changes its policy to
"Under 18", so that all drivers under 18 match for the Under Age rule. In many
production environments, the developer would need to modify the application,
recompile, and then redeploy the application. Using Oracle Business Rules, this
process can be simplified.

Oracle Business Rules allows a business analyst to change business policies that are
expressed as rules, with little or no assistance from a programmer. Applications using
Oracle Business Rules, called rule enabled applications, can quickly adapt to new
government regulations, improvements in internal company processes, or changes in
relationships between customers and suppliers.

1.1.2 What Is a Data Model?
In Oracle Business Rules, facts are data objects that are asserted in the Rules Engine.
Rules, such as the Under Age rule operate on facts. In Oracle Business Rules, a data
model specifies the types of facts or business objects that you can use when you create
business rules. For example, for a car rental company that needs to create a rule to
match a driver’s age, the driver’s age information represents the facts used in the rule.

See Also: "Steps for Rule Enabling a Java Application" on page 1-9

Introduction to Oracle Business Rules

Overview of Oracle Business Rules 1-3

Using Rule Author, you can create a data model and then use the objects in the data
model when you create rules.

1.1.3 What Is a Rule-Based System?
This section covers the following:

� Rule-Based Systems Using the Rete Algorithm

� Oracle Business Rules Rule-Based Systems

1.1.3.1 Rule-Based Systems Using the Rete Algorithm
The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results into a single network of nodes in
current working memory.

Using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when facts
are deleted, added, or modified. To process facts and rules using the Rete algorithm,
there is an input node for each fact definition and there is an output node for each rule.
Fact references flow from input to output nodes1.

The Rete algorithm provides the following benefits:

� Independence from rule order – rules can be added and removed without
impacting other rules.

� Optimization across multiple rules – rules with common conditions share nodes in
the Rete network.

� High performance inference cycles – each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1.1.3.2 Oracle Business Rules Rule-Based Systems
A rule-based system using the Rete Algorithm is the foundation of Oracle Business
Rules. A rule-based system consists of the following:

� The Rule-base: contains the appropriate business policies or other knowledge
encoded into If-Then rules.

� Working memory: contains the information that has been added to the system.
Using Oracle Business Rules; this consists of a set of facts.

� Inference Engine: the Rules Engine which processes the rules performs pattern
matching to determine which rules match the facts, for a given run through the set
of facts.

Using Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire, when a rule fires that matches a set
of facts, the rule may add new facts which are once again run against the rules. This
process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a

1 Fact references flow from input to output nodes. In between input and output nodes are test
nodes and join nodes. A test occurs when a rule condition has a boolean expression. A join
occurs when a rule condition ANDs two facts. A rule is activated when its output node
contains fact references. Fact references are cached throughout the network to speed up
recomputing activated rules. When a fact is added, removed, or changed, the Rete network
updates the caches and the rule activations with only an incremental amount of work.

Oracle Business Rules Components

1-4 Oracle Business Rules User’s Guide

forward chaining rule-based system, facts cause rules to fire, and firing rules can create
more facts, which in turn can fire more rules. This process is called an inference cycle.

1.2 Oracle Business Rules Components
Figure 1–1 shows the Oracle Business Rules components.

This section covers the following topics:

� Introducing Oracle Business Rules Rule Author

� Introducing Oracle Business Rules Rules SDK

� Introducing Oracle Business Rules RL Language

� Introducing Oracle Business Rules Rules Engine

Figure 1–1 Oracle Business Rules Architecture

1.2.1 Introducing Oracle Business Rules Rule Author
Oracle Business Rules Rule Author (Rule Author) lets you work with rules from
anywhere using a web browser and provides a point-and-click interface for creating
new rules and editing existing rules. Rule Author reduces a rule developer's work,
allowing you to work directly with business rules and a data model. You do not need
to understand the Oracle Business Rules RL Language (RL Language) to work with
Rule Author. Rule Author provides an easy way for business users to create, view, and
modify business rules.

Rule Author supports several types of users, including the application developer and
the business analyst. The application developer uses Rule Author to define a data
model and an initial set of rules. The business analyst uses Rule Author to either work
with the initial set of rules, or modify and customize the initial set of rules according to
business needs. Using Rule Author, a business analyst can create and customize rules
with little or no assistance from a programmer.

Rule Author stores rules programs in a dictionary that is saved to a repository using a
Rule Author dictionary storage plug-in. You can create as many dictionaries as
necessary, and each dictionary can have multiple versions. A rule enabled program
accesses a dictionary with the Oracle Business Rules SDK.

As shipped, Rule Author supports a WebDAV (Web Distributed Authoring and
Versioning) repository and a file repository.

Note: It is not safe for multiple users to edit the same dictionary.

Oracle Business Rules Components

Overview of Oracle Business Rules 1-5

1.2.2 Introducing Oracle Business Rules Rules SDK
Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write customized rules programs.
Rule Author uses the Rules SDK to create, modify, and access rules and the data model
using well defined interfaces. Customer applications can use the Rules SDK to display,
create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule enabled application to access, or to create
and modify rules (the rules and the associated data model could be initially created in
a custom application or using Rule Author where they are stored using a Rules SDK
dictionary storage plug-in).

Using the Rules SDK you can also support custom repositories, using the dictionary
storage plug-in portion of the Rules SDK API.

1.2.3 Introducing Oracle Business Rules RL Language
Oracle Business Rules supports a high level Java-like language called Oracle Business
Rules RL Language (RL Language). The RL Language defines the valid syntax for
Oracle Business Rules programs. RL Language includes an intuitive Java-like syntax
for defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically, or stored in a file.

Using RL Language, application programs can assert Java objects as facts, and rules
can reference object properties and invoke methods. Likewise, application programs
can use XML documents, or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language.
Business analysts can use Rule Author to work with rules, and in this case the business
analyst does not need to directly view or write RL Language programs.

1.2.4 Introducing Oracle Business Rules Rules Engine
The Oracle Business Rules Rules Engine (Rules Engine) is a Java library that efficiently
applies rules to facts and defines and processes rules. The Rules Engine defines a
declarative rule language, provides a language processing engine (inference engine),
and provides tools to support debugging.

The Rules Engine has the following features:

� High performance – implementing specialized matching algorithms.

� Thread-safe execution suitable for a parallel processing architecture (one thread
can assert facts while another is evaluating the network).

� Agility – meaning business rules can change without stopping business processes.

A rule enabled Java application can load and run rules programs. The rule enabled
application passes facts, in the form of Java objects or XML documents, and rules to

Note: For file repositories, only one user may edit the repository at
any given time, regardless of the number of dictionaries stored in the
repository. For WebDAV repositories, a single user may edit multiple
dictionaries simultaneously.

See Also: Oracle Business Rules Language Reference Guide for detailed
information on RL Language.

Oracle Business Rules Rule Author Terms and Concepts

1-6 Oracle Business Rules User’s Guide

the Rules Engine. The Rules Engine runs in the rule enabled Java application, and uses
the Rete algorithm to efficiently fire rules that match the facts.

The Rules Engine supports an interactive command-line interface for development,
testing, and debugging of RL Language programs.

1.3 Oracle Business Rules Rule Author Terms and Concepts
This section provides information on Rule Author terms and concepts and covers the
following topics:

� Working with Rules

� Working with Rule Sets

� Working with Repositories and Dictionaries

� Working with Facts

� Working with Functions Variables and Constraints

1.3.1 Working with Rules
A rule consists of a condition, or If part, and a list of actions, or a Then part. Rules
follow a simple if-then structure. This section covers the components of a rule.

1.3.1.1 Rule Conditions
The rule If part is composed of conditional expressions, rule conditions, that refer to
facts. For example,

If a driver's age is younger than 21.

The conditional expression refers to a fact (driver), followed by a test that the fact's
data member, age, is less than 21.

The rule condition activates the rule whenever there is a combination of facts that
makes the conditional expression true. In some respects the rule condition is like a
query over the available facts in the Rules Engine, and for every row returned from the
query, the rule is activated.

1.3.1.2 Rule Actions
The rule Then part contains the actions that are executed if all of the rule conditions
are satisfied. The actions are executed, or fired, when all of the conditions in the If part
are met. There are several kinds of actions that a rule might perform. An action can
add new facts or remove facts. An action can execute a Java method or perform an RL
Language function, which may modify the status of facts or create new facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus change the next rule to fire.

1.3.2 Working with Rule Sets
A rule set groups a set of rules. A rule set is a collection of rules that are all intended to
be evaluated together.

See Also: "Working with Rule Sets" on page 1-6

See Also: "Working with Rules" on page 1-6

Oracle Business Rules Rule Author Terms and Concepts

Overview of Oracle Business Rules 1-7

1.3.3 Working with Repositories and Dictionaries
Using Oracle Business Rules, a repository stores dictionaries. A dictionary usually
corresponds to a rules application. A dictionary is a set of XML files that stores the
application’s rule sets and the data model. You store a dictionary in a repository using
a supplied dictionary storage plug-in or a custom dictionary storage plug-in. The
dictionary storage plug-in API is part of the Rules SDK. A dictionary typically stores
all the rules and definitions for a rule enabled application. Dictionaries my have
different versions. Dictionaries and dictionary versions can be created, deleted,
exported, and imported into a repository.

As shipped, Rule Author supports a WebDAV (Web Distributed Authoring and
Versioning) repository and a file repository.

1.3.4 Working with Facts
Using Rule Author, facts are data objects that have been asserted in the Rules Engine.
Each object instance corresponds to a single fact. If an object is re-asserted (whether it
has been changed or not), the Rules Engine is updated to reflect the new state of the
object. Re-asserting the object does not create a new fact. In order to have multiple
facts of a particular fact type, separate object instances must be asserted.

Using Rule Author, you can create rules that operate on facts that are part of a data
model. You make business objects and their methods known to Oracle Business Rules
using fact definitions.

This section covers the three types of Oracle Business Rules fact definitions:

� Java Fact Type Definitions

� XML Fact Type Definitions

� Oracle Business Rules RL Language Fact Type Definitions

You typically use Java Fact Types and XML Fact Types to create rules that examine the
business objects in a rule enabled application, or to return results to the application
and you use RL Language Fact Type definitions to create intermediate facts that can
trigger other rules in the Rules Engine.

1.3.4.1 Java Fact Type Definitions
A Java fact type allows selected properties and methods of a Java class to be declared
to the Rules Engine so that rules can access, create, modify, and delete instances of the
Java class. Declaring a Java fact type allows the Rules Engine to access and use public
attributes, public methods, and bean properties defined in a Java class (bean properties
are preferable for some applications because the Rules Engine can detect that a Java
object supports PropertyChangeListener; in this case it utilizes that mechanism to
be notified when the object changes).

1.3.4.2 XML Fact Type Definitions
An XML fact type allows selected attributes and sub-elements of an XML element or
complexType to be declared to the Rules Engine so that instances of it can be
accessed, created, modified, and deleted by rules.

See Also: "Overview of Using XML Documents and Schemas with
Rule Author" on page 4-1

Oracle Business Rules Rule Author Terms and Concepts

1-8 Oracle Business Rules User’s Guide

1.3.4.3 Oracle Business Rules RL Language Fact Type Definitions
An RL Language fact type is similar to a relational database row or a Java Bean
without methods. An RL Language fact type contains a list of members of either RL
Language fact type, Java fact type, or primitive type. RL Language fact types can be
used to extend a Java application's object model by providing virtual dynamic types.

For example,

If customer spent $500 within past 3 months

 then customer is a Gold Customer

This rule might use a Java fact type, specifying the customer data and also use an
action that creates an RL Language fact type, Gold Customer. A rule might be defined
to use a Gold Customer fact, as follows:

If customer is a Gold customer

 then offer 10% discount

This rule uses the RL Language fact type, named Gold Customer. This rule then infers,
using the Gold Customer fact, that if a customer spent $500 within the past 3 months,
then the customer is eligible for a 10% discount. In addition, there could be other ways
specified in the rules that a customer becomes a Gold Customer.

1.3.5 Working with Functions Variables and Constraints
This section covers the following definitions:

� Function Definitions

� Constraint Definitions

� Variable Definitions

1.3.5.1 Function Definitions
Using Oracle Business Rules, a function is similar to a Java method, but it does not
belong to a class. You can use functions to extend a Java application object model so
that users can perform operations in rules without modifying the original Java
application code.

You can also use a function definition to share the same or a similar expression among
several rules, and to return results to the application.

1.3.5.2 Constraint Definitions
Constraint definitions let you mark portions of rules as customizable. For example, the
discount to offer to a Gold customer could be constrained to be within a specified
range such as 5 to 25 percent. Using Rule Author, by defining a constraint, you can
select a value from within the specified range using a special interface that does not
allow you to modify the entire rule.

1.3.5.3 Variable Definitions
You can use variable definitions to share information among several rules and
functions. For example, if a 10% discount is used in several rules, you can create and

Note: Use of constraints is a Rule Author feature that supports rule
customization (using the Rule Author rule customization tab).

Steps for Rule Enabling a Java Application

Overview of Oracle Business Rules 1-9

use a variable Gold Discount, so that the appropriate discount is applied to all the
rules using the variable.

Using variable definitions can make programs modular and easier to maintain.

1.4 Steps for Rule Enabling a Java Application
Programmers and business analysts work together to rule-enable a Java application.
For many applications, after the application is rule enabled, the programmer role
diminishes over time, leaving ongoing rule maintenance to the business analyst.

The tasks required to rule-enable a Java application include:

� Identify Application Areas to Rule Enable

� Provide Rule Author Definitions for the Data Model

� Develop a Business Vocabulary for the Data Model

� Write and Customize Rules

� Modify or Create Application Logic that Uses the Rules Engine

� Test the Rule Enabled Application

These tasks require cooperation between the programmer and the business analyst.
Programmers understand application code and are comfortable with Java
development, web services, and XML (if the business objects are represented in XML).
Business analysts understand the business objects at a higher level, and the business
analysts should understand rules as if…then statements concerning business objects.
The business analysts also need to determine the parts of rules that are likely to need
frequent change.

1.4.1 Identify Application Areas to Rule Enable
The business analyst and programmer collaborate to expose business objects as facts
suitable for use in business rules. The business analyst determines the business facts
required for use with the business rules.

The business analyst should determine what functionality should be rule-driven. For
example, in an online shopping application, perhaps the tax and promotion functions
should be rule-based, but not the shopping cart or product catalog.

1.4.2 Provide Rule Author Definitions for the Data Model
The programmer uses definitions in Rule Author to specify the data model (working
with the Rule Author Definitions tab). Working with the business analyst the
programmer also defines helpful functions, intermediate facts, variables, and
constraints.

1.4.3 Develop a Business Vocabulary for the Data Model
The programmer and the business analyst use Rule Author to develop a
business-friendly vocabulary for the Rule Author definitions, so that the rules are
more understandable. While determining what business facts, functions, and other
definitions to capture, the business analyst has been developing a vocabulary. The
programmer enters this information using Rule Author.

Steps for Rule Enabling a Java Application

1-10 Oracle Business Rules User’s Guide

1.4.4 Write and Customize Rules
At this point, the business analyst should be able to use Rule Author to write and
customize rules using the defined business vocabulary. Alternatively, the programmer
may use the Rules SDK to create or modify rules, or the data model from within the
administrative portion of a rules-enabled application.

1.4.5 Modify or Create Application Logic that Uses the Rules Engine
The programmer determines how to replace procedural functionality with new
rule-driven functionality. If the application is written in Java then the application code
can directly invoke the Rules Engine. Otherwise, the programmer may need to invoke
the Rules Engine using a web service or other remote API. The programmer must
either create a new application or modify an existing application to interact with the
Rules Engine.

1.4.6 Test the Rule Enabled Application
The programmer and the business analyst test the modifications made to the
application. The programmer may need to assist in the debugging of a complex set of
rules. Rules Engine tracing can be enabled to provide information about facts, rule
activations, and rule firings. A mechanism for loading test facts should be developed
that validates a set of the business analyst rules.

Note: Procedural code that is being rule enabled may need to be
"mined" to extract existing hard-coded rules.

See Also: Chapter 2, "Getting Started with Rule Author" for details
on working with Rule Author and on the steps a programmer takes to
rule-enable a Java application.

Getting Started with Rule Author 2-1

2
Getting Started with Rule Author

This chapter provides a tutorial introducing Oracle Business Rules Rule Author (Rule
Author). This chapter shows you how to start Rule Author, create a data model, and
create and save rules. This chapter also shows you how to create a sample Java
application that runs with the Rules Engine.

In this guide we use a car rental sample to illustrate how to work with Rule Author. In
the car rental sample, driver data specifies driver information and the business rules
determine if a rental company service representative should decline to rent a vehicle
due to driver age restrictions. Using this example you create one rule, the UnderAge
rule (the rule is specified according to rental company business rules).

This chapter covers the following:

� Creating a Rule Author User

� Starting Rule Author

� Rule Author Home Page

� Creating and Saving a Dictionary for the Car Rental Sample

� Defining a Data Model for the Car Rental Sample

� Defining Business Vocabulary for the Car Rental Sample

� Defining a Rule for the Car Rental Sample

� Customizing Rules for the Car Rental Sample

� Creating a Java Application Using Oracle Business Rules

� Running the Car Rental Sample Using the Test Program

2.1 Creating a Rule Author User
If you are using Oracle Application Server, you must first create a user with
appropriate privileges before you can start and use Rule Author. To do this:

1. Using Application Server Control, go to the OC4J instance where Rule Author was
deployed.

2. Click the Administration tab.

Note: These instructions assume that the container is configured
with the JAZN XML provider. If it is not, you should refer to the
appropriate security documentation for information on creating users.

Starting Rule Author

2-2 Oracle Business Rules User’s Guide

3. In the "Task Name" column, find the "Security Providers" task and click the "Go to
Task" icon in the corresponding row.

4. Click Instance Level Security.

5. Click the Realms tab.

6. In the table in the "Results" section, click the number in the "Roles" column to add
a role.

7. Click the Create button.

In the "Name" field, enter rule-administrators, then click OK.

8. Click the Instance Level Security link near the top of the page (in the navigation
trail) to return to the Instance Level Security page.

9. In the table in the "Results" section, click the number in the "Users" column to add
a user.

10. Click the Create button.

In the "Name" field, enter the name you want to use to login to Rule Author (for
example, ruleadmin). Enter and confirm the password for this user. In the
"Assign Roles" section, double-click or use the arrows to assign the
rule-administrators role to this user. When you are finished, click OK.

11. Restart the Rule Author application.

2.2 Starting Rule Author
Start Rule Author by entering the URL for the home page. The URL for the home page
typically includes the name of the host computer and the port number assigned to the
application server during the installation, plus the path of the Rule Author home page.
For example:

http://myhost1.mycompany.com:7777/ruleauthor/

Figure 2–1 shows the Rule Author login page. Specify the user name and password
you supplied when you created the Rule Author user (Section 2.1, "Creating a Rule
Author User").

Note: In order to Rule Author authentication to work, the Rule
Author user must belong to the rule-administrators role.

Note: The port number assigned to Oracle Application Server can be
found in the readme.txt file located in the $ORACLE_
HOME/install directory.

Starting Rule Author

Getting Started with Rule Author 2-3

Figure 2–1 Rule Author Login Page

After logging in, you should see the Rule Author Repository Connect page (see
Figure 2–2). You must connect to a repository before you can perform any operations.
See Section 2.4.1, "Connecting to a Rule Author Repository" for more information.

Figure 2–2 Initial Rule Author Repository Connect Page

Click Logout to go to the Logout Confirmation page. On this page, click either Logout
to log out of Rule Author, or Save and Logout to save your changes and log out of
Rule Author. After doing so, you must log back in to Rule Author (Figure 2–1).

Click Help to access online help for the Rule Author.

Click About to view version and build information about the Rule Author
(Figure 2–3). Click OK to dismiss this window.

Rule Author Home Page

2-4 Oracle Business Rules User’s Guide

Figure 2–3 About Rule Author

2.3 Rule Author Home Page
Click the Home tab to access the Rule Author home page (Figure 2–4). The home page
contains two panes: the top pane shows the tabs and the bottom pane contains content
for the currently selected tab.

Figure 2–4 Rule Author Home Page

2.4 Creating and Saving a Dictionary for the Car Rental Sample
To work with Rule Author you need to start with a dictionary. Rule Author stores rules
and their associated definitions in a dictionary. To create or save a dictionary, you must
first connect to a repository that stores the dictionary. As shipped, Rule Author
supports two types of repositories: WebDAV (Web Distributed Authoring and
Versioning) repository and file repository. In this section you create and save a
dictionary for the car rental How-To.

The example in this chapter saves the dictionary to a WebDAV repository.

Creating and Saving a Dictionary for the Car Rental Sample

Getting Started with Rule Author 2-5

2.4.1 Connecting to a Rule Author Repository
Using Oracle Business Rules, a dictionary stores rules and the data model associated
with the rules. You create and save dictionaries in a repository.

To connect to a repository, do the following:

1. Click the Repository tab.

2. Click the Connect secondary tab.

3. Select the WebDAV repository type in the Repository Type field.

4. Enter the URL to the WebDAV repository (see Figure 2–5). The URL must be in the
form:

http://www.fully_qualified_host_name.com:7777/repository_name

Note: To create the dictionary shown in this chapter, you can either
create a new dictionary, using either a WebDAV repository or a file
repository, or you can load the completed dictionary from the
CarRepository file repository in the /dict directory supplied with
the car rental sample How-To.

See Section 2.4.2, "Creating a Rule Author Dictionary" for instructions
on how to do this.

Note: Regardless of whether you choose to use a WebDAV or file
repository, the repository must exist before you can connect to it. Rule
Author does not create the repository for you.

See Appendix B, "Using Rule Author and Rules SDK with
Repositories" for more information.

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

Creating and Saving a Dictionary for the Car Rental Sample

2-6 Oracle Business Rules User’s Guide

Figure 2–5 Rule Author WebDAV Repository Connect Page

See Section B.1, "Working with a WebDAV Repository" for information on how to
setup a WebDAV repository.

5. If you have a proxy server between the server on which Rule Author is running
and the WebDAV server, specify the name and port number of the proxy server.

6. Click Connect.

If you connect successfully, a confirmation message is displayed (see Figure 2–6).

Figure 2–6 Rule Author Repository Connect Page with Confirmation

Note: For file repositories, only one user may edit the repository at
any given time, regardless of the number of dictionaries stored in the
repository. For WebDAV repositories, a single user may edit multiple
dictionaries simultaneously.

Creating and Saving a Dictionary for the Car Rental Sample

Getting Started with Rule Author 2-7

2.4.2 Creating a Rule Author Dictionary
A Rule Author dictionary is the top-level container and the starting point for working
with Rule Author. A dictionary usually corresponds to the rules portion of an
application.

To create a dictionary, do the following:

1. Connect to a repository from the Repository tab.

2. Click Create.

3. Enter the dictionary name in the New Dictionary Name field. For this example
enter CarRental (see Figure 2–7).

4. Click Create. After you click Create, Rule Author shows a status message.

Figure 2–7 Rule Author Create Dictionary Page

Note: It is not safe for multiple users to edit the same dictionary.

Note: In addition to creating your own dictionary, you can also use
the completed car rental dictionary that is supplied with the car rental
sample How-To. This dictionary is located in the CarRepository file
repository in the /dict directory:

1. Click the Repository tab.

2. Click the Connect secondary tab.

3. Select File in the Repository Type box.

4. Enter the complete path to the file repository in the File Location field.
For example, enter C:/demo/dict/CarRepository.

5. Click Connect.

Creating and Saving a Dictionary for the Car Rental Sample

2-8 Oracle Business Rules User’s Guide

2.4.3 Saving a Rule Author Dictionary with a Version
If you want to save to a different dictionary name or specify a version for the current
dictionary, use Save As as follows:

1. Click the Repository tab.

2. Click the Save As secondary tab.

3. Enter a dictionary name in the Dictionary field, for example CarRental.

4. To specify a version, enter a version in the Version field. For example HowTo (see
Figure 2–8).

5. Click Save As. After clicking Save As, you should see a confirmation message.

Figure 2–8 Rule Author Save As Page

2.4.4 Saving a Rule Author Dictionary
To prevent data loss, you should periodically save the dictionary. To save a dictionary,
do one of the following:

� Click the Repository tab, then click the Save secondary tab.

� Click the Save Dictionary link at the top of the page.

After performing either of the preceding actions, click Save on the Save Dictionary
page. After clicking Save, you should see a confirmation message in the status area.
For example:

Dictionary ’CarRental(HowTo)’ has been saved

Note: Rule Author does not allow you to use Save As to overwrite a
dictionary with the same name and version. If you want to overwrite a
dictionary with the same name and version, do one of the following:

� Click Save.

� Delete the existing dictionary, then click the Save As.

Defining a Data Model for the Car Rental Sample

Getting Started with Rule Author 2-9

2.5 Defining a Data Model for the Car Rental Sample
Before working with rules you need to define a data model. A data model contains
business data definitions for facts or data objects used in rules, including: Java class
fact types, XML fact types, and RL Language fact types (to simplify the discussion in
this section, we refer to Java fact types as Java facts). In this section you only work
with Java facts.

This section covers the following topics:

� Using Java Objects as Facts in the Car Rental Sample

� Adding Java Classes and Packages to Rule Author

� Importing Java Classes to a Data Model

� Saving the Current State of Definitions

2.5.1 Using Java Objects as Facts in the Car Rental Sample
The Java Car Rental How-To includes the car-objs.jar file in the $HowToDir/lib
directory. This jar file includes the Driver class for the car rental sample. The Java
source for the Driver object is available in the directory
$HowToDir/src/carrental.

2.5.2 Adding Java Classes and Packages to Rule Author
Before you can import Java facts into a data model you need to make the classes and
packages that contain the Java facts available to Rule Author. To do this use Rule
Author to specify the classpath that contains the Java classes. For example, to add the
classpath for the Java class Driver, do the following:

1. Click the Repository tab.

2. On the Load dictionary page, select the CarRental dictionary and HowTo
version, then and click Load (skip this step if you just created the dictionary).

3. Click the Definitions tab. The navigation tree shows the Definitions folder that
contains the available definitions. Nothing is shown in the main pane.

4. The Definitions folder in the tree contains the Facts folder that includes the
available fact types: JavaFact, XMLFact, and RLFact.

Note: You should save the dictionary periodically as you work since
Rule Author sessions time out after a period of inactivity.

See Also: "Rule Author Session Timeout" on page A-2 for details on
configuring the Rule Author session timeout.

See Also:

"Importing XML Schema Elements to a Data Model" on page 4-9

Note: Using Rule Author, the bottom pane usually contains a
navigation tree and a content area (the main pane). With the
Definitions tab selected, the Definitions folder is shown at the top of
the tree.

Defining a Data Model for the Car Rental Sample

2-10 Oracle Business Rules User’s Guide

Click JavaFact to view the JavaFact Summary page (see Figure 2–9).

Figure 2–9 Rule Author Definitions Java Fact Summary Page

5. Click Create. This shows the Class Selector page.

6. On the Class Selector page, the User Classpath field lets you add a classpath. For
example, for the car rental sample enter the following in the User Classpath field:

$HowToDir/lib/car-objs.jar

Where $HowToDir is the directory where you installed the Java Car Rental
How-To.

7. Click Add. This updates the Current Classpaths field and adds the carrental
package to the Classes box (see Figure 2–10).

Defining a Data Model for the Car Rental Sample

Getting Started with Rule Author 2-11

Figure 2–10 Rule Author JavaFact Class Selector Page

2.5.3 Importing Java Classes to a Data Model
Next you need to select the desired Java classes to import into the data model from the
Class Selector page. To add the Driver class to the data model, do the following:

1. Click the Definitions tab to view the Definitions page.

2. Click the JavaFact folder in the navigation tree.

3. Click Create on the JavaFact Summary page. This shows the Class Selector page.

4. In the Classes box on the Class Selector page, expand the carrental node and select
the Driver check box (see Figure 2–11).

5. Click Import.

Rule Author shows a confirmation message:

1 class or package has been imported.

See Also: Section 2.5.3 for more information on adding Java classes
and packages to Rule Author.

Note: After a class is imported the class selector page shows the class
in bold.

Defining a Data Model for the Car Rental Sample

2-12 Oracle Business Rules User’s Guide

Figure 2–11 Rule Author JavaFact Class Selector Page

Notes for specifying the user classpath and importing Java classes to Rule Author:

1. Using Rule Author, importing a Java Fact means the same thing as a Java import
statement. That is, the classes and their methods become visible to Rule Author.
Rule Author does not copy the Java code into the data model or into the
dictionary.

2. The Class Selector page includes the Classes box that shows the Java classes
available from the current classpaths.

3. The default Rule Author classpath includes three packages, java, javax, and
org. These packages contain classes that Rule Author lets you import from the
Java runtime library (rt.jar). Rule Author does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the Current
Classpaths field).

4. If you wish to assign or compare two objects that are not of the same type but are
related by inheritance, you must import both classes to be compared and all
classes between them in the inheritance hierarchy. For example, if you wish to
assign an ArrayList to a variable of type Object, you must import ArrayList,
AbstractList, and AbstractCollection into the data model. Otherwise,
type-checking will not work correctly and expressions will not validate.

5. Classes and interfaces used in Rule Author must follow the following rules:

a. If you are using a class or interface and its super class, the super class must be
declared first.

b. If you are using a class or interface, only its superclass or one of its
implemented interfaces may be mentioned.

For more information, see Section D.6, "Preserving Class Order and Hierarchies in
the Data Model".

Defining Business Vocabulary for the Car Rental Sample

Getting Started with Rule Author 2-13

6. The Classes box navigation tree is rendered on demand (to improve performance).
Thus, a child node is rendered only if its parent node is expanded. It is a good
practice to keep only the nodes of interest expanded.

7. On Windows systems, you can use a "\" to specify the User Classpath. Rule
Author accepts either path separator. For example, you can use the following:
$HowToDir\lib\car-objs.jar.

Where $HowToDir is the directory where you installed the How-To.

8. In the User Classpath you can specify a JAR file, a ZIP file, or a full path for a
directory.

9. When you specify a directory name for the User Classpath, the directory specifies
the classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the User Classpath specifies a
directory, Rule Author looks in that tree for directory names matching the package
name structure.

For example, if you want to import a class cool.example.Test1, located in
c:\myprj\cool\example\Test1.class to the data model, you should
specify the User Classpath value, c:\myprj.

10. Do not use RL reserved words in Java package names. For more information, see
Section D.8, "Using RL Reserved Words as Part of a Java Package Name".

2.5.4 Saving the Current State of Definitions
While working on the data model from the Definitions tab and when you complete
your work you should save the dictionary.

To save your definitions to the dictionary, do the following:

1. Click the Save Dictionary link.

2. Click Save on the Save Dictionary page.

3. Click the Definitions tab to return to the definitions page.

2.6 Defining Business Vocabulary for the Car Rental Sample
The business vocabulary allows business analysts, working with Rule Author to create
rules using familiar names rather than using a Java package name, class name, method
name, or member variable name. You use the Rule Author aliases feature to specify the
business vocabulary. In this step you only need to define the business vocabulary for
the business objects that you expect to use in rules. In addition, you can use the Rule
Author Visible box to specify the properties and methods that show up in Rule
Author lists when you create rules from the RuleSets tab.

This section covers the following topics:

� Specifying the Business Vocabulary for Java Fact Definitions

� Specifying the Business Vocabulary for Functions

� Specifying the Visibility for Properties and Methods

2.6.1 Specifying the Business Vocabulary for Java Fact Definitions
To specify the business vocabulary for Java Fact definitions, do the following:

1. Click the Definitions tab to view the Definitions page.

Defining Business Vocabulary for the Car Rental Sample

2-14 Oracle Business Rules User’s Guide

2. Click the JavaFact node in the navigation tree to display the JavaFact Summary
page. For the car rental sample this shows a table that includes the imported class
carrental.Driver.

3. Click the edit icon to view the JavaFact Properties and Methods for
carrental.Driver.

4. For the name, carrental.Driver, enter the alias, DriverData in the Alias
field (this Alias field is at the top of the page, under the Name field).

5. For the age entry in the Properties table, specify the desired alias. For example,
enter DriverAge in the Alias field.

6. For the name entry in the Properties table, specify the desired alias. For example,
enter DriverName in the Alias field.

7. Click OK to save your changes and return to the JavaFact Summary page.

2.6.2 Specifying the Business Vocabulary for Functions
To specify the business vocabulary for an RL Language function, do the following:

1. Click the Definitions tab to view the Definitions page.

2. Click RLFunction in the Definitions folder in the navigation tree to display the
RLFunction Summary page. For the car rental sample, this shows a table that
includes the functions, DM.assertXPath and DM.println.

3. For the DM.println function, click the edit icon to view details.

4. In the Alias field, under the Name field, enter an alias. For example, enter
PrintOutput in the Alias field.

5. Click OK to save your changes and return to the RLFunction Summary page.

2.6.3 Specifying the Visibility for Properties and Methods
To specify whether properties or methods are visible in Rule Author lists, do the
following:

1. Click the Definitions tab to view the Definitions page.

2. Click the JavaFact node in the navigation tree to display the JavaFact Summary
page. For the car rental sample this shows a table that includes the imported class
carrental.Driver.

3. Click the edit icon to view the JavaFact Properties and Methods for
carrental.Driver.

Note: Be sure to click either OK or Apply after making changes. If
you do not, Rule Author does not save your changes.

See Also: "Viewing Java Objects in a Data Model" on page 3-8

Note: There is also an Alias field in the Function Arguments table.
For this example, do not change the alias field in the function
argument area.

Defining a Rule for the Car Rental Sample

Getting Started with Rule Author 2-15

4. For each entry in the Properties table, specify the desired visibility using the
Visible checkbox. For this example, only the member variables age and name need
to be visible.

5. Click OK to save your changes and return to the JavaFact Summary page.

2.7 Defining a Rule for the Car Rental Sample
In this section you define a rule for the car rental sample and see the basic steps for
creating rules with Rule Author.

This section covers the following topics:

� Creating a Rule Set for the Car Rental Sample

� Creating a Rule for the Car Rental Sample

2.7.1 Creating a Rule Set for the Car Rental Sample
Before you can create a rule using Rule Author, you need to create a rule set. A rule set
is a container for rules.

To create a rule set, do the following:

1. Click the Rulesets tab.

2. Click the RuleSet node in the navigation tree.

3. On the Ruleset Summary page, click Create. This displays the Ruleset page.

4. Enter text in the Name field. For example, enter vehicleRent in the Name field.

5. Optionally enter a description for the rule set in the Description field (see
Figure 2–12).

Note: Modifying the visibility indicators for a particular property or
method may cause dependent definitions or rules to display
incorrectly. If this occurs, mark any non-visible properties or methods
causing the problem as visible.

Note: Rule Author enforces a limitation for the name of a rule set; a
rule set name can only contain letters (a-z and A-Z), numbers (0-9),
and the underscore (_) character.

Defining a Rule for the Car Rental Sample

2-16 Oracle Business Rules User’s Guide

Figure 2–12 Rule Author Ruleset Page

6. Click OK to create the vehicleRent rule set and exit the Ruleset page. After you
click OK, the new rule set is visible in the navigation tree under RuleSet.

7. Save the dictionary.

2.7.2 Creating a Rule for the Car Rental Sample
After creating a rule set you can create rules within the rule set. In this section, you
will create a rule called UnderAge. This rule will test for the following:

If the driver's age is younger than 21, then decline to rent

The UnderAge rule contains a single pattern for the Rules Engine to match, and a test
that is applied to the pattern.

The following actions are associated with the UnderAge rule:

� Print the text, "Rental declined", the name of the driver matched and the message,
"Under Age, age is: " and the driver’s age.

� Retract the matched driver object.

2.7.2.1 Adding the Under Age Rule for the Car Rental Sample
To use Rule Author to add the UnderAge rule, do the following:

1. Click the Rulesets tab. The navigation pane displays the RuleSet folder that
contains the vehicleRent rule set that you created in the section, "Creating a
Rule Set for the Car Rental Sample" on page 2-15.

2. Click the vehicleRent folder in the tree. This displays the Ruleset page, with a
table listing rules (see Figure 2–13).

Note: If you need to remove a rule set, do the following:

1. Select the RuleSet folder in the navigation pane.

2. Select the appropriate RuleSet in the RuleSet area by selecting the
checkbox in the Select field.

3. Select Delete.

Defining a Rule for the Car Rental Sample

Getting Started with Rule Author 2-17

Figure 2–13 Rule Author Ruleset Page Showing the Table of Rules

3. Click Create. This displays the Rule page.

4. Enter UnderAge in the Name field.

5. Do not change the default value, 0, in the Priority field.

6. Enter Under age rule in the Description field (see Figure 2–14).

Note: If this is the first rule you create then the Rules table is empty.

Note: The Priority field determines the rule priority. Rule priority
specifies which rule to act upon, and in what order, if more than one
rule applies within a rule set. Often in applications that use rules, the
rules in a rule set are applied in any order until a decision is reached,
and setting the rule priority is not required.

See Also: Oracle Business Rules Language Reference Guide for more
information on working with rule priority.

Defining a Rule for the Car Rental Sample

2-18 Oracle Business Rules User’s Guide

Figure 2–14 Rule Author Rule Page

2.7.2.2 Adding a Pattern to the UnderAge Rule
When the Rules Engine runs it checks the facts against rule patterns to find matching
patterns. You need to add a pattern for the UnderAge rule. Do the following to add a
pattern to a rule:

1. Click New Pattern in the If box on the Rule page. This brings up the Pattern
Definition page which contains two areas: Choose Pattern and Define Test(s) for
Pattern (see Figure 2–15).

Figure 2–15 Rule Author Pattern Definition Page

Note: If the Pattern Definition page does not appear, you may have
popup blocking enabled on your browser. Popup blocking must be
disabled in order to use Rule Author.

Defining a Rule for the Car Rental Sample

Getting Started with Rule Author 2-19

2. Under Choose Pattern, in the first box select the first choice (this shows no value in
the selection box)

This box specifies that the rule should fire each time there is a match (for all
matching drivers). One alternate value, There is at least one case, selects one
firing of the rule if there is at least one match (one such driver). The value There is
no case specifies the rule fires once if there are no such matches (no matching
drivers).

3. The next text area under Choose Pattern lets you enter a temporary name for the
matched fact. Enter driver in this field (this defines the "pattern bind variable
name").

This value lets you test multiple instances of the same type in a single rule. For
example, the pattern bind variable lets you compare a match for a driver with
other drivers, using the specified name, in a comparison such as driver1.age >
driver2.age.

4. The third box contains the text, <make a choice>. This box shows the available
fact types from the data model. In this box select DriverData (if you did not
define an alias for this in the data model, then this is carrental.Driver).

5. Click OK or to save the pattern definition and return to the Rule page.

6. Click OK on the Rule page to save the rule.

7. Save the dictionary.

Without any tests defined on the pattern, the action which you define would apply to
all drivers. To define tests for patterns, continue on the Pattern Definition page, as
shown in, Section 2.7.2.3.

2.7.2.3 Defining Tests for Patterns with the Under Age Rule
To add a test for a pattern, do the following:

1. From the Rulesets tab, in the navigation pane click the rule that you want to add a
test. For this example, click the UnderAge rule in the navigation pane.

2. In the If box, click the pencil icon to display the Pattern Definition page. The
Pattern Definition page contains two areas: Choose Pattern and Define Test(s) for
Pattern.

3. On the Pattern Definition page, select the Standard Test button, then click Create
(see Figure 2–16).

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a different
rule set or select a different tab before you click OK or Apply, Rule
Author discards the pattern definition.

See Also: "Adding Actions for the Under Age Rule" on page 2-21

Defining a Rule for the Car Rental Sample

2-20 Oracle Business Rules User’s Guide

Figure 2–16 Rule Author Rule Pattern Definition Page with Define Tests for Pattern Fields

Standard pattern testing is only valid for AND expressions. Additionally, no
grouping is allowed, and functions with parameters are not allowed. However, the
use of constraints is allowed for customization. Advanced pattern testing does not
have the restrictions of standard pattern testing, but the use of constraints is not
allowed. Advanced expressions are not directly RL Language because aliases are
used instead of variable names.

For more information, see Section 3.7.1, "Using the Advanced Test Expression
Option".

4. In the Operand column, from the Field box, select driver.DriverAge (if you
did not define an alias for this member variable in the data model, then this is
driver.age).

5. In the Operator column, select < (less than).

6. In the Operand column, in the Value box enter 21. Do not enter a value in the
Field box.

7. Next to the Value and Field boxes is a drop-down list containing the fixed values
Any and Fixed (see Figure 2–17).

These values are called constraints, and they are used to enable or disable
customization for this field. Use the value Fixed to make the field read-only,
which specifies that no customization is allowed for this field. Select the value Any
to specify that Rule Author should allow changes to the value. Setting a value of
Any allows for rule customization (which supports modifications by non-technical
users). You can also define constraints that allow you to limit the allowed values.

Select Any as the constraint for the Value field.

Defining a Rule for the Car Rental Sample

Getting Started with Rule Author 2-21

Figure 2–17 Rule Author Pattern Definition Page With Values For Under Age Rule

8. Click OK or save your changes and return to the Rule page.

9. Click OK on the Rule page.

10. Save the dictionary.

2.7.2.4 Adding Actions for the Under Age Rule
Actions are associated with pattern matches. When a rule’s "If" portion matches, the
Rules Engine activates the "Then" portion and prepares to run the rule’s action.

In this section, you add two actions for the UnderAge rule. The first action prints the
result. The second action retracts the driver fact from the Rules Engine. You might
want to retract a fact for a number of reasons, including:

� If you are done with the fact, and you want to remove it from the Rules Engine.

� If the action associated with the rule changes the state, so that the fact needs to be
retracted to represent the current state of the Rules Engine.

To add the action that prints the result for a match of the UnderAge rule, do the
following:

1. Click the Rulesets tab.

2. In the tree, click the UnderAge node under the vehicleRent folder.

3. Click New Action on the Rule page in the Then box. This displays the Add Action
page (see Figure 2–18).

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a rule set
or select a different tab before you click OK or Apply, Rule Author
discards the pattern definition.

See Also:

� "Customizing Rules for the Car Rental Sample" on page 2-24

� "Working with Constraints" on page 3-2

Defining a Rule for the Car Rental Sample

2-22 Oracle Business Rules User’s Guide

Figure 2–18 Rule Author Add Action Page

4. Select the Call item from the Action Type box. This shows the Action Parameters
box.

5. Choose PrintOutput from function box (if you did not define an alias for this
function, then this is DM.println). This expands the Function Arguments box.

6. Enter a value in the Argument Value field under Expression (see Figure 2–19). For
example:

"Rental declined" + driver.DriverName + " Under age,age is:" + driver.DriverAge

Note 1: Rule Author uses a Java like syntax for expressions. The RL
Language defines the complete expression syntax.

Note 2: If you do not know the variable names to use in the
expression, use the edit icon in the Wizard field to bring up the
expression wizard. This presents the wizard page which provides
more space to write expressions. This also provides an easier and
more accurate way to enter variables, since the expression builder
presents a variable selection box.

Defining a Rule for the Car Rental Sample

Getting Started with Rule Author 2-23

Figure 2–19 Rule Author Add Action Page for Under Age Rule

7. Click OK to save your changes and return to the Rule page.

8. Click OK on the Rule page.

9. Save the dictionary.

Next, add the retract action for the UnderAge rule. Perform the following steps to add
this second action for the rule:

1. Click the Rulesets tab.

2. Click the UnderAge node under the vehicleRent folder.

3. On the Rule page, click New Action from the Then box. This brings up the Add
Action page.

4. Select Retract from the Action Type box. This shows the Action Parameters box.

5. Select driver from the Fact Instance box. The pattern name driver, refers the
single instance which was matched by the pattern.

6. Click OK to save your changes and return to the Rule page.

7. Click Apply on the Rule page to view the confirmation message (see Figure 2–20).

8. Save the dictionary.

Customizing Rules for the Car Rental Sample

2-24 Oracle Business Rules User’s Guide

Figure 2–20 Rule Author Under Age Rule With Pattern and Actions

2.8 Customizing Rules for the Car Rental Sample
The Rule Author rule Customization tab is designed for business users. Rule
developers use the Allowed Values field on the Pattern Definition page, which is
available from the Rulesets tab, to specify if customization is allowed. When
customization is allowed, you can specify a range of valid values for the customizable
value. Then, business users may change values using the Customization tab.

In this example, the UnderAge rule can be modified on the Customization tab to
change the age of an under age driver (for this sample we do not limit values, and
specify that any value is valid).

To change the UnderAge rule, use the Customization tab as follows:

1. Click the Customization tab. The navigation pane displays the vehicleRent folder
with the UnderAge node followed by a "*", which indicates that the rule is
customizable.

2. Click the node for the UnderAge rule (see Figure 2–21).

Note: When you add actions to rules, you can only add new actions
sequentially. If an action depends on the results of a previous action,
then the order in which you add the actions is significant.

See Also: Oracle Business Rules RL Language Reference Guide

Creating a Java Application Using Oracle Business Rules

Getting Started with Rule Author 2-25

Figure 2–21 Rule Author Rule Customization Page For Under Age Rule

3. On the Rule Customization page the Customize Patterns box contains an editable
text entry field for the test driver.DriverAge < 21.

In this field, change the value 21 and enter the value 19 in this field.

4. Click Apply.

5. Save the dictionary.

After you save the dictionary, you are done creating the data model and the rules for
the Java Fact How-To.

2.9 Creating a Java Application Using Oracle Business Rules
After you create and save a dictionary that contains a data model and a rule set with
rules, you can use the dictionary in a rule enabled Java application. This section shows
you the steps for creating a rule enabled Java application.

This section covers the following:

� Importing the Rules SDK and Rules RL Classes

� Initialize the Repository with Rules SDK

� Specifying a Rule Set and Generating RL with Rules SDK

� Initializing and Executing a Rule Session

� Asserting Business Objects Within a Rule Session

� Using the Run Function with a Rule Session

See Also: "Defining Tests for Patterns with the Under Age Rule" on
page 2-19 for information on the Allowed Values field.

Note: Make sure your Java calls are wrapped in a try/catch block.

Creating a Java Application Using Oracle Business Rules

2-26 Oracle Business Rules User’s Guide

For the complete code for this sample application, see TestMain.java in the
$HowToDir/src/carrental directory.

2.9.1 Importing the Rules SDK and Rules RL Classes
The first step when writing a rules enabled program is to import the required classes.
Example 2–1 shows the imports from the TestMain.java application for the car
rental sample.

Example 2–1 Required Imports for Car Rental Sample With Rules SDK

import java.util.Date;

import oracle.rules.sdk.ruleset.RuleSet;
import oracle.rules.sdk.repository.RuleRepository;
import oracle.rules.sdk.repository.RepositoryManager;
import oracle.rules.sdk.repository.RepositoryType;
import oracle.rules.sdk.repository.RepositoryContext;
import oracle.rules.sdk.dictionary.RuleDictionary;
import oracle.rules.sdk.exception.RepositoryException;

import oracle.rules.rl.RuleSession;

import carrental.Driver;

2.9.2 Initialize the Repository with Rules SDK
When building a rule enabled Java application, do the following to access a dictionary
and specify a rule set (as shown in Example 2–2):

1. Create a String that contains the path to the repository.

2. Use a Rules SDK RuleType object to hold the repository that you obtain from the
RepositoryManager.getRegisteredRepositoryType method. The
jarstoreKey parameter specifies the repository type. Example 2–2 shows a file
type repository.

3. Create a repository instance using the repository manager method
createRuleRepositoryInstance.

4. Define a RepositoryContext and set appropriate properties. For a file repository,
this step specified the path to the repository, as shown with the repoPath
parameter in Example 2–2.

Note: The instructions in the preceding sections of this chapter
enabled you to create and save a WebDAV repository and dictionary
named CarRental. The car rental example supplied in the How-To
sample code uses a file repository with a dictionary also named
CarRental. The dictionary contents in the WebDAV repository you
created in this chapter and the file repository in the How-To sample
are identical.

The How-To sample code contains code for both WebDAV and file
repositories, but only the file repository is described in detail. The
How-To sample uses a file repository for portability, but this sample
can be modified to use the WebDAV repository you created in the
proceeding sections.

Creating a Java Application Using Oracle Business Rules

Getting Started with Rule Author 2-27

5. Use the init method in the RuleRepository object repo to initialize the
repository instance.

Example 2–2 Loading A Dictionary With Rules SDK

String fs = "/";
String repoPath = "dict" + fs + "CarRepository";
final String jarstoreKey = "oracle.rules.sdk.store.jar";

RepositoryType jarType =
 RepositoryManager.getRegisteredRepositoryType(jarstoreKey);

RuleRepository repo = RepositoryManager.createRuleRepositoryInstance(jarType);

//fill in initialization property values
RepositoryContext jarCtx = new RepositoryContext();
jarCtx.setProperty(oracle.rules.sdk.store.jar.Constants.I_PATH_BASE, repoPath);

//initialize the repository instance.
repo.init(jarCtx);

2.9.3 Loading a Dictionary with Rules SDK
When building a rule enabled Java application you need to load a dictionary, with a
specified version. Use a RuleDictionary object to load a dictionary, as shown in
Example 2–3, which loads the CarRental dictionary, with the HowTo version, into the
object named dict. The CarRental dictionary must be available in the repository
(the CarRental dictionary with the version name HowTo was created earlier using
Rule Author).

Example 2–3 Loading a Dictionary With Rules SDK

RuleDictionary dict = repo.loadDictionary("CarRental", "HowTo");

If you want to load a WebDAV repository instead of a file repository as shown in
Example 2–3, you should use getWebDAVRepository. An example of this is shown
in TestMain.java in the $HowToDir/src/carrental directory.

2.9.4 Specifying a Rule Set and Generating RL with Rules SDK
After loading a dictionary, you need to specify a rule set and use the Rules SDK to
generate an RL Language program. This step is required since a dictionary stores a
data model and rules using an intermediate XML format. The Rules SDK provides
methods to access rule sets and rules the associated data model from a dictionary. The
Rules SDK performs the mapping for the selected rule set from the intermediate XML
format to produce the RL Language program that runs in the Rules Engine.

Using Rule Author, each rule set includes two components, a data model which is
global and applies for all the rule sets in a dictionary, and the set of rules associated
with a rule set. Example 2–4 shows the code that generates RL Language for these two
components.

Example 2–4 Generating Oracle Business Rules Rule Language With Rules SDK

//init a rule session
String rsname = "vehicleRent";
String dmrl = dict.dataModelRL();
String rsrl = dict.ruleSetRL(rsname);

Creating a Java Application Using Oracle Business Rules

2-28 Oracle Business Rules User’s Guide

2.9.5 Initializing and Executing a Rule Session
After you generate an RL Language program that includes rules and a data model,
you are ready to work with a rule session. A rule session initializes the Rules Engine
and maintains the state of the Rules Engine across a number of rule executions. A
RuleSession object is the interface between the application and the Rules Engine.

Example 2–5 shows the code that creates a RuleSession object and executes the RL
Language program.

The executeRuleset() executes an RL program passed as a String. This method
tells the Rules Engine to interpret the specified RL Language program.

Example 2–5 Initializing and Executing a Rule Session With Rules SDK

RuleSession session = new RuleSession();
session.executeRuleset(dmrl);
session.executeRuleset(rsrl);

session.callFunction("reset");
session.callFunction("clearRulesetStack");
session.callFunctionWithArgument("pushRuleset", rsname);

After the data model and the rule set are loaded and the rule session is ready to run
the specified rule set against the facts that you assert for the rule session.

2.9.6 Asserting Business Objects Within a Rule Session
Before running a rule session you need to assert facts. When you execute a data model
in a rule session, you prepare the rule session for new facts to be asserted. To assert
facts, you use the session.callFunctionWithArgument() method and the assert
function supplying a fact as an argument.

Example 2–6 shows sample code that prepares Driver objects for the car rental
sample, and asserts three facts.

Example 2–6 Preparing Driver and Accident Records For Car Rental Sample

// Date Function
static public Date getDate(String dateStr) {
 Date result = null;
 try {
 java.text.SimpleDateFormat sdf =
 new java.text.SimpleDateFormat("MM/DD/YYYY");
 result = sdf.parse(dateStr);
 }
 catch(Throwable t) { t.printStackTrace(); }
 return result;
}

// Driver d1 record
Date d1LicIssueDate = getDate("10/1/1969");
Driver d1 = new Driver("d111", "Dave", 50, "sports", "full",
 d1LicIssueDate, 0, 1, true);

Note: The order of the executeRuleset() calls is important. You
need to execute the data model RL Language program before the rule
set RL Language program. The data model contains global
information that is required when the associated rule set executes.

Running the Car Rental Sample Using the Test Program

Getting Started with Rule Author 2-29

// Driver d2 record
Date d2LicIssueDate = getDate("8/1/2004");
Driver d2 = new Driver("d222", "Qun", 15, "truck", "provisional",
 d2LicIssueDate, 0, 0, true);

//Driver d3 record
Date d3LicIssueDate = getDate("6/1/2004");
Driver d3 = new Driver("d333", "Lance", 44, "motorcycle", "full",
 d3LicIssueDate, 0, 1, true);

session.callFunctionWithArgument("assert", d1);
session.callFunctionWithArgument("assert", d2);
session.callFunctionWithArgument("assert", d3);

2.9.7 Using the Run Function with a Rule Session
Example 2–7 shows the code that runs a rule session.

Example 2–7 Running A Rule Session with the Run Function

session.callFunction("run");

2.10 Running the Car Rental Sample Using the Test Program
The $HowToDir/lib directory includes TestMain.jar, a ready-to-run Oracle
Business Rules Java application that uses the CarRental dictionary. If you change the
dictionary name then you need to modify TestMain.java (the source is available in
the directory $HowToDir/src).

Example 2–8 shows output from running TestMain using the facts asserted within
TestMain.

Example 2–8 Sample Run Of Car Rental Program

java carrental.TestMain
Rental declined Qun Under age: age is: 15

Note that not all facts produce output or fire a rule. The example shows the output
only for the asserted fact that matches the UnderAge rule.

Note: The Readme.txt file in the $HowToDir/src directory
includes instructions for setting the environment variables required to
run the test program.

Running the Car Rental Sample Using the Test Program

2-30 Oracle Business Rules User’s Guide

Working With Rule Author Features 3-1

3
Working With Rule Author Features

This chapter describes how to use some of the more advanced features of Oracle
Business Rules Rule Author. The following topics are covered:

� Working with Variables

� Working with Constraints

� Working with RLFacts

� Working with Functions

� Viewing Java Objects in a Data Model

� Generating Oracle Business Rules RL Language Text

� Configuring Rule Author Dictionary Properties

� Deleting a Rule Author Dictionary

� Importing and Exporting a Dictionary

� Working with Test Rulesets

� Invoking Rules

3.1 Working with Variables
In this section you use Rule Author to add a variable that replaces a portion of the
message that you print out in the Java Car Rental How-To you built in Chapter 2.
Using Oracle Business Rules, a variable is similar to a public static variable in Java.
You can specify that a variable is a constant or modifiable.

Perform the following steps to add a variable:

1. Click the Repository tab and load the CarRental dictionary.

2. Click the Definitions tab.

3. Click the Variable node in the navigation tree. The Variable Summary page shows
that no variables are defined.

4. Click Create. This shows the Variable page.

5. Enter DeclineMessage in the Name field.

6. Enter Decline Message in the Alias field.

Note: When Rule Author creates a variable, it adds a "DM." to the
name you enter in the Name field (DM stands for Data Model).

Working with Constraints

3-2 Oracle Business Rules User’s Guide

7. Select the Final check box (by default this box is selected).

8. Select String in the Type box.

9. In the Expression box, enter "Rental declined ".

If you want to use the expression wizard to assist you with creating an expression,
click the edit icon to bring up the expression builder.

10. Click Apply (see Figure 3–1).

Figure 3–1 Rule Author Variable Definition Page

Notes for creating Rule Author variables:

� When you deselect the Final check box, this specifies that the variable is
modifiable, for instance, in an Assign action.

� You can only use variables specified as final variables in the test for a rule
(non-finals are not allowed).

3.2 Working with Constraints
When you want to constrain the allowed values for a field to only a specific set of
values in a customizable rule, for example if you want to specify a range of values, you
can use a Rule Author constraint definition.

Rule Author supports three types of constraint definitions, as shown in Table 3–1.

See Also: "Defining Tests for Patterns with the Under Age Rule" on
page 2-19 for an example of a test for a rule.

Working with Constraints

Working With Rule Author Features 3-3

For the example in this section you define a constraint and then add the constraint to
the UnderAge rule in the CarRental dictionary.

Perform the following steps to define a range constraint:

1. Click the Repository tab and load the CarRental dictionary.

2. Click the Definitions tab.

3. Click the Constraint node in the navigation tree. The Constraint Summary page
shows no constraints are defined.

4. Click Create. This shows the Constraint page.

5. Enter validAgeRange in the Name field.

6. Select Range from the Type box. This shows a Constraint page with two new
fields: Start Value and End Value.

7. Enter 15 in the Start Value field.

8. Enter 99 in the End Value field.

9. Click Apply. Rule Author shows a confirmation message (see Figure 3–2).

Table 3–1 Rule Author Constraint Types

Constraint Type Description

Range Specifies a numeric interval.

Enumeration Specifies a list of possible values.

Regular Expression Specifies a regular expression to which the string value conforms.
The syntax for the regular expression in these constraints follows
Java's regular expression definition.

Note: The regular expression constraint requires quotation marks
around strings.

Working with Constraints

3-4 Oracle Business Rules User’s Guide

Figure 3–2 Rule Author Constraint Definition Page

10. Save the dictionary.

Next, add the validAgeRange constraint to the UnderAge rule. To use the constraint
in the UnderAge rule, do the following:

1. Click the Repository tab and load the CarRental dictionary.

2. Using the CarRental dictionary, select the Rulesets tab.

3. Select the UnderAge link to show the UnderAge rule.

4. Select the edit icon in the If box. This displays the Pattern Definition page.

5. On the Pattern Definition Page, in the constraint field, select validAgeRange
(this is the second box in the Value column).

6. Click OK. This closes the Pattern Definition Page.

7. Click OK on the Rule page.

8. Save the dictionary.

Use the Customization tab to verify that Rule Author lets you enter values from the
specified range and rejects invalid entries.

See Also: "Defining Tests for Patterns with the Under Age Rule" on
page 2-19 for information on using the Allowed Values field to use
constraints.

Note: If you change a constraint that is used in a ruleset, you can still
save the ruleset even though it may not adhere to all the constraints.

Working with RLFacts

Working With Rule Author Features 3-5

3.3 Working with RLFacts
This example creates an RLFact named Decision that extends the CarRental rules. The
RLFact has three members of String type: driverName, type, and message. Perform the
following steps to create the Decision RLFact:

1. Click the Repository tab and load the CarRental dictionary.

2. Click the Definitions tab and click the RLFact node in the navigation tree under
Facts. The RLFact Summary page shows that no RLFacts are defined.

3. Click Create. This shows the RLFact page.

4. Enter Decision in the Name field.

5. Enter Car rental decision in the Alias field (see Figure 3–3).

Figure 3–3 Rule Author Definitions Tab with RLFact Page

6. In the properties table click Create. This shows a new row in the Properties table.

7. Enter driverName in the Name field.

8. Select String from the box in the Type field.

9. Enter driver name in the Alias field.

10. Click Create. This adds another new row to the Properties table.

11. Enter type in the Name field.

12. Select String from the box in the Type field.

13. Enter decision type in the Alias field.

14. Click Create. This adds another new row to the Properties table.

15. Enter message in the Name field.

16. Select String from the box in the Type field.

17. Enter message for decision in the Alias field.

Working with Functions

3-6 Oracle Business Rules User’s Guide

18. Click Apply. This displays a confirmation message (see Figure 3–4).

Figure 3–4 Rule Author Definitions Tab with RLFact Properties

19. Click RLFact in the navigation tree. This displays the RLFact Summary page, and
the new RLFact, DM.Decision.

3.4 Working with Functions
Oracle Business Rules lets you use built-in or user-defined functions in rule conditions
and actions. In this section you use Rule Author to define a function named
showDecision. You can use this function to print the results for the Java How-To.

Note: When Rule Author creates an RLFact, it adds a "DM." to the
name you enter in the Name field (the DM stands for Data Model).

See Also: "Specifying Visibility and Object Chaining for Rule Author
Drop Down Lists" on page 3-9 for information on the Expand field
shown in Figure 3–4.

Note 1: The example in this section uses the CarRental dictionary
and the RLFact defined in Section 3.3.

Working with Functions

Working With Rule Author Features 3-7

Do the following to define the showDecision function:

1. Click the Repository tab and load the CarRental dictionary.

2. Using the CarRental dictionary, select the Definitions tab.

3. Select RLFunction in the navigation tree. This shows the RLFunction Summary
page.

4. Click Create.

5. Enter showDecision in the Name field.

6. Enter Show Decision in the Alias field.

7. Select void in the box in the Return Type field (this is the default value).

8. Click Create in the Function Arguments table.

9. Enter decision in the Name field.

10. Enter Decision made for driver in the Alias field.

11. Select Car rental decision, the alias for the Decision RLFact, in the box in the
Type field.

12. In the Function Body box, enter the following:

DM.println("Rental decision is " + decision.type + " for driver " +
decision.driverName + " for reason " + decision.message);

13. Click Apply. This shows a confirmation message.

14. Click the RL Function node in the left navigation pane. You should see the RL
function DM.showDecision in the summary table.

15. Click Edit to view the function (see Figure 3–5).

Note 2: For RL generated from the SDK (for example, Rule Author),
global variables may not be referred to directly in an RL function. For
more information, see Section D.2, "Global Variables may not be Used
in RL Functions".

Note: If you are defining a function in Rule Author, you must
specify a valid alias in the Alias field, even though the actual function
name (not the alias) must be used in the function body.

Viewing Java Objects in a Data Model

3-8 Oracle Business Rules User’s Guide

Figure 3–5 Rule Author RLFunction Page

After creating the new RLFact Decision as specified in Section 3.3 and the new
RLFunction DM.showDecision, you can update the UnderAge rule to provide an
action that creates a new Decision fact. To use the Decision fact with the
showDecision function, you need to create a new rule that checks for Decision facts
and provides an action, using the showDecision function, to show the results.

3.5 Viewing Java Objects in a Data Model
To view the objects in a data model, including any classes or packages that you import,
do the following:

1. Click the Repository tab and load the appropriate dictionary. For example, load
the CarRental dictionary.

2. Click the Definitions tab to view the Definitions page.

3. Expand the Facts folder and click the JavaFact node in the navigation tree to
display the JavaFact Summary page.

For the car rental sample this shows a table that includes the imported class
carrental.Driver.

Viewing Java Objects in a Data Model

Working With Rule Author Features 3-9

4. Click the edit icon to view the Java Fact Properties and Methods.

3.5.1 Specifying Visibility and Object Chaining for Rule Author Drop Down Lists
You can specify that properties, classes, or methods are visible or not visible in Rule
Author selection boxes (the selection boxes that contain classes, properties, and
methods are shown when you create rules on the Rulesets Tab).

To remove the visibility of a Java object, do the following:

1. At the top of the Java Fact page, use the Visible box to specify whether an object is
visible (by default, objects are visible).

Table 3–2 JavaFact Summary Fields

Field Description

Name The name of the Java Object.

Alias The specified alias name for the Java Object that is shown in
Rule Author lists.

Visible This box specifies if the Java Object is shown in Rule Author
lists.

Support XPath Assertion This box implies you can use the class in XPath expressions to
assert XML data into a rule session.

Table 3–3 JavaFact Properties and Methods Fields

Field Description

Visible Specifies that the property or method shows up in Rule Author
lists.

Expand Specifies that the superclass for a property or method that has a
superclass shows up in Rule Author lists.

Member Variable Name This is shown for Properties. Specifies the property name.

Type Specifies the type for a property

Alias This is a text field that you can modify to specify the business
vocabulary for the property or object. The specified name is used
when the object is shown in Rule Author drop down lists.

Method Name This is shown for methods.

Argument Type This is shown for methods.

Return Type This is shown for methods.

Note: Importing a Java class causes its super class and classes
associated through fields and methods to be imported into the data
model. The JavaFact Summary page table shows you the super class
and the associated classes for any classes that you import.

Note: For the Java Fact How-To, you do not need to change the
object chaining.

Generating Oracle Business Rules RL Language Text

3-10 Oracle Business Rules User’s Guide

2. Deselect the Visible box to remove the object from Rule Author selection boxes.

3. Click OK on the Java Fact page.

To remove visibility of a Java property or method, do the following:

1. Deselect the a property or method in the in the Properties area or the Methods area
on the Java Fact page to remove the property or method from Rule Author
selection boxes.

2. Click OK on the Java Fact page.

You can specify that Rule Author selection boxes show the methods or properties one
level above a specified method or property, in superclass chain, by selecting the
Expand box for the method or property on the Java Fact page. The Expand box is
shown in the Expand field of the Properties and Methods area. The Expand box is only
shown when a method or property includes a superclass (Rule Author does not show
the Expand box for primitive types).

3.6 Generating Oracle Business Rules RL Language Text
Using the RL tab, Rule Author lets you view the RL Language text that represents the
data model and the rule sets associated with the dictionary data.

3.6.1 Generating and Viewing an RL Language Program
To generate and view RL Language text, do the following:

1. Click the Repository tab and load a dictionary. For example, load the CarRental
dictionary.

2. Select the RL tab.

3. Select the rule set of interest in the navigation tree.

4. Click Generate RL. This shows you the RL Language text for the specified ruleset.

5. Click Check RL Syntax to validate the RL Language text.

3.7 Configuring Rule Author Dictionary Properties
Two properties can be configured globally for an entire dictionary in Rule Author:

� Advanced Test Expression

� Logging

To configure these properties, access the Dictionary Properties page:

1. Make sure you are connected to a repository and a dictionary is loaded.

2. Click the Repository tab.

3. Click the Properties secondary tab (see Figure 3–6).

Configuring Rule Author Dictionary Properties

Working With Rule Author Features 3-11

Figure 3–6 Rule Author Dictionary Properties Page

3.7.1 Using the Advanced Test Expression Option
The Advanced Test Expression check box changes the Rule Author expression mode
to advanced for test expressions displayed when you edit a pattern for a rule (see
Figure 3–7). Tests in a rule's condition can involve mathematical operations and
conjunctions. Rule Author includes the advanced expression mode to support defining
such complex expressions.

When a pattern is first created, its test expression mode depends on the Advanced Test
Expression property set on the Properties page. When you select the Advanced Test
Expression check box, then the advanced test expression mode is applied to all new
patterns. This setting persists when the dictionary is saved. In this case, when the
dictionary is loaded, all patterns are created with Advanced mode. After a pattern is
created, with or without a test, it is permanently associated with the test expression
mode. Thus, the Test Expression mode of a pattern cannot be changed.

In a single rule, you can use both patterns created with basic expression mode and
advanced expression mode.

Deleting a Rule Author Dictionary

3-12 Oracle Business Rules User’s Guide

Figure 3–7 Pattern Definition Advanced Test Expression Page

3.7.2 Using the Logging Option
The Logging box specifies the logging options. This option is useful when you need to
report a problem with Rule Author. To specify logging select the Logging check box
and then select the following log file properties:

� Log Level: Error is the lowest log level and generates the least amount of output,
Status is the medium log level, and Trace is the highest log level, generating the
most amount of output.

� Use the Log Directory box to specify the directory for the log. Specifying the log
directory in the Log Directory box is optional (if the directory is not set, the log is
displayed on the console).

� When the Log file name is specified, the log is saved in a file with the name
<log_file_name>.<last_8_session_id>. For example, if you specified
RALog as the name of your log file, and the last eight digits of your session ID are
11223344, the file RALog.11223344 would be created. If no log file is specified,
the log is saved in a file named RuleAuthor.<last_8_session_id>.

Click Update when you are finished specifying your logging options.

3.8 Deleting a Rule Author Dictionary
This section shows you how to delete a version in a dictionary or delete an entire
dictionary.

If you want to delete an individual dictionary version, do the following:

1. Click the Repository tab.

2. Click the Delete secondary tab.

If you want to delete a specific dictionary version, select a dictionary and version
in the "Select dictionary version" section, then click Delete Version.

If you want to delete an entire dictionary (and all of its versions), select the
dictionary in the "Select entire dictionary" section, then click Delete.

Importing and Exporting a Dictionary

Working With Rule Author Features 3-13

3.9 Importing and Exporting a Dictionary
You can import a specific version of a dictionary or an entire dictionary into Rule
Author. To do so:

1. Click the Repository tab.

2. Click the Import secondary tab.

If the dictionary you want to import resides locally, use the section in the first
bullet to specify its location. You can manually enter the path to the dictionary or
click the Browse button and select the dictionary.

If the dictionary you want to import resides on a different machine (where the
Rule Author is running), you must specify the full path to the dictionary on that
server.

3. Click Import.

To export an entire dictionary:

1. Click the Repository tab.

2. Click the Export secondary tab.

3. In the "Select entire dictionary" section:

a. In the Dictionary field, select the dictionary you want to export.

b. In the File Location field, specify the location and filename (absolute file path
on the server) to which you want to export the dictionary.

4. Click Export.

You can also select the dictionary and click Download, which creates a link to the
exported archive on the Export Dictionary page. You can then click the link and
use your browser to download the archive to a location of your choice (see
Figure 3–8).

Working with Test Rulesets

3-14 Oracle Business Rules User’s Guide

Figure 3–8 Rule Author Export Dictionary Page Showing the Download Option

To export a specific dictionary version:

1. Click the Repository tab.

2. Click the Export secondary tab.

3. In the "Select dictionary version" section:

a. In the Dictionary field, select the dictionary you want to export.

b. In the Version field, select the dictionary version you want to export.

c. In the File Location field, specify the location and filename (absolute file path
on the server) to which you want to export the dictionary.

4. Click Export.

You can also select the dictionary and version and click Download, which creates
a link to the exported archive on the Export Dictionary page. You can then click
the link and use your browser to download the archive to a location of your choice
(see Figure 3–8).

3.10 Working with Test Rulesets
The Test Rulesets feature in the Rule Author is designed to allow you to write RL
functions that test the rule sets created in Rule Author. The selected rule set and its
associated data model are inserted into a Rule Session where a user-defined function is
called which uses the rule set.

To use the Test Rulesets feature in Rule Author:

Working with Test Rulesets

Working With Rule Author Features 3-15

1. Create a rule set you want to test. If the data model includes any Java classes, the
Java classes must be included in the OC4J classpath. The easiest way to do this is
to put the JAR files in the following directory, then restart OC4J:

$ORACLE_HOME/j2ee/home/applications/ruleauthor/lib

You can also include the Java classes as a shared library. This allows Rule Author
to share the classes with other applications. To do this, login to Enterprise
Manager and perform the following:

a. Navigate to the OC4J:home page.

b. Click the Administration tab.

c. Find the Shared Libraries node under the Properties node and click the icon in
the Go to Task column.

d. Click Create, enter the library name and version number, then click Next.

e. Click Add, navigate to the location of the JAR file, then click Continue.

f. Click Finish to return to the Shared Libraries page.

g. Find and click the link to the library you just created. Copy the absolute path
to the archive.

h. Return to the OC4J:home page.

i. Click the Applications tab.

j. Click the link to the Rule Author application (this was defined when you first
deployed the Rule Author application).

k. Click the ruleauthor module link.

l. Click the Administration tab.

m. Find the Configuration Properties node and click the Go to Task icon.

n. In the Classpath field, paste the absolute path to the archive which you copied
in Step g, then click OK.

o. In the resulting confirmation message, click the Restart link to restart Rule
Author.

2. Create a function that has some print statements to indicate the execution of the
function. In this example, a function called DM.test is created:

a. Click the Definitions tab.

b. Click the RLFunctions node in the navigation tree.

c. Enter DM.test in the Name and Alias Fields.

d. Leave void as the return type.

e. Enter the following in the Function Body field:

java.text.SimpleDateFormat sdf =
 new java.text.SimpleDateFormat("MM/dd/yyyy");

assert (new carrental.Driver("d111", "Dave", 50, "sports", "full",
 sdf.parse ("10/1/1969"), 0, 1, true));
assert (new carrental.Driver("d222", "Abe", 15, "truck", "provisional",
 sdf.parse ("8/1/2004"), 0, 0, true));
assert (new carrental.Driver("d333", "Lance", 44, "motorcycle", "full",
 sdf.parse ("6/1/2004"), 0, 1, true));

Working with Test Rulesets

3-16 Oracle Business Rules User’s Guide

pushRuleset ("vehicleRent");
run();

This function asserts several facts, pushes the vehicleRent rule set onto the
rule set stack, and calls run().

If you wanted to enable logging, you could call the watchFacts() and
watchActivations() functions.

f. Click OK.

g. Save the dictionary.

3. Click the RL tab.

4. Click the Test Rulesets node in the navigation tree. This displays the Test Rulesets
page.

Figure 3–9 Rule Author Test Rulesets Page

You can see the vehicleRent rule set is available. This rule set was created in
Chapter 2.

5. Select the vehicleRent rule set and move it to the Selected Rulesets column.

6. Select the DM.test function from the Test Function list.

7. Click Test.

Note: All rule sets you want to have executed must be pushed onto
the stack. They are not automatically pushed simply by selecting
them.

Invoking Rules

Working With Rule Author Features 3-17

RL code is generated for the selected rule set(s), which is then inserted into a Rule
Session. Then, the selected test function is called. Output from the function is
printed on the screen (see Figure 3–10).

Figure 3–10 Rule Author Test Rulesets Page with Output

3.11 Invoking Rules
A rule enabled program usually invokes rules with the following steps:

1. Pass objects to the rule engine to be asserted as facts.

2. Run rules.

3. Obtain results produced from rules that fired.

This section describes the best practices for using an RL function to encapsulate
invoking rules. This section covers three techniques for invoking rules; the techniques
differ primarily in the details required to obtain results. This section uses a sample RL
function named getSubscribers. Using this routine, each approach for invoking
rules looks identical from the point of view of the rule enabled program that calls the
getSubscribers.

This section covers the following:

� Overview of Results Examples

� Using a Global Variable to Obtain Results

� Using Container Objects to Obtain Results

� Using Reasoned On Objects to Obtain Results

Invoking Rules

3-18 Oracle Business Rules User’s Guide

3.11.1 Overview of Results Examples
The examples in this section show a highway incident notification system. These
examples show the different approaches to access the results of rule engine evaluation.
The examples use two Java classes: traffic.TrafficIncident and
traffic.IncidentSubscription.

The TrafficIncident class represents information about an incident affecting
traffic and contains the following properties:

� Which highway

� Which direction

� Type of incident

� Time incident occurred

� Estimated delay in minutes

The IncidentSubscription class describes a subscription to notifications for
incidents on a particular highway and contains the following properties:

� Subscriber - the name of the subscriber

� The highway

� The direction

In the example using these classes, when an incident occurs that affects traffic on a
highway, a TrafficIncident object is asserted and rule evaluation determines to
whom notifications are sent.

In the examples, the sess object is a RuleSession and a number of incident
subscriptions are asserted. As a simplification, it is assumed that the
TrafficIncident objects are short lived. They represent an event that gets asserted
and only those subscribers registered at that time are notified.

3.11.2 Using a Global Variable to Obtain Results
Using a global variable to accumulate results is a best practice, this approach yields
simpler rule conditions than the following approaches.

Example 3–1 shows the getSubscribers function asserts a TrafficIncident,
initializes a global variable with a Map, invokes the Rules Engine, and returns the
result Map.

Example 3–1 Obtaining Results with a RLFunction that Accesses a Global Variable

Map alerts = null;

function getSubscribers(TrafficIncident ti) returns Map {
 try {
 alerts = new HashMap();
 assert(ti);
 run();
 return alerts;
 } finally {
 retract(ti);

Note: The traffic.* sample classes are not included in the Oracle
Business Rules distribution.

Invoking Rules

Working With Rule Author Features 3-19

 alerts = null;
 }
}
rule incidentAlert {
 if (fact TrafficIncident ti &&
 fact IncidentSubscription s &&
 s.highway == ti.highway &&
 s.direction == ti.direction) {
 alerts.put(s.subscriber, ti);
 }
 }
}

Example 3–2 shows Java code that invokes getSubscribers and prints out the
results.

Example 3–2 Sample Showing Results with Global Variable

// An accident has happened
TrafficIncident ti = new TrafficIncident();
ti.setHighway("I5");
ti.setDirection("south");
ti.setIncident("accident");
ti.setWhen(new GregorianCalendar(2005, 1, 25, 5, 4));
ti.setDelay(45);

Map alerts = (Map)sess.callFunctionWithArgument("getSubscribers", ti);
Iterator iter = alerts.keySet().iterator();
while(iter.hasNext()) {
 String s = (String)iter.next();
 System.out.println("Alert " + s + " : " + alerts.get(s));
}

3.11.3 Using Container Objects to Obtain Results
In this approach, one or more objects are asserted into working memory to act as a
container for results. The RL code that asserts the objects keeps the references handy.
As rules fire, they can add results to the containers. A container object could be one of
the Java Collection classes or it could be some application specific container object.
When rule evaluation is complete the container objects can be inspected to access the
results.

Example 3–3 uses a java.util.Map and shows that the subscriber (key) and the
incident (value) are added to the map. The getSubscribers function asserts the
Map and a TrafficIncident, invokes the Rules Engine, and returns the result Map.

Example 3–3 Obtaining Results with a Container Object

function getSubscribers(TrafficIncident ti) returns Map {
 Map alerts = new HashMap();
 try {
 assert(alerts);

Note: The Map is not reasserted even though it has been updated. In
general, when an object that is being reasoned on is updated, it should
be re-asserted. This use case represents an exception to that rule. The
map, alerts, is just a container for results and its contents are not
involved in the reasoning. Thus, it is okay not to re-assert it.

Invoking Rules

3-20 Oracle Business Rules User’s Guide

 assert(ti);
 run();
 return alerts;
 } finally {
 retract(alerts);
 retract(ti);
 }
}
rule incidentAlert {
 if (fact TrafficIncident ti &&
 fact IncidentSubscription s &&
 s.highway == ti.highway &&
 s.direction == ti.direction &&
 fact Map alerts) {
 alerts.put(s.subscriber, ti);
 }
 }
}

Example 3–2 shows Java code that invokes getSubscribers and prints out the
results.

3.11.4 Using Reasoned On Objects to Obtain Results
In this approach, one or more objects are asserted into the rules engine working
memory and the object references are retained in RL (in the getSubscribers
function). Rule evaluation updates one or more of these objects. These objects are
inspected after rule evaluation to determine the results.

In Example 3–4 the TrafficIncident class is modified to keep a java.util.Set
of subscribers that need to be notified. Since the TrafficIncident object is being
reasoned on, it is re-asserted. To avoid an infinite loop of rule firings for the same
subscription, you need to use the subscribed method to test for matched incidents; this
method prevents looping. The subscribed method returns true if a subscriber has
already been added to the matched TrafficIncident. This is a common idiom in
rules programming; a rule action updates a fact that is being reasoned on and, to avoid
unwanted additional firings, you add a test to the condition that checks for the
absence of that update.

Example 3–4 shows getSubscribers function asserts a TrafficIncident,
invokes the Rules Engine, and creates and returns the result Map.

Example 3–4 Obtaining Results with a Reasoned On Object

function getSubscribers(TrafficIncident ti) returns Map {
 try {
 assert(ti);
 run();
 Map alerts = new HashMap();
 for (Iterator iter = ti.subscribers(); iter.hasNext();) {
 alerts.put(iter.next(), ti);
 }
 return alerts;
 } finally {
 retract(ti);
 }
}
rule incidentAlert {
 if (fact TrafficIncident ti &&
 fact IncidentSubscription s &&

Invoking Rules

Working With Rule Author Features 3-21

 s.highway == ti.highway &&
 s.direction == ti.direction &&
 !ti.subscribed(s.subscriber)) {
 ti.addSubscriber(s.subscriber);
 assert(ti);
 }
 }
}

Example 3–2 shows Java code that invokes getSubscribers and prints out the
results.

Invoking Rules

3-22 Oracle Business Rules User’s Guide

Using XML Facts with Rule Author 4-1

4
Using XML Facts with Rule Author

This chapter provides a tutorial for working with Oracle Business Rules using XML
documents (facts that are supplied in an XML document). This chapter also shows you
how to create a rule enabled Java application that uses XML.

In the XML car rental How-To, driver data, supplied in an XML document specifies
driver information, and the business rules determine if a rental company service
representative should decline to rent a vehicle due to driver age restrictions (according
to rental company business rules).

This chapter covers the following topics:

� Overview of Using XML Documents and Schemas with Rule Author

� Creating and Saving a Dictionary for the XML Car Rental Sample

� Defining a Data Model for the XML Car Rental Sample

� Defining Business Vocabulary for the XML Car Rental Sample

� Defining a Rule for the XML Car Rental Sample

� Customizing Rules for the XML Car Rental Sample

� Creating a Java Application with a Rule Session Using XML Facts

� Running the XML Car Rental Sample Using the Test Program

4.1 Overview of Using XML Documents and Schemas with Rule Author
Rule Author lets you import XML elements into a data model and lets you write rules
using the XML elements in conditional expressions. For example, if you have an XML
document that contains data associated with your application, and you have the
schema associated with the XML document, then you can use Rule Author to define
rules based on elements that you specify from the XML schema.

Starting with an XML schema, using XML documents with Rule Author involves the
following steps:

1. XML schema processing: Rule Author generates Java classes from XML schema by
running the supplied Java Architecture for XML Binding (JAXB) compiler to
generate JAXB packages, classes, and interfaces for the XML Schema.

2. Using Rule Author you import XML elements into the data model in a dictionary.

3. Using Rule Author you define rules that reason on XML elements from an XML
document. The process of writing rules for XML documents is very similar to
writing rules using Java objects.

Creating and Saving a Dictionary for the XML Car Rental Sample

4-2 Oracle Business Rules User’s Guide

After you finish using Rule Author to create the rules, that use XML facts, you can
write an application that reasons on XML documents. To accomplish XML document
processing, you assert elements of an XML document into a Rules Engine session.

4.2 Creating and Saving a Dictionary for the XML Car Rental Sample
To work with Rule Author you need to start with a dictionary. Rule Author stores rules
and their associated definitions in a dictionary. To create or save a dictionary, you need
to connect to a repository that stores the dictionary. As shipped, Rule Author supports
two types of repositories: WebDAV (Web Distributed Authoring and Versioning) and
file repository. In this section you create and save a dictionary for the XML car rental
How-To.

The example in this chapter saves the dictionary to a WebDAV repository.

4.2.1 Connecting to a Rule Author Repository
Using Oracle Business Rules, a dictionary stores rules and the data model associated
with the rules. You create and save dictionaries in a repository.

To connect to a repository, do the following:

Note 1: JAXB sometimes maps XML construct names to different
Java identifier names. For example, using JAXB, the XML name
my-element-name becomes myElementName. Rule Author presents
XML construct names so that you do not have to understand the JAXB
generated XML-to-Java name mapping.

Note 2: If you want to use a JAXB binding compiler that is different
from the Rule Author supplied implementation, you can manually
perform the XML schema processing using your JAXB binding
compiler and then use Java facts to import the generated Java
packages and classes.

See Also: http://java.sun.com/webservices/jaxb for more
information on JAXB.

Note: To create the dictionary shown in this chapter, you can either
create a new dictionary, using either a WebDAV repository or a file
repository, or you can load the completed dictionary from the
$HowToDir/dict directory supplied with the How-To.

Where $HowToDir is the directory where you install the How-To
containing the XML car rental sample.

Note: Regardless of whether you choose to use a WebDAV or file
repository, the repository must exist before you can connect to it. Rule
Author does not create the repository for you.

See Appendix B, "Using Rule Author and Rules SDK with
Repositories" for more information.

Creating and Saving a Dictionary for the XML Car Rental Sample

Using XML Facts with Rule Author 4-3

1. Click the Repository tab.

2. Click the Connect secondary tab.

3. Select the WebDAV repository type in the Repository Type field.

4. Enter the URL to the WebDAV repository (see Figure 4–1). The URL must be in the
form:

http://www.fully_qualified_host_name.com:7777/repository_name

Figure 4–1 Rule Author Repository Connect Page

See Section B.1, "Working with a WebDAV Repository" for information on how to
setup a WebDAV repository.

5. If you have a proxy server between the server on which Rule Author is running
and the WebDAV server, specify the name and port number of the proxy server.

6. Click Connect.

If you connect successfully, you receive a confirmation message.

4.2.2 Creating a Rule Author Dictionary
A Rule Author dictionary is the top-level container and the starting point for working
with Rule Author. A dictionary usually corresponds to the rules portion of an
application.

To create a dictionary, do the following:

1. Connect to a repository from the Repository tab.

2. Click the Create secondary tab.

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

Creating and Saving a Dictionary for the XML Car Rental Sample

4-4 Oracle Business Rules User’s Guide

3. Enter the dictionary name in the New Dictionary Name field. For this example
enter CarRentalxml.

4. Click Create. After you click Create, Rule Author shows a status message (see
Figure 4–2).

Figure 4–2 Rule Author Create Dictionary (XML)

4.2.3 Saving a Rule Author Dictionary with a Version
If you want to save to a different dictionary name or specify a version for the current
dictionary, use the Save As area as follows:

1. Click the Repository tab.

2. Click the Save As secondary tab.

3. Enter a dictionary name in the Dictionary field, for example CarRentalxml.

4. If you want to specify a version that is associated with the dictionary, enter text in
the Version field. For example HowToxml.

5. Click Save As. After clicking Save As, you should see a confirmation message in
the status area (see Figure 4–3).

Creating and Saving a Dictionary for the XML Car Rental Sample

Using XML Facts with Rule Author 4-5

Figure 4–3 Rule Author Save Dictionary (XML)

4.2.4 Saving a Rule Author Dictionary
To prevent data loss, you should periodically save the dictionary. To save a dictionary,
do one of the following:

� Click the Repository tab, then click the Save secondary tab.

� Click the Save Dictionary link at the top of the page.

After performing either of the preceding actions, click Save on the Save Dictionary
page. After clicking Save, you should see a confirmation message in the status area.
For example:

Dictionary ’CarRental(HowTo)’ has been saved

Note: Rule Author does not allow you to use Save As to overwrite a
dictionary with the same name and version. If you want to overwrite a
dictionary with the same name and version, do one of the following:

� Click Save.

� Delete the existing dictionary, then click the Save As.

Note: You should save the dictionary periodically as you work since
Rule Author sessions time out after a period of inactivity.

See Also: "Rule Author Session Timeout" on page A-2 for details on
configuring the Rule Author session timeout.

Defining a Data Model for the XML Car Rental Sample

4-6 Oracle Business Rules User’s Guide

4.3 Defining a Data Model for the XML Car Rental Sample
Before working with rules you need to define a data model. A data model contains
business data definitions for facts or data objects used in rules, including: Java class
fact types, XML fact types, and RL Language fact types. In this section you work with
a data model that includes XML fact types.

This section covers the following topics:

� Using XML Schema as Facts in the XML Car Rental Sample

� Adding XML Facts for the Car Rental Sample (XML Schema Processing)

� Importing XML Schema Elements to a Data Model

� Viewing XML Facts in a Data Model

� Saving the Current State of XML Fact Definitions

4.3.1 Using XML Schema as Facts in the XML Car Rental Sample
The XML sample includes the carrental.xsd file in the $HowToDir/data directory.
This file specifies the schema for the XML car rental sample that uses XML documents
to assert facts.

Where $HowToDir is the directory where you installed the XML car rental How-To.

4.3.2 Adding XML Facts for the Car Rental Sample (XML Schema Processing)
Before you can use XML elements in a data model, Rule Author needs to generate the
JAXB classes representing the XML elements. This step generates the JAXB classes and
makes the generated classes and packages associated with the XML schema visible to
Rule Author.

To use Rule Author to prepare the sample XML car rental schema, do the following:

1. Go to Step 2 if you just created the CarRentalxml dictionary. Click the Repository
tab and load the CarRentalxml dictionary.

2. Click the Definitions tab. The navigation tree shows the Definitions folder that
contains the available definitions.

3. The Definitions folder in the tree contains the Facts folder that includes the
available fact types: JavaFact, XMLFact, and RLFact.

Click XMLFact to view the XMLFact Summary page (see Figure 4–4).

See Also: "Adding Java Classes and Packages to Rule Author" on
page 2-9

Defining a Data Model for the XML Car Rental Sample

Using XML Facts with Rule Author 4-7

Figure 4–4 Rule Author Definitions XML Fact Summary Page

4. Click Create. This shows the XML Schema Selector page.

5. On the XML Schema Selector page, in the XML Schema field enter either the path
or HTTP URL to the schema. For example:

� $HowToDir/data/carrental.xsd, where $HowToDir is the directory where
you installed the XML How-To.

� http://www.myCompany.com/xsd/product.xsd

If you choose to access the schema with a URL, you must set the following system
properties:

proxyHost = $YourProxyHost
proxyPort = $YourProxyPort
proxySet = true

For example:

-DproxyHost=www-proxy.myCompany.com -DproxyPort=80 -DproxySet=true

For more information on setting system properties in an OC4J instance, see Oracle
Containers for J2EE Configuration and Administration Guide.

6. In the JAXB Class Directory field enter the directory where you want Rule Author
to store the JAXB generated classes.

Note: the directory that you specify must be writable.

7. Enter a value for the Target Package Name field. If you leave this field empty, the
JAXB classes package name is generated from the XML schema's target namespace
using the default JAXB XML-to-Java mapping rule. For example, the namespace
rules.oracle.com is mapped to com.oracle.rules.

The value you enter specifies the generated classes package name. For example,
generated (for this example, we use the name generated, there is nothing special
about the name generated. This value specifies the name of the package, directory,
where the generated classes are placed). See Figure 4–5.

Defining a Data Model for the XML Car Rental Sample

4-8 Oracle Business Rules User’s Guide

Figure 4–5 Rule Author XML Schema Selection Page

8. Click Add Schema. This step requires some processing to compile the JAXB, so
depending on the size of the Schema, you may need to wait for a period of time
for this step to complete.

When this completes the page shows cleared Add Schema text entry fields, and
Rule Author updates the Current XML Schemas field, and shows the Generated
JAXB Classes area (see Figure 4–6).

Defining a Data Model for the XML Car Rental Sample

Using XML Facts with Rule Author 4-9

Figure 4–6 Rule Author Definitions XML Schema Selector After Adding XML Schema

4.3.3 Importing XML Schema Elements to a Data Model
This step brings the JAXB generated classes representing the XML schema elements
into the data model (from the sample schema carrental.xsd). Select the XML
elements to import into the data model using the Class Selector page from the
Definitions tab.

Oracle Rules Engine binds an XML schema to Java classes by using JAXB. In most
cases, the default bindings generated by the Oracle JAXB binding compiler are
sufficient to meet your needs. There are cases, however, when you may want to
modify the default bindings. For example:

1. Name collision

2. Invalid Java identifiers mapped from non-English tag names

Please refer to Oracle JAXB documentation for more details about customizing the
default XML-to-Java mapping.

To add DriverType from the schema to the data model, do the following:

1. Click the Definitions tab to view the Definitions page.

2. Click the XMLFact folder in the navigation tree.

3. Click Create on the XMLFact Summary page. This shows the XML Schema
Selector page.

4. In the Generated JAXB Classes box on the XML Schema Selector page expand the
navigation tree until you see DriverType.

5. Select the generated folder check box.

See Also: "Creating and Saving a Dictionary for the XML Car Rental
Sample" on page 4-2

Defining a Data Model for the XML Car Rental Sample

4-10 Oracle Business Rules User’s Guide

6. Click Import. Rule Author shows a confirmation message: "1 class or package has
been imported" (see Figure 4–7).

7. Expand the Generated node in the Generated JAXB Classes area to see the
imported classes (see Figure 4.7).

Figure 4–7 Rule Author XML Schema Selector with Confirmation Message

Notes for Adding XML Schema to Rule Author:

� The Classes navigation tree is rendered on demand (to improve performance).
Thus, a child node is rendered only if its parent node is expanded. It is a good
practice to keep only the nodes of interest expanded.

� On Windows systems, you can use a "\" or a "/" as a path separator. Rule Author
accepts either path separator.

� A corresponding XML construct name is displayed next to each Java class so that
you know where the Java class is generated from (using the XML Schema names).
If you want to import the whole package into the data model, check the package
name and click Import.

� Using Rule Author, importing an XMLFact means the same thing as a Java import
statement. That is, the JAXB classes and their methods become visible to Rule

Note: After an element is imported, the element is shown in bold.

Defining Business Vocabulary for the XML Car Rental Sample

Using XML Facts with Rule Author 4-11

Author. Rule Author does not copy the classes into the data model or into the
dictionary.

� Do not use RL reserved words in Java package names. For more information, see
Section D.8, "Using RL Reserved Words as Part of a Java Package Name"

4.3.4 Viewing XML Facts in a Data Model
To view the XML Facts in a data model, including any JAXB generated classes or
packages that you import, do the following:

1. Click the Definitions tab to view the Definitions page.

2. Expand the Facts folder and click the XMLFact node in the navigation tree to
display the XMLFact Summary page.

For the XML car rental sample this shows the XMLFact table that includes the
imported classes DriverType, RepositoryType, Repository, and ObjectFactory.

3. Click the edit icon to view the XML Fact Properties and Methods.

4.3.5 Saving the Current State of XML Fact Definitions
While working on a data model from the Definitions tab and when you complete your
work, it is important to save the dictionary. You can save the dictionary in two ways:

1. Click the Repository tab, then click the Save secondary tab.

2. Click the Save Dictionary link at the top of the page.

After performing either of the preceding actions, click Save on the Save Dictionary
page.

4.4 Defining Business Vocabulary for the XML Car Rental Sample
The business vocabulary allows business analysts to create rules using familiar names
rather than using an XML name or a Java package name, class name, method name, or
member variable name. You use the Rule Author aliases feature to specify the business
vocabulary. In this step you only need to define the business vocabulary for the
business objects that you expect to use in rules. In addition, you can use the Rule
Author Visible box to specify the properties and methods that show up in Rule
Author lists when you create rules from the RuleSets tab.

This section covers the following topics:

Note: Importing a Java class does not cause all of its super classes
and classes associated through fields and methods to be imported into
the data model. In order to access these correctly, they must be
explicitly imported into the data model.

See Also: See "Specifying Visibility and Object Chaining for Rule
Author Drop Down Lists" on page 3-9 for details on the Visible and
Expand fields in the XML Fact Properties and Methods table.

See Also: "Saving a Rule Author Dictionary" on page 2-8

Defining Business Vocabulary for the XML Car Rental Sample

4-12 Oracle Business Rules User’s Guide

� Specifying the Business Vocabulary for XML Fact Definitions

� Specifying the Business Vocabulary for Functions

4.4.1 Specifying the Business Vocabulary for XML Fact Definitions
To specify the business vocabulary for XMLFact definitions, do the following:

1. Click the Definitions tab to view the Definitions page.

2. Expand the Facts folder and click the XMLFact node in the navigation tree to
display the XML Fact Summary page. For the XML car rental sample this shows a
table that includes the class generated.DriverType (if you specify a package
name other than generated, then the package name is different than generated).

3. Click the edit icon for driverType. This shows the XML fact page.

4. At the top of the XML fact page, in the Alias field enter DriverData.

5. For the age entry in the Properties table, specify the desired alias. For example,
enter DriverAge in the Alias field.

6. For the name entry in the Properties table, specify the desired alias. For example,
enter DriverName in the Alias field.

7. Click OK or Apply.

8. Save the dictionary.

Notes for specifying the business vocabulary for XML fact definitions:

� On the XML fact page, you can specify that Rule Author shows methods or
properties one level above a specified method or property, in superclass chain, by
selecting the Expand box for the method or property on the XML Fact page. The
Expand box is shown in the Expand field of the Properties and Methods area. The
checkbox is only shown for methods or properties that include a superclass (Rule
Author does not show the Expand box for primitive types).

� On the XML fact page you can specify that properties or classes are not visible in
Rule Author list boxes. Deselect the Visible checkbox to specify that an object is
not visible in Rule Author list boxes (by default objects are visible).

� The XML Fact page includes the XML Name and Generated From fields that
show the Java class was generated from an XML schema.

For example, //complexType[@name='driverType'] XML Name shows that
the class is generated from an XML complex type named driverType. The
Generated From field shows the name of the XML schema that generated the
JAXB classes for the XML Fact.

� Make sure the Support XPath Assertion box is checked for all XML FactTypes. For
more information, see Section D.10, "XML Facts not Asserted at Runtime".

4.4.2 Specifying the Business Vocabulary for Functions
To specify the business vocabulary for an RL Language function, do the following:

1. Click the Definitions tab to view the Definitions page.

Note: Be sure to click OK or Apply after making changes.
Otherwise, Rule Author does not save your changes.

Defining a Rule for the XML Car Rental Sample

Using XML Facts with Rule Author 4-13

2. Click RLFunction in the Definitions folder in the navigation tree to display the
RLFunction Summary page. For the XML car rental sample, this shows a table that
includes the functions, DM.assertXPath and DM.println.

3. For the DM.println function, click the edit icon in the Edit field to view details.

4. In the Alias field, under the Name field, enter an alias. For example, enter
PrintOutput in the Alias field.

5. Click OK or Apply.

6. Save the dictionary.

4.5 Defining a Rule for the XML Car Rental Sample
In this section you define a rule for the XML car rental sample.

This section covers the following topics:

� Creating a Rule Set for the XML Car Rental Sample

� Creating a Rule for the XML Car Rental Sample

4.5.1 Creating a Rule Set for the XML Car Rental Sample
Before you can create a rule you need to create a rule set. A rule set is a container for
rules.

To create a rule set, do the following:

1. Click the Rulesets tab.

2. Click the RuleSet node in the navigation tree.

3. On the Ruleset Summary page, click Create. This displays the Ruleset page.

4. Enter a name in the Name field. For example, enter vehicleRent.

5. Optionally enter text in the Description field. For example, enter vehicle rent
rule set.

6. Click OK. This creates the vehicleRent rule set. After you create the rule set, the
tree shows the new entry, as shown in Figure 4–8.

7. Save the dictionary.

Note: There is also an Alias field in the Function Arguments table.
For this example we are not changing the function arguments alias.

Defining a Rule for the XML Car Rental Sample

4-14 Oracle Business Rules User’s Guide

Figure 4–8 Rule Author RuleSet Summary Page

4.5.2 Creating a Rule for the XML Car Rental Sample
After creating a rule set, you can create rules within the rule set. In this section, you
create the UnderAge rule. The UnderAge rule tests the following:

If the driver's age is younger than 21, then decline to rent

The UnderAge rule contains a single pattern for the Rules Engine to match, and the
rule includes a test that is applied to the pattern.

The following actions are associated with the UnderAge rule:

� Print "Rental declined", the name of the driver matched and the message, "Under
Age, age is: " and the driver’s age.

� Retract the matched driver fact from the rule session.

4.5.2.1 Adding the Under Age Rule for the XML Car Rental Sample
To use Rule Author to add the UnderAge rule, do the following:

1. Click the RuleSets tab. The navigation pane displays the RuleSet folder that
contains the vehicleRent rule set that you created in Section 4.5.1.

2. Click the vehicleRent node in the navigation tree. This displays the Ruleset page,
with a table listing rules (see Figure 4–9).

Note: If there are no rules, the Rules table is empty.

Defining a Rule for the XML Car Rental Sample

Using XML Facts with Rule Author 4-15

Figure 4–9 Rule Author RuleSet Page Showing the Create Button

3. Click Create. This displays the Rule page.

4. On the Rule page enter UnderAge in the Name field.

5. On the Rule page enter 0 in the Priority field.

6. Enter a description in the Description field (see Figure 4–10).

Note: The Priority field determines which rule to act upon, and in
what order, if more than one rule applies. Often in applications that
use rules, the rules are be applied in any order until a decision is
reached, and setting a priority is not required.

Defining a Rule for the XML Car Rental Sample

4-16 Oracle Business Rules User’s Guide

Figure 4–10 Rule Author Rule Page

4.5.2.2 Adding a Pattern to the Under Age Rule (XML)
When the Rules Engine runs, it uses the rules to check the available facts for matching
patterns. To add a pattern for the UnderAge rule, do the following:

1. Click New Pattern in the If box on the Rule page. This displays the Pattern
Definition page.

2. The Pattern Definition page contains two areas: Choose Pattern and Define Test(s)
for Pattern (see Figure 4–11).

Figure 4–11 Rule Author Pattern Definition Page

Note: If the Pattern Definition page does not appear, you may have
popup blocking enabled on your browser. Popup blocking must be
disabled in order to use Rule Author.

Defining a Rule for the XML Car Rental Sample

Using XML Facts with Rule Author 4-17

3. Under Choose Pattern, in the first box select the first entry, which is blank.

This box specifies that the rule should fire each time there is a match (for all
matching drivers). One alternative value, There is at least one case,
selects one firing of the rule if there is at least one match (one such driver). The
alternate value, There is no case, specifies the rule fires once if there are no
such matches (no matching drivers).

4. The next text area under Choose Pattern lets you enter a temporary name for the
matched fact.

Enter driver in this field (this defines the "pattern bind variable name").

This field lets you test multiple instances of the same type in a single rule. For
example, this lets you compare a driver with other drivers, using the specified
name, in a comparison such as driver1.age > driver2.age.

5. The third box contains the text, <make a choice>, this shows the available fact
types. In this box select DriverData.

6. Click OK to save the pattern definition. This closes the Pattern Definition page.

7. Click OK to save the rule.

8. Save the dictionary.

Without any tests defined on the pattern, the action that you define would apply to all
drivers. To define tests for patterns, continue, as shown in, Section 4.5.2.3.

4.5.2.3 Defining Tests for Patterns with the Under Age Rule (XML)
To add a test for a pattern, do the following:

1. From the Rulesets tab, in the navigation tree click the rule where you want to add
a test. For this example click the UnderAge rule.

2. In the If table on the rule page, select the pencil icon to bring up the Pattern
Definition page for this rule.

3. On the Pattern Definition page, select the Standard Test button, then click Create
(see Figure 4–12).

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a different
rule set or select a different tab before you click OK or Apply, Rule
Author discards your pattern definition changes.

See Also: "Adding Actions for the Under Age Rule (XML)" on
page 4-19

Defining a Rule for the XML Car Rental Sample

4-18 Oracle Business Rules User’s Guide

Figure 4–12 Rule Author Rule Pattern Definition Page with New Test Fields

Standard pattern testing is only valid for AND expressions. Additionally, no
grouping is allowed, and functions with parameters are not allowed. However, the
use of constraints is allowed for customization. Advanced pattern testing does not
have the restrictions of standard pattern testing, but the use of constraints is not
allowed. Advanced expressions are not directly RL Language because aliases are
used instead of variable names.

For more information, see Section 3.7.1, "Using the Advanced Test Expression
Option".

4. In the Operand column, from the Field box, select driver.DriverAge.

5. In the Operator column, select < (less than).

6. In the next Operand column, in the Value box enter 21. Do not enter a value in the
Field box.

7. Next to the Value and Field boxes is a drop-down list containing the fixed values
Any and Fixed (see Figure 4–13).

These values are called constraints, and they are used to enable or disable
customization for this field. Use the value Fixed to make the field read-only,
which specifies that no customization is allowed for this field. Select the value Any
to specify that Rule Author should allow changes to the value. Setting a value of
Any allows for rule customization (which supports modifications by non-technical
users). You can also define constraints that allow you to limit the allowed values.

Select Any as the constraint for the Value field.

Defining a Rule for the XML Car Rental Sample

Using XML Facts with Rule Author 4-19

Figure 4–13 Rule Author Pattern Definition Page with Values for Under Age Rule

8. Click OK to save your changes and close the Pattern Definition page.

9. On the Rule page, click OK or Apply.

10. Save the dictionary.

4.5.2.4 Adding Actions for the Under Age Rule (XML)
Actions are associated with pattern matches. When a rule’s "If" portion matches, the
Rules Engine executes the "Then" portion to run the rule’s action.

In this section, you add two actions for the UnderAge rule. The first action prints the
result. The second action retracts the driver fact from the Rules Engine. You might
want to retract a fact for a number of reasons, including:

� If you are done with the fact, and you want to remove it from the Rules Engine.

� The action associated with the rule changes the state, so that the fact needs to be
retracted to represent the current state of the Rules Engine.

To add the action that prints the result for a match of the UnderAge rule, do the
following:

1. Click the Rulesets tab.

2. In the tree, click the UnderAge node under the vehicleRent folder.

3. Click New Action on the Rule page in the Then box. This brings up the Add
Action page (see Figure 4–14).

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you do not click OK or
Apply, Rule Author does not save your work on the rule.

See Also: "Customizing Rules for the XML Car Rental Sample" on
page 4-22

Defining a Rule for the XML Car Rental Sample

4-20 Oracle Business Rules User’s Guide

Figure 4–14 Rule Author Add Action Page

4. Select the Call item from the Action Type box. This shows the Action Parameters
box.

5. Choose PrintOutput from the Function box (if you did not define an alias for
println, then this is DM.println). This shows the function arguments box.

6. Enter the argument value in the Argument Value field (see figure Figure 4–15):

"Rental declined" + driver.DriverName + " Under age,age is:" + driver.DriverAge

Note: Rule Author uses a Java like syntax for expressions. The RL
Language defines the complete expression syntax.

Note: You can also select the edit icon in the Wizard field to use the
expression builder wizard to enter the expression. This provides you
with more space to write expressions. This also provides an easier and
more accurate way to enter variables, since the expression builder
presents a list showing the available variables.

Defining a Rule for the XML Car Rental Sample

Using XML Facts with Rule Author 4-21

Figure 4–15 Rule Author Add Action Page for Under Age Rule

7. Click OK to save your changes and close the Add Action page.

8. Click OK or Apply on the Rule page.

9. Save the dictionary to save your work.

Next, add the retract action for the UnderAge rule. Perform the following steps to add
this second action for the rule:

1. Click the Rulesets tab.

2. Click the UnderAge node under the vehicleRent folder.

3. On the Rule page, click New Action from the Then box. This brings up the Add
Action page.

4. Select Retract from the Action Type box. This shows the Action Parameters box.

5. Select driver from the Fact Instance box. The pattern name driver, when used
in the action refers to a single instance which was matched by the pattern.

6. Click OK to save your changes and close the Add Action page.

7. Click Apply on the Rule page to receive a confirmation message (see Figure 4–16).

8. Save the dictionary.

Customizing Rules for the XML Car Rental Sample

4-22 Oracle Business Rules User’s Guide

Figure 4–16 Rule Author Under Age Rule with Pattern and Actions

4.6 Customizing Rules for the XML Car Rental Sample
The Rule Author Customization tab is designed for business users. Rule developers
use the Allowed Values field on the Pattern Definition page, which is available from
the Ruleset tab, to specify if customization is allowed. When customization is allowed
you can specify a range of values for the customizable value. Then, business users may
change values using the Customization tab.

In this example, the UnderAge rule can be modified on the Customization tab to
change the age of an under age driver (for this sample we do not limit values, and
specify that any value is valid).

To change the UnderAge rule, use the Customization tab as follows:

1. Click the Customization tab. The navigation pane displays the vehicleRent folder
with the UnderAge node followed by a "*", which indicates that the rule is
customizable.

2. Click the node for the UnderAge rule (see Figure 4–17).

Note: When you add actions to rules, you can only add new actions
sequentially. If an action depends on the results of a previous action,
then the order in which you add the actions is significant.

See Also: The Oracle Business Rules RL Language Reference Guide

Creating a Java Application with a Rule Session Using XML Facts

Using XML Facts with Rule Author 4-23

Figure 4–17 Rule Author Rule Customization Page for Under Age Rule

3. On the Rule Customization page the Customize Patterns box contains an editable
text entry field for the test driver.DriverAge < 21.

Enter 19 in this field (change the value from 21 to 19).

4. Click Apply.

5. Save the dictionary.

After you save the dictionary, you are done creating the data model and the rules for
the XML car rental sample.

4.7 Creating a Java Application with a Rule Session Using XML Facts
After you create and save a Rule Author dictionary that contains a data model and a
rule set with rules, you can rule enable an existing Java application or create a new
rule enabled Java application. This section shows you the steps for creating a rule
enabled application.

This section covers the following:

� Importing the Rules SDK and Rules RL Classes

� Creating a JAXB Context and Unmarshalling the XML Document

� Loading a Dictionary with Rules SDK

� Loading a Ruleset and Generating RL Language for Data Model and Rule Set

� Initializing and Executing a Rule Session

� Asserting XML Data from Within a Rule Session

� Using the Run Function with a Rule Session

See Also: Defining Tests for Patterns with the Under Age Rule
(XML) on page 4-17

Creating a Java Application with a Rule Session Using XML Facts

4-24 Oracle Business Rules User’s Guide

For the complete code for this sample application, see TestXML.java in the
$HowToDir/src/carrental directory. Where $HowToDir is the directory where you
installed the XML How-To.

4.7.1 Importing the Rules SDK and Rules RL Classes
The first step when writing an Oracle Business Rules enabled program is to import
certain required classes. Example 4–1 shows the imports from the TestXML.java
application for the XML car rental sample.

Example 4–1 Required Imports for XML Car Rental Sample with Rules SDK

package carrental;

import java.io.File;
import java.util.List;
import java.util.ArrayList;
import java.util.Properties;
import javax.xml.bind.*;

import oracle.rules.sdk.ruleset.RuleSet;
import oracle.rules.sdk.repository.RuleRepository;
import oracle.rules.sdk.repository.RepositoryManager;
import oracle.rules.sdk.repository.RepositoryType;
import oracle.rules.sdk.repository.RepositoryContext;
import oracle.rules.sdk.dictionary.RuleDictionary;
import oracle.rules.sdk.exception.RepositoryException;

import oracle.rules.rl.RuleSession;

4.7.2 Creating a JAXB Context and Unmarshalling the XML Document
Using the JAXB generated classes either generated using Rule Author or manually,
you first need to specify a JAXB context and unmarshall an XML document that
conforms to the schema. Example 4–2 shows this code from TestXML.java.

Note 1: If you have completed the Java car rental example from
Chapter 2, the differences in this example are that you need to create a
JAXB context, and when you add facts to a rule session you use the
assertXPath function.

Note 2: The instructions in the preceding sections of this chapter
enabled you to create and save a WebDAV repository and dictionary
named CarRentalxml. The car rental example supplied in the
How-To sample code uses a file repository with a dictionary also
named CarRentalxml. The dictionary contents in the WebDAV
repository you created in this chapter and the file repository in the
How-To sample are identical.

The How-To sample code contains code for both WebDAV and file
repositories, but only the file repository is described in detail. The
How-To sample uses a file repository for portability, but this sample
can be modified to use the WebDAV repository you created in the
proceeding sections.

Creating a Java Application with a Rule Session Using XML Facts

Using XML Facts with Rule Author 4-25

Example 4–2 Unmarshalling an XML Document

JAXBContext jc = JAXBContext.newInstance("generated");
Unmarshaller um = jc.createUnmarshaller();
String fs = System.getProperty("file.separator");
String xmlpath = "data" + fs + "carrental.xml" ;
Object root = um.unmarshal(new File(xmlpath));

4.7.3 Loading a Dictionary with Rules SDK
When building a rule enabled Java application, do the following to access a dictionary
and specify a rule set (see Example 4–3):

1. Use a Rules SDK RuleRepository object to access one or more dictionaries. The
parameter to the getDefaultRepository method specifies the location of the
dictionary directory.

2. Use a Rules SDK SecurityInfo object to specify the credentials for accessing a
dictionary (the default rule storage plug-in uses file-based storage and does not
require credentials).

3. Use a RuleDictionary object to load a particular dictionary, as shown in
Example 4–3, which loads the CarRentalxml dictionary into the object named
dict. The CarRentalxml dictionary was previously created using Rule Author.

Example 4–3 Loading a Dictionary with Rules SDK (XML)

String repoPath = "dict" + fs + "CarxmlRepository";
final String jarstoreKey = "oracle.rules.sdk.store.jar";
RepositoryType jarType =
 RepositoryManager.getRegisteredRepositoryType(jarstoreKey);
RuleRepository repo = RepositoryManager.createRuleRepositoryInstance(jarType);
RepositoryContext jarCtx = new RepositoryContext();
jarCtx.setProperty(oracle.rules.sdk.store.jar.Constants.I_PATH_BASE, repoPath);
repo.init(jarCtx);

RuleDictionary dict = repo.loadDictionary("CarRentalxml", "HowToxml");

If you want to load a WebDAV repository instead of a file repository as shown in
Example 4–3, you should use getWebDAVRepository. An example of this is shown
in TestXML.java in the $HowToDir/src/carrental directory.

4.7.4 Loading a Ruleset and Generating RL Language for Data Model and Rule Set
After loading a dictionary, you can use the Rules SDK to generate an RL Language
program. This step is required since a dictionary stores a data model and rule sets
using an intermediate XML format. The RuleDictionary provides methods to
access a data model and a rule set and perform the mapping from the intermediate
XML format. This mapping produces the RL Language data program.

When you generate rules using Rule Author, each rule set specifies two components, a
data model which is global and applies for all the rule sets in a dictionary, and the set
of rules associated with a rule set.

Example 4–4 shows the code that generates the RL Language code for a rule set and
for the associated data model.

Example 4–4 Generating Oracle Business Rules RL Language

String rsname = "vehicleRent";
String dmrl = dict.dataModelRL();

Creating a Java Application with a Rule Session Using XML Facts

4-26 Oracle Business Rules User’s Guide

String rsrl = dict.ruleSetRL(rsname);

4.7.5 Initializing and Executing a Rule Session
After you generate an RL Language program that include rules and a data model, you
are ready to work with a rule session. A rule session initializes the Rules Engine and
maintains the state of the Rules Engine across a number of rule executions.

Example 4–5 shows the code that creates a RuleSession object and executes an RL
Language program.

The executeRuleset() method tells the Rules Engine to interpret the specified RL
Language program.

Example 4–5 Initializing and Executing a Rule Session with Rules SDK (XML)

RuleSession session = new RuleSession();
session.executeRuleset(dmrl);
session.executeRuleset(rsrl);

session.callFunction("reset");
session.callFunction("clearRulesetStack");
session.callFunctionWithArgument("pushRuleset", rsname);

After the data model and the rule set are loaded and the rule session is ready to run
the rule set against the facts that you assert for the rule session.

4.7.6 Asserting XML Data from Within a Rule Session
Before running a rule session you need to first unmarshall the XML document
containing the XML data and then assert the facts from the XML document.
Section 4.7.2 shows you how to unmarshall the XML document.

To assert facts from an XML document, use the
session.callFunctionWithArgument() method with the assertXPath
function as an argument.

Example 4–6 shows sample code that uses assertXPath to assert XML facts into a
rule session.

The callFunctionWithArgumentList method requires a function name argument
and a List argument. The List argument argList includes the following three
arguments:

1. The first argument for assertXPath is the JAXB generated package name, for
this example, generated.

2. The second argument for assertXPath is the root object for the unmarshalled
XML document. For this example the unmarshalled object reference is the root
object.

3. The third argument for assertXPath is the XPath expression to assert, for this
example the "//*" asserts the entire XML tree into the rule session named
session.

Note: The order of the executeRuleset() calls is important. You
need to execute the data model RL Language program before the rule
set RL Language program. The data model contains global
information that is required when the associated rule set executes.

Running the XML Car Rental Sample Using the Test Program

Using XML Facts with Rule Author 4-27

Example 4–6 Asserting an XML Document

List argList = new ArrayList(3);
argList.add("generated");
argList.add(root);
argList.add("//*");
session.callFunctionWithArgumentList("assertXPath", argList);

4.7.7 Using the Run Function with a Rule Session
Example 4–7 shows the code that runs a rule session.

Example 4–7 Running a Rules Engine Session

session.callFunction("run");

4.8 Running the XML Car Rental Sample Using the Test Program
The $HowToDir/lib directory includes TestXML.jar, a ready-to-run Oracle Business
Rules Java application that uses the CarRentalxml dictionary. If you change the
dictionary name and you need to modify TestXML.java, the source is available in
the directory $HowToDir/src. The Readme.txt file in this directory includes
instructions for setting the environment variables required to run the test program.

Where $HowToDir is the directory where you installed the Oracle Business Rules XML
How-To.

Example 4–8 shows output from running TestXML.

Example 4–8 Sample Run of Car Rental Program (XML)

java carrental.TestXML
Rental declined Qun Under age, age is: 15

Note that not all facts produce output or fire a rule. The example shows output only
for the asserted fact that matches the UnderAge rule.

See Also: "Creating a JAXB Context and Unmarshalling the XML
Document" on page 4-24

Running the XML Car Rental Sample Using the Test Program

4-28 Oracle Business Rules User’s Guide

Using JS
5

Using JSR-94

This chapter covers the following:

� Oracle Business Rules with JSR-94 Rule Execution Sets

� Using the JSR-94 Interface with Oracle Business Rules

5.1 Oracle Business Rules with JSR-94 Rule Execution Sets
To use JSR-94 with rules created either with Rule Author or in RL Language text, you
need to map the rules to a JSR-94 rule execution set. A JSR-94 rule execution set (rule
execution set) is a collection of rules that are intended to be executed together. You also
need to register a rule execution set before running the rule execution set. A
registration associates a rule execution set with a URI; using the URI you can create a
JSR-94 rule session.

This section covers the following topics:

� Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository

� Creating a JSR-94 Rule Execution Set from a WebDAV Repository

� Creating a Rule Execution Set from Oracle Business Rules RL Language Text

� Creating a Rule Execution Set from RL Text Specified in a URL

� Creating Rule Execution Sets with Rule Sets from Multiple Sources

5.1.1 Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository
You can save rules created with Rule Author in a dictionary using the dictionary
storage plug-in. To use JSR-94 with rules created with Rule Author, you need to map a
Rule Author dictionary and its contents to a JSR-94 rule execution set.

Perform the following steps to use a Rule Author dictionary with JSR-94:

1. Specify Rule Author dictionary mapping information in an XML document.
Table 5–1 shows the mapping elements required to construct a rule execution set.
Example 5–1 shows a sample XML mapping file.

Note: Using Oracle Business Rules, a JSR-94 rule execution set
registration is not persistent. Thus, you need to register a rule
execution set programmatically using a JSR-94
RuleExecutionSetProvider interface.
R-94 5-1

Oracle Business Rules with JSR-94 Rule Execution Sets
2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Example 5–1 JSR-94 XML Mapping File for a File Repository

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <file-repository>
 <repository-location>dict/CarRepository</repository-location>
 <dictionary-name>CarRental</dictionary-name>
 <dictionary-version>HowTo</dictionary-version>
 <ruleset-list>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-list>
 </file-repository>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

5.1.2 Creating a JSR-94 Rule Execution Set from a WebDAV Repository
You can save rules created with Rule Author in a WebDAV repository using the
dictionary storage plug-in. To use JSR-94 with rules stored in a WebDAV repository,
you need to map one or more rule sets from a WebDAV repository to a JSR-94 rule
execution set.

Perform the following steps to use rules stored in a file repository with JSR-94:

Table 5–1 File Repository XML Mapping Elements for JSR-94

Element Description

<repository-location> The file repository path – the path may be absolute or relative to
the current directory at the time of execution.

<dictionary-name> The dictionary name.

<dictionary-version> The dictionary version.

<ruleset-list> A list of Rule Author rule sets to extract from the dictionary in
the order in which they should be interpreted so that any
inter-dependencies are resolved.

Note: the rule set associated with data model is not included in
the <ruleset-list> element. The JSR-94 implementation
loads the data model rule set into the Rules Engine before any
rule sets listed in this element.

<ruleset-stack> Specifies a list of rule sets that make up the initial rule set stack.
The order specified for the of rule sets in the list is from the top
of the stack to the bottom of the stack.

See Also: The XSD file in $ORACLE_HOME/rules/lib/jsr94_
obr.jar at
oracle/rules/jsr94/admin/jsr94-runtime-configuration
-1.0.xsd.
5-2 Oracle Business Rules User’s Guide

Oracle Business Rules with JSR-94 Rule Execution Sets
1. Specify WebDAV repository mapping information in an XML document. Table 5–2
shows the mapping elements required to construct a rule execution set.
Example 5–2 shows a sample XML mapping file.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Example 5–2 JSR-94 Mapping File for a WebDAV Repository

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <webdav-repository>
 <repository-url>
 http://www.some_server.com/rules_repository
 </repository-url>
 <dictionary-name>CarRental</dictionary-name>
 <dictionary-version>HowTo</dictionary-version>
 <ruleset-list>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-list>
 </webdav-repository>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

5.1.3 Creating a Rule Execution Set from Oracle Business Rules RL Language Text
You can use JSR-94 with RL Language rule sets saved as text, where the RL Language
text is directly included in the rule execution set.

Perform the following steps to use RL Language specified rules with JSR-94:

Table 5–2 WebDAV Repository XML Mapping Elements for JSR-94

Element Description

<repository-url> The URL for the WebDAV repository.

<proxy-host> The name of the proxy host if a proxy is present. This is an
optional element.

<proxy-port> The proxy port if a proxy is present. This is an optional element.

<dictionary-name> The dictionary name.

<dictionary-version> The dictionary version.

<ruleset-list> A list of Rule Author rule sets to extract from the dictionary in
the order in which they should be interpreted so that any
inter-dependencies are resolved.

Note: the rule set associated with data model is not included in
the <ruleset-list> element. The JSR-94 implementation
loads the data model rule set into the Rules Engine before any
rule sets listed in this element.

<ruleset-stack> Specifies a list of rule sets that make up the initial rule set stack.
The order specified for the of rule sets in the list is from the top
of the stack to the bottom of the stack.
Using JSR-94 5-3

Oracle Business Rules with JSR-94 Rule Execution Sets
1. Specify the RL Language mapping information in an XML document. Table 5–3
shows the mapping elements required to construct a rule execution set.
Example 5–3 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Example 5–3 XML Mapping File for Rule Sets Defined in an RL Program

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-text>
 ruleset DM {
 fact class carrental.Driver {
 hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
 llicIssueDate, numPreAccidents, numPreConvictions,
 numYearsSinceLicIssued, vehicleType;
 };

 final String DeclineMessage = "Rental declined ";

 public class Decision supports xpath {
 public String driverName;
 public String type;
 public String message;
 }

 function assertXPath(String package,
 java.lang.Object element, String xpath) {
 //RL literal statement
 main.assertXPath(package, element, xpath);
 }

 function println(String message) {
 //RL literal statement
 main.println(message);
 }

Table 5–3 Oracle Business Rules RL Language Text XML Mapping Elements for JSR-94

Element Description

<rule-source> Includes an <rl-text> tag containing explicit RL Language
text containing an Oracle Business Rules rule set. Multiple
<rule-source> tags can be used to specify multiple rule sets
(specified in the order in which they are interpreted).

<ruleset-stack> Specifies a list of rule sets that make up the initial rule set stack.
The order of the rule sets in the list is from the top of the stack to
the bottom of the stack.

Note: In the <rl-text> element the contents must escape XML
predefined entities. This includes the characters, '&', '>', '<', '"', and '\''.
5-4 Oracle Business Rules User’s Guide

Oracle Business Rules with JSR-94 Rule Execution Sets
 function showDecision(DM.Decision decision) {
 //RL literal statement
 DM.println("Rental decision is " + decision.type +
 " for driver " + decision.driverName +
 " for reason " + decision.message);
 }
 }
 </rl-text>
 </rule-source>
 <rule-source>
 <rl-text>
 ruleset vehicleRent {
 rule UnderAge {
 priority = 0;
 if ((fact carrental.Driver v0_Driver &&
 (v0_Driver.age < 19))) {
 DM.println("Rental declined: " + v0_Driver.name +
 " Under age, age is: " + v0_Driver.age);
 retract(v0_Driver);
 }
 }
 }
 </rl-text>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

5.1.4 Creating a Rule Execution Set from RL Text Specified in a URL
You can use JSR-94 with RL Language rule sets specified using a URL.

To use RL Language specified rules with JSR-94, do the following:

1. Specify the RL Language mapping information in an XML document. Table 5–4
shows the mapping elements required to construct a rule execution set.
Example 5–4 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

See Also: "Using the Extended createRuleExecutionSet to Create a
Rule Execution Set" on page 5-8 for information on JSR-94 extensions
that assist you in including RL Language text.

Table 5–4 Oracle Business Rules RL Language URL XML Mapping Elements for JSR-94

Element Description

<rule-source> Includes an <rl-url> tag containing a URL that specifies the
location of RL Language text. Multiple <rule-source> tags
can be used to specify multiple rule sets (in the order in which
they are interpreted).

<ruleset-stack> Specifies a list of rule sets that make up the initial rule set stack.
The order of the rule sets in the list is from the top of the stack to
the bottom of the stack.
Using JSR-94 5-5

Using the JSR-94 Interface with Oracle Business Rules
Example 5–4 XMP Mapping File for Rule Sets Defined in a URL

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-url>
 file:rl/DM.r1
 </rl-url>
 </rule-source>
 <rule-source>
 <rl-url>
 file:r1/VehicleRent.r1
 </rl-url>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

5.1.5 Creating Rule Execution Sets with Rule Sets from Multiple Sources
A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rule Author defined rule sets and RL Language rule sets. In
this case, the XML element <rule-execution-set> set contains multiple
<rule-source> elements, one for each source of rules. You need to list each
<rule-source> in the order in which they are to be interpreted in the rules engine.

5.2 Using the JSR-94 Interface with Oracle Business Rules
This section describes some Oracle Business Rules specific details for JSR-94 interfaces.
This section covers the following topics:

� Creating a Rule Execution Set with CreateRuleExecutionSet

� Creating a Rule Session with createRuleSession

� Working with JSR-94 Metadata

� Using Oracle Business Rules JSR-94 Extensions

5.2.1 Creating a Rule Execution Set with CreateRuleExecutionSet
The RuleExecutionSetProvider and LocalRuleExecutionSetProvider
interfaces in javax.rules.admin include the createRuleExecutionSet to
create a RuleExecutionSet.

For the remaining createRuleExecutionSet methods, the first argument is
interpreted as shown in Table 5–5.

See Also: "Using the Extended createRuleExecutionSet to Create a
Rule Execution Set" on page 5-8 for information on JSR-94 extensions
that assist you in specifying a URL.

Note: For this Oracle Business Rules release, a JSR-94 rule execution
set can only reference one Rule Author dictionary.
5-6 Oracle Business Rules User’s Guide

Using the JSR-94 Interface with Oracle Business Rules
The second argument to the createRuleExecutionSet methods is a
java.util.Map of vendor specific properties. The properties in Table 5–6 are valid
for the Oracle JSR-94 implementation.

5.2.2 Creating a Rule Session with createRuleSession
Clients create a JSR-94 rule session using the createRuleSession method in the
RuleRuntime class. This method takes a java.util.Map argument of vendor
specific properties. This argument can be used to pass in any of the properties defined
for the Oracle Business Rules oracle.rules.rl.RuleSession. If a rule execution
set contains URL or repository rule sources, the rules from those sources are fetched on
the creation of each new RuleSession.

5.2.3 Working with JSR-94 Metadata
JSR-94 allows for metadata for rule execution sets and rules within a rule execution set.
The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification. The rule execution set description is an
optional item and thus may not be present. If it is not present, the empty string is
returned. For rules, only the rule name is available and the description is initialized
with an empty string.

Table 5–5 First Argument Types for createRuleExecutionSet Method

Argument Description

org.w3c.dom.Element Specifies an instance of the <rule-execution-set> element
from the configuration schema.

java.lang.String Specifies a URL that specifies the location of an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.InputStream Specifies an input stream that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.Reader Specifies a character reader that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

Note: JSR-94 also includes createRuleExecutionSet methods
that take a java.lang.Object argument, which is intended to be an
abstract syntax tree for the rule execution set. In this release of Oracle
Business Rules, using the method with this argument is not
supported. Invoking these methods with a java.lang.Object
argument gives a RuleExecutionSetCreateException.

Table 5–6 createRuleExceptionSet Oracle Specific Properties

Property Key Property Value

oracle.rules.jsr94.sensitiveDataCallback This property is set when authentication is required by the
selected repository such as a WebDAV server that is
configured to require authentication. The property value
must be an implementation of the
oracle.rules.sdk.repository.SensitiveDataCa
llback interface.
Using JSR-94 5-7

Using the JSR-94 Interface with Oracle Business Rules
5.2.4 Using Oracle Business Rules JSR-94 Extensions
This section covers the following extensions provided in the JSR-94 implementation
classes.

� Using the Extended createRuleExecutionSet to Create a Rule Execution Set

� Invoking an RL Function in JSR-94

5.2.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a RuleExecutionSet.

The helper method createRuleExecutionSet is available in the
RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet
method has the following signature:

RuleExecutionSet createRuleExecutionSet(String name,
 String description,
 RuleSource[] sources,
 String[] rulesetStack,
 Map properties)

Table 5–7 describes the createRuleExecutionSet arguments.

5.2.4.2 Invoking an RL Function in JSR-94
In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94
StatefulRuleSession interface provides access to the callFunction methods in
the oracle.rules.rl.RuleSession class.

Example 5–5 shows how you can to invoke an RL Language function with no
arguments in a JSR-94 StatefulRuleSession.

Example 5–5 Using CallFunction with a StatefulRuleSession

import javax.rules.*;
 ...

Table 5–7 createRuleExecutionSet Arguments

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sources Specifies an array of specifications for the sources of rules. In this release,
four types of sources are supported: RL Language text, a URL to RL
Language text, a file repository (.jar file), and a WebDAV repository.
RuleSource is an interface that the classes RLTextSource (RL Language
text), RLUrlSource (RL Language URL), JarRepositorySource (file
repository), and WebDAVRepositorySource (WebDAV repository)
implement.

For more information, see the oracle.rules.jsr94.admin package in
Oracle Business Rules Java API Reference.

rulesetstack Specifies the initial contents of the RL Language rule set stack to be set
prior to each time the rules are executed. The contents of the array should
be ordered from the top of stack (0th element) to the bottom of stack (last
element).

properties Oracle specific properties. See Table 5–6.
5-8 Oracle Business Rules User’s Guide

Using the JSR-94 Interface with Oracle Business Rules
StatefulRuleSession session;
...
((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");
Using JSR-94 5-9

Using the JSR-94 Interface with Oracle Business Rules
5-10 Oracle Business Rules User’s Guide

Using Oracle Business Rules
6

Using Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) provides APIs that a developer can use to
write customized applications that access, create, or modify rules and data models
(and all the information stored in an Oracle Business Rules dictionary). Using Rules
SDK APIs, you can create, modify, and access dictionary data using well defined
interfaces and you can use the APIs to build customized rules enabled applications.

You can use the Rules SDK APIs in a rule enabled application to access existing rules
and then run the rules engine, or in an application that you write to access, create, or
edit rules and data model information.

This chapter introduces the Oracle Business Rules SDK APIs.

This chapter covers the following topics:

� Rules SDK building blocks

� Working with a Repository and a Dictionary

� Working with a Data Model

� Creating a DataModel

� Using RuleSets and Creating and Modifying Rules

6.1 Rules SDK building blocks
The top level Rules SDK package, oracle.rules.sdk, includes the following
packages:

� oracle.rules.sdk.repository

� oracle.rules.sdk.dictionary

� oracle.rules.sdk.editor.datamodel

� oracle.rules.sdk.editor.ruleset

� oracle.rules.sdk.exception

The Rules SDK interface follows the Java Bean model and includes getters and setters
for each bean property. For example, setName("somevalue") sets the name
property of the individual instance.

In addition to bean interfaces, the Rules SDK provides a hash get and put style
interface. The bean interfaces are generally useful, but there is a least one GUI
framework in which the HashMap style is necessary.
 SDK 6-1

Working with a Repository and a Dictionary
6.2 Working with a Repository and a Dictionary
Oracle Business Rules dictionaries are stored in a repository. Prior to accessing a
dictionary, access to its repository must be established. This requires specifying the
type of repository to access and the initialization parameters required by that specific
repository type. As shipped, Rule Author supports a WebDAV (Web Distributed
Authoring and Versioning) repository and a file repository.

Table 6–1 shows the initialization parameter keys for a WebDAV repository. The
repository type key is oracle.rules.sdk.store.webdav.

Table 6–2 shows the initialization parameter keys for a file repository. The repository
type key is oracle.rules.sdk.store.jar.

6.2.1 Establishing Contact with a WebDAV Repository
Example 6–1 shows how to establish access to a WebDAV repository.

Example 6–1 Establishing Access to a WebDAV Repository

String url; // the URL for the WebDAV repository
Locale locale; // the desired Locale

// The following code assumes that the url and locale have been set appropriately
RepositoryType rt =
 RepositoryManager.getRegisteredRepositoryType("oracle.rules.sdk.store.webdav");
RuleRepository repos = RepositoryManager.createRuleRepositoryInstance(rt);
RepositoryContext rc = new RepositoryContext();
rc.setLocale(locale);
rc.setProperty("oracle.rules.sdk.store.webdav.url", url);
repos.init(rc);

If the WebDAV repository has been configured to require authentication, then the
following must be performed:

� Configure a wallet with the required user name(s) and password(s).

� Create an instance of the oracle.rules.sdk.callbacks.WalletCallback
class and set it in the RepositoryContext prior to calling the init method.

Table 6–1 WebDAV Repository Type Parameter Initialization Keys

Parameter Key Description

URL oracle.rules.sdk.store.webdav.url The URL for the desired WebDAV rule
repository. This parameter is required.

Proxy Host oracle.rules.sdk.store.webdav.proxy
Host

The host name of the proxy server. This is only
required if you have a proxy server between the
server on which Rule Author is running and the
WebDAV server.

Proxy Port oracle.rules.sdk.store.webdav.proxy
Port

The port to use for the proxy server. This is only
required if you have a proxy server between the
server on which Rule Author is running and the
WebDAV server.

Table 6–2 File Repository Type Parameter Initialization Key

Parameter Key Description

File Path oracle.rules.sdk.store.webdav.path The path to the file that contains the rule
repository. This parameter is required.
6-2 Oracle Business Rules User’s Guide

Working with a Data Model
In Example 6–2, /wallets/rules_wallet is the path to the wallet configured with
the credentials for WebDAV authentication:

Example 6–2 Configuring a Wallet for Authentication

WalletCallback callback = new WalletCallback("/wallets/rules_wallet", null);
rc.setSensitiveDataCallback(callback);

6.2.2 Establishing Contact with a File Repository
Example 6–3 shows how to establish access to a file repository.

Example 6–3 Establishing Access to a File Repository

String path; // the path to the file repository
Locale locale; // the desired Locale

// The following code assumes that the path and locale have been set appropriately
RepositoryType rt =
 RepositoryManager.getRegisteredRepositoryType("oracle.rules.sdk.store.jar");
RuleRepository repos = RepositoryManager.createRuleRepositoryInstance(rt);
RepositoryContext rc = new RepositoryContext();
rc.setLocale(locale);
rc.setProperty("oracle.rules.sdk.store.jar.path", path);
repos.init(rc);

6.2.3 Loading a Dictionary
Now, a dictionary may be loaded either by specifying the dictionary name, in which
case, the default version of the dictionary is loaded with:

RuleDictionary dictionary = repos.loadDictionary(dictionaryName);

or by specifying both the dictionary name and version with:

RuleDictionary dictionary = repos.loadDictionary(dictionaryName,
 dictionaryVersion);

These examples are applicable to both file and WebDAV repositories.

6.3 Working with a Data Model
The Rules SDK data model contains the fact types, internal variables, constraints, and
functions that you use to create rules. The fact types from the data model can be
reasoned on in corresponding rules. Oracle Business Rules variables contain
information that rules share. Oracle Business Rules functions provide for logic reuse
for rules. Constraints limit the set of valid values for rule customization.

After you use a repository to create or open a RuleDictionary, you can use the
Rules SDK to create a data model in the dictionary. A RuleDictionary can access
the internal data structures necessary to create a DataModel instance.

Note: To import existing Java classes or XML schemas, the Rule
Author application must be used. After the classes or schemas are
imported with Rule Author, the repository may be used by the SDK.
Future versions of the SDK will have extensions to allow for Java
classes and XML schemas to be imported directly.
Using Oracle Business Rules SDK 6-3

Working with a Data Model
The data model shown in the examples is this chapter includes the Java FactTypes that
are imported from a sample package named email. The email package was
imported using Rule Author. The classes and properties shown in Table 6–3 were
populated by importing email.jar.

In the data model for the spam processing example, using the email package, the data
model supports inferencing by creating an RLFact named SpamFound. To contain a
global count, we create a variable named spamCounter, and the constant String
variable indicates spam. A function named killSpam provides an action when the
rules detect that an email message is spam. Table 6–4 shows these data model
components.

6.3.1 Creating a DataModel
After you create and open a RuleDictionary, you can use the Rules SDK to create
an editor.DataModel. The RuleDictionary can access the internal data
structures necessary to create a DataModel instance.

For example,

eDM = new oracle.rules.sdk.editor.datamodel.DataModel(m_dict);

The basis of the DataModel type system is the FactType. A FactType is defined as a
primitive, Java, XML, or RL FactType. A Primitive FactType is fixed, and includes Java
primitives (for example: String, int, or double). The Rules SDK automatically
creates primitive types when you create a RuleDictionary. You create Java and
XML FactTypes when you import classes from jar file, a class, or a schema file. You can
create RL FactTypes directly using the Rules SDK. The Java, XML, and RL FactTypes
define classes and may have associated properties, which represent the JavaBean
defined properties, and methods.

6.3.2 Creating DataModel Components
You create each part of the data model using the appropriate
ModelComponentTable. The sequence required to create a new instance, Function,
FactType, Variable, or Constraint, is the same:

� Instantiate the appropriate table in the data model.

� Invoke the table instance add() method.

Example 6–4 shows how you create a Function instance:

Table 6–3 Sample email Package Classes

Name Description Type

email.ElectronicMessage Represents the occurrence of a message Java FactType

email.EmailAddress Represents an email address Java FactType

email.EmailAddressList Represents a list of email addresses Java FactType

Table 6–4 Sample Data Model Types for Handling email Package

Name Description Type

SpamFound Asserted when email message is determined to be spam RL FactType

spamCounter Accumulates count of spam messages variable

SpecialOffer_CONST Constant containing the String "Special Offer" constant variable

fKillSpam Called when spam found to delete spam RL Function
6-4 Oracle Business Rules User’s Guide

Working with a Data Model
Example 6–4 Creating a Function Instance

FunctionTable ft = eDM.getFunctionTable();
Function fKillSpam = ft.add();

To import existing Java classes or XML schemas, the Rule Author application must be
used. After the classes or schemas are imported with Rule Author, the repository may
be used by the SDK. Future versions of the SDK will have extensions to allow for Java
classes and XML schemas to be imported directly.

6.3.3 Creating a Function Argument List
Using the Rules SDK you create argument lists for functions using a
FormalParameterTable. Each FormalParameter entry represents a parameter.
The first parameter is the first (zero) entry in the FormalParameterTable, the
second parameter is the second Entry, and so on. Variables may be constants, which
may not be assigned a value after the original initialization. The setFinal() method
controls the constant behavior. Each FormalParameter has a type and a name. The
type of a formal parameter is selected from the available FactTypes.

The code in Example 6–5 creates a FormalParameterTable for the email sample.

Example 6–5 Creating a FormalParameterTable

// define the parms of the function
// basically just an instance of ElectronicMessage
// and a String to explain what triggered this
FormalParameterTable fKillSpamParmTable = fKillSpam.getFormalParameterTable();
FormalParameter fp1 = fKillSpamParmTable.add();
FormalParameter fp2 = fKillSpamParmTable.add();
fp1.setName("emsg");
fp1.setAlias("Email Message");

// use the alias for the email.ElectronicMessage fact type
// will be in the getType_Options list
fp1.setType("email.ElectronicMessage");
fp2.setName("reason");
fp2.setAlias("reason");

 // use the primitive type for String
 // will be in the getType_Options list
fp2.setType("String");

6.3.4 Creating an Initializing Expression
Using the Rules SDK, variables contain state internal to a RuleSet. Each variable must
have a type and an initializing Expression. The variable type of is chosen from the list
of possible FactTypes (all FactTypes defined in the DataModel).

There are two types of expressions:

� Expression

This type of expression must follow the form:

operand operator operand

The operands and operators available for an Expression are more limited than
than those for an AdvancedExpression. For example, an Expression does not
allow an operand to be a function requiring parameters.
Using Oracle Business Rules SDK 6-5

Using RuleSets and Creating and Modifying Rules
� AdvancedExpression

This type of expression allows for the full range of operands and operators.

It is recommended that you use an AdvancedExpression to initialize an expression.
Example 6–6 shows how to set a variable’s initial value.

Example 6–6 Setting a Variable’s Initial Value

InitialValue iv = var.getValue();
AdvancedExpression adv = iv.getAdvancedExpression();
adv.insert(0, "\"FIXEDVALUE\"");

6.3.5 Creating RL Function Bodies
RL Function bodies are composed of strings of RL Language. They may refer to any of
the Function parameters, or any global Variable. Enter function bodies as a String that
must be syntactically correct RL Language (see Example 6–7).

Example 6–7 Creating a Function Body

//set the body of the function
// in this case just pretty print a message
fKillSpam.setBody(" println(\" email from: \" + emsg.getSender() + \" because \"
+ reason)");

6.4 Using RuleSets and Creating and Modifying Rules
Using the Rules SDK, a rule is a conditional expression, referred to as a condition, and
a set of actions that execute if the condition evaluates to true. A rule condition is
composed of a set of patterns. A pattern delineates the match type and includes tests
against that type and other types that appear in preceding pattern (order has
meaning). Rule actions can be calls, assignments, retractions, and assertions.

Figure 6–1 shows the general container hierarchy for a RuleSet.

Figure 6–1 Rules SDK RuleSet Container Hierarchy

The Rules SDK provides classes that represent each of these objects, all classes descend
from RuleComponent. For collections, for example rules in a ruleset, patterns in a
rule, or actions in a rule, the Rules SDK provides a class that is descended from
RuleComponentTable to manage a specific collection (see Figure 6–2). The
RuleComponentTable sub-class provides a specialized add() method for the
particular sub-class that the table represents.
6-6 Oracle Business Rules User’s Guide

Using RuleSets and Creating and Modifying Rules
Figure 6–2 Rules SDK RuleComponents

The Rules SDK components describing the XML schemas, Java Classes, RL Global
variables, and RL Functions are located in the data model (stored in the dictionary).
Typically, RuleComponent instances refer to data model entities.

6.4.1 Creating a RuleSet
Generally, the sequence you use to create a RuleComponent is:

� Create a RuleSet by use of a RuleSet constructor.

� Create any children of the RuleSet by add() methods on the appropriate table
(PatternTable, ActionTable, ExpressionTable, SimpleTestTable).

The Rules SDK API provides classes that represent collections in a RuleSet. Each of
these objects descend from RuleComponent. For collections, for example rules in a
ruleset, or patterns in a rule or actions in a rule, the Rules SDK provides classes that
are descended from RuleComponentTable class to manage a specific collection. The
RuleComponentTable sub-class provides a specialized add() method for the
particular sub-class represented by the table.

The code in Example 6–8 creates a RuleSet for the email sample,

Example 6–8 Creating a RuleSet

oracle.rules.sdk.editor.ruleset.RuleSet rs = null;
 try
 {
 rs = new oracle.rules.sdk.editor.ruleset.RuleSet(m_dict);
 m_curBean = rs;
 rs.setName("SpamRuleSet");
 }
 catch (Exception e)
 {
 System.out.println(" create RuleSet FAILED");
 addException(e);
 return;
 }

6.4.2 Adding a Rule to a Ruleset
The Rules SDK API provides classes that represent the objects in a RuleSet. Each of
these objects descend from RuleComponent. For collections, for example rules in a
ruleset, or patterns in a rule or actions in a rule, the Rules SDK provides classes that
are descended from RuleComponentTable class to manage a specific collection. The
RuleComponentTable sub-class provides a specialized add() method for the
particular sub-class represented by the table.

There are several classes that are not parts of collections. To access these classes use the
the parent bean with the getter interface. For example, acquire the
Using Oracle Business Rules SDK 6-7

Using RuleSets and Creating and Modifying Rules
AdvancedExpression by invoking getAdvancedExpression() on the correct
Pattern instance.

The code in Example 6–9 shows how to add a rule to a table in RuleSet.

Example 6–9 Adding a Rule to a Table in a RuleSet

//add rule to the table
oracle.rules.sdk.editor.ruleset.Rule r = rs.getRuleTable().add();
r.setName("DetectSpamRule");

6.4.3 Adding a Pattern to a Rule
The Rules SDK API provides the Pattern class that represents a pattern. The
getPatternTable sub-class provides a specialized add() method for adding a
pattern object, as shown in Example 6–10.

Example 6–10 Adding a Pattern to a Rule

//add pattern to the rule
oracle.rules.sdk.editor.ruleset.Pattern p = r.getPatternTable().add();

//set pattern
p.setVariable("xx");
p.setFactType("email.ElectronicMessage");
p.setTestForm("Advanced");

The TestForm property defines the type of test associated with the pattern.

6.4.4 Adding a Test to a Pattern
Every Pattern may have Tests associated with the Pattern. Tests may take the form
of SimpleTest or AdvancedExpression. A Pattern may have an unlimited
number of Tests.

The Rules SDK "ANDs" Tests together when generating the RL Language. For
example, the test used for the email example requires a function with parameters. This
requires an AdvancedExpression (see Example 6–11).

Example 6–11 Adding a Test to a Pattern

AdvancedExpression adv = (AdvancedExpression)p.get("AdvancedExpression");

// FUNCTION and Variable complex expression
adv.put("Function", "containsString");
adv.insert(0, adv.getFunctionDescription());

//System.out.println(" function is: <<" + adv.getFunctionDescription() + ">>");
//set the function parms
// normally the cursor position is set by user input actions
adv.setVariable("SPECIAL OFFER");
adv.replace(17, 57, adv.getVariable());
adv.insert(((String)adv.getValue()).length() , ",");
adv.setVariable("message.subject");
adv.insert(((String)adv.getValue()).length() + 1,
adv.getVariable());
adv.insert(((String)adv.getValue()).length() , ")");
//since boolean, this is a single operator no need for anything else

If the test is of the form:
6-8 Oracle Business Rules User’s Guide

Using RuleSets and Creating and Modifying Rules
operand operator operand

where neither operand is a function requiring parameters, then a SimpleTest may be
used. For example, if the pattern variable name is "emsg" and the test is "emsg.sender
== david@fun.com," a simple test would look like Example 6–12:

Example 6–12 A Simple Test

// use the simple form of tests
p1.put("TestForm", Pattern.TEST_FORM_SIMPLE);

//
// add a SimpleTest to the Pattern
// emsg.sender == "david@fun.com"
//

//create a simple test
SimpleTest simple = p1.getSimpleTestTable().add();

//
// emsg.sender == "david@fun.com"

// set the left side
Expression lhs = simple.getLeft();
lhs.setForm(Expression.FORM_SINGLE_TERM);

lhs.setSingleTermValue("emsg.sender");

// set the operator
simple.setOperator("==");

// set the right hand side
Expression rhs = simple.getRight();
rhs.setForm(Expression.FORM_ADVANCED);

AdvancedExpression radv = rhs.getAdvancedExpression();
radv.insert(0, "\"david@fun.com\"");

6.4.5 Adding an Action to a Rule
The Rules SDK supports the following types of Actions:

� Assert New

� Assert

� Assign

� Call

� Retract

� RL

The setting in the setForm property of an action defines the type of action. Add an
action using the add() method of the getActionTable instance associated with a
particular rule (see Example 6–13).

Example 6–13 Defining an Action Type

//
Using Oracle Business Rules SDK 6-9

Using RuleSets and Creating and Modifying Rules
// Add a action to retract the instance of SpamFound
//
act = spamRule.getActionTable().add();
act.setForm(Action.FORM_RETRACT);
act.setTarget("spamMessage"); // see above setVariable

//
// Add a action to call the kill spam function
//
act = spamRule.getActionTable().add();
act.setForm(Action.FORM_CALL);
act.setTarget("kill spam");
//see the datamodel fn definitions, alias for fnKillSpam

Expression exp1 = act.getExpression(0);
Expression exp2 = act.getExpression(1);

exp1.setForm(Expression.FORM_ADVANCED);
exp2.setForm(Expression.FORM_ADVANCED);
AdvancedExpression adv1 = exp1.getAdvancedExpression();
AdvancedExpression adv2 = exp2.getAdvancedExpression();

adv1.setVariable("spamMessage.Spam Email");
adv1.insert(0, adv1.getVariable());

adv2.setVariable("spamMessage.Why is this spam");
adv2.insert(0, adv2.getVariable());

6.4.6 Notes for Adding RuleSets and Rules
The order in which you add components to a RuleSet is important. Use the parent
object to create a required child object. For example, after you create a RuleSet
instance, you can add rules the RuleTable instance for the RuleSet. After you create
the RuleSet, then you can add a Rule to the RuleSet using the add() method for
the RuleTable. In turn, then add a rule pattern to the rule using the
PatternTable.add() method. Finally, to create a test in the Pattern access the
AdvancedExpression using getAdvancedExpression() or for standard mode
tests, use SimpleTestTable.add().
6-10 Oracle Business Rules User’s Guide

Oracle Business Rules Files and Limita
A

Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rule Author files and names, and
certain Rules SDK limitations.

A.1 Rule Author Naming Conventions
This section covers Rule Author naming conventions.

A.1.1 Ruleset Naming
Rule Author enforces a limitation for rule set names; a rule set name can only contain
the characters (a-zA-Z) and numbers (0-9), or an underscore character (_).

A.1.2 Dictionary Naming
Rule Author dictionary names can contain both upper and lowercase letters (a-zA-Z),
numbers (0-9), periods (.), underscore characters (_), and hyphens (-). Special
characters are not valid in a dictionary name.

Rule Author dictionary names are case preserving but case insensitive. This means
that the dictionary names "Dictionary" and "DICT" are both valid. This also means that
if you create a dictionary named "Test," then you can only create another dictionary
named "TEST" if you first delete the dictionary named "Test."

Additionally, dictionary names must contain at least one letter. For example, the
dictionary name "1.1" is not valid, but "Version1.1" is valid.

A.1.3 Version Naming
Rule Author enforces a limitation for the name of a version; a version name can only
contain the characters (a-zA-Z), numbers (0-9), or an underscore character (_). Special
characters are not valid in a version name.

Rule Author version names are case preserving but case insensitive. This means that
the version names Version and VERS are both valid. This also means that if you
create a version named Test, then you can only create another version named TEST if
you first delete the version named Test.

A.1.4 Alias Naming
A Rule Author alias can contain any characters, including a single space. When using
an alias in an expression, if the alias begins with a letter, $, or _ and contains only
letters, $, _, numbers, and spaces, it does not have to be quoted.
tions A-1

Rule Author Session Timeout
When using an alias containing special characters or embedded spaces in an advanced
expression, the alias must be quoted with ‘ (backquote) characters. For example, the
alias Driver@ must be specified as:

‘Driver@‘

A.1.5 XML Schema Target Package Naming
The Target Package Name that you specify for an XMLFact, on the XML Schema
Selector page is limited to ASCII characters, digits and the underscore character.

A.2 Rule Author Session Timeout
You should save the dictionary periodically as you work since Rule Author sessions
expire after a period of inactivity specified in the Rule Author application’s web.xml
file using the <session-timeout> element.

A.3 Rules SDK and Rule Author Temporary Files
When working with the Rules SDK or with Rule Author using the file repository, the
Rules SDK uses temporary files. Under normal operating conditions, the Rules SDK
removes these files from the system when an operation that uses the temporary file
completes. It is possible, due to certain abnormal termination conditions for these
temporary files to be left on the system.

See Section B.3, "Working with a File Repository" for more information about file
repositories and temporary files.
A-2 Oracle Business Rules User’s Guide

Using Rule Author and Rules SDK with Reposit
B

Using Rule Author and Rules SDK with

Repositories

This appendix contains information on using Rule Author and Rules SDK with
repositories. The following topics are covered:

� "Working with a WebDAV Repository"

� "WebDAV Repository Security"

� "Working with a File Repository"

� "High Availability for your Repository"

B.1 Working with a WebDAV Repository
This section contains information on setting up and configuring a WebDAV rules
repository.

B.1.1 Setting up a WebDAV Repository
The Oracle Business Rules SDK supports the use of a WebDAV repository as the
persistent storage for rules constructed with the SDK. This appendix briefly mentions
some issues for consideration in setting up a WebDAV repository and presents some
basic instructions for setting up a file system based WebDAV repository in an Oracle
HTTP Server. WebDAV is supported in the Oracle HTTP Server by the mod_oradav
module. Documentation on configuring and using mod_oradav can be found in the
Oracle HTTP Server Administrator’s Guide.

The WebDAV protocol is an extension to the HTTP protocol which enables remote
users to write content to the web server. The server should be configured properly to
prevent undesirable consequences. For more details, see the section titled "WebDAV
Security Considerations" in Chapter 9 of the Oracle HTTP Server Administrator’s Guide.

It is strongly recommended that some or all of the following be employed:

� Require authentication for access to WebDAV enabled areas.

� Use of SSL, at least during authentication (for the entire session if Basic
Authentication is used).

� Use of the ForceType directive to prevent execution for URLs that reference
content in WebDAV enabled areas.

The following example demonstrates the steps required to establish a WebDAV based
rules repository in Oracle HTTP Server where the content is stored in the file system.
All file system paths in this example are relative to the ORACLE_HOME in which the
Oracle HTTP Server is installed. This example also assumes that the user is logged in
ories B-1

WebDAV Repository Security
as the user who installed Oracle Application Server, and that Oracle HTTP Server can
be accessed with the URL http://www.myserver.com:7777.

1. Navigate to the Apache/Apache/htdocs directory (folder).

2. Create a directory named rule_repository.

3. Ensure that Oracle HTTP Server can read and write to the rule_repository
directory.

4. Navigate to the Apache/oradav/conf directory.

5. Edit the moddav.conf file and add the following lines:

<Location /rule_repository>
 DAV on
 ForceType text/plain
</Location>

6. Restart Oracle HTTP Server (see the section titled "Starting, Stopping, and
Restarting Oracle HTTP Server" in Chapter 1 of the Oracle HTTP Server
Administrator’s Guide.

These instructions establish a WebDAV repository accessible with the following URL:

http://www.fully_qualified_host_name.com:7777/rule_repository/

B.1.2 Connecting to a WebDAV Repository
Selecting WebDAV as the repository type in Rule Author presents the configuration
parameters shown in Table B–1:

B.2 WebDAV Repository Security
WebDAV allows read and write access to a WebDAV enabled server. It is highly
recommended that steps are taken to secure the WebDAV server. To this end, it is likely

Note: This example configuration for the WebDAV repository should
only be used for internal testing and not for an actual production
environment. This configuration does not configure access control and
therefore allows anyone to access and modify the WebDAV repository.
Please refer to Section B.2 for information about configuring WebDAV
repository security.

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

Table B–1 Configuration Parameters for Connecting to a WebDAV Repository

Parameter Description

URL The URL for the desired WebDAV rule repository. This is a required
parameter. The host name must be a fully qualified host name.

Proxy Host The host name of the proxy server. This is required only if a proxy server is
present between Rule Author and the WebDAV server.

Proxy Port The port number to use on the proxy server. This is required only if a proxy
server is present between Rule Author and the WebDAV server.
B-2 Oracle Business Rules User’s Guide

WebDAV Repository Security
that connections to a WebDAV server will need to be encrypted using SSL, thus
requiring authentication in order to establish the connection.

B.2.1 Communicating with a WebDAV Repository Over SSL from Rule Author
Basic SSL connections to a WebDAV repository are supported in Rule Author when
Rule Author has been deployed in an Oracle Application Server environment. All that
is required is that the WebDAV URL entered specify https.

If Rule Author is deployed in a standalone OC4J environment, or is deployed in a
non-Oracle container that supports only HTTP, then SSL connections to a WebDAV
repository are not supported.

Oracle Application Server comes with a test SSL certificate that is self-signed. This
certificate should be replaced with your own certificate because it is not secure to use
this test certificate in a production environment. If you use a certificate from a trusted
authority, WebDAV access is available from both within and outside of the OC4J
container. If you choose to use a self-signed certificate of your own, access from within
the container is available but from outside the container, your default JSSE trust store
must be modified in order to gain access. Refer to the JSSE Reference Guide included in
the JDK for details.

Additionally, the Oracle SSL implementation must not be present in the classpath of
the J2SE application.

B.2.2 Setting the Location of your Oracle Wallet
To customize the location of your Oracle wallet for Rule Author:

1. Login to Enterprise Manager and go to the OC4J home page.

2. Click the Applications tab.

3. Click the link to your Rule Author application (the name of this link was defined
when you first deployed the Rule Author application).

4. Click the ruleauthor link in the "Modules" table.

5. Click the Administration tab.

6. In the "Mappings" task, find row labeled "Environment Entry Mappings," then
click the corresponding icon in the "Go to Task" column.

7. Specify your desired wallet location in the "Deployed Value" column for
walletStorePath entry.

8. Restart Rule Author.

You can also set your wallet location at the time you deploy Rule Author by clicking
on "Edit Deployment Plan" and then expanding the navigation tree on the left until
"env-entry" is visible. Expand "env-entry" and then select walletStorePath. Be sure
to restart Rule Author after you specify your desired wallet location.

B.2.3 Configuring Rule Author for WebDAV Repository Authentication
When Rule Author attempts to connect to a WebDAV repository that has been
configured to require authentication, Rule Author must be able to respond to the
authentication request. Configuring Rule Author for repository authentication consists
of the following steps:

1. Store the appropriate WebDAV repository user name and password in an Oracle
Wallet.
Using Rule Author and Rules SDK with Repositories B-3

WebDAV Repository Security
2. If a proxy server is present and it also requires authentication, store the proxy
server user name and password in the Oracle Wallet.

3. Configure the Rule Author environment entry to point to the Oracle Wallet (see
Section B.2.2, "Setting the Location of your Oracle Wallet").

4. Restart the Rule Author application.

B.2.4 Storing Data in an Oracle Wallet for WebDAV Repository Authentication
When a request for authentication from a WebDAV repository is received, the
following information is provided:

� The host name of the server requesting authentication.

� The port on the server.

� The realm (or AuthName in Oracle HTTP Server configuration).

� An indication of whether or not this is proxy server authentication.

This information is used to construct keys for retrieving the user name and password
for authentication. If there is a proxy server present and it requires authentication,
multiple authentication requests may be processed: one for the proxy server and one
for the WebDAV server.

If the request is for proxy authentication, the keys begins with "proxy-". This is
followed by the host name, port, and realm (in that order) with a "-" separating each
field. Finally, "-u" is appended to the key for the user name and "-p" is appended for
the password. For example, given the following:

� Host is myserver.myco.com

� Port 443

� Realm is "Authorized WebDAV Users Only"

� A proxy server is present: wwwproxy.myco.com

� Proxy port is 80

� Proxy realm is "Authorized Proxy Users Only"

The keys for proxy authentication would be:

� For the user: "proxy-wwwproxy.myco.com-80-Authorized Proxy Users Only-u"

� For the password: "proxy-wwwproxy.myco.com-80-Authorized Proxy Users
Only-p"

The keys for WebDAV authentication would be:

� For the user: "myserver.myco.com-443-Authorized WebDAV Users Only-u"

� For the password: "myserver.myco.com-443-Authorized WebDAV Users Only-p"

The user name and password are entered into an Oracle wallet with the mkstore
command which is in the bin directory of the $ORACLE_HOME. Creating and
modifying the Oracle wallet requires a password which is specified when the wallet is
created. However, the wallet is constructed such that a password is not required at
runtime to lookup the user name and password. Therefore, in order to protect this
sensitive data, file system permissions must be used to restrict access. Access should
be granted to only the user that must access the wallet at run time. The mkstore
command creates the wallet with restricted permissions by default.
B-4 Oracle Business Rules User’s Guide

Working with a File Repository
The following commands create a wallet in a the /wallets directory and store the
user names and passwords for the example shown above where the user names and
passwords are proxyUser, proxyPassword, webdavUser, and webdavPassword:

mkstore -wrl /wallets/rules_wallet -create
mkstore -wrl /wallets/rules_wallet -createEntry
'proxy-wwwproxy.myco.com-80-Authorized Proxy Users Only-u' proxyUser
mkstore -wrl /wallets/rules_wallet -createEntry
'proxy-wwwproxy.myco.com-80-Authorized Proxy Users Only-p' proxyPassword
mkstore -wrl /wallets/rules_wallet -createEntry 'www.myco.com-80-Authorized WebDAV
Users Only-u' webdavUser
mkstore -wrl /wallets/rules_wallet -createEntry 'www.myco.com-80-Authorized WebDAV
Users Only-p' webdavPassword

Each command prompts you for the wallet password and, if needed, creates the
directory for the wallet (rules_wallet is a directory).

The following command prints a usage message listing various capabilities of the
mkstore command:

mkstore -help

B.3 Working with a File Repository
This section contains information about setting up and working with file repositories.

B.3.1 Setting up a File Repository
Oracle Business Rules supplies a blank file repository that does not contain a
dictionary. This file repository is named emptyFileRepository and is located in the
$ORACLE_HOME/rules/lib directory.

To setup a new file repository, copy and rename the emptyFileRepository file.
Then, provide this file name and location in the Repository Connect page (see
Section 2.4.1, "Connecting to a Rule Author Repository").

After you create a new file repository, you can connect to the new file repository and
then create and save dictionaries in the repository.

B.3.2 File Repository Updates and Temporary Files
When the SDK invokes the RepositoryConnection interface to update repository
content, the following occurs:

1. A temporary file is created that contains the updated content. This temporary file
is required as the process of rewriting the JAR file may involve reading unread
entries from the current repository. It also provides a measure of safety should
something go wrong writing the new content. The temporary file is created using
the File.createTempFile method. If the name of the repository is less than
three characters long, "_tmp_" is appended. The File.createTempFile method
requires that the name be at least three characters long. The Sun JDK appends a
number to the name; the behavior of other JVMs may differ. The file name
extension is ".tmp" and the file is created in the same directory as the existing
repository. In summary, the temporary file name of a repository called
myRepository would be myRepository65146.tmp, and the temporary file
name of a repository called rr would be rr_tmp_65147.tmp.

2. The content is written to the temporary file.
Using Rule Author and Rules SDK with Repositories B-5

High Availability for your Repository
3. The existing repository is renamed as the name of the existing repository
appended with "_o_r_i_g_" and the current time (UTC) in milliseconds.

4. The temporary file is renamed as the name of repository (for example,
myRepository).

5. The renamed repository (containing the previous content) is removed.

If an error occurs in this process, cleanup is attempted. If the temporary file was
created and still exists, an attempt is made to delete it. If the existing repository was
renamed, an attempt is made to restore its original name.

In the event that the temporary file is left behind, the file repository prior to the update
attempt should still exist. The temporary file should be deleted as the state of its
contents is unknown.

In the event that the renamed repository file is left and the repository file is no longer
exists, the renamed repository file contains the content prior to the update and a
manual step is required to restore it (namely, renaming or copying the renamed file
back to the correct name).

B.4 High Availability for your Repository
After configuring your WebDAV or file repository, you should add the repository to
the OracleAS Recover Manager configuration so that the repository is included in the
backup and recovery process.

For more information about this tool, see Oracle Application Server Administrator’s
Guide.
B-6 Oracle Business Rules User’s Guide

Oracle Business Rules Frequently Asked Ques
C

Oracle Business Rules Frequently Asked

Questions

This appendix contains frequently asked questions about Oracle Business Rules.
Answers to each question are provided in each of the following categories:

� Frequently Asked Questions About Rules Operations

� What JAR Files are Required for Working with Oracle Business Rules?

C.1 Frequently Asked Questions About Rules Operations
This section addresses frequently asked questions relating to the semantics of Rules
operations in Oracle Business Rules.

C.1.1 Why is the State of a Fact in a Rule Action Inconsistent with the Rule Condition?
The object was modified between the time the rule was activated and the time the rule
was fired (executed), and the object was not re-asserted in the Rules Engine.

Objects (Java or RL) must be asserted as facts in the Rules Engine before they are used
in rule evaluations. When an object that has been asserted as a fact is modified, either
in the action of a rule or by something external to the Rules Engine (presumably by the
application), the object must be re-asserted in the Rules Engine in order for the current
object state to be reflected in the Rules Engine and thus in the rule evaluation. If this is
not done, the application and Rules Engine are in an inconsistent state which can lead
to unexpected behavior.

A Java bean may be written to support PropertyChangeListener so that the Rules
Engine can automatically maintain a consistent state when a bean property us update.
For more information, see Section 1.3.4.1, "Java Fact Type Definitions".

The one exception to this rule is for an object whose content is not being evaluated;
that is, the Rules Engine does not contain a rule that tests or accesses any method or
property of that object. One example of such a case is an object used to accumulate
results from rule evaluations.

Tip: Suppose you have a rule that produces a sum from a collection
of facts. Re-asserting the facts whose values are being summed yields
an incorrect result in the fact containing the sum. Make sure you also
re-assert the rule that produces the sum.
tions C-1

What JAR Files are Required for Working with Oracle Business Rules?
C.1.2 A Changed Java Object was Asserted as a Fact, but no Rules Fired. Why?
The object must be re-asserted in the Rules Engine. Therefore, the Rules Engine did not
re-evaluate any rule conditions and did not activate any rules. For more information,
refer to Section C.1.1.

C.1.3 What are the Differences Between Oracle Business Rules RL Language and
Java?

See Appendix A in Oracle Business Rules Language Reference Guide.

C.2 What JAR Files are Required for Working with Oracle Business
Rules?

Oracle Business Rules support requires the JAR files listed in Table C–1. All paths are
relative to $ORACLE_HOME.

Table C–1 Oracle Business Rules Required JAR Files

JAR File Description

rules/lib/rl.jar The Oracle Business Rules Rules Engine library. This is the Java API
used to instantiate and interact with the Rules Engine.

rules/lib/rl_dms.jar Rules Engine Dynamic Monitoring Service (DMS) support. This file is
required if DMS is enabled for a RuleSession.

rules/lib/rulesdk.jar The Oracle Business Rules SDK. This is the Java API used to
programatically author rules.

rules/lib/webdavrc.jar The Oracle Business Rules SDK library for support of WebDAV
repositories. This file is required when using the SDK with a WebDAV
repository.

rules/lib/jr_dav.jar The WebDAV client library. This file is required when using the SDK
with a WebDAV repository.

jlib/oraclepki.jar This file is required to support authentication with a repository such as
a WebDAV repository.

jlib/ojpse.jar This file is required to support authentication with a repository such as
a WebDAV repository.

rules/lib/jsr94.jar The standard JSR-94 library.

rules/lib/jsr94_obr.jar The Oracle Business Rules JSR-94 implementation.

LIB/xml.jar This file is required by the Rules SDK.

LIB/xmlparserv2.jar This file is required by the Rules SDK.

j2ee/home/lib/http_client.jar This file is required when using the Rules SDK with a WebDAV
repository.
C-2 Oracle Business Rules User’s Guide

Oracle Business Rules Troublesho
D

Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules. The following topics are covered:

� Public Fact Variables are not Accessible with Rule Author

� Global Variables may not be Used in RL Functions

� Importing JDK 1.4.2 Classes

� Managing Popup Windows on Firefox

� Using the String Data Type with Methods

� Preserving Class Order and Hierarchies in the Data Model

� Validating Generated RL from Rule Author

� Using RL Reserved Words as Part of a Java Package Name

� Getter and Setter Methods are not Visible

� XML Facts not Asserted at Runtime

D.1 Public Fact Variables are not Accessible with Rule Author
Public fact variables are not accessible with Rule Author. For example, the variables in
the following class would be accessible with Oracle Business Rules RL Language but
not with Rule Author:

public class Test {
 public int i = 0;
 public String s = "string";
}

No variable can be accessed in the Rule Author for facts of type Test. In order to access
these variables, methods like the following need to be added:

public void setI(int i) { this.i = i; }
public int getI() { return i; }
public setB(boolean b) { this.b = b; }
public boolean isB() { return b; }

Note that no variable i is required for setI(int i) and getI() to work properly.
For more information, please refer to the Sun Microsystems Java Bean specification.
oting D-1

Global Variables may not be Used in RL Functions
D.2 Global Variables may not be Used in RL Functions
For RL generated from the SDK (for example, Rule Author), global variables may not
be referred to directly in an RL function.

To work around this issue, if an RL function needs to access a global variable, the
global variable should be passed as a parameter to the RL function. The parameter
name allows access to the global variables inside the RL function body.

D.3 Importing JDK 1.4.2 Classes
If you choose to run Rule Author using JDK 1.4.2, be aware that Java classes compiled
using JDK 1.5 do not import properly. If you try to import Java classes compiled using
JDK 1.5 into Rule Author using JDK 1.4.2, an error message like the following appears:

Cannot perform operation. 'RUL-01527: Received exception for loadClass.
RUL-01016: Cannot load Java class example7.Example7. Please make sure
the class and all its dependent classes are either in the class path,
or user specified path. Root Cause: example7/Example7 (Unsupported
major.minor version 49.0) '

To work around this issue, run Rule Author using JDK 1.5 or recompile the classes
using JDK 1.4.2.

D.4 Managing Popup Windows on Firefox
If you are running Rule Author on Firefox browser, you may encounter a problem if
you close many popup windows using the X button in the upper corner of the
window instead of the OK, Cancel, or Apply buttons.

The easiest way to avoid this problem is to use the OK, Cancel, or Apply buttons
instead of the window controls to close the popup windows. You can also change
value of the dom.popup_maximum parameter to allow for many more popup
windows. To do this:

1. Type about:config as the URL and locate the dom.popup_maximum parameter.

2. Set the value to 10000 or higher.

D.5 Using the String Data Type with Methods
The built-in data type String does not contain any methods. Thus, if x is a String,
x.substring(1) would be invalid in an advanced expression.

To work around this issue:

1. Import java.lang.String into the data model as a Java fact type.

2. Give this fact type an alias. The default alias is java_lang_String.

3. Use this new fact type instead of String when you are defining RL fact types or
variables in the data model.

D.6 Preserving Class Order and Hierarchies in the Data Model
Classes and interfaces used in Rule Author must follow the following rules:

1. If you are using a class or interface and its superclass, the superclass must be
declared first. Otherwise, the generated RL program throws an exception like the
following:
D-2 Oracle Business Rules User’s Guide

XML Facts not Asserted at Runtime
"FactClassException: fact class for 'pkg.Parent' should be declared earlier
in rule session".

2. If you are using a class or interface, only its superclass or one of its implemented
interfaces may be mentioned. If multiple interfaces are mentioned, the generated
RL Language program throws an exception like the following:

MultipleInheritanceException: fact class 'pkg.Child' cannot extend both
'pkg.ParentInterface' and 'pkg.ParentClass'

To work around these issues:

1. Identify the hierarchy of classes and interfaces in the data model you want to use
in your rule sets.

2. For each class or interface in the hierarchy, check the Support Xpath Assertion
box. This causes fact class statements to be generated in the correct order as part of
the data model RL.

D.7 Validating Generated RL from Rule Author
In order to validate generated RL from Rule Author, make sure that the Java classes in
the Data Model are in the OC4J classpath. For more information on setting the OC4J
classpath, see Section 3.10, "Working with Test Rulesets".

D.8 Using RL Reserved Words as Part of a Java Package Name
Invalid RL Language is generated if an RL Language reserved word (for example, the
word rule in mypkg.rule.com) is part of the Java package name. If an RL Language
reserved word is used in a Java package name, an error message like the following
appears:

Oracle RL 1.0: syntax error PareseException: encountered 'rule' when expecting
one of: <XML_IDENTIFIER> ...<IDENTIFIER> ... "*" at line 11 column 19 in main

There is no workaround for this issue; do not use RL Language reserved words in Java
package names.

D.9 Getter and Setter Methods are not Visible
Rule Author does not list the methods supporting a Java bean property in choice lists;
only the bean properties are visible. For example, a Java bean with a property named
"Y" must have at least a getter method (getY()) and may also have a setter method
(setY(y-type-parm)). All of properties and methods (including getter and setter
that compose the properties) are displayed when viewing the Java FactType. Only the
properties of Java Classes (not the getter and setter methods) are displayed in choice
lists. When attempting to control the visibility of the property it is best to use the
properties visibility flag. Marking a getter or a setter method as not visible may not
remove the properties from choice lists.

There is no current workaround for this issue.

D.10 XML Facts not Asserted at Runtime
The XML Fact page for an XML Schema generated class shows the Support XPath
Assertion box. This box is checked by default. Un-checking this box and saving your
changes marks the XML Fact as not supporting XML style assertion, which in turn
Oracle Business Rules Troubleshooting D-3

XML Facts not Asserted at Runtime
means that any instance of this type and any of its children are not asserted by a call to
assertXPath for an XML document.

There is no workaround for this issue; you should make sure the Support XPath
Assertion box is checked for all XML FactTypes.
D-4 Oracle Business Rules User’s Guide

Index-1

Index

A
accessing Fact variables, D-1
advanced test expression

rule author
advanced test expression, 3-11

Advanced Test Expression option, 3-10
alias

naming, A-1
asserting

XPath, 4-26
asserting facts with SDK, 2-28
assertXPath function, 4-26

B
business rules

definition, 1-2
business vocabulary

defining in data model, 2-13

C
classpath

adding, 2-9
connecting

to a repository, 2-5, 4-2
constraint

definition, 1-8, 3-2
enumeration, 3-2
range, 3-2
regular expression, 3-2

creating
repository, B-5

customization
rule, 2-19, 2-24, 3-2

D
data model

defining XML, 4-6
definition, 1-2, 2-9
generating, 3-10
saving, 3-10

definitions
constraint, 3-2
JavaFact, 3-8

RL function, 3-6
RLFact, 3-5
variable, 3-1
XMLFact, 4-6, 4-11

dictionary
creating, 2-4, 4-2
deleting, 3-12
description of, 1-7
Dictionary Directory field, 2-7, 4-3
Dictionary Name field, 2-7, 4-3
exporting, 3-13
importing, 3-13
loading, 2-26, 2-27, 6-3
naming, A-1
saving, 2-8, 4-4, 4-5

E
EmptyFileRepository, B-5

F
fact type

Java, 2-9
RLFact, 3-5
XML, 1-7

file repository
creating, 2-5, 4-2
establishing access to, 6-3
initialization parameters, 6-2
repository type key, 6-2
temporary files, B-5
updating content, B-5

forward chaining, 1-3
forward chaining system, 1-3
frequently asked questions, C-1

H
high availability for your repository, B-6

I
importing, 2-26

Java classes, 2-11
importing JDK 1.4.2 classes, D-2

Index-2

inference cycle, 1-3
initialization parameters for a file repository, 6-2
initialization parameters for a WebDAV

repository, 6-2

J
Jar file

repository, 1-4
Java classes

importing into data model, 2-11
Java fact type, 1-7, 2-9
JAXB generated classes, 4-6
JDK 1.4.2 classes

importing, D-2
JSR-94

extensions, 5-8
rule execution set, 5-1
with RL Language text, 5-3
with Rule Author rules, 5-1
with URL, 5-5

L
loading a dictionary, 6-3
Logging option, 3-10

M
method object chaining, 3-10
mod_oradav module, B-1

N
naming conventions

alias, A-1
dictionary, A-1
ruleset, A-1
version, A-1

O
object chaining

expand box, 3-10
object visibility, 3-9
options

Advanced Test Expression, 3-10
Logging, 3-10
Use Alias, 3-10

Oracle Business Rules
required JAR files, C-2

Oracle Business Rules RL language, 1-5
Oracle wallet

setting the wallet location, B-3

P
property object chaining, 3-10
property visibility

object, 3-9

R
remove

ruleset, 2-16
repository

backup and recovery, B-6
connecting, 2-5, 4-2
description of, 1-7
emptyFileRepository, B-5
Jar file, 1-4
WebDAV, 1-4

repository type key
for file repository, 6-2
for WebDAV repository, 6-2

required JAR files for Oracle Business Rules, C-2
results

using container objects, 3-19
using global variables, 3-18
using reasoned on objects, 3-20

Rete algorithm, 1-3
RL language

generating, 3-10
saving, 3-10

RL tab, 3-10
Rule Author

Home page, 2-4
how to start, 2-2
introduction, 1-4
Login page, 2-2
rules, 1-6
session-timeout, A-2
starting, 2-2
temporary files and file repositories, A-2
working with Test Rulesets, 3-14

rule firing, 1-3
rule session

asserting facts, 2-28
executing, 2-28
using run function, 2-29

rule-enable
Java application, 1-9, 2-25

rules
adding a pattern to, 2-18
adding actions, 2-21
customization, 2-19, 2-24, 3-2
data driven, 1-3
defining, 2-16
defining tests for patterns, 2-19
engine, 1-5
forward chaining, 1-3
name field, 2-16
priority field, 2-16
rule actions, 1-6
rule conditions, 1-6

rules SDK, 2-26, 6-1
introduction, 1-5

ruleset
defining, 2-15
naming, A-1
removing, 2-16

run function, 2-29

Index-3

S
SDK

classes, 6-1
executing a rule session, 2-28
generating RL, 2-27
introduction, 1-5, 6-1
pattern, 6-8
rules, 6-6
rulesets, 6-6
working with data model, 6-3

session-timeout, A-2
setting your Oracle wallet location, B-3
starting Rule Author, 2-2

T
Test Rulesets feature, 3-14
troubleshooting, D-1

U
Use Alias option, 3-10

V
version

naming, A-1
visible field

method visibility, 3-9

W
WebDAV repository, 1-4

establishing access to, 6-2
how to connect, B-2
how to set up, B-1
how to set up security, B-2
initialization parameters, 6-2
repository type key, 6-2

web.xml
session-timeout, A-2

X
XML document

unmarshalling, 4-24
XML fact types, 1-7
XMLFact

adding, 4-6
asserting, 4-26
importing schema, 4-9
importing with SDK, 4-24
JAXB class directory, 4-7
JAXB generated classes, 4-6
JAXB unmarshalling, 4-24
target package name field, 4-7
XML Schema field, 4-7

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Oracle Business Rules
	1.1 Introduction to Oracle Business Rules
	1.1.1 What Are Business Rules?
	1.1.2 What Is a Data Model?
	1.1.3 What Is a Rule-Based System?

	1.2 Oracle Business Rules Components
	1.2.1 Introducing Oracle Business Rules Rule Author
	1.2.2 Introducing Oracle Business Rules Rules SDK
	1.2.3 Introducing Oracle Business Rules RL Language
	1.2.4 Introducing Oracle Business Rules Rules Engine

	1.3 Oracle Business Rules Rule Author Terms and Concepts
	1.3.1 Working with Rules
	1.3.2 Working with Rule Sets
	1.3.3 Working with Repositories and Dictionaries
	1.3.4 Working with Facts
	1.3.5 Working with Functions Variables and Constraints

	1.4 Steps for Rule Enabling a Java Application
	1.4.1 Identify Application Areas to Rule Enable
	1.4.2 Provide Rule Author Definitions for the Data Model
	1.4.3 Develop a Business Vocabulary for the Data Model
	1.4.4 Write and Customize Rules
	1.4.5 Modify or Create Application Logic that Uses the Rules Engine
	1.4.6 Test the Rule Enabled Application

	2 Getting Started with Rule Author
	2.1 Creating a Rule Author User
	2.2 Starting Rule Author
	2.3 Rule Author Home Page
	2.4 Creating and Saving a Dictionary for the Car Rental Sample
	2.4.1 Connecting to a Rule Author Repository
	2.4.2 Creating a Rule Author Dictionary
	2.4.3 Saving a Rule Author Dictionary with a Version
	2.4.4 Saving a Rule Author Dictionary

	2.5 Defining a Data Model for the Car Rental Sample
	2.5.1 Using Java Objects as Facts in the Car Rental Sample
	2.5.2 Adding Java Classes and Packages to Rule Author
	2.5.3 Importing Java Classes to a Data Model
	2.5.4 Saving the Current State of Definitions

	2.6 Defining Business Vocabulary for the Car Rental Sample
	2.6.1 Specifying the Business Vocabulary for Java Fact Definitions
	2.6.2 Specifying the Business Vocabulary for Functions
	2.6.3 Specifying the Visibility for Properties and Methods

	2.7 Defining a Rule for the Car Rental Sample
	2.7.1 Creating a Rule Set for the Car Rental Sample
	2.7.2 Creating a Rule for the Car Rental Sample

	2.8 Customizing Rules for the Car Rental Sample
	2.9 Creating a Java Application Using Oracle Business Rules
	2.9.1 Importing the Rules SDK and Rules RL Classes
	2.9.2 Initialize the Repository with Rules SDK
	2.9.3 Loading a Dictionary with Rules SDK
	2.9.4 Specifying a Rule Set and Generating RL with Rules SDK
	2.9.5 Initializing and Executing a Rule Session
	2.9.6 Asserting Business Objects Within a Rule Session
	2.9.7 Using the Run Function with a Rule Session

	2.10 Running the Car Rental Sample Using the Test Program

	3 Working With Rule Author Features
	3.1 Working with Variables
	3.2 Working with Constraints
	3.3 Working with RLFacts
	3.4 Working with Functions
	3.5 Viewing Java Objects in a Data Model
	3.5.1 Specifying Visibility and Object Chaining for Rule Author Drop Down Lists

	3.6 Generating Oracle Business Rules RL Language Text
	3.6.1 Generating and Viewing an RL Language Program

	3.7 Configuring Rule Author Dictionary Properties
	3.7.1 Using the Advanced Test Expression Option
	3.7.2 Using the Logging Option

	3.8 Deleting a Rule Author Dictionary
	3.9 Importing and Exporting a Dictionary
	3.10 Working with Test Rulesets
	3.11 Invoking Rules
	3.11.1 Overview of Results Examples
	3.11.2 Using a Global Variable to Obtain Results
	3.11.3 Using Container Objects to Obtain Results
	3.11.4 Using Reasoned On Objects to Obtain Results

	4 Using XML Facts with Rule Author
	4.1 Overview of Using XML Documents and Schemas with Rule Author
	4.2 Creating and Saving a Dictionary for the XML Car Rental Sample
	4.2.1 Connecting to a Rule Author Repository
	4.2.2 Creating a Rule Author Dictionary
	4.2.3 Saving a Rule Author Dictionary with a Version
	4.2.4 Saving a Rule Author Dictionary

	4.3 Defining a Data Model for the XML Car Rental Sample
	4.3.1 Using XML Schema as Facts in the XML Car Rental Sample
	4.3.2 Adding XML Facts for the Car Rental Sample (XML Schema Processing)
	4.3.3 Importing XML Schema Elements to a Data Model
	4.3.4 Viewing XML Facts in a Data Model
	4.3.5 Saving the Current State of XML Fact Definitions

	4.4 Defining Business Vocabulary for the XML Car Rental Sample
	4.4.1 Specifying the Business Vocabulary for XML Fact Definitions
	4.4.2 Specifying the Business Vocabulary for Functions

	4.5 Defining a Rule for the XML Car Rental Sample
	4.5.1 Creating a Rule Set for the XML Car Rental Sample
	4.5.2 Creating a Rule for the XML Car Rental Sample

	4.6 Customizing Rules for the XML Car Rental Sample
	4.7 Creating a Java Application with a Rule Session Using XML Facts
	4.7.1 Importing the Rules SDK and Rules RL Classes
	4.7.2 Creating a JAXB Context and Unmarshalling the XML Document
	4.7.3 Loading a Dictionary with Rules SDK
	4.7.4 Loading a Ruleset and Generating RL Language for Data Model and Rule Set
	4.7.5 Initializing and Executing a Rule Session
	4.7.6 Asserting XML Data from Within a Rule Session
	4.7.7 Using the Run Function with a Rule Session

	4.8 Running the XML Car Rental Sample Using the Test Program

	5 Using JSR-94
	5.1 Oracle Business Rules with JSR-94 Rule Execution Sets
	5.1.1 Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository
	5.1.2 Creating a JSR-94 Rule Execution Set from a WebDAV Repository
	5.1.3 Creating a Rule Execution Set from Oracle Business Rules RL Language Text
	5.1.4 Creating a Rule Execution Set from RL Text Specified in a URL
	5.1.5 Creating Rule Execution Sets with Rule Sets from Multiple Sources

	5.2 Using the JSR-94 Interface with Oracle Business Rules
	5.2.1 Creating a Rule Execution Set with CreateRuleExecutionSet
	5.2.2 Creating a Rule Session with createRuleSession
	5.2.3 Working with JSR-94 Metadata
	5.2.4 Using Oracle Business Rules JSR-94 Extensions
	5.2.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	5.2.4.2 Invoking an RL Function in JSR-94

	6 Using Oracle Business Rules SDK
	6.1 Rules SDK building blocks
	6.2 Working with a Repository and a Dictionary
	6.2.1 Establishing Contact with a WebDAV Repository
	6.2.2 Establishing Contact with a File Repository
	6.2.3 Loading a Dictionary

	6.3 Working with a Data Model
	6.3.1 Creating a DataModel
	6.3.2 Creating DataModel Components
	6.3.3 Creating a Function Argument List
	6.3.4 Creating an Initializing Expression
	6.3.5 Creating RL Function Bodies

	6.4 Using RuleSets and Creating and Modifying Rules
	6.4.1 Creating a RuleSet
	6.4.2 Adding a Rule to a Ruleset
	6.4.3 Adding a Pattern to a Rule
	6.4.4 Adding a Test to a Pattern
	6.4.5 Adding an Action to a Rule
	6.4.6 Notes for Adding RuleSets and Rules

	A Oracle Business Rules Files and Limitations
	A.1 Rule Author Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Version Naming
	A.1.4 Alias Naming
	A.1.5 XML Schema Target Package Naming

	A.2 Rule Author Session Timeout
	A.3 Rules SDK and Rule Author Temporary Files

	B Using Rule Author and Rules SDK with Repositories
	B.1 Working with a WebDAV Repository
	B.1.1 Setting up a WebDAV Repository
	B.1.2 Connecting to a WebDAV Repository

	B.2 WebDAV Repository Security
	B.2.1 Communicating with a WebDAV Repository Over SSL from Rule Author
	B.2.2 Setting the Location of your Oracle Wallet
	B.2.3 Configuring Rule Author for WebDAV Repository Authentication
	B.2.4 Storing Data in an Oracle Wallet for WebDAV Repository Authentication

	B.3 Working with a File Repository
	B.3.1 Setting up a File Repository
	B.3.2 File Repository Updates and Temporary Files

	B.4 High Availability for your Repository

	C Oracle Business Rules Frequently Asked Questions
	C.1 Frequently Asked Questions About Rules Operations
	C.1.1 Why is the State of a Fact in a Rule Action Inconsistent with the Rule Condition?
	C.1.2 A Changed Java Object was Asserted as a Fact, but no Rules Fired. Why?
	C.1.3 What are the Differences Between Oracle Business Rules RL Language and Java?

	C.2 What JAR Files are Required for Working with Oracle Business Rules?

	D Oracle Business Rules Troubleshooting
	D.1 Public Fact Variables are not Accessible with Rule Author
	D.2 Global Variables may not be Used in RL Functions
	D.3 Importing JDK 1.4.2 Classes
	D.4 Managing Popup Windows on Firefox
	D.5 Using the String Data Type with Methods
	D.6 Preserving Class Order and Hierarchies in the Data Model
	D.7 Validating Generated RL from Rule Author
	D.8 Using RL Reserved Words as Part of a Java Package Name
	D.9 Getter and Setter Methods are not Visible
	D.10 XML Facts not Asserted at Runtime

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

