
Oracle® Application Server
Advanced Web Services Developer's Guide

10g Release 3 (10.1.3)

B25603-01

January 2006

Oracle Application Server Advanced Web Services Developer's Guide, 10g Release 3 (10.1.3)

B25603-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Anirban Chattergee, Simeon M. Greene, Sumit Gupta, Bill Jones, Tim Julien, Sunil
Kunisetty, Gigi Lee, Mike Lehmann, Jon Maron, Kevin Minder, Bob Naugle, Eric Rajkovic, Ekkehard
Rohwedder, Shih-Chang Chen, Quan Wang

Contributor: Ellen Siegal, editor

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

 Preface .. xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions ... xvi

1 Ensuring Interoperable Web Services

Why is Interoperability Necessary?.. 1-1
Web Service Interoperability Organizations .. 1-2
General Guidelines for Creating Interoperable Web Services.. 1-3
Common Tips for Diagnosing and Solving Interoperability Issues.. 1-4

Invalid or Improperly Formatted WSDL.. 1-6
WSDLs Containing Proprietary Data Binding Extensions... 1-7
Illegal XML Characters ... 1-9
Out of Sync SOAPAction Values .. 1-10

Understanding the soapAction WSDL Attribute .. 1-11
Controlling the Value of soapAction in OracleAS Web Services 1-11
Controlling the Value of soapAction on the .NET Platform 1-12

Null Values in SOAP Messages .. 1-13
Unsigned Schema Numeric Types ... 1-15
Loss of Precision.. 1-17

Tool Support for Interoperability... 1-18
Capturing the Web Service Contract.. 1-18
Replaying the Message Payload ... 1-19
Analyzing the Interaction .. 1-20
Obtaining WS-I Tools ... 1-21

Limitations.. 1-21
Additional Information.. 1-21

2 Working with Message Attachments

Working with MIME Attachments ... 2-1
Assembling a Web Service Using swaRef MIME Attachments .. 2-2

Assembling a Web Service Top Down... 2-2
Constructing a WSDL with swaRef Attachments... 2-4
Implementing a Service Endpoint Interface with Attachments.................................... 2-5

iv

Creating a New Instance of AttachmentPart .. 2-6
Assembling a Web Service Bottom Up .. 2-7

Writing a Service Endpoint Interface that Handles Attachments 2-7
Assembling a WSDL File with swaRef Attachment References 2-8

Assembling a Web Service Using SWA MIME Attachments .. 2-8
Adding SOAP Faults with MIME Attachments ... 2-11

Specifying SOAP Faults with Attachments in the WSDL.. 2-13
Implementing a Method that Throws Faults with Attachments 2-13
Using SOAP Faults with Attachments on the Client.. 2-14

Working with Streaming Attachments.. 2-15
Assembling Streaming Attachments into a Web Service .. 2-16

Assembling a Web Service that Supports Streaming Attachments Bottom Up 2-16
Writing an Interface for Steaming Attachments ... 2-17
Implementing a Service Interface that Uses Streaming Attachments....................... 2-17
WSDL Elements for a Service with Streaming Attachments...................................... 2-17
Writing Stub Code to Handle Streaming Attachments... 2-18

Assembling a Web Service that Supports Streaming Attachments Top Down.............. 2-19
WSDL Extensions for Streaming Attachments ... 2-19

Understanding the Streaming Attachments API .. 2-19
Interface for Attachments .. 2-20
Interface for Incoming Attachments... 2-20
Interface for Outgoing Attachments .. 2-20
Interface for Attachment Objects .. 2-21
Factory Class for Attachment Objects .. 2-21

Working with DIME Attachments ... 2-21
Creating Interoperable DIME-Encoded Messages .. 2-21
Implementing Oracle-Proprietary DIME Encoding... 2-23

Working with Attachments in WSIF .. 2-23
Limitations.. 2-23
Additional Information.. 2-23

3 Managing Web Services

Understanding Web Service Management .. 3-1
Web Services Management Environment .. 3-2
Web Service Management Life Cycle.. 3-4

Configuring Server-Side Management Information... 3-4
Data Flow for Management Information in a J2SE Client ... 3-6

Configuring Management Information for a J2SE Client... 3-7
Data Flow for Management Information in a J2EE Client ... 3-8

Configuring Management Information for a J2EE Client .. 3-8
Dynamic Client-Side Configuration... 3-9

Providing Dynamic Configuration for a DII Web Service Client 3-10
Providing Dynamic Configuration for a Dynamic Proxy Web Service Client 3-11
Providing Dynamic Configuration for a Static Proxy Web Service Client............... 3-11
Providing Dynamic Configuration for a J2EE Web Service Client 3-12

Static Client-Side Configuration .. 3-12
Providing Static Configuration for a Servlet or JSP Web Service Client 3-14

v

Providing Static Configuration for an EJB Web Service Client.................................. 3-14
Providing Static Configuration for an Application Client Web Service Client 3-15

Application Server Control Support for Web Service Management .. 3-16
Working with Capability Assertions ... 3-18

How to Assemble Capability Assertions into a Web Service ... 3-18
Additional Information.. 3-19

4 Ensuring Web Services Security

Additional Information... 4-3

5 Ensuring Web Service Reliability

Setting Up Reliability.. 5-2
Providing a Running Database .. 5-2
Installing SQL Tables for the Client and Server .. 5-2

Changing the Widths of Database Columns... 5-2
Adding Reliable Messaging to a Web Service.. 5-3
Managing Reliability on the Server ... 5-4

Server-Side Reliability Configuration Elements.. 5-4
Port-Level Reliability Elements on the Server .. 5-5
Operation Level Reliability Elements on the Server.. 5-6

Capability Assertions and Reliability.. 5-7
Managing Reliability on the Client .. 5-8

Client-Side Reliability Configuration Elements... 5-9
Port Level Reliability Elements on the Client ... 5-9
Operation Level Reliability Elements on the Client.. 5-10

Configuring Client-Side Database Support... 5-12
Configuring Database Support for a J2SE Client ... 5-12
Configuring Database Support for a J2EE Client .. 5-12
Configuring a Listener for a J2EE Client .. 5-13

Dynamically Configuring Client-Side Reliability .. 5-13
Tool Support for Web Services Reliability ... 5-16

WebServicesAssembler Support for Web Service Reliability... 5-16
Assembling Reliability into a Web Service Bottom Up .. 5-16
 Assembling Reliability into a Web Service Top Down .. 5-17
Assembling Reliability into a J2SE Web Service Client Proxy ... 5-18
Assembling Reliability into a J2EE Web Service Client.. 5-19

Application Server Control Support for Web Service Reliability ... 5-19
JDeveloper Support for Web Service Reliability .. 5-20

Limitations.. 5-20
Additional Information.. 5-20

6 Auditing and Logging Messages

Understanding Auditing... 6-1
Auditing and Performance ... 6-1
Processing Audit Messages .. 6-2

Auditing Request Messages .. 6-2

vi

Auditing Response Messages.. 6-2
Auditing Fault Messages ... 6-3

Managing Auditing on the Server .. 6-3
Server-Side Auditing Configuration Elements.. 6-3

Managing Auditing on the Client .. 6-4
Understanding Logging .. 6-5

Logging and Performance... 6-5
Processing Logging Messages .. 6-5

Logging Request Messages.. 6-6
Logging Response Messages ... 6-6
Logging Fault Messages... 6-6

Managing Logging on the Server .. 6-6
Server-Side Logging Configuration Elements ... 6-6

Port-Level Logging Elements on the Server ... 6-7
Operation Level Logging Elements on the Server ... 6-7

Tool Support for Web Services Auditing and Logging... 6-8
WebServicesAssembler Support for Web Service Auditing and Logging 6-9

Assembling Auditing and Logging into a Web Service Bottom Up 6-9
 Assembling Auditing and Logging into a Web Service Top Down 6-11
Assembling Auditing into a J2SE Web Service Client Proxy ... 6-11
Assembling Auditing into a J2EE Web Service Client ... 6-12

Application Server Control Support for Auditing and Logging.. 6-14
JDeveloper Support for Auditing and Logging.. 6-14

Limitations.. 6-14
Additional Information.. 6-14

7 Custom Serialization of Java Value Types

The Custom Serialization Framework API ... 7-1
Using Custom Serialization in Web Service Development ... 7-2

Implementing a Custom Serializer ... 7-2
Defining a Custom Java Type Value Class.. 7-3
Developing a Custom Serializer Implementation for a Java Type Value Class 7-3
Developing a Service Endpoint Interface that Uses a Java Type Value Class 7-5
Creating an oracle-webservices Type Mapping Configuration ... 7-6
Using Custom Types in Client-Side Proxy Code ... 7-7

Using Custom Serialization in Top Down Web Service Development 7-7
Prerequisites .. 7-8
How to Use Custom Serialization in Top Down Web Service Development 7-8

Using Custom Serialization in Bottom Up Web Service Development 7-10
Prerequisites ... 7-10
How to Use Custom Serialization in Bottom Up Web Service Development................. 7-10
Ant Tasks for Generating a Web Service .. 7-11

Using Custom Serialization in Schema-Driven Web Service Development 7-12
Prerequisites ... 7-12
Schema-Driven Web Services Assembly with Custom Serialization............................... 7-12
Sample Schema Document ... 7-15
Java Custom Type Implementation .. 7-15

vii

Implementing a Serializer with Custom Marshalling Logic... 7-16
Defining a Serializer Implementation with Marshalling Logic... 7-16
Developing a Service Endpoint Interface and Implementation 7-19
Editing the Generated oracle-webservices Type Mapping Configuration XML File 7-21

Developing a Client for Custom Type Mapping and a Custom Serializer............................. 7-23
How to Use Custom Serializers in Client Code... 7-24

Editing the Server Side Custom Type Mapping File ... 7-24
Generating the Web Service Client Side Proxy .. 7-25
Writing a Web Service Client with Custom Datatypes... 7-25

Limitations.. 7-26
Additional Information.. 7-26

8 Using JMS as a Web Service Transport

Understanding JMS as a Transport Mechanism... 8-1
Data Flow for JMS Transport.. 8-2

Setting Up JMS Queues .. 8-3
Assembling a Web Service Bottom Up that Uses JMS Transport ... 8-4

WSDL Extensions for JMS Transport .. 8-5
JMS Address Element... 8-5
JMS Property Value Element... 8-6

Adding JMS Transport Configuration with Deployment Descriptors....................................... 8-8
Assembling a Web Service Top Down that Uses JMS Transport .. 8-8
Assembling a Proxy that Uses JMS as a Transport ... 8-9
Writing Client Code to Support JMS Transport .. 8-11

Writing Client Stub Code for JMS Transport .. 8-11
Setting the Send Queue Location and Connection Factory Programmatically...................... 8-11
Writing DII Code for JMS Transport.. 8-12

Limitations.. 8-12
Additional Information.. 8-12

9 Using Web Services Invocation Framework

Understanding WSIF Architecture ... 9-1
Configuring a WSIF Endpoint for Java Classes ... 9-3

Configuring a WSIF Endpoint for a Single Java Port.. 9-3
Configuring a Single Java Port with wsifJavaBinding .. 9-3
Configuring a Single Java Port with wsifJavaPort ... 9-4

Configuring a WSIF Endpoint for Multiple Java Ports .. 9-5
WSIF Java Extensions to the WSDL... 9-6

Configuring a WSIF Endpoint for EJBs ... 9-7
Configuring a WSIF Endpoint for a Single EJB Port ... 9-7

Configuring a Single EJB Port with wsifEjbBinding.. 9-7
Configuring a Single EJB Port with wsifEjbPort .. 9-8

Configuring a WSIF Endpoint for Multiple EJB Ports... 9-10
WSIF EJB Extensions to the WSDL... 9-10

Configuring a WSIF Endpoint for Database Resources .. 9-11
Configuring a WSIF Endpoint for a Single Database Resource Port....................................... 9-12

viii

Configuring a Single Database Resource Port with wsifDbBinding................................ 9-12
Configuring a Single Database Resource Port with wsifDbPort 9-14

Configuring a WSIF Endpoint for Multiple Database Resource Ports 9-15
WSIF SQL Extensions to the WSDL.. 9-16

Writing a WSIF Client .. 9-16
Writing a WSIF Client Using a Dynamic Proxy ... 9-18

Using genInterface to Generate a Service Endpoint Interface... 9-20
Accessing the Database from a WSIF Client ... 9-20
Adding Management Configuration to a WSIF Client.. 9-21
Adding Message Attachments in WSIF ... 9-23

Adding Attachments with the WSIF API ... 9-23
Adding Attachments with the OracleCall API.. 9-24

Tool Support for WSIF ... 9-24
Limitations.. 9-25
Additional Information.. 9-25

10 Using Web Service Providers

What is a Provider? ... 10-1
Understanding the Provider API ... 10-1

Provider Interface.. 10-2
ProviderConfig Class.. 10-3
MessageContext Class .. 10-4
HTTPConstants Class ... 10-4
Provider Servlet ... 10-4

Making a Web Service Provider-Aware .. 10-6
Editing the oracle-webservices.xml Deployment Descriptor ... 10-6

Provider Elements in oracle-webservices.xml ... 10-7
Editing the web.xml Deployment Descriptor ... 10-8

Provider Elements in web.xml... 10-9
Registering a Provider-Managed Endpoint.. 10-9

How to Register a Static Provider-Managed Endpoint ... 10-9
How to Register a Dynamic Provider-Managed Endpoint... 10-9

Packaging Provider Web Application Provider Classes .. 10-10
Deploying Provider Web Applications .. 10-11
Testing Provider Web Application Deployment ... 10-11
Managing Provider Endpoints.. 10-11
Assembling Clients for Provider Web Service Applications.. 10-11
Additional Information.. 10-11

A Understanding the Web Services Management Schema

Levels of Web Service Management .. A-1
Global Level ... A-1
Port Level ... A-2
Operation Level ... A-3

wsmgmt.xml Listing ... A-3

ix

B JAX-RPC Mapping File Descriptor

Producing a JAX-RPC Mapping File ... B-1
Naming Conventions for the JAX-RPC Mapping File .. B-2

Customizing the WSDL or Service Endpoint Interface Contents .. B-2
Customization Scenarios.. B-2

Changing Namespace-to-Java Mappings... B-3
Changing the Names of Java or WSDL Artifacts .. B-3
Generating Code into a Single Package from a WSDL with Multiple Namespaces........ B-3
Wrapping or Unwrapping Mapping for Document-Literal Operations B-4
Mapping Between SOAP Headers and Java Method Parameters B-5

C Web Service MBeans

Web Services MBean Descriptions .. C-1
Understanding MBean Components.. C-2
WebServicePort ... C-2
WebServiceOperation... C-2
WSMServiceConfig ... C-3
WSMOperationConfig.. C-3
WSMHandlerGlobalConfig ... C-3
WSMHandlerServiceConfig .. C-3
WSMHandlerOperationConfig ... C-3

Initializing MBeans .. C-4

D Mapping Java Types to XML and WSDL Types

Mapping Java Types to XML Types ... D-1
Using Java Null Values in Bottom Up Mapping .. D-2

Mapping Java Primitive Types to XML Types ... D-2
OC4J Support for Java Value Types ... D-3

Representing a Java Value Type as a Schema Type... D-3
Mapping Support for Arrays... D-3

All Formats... D-3
Document-Literal and RPC-Literal Formats ... D-3
RPC-Encoded Format ... D-4

Mapping Java Collection Classes to XML Types .. D-5
Limitations on Using Collection and Map Data Types ... D-5
Definitions for Oracle-Proprietary Collection Data Types.. D-6

Support for Java Beans Components... D-7

E Troubleshooting

OracleAS Web Services Messages.. E-1
Assembling Web Services from a WSDL.. E-4
Assembling Web Services from Java Classes .. E-4
Assembling Web Services From EJBs.. E-5
Assembling Web Services with JMS Destinations ... E-5
Developing Web Services From Database Resources .. E-5

x

Assembling Web Services with Annotations... E-6
Assembling REST Web Services .. E-6
Testing Web Service Deployment .. E-7
Assembling a J2EE Web Service Client... E-7
Understanding JAX-RPC Handlers.. E-7
Processing SOAP Headers ... E-7
Using WebServicesAssembler .. E-8
Packaging and Deploying Web Services .. E-9
Ensuring Interoperable Web Services ... E-9
Working with Message Attachments... E-9
Managing Web Services ... E-10
Ensuring Web Service Reliability .. E-10
Auditing and Logging Messages.. E-10
Custom Serialization of Java Value Types.. E-10
Using JMS as a Web Service Transport ... E-11
Using the Web Service Invocation Framework ... E-11
Using Dynamic Invocation Interface to Invoke Web Services ... E-12

Basic Calls... E-12
Configured Calls ... E-13
Examples of Web Service Clients that use DII .. E-14

F Third Party Licenses

Apache ... F-1
The Apache Software License ... F-2

Apache SOAP ... F-6
Apache SOAP License .. F-6

JSR 110 ... F-9
Jaxen ... F-9

The Jaxen License .. F-10
SAXPath .. F-10

The SAXPath License.. F-10
W3C DOM .. F-11

The W3C License... F-11

Index

xi

 Preface

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how to
use custom serialization of Java value types.

This book also describes how to employ the Web Service Invocation Framework
(WSIF), the Web Service Provider API, message attachments, and management
features (reliability, logging, and auditing). It also describes alternative Web service
strategies, such as using JMS as a transport mechanism.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
Oracle Application Server Advanced Web Services Developer's Guide is intended for
application programmers and system administrators who perform the following tasks:

■ Configure software installed on the Oracle Application Server.

■ Create programs that implement Web services.

■ Create programs that run as Web services Clients.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Application Server Web Services Developer's Guide

This book describes how to use the WebServicesAssembler tool to assemble Web
services from a variety of resources: Java classes, EJBs, database resources, JMS
destinations and J2SE 5.0 Annotations. You can also assemble REST-style Web
services. The Developers Guide also describes how to assemble J2SE and J2EE clients
to access these services. This book includes descriptions of the message formats
and datatypes supported by OracleAS Web Services.

■ Oracle Application Server Web Services Security Guide

This book describes the different security strategies that can be applied to a Web
service in Oracle Application Server Web Services. These strategies include
username token, X.509 token, SAML token, XML encryption, and XML signature.
The book describes the configuration options available for the client and the
service, for inbound messages and outbound messages. It also describes how to
configure these options for a number of different scenarios.

■ Oracle Containers for J2EE Security Guide

This book (not to be confused with the Oracle Application Server 10g Security Guide),
describes security features and implementations particular to OC4J. This includes
information about using JAAS, the Java Authentication and Authorization Service,
as well as other Java security technologies.

■ Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

■ Oracle Containers for J2EE Configuration and Administration Guide

This book describes how to configure and administer applications for OC4J,
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4J, and, where
appropriate, direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Deployment Guide

xiii

This book covers information and procedures for deploying an application to an
OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Developer's Guide

This book discusses items of general interest to developers writing an application
to run on OC4J—issues that are not specific to a particular container such as the
servlet, EJB, or JSP container. (An example is class loading.)

From the Oracle Application Server core documentation group:

■ Oracle Application Server Security Guide

■ Oracle Application Server Administrator's Guide

■ Oracle Application Server Certificate Authority Administrator's Guide

■ Oracle Application Server Single Sign-On Administrator's Guide

■ Oracle Application Server Enterprise Deployment Guide

For Oracle Web Services Manager:

■ Oracle Web Services Manager User and Administrator Guide

■ Oracle Web Services Manager Extensibility Guide

■ Oracle Web Services Manager Installation and Deployment Guide

■ Oracle Web Services Manager Upgrade Guide

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

Contents of the Oracle Application Server Web Services Developer's Guide
This book is designed to be used with the Oracle Application Server Web Services
Developer's Guide. The "Developer's Guide" describes how to use the
WebServicesAssembler tool to assemble Web services from a variety of resources: Java
classes, EJBs, database resources, JMS destinations and J2SE 5.0 Annotations.

For your convenience, the contents of the Oracle Application Server Web Services
Developer's Guide are listed here.

■ Chapter 1, "Web Services Overview"

■ Chapter 2, "Oracle Application Server Web Services Architecture and Life Cycle"

■ Chapter 3, "Getting Started"

■ Chapter 4, "Oracle Application Server Web Services Messages"

■ Chapter 5, "Assembling a Web Service from a WSDL"

■ Chapter 6, "Assembling a Web Service with Java Classes"

■ Chapter 7, "Assembling a Web Service with EJBs"

■ Chapter 8, "Assembling Web Services with JMS Destinations"

■ Chapter 9, "Developing Database Web Services"

■ Chapter 10, "Assembling Web Services with Annotations"

■ Chapter 11, "Assembling REST Web Services"

■ Chapter 12, "Testing Web Service Deployment"

xiv

■ Chapter 13, "Assembling a J2EE Web Service Client"

■ Chapter 14, "Assembling a J2SE Web Service Client"

■ Chapter 15, "Understanding JAX-RPC Handlers"

■ Chapter 16, "Processing SOAP Headers"

■ Chapter 17, "Using WebServicesAssembler"

■ Chapter 18, "Packaging and Deploying Web Services"

■ Appendix A, "Web Service Client APIs and JARs"

■ Appendix B, "Oracle Implementation of the WSDL 1.1 API"

■ Appendix C, "Troubleshooting"

Links to Related Specifications
The following sections collate references to documentation that appear in the text of
this manual:

■ Java Technology Documents

■ OC4J-Related Documents

■ SOAP-Related Documents

■ WSDL-Related Documents

■ UDDI-Related Documents

■ Encryption-Related Documents

Java Technology Documents
■ Java 2 Platform Enterprise Edition (J2EE), version 1.4 API specification:

http://java.sun.com/j2ee/1.4/docs/api/

■ XML Schemas for J2EE Deployment Descriptors lists the document formats used
by the Java 2 Platform, Enterprise Edition (J2EE) deployment descriptors which
are described by J2EE 1.4 and later specifications:

http://java.sun.com/xml/ns/j2ee/

■ J2EE client schema provides the XSD for a J2EE Web service client:

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_
1.xsd

■ Java API for XML-based RPC (JAX-RPC) to build Web applications and Web
services. This functionality incorporates XML-based RPC functionality according
to the SOAP 1.1 specification.

http://java.sun.com/webservices/jaxrpc/index.jsp

■ Java Servlet 2.4 specification:

http://www.jcp.org/aboutJava/communityprocess/final/jsr154/in
dex.html

OC4J-Related Documents
■ A list of approved OC4J schemas, including proprietary deployment descriptors:

http://www.oracle.com/technology/oracleas/schema/index.html

xv

■ Oracle implementation of UDDI V2.0 that runs on OC4J:

http://www.oracle.com/technology/tech/webservices/htdocs/uddi
/index.html

■ Oracle Database JPublisher User's Guide

SOAP-Related Documents
■ SOAP 1.1 and 1.2 specifications (main page):

http://www.w3.org/TR/soap/

■ SOAP 1.1 specifications:

– specification:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

– SOAP 1.1 message encoding:

http://schemas.xmlsoap.org/soap/encoding/

– SOAP 1.1 binding schema:

http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd

The SOAP 1.2 binding schema is identical to the SOAP 1.1 binding schema,
except that the target namespace is:

http://schemas.xmlsoap.org/wsdl/soap12/

■ SOAP 1.2 specification:

– SOAP 1.2 Part 1: Primer:

http://www.w3.org/TR/soap12-part0/

– SOAP 1.2 Part 1: Messaging Format:

http://www.w3.org/TR/soap12-part1/

– SOAP 1.2 Part 2 Recommendation (Adjuncts):

http://www.w3.org/TR/soap12-part2/

– SOAP 1.2 message encoding:

http://www.w3.org/2003/05/soap-encoding/

– HTTP transport for SOAP 1.2:

http://www.w3.org/2003/05/soap/bindings/HTTP/

– SOAP binding schema:

 http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd

– Definition of the fault code element in the SOAP schema:

http://schemas.xmlsoap.org/soap/envelope/2004-01-21.xsd

WSDL-Related Documents
Web Services Description Language (WSDL) specifications:

http://www.w3.org/TR/wsdl

UDDI-Related Documents
Universal Description, Discovery and Integration specifications:

xvi

http://www.uddi.org/

Encryption-Related Documents
■ Key Transport algorithms:

– RSA-1_5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

– RSA-OAEP-MGF1P:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

■ Signature keys:

– RSA-SHA1:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

– RSA-MD5:

http://www.w3.org/2001/04/xmldsig-more#rsa-md5

– HMAC-SHA1:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

– DSA-SHA1:

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Ensuring Interoperable Web Services 1-1

1
Ensuring Interoperable Web Services

This chapter contains the following sections.

■ Why is Interoperability Necessary?

■ Web Service Interoperability Organizations

■ General Guidelines for Creating Interoperable Web Services

■ Common Tips for Diagnosing and Solving Interoperability Issues

■ Tool Support for Interoperability

Why is Interoperability Necessary?
The goal of the Web service architecture is to allow heterogeneous business
applications to smoothly work together. The architecture is loosely coupled and based
on XML standards. Web services are designed to work with each other by defining
Web Service Description Language (WSDL) files as service contracts, regardless of
which operating system and development technology are behind them. However,
because of the complexity involved in service contracts, standards like WSDL and
SOAP leave room for ambiguous interpretations. In addition, vendor-specific
enhancements and extensions work against universal interoperability.

Business applications must invoke each other's services. These services are often
implemented with different technologies. Interoperability failures tend to increase as
Web service complexity increases. If you host a publicly available Web service, you
will want to ensure that your clients from all over the world, using vastly different tool
kits, can successfully invoke it. Likewise, your business application might need to
integrate or interact with another vendor's Web service that was built on top of an
existing legacy system and has an unusual interface design.

Interoperability issues can originate from any layer of the protocol stack. On the
transport level, both parties involved in exchanging messages must agree on a specific
physical transport mechanism. For example, you cannot expect to use JMS transport
from a non-Java platform. This is why using basic HTTP protocol increases your
chance of interoperability. On the message level, because SOAP allows virtually any
type of data encoding to be used, interoperability can become difficult. For example, a
standard ArrayList on a Java platform will not be automatically translated into a
System.collections.ArrayList on the .NET platform. Also, interoperability
issues arise at the basic WSDL and SOAP level: advanced Web service developers will
find many more new challenges when they start implementing quality of service
(QOS) features such as security, reliability, and transaction services.

Web Service Interoperability Organizations

1-2 Advanced Web Services Developer's Guide

Difficulties in interoperability do exist. However, with a few good guidelines, your
Oracle Web service should work seamlessly with other J2EE vendor platforms or
non-Java platforms like the Microsoft .NET platform.

Web Service Interoperability Organizations
As interoperability gains more and more importance in the Web service community, a
number of organizations have been established to achieve this goal.

■ SOAPBuilders Community

■ WS-Interoperability

SOAPBuilders Community
SOAPBuilders is a loosely organized forum of developers working toward a test bed
for interoperability testing between SOAP implementations. Interoperability is
demonstrated by implementing a canonical set of tests that are collectively defined by
the participants in the forum.

The tests developed by the SOAPBuilder community are, by and large, based on
vendor practices. However, practices shift over time. Clean and well-defined rules
organized in a formal manner are needed for Web service vendors, Web service
developers, and Web service consumers.

You can find more information on SOAPBuilder tests at the following Web site.

http://www.whitemesa.net/

WS-Interoperability
The Web Services Interoperability organization (WS-I) is an open industry
organization that creates, promotes, and supports generic protocols for the
interoperable exchange of messages between Web services. WS-I profiles are
guidelines and recommendations for how the standards should be used. These profiles
aim to remove ambiguities by adding constraints to the underlying specifications.

WS-I deliverables are profiles, common or best practices, scenarios, testing software,
and testing materials.

You should design your Web service so that it adheres to WS-I basic profiles. WS-I
compliant services agree to clear contracts and have a greater chance of
interoperability.

For example, a WS-I basic profile-compliant Web service should use the following
features.

■ Use HTTP or HTTPS as the transport binding. HTTP 1.1 is preferred over HTTP
1.0.

■ Use literal style encoding. Do not use SOAP encoding.

■ Use stricter fault message syntax. When a MESSAGE contains a soap:Fault
element, its element children must be unqualified.

■ Use XML version 1.0.

■ The service should not declare array wrapper elements using the convention
ArrayOfXXX.

There are many rules defined in the profiles. For more information about WS-I
profiles, see the following Web site.

http://www.ws-i.org

General Guidelines for Creating Interoperable Web Services

Ensuring Interoperable Web Services 1-3

Oracle is a member of the WS-I organization and is fully committed to helping our
customers to achieve interoperability. The Oracle Application Server Web Services
platform allows a high degree of flexibility to help you create interoperable Web
services.

■ The WebServicesAssembler tool and Oracle JDeveloper 10g generate WS-I
compliant services when you create a bottom up, document-literal Web service.
When receiving SOAP messages, the Oracle implementation is accommodating
instead of strict so that your message exchanges with other SOAP stacks are more
likely to succeed.

■ Oracle JDeveloper 10g supports integrated testing of WSDL files and running Web
services for WS-I Basic Profile conformance. It delivers an enhanced HTTP
Analyzer for monitoring and logging, and provides a built-in analysis and
reporting tool to better diagnose interoperability issues.

General Guidelines for Creating Interoperable Web Services
The first general guideline is to create Web services which are WS-I compliant, if
possible.

The WS-I profiles, however, do not solve all interoperability problems. Many Web
services were implemented before WS-I profiles existed. Also, the legacy systems that
you are enabling as a Web service might have placed restrictions on your designs.

Thus, good practice in designing Web services should always be adopted from the
beginning of the development process, whenever possible. The following sections
describe these guidelines.

■ Design your Web service top down

■ Design data types using XSD first

■ Keep data types simple

■ Be careful with null values

■ Use a compliance testing tool to validate the WSDL

■ Understand the differences between platform native types

■ Avoid using RPC-encoded message format

Design your Web service top down
The top down approach enables you to design your Web service from service contracts
that are not tied to any platform or language-specific characteristics. Your WSDL is less
likely to be affected by existing legacy APIs.

Design data types using XSD first
If possible, use an XSD schema editor to design your data types with schema types.
Resist using platform-specific data types such as the .NET DataSet data type, Java
collections, and so on.

Keep data types simple
Avoid unnecessarily complex schema data types such as xsd:choice. Simple types
provide the best interoperability and have the added benefit of improved
performance.

Common Tips for Diagnosing and Solving Interoperability Issues

1-4 Advanced Web Services Developer's Guide

Be careful with null values
Decide what you want to do with null values. For example, should an array be
allowed to be null? Should you use a null string or an empty string? If you are sending
a null value across the platform, will it cause exceptions on the receiver side?

Avoid sending null values if possible. If you must use null values in your application,
design your schema types to clearly indicate that a null value is allowed.

Use a compliance testing tool to validate the WSDL
If your Web service is designed to be WS-I compliant, use the WS-I monitor tool to log
messages and the analyzer tool to validate for conformance. WS-I tools can be
downloaded for free from the following Web site.

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtoo
ls

Understand the differences between platform native types
Some schema types, such as xsd:unsignedshort and xsd:unsignedint, do not
always have a direct native type mapping. For example, there are no Java platform
equivalent unsigned types. Schema numeric types such as xsd:double, xsd:float,
and xsd:decimal might have different precisions once mapped to their platform
native types. There are also limitations on the xsd:string type. The strings must not
contain illegal XML characters and the \r (carriage return) character will typically be
mapped to the \n (line feed) character.

Avoid using RPC-encoded message format
By itself, the RPC-encoded message format does not imply that you will not be able to
interoperate with other platform and clients. In many cases, there are RPC-encoded
Web services which are working today. The reason to move away from RPC-encoded
message formats is to avoid some of the corner cases where different interpretations of
the underlying specification and implementation choices break interoperability. Some
examples of these corner cases include the treatment of sparse arrays,
multi-dimensional arrays, custom fault code QNames, un-typed payloads, and so on.

Common Tips for Diagnosing and Solving Interoperability Issues
Many interoperability problems can be recognized and solved by understanding the
relationship between the WSDL, the wire format, and the validity of the data
representation. Once you can identify where the issue is, correcting it can be
straightforward.

Figure 1–1 illustrates the interaction between the elements in a client stack and a
service stack. The WSDL is used to generate the client artifacts. The client application,
which could be implemented for either the JAX-RPC or .NET platform, forms an XML
SOAP request message. The application serializes the request and passes it to the
service over HTTP. The service, which could be implemented for either the JAX-RPC
or .NET platform, deserializes the request and processes it.

After processing the client request, the service application forms the XML SOAP
response message, serializes it, and passes it to the client over HTTP. The client
application deserializes the response and processes the result.

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-5

Figure 1–1 Points of Possible Interoperability Failures

The numbers and letters in the illustration identify the points, from the client's
perspective, where interoperability failures can occur. On the server side, the failure
points are similar. The following list describes these problems.

1. The utility which generates the client artifacts fails to consume the WSDL (the
contract). The WSDL is either invalid, not compliant with a WS-I Profile, or not
supported by the client platform. For example, .NET 1.1 does not support
RPC-literal style of Web service. "Invalid or Improperly Formatted WSDL" on
page 1-6 provides more information on this type of failure.

2. The utility which generates the client artifacts consumes the WSDL successfully,
but the artifacts it generates cannot be used or are not very useful. For example,
the WSDL might contain proprietary schema extensions that the tool cannot
process. "WSDLs Containing Proprietary Data Binding Extensions" on page 1-7
provides more information on this type of failure.

3. At runtime, an exception is thrown to the client application before any payload is
actually processed. Usually, the error will be converted into a SOAP fault with a
fault code set as Client in SOAP 1.1 or Sender in SOAP 1.2. The reason could be
that the service endpoint is unavailable or authentication negotiation is not
successful. "Illegal XML Characters" on page 1-9 provides more information on
this type of failure.

4. A SOAP fault is thrown from the server side due to one of the following reasons.

a. The request is not routed to the correct operation. The SOAP fault code would
be set as Client in SOAP 1.1 or Sender in SOAP 1.2. "Out of Sync
SOAPAction Values" on page 1-10 provides more information on this type of
failure.

b. The request is not deserialized successfully. The SOAP fault code would be set
as Client in SOAP 1.1 or Sender in SOAP 1.2. "Null Values in SOAP
Messages" on page 1-13 and "Unsigned Schema Numeric Types" on page 1-15
provide more information on this type of failure.

Application

JAX-RPC / .NET Framework

Deserialize
Response

Serialize
Request

Java

XML

5 3

Application

Client Service

JAX-RPC / .NET Framework

Deserialize
Request

Serialize
Response

Java

XML

4b
4a

4d

Web Service Toolkit
(WebServicesAssembler)

WSDL21

Request

Response

HTTP across
the Network

4c

Common Tips for Diagnosing and Solving Interoperability Issues

1-6 Advanced Web Services Developer's Guide

c. The request is not processed by the application code. The internal exception
which is thrown could be an unhandled exception or an application-specific
SOAP fault at the business logic level. The SOAP fault code will be set as
Server or Receiver unless the server application considers the error to be
related to the validation of input parameters.

d. The response is not serialized. The SOAP fault code will be set as Server or
Receiver.

5. At runtime, an exception is thrown by the client when it tries to deserialize the
response to convert the content of the SOAP envelope back into Java instances.
"Loss of Precision" on page 1-17 provides more information on this failure.

The following sections provide more information and examples of the failures that can
occur at each of these points.

Invalid or Improperly Formatted WSDL
Interoperability failures can be caused by errors that arise in processing the WSDL.
This is indicated in Point 1 in Figure 1–1. Different tool kits are not consistent in how
they process WSDLs. For example, an improperly formatted WSDL might be
graciously accepted by one tool kit but rejected by another.

Example
The following code samples illustrate how an improperly formatted WSDL can cause
an interoperability failure.

Example 1–1 illustrates a fragment from an improperly formatted WSDL. The
fragment contains an improperly named input parameter, getQuote. Notice that the
portType operation has defined an input parameter named getQuote, but the
corresponding binding operation does not provide input or output names. If you use
the default naming pattern (<operationName>Request and
<operationName>Response) to create the missing binding operation input and output
names, then the WSDL will not be valid because the getQuote operation will have
inconsistent input parameters.

Example 1–1 WSDL Fragment with an Improperly Named Input Parameter

<portType name="qotdPortType">
 <operation name="getQuote">
 <input name="getQuote" message="tns:getQuoteRequest"/>
 <output name="getQuoteResponse" message="tns:getQuoteResponse"/>
 </operation>
</portType>
<binding name="qotdBinding" type="tns:qotdPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getQuote">
 <soap:operation soapAction="urn:xmethods-qotd#getQuote"/>
 <input>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:xmethods-qotd"/>
 </input>
 <output>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:xmethods-qotd"/>
 </output>
 </operation>

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-7

</binding>

If you attempt to generate client proxy classes from this WSDL, problems will arise
regardless of whether you are on the .NET or the Oracle Application Server Web
Services platforms. If you attempt to generate client proxy C# classes on the .NET
platform, you will get errors rejecting the WSDL as not having a matching binding. On
the Oracle Application Server Web Services platform, Java client proxy classes will be
generated, however, you will get warnings about the improper input and output
names used in the WSDL.

Unfortunately, the WSDL specification does not clearly specify that the default naming
pattern for the portType operation should be used for the binding operation when
input and output names are missing. It is not clear whether the WSDL should be
rejected. The OracleAS Web Services tool kit will graciously accept this WSDL and
output warnings.

The potential interoperability problem illustrated in this example can be corrected by
specifying the name attribute for the input in the binding operation and in the
portType.

WSDLs Containing Proprietary Data Binding Extensions
Point 2 in Figure 1–1 represents a failure point where the tool kit is unable to generate
useful artifacts from the given WSDL. This problem can arise if the WSDL contains
proprietary data binding extensions.

Example
The following code samples illustrate how working with a WSDL that contains
proprietary data binding extensions can cause interoperability failures.

Assume that you are developing a Web service for the .NET platform and you have the
following C# method that returns a System.Data.DataSet data type.

public System.Data.DataSet ListBooks ()

Example 1–2 illustrates an XML schema fragment that represents the response output
element when the method is exposed as a .NET Web service.

Example 1–2 XML Schema Fragment for a .NET Web Service

<s:element name="ListBooksResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="ListBooksResult">
 <s:complexType>
 <s:sequence>
 <s:element ref="s:schema"/>
 <s:any/>
 </s:sequence>
 </s:complexType>
 </s:element>

Note: The following code samples use the ADO.NET
System.Data.DataSet data type as an example of a proprietary
data binding that can cause interoperability failures. However,
because XML is extensible by nature, you will likely face this issue
when dealing with other proprietary data bindings as well.

Common Tips for Diagnosing and Solving Interoperability Issues

1-8 Advanced Web Services Developer's Guide

 </s:sequence>
 </s:complexType>
</s:element>

Suppose you want to use the WebServicesAssembler tool to generate client proxy code
based on this WSDL. WebServicesAssembler will consume the WSDL successfully and
will generate a set of proxy classes including the client code that contains the following
Java method.

public javax.xml.soap.SOAPElement listBooks(ListBooks parameters) throws
java.rmi.RemoteException

The response is returned as a SOAPElement because OracleAS Web Services cannot
infer any more detailed information from the schema definition. Unfortunately, the
schema in the .NET WSDL in Example 1–2 does not fully describe the payload you
will receive on the wire representing the .NET DataSet data type. The schema
describes only that the SOAP message contains two parts: the first part is the schema
definition for the payload and the payload follows next.

Example 1–3 illustrates the SOAP message that the client receives. Notice that the first
child of the xs:schema element (<xs:element name="NewDataSet"...>)
describes the payload of the message. The second child, (<diffgr:diffgram ...>)
contains the payload.

Example 1–3 SOAP Message Generated from a .NET DataSet Data Type

<soap:Body>
 <ListBooksResponse xmlns="http://francisshanahan.com/">
 <ListBooksResult>
 <xs:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="NewDataSet" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="bible_content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Book" type="xs:string"
minOccurs="0"/>
 <xs:element name="BookTitle" type="xs:string"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <NewDataSet xmlns="">
 <bible_content diffgr:id="bible_content1" msdata:rowOrder="0">
 <Book>01</Book>
 <BookTitle>The First Book of Moses, called
Genesis</BookTitle>
 </bible_content>
 <bible_content diffgr:id="bible_content2" msdata:rowOrder="1">
 <Book>02</Book>
 <BookTitle>The Second Book of Moses, Called

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-9

Exodus</BookTitle>
 </bible_content>
 …
 </NewDataSet>
 </diffgr:diffgram>
 </ListBooksResult>
 </ListBooksResponse>
 </soap:Body>
</soap:Envelope>

Since the WebServicesAssembler tool is unable to provide you with Java type classes
that capture the payload schema, how would you write a Java client to process the
dataset records appropriately?

The solution is a two step process.

1. Obtain the schema. The code must parse the incoming SOAPElement, extract the
schema child element and save the schema definition.

<xs:schema id="NewDataSet" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

2. Process the actual payload based on the schema you have.

You can use tools such as JAXB and Oracle TopLink to process the payload. JAXB
provides a Java API and command line tools to help you generate Java type-safe
classes directly from the schema.

Oracle TopLink is an advanced object to relational persistence framework that
includes support for JAXB. With TopLink, however, you also get a visual mapping
editor and many other advanced features. For more information on TopLink, see
the following Web site.

http://www.oracle.com/technology/products/ias/toplink/index.h
tml

Once you have generated Java types based on the schema with your preferred
tools, you can now process the actual SOAP payload and extract the any element
that comes after the schema. This element has the tag name diffgr and the actual
payload starts as the first child of the <diffgr> element.

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

Illegal XML Characters
Sometimes, even though you have a perfectly valid WSDL that can successfully
generate client artifacts, an application might fail before reaching the server side. This
is illustrated in Figure 1–1 as Point 3. Usually, this failure occurs because the service is
currently unavailable. There are other, harder to detect, cases as well. For example, the
application might have produced invalid XML data in the SOAP message. The
application could also be attempting to pass characters which are invalid in XML. In
these cases, the server transport layer immediately rejects the message before it reaches
the Web service.

If your application must send special characters or data in the SOAP Body that could
cause XML parsing errors, then the application should be designed to use a basic
encoding scheme such as BASE64Encoding.

Common Tips for Diagnosing and Solving Interoperability Issues

1-10 Advanced Web Services Developer's Guide

Example
The following code samples illustrate how an attempt to pass an invalid XML
character in a SOAP message can cause an interoperability failure.

Assume that your C# client application code sends a command string and the service
executes the command for the client. Also assume that one of the commands uses the
backspace character (\b).

MyCommand request = new MyCommand("\b");
MyCommandResponse response = soapClient.runCommand(request);

If the client application tries to send a command string containing the backspace
character (\b), OracleAS Web Services will reject it because the backspace character is
an invalid XML character. This can return an HTTP transport error and a HTML reply
similar to the following.

<HTML><HEAD><TITLE>Web Service</TITLE></HEAD><BODY><H1>Bad Request</H1><PRE>Error
parsing envelope: (2, 237) Invalid char in text.</PRE></BODY></HTML>

Out of Sync SOAPAction Values
In OracleAS Web Services, the value of the soapAction attribute of the WSDL
operation element is a URI constructed from the target namespace and the operation
name. It has the format (http://<target-namespace>/<operation-name>). This same
value should also be used as the value of the SOAPAction HTTP header for this
operation in the SOAP request message. If it is not, then unexpected behavior can
occur. This type of failure is referred to as Point 4a in Figure 1–1.

Most SOAP processors use the SOAPAction HTTP header as a hint to route the
request to the appropriate operation without having to decode the full body. Some
implementations support the SOAPAction value of quoted string ("", that is, the
empty string). The SOAPAction may even be missing from the HTTP header. You
should always use a quoted string to avoid interoperability problems.

This problem indicates that the client is out of sync with the WSDL published by the
service. To solve this problem, regenerate your client so that it is consistent with the
WSDL for the service.

Example
The following code samples illustrate how a mismatch between the values of the
soapAction attribute of the WSDL operation element and the SOAPAction HTTP
header for this operation can cause an interoperability failure.

Assume that you have the following add operation defined in WSDL.

<soapbind:operation soapAction= "http://ws.oracle.com/demo/:add"/>

Example 1–4 illustrates a SOAP request that is sent at runtime. Note that the message
sets a multiply SOAPAction for an add operation.

Example 1–4 SOAP Request Fragment, Illustrating Value of SOAPAction

POST http://localhost/khub/MathService.asmx HTTP/1.1

Host: localhost
Proxy-Connection: Keep-Alive
Connection: TE
TE: trailers, deflate, gzip, compress
User-Agent: Oracle HTTPClient Version 10h
SOAPAction: "http://ws.oracle.com/demo/:multiply"

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-11

Accept-Encoding: gzip, x-gzip, compress, x-compress
Content-type: text/xml; charset="UTF-8"
Content-length: 347

<?xml version = '1.0' encoding = 'UTF-8'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns0="http://ws.oracle.com/demo/">
 <env:Body>
 <ns0:addElement>
 <ns0:a>3</ns0:a>
 <ns0:b>2</ns0:b>
 </ns0:addElement>
 </env:Body>
</env:Envelope>

OracleAS Web Services will throw an error and quit processing because the server
detects that there is a mismatch between the SOAPAction HTTP header value and the
first child element of the SOAP body element (<ns0:addElement>). The error will
look similar to the following.

unexpected element name: expected={http://ws.oracle.com/demo/}addElement,
actual={http://ws.oracle.com/demo/}multiplyElement

In a .NET 1.1 implementation, because the SOAPAction header is used by default for
dispatching SOAP messages, the multiply operation will be invoked by mistake
instead of the add operation. A fault will not be generated. Example 1–5 illustrates the
incorrect response that .NET returns from the multiply service. It should return a
fault because the wrong Web service was invoked. Another possible behavior is to
ignore the invalid value of the SOAPAction, and route the message to the add
operation, based on the payload of the request.

Example 1–5 Incorrect Response Returned by .NET

<multiplyResponseElement xmlns="http://ws.oracle.com/demo/">
 <MultiplyResult>0</MultiplyResult>
 </multiplyResponseElement>

The Apache Axis platform does not rely on the SOAPAction header to route the
operation. It will always use the top element of the SOAP Body payload to find a
matching operation.

Understanding the soapAction WSDL Attribute
To prevent unexpected behaviors from occurring in Web service interactions, it is
useful to understand how the value of the soapAction attribute in the WSDL is set,
and its effect on the value of the SOAPAction header in the SOAP message. The
following sections describe how this attribute is set and used on the OracleAS Web
Services and .NET platforms.

■ Controlling the Value of soapAction in OracleAS Web Services

■ Controlling the Value of soapAction on the .NET Platform

Controlling the Value of soapAction in OracleAS Web Services When you use the Oracle
WebServicesAssembler tool to assemble Web services from Java code, a unique
soapAction attribute value is generated for each operation in the WSDL.

Common Tips for Diagnosing and Solving Interoperability Issues

1-12 Advanced Web Services Developer's Guide

You can control the value of this attribute with the Boolean emptySoapAction
argument. If you set the argument to true, then the soapAction attribute for each
SOAP binding operation in the generated WSDL is set to an empty string and the
SOAPAction header in the SOAP message is set to a quoted ("") string. Setting this
argument to true increases the chances of interoperability with tools from other
vendors.

The default value of the emptySoapAction argument is false. In this case, the
value of the soapAction attribute is the concatenation of the targetNamespace
and the operation name. This will also be the value of the SOAPAction header in
the SOAP message.

Example
The following code samples illustrate how the value of the emptySoapAction
argument can be used to control the value of the soapAction attribute in OracleAS
Web Services.

Assume that you have the following TimeService Java interface that defines a
getDateTime service.

public interface TimeService extends Remote {

 public String getDateTime(String name) throws RemoteException;
}

This interface can be used as input to the WebServicesAssembler assemble command
or Ant task without the emptySoapAction argument. Since the emptySoapAction
argument will not be used in the command or task, it is assumed that its value is
false by default. The resulting WSDL will have the soapAction value
soapAction="http://timeService/getDateTime". This will also be the value
of the SOAPAction header in the SOAP message.

Controlling the Value of soapAction on the .NET Platform On the .NET platform, you can
specify the RoutingStyle of the XML Web service as SoapAction. Then,
depending on whether the Web service is document or RPC style, set the SoapAction
by using the Action parameter of the SoapDocumentMethod or SoapRpcMethod
attribute. By default, the value for the Action parameter is http://<web service
namespace>/MethodName, where MethodName is the name of the XML Web service
method.

Example
The following code sample illustrates how you can use the RoutingStyle parameter
to control the value of SoapAction for a .NET Web service.

Note: Instead of defining the SoapAction parameter to dispatch
SOAP messages, you can configure the .NET platform to use the
RequestElement parameter to set the request element's name. To
do this, set
RoutingStyle=SoapServiceRoutingStyle.RequestElement
and set [SOAPDocumentMethod(Action="")].

A more detailed discussion of this topic is beyond the scope of this
manual. For more information on the RequestElement parameter,
see your .NET platform documentation.

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-13

In Example 1–6, the RoutingStyle of the XML Web service is set to
SoapServiceRoutingStyle.SoapAction. The SoapDocumentMethod attribute
identifies the service as being of document style, and the Action parameter identifies
the URI of the Web services as myAddService and myMultiplyService.

Example 1–6 Setting the Routing Style of a Service on the .NET Platform

<%@ WebService Language="C#" Class="MathService" %>

using System;
using System.Web.Services;
using System.Web.Services.Protocols;

[SoapDocumentService(SoapBindingUse.Literal,
 SoapParameterStyle.Wrapped,
 RoutingStyle=SoapServiceRoutingStyle.SoapAction)]

public class MathService : WebService {
 [SoapDocumentMethod(Action="http://localhost/myAddService")]
 [WebMethod]
 public float Add(float a, float b)
 {
 return a + b;
 }

 [SoapDocumentMethod(Action="http://localhost/myMultiplyService")]
 [WebMethod]
 public float multiply(float a, float b)
 {
 return a * b;
 }
}

Null Values in SOAP Messages
Data type mismatch is by far the most common cause of interoperability failures.
These failures usually appear when the server or the client tries to deserialize the
SOAP message. This is shown in Figure 1–1 as Point 4b and Point 5.

Data type mismatch failure can occur when null values are sent across different
platforms. If possible, you should avoid passing null values. If you must send null
values from one Web service application to another, you should understand what the
data types are mapped to on the other system and whether the data type can handle
the null value correctly.

For example, the xsd:dateTime schema type is mapped to System.DateTime on
the .NET platform. On the Java platform, it is mapped to java.util.Calendar or
java.util.Date. If the Calendar or Date object is initialized with a null value in a
Java program, then a null xsd:dateTime is sent in the SOAP message. If a Web
service built on the .NET platform receives the SOAP message, then it will not be able
to correctly deserialize the message, because the System.DateTime type is not
nillable.

Example
The following code samples illustrate how passing a null value between the sending
and receiving platform can result in an interoperability failure.

Common Tips for Diagnosing and Solving Interoperability Issues

1-14 Advanced Web Services Developer's Guide

An XML element is a null element when its nil attribute is set to true. The WSDL
must account for this by setting the nillable attribute of the corresponding element
to true (the default value of nillable is false).

In the WSDL in Example 1–7, the source element has omitted the nillable
attribute. Thus, by default, it has a nillable=false attribute.

Example 1–7 WSDL Fragment, Where the Source Element is Not Nillable

<s:element name="Src2html">
 <s:complexType>
 <s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="login" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="passe" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="lan" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="source" type="s:string"/>
</s:sequence>
</s:complexType>
</s:element>

Suppose the client application assigns a null value to the Java object representing the
source element. Assuming that the Apache Axis platform generates the client proxy
code from this WSDL, Example 1–8 illustrates the resulting request SOAP message on
the wire. Note that the source element has the xsi:nil attribute set to true.

Example 1–8 Request Message, With xsi:nil Set to true

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <Src2html xmlns="http://www.dotnetisp.com/webservices/dotnetisp/src2html.asmx">
 <login>Gigi</login>
 <passe>oracle</passe>
 <lan>C#</lan>
 <source xsi:nil="true"/>
 </Src2html>
 </soapenv:Body>
</soapenv:Envelope>

Because the WSDL definition does not allow the source element to contain a nil
value, the Web service built on the OracleAS Web Services platform will fail to
deserialize the incoming SOAP message. Example 1–9 illustrates a sample SOAP fault
response that OracleAS Web Services generates for the preceding request.

Example 1–9 Sample SOAP Fault Response from OracleAS Web Services

<env:Body>
<env:Fault>
 <faultcode>env:Client</faultcode>
 <faultstring>caught exception while handling request: unexpected
null</faultstring>
</env:Fault>
</env:Body>
</env:Envelope>

On the other hand, if the same client application assigning a null source element is
developed with OracleAS Web Services, it will omit the source element completely,
because the schema defines it to be optional. Example 1–10 illustrates a request SOAP
message on the wire sent by a client developed with OracleAS Web Services.

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-15

Example 1–10 Request Message, Omitting Optional Elements

<env:Envelope xmlns:env=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:ns0="http://www.dotnetisp.com/webservices/dotnetisp/src2html.asmx">
<env:Body>
<ns0:Src2html>
 <ns0:login>Gigi</login>
 <ns0:passe>oracle</passe>
 <ns0:lan>C#</lan>
</ns0:Src2html>
</env:Body>
</env:Envelope>

Because the request in Example 1–10 does not contain an invalid null element, the
server returns a response without error. Example 1–11 illustrates a sample response to
the request.

Example 1–11 Sample SOAP Message

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:ns0="http://www.dotnetisp.com/webservices/dotnetisp/src2html.asmx">
<env:Body>
<ns0:Src2htmlResponse/>
</env:Body>
</env:Envelope>

Unsigned Schema Numeric Types
Another type of deserialization failure that occurs at Point 4b or Point 5 in Figure 1–1
involves using unsigned schema types. On the .NET platform, unsigned types are
directly mapped to unsigned native types, while on the Java platform, unsigned types
are not defined. As a result, using unsigned schema types in your WSDL can cause
unexpected interoperability failures.

If possible, avoid using unsigned numeric data types, such as unsignedShort,
unsignedInt, double, or float in your client applications. If you do use these data
types, you must check their range and precision limit on each system.

Example
The following code samples illustrate how using unsigned data types in a client
application can cause unexpected interoperability failures.

The following C# Web method takes an unsigned input argument, ui, and returns the
same value back to the caller.

[WebMethod]
Public uint getUint(uint ui) {
 Return ui
}

Example 1–12 illustrates the WSDL fragment containing the input and output
parameters for the getUnit Web method. These parameters are directly mapped to
the xsd:unsignedInt type.

Common Tips for Diagnosing and Solving Interoperability Issues

1-16 Advanced Web Services Developer's Guide

Example 1–12 WSDL Fragment, with Mappings for Input and Output Parameters

...
<s:element name="getUint">
 <s:complexType>
<s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="ui" type="s:unsignedInt" />
 </s:sequence>
 </s:complexType>
</s:element> <s:element name="getUintResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="getUintResult"
type="s:unsignedInt" />
 </s:sequence>
 </s:complexType>
 </s:element>
...

Using the WebServicesAssembler tool, you can generate JAX-RPC-compliant client
code that consumes the getUnit service. The generated client code maps the
request input type to the Java native type long.

Now, assume that your Java client application, similar to the code fragment illustrated
in Example 1–13, passes in a very large long value without knowing the type
expected on the other end of the Web service.

Example 1–13 Client Application Fragment that Passes a Large long Value

...
stubs.Service1SoapClient myPort = new stubs.Service1SoapClient();
System.out.println("calling " + myPort.getEndpoint());
long l1 = 9223372036854775807L;
GetUint request = new GetUint(l1);
GetUintResponse response = myPort.getUint(request);
long l2 = response.getGetUintResult();
...

When the message is sent across the wire, the .NET platform will reject the value and
return a SOAP fault similar to the one illustrated in Example 1–14.

Example 1–14 Sample SOAP Fault Sent by the .NET Platform

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring>Server was unable to read request. --> There is an error in
XML document (2, 261). --> Value was either too large or too small for a
UInt32.</faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Common Tips for Diagnosing and Solving Interoperability Issues

Ensuring Interoperable Web Services 1-17

Loss of Precision
Loss of precision can occur at the point where messages are deserialized. This is
depicted as Point 4b and Point 5 in Figure 1–1. Failures of this kind are not always
obvious, because SOAP faults are not always thrown.

Loss of precision can occur when translating values of XML data types to different
platforms. For example, the value of an XML dateTime simple type might be
different on the Java and .NET platforms. This is because these platforms use different
precisions when interpreting the value this XML type.

Example
The following code samples illustrate how passing the xsd:dateTime XML simple
type between Java and .NET Web services can cause a loss of precision, which
translates into a potential interoperability issue.

The following C# Web method returns a System MAX_VALUE of the DateTime data
type.

[WebMethod]
Pubic DateTime getDateTime() {
 Return DateTime.MaxValue;
}

Example 1–15 illustrates a Java client code fragment that accesses the getDateTime
.NET Web service.

Example 1–15 Java Code Fragment to Access a .NET Web Service

...
GetDateTime request = new GetDateTime();
GetDateTimeResponse response = myPort.getDateTime(request);
Calendar cal = response.getGetDateTimeResult();
...

Example 1–16 illustrates the SOAP response that the Java client receives on the wire.
Note the values given for the date (highlighted in bold).

Example 1–16 SOAP Response Message from a .NET Web Service that Returns a Date

<?xml version="1.0" encoding="utf-8" ?>
 <dateTime
xmlns="http://tempuri.org/">9999-12-31T23:59:59.9999999-08:00</dateTime>

The Java client deserializes the response into the java.util.Calendar class.
Example 1–17 illustrates the printout of the contents of the Calendar object. Notice
that the dateTime value is slightly later than the value passed over the wire. This is
because the two native dateTime types have different precisions. On the .NET
platform, four digits are used for the year value and seven digits are used for the
milliseconds. On the Java platform, five digits are used for the year value and three
digits are for milliseconds. Moreover, the Java Web service maintains only three digits
of milliseconds and rounds up the date. The new value, on the receiving side is
January 1, 10000.

Example 1–17 Printout of a Java Calendar Object

[java] ERA: 1
[java] YEAR: 10000
[java] MONTH: 0
[java] WEEK_OF_YEAR: 1

Tool Support for Interoperability

1-18 Advanced Web Services Developer's Guide

[java] WEEK_OF_MONTH: 1
[java] DATE: 1
[java] DAY_OF_MONTH: 1
[java] DAY_OF_YEAR: 1
[java] DAY_OF_WEEK: 7
[java] DAY_OF_WEEK_IN_MONTH: 1
[java] AM_PM: 0
[java] HOUR: 0
[java] HOUR_OF_DAY: 0
[java] MINUTE: 0
[java] SECOND: 0
[java] MILLISECOND: 0
[java] ZONE_OFFSET: -8
[java] DST_OFFSET: 0

Tool Support for Interoperability
The previous sections suggest that there are distinct steps which you can follow to
investigate Web services interoperability. These steps can be summarized as the
Capture, Replay, Analyze process:

■ Capturing the Web Service Contract—capture the WSDL, the XSD files, and the
data on the wire: the SOAP payload and the HTTP headers.

■ Replaying the Message Payload—re-send the message payload to replay the
interaction between proxy and service endpoint. You can also edit the payload to
replay the interaction in a different context.

■ Analyzing the Interaction—analyze the results of the interaction between the
service consumer and provider. You need to make sense out of these broken
interactions, sometimes by comparing them with a message payload that transmits
successfully.

Oracle provides tools that can assist you in each step. Which tools you use will depend
on the environment where you are developing the Web service endpoints and proxies.
The following sections describe the tools which can assist you in each step.

Capturing the Web Service Contract
The Web service contract consists of the WSDL file, the SOAP message payload, and
the HTTP headers.

To capture the WSDL and the XSD files, you can use the following tools:

■ Oracle JDeveloper wizards provide an option that will make a local copy of the
WSDL file in your project. Figure 1–2 illustrates the JDeveloper Copy WSDL Into
Project option.

■ The WebServicesAssembler tool provides a command, fetchWsdl, that will copy
the base (or top-level) WSDL file and all of its imported and included WSDLs and
schemas into a specified output directory. You can run this command on the
command line or as an Ant task. See "fetchwsdl" in the Oracle Application Server
Web Services Developer's Guide for more information on this command.

■ The generic Ant task get can be used to return a WSDL. If you use this Ant task,
you must make a local copy of all the remote resources that have been referenced
using wsdl:import or xsd:import.

Tool Support for Interoperability

Ensuring Interoperable Web Services 1-19

Figure 1–2 Oracle JDeveloper Option to Make a Local WSDL Copy

Capturing the SOAP Payload and HTTP Headers
To capture the SOAP payload and HTTP headers, you can use the following tools:

■ The HTTP Analyzer tool which is included with Oracle JDeveloper 10g offers a
convenient way to capture the HTTP traffic between the service consumer and the
service provider. This technique assumes that you can easily introduce an HTTP
proxy between the two nodes. To change the behavior of the client, you must use
the http.proxyHost and http.proxyPort system properties, while running
the client.

■ If inserting an HTTP proxy is not practical, you can use an intermediary node,
which will redirect the incoming traffic to the final destination. The WS-I monitor
is an example of a tool that can do this. Unlike an HTTP proxy, using an
intermediary node requires you to change the URL of the endpoint on the client
side.

■ If you cannot change the client code or route the HTTP traffic through a proxy, set
up an TCP sniffer. Ethereal is an example of a network protocol analyzer for Unix
and Windows that can be used in this context.

Replaying the Message Payload
Once you have captured the payload, you must be able to either re-send the same
payload, or to edit the payload and send it to see the effects of your changes.

■ JUnit can help you with the process of re-sending the same payload. You can take
advantage of the test classes generated by the WebServicesAssembler genProxy
command. You can also generate these test classes with Oracle JDeveloper 10g.
Figure 1–3 illustrates the option to generate JUnit classes, as it appears in
JDeveloper wizards.

■ The HTTP Analyzer tool, included with Oracle JDeveloper 10g, offers a convenient
way to re-send either the same payload, or the edited payload. Figure 1–4
illustrates the Resend Request command in the HTTP Analyzer tool included
with JDeveloper.

Figure 1–3 Oracle JDeveloper Option to Generate JUnit Classes

Tool Support for Interoperability

1-20 Advanced Web Services Developer's Guide

Figure 1–4 HTTP Analyzer Tool's Resend Request Command, Included with JDeveloper

Analyzing the Interaction
Analyze the interaction between the service consumer and the provider. To help you
analyze the interaction, you can use the following tools.

■ Oracle JDeveloper 10g HTTP Analyzer lets you use the WS-I Analyzer directly
from the IDE. To use the Analyzer from the IDE, you must first download the Java
version of the WS-I tools. The WS-I Analyzer generates the XML configuration
files for you, and displays the progress as the reports are generated. Figure 1–5
illustrates the JDeveloper HTTP Analyzer with the focus on the integrated WS-I
Analyzer command.

■ The WebServicesAssembler tool provides analyze command which performs a
full scan of the WSDL and confirms whether the WSDL can be processed by this
version of the WebServicesAssembler. The genProxy and genInterface
commands perform the same task, but unlike these commands, analyze does not
generate any code. See "analyze" in the Oracle Application Server Web Services
Developer's Guide for more information about this command.

The WSDL validation command is also integrated into the JDeveloper IDE. It is
available from the Context menu, based on the type of resource selected.
Figure 1–6 illustrates the JDeveloper command to compare files. In this case, the
command compares two WSDL files.

Figure 1–5 Oracle JDeveloper with the Integrated WS-I Analyzer Command

Figure 1–6 Oracle JDeveloper Compare Files Command

Additional Information

Ensuring Interoperable Web Services 1-21

Obtaining WS-I Tools
For more information on the tools mentioned in this section, see the following Web
addresses.

Using WS-I Test Tools:

http://www.oracle.com/technology/products/jdev/howtos/10g/WS_
WSI/WSI_HowTo.html

WS-I Basic Profile 1.0 Compliance Analyzer demo:

http://www.oracle.com/technology/products/jdev/viewlets/905p_
j2ee_wsi/wsi_webservices_10g_viewlet_swf.html

Downloading the WS-I tool:

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtoo
ls

Limitations
See "Ensuring Interoperable Web Services" on page E-9.

Additional Information
For more information on:

■ WebServicesAssembler commands, see "Using WebServicesAssembler", in the
Oracle Application Server Web Services Developer's Guide

Additional Information

1-22 Advanced Web Services Developer's Guide

Working with Message Attachments 2-1

2
Working with Message Attachments

This chapter has the following sections.

■ Working with MIME Attachments

■ Working with Streaming Attachments

■ Working with DIME Attachments

■ Understanding the Streaming Attachments API

Working with MIME Attachments
This section contains the following subsections.

■ Assembling a Web Service Using swaRef MIME Attachments

■ Assembling a Web Service Using SWA MIME Attachments

■ Adding SOAP Faults with MIME Attachments

Oracle Application Server Web Services enables you to pass Multipurpose Internet
Mail Extension (MIME) attachments with SOAP messages. The SOAP with
Attachments (SWA) specification defines the SOAP messages with attachments that
are supported by OracleAS Web Services. You can find the SOAP with Attachments
specification at this Web site:

http://www.w3.org/TR/SOAP-attachments

In addition to the SOAP With Attachments specification, OracleAS Web Services also
supports the Web Service-Interoperability (WS-I) Attachments Profile 1.0 that defines
interoperable SOAP messages with attachments. In the interests of interoperability, the
WS-I Attachments Profile adds certain constraints to the SWA specification. The profile
also defines a new schema type, swaRef, for referencing MIME parts from within the
SOAP message body. Using this schema type for sending interoperable SOAP
messages with attachments is not mandated, nor does it guarantee conformance to the
profile. The type is only an optional convenience mechanism. OracleAS Web Services
support both the swaRef type and plain SWA for sending SOAP messages with MIME
attachments. You can find the WS-I Attachments Profile 1.0 at this Web site:

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.h
tml

OracleAS Web Services supports both the SWA and swaRef formats and their handling
is transparent to the developer.

The following list describes the main differences between swaRef and SWA.

Working with MIME Attachments

2-2 Advanced Web Services Developer's Guide

■ swaRef attachments are uniquely identified MIME attachments, referenced in the
SOAP body by a URL. SWA attachments are uniquely identified, but there is no
standard way for referencing them from within a SOAP body.

■ SWA MIME parts must be defined by a mime:content element in the
corresponding mime:part. The following example illustrates a ClaimPhoto
JPEG file, referenced as a SWA in a mime:content element.

<mime:part>
 <mime:content part="ClaimPhoto"
 type="image/jpeg"/>
</mime:part>

In contrast, swaRef attachments should not be defined in the mime:content
element. Instead, they should be referenced in the soapbind:body of the
wsdl:binding. The following example illustrates the ClaimDetail file
referenced as a swaRef in the soapbind:body element. Note that the file is
referenced by a URL.

<mime:part>
 <soapbind:body use="literal" parts="ClaimDetail"
 namespace="http://example.com/mimetypes"/>
</mime:part>

■ SWA attachments are mapped to a corresponding Java type based on the MIME
content type defined in the WSDL. For example, if the MIME content type is
image/jpeg, a java.awt.Image will be used to represent the attachment. In
contrast, swaRef will always be mapped to
javax.xml.soap.AttachmentPart.

Assembling a Web Service Using swaRef MIME Attachments
The swaRef type allows MIME attachments to be referenced by a URL within the
SOAP body. WS-I publishes a public schema which defines the swaRef type. The
public schema is defined by the following XSD:

http://ws-i.org/profiles/basic/1.1/xsd/

For more information on how to use this type to define attachments in a WSDL, see
Section 4.4 of the WS-I Attachments Profile 1.0.

OracleAS Web Services support both top down and bottom up development of Web
services using MIME attachments with swaRef.

■ Assembling a Web Service Top Down

■ Assembling a Web Service Bottom Up

Assembling a Web Service Top Down
You can use WebServicesAssembler to assemble a Web service top down that can
process and generate swaRef MIME attachments. One of the ways in which you could
do this is to provide a WSDL that contains swaRef references as input to the
genInterface command. This command generates a service endpoint interface
containing methods with parameters that will be passed as attachments.

Note: Only RPC-literal and document-literal Web services are
supported by the WS-I Attachments Profile 1.0. Thus, only those types
of services can use swaRef.

Working with MIME Attachments

Working with Message Attachments 2-3

Implementing the generated service endpoint interface includes working with classes
and methods in the oracle.webservices.attachments package. "Understanding
the Streaming Attachments API" on page 2-19 describes this API.

The following general steps describe how to assemble a Web service top down that
exposes methods that pass swaRef MIME attachments.

1. Provide a WSDL from which you want to assemble a Web service.

2. Enter the import statement for the swaRef XSD in the WSDL. The following is an
example import statement.

<xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd"
 schemaLocation="http://ws-i.org/profiles/basic/1.1/xsd"/>

3. For each part in the wsdl:message that needs to be a swaRef attachment, set the
type attribute to the swaRef complex type in the imported schema. An example
of setting swaRef to a complex type is type="wsi:swaRef". "Constructing a
WSDL with swaRef Attachments" provides an example of a WSDL that references
a swaRef attachment.

4. Use the WSDL as input to the WebServicesAssembler genInterface command.
Following is a sample genInterface command.

java -jar wsa.jar genInterface -wsdl mySwaRefWsdl -output c:\appDir

This command generates a service endpoint interface with methods that handle
swaRef attachments and a Java class for each complexType in the WSDL. The
AttachmentPart class will be used for all instances of swaRef.

"Implementing a Service Endpoint Interface with Attachments" on page 2-5
illustrates a sample generated service endpoint interface.

5. Implement the generated service endpoint interface.

In the implementation class, methods that receive attachments will have an
AttachmentPart parameter while methods that send swaRef attachments will
have AttachmentPart as the return type. As part of the implementation of the
methods, create a new instance of the AttachmentPart and add an attachment
using the setContent method. "Creating a New Instance of AttachmentPart"
provides an example of creating an instance of AttachmentPart.

Note: For document-literal services you should define an element in
the schema with the type wsi:swaRef and reference that element in
the wsdl:message part. This is because the Basic Profile requires
document-literal message parts to reference elements, not types.

In the following example, the wsdl:part name="status" in the
message part references the xsd:element name="Status" of type
swaRef in the schema section of the WSDL.

<!--This is defined in the schema section of the WSDL-->
<xsd:element name="Status" type="wsi:swaRef" />

<!--This is the message part that references the swaRef element-->
<wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="types:Status"/>
 </wsdl:message>

Working with MIME Attachments

2-4 Advanced Web Services Developer's Guide

Example 2–4 illustrates the implementation of a generated service endpoint
interface, with code that creates a new instance of AttachmentPart.

Constructing a WSDL with swaRef Attachments A WSDL that uses swaRef attachments
must have the following characteristics.

■ The WSDL must import the swaRef XSD file.

■ Each part of the wsdl:message that must be a swaRef attachment must set its
type attribute to the swaRef complex type in the imported schema (or the element
attribute set to an element that is of type swaRef for document-literal services).

■ The swaRef attachment should be referenced in the soapbind:body of the
wsdl:binding. Example 2–1 illustrates the format of the swaRef reference. The
soapbind:body element has three attributes. The use attribute indicates
whether the message format is literal or encoded. The parts attribute indicates
the part of the SOAP message that the attachment references and the namespace
attribute indicates the attachment.

Example 2–1 swaRef Attachment Referenced in the soapbind:body Element

<mime:part>
 <soapbind:body use="literal|encoded" parts="string" namespace="URL"/>
</mime:part>

Example 2–2 illustrates a WSDL that contains a swaRef reference that can be used as
input to genInterface. The ClaimDetailType complex type which is referenced
by the ClaimDetail part of the ClaimIn message has an element ClaimForm that is
of type swaRef. The ClaimDetail part is referenced in the soapbind:body of the
binding as opposed to a mime:content element which is not referenced as part of the
SOAP body. The elements described in the preceding list, as well as the xsd:import
statement for the swaRef schema, are highlighted in bold.

Example 2–2 WSDL that References a swaRef Attachment

<?xml version="1.0"?>
<wsdl:definitions xmlns:types="http://example.com/mimetypes"
 xmlns:ref="http://ws-i.org/profiles/basic/1.1/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 targetNamespace="http://example.com/mimewsdl"
xmlns:tns="http://example.com/mimewsdl">
 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/mimetypes"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd"
 schemaLocation="http://ws-i.org/profiles/basic/1.1/xsd"/>
 <xsd:complexType name="ClaimDetailType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="ClaimForm" type="ref:swaRef"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="ClaimIn">
 <wsdl:part name="ClaimDetail" type="types:ClaimDetailType"/>
 </wsdl:message>

Working with MIME Attachments

Working with Message Attachments 2-5

 <wsdl:message name="ClaimOut">
 <wsdl:part name="ClaimRefNo" type="ref:swaRef"/>
 </wsdl:message>
 <wsdl:portType name="ClaimPortType">
 <wsdl:operation name="SendClaim">
 <wsdl:input message="tns:ClaimIn"/>
 <wsdl:output message="tns:ClaimOut"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="ClaimBinding" type="tns:ClaimPortType">
 <soapbind:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="SendClaim">
 <soapbind:operation soapAction="http://example.com/soapaction"/>
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soapbind:body use="literal"
 parts="ClaimDetail"
 namespace="http://example.com/mimetypes"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soapbind:body use="literal"
namespace="http://example.com/mimetypes"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

From this WSDL, the genInterface command generates a service endpoint interface
with swaRef attachments, and a Java class for each complexType in the WSDL. The
AttachmentPart class will be used for all instances of swaRef.

For example, WebServicesAssembler will generate a Java class for the ClaimDetail
complex type. Its claimForm parameter, which is of type swaRef in the WSDL, will
be generated as type AttachmentPart in the Java code. The following code sample
illustrates part of the class signature.

public class ClaimDetail{
 private String name;
 private javax.xml.soap.AttachmentPart claimForm;
 ...
}

Implementing a Service Endpoint Interface with Attachments Given a WSDL with references
to swaRef attachments, WebServicesAssembler generates a service endpoint interface
that contains a Java class for each complexType in the WSDL. It also contains Java
methods that return a java.xml.soap.AttachmentPart for each WSDL operation
that has a swaRef in the output method.

An implementation of a generated service endpoint interface must create a new
instance of AttachmentPart. OracleAS Web Services uses the AttachmentPart
class for creating and accessing swaRef attachments. Since AttachmentPart is an

Working with MIME Attachments

2-6 Advanced Web Services Developer's Guide

abstract class, it cannot be instantiated directly. You must create a new instance of
AttachmentPart as a part of the implementation of methods that send attachments.

Example 2–3 illustrates a generated service endpoint interface and Example 2–4
illustrates its implementation. In the generated service endpoint interface in
Example 2–3, the sendClaim method sends an attachment as a return parameter.

Example 2–3 Sample Generated Service Endpoint Interface with an Attachment

package oracle.j2ee.ws.client.attachments;
public interface claimPortType extends java.rmi.Remote{
 public AttachmentPart sendClaim(ClaimDetail claimDetail) throws
 java.rmi.RemoteException;
}

The implementation class in Example 2–4 creates a new instance of AttachmentPart
in the sendClaim method. "Creating a New Instance of AttachmentPart" describes
how to use the SAAJ API to create a new instance of AttachmentPart.

Once the AttachmentPart instance is created, an image or any other object can be
added using the setContent(Object obj, String mimeType) method. The
first parameter of the method takes the object to be attached and the second parameter
specifies the MIME content type of that object. For example, if a GIF image is being
sent, the setContent method would be setContent(newPhoto,"image/gif").

Example 2–4 Implementation of a Service Endpoint Interface

public class ClaimPortTypeImpl implements ClaimPortType {

 public AttachmentPart sendClaim(ClaimDetail claimDetail) throws
RemoteException{
 AttachmentPart impl = null;
 try{
 MessageFactory factory = MessageFactory.newInstance();
 SOAPMessage message = factory.createMessage();
 impl = message.createAttachmentPart();
} catch(SOAPException ex){
 return null;
}
return impl;
}

Creating a New Instance of AttachmentPart This section illustrates the basic code for
creating a new instance of AttachmentPart. OracleAS Web Services uses the
AttachmentPart class for creating and accessing swaRef attachments.

Example 2–5 illustrates sample code that uses the SAAJ API to create a new instance of
AttachmentPart. Note that the createAttachmentPart method of
javax.xml.soap.SOAPMessage takes an object and a MIME type as parameters.

Example 2–5 Creating a New Instance of AttachmentPart

javax.xml.soap.MessageFactory mf = javax.xml.soap.MessageFactory.newInstance();
javax.xml.soap.SOAPMessage message = mf.createMessage();
javax.xml.soap.AttachmentPart ap =
message.createAttachmentPart(attachmentObj,"image/jpeg");

The generated service interface can now be implemented and swaRef attachments can
be sent and received using AttachmentPart from the SAAJ API.

Working with MIME Attachments

Working with Message Attachments 2-7

Assembling a Web Service Bottom Up
You can use WebServicesAssembler to assemble a Web service bottom up that can pass
swaRef MIME attachments. One of the ways in which you could do this is to provide
a Java class that contains method parameters that represent attachments to the
assemble or genWsdl commands. These commands produce a WSDL with
references to swaRef attachments.

Writing and implementing the Java classes that contain attachments includes working
with classes and methods in the oracle.webservices.attachments package.
"Understanding the Streaming Attachments API" on page 2-19 describes this API.

The following general steps describe how to assemble a Web service bottom up that
exposes elements in the WSDL that represent swaRef MIME attachments.

1. Provide the Java class you want to expose as a Web service.

In the class file, any methods that use parameters that represent attachments
should be identified as type AttachmentPart. In your implementation of the
methods that use attachments, create a new instance of AttachmentPart.
"Creating a New Instance of AttachmentPart" illustrates sample code that uses the
SAAJ API to create this.

"Writing a Service Endpoint Interface that Handles Attachments" on page 2-7
illustrates a service endpoint interface with a method that passes attachments.

2. Use the WebServicesAssembler to generate a WSDL file.

■ Use the assemble command if you want to assemble the WSDL and all of the
service artifacts for a Web service.

■ Use the genWsdl command if you want to generate only the WSDL file.

The generated WSDL file will contain an <xsd:element name="..."
type="ref:swaRef"/> element for each parameter in the Java class identified
as type AttachmentPart.

"Assembling a WSDL File with swaRef Attachment References" illustrates a WSDL
file generated with the genWsdl command that contains swaRef attachment
references.

3. If you used the genWsdl command to generate the WSDL, you can now inspect
the file.

If you used the assemble command to assemble the Web service, you can now
deploy the service, generate a proxy, and write a client. "Assembling a Web Service
with Java Classes" in the Oracle Application Server Web Services Developer's Guide
provides more information on these steps.

Writing a Service Endpoint Interface that Handles Attachments If methods in your service
endpoint interface pass attachments, and you want the attachments to be passed as a
swaRef, then the parameters that represent the attachments must be of type
AttachmentPart. In bottom up Web service assembly scenarios,
WebServicesAssembler generates a swaRef type reference into the WSDL for every
AttachmentPart type it encounters in an implementation class or interface.

Note: WebServicesAssembler will not be able to assemble a Web
service that can pass swaRef MIME attachments if you specify an
RPC-encoded message format. To assemble the service, you must
select a different format.

Working with MIME Attachments

2-8 Advanced Web Services Developer's Guide

Example 2–6 illustrates an interface that contains a parameter, claimDetail, of type
AttachmentPart. When passed to WebServicesAssembler using the genWsdl or
assemble command, this interface yields a WSDL file.

Example 2–6 Service Endpoint Interface with a Method that Passes Attachments

public interface ClaimServicePortType extends java.rmi.Remote{
 public String sendClaim(int id, AttachmentPart claimDetail) throws
RemoteException;
 }

Assembling a WSDL File with swaRef Attachment References Example 2–7 illustrates a
fragment of the WSDL file, displaying only the type definitions. The example assumes
that the interface in Example 2–6 was used as input to the genWsdl command to
generate the WSDL with document-wrapped style. The WSDL fragment identifies the
claimDetail element as being of type swaRef (highlighted in bold).

Note that the same WSDL fragment would be created if the assemble command was
used to generate the WSDL. This is the default behavior when WebServicesAssembler
encounters the AttachmentPart data type.

Example 2–7 WSDL Fragment, Displaying only Type Definitions

 ...
 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd" />
 <xsd:complexType name="sendClaimType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="claimDetail" type="ref:swaRef"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</wsdl:types>
...

Assembling a Web Service Using SWA MIME Attachments
SWA attachments refer to attachments that conform to the SOAP With Attachments
(SWA) specification. Currently, WebServicesAssembler supports only top down
assembly of Web services with WSDL files that contain SWA attachments. SWA MIME
parts are defined in the <wsdl:binding> clause of the WSDL. The attachment is
defined by a mime:content element in the corresponding mime:part.

Example 2–8 illustrates the format of the mime:content element and its part and
type attributes. The part attribute identifies the part of the SOAP message to which
the attachment belongs. The type attribute identifies the content type in the
attachment.

Example 2–8 SWA Attachment Referenced in the mime:content Element

<mime:part>
 <mime:content part="string"
 type="content type"/>
</mime:part>

WebServicesAssembler processes each mime:content element found in the WSDL
file and maps it to a Java type that corresponds to the MIME-content type.

Working with MIME Attachments

Working with Message Attachments 2-9

Table 2–1 displays the MIME content types and corresponding Java types to which
they will be mapped. The default type for any MIME-content type that is not
recognized is javax.activation.DataHandler.

1. Provide the WSDL from which you want to generate a Web service.

2. Each element that represents a SWA attachment must appear in a
<mime:content...> element in the <wsdl:binding...> clause of the WSDL.

In Example 2–9, a photo JPEG attachment appears in a <mime:content...>
element:

<mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
</mime:part>

3. Use the WSDL as input to the WebServicesAssembler genInterface command.
Following is a sample genInterface command.

java -jar wsa.jar genInterface -wsdl mySwaWsdl -output c:\appDir

The genInterface command generates a service endpoint interface with
parameters that represent SWA attachments and a Java class for each
complexType in the WSDL. A Java class will be used for all instances of SWA
attachments.

Example 2–10 illustrates a generated service endpoint interface with a parameter
that represents a SWA attachment as a java.awt.Image Java data type.

4. Implement the generated service endpoint interface.

Example 2–9 illustrates a WSDL that contains a SWA reference that can be used as input
to genInterface. Note that this WSDL example omits the wsdl:service element
for the sake of brevity.

Example 2–9 WSDL that References a SWA Attachment

<wsdl:definitions
 name="PhotoCatalogService"
 targetNamespace="http://examples.com/PhotoCatalog"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:types="http://examples.com/PhotoCatalog/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://examples.com/PhotoCatalog">
 <wsdl:message name="addPhotoRequest">
 <wsdl:part name="photo" type="xsd:hexBinary"/>

Table 2–1 Mapping Content Types for SWA Attachments

Content Type Java Type

image/jpeg, image/gif,
image/tif

java.awt.Image. If these content types are used in combination,
or if image/* is specified, then they are mapped to the
java.activation.DataHandler Java type.

text/plain,
application/plain

java.lang.String. If these types are used in combination, then
they are mapped to the java.activation.DataHandler Java
type.

text/xml java.activation.DataHandler

Working with MIME Attachments

2-10 Advanced Web Services Developer's Guide

 </wsdl:message>
 <wsdl:message name="addPhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoRequest">
 <wsdl:part name="oldPhoto" type="xsd:string"/>
 <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="PhotoCatalog">
 <wsdl:operation name="addPhoto">
 <wsdl:input message="tns:addPhotoRequest"/>
 <wsdl:output message="tns:addPhotoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input message="tns:replacePhotoRequest"/>
 <wsdl:output message="tns:replacePhotoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addPhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="status" type="text/plain"/>
 <mime:content part="status" type="text/xml"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>

Working with MIME Attachments

Working with Message Attachments 2-11

 <wsdl:output>
 <soap:body parts="status" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

Given the WSDL displayed in Example 2–9, the WebServicesAssembler
genInterface command generates the interface in Example 2–10. The photo and
newPhoto parameters are generated with the Java data type java.awt.Image
because their mime:content is defined with image/jpeg. An implementation of the
interface can now pass JPEG files as attachments for the photo part. This is the same
for RPC-literal and document-literal (wrapped and bare).

Example 2–10 Generated Interface with a SWA Attachment

public interface PhotoCatlog extends java.rmi.Remote{
 public javax.activation.Datahandler addPhoto (java.awt.Image photo) throws
java.rmi.RemoteException;

 public String replacePhoto(java.awt.Image newPhoto, String oldPhoto) throws
java.rmi.RemoteException;
 }

Adding SOAP Faults with MIME Attachments
This section describes how to add MIME type attachments to SOAP fault messages.

The attachment is added to the fault message when the Web service implementation
class throws an exception. The WS-I Attachments Profile 1.0 specifies that a SOAP
fault can contain attachments only if a <mime:part> element appears in an
operation's output message in the WSDL. Thus, if custom faults appear in a WSDL
operation that has an output message with an attachment, WebServicesAssembler
generates a special exception class that handles attachments in the fault.

The WSDL fragment in Example 2–11 illustrates the <mime:part> in the
<wsdl:operation> clause that declares that an operation can output MIME content.
The namespace attribute is required only when you are working with RPC-literal
messages. The WSDL fragment also illustrates the <wsdl:fault> element that
defines the fault that the operation can throw.

Example 2–11 WSDL Fragment, that Defines a SOAP Fault

<wsdl:operation>
...
<wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="string" use="literal|encoded" [namespace="URL"]/>
 </mime:part>
 </mime:multipartRelated>
</wsdl:output>
<wsdl:fault name="string">
 <soap:fault name="string" use="literal|encoded"/>

Note: In OracleAS Web Services, you can add only MIME type
attachments to SOAP fault messages.

Working with MIME Attachments

2-12 Advanced Web Services Developer's Guide

</wsdl:fault>
</wsdl:operation>

When WebServicesAssembler encounters a <wsdl:fault> element, it generates a
com.examples.types.Fault_NameType exception class, where Fault_Name is the
value of the name attribute in the wsdl:fault element.

An implementation of a method that throws a generated fault class must also include
an implementation of a new instance of the class. It must also include code to add the
attachment to the exception.

Writing and implementing the Java classes that contain attachments includes working
with classes and methods in the oracle.webservices.attachments package.
"Understanding the Streaming Attachments API" on page 2-19 describes this API.

The following general steps describe how to add attachments to SOAP fault messages
and generate them into the service endpoint interface.

1. Provide the WSDL that you want to work with.

2. Edit the WSDL operation that you want to throw a fault with attachment content.

a. Declare the output element that will contain attachment content in the
<wsdl:output.../> clause. The clause must contain
<mime:multipartRelated> content.

b. Define a <wsdl:fault.../> element.

"Specifying SOAP Faults with Attachments in the WSDL" provides an example of
a WSDL that has been edited to include the wsdl:output and wsdl:fault
elements.

3. Use genInterface to generate a service endpoint interface.

java -jar wsa.jar genInterface -wsdl myWsdl -output c:\appDir

The methods in the service endpoint interface that use the attachment data will
have a parameter that takes an attachment data type. The method will throw an
exception that implements
oracle.webservices.attachments.AttachmentFault.

4. Implement the interface.

In the implementation, include code to perform the following tasks.

a. Create a new instance of the exception that implements
oracle.webservices.attachments.AttachmentFault

b. Add an attachment to the exception with the addAttachment method.

"Implementing a Method that Throws Faults with Attachments" on page 2-13
illustrates sample code that creates a new instance of the exception and adds the
attachment to it.

After this step, you can compile the interface and the implementation, deploy the
service, and generate the client code. "Assembling a Web Service from a WSDL" in the
Oracle Application Server Web Services Developer's Guide provides more detail on the
steps for assembling and deploying a Web service top down.

Note: Faults with attachments can be added to a Web service only
when you are assembling it from a WSDL (top down). They cannot be
added when assembling a Web service bottom up.

Working with MIME Attachments

Working with Message Attachments 2-13

Specifying SOAP Faults with Attachments in the WSDL
To specify a SOAP fault that can throw attachment content, the WSDL operation must
identify the namespace of the attachment content, whether its message use is literal or
encoded, and the part of the SOAP message it belongs to. The WSDL operation is
specified in the <mime:part> of the <wsdl:operation> clause.

The WSDL fault itself must identify its name and whether its message use is literal or
encoded. The <wsdl:fault> clause appears as a peer to the WSDL input and WSDL
output clauses.

Example 2–12 illustrates a WSDL fragment for the replacePhoto binding operation
with wsdl:output and wsdl:fault elements. Because wsdl:output identifies
MIME content, the fault message defined by wsdl:fault will be able to contain
attachments.

Example 2–12 WSDL Fragment, Displaying only Port Types and Binding Declarations

<wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"
namespace="http://examples.com/PhotoCatalog"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="status" use="literal"
namespace="http://examples.com/PhotoCatalog"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 <wsdl:fault name="InvalidPhoto">
 <soap:fault name="InvalidPhoto" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>

Implementing a Method that Throws Faults with Attachments
A method in the generated service endpoint interface that can throw a fault with
attachment content contains a parameter that takes an attachment data type and
throws a exception that implements
oracle.webservices.attachments.AttachmentFault. An implementation of
the method must create a new instance of the exception. It must also add the
attachment to the exception. The oracle.webservices.attachments package
provides an FaultWithAttachments.addAttachment method to do this.
"Understanding the Streaming Attachments API" on page 2-19 describes this method.

Example 2–13 illustrates an implementation of the replacePhoto operation defined
by the WSDL fragment in Example 2–12. The InvalidPhoto fault defined in the
WSDL is mapped to the com.examples.types.InvalidPhotoType exception
class.

As required, the implementation of replacePhoto creates a new instance of the
InvalidPhotoType exception. It also adds the attachment to the exception with the

Working with MIME Attachments

2-14 Advanced Web Services Developer's Guide

FaultWithAttachments.addAttachment method. The InvalidPhotoType can
then be thrown as an exception which causes it to be transmitted as a SOAP fault with
attachments.

Example 2–13 Implementing a Method that Throws Faults with Attachments

public AttachmentPart replacePhoto(PhotoInfoType oldPhoto, Image newPhoto) throws
 RemoteException,com.examples.types.InvalidPhotoType {
 if(newPhoto == null){
 return null;
 }
 if(oldPhoto.getPhotoID() == -1){
 InvalidPhotoType typeException = new
InvalidPhotoType(-1,"InvalidPhotoType","The PhotoId specified is invalid");
 try{
 Image image = javax.imageio.ImageIO.read(new File("myImage"));
 typeException.addAttachment(image,"image/jpeg");
 }catch(Exception e){
 throw new RemoteException("unexpected exeption",e);
 }
 throw typeException;
 }
 AttachmentPart impl = null;
 try{
 MessageFactory factory = MessageFactory.newInstance();
 SOAPMessage message = factory.createMessage();
 impl = message.createAttachmentPart();
 }catch(SOAPException ex){
 return null;
 }
 return impl;
 }

Using SOAP Faults with Attachments on the Client
A J2SE or J2EE Web service client can be coded to retrieve SOAP faults with
attachments thrown by the service. The oracle.webservices.attachments
package provides methods that a client can use to retrieve attachment content from the
fault. For example, the getAttachments method can be used to get an iterator of the
list of attachments in the fault. The hasAttachments method can be used to query if
a fault has an attachment.

Example 2–14 illustrates a client stub, photoCatalog, that can retrieve attachment
content. The example assumes that the oldPhoto and newPhoto parameters have
been previously defined, and the InvalidPhotoType exception implements
oracle.webservices.attachments.AttachmentFault. Since
InvalidPhotoType implements AttachmentFault, it is a SOAP fault that can
contain attachments.

The hasAttachments method tests for attachments in the fault. If this method
returns true, the SOAP fault has attachments. The getAttachments method
retrieves all of the attachments in a SOAP fault. This method returns an iterator
containing an AttachmentPart object for each attachment in the SOAP fault.

Example 2–14 Web Service Client with Code for Retrieving Attachments

public class MyClientExample{

PhotoCatalog photoCatalog = getPhotoCatalogPortType(); //create a client stub
for the web service

Working with Streaming Attachments

Working with Message Attachments 2-15

try{
 //assuming oldPhoto and newPhoto are defined
 photoCatalog.replacePhoto(oldPhoto, newPhoto);

 // assuming InvalidPhotoType implements AttachmentFault
}catch(InvalidPhotoType type){
 if(type.hasAttachments()){
 java.util.Iterator it = type.getAttachments();
 AttachmentPart p = (AttachmentPart)it.next();
 //do something useful with the attachment.
 }
}

Working with Streaming Attachments
OracleAS Web Services enables you to pass large attachments as a stream. As opposed
to the JAX-RPC API, which treats attachments as if they were entirely in memory,
streams make the programming model more efficient to use. It also enhances
performance and scalability in that there is no need to load the attachment into
memory before service execution.

Like embedded attachments, streamed attachments conform to the multipart-MIME
binary format. On the wire, messages with streamed attachments are identical to any
other SOAP message with attachments.

Example 2–15 provides a sample message with a streamed attachment. The first "part"
in the message is the SOAP envelope (<SOAP-ENV:Envelope...). The second "part"
is the attachment, in this case, myImage.gif.

Example 2–15 Sample Message with a Streamed Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<DocumentName>MyImage.gif</DocumentName>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/gif

Note: Consider using streamed attachments if the messages you are
trying to pass are over one Megabyte in size. Messages over 100
Megabytes in size should definitely be passed as streamed
attachments.

Working with Streaming Attachments

2-16 Advanced Web Services Developer's Guide

Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

There are some limitations on the use of streamed attachments in OracleAS Web
Services.

■ A Web service port can send only embedded attachments or streamed
attachments; not both.

■ Handlers cannot obtain access to streamed attachments.

■ Any message with streamed attachments will appear to all handlers as a SOAP
message without attachments.

Streaming is enabled by adding an extra parameter to each service or stub operation
that wants to stream attachments. This parameter must be of type Attachments. The
Attachments interface provides methods for reading incoming attachment streams
(service requests or client responses) and for adding outgoing attachment streams
(service responses or client requests).

The Attachments interface belongs to the oracle.webservices.attachments
package. "Understanding the Streaming Attachments API" on page 2-19 describes this
package.

Assembling Streaming Attachments into a Web Service
This section describes how to assemble a Web Service that uses streaming attachments.

■ Assembling a Web Service that Supports Streaming Attachments Bottom Up

■ Assembling a Web Service that Supports Streaming Attachments Top Down

Assembling a Web Service that Supports Streaming Attachments Bottom Up
The model for assembling a Web service bottom up that supports streaming
attachments, is the same as any other service based on Java classes. "Assembling a Web
Service with Java Classes" in the Oracle Application Server Web Services Developer's Guide
provides more information on assembling a Web service bottom up with Java classes.

1. Write a public interface that contains the remote methods that you want to expose
as a service. In this case, one or more of the methods will use the Attachment API.

"Writing an Interface for Steaming Attachments" on page 2-17 provides more
information on this step.

2. Write the implementation of the service.

"Implementing a Service Interface that Uses Streaming Attachments" on page 2-17
provides more information on this step.

3. Write the stub code for the Web service client. To use a stub to send or receive
attachments, you must create the Attachments object before the call.

"Writing Stub Code to Handle Streaming Attachments" on page 2-18 provides
more information on this step.

4. Generate the service artifacts by running the WebServicesAssembler with the
assemble command.

5. Deploy the service and bind the application.

Working with Streaming Attachments

Working with Message Attachments 2-17

6. Generate the client-side code.

7. Compile and run the client.

Writing an Interface for Steaming Attachments If you want to stream attachments as a part
of your Web service, then at least one of the methods within the service interface must
contain a parameter of type Attachments. The Attachments type indicates objects
will be streamed by OracleAS Web Services.

Example 2–16 illustrates the service interface for a Web service that stores large image
files in a local database. The request includes an image name, a description, and the
image to be stored. Note that the attachments parameter of type Attachments
indicates that the image will be streamed.

Example 2–16 Service that Uses Streaming Attachments

public interface ImageStore extends java.rmi.Remote {
 public void storeImage (String name, String desc, Attachments attachments)
throws java.rmi.RemoteException;
}

If you use this interface to generate a Web service bottom up, WebServicesAssembler
will detect the parameter of type Attachments. Support for streaming attachments
will automatically be generated into the Web service. Example 2–18 illustrates the
relevant parts of the WSDL generated by WebServicesAssembler.

Implementing a Service Interface that Uses Streaming Attachments Implementations of
interfaces that include data as streaming attachments use the methods and classes of
the oracle.webservices.attachments API to work with the attachment data.

Example 2–17 illustrates the implementation of the interface in Example 2–16 for a
Web service that stores large image files in a local database. The implementation uses
the getIncomingAttachments method to capture the incoming streaming
attachment as an Attachment object. The getId method retrieves the attachment's
metadata and getInputStream stores the stream image bytes.

Example 2–17 Service Implementation that Employs Streaming Attachments

class ImageStoreImpl {
 public void storeImage(String name, String desc, Attachments attachments)
throws Exception {
 IncomingAttachments incomingAtts = attachments.getIncomingAttachments();
 {
 if (incomingAtts == null || !incomingAtts.hasNextAttachment())
 throw new Exception("Expected request attachments");
 Attachment imageAtt = incomingAtts.nextAttachment();
 String id = imageAtt.getId();
 DataHandler dataHandler = imageAtt.getDataHandler();
 InputStream imageStream = dataHandler.getInputStream();
 //-- Store image metadata and stream image bytes
 if (incomingAtts.hasNextAttachment())
 throw new Exception("Expected only one attachment");
 }
 }
}

WSDL Elements for a Service with Streaming Attachments The presence of the
<stream-attachments> extension (in the namespace

Working with Streaming Attachments

2-18 Advanced Web Services Developer's Guide

http://oracle.com/schemas/webservices/streaming-attachments) in
the WSDL indicates that the Web service supports streaming attachments.

Example 2–18 illustrates the relevant parts of the WSDL that WebServicesAssembler
generates from the interface in Example 2–16. The <stream-attachments> element
that identifies streaming is highlighted in bold. "WSDL Extensions for Streaming
Attachments" on page 2-19 contains more information about the
<stream-attachments> element and its schema.

Example 2–18 WSDL Elements for a Streaming Attachment

<message name="storeImageRequest">
 <part name="name" type="string"/>
 <part name="desc" type="string"/>
</message>
<portType name="ImageStorePortType">
 <operation name="storeImage">
 <input name="storeImageRequest" message="tns:storeImageRequest"/>
 <output name="storeImageResponse" message="tns:storeImageResponse"/>
 </operation>
</portType>
<binding name="ImageStoreBinding" type="tns:ImageStorePortType">
 <soap:binding style="rpc" />
 <operation name="addPerson">
 <soap:operation style="encoded" wsdl:required="true" />
 <sa:stream-attachments name="attachments" />
 <input name="storeImageRequest">
 <soap:body use="encoded" />
 </input>
 <output name="storeImageResponse">
 <soap:body use="encoded" />
 </output>
 </operation>
</binding>

Writing Stub Code to Handle Streaming Attachments The stub is the client side of the Web
service. If the service wants to receive streamed attachments, the client must send
them. If the server sends streamed attachments, the client must read them.

To handle streaming attachments, client code must create a new instance of an
AttachementFactory and create an Attachments object. For a request attachment,
the addAttachment method can be used to add the attachment to the output stream.

For a response attachment, the client code must create a new instance of an
AttachementFactory and create an Attachments object. The client can capture
the attachments with the iterator methods in the IncomingAttachments interface.

Example 2–19 illustrates stub code to store a streaming attachment. In the example, an
AttachmentFactory is instantiated with the newInstance method and an
Attachments object is created with the createAttachments method. The
addAttachment method adds the data to the output stream.

Example 2–19 Client Code to Store a Streaming Attachment

public void storeImageFile (String fileName) {
 //-- Create the attachment objects
 AttachmentFactory factory = AttachmentFactory.newInstance();
 Attachments atts = factory.createAttachments();
 Attachment imageAtt = factory.createAttachment (fileName, "image/gif",
 new FileInputStream(fileName));
 atts.getOutgoingAttachments().addAttachment(imageAtt);

Understanding the Streaming Attachments API

Working with Message Attachments 2-19

 storeImagePort.storeImage (fileName, "File stored at " + fileName, atts);
}

Assembling a Web Service that Supports Streaming Attachments Top Down
Assembling a Web service that supports streaming attachments follows the general
steps described in "Assembling a Web Service from a WSDL" in the Oracle Application
Server Web Services Developer's Guide. This section summarizes these steps.

To support streaming attachments, you must also edit the WSDL to add the
<stream-attachments> element. Example 2–18 illustrates a WSDL that contains
the <stream-attachments> element.

1. Provide a WSDL from which the Web service will be generated.

2. Edit the WSDL to add the elements that allow the Web service to support
streaming attachments. "WSDL Extensions for Streaming Attachments" describes
the <stream-attachments> element.

3. Use the WSDL as input to the WebServicesAssembler genInterface command.

4. Compile the generated interface and type classes.

5. Write the Java Service Endpoint interface for the Web service you want to provide.

6. Compile the Java Service Endpoint interface.

7. Generate the service by running the WebServicesAssembler tool with the
topDownAssemble command.

8. Deploy the service.

9. Generate the client code.

WSDL Extensions for Streaming Attachments
Streaming attachments uses a WSDL extension, <stream-attachments>, to notify
the WebServicesAssembler tool that attachment data will be streamed. The extension
can be used only at the binding operation level. The element is specified in an Oracle
namespace and takes a single string attribute, name. The name attribute is used as the
parameter name when generating Java classes and interfaces. Example 2–18 illustrates
a WSDL that contains the <stream-attachments> element. Example 2–20
illustrates the <stream-attachments> schema.

Example 2–20 XML Schema for Streaming Attachments

<schema
 xmlns="http://www.w3.org/2000/10/XMLSchema"
 xmlns:sa="http://oracle.com/schemas/webservices/streaming-attachments"
 targetNamespace="http://oracle.com/schemas/webservices/streaming-attachments">
 <element name="stream-attachments" type="sa:streamAttachemntsType"/>
 <complexType name="streamAttachemntsType">
 <attribute name="name" type="string" use="required"/>
 </complexType>
</schema>

Understanding the Streaming Attachments API
The Attachments API provides a programmatic interface to streaming attachments.
Streamed attachments are directional; they can be classified as "incoming" and
"outgoing". Incoming streams can only be read and outgoing streams can only be
written to. The API resides in the oracle.webservices.attachments package.

Understanding the Streaming Attachments API

2-20 Advanced Web Services Developer's Guide

Table 2–2 summarizes the interfaces and classes in the Attachments API. The sections
following the table provide more detail.

Interface for Attachments
Attachments is the root interface for managing attachments. The
getIncomingAttachments method returns an IncomingAttachments object. It
returns null if there are no incoming attachments. The getOutgoingAttachments
method always returns an OutgoingAttachments object.

public interface Attachments {
 IncomingAttachments getIncomingAttachments();
 OutgoingAttachments getOutgoingAttachments();
}

Interface for Incoming Attachments
The IncomingAttachments interface is used for request attachments on the server
and for response attachments on the client. It is, essentially, an iterator over
attachments. The interface includes a close method that tells the runtime to flush any
remaining attachments from the stream. This must be called after all attachments have
been processed so the connection can be cleared for the next request.

interface IncomingAttachments {
 public boolean hasNextAttachment() throws IOException;
 public Attachment nextAttachment() throws IOException;
 public void close() throws IOException;
}

Interface for Outgoing Attachments
The OutgoingAttachments interface is used for request attachments on the client
and for response attachments on the server. It collects attachments for streaming after
the message is serialized. The interface includes an addAttachment method to add
attachments to the output stream. You can create attachments using the methods
described in "Factory Class for Attachment Objects".

Table 2–2 Interfaces in the Attachments API

Interface or Class Description

Attachments interface Root interface for managing attachments. This interface contains
methods for storing attachments as either incoming or outgoing
attachments. See "Interface for Attachments" for more
information.

IncomingAttachments
interface

Provides iterators to process incoming attachments. These can be
request attachments on the server or response attachments on
the client. See "Interface for Incoming Attachments" for more
information.

OutgoingAttachments
interface

Collects outgoing attachments for streaming after the message is
serialized. These can be request attachments on the client or
response attachments on the server. See "Interface for Outgoing
Attachments" for more information.

Attachment interface The Attachment object consists of a String ID to identify the
attachment and a data handler to retrieve the data. See "Interface
for Attachment Objects" for more information.

AttachmentFactory class This factory class creates instances of Attachments and
Attachment objects. See "Factory Class for Attachment Objects"
for more information.

Working with DIME Attachments

Working with Message Attachments 2-21

interface OutgoingAttachments {
 public void addAttachment (Attachment attachment);
}

Interface for Attachment Objects
The Attachment object consists of a String ID to identify the attachment and a data
handler to retrieve the data. It is used by the addAttachment method in the
OutgoingAttachments interface to add an attachment to the output stream.

interface Attachment {
 public String getId();
 public DataHandler getDataHandler();
}

Factory Class for Attachment Objects
The package provides a factory class for creating instances of Attachments and
Attachment objects. When you are using streaming attachments in a stub, you must
create the Attachments object before you call the service.

abstract class AttachmentFactory {
 public Attachments createAttachments();
 public Attachment createAttachment (String id,
 String contentType, InputStream attachmentStream);
 public Attachment createAttachment (String id, DataHandler handler);
 public static AttachmentFactory newInstance();
}

Working with DIME Attachments
Direct Internet Message Encapsulation (DIME) is a format for streaming multi-part
message attachments over the wire. DIME can be applied to SOAP messages with
attachments. DIME separates each record, such as a SOAP message or attachment,
with a simple binary SOAP header that describes the size and type of the payload.
DIME also allows a given piece of payload to be broken into multiple records. This
allows the sender to stream data through a buffer of constrained size.

Compared to the multipart-MIME encoding format which OracleAS Web Services uses
by default, DIME requires much less processing effort to encode or decode.

OracleAS Web Services lets you choose between supporting interoperable
DIME-encoded messages and messages with Oracle-proprietary DIME encoding.
Interoperable DIME encoding for messages with attachments is implemented by
adding extensions to the WSDL. Oracle-proprietary DIME encoding is implemented
by allowing WebServicesAssembler to generate code that applies DIME encoding to all
SOAP messages with attachments.

The following sections provide more detailed information on each of these techniques.

■ Creating Interoperable DIME-Encoded Messages

■ Implementing Oracle-Proprietary DIME Encoding

Creating Interoperable DIME-Encoded Messages
These WSDL extensions are an implementation of Microsoft's DIME support. This
technique creates messages with attachments that are interoperable with other
vendors, particularly Microsoft, who implement DIME extensions in the WSDL. The

Working with DIME Attachments

2-22 Advanced Web Services Developer's Guide

extensions cause any binary data in the envelope to be extracted and placed in
attachments. These messages and their attachments are then encoded in DIME.

The WSDL extensions are defined in the "WSDL Extension for SOAP in DIME"
specification. This specification is located at:

http://www.gotdotnet.com/team/xml_
wsspecs/dime/WSDL-Extension-for-DIME.htm

The schema that defines the extensions is located at:

http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/

The specification defines a DIME element, <dime:message>. If this element is added
to the WSDL, then any binary data in the SOAP message is automatically removed
and put into attachments. The message and its attachments are then sent in DIME
format instead of the default multipart-MIME format.

The <dime:message> element can be inserted into the <wsdl:input> and/or
<wsdl:output> elements of a Web service operation bindings definition. Table 2–3
describes the attributes that <dime:message> must include.

Example 2–21 illustrates a WSDL skeleton with the extensions for DIME encoding
highlighted in bold.

Example 2–21 WSDL Skeleton, with the Extensions for DIME Encoding

<wsdl:definitions ...>
 <wsdl:binding ...>
 <soap:binding .../>
 <wsdl:operation ...>
 <soap:operation .../>
 <wsdl:input>
 <dime:message layout="uri" wsdl:required="true"/>?
 <-- extensibility elements -->
 </wsdl:input>
 <wsdl:output>
 <dime:message layout="uri" wsdl:required="true"/>?
 <-- extensibility elements -->
 </dime:message>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

Table 2–3 <dime:message> Required Attributes

Attribute Description

wsdl:required="true" Indicates that the presence of a WSDL is required. This attribute must
be set to true.

layout="uri" Specifies how the primary SOAP message references the attachments
in a DIME message. The following are the possible values for the URI.

■ http://schemas.xmlsoap.org/ws/2002/04/dime/closed-l
ayout—Specifies that the primary SOAP message references all
parts of a DIME message in the proper order.

■ http://schemas.xmlsoap.org/ws/2002/04/dime/open-lay
out—Specifies that the DIME message can include additional
attachments, even though they are not referenced by the SOAP
message. These additional attachments must follow all of the
attachments in the DIME message that are referenced by the SOAP
message.

Additional Information

Working with Message Attachments 2-23

</wsdl:definitions>

Implementing Oracle-Proprietary DIME Encoding
The WebServicesAssembler supports the DIME-encoded format by providing a
useDimeEncoding argument. This argument will apply DIME encoding to all
streaming SOAP messages with attachments in a generated service or stub.

The messages generated with the useDimeEncoding argument are not interoperable
and are incompatible with non-Oracle Web services or earlier versions of Oracle
Application Server. Generating a Web service with this argument is useful for in-house
projects where performance is key.

See "useDimeEncoding" in "General Web Services Assembly Arguments" in the Oracle
Application Server Web Services Developer's Guide for more information on this
argument.

Working with Attachments in WSIF
For information on enabling WSIF clients to handle message attachments, see "Adding
Message Attachments in WSIF" on page 9-23.

Limitations
See "Working with Message Attachments" on page E-9.

Additional Information
For more information on:

■ enabling WSIF clients to handle attachments, see Web Services Invocation
Framework, see Chapter 9, "Using Web Services Invocation Framework".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

Additional Information

2-24 Advanced Web Services Developer's Guide

Managing Web Services 3-1

3
Managing Web Services

This chapter provides an overview of Web service management for Oracle Application
Server Web Services.

■ Understanding Web Service Management

■ Configuring Server-Side Management Information

■ Data Flow for Management Information in a J2SE Client

■ Data Flow for Management Information in a J2EE Client

■ Application Server Control Support for Web Service Management

■ Working with Capability Assertions

Understanding Web Service Management
Web service management is a set of policies applied against a message en-route to a
target. In the case of OracleAS Web Services, the messages are SOAP requests,
responses and faults, and the targets are the client and the business logic on the server.
OracleAS Web Services supports policies for the following management features.

■ security—configures authentication, integrity with digital signatures, and
confidentiality with encryption based on the WS-Security standard. For more
information on the security features supported by OracleAS Web Services, see the
Oracle Application Server Web Services Security Guide.

■ reliability—configures guaranteed message delivery and ordering, and eliminates
duplicate messages based on the WS-Reliability standard. For more information
on the reliability features supported by OracleAS Web Services, see Chapter 5,
"Ensuring Web Service Reliability".

■ auditing and logging—auditing keeps a complete, persistent record of SOAP
requests and faults. Logging enables content-based logging by using XPath to
query the inbound and outbound SOAP messages. For more information on the
auditing and logging features supported by OracleAS Web Services, see Chapter 6,
"Auditing and Logging Messages".

■ life cycle management—enables and disables services and their managed
capabilities. For more information, see "Web Service Management Life Cycle" on
page 3-4.

■ deployment—configures the OracleAS Web Services proprietary deployment
descriptors based on J2EE 1.4 standards. For more information, see Chapter 18,
"Packaging and Deploying Web Services", in the Oracle Application Server Web
Services Developer's Guide.

Understanding Web Service Management

3-2 Advanced Web Services Developer's Guide

Figure 3–1 illustrates the passage of a SOAP request from the client to the business
logic on the server. The SOAP request passes from the client through a layer of
management for outbound messages before it is sent over the wire. When it reaches
the server, the request must pass through a layer of management configuration for
inbound messages before it is used by the business logic. The values given to the
server-side management must be coordinated with the values in the client; otherwise,
the request might be rejected before reaching the service implementation.

Similarly, the response from the business logic on the server reverses the process. The
response must pass through a layer of management for outbound messages before it is
sent over the wire. When it reaches the client, the response must pass through a layer
of management for inbound messages before the client can use it.

Figure 3–1 Web Services Message Flow with Management Enabled

As Figure 3–1 suggests, Web service management can consist of as many as four
separate configurations. The server can have separate configurations for inbound
messages (requests) and outbound messages (responses). The client can have separate
configurations for outbound messages (requests) and inbound messages (responses).

These management policies can be configured pre-deployment within Oracle
JDeveloper. Post-deployment you can configure the policies within the Oracle
Application Server Control management environment. For more information see the
JDeveloper on-line help and "Overview of Managing Web Services" and "Enabling and
Disabling Web Services Management Features" in the Application Server Control
on-line help.

Web Services Management Environment
Figure 3–2 illustrates the management environment. Three major product components
make up this solution: the design time with Oracle JDeveloper or
WebServicesAssembler, the runtime with OracleAS Web Services Release 10.1.3, and
the management environment with Oracle Application Server Control.

WS-Security

WS-Security

WS-Reliability

Web Services Client Management

WS-Reliability

WS-Security

JAX-RPC
Client

WS-Security

WS-Reliability

Web Services Server Management

WS-Reliability

Auditing /
Logging

Auditing /
Logging

Auditing /
Logging

Auditing /
Logging

SOAP
Message

SOAP
Message

SOAP
Message

SOAP
Message

Transport
HTTP, JMS

JAX-RPC
Service

Endpoint

Understanding Web Service Management

Managing Web Services 3-3

Figure 3–2 Web Services Management Data Flow in the Server

The following steps correspond to the numbers in the figure:

1. A developer uses Oracle JDeveloper or its command-line counterpart,
WebServicesAssembler, to author a Web service and to configure the Web service
management information that will be applied at runtime.

2. JDeveloper (or WebServicesAssembler) can then be used to assemble the Web
service and package it in an enterprise archive (EAR). Among other Web service
artifacts, the EAR also contains the oracle-webservices.xml file that
describes management policies. This file is the application server-specific binding
to the Oracle infrastructure. The oracle-webservices.xml file can be
considered to be a extension of the standard JAX-RPC webservices.xml file,
which defines platform-independent Web service behavior.

3. Upon deployment to OC4J, the policies in the oracle-webservices.xml file
are automatically copied to the runtime Web services management policy file,
wsmgmt.xml. This file resides at ORACLE_
HOME\j2ee\home\config\wsmgmt.xml where ORACLE_HOME is the
installation directory for OC4J.

4. Application Server Control can be used to further manipulate the management
policies in wsmgmt.xml.

5. The Web service clients can communicate with the Application Server through the
OC4J runtime.

As this figure illustrates, the creation and administration of Web services management
is completely separate from the Web service, business logic, and client
implementation. The management configuration can be changed independently of the
implemented business logic and does not require redeployment.

If you redeploy the EAR, any changes that Application Server Control has made to the
policy in wsmgmt.xml will be overwritten. In effect, redeploying is the same as
undeploying and then deploying. When a Web service is undeployed, all of the Web
service management configuration is removed from wsmgmt.xml.

1

Application Server
Control

JDeveloper or
WebServicesAssembler

author

deploy

2

3

generate

WebServicesAssembler

J2EE and OC4J
Runtime 10.1.3

Web Services
Client n

Web Services
Client 1

wsmgmt.xml

EAR
Java source files
webservices.xml
oracle-webservices.xml
mapping.xml
WSDL
...

4 configure

5

communicate

. . .

Configuring Server-Side Management Information

3-4 Advanced Web Services Developer's Guide

In addition to the server-side policy configuration, a symmetric policy configuration is
often required on the client side. OC4J provides the option to have the server-side
policy expressed in the WSDL in the form of capability assertions. By providing this
information in the WSDL, client-generation tools can inspect this publicly available
contract. The tools can use the capability assertions to know what questions to ask in
order to create a configuration that will allow the client to communicate with the
server. For more information on how information about the Web service management
configuration can be added to the WSDL, see "Working with Capability Assertions" on
page 3-18.

Web Service Management Life Cycle
An important part of managing a Web service is managing its life cycle. This includes
the ability to enable or disable the service's management configuration. Application
Server Control provides the ability to enable and disable security, reliability, auditing,
and logging. Application Sever Control can also be used to enable or disable the entire
Web service.

Other aspects of life cycle management, specifically deployment and undeployment,
are covered in the Oracle Containers for J2EE Deployment Guide.

Configuring Server-Side Management Information
There are a number of techniques that you can use to configure server-side
management information for a Web service. For example, you can write the
management information into an existing oracle-webservices.xml file by hand
or you can allow JDeveloper or WebServicesAssembler to automate the process. If the
Web service is already deployed, you can use Application Server Control to configure
many of the management options. The following sections summarize the ways in
which you can configure server-side management information:

■ By Hand

■ With JDeveloper

■ With WebServicesAssembler

■ With Application Server Control and WebServicesAssembler

By Hand
1. Examine the oracle-webservices.xsd schema and write the management

information into an existing oracle-webservices.xml file by hand.

2. Run the appropriate WebServicesAssembler *Assemble command to assemble
your Web service.

■ Use the ddFileName argument to specify the modified
oracle-webservices.xml file.

■ Optionally, use the genQosWsdl argument to insert capability assertions into
the WSDL if you are generating the Web service bottom up or use
genQosWsdl if you are generating the Web service top down.

3. Deploy the Web service.

With JDeveloper
1. Use the wizards in JDeveloper to configure a Web service. This will produce an

oracle-webservices.xml file.

Configuring Server-Side Management Information

Managing Web Services 3-5

2. Run the appropriate wizard in JDeveloper to configure management information
in the Web service.

3. Select the "add capability assertions" option if you want to insert capability
assertions into the WSDL.

4. Deploy the Web service.

With WebServicesAssembler
1. Run WebServicesAssembler with the genDDs command to create a generic

oracle-webservices.xml file.

This step will create a "skeleton" deployment descriptor file. This file will not
contain any management configuration information. It will, however, provide the
basic structure of the file and indicate where the management configuration
should be placed.

2. Examine the oracle-webservices.xsd schema and write the management
information into an existing oracle-webservices.xml file by hand.

3. Run the appropriate *Assemble command to assemble your Web service.

■ Use the ddFileName argument to specify the modified
oracle-webservices.xml file.

■ Optionally, use the genQosWsdl argument to insert capability assertions into
the WSDL.

4. Deploy the Web service.

With Application Server Control and WebServicesAssembler
This scenario enables you to establish a default server-side configuration without
having to use JDeveloper or author the configuration by hand. The following steps
describe how to use Application Server Control to define and populate a default
management configuration for the server side. You then copy this configuration from
the runtime configuration into the deployable EAR file.

1. Run WebServicesAssembler with the appropriate *Assemble command to create
a Web service. Note that a Web service created by WebServicesAssembler will not
have management information unless you explicitly build it in.

2. Deploy the Web service without management information. The deployment will
cause a wsmgmt.xml file to be created in OC4J.

3. Use the Web services management screens in Application Server Control to
configure server-side Web service management options. These values will be
reflected in the wsmgmt.xml. file.

4. Copy Web service management information in the wsmgmt.xml file into the
oracle-webservices.xml file that was created in Step 1.

a. Locate the <runtime> element and the <operations> element that appear
under the <port> element in the wsmgmt.xml file. Note the value of the
port attribute in the <port> element.

b. Locate the <port-component> element in the oracle-websrevices.xml
file, whose name attribute has the same value as the port attribute of the
<port> element in the wsmgmt.xml file.

c. Copy the <runtime> element, the <operations> element, and all of their
child elements in the wsmgmt.xml file.

Data Flow for Management Information in a J2SE Client

3-6 Advanced Web Services Developer's Guide

d. Paste these elements into the oracle-webservices.xml file, as a children
of the <port-component> element located in Step 4b.

e. Repeat Steps 4a to 4d for each port you want to expose as a Web service.

5. Re-run the appropriate *Assemble command for your Web service.

■ Use the ddFileName argument to specify the modified
oracle-webservices.xml file.

■ Optionally, use the genQosWsdl option to insert capability assertions into the
WSDL.

6. Re-deploy the Web service.

Data Flow for Management Information in a J2SE Client
Figure 3–3 presents an overview of how Web service management information is
developed, transmitted, and manipulated in the J2SE client environment.

Figure 3–3 Web Services Management Data Flow in a J2SE Client

The data flow illustrated in Figure 3–3 is summarized in the following steps.

1. A developer creates a client-side configuration file. This can be done by using the
wizards in JDeveloper, or by hand, using the
oracle-webservices-client-10_0.xsd schema. The client-side
configuration file contains the client-side configuration for Web services
management features such as security, reliability, and auditing. (Note: logging is
not available on the client.)

2. Use either JDeveloper or WebServicesAssembler to generate a J2SE client JAR file.
If WebServicesAssembler is used, the ddFileName argument to the genProxy
command specifies the configuration file.

Among the files contained in the J2SE client JAR are:

■ proxy class file—this file can send invocations to the server. This file typically
has a <generated_name>_Stub.java extension, where generated_name is
derived from the target namespace and port name in the WSDL.

■ client-side configuration file—this file typically resides in the same directory
as the proxy class file. It has the same generated name as the proxy class file,
but with a _Stub.xml extension.

For example, given a service endpoint interface, test\proxy\Test, you can use
WebServicesAssembler to generate a proxy class file,
test\proxy\runtime\Test_Stub.class. The client-side configuration file,
specified with the ddFileName argument, will be copied to the same directory
and will be called test\proxy\runtime\Test_Stub.xml.

J2SE Web Services Client

Web
Service

. . .
client utility class file
configuration file
. . .

.

.

.

.

.

.

Data Flow for Management Information in a J2SE Client

Managing Web Services 3-7

"Assembling a J2SE Web Service Client" in the Oracle Application Server Web
Services Developer's Guide provides more information on using
WebServicesAssembler to generate J2SE Web service clients.

3. At runtime, the generated proxy class file will read the XML file and apply the
management configuration settings to the messages.

4. Requests and responses can be passed between the client and server.

Configuring Management Information for a J2SE Client
You can use JDeveloper or WebServicesAssembler to add a management configuration
to the J2SE client.

■ With JDeveloper

■ With WebServicesAssembler

With JDeveloper
1. Given a WSDL belonging to a Web service, use the wizards in JDeveloper to create

the proxy class file and the client-side configuration file.

2. Run the appropriate wizards in JDeveloper to configure management information
for the client.

3. Run the client.

With WebServicesAssembler
"Assembling a J2SE Web Service Client" in the Oracle Application Server Web Services
Developer's Guide provides more detailed information on creating J2SE Web service
clients.

1. Create a client-side configuration file. You can refer to the
oracle-webservices-client-10_0.xsd schema and write the file by hand.

2. Given a WSDL belonging to a Web service, run WebServicesAssembler with the
genProxy command to create a proxy class file. Use the ddFileName argument
to specify the client-side configuration file.

<oracle:genProxy
 wsdl="HelloService.wsdl"
 output="src"
 packageName="oracle.demo.hello"
 ddFileName="clientConfig.xml"/>

This results in the generation of several Java source files beneath the directory
specified by the output parameter. In this case, the Java source files are generated
into the src directory. The generated Java source file that implements the port is
oracle/demo/hello/runtime/HttpSoap11Binding_Stub.java. The
name of this file is based on the way that Java class names are derived from the
targetNamespaces and port names in the WSDL. In this example the WSDL
targetNamespace is http://hello.demo.oracle/ and the name of the port is
HttpSoap11Binding.

You can modify this default behavior using additional inputs to
WebServicesAssembler. The generated _Stub.xml file will always have the same
root name as the generated Java source file which implements the port.

Note that since the _Stub.xml file is generated into the source directory, you
must ensure that this file is also copied to the directory into which you compile the

Data Flow for Management Information in a J2EE Client

3-8 Advanced Web Services Developer's Guide

Java source files. The following example shows how you might do this in an Ant
task.

 <copy todir="classes" >
 <fileset dir="src">
 <include name="**/*_Stub.xml"/>
 </fileset>
 </copy>

3. Use the client utility class file created by genProxy as your application client, or
use it as a template to write your own client code. The client utility class file is one
of a number of files created by genProxy.

4. Run the client.

Data Flow for Management Information in a J2EE Client
Figure 3–4 illustrates how Web service management data is transmitted in a J2EE
client.

Figure 3–4 Web Service Management Data Flow in a J2EE Client

1. To access the Web service, the J2EE client performs a JNDI lookup for a reference
to the service endpoint interface.

2. At runtime, the object implementing the interface will use the management
configuration used in either orion-ejb-jar.xml, orion-web.xml, or
orion-application-client.xml, depending on the type of client.

The orion-*.xml file which is contained in the deployment archive has a
<service-ref-mapping> element which contains the information needed to
generate the service endpoint interface at runtime. The Web service management
information is contained within the <service-ref-mapping> element.

"Adding OC4J-Specific Platform Information" in the Oracle Application Server Web
Services Developer's Guide provides more information on the
<service-ref-mapping> element.

Configuring Management Information for a J2EE Client
You can use JDeveloper or WebServicesAssembler to add a management configuration
to the J2EE client.

■ With JDeveloper

■ With WebServicesAssembler

J2EE Web Services Client

JNDI

Web
Service

. . .

. . .
orion-*.xml

.

.

.

.

.

.

Data Flow for Management Information in a J2EE Client

Managing Web Services 3-9

With JDeveloper
1. Given a WSDL belonging to a Web service, use JDeveloper to create the Java

service endpoint interface file and the client component descriptor file. The
configuration file will be either orion-ejb-jar.xml, orion-web.xml, or
orion-application-client.xml, depending on the type of client.

2. Edit the <service-ref-mapping> tag in the orion-*.xml generated for your
particular client. Enter the client-side Web service management configuration
within this tag. For more information on the <service-ref-mapping> tag, see
"Adding OC4J-Specific Platform Information" in the Oracle Application Server Web
Services Developer's Guide.

3. Assemble and deploy the client module. "How to Assemble a J2EE Web Service
Client" in the Oracle Application Server Web Services Developer's Guide provides more
information on assembling and deploying J2EE Web service clients.

With WebServicesAssembler
1. Run WebServicesAssembler with the genInterface command to create a Java

service endpoint interface file.

2. Edit the <service-ref-mapping> tag in the orion-*.xml generated for your
particular Web service. Enter the client-side Web service management
configuration within this tag. "Adding OC4J-Specific Platform Information" in the
Oracle Application Server Web Services Developer's Guide provides more information
on the <service-ref-mapping> tag.

3. Assemble the client deployment module:

a. Compile all of the client files.

b. Copy deployment descriptor files to their appropriate locations. "Packaging
Web Service Applications" in the Oracle Application Server Web Services
Developer's Guide describes where files should reside for servlet, EJB, or JSP
Web service clients.

c. Package the client deployment module.

4. Deploy the client deployment module.

5. Run the client.

Dynamic Client-Side Configuration
In all of the client-side dynamic configuration scenarios described in the following
sections, the client provides a configuration for each invocation. The client does this by
setting the value for the following property on either the call or the stub/port.

oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG

The value provided can be either an XML DOM element reference to the root node, or
a java.io.File object of a document that conforms to the Web service management
client-side configuration schema. If an XML DOM element reference is provided, the
client must load and parse the configuration. If a java.io.File object is provided,
the runtime will perform the loading and parsing.

The configuration provided by the ClientConstants.WSM_INTERCEPTOR_
PIPELINE_CONFIG attribute will override any static configuration. The following
example sets the configuration for an XML DOM element reference.

...setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 parseAndReturnElement(config));

Data Flow for Management Information in a J2EE Client

3-10 Advanced Web Services Developer's Guide

This example sets the configuration for a java.io.File object.

...setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 new java.io.File("config file path"));

The override is all or nothing: if a dynamic configuration is provided, then any static
configuration is completely ignored.

The following sections provide code examples of passing a management configuration
to DII, dynamic proxy, static proxy, and J2EE Web service clients. In all of these cases,
the configuration is defined in the following lines.

String config =
 "<port-info>" +
 ...
 "</port-info>";

This can be entered into the configuration file for J2SE clients or the deployment
descriptors for J2EE clients.

■ Providing Dynamic Configuration for a DII Web Service Client

■ Providing Dynamic Configuration for a Dynamic Proxy Web Service Client

■ Providing Dynamic Configuration for a Static Proxy Web Service Client

■ Providing Dynamic Configuration for a J2EE Web Service Client

Providing Dynamic Configuration for a DII Web Service Client Example 3–1 displays
management configuration being passed to a DII client. The setProperty statement
is highlighted in bold. Note the presence of the <call-property> element in the
example. You can use this element to pass information such as an endpoint address, a
user name and password, and any other standard and proprietary properties.

Example 3–1 Properties and Management Configuration Dynamically Passed to a DII
Client

...
String config =
 "<port-info>" +
 "<call-property>" +
 "<name>...</name>" +
 "<value>...</value>" +
 "</call-property>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "</runtime>" +
 "<operations>" +
 "<operation name='echo'>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "</runtime>" +
 "</operation>" +
 "</operations>" +
 "</port-info>";
 call.setOperationName(
 new QName("http://oracle.com/test/wsdl", "echo"));
 call.setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 parseAndReturnElement(config))

Data Flow for Management Information in a J2EE Client

Managing Web Services 3-11

 call.invoke(params);
...

Providing Dynamic Configuration for a Dynamic Proxy Web Service Client Example 3–2
displays a management configuration being passed to a dynamic proxy. The
setProperty statement is highlighted in bold. Note the presence of the
<stub-property> element in the example. You can use this element to pass
information such as an endpoint address, a user name and password, and any other
standard and proprietary properties.

Example 3–2 Management Configuration Dynamically Passed to a Dynamic Proxy

...
String config =
 "<port-info>" +

 "<stub-property>" +
 "<name>...</name>" +
 "<value>...</value>" +
 "</stub-property>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "<reliability>" +...+"</reliability> +
 "</runtime>" +
 "<operations>" +
 "<operation name='echo'>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "<reliability>" +...+"</reliability>" +
 "<auditing>" +...+ "</auditing>" +
 "</runtime>" +
 "</operation>" +
 "</operations>" +
 "</port-info>";
((Stub)port)._setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 parseAndReturnElement(config));
port.echo("Hello");
...

Providing Dynamic Configuration for a Static Proxy Web Service Client Example 3–3 displays a
management configuration being passed to a static proxy. The setProperty
statement is highlighted in bold. Note the presence of the <stub-property> element
in the example. You can use this element to pass information such as an endpoint
address, a user name and password, and any other standard and proprietary
properties.

Example 3–3 Properties and Management Configuration Dynamically Passed to a Static
Proxy

...
String config =
 "<port-info>" +
 "<stub-property>" +
 "<name>...</name>" +
 "<value>...</value>" +
 "</stub-property>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +

Data Flow for Management Information in a J2EE Client

3-12 Advanced Web Services Developer's Guide

 "<reliability>" +...+"</reliability> +
 "</runtime>" +
 "<operations>" +
 "<operation name='echo'>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "<reliability>"+...+ "</reliability>" +
 "<auditing>" +...+ "</auditing>" +
 "</runtime>" +
 "</operation>" +
 "</operations>" +
 "</port-info>";
port = service.getTestServicePort();
((Stub)port)._setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 parseAndReturnElement(config));
port.echo("Hello");
..."

Providing Dynamic Configuration for a J2EE Web Service Client Example 3–4 displays a
management configuration being passed to a J2EE Web service client. The
setProperty statement is highlighted in bold.

Example 3–4 Management Configuration Dynamically Passed to a J2EE Web Service
Client

...
String config =
 "<port-info>" +
 "<runtime>" +
 "<security>" + ... + "</security>" +
 "<reliability>" +...+"</reliability>" +
 "</runtime>" +
 "<operations>" +
 "<operation name='echo'>" +
 "<runtime>" +
 "<security>" + ... + "<security>" +
 "<reliability>"+...+ "</reliability>" +
 "<auditing>" +...+ "</auditing>" +
 "</runtime>" +
 "</operation>" +
 "</operations>" +
 "</port-info>";
Context ic = new InitialContext();
Service service = (Service)ic.lookup(
 "java:comp/env/service/MyTestServiceRef");
TestInterface port = (TestInterface)service.getPort(
 portQName, j2ee.client.TestInterface.class);
((Stub)port)._setProperty(
 "oracle.webservices.ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG",
 parseAndReturnElement(config));
port.echo("Hello");
...

Static Client-Side Configuration
A static client-side configuration is supported only for J2SE and J2EE Web service
clients. It is not supported for DII or dynamic proxies.

Data Flow for Management Information in a J2EE Client

Managing Web Services 3-13

Static proxies are supported and are described in "Providing Dynamic Configuration
for a Static Proxy Web Service Client" on page 3-11.

The Enterprise Web Services 1.1 specification defines a deployment descriptor for each
J2EE component type. The deployment descriptor contains information that allows the
component to access a Web service endpoint.

Each standard J2EE Web services deployment descriptor has a corresponding
Oracle-proprietary deployment descriptor. The purpose of an Oracle-proprietary
deployment descriptor is to provide deployment-specific configuration information.
While the application developer might specify suitable defaults, the
Oracle-proprietary deployment descriptors allow the deployer to change deployment
settings without affecting the application. The names of the Oracle-proprietary
deployment descriptors are identical to the standard descriptors, except they have an
orion- prefix. Table 3–1 lists the standard deployment descriptor and
Oracle-proprietary deployment descriptor for each J2EE component.

The standard deployment descriptors contain a <service-ref> element. This
element captures all of the Web service access information, such as the location of the
WSDL and mapping file, the service interface, the service ports, and their related
service endpoint interfaces. The <service-ref> element is described in "Adding
J2EE Web Service Client Information" to Deployment Descriptors in the Oracle
Application Server Web Services Developer's Guide.

One of the elements within <service-ref> is <service-ref-name>. The value of
the <service-ref-name> element in the standard descriptor maps to the value of
the name attribute in the <service-ref-mapping> element in the proprietary (that
is, the orion-*) descriptor. This reference provides the JNDI path and service name
assigned by the client.

The Oracle-proprietary deployment descriptors contain structures that use the value of
the <service-ref-mapping> element to map to its corresponding standard
deployment descriptor. Within this element is a <port-info> element. This element
provides all of the information, including Web service management information, for a
port within a service reference. The structure and content of the <port-info>
element is the same for every type of client. For more information on the
<service-ref-mapping> element, see "Adding OC4J-Specific Platform
Information" in the Oracle Application Server Web Services Developer's Guide.

The following sections describe how the standard and Oracle-proprietary deployment
descriptors are used to provide static configuration information to J2EE Web service
clients.

■ Providing Static Configuration for a Servlet or JSP Web Service Client

■ Providing Static Configuration for an EJB Web Service Client

■ Providing Static Configuration for an Application Client Web Service Client

Table 3–1 J2EE Components and their Corresponding Deployment Descriptors

J2EE Component
Standard J2EE Web Services

Deployment Descriptor
Oracle-Proprietary Deployment

Descriptor

JSP or Servlet web.xml orion-web.xml

EJB ejb-jar.xml orion-ejb-jar.xml

application client application-client.xml orion-application-client.xml

Data Flow for Management Information in a J2EE Client

3-14 Advanced Web Services Developer's Guide

Providing Static Configuration for a Servlet or JSP Web Service Client Example 3–5 displays a
fragment of a web.xml deployment descriptor for a Servlet or JSP Web service client.
The <service-ref-name> element contains the reference to the static configuration
for the client.

Example 3–6 displays the corresponding orion-web.xml file. The
<service-ref-mapping name="..."> element also contains the reference. The
<port-info> element within <service-ref-mapping> contains the Web service
management information.

The values for the <service-ref-name> and <service-ref-mapping> elements
must match. These elements are highlighted in bold.

Example 3–5 web.xml—Static Configuration for a Servlet or JSP Web Service Client

<web-app>
 ...
 <service-ref>
 <service-ref-name>service/MyTestServiceRef</service-ref-name>
 ...
 </service-ref>
 ...
</web-app>

Example 3–6 orion-web.xml—Static Configuration and Management Information for a
Servlet or JSP Web Service Client

<orion-web-app ...>
 <service-ref-mapping name="service/MyTestServiceRef">
 <port-info>
 ...
 <runtime>
 ...
 <security/>
 <reliability/>
 ...
 </runtime>
 <operations>
 ...
 <operation name="echo">
 <runtime>
 ...
 <security/>
 <reliability/>
 <auditing/>
 ...
 </runtime>
 </operation>
 ...
 </operations>
 </port-info>
 </service-ref-mapping>
</orion-web-app>

Providing Static Configuration for an EJB Web Service Client Example 3–7 displays a
fragment of an ejb-jar.xml deployment descriptor for an EJB Web service client.
The <service-ref-name> element contains the reference to the static configuration
for the client.

Data Flow for Management Information in a J2EE Client

Managing Web Services 3-15

Example 3–8 displays the corresponding orion-ejb-jar.xml file. The
<service-ref-mapping name="..."> element also contains the reference. The
<port-info> element within <service-ref-mapping> contains the Web service
management information.

The values for the <service-ref-name> and <service-ref-mapping> elements
must match. These elements are highlighted in bold.

Example 3–7 ejb-jar.xml—Static Configuration for an EJB Web Service Client

<ejb-jar ...>
 ...
 <enterprise-beans>
 <session>
 <ejb-name>EjbServiceConsumer</ejb-name>
 ...
 <service-ref>
 <service-ref-name>service/MyTestServiceRef</service-ref-name>
 ...
 </service-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

Example 3–8 orion-ejb-jar.xml—Static Configuration and Management Information for an
EJB Web Service Client

<orion-ejb-jar ...>
 <enterprise-beans>
 ...
 <session-deployment name="EjbServiceConsumer">
 <service-ref-mapping name="service/MyTestServiceRef">
 <port-info>
 ...
 <runtime>
 <security/>
 </runtime>
 <operations>
 ...
 <operation name="echo">
 <runtime>
 ...
 <security/>
 ...
 </runtime>
 </operation>
 </operations>
 </port-info>
 </service-ref-mapping>
 </session-deployment>
 </enterprise-beans>
</orion-ejb-jar>

Providing Static Configuration for an Application Client Web Service Client Example 3–9
displays a fragment of an application-client.xml deployment descriptor for an
application client Web service client. The <service-ref-name> element contains the
reference to the static configuration for the client.

Example 3–10 displays the corresponding orion-application-client.xml file.
The <service-ref-mapping name="..."> element also contains the reference.

Application Server Control Support for Web Service Management

3-16 Advanced Web Services Developer's Guide

The <port-info> element within <service-ref-mapping> contains the Web
service management information.

The values for the <service-ref-name> and <service-ref-mapping> elements
must match. These elements are highlighted in bold.

Example 3–9 application-client.xml—Static Configuration for an Application Client Web
Service Client

<application-client>
 ...
 <service-ref>
 <service-ref-name>service/MyTestServiceRef</service-ref-name>
 ...
 </service-ref>
</application-client>

Example 3–10 orion-application-client.xml—Static Configuration and Management
Information for an Application Client Web Service Client

<orion-application-client>
 <service-ref-mapping name="service/MyTestServiceRef">
 <port-info>
 ...
 <runtime>
 <security/>
 </runtime>
 <operations>
 <operation name="echo">
 <runtime>
 <security/>
 </runtime>
 </operation>
 </operations>
 </port-info>
 </service-ref-mapping>
</orion-application-client>

Application Server Control Support for Web Service Management
The following sections briefly describe the functionality for managing a Web service
that is available by using Application Server Control.

Configuring, Enabling, and Disabling Web Service Management Features
You can use the Application Server Control to manage the Web services you deploy.
For example, you can deploy your Web service applications, perform configuration
tasks, and monitor your Web service ports.

In addition, you can perform administration tasks associated with standard Web
Service Management features, which include auditing, logging, reliability, and
security. Web Service Management is a set of policies applied against a message
en-route to a target. In the case of OracleAS Web Services, the messages are SOAP
requests, responses, and faults, and the targets are the client and the business logic on
the server.

For instructions on how to configure, enable, and disable Web service management
features, see the topics Overview of Web Services Management and Enabling and Disabling
Web Service Management Features in the Application Server Control on-line help.

Application Server Control Support for Web Service Management

Managing Web Services 3-17

Enabling and Disabling a Web Service
You can use Application Server Control to enable a disabled Web service or disable an
enabled Web service for an OC4J instance.

For instructions on how to enable and disable a Web service, see the topic Enabling and
Disabling a Web Service in the Application Server Control on-line help.

Configuring Auditing for a Web Service
The Auditing feature of Web Service Management enables you to keep a complete,
persistent record of SOAP requests, responses, and faults. During development it is
often very convenient to be able to inspect the contents of SOAP requests and
responses to diagnose problems.

Auditing captures request, response, and fault messages and stores them in the
following persistent file.

ORACLE_HOME\log\wsmgmt\audit\log.xml

For instructions on how to configure auditing, see the topic Configuring Auditing for a
Web Service in the Application Server Control on-line help.

Configuring Logging for a Web Service
When you configure logging for a Web service, you can identify the attributes you
want logged from incoming, outgoing, and fault SOAP messages.

For instructions on how to configure logging for a Web service, see the topic
Configuring Logging for a Web Service in the Application Server Control on-line help.

Configuring Reliability for a Web Service
You can use Application Server Control to configure your Web service with reliable
messaging. Reliable messaging allows users of the Web services stack to exchange
SOAP messages without duplicates and with guaranteed delivery and message
ordering.

For instructions on how to configure reliability for a Web service, see the topic
Configuring Reliability for a Web Service in the Application Server Control on-line help.

Configuring Security for a Web Service
You can use Application Server Control to configure your Web service with
authentication, integrity with digital signatures, and confidentiality with encryption
based on the WS-Security standard.

For instructions on how to configure security for a Web service, see the topic
Configuring Security for a Web Service in the Application Server Control on-line help.

Viewing the WSDL for a Web Service
You can use Application Server Control to view the WSDL for a Web service. You
cannot edit the contents of the .wsdl file, but you can review the contents to verify the
attributes and characteristics of the Web service.

For instructions on how to view the WSDL, see the topic Specifying an XPath When
Configuring Web Services Logging in the Application Server Control on-line help

Testing a Web Service
You can use Application Server Control to test a Web service. When you test the Web
service, you display its Home Page. The Web Services Home Page URL is also the
service endpoint that the Web service exposes to its clients. From this URL you can

Working with Capability Assertions

3-18 Advanced Web Services Developer's Guide

invoke the operations for values that you enter and verify that the Web service is
responding appropriately.

For instructions on how to use Application Server Control to test a Web service, see the
topic Testing a Web Service in the Application Server Control on-line help.

Viewing Web Service Operations
You can use Application Server Control to view Web service operations and operation
metrics.

For instructions on how to view Web service operations and operation metrics, see the
topic Viewing Web Service Operations in the Application Server Control on-line help.

Working with Capability Assertions
Capability assertions are descriptions of Web service management policies, such as
security and reliability. They allow consumers of Web services to discover which
management policies are enabled for the Web service.

For example, assume that you created a Web service that requires a security token,
such as a user name and password. The client will not be able to access the service
unless it is aware of this requirement. Capability assertions provide hints to the client
that a user name and password must be placed in the message SOAP headers at
runtime.

Capability assertions are derived from the server-side Web service management
configuration in the oracle-webservices.xml deployment descriptor and
generated into the WSDL. The generation can be performed either by JDeveloper
wizards or WebServicesAssembler commands. In JDeveloper, the Web service
management configuration wizard contains a "Capability Assertions" option. In
WebServicesAssembler, you provide a WSDL, set the genQos argument to true, and
set the ddFileName argument to an oracle-webservices.xml deployment
descriptor that contains the server-side management configuration.

For the generation of an OracleAS Web Services client, a WSDL and configuration file
are used as input. The configuration file describes some of the built-in behavior of the
generated client and is based on the oracle-webservices-client-10_0.xsd
schema. The configuration file can be written by hand or created by a tool, such as
JDeveloper. The capability assertions from the WSDL are used as hints to help in the
creation of the client-side configuration.

For a J2SE client, the client-side configuration file is automatically packaged with the
proxy classes when they are generated. For a J2EE client, the client-side configuration
is set up at deployment time.

How to Assemble Capability Assertions into a Web Service
Continuing the example described earlier in this section, the capability assertions
generated into the WSDL will state that a user name and password are required to
access the service. If you use JDeveloper to generate the client, it can take this
information and prompt you for a user name and password. JDeveloper will create a
client-side configuration file that will be used at runtime to place this user name and
password into the message SOAP headers.

If you are using WebServicesAssembler instead of JDeveloper, you will have to
understand the capability assertions in the WSDL and author the client-side
configuration accordingly. You must then either pass the configuration to

Additional Information

Managing Web Services 3-19

WebServicesAssembler with the ddFileName argument for packaging with the client
proxy or pass it to the call/proxy at runtime.

The following generalized steps summarize the process of including capability
assertions in your Web service:

1. Create the server-side Web service management configuration for security,
reliability, auditing, and logging by hand or by using JDeveloper.

■ By Hand: enter the management configuration into the
oracle-webservices.xml deployment descriptor by hand.

■ JDeveloper: use the JDeveloper wizards to choose the Web service
management options. The wizards will enter this information into the
oracle-webservices.xml deployment descriptor.

2. Generate the capability assertions into the WSDL by using either
WebServicesAssembler or JDeveloper.

■ WebServicesAssembler: use the genQosWsdl command to produce a WSDL
with capability assertions.

■ JDeveloper: select the appropriate options in the wizards to generate
capability assertions into the WSDL.

3. Generate the client code by using either WebServicesAssembler or JDeveloper.

■ WebServicesAssembler: supply a WSDL and client-side configuration file to
the genProxy command (for a J2SE client) or genInterface command (for
a J2EE client); use the ddFileName argument to specify the client-side
configuration file.

■ JDeveloper: use the appropriate JDeveloper wizard to generate either J2SE or
J2EE client code.

4. Run the client code:

■ for a J2SE client, compile and run the client

■ for a J2EE client, deploy, then run the client

Additional Information
For more information on:

■ adding security features to a Web service, see Chapter 4, "Ensuring Web Services
Security" and the Oracle Application Server Web Services Security Guide.

■ adding reliable messaging to a Web service, see Chapter 5, "Ensuring Web Service
Reliability".

■ adding logging and auditing to a Web service, see Chapter 6, "Auditing and
Logging Messages".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

Additional Information

3-20 Advanced Web Services Developer's Guide

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ packaging and deploying of Web services, see "Packaging and Deploying Web
Services" in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

■ using JDeveloper to add management information to a Web service, see the
JDeveloper on-line help.

■ using Application Server Control to add management information to a Web
service, see the Application Server Control on-line help.

Ensuring Web Services Security 4-1

4
Ensuring Web Services Security

Web services security is described in the Oracle Application Server Web Services Security
Guide The Security Guide contains the following chapters:

■ Chapter 1, "Introduction"

This chapter introduces essential Web service security concepts, standards, and
specifications. It is divided into the following sections:

– Web Service Security Concepts

– Web Services Security Support in OC4J

– Tool Support for Web Services Security

■ Chapter 2, "Configuring Web Services Security"

This chapter describes the Web service security configuration elements that can be
used to secure a Web service on the client and the server. It is divided into the
following sections:

– Keystore Elements

– Signature and Encryption Key Elements

– Nonce Configuration Elements

– Security Elements for Inbound Messages

– Security Elements for Outbound Messages

■ Chapter 3, "Administering Web Services Security"

This chapter describes administration tasks for Web services security. It is divided
into the following sections:

– Using Keystores

– Integrating Security Tokens with Security Providers

– Using a Username Token

– Using an X.509 Token

– Using a SAML Token

– Configuring XML Encryption

– Configuring XML Signature

– Combining Tokens, Encryption. and Signature

■ Chapter 4, "Building Secure Web Services"

4-2 Advanced Web Services Developer's Guide

This chapter provides the generalized steps for assembling a secure Web service.
Oracle Application Server Web Services provides the WebServicesAssembler tool
which enables you to assemble the service top down (from a WSDL) or bottom up
(from Java classes, EJBs, or database resources).

– Assembling a Secure Web Service

– Creating a Server-Side Security Configuration File

– Creating a Client-Side Security Configuration File

– Client JAR Files

– Adding Transport-Level Security to a Web Service

– Ant Tasks and WebServicesAssembler

– Getting an Authenticated User Identity in a Web Service Application

– Performing JAAS Provider Authorization on a Web Service

– WS-Security and XML APIs

– Development Decisions

■ Chapter 5, "Secure Web Service Usage Scenarios"

This chapter discusses common scenarios for using Web service security. It begins
with the simplest use case, then proceeds through increasingly more complex use
cases. The first section of the chapter discusses use cases with no security
implications; these are then modified to add security features. It contains the
following sections:

– Non-Secured Web Services

– HTTP-Based Security

– WS-Security

– XML Signature

– XML Encryption

– Gateways

– Identity Management

– Interoperability

■ Chapter 6, "Troubleshooting"

This chapter describes solutions to some of the errors you might encounter when
working with OracleAS Web Services Security. The errors are divided into these
categories.

– General Errors

– Keystore-Related Errors

– Message Integrity Errors

– Message Confidentiality Errors

– Authentication Errors

■ Appendix A, "Schemas"

This appendix lists the contents of the OracleAS Web Services Security schema file,
oracle-webservices-security-10_0.xsd.

Additional Information

Ensuring Web Services Security 4-3

■ Appendix B, "Security Threats and Solutions"

This appendix describes how the functionality in OracleAS Web Services can be
used to address the threats to security that are present in today's Web
environment.

Additional Information
For more information on:

■ securing a Web service, see the Oracle Application Server Web Services Security Guide

■ adding Web service management information, including security, to a Web service,
see Chapter 3, "Managing Web Services".

■ adding reliability information to a Web service, see Chapter 5, "Ensuring Web
Service Reliability".

■ adding auditing and logging information to a Web service, see Chapter 6,
"Auditing and Logging Messages".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see "Packaging and
Deploying Web Services", in the Oracle Application Server Web Services Developer's
Guide.

■ the contents of the wsmgmt.xml file which contains the security configuration, see
Appendix A, "Understanding the Web Services Management Schema".

Additional Information

4-4 Advanced Web Services Developer's Guide

Ensuring Web Service Reliability 5-1

5
Ensuring Web Service Reliability

Message exchange in Web services can be inherently unreliable. It is not well-suited for
long-running conversations in a reliable fashion without additional infrastructure. To
use Web services for mission-critical, more complex business processes, you must be
able to exchange messages reliably. To this end, Oracle Application Server Web
Services provides the ability to add quality of service (QOS) guarantees around
reliable messaging. The facility provided is that of the OASIS standard. You can find
the specification at the following Web site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm

WS-Reliability is a specification for open, reliable Web service messaging including
guaranteed delivery, duplicate message elimination and message ordering, enabling
reliable communication between Web services. The reliability features are based on
extensions to the Simple Object Access Protocol (SOAP), rather than being tied to the
underlying transport protocol. The specification allows a variety of systems to
interoperate reliably in a platform- and vendor-neutral manner.

Reliability allows users of the Web services stack to exchange SOAP messages without
duplicates and with guaranteed delivery and message ordering. The information that
allows messages to be delivered in a reliable fashion is contained in extensions to the
SOAP message headers. The SOAP header extensions, the details of the messaging
model, and the semantics associated with it are defined by the WS-Reliability
specification.

Reliability encompasses the following features.

■ guaranteed delivery—ensures that a sent message will be received.

■ duplication elimination—ensures that the receiver will not see any duplicate
messages (messages with the same message ID are treated as duplicates).

■ guaranteed message delivery and duplicate message elimination—ensures that all
messages sent will be received, and any duplicate messages will be removed.

■ message ordering—ensures that a sequence of messages that are sent will be
received in the same order.

Enabling reliability on the server enables all of these features. The exercising of the
features is driven by the client either through a configuration file or an API.

This chapter contains the following sections.

■ Setting Up Reliability

■ Managing Reliability on the Server

■ Managing Reliability on the Client

■ Configuring Client-Side Database Support

Setting Up Reliability

5-2 Advanced Web Services Developer's Guide

■ Dynamically Configuring Client-Side Reliability

■ Tool Support for Web Services Reliability

Setting Up Reliability
The following sections describe the requirements you must satisfy before you can use
reliable messaging between the server and client.

■ Providing a Running Database

■ Installing SQL Tables for the Client and Server

Providing a Running Database
You can configure reliable messaging such that messages will be stored in the
server-side memory store or in a database store. If you choose to use a database store,
then a database must be running on the server before the reliable service is deployed.

Installing SQL Tables for the Client and Server
To enable reliable messaging, you must install certain SQL tables on both the client
and the server. The SQL scripts that install these tables are stored in the
j2ee/home/database/webservices/reliability/oracle directory.

■ clear-tables.sql—can be used to delete all records from the server-side
reliability tables. This script is provided as a convenience and should be used only
by the database administrator if the tables are in an irreversibly inconsistent state.

■ drop-tables.sql—can be used to drop all of the client and server reliability
tables.

■ reliability-tables.sql—creates reliability tables on both the client and
server. The tables required on the server are RM_SERVER_MESSAGE_INFO and
RM_SERVER_GROUP_INFO. The tables required on the client are RM_CLIENT_
MESSAGE_INFO and RM_CLIENT_GROUP_INFO. If you are developing only a
client or a server, then only its respective table has to be installed.

The scripts can be executed on the command line with the following SQL*Plus
command.

Sqlplus username/password @sql_script

In this command, username and password are your user name and password for
executing SQL scripts; sql_script is the name of the SQL script.

Changing the Widths of Database Columns
By default, database column widths for fields such as GROUP_ID, REPLY_TO_URL,
URL_PATTERN, and ENDPOINT_ADDRESS are set to 150. However, some applications
might generate longer names. This is likely to happen if you are working with
unusually long URLs or host names. If a generated name is longer than the specified
column width, then a database error can be returned.

To avoid this problem, you can modify the reliability-tables.sql script to
increase the column widths of the server-side and client-side tables. Example 5–1
illustrates a modified reliability-tables.sql script where the column width of
the GROUP_ID, REPLY_TO_URL, URL_PATTERN and ENDPOINT_ADDRESS fields have
been increased from 150 to 250.

Adding Reliable Messaging to a Web Service

Ensuring Web Service Reliability 5-3

Example 5–1 reliability-tables.sql with Modified Column Widths

CREATE TABLE RM_SERVER_MESSAGE_INFO (
GROUP_ID varchar(250),
SEQUENCE_NUM number,
TIMESTAMP number,
EXPIRY_TIME number,
RETRY_COUNT number,
ACK_STATUS varchar(50),
PROCESS_STATUS varchar(50),
REPLY_TO_URL varchar(250),
ENDPOINT_ADDRESS varchar(250),
URL_PATTERN varchar(250),
REPLY_PATTERN varchar(150),
FAULT_CODE varchar(50),
LAST_UPDATE number,
CONTENT_TYPE varchar(150),
SOAP_ACTION varchar(150),
MESSAGE BLOB,
PIPELINE_CONFIG BLOB,
CONSTRAINT RM_SERVER_MESSAGE_INFO_PK PRIMARY KEY (GROUP_ID, SEQUENCE_NUM));
CREATE TABLE RM_SERVER_GROUP_INFO (
GROUP_ID varchar(250) PRIMARY KEY,
SEQUENCE_NUM number ,
LAST_UPDATE number ,
TIMESTAMP number ,
GROUP_EXPIRY_TIME number ,
GROUP_MAX_IDLE number ,
REPLY_TO_URL varchar(250),
ENDPOINT_ADDRESS varchar(250));

Adding Reliable Messaging to a Web Service
To enable reliable messaging, you have to configure it into the Web service on the
server side and into the client. The following steps provide a general outline and a
"quick start" of how you can enable reliable messaging. For more detailed description,
see "WebServicesAssembler Support for Web Service Reliability" on page 5-16.

Server side:

On the server-side there are two ways to enable reliable messaging in a Web service.
One way is to provide a reliability configuration in a deployment descriptor and
assemble it into the Web service. The sections "Assembling Reliability into a Web
Service Bottom Up" on page 5-16 and "Assembling Reliability into a Web Service Top
Down" on page 5-17 describes this technique.

The second technique is to use the Application Server Control tool to configure reliable
messaging for the Web service after it is deployed. This technique is described in the
following steps.

1. Deploy the Web service.

Web services are deployed in the standard manner into a running instance of
OC4J. For more information on deploying Web service EAR files, see the Oracle
Containers for J2EE Deployment Guide.

2. If you have access to the Application Server Control tool, you can use it to
configure reliable messaging on the server-side. For more information, see the
topic "Configuring Reliability for a Web Service" in the Application Server Control
on-line help.

Managing Reliability on the Server

5-4 Advanced Web Services Developer's Guide

a. Log in to the Application Server Control tool.

b. Click the Web services tab.

c. Select the name of the Web service that was deployed.

d. Click the Administration tab.

e. Click Enable/Disable features.

f. Move "Reliability" to the enabled column and click "OK".

The Web service will have reliable messaging enabled.

Client Side:

To enable reliable messaging on the client, assemble a reliability configuration into the
client proxy. The settings that you choose for the reliability elements in the client side
must agree with the reliability settings for the server.

1. Create a client deployment descriptor file that includes the configuration elements
for reliability.

"Client-Side Reliability Configuration Elements" on page 5-9 describes the
reliability elements that can be included in the client-side configuration file. The
configuration file describes some of the built-in behavior of the generated client
and is based on the oracle-webservices-client-10_0.xsd schema. If there
are certain quality of service properties marked as "required" (such as duplicate
elimination or guaranteed delivery), then the client must also specify these
properties.

The configuration file can be written by hand or created by a tool, such as
JDeveloper.

2. Assemble the client proxy using the WebServicesAssembler command line or
ant-tasks.

Use the genProxy command to generate the Web service client. Specify the name
of the WSDL with the wsdl argument and the name of the file that contains the
reliability configuration with the ddFileName argument. "Assembling Reliability
into a J2SE Web Service Client Proxy" on page 5-18 provides more information on
assembling reliability into Web service clients.

The client stubs will have reliability enabled and are ready to be used by client code.

Managing Reliability on the Server
This section describes the configuration elements for reliability that can be found in
the server-side oracle-webservices.xml file. For a description of how you can
add management information, including reliability, to oracle-webservices.xml,
see "Configuring Server-Side Management Information" on page 3-4.

As with other files that are to be deployed, oracle-webservices.xml is typically
stored in an EAR file. Once the EAR is deployed to OracleAS Web Services, the Web
services management information in oracle-webservices.xml is extracted and
stored in wsmgmt.xml. You can modify the management configuration
post-deployment by using the Application Server Control tool.

Server-Side Reliability Configuration Elements
Reliability features can be assigned at the port level and at the operation level.

■ Port-Level Reliability Elements on the Server

Managing Reliability on the Server

Ensuring Web Service Reliability 5-5

■ Operation Level Reliability Elements on the Server

Port-Level Reliability Elements on the Server
This section describes the reliability elements that can be set at the port level. The port
level configuration determines where messages are stored.

The value of the type attribute in the <repository> element determines whether
the server will store messages in-memory or in a database store. If type="memory"
then messages are stored in an in-memory store. If type="jdbc" then messages are
stored in a database store.

Table 5–1 provides more information on <repository> and other port-level
reliability elements that can appear in the oracle-webservices.xml file.

Example 5–2 lists the reliability elements as they are used in
oracle-webservices.xml to describe reliability for an in-memory store.

Example 5–2 Port-Level Reliability Set for an In-Memory Store

...
<port-component name="...">
 <runtime enabled="reliability">
 <reliability>
 <repository name="bank-server-store" type="memory"/>
 <ack-interval value="60"/>

Table 5–1 Port-Level Reliability Elements in the Server-Side Configuration File

Element Name Description

<ack-interval> Specifies the interval, in seconds, after which an attempt is made to
send acknowledgments or faults for messages that were processing
asynchronously. The default value is 60 seconds.

<ack-limit> The value attribute specifies a limit on the number of attempts that
will be made to acknowledge a message. The default value is -1. This
indicates no-limit, or an infinite number of acknowledgment
attempts. A value of 0 indicates no acknowledgment attempts.

<cleanup-interval> The value attribute specifies the interval, in seconds, after which an
attempt is made to purge the store of expired or invalid messages.
The default is 3600 seconds (60 minutes).

<max-age> The value attribute specifies the maximum time the user would
want the message to be stored. The default value is 86400 seconds.

<order-interval> The value attribute specifies the interval, in seconds, after which the
unordered messages are processed. The default is 60 seconds.

<repository> Describes the kind of store that the server will use to store messages.
The value of the type attribute will determine the type of store
being configured. The allowed values for type are memory for a
memory store and jdbc for a database store. The default is memory.

■ For a memory store (memory), name is a required attribute. If
the store with that name has been configured for another
application in the server, then that store will be used. Otherwise
a new store will be configured. Example 5–2 illustrates a
port-level reliability configuration that stores messages in an
in-memory store.

■ For a database store (jdbc), a datasource must be configured on
the server and its location specified by jndiLocation.
Example 5–3 illustrates a port-level reliability configuration that
stores messages in a database store.

Managing Reliability on the Server

5-6 Advanced Web Services Developer's Guide

 <order-interval value="60"/>
 <cleanup-interval value="3600"/>
 <ack-limit value="10"/>
 <max-age value="86400"/>
 </reliability>
 </runtime>
 <operations>
 ...
</port-component>

Example 5–3 lists the reliability elements for a configured datasource on the server.

Example 5–3 Port Level Reliability Set for a Configured Datasource on the Server

...
<port-component name="...">
 <runtime enabled="reliability">
 <reliability>
 <repository type="jdbc" jndiLocation="jdbc/OracleManagedDS"/>
 <ack-interval value="60"/>
 <order-interval value="60"/>
 <cleanup-interval value="3600"/>
 <ack-limit value="10"/>
 <max-age value="86400"/>
 </reliability>
 </runtime>
 <operations>
 ...
</port-component>

Operation Level Reliability Elements on the Server
This section describes the reliability elements that can be set at the operation level.
Example 5–4 lists the reliability elements as they are used in
oracle-webservices.xml.

Note that since message ordering can take place across operations, it cannot be set at
this level. It also cannot be set at the port level because you might not want all
operations to be reliable or sensitive to message ordering.

Example 5–4 Operation-Level Reliability Elements in the Server-Side Configuration File

...
<port-component name="...">
 ...
 <operations>
 <operation name="deposit">
 <runtime>
 <reliability>
 <duplication-elimination-required value="true"/>
 <guaranteed-delivery-required value="true"/>
 </reliability>
 </runtime>
 </operation>
 </operations>
 </port-component>
...

Table 5–2 describes the reliability assertions that you can set at the operation level in
the oracle-webservices.xml file. If the values of these assertions are true, but

Managing Reliability on the Server

Ensuring Web Service Reliability 5-7

the client does not send the message according to the requirement, then a SOAP fault
is returned, describing the assertion that was violated.

Capability Assertions and Reliability
On the server side, capability assertions can specify the reliable capabilities of the Web
service. For reliability, capability assertions restrict the kind of messages sent to the
endpoint.

Capability assertions for reliability can be added to the Web service either by
JDeveloper wizards or WebServicesAssembler commands. In JDeveloper, the Web
service management configuration wizard contains a "Capability Assertions" option.

In WebServicesAssembler, when you are assembling a Web service top down, use the
genQosWsdl command to add capability assertions to the WSDL. Use the following
arguments to the genQosWsdl command.

■ use the wsdl argument to specify a WSDL

■ set the genQos argument to true

■ set the ddFileName argument to an oracle-webservices.xml deployment
descriptor that contains the server-side reliability configuration elements

When you are assembling a Web service bottom up, use the appropriate *Assemble
command to add capability assertions to the WSDL. Use the following arguments to
the *Assemble command.

■ set the genQos argument to true to indicate that capability assertions will be
added to the WSDL

■ set the ddFileName argument to an oracle-webservices.xml deployment
descriptor that contains the server-side reliability configuration elements

Port-Level Reliability Elements on the Server on page 5-5 and "Operation Level
Reliability Elements on the Server" on page 5-6 describe the elements that can be used
in the oracle-webservices.xml deployment descriptor.

"Working with Capability Assertions" on page 3-18 provides an overview of working
with capability assertions.

Example 5–3 describes the capability assertion elements defined for WS-Reliability.

Table 5–2 Operation-Level Reliability Elements in the Server-Side Configuration File

Element Name Description

<duplication-elimination-required> If set to true, it indicates that non-reliable clients will not
be allowed to invoke this operation. Specifically
messages that do not have the SOAP header for duplicate
elimination will be rejected. The default is false.

<guaranteed-delivery-required> If set to true, it indicates that non-reliable clients will not
be allowed to invoke this operation. Specifically,
messages that do not have the SOAP header for
guaranteed delivery will be rejected. The default is
false.

Managing Reliability on the Client

5-8 Advanced Web Services Developer's Guide

Example 5–5 provides an excerpt from a generated WSDL with capability assertions
tags generated into it. You can edit the generated values in the WSDL to change their
affect. If you edit the WSDL, then you will have to regenerate the endpoint and any
clients.

Example 5–5 WSDL Fragment, Containing Capability Assertions for Reliability

...
<binding name="HttpSoap11Binding" type="tns:Bank">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="deposit">
<soap:operation soapAction="http://www.oracle.com/bank/deposit"/>
 <capability-assertions wsdl:required="true">
 <guaranteed-delivery required="true">
 <reply-patterns callback="true" poll="true" response="true"/>
 </guaranteed-delivery>
 <duplicate-elimination required="true"/>
 </capability-assertions>
<input>
<soap:body use="encoded" namespace="http://www.oracle.com/bank"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" parts="accountName
amount"/>
</input>
</operation>
</binding>
...

Managing Reliability on the Client
Clients can manage reliability by using either an API or a configuration file.

■ Client-Side Reliability Configuration Elements

■ Dynamically Configuring Client-Side Reliability

Table 5–3 Capability Assertions Defined for WS-Reliability

Reliability Assertion Description

<guaranteed-delivery
required="true">

This assertion indicates that only messages that
have a guaranteed delivery SOAP header element
will be processed. Any messages that arrive at the
reliable endpoint without a SOAP header
indicating guaranteed delivery will be rejected
with a SOAP fault.

<reply-patterns callback="true"
poll="true" response="true"/>

This assertion indicates support for various reply
patterns. These assertions are explicit
advertisements of the capabilities of the endpoint.
Clients can use these capabilities to determine
how they want to interact with the endpoint.

<duplicate-elimination
required="true"/>

This assertion indicates that only messages that
have a duplicate elimination SOAP header
element will be processed. Any messages that
arrive at the reliable endpoint without the correct
SOAP header in the message indicating duplicate
elimination will be rejected with a SOAP fault.

Managing Reliability on the Client

Ensuring Web Service Reliability 5-9

Client-Side Reliability Configuration Elements
Reliability must be configured for both the server side and the client side for reliable
message communication to occur. This section describes only the client-side
configuration elements. For information on the server-side elements, see "Server-Side
Reliability Configuration Elements" on page 5-4.

On the client, reliability elements are stored in a configuration file. The name of the file
and where it resides depends on whether the client is J2EE or J2SE.

■ For J2EE servlet, EJB, and Web application clients, the configuration file is:

– META-INF/orion-ejb-jar.xml for an EJB client

– WEB-INF/orion-web.xml for a JSP or servlet client

– META-INF/orion-application-client.xml for a Web application client

■ For J2SE clients, the configuration file is: <generated_name>_Stub.xml, where
generated_name is derived from the targetNamespace and port name in the
WSDL.

Reliability can be assigned at the port level and at the operation level.

Port Level Reliability Elements on the Client
This section describes the reliability elements that can be set at the port level for the
client. Example 5–6 lists the reliability elements as they are used in the client-side
configuration file.

Example 5–6 Port-Level Reliability Elements in the Client-Side Configuration File

...
<port-info>
 <runtime enabled="reliability">
 <reliability>
 <repository name="standalone-client-store" type="memory"/>
 <retry-interval value="60"/>
 <cleanup-interval value="3600"/>
 <poll-interval value="60"/>
 <retry-limit value="10"/>
 <max-age value="86400"/>
 <standalone-listener-port value="8008"/>
 </reliability>
 </runtime>
...
</port-info>

Table 5–4 describes the reliability elements that can be set at the port level.

Table 5–4 Port-Level Reliability Elements in the Client-Side Configuration File

Element Name Description

<async-poll-reply-to-url> The value attribute specifies the URL to which
acknowledgments and faults will be sent if asynchronous
polling is desired. The URL for this is typically the host name of
the client along with the port that the listener is on.

<cleanup-interval> The value attribute specifies the interval, in seconds, after
which an attempt is made to purge the store of expired or
invalid messages. The default is 3600 seconds (60 minutes).

Managing Reliability on the Client

5-10 Advanced Web Services Developer's Guide

Operation Level Reliability Elements on the Client
This section describes the reliability elements that can be set at the operation level for
the client. Example 5–7 lists the reliability elements as they are used in the client-side
configuration file.

Example 5–7 Operation-Level Reliability Elements in the Client-Side Configuration File

<port-info>
...
 <operations>
 <operation name="...">
 <runtime>

<max-age> The value attribute specifies the maximum time the user would
want the message to be stored. The default value is 86400
seconds.

<poll-interval> The value attribute specifies the interval, in seconds, after
which a poll message will be sent to the server for reliable
messages that have not yet received any acknowledgment.
Default value is 60 seconds.

<repository> Specifies the kind of store that will be used to store messages.
The name attribute is a String that specifies the name of the
repository. The value of the type attribute will determine the
type of store being configured. The allowed values for type are
memory for a memory store and jdbc for a database store. The
default type of store is a memory store.

■ If memory is specified, then name is a required attribute. If a
store with the same name has been configured for another
server application, then that store will be used. If it has not,
then a new store will be configured.

■ If jdbc is specified, then you must provide database
support on the client side. For a J2EE client, a data source
must be configured and its location specified with
jndiLocation. For information on configuring a
client-side database, see "Configuring Client-Side Database
Support" on page 5-12.

<retry-interval> The value attribute specifies the interval after which an attempt
will be made to retry sending of messages that have not yet
received any acknowledgment or fault. The default value is 60
seconds.

<retry-limit> The value attribute specifies a limit on the number of attempts
that will be made to retry a message. The default value is 10. A
value of -1 indicates no -limit, or infinite retries.

Note: If the value attribute is set to 0, then the client will not
attempt to re-send messages. This, in effect, negates the
guaranteed delivery quality of service. As an optimization, the
reliability stack does retain messages in the database if the
value attribute is set to 0. No polling will be performed for
these messages since no guarantee can be made that the message
will reach the destination and an acknowledgment returned.

<standalone-listener-port> The value attribute specifies the port at which a listener will be
started for receiving acknowledgments or faults. This is used for
J2SE clients where there is no infrastructure to which
acknowledgments can be sent. If the client is in a J2EE
application, then a supplied servlet can be used.

Table 5–4 (Cont.) Port-Level Reliability Elements in the Client-Side Configuration File

Element Name Description

Managing Reliability on the Client

Ensuring Web Service Reliability 5-11

 <reliability>
 <guaranteed-delivery enabled="true"/>
 <duplicate-elimination enabled="true"/>
 <group-expiry-time value="86400"/>
 <reply-pattern value="Callback"/>
 <reply-to-url value="http://localhost:8008"/>
 <expiry value="3600"/>
 </reliability>
 </runtime>
 </operation>
 </operations>
</port-info>

Table 5–5 describes the reliability elements that can be set on the operation level.

You should provide a value for either <group-max-idle-time> or
<group-expiry-time>. If both elements are specified, then the value for
<group-expiry-time> will take precedence.

Table 5–5 Operation-Level Reliability Elements in the Client-Side Configuration File

Element Name Description

<duplicate-elimination> If the enabled attribute is true, duplicate elimination of
the message is enabled. Default value is true.

<expiry> The value attribute specifies the expiry time for a single
message in a group. For example, if a message, has not been
acknowledged for a time duration longer than the
expiration duration, then no further attempt will be made to
deliver the message. The client will be notified of the failure.

If a value is set for <group-expiry-time>, it should be
greater than the value of <expiry>. Default value is 3600
seconds.

<group-expiry-time> The value attribute specifies the expiration time, in
seconds, for all messages in the group. The value for
<group-expiry-time> should be greater than the value
set for <expiry>. Default value is 84600 seconds.

<group-max-idle-time> The value attribute specifies the maximum idle time, in
seconds, for a group of messages. This element is not
required to be present.

<guaranteed-delivery> If the enabled attribute is true, guaranteed delivery of
message is enabled. Default value is true.

<reply-pattern> The value attribute can be either Callback (asynchronous
acknowledgment/fault), Response (synchronous
acknowledgment/fault) or Polling (the acknowledgment
or fault will be polled for). Default value is Polling.

The <reply-pattern> element must be set only if
<guaranteed-delivery> is true.

<reply-to-url> The value attribute specifies the URL to which
acknowledgments and faults will be sent for messages that
want asynchronous acknowledgments. The URL for this is
typically the host name of the client along with the port that
the listener is on.

The <reply-to-url> element must be set only if
<guaranteed-delivery> is true.

Managing Reliability on the Client

5-12 Advanced Web Services Developer's Guide

Configuring Client-Side Database Support
OracleAS Web Services lets you choose whether to store messages sent to the client in
memory or in a database. Messages stored in memory are not persistent: if the server
goes down, the messages are lost.

If you choose to store client messages in a database, you must provide the database
and connection details to the client. This information cannot be passed to the client by
using the client-side APIs. Instead, you must provide settings for the port-level
<repository> element in the client-side management configuration file. This
element is described in Table 5–4 on page 5-9.

Configuring Database Support for a J2SE Client
For a J2SE client, you must provide all of the parameters that are required to establish
a database connection. This information, such as the name of the database, its URI,
connection type, the connection driver, and the user name and password, are all
attributes of the repository element. You enter this information into the <generated_
name>_Stub.xml file, where generated_name is derived from the target namespace
and port name in the WSDL.

Example 5–8 illustrates the configuration of a database connection for a J2SE client.
Note that the J2SE client requires all of the repository attributes to connect to the
database.

Example 5–8 Database Connection for a J2SE Client

<reliability>
 <repository
 name="bank-client-store"
 type="jdbc"
 connection-driver="org.hsqldb.jdbcDriver"
 username="SCOTT"
 password="TIGER"
 url="jdbc:hsqldb:testdb" />
 <retry-interval value="60" />
 <retry-limit value="10" />
 <poll-interval value="60" />
 <cleanup-interval value="3600" />
 <max-age value="86400" />
 <standalone-listener-port value="9999" />
</reliability>

Configuring Database Support for a J2EE Client
A J2EE client typically interacts with a datasource in an application server. The client
connects to the data source by performing a JNDI lookup on its location.

You enter the information into one of the following files, based on your client.

■ META-INF/orion-ejb-jar.xml for an EJB client

■ WEB-INF/orion-web.xml for a JSP or servlet client

■ META-INF/orion-application-client.xml for a Web application client

Datasources used for reliable clients should be configured to use local transactioning.
To declare local transactioning, add the attribute tx-level="local" to the
<managed-data-source> element. For example:

...
 <managed-data-source name="OracleDS" tx-level="local"

Managing Reliability on the Client

Ensuring Web Service Reliability 5-13

 jndi-name="jdbc/OracleManagedDS" ...
 />
 ...
In Example 5–9 the values for the repository attributes type and jndiLocation
provide the datasource type and location details to the J2EE client. The repository
elements are highlighted in bold.

Example 5–9 Database Connection for a J2EE Client

<reliability>
 <repository
 type="jdbc"
 jndiLocation="jdbc/OracleManagedDS"/>
 <retry-interval value="60" />
 <retry-limit value="10" />
 <poll-interval value="60" />
 <cleanup-interval value="3600" />
 <max-age value="86400" />
</reliability>

Configuring a Listener for a J2EE Client
For a J2EE client where the reliability client runs inside of an application, a Servlet
class, oracle.j2ee.ws.reliability.AckFaultServlet, is provided for use in
the application.

Example 5–10 illustrates the code that must be added to the application's web.xml
file.

Example 5–10 Listener Configuration for a J2EE Client

<servlet>
 <servlet-name>wsrm</servlet-name>
 <servlet-class>oracle.j2ee.ws.reliability.AckFaultServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
 <servlet-mapping>
 <servlet-name>wsrm</servlet-name>
 <url-pattern>/wsrm/*</url-pattern>
 </servlet-mapping>

The replyTo URL must be set to the URL to which the AckFaultServlet is mapped.
This is in contrast to the J2SE case, where the replyTo URL must correspond to the
standalone listener's host:port value.

Dynamically Configuring Client-Side Reliability
OracleAS Web Services provides the ability to dynamically configure reliability
features and receive notifications for acknowledgments and faults at the application
level. This functionality is provided by the oracle.webservices.reliability
package, a client-level API for managing reliability features.

The functionality contained in this package lets you override any default
configuration, or the configuration that was initially provided to the client.

You must use the API if you want to implement message ordering for your Web
service. Currently, using the API is the only way to start and end groups of ordered
messages.

Managing Reliability on the Client

5-14 Advanced Web Services Developer's Guide

You can also use this API if you want to enforce reliability policies on a per-message
basis.

Table 5–6 describes the classes in the oracle.webservices.reliability
package. More detailed information about the classes, such as fields and method-level
descriptions, can be found in the output of the Javadoc tool.

The APIs in the reliability package can be used to create the reliability context for both
static stub and DII clients.

The createContext() method in the ReliabilityClient class creates a
reliability context. The context is where you can set, among other features, the
reliability listeners, message acknowledgment type, duplicate message elimination,
guaranteed delivery, message expiration time, and the reply URL.

For a static stub, the reliability context is set on the current thread. All operations
invoked on the stub within the scope of a reliability context inherit their reliability
characteristics from that context.

For a DII client, the details about the service are passed to the client by URIs.
"Providing Dynamic Configuration for a DII Web Service Client" on page 3-10
provides more information on how to pass management details to a DII Web service
client.

Example 5–11 illustrates the code to make a stub that is generated by genProxy
reliable. In the code sample, a reliability context is created that is used over the lifetime
of the client (client.createContext()). The context is set on ThreadContext
when it is created. This allows operations on the banking stub to inherit their
reliability characteristics from the context.

Reliability is set to return asynchronous acknowledgments of messages received
(setAcknowledgmentType). The code guarantees that messages will be delivered
(setGuaranteedDeliveryEnabled), and that duplicate messages will be
eliminated (setDuplicateEliminationEnabled).

Example 5–11 Reliability Code for a Static Stub Client

ReliabilityClient client= ReliabilityClientFactory.getClientFactory().getClient();
ReliabilityContext reliabilityContext = client.createContext();

Table 5–6 Client APIs for Reliability

Class Name Description

ReliabilityClientFactory This is the factory class for creating a ReliabilityClient.

ReliabilityClient The ReliabilityClient holds listeners for receiving
asynchronous messages and configured stores for the client. It is
a factory for ReliabilityContext instances.

ReliabilityContext The class represents the context for reliable messaging that the
client is in. The context can be used to override any default
configuration for the client and to add listeners for reliability
events.

Ordered groups of messages can be started and ended only by
using the context (and not by static configuration) as groups
have to be determined dynamically

ReliabilityEvent This is an event that is sent to a ReliabilityListener.

ReliabilityListener Listener for reliability events (acks/faults). The client can
implement a reliability listener and add it to its
ReliabilityContext to receive notifications.

Managing Reliability on the Client

Ensuring Web Service Reliability 5-15

reliabilityContext.setAcknowledgmentType(ReliabilityContext.ACKNOWLEDGMENT_TYPE_
CALLBACK);
reliabilityContext.setDuplicateEliminationEnabled(true);
reliabilityContext.setGuaranteedDeliveryEnabled(true);

Banking banking = new Banking_Impl();
Bank bank = banking.getBankPort();
bank.deposit(new Deposit("checking", 100));

Example 5–12 illustrates the same client code, but for a DII client. In this case, the
service name and deposit details are obtained dynamically with URIs.

Example 5–12 Reliability Code for a DII Client

ReliabilityClient client = ReliabilityContextFactory.getDefault().getClient();
ReliabilityContext reliabilityContext = client.createContext();

reliabilityContext.setAcknowledgmentType(ReliabilityContext.ACKNOWLEDGMENT_TYPE_
CALLBACK);
reliabilityContext.setDuplicateEliminationEnabled(true);
reliabilityContext.setGuaranteedDeliveryEnabled(true);

Service service = ServiceFactory.newInstance().createService(new
QName("http://oracle.com/test/wsdl","TestService","test"));
Call call = service.createCall(new
QName("http://oracle.com/test/wsdl","TestServicePort"),
 new QName("http://oracle.com/test/wsdl","deposit"));
call.setProperty(ClientConstants.WSM_INTERCEPTOR_PIPELINE_CONFIG,
 new File("wsmClient.xml"));

Example 5–13 illustrates client code that performs message ordering. Like the previous
examples, a reliability context is created that is used over the lifetime of the client
(reliabilityClient.createContext()). To ensure that messages are received in
the same order in which they are sent, embed the code which is capable of sending
messages within the startMessageOrdering and endMessageOrdering
methods. These methods are highlighted in bold.

Note that for message ordering to work, the methods
setDuplicateEliminationEnabled and setGuaranteedDeliveryEnabled
must also be present and set to true. These methods are also highlighted in bold.

Example 5–13 Message Ordering on the Client

reliabilityContext = reliabilityClient.createContext();

reliabilityContext.setAcknowledgmentType(ReliabilityContext.ACKNOWLEDGMENT_TYPE_
CALLBACK);
 reliabilityContext.setDuplicateEliminationEnabled(true);
 reliabilityContext.setGuaranteedDeliveryEnabled(true);
 reliabilityContext.startMessageOrdering();

 Banking banking = new Banking_Impl();
 Bank bank = banking.getBankPort();
 bank.deposit("Checking", 10.0);
 bank.withdraw("Checking", 5.0);

 reliabilityContext.endMessageOrdering();

Tool Support for Web Services Reliability

5-16 Advanced Web Services Developer's Guide

Tool Support for Web Services Reliability
The following sections describe the support for reliability offered by Application
Server Control and JDeveloper.

■ WebServicesAssembler Support for Web Service Reliability

■ Application Server Control Support for Web Service Reliability

■ JDeveloper Support for Web Service Reliability

WebServicesAssembler Support for Web Service Reliability
This section describes how to use WebServicesAssembler commands to add a
reliability configuration to a Web service. A configuration can be added in a top down
or bottom up Web service assembly. A Web service client can also be assembled in this
way. In each case, the configuration is specified in an XML file and passed to the
WebServicesAssembler command with the ddFileName argument.

■ Assembling Reliability into a Web Service Bottom Up

■ Assembling Reliability into a Web Service Top Down

■ Assembling Reliability into a J2SE Web Service Client Proxy

Assembling Reliability into a Web Service Bottom Up
The following general steps describe how to assemble a reliability configuration into a
Web service bottom up.

1. Create the XML file that provides settings for the reliability features.

"Server-Side Reliability Configuration Elements" on page 5-4 describe the
port-level and operation-level reliability features that are available on the server.

2. Use the appropriate *Assemble command to assemble the Web service. Use the
ddFileName argument to pass the name of the XML file that contains the
reliability configuration to the command.

"Web Service Assembly Commands" in the Oracle Application Server Web Services
Developer's Guide provides more information on the commands that can assemble a
Web service bottom up. See "ddFileName" in the "Deployment Descriptor
Arguments" section of the Oracle Application Server Web Services Developer's Guide
for more information on this argument.

Example 5–14 illustrates an assemble Ant task that uses the ddFileName argument
to add the reliability configuration in wsmBankServiceConfig.xml to the Web
service.

Example 5–14 Passing a Reliability Configuration in a Bottom Up Web Service Assembly

<oracle:assemble appName="bank"
 targetNamespace="http://www.oracle.com/bank"
 typeNamespace="http://www.oracle.com/bank"
 serviceName="Banking"
 interfaceName="oracle.ws.server.bank.Bank"
 className="oracle.ws.server.bank.BankImpl"
 input="./build/classes/service"
 output="build"
 ear="build/bank.ear"
 style="rpc"
 use="encoded"
 createOneWayOperations="true"

Tool Support for Web Services Reliability

Ensuring Web Service Reliability 5-17

 ddFileName="wsmBankServiceConfig.xml"
 >
 </oracle:assemble>

Example 5–15 illustrates the contents of the wsmBankServiceConfig.xml for a
server-side reliability configuration. Note that the contents of the file are enclosed in
the <oracle-webservices> tag. The reliability configuration is highlighted in bold.

Example 5–15 Sample Server-Side Reliability Configuration

<oracle-webservices xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="oracle-webservices-management-10_0.xsd"
 schema-major-version="10" schema-minor-version="0">
 <webservice-description name="Banking">
 <port-component name="HttpSoap11">
 <runtime enabled="reliability">
 <reliability>
 <repository name="bank-server-store" type="memory"/>
 <ack-interval value="60"/>
 <order-interval value="60"/>
 <cleanup-interval value="10000"/>
 <ack-limit value="10"/>
 <max-age value="86000"/>
 </reliability>
 </runtime>
 <operations>
 <operation name="deposit">
 <runtime>
 <reliability>
 <duplication-elimination-required value="false"/>
 <guaranteed-delivery-required value="false"/>
 </reliability>
 </runtime>
 </operation>
 </operations>
 </port-component>
 </webservice-description>
</oracle-webservices>

 Assembling Reliability into a Web Service Top Down
The following general steps describe how to assemble a reliability configuration into a
Web service top down.

1. Provide settings for the reliability features that you want to enable in an XML file.

"Server-Side Reliability Configuration Elements" on page 5-4 describe the
port-level and operation-level reliability features that are available on the server.

2. Use the topDownAssemble command to assemble the Web service. Use the
ddFileName argument to pass the name of the XML file that contains the
reliability configuration to the command.

"Assembling a Web Service from a WSDL" in the Oracle Application Server Web
Services Developer's Guide provides more information about the
topDownAssemble command and assembling a Web service top down. See
"ddFileName" in the "Deployment Descriptor Arguments" section of the Oracle
Application Server Web Services Developer's Guide for more information on the
ddFileName argument.

Tool Support for Web Services Reliability

5-18 Advanced Web Services Developer's Guide

Example 5–16 illustrates a topDownAssemble Ant task that uses the ddFileName
argument to add the reliability configuration in wsmLoggingServiceConfig.xml
to the Web service. The ddFileName argument is highlighted in bold.

Example 5–16 Passing a Reliability Configuration in a Top Down Web Service Assembly

<oracle:topDownAssemble
 wsdl=" ./wsdl/LoggingFacility.wsdl"
 unwrapParameters="false"
 className="oracle.demo.topdowndoclit.service.DocLitLoggerImpl"
 input="build/classes/service"
 output="build"
 ear="dist/doclit_topdown.ear"
 mappingFileName="type-mapping.xml"
 packageName="oracle.demo.topdowndoclit.service"
 fetchWsdlImports="true"
 classPath="./build/classes/client"
 ddFileName="wsmLoggingServiceConfig.xml"
</oracle:topDownAssemble>

Assembling Reliability into a J2SE Web Service Client Proxy
The following general steps describe how to assemble a reliability configuration into a
J2SE Web service client proxy.

1. Provide settings for the reliability features that you want to enable in an XML file.

"Client-Side Reliability Configuration Elements" on page 5-9 describe the
port-level and operation-level reliability features that can be set for the client.

2. Use the genProxy command to assemble the Web service client. Use the
ddFileName argument to pass the name of the XML file that contains the
reliability configuration to the command.

"Configuring Management Information for a J2SE Client" on page 3-7 provides
more detailed information on adding a management configuration to a J2SE client.

"Assembling a J2SE Web Service Client" in the Oracle Application Server Web
Services Developer's Guide provides more information on creating J2SE Web service
clients.

Example 5–17 illustrates a genProxy Ant task that uses the ddFileName argument to
add the reliability configuration in wsmClientDD.xml to the Web service. The
ddFileName argument is highlighted in bold.

Example 5–17 Passing a Reliability Configuration in a Web Service Client Assembly

<oracle:genProxy
 wsdl="http://localhost:8888/bankdemo/bank?WSDL"
 output="test/src"
 debug="true"
 packageName="oracle.generated"
 ddFileName="wsmClientDD.xml"/>
</oracle:genProxy>

Example 5–18 illustrates the contents of the wsmClientDD.xml for a client-side
reliability configuration. Note that the contents of the file are enclosed in the
<port-info> tag.

Example 5–18 Sample Client-Side Reliability Configuration

...

Tool Support for Web Services Reliability

Ensuring Web Service Reliability 5-19

<port-info>
 <runtime enabled="reliability">
 <reliability>
 <repository name="standalone-client-store" type="memory"/>
 <retry-interval value="60"/>
 <cleanup-interval value="10000"/>
 <poll-interval value="60"/>
 <retry-limit value="10"/>
 <max-age value="86000"/>
 <standalone-listener-port value="9876"/>
 </reliability>
 </runtime>
 <operations>
 <operation name="deposit">
 <runtime>
 <reliability>
 <guaranteed-delivery enabled="true"/>
 <duplicate-elimination enabled="true"/>
 <group-expiry-time value="860000"/>
 <reply-pattern value="Callback"/>
 <reply-to-url value="http://localhost:9876"/>
 <expiry value="860000"/>
 </reliability>
 </runtime>
 </operation>
 </operations>
</port-info>
...

Assembling Reliability into a J2EE Web Service Client
The following general steps describe how to assemble a reliability configuration into a
J2EE Web service client.

1. Provide settings for the reliability features that you want to enable in an XML file.

"Client-Side Reliability Configuration Elements" on page 5-9 describe the
port-level and operation-level reliability features that can be set for the client.

2. Use the genInterface command to assemble the Web service client. Pass the
reliability configuration to the command with the ddFileName argument. "How
to Assemble a J2EE Web Service Client" in the Oracle Application Server Web Services
Developer's Guide provides detailed instructions for creating the J2EE Web service
client.

"Configuring Management Information for a J2EE Client" on page 3-8 provides
more detailed information on adding a management configuration to a J2EE client.

Application Server Control Support for Web Service Reliability
Application Server Control can read and modify the reliability configuration of a
deployed Web service. Once the configuration has been modified and applied, the Web
service will run with the new configuration values. Application Server Control can be
used to set Web service reliability options on the port and operation level.

On the server-side, Application Server Control only lets you view, enable, and disable
reliability arguments. You cannot view or change any values for clients.

Limitations

5-20 Advanced Web Services Developer's Guide

JDeveloper Support for Web Service Reliability
JDeveloper can be used to develop OracleAS Web Services and client Web service
management configuration files. JDeveloper can aid you in the initial creation of these
files or it can be used to add management configuration to existing files.

The "Configure Management and Reliability" wizard helps you configure port and
operation level reliability for inbound and outbound SOAP messages. Options in the
wizard allow you to configure all of the reliability elements described in "Port-Level
Reliability Elements on the Server" on page 5-5 and "Operation Level Reliability
Elements on the Server" on page 5-6.

Limitations
See "Ensuring Web Service Reliability" on page E-10.

Additional Information
For more information on:

■ adding Web service management information, including security, to a Web service,
see Chapter 3, "Managing Web Services".

■ adding security information to a Web service, see Chapter 4, "Ensuring Web
Services Security" and the Oracle Application Server Web Services Security Guide.

■ adding auditing and logging information to a Web Service, see Chapter 6,
"Auditing and Logging Messages".

■ the contents of the wsmgmt.xml file which contains the security configuration, see
Appendix A, "Understanding the Web Services Management Schema".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see "Packaging and
Deploying Web Services" in the Oracle Application Server Web Services Developer's
Guide.

Additional Information

Ensuring Web Service Reliability 5-21

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

Additional Information

5-22 Advanced Web Services Developer's Guide

Auditing and Logging Messages 6-1

6
Auditing and Logging Messages

This chapter describes the logging and auditing functionality available for Oracle
Application Server Web Services. Auditing enables you to keep a complete, persistent
record of request, response, and fault SOAP messages. It records the entire message.
Logging enables you to extract and persistently store discrete portions of request,
response, and fault SOAP messages.

■ Understanding Auditing

■ Managing Auditing on the Server

■ Understanding Logging

■ Managing Logging on the Server

■ Tool Support for Web Services Auditing and Logging

Understanding Auditing
Auditing enables you to keep a complete, persistent record of SOAP requests,
responses, and faults. During development it is often very convenient to be able to
inspect the contents of SOAP requests and responses to diagnose problems.

In a production environment, specific SOAP messages can be stored to support
non-repudiation efforts. For example, an on-line retailer could record all received
purchase order requests.

Auditing also enables you to design a strategy that records and analyzes
security-related events. A history of audit records can produce an audit trail enabling
the reconstruction and examination of a sequence of events. The audit trail can be used
to detect attacks, confirm compliance with policy, deter abuse, and so on.

Auditing and Performance
Auditing is initiated and performed by the server. It cannot be initiated or performed
by the client. Adding auditing to your Web service does not require changes or
extensions to the WSDL.

If you enable auditing, there will probably be a measurable impact upon the
performance of the system. You should use it only during development and
debugging, or when there is a clear need to persist the entire contents of a message
during production. Auditing for non-repudiation is a good example. In this case, it is
likely that you will have to audit only a small set of Web service operations, so the
performance impact should be acceptable.

The size of the logged messages will effect how large the performance impact will be.
Larger message will take more time and system resources to store.

Understanding Auditing

6-2 Advanced Web Services Developer's Guide

Processing Audit Messages
Auditing can be applied at runtime to messages flowing into the platform (request
messages), flowing out of the platform (response messages), and generated fault
messages. The following sections describe how the runtime processes these messages.

■ Auditing Request Messages

■ Auditing Response Messages

■ Auditing Fault Messages

Example 6–1 illustrates a sample logged SOAP message. The original SOAP message
appears in the <MSG_TEXT> element and is highlighted in bold in this example.

Example 6–1 Sample SOAP Message in the Audit Log

<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2003-12-22T16:44:09.455-05:00</TSTZ_ORIGINATING>
 <ORG_ID>wsm</ORG_ID>
 <COMPONENT_ID>auditing</COMPONENT_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>jdoe-us</HOST_ID>
 <HOST_NWADDR>111.2.3.444</HOST_NWADDR>
 <PROCESS_ID>null-12</PROCESS_ID>
 <USER_ID>jdoe</USER_ID>
 </HEADER>
 <CORRELATION_DATA>

 <EXEC_CONTEXT_ID><UNIQUE_ID>138.2.8.162:82684:1072129449465</UNIQUE_
ID><SEQ>0</SEQ></EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT><env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><env:Header/>
<env:Body><operation:echo xmlns:operation="http://oracle.com/test/wsdl">
<String_1>Hello</String1></operation:echo></env:Body>
</env:Envelope></MSG_TEXT>
 </PAYLOAD>
</MESSAGE>

Auditing Request Messages
When an inbound SOAP message is received, the runtime determines, based on the
configuration, whether auditing is enabled for the port. The configuration also
indicates whether request messages are to be audited. If auditing is enabled for both
the port and operation, then the entire message is written to the audit log.

Auditing Response Messages
When the Web service implementation creates outbound response SOAP messages, the
management features are applied in reverse order. If auditing is enabled for the port
and the configuration also indicates that response messages are to be audited, then the
entire message is written to the audit log.

Managing Auditing on the Server

Auditing and Logging Messages 6-3

Auditing Fault Messages
Fault messages can be generated by the Web service implementation or by any of the
application handlers. If the auditing of fault messages is enabled for the port and
operation by the configuration, then fault messages are written to the audit log.

Managing Auditing on the Server
The configuration information for auditing is located in the server-side Web services
proprietary deployment descriptor oracle-webservices.xml. The contents of this
file can be modified during packaging, deployment, or runtime. At runtime, changes
must be made using either Application Server Control or by editing the ORACLE_
HOME\j2ee\home\config\wsmgmt.xml file.

Auditing can be performed only at the operation level. Hence, there is no global or
port-level configuration.

Auditing captures request, response, and fault messages and stores them in the
persistent file ORACLE_HOME\log\wsmgmt\audit\log.xml. This is a rolling file:
after it reaches a certain size, it is renamed log-[number].xml and a new log.xml
file is started. Over time, older versions of the file may be deleted. Application Server
Control can read this file. For information about this file see "Configuring Auditing for
a Web Service" in the Application Server Control on-line help

Server-Side Auditing Configuration Elements
An auditing configuration can be defined for each operation in a Web service port. The
<auditing> element and its three attributes, request, response, and fault,
define the auditing configuration. Each attribute can have a true or false value to
indicate whether Web service management will store these messages. The following is
a sample auditing configuration.

<auditing request="true" response="false" fault="false"/>

Example 6–2 illustrates the <auditing> element, highlighted in bold, as it appears in
the oracle-webservices.xml deployment descriptor. Note that even though you
cannot specify auditing for a port, a <runtime enabled="auditing"> element is
still required at the port level. The schema for this file is:

http://xmlns.oracle.com/oracleas/schema/oracle-webservices-10_
0.xsd

Example 6–2 Operation-Level Auditing Element in the Server-Side Configuration File

...
<port-component name="String">
 ...

 <runtime enabled="auditing">
 ...
 </runtime>
 <operations>
 <operation name "..." >
 <runtime>
 ...
 <auditing request="true" response="true" fault="false"/>
 </runtime>
 </operation>
 </operations>
</port-component>

Managing Auditing on the Client

6-4 Advanced Web Services Developer's Guide

...

Table 6–1 describes the attributes of the auditing element.

Managing Auditing on the Client
The configuration information for auditing is located in the client-side Web services
proprietary deployment descriptor. Depending on the client application, this can be
either orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml. The contents of this file can be modified during
packaging or deployment.

Auditing can be performed only at the operation level. Hence, there is no global or
port-level configuration.

Similar to the server-side, a client-side auditing configuration can be defined for each
operation in a Web service port. The <auditing> element and its three attributes,
request, response, and fault, define the auditing configuration. Each attribute
can have a true or false value to indicate whether Web service management will
store these messages. Table 6–1 provides a description of the <auditing> element
and its attributes. The following is a sample auditing configuration.

<auditing request="true" response="false" fault="false"/>

The auditing configuration appears within the <operation> clause of the
<service-ref-mapping> element. Each operation can have its own auditing
configuration. Example 6–3 illustrates the skeleton of an orion-web.xml
Oracle-proprietary client-side deployment descriptor that indicates the position of the
auditing configuration in the hierarchy. The auditing configuration is highlighted in
bold. Note that the configuration occurs within the <port-info> element. The
schema for this file is:

http://xmlns.oracle.com/oracleas/schema/orion-web-10_0.xsd

Example 6–3 Sample Client-Side orion-web.xml with an Auditing Configuration

<orion-web-app ...>
 <service-ref-mapping name="service/MyTestServiceRef">
 <port-info>
 ...
 <runtime>
 ...
 <security/>
 <reliability/>
 ...
 </runtime>

Table 6–1 Elements to Enable Message Auditing

Element Name Description

<auditing> Has attributes request, response, and fault that accept a
Boolean value. If an attribute is true, then messages of that type
will be audited.

■ request—Indicates whether request messages will be
audited. Default is true.

■ response—Indicates whether response messages will be
audited. Default is false.

■ fault—Indicates whether fault messages will be audited.
Default is false.

Understanding Logging

Auditing and Logging Messages 6-5

 <operations>
 ...
 <operation name="echo">
 <runtime enabled = "security,reliability,auditing">
 ...
 <security/>
 <reliability/>
 <auditing request="true" response="true" fault="false"/>
 ...
 </runtime>
 </operation>
 ...
 </operations>
 </port-info>
 </service-ref-mapping>
</orion-web-app>

Understanding Logging
OracleAS Web Services includes basic SOAP message logging. This functionality lets
you extract and persistently store discrete portions of request, response, and fault
SOAP messages.

There are many situations where you might want to persistently capture information
from SOAP messages. For example many large organizations deploying internal Web
services may want to track which groups within the organization are using the service.
Logging could enable this by extracting and collecting group information from
messages.

Logging and Performance
Logging is likely to have a minor impact upon the performance of the system. Since
only simple types can be extracted from messages, this impact should be limited. If the
logging mechanism is asked to extract large amounts of information from individual
messages (for example, large text blocks) a proportional performance impact may
occur.

Processing Logging Messages
Logging can be applied at runtime to messages flowing into the platform (request
messages), flowing out of the platform (response messages), and generated fault
messages. See the following sections for information on how the runtime processes
these messages.

■ Logging Request Messages

■ Logging Response Messages

■ Logging Fault Messages

Example 6–4 provides a sample of a log record derived from an inbound SOAP request
message. In the log, two messages are logged, account and amount.

Example 6–4 Sample Log File Entry

<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2004-01-30T11:32:19.724-05:00</TSTZ_ORIGINATING>
 <ORG_ID>wsm</ORG_ID>
 <COMPONENT_ID>logging</COMPONENT_ID>

Managing Logging on the Server

6-6 Advanced Web Services Developer's Guide

 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>xwen-us</HOST_ID>
 <HOST_NWADDR>138.2.8.175</HOST_NWADDR>
 <PROCESS_ID>null-10</PROCESS_ID>
 <USER_ID>xwen</USER_ID>
 </HEADER>
 <CORRELATION_DATA>

<EXEC_CONTEXT_ID><UNIQUE_ID>138.2.8.175:52155:1075480339694</UNIQUE_
ID><SEQ>0</SEQ></EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>account='Checking',amount='100.0'</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>

Logging Request Messages
When an inbound SOAP message is received, the runtime determines, based on the
configuration, whether logging is enabled for the port. The logging mechanism then
determines, based again on the configuration, what information, if any, is to be
extracted from the message for the operation. This information is then stored.

Logging Response Messages
When the Web service implementation creates outbound response SOAP messages, the
management features are applied reverse order. If logging is enabled for the port and
the configuration also indicates that information from response messages should be
logged, then the information is extracted and stored.

Logging Fault Messages
Fault messages can be generated by the Web service implementation or any of the
application handlers. If logging fault messages is enabled by the configuration, then
the specified information is extracted from the message and stored.

Managing Logging on the Server
The configuration information for logging is stored in the server-side Web services
proprietary deployment descriptor oracle-webservices.xml. The contents of this
file can be modified during packaging, deployment, or runtime. At runtime, changes
must be made either by using Application Server Control or by editing the ORACLE_
HOME\j2ee\home\config\wsmgmt.xml file.

Logging must be configured at the port and operation levels. There is no global-level
configuration.

Server-Side Logging Configuration Elements
If logging features are employed, they must be configured at both the port and the
operation level. The port-level configuration contains information that is referenced by
the operation level. Unlike security, operation-level configuration does not override
port-level configuration.

Logging information is stored in ORACLE_HOME/log/wsmgmt/logging/log.xml.
This is a rolling file: after it reaches a certain size, it is renamed log-[number].xml
and a new log.xml file is started.

Managing Logging on the Server

Auditing and Logging Messages 6-7

Port-Level Logging Elements on the Server
Example 6–5 displays the port-level logging elements as they appear in the server-side
Web services proprietary deployment descriptor, oracle-webservices.xml. These
elements are used to create a set of namespace prefix and URI pairs that are referenced
by the operation level configuration. The schema for this file is:

http://xmlns.oracle.com/oracleas/schema/oracle-webservices-10_
0.xsd

Example 6–5 Port-Level Logging Elements in the Server-Side Configuration File

...
<port-component name="...">
 ...
 <runtime enabled="logging">
 <logging>
 <namespaces>
 <namespace prefix='env' uri='http://schemas.xmlsoap.org/soap/envelope/'/>
 <namespace prefix='ns0' uri='http://oracle.com/test/wsdl'/>
 </namespaces>
 </logging>
 ...
 </runtime>
</port-component>
...

Table 6–2 describes the port-level namespace elements that must be set for logging
information to be reported. The namespace prefix-URI pairs are used for processing
xpath expressions.

Operation Level Logging Elements on the Server
Example 6–6 illustrates the operation-level logging elements as they appear in the
server-side Web services proprietary deployment descriptor,
oracle-webservices.xml. At the operation level, you can enable or disable
logging for request, response, and fault messages. The schema for this file is:

http://xmlns.oracle.com/oracleas/schema/oracle-webservices-10_
0.xsd

Example 6–6 Operation-Level Logging Elements in the Server-Side Configuration File

...
<port-component name="String">
 ...
 <operations>
 <operation name="...">
 <runtime>
 ...
 <logging>
 <request enabled='true'>
 <attributes>

Table 6–2 Namespace Elements for Logging

Element Name Description

<namespace> Specifies a name-value pair of namespace prefixes and
namespace URIs. The namespace URIs are implicitly referenced
by the use of the prefixes in xpath expressions defined for
logging at the operation level.

Tool Support for Web Services Auditing and Logging

6-8 Advanced Web Services Developer's Guide

 <attribute name='input'
 ...
 xpath='/env:Envelope/env:Body/ns0:echo/String_1/text()'/>
 </attributes>
 </request>
 <response enabled='true'>
 <attributes>
 <attribute name='output'
 xpath='/env:Envelope/env:Body/ns0:echoResponse/result/text()'/>
 </attributes>
 </response>
 <fault enabled='true'>
 <attributes>
 <attribute name='output'
 xpath='/env:Envelope/env:Body/ns0:echoResponse/result/text()'/>
 </attributes>
 </fault>
 </logging>
 </runtime>
 </operation>
 </operations>
</port-component>
...

Table 6–3 describes the message logging elements: request, response, and fault.
Setting an element to true enables logging for that message type. If logging is
enabled, you can specify one or more attributes you want to log for each message type.
These attributes are indicated by its name and xpath.

If logging for a message type is enabled, but no attributes are configured, then no
logging will occur. Similarly, if the xpath query returns no results, then no logging
will occur.

Tool Support for Web Services Auditing and Logging
This section provides an overview of the parts of the Web service auditing and logging
configuration that can be set by the JDeveloper and Application Server Control tools.
For detailed information of the individual auditing and logging options that can be
controlled by these tools, see the on-line help for Application Server Control and
JDeveloper.

■ Application Server Control Support for Auditing and Logging

■ JDeveloper Support for Auditing and Logging

Table 6–3 Elements to Enable Message Logging

Element Name Description

<request> If enabled=true, specify name-value pairs of message
attributes. Each attribute is specified by an attribute name and
xpath value. Default is true.

<response> If enabled=true, specify name-value pairs of message
attributes. Each attribute is specified by an attribute name and
xpath value. Default is true.

<fault> If enabled=true, specify name-value pairs of message
attributes. Each attribute is specified by an attribute name and
xpath value. Default is true.

Tool Support for Web Services Auditing and Logging

Auditing and Logging Messages 6-9

WebServicesAssembler Support for Web Service Auditing and Logging
This section describes how to use WebServicesAssembler commands to add an
auditing and logging configuration to a Web service. A configuration can be added in
a top down or bottom up Web service assembly. Auditing can also be assembled into a
Web service client (logging is not available on the client). In each case, the
configuration is specified in an XML file and passed to the WebServicesAssembler
command with the ddFileName argument.

■ Assembling Auditing and Logging into a Web Service Bottom Up

■ Assembling Auditing and Logging into a Web Service Top Down

■ Assembling Auditing into a J2SE Web Service Client Proxy

■ Assembling Auditing into a J2EE Web Service Client

Assembling Auditing and Logging into a Web Service Bottom Up
The following general steps describe how to assemble an auditing and logging
configuration into a Web service bottom up.

1. Create the XML file that provides settings for the auditing and logging features
you want to enable. There are two different ways in which you can do this.

■ Manually write the XML file that contains the auditing and logging settings.
Example 6–8 illustrates a sample XML file that contains these settings. Save
the file.

■ Run the WebServicesAssembler tool with the appropriate *Assemble
command for your Web service. One of the files it creates will be an
oracle-webservices.xml file that contains a skeleton of the ports and
operations. For example, you could run the Ant task in Example 6–7 without
the ddFileName argument to obtain this file. Edit
oracle-webservices.xml file to enter the appropriate settings for the
auditing and logging features. Save the file under a different name.

"Server-Side Auditing Configuration Elements" on page 6-3 and "Server-Side
Logging Configuration Elements" on page 6-6 describe the port-level and
operation-level auditing and logging features that are available on the server.

2. Use the appropriate *Assemble command to assemble the Web service. Use the
ddFileName argument to pass the file with the auditing and logging
configuration you created in Step 1 to the WebServicesAssembler tool.

"Web Service Assembly Commands" in the Oracle Application Server Web Services
Developer's Guide provides more information on the commands that can assemble a
Web service bottom up. See "ddFileName" in the "Deployment Descriptor
Arguments" section of the Oracle Application Server Web Services Developer's Guide
for more information on this argument.

Example 6–7 illustrates an assemble Ant task that uses the ddFileName argument to
add the auditing and logging configuration in wsmBankServiceConfig.xml to the
Web service.

Example 6–7 Passing an Auditing and Logging Configuration in a Bottom Up Web
Service Assembly

<oracle:assemble appName="bank"
 targetNamespace="http://www.oracle.com/bank"
 typeNamespace="http://www.oracle.com/bank"
 serviceName="Banking"
 interfaceName="oracle.ws.server.bank.Bank"

Tool Support for Web Services Auditing and Logging

6-10 Advanced Web Services Developer's Guide

 className="oracle.ws.server.bank.BankImpl"
 input="./build/classes/service"
 output="build"
 ear="build/bank.ear"
 style="rpc"
 use="encoded"
 ddFileName="wsmBankServiceConfig.xml"
 >
 </oracle:assemble>

Example 6–8 illustrates the contents of the wsmBankServiceConfig.xml for a
server-side auditing and logging configuration. While both auditing and logging are
enabled at the port level, only a logging configuration is provided. At the operations
level, an auditing configuration is provided for the withdraw operation and a logging
configuration is provided for the deposit operation. Note that the contents of the file
are enclosed in the <oracle-webservices> element.

Example 6–8 Sample Server-Side Auditing and Logging Configuration

<?xml version='1.0' encoding='UTF-8'?>
<oracle-webservices xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/
 oracle-webservices-10_0.xsd">
 <webservice-description name="Bank">
 <port-component name="HttpSoap11">
 <runtime enabled="auditing, logging">
 <auditing/>
 <logging>
 <namespaces>
 <namespace prefix="target_ns"
uri="http://oracle.com/bank/wsdl"/>
 <namespace prefix="soap"
uri="http://schemas.xmlsoap.org/soap/envelope/"/>
 </namespaces>
 </logging>
 </runtime>
 <operations>
 <operation name="withdraw">
 <runtime>
 <auditing request="true" response="true" fault="false"/>
 </runtime>
 </operation>
 <operation name="deposit">
 <runtime>
 <logging>
 <request enabled="true">
 <attributes>
 <attribute name="request_string"
 xpath="/soap:Envelope/soap:Body/target_ns:deposit/String_1/text()"/>
 </attributes>
 </request>
 <response enabled="true">
 <attributes>
 <attribute name="response_result"
 xpath="/soap:Envelope/soap:Body/target_ns:depositResponse/result/text()"/>
 </attributes>
 </response>
 </logging>
 </runtime>
 </operation>

Tool Support for Web Services Auditing and Logging

Auditing and Logging Messages 6-11

 </operations>
 </port-component>
 </webservice-description>
</oracle-webservices>

 Assembling Auditing and Logging into a Web Service Top Down
The following general steps describe how to assemble an auditing and logging
configuration into a Web service top down.

1. Create the XML file that provides settings for the auditing and logging features
that you want to enable. There are two different ways in which you can do this.

■ Manually write the XML file that contains the auditing and logging settings.
Example 6–8 illustrates an XML file that contains sample auditing and logging
settings.

■ Run the WebServicesAssembler tool with the topDownAssemble command.
One of the files it creates is an oracle-webservices.xml file that contains
a skeleton of the ports and operations. For example, you could run the Ant
task in Example 6–9 without the ddFileName argument to obtain this file. Edit
oracle-webservices.xml file to enter the appropriate settings for the
auditing and logging features. Save the file under a different name.

"Server-Side Auditing Configuration Elements" on page 6-3 and "Server-Side
Logging Configuration Elements" on page 6-6 describe the port-level and
operation-level auditing and logging features that are available on the server.

2. Use the topDownAssemble command to assemble the Web service. Use the
ddFileName argument to pass the file with the auditing and logging
configuration you created in Step 1 to the WebServicesAssembler tool.

"Assembling a Web Service from a WSDL" in the Oracle Application Server Web
Services Developer's Guide, provides more information about the
topDownAssemble command and assembling a Web service top down. See
"ddFileName" in the "Deployment Descriptor Arguments" section of the Oracle
Application Server Web Services Developer's Guide for more information on this
argument.

Example 6–9 illustrates a topDownAssemble Ant task that uses the ddFileName
argument to add the auditing and logging configuration in
wsmLoggingServiceConfig.xml to the Web service.

Example 6–9 Passing an Auditing and Logging Configuration in a Top Down Web
Service Assembly

<oracle:topDownAssemble
 wsdl="BankService.wsdl"
 input="build/classes/service"
 output="build"
 className="oracle.ws.server.bank.BankImpl"
 ear="dist/bank.ear"
 packageName="oracle.ws.server.bank"
 ddFileName="BankServiceWsmConfig.xml"/>

Assembling Auditing into a J2SE Web Service Client Proxy
The following general steps describe how to assemble an auditing configuration into a
J2SE Web service client proxy. Logging is not available for a Web service client.

1. Provide settings for the auditing features that you want to enable in an XML file.

Tool Support for Web Services Auditing and Logging

6-12 Advanced Web Services Developer's Guide

"Managing Auditing on the Client" on page 6-4 describe the operation-level
auditing features that can be set for the client.

2. Use the genProxy command to assemble the Web service proxy. Pass the auditing
configuration to the command with the ddFileName argument.

This will result in the generation of an XML file. For the genProxy command
illustrated in Example 6–10, this would result in the file
oracle\generated\runtime\BankPortBinding_Stub.xml being
generated into the test\src directory.

"Configuring Management Information for a J2SE Client" on page 3-7 provides
more detailed information on adding a management configuration to a J2SE client.

Example 6–10 illustrates a genProxy Ant task that uses the ddFileName argument to
add the auditing configuration in wsmClientDD.xml to the Web service.

Example 6–10 Passing an Auditing Configuration in a Web Service Client Assembly

<oracle:genProxy
 wsdl="http://localhost:8888/bankdemo/bank?WSDL"
 output="test/src"
 packageName="oracle.generated"
 ddFileName="wsmClientDD.xml"/>
</oracle:genProxy>

Example 6–11 illustrates the contents of the wsmClientDD.xml for a client-side
auditing configuration. The auditing configuration is highlighted in bold. Note that
the contents of the file are enclosed in the <port-info> tag.

Example 6–11 Sample Client-Side Auditing Configuration

<port-info>
 <runtime>
 </runtime>
 <operations>
 <operation name="deposit">
 <runtime>
 <auditing request="true" response="true" fault="false"/>
 </runtime>
 </operation>
 </operations>
</port-info>

Assembling Auditing into a J2EE Web Service Client
J2EE Web service clients can be configured to perform auditing. Logging is not
available for Web service clients. The following general steps describe how you can
add an auditing configuration to a J2EE Web service client. In addition to generating
the client code, you must also edit both the standard and the Oracle-proprietary Web
service deployment descriptor.

1. Generate the J2EE client code by providing the WSDL and the service endpoint
interface as input to the genInterface command. See "How to Assemble a J2EE
Web Service Client" in the Oracle Application Server Web Services Developer's Guide
for more detailed information on using WebServicesAssembler to assemble J2EE
client code.

2. Edit the deployment descriptor for the J2EE component (either web.xml,
ejb-jar.xml, or application-client.xml) to add the code to the
<service-ref> element that will allow the component to access the Web service

Tool Support for Web Services Auditing and Logging

Auditing and Logging Messages 6-13

endpoint. For examples of how auditing and other Web service management
information can be added to a standard J2EE Web service client deployment
descriptor, see the following examples.

■ Example 3–5, "web.xml—Static Configuration for a Servlet or JSP Web Service
Client"

■ Example 3–7, "ejb-jar.xml—Static Configuration for an EJB Web Service Client"

■ Example 3–9, "application-client.xml—Static Configuration for an Application
Client Web Service Client"

See "Adding J2EE Web Service Client Information to Deployment Descriptors" in
the Oracle Application Server Web Services Developer's Guide for information on the
<service-ref> element and its contents.

3. Edit the Oracle-proprietary deployment descriptor for the J2EE component (either
orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml) to add OC4J platform-specific information
and the auditing configuration to the <service-ref-mapping> element.

For examples of how auditing and other Web service management information
can be added to a J2EE Web service client, see the following examples.

■ Example 3–6, "orion-web.xml—Static Configuration and Management
Information for a Servlet or JSP Web Service Client"

■ Example 3–8, "orion-ejb-jar.xml—Static Configuration and Management
Information for an EJB Web Service Client"

■ Example 3–10, "orion-application-client.xml—Static Configuration and
Management Information for an Application Client Web Service Client"

See "Adding OC4J-Specific Platform Information" in the Oracle Application Server
Web Services Developer's Guide for information on the <service-ref-mapping>
element and its contents.

Example 6–12 illustrates a sample orion-web.xml file that has been edited to
contain an auditing configuration. The configuration appears within the
<service-ref-mapping> element, which is used to provide platform-specific
information.

Example 6–12 orion-web.xml File Edited to Contain an Auditing Configuration

<?xml version="1.0"?>
<orion-web-app
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-web-1
0_0.xsd">
 <service-ref-mapping name="service/BankTeller">
 <port-info>
 <wsdl-port namespaceURI="http://oracle.com/bank"
localpart="BankPort"/>
<service-endpoint-interface>oracle.ws.client.bank.BankService</service-endpoint-in
terface>
 <runtime enabled="auditing"/>
 <operations>
 <operation name="deposit">
 <runtime>
 <auditing request="true" response="true" fault="false"/>
 </runtime>
 </operation>
 </operations>

Limitations

6-14 Advanced Web Services Developer's Guide

 </port-info>
 </service-ref-mapping>
</orion-web-app>

Application Server Control Support for Auditing and Logging
Application Server Control lets you enable and configure different auditing options at
deployment and at runtime. Application Server Control lets you perform the following
tasks.

■ Modify at deployment time which Web service operations and messages to audit.

■ Control at runtime which Web service operations and messages to audit.

■ Browse the messages contained in the audit logs.

Similarly, you can enable and configure different logging options at deployment and at
runtime. Application Server Control lets you perform the following tasks.

■ Modify at deployment time the type of information to extract and log.

■ Control at runtime the type of information to extract and log.

■ Browse the messages contained within the logs.

For more information, see the topics Configuring Auditing for a Web Service and
Configuring Logging for a Web Service in the Application Server Control on-line help.

JDeveloper Support for Auditing and Logging
Wizards in JDeveloper let you configure auditing and logging for a Web service in a
deployment module. The auditing and logging configuration is stored in the
Oracle-proprietary deployment descriptor, oracle-webservices.xml.

When JDeveloper performs the final packaging of a Web service module, it includes
the deployment descriptor in the location required by the Web services runtime.

When JDeveloper is used as the deployment tool for deploying Web services, you have
the option to override any auditing and logging configuration that was set during
packaging.

This configuration created by JDeveloper can also be overridden at deployment by
Application Server Control. See the JDeveloper on-line help for more information on
enabling logging and auditing. For more information on overriding auditing and
logging features after deployment, see "Edit Auditing Configuration Page" and "Edit
Logging Configuration Page" in the Application Server Control on-line help.

Limitations
See "Auditing and Logging Messages" on page E-10.

Additional Information
For more information on:

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see Chapter 18, Packaging
and Deploying Web Services, in the Oracle Application Server Web Services Developer's
Guide.

Additional Information

Auditing and Logging Messages 6-15

■ adding Web service management information, including security, to a Web service,
see Chapter 3, "Managing Web Services".

■ adding security information to a Web service, see Chapter 4, "Ensuring Web
Services Security" and the Oracle Application Server Web Services Security Guide.

■ adding reliability information to a Web service, see Chapter 5, "Ensuring Web
Service Reliability".

■ the contents of the wsmgmt.xml file which contains the security configuration, see
Appendix A, "Understanding the Web Services Management Schema".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see "Packaging and
Deploying Web Services" in the Oracle Application Server Web Services Developer's
Guide.

Additional Information

6-16 Advanced Web Services Developer's Guide

Custom Serialization of Java Value Types 7-1

7
Custom Serialization of Java Value Types

This chapter describes the Custom Serialization Framework API. This API enables you
to map and serialize Java value types between schema-defined XML types and Java
value type classes that do not conform to the JAX-RPC value type requirements and
cannot be handled by the default JAX-RPC serialization mechanism. This framework
can also be used to implement custom mapping for the schema types that have default
mappings. For example, you can use the framework to map xsd:dateTime to the
custom class com.hello.MyDate instead of its default mapping java.util.
Calendar.

The Custom Serialization Framework API can be used to serialize Java value types for
publishing a Web service top down, bottom up, or for generating Java value types
from a schema to publish a Web service endpoint.

The built-in data type mappings that OracleAS Web Services supports can be found in
Appendix D, "Mapping Java Types to XML and WSDL Types" and in the JAX-RPC 1.1
specification.

http://java.sun.com/webservices/jaxrpc/index.jsp

You do not need to create custom mappings for these Java value types."OC4J Support
for Java Value Types" on page D-3 and Chapter 5.4 of the JAX-RPC 1.1 specification
lists the requirements for Java value types.

■ The Custom Serialization Framework API

■ Using Custom Serialization in Web Service Development

The Custom Serialization Framework API
If you want to expose a custom or non-standard Java value type in your Web service,
OracleAS Web Services provides an API that lets you serialize them into an XML
representation. The SOAPElementSerializer interface in the oracle.
webservices.databinding package defines the interface for pluggable custom
serializers for the OracleAS Web Services JAX-RPC implementation.

public interface SOAPElementSerializer

The serializer converts a Java object to an XML representation of SAAJ SOAPElement.
An instance of SOAPElementSerializer serializes a Java object to a SOAPElement
and deserializes a SOAPElement to a Java object.

The interface has the following methods.

■ public SOAPElement serialize(QName tagName, Object object)

Using Custom Serialization in Web Service Development

7-2 Advanced Web Services Developer's Guide

Implements the serialize method to marshall a Java object to an XML fragment
of a SAAJ SOAPElement instance. For this serializer implementation to be
reusable, the implementation of serialize should use the value of the tagName
parameter as the top level element tag name of the returned SOAPElement
instance. This is because an XML schema complexType may be used for different
element definitions.

■ public Object deserialize(SOAPElement element)

Implements the deserialize method to unmarshal an XML fragment of a SAAJ
SOAPElement instance to a Java object.

■ public void init(Map prop)

Called by the Oracle Application Server Web Services runtime to indicate to a
SOAPElementSerializer that the SOAPElementSerializer implementation
instance is being placed into service. The init method is called with an instance
of Map created from the init-param elements specified under the corresponding
serializer element in the Custom Type Mapping File. Both the key type and value
type of the Map instance are java.lang.String.

An implementation of the interface requires a default no-argument constructor. For
more information on the SOAPElementSerializer interface, see the output of the
Javadoc tool.

Using Custom Serialization in Web Service Development
To use the custom serialization in your Web service, you provide an implementation of
the SOAPElementSerializer for your custom Java type value class. You must also
provide the custom Java value type class and an XML configuration file that defines
the mapping between the Java type value class and the XML schema type it should
represent. You can find more information about these files in "Developing a Custom
Serializer Implementation for a Java Type Value Class" on page 7-3, "Defining a
Custom Java Type Value Class" on page 7-3, and "Creating an oracle-webservices Type
Mapping Configuration" on page 7-6.

The following sections describe how you can use custom serialization in top down,
bottom up and schema-driven Web service development.

■ Implementing a Custom Serializer

■ Using Custom Serialization in Top Down Web Service Development

■ Using Custom Serialization in Bottom Up Web Service Development

■ Using Custom Serialization in Schema-Driven Web Service Development

■ Implementing a Serializer with Custom Marshalling Logic

Implementing a Custom Serializer
This section describes the steps in developing a custom serializer for a Java value type
class. Typically, you start with the custom Java value type class that you want to
express as an XML schema type. From there, you develop a custom serializer
implementation of the class, the service endpoint interface, and its implementation.
The oracle-webservices type mapping configuration XML file identifies the schema
type that will be used to represent the custom Java type value class.

For top down Web service assembly, the service endpoint interface is generated from a
WSDL. For bottom up Web service assembly, develop a Java service endpoint interface

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-3

■ Defining a Custom Java Type Value Class

■ Developing a Custom Serializer Implementation for a Java Type Value Class

■ Developing a Service Endpoint Interface that Uses a Java Type Value Class

■ Creating an oracle-webservices Type Mapping Configuration

■ Using Custom Types in Client-Side Proxy Code

Defining a Custom Java Type Value Class
This section illustrates a custom Java type value class that can be used to map to an
XML schema type.

Note that the custom Java type class does not have to be Serializable if the Web
service is not going to be used with any J2EE features that require Serializable (such as
EJB or JMS).

An empty constructor is not a requirement. The serializer implementation that you
write programmatically constructs the instance of the corresponding Java type and
populates the content of the Java object. This is why you want to use the custom
serializer. It provides full control over the XML-to- Java and Java-to-XML mappings.

In JAX-RPC, xsd:dateTime can be represented by either java.util.Calendar or
java.util.Date. If you do not want to use either of these classes to represent a date,
you can implement your own date class. Example 7–1 illustrates a custom Java value
class, oracle.demo.custom_type.MyDate, that can be used to represent a date.

Example 7–1 Sample Custom Java Type Value Class

package oracle.demo.custom_type;

public class MyDate implements java.io.Serializable{

 private String string;

 public MyDate(String s) {
 string = s;
 }

 public String getString() {
 return string;
 }

 public void setString(String string) {
 this.string = string;
 }

}

Developing a Custom Serializer Implementation for a Java Type Value Class
To use a Java type value class in a Web service implementation and to allow an XML
schema type to represent the class in a WSDL, you must provide an implementation of
SOAPElementSerializer for the Java type value class. The implementation will
handle the serialization and deserialization between the Java type value class and the
XML schema type.

Example 7–2 illustrates an implementation of SOAPElementSerializer for the
MyDate value type class described in "Defining a Custom Java Type Value Class" on
page 7-3. The implementation will allow MyDate to be used in the Web service

Using Custom Serialization in Web Service Development

7-4 Advanced Web Services Developer's Guide

endpoint interface and to handle serialization and deserialization between MyDate
and xsd:dateTime. It will also allow the xsd:dateTime schema type to represent
the MyDate class in the generated WSDL.

Example 7–2 Sample SOAPElementSerializer Implementation

package oracle.demo.custom_type;
import oracle.webservices.databinding.SOAPElementSerializer;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.Text;
import javax.xml.namespace.QName;
import java.util.Iterator;
import java.util.Map;
public class MyDateSerializer implements SOAPElementSerializer {
 private Map initParams;
 protected SOAPFactory soapFactory;
 public MyDateSerializer() {
 }
 public void init(Map prop) {
 initParams = prop;
 try {
 soapFactory = SOAPFactory.newInstance();
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 }
 public Object deserialize(SOAPElement ele) {
 String str = "";
 for(Iterator i = ele.getChildElements(); i.hasNext();) {
 Object obj = i.next();
 if(obj instanceof Text) {
 str += (((Text)obj).getValue());
 }
 }
 return new MyDate(str);
 }
 /**
 * The qname parameter must be used to create the top level element.
 */
 public SOAPElement serialize(QName qname, Object obj) {
 SOAPElement xml = null;
 try {
 xml = soapFactory.createElement(
 qname.getLocalPart(),
 qname.getPrefix(),
 qname.getNamespaceURI());
 xml.addTextNode(((MyDate)obj).getString());
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 return xml;
 }
}

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-5

Developing a Service Endpoint Interface that Uses a Java Type Value Class
Develop a Java service endpoint interface that will be exposed as the Web service.
Example 7–3 and Example 7–4 illustrate a Java service endpoint interface and
implementation that use the oracle.demo.custom_type.MyDate class.

Note that to satisfy JAX-RPC requirements, the interface extends java.rmi.Remote
and the methods throw java.rmi.RemoteException.

The MyDateServiceEndpoint example also employs a user-defined bean type,
MyDateBean, as a parameter. MyDateBean has two properties of MyDate:
beginDate and endDate. WebServicesAssembler will generate the schema for
MyDateBean because MyDate is configured to use the custom serializer and
MyDateBean conforms to the JAX-RPC Value Type (Bean) patterns. Example 7–5
illustrates MyDateBean.

Example 7–3 Sample Java Service Endpoint Interface

package oracle.demo.custom_type;

import oracle.demo.custom_type.MyDate;

public interface MyDateServiceEndpoint extends java.rmi.Remote {

 public MyDate echoMyDate(MyDate date)
 throws java.rmi.RemoteException;

 public MyDateBean echoMyDateBean(MyDateBean bean)
 throws java.rmi.RemoteException;

}

Similarly, note that new methods defined in the implementation illustrated in
Example 7–4 throw a java.rmi.RemoteException.

Example 7–4 Sample Implementation of a Java Service Endpoint Interface

package oracle.demo.custom_type;

public class MyDateServiceEndpointImpl implements MyDateServiceEndpoint {

 public MyDate echoMyDate(MyDate date) throws java.rmi.RemoteException {
 return date;
 }

 public MyDateBean echoMyDateBean(MyDateBean bean) throws
 java.rmi.RemoteException {
 return bean;
 }

}

Example 7–5 illustrates a user-defined bean, MyDateBean.

Example 7–5 Sample User-Defined Bean Type

package oracle.demo.custom_type;

public class MyDateBean implements java.io.Serializable{

Using Custom Serialization in Web Service Development

7-6 Advanced Web Services Developer's Guide

 private MyDate beginDate;
 private MyDate endDate;

 public MyDate getBeginDate() {
 return beginDate;
 }

 public void setBeginDate(MyDate beginDate) {
 this.beginDate = beginDate;
 }

 public MyDate getEndDate() {
 return endDate;
 }

 public void setEndDate(MyDate endDate) {
 this.endDate = endDate;
 }
}

Creating an oracle-webservices Type Mapping Configuration
Create an oracle-webservices type mapping configuration XML file to specify the XML
schema type that will be used to represent the custom Java type value class. The
contents of the <type-mapping> element specify the XML schema type, the custom
Java type value class, and the class that performs the custom serialization. Table 7–1
describes the contents of the <type-mapping> element.

Use the ddFileName argument to specify the oracle-webservices type mapping
configuration to WebServicesAssembler.

The schema files oracle-webservices-10_0.xsd and
oracle-webservices-types-10_0.xsd can be found in the oc4j-schemas.jar
file in the OC4J_HOME/j2ee/home/lib/ directory.

Example 7–6 illustrates an oracle-webservices type mapping configuration that tells
WebServicesAssembler to map the oracle.demo.custom_type.MyDate class to
xsd:dateTime. The <serializer-class...> element identifies the
MyDateSerializer class developed in Example 7–2.

Example 7–6 Sample oracle-webservices Type Mapping Configuration

<oracle-webservices>
 <webservice-description name="MyDateService">
 <type-mappings xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <type-mapping
 java-class="oracle.demo.custom_type.MyDate"
 xml-type="xsd:dateTime">
 <serializer class="oracle.demo.custom_type.MyDateSerializer"/>
 </type-mapping>
 </type-mappings>

Table 7–1 Contents of the <type-mapping> Element

Attribute or Element Name Description

java-class Attribute that identifies the Java type value class

xml-type Attribute that identifies the XML schema type

serializer-class Element that identifies the class that performs the custom
serialization

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-7

 </webservice-description>
</oracle-webservices>

Using Custom Types in Client-Side Proxy Code
By default, WebServicesAssembler does not configure custom types when generating
the Web service client-side proxy. The generated proxy will use the default JAX-RPC
Java value type-to-XML schema type mappings. For the MyDate example presented in
this section, this means that the default Java value type, java.util.Calendar, will
be used to represent xsd:dateTime.

To configure custom types into your generated client proxy code, use the ddFileName
and classpath arguments to genProxy to specify the oracle-webservices type
mapping configuration XML file. The classpath must include the value types and
custom serializer. This will allow you to use the custom Java classes in your client-side
proxy code. For the example in this section, providing the oracle-webservices type
mapping configuration and its classpath when you generate the client-side proxy code
enables you to use MyDate instances for xsd:dateTime in the Web service client-side
proxy.

Example 7–7 assumes that the client-side proxy was generated with an
oracle-webservices type mapping configuration XML file. Note the use of instances of
MyDate instead of the default mapping, Calendar.

Example 7–7 Client-Side Proxy Code, Using Custom Java Type Values

ServiceFactory factory = ServiceFactory.newInstance();
 MyDateService service = (MyDateService)factory.loadService(MyDateService.
class);
 MyDateServiceEndpoint proxy = service.getMyDateServiceEndpointPort();
 ((Stub)proxy)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, address);
 MyDate req = new MyDate("Year:2004, Month:5, Date:24");
 MyDate res = proxy.echoMyDate(req);

 MyDate begin = new java.util.GregorianCalendar(1977, 5, 24);
 MyDate end = new java.util.GregorianCalendar(2004, 5, 24);
 ...

Using Custom Serialization in Top Down Web Service Development
You can use the custom serializer to provide special Java value type-to-XML schema
type mappings for a custom Java value type that you want to use in the service
endpoint interface. This means that you can substitute a custom Java value type for a
type that has a defined, default JAX-RPC mapping in the WSDL.
WebServicesAssembler will process the custom Java value type and generate the
correct code for the interface.

For example, you can change the default mapping of the schema-defined XML type
xsd:dateTime from java.util.Calendar, to a custom Java value type class,
hello.MyDate. The custom serializer will allow you to generate the correct code for
the service endpoint interface.

Other than providing the custom Java value type class, the
SOAPElementSerializer implementation, and the type mapping configuration file,
this is very similar to the generic top down Web service development.

Developing a Web service that uses a custom serializer follows these general steps.

Using Custom Serialization in Web Service Development

7-8 Advanced Web Services Developer's Guide

1. Run WebServicesAssembler with the genInterface command and the custom
serializer to generate the service endpoint interface with the custom type
mappings.

2. Implement the service endpoint interface.

3. Run WebServicesAssembler again with the topdownAssemble command to
assemble the Web service and package it in an EAR.

The following sections describe these steps in greater detail.

Prerequisites
Before you begin, provide the following files and information.

■ the custom Java value type class(es). For more information on custom Java value
type classes, see, "Defining a Custom Java Type Value Class" on page 7-3.

■ the implementation of the SOAPElementSerializer interface for the custom
Java value type class(es). For more information on implementing the
SOAPElementSerializer interface, see "Developing a Custom Serializer
Implementation for a Java Type Value Class" on page 7-3.

■ the WSDL that employs the custom Java value class(es).

■ the oracle-webservices type mapping configuration XML file

For more information on creating the oracle-webservices type mapping
configuration, see "Creating an oracle-webservices Type Mapping Configuration"
on page 7-6.

How to Use Custom Serialization in Top Down Web Service Development
The following steps describe how to use custom serialization in top down Web service
development.

1. Provide the files described in the Prerequisites section as input to the
WebServicesAssembler genInterface command. For example:

java -jar wsa.jar -genInterface
 -ddFileName myOracleWSDescriptor.xml
 -output build/src/service
 -wsdl wsdl/MyWSDL.wsdl
 -unwrapParameters false
 -packageName oracle.demo.customdoclit.service

The major difference between using a custom serializer and standard top down
Web services development, is the presence of the ddFileName argument.
WebServicesAssembler will use the mappings specified in
myOracleWSDescriptor.xml to generate the service endpoint interface.

The WebServicesAssembler tool generates a Java interface for every port type
specified in the WSDL and a Java Bean for each complex type. The
myOracleWSDescriptor.xml provides the custom mappings that are specified.

The name of the directory that stores the generated interface is based on the values
of the output and packageName arguments. For this example, the generated
interface is stored in
build/src/service/oracle/demo/customdoclit/service.

2. Compile the generated interface and type classes.

For example:

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-9

javac -destdir ${service.classes.dir}
 -excludes {javac.excludes}
 -path build/src/service
 -classpath ${wsdemo.common.class.path}

If you have set your CLASSPATH to include the referenced libraries described in
"Web Service Client APIs and JARs" in the Oracle Application Server Web Services
Developer's Guide, you can omit the -classpath argument. Otherwise, ensure
that all of these libraries are contained in the path represented by ${wsdemo.
common.class.path}. If you are running an Ant example, the appropriate
settings are made in the Ant build script.

3. Implement the service endpoint interface.

The implementation must have a method signature that matches every method in
the generated Java interface.

4. Compile the service implementation.

For example, you can use the same command as in Step 2 if the interface source
was generated in the same directory where the Impl class was saved. If it was not,
you must change the value of the path argument.

5. Provide the service endpoint implementation, the WSDL, the custom Java value
type class(es), the SOAPElementSerializer implementation(s), and the type
mapping configuration XML file as input to the WebServicesAssembler
topdownAssemble command.

java -jar wsa.jar - topDownAssemble
 -ddFileName myOracleWSDescriptor.xml
 -output ./build
 -wsdl wsdl/MyWSDL.wsdl
 -unwrapParameters false
 -packageName oracle.demo.customdoclit.service
 -className oracle.demo.customdoclit.service.MyEndpointImpl
 -appName MyWebService
 -ear ./build/MyWebService.ear

WebServicesAssembler generates and packages a deployable EAR file.

6. Use WebServicesAssembler to generate the Web services client-side proxy.

■ generate stubs (client proxies) for a J2SE Web service client by running the
WebServicesAssembler tool with the genProxy command, or

■ generate a service endpoint interface and a JAX-RPC mapping file for a J2EE
Web service client by running the WebServicesAssembler tool with the
genInterface command.

For more information on generating and assembling client-side code, see
"Assembling a J2EE Web Service Client" and "Assembling a J2SE Web Service
Client" in the Oracle Application Server Web Services Developer's Guide.

To use MyDate to represent xsd:dateTime in your client-side proxy code, you
must use ddFileName to specify the oracle-webservices type mapping
configuration XML file and classpath to provide the path to the custom Java
class MyDate.

For example, the following command generates client proxies (stubs) that can be
used for a J2SE client.

java -jar wsa.jar -genProxy
 -wsdl http://localhost:8888/custom_type_mydate/custom_type_mydate?WSDL

Using Custom Serialization in Web Service Development

7-10 Advanced Web Services Developer's Guide

 -packageName oracle.demo.custom_type.mydate_with_ser
 -output ./build/src/client
 -ddFileName MyClientSideDD.xml
 -classpath ./build/classes/service

For information on coding a client-side proxy to use custom types, see "Using
Custom Types in Client-Side Proxy Code" on page 7-7.

Using Custom Serialization in Bottom Up Web Service Development
You can use the custom serializer to provide special Java value type-to-XML schema
type mappings of some specific Java value types used in the service endpoint
interface. This means that you can use your own custom schema document which
describes special Java value types-to-XML schema type mappings. When you provide
special Java value type-to-XML schema type mappings, you do not want
WebServicesAssembler to generate schema definitions for these types.

Because this is bottom up Web service development, WebServicesAssembler will
generate a WSDL. In the WSDL, instead of generating the schema for the value types,
WebServicesAssembler will import one or more schema documents you specify.

Prerequisites
Before you begin, provide the following files and information.

■ the custom Java value type class(es). These classes must reside in the classpath.
For more information on custom Java value type classes, see, "Defining a Custom
Java Type Value Class" on page 7-3.

■ the schema document that describes the custom Java value type(s)

■ the implementation of the SOAPElementSerializer interface for the custom
Java value type class(es). For more information on implementing the
SOAPElementSerializer interface, see "Developing a Custom Serializer
Implementation for a Java Type Value Class" on page 7-3.

■ the Java service endpoint interface that uses special custom Java value type
class(es). For more information on Service Implementation Endpoints, see
"Developing a Service Endpoint Interface that Uses a Java Type Value Class" on
page 7-5.

■ the oracle-webservices type mapping configuration XML file.

For more information on creating the oracle-webservices type mapping
configuration file, see "Creating an oracle-webservices Type Mapping
Configuration" on page 7-6.

How to Use Custom Serialization in Bottom Up Web Service Development
The following instructions use sample code to develop a Web service bottom up, that
requires custom type mapping.

1. Provide the files described in the Prerequisites section as input to
WebServicesAssembler assemble command. For example:

java -jar wsa.jar -assemble
 -targetNamespace http://oracle.com/ws_demo/custom_type_mydate
 -typeNamespace http://oracle.com/ws_demo/custom_type_mydate
 -input ./build/classes/service
 -classpath ./build/classes/service
 -output ./dist
 -ddFileName ./MyOracleWSDescriptor.xml

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-11

 -interfaceName oracle.demo.custom_type.MyDateServiceEndpoint
 -className oracle.demo.custom_type.MyDateServiceEndpointImpl
 -serviceName MyDateService
 -appName custom_type_mydate

This command is similar to the standard bottom up Web services development
except that the ddFileName argument is used to specify the oracle-webservices
type mapping configuration XML file. The input argument contains the custom
serializer implementation.

WebServicesAssembler generates the WSDL and packages a deployable EAR file.

2. Use WebServicesAssembler to generate the Web service client-side proxy. To use
MyDate to represent xsd:dateTime in your client-side proxy code, you must use
ddFileName to specify the oracle-webservices type mapping configuration file
and classpath to provide the path to the custom Java class MyDate.

java -jar wsa.jar -genProxy
 -wsdl http://localhost:8888/custom_type_mydate/custom_type_mydate?WSDL
 -packageName oracle.demo.custom_type.mydate_with_ser
 -output ./build/src/client
 -ddFileName ./MyClientSideDD.xml
 -classpath ./build/classes/service

For information on coding a client-side proxy to use custom types, see "Using
Custom Types in Client-Side Proxy Code" on page 7-7.

Ant Tasks for Generating a Web Service
This release provides Ant tasks for Web service development. The following examples
show how the WebServicesAssembler commands in the preceding examples can be
rewritten as Ant tasks.

For the assemble command, here is an example Ant task.

<oracle:assemble targetNamespace="http://oracle.com/ws_demo/custom_type_mydate"
 typeNamespace="http://oracle.com/ws_demo/custom_type_mydate"
 input="./build/classes/service"
 classpath="./build/classes/service"
 output="./dist"
 ddFileName="./custom_type_mydate_pdd.xml"
 serviceName="MyDateService"
 appName="custom_type_mydate"
 >
 <oracle:porttype
 interfaceName="oracle.demo.custom_type.MyDateServiceEndpoint"
 className="oracle.demo.custom_type.MyDateServiceEndpointImpl">
 </oracle:porttype>
</oracle:assemble>

For the genProxy command, here is an example Ant task.

<oracle:genProxy
 wsdl="http://localhost:8888/custom_type_mydate/custom_type_mydate?WSDL"
 packageName="oracle.demo.custom_type.mydate_with_ser"
 output="./build/src/client"
 ddFileName="./MyOracleClientDD.xml"
 classpath="./build/classes/client"
 />

Using Custom Serialization in Web Service Development

7-12 Advanced Web Services Developer's Guide

Using Custom Serialization in Schema-Driven Web Service Development
In schema-driven Web service development, you invoke WebServicesAssembler with
the schema document to generate the Java value type classes (beans) before you
assemble the Web service.

Because the Java value classes generated from a schema complex type conform to the
JAX-RPC value type (bean) pattern requirement, a custom serializer is not necessary. If
you are satisfied with the default mapping provided by JAX-RPC, you do not need to
implement the a custom serializer.

However, if you want to change the default marshaling between XML and Java, then
you must implement the custom serializer for the generated Java value type classes.

Assembling a Web service from a schema follows these general steps.

1. Run WebServicesAssembler with the schema document to generate the Java Value
Type classes, the standard JAX-RPC mapping file, and the oracle-webservices type
mapping configuration XML file (custom-type-mappings.xml).

2. Develop your own service endpoint interface and its implementation.

3. If you are not happy with the default marshalling for one or more classes, write a
custom serializer to implement your own marshalling logic.

4. Edit the oracle-webservices type mapping configuration XML file to include the
custom serializer. You can also substitute an alternative Java class for any of the
generated Java value type classes.

5. Run WebServicesAssembler again, this time, to generate a WSDL document. Input
the JAX-RPC mapping file, the edited oracle-webservices type mapping
configuration XML file, the schema document, the generated Java value types, and
the service endpoint interface and its implementation. Also include the custom
serializer, if one was created.

The generated WSDL will import the specified schema instead of generating one
from the Java value types.

WebServicesAssembler will assemble a deployable EAR with a generated WSDL and
all of the implementation files and deployment descriptors to enable a Web service.

Prerequisites
Before you begin, provide the following files and information.

■ the schema document. "Sample Schema Document" on page 7-15 lists a schema
document that defines types can be exposed through a service endpoint interface.

■ the definition of a custom Java type that will represent the complex type in the
schema.

■ if you are providing custom default marshalling logic, you must also provide a
custom serializer to implement your own marshalling logic.

Schema-Driven Web Services Assembly with Custom Serialization
This section describes how to develop a Web service from a XML schema that contains
complex types. It also describes how to provide a custom serializer to handle
serialization and deserialization between the complex type and a Java custom type.

"Sample Schema Document" on page 7-15 describes the schema used in this example.
The schema contains two complex types: InitItem and StringItem.

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-13

The section assumes that you want to use the custom Java type, oracle.
webservices.examples.customtypes.MyInitItem, described in "Java Custom
Type Implementation" on page 7-15, to represent the InitItem complex type in the
schema. To do this, you must provide a custom serializer to handle serialization and
deserialization between the Java instance of MyInitItem and XML instance of
InitItem.

For the complex schema type StringItem, the section assumes that you want to use
the default JAX-RPC value type data binding mechanism to generate a value type class
to represent the complex type. It also assumes that you want to do custom formatting
on the XML instances of xsd:string. To do this, a custom serializer will be created to
handle serialization and deserialization between Java instance of java.lang.String
and the XML instance of xsd:string.

The following steps describe how to develop this Web service.

1. Run WebServicesAssembler with the schema document to generate the Java value
types and the standard JAX-RPC mapping file.

java -jar wsa.jar -genValueTypes
 -packageName oracle.webservices.examples.customtypes
 -schema ./MySchema.xsd
 -output ./build/src/types

The schema document used in this command is described in "Sample Schema
Document" on page 7-15. The genValueTypes command generates two classes
from this schema InitItem and StringItem. The InitItem class is not needed
since you will be replacing it with your custom type class.

This command also generates a JAX-RPC mapping file, jaxrpc-mappings.xml,
which describes the binding of the generated value type classes, and a
custom-type-mappings.xml file to record which value type classes are
generated from an existing schema file. The custom-type-mappings.xml file is
a generated server-side instance of the OracleAS Web Services type mapping
configuration XML file.

2. Compile the generated value types to the /build/classes/service directory.

The genValueTypes command does not compile any classes. You must perform
this step yourself. Note that you can either delete the IntItem class or exclude it
from your compilation. This is because you will be providing a custom serializer
for it.

3. Implement the custom serializers. In this example, two custom serializers are
required: a serializer to map between oracle.webservices.examples.
customtypes.MyIntItem and InitItem and a serializer to map between
java.lang.String and xsd:string.

"Defining a Serializer Implementation with Marshalling Logic" on page 7-16
contains a sample implementation of these serializers.

4. Develop the Service Endpoint interface and its implementation.

"Developing a Service Endpoint Interface and Implementation" on page 7-19
provides a sample implementation of a service endpoint interface that uses
oracle.webservices.examples.customtypes.MyInitItem and the
generated Java value type classes.

5. Edit the custom-type-mappings.xml file to include an alternative Java class
and to include the custom serializer. In Step 1, the custom-type-mappings.xml
file was generated into the output directory /build/src/types.

Using Custom Serialization in Web Service Development

7-14 Advanced Web Services Developer's Guide

Edit the file to use oracle.webservices.examples.customtypes.
MyInitItem and its custom serializer, and to use the oracle.webservices.
examples.customtypes.MyStringSerializer custom serializer. For details
about adding the alternative Java class and custom serializers, see "Editing the
Generated oracle-webservices Type Mapping Configuration XML File" on
page 7-21.

6. Run the WebServicesAssembler tool again, this time with the assemble
command, to generate the WSDL and a deployable EAR file. Use the following
items as input.

■ the XML schema document (MySchema.xsd)

■ the value type classes generated in Step 1 (contained in the build/classes.
service directory)

■ the JAX-RPC mapping file (jaxrpc-mappings.xml) generated in Step 1

■ the compiled custom serializer classes created in Step 2 (contained in the
build/classes.service directory)

■ the service endpoint interface and its implementation (MyEndpointIntf and
MyEndpointImpl) created in Step 3

■ the modified custom type mapping file MyCustomTypeMappings.xml
created in Step 4

Following is a sample assemble command.

java -jar wsa.jar -assemble
 -schema ./MySchema.xsd
 -mappingFileName ./build/src/types/jaxrpc-mappings.xml
 -input ./build/classes/service
 -classpath ./build/classes/service
 -output ./dist
 -ddFileName ./MyCustomTypeMappings.xml
 -interfaceName oracle.webservices.examples.customtypes.MyEndpointIntf
 -className oracle.webservices.examples.customtypes.MyEndpointImpl
 -appName MyCustomTypes

The input directory, build/classes/service, contains the compiled value
type classes generated in Step 1 and the compiled custom serializer files created in
Step 2. The class name of each custom serializer is listed in the oracle-webservices
type mapping file MyCustomTypeMappings.xml. Use the ddFileName
argument to specify this file.

The WebServicesAssembler tool assembles a deployable EAR file in the /dist
directory. The generated WSDL in the EAR file imports the schema document.

Note that this command is similar to normal Java-to-WSDL, or bottom up Web
services assembly.

7. Deploy the service and bind the application.

Deploy EAR files in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide. The following is a sample deployment command:

java -jar <OC4J_HOME>/j2ee/home/admin_client.jar deployer:oc4j:localhost:port
<user> <password>
 -deploy
 -file ./dist/MyCustomTypes.ear
 -deploymentName MyCustomTypes
 -bindWebApp default-web-site

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-15

8. Develop the client.

■ generate stubs (client proxies) for a J2SE Web service client by running the
WebServicesAssembler tool with the genProxy command, or

■ generate a service endpoint interface and a JAX-RPC mapping file for a J2EE
Web service client by running the WebServicesAssembler tool with the
genInterface command.

For an example of developing a J2SE client-side proxy that uses oracle.
webservices.examples.customtypes.MyInitItem to represent InitItem
and the custom serializer to handle the marshalling and unmarshaling of data
between the client and server, see "Developing a Client for Custom Type Mapping
and a Custom Serializer" on page 7-23.

Sample Schema Document
Example 7–8 illustrates the MySchema.xsd schema document that provides types that
will be exposed as a service endpoint interface. The InitItem and StringItem are
complex types.

Example 7–8 Sample Schema Document

<schema
 targetNamespace="http://examples.webservices.oracle/customtypes"
 xmlns:tns="http://ws.oracle.com/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="IntItem">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="value" type="xsd:int"/>
 </sequence>
 </complexType>

 <complexType name="StringItem">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="value" type="xsd:string"/>
 </sequence>
 </complexType>
</schema>

Java Custom Type Implementation
Example 7–9 illustrates an implementation of the Java custom type oracle.
webservices.examples.customtypes.MyIntItem. This type will be used to
represent the InitItem complexType illustrated in Example 7–8.

Example 7–9 Implementation of the Custom Java Type InitItem

/**
 * MyIntItem does not have the JAXRPC Value type (Bean) pattern.
 */
package oracle.webservices.examples.customtypes;
public class MyIntItem {
 private String name;
 private int value;
 public MyIntItem(String name, int value) {

Using Custom Serialization in Web Service Development

7-16 Advanced Web Services Developer's Guide

 this.name = name;
 this.value = value;
 }
 public String itemName() {
 return name;
 }
 public int itemValue() {
 return value;
 }
}

Implementing a Serializer with Custom Marshalling Logic
This section provides examples of the files you must provide and the tasks you must
perform if you want to implement a custom serializer that contains custom
marshalling logic.

■ Defining a Serializer Implementation with Marshalling Logic

■ Developing a Service Endpoint Interface and Implementation

■ Editing the Generated oracle-webservices Type Mapping Configuration XML File

Defining a Serializer Implementation with Marshalling Logic
This section provides an example of a serializer implementation that contains custom
marshalling and unmarshalling logic. It assumes that you want to use the oracle.
webservices.examples.customtypes.MyInitItem custom Java data type in
your Web service to represent the InitItem complex type in the schema document. It
also assumes that you want to provide custom marshalling and unmarshaling logic for
the class. To provide the custom logic, you must implement a custom serializer.

Example 7–10 provides a sample custom serializer implementation for MyInitItem.
To provide serialization capabilities, the custom serializer, MyInitItemSerializer,
implements the SOAPElementSerializer class and implements its serialize and
deserialize methods.

Example 7–10 Custom Serializer Implementation to Map MyInitItem to InitItem

package oracle.webservices.examples.customtypes;

import java.util.Iterator;
import java.util.Map;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.Text;

import oracle.webservices.databinding.SOAPElementSerializer;

public class MyIntItemSerializer implements SOAPElementSerializer {

 private Map config;
 private SOAPFactory soapFactory;
 public void init(Map initParams) {
 config = initParams;
 try {
 soapFactory = SOAPFactory.newInstance();
 } catch (SOAPException e) {

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-17

 e.printStackTrace();
 }
 }

 public SOAPElement serialize(QName tagName, Object object) {
 MyIntItem myIntItem = (MyIntItem)object;
 SOAPElement xml = null;
 try {
 xml = soapFactory.createElement(
 tagName.getLocalPart(), tagName.getPrefix(), tagName.
getNamespaceURI());

 SOAPElement name = soapFactory.createElement(
 "name", tagName.getPrefix(), tagName.getNamespaceURI());
 name.addTextNode(myIntItem.itemName());

 SOAPElement value = soapFactory.createElement(
 "value", tagName.getPrefix(), tagName.getNamespaceURI());
 value.addTextNode(String.valueOf(myIntItem.itemValue()));

 xml.addChildElement(name);
 xml.addChildElement(value);
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 return xml;
 }

 private String getTextContent(SOAPElement element) {
 String str = "";
 for (Iterator i = element.getChildElements(); i.hasNext();) {
 Object obj = i.next();
 if (obj instanceof Text) {
 str += (((Text) obj).getValue());
 }
 }
 return str;
 }

 public Object deserialize(SOAPElement element) {
 String name = null;
 int value = -1;
 for (Iterator i = element.getChildElements(); i.hasNext();) {
 Object obj = i.next();
 if (obj instanceof SOAPElement) {
 SOAPElement child = (SOAPElement)obj;
 if (child.getLocalName().equals("name")) {
 name = MyStringSerializer.
createMyString(getTextContent(child));
 }
 if (child.getLocalName().equals("value")) {
 value = Integer.parseInt(getTextContent(child));
 }
 }
 }
 return new MyIntItem(name, value);
 }
}

Using Custom Serialization in Web Service Development

7-18 Advanced Web Services Developer's Guide

Example 7–11 provides a sample custom serialization implementation to map java.
lang.String to xsd:string. To provide serialization capabilities, the custom
serializer, MyStringSerializer, implements the SOAPElementSerializer class
and implements its serialize and deserialize methods. It also provides a
placeholder where you can enter your own string formatting or validation code.

Example 7–11 Custom Serializer Implementation to Map java.lang.String to xsd:string

package oracle.webservices.examples.customtypes;

import java.util.Iterator;
import java.util.Map;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.Text;

import oracle.webservices.databinding.SOAPElementSerializer;

public class MyStringSerializer implements SOAPElementSerializer {

 private Map config;
 private SOAPFactory soapFactory;

 public void init(Map initParams) {
 config = initParams;
 try {
 soapFactory = SOAPFactory.newInstance();
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 }

 public SOAPElement serialize(QName tagName, Object object) {
 String value = (object == null) ? "null" : object.toString();
 SOAPElement xml = null;
 try {
 xml = soapFactory.createElement(tagName.getLocalPart(),
 tagName.getPrefix(),
 tagName.getNamespaceURI());
 xml.addTextNode(value);
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 return xml;
 }

 public Object deserialize(SOAPElement element) {
 String value = "";
 for (Iterator i = element.getChildElements(); i.hasNext();) {
 Object obj = i.next();
 if (obj instanceof Text) {
 value += (((Text) obj).getValue());
 }
 }
 return createMyString(value);
 }

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-19

 static public String createMyString(String input) {
 // You can add your own formating or validation logic here
 return input.trim().toUpperCase();
 }
}

Developing a Service Endpoint Interface and Implementation
This section illustrates a service endpoint implementation that uses a different Java
data type than the one in the generated schema document.

Example 7–14 provides a sample service endpoint interface, oracle.webservices.
examples.customtypes.MyEndpointIntf, and Example 7–15 provides its
implementation, oracle.webservices.examples.customtypes.
MyEndpointImpl. Note that the interface extends java.rmi.Remote and its
methods throw java.rmi.RemoteException. Also note that the getItems
methods in the interface and implementation get items of type MyInitItem instead of
the InitItem value type class generated from the schema document.

Example 7–12 illustrates the generated schema document that defines the Inititem
and StringItem types.

Example 7–12 Schema Definitions of InitItem and StringItem

<?xml version = '1.0' encoding = 'UTF-8'?>
<schema
 targetNamespace="http://examples.webservices.oracle/customtypes"
 xmlns:tns="http://ws.oracle.com/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- this complex type is mapped to a custom value type using a custom
serializer -->
 <complexType name="IntItem">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="value" type="xsd:int"/>
 </sequence>
 </complexType>

 <!—xsd:string is mapped to a custom value type using a custom serializer -->
 <complexType name="StringItem">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="value" type="xsd:string"/>
 </sequence>
 </complexType>
</schema>

To assemble a Web service that will expose the methods that use oracle.
webservices.examples.customtypes.MyInitItem data types, you must also
replace the InitItem entry in the oracle-webservices type mapping configuration
XML file with MyInitItem. This is described in "Editing the Generated
oracle-webservices Type Mapping Configuration XML File" on page 7-21.

Optionally, if you want to provide custom marshalling and unmarshaling for
MyInitItem data, you must implement a custom serializer for this class. This is
described in "Defining a Serializer Implementation with Marshalling Logic" on
page 7-16.

Using Custom Serialization in Web Service Development

7-20 Advanced Web Services Developer's Guide

Example 7–13 illustrates the definition of the Items custom type class. This class will
be used in the service endpoint implementation. the items class uses two value types,
MyIntItem and StringItem. The MyInitItem class is a custom class that you need
to provide a custom serializer. The StringItem class is generated from the schema
with custom mapping of String. Both MyIntItem and StringItem are described
by an existing schema document.

Example 7–13 Definition of the Items Class

package oracle.webservices.examples.customtypes;

public class Items {
 private MyIntItem[] myIntItem;
 private StringItem[] stringItem;
 public Items() {
 }
 public Items(MyIntItem[] intItem, StringItem[] strItem) {
 myIntItem = intItem;
 stringItem = strItem;
 }
 public MyIntItem[] getMyIntItem() {
 return myIntItem;
 }
 public void setMyIntItem(MyIntItem[] intItem) {
 myIntItem = intItem;
 }
 public StringItem[] getStringItem() {
 return stringItem;
 }
 public void setStringItem(StringItem[] strItem) {
 stringItem = strItem;
 }
}

Example 7–14 illustrates the service endpoint interface for MyEndpointIntf. Notice
that the getItems method uses the MyInitItem data type instead of the InitItem
type defined by the schema. As required by JAX-RPC, the interface extends java.
rmi.Remote and the methods throw java.rmi.RemoteException.

Example 7–14 Service Endpoint Interface for MyEndpointIntf

package oracle.webservices.examples.customtypes;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface MyEndpointIntf extends Remote {
 public Items getItems(MyIntItem[] myInts, StringItem[] myStrings)
 throws RemoteException;
}

Example 7–15 illustrates the implementation of the MyEndpointIntf interface.

Example 7–15 Service Endpoint Implementation

package oracle.webservices.examples.customtypes;

public class MyEndpointImpl {

 public Items getItems(MyIntItem[] myInts, StringItem[] myStrings) {

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-21

 Items items = new Items();
 items.setMyIntItem(myInts);
 items.setStringItem(myStrings);
 return items;
 }
}

Editing the Generated oracle-webservices Type Mapping Configuration XML File
The genValueTypes command creates a generated instance of the oracle-webservices
type mapping configuration XML file, custom-type-mappings.xml. This file
records the Java value type classes that are generated from an existing schema
document. When you generate a WSDL from a service endpoint interface, you can use
this file as input to WebServicesAssembler to avoid regenerating the schema definition
for these pre-generated classes.

If you want to use an alternative Java class to represent a complex type in the schema
instead of the class generated from the schema document, then you must edit the
contents of the appropriate <type-mapping> element in the custom type mapping
file. You can also edit the element to include a custom serializer for the alternative
class.

The sample custom type mapping file in Example 7–16 assumes that the
genValueTypes command used the schema in Example 7–8 on page 7-15 to generate
the Java value types.

Example 7–16 Custom Type Mapping File, with Pre-Generated Value Type Classes

<?xml version="1.0" encoding="UTF-8"?>
 <oracle-webservices>
 <webservice-description name="unknown">
 <type-mappings
 xmlns:typens0="http://examples.webservices.oracle/customtypes"
 xmlns:typens2="http://www.w3.org/2001/XMLSchema"
 >
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.
StringItem"
 xml-type="typens0:StringItem">
 </type-mapping>
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.IntItem"
 xml-type="typens0:IntItem">
 </type-mapping>
 <type-mapping
 java-class="int"
 xml-type="typens2:int">
 </type-mapping>
 <type-mapping
 java-class="java.lang.String"
 xml-type="typens2:string">
 </type-mapping>
 </type-mappings>
 </webservice-description>
 </oracle-webservices>

To use oracle.webservices.examples.customtypes.MyInitItem and its
custom serializer oracle.webservices.examples.customtypes.
MyInitItemSerializer instead of the generated InitItem class, and to use the
custom serializer oracle.webservices.examples.customtypes.

Using Custom Serialization in Web Service Development

7-22 Advanced Web Services Developer's Guide

MyStringSerializer for java.lang.String, you must edit the
custom-type-mappings.xml file.

1. Replace the instance of InitItem.

a. Replace the instance of InitItem with oracle.webservices.examples.
customtypes.MyInitItem in the appropriate <type-mapping> element.

b. Add a <serializer> element to <type-mapping> to specify the custom
serializer class, oracle.webservices.examples.customtypes.
MyInitItemSerializer for MyInitItem.

For example, the original <type-mapping> element in
custom-type-mappings.xml:

<type-mapping
 java-class="oracle.webservices.examples.customtypes.IntItem"
 xml-type="typens0:IntItem">
</type-mapping>

should now look like this:

 <type-mapping
 java-class="oracle.webservices.examples.customtypes.MyIntItem"
 xml-type="typens0:IntItem">
 <serializer class="oracle.webservices.examples.customtypes.
MyInitItemSerializer"/>
</type-mapping>

2. Edit the <type-mapping> element for the mapping of java.lang.String to
xsd:string. The entry should look like this:

<type-mapping>
 java-class="java.lang.String"
 xml-type="xsd:string">
 <serializer class="oracle.webservices.examples.customtypes.
MyStringSerializer"/>
</type-mapping>

3. Rename the file MyCustomTypeMappings.xml and copy it to the root directory
of the project.

Example 7–17 illustrates the edited version of the type mapping file. The
type-mapping element for StringItem is retained in the file in order to avoid
regenerating the schema definition for this pre-generated class.

The namespace prefix declaration (xmlns:xsd="http://www3w.
org/2001/XMLSchema") is added so that it can be used in the type mapping
configuration file. In the edited type mapping configuration file, you must refer to the
string schema type defined in the schema namespace (http://www3w.
org/2001/XMLSchema). Defining the prefix, xsd, enables you to use xsd:string as
the "qualified name" of the schema type string.

Example 7–17 Custom Type Mapping File, with Edited Value Type Classes

<?xml version="1.0" encoding="UTF-8"?>
<oracle-webservices>
 <webservice-description name="unknown">
 <type-mappings
 xmlns:typens0="http://examples.webservices.oracle/customtypes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <type-mapping

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-23

 java-class="java.lang.String"
 xml-type="xsd:string">
 <serializer class="oracle.webservices.examples.customtypes.
MyStringSerializer"/>
 </type-mapping>
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.MyIntItem"
 xml-type="typens0:IntItem">
 <serializer class="oracle.webservices.examples.customtypes.
MyIntItemSerializer"/>
 </type-mapping>
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.StringItem"
 xml-type="typens0:StringItem">
 </type-mapping>
 </type-mappings>
 </webservice-description>
</oracle-webservices>

Developing a Client for Custom Type Mapping and a Custom Serializer
To generate J2SE client-side proxy files, use the WebServicesAssembler genProxy
command:

java -jar wsa.jar -genProxy
 -wsdl http://localhost:8888/MyCustomTypes/MyCustomTypes?WSDL
 -output ./build/src/client

Because WebServicesAssembler does not configure custom types when generating the
Web services client-side proxy, the generated proxy will try to generate Value Type
(Bean) classes by default to represent the schema types InitItem and StringItem.
Then you can write your client program using the generated proxy code.

Example 7–18 Client Program Using Default Generated Value Types

package oracle.webservices.examples.customtypes;
 import javax.xml.rpc.ServiceFactory;
 import javax.xml.rpc.Stub;
 import examples.webservices.oracle.customtypes.*;
 public class MyCustomTypesClient {
 public static final String DEFAULT_URL
 ="http://localhost:8888/MyCustomTypes/MyCustomTypes";

 public static void main(String[] args) throws Exception {
 String address = DEFAULT_URL;
 ServiceFactory factory = ServiceFactory.newInstance();
 MyCustomTypes service = (MyCustomTypes) factory.
loadService(MyCustomTypes.class);
 MyEndpointIntf proxy = (MyEndpointIntf)service.getPort(MyEndpointIntf.
class);
 ((Stub) proxy)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, address);
 IntItem int1 = new IntItem();
 int1.setName("int1");
 int1.setValue(123);
 IntItem int2 = new IntItem();
 int2.setName("int2");
 int2.setValue(456);
 IntItem[] ints = { int1, int2 };
 StringItem str1 = new StringItem();
 str1.setName("string1");

Using Custom Serialization in Web Service Development

7-24 Advanced Web Services Developer's Guide

 str1.setValue("foo");
 StringItem str2 = new StringItem();
 str2.setName("string2");
 str2.setValue("coo");
 StringItem[] strings = { str1, str2 };
 Items items = proxy.getItems(ints, strings);
 System.out.println("items.getMyIntItem : " + items.getMyIntItem().
length);
 System.out.println("items.getStringItem: " + items.getStringItem().
 length);
 }
}

The MyInitItem class was used in developing the Items class aforementioned. The
Items type was developed to be a return value of the service endpoint
implementation. The MyInitItemSerializer and MyStringTypeSerializer
are used in the OracleAS Web Services runtime. While WebServicesAssembler is
assembling the deployable EAR file, the edited Type Mapping Configuration XML File
is used to create a deployment descriptor inside the ear so that these custom serializes
will be correctly used in the runtime.

How to Use Custom Serializers in Client Code
You can use a custom serializer in the Web service client-side proxy. This enables you
to use the custom data types defined for the service in your client code. This section
describes how to create a Web service client-side proxy that uses the
MyIntItemSerializer (described in Example 7–10) to map IntItem to
MyIntItem and MyStringSerializer (described in Example 7–11) to map the
string type. To do this, you must use a client side version of the oracle-webservices
type mapping configuration file, MyCustomTypeMappings.xml (described in
Example 7–17) as input to genProxy.

The following steps summarize the process of adding a custom serializer to a client
proxy:

1. Provide a client version of the server-side custom type mapping file.

For more information on this step, see "Editing the Server Side Custom Type
Mapping File".

2. Generate the Web service client proxy with the WebServicesAssembler genProxy
command.

For more information on this step, see "Generating the Web Service Client Side
Proxy" on page 7-25.

3. Write the Web service client.

For more information on this step, see "Writing a Web Service Client with Custom
Datatypes" on page 7-25.

Editing the Server Side Custom Type Mapping File The custom type mapping file used on
the client side must conform to the oracle-webservices-client-10_0.xsd
schema. To provide a custom type mapping file for the client, you can use the service
side custom type mapping file as a template. Edit the file to provide the appropriate
client side root elements:

■ Replace the <oracle-webservices> element with
<oracle-webservices-clients>.

Using Custom Serialization in Web Service Development

Custom Serialization of Java Value Types 7-25

■ Replace the <webservice-description> element and any attributes it might
contain with <webservice-client>.

After making these edits, the client side custom type mapping file (in this case,
MyCustomTypeMappings.xml) should look like the code in Example 7–19.

Example 7–19 Client Side Custom Type Mapping File

<?xml version="1.0" encoding="UTF-8"?>
<oracle-webservice-clients>
 <webservice-client>
 <type-mappings xmlns:typens0="http://examples.webservices.
oracle/customtypes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <type-mapping
 java-class="java.lang.String"
 xml-type="xsd:string">
 <serializer class="oracle.webservices.examples.customtypes.
MyStringSerializer"/>
 </type-mapping>
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.MyIntItem"
 xml-type="typens0:IntItem">
 <serializer class="oracle.webservices.examples.customtypes.
MyIntItemSerializer"/>
 </type-mapping>
 <type-mapping
 java-class="oracle.webservices.examples.customtypes.StringItem"
 xml-type="typens0:StringItem">
 </type-mapping>
 </type-mappings>
 </webservice-client>
</oracle-webservice-clients>

Generating the Web Service Client Side Proxy Generate the Web services client-side proxy
with the WebServicesAssembler genProxy command. Use the ddFileName
argument to provide the client side custom type mapping file as input. The genProxy
command will create client proxy classes will use your serializers.

The following sample genProxy command uses the client side custom type mapping
file MyCustomTypeMappings.xml as input.

java -jar wsa.jar -genProxy
 -wsdl http://localhost:8888/MyCustomTypes/MyCustomTypes?WSDL
 -ddFileName ./MyCustomTypeMappings.xml
 -output ./build/src/client

Writing a Web Service Client with Custom Datatypes When you write your client program
using the generated proxy code, you can call MyIntItem instead of IntItem. This is
illustrates in Example 7–20.

Example 7–20 Client Code Incorporating Custom Type Mapping and Custom Serializer

ServiceFactory factory = ServiceFactory.newInstance();
MyCustomTypes service = (MyCustomTypes) factory.loadService(MyCustomTypes.class);
MyEndpointIntf proxy = (MyEndpointIntf)service.getPort(MyEndpointIntf.class);
((Stub) proxy)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, address);

 MyIntItem int1 = new MyIntItem("int1", 123);
 MyIntItem int2 = new MyIntItem("int2", 456);
 MyIntItem [] ints = { int1, int2 };

Limitations

7-26 Advanced Web Services Developer's Guide

 StringItem str1 = new StringItem();
 str1.setName("string1");
 str1.setValue("foo");
 StringItem str2 = new StringItem();
 str2.setName("string2");
 str2.setValue("coo");
 StringItem[] strings = { str1, str2 };

 Items items = proxy.getItems(ints, strings);

Limitations
See "Custom Serialization of Java Value Types" on page E-10.

Additional Information
For more information on:

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

■ JARs that are necessary to compile client code, see "Web Service Client APIs and
JARs" in the Oracle Application Server Web Services Developer's Guide,

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see "Packaging and
Deploying Web Services" in the Oracle Application Server Web Services Developer's
Guide.

Using JMS as a Web Service Transport 8-1

8
Using JMS as a Web Service Transport

This chapter describes how to employ JMS as an alternative transport mechanism for
Web Services. It describes these major topics:

■ Understanding JMS as a Transport Mechanism

■ Setting Up JMS Queues

■ Assembling a Web Service Bottom Up that Uses JMS Transport

■ Assembling a Web Service Top Down that Uses JMS Transport

■ Assembling a Proxy that Uses JMS as a Transport

■ Writing Client Code to Support JMS Transport

Understanding JMS as a Transport Mechanism
Building on top of JMS, Oracle Application Server Web Services support two
messaging styles: one-way request messaging and two-way request and response
messaging. One-way request messaging lets a Web service client unblock when the
request message reaches a JMS queue. Two-way request and response messaging
blocks a Web service client until the response message is received.

Using JMS as an Alternative to HTTP
Since SOAP is transport-independent and can be bound to any protocol, SOAP over
JMS is an alternative messaging mechanism to the standard SOAP over HTTP
messaging. Although both serve as a communication channel between a Web service
provider and a Web service client, they are very different. When interoperability is the
driving factor, use SOAP over HTTP because it is standardized by the Web Service
Interoperability (WS-I) organization. When reliability, scalability, and asynchronous
messaging are the key factors, consider SOAP over JMS.

JMS Supports Asynchronous and Reliable Messaging
SOAP over JMS ensures reliability because message delivery can be guaranteed.
Messages sent by a Web service provider or client can be placed onto a queue and can
be stored in persistent storage. In case of a communication failure, the failing message
is retrieved from the persistent storage and re-sent until transmission is successful,
which is extremely useful in transaction- and data-critical systems. Businesses that use
Enterprise Application Integration (EAI) should find SOAP over JMS appealing
because it boosts confidence when exchanging critical data between client and server.

Understanding JMS as a Transport Mechanism

8-2 Advanced Web Services Developer's Guide

Asynchronous messaging lets a client invoke a service without waiting for the
response. Asynchronous invocation can be implemented by both synchronous and
asynchronous transport. JMS as an asynchronous transport can provide a correlation
mechanism for associating response messages with request messages. It also lets a
client query the status of its requests, and retrieve the responses independently. These
features, which HTTP lacks, make the implementation of asynchronous invocation
easier for both service requestor and service provider.

JMS Permits Scalable Services
Scalability is another advantage with SOAP over JMS. Unlike HTTP, JMS can support
high-volume connections, even for services that get tens of thousands of connections
per second.

General Steps for Implementing JMS as a Transport Mechanism
Enabling JMS as a transport mechanism follows these general steps.

1. Set up the queues that are to be used for sending and receiving SOAP messages.
"Setting Up JMS Queues" provides more information on this step.

2. Generate the Web service, specifying the JMS queue information for the SOAP
transport.

■ If generating bottom up, pass a descriptor containing the JMS transport
details, or declare the JMS transport parameters on the command line or Ant
task. "Assembling a Web Service Bottom Up that Uses JMS Transport" on
page 8-4 provides more information on this step.

■ If generating top down, edit the WSDL to add the JMS address. "Assembling a
Web Service Top Down that Uses JMS Transport" on page 8-8 provides more
information on this step.

3. Generate the proxy (if necessary). When generating the proxy, you must identify
the return queue. The return queue is the JMS queue on which you want to receive
responses to Web service invocations. You can do this by declaring the return
queue on the command line or in Ant tasks.

"Assembling a Proxy that Uses JMS as a Transport" on page 8-9 provides more
information on this step.

Data Flow for JMS Transport
The following steps describe how data is passed between the Web service client and
OracleAS Web Services when JMS is the transport mechanism. The WSDL elements
and WebServicesAssembler arguments mentioned in the steps are described later in
this chapter. Figure 8–1 illustrates the sequence of steps.

1. In the Web service client, the message is sent as a request to a JMS queue in OC4J.
The <jms:address> element in the WSDL provides the location of the target
endpoint to which the message will be served from the JMS queue in OC4J.

2. The client performs a JMS send operation to send the request to the sender queue
in OC4J.

Note: Reliability can also be enabled for SOAP messaging over
HTTP. For more information, see Chapter 5, "Ensuring Web Service
Reliability".

Setting Up JMS Queues

Using JMS as a Web Service Transport 8-3

3. The sender queue in OC4J accepts the request. If WebServicesAssembler was used
to assemble the Web service, then the location of the sender queue is provided by
the sendQueueLocation argument.

4. The server runtime dequeues the request and serves it to the endpoint identified
by the client's request.

5. If the message has a reply (or response), the service puts the message on the
reply-to queue. If WebServicesAssembler was used to assemble the Web service,
then the location of the reply-to queue is provided by the
replyToQueueLocation argument.

6. The client blocks on waiting to receive a response on the reply-to queue (in case of
a request-response operation), thus simulating a synchronous request-response. If
the message exchange pattern was one way, the client does not wait for a response.

Figure 8–1 Data Flow for JMS Transport

Setting Up JMS Queues
Queues must be set up in the OracleAS Web Services container to identify the sender
queue and the receiver queue. Each queue is identified by a <queue> element and a
<queue-connection-factory> element.

The <queue> element contains a name and a location attribute. The name attribute
specifies the queue's JNDI name. The location attribute specifies the queue's JNDI
location. The queue element can also contain an optional description element to
provide a text description of the queue.

The queue-connection-factory element also contains a name and a location
attribute. The name attribute specifies the JNDI name of the JMS connection factory
used to produce connections for the send or receive operation. The location
specifies the factory's JNDI location.

If the queues are set up in the OC4J/JMS jms.xml configuration file, you can add two
clauses to that file: one for the sender queue and one for the reply-to queue. For more
information on JMS in the OC4J environment, see Oracle Containers for J2EE Services
Guide.

Example 8–1 illustrates XML code that identifies the SOAP sender queue at the JNDI
location jms/senderQueue. This queue uses
jms/senderQueueConnectionFactory as the JMS connection factory to produce
connections for the send operation. Similarly, the second clause identifies the SOAP

6 JMS receive
(reply/response)

2

1

JMS send
(request)

reply-to queue send queue

service
45 3

OC4J

Web Service Client

<jms: address ...
 ...
 <jms:propertyValue
 name="endpoint-location"
 ...
<jms:address>

Assembling a Web Service Bottom Up that Uses JMS Transport

8-4 Advanced Web Services Developer's Guide

receiver queue at the JNDI location jms/replyToQueue as the receiver queue.
This queue uses jms/replyToQueueConnectionFactory as the JMS connection
factory to produce connections for the response messages from the Web service
endpoint.

Example 8–1 XML Code to Identify Sender Queue and Receiver Queue

...
<queue name="SOAP sender" location="jms/senderQueue">
 <description>A queue for SOAP messages</description>
</queue>
<queue-connection-factory
 name="jms/senderQueueConnectionFactory"
 location="jms/senderQueueConnectionFactory"/>

<queue name="SOAP receiver" location="jms/replyToQueue">
 <description>A queue for SOAP response messages</description>
</queue>
<queue-connection-factory
 name="jms/replyToQueueConnectionFactory"
 location="jms/replyToQueueConnectionFactory"/>
...

Assembling a Web Service Bottom Up that Uses JMS Transport
To configure JMS transport into a Web service that you are generating bottom up,
extensions must be added to the WSDL that will identify a port that has JMS transport
enabled. WebServicesAssembler provides two arguments that will add this
information to the WSDL.

■ sendQueueLocation—identifies the JNDI name of the JMS queue that messages
will be sent to.

■ sendConnectionFactoryLocation—identifies the JNDI location of the JMS
factory used to produce connections for the JMS send operation.

The following steps describe how to generate a Web service bottom up that uses JMS
as its transport mechanism. The steps follow the standard procedure for assembling a
Web service bottom up. For examples of bottom up Web service assembly, see
"Assembling a Web Service with Java Classes" and "Assembling a Web Service with
EJBs" in the Oracle Application Server Web Services Developer's Guide.

It is assumed that you have already configured the JMS queues for sending and
receiving SOAP messages. "Setting Up JMS Queues" on page 8-3 provides more
information on queues.

1. Generate the service artifacts by running the WebServicesAssembler with the
assemble command. Specify the queue location and queue connection factory
with sendQueueLocation and sendConnectionFactoryLocation. The
WSDL generated by this Ant task is illustrated in Example 8–2.

<oracle:assemble appName="echo"
 targetNamespace="http://www.oracle.com/echo"
 typeNamespace="http://www.oracle.com/echo"
 serviceName="EchoService"
 input="./build/classes/service"
 output="build"
 ear="build/echo.ear"
 style="rpc"
 use="encoded"

Assembling a Web Service Bottom Up that Uses JMS Transport

Using JMS as a Web Service Transport 8-5

 createOneWayOperations="true"
 >
 <oracle:porttype
 interfaceName="oracle.j2ee.ws.jmstransport.Echo"
 className="oracle.j2ee.ws.jmstransport.EchoImpl"
 >
 <oracle:port
 uri="/echo"
 sendQueueLocation="jms/senderQueue"
 name="EchoPort"
 sendConnectionFactoryLocation="jms/senderQueueConnectionFactory"
 </oracle:port>
 </oracle:porttype>
 />

2. Deploy the service.

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

3. Generate the client code. This step is described in "Assembling a Proxy that Uses
JMS as a Transport" on page 8-9.

WSDL Extensions for JMS Transport
The following WSDL extensions define JMS transport for a Web service.

■ JMS Address Element

■ JMS Property Value Element

These are Oracle-proprietary WSDL extensions and may not be interoperable. If you
are using JDeveloper or WebServicesAssembler to develop and deploy the endpoint
bottom up, then these extensions are generated into the WSDL. Otherwise, if you are
manually writing the WSDL or developing and deploying the Web service top down,
then you should add these extensions.

The following URI is the namespace for the extensions described in this section.

xmlns:jms="http://www.oracle.com/technology/oracleas/wsdl/jms"

JMS Address Element
Only one <jms:address> element should be used in a port-component definition.
This element should be used in place of a <soap:address> declaration.

<jms:address
 jndiDestinationName="xxx"
 jndiConnectionFactoryName="xxx"/>

Table 8–1 describes the attributes of the <jms:address> element.

Table 8–1 Attributes of the <jms:address> Element

Attribute Name Description

jndiDestinationName The JNDI name of the JMS queue that messages will be sent
to. If you are generating the Web service bottom up, then this
attribute will be set by the sendQueueLocation argument.

Assembling a Web Service Bottom Up that Uses JMS Transport

8-6 Advanced Web Services Developer's Guide

JMS Property Value Element
The <jms:propertyValue> element must be added to the <jms:address> section
of the binding operation to identify the endpoint location. The general format is the
following.

<jms:propertyValue
 name="string"
 type="type"
 value="string"/>

Table 8–2 describes the attributes of the <jms:propertyValue> element.

The WebServicesAssembler uri argument can provide the value for the
propertyValue element in the WSDL. When the uri argument is specified, the
name attribute is set to endpoint-location, the type attribute is set to string and
the value attribute is set to the value of the uri argument.

<jms:propertyValue name="endpoint-location" type="string" value="value of uri
argument"/>

Example 8–2 illustrates the WSDL created by the Ant task in "Assembling a Web
Service Bottom Up that Uses JMS Transport" on page 8-4. The JMS transport
configuration is highlighted in bold.

Example 8–2 WSDL with a JMS Transport Configuration

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://www.oracle.com/echo"
 xmlns:jms="http://www.oracle.com/technology/oracleas/wsdl/jms"
name="Echo" targetNamespace="http://www.oracle.com/echo">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"
targetNamespace="http://www.oracle.com/echo"/>
 </types>

jndiConnectionFactoryName The JNDI name of the connection factory that will be used. If
you are generating the Web service bottom up, then this
attribute is set by the sendConnectionFactoryLocation
argument.

Table 8–2 Attributes of the <jms:propertyValue> Element

Attribute Name Description

name The name of a property defined by JMS, by the JMS
implementation, or by the user.

type The datatype of the attribute.

value A value that hard codes the value of this property in the WSDL.

Table 8–1 (Cont.) Attributes of the <jms:address> Element

Attribute Name Description

Assembling a Web Service Bottom Up that Uses JMS Transport

Using JMS as a Web Service Transport 8-7

 <message name="Echo_echo">
 <part name="String_1" type="xsd:string"/>
 </message>
 <message name="Echo_echoInt">
 <part name="int_1" type="xsd:int"/>
 </message>
 <message name="Echo_echoIntResponse">
 <part name="result" type="xsd:int"/>
 </message>
 <message name="Echo_echoResponse">
 <part name="result" type="xsd:string"/>
 </message>
 <portType name="Echo">
 <operation name="echo" parameterOrder="String_1">
 <input message="tns:Echo_echo"/>
 <output message="tns:Echo_echoResponse"/>
 </operation>
 <operation name="echoInt" parameterOrder="int_1">
 <input message="tns:Echo_echoInt"/>
 <output message="tns:Echo_echoIntResponse"/>
 </operation>
 </portType>
 <binding name="EchoBinding" type="tns:Echo">
 <operation name="echo">
 <input>
 <soap:body use="encoded" namespace="http://www.oracle.com/echo"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" parts="String_1"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://www.oracle.com/echo"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" parts="result"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <operation name="echoInt">
 <input>
 <soap:body use="encoded" namespace="http://www.oracle.com/echo"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" parts="int_1"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://www.oracle.com/echo"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" parts="result"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <soap:binding style="rpc"
 transport="http://www.oracle.com/technology/oracleas/wsdl/jms"/>
 </binding>
 <service name="Echo">
 <port name="EchoPort" binding="tns:EchoBinding">
 <jms:address
 jndiConnectionFactoryName="jms/OracleSyndicateQueueConnectionFactory"
 jndiDestinationName="jms/OracleSyndicateQueue" >
 <jms:propertyValue name="endpoint-location" type="string"
value="echo"/>
 </jms:address>
 </port>
 </service>
</definitions>

Assembling a Web Service Top Down that Uses JMS Transport

8-8 Advanced Web Services Developer's Guide

Adding JMS Transport Configuration with Deployment Descriptors
A JMS transport configuration can be passed to the Web service assembly by entering
it into the oracle-webservices.xml deployment descriptor. This is an alternative
to declaring the sendQueueLocation and sendConnectionFactoryLocation,
arguments on the command line or Ant task.

When you enter the configuration into oracle-webservices.xml, use
<jms-address> instead of <jms:address> and <jms-propertyValue> instead
of <jms:propertyValue>. These elements should appear as subelements of the
<port-component> element.

Example 8–3 illustrates an oracle-webservices.xml deployment descriptor that
includes a JMS transport configuration. During assembly, a new WSDL will be created.
The resulting WSDL will look like the one in Example 8–2. The JMS configuration is
highlighted in bold. The jndiDestinationName and
jndiConnectionFactoryName attributes are defined in "WSDL Extensions for JMS
Transport" on page 8-5.

Example 8–3 oracle-webservices.xml with JMS Transport Configuration

<oracle-webservices
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="oracle-webservices-server-10_0.xsd"
 schema-major-version="10" schema-minor-version="0">
 <webservice-description name="Echo">
 <port-component name="EchoPort">
 <runtime enabled="true">
 <jms-address jndiDestinationName="jms/senderQueue"
jndiConnectionFactoryName="jms/senderQueueConnectionFactory" />
 </runtime>
 </port-component>
 </webservice-description>
</oracle-webservices>

Assembling a Web Service Top Down that Uses JMS Transport
For top down assembly, you must edit the WSDL to add the JMS address and property
values for the endpoint.

The following steps describe how to generate a Web service that uses JMS as its
transport mechanism. The steps follow the standard procedure for assembling a Web
service described in "Generating the Web Service Top Down" in the Oracle Application
Server Web Services Developer's Guide.

It is assumed that you have already configured the JMS queues for sending and
receiving SOAP messages. "Setting Up JMS Queues" on page 8-3 provides more
information on queues.

1. Provide a WSDL from which the Web service will be generated.

2. Edit the WSDL to add the elements that define JMS transport. "WSDL Extensions
for JMS Transport" on page 8-5 describes the JMS transport elements.

3. Use the WSDL as input to the WebServicesAssembler genInterface command.

4. Compile the generated interface and type classes.

5. Write the Java service endpoint interface for the Web service you want to provide.

6. Compile the Java service endpoint interface.

Assembling a Proxy that Uses JMS as a Transport

Using JMS as a Web Service Transport 8-9

7. Generate the service by running the WebServicesAssembler tool with the
topDownAssemble command.

<oracle:topDownAssemble appName="bank"
 packageName="oracle.ws.server.bank"
 wsdl="./etc/Bank.wsdl"
 input="./build/classes/service}"
 output="build"
 ear="build/bank.ear"
 debug="true"
 fetchWsdlImports="true"
 >
 <oracle:classpath>
 <oracle:pathelement path="${build.impl.dir}"/>
 <oracle:pathelement location="${wsa.jar}"/>
 </oracle:classpath>
 <oracle:porttype
 className="oracle.ws.server.bank.BankImpl"
 classFileName="java/oracle/ws/server/bank/BankImpl.java"
 >
 <oracle:port name="BankPort" uri="bank2"/>
 <oracle:port name="BankPortWithJMS" uri="/bank"/>
 <oracle:port name="Soap12JmsEchoPort" uri="/soap12bank"/>
 </oracle:porttype>
 />

8. Deploy the service.

Deploy the EAR file in the standard manner into a running instance of OC4J. For
more information on deploying EAR files, see the Oracle Containers for J2EE
Deployment Guide.

9. Generate the client code. This step is described in "Assembling a Proxy that Uses
JMS as a Transport".

10. Add the following client JAR files to the classpath. These client JAR files are
required when the Web service client supports JMS as a transport mechanism. The
J2EE_HOME environment variable in the paths represents the location where the
Oracle Application Server or the standalone OC4J is installed.

■ J2EE_HOME/j2ee/home/lib/oc4j-unsupported-apis.jar

■ J2EE_HOME/j2ee/home/lib/oc4j-internal.jar

"Web Service Client APIs and JARs" in the Oracle Application Server Web Services
Developer's Guide, provides a description of all of the available OracleAS Web
Services client JARs.

Assembling a Proxy that Uses JMS as a Transport
When working with JMS as a transport mechanism you must ensure that the client
code provides the JNDI names of the JMS queue and the connection factory for the
reply-to queue which will be used for send operation JMS messages. The
WebServicesAssembler arguments replyToQueueLocation and
replyToConnectionFactoryLocation can provide these values. Used with the
genProxy command, these arguments generate a proxy stub that can be used with
JMS transport. The arguments will generate a stub configured with values for a queue
that will receive response messages.

If you do not use the replyTo* arguments to generate a proxy stub, and the endpoint
contains request/response operations, then you must set the replyTo* arguments

Assembling a Proxy that Uses JMS as a Transport

8-10 Advanced Web Services Developer's Guide

programmatically so that response messages can be received. "Setting the Send Queue
Location and Connection Factory Programmatically" on page 8-11 describes how to
provide this information directly in your code.

The following steps describe how to generate a proxy stub that uses JMS as its
transport mechanism. The steps follow the standard procedure for assembling a proxy
stub that are described in How to Assemble a J2SE Web Service Client with a Static Stub in
the Oracle Application Server Web Services Developer's Guide,.

It is assumed that you have already configured the JMS queues for sending and
receiving SOAP messages. "Setting Up JMS Queues" on page 8-3 provides more
information on queues.

1. Provide the URI to the WSDL, the name of the output directory, the package name,
and the locations of the JMS queue and connection factory as input to the
WebServicesAssembler genProxy command.

<oracle:genProxy
 wsdl="http://localhost:8888/bank/bank?WSDL"
 output="build/src/proxy"
 packageName="oracle.ws.client.bank"
 >
 <oracle:port
 replyToConnectionFactoryLocation="jms/receiverQueueConnectionFactory"
 replyToQueueLocation="jms/receiverQueue"
 </oracle:port>
 />

This command generates the client proxy and stores it in the build/src/proxy
directory. The client application uses the stub to invoke operations on a remote
service.

2. Use the client utility class file created by genProxy as your application client, or
use it as a template to write your own client code. The client utility class file is one
of a number of files created by genProxy.

3. Compile the client files and put them in the classpath.

List the appropriate JARs on the classpath before compiling the client. "Classpath
Components for Clients Using a Client Side Proxy" in the Oracle Application Server
Web Services Developer's Guide lists all of the JAR files that can possibly be used on
the client classpath. As an alternative to listing individual JARs, you can include
the client-side JAR, wsclient_extended.jar on the client classpath. This JAR
file contains all the classes necessary to compile and run a Web service client. The
classes are from the individual JAR files listed in "Setting the Web Service Proxy
Client Classpath" in the Oracle Application Server Web Services Developer's Guide.
This appendix provides information on wsclient_extended.jar and the client
classpath.

For JMS clients, you must also include the oc4j-internal.jar and
oc4j-unsupported-apis.jar files on the classpath. "JMS Transport-Related
Client JAR File" in the Oracle Application Server Web Services Developer's Guide.
provides more information on the oc4j-internal.jar and
oc4j-unsupported-apis.jar files.

To provide a JNDI configuration for the client, add the jndi.properties file to
the client classpath.

4. Run the J2SE JMS client from the command line.

Writing Client Code to Support JMS Transport

Using JMS as a Web Service Transport 8-11

Writing Client Code to Support JMS Transport
The following sections describe how to write Web service clients that use JMS
transport.

■ Writing Client Stub Code for JMS Transport

■ Setting the Send Queue Location and Connection Factory Programmatically

■ Writing DII Code for JMS Transport

Writing Client Stub Code for JMS Transport
Stub code for a client that uses JMS transport is very similar to code for clients that use
HTTP transport. The difference is that the endpoint address must be set to the unique
URI that identifies the JMS endpoint. "Writing Web Service Client Applications" in the
Oracle Application Server Web Services Developer's Guide provides more information on
writing client code for J2SE client applications.

Example 8–4 illustrates client stub code that uses JMS transport to send messages. The
code that sets the endpoint address to the unique URI that identifies the JMS endpoint
is highlighted in bold.

Example 8–4 Client Stub Code to Send Messages with JMS Transport

...
ServiceFactory serviceFactory = ServiceFactory.newInstance();
 Echo_Service echoService = (Echo_Service) serviceFactory.loadService(Echo_
Service.class);
 Echo_PortType echoPort = echoService.getEchoPort();
 ((Stub)echoPort)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
"/echo/echo");
 String echo = echoPort.echo("Test echo");
...

Setting the Send Queue Location and Connection Factory Programmatically
When you are working with JMS as a transport, client stub code requires to you to
identify the JNDI names of the JMS queue and the connection factory for the reply-to
queue for send operation JMS messages. If you do not provide these values when you
generate the proxy stub code, you can add them programmatically. OracleAS Web
Services provides two properties in the
oracle.webservices.transport.OracleStub class that allow you to do this.

■ JMS_TRANSPORT_REPLY_TO_FACTORY_NAME—specifies the JNDI name of the
JMS connection factory to be used as the default reply-to of all send operation
JMS messages. This property is comparable to the
replyToConnectionFactoryLocation WebServicesAssembler argument.

■ JMS_TRANSPORT_REPLY_TO_QUEUE_NAME—specifies the JNDI name of the JMS
queue to be used as the default reply-to of all send operation JMS messages. This
property is comparable to the replyToQueueLocation WebServicesAssembler
argument.

Example 8–5 illustrates client stub code that uses these properties to set the JNDI name
of the JMS queue and the connection factory for the reply-to queue for send
operations. The code that sets the properties is highlighted in bold.

Example 8–5 Setting replyTo* Parameters Programmatically

ServiceFactory serviceFactory = ServiceFactory.newInstance();

Limitations

8-12 Advanced Web Services Developer's Guide

 Echo_Service echoService = (Echo_service)serviceFactory.loadService(Echo_
Service.class;
 Echo_PortType echoPort = echoService.getEchoPort();
 ((Stub)echoPort)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, "/echo/echo");
 ((Stub)echoPort)._setProperty(OracleStub.JMS_TRANSPORT_REPLY_TO_FACTORY_
NAME, "jms/receiverQueueConnectionFactory");
 ((Stub)echoPort)._setProperty(OracleStub.JMS.TRANSPORT_REPLY_TO_QUEUE_NAME,
"jms/receiverQueue");
 String echo = echoPort.echo("Test echo");

Writing DII Code for JMS Transport
If you are writing code for a Dynamic Invocation Interface (DII) client, you must create
JmsAddress objects for the sender queue and the receiver queue. These objects are
then used to declare an JmsClientTransportFactory object programmatically.
This will allow the client to get response messages from a Web service invocation.

The JmsAddress and JmsClientTransportFactory classes belong to the
oracle.webservices.transport package.

Example 8–6 illustrates DII client code for sending messages through JMS transport.
The code which illustrates how JmsClientTransportFactory is created, set up,
and used is highlighted in bold.

Example 8–6 DII Client Code to Send Messages Through JMS Transport

...
QName operation = new QName("http://www.oracle.com/echo", "echo");
 Call call = getCall(operation, SOAPVersion.SOAP_1_1);
 call.setTargetEndpointAddress("/echo/echo");
 JmsAddress jmsAddress = new JmsAddress("jms/senderQueue",
"jms/senderQueueConnectionFactory");
 JmsAddress replyToAddress = new JmsAddress("jms/receiverQueue",
"jms/receiverQueueConnectionFactory");
 JmsClientTransportFactory transportFactory = new
JmsClientTransportFactory(jmsAddress, replyToAddress);
 ((OracleCall) call).setClientTransportFactory(transportFactory);
...

Limitations
See "Using JMS as a Web Service Transport" on page E-11.

Additional Information
For more information on:

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

Additional Information

Using JMS as a Web Service Transport 8-13

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

■ JARs that are necessary to compile client code, see "Web Service Client APIs and
JARs" in the Oracle Application Server Web Services Developer's Guide,

■ the contents of the oracle-webservices.xml deployment descriptor which
contains the Web services management configuration, see "Packaging and
Deploying Web Services" in the Oracle Application Server Web Services Developer's
Guide.

Additional Information

8-14 Advanced Web Services Developer's Guide

Using Web Services Invocation Framework 9-1

9
Using Web Services Invocation Framework

This chapter describes Oracle Application Server Web Services support for the Web
Services Invocation Framework (WSIF). WSIF provides a standard API for working
with representations of different Web service messaging protocols as an alternative to
working directly with a JAX-RPC SOAP client API. The WSIF API allows the client to
use native protocols to communicate with the service.

The WSIF API allows a Web service to communicate with Web service components,
such as Java classes, EJBs, or database resources, through a single interface. In addition
to JAX-RPC which understands only SOAP, WSIF clients can directly use other
protocols, such as RMI, IIOP, or JDBC.

To support different messaging protocols, you can add different WSIF bindings to the
WSDL. This is in contrast to the SOAP protocol, where you add a SOAP binding. WSIF
and SOAP bindings can co-exist in the same WSDL. This enables you to define both
native and SOAP bindings for a particular service. For example, you can expose an EJB
with a WSIF port and a SOAP port. Clients can access the same Web service even
though they may be using different protocols. The protocol that is used to
communicate with the service is determined by selecting a particular binding in the
client: either a SOAP or a WSIF binding.

This chapter contains the following sections.

■ Understanding WSIF Architecture

■ Configuring a WSIF Endpoint for Java Classes

■ Configuring a WSIF Endpoint for EJBs

■ Configuring a WSIF Endpoint for Database Resources

■ Tool Support for WSIF

WSIF is sponsored by the Apache Software Group. For more information on WSIF, see
the following Web site.

http://ws.apache.org/wsif/

Understanding WSIF Architecture
In the WSIF architecture, communications between the client and Web services are
enabled through the WSDL. The WSDL becomes the normalized description of the
software interface.

Figure 9–1 illustrates the WSIF architecture for OracleAS Web Services. The following
steps describe the data flow through the architecture.

Understanding WSIF Architecture

9-2 Advanced Web Services Developer's Guide

1. Program the WSIF client according to the content of the abstract service
description portion of the WSDL. This portion of the WSDL includes port types,
operations, and message exchanges.

2. At runtime, the WSIF client selects a concrete binding in the WSDL that
determines which provider the WSIF runtime will use. Providers are
protocol-specific pieces of code that provide implementation of the different WSIF
bindings in the WSDL.

3. The WSIF client makes calls into the WSIF API to invoke the Web service. This API
is based on the abstract service description portion of the WSDL. By invoking the
service based on its abstract description, you can work with a service regardless of
how it was implemented, its protocol, or where it resides.

4. The WSIF runtime in the kernal determines which provider to use, based on the
binding selected in Step 2.

5. The provider interacts with the Web service.

Services can be invoked dynamically and without the need for generating stubs.

Figure 9–1 WSIF Architecture for OracleAS Web Services

WSIF supports providers for clients of Web services that expose JAX-RPC (SOAP),
Java classes, EJBs, and database resources. You can also define your own providers.
Defining your own providers is beyond the scope of this manual. For information on
this topic, see the Apache Software Group Web page for WSIF.

http://ws.apache.org/wsif/

The following sections describe the WebServicesAssembler commands and Ant tasks
that insert WSIF information into the WSDL.

WSIF APIKernal

SOAP
Web

Service

Java Class
Web

Service

EJB
Web

Service

User-defined
Web

Service

. . .

5

2

1

User-
defined
provider

SOAP
provider

Abstract
Service

Description

Concrete
Binding

Local
Java

provider

EJB
provider

Web Service Client

WSDL

4

3

Configuring a WSIF Endpoint for Java Classes

Using Web Services Invocation Framework 9-3

Configuring a WSIF Endpoint for Java Classes
To insert WSIF Java extensions into the WSDL, OracleAS Web Services provides two
arguments that can be used with the assemble or genWsdl WebServicesAssembler
commands.

■ wsifJavaBinding

■ wsifJavaPort

As you assemble a Web service based on a Java class with the assemble or genWsdl
commands, the wsifJavaBinding and wsifJavaPort arguments allow you to
request a WSIF binding. For more information on creating a Web service based on a
Java class, see "Assembling a Web Service with Java Classes" in the Oracle Application
Server Web Services Developer's Guide.

The wsifJavaBinding or wsifJavaPort arguments add the appropriate WSDL
extensions in the form of a WSIF binding that allow a WSIF client to access Java class
exposed as a Web service. "WSIF Java Extensions to the WSDL" on page 9-6 lists the
schema definitions that can be added to the WSDL to support WSIF Java bindings.

To configure the WSIF Java bindings for a single port, you can use either the
wsifJavaBinding or wsifJavaPort argument. The wsifJavaPort argument also
enables you to specify multiple ports of different types within an Ant task.

While the wsifJavaBinding argument can be used either on the command line or in
an Ant task, the wsifJavaPort can be used only in an Ant task.

The following sections describe how to configure a WSIF endpoint for single and
multiple Java ports.

■ Configuring a WSIF Endpoint for a Single Java Port

■ Configuring a WSIF Endpoint for Multiple Java Ports

Configuring a WSIF Endpoint for a Single Java Port
A WSIF endpoint for a single Java port can be configured with wsifJavaBinding or
wsifJavaPort.

■ Configuring a Single Java Port with wsifJavaBinding

■ Configuring a Single Java Port with wsifJavaPort

Configuring a Single Java Port with wsifJavaBinding
The wsifJavaBinding argument can be used by either assemble or genWsdl
command to specify the WSIF Java binding for a single port.

The wsifJavaBinding argument requires you to specify the className argument.
The argument passes this value to the java:address element in the WSDL's <port>
element.

Example 9–1 illustrates an WebServicesAssembler command line for genWsdl that
calls wsifJavaBinding. Example 9–2 illustrates the corresponding Ant task. The
argument causes the java:address element in the WSDL's <port> element to be
populated with classname="oracle.demo.hello.HelloImpl". The variable
${wsdemo.common.class.path} represents the classpath.

Example 9–1 Command Line, Using wsifJavaBinding to Configure a Single Java Port

java -jar wsa.jar -genWsdl
 -output wsdl

Configuring a WSIF Endpoint for Java Classes

9-4 Advanced Web Services Developer's Guide

 -style rpc
 -use literal
 -wsifJavaBinding true
 -interfaceName oracle.demo.hello.HelloInterface
 -className oracle.demo.hello.HelloImpl
 -classpath ${wsdemo.common.class.path}:build/classes

Example 9–2 Ant Task, Using wsifJavaBinding to Configure a Single Java Port

<oracle:genWsdl
 output="wsdl"
 style="rpc"
 use="literal"
 wsifJavaBinding="true"
 >
 <oracle:porttype
 interfaceName="oracle.demo.hello.HelloInterface"
 className="oracle.demo.hello.HelloImpl"
 </oracle:porttype>
 <oracle:classpath>
 <oracle:pathelement path="${wsdemo.common.class.path}"/>
 <oracle:pathelement location="build/classes"/>
 </oracle:classpath>
</oracle:genWsdl>

Configuring a Single Java Port with wsifJavaPort
The wsifJavaPort argument can be used only in an Ant task. Although you
typically use wsifJavaPort to specify WSIF Java bindings for multiple ports, you
can also use it to specify a single port. The argument also has attributes that allow you
to specify a WSIF port name, a Java class name for each port, and a custom class loader
and its classpath. These attributes are passed to the java:address element in the
WSDL's <port> element.

Table 9–1 describes the attributes that can be used by the wsifJavaPort argument.
All of the attributes are optional.

The Ant task for genWsdl in Example 9–3 inserts WSIF Java binding code into the
WSDL's binding, binding operation, and port clauses. The HelloImpl class used as
the className attribute to the wsifJavaPort argument, contains a sayHello

Table 9–1 Attributes for the wsifJavaPort Argument

Attribute Description

classLoader Specifies the name of the Java class loader. If you do not provide
a value for this attribute, the value for the system class loader
will be used.

className Specifies the name of the implementation class. If you do not
provide a value for this attribute, WebServicesAssembler will
use the class name for the parent Ant task if it was specified.

classPath Specifies the class path for the Java class loader. If you do not
provide a value for this attribute, the system class path will be
used.

name Specifies the name of the WSIF port in the Web service. This
name will be used to identify the WSIF port in the WSDL's port
element.

Configuring a WSIF Endpoint for Java Classes

Using Web Services Invocation Framework 9-5

method that takes a greeting parameter of type String. The variable
${additional.class.path} represents the classpath.

Example 9–3 Using wsifJavaPort to Configure a Single Java Port

<oracle:genWsdl
 output="wsdl"
 style="rpc"
 use="literal"
 >
 <oracle:porttype
 interfaceName="oracle.demo.hello.HelloInterface">
 <oracle:wsifJavaPort name="HelloServiceJavaPort"
 className="oracle.demo.hello.HelloImpl" />
 </oracle:porttype>
 <oracle:classpath>
 <oracle:pathelement path="${additional.class.path}" />
 <oracle:pathelement location="build/classes" />
 </oracle:classpath>
</oracle:genWsdl>

Example 9–4 illustrates the WSIF Java binding code that the Ant task in the previous
example inserts into the WSDL's binding, binding operation, and port clauses.

Example 9–4 WSDL Extensions for WSIF Java Bindings

...
<java:binding/>
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
 </format:typeMapping>
 ...
<java:operation
 methodName="sayHello"
 parameterOrder="greeting"
 methodType="instance"
 returnType="result" />
 ...
<port name="HelloServiceJavaPort" binding="tns:JavaBinding">
 <java:address className="oracle.demo.hello.HelloImpl" />
</port>
...

Configuring a WSIF Endpoint for Multiple Java Ports
You can use the wsifJavaPort argument with the assemble and genWsdl
commands to define WSIF bindings for multiple Java ports. Example 9–5 illustrates an
Ant task that creates a WSIF port named HelloServiceJavaPort and a SOAP port
named HelloServiceSoapPort. The SOAP port is created by adding the
<oracle:port name="... "/> subtask. Note that className is declared in the
parent Ant task. The variable ${additional.class.path} represents the
classpath. Table 9–1 on page 9-4 describes the attributes that can be used by
wsifJavaPort.

Example 9–5 Using wsifJavaPort to Configure a WSIF Java Port and a SOAP Java Port

<oracle:genWsdl
 output="wsdl"
 style="rpc"

Configuring a WSIF Endpoint for Java Classes

9-6 Advanced Web Services Developer's Guide

 use="literal"
 >
 <oracle:porttype
 interfaceName="oracle.demo.hello.HelloInterface"
 className="oracle.demo.hello.HelloImpl">
 <oracle:wsifJavaPort name="HelloServiceJavaPort" />
 <oracle:port name="HelloServiceSoapPort" />
 </oracle:porttype>
 <oracle:classpath>
 <oracle:pathelement path="${additional.class.path}" />
 <oracle:pathelement location="build/classes" />
 </oracle:classpath>
</oracle:genWsdl>

WSIF Java Extensions to the WSDL
To comply with the WSIF Framework definition, OracleAS Web Services inserts
binding information into the WSDL that allows a Java class to be represented as a Web
service. Example 9–4 on page 9-5 illustrates how additional bindings, binding
operations, and port clauses are added to the WSDL to describe a WSIF service.
Example 9–6 illustrates the corresponding XML schema definitions for these
extensions.

Example 9–6 Schema Definitions to Support WSIF Java Bindings

...
<!-- Java binding -->
<binding ... >
 <java:binding/>
 <format:typeMapping style="uri" encoding="..."/>?
 <format:typeMap typeName="qname"|elementName="qname"
 formatType="nmtoken"/>*
 </format:typeMapping>
 ...
 <operation>*
 <java:operation
 methodName="nmtoken"
 parameterOrder="nmtoken"?
 returnPart="nmtoken"?
 methodType="instance|static|constructor"? />?
 <input name="nmtoken"? />?
 <output name="nmtoken"? />?
 <fault name="nmtoken"? />?
 </operation>
</binding>

<service ... >
 <port name="nmtoken" >*
 <java:address
 className="nmtoken"
 classPath="nmtoken"?
 classLoader="nmtoken"? />
 </port>
</service>
...

Configuring a WSIF Endpoint for EJBs

Using Web Services Invocation Framework 9-7

Configuring a WSIF Endpoint for EJBs
To insert WSIF EJB extensions into the WSDL, the WebServicesAssembler tool
provides two arguments that can be used with the ejbAssemble or genWsdl
commands.

■ wsifEjbBinding

■ wsifEjbPort

As you assemble a Web service based on an EJB with the ejbAssemble command, the
wsifEjbBinding or wsifEjbPort arguments allow you to request a WSIF binding.
For more information on creating a Web service based on an EJB, see "Assembling a
Web Service with EJBs" in the Oracle Application Server Web Services Developer's Guide.

These arguments add the appropriate WSDL extensions that allow a WSIF client to
access an EJB exposed as a Web service. The section "WSIF EJB Extensions to the
WSDL" on page 9-10 lists the schema definitions that can be added to the WSDL to
support WSIF EJB bindings.

To configure the WSIF EJB binding for a single port, you can use either the
wsifEjbBinding or wsifEjbPort argument. To configure WSIF EJB bindings for
multiple ports, you must use the wsifEjbPort argument.

While the wsifEjbBinding argument can be used either on the command line or in
an Ant task, the wsifEjbPort can be used only in an Ant task.

The following sections describe how to configure WSIF endpoints for single and
multiple EJB ports.

■ Configuring a WSIF Endpoint for a Single EJB Port

■ Configuring a WSIF Endpoint for Multiple EJB Ports

Configuring a WSIF Endpoint for a Single EJB Port
A WSIF endpoint for a single EJB port can be configured with the wsifEjbBinding
or wsifEjbPort argument.

■ Configuring a Single EJB Port with wsifEjbBinding

■ Configuring a Single EJB Port with wsifEjbPort

Configuring a Single EJB Port with wsifEjbBinding
The wsifEjbBinding argument can be used by either the ejbAssemble or
genWsdl command to specify the WSIF EJB binding for a single port.

The wsifEjbBinding argument requires you to specify the name and jndiName
arguments. The wsifEjbBinding argument passes these values to the
ejb:address element in the WSDL's <port> element. The jndiProviderURL and
initialContextFactory arguments provide the JNDI provider URL and JNDI
initial context values. If you do not provide these arguments, then these values are
obtained from the jndi.properties file. For more information on this argument,
see "wsifEjbBinding" in the Oracle Application Server Web Services Developer's Guide.

Example 9–7 illustrates a WebServicesAssembler command line for genWsdl that calls
wsifEjbBinding. Example 9–8 illustrates the corresponding Ant task. The argument
causes the ejb:address element in the WSDL's <port> element to be populated
with className="oracle.demo.hello.HelloImpl" and
jndiName="HelloService2EJB". The variable ${additional.class.path} represents
the classpath.

Configuring a WSIF Endpoint for EJBs

9-8 Advanced Web Services Developer's Guide

Example 9–7 Command Line, Using wsifEjbBinding to Configure a Single EJB Port

java -jar wsa.jar -genWsdl
 -output wsdl
 -style rpc
 -use literal
 -wsifEjbBinding true
 -jndiName HelloService2EJB
 -interfaceName oracle.demo.ejb.HelloServiceInf
 -jndiProviderUrl deployer:oc4j:localhost:23791/HelloService
 -initialContextFactory oracle.j2ee.rmi.RMIInitialContextFactory
 -className oracle.demo.hello.HelloImpl
 -classpath ${additional.class.path}:build/classes

Example 9–8 Ant Task, Using wsifEjbBinding to Configure a Single EJB Port

<oracle:genWsdl
 output="wsdl"
 style="rpc"
 use="literal"
 wsifEjbBinding="true"
 jndiName="HelloService2EJB"
 jndiProviderUrl="deployer:oc4j:localhost:23791/HelloService"
 initialContextFactory="oracle.j2ee.rmi.RMIInitialContextFactory"
 >
 <oracle:porttype
 interfaceName="oracle.demo.ejb.HelloServiceInf"
 className="oracle.demo.hello.HelloImpl">
 </oracle:porttype>
 <oracle:classpath>
 <pathelement path="${additional.class.path}"/>
 <pathelement location="build.ejb.dir"/>
 </oracle:classpath>
</oracle:genWsdl>

Configuring a Single EJB Port with wsifEjbPort
The wsifEjbPort argument can be used only in an Ant task. Although you typically
use wsifEjbPort to specify WSIF EJB bindings for multiple ports, you can also use it
to specify a single port. The argument has attributes that allow you to specify a WSIF
port name, a class name, a JNDI name, a JNDI initial context, and a JNDI provider
URL for each port. These attributes are passed to the ejb:address element in the
WSDL. Table 9–2 describes the attributes that can be used by the wsifEjbPort
argument. Except for jndiName, all of the attributes are optional.

Table 9–2 Attributes for the wsifEjbPort argument.

Attribute Description

className Specifies the class name of the EJB's home interface. If you do
not provide a value for this attribute, WebServicesAssembler
will use the class name for the parent Ant task if it was specified.

initialContextFactory Specifies the name of the factory that will provide the initial
context. If you not provide a value for this attribute, the value in
the jndi.properties file will be used.

jndiName (required) Specifies the JNDI name for the EJB.

jndiProviderURL Specifies the URL for the JNDI Provider. If you do not provide a
value for this attribute, the value in the jndi.properties file
will be used.

Configuring a WSIF Endpoint for EJBs

Using Web Services Invocation Framework 9-9

The Ant task for genWsdl in Example 9–9 inserts WSIF EJB binding code into the
WSDL's binding, binding operation, and port clauses. The HelloHome class used as
the className attribute to the wsifEJBPort argument, contains a sayHello
method that takes a greeting parameter of type String. The variable
${additional.class.path} represents the classpath.

Example 9–9 Using wsifEjbPort to Configure a Single EJB Port

<oracle:genWsdl
 output="wsdl"
 style="rpc"
 use="literal"
 serviceName="${app.name}"
 >
 <oracle:porttype
 interfaceName="oracle.test.wsif.HelloServiceInf">
 <oracle:wsifEjbPort name="EjbPort"
 className="oracle.test.wsif.HelloHome"
 jndiName="HelloServiceBean"
 jndiProviderUrl="deployer:oc4j:localhost:23791/HelloService"
 initialContextFactory="oracle.j2ee.rmi.RMIInitialContextFactory"
 />
 </oracle:porttype>
 <oracle:classpath>
 <oracle:pathelement path="${additional.class.path}"/>
 <oracle:pathelement location="build/classes"/>
 </oracle:classpath>
</oracle:genWsdl>

Example 9–10 illustrates the WSIF EJB binding code that the previous example inserts
into the WSDL's binding, binding operation, and port clauses.

Example 9–10 WSDL Extensions for WSIF EJB Bindings

...
<ejb:binding/>
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
 </format:typeMapping>
...
<operation name="sayHello">
 <ejb:operation
 methodName="sayHello"
 interface="remote"
 parameterOrder="greeting"
 returnPart="result"/>
...
<port name="EjbPort" binding="tns:EjbPortBinding">
 <ejb:address className="oracle.test.wsif.HelloHome"
 jndiName="HelloServiceBean"
 initialContextFactory="oracle.j2ee.rmi.RMIInitialContextFactory"
 jndiProviderURL="deployer:oc4j:localhost:23791/HelloService"/>

name Specifies the name of the WSIF Port in the Web service. This
name will be used to identify the WSIF port in the WSDL's port
element.

Table 9–2 (Cont.) Attributes for the wsifEjbPort argument.

Attribute Description

Configuring a WSIF Endpoint for EJBs

9-10 Advanced Web Services Developer's Guide

</port>
...

Configuring a WSIF Endpoint for Multiple EJB Ports
Use the wsifEjbPort argument to define WSIF bindings for multiple EJB ports. This
argument can be used by the ejbAssemble and the genWsdl Ant tasks.
Example 9–11 illustrates the Ant task that creates a WSIF port named EjbPort and a
SOAP port named SoapPort. The SOAP port is created by adding the
<oracle:port name="... "/> subtask. The variable
${additional.class.path} represents the classpath. Table 9–2 on page 9-8
describes the attributes that can be used by wsifEjbPort.

Example 9–11 Using wsifEjbPort to Configure Multiple EJB Ports

<oracle:genWsdl

 output="wsdl"
 style="rpc"
 use="literal"
 serviceName="${app.name}"
 >
 <oracle:porttype interfaceName="oracle.test.wsif.HelloServiceInf"
 >
 <oracle:port name="SoapPort" uri="TestWsdlService"/>
 <oracle:wsifEjbPort name="EjbPort"
 className="oracle.test.wsif.HelloHome"
 jndiName="HelloServiceBean"
 jndiProviderUrl="deployer:oc4j:localhost:23791/HelloService"
 initialContextFactory="oracle.j2ee.rmi.RMIInitialContextFactory"
 />
 </oracle:porttype>
 <oracle:classpath>
 <oracle:pathelement path="${additional.class.path}"/>
 <oracle:pathelement location="build/classes"/>
 </oracle:classpath>
</oracle:genWsdl>

WSIF EJB Extensions to the WSDL
To comply with the WSIF Framework definition, OracleAS Web Services inserts code
into the WSDL that allows an EJB to be represented as a Web service. Example 9–10 on
page 9-9 illustrates how additional bindings, binding operations, and port clauses are
added to the WSDL to describe a WSIF service. Example 9–12 illustrates the
corresponding XML schema definitions for these extensions.

Example 9–12 Schema Definitions to Support WSIF EJB Bindings

...
<!-- EJB binding -->
<binding ... >
 <ejb:binding/>
 <format:typeMapping style="uri" encoding="..."/>?
 <format:typeMap typeName="qname"|elementName="qname"
 formatType="nmtoken"/>*
 </format:typeMapping>
 ...
 <operation>*
 <ejb:operation

Configuring a WSIF Endpoint for Database Resources

Using Web Services Invocation Framework 9-11

 methodName="nmtoken"
 parameterOrder="nmtoken"?
 returnPart="nmtoken"?
 interface="home|remote"? />?
 <input name="nmtoken"? />?
 <output name="nmtoken"? />?
 <fault name="nmtoken"? />?
 </operation>
</binding>
...
<service ... >
 <port>*
 <ejb:address
 className="nmtoken"
 jndiName="nmtoken"
 initialContextFactory="nmtoken"?
 jndiProviderURL="url"? />
 </port>
</service>
...

Configuring a WSIF Endpoint for Database Resources
To insert WSIF extensions for database resources into the WSDL, OracleAS Web
Services provides two arguments that can be used with the aqAssemble,
dbJavaAssemble, plsqlAssemble, sqlAssemble and genWsdl
WebServicesAssembler commands.

■ wsifDbBinding

■ wsifDbPort

As you assemble a Web service based on a database resource with the aqAssemble,
dbJavaAssemble, plsqlAssemble, sqlAssemble, or genWsdl commands, the
wsifDbBinding and wsifDbPort arguments allow you to create a direct invocation
to the database by using a WSIF binding. Note that database WSIF clients must
provide a JNDI setup where the data source for connecting to the database can be
determined at runtime.

These arguments add the appropriate WSDL extensions that allow a WSIF client to
access database resources exposed as a Web service. The section "WSIF SQL Extensions
to the WSDL" on page 9-16 lists the schema definitions that can be added to the WSDL
to support WSIF database resource bindings.

To configure the WSIF database resource binding for a single port, you can use either
the wsifDbBinding or wsifDbPort argument. To configure WSIF database resource
bindings for multiple ports, you must use the wsifDbPort argument.

While the wsifDbBinding argument can be used either on the command line or in an
Ant task, wsifDbPort can be used only in an Ant task.

The following sections describe how to configure WSIF endpoints for single and
multiple database resource ports.

■ Configuring a WSIF Endpoint for a Single Database Resource Port

■ Configuring a WSIF Endpoint for Multiple Database Resource Ports

Configuring a WSIF Endpoint for Database Resources

9-12 Advanced Web Services Developer's Guide

Configuring a WSIF Endpoint for a Single Database Resource Port
The WSIF endpoint for a single database resource port can be configured with
wsifDbBinding or wsifDbPort.

■ Configuring a Single Database Resource Port with wsifDbBinding

■ Configuring a Single Database Resource Port with wsifDbPort

Configuring a Single Database Resource Port with wsifDbBinding
The wsifDbBinding argument can be used with aqAssemble, dbJavaAssemble,
plsqlAssemble, sqlAssemble, and genWsdl WebServicesAssembler commands to
specify the WSIF database resource bindings for a single port.

To establish the database connection, you must specify either dataSource or a
combination of dbUser and dbConnection.

■ If the dataSource argument appears in an Ant task or on the command line, it
will provide assembly time and runtime access to the database.

■ If the dbConnection and dbUser arguments appear in an Ant task or on the
command line, they will provide assembly time access to the database.

■ If the dbConnection and dataSource arguments appear in an Ant task or on
the command line, then dbConnection provides assembly time access to the
database while dataSource provides runtime access.

■ If the dbConnection, dbUser, and dataSource arguments appear in an Ant
task or on the command line, then dbConnection and dbUser will be used for
assembly time access to the database. The dataSource argument will be used for
runtime access.

Example 9–13 illustrates a WebServicesAssembler command line for sqlAssemble
that calls wsifDbBinding to configure a single port for a database resource.
Example 9–14 illustrates the corresponding Ant task. These examples provides values
for dbUser and dbConnection which will be entered into the <port> element of the
WSDL. The useDataSource argument is specified as false: the value of the

Table 9–3 Attributes for the wsifDbBinding and wsifDbPort Arguments

Attribute Description

className (required) Specifies the name of the Java class generated by Oracle
JPublisher. If you do not provide a value for this attribute,
WebServicesAssembler will derive a value based on the port name.

dataSource Specifies the JNDI location of the data source used by the Web service.
For more information on the argument, see "datasource" in the
"Database Assembly Commands" section of theOracle Application
Server Web Services Developer's Guide.

dbConnection Specifies the JDBC URL for the database. If you specify
dbConnection, you must also provide a value for dbUser. See
"dbConnection" in the "Database Assembly Commands" section of
theOracle Application Server Web Services Developer's Guide for more
information on this attribute.

dbUser Specifies the database schema and password in the form
user/password. If you specify dbUser, you must also provide a value
for dbConnection. See "dbUser" in the "Database Assembly
Commands" section of theOracle Application Server Web Services
Developer's Guide for more information on this attribute.

name (required for wsifDBPort only) Specifies the port name.

Configuring a WSIF Endpoint for Database Resources

Using Web Services Invocation Framework 9-13

dataSource argument will not be used in the WSDL <port> element. The variables
${wsdemo.common.class.path}, ${additional.class.path}, and
${service.classes.dir} represent classpath elements.

Example 9–13 Command Line, Using wsifDbBinding to Configure a Single Database
Resource Port

java -jar wsa.jar -sqlAssemble
 -dbUser scott/tiger
 -dbConnection jdbc:oracle:thin:@...
 -dataSource jdbc/OracleManagedDS
 -appName SqlWsifTest
 -serviceName sqlwsif
 -output build
 -ear dist/SqlWsifTest.ear
 -style rpc
 -use literal
 -wsifDbBinding true
 -sqlstatement "getEname=select ename from emp"
 -sqlstatement "updateSal=update emp SET sal=sal+500 where
 ename=:{myname VARCHAR}"
 -classpath ${CLASSPATH}:build/classes

Example 9–14 Ant Task, Using wsifDbBinding to Configure a Single Database Resource
Port

<oracle:sqlAssemble
 dbUser="scott/tiger"
 dbConnection="jdbc:oracle:thin@…"
 dataSource="jdbc/OracleManagedDS"
 appName="SqlWsifTest"
 serviceName="sqlwsif"
 output="build"
 ear="dist/SqlWsifTest.ear"
 style="rpc"
 use="literal"
 debug="true"
 wsifDbBinding="true"
 >
 <oracle:port name="sqlwsif" uri="SqlWsifTest" />
 <sqlstatement value="getEname=select ename from emp" />
 <sqlstatement value="updateSal=update emp SET sal=sal+500 where ename=:{myname
VARCHAR}" />
 <oracle:classpath>
 <oracle:pathelement path="${wsdemo.common.class.path}"/>
 <oracle:pathelement path="${additional.class.path}"/>
 <oracle:pathelement location="client/classes"/>
 <oracle:pathelement location="${service.classes.dir}"/>
 </oracle:classpath>
</oracle:sqlAssemble>

Example 9–15 illustrates the WSIF database resource binding code that the previous
example inserts into the WSDL's <port> element.

Example 9–15 WSDL Extensions for WSIF Database Resource Bindings

...
<service name="sqlwsif">
 <port name="JavaPort" binding="tns:JavaPortBinding">
 <java:address className="...User"

Configuring a WSIF Endpoint for Database Resources

9-14 Advanced Web Services Developer's Guide

 dataSource="jdbc/OracleManagedDS"/>
 </port>
</service>
...

Configuring a Single Database Resource Port with wsifDbPort
The wsifDbPort argument can be used only in an Ant task. Although you typically
use wsifDbPort to specify the WSIF database resource bindings for multiple ports,
you can also use it to specify a single port. The argument has attributes that allow you
to specify a WSIF port name, a class name for the Java files generated by Oracle
JPublisher, and database connection information. These attributes are passed to the
java:address element of the WSDL's <port> element.

Table 9–3 describes the attributes that can be used by the wsifDbPort argument.
Except for className and name, all of the attributes are optional.

■ If the dataSource argument appears in an Ant task or on the command line, it
will provide assembly time and runtime access to the database.

■ If the dbConnection and dbUser arguments appear in an Ant task or on the
command line, they will provide assembly time access to the database.

■ If the dbConnection and dataSource arguments appear in an Ant task or on
the command line, then dbConnection provides assembly time access to the
database while dataSource provides runtime access.

■ If the dbConnection, dbUser, and dataSource arguments appear in an Ant
task or on the command line, then dbConnection and dbUser will be used for
assembly time access to the database. The dataSource argument will be used for
runtime access.

Example 9–13 illustrates the WebServicesAssembler command line for wsifDbPort
which inserts WSIF database resource code into the WSDL's binding, binding
operation, and port clauses. Example 9–16 illustrates the corresponding Ant task. In
the wsifDbPort argument, the name of the port is set to JavaPort and the name of
the JPublisher-generated Java class is oracle.generated.sqlwsifUser.

Example 9–16 Ant Task, Using wsifDbPort to Configure a Single Database Resource
Port

<oracle:sqlAssemble
 dataSource="jdbc/OracleManagedDS"
 appName="SqlWsifTest"
 portName="sqlwsif"
 serviceName="sqlwsif"
 output="build"
 ear="dist/SqlWsifTest.ear"
 style="rpc"
 use="literal"
 debug="true"
 >
 <oracle:port name="sqlwsif" uri="SqlWsifTest" />
 <sqlstatement value="getEname=select ename from emp" />
 <sqlstatement value="updateSal=update emp SET sal=sal+500 where ename=:{myname
VARCHAR}" />
 <oracle:wsifDbPort
 name="JavaPort"
 className="oracle.generated.sqlwsifUser"
 />
 <oracle:classpath>

Configuring a WSIF Endpoint for Database Resources

Using Web Services Invocation Framework 9-15

 <oracle:pathelement path="${wsdemo.common.class.path}"/>
 <oracle:pathelement path="${additional.class.path}"/>
 <oracle:pathelement location="client/classes"/>
 <oracle:pathelement location="service/classes"/>
 </oracle:classpath>
</oracle:sqlAssemble>

Example 9–17 illustrates the WSIF database resource binding code that the previous
example inserts into the WSDL.

Example 9–17 WSDL Extensions for WSIF Database Resource Bindings

<service name="sqlwsif">
 <port name="JavaPort" binding="tns:JavaPortBinding">
 <java:address className="oracle.generated.sqlwsifUser"
 dataSource="jdbc/OracleManagedDS"/>
 </port>
</service>

Configuring a WSIF Endpoint for Multiple Database Resource Ports
Use the wsifDbPort argument to define WSIF bindings for multiple database
resource ports. This argument can be used in the Ant tasks for the aqAssemble,
dbJavaAssemble, plsqlAssemble, sqlAssemble, and genWsdl commands.

Example 9–18 illustrates an Ant task that creates a SOAP port and a WSIF port. The
port operations are based on the <sqlstatement value="..."/> subtasks. The
wsifDbPort subtask creates the JavaPort port. The oracle:port subtask creates
the SOAP port. The variables ${wsdemo.common.class.path},
${additional.class.path}, and ${service.classes.dir} represent
classpath elements. Table 9–3 describes the attributes that can be used by
wsifDbPort.

Example 9–18 Ant Task, Using wsifDbPort to Configure Multiple Database Resource
Ports

<oracle:sqlAssemble
 dbUser="scott/tiger"
 dbConnection="jdbc:oracle:thin:@${DB_HOST}:${DB_PORT}:${DB_SID}"
 dataSource="jdbc/OracleManagedDS"
 appName="wsifTest"
 portName="dbwsif"
 serviceName="dbwsif"
 output="build"
 ear="dist/wsifDbTest.ear"
 style="rpc"
 use="literal"
 debug="true"
 >
 <oracle:port name="dbwsif" uri="wsifDbTest"/>
 <sqlstatement value="getEname=select ename from emp" />
 <sqlstatement value="updateSal=update emp SET sal=sal+500 where
 ename=:{myname VARCHAR}" />
 <oracle:wsifDbPort name="JavaPort"
 className="oracle.generated.sqlwsifUser"
 >
 <oracle:classpath>
 <oracle:pathelement path="${wsdemo.common.class.path}"/>
 <oracle:pathelement path="${additional.class.path}"/>
 <oracle:pathelement location="${client.classes.dir}"/>

Writing a WSIF Client

9-16 Advanced Web Services Developer's Guide

 <oracle:pathelement location="${service.classes.dir}"/>
 </oracle:classpath>
 </oracle:sqlAssemble>

WSIF SQL Extensions to the WSDL
To comply with the WSIF Framework definition, OracleAS Web Services inserts code
into the WSDL that allows a database resource to be represented as a Web service.
Example 9–15 on page 9-13 illustrates how additional database resource bindings are
placed in the WSDL. Specifically, the WSIF JavaPortBinding is further extended
with the optional dataSource attribute. The presence of this attribute indicates that this
is a database port and not a Java port. Example 9–19 illustrates the corresponding XML
schema definitions for this extension.

Example 9–19 Schema Definitions to Support WSIF Database Resource Bindings

...
<definitions >

 <!-- Java binding -->
 <binding ... >
 <java:binding/>
 <format:typeMapping style="uri" encoding="..."/>?
 <format:typeMap typeName="qname"|elementName="qname"
formatType="nmtoken"/>*
 </format:typeMapping>
 <operation>*
 <java:operation
 methodName="nmtoken"
 parameterOrder="nmtoken"?
 returnPart="nmtoken"?
 methodType="instance|static|constructor"? />?
 <input name="nmtoken"? />?
 <output name="nmtoken"? />?
 <fault name="nmtoken"? />?
 </operation>
 </binding>

 <service ... >
 <port>*
 <java:address
 className="nmtoken"
 classPath="nmtoken"?
 classLoader="nmtoken"?
 dataSource="nmtoken"?
 </port>
 </service>
</definitions>
...

Writing a WSIF Client
A WSIF client is similar to a DII client in that it does not rely on any pre-generated
stub. The WSDL plays a central role for the WSIF client. Since the WSDL contains all of
the information to invoke the service, it must be available to the client at runtime. The
WSIF client must create the WSIF service, port, operation, and messages, before it
actually invokes the operation with the messages.

Writing a WSIF Client

Using Web Services Invocation Framework 9-17

The WSIF API, which is based on the abstract service description portion of the WSDL,
contains methods for obtaining this information from the WSDL. The WSIF API is
available from the Apache Software Group Web site.

http://ws.apache.org/wsif/

To write a WSIF client, follow these general steps.

1. Create a new instance of a WSIF service factory.

The newInstance method of the WSIFServiceFactory class instantiates a new
WSIF service factory. For example:

// create a service factory
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

2. Create a WSIF service.

Information in the WSDL file is used to build the WSIF service. The
WSIFServiceFactory class provides a variety of getService methods to
obtain the service definition from the WSDL. The location of the WSDL file can be
specified either as a URL location available over HTTP, or as a file-based location
available through the classLoader. Additional parameters for service creation are
service name/namespace and portType/namespace. For example:

WSIFService service = factory.getService(...);

3. Create the WSIF port, operation, and messages.

Use the WSIF service to create the WSIF port. Use one of the WSIF API
WSIFService.getPort methods to get the WSIF port for the port type that this
factory supports. For example:

WSIFPort port = service.getPort("portName");

4. Create the WSIF operation.

Use the WSIF port to create the WSIF operation. An operation is created using a
service name or a combination of service name and input and output messages.
There must be exactly one operation in this port's portType with this name. The
WSIF API supports a variety of createOperation methods, depending on the
type of J2EE component you are exposing as a Web service. For example:

WSIFOperation operation = port.createOperation("operationName");

5. Create the input, output, and fault messages.

Use the WSIF operation to create the messages. The WSIFOperation interface in
the WSIF API supports a variety of methods to create input, output, and fault
messages. For example:

WSIFMessage input = operation.createInputMessage();
WSIFMessage output = operation.createOutputMessage();
WSIFMessage fault = operation.createFaultMessage();

6. Populate the input message.

To populate the input message, set the parts (defined in the WSDL) of the input
message. For example, use one of the WSIFMessage.setObjectPart methods

Note: There is no WebServicesAssembler support for generating
WSIF clients.

Writing a WSIF Client

9-18 Advanced Web Services Developer's Guide

to allow the operation to pass a value to the service. You can also set message
types using Java classes based on the type map, which is set by the service.

input.setObjectPart(...);

7. Make the call to the service.

Use one of the WSIF API "execute" methods to execute the operation. The
signature allows for input, output and fault messages. The WSIF API supports a
variety of "execute" methods, depending on the type of J2EE component you are
exposing as a Web service. For example:

operation.executeRequestResponseOperation(...);

The call can return a Boolean variable that is equal to true if the operation
succeeds, or false otherwise. If the call fails, a fault message can be examined to
determine the exact reason for the failure. The fault message is populated based on
the SOAPBody:Fault element defined in the SOAP specification. If the call
succeeds, the content of the output message can be extracted into Java classes
based on the output message parts (similar to the population of the input
messages).

Example 9–20 illustrates a sample DII client. The client performs an invocation on the
HelloService's sayHello method, and passes "Duke" as the value for the name
parameter. The WSDL that defines the service is deployed at
http://localhost:8888/helloWSIFDii/helloWSIFDii?WSDL. The
portType is the QName {http://hello.demo.oracle/}HelloInterface,
where http://hello.demo.oracle/ is the portType namespace and
HelloInterface is the port name. The name of the WSIF port is
HelloServicePort and the name of the operation is sayHello. The
executeRequestResponseOperation method makes the call to the service.

Example 9–20 Sample WSIF Client Code

import org.apache.wsif.*;
...
// create a service factory
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

// parse the WSDL
WSIFService service =
 factory.getService("http://localhost:8888/helloWSIFDii/helloWSIFDii?WSDL",
 null, null, "http://hello.demo.oracle/", "HelloInterface");

// create WSIF port, operation, and messages
WSIFPort port = service.getPort("HelloServicePort");
WSIFOperation operation = port.createOperation("sayHello");
WSIFMessage input = operation.createInputMessage();
WSIFMessage output = operation.createOutputMessage();
WSIFMessage fault = operation.createFaultMessage();
input.setObjectPart("name", "Duke");

// make the actual call to the service
operation.executeRequestResponseOperation(input, output, fault);
...

Writing a WSIF Client Using a Dynamic Proxy
A much simpler way of writing a WSIF client is to write it using a service endpoint
interface. The WSIF runtime can create a corresponding implementation for you in the

Writing a WSIF Client

Using Web Services Invocation Framework 9-19

form of a dynamic proxy. This technique assumes that you already have a compiled
service endpoint interface. The WSIF API provides a getStub method
(org.apache.wsif.WSIFService.getStub) that gets the dynamic proxy that
implements the interface.

The following steps summarize how to get the interface as a dynamic proxy.

1. Create a new instance of a WSIF service factory.

For example:

WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

2. Create a WSIF service.

For example:

WSIFService service = factory.getService(...);

3. Pass the service port name and the service endpoint interface class to the getStub
method.

4. Cast the dynamic proxy which is returned to the service endpoint interface.

For example:

HelloInterface stub = (HelloInterface) service.getStub(...);

5. Call methods directly on the proxy that implements the interface.

For example:

String resp = stub.sayHello("Duke");

Example 9–21 illustrates using the WSIF client as a dynamic proxy. The port name
HttpSoap11 and the service endpoint interface class HelloInterface.class are
passed to the getStub method. The returned dynamic proxy is cast to the
HelloInterface service endpoint interface. Note that the stub parameter is also
declared as type HelloInterface. Using the stub, you can then call methods on the
interface directly.

Example 9–21 Using a WSIF Client as a Dynamic Proxy

// Create a service factory
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

// Parse the WSDL
WSIFService service = factory.getService(serviceURL + "?WSDL", null, null,
 "http://hello.demo.oracle/", "HelloInterface");

// Call the getStub method with the port name and
// the service endpoint interface class.
// Cast the returned dynamic proxy to the service endpoint interface.
HelloInterface stub = (HelloInterface) service.getStub("HttpSoap11",
HelloInterface.class);

// Call methods directly on the interface
String resp = stub.sayHello("Duke");

Writing a WSIF Client

9-20 Advanced Web Services Developer's Guide

Using genInterface to Generate a Service Endpoint Interface
The steps in the previous section assume that you have a WSDL and a service
endpoint interface. If you do not have the service endpoint interface, one way to
obtain it is to write it by hand, using the WSDL as a guide.

As an alternative to writing the interface by hand, you can pass the WSDL to the
WebServicesAssembler genInterface command. The command will generate the
service endpoint interface for you. This is especially convenient if the WSDL has a
large number of operations that must be converted to methods.

When genInterface converts WSDL operations to Java methods, it will always
make the first letter of the method name lowercase. If the original operation name in
the WSDL begins with an uppercase character, this will cause a mismatch when you
attempt to call methods on the proxy. Typically, a "Method does not exist" error
will be returned.

To avoid this error, edit the service endpoint interface, if necessary, to ensure that
method names exactly match the operation names in the WSDL,
character-for-character.

Accessing the Database from a WSIF Client
The wsifDbBinding and wsifDBPort arguments add the appropriate bindings to
the WSDL that allow a WSIF client to access database resources exposed as a Web
service. The dataSource argument identifies the database that contains the resources.

If the dbConnection argument is used identify the database URL, then
WebServicesAssembler generates its value into the WSDL file. To access the database,
the WSIF client must pass the user name and password values at runtime. The
generated code provides two methods to do this.

public void _setDataSourceUser(String);
public void _setDataSourcePassword(String);

The following are the complete paths of these methods. The CLASSNAME variable
represents the value specified by the className argument. If className is not
specified, it defaults to portName.

CLASSNAME.setDataSourceUser(String user);
CLASSNAME.setDataSourceUser(String password);

If the dataSource argument is specified in the command or Ant task, then these two
methods are not needed. The client will already have the privileges of accessing the
database.

Example 9–22 illustrates a client for the Web service assembled by the Ant task in
Example 9–14. The setDataSourceUser and setDataSourcePassword methods,
which pass the user name and password to the server, are highlighted in bold.

Example 9–22 Client Code to Pass a User Name and Password to the Service

WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
WSIFService service = factory.getService(wsdlPath1, null, null,
 "http://generated.oracle/", "sqlwsif");
oracle.generated.sqlwsif stub = null;
stub = (oracle.generated.sqlwsif)
service.getStub("JavaPort", oracle.generated.sqlwsif.class);
stub.setDataSourceUser("scott");
stub.setDataSourcePassword("tiger");
System.out.println("Run Sql...");

Writing a WSIF Client

Using Web Services Invocation Framework 9-21

String[] names = stub.getEname();

Adding Management Configuration to a WSIF Client
You can add a Web service management configuration for security, reliability, and
auditing to a WSIF client.

A Web service management configuration on the WSIF client is useful only when it
invokes a SOAP port or operation that has a matching Web service management
configuration.

OracleAS Web Services does not support Web service management configuration for
Java and EJB ports on the Web service side.

If a WSIF client which has a Web service management configuration communicates
with a Java or an EJB port, then the Web service management configuration is ignored.
The Web service management is used, however, if SOAP port is used to invoke the
service.

The J2EE_HOME/config/wsif-wsm-config.xml file provides a template where
you can specify outgoing management policies for the client. The
wsif-wsm-config.xml file is based on the oracle-webservices-client-10_
0.xsd schema.

By default, the wsif-wsm-config.xml file resides in the J2EE_HOME/config
directory. If you change the name of the file or call it from another location, you can
use the wsif.wsm.config.file system property to override its default name and
location.

To create the management configuration and make it available to the WSIF client:

■ Edit the wsif-wsm-config.xml file in the J2EE_HOME/config directory, or

■ Use the wsif-wsm-config.xml file as a template and store it in the location of
your choice. Specify the new name and location of the file with the following
system property.

-Dwsif.ws.config.file=<path to file>

Example 9–23 illustrates the contents of the wsif-wsm-config.xml file. Table 9–4
describes the elements in the file.

Example 9–23 WSIF Client Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<oracle-webservice-clients xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="/oracle-webservices-client-10_0.xsd">
 <webservice-client>
 <service-qname namespaceURI="" localpart=""/>
 <port-info>
 <wsdl-port namespaceURI="" localpart=""/>
 <service-endpoint-interface></service-endpoint-interface>
 <stub-property>
 <name></name>
 <value></value>
 </stub-property>
 <call-property>
 <name></name>
 <value></value>
 </call-property>
 <runtime>
 <security>

Writing a WSIF Client

9-22 Advanced Web Services Developer's Guide

Port-level Security configuration. For more information on security configuration
elements, see the Oracle Application Server Web Services Security Guide.

 </security>
 <reliability>

Port-level Reliability configuration. See "Port Level Reliability Elements on the Client"
on page 5-9 for a description of reliability configuration elements.

 </reliability>
 </runtime>
 <operations>
 <operation name="">
 <runtime>
 <security>

Operation-level Security configuration. For more information on security
configuration elements, see the Oracle Application Server Web Services Security Guide.

 </security>

Operation level auditing configuration. See "Managing Auditing on the Client" on
page 6-4 for a description of auditing configuration elements.

 <auditing/>
 <reliability>

Operation-level reliability configuration. See "Operation Level Reliability Elements on
the Client" on page 5-10 for a description of reliability configuration elements.

 </reliability>
 </runtime>
 </operation>
 </operations>
 </port-info>
 </webservice-client>
</oracle-webservice-clients>

Table 9–4 describes the subelements for the <port-info> element. This element
provides all of the information for a port within a service reference. You can specify
either a service-endpoint-interface or wsdl-port to indicate the port that the
container will use for container-managed port selection. If you specify both, then the
container will use the wsdl-port value. If you do not specify wsdl-port or
service-endpoint-interface, then the <port-info> property values will
apply to all available ports.

The <port-info> element also contains subelements that let you specify quality of
service features that are available for the port and its operations.

Table 9–4 Subelements of the <port-info> Element

Element Name Description

<wsdl-port> Specifies the namespaceURI and localpart of a port in the
WSDL that the container will use for container-managed port
selection.

Writing a WSIF Client

Using Web Services Invocation Framework 9-23

Table 9–5 describes the name and value subelements of the <stub-property> and
<call-property> elements.

Adding Message Attachments in WSIF
You can enable WSIF clients to add attachments to messages.

■ Adding Attachments with the WSIF API

■ Adding Attachments with the OracleCall API

Adding Attachments with the WSIF API
To enable a WSIF client to add an attachment to a message, follow these general steps:

1. Create a DataHandler object to encapsulate the attachment.

2. Use the WSIF API's WSIFOperation.createInputMessage method to create
an input message on the desired operation.

<service-endpoint-interface> Specifies the fully-qualified path to the service endpoint
interface of a WSDL port. The container uses this port for
container-managed port selection.

<stub-property> Defines the stub property values applicable to the port defined
by the <port-info> element. The name and value
subelements of <stub-property> are described in Table 9–5.

<call-property> Defines the call property values applicable to the port defined
by the <port-info> element. The name and value
sub-elements of <call-property> are described in Table 9–5.

<runtime> Contains client-side quality of service runtime information
(security and/or reliability) applicable to all the operations
provided by the referenced Web service. Each child element
contains configuration for a specific feature.

<operations> Contains a sequence of elements, one for each operation. The
<operation> subelement indicates an individual operation.
Each of these subelements contain client-side quality of service
configuration for a single operation provided by the referenced
Web service.

The <operations> element is a subelement of the
<port-info> element. For a description of <operations>,
and its subelements, see "Adding OC4J-Specific Platform
Information" in the Oracle Application Server Web Services
Developer's Guide.

Table 9–5 Subelements of <stub-property> and <call-property> Elements

Element Name Description

<name> Defines the name of any property supported by the JAX-RPC
Call or Stub implementation. See the output of the Javadoc
tool for the valid properties for javax.xml.rpc.Call and
javax.xml.rpc.Stub.

<value> Defines a JAX-RPC property value that should be set on a Call
object or a Stub object before it is returned to the Web service
client.

Table 9–4 (Cont.) Subelements of the <port-info> Element

Element Name Description

Tool Support for WSIF

9-24 Advanced Web Services Developer's Guide

3. Use the WSIF API's WSIFMessage.setObjectPart method to add the
attachment to the message.

Example 9–24 illustrates how an attachment can be added to a message by using the
WSIF API. In the code fragment, the JohnDoe.jpg attachment is saved as a
DataHandler object. The operationName represents the operation that will be
enabled to handle messages with attachments. The WSIFOperation's
createInputMessage method creates an input message on the operation. The
WSIFMessage's setObjectPart method attaches the attachment to the input
message with the part name myAttachment.

Example 9–24 Adding an Attachment to a Message with the WSIF API

...
DataHandler dataHandler1 = new DataHandler(new URL("file:JohnDoe.jpg"));
WSIFOperation operation = port.createOperation(operationName);
WSIFMessage input = operation.createInputMessage();
input.setObjectPart("myAttachment", dataHandler1);
...

Adding Attachments with the OracleCall API
The oracle.webservices.OracleCall API enables you to add attachments to
messages that will be handled by WSIF clients. Using this technique, you save the
attachment as a DataHandler object. You then add the attachment to the DII call
object that you obtain from the WSIF port.

Example 9–25 illustrates how an attachment can be added to a message by using the
OracleCall API. In the code fragment, the JohnDoe.jpg attachment is saved as a
DataHandler object. The getCall method gets the DII call from the WSIF port. This
call must be cast to a SOAP port, then to an OracleCall object. The
OracleCall.addAttachment method adds the attachment to the SOAP message in
the call. Note that the addAttachment method enables you to directly set the
content-transfer-encoding and content-ID of the attachment MIME part.

Example 9–25 Adding an Attachment to a Message with the WSIF API

...
DataHandler dataHandler1 = new DataHandler(new URL("file:JohnDoe.jpg"));
OracleCall call = (OracleCall) ((WSIFPort_JaxRpc) port).getCall();
call.addAttachment(dataHandler1, "BASE64", "<ID1@photo>");
...

Tool Support for WSIF
The Java J2EE Web Service wizard for Java classes in JDeveloper enables you to create
WSIF bindings in addition to SOAP bindings for a Web service. Enter values for the
class loader and class path that let the WSIF clients locate the service implementation
class. These values are comparable to the classLoader and classPath parameters
on the command line or Ant task.

The Web Service wizard for EJBs enables you to specify the initial context factory, JNDI
provider URL, and JNDI name so that WSIF clients can locate the EJB through JNDI.
These values are comparable to the initialContextFactory, jndiProviderUrl,
and jndiName parameters on the command line or Ant task.

The Database Web Service wizard enables you to specify the user, connection, and
datasource information necessary for defining WSIF bindings for a PL/SQL
procedure.

Additional Information

Using Web Services Invocation Framework 9-25

Limitations
See "Using the Web Service Invocation Framework" on page E-11.

Additional Information
For more information on:

■ using message attachments, see Chapter 2, "Working with Message Attachments"

■ adding management configurations to a Web service, see Chapter 3, "Managing
Web Services"

■ adding security information to a Web service, see Chapter 4, "Ensuring Web
Services Security" and the Oracle Application Server Web Services Security Guide.

■ adding reliability information to a Web service, see Chapter 5, "Ensuring Web
Service Reliability".

■ the contents of the wsmgmt.xml file which contains the security configuration, see
Appendix A, "Understanding the Web Services Management Schema".

■ assembling a Web service top down, see "Assembling a Web Service from a WSDL"
in the Oracle Application Server Web Services Developer's Guide.

■ using Java classes to assemble a Web service, see "Assembling a Web Service with
Java Classes" in the Oracle Application Server Web Services Developer's Guide.

■ using EJBs to assemble a Web service, see "Assembling a Web Service with EJBs" in
the Oracle Application Server Web Services Developer's Guide.

■ using JMS topics and destinations to assemble a Web service, see "Assembling Web
Services with JMS Destinations" in the Oracle Application Server Web Services
Developer's Guide.

■ using database resources, such as PL/SQL packages, SQL queries, DML
statements, Oracle Streams AQ, or server-side Java classes, to assemble a Web
service, see "Assembling Database Web Services" in the Oracle Application Server
Web Services Developer's Guide.

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

Additional Information

9-26 Advanced Web Services Developer's Guide

Using Web Service Providers 10-1

10
Using Web Service Providers

This chapter describes how to use the Provider API in Oracle Application Server Web
Services. The Provider API lets you define custom processing logic for a Web services
endpoint that is not tied to any particular service endpoint implementation strategy,
such as JAX-RPC. The Provider model can be used to provide common functionality to
a number of endpoints. Rather than incorporating the same functions into many Web
services, the Provider model enables you to add the logic into the runtime directly.

What is a Provider?
A Provider lets you bypass the JAX-RPC tie-based framework and allows you the
flexibility of choosing your own mechanism for traversing and interpreting the
message payload. Since it runs in the OC4J container, a Provider can take advantage of
the container's services such as schema validation, security, and reliability.

When to Use a Provider
You can choose to employ a Provider as your endpoint implementation if you find that
your performance is lacking when leveraging a standard JAX-RPC endpoint
implementation. Because a Provider does not use the JAX-RPC framework,
marshalling and unmarshalling of data is not performed. Therefore, based on your
message traversal and interpretation mechanism, there may be less parsing and
serialization effort before the message is processed.

Also, because a Provider enables you to process the SOAP message directly, you can
perform much more sophisticated processing such as content-based routing. For
example, inbound messages could be routed to a number of intermediate destinations
(perhaps for some intermediate level of processing) before routing to a final
destination.

Understanding the Provider API
The interfaces and classes in the oracle.webservices.provider package allow
you to implement and use your own Provider to process SOAP messages.

■ Provider Interface—your application must implement this interface to create your
Provider.

■ ProviderConfig Class—configuration class that is passed to the Provider during its
initialization. This represents the information related to the Provider
configuration. The Provider also uses this class to interact with the container.

■ MessageContext Class—context class that is passed to the Provider's
processMessage method when an invocation is to be serviced by the Provider.

Understanding the Provider API

10-2 Advanced Web Services Developer's Guide

The Provider instance can use this class to obtain transport protocol-related
information.

■ HTTPConstants Class—provides a set of well-defined properties for the HTTP
protocol that the container will set on the MessageContext.

Provider Interface
Your Provider class must implement the
oracle.webservices.provider.Provider interface. The following sections
provide more information on the methods in the Provider interface that must be
implemented.

■ init Method

■ processMessage Method

■ destroy Method

init Method
public void init(ProviderConfig config) throws ProviderException;

The init method is called when the Provider is loaded and initialized. The method
can be called only once during the lifecycle of the Provider. In response to the init
method, the container passes an instance of ProviderConfig to the Provider. This
instance provides configuration information related to the Provider. The
ProviderConfig instance provides mechanisms to set and get properties and the
ServletContext. The init and destroy methods provide the lifecycle
mechanisms for the Provider much like the ServiceLifecycle interface provides
the lifecycle mechanisms for JAX-RPC service endpoint implementation (SEI) classes.

The Provider uses the ProviderConfig instance to set or retrieve properties. If a
property is set on the context, it will overwrite the corresponding static property set in
the deployment descriptors. For example, the Provider can set the boolean
VALIDATION_SOAP_SCHEMA property to true to let the container perform schema
validation. Schema validation can be performed only if the WSDL is available; it
cannot be performed in pass-through mode. In passthrough mode, the provider itself
is not exposed as an endpoint. The default value of the VALIDATION_SOAP_SCHEMA
property is false. Schema validation is based on the QName value of the child
element of the SOAP Body.

If the appropriate load-on-startup directive is provided (for example, by using the
web.xml file in the Provider application WAR file), then the init method will be
called on application startup.

processMessage Method
public SOAPMessage processMessage(SOAPMessage request, MessageContext
messageContext) throws ProviderException;

The processMessage method is the Provider's main access method: it is invoked
every time a SOAP request is dispatched to the Provider instance. The
processMessage method is where you provide the processing logic for the SOAP
message. For the SOAP protocol, this method takes a SOAPMessage instance as an
argument. From this SOAPMessage instance, the Provider can obtain access to other
parts of the message payload, such as the SOAP body, headers, and attachments.

The processMessage method also takes a MessageContext object. The message
context defines the properties that are valid for the particular message.

Understanding the Provider API

Using Web Service Providers 10-3

This method returns a SOAPMessage instance. If the instance is not null, then the
Provider intends to return a response to the sender, assuming the underlying transport
supports it. If the underlying transport is a one-way protocol, such as JMS, then an
attempt to send a response will cause an error to be thrown in the server logs. The
return must be null for pure one-way calls and must not be null for request-response
calls.

destroy Method
public void destroy() throws ProviderException;

The container invokes the destroy method to notify the Provider instance of its intent
to remove the Provider from its working set. After the method is called, the Provider
instance is destroyed and garbage collected.

ProviderConfig Class
This class contains the configuration-related information for the Provider instance. The
information includes details that are also listed in the proprietary deployment
descriptors.

The properties of the ProviderConfig are used to communicate with the container.
For example, a policy object reference can be set as a ProviderConfig property
inside processMessage (assuming the Provider implementation maintains a
reference to the ProviderConfig instance as an attribute initialized during the init
method invocation) or the init method of the Provider instance. The container can
read this policy object and apply the appropriate management functions to the
Provider instance.

The following section provides more information on methods on the
ProviderConfig class.

addService and removeService Methods
public void addService(String pathInfo, URL wsdlURL, QName wsdlPort, QName
serviceName, Object policy) throws ProviderException;

public void removeService(String pathInfo);

The addService and removeService methods of the ProviderConfig class can be
invoked in the Provider's init and processMessage methods to dynamically add
and remove manageable service endpoints, each with a unique URI. Internally, the
container maintains a repository of WSDLs and a map of the WSDLs with the URIs of
the incoming requests. In addition, these dynamic endpoints can be managed by using
the Application Server Control tool, allowing you to apply security, reliability,
auditing, and logging. The Provider can make processing decisions for incoming
requests based on the URI available from the Provider's MessageContext.

These methods allow the Provider instance to dynamically provide or remove services
to or from the container. The container can perform a variety of tasks on the services,
such as test-page presentation, request message schema validation, and Web service
management processing. The service registration process also allows the container to
perform Web service management processing for the registered services.

The addService and removeService methods both take a pathInfo parameter.
This parameter contains the extra path information associated with the URL sent by
the client when it invokes the endpoint. The extra path information follows the servlet
path format, however, it precedes the query string and starts with a forward slash (/)
character. The pathInfo parameter can also be set to an empty string.

Understanding the Provider API

10-4 Advanced Web Services Developer's Guide

The addService method can also take a policy parameter that defines the
management features for the dynamic endpoint. The policy parameter must be an
org.w3c.dom.Element that is compliant with the structure listed in Example 10–1.
The definition of this element is listed as a type in the oracle-webservices-10_
0.xsd schema.

Example 10–1 Definition of Provider-Policy-Type

<xsd:complexType name="provider-policy-type">
 <xsd:all>
 <xsd:element name="runtime" type="serverPortRuntimeType" minOccurs="0"/>
 <xsd:element name="operations" type="serverOperationsType" minOccurs="0"/>
 </xsd:all>
</xsd:complexType>

Example 10–2 illustrates a structure defined by this type, as it would appear in an
oracle-webservices.xml deployment descriptor.

Example 10–2 XML Structure of Policy Element

<policy>
 <runtime enabled="logging,auditing,security,reliability">
 <logging>…</logging>
 <security>…</security>
 <reliability>…</reliability>
 </runtime>
 <operations>
 <operation name="…">
 <runtime>
 <logging>…</logging>
 <auditing>…<auditing>
 <reliability>…</reliability>
 </runtime>
 </operation>
 </operations>
</policy>

MessageContext Class
This class contains the definitions of the transport-agnostic message properties. These
properties are updated on each call to processMessage. A standard set of constants
is defined for the HTTP transport. Properties of the same name are available from the
MessageContext class. The MessageContext class also contains the definitions of
constants defined for non-HTTP transports.

HTTPConstants Class
This class provides a set of well-defined properties for the HTTP protocol that the
container will set on the MessageContext. The Provider instance should ensure that
these properties are not overwritten.

Provider Servlet
The ProviderServlet
(oracle.j2ee.ws.server.provider.ProviderServlet) handles the routing of
requests to the Provider instance. Once deployed, a ProviderServlet listens to a
URL for incoming SOAP over HTTP requests. When the servlet receives a SOAP

Understanding the Provider API

Using Web Service Providers 10-5

message, ProviderServlet dispatches it to the processMessage method of the
Provider instance.

If you are hosting the Provider in the servlet container, then specify this servlet in the
<servlet-class> subelement of <servlet> in your Provider application's
web.xml deployment descriptor. The servlet URL is specified in the <url-pattern>
element.

Example 10–3 illustrates a fragment of a web.xml file. In the file, ProviderServlet
is specified in the <servlet-class> element and the URL to which it listens,
/LoggerService, is specified in the <url-pattern> element. This URL pattern is
relative to the Web application's context root.

The <servlet-name> element provides the link between this entry and the
Provider-specific information in oracle-webservices.xml illustrated in
Example 10–5.

Example 10–3 web.xml Fragment, with ProviderServlet and the URL to Which it Listens

...
<servlet>
 <servlet-name>LoggerProviderPort</servlet-name>
 <display-name>LoggerProviderPort</display-name>
 <description>JAX-RPC endpoint Provider Port</description>
 <servlet-class>oracle.j2ee.ws.server.provider.ProviderServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>LoggerProviderPort</servlet-name>
 <url-pattern>/LoggerService</url-pattern>
</servlet-mapping>
...

Extending ProviderServlet
You can extend ProviderServlet to tailor its functionality to a particular use case.
Example 10–4 illustrates how you can extend the servlet's doGet method to allow for
the retrieval of specific resources based on the HTTP query string. Note that in this
case, if the query string is not processed by the extended servlet, the request should be
passed to the parent servlet's doGet method. Note the call to super if the incoming
GET request is not processed.

Example 10–4 Extension of a ProviderServlet Method with a Call to super

public class ExtendedProviderServlet extends ProviderServlet{

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 String queryString = request.getQueryString();

 if ((queryString != null) &&
 (queryString.equalsIgnoreCase("someotherquery"))) {
 response.setContentType("text/html; charset=UTF-8");
 response.setStatus(HttpServletResponse.SC_OK);
 OutputStream outputStream = response.getOutputStream();
 OutputStreamWriter writer = new OutputStreamWriter(outputStream);
 writer.write("<HTML><BODY>TEST RESPONSE</BODY></HTML>");
 writer.close();
 } else {

Making a Web Service Provider-Aware

10-6 Advanced Web Services Developer's Guide

 super.doGet(request, response);
...
}

You can also extend ProviderServlet to use your own test-page generation
mechanism instead of using the default test page provided by the servlet.

Making a Web Service Provider-Aware
For the Web service to recognize a Provider, you must add information about your
Provider to the oracle-webservices.xml and web.xml deployment descriptors.
The JDeveloper and Application Server Control tools do not provide support for
adding this information; you must edit the files by hand.

■ Editing the oracle-webservices.xml Deployment Descriptor

■ Editing the web.xml Deployment Descriptor

Editing the oracle-webservices.xml Deployment Descriptor
To make the Web service Provider-aware, add the <provider-description> clause
to the oracle-webservices.xml deployment descriptor. Example 10–5 illustrates a
fragment of an oracle-webservices.xml deployment descriptor with this clause.
"Provider Elements in oracle-webservices.xml" describes the elements that can appear
in the <provider-description> clause.

Example 10–5 oracle-webservices.xml Fragment, with a <provider-description> Clause

<oracle-webservices>
 <provider-description>
 <provider-description-name> some name</provider-description-name>
 <wsdl-file>/file location</wsdl-file>
 <wsdl-service-name xmlns:ns_="urn:oracle-ws">ns_:PhotoService</
wsdl-service-name >
 <provider-port>
 <provider-name>LoggerProviderPort</provider-name>
 <wsdl-port xmlns:ns_="urn:oracle-ws">ns_:PhotoIFPort</wsdl-port>
 <implementation-class>oracle.myprovider.JmsRetriever</
implementation-class >
 <servlet-link>LoggerProviderPort</servlet-link>
 <property
name="connection-factory-name">jms/ws/mdb/theQueueConnectionFactory</property>
 <property name="queue-name">jms/ws/mdb/theQueue</property>
 <policy>
 <runtime enabled="logging,auditing,security,reliability">
 <logging>…</logging>
 <security>…</security>
 <reliability>…</reliability>
 </runtime>
 <operations>
 <operation name="…">
 <runtime>
 <logging>…</logging>
 <auditing>…<auditing>
 <reliability>…</reliability>
 </runtime>
 </operation>
 </operations>
 </policy>

Making a Web Service Provider-Aware

Using Web Service Providers 10-7

 </provider-port>
 </provider-description>
</oracle-webservices>

Provider Elements in oracle-webservices.xml
The top-level Provider element is <provider-description>. This element
identifies a collection of Provider ports. Table 10–1 describes the subelements of
<provider-description>.

The <provider-port> element associates a WSDL port with a Web service interface
and implementation. Table 10–2 describes the subelements of <provider-port>.

Table 10–1 Subelements of the <provider-description> Element

Element Name Description

<provider-description-name> (optional) A name for the Provider description.

<wsdl-file> (optional) Specifies the location of an associated WSDL for the
Provider.

<wsdl-service-name> (optional) Associates the WSDL's service name with the name
of a Provider. This element should be provided if a WSDL has
more than one service. This element is not required if the
WSDL has only one service.

<property> (optional) Specifies globally-defined properties; that is,
properties that are available to all of the defined Provider
ports. This element recognizes a name attribute.

<provider-port> (required) Associates a WSDL port with a Web service
interface and implementation. It defines the name of the port
as a component. It also associates the port with a servlet
endpoint. If a wsdl-file is not present, the provider-port
defines a pass-through gateway. For information on the
subelements of <provider-port>, see Table 10–2.

Table 10–2 Subelements of the <provider-port> Element

Element Name Description

<provider-name> (required) The name of the Provider. The <provider-name>
within the <provider-port> must be unique within the
deployment descriptor.

<wsdl-port> (optional) Associates the Provider with a particular port of the
WSDL defined by the wsdl-file element. This element is not
required if no WSDL file is defined.

<expose-wsdl> (optional) Indicates whether the WSDL should be exposed. Default
is true.

<expose-testpage> (optional) Indicates whether the test page should be exposed.
Default is true.

<implementation-class> (required) Specifies the name of the class implementing the
oracle.webservices.provider.Provider interface.

<servlet-link> (required) Associates a provider-port value with a servlet
endpoint defined in the /WEB-INF/web.xml file.

<max-request-size> (optional) When a positive value is specified, the service will limit
the size of requests to that value (in bytes). Any request that
exceeds the maximum length will generate an error. Default is -1,
which indicates no limit.

Making a Web Service Provider-Aware

10-8 Advanced Web Services Developer's Guide

The <policy> element defines the Web service management policies for the Provider.
Example 10–2 illustrates the structure of the element as it would appear in an
oracle-webservices.xml deployment descriptor. Table 10–3 describes the
subelements of the <policy> element.

For more information on Web service management policies, see the following
resources.

■ security—Oracle Application Server Web Services Security Guide

■ reliability—Chapter 5, "Ensuring Web Service Reliability"

■ auditing and logging—Chapter 6, "Auditing and Logging Messages"

Editing the web.xml Deployment Descriptor
To make the Web service Provider-aware, add the <servlet-class> element to the
<servlet> clause and the <url-pattern> element to the <servlet-mapping>
clause. Example 10–6 illustrates a web.xml deployment descriptor with these
elements. They are described in Table 10–4.

Example 10–6 Provider Elements in the web.xml Deployment Descriptor

<web-app><display-name/>
<description/>
<servlet>
 <servlet-name>LoggerProviderPort</servlet-name>
 <display-name>LoggerProviderPort</display-name>
 <description>JAX-RPC endpoint Provider Port</description>
 <servlet-class>oracle.j2ee.ws.server.provider.ProviderServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>LoggerProviderPort</servlet-name>
 <url-pattern>/LoggerService</url-pattern>
</servlet-mapping>
</web-app>

<property> (optional) A locally defined property. If a property with a
particular name is defined both locally and globally, then the
property defined locally overrides the one defined globally.

<policy> Defines the Web service management policies for the Provider.
Table 10–3 describes the subelements of <policy>.

Table 10–3 Subelements of the <policy> Element

Element Name Description

<operations> Contains a sequence of elements, one for each operation. The
<operation> subelement indicates an individual operation. Each of
these subelements contain client-side quality of service configuration
for a single operation provided by the referenced Web service.

<runtime> Contains server-side quality of service runtime information (security,
reliability, auditing, and logging) applicable to all the operations
provided by the referenced Web service. Each child element contains
configuration for a specific feature.

Table 10–2 (Cont.) Subelements of the <provider-port> Element

Element Name Description

Registering a Provider-Managed Endpoint

Using Web Service Providers 10-9

Provider Elements in web.xml
Table 10–4 describes the elements which you must add to web.xml to make it
Provider-aware.

Registering a Provider-Managed Endpoint
The following sections describe how to register a Provider-managed endpoint for your
Web service.

■ How to Register a Static Provider-Managed Endpoint

■ How to Register a Dynamic Provider-Managed Endpoint

How to Register a Static Provider-Managed Endpoint
The following steps provide a general outline of how to register a static
Provider-managed endpoint for your Web service. Follow the links for more detained
information on each step.

1. Your Provider application must implement the Provider interface. The
Provider methods init, processMessage and destroy must be
implemented. See "Provider Interface" on page 10-2 for more information on this
interface and its methods.

2. Edit the oracle-webservices.xml and web.xml deployment descriptors. See
"Making a Web Service Provider-Aware" on page 10-6 for more information on
editing these descriptors.

3. (optional) Provide a management configuration. The configuration is specified as a
policy clause in the oracle-webservices.xml deployment descriptor.
Example 10–2 provides an example of the policy clause structure in the
deployment descriptor.

4. Package the service. See "Packaging Provider Web Application Provider Classes"
on page 10-10 for more information on packaging a service which includes
Provider classes.

How to Register a Dynamic Provider-Managed Endpoint
You can register additional Provider-managed endpoints using the
ProviderConfig.addService method to configure Web service management
features for those endpoints. For example, a Business Process Execution Language
(BPEL) process manager might choose to register its processes using this mechanism.

Note that the generation, packaging, and deployment of the Provider implementation
follows the same procedure outlined for a static Provider-managed endpoint. To

Table 10–4 Provider Elements in web.xml

Element Name Description

<servlet-class> Specifies the name of the Provider servlet. The value can be either
oracle.j2ee.ws.server.provider.ProviderServlet or a
subclass as described in "Extending ProviderServlet" on page 10-5.

<url-pattern> Specifies the URL pattern to use for the Web service. The Provider
servlet will listen to URLs whose prefix is specified by this element.
The URL pattern should be relative to the Provider servlet context for
the Web module.

For dynamic pass through mode, the <url-pattern> should be "/*".

Packaging Provider Web Application Provider Classes

10-10 Advanced Web Services Developer's Guide

register dynamic Provider-managed endpoints, you must perform the following
additional step.

■ Register the service by invoking the addService method on the
providerConfig reference. The implementation can optionally pass the policy
configuration by using the method's policy parameter.

Example 10–7 illustrates how a Provider can dynamically add an endpoint. The ADD_
SERVICE_POLICY property declares the Web service management features for the
dynamically-added endpoint (in this case, security auditing and reliability). The
addService invocation is made on the providerConfig reference (config) passed
to the init method of the Provider. In this case, the policy parameter of the
addService method passes XMLUtil.elementFromString(ADD_SERVICE_
POLICY). Note the WSDL is packaged as part of the WAR file and retrieved as a
resource using the servletContext.

Example 10–7 Dynamically Registering a Provider-Managed Endpoint

...
 private static final String ADD_SERVICE_POLICY = "<policy>\n" +
 " <runtime
enabled=\"security,auditing,reliability\">\n" +
 " <security>\n" +
 " <inbound>\n" +
 " <verify-username-token
password-type=\"PLAINTEXT\" require-nonce=\"false\" " +
 " require-created=\"false\"/>\n" +
 " </inbound>\n" +
 " </security>\n" +
 " </runtime>\n" +
 " </policy>";
...
 public void init(ProviderConfig config) throws ProviderException {
...
URL wsdlURL1 =
((ServletContext)config.getContainerContext()).getResource("/WEB-INF/wsdl/HelloSer
vice.wsdl");
...
 config.addService("/loanservice",wsdlURL1,new
QName("http://hello.demo.oracle/","HttpSoap11"),null,
 XMLUtil.elementFromString(ADD_SERVICE_POLICY));
...
}

Packaging Provider Web Application Provider Classes
Provider Web applications are packaged like any standard Web application. If the
Provider application has a WSDL file, store it in the /WEB-INF/wsdl directory in the
WAR file. Store the Provider classes in the /classes directory which is a child of
/WEB-INF. Example 10–8 illustrates the contents of an EAR file for a Provider Web
application.

Example 10–8 Package Structure for a Web Service with a Provider Application

provider.ear
 |__/META-INF/application.xml
 |__ provider-web.war
 |__/WEB-INF
 |__web.xml

Additional Information

Using Web Service Providers 10-11

 |__oracle-webservices.xml
 |__/wsdl/<wsdl_name>.wsdl (optional)
 |__/lib
 |__/classes
 |__ /provider instance classes

Deploying Provider Web Applications
A Provider Web application is deployed (using standard deployment mechanisms) in
a J2EE servlet container. The container must have the Provider system classes and the
supporting classes available in its runtime.

For more information on deploying Provider Web applications, see the Oracle
Containers for J2EE Deployment Guide.

Testing Provider Web Application Deployment
The endpoints of a Provider Web application can be exposed by using a statically
configured endpoint or added dynamically. If the endpoint provides an associated
WSDL file, then you can invoke the Web Service Home Page to see whether
deployment was successful. If the endpoint does not provide a WSDL file, a Test Page
will not be available.

"Testing Web Service Deployment" in the Oracle Application Server Web Services
Developer's Guide describes the Web Service Home page.

Managing Provider Endpoints
If a static or a dynamically-added Provider endpoint provides an associated WSDL
file, then it can be configured through the Web Services interface in Application Server
Control. For more information see the topic "Web Service Home Page" in the
Application Server Control on-line help.

Assembling Clients for Provider Web Service Applications
A Provider Web Service application can be accessed by standard J2SE or J2EE static
stub or DII clients. For more information on generating clients, see the following
chapters:

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ "Testing Web Service Deployment" in the Oracle Application Server Web Services
Developer's Guide describes the

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

Additional Information
For more information on:

Additional Information

10-12 Advanced Web Services Developer's Guide

■ assembling a J2EE Web Service client, see "Assembling a J2EE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ assembling a J2SE Web service client, see "Assembling a J2SE Web Service Client"
in the Oracle Application Server Web Services Developer's Guide.

■ testing whether the Provider Web service application deployed successfully, see
"Testing Web Service Deployment" in the Oracle Application Server Web Services
Developer's Guide.

■ using WebServicesAssembler commands to assemble Web service artifacts, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services
Developer's Guide.

Understanding the Web Services Management Schema A-1

A
Understanding the Web Services

Management Schema

The Web services management policy file, wsmgmt.xml, defines the security,
reliability, logging, and auditing features that can be assigned to a Web service. On
deployment, the contents of the oracle-webservices.xml deployment descriptor
which relate to management, are extracted from the file and copied to wsmgmt.xml.

The wsmgmt.xml file resides in the ORACLE_HOME\j2ee\home\config directory.

Management features have scope: they can be assigned globally, to a port, and to an
operation within a port.

This appendix has these sections.

■ Levels of Web Service Management

■ wsmgmt.xml Listing

Levels of Web Service Management
The schema for the wsmgmt.xml management policy file allows Web service
management features to be set at these levels:

■ Global Level

■ Port Level

■ Operation Level

The tags and elements described in the following sections are used in the Web service
management schema. For a listing of wsmgmt.xml, the XML version of the schema,
see Example A–3, "Sample wsmgmt.xml File" on page A-3.

Global Level
The management features that are globally applied to a Web service appear between
<runtime> elements at the top of wsmgmt.xml. If a feature is enabled, it will be
applied at runtime. Only security features can be applied globally to a Web service.
The security features are delimited by <security> elements.

The XML fragment in Example A–1 illustrates the global elements of the wsmgmt.xml
file, simplified for clarity. The ellipses indicate additional security elements. For a

Note: Oracle Application Server Web Services strongly recommends
that you do not edit or change the contents of wsmgmt.xml.

Levels of Web Service Management

A-2 Advanced Web Services Developer's Guide

description of the elements that appear in the <security> element, see the Oracle
Application Server Web Services Security Guide.

Example A–1 Global Elements of the wsmgmt.xml File

<wsmgmt>
 <runtime>
 <security>
 ...
 </security>
 </runtime>
</wsmgmt>

Port Level
The management features that can be configured for a port are delimited by <port>
elements. Each Web service can have a number of ports defined in Web service
management schema. A port is synonymous with a Java interface. For each port,
security, reliability, and logging features can be set.

The security features that appear in the global level are repeated in the port level.
Security features set at the port level override security features set at the global level.

The XML fragment in Example A–2 illustrates the port elements of the wsmgmt.xml
file, simplified for clarity. The ellipses indicate additional elements. For a description
of the elements that appear in the <security> element, see the Oracle Application
Server Web Services Security Guide. For a description of the elements that appear in the
<reliability> element, see "Server-Side Reliability Configuration Elements" on
page 5-4. For a description of the elements that appear in the <logging> element, see
"Server-Side Logging Configuration Elements" on page 6-6.

Example A–2 Port Level Elements in the wsmgmt.xml File

<wsmgmt>
 ...
 <port app="my-ear" web="my-war" service="my-service" port="my-service-port">
 <runtime enabled="security">
 <security>
 ...
 </security>
 <reliability>
 ...
 </reliability>
 <logging>
 ...
 </logging>
 </runtime>
 </port>
 ...
<wsmgmt>

Table A–1 describes the settings for a port.

Table A–1 Attributes for the Port Element

Attribute Name Description

port Maps to the port name in oracle-webservices.xml and to
the WSDL.

wsmgmt.xml Listing

Understanding the Web Services Management Schema A-3

The port component also has a <runtime> section where the port-level security,
reliability, and logging features can be enabled or disabled. If a feature is enabled, it
will be applied at runtime. This is done by including the name of the configuration
element in the enabled attribute of the <port> element. The configuration of each
feature (such as security or logging) can still be present even if it is disabled by virtue
of not being present in the enabled attribute. The values of the enabled attribute are
delimited by commas. The order of the features on the enabled attribute is currently
ignored.

Operation Level
Each port can have multiple operations associated with it. In the <port> element, the
<operations> element indicates the start of the list of operations belonging to a
particular port. The <operation> element indicates the start of an individual
operation.

Table A–2 describes the element for an operation.

For each operation, the wsmgmt.xml management policy file defines security,
reliability, logging, and auditing features available.

The security, reliability, and logging features that are listed in the port level are
repeated at the operation level. A security feature set at the operation level overrides
the setting made at the port and global level. A reliability or logging feature set at the
operation level, in contrast will be referenced by the corresponding feature set at the
port level.

wsmgmt.xml Listing
Example A–3 contains a skeleton listing of the server-side Web services management
file wsmgmt.xml. See the cross references for the listings and description of the
elements in the security, reliability, and logging components.

Example A–3 Sample wsmgmt.xml File

<?xml version="1.0" encoding="UTF-8"?>
<wsmgmt xmlns:oc4j="http://xmlns.oracle.com/oracleas/schema/oc4j-10_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="D:\ade\las\j2ee\src\META-INF\META-INF\
 oracle-webservices-management-10_0.xsd"
schema-major-version="10" schema-minor-version="0">
 <runtime>

web (or ejb for Web services
that expose EJBs)

Maps to the WAR name which is obtained either from
server.xml or the Web-side XML file.

service Maps to the Web service name in oracle-webservices.xml
and the WSDL.

app Maps to the application name in server.xml.

Table A–2 General Setting for Operation

Element Name Description

<operation> The name attribute maps to an operation name in the WSDL.

Table A–1 (Cont.) Attributes for the Port Element

Attribute Name Description

wsmgmt.xml Listing

A-4 Advanced Web Services Developer's Guide

 <security>
 ...
For a description and listing of security elements, see the Oracle Application Server Web
Services Security Guide.

 ...
 </security>
 </runtime>
 <port app="String" web="String" service="String" port="String">
 <runtime enabled="String">
 <security>
 ...
For a description and listing of security elements, see the Oracle Application Server Web
Services Security Guide.

 ...
 </security>
 <reliability>
 ...
For a description and listing of reliability elements, see "Port-Level Reliability
Elements on the Server" on page 5-5.

 ...
 ...
 </reliability>
 <logging>
 ...
For a description and listing of logging elements, see "Port-Level Logging Elements on
the Server" on page 6-7.

 ...
 </logging>
 </runtime>
 <operations>
 <operation name="String">
 <runtime>
 <security>
 ...
For a description and listing of security elements, see the Oracle Application Server Web
Services Security Guide.

 ...
 </security>
 <auditing request="false" response="false" fault="false"/>
For a listing and description of operation-level auditing elements, see "Server-Side
Auditing Configuration Elements" on page 6-3.

 <reliability>
 ...
For a listing and description of operation-level reliability elements, see "Operation
Level Reliability Elements on the Server" on page 5-6.

 ...
 </reliability>
 <logging>
 ...
For a listing and description of operation-level logging elements, see "Operation Level
Logging Elements on the Server" on page 6-7.

 ...
 </logging>
 </runtime>

wsmgmt.xml Listing

Understanding the Web Services Management Schema A-5

 </operation>
 </operations>
 </port>
</wsmgmt>

wsmgmt.xml Listing

A-6 Advanced Web Services Developer's Guide

JAX-RPC Mapping File Descriptor B-1

B
JAX-RPC Mapping File Descriptor

The JAX-RPC mapping file is a standard XML file that describes the binding between
the WSDL and the Java service endpoint interface(s). A number of
WebServicesAssembler commands produce a JAX-RPC mapping file as part of their
output. You can edit the contents of the file to customize the contents of the generated
WSDL or service endpoint interface.

The published version of the JAX-RPC mapping file schema can be found at the
following Web site.

http://java.sun.com/xml/ns/j2ee/j2ee_jaxrpc_mapping_1_1.xsd

This appendix has the following sections.

■ Producing a JAX-RPC Mapping File

■ Naming Conventions for the JAX-RPC Mapping File

■ Customizing the WSDL or Service Endpoint Interface Contents

Producing a JAX-RPC Mapping File
These WebServicesAssembler commands generate a JAX-RPC mapping file as part of
their output. Most of these commands are used when developing a Web service
bottom up. For more information on these commands, see "WebServicesAssembler
Commands" in the Oracle Application Server Web Services Developer's Guide.

■ aqAssemble

■ assemble

■ corbaAssemble

■ dbJavaAssemble

■ ejbAssemble

■ jmsAssemble

■ plsqlAssemble

■ sqlAssemble

■ genInterface

■ genValueTypes (produces a "partial" JAX-RPC mapping file)

■ genWsdl

Customizing the WSDL or Service Endpoint Interface Contents

B-2 Advanced Web Services Developer's Guide

Naming Conventions for the JAX-RPC Mapping File
The generated JAX-RPC mapping file has the following naming pattern:

<serviceName>java-wsdl-mapping.xml

Where the prefix serviceName is the local part of the qname of the service.

The JAX-RPC mapping file is typically stored in the same directory as the
webservices.xml file.

Customizing the WSDL or Service Endpoint Interface Contents
Editing the JAX-RPC mapping file enables you to customize the contents of the
generated WSDL (for bottom up Web services development) or the contents of the
generated service endpoint interface (for top down Web services development).
"Customization Scenarios" describes some common situations where you might want
to customize the WSDL or service endpoint interface.

To produce a mapping file that you can edit, WebServicesAssembler provides two
commands: genInterface and genWsdl.

■ for general top down Web service development, the genInterface command
takes a WSDL as input and produces a service endpoint interface and a JAX-RPC
mapping file as output.

■ for general bottom up Web service development, the genWsdl command takes a
service endpoint interface as input and produces a WSDL and a JAX-RPC
mapping file as output.

After modifying the mapping file, you can use it as input to any of the
WebServicesAssembler commands that develop a Web service top down or bottom up.
The resulting service endpoint interface or WSDL will reflect the changes that you
specified in the mapping file.

This discussion can be summarized in these steps:

1. Generate a mapping file.

To do this, use the genInterface command for top down Web service
development or genWsdl command for bottom up Web service development.

2. Edit the mapping file.

The "Customization Scenarios" section describes some of the common ways in
which you can edit the JAX-RPC mapping file.

3. Use the modified JAX-RPC mapping file as input to the appropriate
WebServicesAssembler command to develop your Web service.

Customization Scenarios
The following sections describe situations where you might want to edit the JAX-RPC
mapping file to generate a custom WSDL or service endpoint interface.

■ Changing Namespace-to-Java Mappings

■ Changing the Names of Java or WSDL Artifacts

■ Generating Code into a Single Package from a WSDL with Multiple Namespaces

■ Wrapping or Unwrapping Mapping for Document-Literal Operations

■ Mapping Between SOAP Headers and Java Method Parameters

Customizing the WSDL or Service Endpoint Interface Contents

JAX-RPC Mapping File Descriptor B-3

Changing Namespace-to-Java Mappings
In the mapping file, the <package-mapping> element identifies the mapping
between the namespace and the Java package. The <namespaceURI> sub-element
identifies the namespace and the <package-type> sub-element identifies the Java
package. A sample <package-mapping> element is displayed in Example B–1.

Example B–1 Package to Namespace Mapping Elements in the JAX-RPC Mapping File

<java-wsdl-mapping version="1.0">
 <package-mapping>
 <package-type>com.foo.mypackage</package-type>
 <namespaceURI>http://www.foo.com</namespaceURI>
 </package-mapping>
</java-wsdl-mapping>

You can change the mapping between the namespace and Java package by changing
either of the values within the <package-mapping> element. The generated WSDL
or service endpoint interface will use the new namespace or Java package value.

The <package-mapping> element can appear more than once in the mapping file.

Changing the Names of Java or WSDL Artifacts
In the mapping file, you can change the names of Java or WSDL artifacts. For example,
for top down Web service development, assume that you want to change the mapping
of the wsdl-say-hello operation in your given WSDL. You can use the WSDL as
input to genInterface, then edit the resulting JAX-RPC mapping file to map the
wsdl-say-hello WSDL operation from its default to a javaSayHello method that
you provide.

Similarly, for bottom up Web service development, you can use a given service
endpoint interface, such as MyServiceEndpoint, as input to genWsdl. You can then
edit the resulting JAX-RPC mapping file to map the service endpoint interface to a
port-type, such as my-service-port-type, in the WSDL.

See the JAX-RPC mapping file schema for more information on where the names of the
Java and WSDL artifacts can be changed.

http://java.sun.com/xml/ns/j2ee/j2ee_jaxrpc_mapping_1_1.xsd

Generating Code into a Single Package from a WSDL with Multiple Namespaces
If you are working with a WSDL with multiple namespaces, WebServicesAssembler
places all generated code into a package that corresponds to the namespace of the
WSDL and schema value types. If the WSDL contains multiple namespaces, then one
package will be created for each namespace. Importing multiple packages can be
inconvenient when writing your implementation class.

WebServicesAssembler does not provide an argument that allows all code to be
generated in the same package. For example, the packageName argument effects only
the package name for service endpoint interface and any schema types that have the
same target namespace as the WSDL. If there are schema value types in a different
namespace, then WebServicesAssembler generates them into a different package by
default.

You can direct WebServicesAssembler to generate a single package by editing the
JAX-RPC mapping file. For each namespace, the file contains a <package-mapping>
clause with a <package-type> and <namespaceURI> element. These elements
identify the mapping between the namespace and a Java package. Edit each instance

Customizing the WSDL or Service Endpoint Interface Contents

B-4 Advanced Web Services Developer's Guide

of the <package-type> element to enter the name of the single package where you
want the generated code to reside.

Example B–2 illustrates the contents of a JAX-RPC mapping file that has been edited to
place the generated code from three different namespaces into the package
MyPackage. The <package-type> and <namespaceURI> elements are highlighted
in bold.

Example B–2 Mapping File that Specifies a Single Package for Multiple Namespaces

<java-wsdl-mapping version="1.1">
 <package-mapping>
 <package-type>MyPackage</package-type>
 <namespaceURI>namespace1 in the WSDL</namespaceURI>
 </package-mapping>
 <package-mapping>
 <package-type>MyPackage</package-type>
 <namespaceURI>namespace2 in the WSDL</namespaceURI>
 </package-mapping>
 ...
 <package-mapping>
 <package-type>MyPackage</package-type>
 <namespaceURI>namespaceN in the WSDL</namespaceURI>
 </package-mapping>
</java-wsdl-mapping>

How to Generate Code into a Single Package Using a WSDL with Multiple
Namespaces
The following steps summarize how you can direct WebservicesAssembler to generate
code into a single package when the WSDL contains multiple namespaces.

1. Generate a JAX-RPC mapping file for the Web service.

Use the genInterface command if you are assembling a Web service top down
or the genWsdl command if you are assembling a Web service bottom up. You can
also write your own JAX-RPC mapping file by hand.

2. Edit the JAX-RPC mapping file so that each instance of the <package-type>
element in the <package-mapping> clause contains the name of the single
package where you want the generated code to reside.

3. Assemble the Web service using the appropriate *Assemble command. Use the
mappingFileName argument to specify the edited JAX-RPC mapping file.

All of the generated code will reside in the same package.

"Default Algorithms to Map Between Target WSDL Namespaces and Java Package
Names" in the Oracle Application Server Web Services Developer's Guide provides more
information on how WebServicesAssembler constructs a default type namespace from
the package name.

Wrapping or Unwrapping Mapping for Document-Literal Operations
The <service-endpoint-method-mapping> element defines the mapping of Java
methods to WSDL operations. If a <wrapped-element/> is specified under this
element and you are working with document-literal WSDL operations, then each Java
method parameter that is not mapped to a SOAP header is mapped to a sub-element
of a complexType. This complexType is used as the type of a wrapper element. Any
Java method parameters that are not mapped to a SOAP header, must be mapped to a
sub-element of a complexType (that is, they must be wrapped).

Customizing the WSDL or Service Endpoint Interface Contents

JAX-RPC Mapping File Descriptor B-5

Mapping Between SOAP Headers and Java Method Parameters
The <wsdl-message-mapping> element defines the unique mapping from a specific
Java method parameter to a specific message and its part. Parts within a message
context are uniquely identified with their names.

If <soap-header/> is specified under a <wsdl-message-mapping> element, then:

■ this Java method parameter is exposed as a SOAP header for bottom up
development

■ the corresponding SOAP header is mapped to a Java method parameter for top
down development

Customizing the WSDL or Service Endpoint Interface Contents

B-6 Advanced Web Services Developer's Guide

Web Service MBeans C-1

C
Web Service MBeans

An MBean, or "managed bean", is a Java object that represents a manageable resource
in a distributed environment, such as an application, a service, a component, or a
device.

An MBean has an exposed interface that allows a management client to control the
resource. The interface is comprised of:

■ Attributes, values of any type that the management client can get or set. Attributes
are analogous to properties set on a JavaBean.

■ Operations, methods with any signature and any return type that the client can
invoke.

■ Notifications that can be generated when specific events occur.

The individual MBean descriptions provide more detailed information on the
attributes, operations, and notifications that are available for them.

The following sections describe the MBeans that pertain to Oracle Application Server
Web Services and how they are initialized within its environment.

■ Web Services MBean Descriptions

■ Initializing MBeans

Web Services MBean Descriptions
This section provides a description of the components that define the functionality of
an MBean and a summary of the MBeans that are available for OracleAS Web Services.

■ Understanding MBean Components

■ WebServicePort

■ WebServiceOperation

■ WSMServiceConfig

■ WSMOperationConfig

■ WSMHandlerGlobalConfig

■ WSMHandlerServiceConfig

■ WSMHandlerOperationConfig

Web Services MBean Descriptions

C-2 Advanced Web Services Developer's Guide

Understanding MBean Components
The name of an MBean consists of a number of components, such as
J2EEApplication, WebServicePort, handler, and so on. The value of the
components are set when the MBean is registered with the MBean server. The full
name of an MBean will be displayed in Applications Server Control when you access
it. Table C–1 describes the values of the MBean components.

WebServicePort
*:j2eeType=WebServicePort, J2EEApplication={application},
WebModule={web-module}, WebService={service}, name={port},*

This MBean provides for the management of a Web service endpoint in the run-time.
Specifically, this MBean provides information about the Web service port's structure,
state, and performance. It also allows for the endpoint to be temporarily stopped and
restarted.

Attributes: address, implementationType, path, state, stats, style, wsdl

Operations: start, stop

Statistics: ActiveRange, TotalFault, ServiceTime

Notifications: j2ee.state.running, j2ee.state.stopped

WebServiceOperation
*:j2eeType=WebServiceOperation, J2EEApplication={application},
WebModule={web-module}, WebService={service}, WebServicePort={port},
name={operation}

This MBean provides for the observation and management of each operation of a Web
service endpoint. Many of the attributes also provide information about the
implementation of the operation.

Table C–1 Definitions of JMX MBean Name Components

Component Value Description

{application} The name given to the application (that is, the EAR file) when it was deployed. This
value can be found in the <application> element in the ORACLE_
HOME/j2ee/home/config/server.xml file.

{web-module} The name given to the Web module within the application's deployment descriptor.
This value can be found as the value of the ID attribute in the <web-module> element
of the orion-application.xml file in the META-INF directory of an application.

{service} The name of the Web service as described by the service's deployment descriptor. This
value can be found in the WEB-INF/oracle-webservices.xml file of a deployed
Web module. The service name is the value of name attribute of each
<webservice-description> element.

{port} The name of the Web service port as described by the service's deployment descriptor.
This value can be found in the WEB-INF/oracle-webservices.xml file of a
deployed Web module. The port name is the value of the name attribute of each
<port-component> element.

{operation} The name of the Web service operation as described by the service's deployment
descriptor. This value can be found in the WEB-INF/oracle-webservices.xml file
of a deployed Web module. The port name is the value of the name attribute of each of
each <operation> element.

{interceptor} This value identifies the interceptor. The possible values currently are security,
reliability, auditing, logging and owsm (Oracle Web Service Manager).

Web Services MBean Descriptions

Web Service MBeans C-3

Attributes: inputEncoding, outputEncoding, overloaded, sampleRequest,
sampleResponse, stats, testPagePath, testPageURL

Statistics: RequestSize, ResponseSize, ActiveRange, FaultCount,
ServiceTime

WSMServiceConfig
*:j2eeType=WSMServiceConfig, J2EEApplication={application},
WebModule={web-module}, WebService={service}, WebServicePort={port}, *

This MBean is used only to create a hierarchy of MBeans within the system. It
represents the port level configuration for all interceptors associated with each Web
service port. There are however no useful attributes or operations provided by this
MBean.

WSMOperationConfig
*:j2eeType=WSMOperationConfig, J2EEApplication={application},
WebModule={web-module}, WebService={service}, WebServicePort={port},
operation={operation}, *

This MBean is used only to create a hierarchy of MBeans within the system. It
represents the operation level configuration for all interceptors associated with each
Web service operation. There are, however, no useful attributes or operations provided
by this MBean.

WSMHandlerGlobalConfig
*:j2eeType=WSMHandlerGlobalConfig, handler={interceptor}, *

This MBean provides the ability to get, set, and validate the global configuration
settings for each individual interceptor. Currently only the security and reliability
interceptors utilize global configuration.

Attributes: stagedConfig, deployedConfig

Operations: validateConfig

WSMHandlerServiceConfig
*:j2eeType=WSMHandlerServiceConfig, J2EEApplication={application},
WebModule={web-module}, WebService={service}, WebServicePort={port},
handler={interceptor}, *

This MBean provides access to the port level configuration of each interceptor. Each
interceptor may also be enabled or disabled for the Web service port for the MBean by
using the stagedEnabled attribute. The other attributes and operation allow the
configuration to be retrieved, set and validated.

Attributes: stagedEnabled, stagedConfig, deployedConfig

Operations: validateConfig

WSMHandlerOperationConfig
*:j2eeType=WSMHandlerOperationConfig, J2EEApplication={application},
WebModule={web-module}, WebService={service}, WebServicePort={port},
handler={interceptor}, operation={operation}, *

Initializing MBeans

C-4 Advanced Web Services Developer's Guide

This MBean provides access to the operation level configuration of each interceptor.
This MBean can be used to retrieve, set and validate the configuration.

Attributes: stagedConfig, deployedConfig

Operations: validateConfig

Initializing MBeans
The OracleAS Web Services runtime for the current release is implemented as a servlet;
it relies upon the servlet container for the management of its life cycle. JMX MBeans
are created and registered as part of the Servlet init method of the Web service
runtime. Depending on the configuration of the web.xml deployment descriptor in
the J2EE Web Archive (that is, the WAR file), the servlet container may not initialize
the Web service servlet until the first request to the servlet is encountered.

To instruct the servlet container to initialize the servlet when the Web service is
deployed or the container starts, set the load-on-startup element in the web.xml
deployment descriptor to a nonzero value. For example:

<load-on-startup>1</load-on-startup>

This will result in the JMX MBean for the Web service being available as early as
possible.

OracleAS Web Services recommends that all Web services deployed on the current
release provide the <load-on-startup>1</load-on-startup> setting in their
web.xml deployment descriptor. This will ensure that the Application Server Control
application works correctly.

Mapping Java Types to XML and WSDL Types D-1

D
Mapping Java Types to XML and WSDL

Types

This appendix describes the mappings between Java types and XML types that are
supported under Oracle Application Server Web Services.

■ Mapping Java Types to XML Types

■ Mapping Java Primitive Types to XML Types

■ OC4J Support for Java Value Types

■ Mapping Support for Arrays

■ Mapping Java Collection Classes to XML Types

■ Support for Java Beans Components

Mapping Java Types to XML Types
Table D–1 describes the mapping between Java data types and XMl data types that
OracleAS Web Services supports.

■ The Java Type column lists the supported Java types.

■ The XML Type: RPC-Literal, Document-Literal column lists the mapping
between the Java type and the corresponding XML type for RPC-literal and
document-literal format.

■ The XML Type: RPC-Encoded column lists the mapping between the Java type
and the corresponding RPC-encoded format.

For example, java.lang.String is mapped to the xsd:string XML data type.
You should note that not every Java type can be used as a method parameter or return
type.

The namespace for the document-literal and RCP-literal formats uses an xsd prefix
and has the following definition.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

The SOAP 1.1 namespace for the RPC-encoded format uses a soap-enc prefix and
has the following definition.

xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding

Mapping Java Primitive Types to XML Types

D-2 Advanced Web Services Developer's Guide

Using Java Null Values in Bottom Up Mapping
It is good practice not to rely on any mapping from Java null values to XML nil
values (see also Chapter 1, "Ensuring Interoperable Web Services"). Special care needs
to be taken in the RPC case.

■ In RPC-literal message format, Null parameter values cannot be mapped to nil
values.

■ In RPC-encoded message format, SOAP-encoded type values can preserve nil.

■ In all cases where a value type (Java Bean) is used as a parameter, you should not
use Java null values.

Mapping Java Primitive Types to XML Types
Table D–2 describes the mapping between Java primitive types and XML types that
OracleAS Web Services supports. The types listed in the XML Type column applies to
RPC-encoded, RPC-literal, and document-literal formats.

Table D–1 Mapping Java Types to XML Types

Java Types
XML Type: RPC-Literal,
Document-Literal XML Type: RPC-Encoded

java.lang.Boolean xsd:boolean soap-enc:boolean

java.lang.Byte xsd:byte soap-enc:byte

java.lang.Double xsd:double soap-enc:double

java.lang.Float xsd:float soap-enc:float

java.lang.Integer xsd:integer soap-enc:integer

java.lang.Long xsd:long soap-enc:long

java.lang.Short xsd:short soap-enc:short

java.lang.String xsd:string xsd:string

java.math.BigDecimal xsd:decimal xsd:decimal

java.math.BigInteger xsd:int xsd:int

java.net.URI xsd:anyURI xsd:anyURI

java.util.Calendar xsd:dateTime xsd:dateTime

java.util.Date xsd:dateTime xsd:dateTime

java.xml.QName xsd:QName xsd:QName

Table D–2 Mapping Java Primitive Types to XML Types

Java Primitive Type XML Type

boolean xsd:boolean

byte xsd:byte

double xsd:double

float xsd:float

int xsd:int

long xsd:long

short xsd:short

Mapping Support for Arrays

Mapping Java Types to XML and WSDL Types D-3

OC4J Support for Java Value Types
Java value types can contain a number of attributes. The following list describes the
requirements on the Java class corresponding to the Java value type.

■ the Java class must have an empty public constructor

■ the Java class must not implement java.rmi.Remote

■ the Java class must contain attributes of supported types

– an attribute can be a public field that is not final or transient, or

– an attribute can be represented by public getter and setter methods

■ If the Java class contains a single array-valued attribute (such as int[] or
String[]) then the name of the class must not contain the word "Array". You
might want to rename the class to "Ary", "List", or something similar.

Representing a Java Value Type as a Schema Type
A Java value type can be represented by a schema type. The schema type that
corresponds to a Java value type has the following general format.

<complexType name="classname of the value type">
 <sequence>
 ...attributes...
 </sequence>
</complexType>

Mapping Support for Arrays
The following sections describe the mapping support OracleAS Web Services offers for
arrays.

■ All Formats

■ Document-Literal and RPC-Literal Formats

■ RPC-Encoded Format

All Formats
Byte arrays are a special case. The Java type byte[] maps to the XML type
xsd:base64Binary for document-literal, RPC-literal, and RPC-encoded formats.

Document-Literal and RPC-Literal Formats
Table D–3 provides examples of how OracleAS Web Services supports arrays with
members of supported types in the RPC-literal and document-literal formats. For
example, an array containing elements of type int maps to the XML type xsd:int
with the minOccurs and maxOccurs attributes. Table D–1 lists the supported type
mappings for RPC-literal and document-literal formats.

Note: Byte arrays are an exception to the list of supported types.
Table D–4 lists the XML type mapping for byte arrays.

Mapping Support for Arrays

D-4 Advanced Web Services Developer's Guide

Multi-dimensional arrays, such as Double[][], are not supported for the
document-literal or RPC-literal formats in the current release. However, it is possible
to work around this limitation by wrapping the array in a Java value type and then
using an array of these value types. "OC4J Support for Java Value Types" on page D-3
describes the requirements on Java value types. Note the restriction on the names for
value types described in this section.

RPC-Encoded Format
For the RPC-encoded format, JAX-RPC supports arrays that contain members of
supported types. Table D–1 lists the supported types for RPC-encoded.

Example D–1 illustrates how a String[] array is represented in the WSDL. The
String[] array is the target of the WSDL construct wsdl:arrayType, where wsdl
is the namespace for the WSDL 1.1 schema prefix. This namespace has the following
definition.

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

Example D–1 WSDL Definition of an Array of Strings for the RPC-Encoded Format

<complexType name="ArrayOfString">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example D–2 illustrates the definition of a multidimensional array. The array of strings
(ArrayofString[]) defined in the previous example is used in the
wsdl:arrayType="tns:ArrayofString[]" attribute (highlighted in bold) to
create an array which contains arrays of strings. The tns is a WSDL construct that
defines a local namespace.

Example D–2 WSDL Definition of a Multi-Dimensional Array of an Array of Strings

<complexType name="ArrayOfArrayOfString">
 <complexContent>
 <restriction base="soap-enc:Array">
 <attribute ref="soap-enc:arrayType" wsdl:arrayType="tns:ArrayOfString[]"/>
 </restriction>
 </complexContent>

Table D–3 Mapping Arrays Containing Java Types to XML Types for Document-Literal
and RPC-Literal

Java Type
XML Type: RPC-Literal,
Document-Literal

Additional Properties for the XML
Type

int[] xsd:int minOccurs="0",
maxOccurs="unbounded"

String[] xsd:string minOccurs="0",
maxOccurs="unbounded"

Note: Byte arrays are an exception to the list of supported types.
Table D–4 lists the XML type mapping for byte arrays.

Mapping Java Collection Classes to XML Types

Mapping Java Types to XML and WSDL Types D-5

</complexType>

Mapping Java Collection Classes to XML Types
Table D–4 and Table D–5 describe the mapping between Java Collection and Map
data types and the XML types that OracleAS Web Services supports. This is an
Oracle-proprietary mapping and may not be compatible with data type support
provided by other vendors. "Definitions for Oracle-Proprietary Collection Data Types"
on page D-6 provides more information on how these types are defined.

Note that in OracleAS Web Services, you can nest Collections and Maps data types.
For example, you can specify a Collection as an item within a Collection.

The Java Collection and Map data types are supported in RPC-literal,
document-literal, and RPC-encoded formats. These data types map to the same XML
types for the three formats. The Oracle-proprietary collection types use the following
proprietary namespace for RPC-literal and document-literal formats.

 xmlns:owi="http://www.oracle.com/webservices/internal/literal"

The Oracle-proprietary collection types use the following proprietary namespace for
the RPC-encoded format.

 xmlns:owi="http://www.oracle.com/webservices/internal"

Limitations on Using Collection and Map Data Types
This section describes the limitations on using Collection and Map data types in
OracleAS Web Services.

■ Instances of java.lang.Object cannot be used in Collections or Maps
because there is no XML schema construct to describe the instances of
java.lang.Object.

Table D–4 Mapping Java Collection Classes to XML Types

Java Type Java Class (java.util) XML Type

Collection classes: Collection owi:collection

List owi:list

ArrayList owi:arrayList

LinkedList owi:linkedList

Stack owi:stack

Vector owi:vector

Set classes: Set owi:set

HashSet owi:hashSet

TreeSet owi:treeSet

Map classes: Map owi:map

HashMap owi:hashmap

Hashtable owi:hashtable

Properties owi:properties

TreeMap owi:treemap

Mapping Java Collection Classes to XML Types

D-6 Advanced Web Services Developer's Guide

■ If you use instances of non-built in types (such as Beans) in a Collection, then
you must generate schemas for them. See "Oracle-Specific Type Support" in the
Oracle Application Server Web Services Developer's Guide for more information on
this topic.

■ In J2SE 5.0, Collections and Maps can be parameterized. For example,
Collection<Integer>. However, the code generated by
WebServicesAssembler does not support parameterized Collection and Map,
because OracleAS Web Services does not preserve parameterized type metadata in
the generated schema.

The following limitations apply to Collection and Map data types when you are
working with document-literal and RPC-literal message formats.

■ Object graph structure is NOT preserved between serialization and
deserialization. See "Object Graph" on page E-10 for more information on
limitations when working with object graphs.

■ Recursive or circular reference structures return an error. This is illustrated in the
following code samples.

// the following lines of code will return an error
ArrayList a = new ArrayList();
a.add(a);

The following code sample illustrates how Object is not supported as a
Collection element.

// the following lines of code will return an error
ArrayList a = new ArrayList();
a.add(new Object());

Definitions for Oracle-Proprietary Collection Data Types
Table D–5 provides more information on how the Oracle-proprietary XML types for
collections are defined.

Table D–5 Additional Information about Oracle-Proprietary XML Types

Proprietary XML Type Additional Information about the XML Type

owi:collection The following is the XML schema type of the owi:collection
type for the RPC-literal and document-literal formats. To
construct the type definition for the RPC-encoded format,
replace type="anyType" with an array of type xsd:anyType.
Example D–1 provides an example of creating an array of a data
type.

<complexType name="collection">
 <sequence>
 <element name="item" type="anyType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
</complexType>

owi:list a simple extension of owi:collection

owi:arrayList a simple extension of owi:list

owi:linkedList a simple extension of owi:list

owi:stack a simple extension of owi:list

owi:vector a simple extension of owi:list

Support for Java Beans Components

Mapping Java Types to XML and WSDL Types D-7

Support for Java Beans Components
Java beans can have any number of properties. Each property must have a getter and
setter method. The properties must belong to supported Java types.

owi:set a simple extension of owi:collection

owi:hashSet a simple extension of owi:set

owi:treeSet a simple extension of owi:set

owi:map The following is the XML schema type of the owi:map type for
the RPC-literal and document-literal formats. To construct the
type definition for the RPC-encoded format, replace
type="owi:mapEntry" with an array of owi:mapEntry.
Example D–1 provides an example of creating an array of a data
type.

<complexType name="map">
 <sequence>
 <element name="mapEntry" type="owi:mapEntry"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

The owi:mapEntry type used in the preceding code sample has
the following definition.

<complexType name="mapEntry">
 <sequence>
 <element name="key" type="anyType"/>
 <element name="value" type="anyType"/>
 </sequence>
</complexType>

owi:hashMap a simple extension of owi:map

owi:hashtable a simple extension of owi:map

owi:properties a simple extension of owi:map

owi:treeMap a simple extension of owi:map

Table D–5 (Cont.) Additional Information about Oracle-Proprietary XML Types

Proprietary XML Type Additional Information about the XML Type

Support for Java Beans Components

D-8 Advanced Web Services Developer's Guide

Troubleshooting E-1

E
Troubleshooting

This appendix provides solutions to possible problems that may occur when working
with Oracle Application Server Web Services. The section titles in this appendix
correspond to chapter titles in the Oracle Application Server Web Services Developer's
Guide and the Oracle Application Server Advanced Web Services Developer's Guide.

OracleAS Web Services Messages

Cannot Serialize or Deserialize Array-Valued Elements to Collection Types
If you use a Java Collection type (such as java.util.Map,
java.util.Collection, or a subclass of these) as a parameter or return type in
your RPC-encoded Web service, then the runtime cannot properly serialize or
deserialize array-valued elements to these collection parameters.

To ensure that serializers and deserializers are registered for Java array types when
using the RPC-encoded message format, create a Java value type to represent each
Java array.

1. Create a Java value type for each Java array type that you want to use.

The following example represents the contents of the demo/StringAry.java
file. A wrapper class, StringAry, represents the Java String[] array. Note that
the name of the class uses the suffix "Ary".

package demo;
public class StringAry
{ public StringAry() { }
 public String[] getValue() { return m_value; }
 public void setValue(String[] value) { m_value=value; }
 private String[] m_value;
}

2. Ensure that the proper serializers and deserializers are registered for all of your
value types.

To do this, use the valueType argument when you assemble the Web service. In
the following example, the argument specifies the demo/StringAry.java file
created in Step 1.

java wsa.jar -assemble -valueType demo.StringAry ...

Note: Ensure that the Java value type does not contain the word
"Array" in its name. "Array" is a recognized pattern.

OracleAS Web Services Messages

E-2 Advanced Web Services Developer's Guide

3. Use the value types you defined for setting and retrieving array-valued elements
in your collection type parameter.

For example, assume that you have the following class definition.

package demo;
public class Service extends java.rmi.Remote
{ java.util.Map getMap(String input)throws java.rmi.RemoteException
 { ... }
}

You can write the following code to return a String[] value as one of the
elements in the map.

HashMap map = new HashMap();
String[] str_array = new String[]{"a","b","c"};
StringAry sa = new StringAry();
sa.setValue(str_array);
map.put("myArray", sa);
return map;

Errors Occur When Publishing a Web Service that Uses Multi-Dimensional Arrays
An error occurs when attempting to publish a Web service that uses multidimensional
arrays. For example, an error can be returned when you attempt to publish a Java class
that contains a method which takes a multidimensional array as an input or as a return
argument.

There are two possible solutions to this problem:

■ Create a Java Bean for each dimension of the array

■ Use RPC-encoded message format to publish the Web service

Creating a Java Bean for each Dimensional of the Array: You can wrap each
dimension of the array into a Java value type and work around the limitation.

In the following example, the public static class StringAry wraps the inner
array of strings. The public StringAry[] represents an array of the inner array.
That is, it contains an array of String Java value types. Note that the code sample
uses the suffix "Ary".

package demo;
public interface SampleItf extends java.rmi.Remote

 // wrap the inner array as a Java value type
{ public static class StringAry
 { public StringAry() { }
 public String[] getValue() { return m_value; }
 public void setValue(String[] value) { m_value=value; }
 private String[] m_value;
 }

 // create an array of the inner array elements
 public StringAry[] echoString2(StringAry[] input)
 throws java.rmi.RemoteException;
}

Note: Ensure that the Java value type does not contain the word
"Array" in its name. "Array" is a recognized pattern.

OracleAS Web Services Messages

Troubleshooting E-3

The Service class illustrates how you can then publish the StringAry[] array of
String Java value types.

package demo;
public class Sample implements java.rmi.Remote, SampleItf
{ public SampleItf.StringAry[] echoString2(SampleItf.StringAry[] input)
 throws java.rmi.RemoteException
 { return input; }
}

Using RPC-Encoded Style to Publish a Web Service: You can use the RPC-encoded
style to publish a Web service that uses multidimensional arrays. For example:

package demo;
public interface SampleItf extends java.rmi.Remote
{ public String[][] echoString2(String[][] input)
 throws java.rmi.RemoteException;
}

package demo;
public class Sample implements java.rmi.Remote, SampleItf
{ public String[][] echoString2(String[][] input)
 throws java.rmi.RemoteException
 { return input; }
}

Restrictions on RPC-Encoded Format and Data Binding
OracleAS Web Services does not support the combination of RPC-encoded message
formats and databinding=false. This combination is not considered a "best
practice" within the industry.

Document-Encoded Message Format is not Supported by OracleAS Web Services
Even though the combination of style="document" and use="encoded" is valid
according to the SOAP specification, it is not supported by any of the major Web
Services platforms, including OracleAS Web Services.

Document-Literal Bare Message Format is Limited to One Input Part
OracleAS Web Services supports only one part as input in the bare case. All other
input parameters must be mapped into SOAP header parts.

Serialization of BigDecimal Values May Introduce Rounding Errors
There are several constructors available for java.Math.BigDecimal. The
constructors can take the following types of input.

■ a double-precision floating point

■ an integer and a scale factor

■ a String representation of a decimal number

You should be careful when you use the BigDecimal(double) constructor. It can
allow rounding errors to enter into your calculations. Instead, use the integer or
String-based constructors.

For example, consider the following statements which take the value 123.45.

...
double d = 1234.45;

Assembling Web Services from a WSDL

E-4 Advanced Web Services Developer's Guide

System.out.println(d);
System.out.println(new BigDecimal(d));
...

These statements produce the following output. The second value might not be the
value you expected.

1234.45
1234.450000000000045474735088646411895751953125

Assembling Web Services from a WSDL

Restrictions on Using Document Literal Message Formats
If you attempt to assemble a Web service top down that uses a document-literal
message format, WebServicesAssembler will return a warning if it detects two or more
operations in the WSDL that use the same input message. This is because the OC4J
runtime will not be able to distinguish which method is being invoked.

For example, the following WSDL fragment will cause WebServicesAssembler to
return a warning. The fragment defines the addRelationship and
addRelationship3 operations. Each of these operations use the
addRelationshipRequest input message.

...
<operation name="addRelationship">
 <input name="addRelationship1Request"
message="tns:addRelationship1Request"/>
 <output name="addRelationship1Response"
message="tns:addRelationship1Response"/>
 </operation>
 <operation name="addRelationship3">
 <input name="addRelationship1Request"
message="tns:addRelationship1Request"/>
 <output name="addRelationship1Response"
message="tns:addRelationship1Response"/>
 </operation>
...

If you were to invoke the addRelationship operation from your client, then
depending on the order in which the operations appear in your implementation class,
either addRelationship or addRelationship3 would be invoked.

Assembling Web Services from Java Classes

Limitations on Stateful Web Services
The support that OracleAS Web Services offers for stateful Web services is limited to
services based on Java classes. These services contain Oracle-proprietary extensions
and you should not consider them to be interoperable unless the service provider
makes scopes with the same semantics available.

The support that OracleAS Web Services offers for stateful Web services is
HTTP-based. Stateful Web services will work only for SOAP/HTTP endpoints and
will not work for SOAP/JMS endpoints.

Developing Web Services From Database Resources

Troubleshooting E-5

Assembling Web Services from Java Classes—Differences Between Releases
10.1.3 and 10.1.2
Note the following differences between Oracle Web Services release 10.1.2 (and earlier)
and release 10.1.3.

■ In release 10.1.2 there was no requirement to extend RemoteInterface or for
methods to throw RemoteException. This is now required in release 10.1.3.

■ In release 10.1.2 it was possible to publish a class by itself without providing an
interface. In release 10.1.3 you must provide an interface to publish a class.

Assembling Web Services From EJBs

Setting the Transaction Demarcation for EJBs
An EJB exposed as a Web service should not have TX_REQUIRED or TX_MANDATORY
set as its transaction demarcation.

Assembling Web Services with JMS Destinations

Supported Types for Message Payloads
For JMS endpoint Web services, OracleAS Web Services supports only instances of
java.lang.String or javax.xml.soap.SOAPElement as the payload of JMS
messages.

JMS Properties in the SOAP Message Header
Only a limited number of JMS properties can be transmitted by the SOAP header. If
the value of the genJmsPropertyHeader argument is true (default), then the
following JMS properties can be transmitted by the SOAP header.

■ message-ID

■ correlation-ID

■ the reply-to-destination, including its name, type, and factory

Developing Web Services From Database Resources

Datatype Restrictions
■ Streams are not supported in Oracle Streams AQ Web services.

■ SQL Type SYS.ANYDATA is not supported in PL/SQL Web services.

■ REF CURSOR as a parameter is not supported in PL/SQL Web services.

■ REF CURSOR returned as Oracle WebRowSet and XDB RowSet does not support
complex types in the result.

■ Due to a limitation in JDBC, PL/SQL stored procedures do not support the
following SQL types as OUT or INOUT parameters.

– char types, including char, character, and nchar

– long types including long and long raw

Assembling Web Services with Annotations

E-6 Advanced Web Services Developer's Guide

Differences Between Database Web Services for 10.1.3 and Earlier Releases
A Web service client written for a database Web service generated under release 9.0.4
or 10.1.2, will fail if you try to use it against a database Web service generated bottom
up under release 10.1.3. This will be true even if the PL/SQL structures have remained
the same.

One of the reasons for this is that the SQL collection type was mapped into a complex
type with a single array property in releases 9.0.4 and 10.1.2. In release 10.1.3, it is
mapped directly into array instead.

If you regenerate the Web service client, you will have to rewrite the client code. This
is because the regenerated code will now be employing an array[] instead of a
BeanWrappingArray.

Assembling Web Services with Annotations

Web Service Metadata Features that are Not Supported
There are parts of the Web Services Metadata for the Java Platform specification that
OracleAS Web Services does not support. For example, OracleAS Web Services does
not support the "Start With WSDL" or "Start With WSDL and Java" modes defined in
sections 2.2.2 and 2.2.3 of the "Java Architecture for XML Binding" (JAXB)
specification. OracleAS Web Services supports only the "Start With Java" mode.

If you use the assemble or the genWsdl WebServicesAssembler commands to
generate a WSDL to use with J2SE 5.0 Web Service annotations, you must specify them
differently than if you were using them to process files that do not contain annotations.
See the "assemble" and "genWsdl" sections of the "Using WebServicesAssembler"
chapter in the Oracle Application Server Web Services Developer's Guide for more
information on using these commands to generate WSDLs for use with J2SE 5.0 Web
Service annotations.

Assembling REST Web Services

Restrictions on REST Web Services Support
The following list describes the limitations in OracleAS Web Services support for REST
Web Services.

■ REST support is available only for Web service applications with literal operations
(both request and response should be literal).

■ HTTP GET is supported only for Web service operations without (required)
complex parameters.

■ Some browsers limit the size of the HTTP GET URL. Try to keep the size of the
URL small by using a limited number of parameters and short parameter values.

■ REST Web services send only simple XML messages. You cannot send messages
with attachments.

■ Many management features, such as security and reliability, are not available with
REST Web services. This is because SOAP headers, which are typically used to
carry this information, cannot be used with REST invocations of services.

■ REST invocations cannot be made from generated Stubs or DII clients. Invocations
from those clients will be made in SOAP.

■ There is no REST support for the Provider framework.

Processing SOAP Headers

Troubleshooting E-7

■ Operation names in REST cannot contain multibyte characters.

■ REST services cannot be managed through Application Server Control.

Testing Web Service Deployment
The Web Service Home Page has the following limitations:

■ The Web Service Home Page offers only basic support for WS-Security. The editors
can enter only a username and password into the SOAP envelope. To enter any
other complex or advanced WS-Security features, such as encryption and signing,
in the SOAP request, you must edit the request directly in the Invocation Page.

■ The Web Service Home Page does not allow you to upload attachments.

■ You cannot invoke WSIF services using the test page.

■ WSDL files that contain proprietary extensions may not work properly in the Web
Service Home Page. For example, services that use JMS as a transport cannot be
tested by using the Home Page.

Assembling a J2EE Web Service Client

Client Applications and Thread Usage
If the client application creates its own threads for its processing (for example, if it
enables an asynchronous call using a separate thread), the application server must be
started with the -userThreads option.

java -jar oc4j.jar -userThreads

The -userThreads option enables context lookup and class loading support from
user-created threads.

Understanding JAX-RPC Handlers
WebServicesAssembler provides Ant tasks that let you configure JAX-RPC message
handlers. Handlers cannot be configured by using the WebServicesAssembler
command line.

Processing SOAP Headers

Strong Typing and the ServiceLifecycle Interface
Although the ServiceLifecycle interface enables you to access SOAP header
blocks that may not have been declared in the WSDL file, the blocks are not strongly
typed. You may also need to know the XML structure of a SOAP header in order to
process it. For strong typing of SOAP header blocks, make sure that the
mapHeadersToParameters argument for WebServicesAssembler is set to true
(true is the default value). This is only possible if the SOAP header has been declared
in the WSDL file and the type of the SOAP header is a supported JAX-RPC type.

Using WebServicesAssembler

E-8 Advanced Web Services Developer's Guide

Using WebServicesAssembler

Long file names cause deployment to fail
If the combined length of the generated file and directory names passes a certain size
limit, then deployment will fail and throw an error. This size limit varies for different
operating systems. For example, on the Windows operating system, the size limit is
255 characters

The length of the names is controlled by WebServicesAssembler and the deployment
code. WebServicesAssembler generates file names based on the method name in the
Java class or the operation name in the WSDL. The deployment code creates
directories for code generation based on the names of the EAR and the WAR files.

To avoid the generation of file and directory names that are too long, limit the number
of characters in the following names to a reasonable length.

■ method names in Java classes

■ operation names in the WSDL

■ directory name for the location of the OC4J installation

■ file name for a WAR file

■ file name for a EAR file

You can also avoid this problem by upgrading to a more recent version of the J2SE 5.0
JDK (jdk-1_5_0_06 or later).

Getting More Information on WebServicesAssembler Errors
You can get detailed diagnostic information on errors returned by
WebServicesAssembler by including the debug argument in the command line or Ant
task. For more information on this argument, see the "debug" section of the "Using
WebServicesAssembler" chapter in the Oracle Application Server Web Services Developer's
Guide.

WebServicesAssembler Cannot Compile Files
If WebServicesAssembler cannot compile files successfully, it will return the error:

java? java.io.IOException: CreateProcess: javac -encoding UTF-8 -classpath

The javac compiler must be available so that WebServicesAssembler can compile
your Java files. Make sure that JAVA_HOME/bin is in your path.

WebServicesAssembler Cannot Find Required Classes
You may need to use some classes that are common to all J2EE 1.4 applications. All
standard J2EE 1.4 classes and Oracle database classes are included automatically.
When using Ant tasks, WebServicesAssembler must search for the JARs that contain
these classes.

A WebServicesAssembler Ant task tries to load these extra classes by searching for
wsa.jar. The task searches for the following Ant properties or environment variables
in the following order. If the task does not find wsa.jar, or if a property is not
defined, it searches the next property.

1. oc4j.home—an Ant property that specifies the root installation directory for
OC4J. This property can be used instead of an environment variable.

2. OC4J_HOME—an environment variable that specifies the root installation directory
for OC4J.

Working with Message Attachments

Troubleshooting E-9

3. oracle.home—an Ant property that specifies the root installation directory for
Oracle products. This property can be used instead of an environment variable.

4. ORACLE_HOME—an environment variable that specifies the root installation
directory for Oracle products.

When the Ant task finds wsa.jar, it loads all of the classes listed in its manifest file,
relative to the location of wsa.jar.

Packaging and Deploying Web Services

Packaging for J2EE Clients
The current tool set cannot package J2EE Web service clients. You must package the
client manually. "Packaging a J2EE Client" in the Oracle Application Server Web Services
Developer's Guide provides more information on how to package a J2EE Web service
client.

Getting the Correct Endpoint Address when the WSDL Has More than One HTTP
Port
If a you want to enter values for the <web-site> or <wsdl-publish-location>
elements in oracle-webservices.xml, then the returned WSDL may not have the
correct endpoint addresses if the WSDL has more than one HTTP port.

The WebServicesAssembler tool does not insert the <web-site> or
<wsdl-publish-location> elements into the oracle-webservices.xml file
that it creates. You must insert these elements manually.

Ensuring Interoperable Web Services

Leading Underscores in WebServicesAssembler Generated Names
The default behavior of the WebServicesAssembler tool is to generate namespaces
from the Java package name. If the Java package name begins with a leading
underscore ("_"), then the generated namespace URI will contain an underscore. Some
versions of the .NET WSDL tool may not be able to consume these namespaces, even
though the generated namespace is valid.

To work around this .NET issue, use the WebServicesAssembler arguments
targetNamespace and/or mappingFileName to avoid the default package-derived
namespace.

Working with Message Attachments

Adding Faults with swaRef Attachments to a Web Service
In OracleAS Web Services, you can add only swaRef MIME type attachments to
SOAP fault messages. It does not support the adding of SWA type attachments.

Faults with attachments can be added to a Web service only when you are assembling
it from a WSDL (top down). They cannot be added when assembling a Web service
bottom up.

Managing Web Services

E-10 Advanced Web Services Developer's Guide

Supported Message Formats for Attachments
Only RPC-literal and document-literal Web services are supported by the WS-I
Attachments Profile 1.0. Thus, only those types of services can use swaRef MIME
type.

WebServicesAssembler will not be able to assemble a Web service that can pass
swaRef MIME attachments if you specify an RPC-encoded message format. To
assemble the service, you must select a different format.

Managing Web Services

Limitations on Application Server Control
Application Server Control cannot modify everything that can be expressed in the
wsmgmt.xml file. For example, it cannot be used to change parts of the reliability
configuration.

Ensuring Web Service Reliability

Reliability Limitations for OracleAS Web Services
■ The reliability process on the client lives only as long as the client process. If the

client process becomes permanently unavailable, then any messages that needed
to be retried will be ignored.

■ Asynchronous polling capabilities can be enabled only at the port level and only
by using a configuration.

Auditing and Logging Messages

Limitations on xpath Queries
An xpath query must return a primitive type. This means that the query must return
the context of text nodes or attribute values.

The primitive type that the xpath query returns should have a small number of
characters. For example, it should not exceed 120 characters.

Custom Serialization of Java Value Types
This section describes limitations on the custom serialization of non-standard data
types.

Literal Use
This release supports only literal as the use part of the message format. This includes
RPC-literal and document-literal. RPC-encoded is not supported in this release.

Object Graph
Because RPC-encoded is not supported in this release, the initial support of
serialization and deserialization does not allow object graph marshalling using href.
If a Java Object has multiple references either in the parameters of a request or in the
return value of a response, then serialization and deserialization might not preserve
the object graph.

Using the Web Service Invocation Framework

Troubleshooting E-11

WSDL- and Service-Level Configuration
SoapElementSerializer is configured for each Service or for each WSDL. For
example, a SoapElementSerializer implementation representing the mapping of
dateTime to oracle.sql.DATE can be configured to replace the default mapping of
dateTime to java.util.Calendar. Under this configuration, every instance of the
mapping is replaced. Configuration for each operation or message level is not
supported in this release.

Sub Tree Serialization
Each custom serializer gets the full XML sub-tree, and performs the serialization and
deserialization of the entire XML element object model. For example, assume you have
two custom serializers developed and configured for two top-level complexTypes,
TypeA and TypeB. TypeA has a sub-element of TypeB. Even though a custom
serializer has been configured for TypeB, this custom serializer cannot be
automatically invoked by the OC4J runtime when the sub-element of TypeB is
serialized inside the custom serializer for TypeA. The custom serializer of TypeA must
handle the sub-element of TypeB by itself. The custom serializer of TypeA can, in turn,
call the custom serializer of TypeB, but it is up to the implementation strategy.

Document-Literal Wrapper
Assume that a a custom serializer is used to handle a global complexType that is
referred by a global element to define the single part of a document-literal operation. If
you use the unwrapParameters argument to unwrap the return type and response
type, it will be ignored for the operation(s) that use the global element as the body part
of the input message.

Using JMS as a Web Service Transport

Interoperability of Messages when using JMS as a Transport Mechanism
The WSDL extensions that enable JMS as a transport mechanism are
Oracle-proprietary. The messages produced by the Web service may not be
interoperable with applications or services provided by other vendors.

Retrieving Client Responses from JMS Web Service Transport
If the client process becomes unavailable without receiving its response and later
returns, there is no facility provided for it to retrieve its old responses from the queue.

Using the Web Service Invocation Framework
This section describes limitations in the OracleAS Web Services support for the Web
Services Invocation Framework (WSIF).

■ Database WSIF can pass only the data source, not the JDBC connection, to the
provider for database access.

■ Database WSIF is stateless. Each operation obtains a JDBC connection when it
begins and closes it when it ends. Autocommit is always on for the JDBC
connection. It is recommended that you use connection pooling when setting up
data sources to reduce database overhead.

■ Oracle's Application Server Control Web Services Management and Monitoring
can only directly monitor SOAP services; it cannot monitor any service
interactions that utilize WSIF bindings, such as Java, EJB, or database WSIF
bindings. By bypassing the SOAP protocol entirely, you are also bypassing the

Using Dynamic Invocation Interface to Invoke Web Services

E-12 Advanced Web Services Developer's Guide

management infrastructure for Web services provided by Oracle Application
Server Control.

Using Dynamic Invocation Interface to Invoke Web Services
To invoke a Web service by using the Dynamic Invocation Interface (DII) requires a
number of steps. At each step, you typically have to make some choices. The examples
at the end of this section display choices made at each of the steps.

Using DII to invoke a Web Service consists of the following general steps:

1. Create the call object.

2. Register parameters.

3. Invoke the Web service.

You can create the call object either with or without a WSDL. If you do not have a
WSDL, or decide not to use the WSDL for creating the call dynamically, then follow
the steps under "Basic Calls". If you do have a WSDL to construct the call, then follow
the instructions under "Configured Calls".

Basic Calls
For a basic call, the call object is created dynamically without a WSDL. The following
steps provide more information on how to construct a basic call.

1. You are constructing a call object dynamically, without a WSDL. For examples, see:

■ Example E–1, "Basic Call with parameter registration and Java bindings"

■ Example E–4, "Basic Call with SOAPElement, but without parameter
registration"

■ Example E–6, "Basic Call with document-literal invocation and SOAPElement,
but without parameter registration"

2. Register parameters.

■ Case 1: You are constructing the SOAP request yourself as a SOAPElement,
and are receiving the response as a SOAPElement. In this case, you do not
have to register parameters or return types. For examples of this case, see:

– Example E–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example E–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: You are explicitly registering the parameters and returns (parts) that
are being used in the Web service invocation in your Basic Call, including the
part name, the XML and Java type names, and the parameter mode. In this
case, you can furnish the individual parameters as Java object instances. For
an example of this case, see:

– Example E–1, "Basic Call with parameter registration and Java bindings"

3. Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

■ Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting E-13

to the invoke() method. Note that this invocation employs the public,
Oracle-specific API from OracleCall. For examples of this case, see:

– Example E–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example E–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in
the invoke() method and cast the return object to the anticipated return
type. For examples of this case, see:

– Example E–1, "Basic Call with parameter registration and Java bindings"

– Example E–2, "Configured Call with Java bindings, but without parameter
registration"

– Example E–3, "Configured Call with registration of wrapper parameters
and Java bindings"

– Example E–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example E–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Configured Calls
For a configured call, the call object is constructed from a WSDL. The following steps
provide more information on how to construct a configured call.

1. Provide the WSDL for constructing the call object. For examples, see:

■ Example E–2, "Configured Call with Java bindings, but without parameter
registration"

■ Example E–3, "Configured Call with registration of wrapper parameters and
Java bindings"

■ Example E–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

■ Example E–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

2. Register parameters. For a Configured Call, you must register parameters for the
following cases:

■ Case 1: You are employing a complex or other type that is not being mapped
to a primitive Java type (or an Object variant of a primitive Java type). For
examples of this case, see:

– Example E–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example E–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings".

■ Case 2: You are using a document-literal wrapped style and do not want to
create a SOAPElement like the ones illustrated in Example E–4 and
Example E–6 for Basic Call. In this case, the name of the parameter must be the
QName of the wrapper. For an example of this case, see:

Using Dynamic Invocation Interface to Invoke Web Services

E-14 Advanced Web Services Developer's Guide

– Example E–3, "Configured Call with registration of wrapper parameters
and Java bindings"

■ Case 3: If Case 1 and Case 2 do not apply, then you do not have to register
parameters or returns. For an example of this case, see:

– Example E–2, "Configured Call with Java bindings, but without parameter
registration"

3. Invoke the Web service. You can invoke the Web service either by using
SOAPElement or by Java bindings.

■ Case 1: Using SOAPElement. If you are using a document-literal invocation,
then you will typically construct a SOAPElement for your message and pass it
to the invoke() method. Note that this invocation employs the public,
Oracle-specific API from OracleCall. For examples of this case, see:

– Example E–4, "Basic Call with SOAPElement, but without parameter
registration"

– Example E–6, "Basic Call with document-literal invocation and
SOAPElement, but without parameter registration"

■ Case 2: Using Java bindings. If you are using an RPC-literal or RPC-encoded
invocation, then you will typically supply an array containing Java objects in
the invoke() method and cast the return object to the anticipated return
type. For examples of this case, see:

– Example E–1, "Basic Call with parameter registration and Java bindings"

– Example E–2, "Configured Call with Java bindings, but without parameter
registration"

– Example E–3, "Configured Call with registration of wrapper parameters
and Java bindings"

– Example E–5, "Configured Call with a WSDL, complex return parameter
registration, and Java bindings"

– Example E–7, "Configured Call with RPC-encoded invocation, complex
parameter registration, and Java bindings"

Examples of Web Service Clients that use DII
This section provides a variety of client examples that use basic calls or configured
calls to invoke a Web service.

The following code snippet illustrates an import statement that can be used by the
following code examples.

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPElement;
import java.net.URL;
import oracle.webservices.OracleCall;
import oracle.xml.parser.v2.XMLElement;

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting E-15

Example E–1 Basic Call with parameter registration and Java bindings

// (1) Creation of call object without WSDL.
String endpoint = "http://localhost:8888/echo/DiiDocEchoService";
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();

// (2) Configuration of call and registration of parameters.
call.setTargetEndpointAddress(endpoint);
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/");
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");
QName QNAME_TYPE_STRING = new QName("http://www.w3.org/2001/XMLSchema", "string");
call.addParameter("s", QNAME_TYPE_STRING, ParameterMode.IN);
call.setReturnType(QNAME_TYPE_STRING);

// (3) Invocation.
System.out.println("Response is " + call.invoke(new Object[]{"hello"}));

Example E–2 Configured Call with Java bindings, but without parameter registration

/// (1) Creation of call object using WSDL.
String namespace = "http://www.xmethods.net/sd/CurrencyExchangeService.wsdl";
URL wsdl=new URL(namespace);
ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName(namespace, "CurrencyExchangeService");
Service service = factory.createService(wsdl, serviceName);
QName portName = new QName(namespace, "CurrencyExchangePort");
Call call = service.createCall(portName);

// (2) Registration of parameters.
// -> taken from the WSDL

// (3) Configuration of operation and invocation.
QName operationName = new QName("urn:xmethods-CurrencyExchange", "getRate");
call.setOperationName(operationName);
Float rate = (Float) call.invoke(new Object[]{"usa", "canada"});
System.out.println("getRate: " + rate);

Example E–3 Configured Call with registration of wrapper parameters and Java bindings

// (1) Creation of call object using WSDL.
String namespace = "http://server.hello/jaxws";
ServiceFactory factory = ServiceFactory.newInstance();
QName serviceName = new QName(namespace, "HelloImplService");
URL wsdl=new URL(namespace+"?WSDL");
Service service = factory.createService(wsdl, serviceName);
QName portName = new QName(namespace, "HelloImpl");
Call call = service.createCall(portName);

// (2) Registration of SayHello and SayHelloResponse wrapper classes
// These must be available in the classpath.
String TYPE_NAMESPACE_VALUE = "http://server.hello/jaxws";
QName reqQname = new QName(TYPE_NAMESPACE_VALUE,"sayHelloElement");

Using Dynamic Invocation Interface to Invoke Web Services

E-16 Advanced Web Services Developer's Guide

QName respQName = new QName(TYPE_NAMESPACE_VALUE,"sayHelloResponseElement");
call.addParameter("name", reqQname, SayHello.class, ParameterMode.IN);
call.setReturnType(respQName, SayHelloResponse.class);

// (3) Invocation
SayHello input = new SayHello("Duke");
Object[] params = new Object[] { input };
SayHelloResponse result = (SayHelloResponse) call.invoke(params);
String response = result.getResult();

Example E–4 Basic Call with SOAPElement, but without parameter registration

// (1) Creation of call object without WSDL
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
Call call = service.createCall();
call.setTargetEndpointAddress("http://localhost:8888/echo/DiiDocEchoService");

// (2) No registration of parameters

// (3a) Direct creation of payload as SOAPElement
SOAPFactory soapfactory = SOAPFactory.newInstance();
SOAPElement m1 = soapfactory.createElement("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",
"http://echo.demo.oracle/");
m2.addTextNode("Bob");
m1.addChildElement(m2);
System.out.println("Request is: ");
((XMLElement) m1).print(System.out);

// (3b) Invocation
SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke(m1);
System.out.println("Response is: ");
((XMLElement) resp).print(System.out);

Example E–5 Configured Call with a WSDL, complex return parameter registration, and
Java bindings

// (0) Preparing a complex argument value
Integer req_I = new Integer(Integer.MAX_VALUE);
String req_s = "testDocLitBindingAnonymAll & <body>";
Integer req_inner_I = new Integer(Integer.MIN_VALUE);
String req_inner_s = "<inner> & <body>";
int[] req_inner_i = {0,Integer.MAX_VALUE, Integer.MIN_VALUE};
InnerSequence req_inner = new InnerSequence();
req_inner.setVarInteger(req_inner_I);
req_inner.setVarString (req_inner_s);
req_inner.setVarInt (req_inner_i);
EchoAnonymAllElement req = new EchoAnonymAllElement();
req.setVarInteger (req_I);
req.setVarString (req_s);
req.setInnerSequence(req_inner);

// (1) Creation of call object using the WSDL

Using Dynamic Invocation Interface to Invoke Web Services

Troubleshooting E-17

String TARGET_NS = "http://soapinterop.org/DocLitBinding";
String TYPE_NS = "http://soapinterop.org/xsd";
String XSD_NS = "http://www.w3.org/2001/XMLSchema";
QName SERVICE_NAME = new QName(TARGET_NS, "DocLitBindingService");
QName PORT_NAME = new QName(TARGET_NS, "DocLitBindingPort");
String wsdlUrl = "http://"+getProperty("HOST")+
 ":"+getProperty("HTTP_PORT")+
 "/doclit_binding/doclit_binding";

QName operation = new QName(TARGET_NS, "echoAnonymAll");
ServiceFactory factory = ServiceFactory.newInstance();
Service srv = factory.createService(new URL(wsdlUrl + "?WSDL"), SERVICE_NAME);
Call call = srv.createCall(PORT_NAME, operation);

// (2) Registration of complex return parameter
call.setReturnType(new QName(TYPE_NS, "EchoAnonymAllElement"),
EchoAnonymAllElement.class);

// (3) Invocation
EchoAnonymAllElement res = (EchoAnonymAllElement) call.invoke(new Object[]{req}
);
System.out.println("AnonymAll body : " +res.getVarString());
System.out.println("AnonymAll inner : " +res.getInnerSequence());

Example E–6 Basic Call with document-literal invocation and SOAPElement, but without
parameter registration

// (1) Creation of Basic Call
ServiceFactory sf = ServiceFactory.newInstance();
Service service = sf.createService(new QName("http://echo.demo.oracle/", "tns"));
String endpoint="http://localhost:8888/test/echo";
Call call = service.createCall();
call.setTargetEndpointAddress(endpoint);

// (2) No parameter registration

// (3) Invocation using SOAPElement
SOAPFactory soapfactory = SOAPFactory.newInstance();
SOAPElement m1 = soapfactory.createElement("echoStringElement", "tns",
"http://echo.demo.oracle/");
SOAPElement m2 = soapfactory.createElement("s", "tns",
"http://echo.demo.oracle/");
m2.addTextNode("Bob");
m1.addChildElement(m2);
System.out.println("Request is: ");
((XMLElement) m1).print(System.out);
SOAPElement resp = (SOAPElement) ((OracleCall) call).invoke(m1);
System.out.println("Response is: ");
((XMLElement) resp).print(System.out);

Example E–7 Configured Call with RPC-encoded invocation, complex parameter
registration, and Java bindings

// (1) Creation of ConfiguredCall using WSDL
ServiceFactory sf = ServiceFactory.newInstance();
String endpoint="http://localhost:8888/test/echo";

Using Dynamic Invocation Interface to Invoke Web Services

E-18 Advanced Web Services Developer's Guide

Service service = sf.createService(new java.net.URL(endpoint + "?WSDL"), new
QName("http://echo.demo.oracle/", "DiiRpcEchoService"));
Call call = service.createCall(new QName("http://echo.demo.oracle/",
"HttpSoap11"), new QName("http://echo.demo.oracle/", "echoStrings"));
call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,
"http://schemas.xmlsoap.org/soap/encoding/");
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");

// (2) Registration of complex input and return arguments
QName stringArray = new QName("http://echo.demo.oracle/", "stringArray");
call.addParameter("s", stringArray, String[].class, ParameterMode.IN);
call.setReturnType(stringArray, String[].class);

// (3) Invocation
String[] request = new String[]{"bugs", "little pieces", "candy"};
String[] resp = (String[]) call.invoke(new Object[]{request});
System.out.println("Response is: ");
for (int i = 0; i < resp.length; i++) {
 System.out.print(resp[i] + " ");
}
System.out.println();

Third Party Licenses F-1

F
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server Web Services Security.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

Apache

F-2 Advanced Web Services Developer's Guide

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Apache

Third Party Licenses F-3

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,

Apache

F-4 Advanced Web Services Developer's Guide

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

Apache

Third Party Licenses F-5

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

Apache SOAP

F-6 Advanced Web Services Developer's Guide

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

Apache SOAP

Third Party Licenses F-7

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses

Apache SOAP

F-8 Advanced Web Services Developer's Guide

 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,

Jaxen

Third Party Licenses F-9

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

JSR 110
This program contains third-party code from IBM Corporation ("IBM"). Under the
terms of the IBM license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the IBM software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the IBM software is provided
by Oracle "AS IS" and without warranty or support of any kind from Oracle or IBM.

Copyright IBM Corporation 2003 – All rights reserved

Java APIs for the WSDL specification are available at:
http://www-124.ibm.com/developerworks/projects/wsdl4j/

Jaxen
This program contains third-party code from the Apache Software Foundation
("Apache") and from the Jaxen Project ("Jaxen"). Under the terms of the Apache and
Jaxen licenses, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Apache and Jaxen software, and the terms
contained in the following notices do not change those rights.

SAXPath

F-10 Advanced Web Services Developer's Guide

The Jaxen License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "Jaxen" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jaxen.org.

Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

SAXPath
This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

W3C DOM

Third Party Licenses F-11

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "SAXPath" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@saxpath.org.

Products derived from this software may not be called "SAXPath", nor may "SAXPath"
appear in their name, without prior written permission from the SAXPath Project
Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made
by many individuals on behalf of the SAXPath Project and was originally created by
bob mcwhirter and James Strachan . For more information on the SAXPath Project,
please see http://www.saxpath.org/.

W3C DOM
This program contains third-party code from the World Wide Web Consortium
("W3C"). Under the terms of the W3C license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the W3C
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the W3C
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or W3C.

The W3C License
W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby

W3C DOM

F-12 Advanced Web Services Developer's Guide

granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.
Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed
or derivative code.
Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is
derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission.
Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Index-1

Index

Symbols
<auditing> element, 6-3, 6-4
<call-property> element, 3-10, 9-23
<dime:message> WSDL extension, 2-22
<expose-testpage> element, 10-7
<expose-wsdl> element, 10-7
<fault> element, logging, 6-8
<implementation-class> element, 10-7
<load-on-startup> element, C-4
<logging> element, A-2
<max-request-size> element, 10-7
<name> element, 9-23
<namespace> element, logging, 6-7
<namespaceURI> element, B-3
<operation> element, 6-4, 10-8, A-3
<operations> element, 3-5, 9-23, 10-8, A-3
<package-mapping> element, B-3
<package-type> element, B-3, B-4
<policy> element, 10-8
<port> element, 3-5, 9-4, A-2, A-3
<port-component> element, 3-5
<port-info> element, 3-13, 6-4
<property> element, 10-7, 10-8
<provider-description> element, 10-6, 10-7
<provider-description-name> element, 10-7
<provider-name> element, 10-7
<provider-port> element, 10-7
<reliability> element, A-2
<request> element, logging, 6-8
<response> element, logging, 6-8
<runtime> element, 3-5, 9-23, 10-8, A-1
<security> element, A-1
<service-endpoint-interface> element, 9-23
<service-endpoint-method-mapping> element, B-4
<service-ref> element, 3-13
<service-ref-mapping> element, 3-8, 3-13, 6-4
<service-ref-name> element, 3-13
<servlet> element, 10-5, 10-8
<servlet-class> element, 10-5, 10-8, 10-9
<servlet-link> element, 10-7
<servlet-mapping> element, 10-8
<soap-header> element, B-5
<stream-attachments> WSDL extension, 2-19
<stub-property> element, 3-11, 9-23
<url-pattern> element, 10-5, 10-8, 10-9

<value> element, 9-23
<wrapped-element> element, B-4
<wsdl-file> element, 10-7
<wsdl-message-mapping> element, B-5
<wsdl-port> element, 9-22, 10-7
<wsdl-service-name> element, 10-7

A
annotations

J2SE 5.0 Web Services Annotations
limitations, E-6

Apache software
license, F-2

APIs
Provider API, 10-1
streaming attachment, 2-16
WSIF, 9-17

app, attribute for <port> element, A-3
application clients, static

configuring management information, 3-15
Application Server Control

configuring server side management
information, 3-5

support for auditing, 6-14
support for logging, 6-14
support for Web service management, 3-16
support for Web Service Providers, 10-11

aqAssemble command, 9-12, 9-14, 9-15
assemble command, 9-3, 9-4, 9-5
Attachment interface, 2-21
AttachmentFactory class, 2-21
AttachmentFault interface, 2-13
AttachmentPart API

creating a new instance, 2-6
attachments

adding to WSIF clients, 9-23
with OracleCall API, 9-24

Attachments API, 2-19
Attachments interface, 2-20
audit file location, 6-3
audit messages

processing, 6-2
sample, 6-2

auditing
adding to a J2EE client, 6-12

Index-2

adding to a J2SE client proxy, 6-11
adding to a Web service bottom up, 6-9
adding to a Web service top down, 6-11
Application Server Control support, 6-14
audit file location, 6-3
client-side management, 6-4
defined, 6-1
fault messages, 6-3
JDeveloper support, 6-14
operation-level client-side elements, 6-4
operation-level server-side elements, 6-3
performance impacts, 6-1
request messages, 6-2
response messages, 6-2
server-side management, 6-3
WebServicesAssembler support, 6-9

B
bottom up Web service assembly

streaming attachments, 2-16
swaRef MIME attachments, 2-7

C
capability assertions, 3-18

assembling into a Web service, 3-19
classLoader

attribute for wsifJavaPort argument, 9-4
className

attribute for wsifDbBinding argument, 9-12
attribute for wsifEjbPort argument, 9-8
attribute for wsifJavaPort argument, 9-4

classPath
attribute for wsifJavaPort argument, 9-4

client
SOAP faults with swaRef attachments, 2-14

clients
thread usage, E-7

compliance testing tool for interoperability, 1-4
correlation-ID

JMS message property, E-5

D
data binding extensions and interoperability

issues, 1-7
data flow

in a J2EE client, 3-8
in a J2SE client, 3-6

data type design and interoperability, 1-3
data types and interoperability, 1-3
database

accessing with a WSIF client, 9-20
database resources

limitations on exposing as a Web service, E-5
WSDL extensions for WSIF, 9-16

dataSource
attribute for wsifDbBinding argument, 9-12

dbConnection
attribute for wsifDbBinding argument, 9-12

dbJavaAssemble command, 9-12, 9-14, 9-15
dbUser

attribute for wsifDbBinding argument, 9-12
deployment

Provider Web application, 10-11
testing a Provider Web application

deployment, 10-11
DII client

configuring management information
dynamically, 3-10

DIME encoded attachments, 2-21
interoperable, 2-21
Oracle-proprietary, 2-23
WSDL extensions, 2-22

document-literal operations
wrapping and unwrapping the mapping, B-4

E
EJB clients, static

configuring management information, 3-14
EJB port

configuring a WSIF endpoint, 9-7, 9-10
ejbAssemble command, 9-7, 9-8, 9-10
EJBs

WSDL extensions for WSIF, 9-10

F
fault attribute, auditing, 6-3, 6-4
fault messages

auditing, 6-3
logging, 6-6

G
genInterface command, 9-20
genJmsPropertyHeader argument, E-5
genWsdl command, 9-3, 9-4, 9-5, 9-7, 9-8, 9-10, 9-12,

9-14, 9-15
global level Web service management, A-1

H
header processing

limitations, E-7

I
IncomingAttachments Interface, 2-20
initialContextFactory

attribute for wsifEjbPort argument, 9-8
INOUT parameter

limitations on SQL types, E-5
interoperability

compliance testing tool, 1-4
data type design, 1-3
data types, 1-3
defined, 1-1
diagnosing issues, 1-4
DIME encoded attachments, 2-21

Index-3

public organizations, 1-2
RPC-encoded message format, 1-4
using null values, 1-4
using platform native types, 1-4
Web service design, 1-3

interoperability issues
diagnosing and solving, 1-4
illegal XML characters, 1-9
invalid WSDLs, 1-6
proprietary data binding extensions, 1-7
SOAPAction values, 1-10
using null values, 1-13

interoperable Web Services, guidelines, 1-3

J
J2EE client

adding auditing, 6-12
configuring management information

with JDeveloper, 3-9
with WebServicesAssembler, 3-9

configuring management information
dynamically, 3-12

configuring managment information, 3-8
management data flow, 3-8

J2EE clients
for Provider Web applications, 10-11

J2EE components, Oracle-proprietary deployment
descriptors, and standard J2EE deployment
descriptors, 3-13

J2SE client
adding auditing, 6-11
configuring management information

with JDeveloper, 3-7
with WebServicesAssembler, 3-7

configuring managment information, 3-7
management data flow, 3-6

J2SE clients
for Provider Web applications, 10-11

Java classes
configuring a WSIF endpoint, 9-3
WSDL extensions for WSIF, 9-6

Java mappings
changing via the JAX-RPC mapping file, B-3

Java method parameters, mapping to SOAP
headers, B-5

Java port
configuring a WSIF endpoint, 9-3, 9-5

JAX-RPC mapping file, B-1
creating, B-1
document-literal operations

wrapping and unwrapping mapping, B-4
mapping SOAP headers and Java method

parameters, B-5
naming conventions, B-2
using to change namespace to Java

mappings, B-3
using to change the names of Java artifacts, B-3
using to change the names of WSDL artifacts, B-3
using to customize the WSDL, B-2

using to generate code into a single package, B-3
JDeveloper

configuring J2EE client management
information, 3-9

configuring J2SE client management
information, 3-7

configuring server side management
information, 3-4

support for auditing, 6-14
support for logging, 6-14

JDeveloper support for WSIF, 9-24
JMS endpoint Web service

limitations, E-5
JMS message property

correlation-ID, E-5
message-ID, E-5
reply-to-destination, E-5

jndiName
attribute for wsifEjbPort argument, 9-8

jndiProviderURL
attribute for wsifEjbPort argument, 9-8

JSP clients, static
configuring management information, 3-14

L
levels of Web service management, A-1
life cycle for Web service management, 3-4
limitations

for Web service management, E-10
for WSIF, E-11
packaging, E-9

log file location, 6-6
log record, sample, 6-5
logging

adding to a Web service bottom up, 6-9
adding to a Web service top down, 6-11
Application Server Control support, 6-14
defined, 6-5
fault messages, 6-6
JDeveloper support, 6-14
log file location, 6-6
operation-level server-side elements, 6-7
performance impacts, 6-5
port-level server-side elements, 6-7
request messages, 6-6
response messages, 6-6

logging messages, processing, 6-5

M
management data flow for Web services, 3-2
management environment for Web services, 3-2
mapping

wrapping and unwrapping, B-4
mapping file, JAX-RPC, B-1
MBeans

described, C-1
initializing, C-4
naming components, C-2

Index-4

WebServiceOperation, C-2
WebServicePort, C-2
WSMHandlerGlobalConfig, C-3
WSMHandlerOperationConfig, C-3, C-4
WSMHandlerServiceConfig, C-3
WSMOperationConfig, C-3
WSMServiceConfig, C-3

message attachments
DIME encoded attachments, 2-21
MIME attachments, 2-1
streaming attachments, 2-15
SWA attachments, 2-8
swaRef MIME attachments, 2-2

message flow for Web service management, 3-2
message-ID

JMS message property, E-5
MIME attachments, 2-1

adding SOAP faults, 2-11

N
name

attribute for wsifDbPort argument, 9-12
attribute for wsifEjbPort argument, 9-9
attribute for wsifJavaPort argument, 9-4

namespace mappings
changing via the JAX-RPC mapping file, B-3

null values and interoperability, 1-13
null values, effects on interoperability, 1-4

O
operation level Web service management, A-3
oracle, 10-4
Oracle HTTP Server

third party licenses, F-1
OracleCall API, 9-24
oracle.j2ee.ws.server.provider.ProviderServlet

class, 10-4
extending, 10-5

Oracle-proprietary deployment descriptors, standard
J2EE deployment descriptors, and J2EE
components, 3-13

oracle-webservices-10_0.xsd schema, 10-4
oracle.webservices.attachments package, 2-16, 2-19
oracle-webservices-client-10_0.xsd schema, 3-6, 9-21
oracle.webservices.OracleCall API, 9-24
oracle.webservices.provider package, 10-1
oracle-webservices.xml

provider elements, 10-7
OUT parameter

limitations on SQL types, E-5
OutgoingAttachments interface, 2-20

P
packaging

limitations, E-9
Provider Web Application, 10-10

platform native types and interoperability, 1-4
plsqlAssemble command, 9-12, 9-14, 9-15

port level Web service management, A-2
port, attribute for <port> element, A-2
Provider

defined, 10-1
Provider API, 10-1

dynamically adding a managable service
endpoint, 10-3

dynamically removing a managable service
endpoint, 10-3

HTTPConstants class, 10-4
initializing a provider, 10-2
MessageContext class, 10-4
Provider interface, 10-2
ProviderConfig class, 10-3
removing a Provider instance, 10-3

provider package, 10-1
ProviderServlet class, 10-4

extending, 10-5
proxy Web service client

configuring management information
dynamically, 3-11

R
REF CURSOR parameter, E-5
reply-to-destination

JMS message property, E-5
request attribute, auditing, 6-3, 6-4
request messages

auditing, 6-2
logging, 6-6

response attribute, auditing, 6-3, 6-4
response messages

auditing, 6-2
logging, 6-6

RPC-encoded message format and
interoperability, 1-4

S
sample audit message, 6-2
sample log record, 6-5
security, Web services, 4-1
service endpoint interface

customizing, B-2
handling swaRef MIME attachments, 2-7
implementing with swaRef MIME

attachments, 2-5
service, attribute for <port> element, A-3
Servlet clients, static

configuring management information, 3-14
SOAP faults

adding to MIME attachments, 2-11
adding to swaRef MIME attachments in the

WSDL, 2-13
with swaRef attachments, 2-13
with swaRef attachments on the client, 2-14

SOAP headers
mapping to Java method parameters, B-5

soapAction attribute

Index-5

controlling the value in ŽNET, 1-12
controlling the value in OC4J, 1-11
described, 1-11

SOAPAction values and interoperability issues, 1-10
SOAPBuilders community, 1-2
sqlAssemble command, 9-12, 9-14, 9-15
standard J2EE deployment descriptors,

Oracle-proprietary deployment descriptors, and
J2EE components, 3-13

static clients
configuring management information, 3-12

static proxy Web service client
configuring management information

dynamically, 3-11
streaming attachments, 2-15

APIs, 2-16
bottom up Web service assembly, 2-16
limitations, 2-16
size recommendations, 2-15
supported format, 2-15
top down Web service assembly, 2-19
writing stub code, 2-18
WSDL extensions, 2-19

stub code
for streaming attachments, 2-18

SWA attachments, 2-8
top down Web service assembly, 2-9

swaRef attachments
throwing faults with, 2-13

swaRef MIME attachments, 2-2
adding SOAP faults in the WSDL, 2-13
adding to a WSDL, 2-4
assembling a WSDL, 2-8
bottom up Web service assembly, 2-7
implementing a service endpoint interface, 2-5
top down Web service assembly, 2-2
writing service endpoint interfaces for, 2-7

T
third party licenses, F-1
tool support

Web service management with Application Server
Control, 3-16

Web Service Providers, 10-11
tool support for WSIF, 9-24
top down Web service assembly

limitations, E-4
streaming attachments, 2-19
SWA attachments, 2-9
swaRef MIME attachments, 2-2

U
unwrapParameters argument, E-11
useDimeEncoding argument, 2-23
userThreads option (Oracle Application Server), E-7

W
Web service design and interoperability, 1-3

Web Service Home Page
limitations, E-7

Web Service Interoperability Organization, 1-2
Web service management

configuring for a J2EE client, 3-8
with JDeveloper, 3-9
with WebServicesAssembler, 3-9

configuring for a J2SE client, 3-7
with JDeveloper, 3-7
with WebServicesAssembler, 3-7

configuring for the server side, 3-4
by hand, 3-4
with Application Server Control, 3-5
with JDeveloper, 3-4
with WebServicesAssembler, 3-5

configuring static application clients, 3-15
configuring static clients, 3-12
configuring static EJB clients, 3-14
configuring static JSP clients, 3-14
configuring static Servlet clients, 3-14
configuring WSIF clients, 9-21
data flow, 3-2
data flow in a J2EE client, 3-8
data flow in a J2SE client, 3-6
defiend, 3-1
DII client dynamic configuration, 3-10
dynamic client side configuration, 3-9
global level, A-1
J2EE client dynamic configuration, 3-12
levels, A-1
life cycle, 3-4
limitations, E-10
management environment, 3-2
message flow, 3-2
operation level, A-3
port level, A-2
proxy Web service client dynamic

configuration, 3-11
static proxy Web service client dynamic

configuration, 3-11
Web Service Provider

assembling clients, 10-11
deploying a Provider Web application, 10-11
managing Provider endpoints, 10-11
packaging, 10-10
registering a dynamic endpoint, 10-9
registering a static endpoint, 10-9
testing a Provider Web application

deployment, 10-11
tool support, 10-11

Web Service Providers
dynamically adding a managable service

endpoint, 10-3
dynamically removing a managable service

endpoint, 10-3
elements in oracle-webservices.xml, 10-7
extending the ProviderServlet class, 10-5
HTTPConstants class, 10-4
initializing a provider, 10-2
MessageContext class, 10-4

Index-6

Provider interface, 10-2
ProviderConfig class, 10-3
ProviderServlet class, 10-4
removing a Provider instance, 10-3
routing Provider instance, 10-4

Web service providers
oracle.webservices.provider package, 10-1
provider package, 10-1

Web services
guidelines for interoperability, 1-3
Java classes

limitations, E-4
Providers, 10-1

Web services management schema (WSMGMT), A-1
Web services security, 4-1
web, attribute for <port> element, A-3
WebRowSet format, E-5
WebServiceOperation MBean, C-2
WebServicePort MBean, C-2
WebServicesAssembler

auditing support, 6-9
configuring J2EE client management

information, 3-9
configuring J2SE client management

information, 3-7
configuring server side management

information, 3-5
limitations, E-8
logging support, 6-9

WebServicesAssembler arguments
wsifDbBinding, 9-12
wsifDbPort, 9-14, 9-15
wsifEjbBinding, 9-7
wsifEjbPort, 9-8, 9-10
wsifJavaBinding, 9-3
wsifJavaPort, 9-3, 9-4, 9-5

WebServicesAssembler commands
aqAssemble, 9-12, 9-14, 9-15
assemble, 9-3, 9-4, 9-5
dbJavaAssemble, 9-12, 9-14, 9-15
ejbAssemble, 9-7, 9-8, 9-10
genInterface, 9-20
genWsdl, 9-3, 9-4, 9-5, 9-7, 9-8, 9-10, 9-12, 9-14,

9-15
plsqlAssemble, 9-12, 9-14, 9-15
sqlAssemble, 9-12, 9-14, 9-15

WSDL
with multiple namespaces

generating code into a single package, B-3
WSDL file

adding swaRef MIME attachments, 2-4
assembling with swaRef MIME attachments, 2-8
changing the names of WSDL artifacts, B-3
customizing with the maping file, B-2
DIME encoded attachments, 2-22
streaming attachments, 2-19

WSDLs and interoperability issues, 1-6
WS-I basic profile-compliant Web service,

defined, 1-2
WSIF

JDeveloper support, 9-24
limitations, E-11
tool support, 9-24
WSDL extensions for database resources, 9-16
WSDL extensions for EJBs, 9-10
WSDL extensions for Java classes, 9-6

WSIF API, 9-17
WSIF architecture, 9-1
WSIF clients

accessing the database, 9-20
adding a Web service management

configuration, 9-21
adding attachments, 9-23

with OracleCall API, 9-24
using a dynamic proxy, 9-18
writing, 9-16

WSIF endpoint
configuring for a single EJB port, 9-7
configuring for a single Java port, 9-3
configuring for Java classes, 9-3
configuring for multiple EJB ports, 9-10
configuring for multiple Java ports, 9-5

WSIF, described, 9-1
wsifDbBinding argument, 9-12
wsifDbPort argument, 9-14, 9-15
wsifEjbBinding argument, 9-7
wsifEjbPort argument, 9-8, 9-10
wsifJavaBinding argument, 9-3
wsifJavaPort argument, 9-3, 9-4, 9-5
WS-I.org, 1-2
WSM_INTERCEPTOR_PIPELINE_CONFIG

property, 3-9
wsmgmt.xml management policy file, 3-3, 3-5, A-1,

A-2, E-10
wsmgmt.xml management policy file, listing, A-3
WSMHandlerGlobalConfig MBean, C-3
WSMHandlerOperationConfig MBean, C-3, C-4
WSMHandlerServiceConfig MBean, C-3
WSMOperationConfig MBean, C-3
WSMServiceConfig MBean, C-3

X
XDB rowset format, E-5
XML characters and interoperability issues, 1-9
xpath queries, E-10

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Ensuring Interoperable Web Services
	Why is Interoperability Necessary?
	Web Service Interoperability Organizations
	General Guidelines for Creating Interoperable Web Services
	Common Tips for Diagnosing and Solving Interoperability Issues
	Invalid or Improperly Formatted WSDL
	WSDLs Containing Proprietary Data Binding Extensions
	Illegal XML Characters
	Out of Sync SOAPAction Values
	Understanding the soapAction WSDL Attribute
	Controlling the Value of soapAction in OracleAS Web Services
	Controlling the Value of soapAction on the .NET Platform

	Null Values in SOAP Messages
	Unsigned Schema Numeric Types
	Loss of Precision

	Tool Support for Interoperability
	Capturing the Web Service Contract
	Replaying the Message Payload
	Analyzing the Interaction
	Obtaining WS-I Tools

	Limitations
	Additional Information

	2 Working with Message Attachments
	Working with MIME Attachments
	Assembling a Web Service Using swaRef MIME Attachments
	Assembling a Web Service Top Down
	Constructing a WSDL with swaRef Attachments
	Implementing a Service Endpoint Interface with Attachments
	Creating a New Instance of AttachmentPart

	Assembling a Web Service Bottom Up
	Writing a Service Endpoint Interface that Handles Attachments
	Assembling a WSDL File with swaRef Attachment References

	Assembling a Web Service Using SWA MIME Attachments
	Adding SOAP Faults with MIME Attachments
	Specifying SOAP Faults with Attachments in the WSDL
	Implementing a Method that Throws Faults with Attachments
	Using SOAP Faults with Attachments on the Client

	Working with Streaming Attachments
	Assembling Streaming Attachments into a Web Service
	Assembling a Web Service that Supports Streaming Attachments Bottom Up
	Writing an Interface for Steaming Attachments
	Implementing a Service Interface that Uses Streaming Attachments
	WSDL Elements for a Service with Streaming Attachments
	Writing Stub Code to Handle Streaming Attachments

	Assembling a Web Service that Supports Streaming Attachments Top Down

	WSDL Extensions for Streaming Attachments

	Understanding the Streaming Attachments API
	Interface for Attachments
	Interface for Incoming Attachments
	Interface for Outgoing Attachments
	Interface for Attachment Objects
	Factory Class for Attachment Objects

	Working with DIME Attachments
	Creating Interoperable DIME-Encoded Messages
	Implementing Oracle-Proprietary DIME Encoding

	Working with Attachments in WSIF
	Limitations
	Additional Information

	3 Managing Web Services
	Understanding Web Service Management
	Web Services Management Environment
	Web Service Management Life Cycle

	Configuring Server-Side Management Information
	Data Flow for Management Information in a J2SE Client
	Configuring Management Information for a J2SE Client

	Data Flow for Management Information in a J2EE Client
	Configuring Management Information for a J2EE Client
	Dynamic Client-Side Configuration
	Providing Dynamic Configuration for a DII Web Service Client
	Providing Dynamic Configuration for a Dynamic Proxy Web Service Client
	Providing Dynamic Configuration for a Static Proxy Web Service Client
	Providing Dynamic Configuration for a J2EE Web Service Client

	Static Client-Side Configuration
	Providing Static Configuration for a Servlet or JSP Web Service Client
	Providing Static Configuration for an EJB Web Service Client
	Providing Static Configuration for an Application Client Web Service Client

	Application Server Control Support for Web Service Management
	Working with Capability Assertions
	How to Assemble Capability Assertions into a Web Service

	Additional Information

	4 Ensuring Web Services Security
	Additional Information

	5 Ensuring Web Service Reliability
	Setting Up Reliability
	Providing a Running Database
	Installing SQL Tables for the Client and Server
	Changing the Widths of Database Columns

	Adding Reliable Messaging to a Web Service
	Managing Reliability on the Server
	Server-Side Reliability Configuration Elements
	Port-Level Reliability Elements on the Server
	Operation Level Reliability Elements on the Server

	Capability Assertions and Reliability

	Managing Reliability on the Client
	Client-Side Reliability Configuration Elements
	Port Level Reliability Elements on the Client
	Operation Level Reliability Elements on the Client

	Configuring Client-Side Database Support
	Configuring Database Support for a J2SE Client
	Configuring Database Support for a J2EE Client
	Configuring a Listener for a J2EE Client

	Dynamically Configuring Client-Side Reliability

	Tool Support for Web Services Reliability
	WebServicesAssembler Support for Web Service Reliability
	Assembling Reliability into a Web Service Bottom Up
	Assembling Reliability into a Web Service Top Down
	Assembling Reliability into a J2SE Web Service Client Proxy
	Assembling Reliability into a J2EE Web Service Client

	Application Server Control Support for Web Service Reliability
	JDeveloper Support for Web Service Reliability

	Limitations
	Additional Information

	6 Auditing and Logging Messages
	Understanding Auditing
	Auditing and Performance
	Processing Audit Messages
	Auditing Request Messages
	Auditing Response Messages
	Auditing Fault Messages

	Managing Auditing on the Server
	Server-Side Auditing Configuration Elements

	Managing Auditing on the Client
	Understanding Logging
	Logging and Performance
	Processing Logging Messages
	Logging Request Messages
	Logging Response Messages
	Logging Fault Messages

	Managing Logging on the Server
	Server-Side Logging Configuration Elements
	Port-Level Logging Elements on the Server
	Operation Level Logging Elements on the Server

	Tool Support for Web Services Auditing and Logging
	WebServicesAssembler Support for Web Service Auditing and Logging
	Assembling Auditing and Logging into a Web Service Bottom Up
	Assembling Auditing and Logging into a Web Service Top Down
	Assembling Auditing into a J2SE Web Service Client Proxy
	Assembling Auditing into a J2EE Web Service Client

	Application Server Control Support for Auditing and Logging
	JDeveloper Support for Auditing and Logging

	Limitations
	Additional Information

	7 Custom Serialization of Java Value Types
	The Custom Serialization Framework API
	Using Custom Serialization in Web Service Development
	Implementing a Custom Serializer
	Defining a Custom Java Type Value Class
	Developing a Custom Serializer Implementation for a Java Type Value Class
	Developing a Service Endpoint Interface that Uses a Java Type Value Class
	Creating an oracle-webservices Type Mapping Configuration
	Using Custom Types in Client-Side Proxy Code

	Using Custom Serialization in Top Down Web Service Development
	Prerequisites
	How to Use Custom Serialization in Top Down Web Service Development

	Using Custom Serialization in Bottom Up Web Service Development
	Prerequisites
	How to Use Custom Serialization in Bottom Up Web Service Development
	Ant Tasks for Generating a Web Service

	Using Custom Serialization in Schema-Driven Web Service Development
	Prerequisites
	Schema-Driven Web Services Assembly with Custom Serialization
	Sample Schema Document
	Java Custom Type Implementation

	Implementing a Serializer with Custom Marshalling Logic
	Defining a Serializer Implementation with Marshalling Logic
	Developing a Service Endpoint Interface and Implementation
	Editing the Generated oracle-webservices Type Mapping Configuration XML File

	Developing a Client for Custom Type Mapping and a Custom Serializer
	How to Use Custom Serializers in Client Code
	Editing the Server Side Custom Type Mapping File
	Generating the Web Service Client Side Proxy
	Writing a Web Service Client with Custom Datatypes

	Limitations
	Additional Information

	8 Using JMS as a Web Service Transport
	Understanding JMS as a Transport Mechanism
	Data Flow for JMS Transport

	Setting Up JMS Queues
	Assembling a Web Service Bottom Up that Uses JMS Transport
	WSDL Extensions for JMS Transport
	JMS Address Element
	JMS Property Value Element

	Adding JMS Transport Configuration with Deployment Descriptors

	Assembling a Web Service Top Down that Uses JMS Transport
	Assembling a Proxy that Uses JMS as a Transport
	Writing Client Code to Support JMS Transport
	Writing Client Stub Code for JMS Transport
	Setting the Send Queue Location and Connection Factory Programmatically
	Writing DII Code for JMS Transport

	Limitations
	Additional Information

	9 Using Web Services Invocation Framework
	Understanding WSIF Architecture
	Configuring a WSIF Endpoint for Java Classes
	Configuring a WSIF Endpoint for a Single Java Port
	Configuring a Single Java Port with wsifJavaBinding
	Configuring a Single Java Port with wsifJavaPort

	Configuring a WSIF Endpoint for Multiple Java Ports
	WSIF Java Extensions to the WSDL

	Configuring a WSIF Endpoint for EJBs
	Configuring a WSIF Endpoint for a Single EJB Port
	Configuring a Single EJB Port with wsifEjbBinding
	Configuring a Single EJB Port with wsifEjbPort

	Configuring a WSIF Endpoint for Multiple EJB Ports
	WSIF EJB Extensions to the WSDL

	Configuring a WSIF Endpoint for Database Resources
	Configuring a WSIF Endpoint for a Single Database Resource Port
	Configuring a Single Database Resource Port with wsifDbBinding
	Configuring a Single Database Resource Port with wsifDbPort

	Configuring a WSIF Endpoint for Multiple Database Resource Ports
	WSIF SQL Extensions to the WSDL

	Writing a WSIF Client
	Writing a WSIF Client Using a Dynamic Proxy
	Using genInterface to Generate a Service Endpoint Interface

	Accessing the Database from a WSIF Client
	Adding Management Configuration to a WSIF Client
	Adding Message Attachments in WSIF
	Adding Attachments with the WSIF API
	Adding Attachments with the OracleCall API

	Tool Support for WSIF
	Limitations
	Additional Information

	10 Using Web Service Providers
	What is a Provider?
	Understanding the Provider API
	Provider Interface
	ProviderConfig Class
	MessageContext Class
	HTTPConstants Class
	Provider Servlet

	Making a Web Service Provider-Aware
	Editing the oracle-webservices.xml Deployment Descriptor
	Provider Elements in oracle-webservices.xml

	Editing the web.xml Deployment Descriptor
	Provider Elements in web.xml

	Registering a Provider-Managed Endpoint
	How to Register a Static Provider-Managed Endpoint
	How to Register a Dynamic Provider-Managed Endpoint

	Packaging Provider Web Application Provider Classes
	Deploying Provider Web Applications
	Testing Provider Web Application Deployment
	Managing Provider Endpoints
	Assembling Clients for Provider Web Service Applications
	Additional Information

	A Understanding the Web Services Management Schema
	Levels of Web Service Management
	Global Level
	Port Level
	Operation Level

	wsmgmt.xml Listing

	B JAX-RPC Mapping File Descriptor
	Producing a JAX-RPC Mapping File
	Naming Conventions for the JAX-RPC Mapping File

	Customizing the WSDL or Service Endpoint Interface Contents
	Customization Scenarios
	Changing Namespace-to-Java Mappings
	Changing the Names of Java or WSDL Artifacts
	Generating Code into a Single Package from a WSDL with Multiple Namespaces
	Wrapping or Unwrapping Mapping for Document-Literal Operations
	Mapping Between SOAP Headers and Java Method Parameters

	C Web Service MBeans
	Web Services MBean Descriptions
	Understanding MBean Components
	WebServicePort
	WebServiceOperation
	WSMServiceConfig
	WSMOperationConfig
	WSMHandlerGlobalConfig
	WSMHandlerServiceConfig
	WSMHandlerOperationConfig

	Initializing MBeans

	D Mapping Java Types to XML and WSDL Types
	Mapping Java Types to XML Types
	Using Java Null Values in Bottom Up Mapping

	Mapping Java Primitive Types to XML Types
	OC4J Support for Java Value Types
	Representing a Java Value Type as a Schema Type

	Mapping Support for Arrays
	All Formats
	Document-Literal and RPC-Literal Formats
	RPC-Encoded Format

	Mapping Java Collection Classes to XML Types
	Limitations on Using Collection and Map Data Types
	Definitions for Oracle-Proprietary Collection Data Types

	Support for Java Beans Components

	E Troubleshooting
	OracleAS Web Services Messages
	Assembling Web Services from a WSDL
	Assembling Web Services from Java Classes
	Assembling Web Services From EJBs
	Assembling Web Services with JMS Destinations
	Developing Web Services From Database Resources
	Assembling Web Services with Annotations
	Assembling REST Web Services
	Testing Web Service Deployment
	Assembling a J2EE Web Service Client
	Understanding JAX-RPC Handlers
	Processing SOAP Headers
	Using WebServicesAssembler
	Packaging and Deploying Web Services
	Ensuring Interoperable Web Services
	Working with Message Attachments
	Managing Web Services
	Ensuring Web Service Reliability
	Auditing and Logging Messages
	Custom Serialization of Java Value Types
	Using JMS as a Web Service Transport
	Using the Web Service Invocation Framework
	Using Dynamic Invocation Interface to Invoke Web Services
	Basic Calls
	Configured Calls
	Examples of Web Service Clients that use DII

	F Third Party Licenses
	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	JSR 110
	Jaxen
	The Jaxen License

	SAXPath
	The SAXPath License

	W3C DOM
	The W3C License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

