
Oracle® Sensor Edge Server
Guide

10g Release 3 (10.1.3)

B25142-01

January 2006

Oracle Sensor Edge Server Guide, 10g Release 3 (10.1.3)

B25142-01

Copyright © 2004, 2006, Oracle. All rights reserved.

Primary Author: John Bassett

Contributing Author: Robin Clark, Joseph Garcia

Contributor: Samuelson Rehman, Anit Chakraborty, James Chase, Ron Caneel, Greg Grisco

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Conventions ... x

1 Installation

Hardware Requirements ... 1-1
Software Requirements... 1-2
Installing OC4J ... 1-2
Upgrading or Installing Oracle Sensor Edge Server From a 10.1.2 OC4J Instance...................... 1-3
Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance ... 1-3

Examining the Installation Log Files... 1-4
Uninstalling Oracle Sensor Edge Server ... 1-4

Verifying Your Installation ... 1-4
Displaying the Sensor Edge Server Console .. 1-5
Testing the Database Connection .. 1-5
Testing the Database Connection Using Enterprise Manager... 1-6

Installing Oracle Sensor Edge Mobile ... 1-7
Installing and Starting Oracle Sensor Edge Mobile on a Pocket PC Device.............................. 1-7

Changing the Default Device Configuration .. 1-8
Reading RFID Tags ... 1-9
Reading Barcode Data .. 1-9

Shutting Down the Sensor Edge Mobile Service ... 1-9
Installing the Oracle Sensor Edge Mobile Emulator ... 1-9

Manually Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3 1-10
Manually Deploying Sensor Data Repository .. 1-10
Connecting Oracle Sensor Edge Server to Sensor Data Repository .. 1-10
Manually Deploying Sensor Data Streams.. 1-11
Connecting Oracle Sensor Edge Server to Sensor Data Streams.. 1-12

Connecting to an Existing Sensor Data Repository in Release 10.1.2 ... 1-13
Connecting to an Existing Sensor Data Streams in Release 10.1.2 .. 1-14

2 Introducing Oracle Sensor Edge Server

What’s New in Release 10.1.3 ... 2-1
Oracle Sensor Edge Server Console... 2-2

iv

Oracle Sensor Edge Mobile... 2-2
Enhanced Management Through Oracle Application Server Control....................................... 2-3
Improved Performance ... 2-3
Enhanced Sensor Data Repository... 2-3
Sensor Data Streams .. 2-3
EPC Compliance Integration .. 2-3
Transport Layer .. 2-3
Enhanced Security.. 2-4
Deprecation of the Device Controller.. 2-4

Oracle Sensor Edge Server Overview... 2-4
Sensor Data Collection .. 2-4
Sensor Data Filtering ... 2-4
Sensor Data Dispatching ... 2-5
Sensor Data Archive and Rules.. 2-5
Sensor Server and Device Management ... 2-5
Sensor Edge Mobile ... 2-5
SES Console... 2-5

Oracle Sensor Edge Server Architecture .. 2-6
Device Drivers .. 2-6
Device Groups .. 2-6
Local Processing ... 2-6
Event Processor .. 2-6
Driver Manager .. 2-7

Oracle Sensor Edge Mobile Architecture .. 2-7
Device Driver Support... 2-8
Administering Oracle Sensor Edge Mobile.. 2-9
Sample Code and Demo Applications .. 2-9

Deployment Considerations .. 2-9
Review Network Characteristics ... 2-9
Identify Data Center Environment .. 2-9
Review Reader and Sensor Locations .. 2-10
Choose Edge Server Locations .. 2-10
Oracle Sensor Edge Server and Sensor Data Repository Considerations............................... 2-10

3 Managing Oracle Sensor Edge Server

Overview of Oracle Sensor Edge Services Management ... 3-1
Managing the Oracle Sensor Edge Server Instance... 3-2
Accessing Other Oracle Sensor Edge Server Instances... 3-4

Creating an Entry for an Oracle Sensor Edge Server Instance .. 3-5
Editing an Entry for an Oracle Sensor Edge Server Instance... 3-5

Monitoring the Performance of the Oracle Sensor Edge Server Instance..................................... 3-6
Clearing the Queue of the Event Data .. 3-6

Setting the General Information for the Oracle Sensor Edge Server Instance 3-6
Setting the Dispatcher for the Oracle Sensor Edge Server Instance .. 3-7
Viewing Dispatchers, Drivers, and Filters .. 3-8
Setting the Devices and Filters Used by the Oracle Sensor Edge Server 3-9

Viewing the Device Groups of the Oracle Sensor Edge Server.. 3-10

v

Creating a Device Group.. 3-11
Adding a Filter to a Device Group ... 3-17
Editing a Device Group.. 3-18
Renaming a Device Group... 3-18
Updating the Devices and Filters Used by a Device Group ... 3-18
Starting and Stopping the Devices Assigned to a Device Group... 3-18
Deleting a Device Group.. 3-18

Starting and Stopping the Oracle Sensor Edge Server Instance .. 3-18
Stopping and Starting an Oracle Sensor Edge Server Instance Using opmnctl..................... 3-18
Restarting an Oracle Sensor Edge Server Instance Using the OracleAS Enterprise Manager 3-19

Starting and Stopping an Individual Device... 3-20
Managing Filters.. 3-20

Prioritizing Filter Instances.. 3-21
Managing the Filter Instances for a Device or Device Group... 3-21

Monitoring the Event Data ... 3-23
Viewing Event Data .. 3-23

Viewing an Individual Event ... 3-24
Viewing Unprocessed Event Data.. 3-28
Viewing Log Information .. 3-29
Viewing Processed Event Data ... 3-30

Searching for Events by Tag ID... 3-31
Searching for Events by Device Name... 3-31
Refining Tag ID and Device Name Searches .. 3-32
Creating Advanced Searches... 3-33

Adding Extensions to the Oracle Sensor Edge Server Instance ... 3-34
Extension Archive Files .. 3-34

Packaging an Extension Archive File.. 3-37
Uploading Extensions... 3-37
Extension Class Hierarchy... 3-38
Implementing Extensions .. 3-39

Extension Context .. 3-39
Retrieving Information About the Instance .. 3-39
Accessing the Runtime Context of an Instance .. 3-40

Managing the Parameters of an Instance... 3-40
Exposing Custom Parameters .. 3-40
Retrieving Parameter Values.. 3-40

4 Using the Sensor Data Repository

Overview of the Sensor Data Repository .. 4-1
Relational Tables .. 4-1
Relational Views in the Sensor Data Repository ... 4-2
Sensor Data Repository PL/SQL Package.. 4-2
Operations and Queries on the Repository .. 4-3

Creating and Deleting Repositories ... 4-3
Saving Observations to the Repository.. 4-3
Querying the Archive... 4-3

Schema Reference .. 4-3

vi

Tables ... 4-3
EDG_CAP_TAB table ... 4-3
EDG_CTXT_REL_TAB table ... 4-4
EDG_CTXT_TAB Table.. 4-4
EDG_DEVICE_TAB Table ... 4-5
EDG_DIAG_TAB Table.. 4-5
EDG_EVENT_INFO_TAB Table... 4-6
EDG_EVENT_TAB Table... 4-7
EDG_LOG Table ... 4-7
EDG_TAG_TAB Table.. 4-7

Views.. 4-8
EDG_CAP... 4-8
EDG_CTXT .. 4-9
EDG_CTXT_REL... 4-9
EDG_CTXT_REL_NAME_VW ... 4-9
EDG_DEVICE... 4-10
EDG_DEV_CAP_VW .. 4-10
EDG_DEV_DIAG_VW.. 4-11
EDG_DEV_EVENT_VW ... 4-12
EDG_DEV_LAST_DIAG_VW.. 4-13
EDG_DEV_LAST_OBSV_VW.. 4-13
EDG_DIAG ... 4-14
EDG_EVENT .. 4-15
EDG_EVENT_INFO .. 4-16
EDG_EVENT_VW ... 4-16
EDG_TAG ... 4-17
EDG_TAG_LAST_DEV_VW.. 4-17
EDG_TAG_PATH_VW ... 4-18

PL/SQL Programming Interface .. 4-20
EDG_SDA Package .. 4-20

5 Oracle Sensor Edge Mobile

Overview of Oracle Sensor Edge Mobile .. 5-1
Connecting Sensor Edge Mobile to Applications.. 5-3

Configuring the Dispatchers and Drivers ... 5-3
Configuring the Keyboard Dispatcher .. 5-4

Defining DestinationApplication Parameter ... 5-5
Defining the RFIDReadMacro Parameter... 5-5
Defining the BarcodeReadMacro Parameter.. 5-6
Defining the Key Sequence Macro Parameters.. 5-6
Creating a Key Sequence Macro .. 5-7

Enabling the Key Sequence Macro to Handle Repeating Elements 5-7
Key Macro Element Keys for Special Control Sequences .. 5-8
Keyboard Macro Elements for Control Keys or Data Positioning 5-9

Checking Device Status ... 5-10
The ActiveX Application Interface .. 5-10

Object Declaration... 5-11

vii

rfid_read() ... 5-11
rfid_write() .. 5-11
rfid_kill().. 5-12
barcode_read().. 5-12
set_trigger_rfid_read() .. 5-12
set_trigger_barcode_read()... 5-12
process_instruction() ... 5-12
is_supported()... 5-14
Handling Observation Events.. 5-14

Deprecated Activex Application Interface .. 5-15
Managing Sensor Edge Mobile .. 5-16
Internationalization .. 5-18

6 Configuring Devices, Filter Instances, and Dispatchers

Overview of Device, Filter Instance and Dispatcher Configuration ... 6-1
Setting the URI Parameters for Devices and Dispatchers .. 6-1

Configuring Devices.. 6-3
Configuring Alien Reader Driver-Based Devices ... 6-4

Observation Events Generated by the Alien Reader Driver .. 6-4
The Instruction Event Accepted by the Alien Reader Driver... 6-5

Configuring an Instance of the AnimationDriver ... 6-5
Configuring BarcodeDriver-Based Devices ... 6-7

RFID Observation Event Returned by the BarcodeDriver.. 6-7
Configuring an Instance of the ConsoleDriver.. 6-7
Configuring Edge Echo Driver-Based Instances ... 6-8
Configuring Edge Simulator Driver-Based Devices ... 6-8
Configuring an HtmlDriver Instance ... 6-10

Events Supported by the HtmlDriver... 6-12
Configuring Intermec BRI Driver-Supported Devices .. 6-12

Observation Events Generated by the Intermec BRI Driver.. 6-13
The Instruction Event Accepted by the Intermec BRI Driver.. 6-14

Configuring Intermec Reader Driver-Based Devices ... 6-14
Configuring LpmlDriver-Based Devices ... 6-15

The Printer Response Observation Event Generated by the LpmlDriver 6-15
The Instruction Event Accepted by the LpmlDriver .. 6-15

Configuring Matrics Driver-Based Devices .. 6-16
Observation Events Generated by the Matrics Driver ... 6-16
Instruction Event Accepted by the Matrics Driver ... 6-17

Configuring PatliteDriver-Based Devices ... 6-17
Configuring Prolite Driver-Based Devices .. 6-17
Configuring Samsys Driver-Based Device .. 6-17

Observation Events Generated by the Samsys Driver ... 6-18
Instruction Event Accepted by the Samsys Driver ... 6-19

Configuring a Simple Audio Driver Instance ... 6-19
Audio Event Supported by the Simple Audio Driver .. 6-19

Configuring Tyco Reader Driver-Based Devices ... 6-20
Observation Events Generated by the Tyco Reader Driver... 6-21

viii

The Instruction Event Accepted by the Tyco Reader Driver... 6-21
Configuring Filter Instances ... 6-22

Configuring the Check Tag ID Filter.. 6-22
Using the Cross-Reader Redundant Filter .. 6-23
Using the Debug Filter ... 6-24
Configuring the JavaScript Filter .. 6-24
Configuring the Movement Filter... 6-25
Configuring the Pallet Pass Thru Filter ... 6-25
Configuring the Pallet Shelf Filter .. 6-26

Events Generated by the Pallet Shelf Filter .. 6-27
Configuring the Pass Filter ... 6-28
Configuring the Polygon Filter ... 6-29
Configuring the Regex Filter ... 6-29
Configuring the Shelf Filter ... 6-30

Events Generated by the Shelf Filter ... 6-30
Managing Dispatchers for an Oracle Sensor Edge Server Instance .. 6-31

Configuring the Dispatcher to Send Event Messages to a Web Service 6-32
Configuring the Dispatcher to Send Event Messages Through HTTP 6-32
Configuring the PML Dispatcher ... 6-33
Configuring the Template Dispatcher ... 6-33
Configuring the ALEDispatcher ... 6-33
Using the Null Dispatcher ... 6-33
Configuring the Edge Dispatcher to Use Oracle Streams ... 6-33

Glossary

Index

ix

Preface

Oracle Sensor Edge Server Guide includes information on the Oracle Sensor Edge
Server product, it’s installation, and configuration. For information on developing
Sensor Edge Server applications, see Sensor Edge Server Documentation on OTN.

Audience
This guide is for customers using Oracle Sensor Edge Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

x

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Installation 1-1

1
Installation

This chapter provides information on installing Oracle Sensor Edge Server. Topics
include:

■ "Hardware Requirements"

■ "Software Requirements"

■ "Installing OC4J"

■ "Upgrading or Installing Oracle Sensor Edge Server From a 10.1.2 OC4J Instance"

■ "Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance"

■ "Verifying Your Installation"

■ "Installing Oracle Sensor Edge Mobile"

■ "Manually Configuring Sensor Data Repository and Sensor Data Streams in
Release 10.1.3"

■ "Connecting to an Existing Sensor Data Repository in Release 10.1.2"

■ "Connecting to an Existing Sensor Data Streams in Release 10.1.2"

Hardware Requirements
The hardware requirements for Oracle Sensor Edge Server are the same as the
hardware requirements for Oracle Application Server. Refer to the Oracle Application
Server 10g Installation Guide for your platform for the specific hardware requirements.

Oracle Sensor Edge Mobile requires Pocket PC 2003 or later devices. Oracle Sensor
Edge Mobile includes device drivers for Symbol 9000G and Intermec IP3 devices for
RFID and barcode. Sensor Edge Mobile requires less than 150KB of program storage,
and less than 1MB of memory.

Table 1–1 lists minimum memory and disk space requirements.

Table 1–1 Minimum Memory and Disk Space Requirements

(OC4J and
Oracle Sensor Edge Server) Oracle Sensor Edge Server

Memory 512 MB 128 MB

Disk Space 550 MB 150 MB

TEMP Directory Space 256 MB 256 MB

Swap Space 1.5 GB 1.5 GB

Software Requirements

1-2 Oracle Sensor Edge Server Guide

Software Requirements
Oracle Sensor Edge Server requires the following:

■ Unix, Linux, Windows 2000, Windows XP, or later

■ Sensor Data Streams and Sensor Data Repository require an enterprise version of
Oracle Database (version 9.2.0.6 or later). Oracle Database 10g Release 2 is
recommended.

■ To install and use Sensor Data Streams, Oracle Database must be running in
ArchiveLog mode, with automatic archiving enabled. Refer to the appropriate
version of the Oracle Database Administrator’s Guide for instructions on changing to
ArchiveLog mode, and for instructions on enabling automatic archiving. Note that
these instructions vary depending on the Oracle Database version you are using,
so be sure to consult the version of the Oracle Database Administrator’s Guide that
corresponds to the Oracle Database version you are using.

■ Sun Java2 SDK, Standard Edition, version 1.4.2 or later

■ Oracle Containers for J2EE (OC4J), version 10.1.3 or later

■ J2EE Server and Process Management, 10.1.3 (Not with Oracle HTTP Server or
WebCache)

■ All other software requirements are the same as they are for Oracle Application
Server

Additionally, Sensor Data Repository and Sensor Data Streams must have encoding set
to UTF-8.

For Oracle Sensor Edge Mobile, the software requirements are as follows:

■ Pocket PC 2003 or later

■ Pocket IE 3.0.3 browser or later

Installing OC4J
Before you install Oracle Sensor Edge Server, you must install OC4J. In previous
releases, OC4J was packaged as part of the Oracle Sensor Edge Server installation. In
release 10.1.3, to make upgrading OC4J easier, it is not included as part of the Oracle
Sensor Edge Server installation and must be installed before you install Oracle Sensor
Edge Server.

You can install OC4J when you install Oracle Application Server. In the Oracle
Universal Installer for Oracle Application Server, you must select Advanced
Installation Mode, and then select the option for J2EE Server and Process
Management. Refer to the Oracle Application Server Installation Guide for your platform
for more information on installing Oracle Application Server.

Once you complete the OC4J installation, you are ready to install Oracle Sensor Edge
Server.

Note: For backward compatibility with 10.1.2 OC4J instances:

10.1.2.x.x companion CD OUI (must install OC4J first)

10.1.2.x.x standalone version (unzip oc4j_extended.zip into a directory and
install). See Installing OC4J below.

Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance

Installation 1-3

If you are installing release 10.1.2 for backward compatibility, follow these installation
steps:

1. After installing release 10.1.2.x.x companion CD OUI (or after unzipping oc4j_
extended.zip), navigate to ORACLE_HOME/j2ee/home.

2. Run java -jar oc4j.jar -install.

3. When prompted for a password, enter an administrator password for the OC4J
instance.This is the password that you will use to log in to the management UI,
and it is also required for installation of Oracle Sensor Edge Server.

Upgrading or Installing Oracle Sensor Edge Server From a 10.1.2 OC4J
Instance

If you already have a 10.1.2 instance of OC4J installed, you can install Oracle Sensor
Edge Server by following the steps for "Installing Oracle Sensor Edge Server From a
10.1.3 OC4J Instance". During installation, Oracle Universal Installer will ask you to
create the OC4J administrator password. This is the password used to install and
administer OC4J.

If you already have a previous version of Oracle Sensor Edge Server installed, you will
not be able to upgrade it. You must install the new version by following the steps for
"Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance". You will then need
to manually recreate your Sensor Edge Server settings in the new version.

Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance
To install Oracle Sensor Edge Server from a 10.1.3 instance of OC4J:

1. Insert the companion CD and start Oracle Universal Installer.

2. When the Welcome screen appears, click Next.

3. In the Specify File Locations screen, under Destination, enter a name for the
installation and the path where you want to install Oracle Sensor Edge Server.
Oracle Sensor Edge Server must use the same oracle_home as OC4J. Then click
Next.

4. In the Select Installation Type screen, choose Sensor Edge Server and click Next.

5. In the J2EE Container (OC4J) Password screen, enter the password for the OC4J
administrator, and click Next. This is the administrator password you defined
when you installed OC4J.

6. In the Sensor Data Repository Installation screen, choose Yes if you want to
connect the Sensor Edge Server to a Sensor Data Repository. If you choose Yes, you
will be able to create a new Sensor Data Repository or connect to an existing one. If
you choose No, skip to 10. If you choose No, and you later want to use Sensor
Data Repository, you can manually configure it by following the steps in
"Connecting to an Existing Sensor Data Repository in Release 10.1.2" or "Manually
Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3".
After making your choice, click Next.

7. In the Sensor Data Repository Configuration screen, choose whether you want to
connect to a new Sensor Data Repository or connect to an existing one, and click
Next.

8. In the SDR Database Connection Information screen, enter the requested
information for the Sensor Data Repository, and click Next.

Verifying Your Installation

1-4 Oracle Sensor Edge Server Guide

9. In the Sensor Data Repository Password screen, specify the password you want to
use for the Sensor Data Repository schema, and click Next. (This screen doesn’t
appear if you chose to connect to an existing Sensor Data Repository in 7.) The
schema must be installed under the edge user in the database.

10. In the Sensor Data Streams Installation screen, choose Yes if you want to connect
the Sensor Edge Server to Sensor Data Streams. If you choose Yes, you will be able
to create a new Sensor Data Streams schema or connect to an existing one. If you
choose No, skip to 14. If you choose No, and you later want to use Sensor Data
Streams, you can manually configure it by following the steps in "Connecting to an
Existing Sensor Data Streams in Release 10.1.2" or "Manually Configuring Sensor
Data Repository and Sensor Data Streams in Release 10.1.3". After making your
choice, click Next.

11. In the Connect to an Existing SDS screen, choose whether you want to create a
new Sensor Data Streams schema or connect to an existing one, and click Next.

12. In the Sensor Data Streams Configuration screen, enter the database SYS password
and TNS connection string, and click Next.

13. In the Sensor Data Streams Password screen, specify the password you want to
use for Sensor Data Streams, and click Next. (This screen doesn’t appear if you
chose to connect to an existing Sensor Data Streams schema in 11.) The schema
must be installed under the edge user in the database.

14. In the Summary screen, verify the installation options, and click Install.

15. In the Configuration Assistants screen, wait for the configuration assistants to
finish, and click Next.

16. In the End of Installation screen, click Exit.

The Oracle Sensor Edge Server Welcome screen appears.

Examining the Installation Log Files
If there are errors during installation, you can examine the Oracle Sensor Edge Server
log files located in oracle_home/edge (createedgeuser_SDR.log,
deploySDR.log, createedgeuser_SDS.log), and the Oracle Universal Installer
log files.

Uninstalling Oracle Sensor Edge Server
To uninstall Oracle Sensor Edge Server, you must use Oracle Universal Installer. In the
Oracle Universal Installer Welcome screen, click Deinstall Products to uninstall.

Uninstalling Sensor Data Repository or Sensor Data Streams removes the temp files
that were used to deploy the schemas, but the schemas themselves are not removed
from the database.

Verifying Your Installation
To verify that your installation was successful, perform the following tasks:

■ display and navigate through the screens of the Sensor Edge Server (SES) console

■ test the database connection

Verifying Your Installation

Installation 1-5

Displaying the Sensor Edge Server Console
To display the SES console:

1. Determine the port number that the HTTP service is listening on (for example,
8888). If you don’t know the port number, do the following:

1. Open a command window, and change directories to oracle_home/opmn/bin.

2. Type opmnctl status -l. The port number for the HTTP service is
displayed.

2. Open a browser window and enter the URL for the Sensor Edge Server console in
the form of http://localhost:port_number/edge/, where port_number is the port
number for the http service.

3. On the Oracle Sensor Edge Server Login page, enter the username and password
for the Sensor Edge Server administrator. The default username is oc4jadmin. For
password, enter the password for the OC4J administrator (as specified when you
installed OC4J).

Testing the Database Connection
You can test the database connection to verify that installation was successful. To
connect to the Sensor Data Repository using SQL*Plus, do the following:

1. Configure tnsnames.ora (located in /network/admin/) to set up the TNS
connection string for the database. For example:

BAR.US.ORACLE.COM =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = foo.us.oracle.com)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = BAR)
)
)

2. Connect to the schema, always using the username edge for sda_usr. For example,
if the username is edge and the password is sda_pwd, enter:

sqlplus edge/sdr_pwd@BAR

3. To check if there are events coming in, verify that the number of rows in view edg_
event_vw increases as events come in, as follows:

select count(*) from edg_event_vw

Note: To determine the port number for a 10.1.2 OC4J instance:

1. Navigate to ORACLE_HOME/j2ee/home/config.

2. Open the http-web-site.xml file.

3. The <web-site> element includes an attribute called port. This
attribute defines the port number.

See Oracle Application Server Containers for J2EE User’s Guide for more
information.

Verifying Your Installation

1-6 Oracle Sensor Edge Server Guide

The count of events should increase as events are sent to the repository. In the case
of a clean installation with no configuration, there should still be some events sent
over, such as the edge server starting event.

Two other tables can be used for diagnostic purposes: edg_diag_tab (for checking
device related error and status messages) and edg_log (for checking internal errors
encountered in processing events).

To connect to the schema using SQL*Plus, do the following:

1. Configure tnsnames.ora to set up the TNS connection string for the database. For
example:

BAR.US.ORACLE.COM =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = foo.us.oracle.com)(PORT = 1521)))
)
 (CONNECT_DATA =
 (SERVICE_NAME = BAR)
)
)

2. Connect to the schema, always using the username edge for sds_usr. For example,
if the username is edge and the password is sds_pwd, enter:

sqlplus edge/sds_pwd@BAR

The sds_pwd is the password entered for Sensor Data Streams during installation.

3. To check if there are events coming in, verify that the number of rows in sda_
observations increases as events come in, as follows:

select count(*) from sda_observations

The count of events should increase as events are sent to the repository.

Testing the Database Connection Using Enterprise Manager
For OC4J 10.1.3, you can test the JDBC connection to the Sensor Data Repository by
examining the JNDI resource using OC4J Enterprise Manager as follows:

1. Login into OracleAS Enterprise Manager (http://localhost:oc4j_web_port_
number/em/) by entering the OC4J adminstrator and password.

2. Click the Members tab and then click the OC4J instance (per default home).

3. Select Administration.

4. If needed, expand Services.

5. Click the Go to Task icon for JDBC Resource. The JDBC Resources page appears.

6. Click the Test Connection icon for edge/SensorDataRepositoryDS.

7. Click Continue.

8. Enter select count (*) from edg_event_vw in the SQL Statement field to
verify that events are coming in and that the number of rows in the view edg_
event_vw increase as these events come in.

The event count should increase as events are sent to the Sensor Data Repository.
In the case of a clean installation with no configuration, there should still be some
events sent over, such as the Oracle Sensor Edge Server starting event.

Installing Oracle Sensor Edge Mobile

Installation 1-7

To verify that events are coming in and that the number of rows in sda_
observations increases as events come in, enter select count (*) from sda_
observations in the SQL Statement field.

9. Click Test. The connection status displays under Confirmation (Connection to
"edge/SensorDataRepositoryDS" established successfully for all OC4J instances in the
Group.) An error displays if the connection has not been established.

Installing Oracle Sensor Edge Mobile
To install Oracle Sensor Edge Mobile:

1. Insert the companion CD and start Oracle Universal Installer.

2. When the Welcome screen appears, click Next.

3. In the Specify File Locations screen, under Destination, enter a name for the
installation and the path where you want to install Oracle Sensor Edge Mobile.
Oracle Sensor Edge Mobile must use the same oracle_home as OC4J. Then click
Next.

4. In the Select Installation Type screen, choose Sensor Edge Mobile and click Next.

5. In the Summary screen, verify the installation options, and click Install.

The installer places the following .CAB files into oracle_home/edge:

■ OracleEdgeMobile.PPC420_StrongARM-XScale.CAB: Installer for ARM or XScale
devices. To run the installer on a Pocket PC device, follow the instructions under
"Installing and Starting Oracle Sensor Edge Mobile on a Pocket PC Device".

■ OracleEdgeMobile.PPC420_i686.CAB: Pocket PC emulator for use with Windows
2000/XP computers, to allow code testing when no Pocket PC device is available.
To install the emulator, follow the instructions described in "Installing the Oracle
Sensor Edge Mobile Emulator".

Installing and Starting Oracle Sensor Edge Mobile on a Pocket PC Device
To install Oracle Sensor Edge Mobile on a Pocket PC device:

1. Using ActiveSync, load OracleEdgeMobile.PPC420_StrongARM-XScale.CAB
(located in oracle_home/edge) onto the Pocket PC device, and click on it to install it.

Note: For OC4J 10.1.3, you can test the OC4J instance directly from
OC4J Enterprise Manager. In addition, using the SES Console, you can
set the log level of the Oracle Sensor Edge Server instance to All and
then check the log at startup to ensure that it connects properly. The
View Log page displays the errors from the Sensor Data Repository
that indicate problems. For more information on setting the log level,
see "Setting the General Information for the Oracle Sensor Edge Server
Instance" and "Viewing Log Information".

For OC4J 10.1.2, you cannot test the connection using Enterprise
Manager. However, if the log does not report errors from the Sensor
Data Repository at startup, then the connection is successful. If the log
level of the Oracle Sensor Edge Server instance is set to All, then the
SES Console’s View Log page displays any SQL errors.

Installing Oracle Sensor Edge Mobile

1-8 Oracle Sensor Edge Server Guide

2. To start the Sensor Edge Mobile background service from the emulator screen,
choose Start, then choose Programs, and then click the Start EdgeMobile Service
shortcut. The background service should now be running.

3. To verify that the background service is running, open a File Explorer window,
navigate to the \EdgeMobile\html_samples directory, and click admin.html. The
Sensor Edge Mobile Administration page should appear as shown in Figure 1–1.

Figure 1–1 Sensor Edge Mobile Administration Page

4. Verify that the System status is "Running". If System status is not "Running", click
View log to examine the log file for errors. The log file is shown in Figure 1–2.

Figure 1–2 Sensor Edge Mobile Log File

Changing the Default Device Configuration
By default, the Symbol 900G drivers are loaded on the Pocket PC device. The
following additional drivers are provided:

■ EdgeMobileConfig_INTERMEC.xml: Intermec drivers configuration file.

Installing Oracle Sensor Edge Mobile

Installation 1-9

■ EdgeMobileConfig_SYMBOL.xml: Symbol drivers configuration file.

■ EdgeMobileConfig_SIMULATOR.xml: Simulator drivers configuration file.

■ EdgeMobileConfig_KEYBOARD.xml: Keyboard dispatcher configuration file.

To load a different driver, rename the appropriate driver configuration file to
EdgeMobileConfig.xml and restart the Sensor Edge Mobile service.

Reading RFID Tags
To read RFID tags, navigate to the \EdgeMobile\html_samples directory and open the
file rfid_ops.html. If you are using the simulation driver, it generates tags just like a
real device driver. The value of the simulated or real tag(s) should appear in the RFID
data field.

Reading Barcode Data
To read Barcode data, navigate to the \EdgeMobile\html_samples directory and open
the file barcode_ops.html. The value of the simulated or real bar codes should appear
in the Barcode data field.

Shutting Down the Sensor Edge Mobile Service
To shut down the Sensor Edge Mobile service:

1. Navigate to the \EdgeMobile\html_samples directory and open the file
admin.html.

2. Click Shutdown System.

3. Click OK in the Confirmation dialog box.

4. Verify that the System status is "Stopped".

Installing the Oracle Sensor Edge Mobile Emulator
If you are developing applications to use with Oracle Sensor Edge Mobile, you can run
the Sensor Edge Mobile emulator on a Windows 2000 or Windows XP computer. Using
the emulator allows you to test your code when no Pocket PC device is available.

To install the Oracle Sensor Edge Mobile emulator:

1. If you have not already done so, install Oracle Sensor Edge Mobile as described in
"Installing Oracle Sensor Edge Mobile".

2. Download the SDK for Windows Mobile 2003-based Pocket PCs from this location:
http://www.microsoft.com/downloads/details.aspx?familyid=9996
b314-0364-4623-9ede-0b5fbb133652&displaylang=en

3. Install the SDK on a Windows 2000 or Windows XP computer. The Pocket PC
emulator is part of the SDK.

4. To start the Pocket PC emulator from the Windows Start menu, choose Microsoft
Pocket PC 2003 SDK, and then choose Pocket PC Emulator.

5. Once the emulator starts, choose Emulator, and then choose Folder Sharing.

6. Click Browse, and browse to an existing folder on your computer, and click OK.

7. In the Folder Sharing dialog box, click OK.

8. In the emulator window, choose Start, and then choose Programs.

9. Click the File Explorer icon.

Manually Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3

1-10 Oracle Sensor Edge Server Guide

10. In the File Explorer, select My Device.

11. Select the folder that you made a shared folder in Step 6.

12. Load the OracleEdgeMobile.PPC420_i686.CAB file into the shared folder and click
on it in the emulator to install it. This file is located in oracle_home/edge.

Manually Configuring Sensor Data Repository and Sensor Data Streams
in Release 10.1.3

If you want to use Sensor Data Repository or Sensor Data Streams in Release 10.1.3,
but you didn’t configure them when you installed Sensor Edge Server, you can
manually deploy them using the procedures described in this section. This section
contains the following topics:

■ "Manually Deploying Sensor Data Repository"

■ "Connecting Oracle Sensor Edge Server to Sensor Data Repository"

■ "Manually Deploying Sensor Data Streams"

■ "Connecting Oracle Sensor Edge Server to Sensor Data Streams"

Manually Deploying Sensor Data Repository
If you have already deployed Sensor Data Streams, you can skip this section, because
the Sensor Data Streams schema includes everything necessary to deploy Sensor Data
Repository.

To manually deploy Sensor Data Repository, use the following procedure:

1. Create the edge user (schema) in your database to host the Sensor Data Repository
schema. To do this, log in as system with SQL*Plus and run the create_edg_
sda_user.sql script located in oracle_home/edge/stage/sql/10.1.3.

2. When you are prompted for an input value, enter the password you want to use
for the edge schema.

3. Log in to SQL*Plus as the edge user with the password you just chose, and run the
edg_sda_with_edgeuser.sql script located in oracle_
home/edge/stage/sql/10.1.3.

4. Follow the procedure described in "Connecting Oracle Sensor Edge Server to
Sensor Data Repository".

Connecting Oracle Sensor Edge Server to Sensor Data Repository
To manually connect Sensor Edge Server to Sensor Data Repository, use the following
procedure:

1. Make sure that OC4J is running. To start OC4J, open a command window, and
change directories to oracle_home/opmn/bin. Then type opmnctl startall.

2. Open a browser window and enter the URL for Oracle Enterprise Manager in the
form of http://localhost:oc4j_web_port_number/em/. Note that the OC4J web port

Note: For OC4J 10.1.2, start OC4J by navigating to ORACLE_
HOME/j2ee/home and then running Java_HOME/bin/java -jar
oc4j.jar. JDK 1.4.2 should already be installed on the machine.

Manually Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3

Installation 1-11

may have an Apache listener, in which case you must use the port Apache is
listening on.

3. Log in to Oracle Enterprise Manager using the OC4J password you entered in
Oracle Universal Installer.

4. Navigate to the OC4J Home page, and click Administration.

5. Scroll down to JMX, click the icon next to System MBean Browser, and navigate
to oc4j>J2EEServer>standalone>J2EEApplication>default.

6. Click Operations, then click createNativeDataSource. You use this screen to create
the data source to connect to the database on which Sensor Data Repository
schema is installed.

7. Enter the following values:

■ dataSourceName: edge/SensorDataRepositoryDS

■ user: edge

■ password: enter the password you chose when you ran the create_edg_
user.sql script

■ jndiLocation: edge/SensorDataRepositoryDS

■ loginTimeout: 20

■ dataSourceClass: oracle.jdbc.pool.OracleDataSource

■ URL: enter the jdbc URL to your database. The URL should look something
like jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=yourhost.us.oracle.com)(
PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=your_service_
name)))

8. Log in to the Sensor Edge Server administration console.

9. On the first page, for Use Archive, select Yes.

10. Restart OC4J.

Manually Deploying Sensor Data Streams
Before manually deploying Sensor Data Streams, Oracle Database must be running in
ArchiveLog mode, with automatic archiving enabled. Refer to the appropriate version
of the Oracle Database Administrator’s Guide for instructions on changing to ArchiveLog
mode, and for instructions on enabling automatic archiving. Note that these
instructions vary depending on the Oracle Database version you are using, so be sure
to consult the version of the Oracle Database Administrator’s Guide that corresponds to
the Oracle Database version you are using.

To manually deploy Sensor Data Streams if you’ve already created a Sensor Data
Repository, use the following procedure:

1. Use SQL*Plus to connect to the database as sysdba, by running sqlplus
/nolog.

2. Run sqlplus connect sys/your_pwd@your_db as sysdba.

3. Run the script grant_edg_user.sql, located in oracle_home
/edge/stage/sql/10.1.3.

4. Follow the procedure described in "Connecting Oracle Sensor Edge Server to
Sensor Data Streams".

Manually Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3

1-12 Oracle Sensor Edge Server Guide

To manually deploy Sensor Data Streams if you haven’t already created a Sensor Data
Repository, use the following procedure:

1. Run the script create_edg_user.sql, located in oracle_home
/edge/stage/sql/10.1.3. When prompted, enter the password you want to use for
the edge schema.

2. Run sqlplus connect edge/your_edge_user_pwd@your_db.

3. Run the script edg_create_streams.sql, located in oracle_home
/edge/stage/sql/10.1.3.

When running edg_create_streams.sql, you may encounter the following
error:

drop role edg_user
 *
ERROR at line 1:
ORA-01919: role 'EDG_USER' does not exist

You can ignore this error, as it notes that this is the first time an edge schema was
installed on this database instance.

4. Follow the procedure described in "Connecting Oracle Sensor Edge Server to
Sensor Data Streams".

Connecting Oracle Sensor Edge Server to Sensor Data Streams
To manually connect Sensor Edge Server to Sensor Data Streams, use the following
procedure:

1. Make sure that OC4J is running. To start OC4J, open a command window, and
change directories to oracle_home/opmn/bin. Then type opmnctl startall.

2. Open a browser window and enter the URL for Oracle Enterprise Manager in the
form of http://localhost:oc4j_web_port_number/em/. Note that the OC4J web port

Note: Installing Oracle Data Streams on an Oracle9i database
instance results in the following error:

BEGIN DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(grantee => 'edge');
END;

 *
ERROR at line 1:
ORA-06550: line 1, column 7:
PLS-00201: identifier 'DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE'
must be
declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

Because this is a Oracle 10g procedure that does not exist in Oracle9i,
you can ignore this error.

Note: For OC4J 10.1.2, start OC4J by navigating to ORACLE_
HOME/j2ee/home and then running Java_HOME/bin/java -jar
oc4j.jar. JDK 1.4.2 should already be installed on the machine.

Connecting to an Existing Sensor Data Repository in Release 10.1.2

Installation 1-13

may have an Apache listener, in which case you must use the port Apache is
listening on.

3. Log in to Oracle Enterprise Manager using the OC4J password you entered in
Oracle Universal Installer.

4. Navigate to the OC4J Home page, and click Administration.

5. Scroll down to JMX, click the icon next to System MBean Browser, and navigate
to oc4j>J2EEServer>standalone>J2EEApplication>default.

6. Click Operations, then click createNativeDataSource. You use this screen to create
the data source to connect to the database on which Sensor Data Streams schema is
installed.

7. Enter the following values:

■ dataSourceName: edge/StreamsDS

■ user: edge

■ password: enter the password you chose when you ran the create_edg_
user.sql script

■ jndiLocation: edge/StreamsDS

■ loginTimeout: 20

■ dataSourceClass: oracle.jdbc.pool.OracleDataSource

■ URL: enter the jdbc URL to your database. The URL should look something
like jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=yourhost.us.oracle.com)(
PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=your_service_
name)))

8. To configure Sensor Edge Server to use the streams dispatcher, log in to the Sensor
Edge Server administration console.

9. Click Change dispatcher, and then select Streams DispatcherV2.

10. Restart OC4J. The streams dispatcher will attempt to connect to the Sensor Data
Streams schema. For more information, see "Setting the Dispatcher for the Oracle
Sensor Edge Server Instance" and "Starting and Stopping the Oracle Sensor Edge
Server Instance".

Connecting to an Existing Sensor Data Repository in Release 10.1.2
If you want to use Sensor Data Repository, but you didn’t configure it when you
installed Sensor Edge Server, you can manually connect to it using the following
procedure:

1. Using a text editor, open the data-sources.xml file. This file is located in oracle_
home/j2ee/home/config/.

2. Add the following xml entry:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name=""edge/SensorDataRepositoryDS"
 location=""edge/SensorDataRepositoryDS"
 xa-location=""edge/SensorDataRepositoryDSXA"
 ejb-location=""edge/SensorDataRepositoryDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="edge"

Connecting to an Existing Sensor Data Streams in Release 10.1.2

1-14 Oracle Sensor Edge Server Guide

 password="<password for sdr>"
 url="<jdbc url for database holding SDR>"
 inactivity-timeout="100"
 />

3. Save and close the data-sources.xml file.

Connecting to an Existing Sensor Data Streams in Release 10.1.2
To use Sensor Data Streams, Oracle Database must be running in ArchiveLog mode,
with automatic archiving enabled. Refer to the appropriate version of the Oracle
Database Administrator’s Guide for instructions on changing to ArchiveLog mode, and
for instructions on enabling automatic archiving.

If you want to use Sensor Data Streams, but you didn’t configure it when you installed
Sensor Edge Server, you can manually connect to it using the following procedure:

1. Using a text editor, open the data-sources.xml file. This file is located in oracle_
home/j2ee/home/config/.

2. Add the following xml entry:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name=""edge/StreamsDS"
 location=""edge/StreamsDS"
 xa-location=""edge/StreamsDSXA"
 ejb-location=""edge/StreamsDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="edge"
 password="<password for sds>"
 url="<jdbc url for database holding SDS>"
 inactivity-timeout="100"
 />

3. Save and close the data-sources.xml file.

Introducing Oracle Sensor Edge Server 2-1

2
Introducing Oracle Sensor Edge Server

Oracle Sensor Edge Server is a middle tier component that integrates sensors and
other types of command or response indication equipment with applications. Oracle
Sensor Edge Server enables enterprises to incorporate information received from
sensor devices into their I.T. infrastructure and business applications.

Oracle Sensor Edge Server receives event data from sensor devices and then
normalizes this data by putting it in a common data format and filtering out excess
information. The event data, which is now a normalized event message, is then sent to
database applications.

This chapter provides an overview of Oracle Sensor Edge Server. It contains the
following sections:

■ "What’s New in Release 10.1.3"

■ "Oracle Sensor Edge Server Overview"

■ "Oracle Sensor Edge Server Architecture"

■ "Oracle Sensor Edge Mobile Architecture"

■ "Deployment Considerations"

What’s New in Release 10.1.3
This section summarizes the new and enhanced features for Oracle Sensor Edge Server
for Release 10.1.3.

Release 10.1.3 includes the following new features and enhancements:

■ Sensor Edge Server (SES) Console

■ Oracle Sensor Edge Mobile

■ Enhanced management through Oracle Application Server Control

■ Improved performance

■ Enhanced Sensor Data Repository

■ Sensor Data Streams

■ Electronic Product Code (EPC) compliance integration

■ Transport layer

■ Enhanced Security

■ Deprecation of the Device Controller

What’s New in Release 10.1.3

2-2 Oracle Sensor Edge Server Guide

Oracle Sensor Edge Server Console
You perform Oracle Sensor Edge Server administration, monitoring, and configuration
using a new Sensor Edge Server Console, as shown in Figure 2–1. The tools provided
by the console help to decrease deployment and maintenance costs. Using the console,
you can:

■ configure general server settings

■ monitor server event statistics

■ view and manage extensions such as dispatchers, filters, and drivers

■ manage groups (logical collections of devices)

■ configure new devices

■ change server instance parameters

Figure 2–1 Oracle Sensor Edge Server Console

Some of the common tasks you can perform include:

■ renaming a server instance

■ changing the site name of the server

■ changing instance parameters such as internal queue type, log level, and
shutdown timeout

■ configuring or changing the dispatcher

■ performing group management such as creating a new group, renaming or
deleting a group, adding a filter to a group, configuring a new group filter, and
adding a device to a group

■ configuring a new device

■ adding or configuring a filter for a device

Oracle Sensor Edge Mobile
Designed for mobile workers in warehouses and on factory floors, Oracle Sensor Edge
Mobile runs on handheld RFID readers that run on Pocket PC 2003 and later

What’s New in Release 10.1.3

Introducing Oracle Sensor Edge Server 2-3

platforms. Sensor Edge Mobile ships with Intermec and Symbol device support, and
can be controlled through an ActiveX component. Sensor Edge Mobile interfaces with
different types of sensors and devices, and feeds observation events to applications.

Enhanced Management Through Oracle Application Server Control
In this release, Java Management Extensions (JMX) interface has been integrated into
the Application Server management console to increase accessibility and ease of
management. The administrative tasks that are integrated into Application Server
include startup, shutdown, process management, and recovery. These enhancements
will help to decrease deployment and maintenance costs.

Improved Performance
Scalability and latency are crucial components for the real time performance required
by many sensor-enabled applications. For this release, Oracle Sensor Edge Server
provides improvements in scalability and latency through optimizations in the
Database layer and the application server layer.

Enhanced Sensor Data Repository
In this release, the Sensor Data Repository (SDR) is specifically designed to store EPC
and sensor data. The database schema stores status and diagnostic information from
Sensor Edge Server, and serves as the single repository for sensor data.

The SDR is a database schema where the sensor events (RFID, temperature, location,
etc.) obtained from Oracle Sensor Edge Server are archived. The events are normalized
on their way into the SDR to facilitate business intelligence, such as reporting. The
SDR can be enabled and configured so that Oracle Sensor Edge server can use it for
storing event data and querying the event archive. Typically, multiple Sensor Edge
Servers can share one SDR.

The SDR provides a set of database tables, views, and PL/SQL packages to facilitate
the storage and retrieval of sensor events data.

Sensor Data Streams
Oracle Sensor Edge Server relies on plug-ins, called dispatchers, to communicate with
applications and event distribution systems. The StreamsDispatcher is a plug-in that
sends and receives events using Oracle Streams technology.

EPC Compliance Integration
This release includes EPC compliance features that were previously provided
separately. This functionality allows customers to easily comply with the minimum
EPC requirements and also provides a fully scalable infrastructure that can be applied
to an entire enterprise.

Transport Layer
The transport layer simplifies development and maintenance for Oracle Sensor Edge
Server applications. The transport layer provides an extensible development platform
that simplifies device implementation and upgrading. The transport layer also
resolves platform dependencies so that your Device Drivers can work with multiple
operating systems.

Oracle Sensor Edge Server Overview

2-4 Oracle Sensor Edge Server Guide

Enhanced Security
By using Java Naming and Directory Interface (JNDI), Oracle Sensor Edge Server
provides enhanced security. JNDI allows applications to work in conjunction with
directory-specific security systems.

Deprecation of the Device Controller
The Device Controller is no longer necessary and has been removed from Oracle
Sensor Edge Server for this release. The following devices that previously used the
Device Controller can now operate without it:

■ Patlite

■ Intermec

Oracle Sensor Edge Server Overview
Oracle Sensor Edge Server manages and monitors the performance of the sensors that
are integrated with your Information Infrastructure. Sensor Edge Server collects sensor
information, filters it, and performs local sensor event processing. Oracle Sensor Edge
Server then securely and reliably dispatches event data back to the central applications
and databases.

For example, RFID readers use small transponders with embedded Electronic Serial
Numbers (ESN) or memory, which transmit identifiers across one or more frequencies.
A transponder can carry other information in its memory, and can be read or written
to at a distance, without the need for line-of-sight contact. Oracle Sensor Edge Server
interfaces with all the readers and sends normalized data back to the application
server.

Oracle Sensor Edge Server provides the following features:

■ Sensor Data Collection

■ Sensor Data Filtering

■ Sensor Data Dispatching

■ Sensor Data Archive and Rules

■ Sensor Server and Device Management

■ Sensor Edge Mobile

■ SES Console

Sensor Data Collection
Oracle Sensor Edge Server provides an extensible driver architecture that integrates
with any sensor source such as Radio Frequency Identification (RFID) readers,
printers, temperature, motion, pressure, or location, and any response devices such as
light stacks, message boards, and sound systems. You can also implement custom
components to plug in to the Sensor Edge Server architecture. You can implement the
standard driver interface to Sensor Edge Server, or expose custom functionality of the
sensor hardware through the Sensor Edge Server configuration interface.

Sensor Data Filtering
Data streaming in from sensors connected to Sensor Edge Server arrives in a wide
range of formats, and includes unnecessary or redundant information. Before the

Oracle Sensor Edge Server Overview

Introducing Oracle Sensor Edge Server 2-5

sensor data is passed on to enterprise applications, Sensor Edge Server performs data
cleansing by filtering the data from individual sensors and groups of sensors. This
process normalizes the sensor data into a consistent format. Groups of sensors can be
treated as single logical entities for filtering purposes.

Sensor Data Dispatching
Dispatchers are plug-ins that enable two-way communication with applications. The
main output of Oracle Sensor Edge Server is filtered data events. These data events are
provided already minimized and normalized. They can be delivered in one of the
out-of-the-box supported methods:

■ Streams/AQ: Dispatching through Oracle Streams provides the most robust and
flexible method of forwarding data. This is the only dispatching method that fully
supports rule-based processes and agents-based technologies.

■ Java Messaging Services (JMS): JMS is a standard messaging API that J2EE
components use to communicate. The Oracle Sensor Edge Server provides a JMS
Dispatcher to enable users to relay events to JMS topics.

■ Web Services

■ HTTP Post

■ Other forwarding methods can be supported by writing a Custom Event
Dispatcher.

■ EPC PML (Phyiscal Markup Language)

■ Application Level Events (ALE)

Sensor Data Archive and Rules
Once the data has been filtered and dispatched, Oracle Sensor Edge Server uses the
Oracle 10g database to provide sensor data archiving. You can use sensor data
schemas tailored for storing sensor data captured through Sensor Edge Server. This
archive provides uniform storage for sensor data for the entire enterprise, and
provides a repository for data analysis.

Sensor Server and Device Management
To reduce maintenance costs for sensor infrastructure, Oracle Sensor Edge Server
provides device management and monitoring from a single centralized location.

Sensor Edge Mobile
Oracle Sensor Edge Mobile is a Pocket PC application that runs on handheld devices
such as RFID and barcode readers. Sensor Edge Mobile interfaces with different types
of sensors and devices, and feeds observation events to applications. For more
information see "Oracle Sensor Edge Mobile Architecture".

SES Console
You perform Oracle Sensor Edge Server administration, configuration, and monitoring
using the SES console. For more information, see "Oracle Sensor Edge Server Console".

Oracle Sensor Edge Server Architecture

2-6 Oracle Sensor Edge Server Guide

Oracle Sensor Edge Server Architecture
This section describes the highlights of Oracle Sensor Edge Server architecture.
Figure 2–2 provides an overview of Oracle Sensor Edge Server architecture.

Figure 2–2 Oracle Sensor Edge Server Architecture

Device Drivers
Device Drivers communicate with sensors, and normalize incoming data into standard
format. Device Drivers can be customized or built to suit your needs.

Device Groups
Device Groups are used by administrators to group devices logically, and manage
them more efficiently. An Oracle Sensor Edge Server can have one or many Device
Groups instantiated. Each Device Group is responsible for the Device Drivers that it
manages.

Local Processing
Local processing (filters and rules) removes unwanted or low-level events. Filters and
rules can be used to sort incoming data. They can be applied to individual Devices, or
to Device Groups.

Event Processor
Event Processor is the central processing engine for event delivery. It loads the rest of
the components, which include the Driver Manager and (on start up) the Event
Dispatcher. Internally, it reads the configuration to find out which Event Dispatcher to
load. The process is started on startup.

Oracle Sensor Edge Mobile Architecture

Introducing Oracle Sensor Edge Server 2-7

Driver Manager
Driver Manager loads and manages the life cycle of the Device Groups and Device
Drivers. There is only one instance of a Driver Manager for each Oracle Sensor Edge
Server.

Driver Manager provides an accessible context to Device Drivers so they can retrieve
configuration information. It then loads the Device Groups, and binds them to the
Device Drivers. The Driver Manager does not hold any thread internally, but an
instance of it is held by the Event Processor instance as long as the server is up and
running.

There is one Event Processor and one Driver Manager in each Oracle Sensor Edge
Server. Each Driver Manager loads a number of Device Groups. In turn, each Device
Group can have any number of Device Drivers. However, only one Device Driver can
belong to one Device Group.

Oracle Sensor Edge Mobile Architecture
Oracle Sensor Edge Mobile is a platform that manages mobile sensor data collection on
the device and communicates with the application running on the device or remotely
through the device’s browser. The communication is bi-directional, with events
passing from devices, through the platform, to the application, and instructions
passing from the application, through the platform, to the hardware Device Driver.

Figure 2–3 provides an architectural overview of Oracle Sensor Edge Mobile. Sensor
Edge Mobile runs entirely on a handheld device, and communicates with other
applications or services external to it, or operates entirely offline, collecting data that
can be synchronized with an application at a later time.

Figure 2–3 Overview of Sensor Edge Mobile Architecture

Taking a closer look at the Oracle Sensor Edge Mobile platform reveals that
observations collected by Device Drivers are put in an internal queue until the
Dispatcher can process them. Figure 2–4 illustrates Sensor Edge Mobile components.

Oracle Sensor Edge Mobile Architecture

2-8 Oracle Sensor Edge Server Guide

Figure 2–4 Sensor Edge Mobile Components

The Dispatcher communicates with the application using a local ActiveX control, by
sending characters to the keyboard buffer, or through almost any other
communication method. Only one Dispatcher can be active at a time, but that
Dispatcher may be communicating with multiple client devices and corresponding
drivers.

The Sensor Edge Mobile core components include the Driver Manager, Event
Manager, and the Configuration Manager. Once these components are started, the
main service calls on the Configuration Manager to read the configuration file. The
service then starts the Dispatcher that has been configured, passing in any
configuration parameters that have been specified.

The Driver Manager is responsible for loading and managing the lifecycle of the
drivers. The Driver Manager calls on the Configuration Manager to determine which
drivers need to be loaded, and what parameters to make available to them on
instantiation, and then loads and initializes them.

There is only one Event Manager and one Driver Manager in Oracle Sensor Edge
Mobile. The Driver Manager may load a number of drivers.

Device Driver Support
Oracle Sensor Edge Mobile supports Symbol 9000-G devices for the following
operations:

■ RFID Read

■ RFID Write

■ RFID Kill

■ Barcode Read

Oracle Sensor Edge Mobile supports Intermec IP3 with Color 700 PocketPC attached
for the following operations:

■ RFID Read

■ Barcode Read

Deployment Considerations

Introducing Oracle Sensor Edge Server 2-9

Administering Oracle Sensor Edge Mobile
Oracle Sensor Edge Mobile can be administered through the Oracle Sensor Edge
Server Web interface. You can perform the following administrative tasks:

■ monitor overall service status

■ monitor administrative logs

■ review driver statistics

■ shutdown the service

Sample Code and Demo Applications
Oracle Sensor Edge Mobile includes sample HTML and JavaScript code that shows
examples of the following:

■ reading and writing RFID tags

■ reading Barcodes

■ system status page

■ service administration page

The sample code illustrates how to use the APIs and also demonstrates how Oracle
Sensor Edge Mobile can be run immediately after installation and configuration.

Deployment Considerations
The Oracle Sensor Services architecture addresses the challenges faced in industrial
supply chain environments as well as in specialized multi-sensor environments for
commercial and government applications. To meet these diverse needs, Oracle offers
dual Edge deployment configurations, each with it’s own unique footprint and the
built-in flexibility to support both centralized and federated site deployment scenarios.

The following considerations can help you determine which configuration to choose
for your deployment or pilot.

Review Network Characteristics
In planning a deployment, first identify network bandwidth within the facility as well
as intranet connectivity to other distribution centers and the Data Center. Typical
considerations include the following:

■ In-warehouse connectivity: typically either provided by direct Ethernet or
Wireless 802.xx. Connectivity outages are to be expected.

■ Warehouse to Warehouse or Data Center connectivity: In most cases, this
connection is no more than a single ISDN line.

Identify Data Center Environment
Typical data center considerations include the following:

■ Environment: In-warehouse hardware is typically ruggedized (bar code readers,
system controllers, etc.) and, in some cases, environmental control is limited by
operational requirements (for example, open dock doors).

■ Support staff: Is IT support staff available on site or remotely, or not available?

Deployment Considerations

2-10 Oracle Sensor Edge Server Guide

Review Reader and Sensor Locations
For example, in locating RFID devices, there is typically a trade-off between customer
constraints (pick and pack locations, conveyor lines, etc.) and where the RF survey
indicates that the RFID hardware would work most efficiently and with minimal
interference.

You should also identify the connectivity requirements for the reader and sensor
devices (for example, Serial, Wireless, direct Ethernet, etc.).

Choose Edge Server Locations
Once the previous items are identified, design and document the location of Oracle
Sensor Edge Servers for each data center. The number and location of Edge servers is
typically determined by the following:

■ The number of devices in each location and their interface requirements.

■ Access to power and network connectivity for the Edge server.

■ Environmental considerations (for example, exposure to weather and industrial
equipment).

Oracle Sensor Edge Server and Sensor Data Repository Considerations
If the warehouse or distribution center has a server room and support staff, consider
making the Sensor Data Repository (SDR) infrastructure available locally. Having the
SDR infrastructure available locally can help minimize response times if complex
business decisions need to be made locally and acted upon in real time. Oracle Sensor
Edge Server offers a small footprint in warehouses or distribution centers while
providing full data capture and filtering functionality. For more information on the
SDR, see Chapter 4, "Using the Sensor Data Repository".

Having the SDR infrastructure available locally may also be necessary if network
connectivity from the warehouse back to the central Data Center is minimal and
latency would prevent actionable alerts or decisions on the scanned data.

Replication is typically implemented at the database level to synchronize transactions
with other Data Centers or the central Data Center.

Most customers host their database and application servers at a central data center.
This scenario uses minimal or no support staff at the warehouses or distribution
centers. Only the Sensor Edge Server resides at the warehouse with connectivity back
to the central data center for database and application server features.

Network bandwidth is critical in a centralized configuration and must be weighed
against the processing to be performed on the filtered data. Data filtering, exceptions,
and basic triggers can be performed locally. Complex rule-sets, product correlation,
and cross-type queries can all be done against the remote instance and decisions
returned to the local warehouse system.

If Control System integration is required, local processing filters or the SDR should be
hosted locally to provide the features and performance required for automated
warehouse operations.

Managing Oracle Sensor Edge Server 3-1

3
Managing Oracle Sensor Edge Server

This chapter, through the following sections, describes how to manage and monitor an
Oracle Sensor Edge Server instance using the Sensor Edge Server Console (the SES
Console).

■ "Overview of Oracle Sensor Edge Services Management"

■ "Managing the Oracle Sensor Edge Server Instance"

■ "Monitoring the Performance of the Oracle Sensor Edge Server Instance"

■ "Setting the General Information for the Oracle Sensor Edge Server Instance"

■ "Setting the Dispatcher for the Oracle Sensor Edge Server Instance"

■ "Viewing Dispatchers, Drivers, and Filters"

■ "Setting the Devices and Filters Used by the Oracle Sensor Edge Server"

■ "Starting and Stopping the Oracle Sensor Edge Server Instance"

■ "Starting and Stopping an Individual Device"

■ "Managing Filters"

■ "Monitoring the Event Data"

■ "Viewing Unprocessed Event Data"

■ "Viewing Log Information"

■ "Viewing Processed Event Data"

■ "Adding Extensions to the Oracle Sensor Edge Server Instance"

Overview of Oracle Sensor Edge Services Management
The Oracle Sensor Edge Server enables enterprises to incorporate information from
sensors into their I.T. infrastructure and business applications by receiving event data
from sensor devices or applications and then normalizing this data by putting it in a
common data format and then stripping it of extraneous information using filters. The
event data, which is now a normalized event message, is then sent to edge clients
using a dispatcher. Depending on the configuration of the Oracle Sensor Edge Server's
dispatcher, an Oracle Sensor Edge Server client receives event messages through Web
Services, HTTP, EPC PML, ALE Web Services, or database streams. The payload of the
message is always an event.

The SES Console enables you to manage and monitor the Oracle Sensor Edge Server
instance. Table 3–1 describes the tabs of the SES Console and the tasks that they enable.

Managing the Oracle Sensor Edge Server Instance

3-2 Oracle Sensor Edge Server Guide

Managing the Oracle Sensor Edge Server Instance
After you log into the SES Console using the OC4J administrator name and password,
The console defaults to the Configuration tab, which displays the Main page. This page
provides an overall view of the current Oracle Sensor Edge Server instance usage, its
basic configuration and its current dispatcher. You can edit the basic configuration,
such as the Server and Site Name parameters from this page, as well as select another
dispatcher method. For more information on the basic configuration for an Oracle
Edge Sensor Server Instance, see "Setting the General Information for the Oracle
Sensor Edge Server Instance".

Table 3–1 Tasks Enabled by the SES Console

Tab Tasks

Main Tasks include:

■ Setting the Dispatcher for the Oracle Sensor Edge Server
Instance

■ Setting the Devices and Filters Used by the Oracle Sensor
Edge Server

■ Starting and Stopping an Individual Device

■ Restarting an Oracle Sensor Edge Server Instance Using the
OracleAS Enterprise Manager

■ Accessing Other Oracle Sensor Edge Server Instances

Monitor Events Viewing Unprocessed Event Data

View Log Viewing Log Information

Event Reports Tasks include:

■ Searching for Events by Device Name

■ Searching for Events by Tag ID

■ Creating Advanced Searches

Note: You must first start OC4J. See "Starting and Stopping the
Oracle Sensor Edge Server Instance".

Managing the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-3

Figure 3–1 The Main Page (Partial View)

 See "Setting the General Information for the Oracle Sensor Edge Server Instance" for
more information on the basic configuration of the Oracle Sensor Edge Server instance.
For more information on dispatchers, see "Configuring Devices, Filter Instances, and
Dispatchers".

The navigation tree (Figure 3–2), which displays on each page of the SES Console,
enables you to both configure the current Oracle Sensor Edge Server instance and the
extensions (filters, drivers, and dispatchers) in the repository. The tree organizes the
configuration pages of the current Oracle Sensor Edge Server as a hierarchy, with the
name of the current Oracle Sensor Edge Server as the top node. Clicking the plus (+)
sign or the minus sign (-) next to a node enables you to display or hide items. You can
modify the underlined items of the tree (such as Groups in Figure 3–2). Clicking an
underlined item enables you to access a properties page, which enables you to modify
and manage the selected item. Other items (that is, those that are not underlined), are
titles and cannot be modified.

Figure 3–2 The Navigation Tree

Accessing Other Oracle Sensor Edge Server Instances

3-4 Oracle Sensor Edge Server Guide

The pages accessed through the tree enable you to perform the following tasks:

■ Monitoring the Performance of the Oracle Sensor Edge Server Instance

■ Setting the General Information for the Oracle Sensor Edge Server Instance

■ Viewing Dispatchers, Drivers, and Filters

■ Setting the Devices and Filters Used by the Oracle Sensor Edge Server

■ Starting and Stopping an Individual Device

Accessing Other Oracle Sensor Edge Server Instances
The SES Console enables you to access other Oracle Sensor Edge Server instances that
are connected to the same Sensor Data Repository using the Edge Server Instance List
page (Figure 3–3), which you access using the other servers icon (Figure 3–4).

Figure 3–3 The Edge Server Instance List

The page’s Edge Server Instance List table lists the entries for the other Oracle Sensor
Edge Servers that are connected to the same Sensor Data Repository. These entries
enable you to identify and access the other server instances. Using this table, you can
both access another Oracle Sensor Server instance, and view the running status of
other Oracle Sensor Server instances. In addition you can edit and delete the entries
for other Oracle Sensor Server instances.

To access another Oracle Sensor Server instance, click the name of the instance in the
Server Name column of the Edge Server Instance List table and then enter the OC4J
administrator name and password in the login page that appears.

Clicking the table’s notepad and trash can icons enable you to edit or delete an entry
for a selected Oracle Sensor Edge Server instance, respectively. The fields in the page’s
New Server Instance section enable you create an entry for an Oracle Sensor Edge

Accessing Other Oracle Sensor Edge Server Instances

Managing Oracle Sensor Edge Server 3-5

Server instance, which is comprised of the instance’s name and its location as
described in "Creating an Entry for an Oracle Sensor Edge Server Instance".

Figure 3–4 The Other Servers Icon

Creating an Entry for an Oracle Sensor Edge Server Instance
To create an entry for an Oracle Sensor Edge Server instance:

1. Click the other servers icon (Figure 3–4). The Edge Server Instance List page appears
(Figure 3–3), which includes a table listing the Oracle Sensor Edge Server instances
that are connected to the same Sensor Data Repository.

2. Enter a name for the Oracle Sensor Edge Server instance.

3. Enter the URL that points to the Oracle Sensor Edge Server instance. Enter the
URL in the following format:

http://<hostname/ip address>:<port>/edge

The <port> value is the port on which Oracle Application Server Containers for
J2EE (OC4J) listens, which is located on the machine running the Oracle Sensor
Edge Server instance. For a 10.1.3 OC4J instance, find the port value by navigating
to oracle_home/opmn/bin and then running the following command:

opmnctl status - l

For a 10.1.2 OC4J instance, the OC4J listener port is generally 8888. For more
information on OC4J 10.1.2, see Oracle Application Server Containers for J2EE User’s
Guide and "Installing OC4J".

4. Click Create Entry. The new Oracle Sensor Edge Server instance appears in the
Edge Server Instance List table.

Editing an Entry for an Oracle Sensor Edge Server Instance
To edit an entry, first click the notepad icon for the selected Oracle Sensor Edge Server
entry. The editing page then appears, which with its Server Name and URL fields
populated with the information set for the selected entry. Perform either (or both) of
the following:

■ Enter a new name for the entry.

■ Change the URL for the entry.

Click Update Entry to commit the changes, or click Cancel to set the entry back to its
original state.

Note: Because live Oracle Sensor Edge Server instances create their
own entries once they are started, you are not required to create an
entry for an Oracle Sensor Edge Server instance.

Monitoring the Performance of the Oracle Sensor Edge Server Instance

3-6 Oracle Sensor Edge Server Guide

Monitoring the Performance of the Oracle Sensor Edge Server Instance
The Usage Statistics section of the Sensor Edge Server Instance page (Figure 3–1) lists the
following performance metrics for the Oracle Sensor Edge Server Instance:

■ Events Received -- The number of inbound instruction events received by the
Oracle Sensor Edge Server instance. For more information on inbound events, see
"Monitoring the Event Data".

■ Events Generated -- The number of outbound events sent from the Oracle Sensor
Edge Server instance. For more information on outbound events, see "Monitoring
the Event Data".

■ Events Sent -- The total number of events dispatched by the Oracle Sensor Edge
Server instance.

■ Queued Events -- The number of events that are currently waiting in the queue.

Clearing the Queue of the Event Data
Clicking Clear Queue enables you to remove all of the queued events in the system
(and sets the number displayed for Queued Events to 0). Use this function to purge old,
backed-up event messages before setting up and starting a dispatcher or before
restarting the Oracle Sensor Edge Server instance.

Setting the General Information for the Oracle Sensor Edge Server
Instance

The General Settings section of the Main page enables you to edit the basic information
for the Oracle Sensor Edge Server instance (described in Table 3–2). Click Save
Changes to commit the updates to the Oracle Sensor Edge Server.

WARNING: Once you click Clear Queue, you cannot recover
purged event data.

Table 3–2 The General Settings

Parameter Description

Server Name A name for the Oracle Sensor Edge Server instance.

Site Name The site name for the Oracle Sensor Edge Server. This parameter
is a grouping mechanism to logically distinguish between Oracle
Sensor Edge Server instances.

Setting the Dispatcher for the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-7

Setting the Dispatcher for the Oracle Sensor Edge Server Instance
Clicking the Change Dispatcher in the Main page (Figure 3–5), enables you to change
the dispatcher used by the Oracle Sensor Edge Server. See also "Managing Dispatchers
for an Oracle Sensor Edge Server Instance".

Internal Queue Event messages sent from readers (or any device) are enqueued
into the internal queue. A dispatcher takes events from this
queue and then dispatches them. For example, the Streams
Dispatcher dispatches the event messages from this queue to a
database.

The following options enable you to protect data by controlling
how event messages are held before they are dispatched and
safeguard event data.

. Options include:

■ Persist -- Selecting the Persist mode stores event messages to
a disk where they are then gathered by a dispatcher. Storing
these event messages to a disk prevents them from
becoming lost if the Oracle Sensor Edge Server instance
crashes.

■ Memory -- Select this option if either the database or the
connection is slow to ensure that event messages do not
back up when the devices generate them faster than they
can be dispatched. When you select Memory, the Oracle
Sensor Edge Server instance holds these messages in
memory which creates less overhead because it does not
write the message to a disk; however, the event messages
are lost if the Oracle Sensor Edge Server instance crashes.

Log Level A list of the following error logging options that set the level of
severity for the messages written to the log file:

■ Error

■ Warning

■ Notify

■ Monitor

■ Debug

The error messages written to the log file reflect not only the log
level that you select, but also the log levels that are of greater
severity than the log level that you select. The level you select
affects the data that displays in the View Log tab. See also
"Viewing Log Information".

Use Archive Selecting this option enables the events to be saved to the Sensor
Data Repository.

Shutdown Timeout Enter the time (in milliseconds) that the Oracle Sensor Edge
Server waits before shutting down threads that are not
functioning properly.

Table 3–2 (Cont.) The General Settings

Parameter Description

Viewing Dispatchers, Drivers, and Filters

3-8 Oracle Sensor Edge Server Guide

Figure 3–5 Changing Dispatchers

From the Search and Select page (Figure 3–6) that appears, you can select an edge
dispatcher to send event messages using such means as remote Web Services, Oracle
Streams, or to a client application using HTTP.

Figure 3–6 Selecting a New Dispatcher

An Oracle Sensor Edge Server instance uses only one dispatcher at a time. After you
assign a dispatcher as current, the Oracle Sensor Edge Server instance must be
restarted. See "Starting and Stopping the Oracle Sensor Edge Server Instance".

Viewing Dispatchers, Drivers, and Filters
Expanding the Available Extensions folder in the tree (Figure 3–7) displays the
dispatchers, filters, and drivers that are available to the Oracle Sensor Edge Server
instance. Dispatchers forward events sent to the Oracle Sensor Edge Server instance to
either a dispatching layer or directly to an application. Drivers enable communication
between a device (such as reader) and the Oracle Sensor Edge Server instance and the
filters, which generally either remove unwanted events (such as duplicates) or both
remove and translate one or more events into a high-level event.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

Managing Oracle Sensor Edge Server 3-9

Figure 3–7 The Available Extensions Folder

Clicking an extension, such as a driver, displays the default properties of the selected
driver. The values set for the parameters are read-only and do not represent the
current configuration of these objects. You cannot configure them because the Oracle
Sensor Edge Server instance does not use live instances of the extensions. Instead, the
Oracle Sensor Edge Server instance reads and cleanses event data using instances of
the of the filters and drivers listed in the Extensions folder. To create these filter
instances and driver instances (known as devices), you must create a device group. See
"Configuring Devices, Filter Instances, and Dispatchers" for more information on
creating device groups. See "Setting the Dispatcher for the Oracle Sensor Edge Server
Instance" for more information on setting the dispatcher for the Sensor Edge Server.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server
To enable the Oracle Edge Sensor Server instance to receive, filter and dispatch event
data, you must first create a device group, a logical grouping of devices (the instances
of drivers) and the filters associated with these devices. An Oracle Sensor Edge Server
instance can have one or many device groups instantiated. Each device group is
responsible for all of the devices (and their associated filters) included within it.

Device groups make one or more devices into a logical device or "group." You use
device groups to associate devices for processing as a single streams of events. For
example, If you create device group called Warehouse Exits consisting of all of the
devices placed at all of the exits of a warehouse (and if needed, add a filter instance to
this group), then all of the generated events are viewed as originating from one logical
device rather than from several devices.

You can group devices in terms of management if you want to treat them as a logical
unit to manage (such as in the case of the aforementioned Warehouse Exits device
group), or you can group them by the type of filtering they perform (as illustrated in
Figure 3–8). For example, if you group devices by cross-reader filtering, then you
create a group of related devices and then attach filters to that group. For more
information, see "Managing the Filter Instances for a Device or Device Group"

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

3-10 Oracle Sensor Edge Server Guide

Figure 3–8 Reader Devices Grouped by Filter

Viewing the Device Groups of the Oracle Sensor Edge Server
Clicking the Groups folder invokes the Group Management page (Figure 3–9), which lists
the device groups and their respective filters. In addition, the page lists the running
status of the devices for each group. This page also enables you to create a new device
group (as described in "Creating a Device Group"). To view the configuration of a
specific device group, expand the Groups folder and then select the appropriate node
to invoke the Configure Group page for the selected device group. The default device
group is called Unassigned and is a special reserved group. For more information on
Configure Group page, see "Editing a Device Group".

Figure 3–9 Configuring a Device Group

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

Managing Oracle Sensor Edge Server 3-11

Creating a Device Group
Creating a device group is the first step to connecting the Oracle Sensor Edge Server
instance to devices and filters. Once you create a device group, you populate it with
devices (the instances of the available drivers) and then attach filter instances to the
individual devices (or to the entire device group). To create a new device group:

1. In the Group Management page, enter a name for the device group in the Group
Name field and then click Create New Group. The Configure Group page appears
for the new device group.

Figure 3–10 The Configure Group page

2. Create a device (a driver instance) for the device group by clicking Add new
device. The Search and Select page appears, listing the drivers in the repository.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

3-12 Oracle Sensor Edge Server Guide

Figure 3–11 Selecting a Driver for the Device

a. Select a driver for the device. Table 3–3 describes the drivers supported by
Oracle Sensor Edge Server. For descriptions of the these drivers, the
configuration parameters required to create devices from them, and the
models supported by these drivers, see Chapter 6, "Configuring Devices, Filter
Instances, and Dispatchers".

Tip: Locate a driver by entering the name of the driver (or part of the
driver name) in the Search field and then by clicking Go.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

Managing Oracle Sensor Edge Server 3-13

b. If needed, enter a name for the device in the New Device Name field. If you do
not assign a name to the device, then Oracle Sensor Edge Server assigns a
default name.

c. Click Select. The Configure Group page reappears, listing the device in the
Devices section. The navigation tree also displays the device.

Table 3–3 Supported Drivers

Readers
Indicators, Notification and
Display Printers Other

The drivers that support readers
include:

Alien Reader Driver (See
"Configuring Alien Reader
Driver-Based Devices".)

BarcodeDriver (See "Configuring
BarcodeDriver-Based Devices".)

Intermec BRI Driver (See
"Configuring Intermec BRI
Driver-Supported Devices".)

Intermec Reader Driver (See
"Configuring Intermec Reader
Driver-Based Devices".)

Matrics Driver (See "Configuring
Matrics Driver-Based Devices".)

Samsys Driver (See "Configuring
Samsys Driver-Based Device".)

Tyco Reader Driver (See
"Configuring Tyco Reader
Driver-Based Devices".)

The drivers that support
notification and display
include:

AnimationDriver (See
"Configuring an Instance of
the AnimationDriver".)

ConsoleDriver (See
"Configuring an Instance of
the ConsoleDriver".)

Edge Simulator Driver (See
"Configuring Edge Simulator
Driver-Based Devices".)

PatliteDriver (See
"Configuring
PatliteDriver-Based Devices".)

Prolite Driver (See
"Configuring Prolite
Driver-Based Devices".)

LpmlDriver (See
"Configuring
LpmlDriver-Based
Devices".)

Edge Echo Driver
(See "Configuring
Edge Echo
Driver-Based
Instances".)

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

3-14 Oracle Sensor Edge Server Guide

Figure 3–12 Devices Added to a Device Group

3. Configure the device by first selecting it from the tree. The Device Configuration
page appears (Figure 3–13), displaying the parameters specific to the driver.

a. Define the parameters. For more information on the driver parameters, see
"Configuring Devices".

b. Click Save Changes.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

Managing Oracle Sensor Edge Server 3-15

Figure 3–13 Configuring a Device for a Device Group

4. Add filters (filter instances) to the device by clicking Add new filter. The Search
and Select page appears (Figure 3–14), listing the filters in the repository. Table 3–5
lists the Oracle Edge Sensor Server’s seeded device- and group-level filters.

Figure 3–14 Selecting a Filter

a. Select a filter instance for the device.

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

3-16 Oracle Sensor Edge Server Guide

b. If needed, enter a name for the device in the New Filter Name field. If you do
not assign a name to the filter instance, then Oracle Sensor Edge Server assigns
a default name.

c. Click Select. The selected filter appears in the Configured Filters section of the
device’s configuration page (Figure 3–15) and in the tree under the device.

Figure 3–15 Adding Filter Instances to a Device

5. Configure the filter instance by first selecting the filter instance from the table in
the Configured Filters section of the Device Configuration page, or from the tree. The
Filter Configuration page appears (Figure 3–16), displaying the parameters of the
selected filter.

a. If needed, rename the filter instance.

b. Define the filter parameters. For more information on filter parameters, see
"Configuring Filter Instances".

c. Click Save Changes.

Tip: Locate a filter by entering the name of the filter (or part of the
filter name) in the Search field and then by clicking Go.

Note: You must stop and then restart the Oracle Sensor Edge Server
after you create, edit or delete a device group. For more information,
see "Starting and Stopping the Oracle Sensor Edge Server Instance".

Setting the Devices and Filters Used by the Oracle Sensor Edge Server

Managing Oracle Sensor Edge Server 3-17

Figure 3–16 Creating a Filter Instance for a Device

Adding a Filter to a Device Group
If needed, assign a filter to the device group as follows:

1. Select the device group from the tree. The Configure Group page appears.

2. Click Add new filter. The Search and Select page appears (Figure 3–14), listing the
filters in the repository. Table 3–5 lists the device- and group-level filters of the
Oracle Edge Sensor Server.

3. Select a filter instance for the device group.

4. If needed, enter a name for the device in the New Filter Name field. If you do not
assign a name to the filter instance, then Oracle Sensor Edge Server assigns a
default name.

5. Click Select. The filter appears in the Configured Filters section of the Configure
Group page and in the tree under Group Filters for the selected device group.

6. Configure the filter instance by first selecting the filter instance from the table in
the Configured Filters section of the Configure Group page, or from the tree. The
Filter Configuration page appears (Figure 3–16), displaying the parameters of the
selected filter.

7. If needed, rename the filter instance.

8. Define the filter parameters. For more information on filter parameters, see
"Configuring Filter Instances".

9. Click Save Changes.

Tip: Locate a filter by entering the name of the filter (or part of the
filter name) in the Search field and then by clicking Go.

Starting and Stopping the Oracle Sensor Edge Server Instance

3-18 Oracle Sensor Edge Server Guide

Editing a Device Group
The Configure Group page (Figure 3–9) enables you to edit the properties of a device
group. This page, which appears when you click a device group in the navigation tree
(Figure 3–2), enables you to do the following tasks:

■ Renaming a Device Group

■ Updating the Devices and Filters Used by a Device Group

■ Starting and Stopping the Devices Assigned to a Device Group

■ Deleting a Device Group

Renaming a Device Group
To rename a device group:

1. Enter a new name for the device group in the Group Name field.

2. Click Rename Group. The new group name appears in the tree.

Updating the Devices and Filters Used by a Device Group
You can add devices and filter instances to a device group using the Add new device
and Add new filter buttons described in "Creating a Device Group". Once you
complete the device and filter instance assignments, click Update.

Starting and Stopping the Devices Assigned to a Device Group
You must stop and then start device groups whenever you perform such tasks as
adding new devices or filter instances. You start and stop the devices belonging to a
device group using the Start all devices and Stop all devices buttons.

Deleting a Device Group
The Delete Group button enables you to remove a device group from the Oracle
Sensor Edge Server. When you delete a device group, you also remove all of the
devices and filter instances that have been configured for the group. Once you delete a
device group, you must re-start entire Oracle Sensor Edge Server for the change to
take effect.

Starting and Stopping the Oracle Sensor Edge Server Instance
Once you have modified an Oracle Sensor Edge Server instance, you must restart the
Oracle Sensor Edge Server to commit the changes. You can stop and restart the Oracle
Sensor Edge Server using either of the following methods:

■ Stopping and Starting an Oracle Sensor Edge Server Instance Using opmnctl

■ Restarting an Oracle Sensor Edge Server Instance Using the OracleAS Enterprise
Manager

Stopping and Starting an Oracle Sensor Edge Server Instance Using opmnctl
After you change the Oracle Sensor Edge Server’s general settings, its dispatcher, or
edit any device group, you can stop and restart the Oracle Sensor Edge Server using
the opmnctl shutdown and opmnctl startall commands. For more
information, see Oracle Process Manager and Notification Server Administrator's Guide.

Starting and Stopping the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-19

Restarting an Oracle Sensor Edge Server Instance Using the OracleAS Enterprise
Manager

When you change anything in an Oracle Sensor Edge Server instance, the SES Console
displays a message (Figure 3–17) notifying you to restart the Oracle Sensor Edge
Server instance using OracleAS Enterprise Manager. This message includes a link to
OracleAS Enterprise Manager.

Figure 3–17 The Restart Oracle Enterprise Manager Message

To restart an Oracle Sensor Edge Server instance:

1. Click the Enterprise Manager link in the message (Figure 3–17). The login page for
OracleAS Enterprise Manager appears.

2. After you enter the OC4J user name and password, the cluster topology page
appears.

3. Navigate to the Home page (Figure 3–18).

4. Click Applications.

5. Select edge.

6. Click Restart.

Figure 3–18 The Home Page of OracleAS Enterprise Manager

Note: To restart OC4J 10.1.2, stop OC4J through the SES Console and
then start OC4J again using Java_HOME/bin/java -jar
oc4j.jar.

Starting and Stopping an Individual Device

3-20 Oracle Sensor Edge Server Guide

Starting and Stopping an Individual Device
You must first stop a device before you update it. You can stop or start a device from
the Device Configuration page (Figure 3–13) using the Start Device and Stop Device
buttons. The page also displays the status of the device. The status messages
(described in Table 3–4) describe the current state of the driver, or its state before it
crashed.

Managing Filters
Filters can be attached to either a specific device or to a device group. Some filters,
such as the Cross-Reader Redundant filter, are written as group-level filters and can
only be attached to a device group. A device group filter provides filtering of events
before they are delivered to an edge device. While some filters are written only for
device groups, others are written only for device-level filtering and only function if
they are attached to a specific device.

The Configured Filters tables of the Device Configuration (Figure 3–12) and Configure
Group (Figure 3–15) pages enable you to add, delete, or reorder the filter instances. The
add new filter button enables you to add additional filter instances to a device or to a
device group. For more information, see "Creating a Device Group" and "Adding a
Filter to a Device Group". Clicking the table’s trash can icon enables you to remove a
filter instance from a device or device group. The table’s arrows enable you to
prioritize the filter instances.

Table 3–4 Device Status Messages

Status Definition

Instantiated The device successfully initialized itself (that is, it passed the
doInit() entry point.

Initialization Failed The initialization failed; the device is down (that is, the
doInit() method failed).

Start The device is started (it just entered the doStart()method).

Start Failed The start failed; the start() method failed.

Stop The device has stopped.

Stop Failed The device failed to stop or clean up resources.

Finished The device has completed processing. This is used by a device
that has a fixed set of tasks and usually stops by itself when it
completes these tasks, such as the Simulator when it finishes
with the simulator file.

Connection The device is attempting to connect.

Connection Failed The device failed to connect.

Setup The device is setting up resources and connections.

Setup Failed The device failed during setup.

Run The device is running.

Run Failed The device failed while running.

Disabled The device has been disabled.

Managing Filters

Managing Oracle Sensor Edge Server 3-21

Prioritizing Filter Instances
The order of filter instances affects the efficacy of the data filtering. For example, if a
device or device group is assigned a group filter, which groups IDs into an array of
events and treats them as one item and a tag filter the filters out the events for a
specific tag, TagXYZ, then applying the group filter before the tag filter results in the
Oracle Sensor Edge Server receiving events grouped into chunks based on when they
were detected, but only after the tag filter has strained out the events for TagXYZ.
Reversing the order of the filters (that is, putting the group filter before the tag filter)
would prevent the tag filter from filtering out anything, because it would see only the
group events and not those for TagXYZ.

Using the arrows in the Configured Filters table (Figure 3–15), you can arrange the filter
instances by selecting a filter instance and then moving it up or down using the
arrows.

Managing the Filter Instances for a Device or Device Group
A filter instance is an instantiated object of a filter. Whenever a filter is applied to a
device (or to a device group), a filter instance is created, enabling the device or device
group to use the filter.

Although you can develop your own filters and then upload them (see "Adding
Extensions to the Oracle Sensor Edge Server Instance"), Oracle Sensor Edge Server
ships with several filters (described in Table 3–5).

Table 3–5 The Pre-Seeded Filters of the Oracle Sensor Edge Server

Filter Name Function

Applied to Device
Group? (Supports
Group-Level Filtering)

Applied to Devices?
(Supports
Device-Level Filtering)

Check Tag ID Filter A diagnostic tool that checks if a
device is reading tags during a
specified interval. See also
"Configuring the Check Tag ID
Filter".

No Yes

Cross-Reader Redundant
Filter

Blocks redundant events that are
sent from the devices belonging
to a device group. See also
"Using the Cross-Reader
Redundant Filter".

Yes No

Debug Filter Tracks events passing through
the system and then writes these
events to a log file. See also
"Using the Debug Filter".

No Yes

JavaScript Filter Enables you to write filter logic
in a scripting language. Changes
made to the source scripts are
loaded dynamically, thus
eliminating the need to restart
the server or any components.
This filter relies on an external
scripting engine that executes the
script, such as Mozilla Rhino
(http://www.mozilla.org/r
hino/). See also "Configuring
the JavaScript Filter".

Yes Yes

Managing Filters

3-22 Oracle Sensor Edge Server Guide

Movement Filter Smooths out movement tracking
using Real Time Location
System (RTLS) observations by
averaging out spikes or sudden
motion changes from errors or
interference. See also
"Configuring the Movement
Filter".

No Yes

Pallet Pass-Thru Filter Enables you to see all of the tag
IDs for items held in a container
or on a pallet. See also
"Configuring the Pallet Pass Thru
Filter".

No Yes

Pallet Shelf Filter Sends events that signal new
containers or pallets entering or
exiting the field or gateway of a
device reader. See also
"Configuring the Pallet Shelf
Filter".

No Yes

Pass Filter Notifies applications that a tag
has passed through a device’s
gateway or range or
transmission. This filter also
blocks events, so that only one
event, rather than duplicate
events, are generated when a tag
is detected by a device. See also
"Configuring the Pass Filter".

No Yes

Table 3–5 (Cont.) The Pre-Seeded Filters of the Oracle Sensor Edge Server

Filter Name Function

Applied to Device
Group? (Supports
Group-Level Filtering)

Applied to Devices?
(Supports
Device-Level Filtering)

Monitoring the Event Data

Managing Oracle Sensor Edge Server 3-23

Monitoring the Event Data
Devices and filter instances communicate using events, messages that describe what
has occurred. For example, a device informs other components that it has started by
sending such a message. These event messages are specific to each type of device or
filter instance. Within the Oracle Sensor Edge Server, any device can send or receive
an event directly. In general, the event flow between the components follows two
directions:

■ Inbound -- The devices and filter instances send events to the current dispatcher.

■ Outbound -- Applications send events to the devices and filter instances. These
events are sometimes known as instruction events, since they often send
commands to a device.

Viewing Event Data
The SES Console enables you to view the health of the Oracle Sensor Edge Server by
viewing the event data that displays in the Monitor Events and Events Reports tab. The
Monitor Events tab (Figure 3–21) enables you to view the data currently in the queue,
while the Events Reports tab enables you to view the data that has been stored in the
Sensor Data Repository.

Table 3–6 describes the inbound and outbound fields that display in the Monitor Events
and Events Reports tabs.

Polygon Filter Filters out all movement
observations reported by Real
Time Location System (RTLS)
devices and generates events
only if the tag moves in or out of
any predefined polygons. The
polygons are defined using a set
of x, y coordinates that define the
vertices and parenthesis. For
example: ((x,y), (x,y), ...), (....),
..... See also "Configuring the
Polygon Filter".

No Yes

Regex Filter Performs a regular expression
search that looks for tags to
either remove or to allow to pass
through the streams. This filter
enables you to define a set of
patterns for the filter to search
for in any of the event’s fields.
When the filter finds matches to
the search criteria, it allows the
event to pass through the system;
if it finds no matches, it filters
out the event. See also
"Configuring the Regex Filter".

Yes Yes

Shelf Filter Signals that an item has entered,
or exited the field or gateway of
a device reader. See also
"Configuring the Shelf Filter".

No Yes

Table 3–5 (Cont.) The Pre-Seeded Filters of the Oracle Sensor Edge Server

Filter Name Function

Applied to Device
Group? (Supports
Group-Level Filtering)

Applied to Devices?
(Supports
Device-Level Filtering)

Monitoring the Event Data

3-24 Oracle Sensor Edge Server Guide

Viewing an Individual Event
The SES console enables you to view further information about an individual inbound,
or outbound event, such as its Event Type, Subtype and Correlation ID fields. To access
this information, click the Details icon.

Figure 3–19 The Details Icon

The Event Details page appears, which displays the Metadata and Payload information
for a selected event.

Figure 3–20 The Event Details Page

Metadata
The Metadata section of the Event Details screen lists the following routing information
and information related to the origin of the event:

■ Event ID

The meaning of Event ID differs in terms of unprocessed event data and event
data that has been stored in the Sensor Data Repository. In terms of unprocessed
data (that is, the data viewed from a detail page from the Monitor Reports tab
which is depicted in Figure 3–21), Event ID refers to the tag ID that triggered the
event. When you view the event data that has been stored in the Sensor Data

Table 3–6 inbound and Outbound Event Data

Topic Description

Type A text representation of the Event Type. Types include RFID
Observation, RTLS Observation, and Temperature.

Description A text representation of the Event Subtype.

Device Name The name of the device that generated the event

Data The payload of the event.

Time The time that the event was generated.

Monitoring the Event Data

Managing Oracle Sensor Edge Server 3-25

Repository which displays in the Event Report pages (Figure 3–23, Figure 3–24, and
Figure 3–25), the Event ID field uniquely identifies an event.

■ Device Name

The name of the extension (device or filter instance) or application that generates
the event.

■ Source Name

This field identifies the originator of the event. This is an optional field, one set by
the client.

■ Site Name

The site that originally generated the message.

■ Type

The number value that corresponds to the type of event generated. Event types are
grouped as follows:

– 0 - 99: System Messages

– 100 - 199: Generic Instructions to Devices

– 200 - 299: Observations from Devices

– 500 - 599 Custom messages (not registered)

Table 3–7 describes the registered event types that display in the Type field.

■ Subtype

The number value that corresponds to the subtype of event. Table 3–7 describes
the values that display in the Subtype field.

■ Description

A text description of the Event Type and its Event Subtype. For example, if the
event subtype is 200 (RFID Observation) and its subtype is 2 (tag exits field), then the
Description field displays RFID Outfield. If the Event Type is 200 and the Event
Subtype is 9 (that is, no explicit message), then the Description field displays the
event type 200 message (RFID Observation) followed by the display of the Event
Subtype as RFID Observation (subtype 9). Table 3–7 notes the text representations
that display in the Description field.

■ Correlation ID

A unique ID that identifies this thread of events. The correlation ID is used for
message responses to a particular client (such as checking if a device functions).
Any message response sent back by the client has the same ID. This ID, which is
set by the client, correlates the sent event message to the received event message
so that it cannot be used as a parameter in the device. This is an optional field.

Monitoring the Event Data

3-26 Oracle Sensor Edge Server Guide

Table 3–7 Registered Event Types and Related Subtypes

Event Type Description

Type Description (As
displayed in the Event
reports) Subtypes

0 Unknown; a value of 0
represents a bad event or a
system internal event.

System event N/A

1 Instructions or commands;
message events.

Instruc return code Subtypes include:

■ 1 and 2 -- Error message

■ 3 -- Function not supported

■ 4 -- Oracle Sensor Edge Server
startup message

■ 5 -- Oracle Sensor Edge Server
shutdown message.

■ 10 -- Notification message

100 General instructions. Instruction Subtypes include:

■ 0 -- Get device status.

■ 1 -- Start a device.

■ 2 -- Stop a device.

101 RFID instructions. Instruc write Subtypes include:

■ 0 -- Write to a tag.

■ 1 -- Destroy a tag.

■ 2 -- Get field strength.

■ 3 -- Read tag payload.

102 Printer instructions. Instruc print Subtypes include:

■ 1 -- Print using LPML. This subtype
displays as Instr print label in the
Event Details page.

■ 2 -- Print raw (direct payload). This
subtype displays as Instr print raw in
the Events Details page.

103 Lightstack instructions. Indicator Subtypes include:

■ 1 -- Lightstack XML command. This
subtype displays as Indicator play in
the Event Details page.

■ 2 -- Displays as Indicator response in
the Event Details page.

■ 3 -- Displays as Indicator clear in the
Event Details page.

Monitoring the Event Data

Managing Oracle Sensor Edge Server 3-27

200 RFID RFID observation Subtypes include:

■ 0 -- Normal.

■ 1 -- Tag enters field. Displays as
RFID observation in the Event Details
page.

■ 2 -- Tag exits field.Displays as RFID
outfield in the Event Details page.

■ 3 -- Tag pass through field. Displays
as RFID pass in the Event Details
page.

■ 4 -- Tag group enters field. Displays
as RFID Pallet in field in the Event
Details page.

■ 5 -- Tag group exits field. Displays
as RFID pallet out field in the Event
Details page.

■ 6 -- Tag group pass through field.
Displays as RFID pallet pass in the
Event Details page.

■ 7 -- Container event. Displays as
RFID Container in the Event Details
page.

201 RTLS RTLS Subtypes include:

■ 1 -- Displays as RTLS observation in
the Event Details page.

■ 2 -- Displays as RTLS in polygon in
the Event Details page.

■ 3 -- Displays as RTLS out polygon in
the Event Details page.

■ 4 -- Displays as RTLS moved in the
Event Details page.

202 Physical contact Physical contact 1 -- Displays as physical disconnect in the
Event Details page.

203 Temperature Temperature Subtypes include:

■ 1 -- Displays as Temperature reading
in the Event Details page.

■ 2 -- Displays as Temperature change
in the Event Details page.

204 Humidity Humidity Subtypes include:

■ 1 -- Displays as Humidity reading in
the Event Details page.

■ 2 -- Displays as Humidity change in
the Event Details page.

205 Weight Weight 1 -- Displays as Weight reading in the
Event Details page.

206 Tampering Tampering 1 -- Displays as Tampered with in the
Event Details page.

Table 3–7 (Cont.) Registered Event Types and Related Subtypes

Event Type Description

Type Description (As
displayed in the Event
reports) Subtypes

Viewing Unprocessed Event Data

3-28 Oracle Sensor Edge Server Guide

Payload
The Payload section of the Event Details page displays the following fields:

■ Tag ID

The identity of the item described in this event. The text value of this field
identifies a tag (that is, a read or target) to an event instruction.

■ Data

The tag data (or payload of the event). This is an optional field.

■ Timestamp

The date and time when the event was generated.

Viewing Unprocessed Event Data
The SES Console enables you to view this event data in real-time from its Monitor
Events tab. Clicking the Monitor Events tab displays the Monitor Events page
(Figure 3–21).

207 Audio Audio 1 -- Displays as Audio instruction in the
Event Details page.

208 Message Board Message board N/A

209 PLC Automation N/A

210 Printer Response Printer Response 2 -- Print Successful. Displays as Print
Successful in the Event Details page.

211 Hazardous Sensors Hazardous N/A

212 Barcode Barcode 1 -- Displays a Barcode read in the Event
Details page.

213 Radiation Radiation N/A

Table 3–7 (Cont.) Registered Event Types and Related Subtypes

Event Type Description

Type Description (As
displayed in the Event
reports) Subtypes

Viewing Log Information

Managing Oracle Sensor Edge Server 3-29

Figure 3–21 The Monitor Events Page

The Monitor Event page enables you to view all of the inbound event data and the
outbound event data that passes through the queue. The event data displayed on this
page has not been processed; it has not been sent to the Sensor Data Repository.

Viewing Log Information
The View Log page (Figure 3–22), which you access from the View Log tab, displays data
written to the log according to the severity level selected from the Log Level list located
on the Main page (Figure 3–1). For example, if you selected Error from the Main page,
then the View Log page only displays error-level messages; if you selected All from the
Main page, then the View Log page displays all of the logging data.

Tip: The event data displayed in the Monitor Events page is dynamic
and often-changing; if data remains static, then devices may not be
sending events or receiving instruction events.

Viewing Processed Event Data

3-30 Oracle Sensor Edge Server Guide

Figure 3–22 The View Log Page

Using the View Log page, you can select the log file by date and set the number of rows
displayed in this page.

To view log data:

1. Select the date for the log file from the Logfile list.

2. If needed, select a log level from the Filter by list.

3. If needed, enter the number of rows for display in the Rows field.

4. Click Get Log Data.

Viewing Processed Event Data
The SES Console enables you to track the events that have been processed and stored
in the Sensor Data Repository using the pages accessed through the Event Reports tab.
These pages enable you to retrieve data based on tag ID, device name, or on the period
during which the event passed through the queue. You can refine tag ID and device
name searches by building queries that include such search criteria as Event Type and
Event Subtype.

When you click the Events Reports tab, the View Tags page (Figure 3–23) appears by
default.

Viewing Processed Event Data

Managing Oracle Sensor Edge Server 3-31

Figure 3–23 The View Tags Page

You can select other types of event searches using the navigation tree in the View Tags
page. The tree appears in all of the pages accessed through the Events Reports tab.

Searching for Events by Tag ID
To retrieve events by tag ID:

1. Enter a portion of the tag ID. (This is a like pattern.)

2. Enter a starting date, or select a starting date using date-time editor. This is an
optional condition; leaving this field blank excludes this condition from the search.

3. Enter a starting time (as hh:mm:ss). This is an optional condition; leaving this field
blank excludes this condition from the search.

4. Enter an ending date, or select an ending date using the date-time editor. This is
an optional condition; leaving this field blank excludes this condition from the
search.

5. Enter an ending time (as hh:mm:ss). This is an optional condition; leaving this field
blank excludes this condition from the search.

6. Click Fetch Results. The search results appear in the Results table. Clicking the
Details icon enables you view a specific event. For more information, see "Refining
Tag ID and Device Name Searches". To add conditions to the search, click
Advanced Search.

Searching for Events by Device Name
To retrieve events by device name:

1. Enter the device name (or a portion of the device name). This is a like pattern.

2. Enter a starting date, or select a starting date using the date-time editor. This is an
optional condition; leaving this field blank excludes this condition from the search.

Tip: Clicking within the End Time field populates the End Date field
with the same value as that entered in the Start Date field.

Viewing Processed Event Data

3-32 Oracle Sensor Edge Server Guide

3. Enter a starting time (as hh:mm:ss). This is an optional condition; leaving this field
blank excludes this condition from the search.

4. Enter an ending date, or select an ending date using the date-time editor. This is
an optional condition; leaving this field blank excludes this condition from the
search.

5. Enter an ending time (as hh:mm:ss). This is an optional condition; leaving this field
blank excludes this condition from the search.

6. Click Fetch Results. The search results appear in the Results table. Clicking the
Details icon enables you view a specific event. For more information, see "Refining
Tag ID and Device Name Searches". To add conditions to the search, click
Advanced Search.

Refining Tag ID and Device Name Searches
The Advanced Search button on the View Tags and View Device pages enables you to
narrow search results by building query statements.

To add a query statement to a device name or tag ID search:

1. Enter the tag ID or device name search criteria. If needed, add the time and date
constraints for the search.

2. Click Advanced Search. The Advanced Search page appears, populated with the
search criteria entered for either the tag ID or device name.

Figure 3–24 The Advanced Search Page (For a Tag Search)

3. Build the query statements as follows:

■ Using the Select a query field list, select the event Metadata (such as Event ID,
Device Name, Source Name, Site Name, Type, Subtype and Correlation ID) and the
Payload (Tag ID, Data, and Time)

■ Select an operator to compare the search value selected from the Select a query
field list to the value entered in the Input query value field. Options include:

Tip: Clicking within the End Time field populates the End Date field
with the same value as that entered in the Start Date field.

Viewing Processed Event Data

Managing Oracle Sensor Edge Server 3-33

– is equal to

– is not equal to

– is less than

– is less than or equal to

– is greater

– is greater than or equal to

– is like

■ Enter a value in the input query value field that is relevant to the option selected
in the Select a query field. For example, select Type from the Select a query field
and then enter 200 in the input query value field.

4. Click Add Statement. The query statement appears in the Search Criteria statement
section.

5. Click Fetch Results. The Sensor Data Repository is queried using the search
statements. The requested data displays in the Results section of the page. You can
sort the data in ascending and descending order by Event ID and by Data. To view
an individual event, click the Details icon. For more information, see "Viewing an
Individual Event".

Creating Advanced Searches
The Advanced Search page enables you retrieve specific event data by constructing a
query comprised of statements to retrieve event data using the event data’s Metadata
and Payload information.

Figure 3–25 The Advanced Search Page

To create specific search criteria for event data:

1. Using the Select a query field list, select the event Metadata (such as Event ID, Device
Name, Source Name, Site Name, Type, Subtype and Correlation ID) and the Payload
(Tag ID, Data, and Time).

Adding Extensions to the Oracle Sensor Edge Server Instance

3-34 Oracle Sensor Edge Server Guide

2. Select an operator to compare the search value selected from the Select a query field
list to the value entered in the Input query value field. Options include:

– is equal to

– is not equal to

– is less than

– is less than or equal to

– is greater

– is greater than or equal to

– is like

3. Enter a value in the input query value field that is relevant to the option selected in
the Select a query field. For example, select Type from the Select a query field and
then enter 200 in the input query value field.

4. Click Add Statement. The search statement appears in the Search Criteria section.

5. If needed, add other statements.

6. Click Fetch Results. The Sensor Data Repository is queried using the selected
search statements. The results display in the Results section of the page. You can
sort the data in ascending and descending order by Event ID and by Data. To view
an individual event, click the Details icon. For more information, see "Viewing an
Individual Event"

Adding Extensions to the Oracle Sensor Edge Server Instance
An extension is a custom-built driver, dispatcher or filter which you upload to the
Oracle Sensor Edge Server by packaging the component in an Extension Archive file.
The Extension Archive file is a JAR file containing all of the class files and native
binaries for the driver, filter, or dispatcher, as well as properties files or static data
files. In addition, the Extension Archive includes the Extension Archive Descriptor file,
an XML file containing instructions for the Oracle Sensor Edge Server on loading and
managing the extension.

Extension Archive Files
Before you can upload a custom extension, such as a driver, dispatcher, or filter, you
must package the extension files into an Extension Archive. An Extension Archive

Tip: The Relational list appears once you complete a query and click
Add Statement. This list enables you to bind the query statements
using compound search conditions (and, or, not). Use the trash can
icons to remove a query statement.

Note: Setting the element content of
<IsExtensionMonitorEnabled> to true enables an extension to
be dynamically uploaded to the Oracle Sensor Edge Server. You do
not have to restart the Oracle Sensor Edge Server. However, for the
Oracle Edge Sensor Server to use the instances created from an
extension, you must restart the Oracle Edge Sensor Server as
described in.

Adding Extensions to the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-35

contains all of the extension’s binaries, startup data, and configuration information.
Each Extension Archive contains only one extension implementation, which is loaded
at runtime. The Extension Archive contains the following directories:

■ Meta-INF

■ classes

■ lib

Meta-INF
This directory contains any meta information about the archive. This directory must
include the Extension Archive Descriptor file. The Extension Archive Descriptor file is
an XML file located in the META-INF directory that contains the information needed
by the Oracle Sensor Edge Server to load and manage the extension.

The Extension Archive Descriptor file is called ext.xml. Example 3–1 illustrates an
Extension Archive Descriptor file (ext.xml) for a filter extension called Loop Back
Filter.

Example 3–1 The Extension Archive Descriptor File for a Filter Extension

<?xml version="1.0"?>
<Extension>
<name>Loop Back Filter</name>
<version>1.0</version>
<className>oracle.edge.impl.filter.LoopBackFilter</className>
<type>Filter</type>
<Parameters>
 <Parameter name="TagID" defaultValue="" description="The Invalid Tag ID">
 <valueType type="string"/>
 </Parameter>
 <Parameter name="LightStackName" defaultValue="stack1" description="The
Light Stack Instance Name">
 <valueType type="string"/>
 </Parameter>
 </Parameters>

Example 3–2 describes a simplified version of the DTD for ext.xml; Table 3–8 describes
this DTD’s elements.

Example 3–2 The DTD for the Extension Archive Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Extension (name, version, className, type, Parameters)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT className (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT Parameters (Parameter+)>
<!ELEMENT Parameter (valueType)>
<!ATTLIST Parameter
 name CDATA #REQUIRED
 displayName CDATA #IMPLIED
 defaultValue CDATA #IMPLIED
 description CDATA #IMPLIED
 encrypted (true|false) #IMPLIED
 isClearText (true|false) #IMPLIED
 required (true|false) #IMPLIED>
<!ELEMENT valueType EMPTY>

Adding Extensions to the Oracle Sensor Edge Server Instance

3-36 Oracle Sensor Edge Server Guide

<!ATTLIST valueType
 type (int | string | double | boolean) #REQUIRED>

classes
This directory includes all of the classes files, native binaries, files, or static data. The
classes files packaged into JAR files must be expanded on top of this directory. This
release does not support loading JAR libraries.

Table 3–8 Elements and Attributes of the DTD for the Extension Archive Descriptor File

Element Attribute or Text Description

Extension Defines the properties of an extension.

name #text The name of the extension.

type #text The type of the extension, such as a driver,
filter, or dispatcher. Although the match is not
case-sensitive, there must be no extra spaces or
special characters in the text. The reserved
values are: Device, Filter, Dispatcher.

version #text A text representation of the version number of
the extension.

className #text The name of the class to load and instantiate
the driver. This is the entry class that
implements one of the standard extension
interfaces. You must include a package name to
form a fully qualified class name.

Parameters (Parent of the <Parameter> element.) The parameters that users can edit after an
extension has been uploaded.

Parameter Attributes include:

■ name

■ displayName

■ defaultValue

■ encrypted

■ isClearText

■ required

■ name -- The name of the parameter.

■ displayName -- The display name of the
parameter.

■ defaultValue -- The default value for
the parameter.

■ encrypted -- Indicates whether the value
for the parameter should be encrypted so
that the value does not have to be stored in
clear-text format.

■ isClearText -- Enables the default value
(and the value for the parameter instance)
to be reset to clear-text format. If the
encrypted parameter is set to true, then
the clear-text format is read and then set to
encrypted format the next time the Oracle
Sensor Edge Server starts.

■ required -- Indicates whether the
parameter value is required.

valueType type The type of the parameter (which can be one of
the following):

■ int -- if the parameter is a 32-bit signed
integer.

■ string -- for a string of variable length.

■ double -- for a double precision number.

■ boolean -- for a boolean value (true,
false).

Adding Extensions to the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-37

lib
The Extension Archive file also includes the lib directory, where you specify
third-party libraries. Example 3–3 illustrates an Extension Archive file for an Alien
device driver, where the lib directory includes the library specific to the Alien device
driver, Gateway.jar.

Example 3–3 Extension Archive File for an Alien Device Driver

meta-inf/ext.xml
meta-inf/Manifest.mf
classes/oracle/edge/impl/driver/AlienReader.class
lib/Gateway.jar

Packaging an Extension Archive File
To package an Extension Archive file:

1. Build a sandbox directory. Use this directory as the JAR source directory.

2. At the top of this directory, create the META-INF and classes directories.

3. Copy all class files and properties files (if any) to the classes directory. In the
META-INF directory, create ext.xml, the Extension Archive Descriptor file.

4. Archive the files. You can use the JAR tool included in the JDK, or any other
standard compression utility. Run the JAR tool from top-level directory of the
sandbox. For example, executing jar cvMf test.jar archives the files in the
sandbox directory into test.jar. You can then upload test.jar to the Oracle
Sensor Edge Server. Do not archive the META-INF and classes directories as
part of the sandbox directory. For example, the command c:/work> jar tvf
test.jar displays the files in test.jar have been properly archived as follows:

0 Thu Apr 08 14:36:56 PDT 2004 META-INF/
71 Thu Apr 08 14:36:56 PDT 2004 META-INF/ext.xml
0 Thu Apr 08 13:42:52 PDT 2004 classes/
0 Thu Apr 08 13:42:52 PDT 2004 classes/my/
0 Thu Apr 08 13:42:58 PDT 2004 classes/my/test.class

Uploading Extensions
To upload an extension:

1. Package the driver, filter, or dispatcher in an Extension Archive File as described
in "Adding Extensions to the Oracle Sensor Edge Server Instance".

2. Copy this JAR file to:

ORACLE_HOME/j2ee/applications/edge/edge/extensions

3. Restart the Oracle Sensor Edge Server by restarting the OC4J Instance. The
extensions display in the tree as available drivers, filters, or dispatchers and can be
configured as the Oracle Sensor Edge Server’s devices, filter instances, or current
dispatcher.

Note: No slashes or other directory indicators appear before the
META-INF and classes directories. Including the entire path in the
JAR prevents the Oracle Sensor Edge Server from locating the
Extension Archive Descriptor file or the classes. As a result, the
extension cannot be deployed.

Adding Extensions to the Oracle Sensor Edge Server Instance

3-38 Oracle Sensor Edge Server Guide

Extension Class Hierarchy
All of the extensions of the Oracle Sensor Edge Server are arranged as:

EdgeObject—The basic root class, which contains a unique identifier.

AbstractEdgeExtensionImpl—Implements the EdgeExtension interface.

■ AbstractDispatcherV2—The base class for all dispatchers.

– AbstractDispatcher—Implements AbstractDeviceV2 class to provide
basic dispatcher behavior.

* SimpleDispatcher—Enables you to build custom dispatchers.

AbstractFilter—The base class for all filters. It implements the Filter interface
and defines the monitoring API for filters required to generate events that monitor
filter performance.

■ SimpleFilter—Enables you to write both device-level and device group-level
filters.

AbstractDevice—The base class for all devices. It provides its own thread for
reading data from the device and processing the read data.

■ AbstractEventDevice—Extended from AbstractDevice class; provides
integration with the device-level filters and implements the required methods to
propagate events to the event processor.

– SimpleDriver—Provides the common functionality required by most
custom drivers. Many of the drivers that ship with Oracle Sensor Edge Server
are extended from SimpleDriver.

Figure 3–26 illustrates the extension class hierarchy.

Tip: If the <IsExtensionMonitorEnabled> element has been set
to true in edgeserver.xml, then you only need to copy the JAR file
to ORACLE_HOME/edge/extensions. The running Oracle Sensor
Edge Server then picks up the extension automatically and does not
need to be stopped and then restarted. Because this method of adding
an extension slows performance, it is recommended only for
development instances.

In Oracle Application Server 10g (10.1.3), edgeserver.xml is
deprecated and maintained only for backward compatibility.

Note: Extend from the SimpleDriver, SimpleFilter, or
SimpleDispatcher classes to create an extension.

Adding Extensions to the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-39

Figure 3–26 The Edge Extension Hierarchy

Implementing Extensions
The doInit() method implements extensions, as this call initializes the instance of an
extension at runtime.

Extension Context
When the instance of an extension is created at runtime, the corresponding Context is
created that enables the extension to:

■ Set (or retrieve) the runtime Context data.

■ Locate and communicate with other extensions of the Oracle Edge Sensor Server.

■ Access the system facilities of the Oracle Edge Sensor Server.

■ Retrieve information about the instance itself.

Retrieving Information About the Instance The base class, EdgeExtension, provides
utility functions for an instance to retrieve information about itself. These methods
include:

■ getContext()

Returns the runtime context.

■ getName()

Returns the name of the extension.

■ getDescription()

Returns the description of the extension.

■ getVersion()

Returns the version string of the extension.

Adding Extensions to the Oracle Sensor Edge Server Instance

3-40 Oracle Sensor Edge Server Guide

Accessing the Runtime Context of an Instance To retrieve the instance’s Context object,
use

EdgeExtensionContext context = super.getContext();

The method call, getContext(), returns the Context object of the current instance.

Managing the Parameters of an Instance
An instance of an extension does not hold its own persistent data or configuration;
configuration data is passed in at runtime when the instance is initialized. The
configuration data is defined as parameters, which are composed of name/value pairs.
Each parameter has a unique name and an optional value.

Exposing Custom Parameters
Extensions often have specific configurations. For example, a driver might include
such configuration parameters as serial port name, baud rate, IP address, port number,
login and password. These parameters must be defined to enable the driver to
communicate with the device.

To expose parameters for a driver implementation, you must modify the Extension
Archive Descriptor file. Example 3–4 illustrates a device that has two parameters that
can be configured: serial port name and baud rate, defined within the <Parameter>
extract tags.

Example 3–4 An Extension Archive Descriptor File with Exposed Parameters

<Extension>
 <name>My Driver</name>
 <type>Device</type>
 <className>my.testdriver</className>
 <Parameters>
 <Parameter name="port" displayName="Serial Port">
 <valueType type="string"/>
 </Parameter>
 <Parameter name="baud" displayName="Baud Rate">
 <valueType type="int"/>
 </Parameter>
 </Parameters>
</Extension>

Retrieving Parameter Values
Once you have defined the Extension Archive Descriptor file’s <Parameter> tags,
you can fetch the values for the parameters using the EdgeExtensionConfigInfo
object. The values defined within the <Parameter> tags are retrieved using the
Context object (illustrated in Example 3–5).

Example 3–5 Retrieving Parameter Values Using the Context Object

EdgeExtensionContext context = super.getContext();
ConfigParameter filenameParam = ct.getParameter(fileName);

Note: This release of the Oracle Sensor Edge Server does not directly
support trees or arrays of values. You are responsible for
un-marshalling the data when forming non-scalar type data.

Adding Extensions to the Oracle Sensor Edge Server Instance

Managing Oracle Sensor Edge Server 3-41

The getParameter() method returns a ConfigParameter object. The
getParameter() method returns the value for a parameter. (In Example 3–5, the
ConfigParamter object is called filenameParam and the getParameter()
method returns the value for a parameter called fileName.)The name of the target
parameter must be passed to the ConfigParameter object. Further, the name of this
parameter must match the name given to the name attribute of the <Parameter>
element of the Extension Archive Descriptor file. Once you obtain the
ConfigParameter object, you can get the value of the parameter (illustrated in
Example 3–6).

Example 3–6 Retrieving the Value of a Parameter

m_fileName = filenameParam.getStringValue();

Note: The getStringValue()method returns the string value of
the parameter. If the value for the parameter is an int, call the
getIntegerValue() method, which returns an integer object.

Adding Extensions to the Oracle Sensor Edge Server Instance

3-42 Oracle Sensor Edge Server Guide

Using the Sensor Data Repository 4-1

4
Using the Sensor Data Repository

This chapter describes the Sensor Data Repository through the following sections:

■ "Overview of the Sensor Data Repository"

■ "Schema Reference"

Overview of the Sensor Data Repository
The Sensor Data Repository is a collection of database tables, views, and PL/SQL
packages for storing and querying sensor event data. See also "Oracle Sensor Edge
Server and Sensor Data Repository Considerations".

Relational Tables
The Sensor Data Repository’s relational tables store the actual event observations and
metadata. The relational views are based on these tables. Applications use these
relational views and the programming interface.

Table 4–1 describes the relational tables in the Sensor Data Repository.

Table 4–1 Relational tables in the Sensor Data Repository

Table Name Purpose

EDG_EVENT_TAB Table Table storing the events from the middle ware and applications.

EDG_TAG_TAB Table Cached copy of the tags that have been observed so far.

EDG_CAP_TAB table Mapping table to define the kind of events that a device can
send or receive.

EDG_CTXT_TAB Table The context/containment table for defining relationship
between contexts and containments.

EDG_CTXT_REL_TAB table The table where the relationship between the contexts are
defined.

EDG_EVENT_INFO_TAB
Table

Table for storing information related to event such as Event
Type and Subtypes.

EDG_DEVICE_TAB Table Devices table.

EDG_DIAG_TAB Table Table to store diagnostic information.

EDG_LOG Table Log table for warning and internal error.

Overview of the Sensor Data Repository

4-2 Oracle Sensor Edge Server Guide

Relational Views in the Sensor Data Repository
The Sensor Data Repository’s views (described in Table 4–2) are used for querying the
stored data.

Sensor Data Repository PL/SQL Package
The Sensor Data Repository defines a PL/SQL package which enables you to
manipulate the contextual containment relationship and manually insert an event into
the queue. Table 4–3 describes the procedures specified in the PL/SQL package. See
also "PL/SQL Programming Interface".

Table 4–2 Relational Views in the Sensor Data Repository

View Name Description

EDG_CAP View of the device’s capabilities

EDG_CTXT Read-only view of the context; the view can be changed using
PL/SQL

EDG_CTXT_REL Read-only view of the context relationship

EDG_CTXT_REL_NAME_VW View of the context relationship with context names

EDG_DEVICE Read-only view of the device table

EDG_DEV_CAP_VW Device capability view

EDG_DEV_DIAG_VW View of the device’s diagnostic information

EDG_DEV_EVENT_VW View showing the event captured by a device

EDG_DEV_LAST_DIAG_VW View showing the last diagnostics information

EDG_DEV_LAST_OBSV_VW View of the latest observation made by a device

EDG_DIAG Read-only view of the diagnostics table

EDG_EVENT Read-only view of the event table

EDG_EVENT_INFO View of the currently valid event metadata

EDG_EVENT_VW View of the event with type and subtype in place

EDG_TAG Read-only view of the tags seen

EDG_TAG_LAST_DEV_VW View of the last device that detected the tag

EDG_TAG_PATH_VW View of the path taken by the tag in terms of devices that have
detected it

Table 4–3 Procedures specified in the package

Procedure Description

on_event Procedure to handle the incoming event and sort out how to
disassemble the parts and put them into various tables.

create_ctxt Procedure to add a new context

update_ctxt_rel Procedure to update the context hierarchy

update_ctxt Procedure to update the context

remove_ctxt Procedure to remove a context

Schema Reference

Using the Sensor Data Repository 4-3

Operations and Queries on the Repository
This section describes the following operations and queries of the Sensor Data
Repository.

■ Creating and Deleting Repositories

■ Saving Observations to the Repository

■ Querying the Archive

Creating and Deleting Repositories
The creation and deletion of a Sensor Data Repository is essentially the same as
creating a Sensor Data Repository schema. The creation of a repository should be
automatic if you opt to install it as part of the installation process. Otherwise, you can
manually invoke a SQL script to install the repository. On the server side, there is a
flag, called isArchived, that should be turned on to enable the server to start
archiving data.

Saving Observations to the Repository
The Oracle Sensor Edge Server, if set to archiving mode, automatically sends events to
Sensor Data Repository so that all of the events going to the Oracle Sensor Edge Server
instance are archived. The application has the option of manually enqueuing events to
the repository through the use of PL/SQL procedure in the edg_sda package (see
"PL/SQL Programming Interface").

Querying the Archive
Use the views and relational tables described in Table 4–1 and Table 4–2 to query the
Sensor Data Repository. See also "Schema Reference".

Schema Reference
This section lists the tables and views and PL/SQL programming interface of the
Sensor Data Repository.

Tables
The Sensor Data Repository includes the following tables:

■ EDG_CAP_TAB table

■ EDG_CTXT_REL_TAB table

■ EDG_CTXT_TAB Table

■ EDG_DEVICE_TAB Table

■ EDG_DIAG_TAB Table

■ EDG_EVENT_INFO_TAB Table

■ EDG_EVENT_TAB Table

■ EDG_LOG Table

■ EDG_TAG_TAB Table

EDG_CAP_TAB table
A mapping table that defies the types of events that a device can send or receive.

Schema Reference

4-4 Oracle Sensor Edge Server Guide

EDG_CTXT_REL_TAB table
The table in which relationships between the contexts are defined.

EDG_CTXT_TAB Table
The context/containment table for defining the relationship between contexts and
containments.

Table 4–4 EDG_CAP_TAB table

Name Data Type Nulls? Default Value Description

OBJECT_ID NUMBER(10) N na Primary key for this
mapping entry

REF_DEVICE NUMBER(10) Y na Reference to the device
interested

REF_EVENT_INFO NUMBER(10) Y na Reference to the event
information interested

SEND_OR_RECV VARCHAR2(16) Y ’SEND’$ Flag to indicate whether
the device can send or
receive the event

CREATED_BY VARCHAR2(256) Y USER$ The user who created
this entry

CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$ The time when the
entry was created

Table 4–5 EDG_CTXT_REL_TAB table

Name Data Type Nulls? Default Value Description

OBJECT_ID NUMBER(10) N na Primary key for the
relationship entry
between the contexts

CID NUMBER(10) Y na The child context’s id$

PID NUMBER(10) Y na The parent context’s id$

CREATED_BY VARCHAR2(256) Y USER The user who created
this entry$

CREATED_TIME TIMESTAMP(6) Y TIMESTAMP The time when the
entry was created

RETIRED_BY VARCHAR2(256) Y na The user who voided
this entry

RETIRED_TIME TIMESTAMP(6) Y na The time when the
entry was voided

IS_CURRENT VARCHAR2(1) Y na Indicator as to whether
the entry is current

REF_NEXT_VER NUMBER(10) Y na Reference to the next
version of the
relationship, added to
help reconstruct the
containment history for
a context.

Schema Reference

Using the Sensor Data Repository 4-5

EDG_DEVICE_TAB Table
The devices table.

EDG_DIAG_TAB Table
Table used to store diagnostic information.

Table 4–6 EDG_CTXT_TAB table

Name Data Type Nulls? Default Value Description

OBJECT_ID NUMBER(10) N na Primary key for the
context entry

NAME VARCHAR2(1024
)

Y na The name for the
context

DESCRIPTION NUMBER(10) Y na The description for the
context

IS_DEFAULT VARCHAR2(256) Y ’F’$ Context is the universe
flag

CREATED_BY TIMESTAMP(6) Y USERS$ User who created the
entry

CREATED_TIME VARCHAR2(256) Y SYSTIMESTAMP$ Time entry was created

RETIRED_BY TIMESTAMP(6) Y na User who voided the
entry

RETIRED_TIME VARCHAR2(1) Y na Time entry was voided

IS_CURRENT NUMBER(10) Y ’T’$ Current entry flag

Table 4–7 EDG_DEVICE_TAB table

Number Name Data Type Nulls? Default Value

1 Primary key for devices OBJECT_ID NUMBER(10) N na

2 Tag ID (EPC code)
representing this device

TAG_ID VARCHAR2(256) Y na

3 Name for this device
object

NAME VARCHAR2(256) N na

4 Description for this
device

DESCRIPTION VARCHAR21024) Y na

5 Site name where this
device is located

SITE_NAME VARCHAR2(256) N na

6 User who created this
device

CREATED_BY VARCHAR2(256) Y USER$

7 Time when this device
entry was created

CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$

8 Reference to help locate
the last diagnostic status
of the device

LAST_STATUS NUMBER(10) Y na

Table 4–8 EDG_DIAG_TAB table

Number Name Data Type Nulls? Default Value

1 Primary key for
diagnostic entry

OBJECT_ID NUMBER(10) N na

Schema Reference

4-6 Oracle Sensor Edge Server Guide

EDG_EVENT_INFO_TAB Table
Table used to store event information (such as Type and Subtype).

2 Reference to the device
for this diagnostic entry

REF_DEVICE NUMBER(10) Y na

3 Status for the device,
server, or component

STATUS VARCHAR2(64) N na

4 Message associated with
an error or warning

MESSAGE VARCHAR21024) Y na

5 Time when the
erroneous event was
encountered

TIME TIMESTAMP(6) Y na

6 User who created this
diagnostic entry

CREATED_BY VARCHAR2(256) Y USER$

7 Time when this
diagnostic entry was
created

CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$

Table 4–9 EDG_EVENT_INFO_TAB table

Number Name Data Type Nulls? Default Value

1 Primary key for event
entry

OBJECT_ID NUMBER(10) N na

2 Name for event entry NAME VARCHAR2(256) N na

3 Type for this event
information entry

TYPE NUMBER(5) N na

4 Subtype for this event
information entry

SUBTYPE NUMBER(5) Y -1$

5 Flag indicating if event
is custom-defined or
provided by, and
registered with, Oracle

REGISTERED VARCHAR2(1) Y ’F’$

6 Description of the event DESCRIPTION VARCHAR2(1024) Y na

7 Usage pattern for the id
field in the event; must
be in sync with the driver

ID_USAGE VARCHAR2(1024) Y na

8 Usage pattern for the
data field in the event;
must be in sync with the
driver

DATA_USAGE VARCHAR2(1024) Y na

User who created this
entry

CREATED_BY VARCHAR2(256) Y USER$

Time entry was created CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$

User who voided this
entry

RETIRED_BY VARCHAR2(256) Y na

Time this entry was
voided

RETIRED_TIME TIMESTAMP(6) Y na

Denotes if entry is valid IS_CURRENT VARCHAR2(1) Y ’T’$

Table 4–8 (Cont.) EDG_DIAG_TAB table

Number Name Data Type Nulls? Default Value

Schema Reference

Using the Sensor Data Repository 4-7

EDG_EVENT_TAB Table
Table used to store event information from middle ware and applications.

EDG_LOG Table
Table used to store warnings and internal errors.

EDG_TAG_TAB Table
Cached copy of the tags observed so far.

Table 4–10 EDG_EVENT_TAB table

Number Name Data Type Nulls? Default Value

1 Primary key for events OBJECT_ID NUMBER(10) N na

2 Tag ID (EPC code) for the
tag

TAG_ID VARCHAR2(256) Y na

3 Device from which the
event originated

REF_DEVICE NUMBER(10) Y na

4 Context relevant to the
event; set by applications
depending on context

REF_CTXT NUMBER(10) Y -1$

5 Source name of the event SOURCE_NAME VARCHAR2(64) Y ’F’$

6 Reference to event
metadata

REF_EVENT_INFO NUMBER(10) Y na

7 Reference used to
correlate aggregated events

CORRELATION_ID VARCHAR2(64) Y na

8 Data field for the event;
depends on type of device.
See ID_USAGE field in
EDG_EVENTINFO for
more information

DATA VARCHAR2(1024
)

Y na

Time event occurred TIME TIMESTAMP(6) Y na

Table 4–11 EDG_LOG table

Number Name Data Type Nulls? Default Value

1 Primary key for log
entry

OBJECT_ID NUMBER(10) N na

2 Log level, allowed
values are: "N" for notify,
"W" for warning, and "E"
for error.

LOG_LEVEL VARCHAR2(1) Y na

3 Message to be logged
for the error/warning

MESSAGE VARCHAR2(4000) Y na

4 Database user who
created the log entry

CREATED_BY VARCHAR2(64) Y USER$

5 Time entry was created
inside the database

CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$

Table 4–12 EDG_TAG_TAB table

Number Name Data Type Nulls? Default Value

1 Primary key for tag entry OBJECT_ID NUMBER(10) N na

Schema Reference

4-8 Oracle Sensor Edge Server Guide

Views
The Sensor Data Repository includes the following views:

■ EDG_CAP

■ EDG_CTXT

■ EDG_CTXT_REL

■ EDG_CTXT_REL_NAME_VW

■ EDG_DEVICE

■ EDG_DEV_CAP_VW

■ EDG_DEV_DIAG_VW

■ EDG_DEV_EVENT_VW

■ EDG_DEV_LAST_DIAG_VW

■ EDG_DEV_LAST_OBSV_VW

■ EDG_DIAG

■ EDG_EVENT

■ EDG_EVENT_INFO

■ EDG_EVENT_VW

■ EDG_TAG

■ EDG_TAG_LAST_DEV_VW

■ EDG_TAG_PATH_VW

EDG_CAP
View of the device’s capabilities

2 Tag ID (EPC code) TAG_ID VARCHAR2(256) Y na

3 Reference to the last
observation of the tag

LAST_EVENT NUMBER(10) Y na

4 User who created the
entry

CREATED_BY VARCHAR2(256) Y USER$

5 Time entry was created CREATED_TIME TIMESTAMP(6) Y SYSTIMESTAMP$

Table 4–13 EDG_CAP view

View Data Type Nulls?

1 OBJECT_ID
Primary key for device-event capability mappings

NUMBER(10) N

2 REF_DEVICE
Reference to the device of interest

NUMBER(10) Y

3 REF_EVENT_INFO
Reference to the event information of interest

NUMBER(10) Y

4 SEND_OR_RECV
Flag indicating is device can send/receive events

VARCHAR2(16) Y

Table 4–12 (Cont.) EDG_TAG_TAB table

Number Name Data Type Nulls? Default Value

Schema Reference

Using the Sensor Data Repository 4-9

SELECT object_id, ref_device, ref_event_info, send_or_recv
FROM edg_cap_tab

EDG_CTXT
Read-only view of the context, the view can be changed using PL/SQL procedures.

SELECT object_id, name, description, is_default
FROM edg_ctxt_tab
WHERE is_current = ’T’
WITH READ ONLY

EDG_CTXT_REL
Read-only view of the context relationship.

SELECT object_id, cid, pid
FROM edg_ctxt_rel_tab
WHERE is_current = ’T’
WITH READ ONLY

EDG_CTXT_REL_NAME_VW
Read-only view of the context relationship.

Table 4–14 EDG_CTXT view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the context entry

NUMBER(10) N

2 NAME
Name for the context

VARCHAR2(1024) Y

3 DESCRIPTION
Description of the context

VARCHAR2(1024) Y

4 SEND_OR_RECV
Whether or not the context is the universe

VARCHAR2(16) Y

Table 4–15 EDG_CTXT_REL view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the relationship entry between the contexts

NUMBER(10) N

2 CID
The Child context’s ID

NUMBER(10) Y

3 PID
The Parent context’s ID

NUMBER(10) Y

Table 4–16 EDG_CTXT_REL_NAME_VW view

View Data Type Nulls?

1 CHILD_ID
The Child context’s ID

NUMBER(10) Y

2 PARENT_ID
The Parent context’s ID

NUMBER(10) Y

3 PARENT_NAME
Name of parent context

VARCHAR2(1024) Y

Schema Reference

4-10 Oracle Sensor Edge Server Guide

SELECT
rel.cid child_id,
rel.pid parent_id,
cP.name parent_name,
cC.name child_name
FROM edg_ctxt cP, edg_ctxt cC, edg_ctxt_rel rel
WHERE cP.object_id = rel.pid
 AND cC.object_id = rel.cid

EDG_DEVICE
Read-only view of the device table.

SELECT
"OBJECT_ID", "TAG_ID", "NAME", "DESCRIPTION", "SITE_NAME", "CREATED_BY", "CREATED
_TIME", "LAST_STATUS"
FROM edg_device_tab
WITH READ ONLY

EDG_DEV_CAP_VW
Device capability view.

4 CHILD_NAME
Name of child context

VARCHAR2(1024) Y

Table 4–17 EDG_DEVICE view

Number Data Type Nulls?

1 OBJECT_ID
Primary key for the device

NUMBER(10) N

2 TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

3 NAME
Name for the device object

VARCHAR2(256) N

4 DESCRIPTION
Device description

VARCHAR2(1024) Y

5 SITE_NAME
Name of site where device is located

VARCHAR2(256) N

6 CREATED_BY
User who created device entry

VARCHAR2(256) Y

7 CREATED_TIME
Time when device entry was created

TIMESTAMP(6) Y

8 LAST_STATUS
Reference to help locate the last diagnostic status of the
device

NUMBER(10) Y

Table 4–18 EDG_DEV_CAP_VW view

Number Data Type Nulls?

1 DEVICE_TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

Table 4–16 (Cont.) EDG_CTXT_REL_NAME_VW view

View Data Type Nulls?

Schema Reference

Using the Sensor Data Repository 4-11

SELECT
dev.tag_id device_tag_id,
dev.name device_name,
dev.description device_desc,
dev.site_name site_name,
ei.type event_type,
ei.subtype event_subtype,ei.description event_desc,
cap.send_or_recv send_or_recv
FROM edg_cap cap, edg_device dev. edg_event_info ei
WHERE cap.ref_device=dev.object_id
 AND cap.ref_event_info=ei.object_id

EDG_DEV_DIAG_VW
View showing device’s diagnostic information.

SELECT
dev.tag_id device_tag_id,

2 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

3 DEVICE_DESC
Description of the device

VARCHAR2(64) Y

4 SITE_NAME
Name of site where device is located

VARCHAR2(1024) N

5 EVENT_TYPE
Event information entry type

VARCHAR2(256) N

6 EVENT_SUBTYPE
Event information subtype

NUMBER(5) Y

7 EVENT_DESC
Description for this event type

NUMBER(5) Y

8 SEND_OR_RECV
Flag indicating if device can send/receive

VARCHAR2(1024) Y

Table 4–19 EDG_DEV_DIAG_VW view

View Data Type Nulls?

1 DEVICE_TAG_ID
Tag ID (EPC code) representing the devices

VARCHAR2(256) Y

2 STATUS
Status of the device, server or component

VARCHAR2(64) Y

3 MESSAGE
Message related to error or warnings

VARCHAR2(1024) Y

4 TIME
Time when erroneous condition was encountered

TIMESTAMP(6) Y

5 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

6 DEVICE_DESC
Description of the device

VARCHAR2(1024) Y

7 SITE_NAME
Site name where device resides

VARCHAR2(256) N

Table 4–18 (Cont.) EDG_DEV_CAP_VW view

Number Data Type Nulls?

Schema Reference

4-12 Oracle Sensor Edge Server Guide

diag.status status,
diag.message message,
diag.time time,
dev.name
device_name,
dev.description device_desc,
dev.site_name site_name
FROM edg_diag diag, edg_device dev
WHERE dev.object_id=diag.ref_device

EDG_DEV_EVENT_VW
View showing events captured by a device.

SELECT
dev.name device_name,
dev.tag_id device_tag_id,
dev.description device_desc,
dev.site_name site_name

Table 4–20 EDG_DEV_EVENT_VW view

View Data Type Nulls?

1 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

2 DEVICE_TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

3 DEVICE_DESC
Description for the device

VARCHAR2(1024) Y

4 SITE_NAME
Name of site where device is located

VARCHAR2(256) N

5 EVENT_ID
Reference to the event object

NUMBER(10) N

6 EVENT_TAG_ID
Tag ID (EPC code) representing the tag and device for this event

VARCHAR2(256) Y

7 DEVICE_ID
Reference to the device object

NUMBER(10) Y

8. EVENT_DATA
Data field for the event. Varies according to type of device. See
id_usage field in edge_event_info for more information

VARCHAR2(1024) Y

9 EVENT_TIME
Time when event occurred

TIMESTAMP(6) Y

10 EVENT_CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

11 EVENT_NAME
Name of the kind of event

VARCHAR2(256) N

12 EVENT_TYPE
Type for the event information entry, such as 200 for RFID
observations

NUMBER(5) N

13 EVENT_SUBTYPE
Subtype for the event information entry, such as 1 for IN_FIELD
RFID observation

NUMBER(5) Y

14 EVENT_DESC
Description for kind of event

VARCHAR2(1024) Y

Schema Reference

Using the Sensor Data Repository 4-13

diag.status status,
ev.*
FROM edg_device dev, edg_event_vw ev
WHERE ev.device_id=dev_object_id

EDG_DEV_LAST_DIAG_VW
View showing the last diagnostics information.

SELECT
dev.tag_id device_tag_id,
diag.status status,
diag.message message,
diag.time time,
dev.name device_name,
dev.description device_desc,
dev.site_name site_name
FROM edg_diag diag, edg_device dev
WHERE dev.last_status = diag.object_id

EDG_DEV_LAST_OBSV_VW
View showing the last observation made by a device.

Table 4–21 EDG_DEV_LAST_DIAG_VW view

View Data Type Nulls?

1 DEVICE_TAG_ID
Tag ID (EPC code) representing the devices

VARCHAR2(256) Y

2 STATUS
Status of the device, server or component

VARCHAR2(64) Y

3 MESSAGE
Message related to error or warnings

VARCHAR2(1024) Y

4 TIME
Time when erroneous condition was encountered

TIMESTAMP(6) Y

5 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

6 DEVICE_DESC
Description of the device

VARCHAR2(1024) Y

7 SITE_NAME
Site name where device resides

VARCHAR2(256) N

Table 4–22 EDG_DEV_LAST_OBSV_VW view

View Data Type Nulls?

1 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

2 DEVICE_TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

3 DEVICE_DESC
Description of the device

VARCHAR2(1024) Y

4 SITE_NAME
Site name where device resides

VARCHAR2(256) Y

5 EVENT_ID
Reference to the event object

NUMBER(10) N

Schema Reference

4-14 Oracle Sensor Edge Server Guide

SELECT
device_name,
device_tag_id,
device_desc,
site_name,
event_id,
event_tag_id,
device_id,
event_data,
event_time,
event_correlation_id,
event_name,
event_type,
event_subtype,
event_desc
FROM (

EDG_DIAG
Read-only view of the diagnostics table

6 DEVICE_ID
Tag ID (EPC code) representing the devices

VARCHAR2(256) Y

7 EVENT_TAG_ID
Reference to the device object

NUMBER(10) Y

8 EVENT_DATA
Data field for the event. Varies according to device. See id_
usage field in edg_event_info

VARCHAR2(1024) Y

9 EVENT_TIME
Time when event occurred

VARCHAR2(1024) Y

10 EVENT_CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

11 EVENT_NAME
Name of the kind of event

VARCHAR2(256) Y

12 EVENT_TYPE
Type for the event information entry, such as 200 for RFID
observations

NUMBER(5) Y

13 EVENT_SUBTYPE
Subtype for the event information entry, such as 1 for
IN_FIELD RFID observations

NUMBER(5) Y

14 EVENT_DESC
Description for the kind of event

VARCHAR2(1024) Y

Table 4–23 EDG_DIAG view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the diagnostics entry

NUMBER(10) N

2 REF_DEVICE
Reference to the related device.

NUMBER(10) Y

3 STATUS
The status of the device, server or component

VARCHAR2(64) Y

Table 4–22 (Cont.) EDG_DEV_LAST_OBSV_VW view

View Data Type Nulls?

Schema Reference

Using the Sensor Data Repository 4-15

SELECT
"CONNECT_ID", "REF_DEVICE", "STATUS", "MESSAGE", "TIME", "CREATED_BY", "CREATED_
TIME"
FROM edg_diag_tab
WITH READ ONLY

EDG_EVENT
Read-only view of the events table.

SELECT
"OBJECT_ID", "TAG_ID", "REF_DEVICE", "REF_CTXT", "SOURCE_NAME", "REF_EVENT_INFO",
"CORRELATION_ID" "DATA", "TIME"
FROM edg_event_tab
WITH READ ONLY

4 MESSAGE
Message related to error or warnings

VARCHAR2(1024) Y

5 TIME
Time when erroneous condition was encountered

TIMESTAMP(6) Y

6 CREATED_BY
The user who created the diagnostic entry

VARCHAR2(256) Y

7 CREATED_TIME
Time when the diagnostic entry was created

TIMESTAMP(6) Y

Table 4–24 EDG_EVENT view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the event

NUMBER(10) N

2 TAG_ID
Tag ID (EPC code) representing the tag and device for which
the event was created

VARCHAR2(256) Y

3 REF_DEVICE
The device from which the event originated

NUMBER(10) Y

4 REF_CTXT
Context relevant to the event; set by applications depending on
the contextual situation

NUMBER(10) Y

5 SOURCE_NAME
Source name of the event

VARCHAR2(64) Y

6 REF_EVENT_INFO
Reference to the event metadata

NUMBER(10) Y

7 CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

8 DATA
Data field for the event; varies depending on device see id_
usage in edg_event_info for more information

VARCHAR2(1024) Y

9 TIME
Time when the event occurred

TIMESTAMP(6) Y

Table 4–23 (Cont.) EDG_DIAG view

View Data Type Nulls?

Schema Reference

4-16 Oracle Sensor Edge Server Guide

EDG_EVENT_INFO
View of the currently valid event metadata.

SELECT object_id, name, type, subtype, registered, description, id_usage, data_
usage, data_usage
FROM edg_event_tab
WHERE is_current=’T’

EDG_EVENT_VW
View of the event with Type and Subtype in place.

Table 4–25 EDG_EVENT_INFO view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the event information entry

NUMBER(10) N

2 NAME
Name for the event information entry

VARCHAR2(256) N

3 TYPE
Type of event information entry

NUMBER(5) N

4 SUBTYPE
Subtype of event information entry

NUMBER(5) N

5 REGISTERED
Flag indicating if event information is custom-defined or
provided by, and registered at, Oracle

VARCHAR2(1) Y

6 DESCRIPTION
Description for the kind of event

VARCHAR2(1024) Y

7 ID_USAGE
Usage pattern for the ID field in the event (from the middle
ware side); must be in sync with the driver implementation

VARCHAR2(1024) Y

8 DATA_USAGE
Usage pattern for the data field in the event (from the middle
ware side); must be in sync with the driver implementation

VARCHAR2(1024) Y

Table 4–26 EDG_EVENT_VW view

View Data Type Nulls?

1 EVENT_ID
Primary key for the event

NUMBER(10) N

2 EVENT_TAG_ID
Tag ID (EPC code) representing the tag and device for which the
event was created

VARCHAR2(256) Y

3 DEVICE_ID
Device from which the event originated

NUMBER(10) Y

4 EVENT_DATA
Data field for the event. Varies according to kind of device. See
id_usage field in edg_event_info for more information

VARCHAR2(1024) Y

5 EVENT_TIME
Time when the event occurred

TIMESTAMP(6) Y

6 CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

Schema Reference

Using the Sensor Data Repository 4-17

SELECT
ev.object_id event_id,
ev.tag_id event_tag_id,
ev.ref_device device_id,
ev.data event_data,
ev.time event_time,
ev.correlation_id event correlation_id,
md.name event_name,
md.type event_type,
md.subtype event_subtype,
md.description event_desc
FROM edg_event_tab ev, edg_event_info md
WHERE ev.ref_event_info=md.object_id

EDG_TAG
Read-only view of the tags screen.

SELECT
object_id tag_id, last_event
FROM edg_tag_tab
WITH READ ONLY

EDG_TAG_LAST_DEV_VW
View of the last device that detected the tag.

7 EVENT_NAME
Name of the kind of event

VARCHAR2(256) N

8 EVENT_TYPE
Type for the event information entry, such as 200 for RFID
observations

NUMBER(5) N

9 EVENT_SUBTYPE
Subtype for the event information entry, such as 1 for IN_FIELD
RFID observation event

NUMBER(5) Y

10 EVENT_DESC
Description for the kind of event

VARCHAR2(1024) Y

Table 4–27 EDG_TAG view

View Data Type Nulls?

1 OBJECT_ID
Primary key for the tag entry

NUMBER(10) N

2 TAG_ID
Tag ID (EPC code).

VARCHAR2(256) Y

3 LAST_EVENT
Reference to the last observation of the tag

NUMBER(10) Y

Table 4–28 EDG_TAG_LAST_DEV_VW view

Number Data Type Nulls?

1 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

Table 4–26 (Cont.) EDG_EVENT_VW view

View Data Type Nulls?

Schema Reference

4-18 Oracle Sensor Edge Server Guide

SELECT
devEVENT.*
FROM edg_tag, edg_dev_event_vw devEVENT
WHERE tag.last_event-devEVENT.event_id

EDG_TAG_PATH_VW
View of the path taken by the tag in terms of the devices that have detected it.

2 DEVICE_TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

3 DEVICE_DESC
Description for the device

VARCHAR2(1024) Y

4 SITE_NAME
Name of site where device is located

VARCHAR2(256) N

5 EVENT_ID
Reference to the event object

NUMBER(10) N

6 EVENT_TAG_ID
Tag ID (EPC code) representing the tag and device for this event

VARCHAR2(256) Y

7 DEVICE_ID
Reference to the device object

NUMBER(10) Y

8. EVENT_DATA
Data field for the event. Varies according to type of device. See
id_usage field in edge_event_info for more information

VARCHAR2(1024) Y

9 EVENT_TIME
Time when event occurred

TIMESTAMP(6) Y

10 EVENT_CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

11 EVENT_NAME
Name of the kind of event

VARCHAR2(256) N

12 EVENT_TYPE
Type for the event information entry, such as 200 for RFID
observations

NUMBER(5) N

13 EVENT_SUBTYPE
Subtype for the event information entry, such as 1 for IN_FIELD
RFID observation

NUMBER(5) Y

14 EVENT_DESC
Description for kind of event

VARCHAR2(1024) Y

Table 4–29 EDG_TAG_PATH_VW view

View Data Type Nulls?

1 DEVICE_NAME
Name for the device object

VARCHAR2(256) N

2 DEVICE_TAG_ID
Tag ID (EPC code) representing the device

VARCHAR2(256) Y

3 DEVICE_DESC
Description for the device

VARCHAR2(1024) Y

4 SITE_NAME
Name of site where device is located

VARCHAR2(256) N

Table 4–28 (Cont.) EDG_TAG_LAST_DEV_VW view

Number Data Type Nulls?

Schema Reference

Using the Sensor Data Repository 4-19

SELECT
device_name
.device_tag_id
.device_desc
.site_name
.event_id
.event_tag_id
.device_id
.event_data
.event_time
.event_correlation_id
.event_name
.event_type
.event_subtype
.event_desc
.next_device_id
.next_device_name
.next_device_tag_id
.(event_end_time-event_time) time_diff

5 EVENT_ID
Reference to the event object

NUMBER(10) N

6 EVENT_TAG_ID
Tag ID (EPC code) representing the tag and device for this event

VARCHAR2(256) Y

7 DEVICE_ID
Reference to the device object

NUMBER(10) Y

8. EVENT_DATA
Data field for the event. Varies according to type of device. See
id_usage field in edge_event_info for more information

VARCHAR2(1024) Y

9 EVENT_TIME
Time when event occurred

TIMESTAMP(6) Y

10 EVENT_CORRELATION_ID
Reference used to correlate aggregated events

VARCHAR2(64) Y

11 EVENT_NAME
Name of the kind of event

VARCHAR2(256) Y

12 EVENT_TYPE
Type for the event information entry, such as 200 for RFID
observations

NUMBER(5) Y

13 EVENT_SUBTYPE
Subtype for the event information entry, such as 1 for IN_FIELD
RFID observation

NUMBER(5) Y

14 EVENT_DESC
Description for kind of event

VARCHAR2(1024) Y

15 NEXT_DEVICE_ID
Reference to the next device object

NUMBER Y

16 NEXT_DEVICE_NAME
Name of the next device object

VARCHAR2(256) Y

17 NEXT_DEVICE_TAG_ID
Tag ID (EPC code) representing the next time

VARCHAR2(256) Y

18 TIME_DIFF
Time taken to travel from one device to the next

INTERVAL DAY()
TO SECOND()

Y

Table 4–29 (Cont.) EDG_TAG_PATH_VW view

View Data Type Nulls?

Schema Reference

4-20 Oracle Sensor Edge Server Guide

FROM (
 SELECT edv.*,
 DECODE(LEAD(edv.device_id) OVER (PARTITION BE edv.event_tag_id ORDER BY
edv.event_time), edv.device_id,
0, 1) hop,
 LEAD(edv.device_id) OVER (PARTITION BY edv.event_tag_id ORDER BY edv.event_time)
next_device_id,
LEAD(edv.device_name) OVER (PARTITION BY edv.event_tag_id ORDER BY edv.event_time)
next_device_id,
LEAD(edv.device_TAG_ID) OVER (PARTITION BY edv.event_tag_id ORDER BY edv.event_
time) next_device_tag_id,
LEAD(edv.event_time) OVER (PARTITION BY edv.event_tag_id ORDER BY edv.event_time)
event_end_time
FROM edg_dev_event_vw edv
) ev_path
WHERE hop=1

PL/SQL Programming Interface
The Sensor Data Repository includes the following PL/SQL package.

EDG_SDA Package
1: PACKAGE EDG_SDA 1S
2:
3: --- procedure to handle the incoming event
4: --- and sort out how to disassemble the parts
5: --- and put them into various tables.
6:
7: PROCEDURE on_event
8: (p_correlation_id IN edg_event_tab.correlation_id%TYPE
9: .p_source_name IN edg_event_tab.source_name%TYPE
10. .p_site_name IN edg_device_tab.site_name%TYPE
11. .p_device_name IN edg_device_tab.name%TYPE
12: .p_type IN edg_event_info_tab.type%TYPE
13: .p_subtype IN edg_event_info_tab.type%TYPE
14: .p_time IN edg_event_tab.time%TYPE
15: .p_id IN edg_event_tab_tag.id%TYPE
16: .p_data IN edg_event_tab.data%TYPE
17:);
18:
19: --- procedure to add a new context
20: PROCEDURE create_ctxt
21: (p_object_id) OUT edg_ctxt_tab.object_id%TYPE
22: .p_name IN edg_ctxt_tab.name%TYPE
23: .p_description IN edg_ctxt_tab.description%TYPE
24: .p_parent_ctxt_tab.object_id%TYPE
25:);
26:
27: ---procedure to add a new context
28: PROCEDURE create_ctxt
29: (p_name IN edg_ctxt_tab.name%TYPE
30: .p_description IN edg_ctxt_tab.description%TYPE
31: .p_parent_ctxt_id IN edg_ctxt_tab.object_id%TYPE
32:);
33.
34: --- procedure to update the context hierarchy
35: PROCEDURE update_ctxt_rel
36: (p_cid IN edg_ctxt_rel_tab.cid%TYPE
37: .p_cid IN edg_ctxt_rel_tab.pid%TYPE

Schema Reference

Using the Sensor Data Repository 4-21

38:);
39:
40: --- procedure to update the context
41: PROCEDURE update_ctxt
42: (p_object_id IN edg_ctxt_tab.object_is%TYPE
43: .p_name IN edg_ctxt_tab.name%TYPE
44: .p_description IN edg_ctxt_tab.description%TYPE
45:);
46:
47: --- procedure to remove a context
48: PROCEDURE remove_ctxt
49: (p_object_id IN edg_ctxt_tab.object_id%TYPE
50:
51: END EDG_SDA;

Schema Reference

4-22 Oracle Sensor Edge Server Guide

Oracle Sensor Edge Mobile 5-1

5
Oracle Sensor Edge Mobile

This chapter, through the following sections, describes the Oracle Sensor Edge Mobile.

■ "Overview of Oracle Sensor Edge Mobile"

■ "Configuring the Dispatchers and Drivers"

■ "Configuring the Keyboard Dispatcher"

■ "The ActiveX Application Interface"

■ "Managing Sensor Edge Mobile"

■ "Internationalization"

Overview of Oracle Sensor Edge Mobile
The mobile Oracle Sensor Edge Server (Sensor Edge Mobile) is a client-side (PocketPC
only) application (Figure 5–1) configured with drivers that read barcode and read and
write RFID tags.

Overview of Oracle Sensor Edge Mobile

5-2 Oracle Sensor Edge Server Guide

Figure 5–1 Oracle Sensor Edge Mobile Administration Page on a Handheld Device

The architecture is similar to that of the Oracle Sensor Edge Server, in that it includes
dispatchers that can communicate directly with applications. For example, Sensor
Edge Mobile includes a dispatcher which talks with an ActiveX control that enables
management pages written in HTML with JavaScript to control the drivers and
display or submit the returned data.

Sensor Edge Mobile sits between the sensor device and the application. On one side,
Sensor Edge Mobile interfaces with different types of sensors and devices and on the
other end it feeds filtered data events to applications. The communication is
bi-directional, with events passing from devices, through the platform, to the
application, and instructions passing from the application, through the platform, to the
hardware device driver.

The Sensor Edge Mobile service runs entirely on the handheld device, and can
communicate with other applications or services that are external to it, or operate
entirely offline, collecting data for later synchronization with an outside application.
The flow of events goes from the collection device to the driver. The queue collects
events until the dispatcher can process them. The dispatcher can communicate with
the application through an ActiveX control by sending characters to the keyboard
buffer, or through almost any other communication method. Only one dispatcher can
be active at a time, but that one dispatcher may be communicating with multiple client
devices and any number of drivers.

The Sensor Edge Mobile code components include the Driver Manager, Event
Manager, and the Configuration Manager. Once these components are started, the
main service calls on the Configuration Manager to read the configuration file. It then
starts the configured dispatcher and passes in any configuration parameters that have
been specified.

The Driver Manager is responsible for loading and managing the life cycle of the
drivers. The Driver Manager calls on the Configuration Manager to determine which
drivers need to be loaded, and what parameters to make available to them on

Configuring the Dispatchers and Drivers

Oracle Sensor Edge Mobile 5-3

instantiation, and then loads and initializes them. The Driver Manager does not hold
any thread internally, but an instance of it is held by the core instance as long as the
platform is running.

There is only one Event Manager and one Driver Manager in the Sensor Edge Mobile.
The Driver Manager may load any number of Drivers.

Connecting Sensor Edge Mobile to Applications
The Sensor Edge Mobile is designed to allow application programmers to have easy
access to events coming from the devices, and to submit instructions to the device. The
application may either communicate directly with a dispatcher, or it may
communicate through another layer (such as an ActiveX control) to the dispatcher.

Applications interface with Sensor Edge Mobile through such means as:

■ An ActiveX control, which then communicates with the Sensor Edge Mobile
running as a service process in the background.

■ A keyboard dispatcher, which brings focus to a specified application’s window
and then pushes characters into the keyboard buffer, just as if the user had typed
them. For more information, see "Configuring the Keyboard Dispatcher".

■ A custom dispatcher. Dispatchers are loaded dynamically, and interfaces are
published so that any third party can develop a specialized dispatcher.

Configuring the Dispatchers and Drivers
Drivers and the current dispatcher retrieve their configuration information at the
startup of the Oracle Sensor Edge Mobile service. This configuration is represented as
parameters comprised of a name/value pairs.

The drivers and current dispatchers are configured in EdgeMobileCofig.xml
(Example 5–1), which is located in the same directory as the Sensor Edge Mobile
application. The file describes the single dispatcher used by the service in the
<CurrentDispatcher> parameter as well as the driver (or drivers) that are loaded
within the <DeviceList> element. These elements pass different parameter values.
In Example 5–1, the Keyboard Dispatcher is set as the current dispatcher with the
Intemec IP3 driver (named IP3Driver as the sole <device> element defined in this
file) passing parameters as required.

Example 5–1 EdgeMobileConfig.xml

<EdgeMobileConfig>
 <CurrentDispatcher>
 <Name>Keyboard Dispatcher</Name>
 <Version>1.0</Version>
 <Description>Keyboard Dispatcher</Description>
 <Library>KeyboardDispatcher.dll</Library>
 <Parameters>
 <Param name="DestinationApplication" value="Telnet"/>
 <Param name="RFIDReadMacro" value="TelnetMultipleRFID"/>
 <Param name="BarcodeReadMacro" value="TelnetMultipleBarcode"/>
 <Param name="TelnetSingle" type="KeySequenceMacro">
 <tab/><tab/>RFID<tab/>
 <data name="TagID"/>
 <tab/>
 <data name="TagData"/>
 <cr/>
 </Param>

Configuring the Keyboard Dispatcher

5-4 Oracle Sensor Edge Server Guide

 <Param name="TelnetMultipleRFID" type="KeySequenceMacro">
 <tab/><tab/>RFID<tab/>
 <Repeat>
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <Separator>
 <tab/><tab/>
 </Separator>
 </Repeat>
 <Cr/>
 </Param>
 <Param name="TelnetMultipleBarcode" type="KeySequenceMacro">
 <tab/><tab/>Barcode<tab/>
 <Repeat>
 <data name="data"/>
 <Separator>
 <tab/><tab/>
 </Separator>
 </Repeat>
 <Cr/>
 </Param>
 </Parameters>
 </CurrentDispatcher>
 <DeviceList>
 <Device>
 <Name>IP3Driver</Name>
 <Version>1.1</Version>
 <Description>Intermec RFID IP3 driver</Description>
 <Library>IP3Driver.dll</Library>
 <Parameters>
 </Parameters>
 </Device>
 </DeviceList>
</EdgeMobileConfig>

Configuring the Keyboard Dispatcher
The Keyboard Dispatcher collects data and puts the data into the keyboard buffer and
the keyboard codes into a macro. This macro simulates the user typing while running
an application such as a Telnet session or Web browser. The Keyboard Dispatcher
performs the following operations (in the following order):

1. Captures the event data from the device driver.

2. Brings focus to the window of a specified application.

3. Sends the data and control characters specified in the KeySequenceMacro
language as characters typed into the application window.

By modifying EdgeMobileConfig.xml, you specify which dispatchers and drivers
are loaded and pass configuration parameters to these extensions. For Sensor Edge
Mobile to use the Keyboard Dispatcher, you must define the Keyboard Dispatcher as
the configuration file’s <CurrentDispatcher> element as described in Example 5–2.

Example 5–2 Configuring the Keyboard Dispatcher as the Current Dispatcher

<CurrentDispatcher>
 <Name>Keyboard Dispatcher</Name>
 <Version>1.0</Version>
 <Description>Keyboard Dispatcher</Description>

Configuring the Keyboard Dispatcher

Oracle Sensor Edge Mobile 5-5

 <Library>KeyboardDispatcher.dll</Library>
 <Parameters>
 <Param name="DestinationApplication" value="Telnet"/>
 <Param name="RFIDReadMacro" value="TelnetMultipleRFID"/>
 <Param name="BarcodeReadMacro" value="TelnetMultipleBarcode"/>
 <Param name="TelnetSingle" type="KeySequenceMacro">
 <tab/><tab/>RFID<tab/>
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <enter/>
 </Param>
 <Param name="TelnetMultipleRFID" type="KeySequenceMacro">
 <tab/><tab/>RFID<tab/>
 <Repeat>
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <Separator>
 <tab/><tab/>
 </Separator>
 </Repeat>
 <enter/>
 </Param>
 <Param name="TelnetMultipleBarcode" type="KeySequenceMacro">
 <tab/><tab/>Barcode<tab/>
 <Repeat>
 <data name="data"/>
 <Separator>
 <tab/><tab/>
 </Separator>
 </Repeat>
 <enter/>
 </Param>
 </Parameters>
</CurrentDispatcher>

Defining DestinationApplication Parameter
The DestinationApplication parameter defines the name of the application that
should be given focus before the keyboard buffer is sent character data from the
Sensor Edge Mobile service. The syntax of this parameter is as follows:

<Param name="DestinationApplication" value="Telnet"/>

The application name itself is specified ("Telnet" in Example 5–1), not the path to
the application. On the top of the application window of most applications, this name
can be seen after the document name and a dash (for example, "Doc1.doc - Microsoft
Word" for the Microsoft Word application).

If more than one of these application windows are open, then the application window
closest to the front (the first window in the "z-order") is brought to the front and acted
upon.

Defining the RFIDReadMacro Parameter
The RFIDReadMacro parameter defines which of the key sequence macros in the
configuration file should be used for observation data from RFID reads. This
parameter allows the definition of many key sequence macros in the configuration file,

Configuring the Keyboard Dispatcher

5-6 Oracle Sensor Edge Server Guide

and one of those to be selected by putting the desired macro’s name in this parameter.
The syntax of this parameter is as follows:

<Param name = "RFIDReadMacro" value = "TelnetMultipleRFID"/>

Defining the BarcodeReadMacro Parameter
The BarcodeReadMacro parameter defines which of the key sequence macros in the
configuration file should be used for observation data from barcode reads. This
parameter allows the definition of many key sequence macros in the configuration file,
and one of those to be selected by putting the desired macro’s name in this parameter.
The syntax of this parameter is as follows:

 <Param name="BarcodeReadMacro" value="TelnetMultipleBarcode"/>

Defining the Key Sequence Macro Parameters
The Keyboard Dispatcher sends data collected by Sensor Edge Mobile to the receiving
application as if it were typed by the user. To accomplish this for an existing
application, you first position the focus of the browser or application window on a
specific input control that is to receive the data. For instance, sending the tab character
a certain number of times to position the focus on a particular input field. You may
also then want to generate an Enter key press to cause the data to be submitted or
otherwise acted upon. To specify the specific sequence of keystrokes that the
application requires, you must define a key sequence macro (illustrated in
Example 5–3).

Example 5–3 Defining a Key Sequence Macro

<Param name="TelnetSessionRFID" type="KeySequenceMacro">
 <tab/><tab/>RFID<sp/>Data<tab/>
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <enter/>
</Param>

In Example 5–2, the parameter is given a unique user-defined name
("TelnetSessionRFID"), and its attribute type must be specified as
"KeySequenceMacro". The body of the macro contains a sequence of control
characters, a space specified (<sp/>, and one or more <data> tags to indicate where
the data values should be sent, as if the user typed them at the keyboard.

For example, if the values coming from the Sensor Edge Mobile for the data value "tag
id" is "123456789" and the value for "data" is "0A0B0C0D0E0F" from an RFID tag
then the sequence sent to the application is:

\t\tRFID Data\t123456789\t0A0B0C0D0E0F\r

Where \t indicates a tab character in the sequence, and \r indicates a carriage-return
(Enter) character. This should tab across the application window to the first input
field, type "RFID Data" (the space character code <sp/> is required), then tab to the
TagID field and enter it, and then perform the same routine with the TagData field.
Finally, it will send a carriage-return (Enter), which may be used to click a button and
submit or save the data.

Line breaks, tabs, and spaces in the XML are not sent to the application; you can tab
and pretty-print the contents of the macro in the configuration file without getting

Configuring the Keyboard Dispatcher

Oracle Sensor Edge Mobile 5-7

unwanted characters sent to the application. For instance, in Example 5–4, "Macro1"
and "Macro2" send the same character sequence:

Example 5–4 Sending a Character Sequence

<Param name="Macro1" type="KeySequenceMacro">
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <enter/>
</Param>
<Param name="Macro2" type="KeySequenceMacro"><data name="tag_id"/><tab/><data
name="data"/><enter/></Param>

Creating a Key Sequence Macro
To build a key sequence macro, record the keystrokes required to get to the input
fields of the destination application, and where the data fields are to be typed. Then
write this sequence as a key sequence macro as illustrated in Example 5–4. Finally, set
the "RFIDReadMacro" or "BarcodeReadMacro" parameter to the name of the new
key sequence macro ("MyMacro" in Example 5–5).

Example 5–5 Setting the RFIDReadMacro to the Name of the New Key Sequence Macro

<Param name="RFIDReadMacro" value="MyMacro"/>
 <Param name="MyMacro" type="KeySequenceMacro">
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <enter/>
</Param>

Now events from an RFID read will generate the key sequence above, inserting the
values indicated by the <data> elements.

Enabling the Key Sequence Macro to Handle Repeating Elements
The examples illustrated thus far only handle one set of "tag_id" and "data" data
elements from an RFID tag. To make this macro work for a series of these data value
pairs, you must define the concept of repetition. Specify a portion of the key sequence
macro that is to be repeated, as well as what character sequence should be sent
between repetitions to get the focus to the next row or field of the application using the
<Repeat> and <Separator> macro elements.

Example 5–6 Defining <Repeat> and <Separator> Elements

<Param name="TelnetMultipleRFID" type="KeySequenceMacro">
 <tab/><tab/>RFID<tab/>
 <Repeat>
 <data name="tag_id"/>
 <tab/>
 <data name="data"/>
 <Separator>
 <tab/><tab/>
 </Separator>
 </Repeat>
 <enter/>
</Param>

Configuring the Keyboard Dispatcher

5-8 Oracle Sensor Edge Server Guide

Example Example 5–6 illustrates the <Repeat> and <Separator> macro elements.
These specify the section of the macro that is to repeat for each data set, and what
sequence should be sent between data sets.

For three pairs of data observations, with"Tag_id" and "data" value pairs ("Tag1",
"Data1"), ("Tag2", "Data2"), and ("Tag3", "Data3"). The sequence generated
from the macro above would
be:\t\tRFID\tTag1\tData1\t\tTag2\tData2\t\tTag3\tData3\r

Breaking this sequence down, the portion before the <Repeat> sent once:

 \t\tRFID\t

And the repeated portions <data name="tag_id"/><tab/><data
name="data"/>:

 Tag1\tData1 Tag2\tData2 Tag3\tData3

each separated by the <Separator> sequence:

 \t\t \t\t

And finally the carriage-return (Enter) sent once:

 \r

While the <Separator> sequence separates each repeated sequence, it never follows
the last repeated sequence. In this example, the "\t\t" separator sequence is not be sent
after the last pair of data values (in this case "Tag3\tData3").

Key Macro Element Keys for Special Control Sequences To simulate the pressing of any of
the keyboard keys that may be required by an application, special control sequences
(described in Table 5–1) are provided for use in the keyboard sequence macros.

Table 5–1 Control Sequences for Keyboard Keys

Element Key Sequence Sent

<space/> Spacebar

<sp/> Spacebar

<enter/> Enter key

<cr/> Enter key

<backspace/> Backspace key

<bs/> Backspace key

<tab/> Tab key

<backtab/> Shift-Tab key

<clear/> Clear key

<esc/> Escape key

<pageup/> Page Up key

<pagedown/> Page Down key

<end/> End key

<home/> Home key

<leftarrow/> Left Arrow key

Configuring the Keyboard Dispatcher

Oracle Sensor Edge Mobile 5-9

As illustrated in Example 5–6, to send a sequence of literal characters, any spaces or
tabs must be explicitly entered, as in <sp/> and <tab/>. Any other tabs and spaces in
the macro will be ignored as pretty-print formatting of the XML. The other reason this
is done is that the XML standard for parsing tabs and spaces does not preserve all of
these "whitespace" characters between elements, and this modification would alter the
macro processing in ways that would be difficult to predict.

Keyboard Macro Elements for Control Keys or Data Positioning The <control char="x"/>
and <data name="tag_id"/> macro elements (described in Table 5–2) specify
generated control keys or positions where data should be typed.

The special <control> element generates a control sequence just as if the user held the
Control key and then typed the specified character. For instance, to generate Control-B,
specify <control char="b"/>.

The <data> element fetches the current value of the data in the observation event,
and inserts it at the current position. The specific names and their meaning (such as
"tag_id" representing the Tag-ID of an RFID tag) are made available to the
application as name and value pairs. Table 5–3 describes the pre-defined values for the
<data> element.

<uparrow/> Up Arrow key

<rightarrow/> Right Arrow key

<downarrow/> Down Arrow key

<ins/> Insert key

 Del key

<cancel/> Control-break

<f1/> F1 key

<f2/> F2 key

<f3/> F3 key

<f4/> F4 key

<f5/> F5 key

<f6/> F6 key

<f7/> F7 key

<f8/> F8 key

<f9/> F9 key

<f10/> F10 key

<f11/> F11 key

<f12/> F12 key

Table 5–2 Keyboard Macro Elements

Element Description

<control char="x"/> Control-char

<data name="tag_id"/> Named data value

Table 5–1 (Cont.) Control Sequences for Keyboard Keys

Element Key Sequence Sent

Checking Device Status

5-10 Oracle Sensor Edge Server Guide

The <data> element also acts with the <Repeat> element (described in "Enabling the
Key Sequence Macro to Handle Repeating Elements" to iterate through a sequence of
data values, if multiple events are returned by a read. See "Handling Observation
Events" for more information on the “block_index” and “block_count” data values.

If no tags can be read in an RFID read, an event is returned with the "tag_id" and
"data" values set to an empty string ("").

Checking Device Status
The Device Manager can "ping" devices to determine if they are alive and responsive.
devices which do not respond are restarted without user intervention.

The Device Manager records the last time an event has been returned from the device
and, if it has been a long time since the last event, issues a ping OS event to the driver.
The driver interface contract requires that the device responds with a special
response-from-ping event in a reasonable period of time. If the device does not
respond in a configurable time, the Device Manager issues a shutdown command to
the device. If after a period of time the device has not responded with a shutdown
acknowledgement event, then Device Manager will unload the driver .dll and load
and initialize a new device.

The ActiveX Application Interface
This revised ActiveX API has a number of major new features and differences from the
previous beta release:

■ The control has no visible rendering of its own, so the designer has the flexibility
to process or present the observation data in any way.

■ The data is returned to the JavaScript by registering a function to receive
observation data events. The application can then set input fields with this data, or
do whatever it pleases with it.

Table 5–3 Pre-Defined Values for the <data> Element

Name Description

device_name The name of the device generating the observation event.

device_desc A description of the device generating the observation event.

timestamp The timestamp of the event creation in a textual presentation
format.

block_index The index of this event in a block (group) of events.

block_count The number of events in this event block.

tag_id RFID: The TagID of an RFID tag as a hexadecimal string. The
data payload is in "data".

data RFID: The data payload as a hexadecimal string. Barcode: The
barcode read data as a hexadecimal string.

type Barcode: The type of barcode ("1d" or "2d").

checksum Barcode: The checksum value as a hexadecimal string.

encoding_format Barcode: The encoding format.

The ActiveX Application Interface

Oracle Sensor Edge Mobile 5-11

■ The new API allows simultaneous access to any of the device classes supported by
the currently configured drivers. For example, RFID and Barcode data could be
read from one HTML page.

Object Declaration
Example 5–7 describes the object declaration of the Oracle Sensor Edge Mobile client
control. In this example, the "event_handler" parameter registers the name of the
JavaScript function that is to be called when an observation event is received. If no
parameter is specified, a call to the default event handler function, "handle_
event()" will be attempted. No error is returned if the function does not exist, and
processing will proceed without an event handler.

Example 5–7 The Object Declaration of the Sensor Edge Mobile Client Control

<object id="SEMobileControl" name="SEMobileControl"
 classid="CLSID:049BE519-EE78-4AA5-8FC8-C5AE084CB26C"
 width="0"
 height="0">
 <param name="event_handler" value="handle_event"/>
<table><tr><td bgcolor="#FF0000">
<hr/>Unable to load Sensor Edge Mobile control.<hr/>
</td></tr></table>
</object>

The Activex API includes the following methods:

■ rfid_read()

■ rfid_write()

■ rfid_kill()

■ barcode_read()

■ set_trigger_rfid_read()

■ set_trigger_barcode_read()

■ process_instruction()

■ is_supported()

rfid_read()
The rfid_read() method will issue a read for all tags in range. The method
signature is:

var retVal = SEMobileControl.rfid_read();

The tags read will be returned by zero or more callbacks to the registered event
handler method. If the read succeeds, the return value will be zero. If it fails for any
reason, a non-zero value will be returned.

rfid_write()
The rfid_write() method issues a write for all of the tags in range. The method
signature is:

var retVal = SEMobileControl.rfid_write(srcForm.srcData.value,
 srcForm.srcPasscode.value);

The ActiveX Application Interface

5-12 Oracle Sensor Edge Server Guide

In this example, the parameters are hidden variables in the form srcForm. The
srcData variable represents the data to write, represented as a hexadecimal string,
and the srcPasscode contains the pass code for a write. If the write succeeds, the
return value will be zero. If it fails for any reason, a non-zero value will be returned.

rfid_kill()
The rfid_kill() method issues a kill for all tags in range. The method signature is:

var retVal = SEMobileControl.rfid_kill(srcForm.srcTagId.value,
 srcForm.srcPasscode.value);

The srcTagId variable represents the TagID of the tag that is to be killed (represented
as a hexadecimal string) and the srcPasscode contains the passcode for a kill. If the
kill succeeds, the return value will be zero. If it fails for any reason, a non-zero value
will be returned.

barcode_read()
The barcode_read() method will issue a read of the barcode pointed to by the
device. The method signature is:

var retVal = SEMobileControl.barcode_read();

The barcode read observation event will be returned by a callback to the registered
event handler method. If the read succeeds, the return value will be zero. If it fails for
any reason, a non-zero value will be returned.

set_trigger_rfid_read()
The set_trigger_rfid_read() method will tell Sensor Edge Mobile that when the
user pulls the trigger on the device, a read of RFID data should be done. The method
signature is:

var retVal = SEMobileControl.set_trigger_rfid_read();

The call is required to register the RFID read operation to the trigger pull. If the call
succeeds, the return value will be zero. If it fails, there is no RFID device driver loaded,
and a non-zero value will be returned.

set_trigger_barcode_read()
The set_trigger_barcode_read() method tells Sensor Edge Mobile that when
the user pulls the trigger on the device, a read of barcode data should be done. The
method signature is:

var retVal = SEMobileControl.set_trigger_barcode_read();

The call is required to register the barcode read operation to the trigger pull. If the call
succeeds, the return value will be zero. If it fails, there is no barcode device driver
loaded, and a non-zero value will be returned.

process_instruction()
The process_instruction method is a lower-level interface for the processing of
instructions by drivers. It is not necessary for the currently defined RFID and barcode
operations, but is made available for easy expansion of the instruction repertoire when
a custom driver is used. The method signature is

var retVal=SEMobileControl.process_instruction(instruction,
data);

The ActiveX Application Interface

Oracle Sensor Edge Mobile 5-13

The "instruction" is an integer value (expressed as a string) from a list of defined
constants. In EdgeMobilehtml_samples is a file named SEMobileCore.js. This
file’s values can be included in an HTML document by using a script element as
follows:

<script type="text/javascript" src="SEMMobileCore.js"></script>

Then the instruction to start an RFID read using these constants would look like:

var retVal=SEMobileControl.rfid_read();

This instruction performs the same operation as the following:

var retVal=SEMobileControl.rfid_read();

Possible values for the commands are:

■ Symbol Description

RFID_READ START an RFID read. The argument value is ignored. RFID_WRITE
DESCRIPTION string for device generating event. RFID_KILL Timestamp of
event creation in textual presentation format. BARCODE_READ Index of this event
in a block (group) of events. REGISTER_TRIGGER0 Number of events in this
event block. TRIGGER_PULL0 RFID: TagID of RFID tag as a hexadecimal string.
Data payload is in"data".

The instruction to start a barcode read would look like:

var retVal = SEMobileControl.process_instruction(BARCODE_
DEAD. "");

 The equivalent method call is:

var retval = SEMobileControl.barcode_read();

The instruction to do an RFID write using these constants would look like:

var retVal = SEMobileControl.process_instruction(RFID_WRITE,
"0102030405060708,123");

The hexidecimal value to write is separated from the passcode by a comma. The
instruction above is equivalent to the following:

var retVal = SEMobileControl.rfid_write("0102030405060708",
"123");

An RFID kill would look like:

var retval = SEMobileControl.process_instruction(RFID_KILL,
"0102030405060708,123");

As with the RFID write, the hexidecimal value to write is separated from the
passcode by a comma. The instruction above is equivalent to the following:

var retval = SEMobileControl.rfid_kill("0102030405060708",
"123);

Finally, the instruction to register the trigger pull to a given read operation would
look like:

var retval = SEMobileControl.process_instruction(REGISTER_
TRIGGER0, RFID_READ);

The instruction above performs exactly the same operation as the following:

var retval = SEMobileControl.set_trigger_rfid_read();

The ActiveX Application Interface

5-14 Oracle Sensor Edge Server Guide

is_supported()
The is_supported method has a single argument of an instruction code such as
RFID_WRITE and returns true or false depending on whether or not there is a
configured driver that can process this instruction. The method signature is:

if (SEMobileControl.is_supported(RFID_KILL) {//RFID_KILL instruction supported
by a configured driver...}

The "instruction" is an integer value (expressed as a string) from a list of defined
constants in the SEMobileCore.js file.

Handling Observation Events
The registered JavaScript event handler function is called by the ActiveX control when
an observation event is received. In the event handler method, the event object is
referenced by the name of the ActiveX control instance. In Example 5–8 and
Example 5–9 "SEMobileControl" is used as the control name.

The event data is available from the ActiveX object until the JavaScript returns from
the event handler function. The data that is present in all events is available as
properties, and the other data that is specific to a given event type is available by
lookup. Table 5–4 lists the event data.

Example 5–8 describes an event handler function that reports on the event by using
properties on the event.

Example 5–8 Event Handler Function for Event Reporting

function handle_event()
{
 if (SEMobileControl.is_barcode_read) {
 alert ("Barcode data read from " + SEMobileControl.device_name);
 }
 if (SEMobileControl.is_rfid_read) {
 alert ("RFID data read from " + SEMobileControl.device_name);

}

All of these properties are only available until the event handler function has returned.
As soon as it returns, the Sensor Edge Management control can again call the handler
with another event, and any data associated with the last event is no longer available.

Table 5–4 Available Event Data

Name Description

device_name The name of the device generating the observation event.

device_desc A description of the device generating the observation event.

is_rfid_read Returns "true" id the vent is an RFID read event.

is_barcode_read Returns "true" if the event is a barcode read event.

timestamp The timestamp of event creation.

block_index The index of this event in a block (group) of events.

block_count The number of events in this event block.

type The type code for the event object.

subtype The subtype code for the event type.

The ActiveX Application Interface

Oracle Sensor Edge Mobile 5-15

When RFID tags are read, the events returned are marked as part of a block (with a
read of one tag being represented as a block of one event). To reflect this, all events
have a block index and a block count associated with them. If the event is a singleton,
the block count and index are set to "1", while if the block contains three events, the
block index and count values for the three events in the block will look like (1, 3), (2,
3), and (3, 3). The "block_index" and "block_count" properties above allow access to
these values.

There may be other data specific to the class of device that is associated with the event.
These are represented as name/value pairs, and can be looked up with the following
data() method. The data() property looks up a data value specific to an event from
a specific device class. Different data names are defined for each device class, and that
if the data value is not present in the current event, an empty string ("") is returned.
Table 5–5 describes the defined data names and their associated device class.

Example 5–9 describes how the event handler first determines the device class (RFID
or barcode) and then references data() to fetch the device class-specific data value.

Example 5–9 Fetching the Device Class-Specific Data Value

function handle_event()
{
 if (SEMobileControl.is_barcode_read) {
 alert ("Barcode data is " + SEMobileControl.data("data"));
 }
 if (SEMobileControl.is_rfid_read) {
 /* Note that "tag_id" is an RFID-specific event value */
 alert ("RFID tag ID is " + SEMobileControl.data("tag_id"));
 }
}

Deprecated Activex Application Interface
The current Sensor Edge Mobile ActiveX control can be accessed as follows:

■ As a visible control on an HTML page containing the observation data collected by
the driver.

■ Through the control’s API, where the control is not visible on the page, but
provides an API for JavaScript.

■ As a mixture of a visible control and the APIs in use.

This API only allows access to one device class (that is, either barcode or RFID) from a
given HTML page.

Table 5–5 Data Names

Name Description

tag_id RFID: The TagID of an RFID tag as a hexadecimal string. The
data payload is in "data".

data RFID: The data payload as a hexadecimal string. Barcode: The
barcode read data as a hexadecimal string.

type Barcode: The type of barcode ("1d" or "2d").

checksum Barcode: The checksum value as a hexadecimal string.

encoding_format Barcode: The encoding format.

Managing Sensor Edge Mobile

5-16 Oracle Sensor Edge Server Guide

Managing Sensor Edge Mobile
The Administration HTML page (Figure 5–1) enables you to manage Oracle Sensor
Edge Mobile. Using this page, you can perform the following tasks:

■ Extension Configuration and Management

For drivers, the HTML page lists the configured drivers and their state
(initializing, active, shutting down, or not responding). Release 10.1.3 of Oracle
Sensor Edge Server Mobile 10.1.3 supports the Symbol 9000-G and Intermec IP3
with Color 700 PocketPC attached.

For Symbol 9000-G, Sensor Edge Server Mobile supports the following operations:

– rfid_read()

– rfid_write()

– rfid_kill()

– barcode_read()

For the Intermec IP3, Sensor Edge Mobile supports the following:

– rfid_read()

– barcode_read()

 For dispatchers, the page displays the configured driver and its current state
(initializing, active, or shutting down).

■ Monitoring Running Status

The page provides the service status of Sensor Edge Mobile (initializing, active, or
shutting down).

■ Service Management

The page provides a Shutdown Service button, which you use after you have
configured a driver, changed a dispatcher, or edited the XML configuration file
(EdgeMobileConfig.xml).

Note: This API is deprecated in Oracle Sensor Edge Server Version
10.1.3.

Managing Sensor Edge Mobile

Oracle Sensor Edge Mobile 5-17

Figure 5–2 Shutting Down the Sensor Edge Mobile Service

■ Logging

The pages displays updates to the log entries in real time.

Figure 5–3 Viewing the System Logs

Internationalization

5-18 Oracle Sensor Edge Server Guide

■ Performance Monitoring

For each loaded driver, the page displays counts of observation data events and
the timestamp of the last event from each driver

■ Configuration

The page enables you to read the configuration XML file
(EdgeMobileConfig.xml) and change the configuration of the file as needed.

Internationalization
For internationalization, all of the string literals in the Sensor Edge Mobile are in a
.dll file which enables the shipping of international executables.

Configuring Devices, Filter Instances, and Dispatchers 6-1

6
Configuring Devices, Filter Instances, and

Dispatchers

This chapter includes the following sections:

■ "Overview of Device, Filter Instance and Dispatcher Configuration"

■ "Configuring Devices"

■ "Configuring Filter Instances"

■ "Managing Dispatchers for an Oracle Sensor Edge Server Instance"

Overview of Device, Filter Instance and Dispatcher Configuration
This chapter describes the extensions (drivers, filters, and dispatchers) that the Oracle
Sensor Edge Server supports out of the box and how to configure their parameters
when you create instances of these objects (or, in the case of the dispatcher, when you
set the current dispatcher for an Oracle Sensor Edge Server instance). Because these
extensions are static objects, you must create instances of them to enable an Oracle
Sensor Edge Server instance to use them to process event data. Fore more information,
see "Setting the Dispatcher for the Oracle Sensor Edge Server Instance" and "Setting
the Devices and Filters Used by the Oracle Sensor Edge Server".

Setting the URI Parameters for Devices and Dispatchers
Some of the device and current dispatcher configuration requires you to define a URI
parameter. This parameter, which requires a String value, tells the Transport Library
which transport and parameters to use. Enter the value for the URI parameter in the
following format:

esc://<transport>?<param1>=<value1>&<param2>=<value2>&...

Where:

■ <transport> is the name of the transport to use (as in transportstransport@name
in the transports.xml file).

■ <param1> is a parameter name for the transport.

■ <value> is the value for the parameter.

You can specify as many parameters as you need. For example, to connect using
TCP/IP to a server called test.oracle.com at port 9999, enter the value for the URI
parameter as:

esc://tcp&hostname=test.oracle.com&port=9999

Overview of Device, Filter Instance and Dispatcher Configuration

6-2 Oracle Sensor Edge Server Guide

To connect to a serial port COM1 at 9600 baud, enter the value for the URI parameter
as:

esc://com?port=COM1&baud=9600

To connect to TCP port 9999 at IP 1.2.3.4, enter the value for the URI parameter as:

esc://tcp?hostName=1.2.3.4&port=9999

To write output to a file and read from another file (which is useful for testing and
logging), enter the value for the URI parameter as:

esc://file?inputFileName=/tmp/myInFile.txt&outputFileName=/tmp/m
yOutFile.txt

The values defined for the URI parameter are specific to the transport type. Table 6–1
describes each supported transport type and its associated parameter values.

Table 6–1 Supported Transport Types

Name Description Parameter Values

com Serial Communication Port port is the name of the port (such as COM1, COM2, tty1S).

baud is the baud rate (such as 9600, 38400, 115200).

Example: esc://com?port=COM1&baud=9600

tcp TCP/IP Connection hostname is the IP address or hostname to connect to (for
example, 127.0.0.1).

port is the port number.

timeout is an optional parameter that sets the number (in
seconds) in which to wait for a valid connection.

Example: esc://tcp?hostName=127.0.0.1&port=9999

stdout Use standard input and output streams. N/A

file Files used for input and output. outFileName is an optional parameter naming the output
file. If you do not enter a value, then the output is
discarded.

inFileName is an optional parameter naming the input file.
If you do not enter a value, then there is no input.

purgeOnClose is an optional parameter requiring a
boolean value. Setting this parameter to true purges the
input file when the connection is closed. Use this
parameter for polling data.

Example:
esc://file?inputFileName=/tmp/myInFile.txt&outputFileName=
/tmp/myOutFile.txt

http Post to a URL through HTTP. URL is the URL to post to.

proxyServer is an optional parameter specifying which
proxy server to use.

proxyPort is an optional parameter specifying the port for
the proxy.

ftp Post and retrieve files through FTP. hostname is the name of the FTP server

user is the name of the user.

password is the password for the user.

Tip: You can also define commonly used parameters in the
transports.xml file. All of the values defined in the URI parameter
override those defined in the transports.xml file.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-3

Configuring Devices
The Oracle Sensor Edge Server provides drivers that support RFID readers (described
in Table 6–3).

In addition, Oracle Sensor Edge Server provides drivers that support printer devices
and those for display and notification (described in Table 6–3).

Table 6–2 RFID Readers

Driver Name Supported Devices

Alien Reader Driver All of the Alien Technology RFID readers, such as the Alien
NannoScanner (Model 915MHz, the ePC Reader). See "Configuring Alien
Reader Driver-Based Devices".

BarcodeDriver Any barcode reader that works with standard ASCII mode through serial
or network communication.

See "Configuring BarcodeDriver-Based Devices".

Intermec BRI Driver All of the Intermec RFID readers that support BRI (Basic Reader
Interface), such as the IF5 Fixed RFID Reader. See "Configuring Intermec
BRI Driver-Supported Devices".

Intermec Reader Driver Devices include:

■ Intermec IDK (Model ITRF91501)

■ Intermec PCMCIA Reader (Model ITR100)

See "Configuring Intermec Reader Driver-Based Devices".

Matrics Driver Supported fixed Readers by Symbol Technologies include:

■ Matrics AR400 Reader

■ Matrics SR400 Reader

■ Matrics XR400 Reader

See "Configuring Matrics Driver-Based Devices".

Samsys Driver SAMSys EPC UHF Long-Range Reader (Model MP9320 2.7)

See "Configuring Samsys Driver-Based Device".

Tyco Reader Tyco Sensormatic Agile2 Reader (Powered by ThingMagic)

See "Configuring Tyco Reader Driver-Based Devices"

Table 6–3 Printer Drivers and Display and Notification Drivers

Driver Name Supported Devices

AnimationDriver This is a software-only driver used for device simulation.

See "Configuring an Instance of the AnimationDriver".

ConsoleDriver This is a software-only driver used for device simulation.

See "Configuring an Instance of the ConsoleDriver".

Edge Simulator Driver This is a software-only driver used for device simulation.

See "Configuring Edge Simulator Driver-Based Devices".

Configuring Devices

6-4 Oracle Sensor Edge Server Guide

The Oracle Sensor Edge Server also ships with Edge Echo Driver. The Edge Echo
Driver does not control any physical device; instead, this driver receives an instruction
event, copies the event, and then sends it back out. This event has all of the same
attributes as the original instruction event, depending on the configuration of the Edge
Echo Driver instance. The Oracle Sensor Edge Server processes the event as any other
event generated by a device: the event is filtered and then dispatched by the current
dispatcher. See also "Configuring Edge Echo Driver-Based Instances".

Configuring Alien Reader Driver-Based Devices
The Alien Reader Driver supports all of the Alien Technology RFID readers.

To configure an Alien Reader Driver driver-based device, define the following
parameters:

■ IPAddress -- The hostname or IP address of the machine running the Device
Controller. If it runs on the same machine as the Oracle Sensor Edge Server, enter
127.0.0.1.

■ Port Number -- The port number used to communicate with the device (23 is the
default).

■ username and password

■ AntennaSeqIDList -- The list of identifiers for each antenna.

■ AntennaMappedDeviceNameList -- The list of mapped device names
associated with each antenna.

Observation Events Generated by the Alien Reader Driver
Observation events are events that are generated by the driver and are dispatched out
to the system. Table 6–4 lists the events generated by the Alien Reader Driver.

LpmlDriver Supported printer devices include:

■ Zebra Technologies R110Xi printer/encoder

■ Intermec EasyCoder PM4i Printer

■ Sato Barcode Printer CL408e (which supports LPML)

■ Loftware Print Server

See "Configuring LpmlDriver-Based Devices".

PatliteDriver PHE-3FB PC-Controlled Light by Patlite (USA) Corp. The Lightstack
Device Controllers are available for download from Oracle Technology
Network (http://www.oracle.com/technology/

See "Configuring PatliteDriver-Based Devices".

Prolite Driver Pro-Lite TruColorII LED Display (Model PL-M2014RV6)

See "Configuring Prolite Driver-Based Devices".

Table 6–4 Observation Events Generated by the Alien Reader Driver

Type Subtype TagID Data Description

200 Various Tag ID The data field (payload) stored in
a tag.

General tag observation
event.

Table 6–3 (Cont.) Printer Drivers and Display and Notification Drivers

Driver Name Supported Devices

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-5

The Instruction Event Accepted by the Alien Reader Driver
Applications send devices instruction events to tell them to perform certain tasks.
Table 6–5 lists the instruction event accepted by the Alien Reader Driver.

Configuring an Instance of the AnimationDriver
The AnimatorDriver does not support a device; this driver supports interactive
software simulations of devices. The configured instance of this driver accepts user
input or events from the Oracle Sensor Edge Server and runs animation sequences
defined in the configuration file (Example 6–1) on the screen.

To configure an AnimationDriver instance, define the fileName parameter as the full or
relative path to the configuration file, an .xml file in the format described in

1 0 Null "alive or dead" Each event using data
property to indicate
whether the device is alive
or not.

1 0 Null "dis" An event indicating a
successful device startup
operation.

1 2 Null "dif" An event indicating a failed
device startup operation.

1 0 Null "dss" An event indicating an
successful device stop
operation.

1 2 Null "dsf" An event indicating a failed
device stop operation.

1 2 Null "drf" An event indicating a failed
event-receiving operation.

1 0 or 2 Null <callResults>

 <callResult name="write-tag">

 <code>0/1</code>

 <message/>

</callResults>

An event indicating a
successful or failed
tag-writing operation.

Table 6–5 Instruction Event Sent by the Alien Reader Driver

Type Subtype TagID Data Description

101 0 Null

<methodCalls>
 <methodCall name="write-tag"">
 <params>
 <param name=’tagid’>%TAGID%</param>
 <param name=’tagdata’>%TAGDATA%</param>
 </params>
 </methodCall>
</methodCalls>

Write data
to a tag
identified
by the
specified
tag ID.

Table 6–4 (Cont.) Observation Events Generated by the Alien Reader Driver

Type Subtype TagID Data Description

Configuring Devices

6-6 Oracle Sensor Edge Server Guide

Example 6–1. Using this file, you can configure the AnimationDriver instance to accept
and generate any type of event.

Example 6–1 Configuration File for the AnimationDriver

<animate>
 <window>... </window>
 <task>...</task>
</animate>

To configure this file, define its <window> and <task> elements.

Defining the <window> Element
The <window> element enables you to define a window. Each window appears as a
top level window in the server's display. Within the <window> element, you can
define any number of user interface controls in the window that trigger tasks.

The <window> element is comprised of three attributes which define the window and
its dimensions: name, width, and height.

■ name is a unique name for the window, which appears on the window's title bar.

■ width is the width of the window, in pixels.

■ height is the height of the window, in pixels.

Once you define the window, you can then define the controls within in it.
Example 6–2 illustrates a window with a single push button control. The
AnimationDriver supports button, a control type for a push button.

Example 6–2 Defining Windows in the Configuration File

<window name='myWin' width='200' height='100'>
 <control type='button' name='Pass Thru'/>
</window>

You define the tasks triggered when the users clicks the button using the <task>
element.

Defining the <task> Element
A task is a set of actions triggered by either a control or an event. Example 6–3
illustrates the <task> element, with its <when> and <action> child elements. The
<when> element tells the task when to run the <action> element. There can be
multiple tasks that map to overlapping conditions.

Example 6–3 Defining Tasks in a Configuration File

<task name='TaskA'>
 <when> ... </when>
 <action> ... </action>
</task>

You define the <when> element using the following conditions:

■ <onClick> matches a user clicking a control in a window. This condition takes
one argument, the name of the control for the event. For example, <onClick
name='Pass Thru'/> is matched if the user clicks the control button named
Pass Thru (illustrated in Example 6–2).

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-7

■ <onEvent> is fired if an event is received by the driver instance that matches the
criteria defined for this event. You can define the following criteria for the event.

– type, which matches the type of the event.

– subtype, which matches the subtype of the event.

– id, which looks for an exact match of the ID.

– ids, which looks for any event with any ID that matches from the list. The
value of the attribute should be a comma separated list of IDs it's looking for.

– data, to look for a match in the data field of the event.

■ <onInterval> is fired on a periodic basis. You define this element by specifying
the frequency attribute. Set this attribute using a String value or using a
number (int) to define the repeat interval to fire <onInterval> in seconds. For
example, setting this attribute using a String value once sets <onInterval> to
fire once upon startup.

Once you define when the task starts, you can then define what the task performs in
the <action> element. Within the <action> element, you can define the following:

■ <audio> which plays an audio file.

■ which shows a picture at a certain location.

■ <delay> to delay between frames.

■ <send> to send an event out to the system.

Configuring BarcodeDriver-Based Devices
To configure a BarcodeDriver -based device, define the uri parameter as the connection
to the lightstack. See "Setting the URI Parameters for Devices and Dispatchers".

RFID Observation Event Returned by the BarcodeDriver
Table 6–6 describes the RFID observation event returned by the BarcodeDriver.

Configuring an Instance of the ConsoleDriver
The ConsoleDriver is a simulation driver that displays all of the events it receives to a
graphical window, which includes the following views:

■ Event List -- Displays a list of all of the events received by a device since startup.

■ Details -- If you double-click an event displayed in the Event List view, the details
specific to that event display in this window.

■ Send -- Select this view to send an event to the system. Before sending an event,
ensure that the TYPE, SUBTYPE, and ID fields have data (that is, they are not
empty). The TIME field displays current time stamp.

This driver is agnostic to event types and data. It only displays the events that it has
received and sends any user input from the Send dialog. The user interface enables you

Table 6–6 RFID Observation Event Returned by the BarcodeDriver

Type Subtype Direction Title Description

200 1 From device
(inbound)

ID Observed A new barcode is read and decoded. The barcode
is decoded and stored in the tag ID field of the
event when a new barcode is observed.

Configuring Devices

6-8 Oracle Sensor Edge Server Guide

to input event data and send it out for dispatching as if it had been generated by an
actual device. Use this driver to monitor and debug the event flow in the system.

Configuring Edge Echo Driver-Based Instances
The Edge Echo Driver does not control any physical device; instead, this driver
receives an instruction event, copies the event, and then sends it back out. This event
has the same attributes as the original instruction event except for the Timestamp
attribute, which you can configure to display the current time. The Oracle Sensor Edge
Server processes the event generated by an instance of the Edge Echo Driver the same
as any other event generated by a device: the event is filtered and then dispatched by
the current dispatcher. See also "Viewing Event Data".

To configure an instance of the Edge Echo Driver driver, define the following
parameters:

■ stamptime -- Enter true to set the Timestamp attribute of the event generated by the
Edge Echo Driver instance to the current time.

■ logFileName -- Enter the location of the log file. This is a String value.

Configuring Edge Simulator Driver-Based Devices
The Edge Simulator Driver generates events to simulate a real device. In general, you
use the EdgeSimulator driver to test configurations and deployment designs; however,
you can also use it for internal functional testing to see how events are processed
throughout the system. The Edge Simulator Driver acts the same as any driver, except
that instead of connecting to a physical device to read events, it takes parameters from
an input file (such as Example 6–6) as instructions on when to generate fake events.
This begins as soon as the device starts (which starts when the Oracle Sensor Edge
Server starts).

Configuring an Edge Simulator Driver-based device requires that you define the
device’s FILENAME parameter by entering the name of this input file, which instructs
the Edge Simulator Driver-based device how to generate fake events using the
following instructions.

<EventList>

The <EventList> element defines a loop. This element is also the main block that
groups all of the other instructions together. <EventList> has one attribute, repeat,
which must be present to control looping. The value for repeat must be a decimal
number from 0 to LONG_MAX. To generate events only once, set the repeat attribute to
1. Setting repeat to n results in all instructions looping n times. Setting repeat to 0
disables the block and causes the parser to skip it.

Example 6–4 illustrates the syntax for generating two events, pausing, generating two
more events, and then looping 20 times:

Example 6–4 Defining a Loop

<EventList repeat=’20’>
<Event> … </Event>
<Event> … </Event>
<EventInterval>…</ EventInterval>
<Event> … </Event>
<Event> … </Event>
</EventList>

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-9

You can include any number of instructions inside the <EventList> element. The
order in which they are defined is the order in which they are executed.

<EventInterval>

The <EventInterval> element instructs the Simulator to pause for a certain period
of time before proceeding. This is usually used to throttle the data rate. A decimal
number defines the time period, in milliseconds, to wait for before executing the next
instruction. Section 6–5 illustrates how to instruct the Simulator to wait for half a
second between each event and three seconds between loops:

Example 6–5 The <EventInterval> Element

<EventList repeat=’20’>
 <Event> … </Event>
 <EventInterval>500</ EventInterval>
 <Event> … </Event>
 <EventInterval>500</ EventInterval>
 <Event> … </Event>
 <EventInterval>3000</ EventInterval>
</EventList>
<Event>

The <Event> element tells the Simulator to send an event. The child elements
(described in Table 6–7) control the event’s fields.

Example 6–6 illustrates an input file which includes two groups of events: the first one
runs only once and the second runs 20 times.

Example 6–6 Simulator Input File

<EdgeEventSimulation>
 <EventList repeat=’1’>
 <Event>
 <type>100</type>
 <subtype>1</subtype>
 <id>03ffff045679</id>
 <data>No Data</data>
 <deviceName>My Device</deviceName>

Table 6–7 Event Elements for the Simulator

Event Field Value

<type> The number value that corresponds to the type of
event.

<subtype> The number value for the subtype. For example, the
subtype value in Example 6–6 corresponds with a
General Instruction Event, which is an event sent by
application or a device to tell a specific device to
perform an operation. In Example 6–6, the value of 1
turns on the device.

<id> The text value of this field identifies a tag (that is, a
read or target) to an event instruction. In Example 6–6,
one of the <id> values for a tag is 03ffff045679.

<data> The tag data. This is an optional field.

<deviceName> The name of the device or application that generates
the event. The <deviceName> enables the Simulator
to appear as if it is another device when generating
events.

Configuring Devices

6-10 Oracle Sensor Edge Server Guide

 </Event>
 <EventInterval>500</ EventInterval>
 <Event>
 <type>100</type>
 <subtype>1</subtype>
 <id>03ffff045680</id>
 <data>No Data</data>
 <deviceName>My Device</deviceName>
 </Event>
 <EventInterval>3000</ EventInterval>
 </EventList>

 <EventList repeat=’20’>
 <Event>
 <type>100</type>
 <subtype>1</subtype>
 <id>04ffff045679</id>
 <data>No Data</data>
 <deviceName>My Device</deviceName>
 </Event>
 <EventInterval>500</ EventInterval>
 <Event>
 <type>100</type>
 <subtype>1</subtype>
 <id>04ffff045680</id>
 <data>No Data</data>
 <deviceName>My Device</deviceName>
 </Event>
 </EventList>
</EdgeEventSimulation>

Although the format of the Event Type is fixed, you can extend the Event Type by
mapping its fields to different meanings depending on the type of event.

Configuring an HtmlDriver Instance
The HtmlDriver is a display driver that enables you to display a window on either the
Oracle Sensor Edge Server screen or to connect to remote servers to display HTML
content. Use the HtmlDriver for applications that push data to display complex status
or messages on graphical displays.

The HtmlDriver includes the Display Server (which is included in htmlDriver.jar),
which enables display windows on remote servers. The Display Server runs as a Java
process that waits for a network connection from the HtmlDriver instance. You can set
up any number of Display Servers on a network. You must note the IP or hostname of
the machines running the Display Server processes. More than one Display Server can
run on the same machine provided that each Display Server is assigned to a different
port.

To install the display server on a machine:

1. Copy htmlDriver.jar.

Note: JDK 1.3 or higher must be installed on the machine and
java.exe is in the path.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-11

2. Extract the files to a local directory. For example, create a directory called
displayServer and run jar xf htmlDriver.jar.

3. Navigate to the classes directory (cd classes).

4. Run the DisplayServer application using

java oracle.edge.impl.driver.HtmlDriver <port> [title] [x]
[y] [width] [height] [showHistory]

Where:

■ <port> specifies the TCP/IP port on which the Display Server listens. The
port cannot already be in use. This is a required parameter.

■ [title] is an optional text string that names the window.

■ [x] is the display window's x position on the screen.

■ [y] is the display windows's y position on the screen.

■ [width] is the width of the window. If set to 0, then the window uses the
screen width.

■ [height] is the height of the window. If set to 0, then the window uses the
screen height.

■ [showHistory] -- If set to true, then a small list displays at the top of the
window showing all of the previously shown documents. Using this window
enables users to manually scroll back to the last displayed document.

For example, to run the Display Server on your desktop using port 8999 with a
full-screen window, run:

java oracle.edge.impl.driver.HtmlDriver 8999 "My Window" 0 0 0 0 false

To configure an HtmlDriver instance to enable display on remote servers, define the
following parameters:

■ Define the serverlist parameter by entering a comma-separated list of Display
Servers that this driver instance can contact. The String value for this parameter
is in the following format:

<hostname or IP>:<port>,...

To provide security, you must list each Display Server.

■ Enter the TCP/IP port on which the Display Server listens. This port cannot
already be in use on the machine.

If you do not define the serverList parameter, then the instance displays on a local
window at the Oracle Sensor Edge Server's display. Running the instance on the local
window any does not require Display Servers.

To display the instance on the local window:

■ Define the display window by first entering a name for the window in the title
field and then enter a boolean (true or false) in the ShowHistory field to display a
window of viewed pages.

■ Set the dimensions of the window by entering int values the following
parameters:

Note: This command contains quote strings that have spaces. Refer
to the shell documentation.

Configuring Devices

6-12 Oracle Sensor Edge Server Guide

■ x -- The x position of the window on the screen, in pixels.

■ y -- The y position of the window on the screen, in pixels.

■ Enter the width and height of the window, in pixels. Entering 0 sets the window to
the screen’s height and width.

Events Supported by the HtmlDriver
Table 6–8 describes the events supported by the HtmlDriver.

Configuring Intermec BRI Driver-Supported Devices
The Intermec BRI Driver supports all of the RFID readers by Intermec that support BRI
(Basic Reader Interface) and communicate with the Oracle Edge Sensor Server either
though a serial or network (TCP/IP) connection. The Oracle Edge Sensor Server has
been tested against the IF5 reader.

For more information, see http://www.intermec.com

Configuring an Intermec BRI Driver-based device, you must define the parameters
described in Table 6–9.

Table 6–8 Events Supported by the HrmlDriver

Type Subtype Direction Title Description

210 1 From application
(outbound)

Display Display the HTML document embedded in the DATA
field of the event. The ID is a number, starting from 0, that
defines which server to send it to. This is the index of
server as defined in the serverList parameter in the driver
instance.

210 2 From application
(outbound)

Print
LPML
Directly

Display the HTML document referenced by the URL
provided in the DATA field of the event. The ID is a
number, starting from 0, that defines which server to send
it to. This is the index of server as defined in the serverList
parameter in the driver.

Table 6–9 Parameter Values for an Intermec BRI Driver Based Device

Parameter Name
Value
Type Description

URI String The connection identifier that indicates the connection type and connection
parameters as described in "Setting the URI Parameters for Devices and
Dispatchers".

Status Query Response
Timeout

Int The timeout for waiting response from status query. The value set for the
timeout must be lower than that set for the Status Query Interval parameter.

Status Query Interval Int The time, in milliseconds, between two consecutive status inquiries.

AntennaIds String The identifier(s) for connected antennae. Use a comma (,) to separate
multiple identifiers for multiple antennae.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-13

Observation Events Generated by the Intermec BRI Driver
Observation events are events that are generated by the driver and are dispatched out
to the system. Table 6–4 lists the events generated by the Intermec BRI Driver.

DataFieldLength Int The size of the data field to be retrieved in terms of the number of bytes. 0
means no data fields need to be retrieved.

DataFieldValueType String Specify one of the three value types for the data field:

■ Int (integer)

■ HexString (hexadecimal string)

■ String (ASCII string)

This parameter is effective only if the DataFieldLength parameter is larger
than 0.

TagType N/A Specifies the types of tags to read: Options include:

■ ISO6B/G1

■ ISO6B/G2

■ ISO6C

■ EPC/Class/Gen1

■ EPC/Class1/Gen2

■ Phillips/V1.19

■ Mixed

Table 6–10 Observation Events Generated by the Intermec BRI Driver

Type Subtype TagID Data Description

200 Various Tag ID The data field (payload) stored in
a tag.

General tag observation
event.

1 0 Null "alive or dead" An event using a data
property to indicate
whether the device is alive
or not.

1 0 Null "dis" An event indicating a
successful device startup
operation.

1 2 Null "dif" An event indicating a failed
device startup operation.

1 0 Null "dss" An event indicating an
successful device stop
operation.

1 2 Null "dsf" An event indicating a failed
device stop operation.

1 2 Null "drf" An event indicating a failed
event-receiving operation.

Table 6–9 (Cont.) Parameter Values for an Intermec BRI Driver Based Device

Parameter Name
Value
Type Description

Configuring Devices

6-14 Oracle Sensor Edge Server Guide

The Instruction Event Accepted by the Intermec BRI Driver
Applications send devices instruction events to tell them to perform certain tasks.
Table 6–5 describes the instruction event accepted by the Intermec BRI Driver.

Configuring Intermec Reader Driver-Based Devices
For more information, see http://www.intermec.com

Requirements
Creating an Intermec Reader Driver-based device requires the following components,
which are bundled and shipped with the Intermec Reader driver:

■ IntelliTag IDK

The IntelliTag IDK (the IDK) is a set of Intermec-supported software libraries and
tools. This library, which is the only supported method of communicating with
Intermec devices, is supported only on the Windows 32 platform (that is,
Windows 2000 and Windows XP). The IntelligTag IDK is available at

http://www.oracle.com/technology/products/iaswe/edge_
server/extensions.html

■ Intermec Reader Driver

Configuring an Intermec Reader Driver-based device requires that you define the
following parameters:

■ Set IPAddress to the hostname or IP address. If it runs on the same machine as the
Edge Server, enter 127.0.0.1.

■ Set PortNo to the port number. The default is 6666.

1 0 or 2 Null <callResults>

 <callResult name="write-tag">

 <code>0/1</code>

 <message/>

</callResults>

An event indicating a
successful or failed
tag-writing operation.

Table 6–11 Instruction Event Sent by the Intermec BRI Driver

Type Subtype TagID Data Description

101 0 Null

<methodCalls>
 <methodCall name="write-tag"">
 <params>
 <param name=’tagid’>%TAGID%</param>
 <param name=’tagdata’>%TAGDATA%</param>
Name=’tagdataVauleType’>
(String/HexString)</param>
 </params>
 </methodCall>
</methodCalls>

Write data
to a tag
identified
by the
specified
tag ID.

Table 6–10 (Cont.) Observation Events Generated by the Intermec BRI Driver

Type Subtype TagID Data Description

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-15

■ Set the AntennaSeqIDList to the list of identifiers for each antenna.

■ Set AntennaMappedDeviceNameList to the list of mapped device names
associated with each antenna.

Configuring LpmlDriver-Based Devices
LPML (Label Printing Markup Language) is an XML-based printer language defined
by Oracle Corp. which is supported by label printers and printer server vendors. The
LpmlDriver supports any printer or print server systems that support the LPML
language and binding.

 To configure a device based on the LpmlDriver, you must define the parameters of the
device as follows:

■ URI -- The string used by the transport layer to connect to the printer. See "Setting
the URI Parameters for Devices and Dispatchers".

■ Selecting Response Mode sets the device to expect that the printer its
communicating with supports LPML response messages. As a result, the device
waits for responses from the printer for each print job.

■ Selecting Batch Mode instructs the printer to send out as many jobs as possible in
a single connection session before waiting for responses. This option enables the
device to use a windowing algorithm instead of a half duplex communication
mode with the printer.

■ If Batch Mode is selected, set the ReadTimeOut parameter to the amount of time (in
milliseconds) to wait before considering that the printer failed to respond.

■ maxRetryCount -- The number of times to retry a printing job. This is an int value.

■ PerJobDelay -- The interval (in seconds) to delay between each print job. This is an
int value.

The Printer Response Observation Event Generated by the LpmlDriver
Table 6–12 lists the Printer Response observation event generated by the LpmlDriver,
which are dispatched to the system.

The Instruction Event Accepted by the LpmlDriver
Instructions are events sent to a driver by an application the command the driver to
perform a certain task. Table 6–13 describes the instruction event accepted by the
LpmlDriver.

Table 6–12 Printer Response Observation Event Generated by the LpmlDriver

Type Subtype Tag ID Data Description

210 2 Not used. LPML response
message

The response message from
either the printer (if Response
Mode is selected), or from the
driver itself to tell the sender the
result of the print job. The
correlationId and sourceName
fields are taken from the original
print job request.

Configuring Devices

6-16 Oracle Sensor Edge Server Guide

Configuring Matrics Driver-Based Devices
The Matrics Driver supports the Matrics Readers made by Symbol Technologies that
communicate with the Oracle Sensor Edge Server using a serial or network (TCP/IP)
connection.

Configuring a Matrics Driver-based device requires that you define the following
parameters:

■ URI -- The connection type and connection identifiers. See "Setting the URI
Parameters for Devices and Dispatchers".

■ Status Query Interval -- The time (in milliseconds) between to consecutive status
queries. This is an int value.

■ Status Query Response Timeout -- The time (in milliseconds) for the timeout for the
waiting response from the status query. This int value must be less than the value
set for the Status Query Interval parameter.

■ AntennaIds -- The connected antennae. Use a comma (,) to separate entries.

■ Node Address -- The node address for the reader connected under RS485. The
address must match the value in the Matrics administration console.

Observation Events Generated by the Matrics Driver
Observation events are events that are generated by the driver and are dispatched out
to the system. Table 6–4 lists the events generated by the Matrics Driver.

Table 6–13 Instruction Event Accepted by the LpmlDriver

Type Subtype Tag ID Data Description

102 1 Not used. LPML
message

Print the LPML message
specified in the Data field.

Table 6–14 Observation Events Generated by the Matrics Driver

Type Subtype TagID Data Description

200 Various Tag ID The data field (payload) stored in
a tag.

General tag observation
event.

1 0 Null "alive or dead" An event using a data
property to indicate
whether the device is alive
or not.

1 0 Null "dis" An event indicating a
successful device startup
operation.

1 2 Null "dif" An event indicating a failed
device startup operation.

1 0 Null "dss" An event indicating an
successful device stop
operation.

1 2 Null "dsf" An event indicating a failed
device stop operation.

1 2 Null "drf" An event indicating a failed
event-receiving operation.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-17

Instruction Event Accepted by the Matrics Driver
Applications send devices instruction events to tell them to perform certain tasks.
Table 6–5 lists the instruction events accepted by the Matrics Driver and their usage.

Configuring PatliteDriver-Based Devices
The Patlite series of lightstacks supported by the PatliteDriver do not generate events,
but instead act as indicator lights and signals. Sending events to Patlite lightstacks and
trees turns on lights or causes them to blink for certain intervals.

To configure a device based on the PatliteDriver, define the URI parameter. See
"Setting the URI Parameters for Devices and Dispatchers".

Configuring Prolite Driver-Based Devices
To configure a device based on the Prolite Driver, define the URI parameter by
entering the connection URI. See "Setting the URI Parameters for Devices and
Dispatchers".

Configuring Samsys Driver-Based Device
The Samsys Driver supports the SAMSys MP320 2.7 EPC reader that communicates
with the Oracle Sensor Edge Server either through a serial or network (TCP/IP)
connection. The Samsys MP9320 2.7 EPC reader, which supports CHUMP
(Cookie-handling UDP Message Protocol), has been tested against the Oracle Edge
Sensor Server.

Configure a Samsys Reader Driver-based device by defining the following parameters:

■ Connection Identifier -- The connection type and connection identifiers. See "Setting
the URI Parameters for Devices and Dispatchers".

1 0 or 2 Null <callResults>

 <callResult name="write-tag">

 <code>0/1</code>

 <message/>

</callResults>

An event indicating a
successful or failed
tag-writing operation.

Table 6–15 Instruction Event Sent by the Matrics Driver

Type Subtype TagID Data Description

101 0 Null

<methodCalls>
 <methodCall name="write-tag"">
 <params>
 <param name=’tagid’>%TAGID%</param>
 <param name=’tagdata’>%TAGDATA%</param>
 </params>
 </methodCall>
</methodCalls>

Write data
to a tag
identified
by the
specified
tag ID.

Table 6–14 (Cont.) Observation Events Generated by the Matrics Driver

Type Subtype TagID Data Description

Configuring Devices

6-18 Oracle Sensor Edge Server Guide

■ Status Query Interval -- Enter the time (in milliseconds) between to consecutive
status queries. This is an int value.

■ Status Query Response Timeout -- The amount of time of the timeout for the waiting
response from the status query. This int value must be less than the value set for
the Status Query Interval parameter.

■ Tag Scan Mode -- Specify either autonomous or polling. Selecting autonomous
mode sets the MP9320 2.7 EPC reader to notify the device whenever it scans tags.
Selecting polling mode sets the MP9320 2.7 EPC reader to scan tags only if the
driver sends out the get-tag-list command.

■ Tag Type -- Specify the type of tag for the device to read, such as EPC1, EPC0,
IS18gA, IS186B, STG.

■ AntennaIds -- The connected antennae. Use a comma (,) to separate entries.

Observation Events Generated by the Samsys Driver
Observation events are events that are generated by the driver and are dispatched out
to the system. Table 6–4 lists the events generated by the Samsys Driver.

Table 6–16 Observation Events Generated by the Samsys Driver

Type Subtype TagID Data Description

200 Various Tag ID The data field (payload) stored in
a tag.

General tag observation
event.

1 0 Null "alive or dead" Each event using data
property to indicate
whether the device is alive
or not.

1 0 Null "dis" An event indicating a
successful device startup
operation.

1 2 Null "dif" An event indicating a failed
device startup operation.

1 0 Null "dss" An event indicating an
successful device stop
operation.

1 2 Null "dsf" An event indicating a failed
device stop operation.

1 2 Null "drf" An event indicating a failed
event-receiving operation.

1 0 or 2 Null <callResults>

 <callResult>

 <callResult name="write-tag">

 <code>0/1</code>

 <message/>

 </callResult>

</callResults>

An event indicating a
successful or failed
tag-writing operation.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-19

Instruction Event Accepted by the Samsys Driver
Applications send devices instruction events to tell them to perform certain tasks.
Table 6–5 lists the instruction event accepted by the Samsys Driver.

Configuring a Simple Audio Driver Instance
The SimpleAudioDriver accepts instruction events and enables applications to use the
Oracle Sensor Edge Server machine's sound card to play any .wav file. For security
reasons, only files in a specific directory (defined in the audioFiles parameter) are
played.

To configure a Simple Audio Driver instance, define the audioFiles path parameter by
providing the path (a String value) to the audio files. The path is an absolute or
relative path with no trailing slashes. Because the path is relative to the edge extension
classes directory, you must traverse from this directory if you enter a relative path. For
example, to locate the audio files on the Oracle Sensor Edge Server home path
(meaning the sample level, the locale for such directories as config or persistent),
use:

 ..\..\edge\audio

This value sets the parameter to use the audio directory on top of the Oracle Sensor
Edge Server home path.

Audio Event Supported by the Simple Audio Driver
Example 6–18 describes Event Type 207 (Audio), which is supported by the Simple
Audio Driver.

Table 6–17 Instruction Event Accepted by the Samsys Driver

Type Subtype TagID Data Description

101 0 Null

<methodCalls>
 <methodCall name="write-tag"">
 <params>
 <param name=’tagid’>%TAGID%</param>
 <param name=’tagdata’>%TAGDATA%</param>
 </params>
 </methodCall>
</methodCalls>

Write data
to a tag
identified
by the
specified
tag ID.

Note: The driver uses the sun.audio package that ships with any
standard JRE or JDK. The package only requires special configuration
for special setups, such as multiple sounds cards in one machine. For
such cases, refer to the JDK documentation from Sun Microsystems,
Inc.

Tip: Using an absolute path provides greater security than the
relative path.

Configuring Devices

6-20 Oracle Sensor Edge Server Guide

The XML file, which is embedded in the DATA field, uses the standard XML-RPC call
format, and has the format described in Example 6–7.

Example 6–7 XML File Embedded in the DATA Field

<methodCalls>
 <methodCall>
 <params>
 <param name='paramName'>paramValue</param>
 </params>
 </methodCall>
 </methodCalls>

Where paramName is the name of the parameter, and paramValue is its value.
<methodName> can be omitted since the Type and Subtype define this function. You
can define paramName using fileName and url.

For security, the value defined by the fileName parameter is used as the name for the
audio file. The fileName value cannot contain any extensions and the audio file must
be a .wav file. For example, if the fileName parameter’s value is defined as welcome
(as in Example 6–8), then the audio file is called welcome.wav.

Example 6–8 XML File That Plays welcome.wav

<methodCalls>
 <methodCall>
 <params>
 <param name=fileName'>welcome</param>
 </params>
 </methodCall>
 </methodCalls>

The url parameter is the URL that points to the audio file.

Configuring Tyco Reader Driver-Based Devices
The Tyco Reader Driver supports all readers made by Tyco readers by Sensormatic
that communicate with the Oracle Sensor Edge Server either through a serial or
network (TCP/IP) connection.

Configuring a Tyco Reader Driver-based device requires that you define the following
parameters:

■ Connection Identifier -- The connection type and connection identifiers. See "Setting
the URI Parameters for Devices and Dispatchers".

■ Data Collection Timeout -- The timeout (in milliseconds) for collecting data to the
physical device. This is an int value.

Table 6–18 Event Type 207 (Audio)

Type Subtype Direction Title Description

207 1 From applications
(outbound)

Play Audio File Play audio jobs defined in the .xml file
in the Data field.

Note: fileName and url parameters are mutually exclusive,
meaning that you cannot define both parameters for the same call. If
both parameters are defined, then only the latter parameter is used.

Configuring Devices

Configuring Devices, Filter Instances, and Dispatchers 6-21

■ Status Query Interval -- The time (in milliseconds) between to consecutive status
queries. This is an int value.

Observation Events Generated by the Tyco Reader Driver
Observation events are events that are generated by the driver and are dispatched out
to the system. Table 6–4 lists the events generated by the Tyco Reader Driver.

The Instruction Event Accepted by the Tyco Reader Driver
Applications instruction events to devices to tell them to perform certain tasks.
Table 6–5 lists the instruction event accepted by the Tyco Reader Driver.

Table 6–19 Observation Events Generated by the Tyco Reader Driver

Type Subtype TagID Data Description

200 Various Tag ID The data field (payload) stored in
a tag.

General tag observation
event.

1 0 Null "alive or dead" Each event using data
property to indicate
whether the device is alive
or not.

1 0 Null "dis" An event indicating a
successful device startup
operation.

1 2 Null "dif" An event indicating a failed
device startup operation.

1 0 Null "dss" An event indicating an
successful device stop
operation.

1 2 Null "dsf" An event indicating a failed
device stop operation.

1 2 Null "drf" An event indicating a failed
event-receiving operation.

1 0 or 2 Null <callResults>

<callResult>

 <callResult name="write-tag">

 <code>0/1</code>

 <message/>

</callResult>

</callResults>

An event indicating a
successful or failed
tag-writing operation.

Configuring Filter Instances

6-22 Oracle Sensor Edge Server Guide

Configuring Filter Instances
The following sections describe how the pre-seeded filters generate events and their
configuration parameters:

■ "Configuring the Check Tag ID Filter"

■ "Using the Cross-Reader Redundant Filter"

■ "Using the Debug Filter"

■ "Configuring the JavaScript Filter"

■ "Configuring the Movement Filter"

■ "Configuring the Pallet Pass Thru Filter"

■ "Configuring the Pallet Shelf Filter"

■ "Configuring the Pass Filter"

■ "Configuring the Polygon Filter"

■ "Configuring the Regex Filter"

■ "Configuring the Shelf Filter"

Configuring the Check Tag ID Filter
A Check Tag is any normal tag used to test if the device (in this case, a reader) is
reading tags. Because the Check Tag itself should be physically located within the field
of the reader, it should always be read; when other tags move through the field of the
reader, the device also reads the Check Tag in conjunction with them.

The Check Tag ID Filter ensures that the device reads a Check Tag periodically. Using
this filter enables you to check the status of a device, its corresponding reader, and
attached antennae. Because the Check Tag ID Filter is used solely for diagnostic
purposes, it does not provide any events for dispatching to client devices. Instead, this
filter generates an event if it does not detect that the device has read a Check Tag for a
specified period of time.

Table 6–20 RFID Instruction Event Accepted by the Tyco Reader Driver

Type Subtype TagID Data Description

101 0 Null

<methodCalls>
 <methodCall name="write-tag"">
 <params>
 <param name=’tagid’>%TAGID%</param>
 <param name=’tagdata’>%TAGDATA%</param>
 <param name=’antennaID’>%ANTENNA_
ID%</param>
 </params>
 <param
name=’protocol’>EPCO/CC915/CC1356/ISO15693/IS
O18000-6B</param>
 </params>
 </methodCall>
</methodCalls>

Write data to
a tag
identified by
the specified
tag ID.

Configuring Filter Instances

Configuring Devices, Filter Instances, and Dispatchers 6-23

Table 6–21 describes the parameters (and associated values) of the Check Tag ID filter.

To define the parameters for the Check Tag ID Filter, you must note the ID of the
Check Tag itself (which must be placed within the field of the reading device). Enter
this ID as the String value of Check Tag Id. If the filter does not detect that a device has
read a Check Tag bearing the specified ID for the period defined in the Tag Check Time
Window parameter, it generates an event. Table 6–22 describes the signature of the
generated event.

Using the Cross-Reader Redundant Filter
The Cross-Reader Redundant Filter blocks redundant events that are sent from the
devices of a device group and does not generate any events. This filter considers
events redundant if it finds they have the same tag ID. The filtering occurs during a
window of time corresponding to a driver read cycle.

The Cross-Reader Redundant Filter is for group-level filtering only; it performs no
functions if applied to a device. This filter has no parameters to configure.

Note: You can apply the Check Tag ID Filter only to devices.

Table 6–21 Parameters of the Check Tag ID Filter

Name Value Type Description

Check Tag Id A String value. The tag ID of the Check Tag, which
is the ID that the filter searches for
to see if the tag is being read.

Tag Check Time Window An int value. The period of time, in milliseconds,
after which an event is generated if
the filter has not seen the specified
Check Tag.

Table 6–22 The Event Signature of the Check Tag ID Filter

Event Field Value

sourceName This field identifies the originator of the event. This is an
optional field; its value is set by the client.

correlationId The client sets the value for this field, which is used for message
responses to a particular client (such as checking if a device
functions). Any message sent back by the client has the same ID.
This is an optional field.

siteName The name of the site that generated this event.

deviceName The name of the device that generated this event.

time The time that the filter generated this event.

type A Message Event (type 1).

Note: Applications should subscribe to this message type for
notifications of when devices fail.

subtype Error report (subtype 2)

id The ID of the Check Tag (this is the value defined in the filter’s
Check Tag Id parameter).

data An additional error message (if any).

Configuring Filter Instances

6-24 Oracle Sensor Edge Server Guide

Using the Debug Filter
The Debug Filter traces events passing through the system. Upon receiving events
from its associated device, this filter writes events to a log file. This filter has a single
parameter called Event Output File. To define this parameter, enter the full path of the
log file to which you want the Debug Filter to write events. (The server must make this
file writable.) The format of the Debug Filter’s output is as follows:

"Devicename: <devicename> Type: <type> Subtype: <subtype>
EventTime: <time>TagIds:<tagid(,tagid)*>Data:<dat(,data)*>\n"

Each event is on a separate line; each line is separated by a newline character (LF or
CRLF, depending on the operating system). The <time> value is a long as returned by
the time(2) call.

This filter can only be attached to a device, not to a device group. This filter has no
parameters to configure.

Configuring the JavaScript Filter
The Javascript Filter enables you to write filter logic in a scripting language. Changes
made to the source scripts are loaded dynamically, thus eliminating the need to restart
the server or any components. This filter relies on an external JavaScript engine that
executes the source script, such as Mozilla Rhino
(http://www.mozilla.org/rhino/).

The JavaScript filter has a single parameter called scriptFileName. To define this
parameter, enter the relative or full path name of the source script that the driver loads
and monitors.

Writing the Source Script
The JavaScript Filter looks for functions in the source script to perform the processing.
The functions are:

■ function filter(events) -- If specified, this function is called when the filter
is asked to filter out the events. This method is only called if the filter is attached to
a specific device. An array of events is passed in. You can modify the events within
this array, remove them, or construct a new array from scratch. You must return
the array of events that you want the system to continue to process. The parameter
events are an array of edge events (oracle.edge.common.Event[]).

■ function groupFilter(events) -- This call is invoked when the device
group calls the filter for filtering. This is only used if the filter is attached to a
group instead of a single device. The parameter events are an array of edge events
(oracle.edge.common.Event[]).

■ function instructionFilter(instruction) -- This is called when the
system attempts to an instruction event to a device. You can modify the event, or
return null if you want to block it all together. The parameter is a single event
(oracle.edge.common.Event).

You can write any one of these functions. Other functions are ignored. The initialized
block is called at filter startup time. The source script described in Example 6–9 prints
all of the tag IDs that it encounters to the console.

Example 6–9 Source Script

function filter(events)
{
 for (i=0; i<events.length; i++)

Configuring Filter Instances

Configuring Devices, Filter Instances, and Dispatchers 6-25

 {
 id = events[i].getTagId();
 java.lang.System.out.println("Id:"+id)
 }
}

Configuring the Movement Filter
The Movement Filter smooths out movement tracking using Real Time Location
System (RTLS) observations by averaging out spikes or sudden motion changes from
errors or interference. The Movement Filter calculates the distance between the current
and previous locations. If the distance is less than the distance threshold, then the
current event is filtered out.

The Movement Filter has one parameter, Distance Threshold. To define this parameter,
enter a positive number (an int value) that indicates the smallest movement that
should be reported.

Table 6–23 describes the signature of the Movement Filter.

Configuring the Pallet Pass Thru Filter
The Pallet Pass Thru Filter collects all of the events received during a specified period
and sends them out as a single event. When a pallet or container passes through a
gateway or through the field of transmission of a reader device, this filter generates a
single event for all of these tags. This filter enables you to see what items a container or
pallet may hold.

The Pallet Pass Thru Filter includes the following parameters:

■ Exit Event Threshold Time

■ Event Collect Control Time

Table 6–23 Signature of the Movement Filter

Event Field Value

sourceName This field identifies the originator of
the event. This is an optional field; its
value is set by the client.

correlationId The client sets the value for this field,
which is used for message responses
to a particular client (such as checking
if a device functions). Any message
sent back by the client has the same
ID. This is an optional field.

siteName The name of the site that generated
this event.

deviceName The name of the device that generated
this event.

time The time that the event was generated.

type An observation event. The range is
200-299.

subtype RTLS Moved (Subtype 4)

id The ID of the tag.

data The data payload of the tag.

Configuring Filter Instances

6-26 Oracle Sensor Edge Server Guide

Exit Event Threshold Time
To define this parameter, enter the time (an int value), in milliseconds, since the
device last read a tag before it is considered to have moved out of the device’s
transmission field. The parameter settings, which range from 50 milliseconds to under
two seconds, dictate the frequency (that is, the reader cycle) in which the device
reports these "tag is seen" events. If you set this frequency too high, such as to two
seconds, then the device may miss the tag altogether.

Event Collect Control Time
To define this parameter, enter the time (an int value), in milliseconds, for a device to
complete a reading cycle of the tags included in a pallet or container before starting a
new reading cycle. When this time elapses, the reading cycle concludes (that is, the
device has read all of the new tags) and the Pallet Pass Thru Filter then generates an
event with the following signature (described in Table 6–24).

Configuring the Pallet Shelf Filter
The Pallet Shelf Filter collects all of the events received during a set interval and then
sends them as a single event. This filter enables you identify when new containers or
pallets holding many items enters an area, or exits the field or gateway of a device
reader.

The Pallet Shelf Filter has the following parameters:

■ Exit Event Threshold Time

■ Event Collect Control Time

Exit Event Threshold Time
To define this parameter, enter the time (an int value), in milliseconds, from the last
time that the device read the tag before it is considered to have moved out of the
device’s transmission field. The Pallet Shelf Filter silently clears its cache once the
interval defined for the Exit Event Threshold Time parameter elapses and does not
generate an event.

Table 6–24 Signature of the Pallet Pass Thru Event

Event Field Value

sourceName This field identifies the originator of the event. This is an
optional field; its value is set by the client.

correlationId The client sets the value for this field, which is used for message
responses to a particular client (such as checking if a device
functions). Any message sent back by the client has the same ID.
This is an optional field.

siteName The name of the site that generated this event.

deviceName The name of the device that generated this event.

time The time that the event was generated.

type An observation event. The range is 200-299.

subtype RFID Pallet Pass (Subtype 6)

id A comma-separated list of tag IDs.

data A comma-separated list of datum.

Configuring Filter Instances

Configuring Devices, Filter Instances, and Dispatchers 6-27

Event Collect Control Time
To define this parameter, enter the time (an int value), in milliseconds, for a device to
complete a reading cycle for the tags of a pallet or container before starting a new
reading cycle. When this time elapses, the reading cycle concludes (that is, the device
has read all of the new tags) and the Pallet Shelf Filter then generates an event.

Events Generated by the Pallet Shelf Filter
 The Pallet Shelf Filter generates two events:

■ MULTIPLE IN FIELD Event

■ MULTIPLE OUT FIELD Event

MULTIPLE IN FIELD Event
The Pallet Shelf Filter generates the MULTIPLE IN FIELD event when the device first
detects the tags. This event has the following signature (described in Table 6–25):

MULTIPLE OUT FIELD Event
The Pallet Shelf Filter generates the MULTIPLE OUT FIELD event when the interval
defined for the Exit Event Threshold Time parameter elapses. This event has the
following signature (described in Table 6–26):

Table 6–25 Signature of the MULTIPLE IN FIELD Event

Event Field Value

sourceName This field identifies the originator of
the event. This is an optional field; its
value is set by the client.

correlationId The client sets the value for this field,
which is used for message responses
to a particular client (such as checking
if a device functions). Any message
sent back by the client has the same
ID. This is an optional field.

siteName The name of the site that generated
this event.

deviceName The name of the device reading the
pallet or container that generated this
event.

time The time that the Pallet Shelf Filter
generated this event.

type An observation event. The range is
200-299.

subtype RFID Pallet In-Field (Subtype 4)

id A comma-separated list of tag IDs.

data A comma-separated list of datum.

Table 6–26 Signature of the MULTIPLE OUT FIELD Event

Event Field Value

sourceName This field identifies the originator of
the event. This is an optional field; its
value is set by the client.

Configuring Filter Instances

6-28 Oracle Sensor Edge Server Guide

Configuring the Pass Filter
When a tag passes through the range of transmission, or through the gateway of a
device reader, it generates a series of "tag is seen" events. The device reports these
events periodically, starting when the tag enters the transmission field. The reporting
stops when the tag moves out of the reader field.

Applications often do not require the series of events that a device reader generates;
instead, these applications only need to know that a tag has passed through a device’s
gateway or range of transmission. The Pass Filter applies to such situations, as it
reduces all of the "tag is seen" events into single events for each unique tag that passes
through the field of a reader device.

The Pass Filter has one parameter, Exit Event Threshold Time. To define this parameter,
enter the time (an int value), in milliseconds, since the device last read the tag before
it is considered to have moved out of the device’s transmission field. The parameter
settings, which range from 50 milliseconds to under two seconds, dictate the frequency
(that is, the reader cycle) in which the device reports these "tag is seen" events. If you
set this frequency too high, such as to two seconds, then the device may miss the tag
altogether.

When the device first reads a tag, the Pass Filter caches the tag’s ID (tagid), notes the
time that the tagid was read into the cache, and then immediately sends the
pass-through event. The filter blocks subsequent reads for this cached tagid. Each time
the filter receives a new read from the device, it updates the time that it read the tagid
into the cache. If the sum of the caching time and the value set for Exit Event Threshold
Time is less than the current time, then the Pass Filter clears the tagid from the cache.
The next time the device reads this tag, the filter considers it a new event, caches its
tagid and sends out a new pass-through event.

The pass through event has the following signature (described in Table 6–27).

correlationId The client sets the value for this field,
which is used for message responses
to a particular client (such as checking
if a device functions). Any message
sent back by the client has the same
ID. This is an optional field.

siteName The name of the site generating this
event.

deviceName The name of the device reading the
pallet or container that generated this
event.

time The time that the Pallet Shelf Filter
generated this event.

type An observation event. The range is
200-299.

subtype RFID Pallet Out Filed (Subtype 5)

id A comma-separated list of Tag IDs.

data A comma-separated list of datum.

Table 6–26 (Cont.) Signature of the MULTIPLE OUT FIELD Event

Event Field Value

Configuring Filter Instances

Configuring Devices, Filter Instances, and Dispatchers 6-29

Configuring the Polygon Filter
The Polygon Filter filters out all movement observations reported by Real Time
Location System (RTLS) devices and generates events only if the tag moves in or out
of any predefined polygons. The polygons are defined using a set of x, y coordinates
that define the vertices and parenthesis. For example: ((x,y), (x,y), ...), (....),

The Polygon Filter has a single parameter, PolygonCoordinates, which you define by
entering a String value in the format of ((x1, y1), (x2, y2)...,(xn, yn)).

Configuring the Regex Filter
The Regex Filter performs a regular expression search that looks for tags to either
remove or to allow to pass through the streams. This filter enables you to define a set
of patterns for the filter to search for in any of the event’s fields. When the filter finds
matches to the search criteria, it allows the event to pass through the system; if it finds
no matches, then it filters out the event. The RegexFilter is a generic filter and can
work with any Event Type.

The Regex Filter has a single parameter called allow. To define this parameter, enter a
regular expression (a String) for the events that are allowed to pass through the filter
in the following format:

<field>~<pattern>&&<field>~<pattern>||...

Where <field> is the name of the event field that the filter matches. The filter
supports the following fields:

■ TAGID

■ DATA

■ CORRELATIONID

■ SOURCENAME

■ TYPE

■ SUBTYPE

■ DEVICENAME

Table 6–27 Signature of the Pass-Through Event

Event Field Value

sourceName This field identifies the originator of the event. This is an
optional field; its value is set by the client.

correlationId The client sets the value for this field, which is used for message
responses to a particular client (such as checking if a device
functions). Any message sent back by the client has the same ID.
This is an optional field.

siteName The name of the site that generated this event.

deviceName The name of the device that generated this event.

time The time that the event was generated.

type An observation event. The range is 200-299.

subtype A pass-through event (subtype 3).

id The ID of the tag.

data The data payload of the tag.

Configuring Filter Instances

6-30 Oracle Sensor Edge Server Guide

■ SITENAME

■ TIME

<pattern> is a standard regular expression, && is a AND connective, and || is a OR
connective. For example, to enable the RegexFilter instance to look for all events with
the Event Type 103 and a tag with first three digits matching 0FE, enter:

type~103&&tagid~^0FE

Configuring the Shelf Filter
The Shelf Filter is a device-level filter that generates events when a tag is detected
within the field of a reader or when the tag has left the field. Like the Pass Filter, the
Shelf Filter has a single parameter, Exit Event Threshold Time. To define this parameter,
enter the time (an int value), in milliseconds, since the device last read the tag before
it is considered to have moved out of the device’s transmission field. Unlike the Pass
Filter, however, the Shelf Filter silently clears its cache once the interval defined for the
Exit Event Threshold Time parameter elapses and does not generate an event.

Events Generated by the Shelf Filter
 The Shelf Filter generates two events:

■ IN FIELD Event

■ OUT FIELD Event

IN FIELD Event
The Shelf Filter generates this event when the device first detects the tag. This event
has the following signature (described in Table 6–28).

Note: the TIME field is converted to the time() long value before
it is compared to the <pattern>.

Table 6–28 Signature of the IN FIELD Event

Event Field Value

sourceName This field identifies the originator of
the event. This is an optional field; its
value is set by the client.

correlationId The client sets the value for this field,
which is used for message responses
to a particular client (such as checking
if a device functions). Any message
sent back by the client has the same
ID. This is an optional field.

siteName The name of the site that generated
this event.

deviceName The name of the device that generated
this event.

time The time that the Shelf Filter generated
this event.

type An observation event. The range for
observation events is 200-299.

Managing Dispatchers for an Oracle Sensor Edge Server Instance

Configuring Devices, Filter Instances, and Dispatchers 6-31

OUT FIELD Event
The Shelf Filter generates this event when the interval defined for the Exit Event
Threshold Time parameter elapses. This event has the following signature (described in
Table 6–29).

When a device first detects the tag, the Shelf Filter caches the ID of the tag and then
generates an IN FIELD event. At this point, the tag is read during every reader cycle.
While the tag may not be read during some of these cycles, it is read during others.
When the device does not read the tag consistently for a period longer than that
designated for the Event Exit Threshold Time parameter, then the filter removes the tag’s
ID from the cache and generates an OUT FIELD event. The devices stops reading the
tag once it passes from the field of the device.

Managing Dispatchers for an Oracle Sensor Edge Server Instance
The main output of the Oracle Sensor Edge Server is filtered data events. The devices
and respective filters both normalize and minimize this event data. Out of the box, the
Oracle Sensor Edge Sever delivers event data through the following dispatcher
methods:

■ Web Services

subtype An in-field event (subtype 2)

id The ID of the tag.

data The data payload of the tag.

Table 6–29 Signature of the OUT FIELD Event

Event Field Value

sourceName This field identifies the originator of
the event. This is an optional field; its
value is set by the client.

correlationId The client sets the value for this field,
which is used for message responses
to a particular client (such as checking
if a device functions). Any message
sent back by the client has the same
ID. This is an optional field.

siteName The name of the site that generated
this event.

deviceName The name of the device that generated
this event.

time The time that the Shelf Filter generated
this event.

type An observation event. The range for
an obsevation event is 200-299.

subtype An out-field event (subtype 2).

id The ID of the tag.

data The data payload of the tag.

Table 6–28 (Cont.) Signature of the IN FIELD Event

Event Field Value

Managing Dispatchers for an Oracle Sensor Edge Server Instance

6-32 Oracle Sensor Edge Server Guide

■ HTTP/Post

■ EPC PML

■ Application Level Events (ALE)

■ Oracle Streams/Advanced Queueing

The following sections describe how to configure these dispatcher methods.

■ "Configuring the Edge Dispatcher to Use Oracle Streams"

■ "Configuring the Dispatcher to Send Event Messages to a Web Service"

■ "Configuring the Dispatcher to Send Event Messages Through HTTP"

■ "Configuring the PML Dispatcher"

■ "Configuring the Template Dispatcher"

■ "Configuring the ALEDispatcher"

■ "Using the Null Dispatcher"

Configuring the Dispatcher to Send Event Messages to a Web Service
A client device or application can register a SOAP call which the Oracle Sensor Edge
Server invokes when a new message must be delivered.

To configure the WebService Dispatcher to distribute event messages through Web
Services, enter the service URL of the WSDL (Web Service Definition Language)
document that describes the client call. This URL must point to the EndPoint (port) of
the Web Service. For example, enter
http://localhost:8888/wsdl/mytest.wsdl. This document must contain the
portType of EdgeClientCallback and the call, processEvent, as its child
element. Upon startup, the Oracle Sensor Edge Server attempts to connect and bind to
the service defined in this WSDL document.

Configuring the Dispatcher to Send Event Messages Through HTTP
Configuring the dispatcher to route events to clients using HTTP 1.0 results in the
Oracle Sensor Edge Server posting each event message to the client separately. Because
the Oracle Sensor Edge Server performs these posts sequentially, if one post is blocked,
then all following posts are also blocked.

To configure the Oracle Sensor Server to route events using HTTP define the following
parameters:

■ URL -- Enter the URL of the servlet, JSP, or CGI to which the Oracle Sensor Edge
Server posts event messages whenever they are dispatched. To configure this
dispatcher, enter the URL in the following format:

http://hostname:port/serverPath

If the Oracle Sensor Edge Server uses the HTTP dispatcher, then the client
interface must tell the Oracle Sensor Edge Server how (and when) to call it.

■ proxyServer -- Enter the proxy server IP or host name.

■ proxyPort -- Enter the proxy server port. For example, enter 80.

Managing Dispatchers for an Oracle Sensor Edge Server Instance

Configuring Devices, Filter Instances, and Dispatchers 6-33

Configuring the PML Dispatcher
The PML Dispatcher posts events in the EPC PML format using the Transport Library
for such protocols as HTTP, FTP, and FILE.

To configure the Oracle Sensor Server to use the PML Dispatcher, define the
destination URI. See "Setting the URI Parameters for Devices and Dispatchers".

Configuring the Template Dispatcher
The Template Dispatcher (also known as the EventFlowDispatcher), sends and
receives events from different sources and processes them through a finite state
machine configured using the eflow.xml configuration file. This dispatcher sends
and receives both to and from HTTP, POJ, Web Services, HTTP, and direct data streams
using the Transport Library.

To configure the Oracle Sensor Server to use the Template Dispatcher, enter the
location of the eflow.xml file.

Configuring the ALEDispatcher
Use the ALEDispatcher with the ALE Web Services interface to notify any ALE
subscribers when a report specification is satisfied.

Using the Null Dispatcher
The Null dispatcher, which is created by default, discards all of the events passed to it.
These events are not saved or spooled. Use this dispatcher only if you want to prevent
the Oracle Sensor Edge Server from dispatching events.

Configuring the Edge Dispatcher to Use Oracle Streams
Configuring the Oracle Sensor Edge Server to use Oracle Streams and Advanced
Queuing enables you to control how the edge dispatcher retrieves and distributes
event messages. Unlike the Web Services, or HTTP dispatcher options, event messages
dispatched using the Oracle Streams dispatcher do not have to be relayed directly to
an entry point. The Oracle Streams dispatcher supports rule-based process and agent
technologies. In addition, the Streams dispatcher only supports UTF-8 encoding.

Event messages are data that is deposited to a staging area (an internal queue). This
data, in turn, can be aggregated in different ways for different client devices and
applications (the consumers of the event messages). Using Oracle Streams as the
dispatcher, the Data and Event layer of the database, not the Oracle Sensor Edge
Server or applications, determines what an event is and when it is generated. The Data

Note: PML is a legacy format used to report observations.

Tips:

■ Because Oracle Streams enables the propagation and management
of data, transactions, and events in a data stream on one -- or
across many -- databases, this dispatcher option provides the
greatest flexibility of the seeded dispatcher options.

■ The Oracle Streams dispatcher requires JDK 1.4.x.

Managing Dispatchers for an Oracle Sensor Edge Server Instance

6-34 Oracle Sensor Edge Server Guide

and Event layer provides a rule-based process that determines the appropriate event
message for each client device or application.

Once the event messages are captured and placed into the staging queue, the event
message data can be processed through the Rules Evaluation Job, which takes event
messages from the staging queue and then compares them to the Oracle Sensor Edge
Server rule set. Each rule has an action, which is executed if the rule applies. These
actions include a PL/SQL callback for propagating the event message to other queues
which could then be consumed by other applications.

In addition to these rule-based actions, the Rules Evaluation Job invokes applications
by calling the Sensor Data Repository (SDR), which receives sensor data from the
Oracle Sensor Edge Server or from other sources. The SDR includes a set of archive
tables that store all of the filtered sensor events in the system. For more information,
see Chapter 4, "Using the Sensor Data Repository".

To configure the Streams Dispatcher, enter the maximum number of threads to create
for processing outbound observations in the threadnum field. Because each thread
holds a connection, this is also the number of connections to the Sensor Data
Repository uses for outbound events (there is another connection used for in-bound
events). 0 is an invalid value. See also "Manually Configuring Sensor Data Repository
and Sensor Data Streams in Release 10.1.3".

Note: Applications requiring raw, unfiltered event data that has not
been processed by the rules can connect to the staging area using AQ
notification.

Glossary-1

Glossary

antenna

Each tag has at least one antenna. On the other side of the communication link, the
reader must also have an antenna. Some readers can drive multiple antennae at the
same time. Depending on the protocol, frequency and application, these antennae vary
from thin strips of metal laid across a surface, to a portal doorway antenna that is
meters tall

chip

A silicon chip, with embedded memory, is used in a tag. The chip implements the
wireless protocol and access functions to its embedded memory. Note that in Active
Tags, this is not a single chip but an entire board. See tag.

device

An edge device is an end point of a sensor- based architecture, such as a
Radio-Frequency Identification (RFID) reader, a dry contact, an laser diode, carousel,
scale, robotic picker, or indication devices such as light sticks or message boards.
Sensors are hardware or software end points that make observations of certain
changes in state. While this is usually a physical change, such as a laser diode
detecting that something has blocked the line of its beam, it can also a software
observation of a change occurring within software, such as when a monitor daemon
running on an edge controller exits. Sensors also observe defects in software. A device
is an instance of a driver.

event

An event is a message that is sent from either a sensor device or an application that
signals that a state has changed. The Sensor Edge Server, which receives the data from
these sensor devices or applications, normalizes the contents of these event messages
by putting them in a common data format and then applies filters to strip them of
extraneous information or unwanted events.

Oracle Sensor Edge Server

The server that resides between all of the readers and the application middle tier. It is
responsible for interfacing with all of the readers and sending normalized data back to
the application server.

Radio Frequency Identification (RFID)

RFID is the use of small transponders with embedded Electronic Serial Numbers
(ESNs) or memory, which transmit identifiers across one or more frequencies.

reader

Glossary-2

reader

A reader reads from, and writes to, the tags to which it is connected. Readers usually
have serial interfaces used to communicate with a host computer. There is no
widely-accepted standard for this protocol. The process of retrieving data stored on an
RFID tag by sending radio waves to the tag and then converting the waves the tag
sends back into data is known as a read.

reader field

The area of coverage for a reader. If tags are outside of a reader field, then they
cananot receive radio waves and cannot be read.

Real Time Location System (RTLS)

A technology that uses radio-frequency to produce real-time location information for
tagged items.

tag

(Also known as an RFID tag.) A single unit that contains a chip, one or more
antennae, and a power source. If it is battery-driven or from a external source, the tag
is an Active Tag. If the power source is inductive-based (which means that it relies on
photoelectric effect to generate power from remotely generated radio waves), the tag is
a Passive Tag. A tag containing data that cannot be changed is a read-only tag. See chip.

Transport Library

A set of classes that abstracts a communication channel, such serial port or TCP/IP.
The Transport Library allows the addition of third-party plug-ins.

transports.xml

The file located in the edgeHome/config directory which tells the Transport Library
which transports are available. For example:

<transports> <transport name="com" type="stream"
class="oracle.edge.tools.io.SerialConnection"> <params> <param name='port'
value='com1' /> <param name='driver' value='com.sun.comm.Win32Driver'/> </params>
</transport>
<transport name="tcp" type="stream" class="oracle.edge.tools.io.TcpConnection" />
<transport name="file" type="stream" class="oracle.edge.tools.io.FileConnection"
/>
<transport name="stdout" type="stream"
class="oracle.edge.tools.io.StdoutConnection" />
<transport name="http" type="stream" class="oracle.edge.tools.io.HttpConnection" >
<params> <param name='proxyServer' value='www-proxy.us.oracle.com' /> <param
name='proxyPort' value='80'/> </params> </transport>
</transports>

Each <transport> element defines a new transport type. For each <transport> tag
you must define name (a unique name for this transport, which is used in the URI)
and class, which specifies which class to load. This class must implement the
oracle.edge.tools.io.Connection interface.

You can also specify default parameters for transports using the <param> tag.

Index-1

Index

A
Activex API methods, 5-11

barcode_read(), 5-12
is_supported(), 5-14
process_instruction(), 5-12
rfid_kill(), 5-12
rfid_read(), 5-11
rfid_write(), 5-11
set_trigger_barcode_read(), 5-12
set_trigger_rfid_read(), 5-12

Activex Application Interface
deprecated, 5-15

Advanced Installation Mode, 1-2
audience, ix

B
BarcodeReadMacro parameter, 5-6

C
conventions

text, x

D
database connection

testing, 1-5
DestinationApplication

defining, 5-5
parameter, 5-5

Device Controller
deprecation of, 2-4

device drivers, 1-1, 2-6
Intermec IP3, 1-1
Symbol 9000G, 1-1

device groups, 2-6
adding group-level filters, 3-17
changing the filter instances and devices, 3-18
creating, 3-11
editing, 3-18
removing from the Oracle Sensor Edge Server

instance, 3-18
Device Manager

checking device status with, 5-10
devices

adding device-level filters, 3-15
creating, 3-11
starting and stopping an individual device, 3-20
stopping and starting as a group, 3-18

dispatchers
configuring Edge Dispatcher to use Oracle

Streams, 6-33
Null, 6-33
send event messages to a web service, 6-32
sending event messages through HTTP, 6-32
setting the current dispatcher, 3-7

driver instances
creating, 3-11

Driver Manager, 2-7
drivers

AlienDevice, 6-4
Edge Simulator, 6-8
Intermec, 6-14
Intermec BRI, 6-12
LPML Printer, 6-15
Matrics, 6-16
PatliteDriver, 6-17
pre-seeded, 6-3
Prolite Driver, 6-17
Samsys Driver, 6-17
Tyco, 6-20

E
EDG_CAP, 4-8
EDG_CAP_TAB, 4-3
EDG_CTXT, 4-9
EDG_CTXT_REL, 4-9
EDG_CTXT_REL_NAME_VW, 4-9
EDG_CTXT_REL_TAB, 4-4
EDG_CTXT_TAB, 4-4
EDG_DEV_CAP_VW, 4-10
EDG_DEV_DIAG_VW, 4-11
EDG_DEV_EVENT_VW, 4-12
EDG_DEV_LAST_DIAG_VW, 4-13
EDG_DEV_LAST_OBSV_VW, 4-13
EDG_DEVICE, 4-10
EDG_DEVICE_TAB, 4-5
EDG_DIAG, 4-14
EDG_DIAG_TAB, 4-5
EDG_EVENT, 4-15

Index-2

EDG_EVENT_INFO, 4-16
EDG_EVENT_INFO_TAB, 4-6
EDG_EVENT_TAB, 4-7
EDG_EVENT_VW, 4-16
EDG_LOG, 4-7
EDG_TAG, 4-17
EDG_TAG_LAST_DEV_VW, 4-17
EDG_TAG_PATH_VW, 4-18
EDG_TAG_TAB, 4-7
EdgeMobileCofig.xml, 5-3
Electronic Serial Numbers (ESN), 2-4
EPC Compliance Integration, 2-3
event data, 3-23

viewing an individual event details, 3-24
viewing data by device name, 3-31
viewing data by Tag ID, 3-31
viewing event data stored in the Sensor Data

Repository, 3-30
viewing real-time event data, 3-28

Event Handler, 5-14
Extension Archive Descriptor, 3-35
Extension Archive files, 3-34

packaging, 3-37
structure, 3-34
uploading, 3-37

extensions
Extension Archive files, 3-34
packaging an Extension Archive file, 3-37
uploading Extension Archive files, 3-37

F
filter instances

creating, 3-15
filters

Check Tag ID, 6-22
creating, 3-15
Cross-Reader Redundant, 6-23
Debug, 6-24
defining parameters of pre-seeded, 6-22
JavaScript Filter, 6-24
Movement Filter, 6-25
Pallet Pass Thru, 6-25
Pallet Shelf, 6-26
Pass, 6-28
prioritizing, 3-21
Regex Filter, 6-29
Shelf, 6-30

H
hardware requirements, 1-1

I
installation, 1-4

Advanced Installation Mode, 1-2
log files, 1-4
verifying, 1-4

installing Oracle Sensor Edge Server, 1-1

J
Java Naming and Directory Interface (JNDI), 2-4

K
Key Sequence Macro

creating, 5-7
Key Sequence Macro parameters, 5-6
Keyboard Dispatcher

configuring, 5-4

L
log files

viewing, 3-29

M
manual configurations and deployment, 1-10

N
new features in this release, 2-1

O
object declaration, 5-11
OC4J

installing, 1-2
installing/upgrading from a 10.1.2 instance, 1-3
installing/upgrading from a 10.1.3 instance, 1-3

Oracle Application Server Control, 2-3
Oracle Sensor Edge Mobile

administering, 2-9
architecture, 2-7
configuring dispatchers and drivers, 5-3
connecting to applications, 5-3
described, 2-5
device driver support, 2-8
installing, 1-7
installing and starting on a Pocket PC, 1-7
installing the emulator, 1-9
internationalization, 5-18
managing, 5-16
object declaration in, 5-11
overview, 5-1
requirements, 1-1
sample code and demo applications, 2-9

Oracle Sensor Edge Server
architecture, 2-6
deployment considerations, 2-9
enhanced security, 2-4
improved performance, 2-3
installing, 1-1
introduction, 2-1
managinf edge dispatchers, 6-31
Overview, 2-4
stopping and starting, 3-18
stopping and starting using opmnctl, 3-18
stopping and starting using the OracleAS

Index-3

Enterprise Manager, 3-18
transport layer, 2-3
uninstalling, 1-4

Oracle Sensor Edge Server applications
developing, ix

Oracle Sensor Edge Server Console, 2-2
described, 2-5

P
Pocket PC

changing default device configuration, 1-8
installing Sensor Edge Server on, 1-7
reading barcode data on, 1-9
reading RFID tags on, 1-9

Pocket PC 2003, 1-1
processing

event, 2-6
local, 2-6

Q
querying the Sensor Data Repository, 3-30

R
requirements

hardware, 1-1
Sensor Data Repository, 1-2
Sensor Data Streams, 1-2
software, 1-2

S
schema reference, 4-3
Sensor Data Archive and Rules, 2-5
Sensor Data Collection, 2-4
Sensor Data Dispatching, 2-5
Sensor Data Filtering, 2-4
Sensor Data Repository

enhancements, 2-3
operations and queries, 4-3
PL/SQL package, 4-20
relational tables, 4-1
requirements, 1-2

Sensor Data Repository/Sensor Data Streams
manual configuration and deployment, 1-10

Sensor Data Streams, 2-3
requirements, 1-2

Sensor Edge Mobile
shutting down, 1-9

Sensor Edge Server Console
displaying, 1-5

Sensor Repository
PL/SQL Package, 4-2
relational views, 4-2
using, 4-1

Sensor Server and Device Management, 2-5
software requirements, 1-2

T
testing the database connection, 1-5
text conventions, x

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 Installation
	Hardware Requirements
	Software Requirements
	Installing OC4J
	Upgrading or Installing Oracle Sensor Edge Server From a 10.1.2 OC4J Instance
	Installing Oracle Sensor Edge Server From a 10.1.3 OC4J Instance
	Examining the Installation Log Files
	Uninstalling Oracle Sensor Edge Server

	Verifying Your Installation
	Displaying the Sensor Edge Server Console
	Testing the Database Connection
	Testing the Database Connection Using Enterprise Manager

	Installing Oracle Sensor Edge Mobile
	Installing and Starting Oracle Sensor Edge Mobile on a Pocket PC Device
	Changing the Default Device Configuration
	Reading RFID Tags
	Reading Barcode Data

	Shutting Down the Sensor Edge Mobile Service
	Installing the Oracle Sensor Edge Mobile Emulator

	Manually Configuring Sensor Data Repository and Sensor Data Streams in Release 10.1.3
	Manually Deploying Sensor Data Repository
	Connecting Oracle Sensor Edge Server to Sensor Data Repository
	Manually Deploying Sensor Data Streams
	Connecting Oracle Sensor Edge Server to Sensor Data Streams

	Connecting to an Existing Sensor Data Repository in Release 10.1.2
	Connecting to an Existing Sensor Data Streams in Release 10.1.2

	2 Introducing Oracle Sensor Edge Server
	What’s New in Release 10.1.3
	Oracle Sensor Edge Server Console
	Oracle Sensor Edge Mobile
	Enhanced Management Through Oracle Application Server Control
	Improved Performance
	Enhanced Sensor Data Repository
	Sensor Data Streams
	EPC Compliance Integration
	Transport Layer
	Enhanced Security
	Deprecation of the Device Controller

	Oracle Sensor Edge Server Overview
	Sensor Data Collection
	Sensor Data Filtering
	Sensor Data Dispatching
	Sensor Data Archive and Rules
	Sensor Server and Device Management
	Sensor Edge Mobile
	SES Console

	Oracle Sensor Edge Server Architecture
	Device Drivers
	Device Groups
	Local Processing
	Event Processor
	Driver Manager

	Oracle Sensor Edge Mobile Architecture
	Device Driver Support
	Administering Oracle Sensor Edge Mobile
	Sample Code and Demo Applications

	Deployment Considerations
	Review Network Characteristics
	Identify Data Center Environment
	Review Reader and Sensor Locations
	Choose Edge Server Locations
	Oracle Sensor Edge Server and Sensor Data Repository Considerations

	3 Managing Oracle Sensor Edge Server
	Overview of Oracle Sensor Edge Services Management
	Managing the Oracle Sensor Edge Server Instance
	Accessing Other Oracle Sensor Edge Server Instances
	Creating an Entry for an Oracle Sensor Edge Server Instance
	Editing an Entry for an Oracle Sensor Edge Server Instance

	Monitoring the Performance of the Oracle Sensor Edge Server Instance
	Clearing the Queue of the Event Data

	Setting the General Information for the Oracle Sensor Edge Server Instance
	Setting the Dispatcher for the Oracle Sensor Edge Server Instance
	Viewing Dispatchers, Drivers, and Filters
	Setting the Devices and Filters Used by the Oracle Sensor Edge Server
	Viewing the Device Groups of the Oracle Sensor Edge Server
	Creating a Device Group
	Adding a Filter to a Device Group
	Editing a Device Group
	Renaming a Device Group
	Updating the Devices and Filters Used by a Device Group
	Starting and Stopping the Devices Assigned to a Device Group
	Deleting a Device Group

	Starting and Stopping the Oracle Sensor Edge Server Instance
	Stopping and Starting an Oracle Sensor Edge Server Instance Using opmnctl
	Restarting an Oracle Sensor Edge Server Instance Using the OracleAS Enterprise Manager

	Starting and Stopping an Individual Device
	Managing Filters
	Prioritizing Filter Instances
	Managing the Filter Instances for a Device or Device Group

	Monitoring the Event Data
	Viewing Event Data
	Viewing an Individual Event

	Viewing Unprocessed Event Data
	Viewing Log Information
	Viewing Processed Event Data
	Searching for Events by Tag ID
	Searching for Events by Device Name
	Refining Tag ID and Device Name Searches
	Creating Advanced Searches

	Adding Extensions to the Oracle Sensor Edge Server Instance
	Extension Archive Files
	Packaging an Extension Archive File

	Uploading Extensions
	Extension Class Hierarchy
	Implementing Extensions
	Extension Context
	Retrieving Information About the Instance
	Accessing the Runtime Context of an Instance

	Managing the Parameters of an Instance
	Exposing Custom Parameters
	Retrieving Parameter Values

	4 Using the Sensor Data Repository
	Overview of the Sensor Data Repository
	Relational Tables
	Relational Views in the Sensor Data Repository
	Sensor Data Repository PL/SQL Package
	Operations and Queries on the Repository
	Creating and Deleting Repositories
	Saving Observations to the Repository
	Querying the Archive

	Schema Reference
	Tables
	EDG_CAP_TAB table
	EDG_CTXT_REL_TAB table
	EDG_CTXT_TAB Table
	EDG_DEVICE_TAB Table
	EDG_DIAG_TAB Table
	EDG_EVENT_INFO_TAB Table
	EDG_EVENT_TAB Table
	EDG_LOG Table
	EDG_TAG_TAB Table

	Views
	EDG_CAP
	EDG_CTXT
	EDG_CTXT_REL
	EDG_CTXT_REL_NAME_VW
	EDG_DEVICE
	EDG_DEV_CAP_VW
	EDG_DEV_DIAG_VW
	EDG_DEV_EVENT_VW
	EDG_DEV_LAST_DIAG_VW
	EDG_DEV_LAST_OBSV_VW
	EDG_DIAG
	EDG_EVENT
	EDG_EVENT_INFO
	EDG_EVENT_VW
	EDG_TAG
	EDG_TAG_LAST_DEV_VW
	EDG_TAG_PATH_VW

	PL/SQL Programming Interface
	EDG_SDA Package

	5 Oracle Sensor Edge Mobile
	Overview of Oracle Sensor Edge Mobile
	Connecting Sensor Edge Mobile to Applications

	Configuring the Dispatchers and Drivers
	Configuring the Keyboard Dispatcher
	Defining DestinationApplication Parameter
	Defining the RFIDReadMacro Parameter
	Defining the BarcodeReadMacro Parameter
	Defining the Key Sequence Macro Parameters
	Creating a Key Sequence Macro
	Enabling the Key Sequence Macro to Handle Repeating Elements
	Key Macro Element Keys for Special Control Sequences
	Keyboard Macro Elements for Control Keys or Data Positioning

	Checking Device Status
	The ActiveX Application Interface
	Object Declaration
	rfid_read()
	rfid_write()
	rfid_kill()
	barcode_read()
	set_trigger_rfid_read()
	set_trigger_barcode_read()
	process_instruction()
	is_supported()
	Handling Observation Events

	Deprecated Activex Application Interface

	Managing Sensor Edge Mobile
	Internationalization

	6 Configuring Devices, Filter Instances, and Dispatchers
	Overview of Device, Filter Instance and Dispatcher Configuration
	Setting the URI Parameters for Devices and Dispatchers

	Configuring Devices
	Configuring Alien Reader Driver-Based Devices
	Observation Events Generated by the Alien Reader Driver
	The Instruction Event Accepted by the Alien Reader Driver

	Configuring an Instance of the AnimationDriver
	Configuring BarcodeDriver-Based Devices
	RFID Observation Event Returned by the BarcodeDriver

	Configuring an Instance of the ConsoleDriver
	Configuring Edge Echo Driver-Based Instances
	Configuring Edge Simulator Driver-Based Devices
	Configuring an HtmlDriver Instance
	Events Supported by the HtmlDriver

	Configuring Intermec BRI Driver-Supported Devices
	Observation Events Generated by the Intermec BRI Driver
	The Instruction Event Accepted by the Intermec BRI Driver

	Configuring Intermec Reader Driver-Based Devices
	Configuring LpmlDriver-Based Devices
	The Printer Response Observation Event Generated by the LpmlDriver
	The Instruction Event Accepted by the LpmlDriver

	Configuring Matrics Driver-Based Devices
	Observation Events Generated by the Matrics Driver
	Instruction Event Accepted by the Matrics Driver

	Configuring PatliteDriver-Based Devices
	Configuring Prolite Driver-Based Devices
	Configuring Samsys Driver-Based Device
	Observation Events Generated by the Samsys Driver
	Instruction Event Accepted by the Samsys Driver

	Configuring a Simple Audio Driver Instance
	Audio Event Supported by the Simple Audio Driver

	Configuring Tyco Reader Driver-Based Devices
	Observation Events Generated by the Tyco Reader Driver
	The Instruction Event Accepted by the Tyco Reader Driver

	Configuring Filter Instances
	Configuring the Check Tag ID Filter
	Using the Cross-Reader Redundant Filter
	Using the Debug Filter
	Configuring the JavaScript Filter
	Configuring the Movement Filter
	Configuring the Pallet Pass Thru Filter
	Configuring the Pallet Shelf Filter
	Events Generated by the Pallet Shelf Filter

	Configuring the Pass Filter
	Configuring the Polygon Filter
	Configuring the Regex Filter
	Configuring the Shelf Filter
	Events Generated by the Shelf Filter

	Managing Dispatchers for an Oracle Sensor Edge Server Instance
	Configuring the Dispatcher to Send Event Messages to a Web Service
	Configuring the Dispatcher to Send Event Messages Through HTTP
	Configuring the PML Dispatcher
	Configuring the Template Dispatcher
	Configuring the ALEDispatcher
	Using the Null Dispatcher
	Configuring the Edge Dispatcher to Use Oracle Streams

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T

