
Oracle® Configurator
Constraint Definition Language Guide

Release 11i

Part No. B13606-03

May 2005

This book describes the Constraint Definition Language
(CDL) semantics and syntax that pass validation by the
Oracle Configurator parser and successfully compile when
generating logic. CDL is used to define Statement Rules in
Oracle Configurator Developer.

Oracle Configurator Constraint Definition Language Guide, Release 11i

Part No. B13606-03

Copyright © 1999, 2005, Oracle. All rights reserved.

Primary Authors: Tina Brand, Steve Damiani

Contributing Author: Harriet Shanzer

Contributors: Ivan Lazarov, Brian Ross

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Send Us Your Comments .. ix

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Structure .. xii
Related Documents .. xii
Conventions ... xiii
Product Support .. xiii

1 Introduction

1.1 Overview of the Constraint Definition Language (CDL).. 1-1
1.2 Relationships Expressed in CDL .. 1-1
1.3 Terminology... 1-2
1.4 Syntax Notation... 1-3

2 Principles of CDL

2.1 Before You Begin... 2-1
2.1.1 What Model Structure Nodes and Properties Are Participants in the Rule? 2-1
2.1.2 Is the Model Structure Likely To Change Often? ... 2-1
2.1.3 What Does the Rule Need To Do? .. 2-1
2.1.4 What Types of Expressions Define the Relationships or Constraints You Need? 2-2
2.2 Anatomy of a Configuration Rule Written in CDL.. 2-2
2.2.1 Rule Definition ... 2-2
2.2.2 Rule Statements.. 2-3
2.2.3 Comments and Whitespace.. 2-3
2.2.4 Case Sensitivity .. 2-4
2.2.5 Quotation Marks .. 2-4
2.3 Data Types ... 2-4

3 Model Example

3.1 The House Model and its Window Submodel ... 3-1
3.2 Example Explicit Statements ... 3-2
3.3 Example Iterator Statements .. 3-3
iii

3.4 CDL Flexibility .. 3-3
3.4.1 Incremental Rules .. 3-3
3.4.2 Alternative Rule Designs.. 3-4

4 CDL Elements

4.1 CDL Statements... 4-1
4.1.1 Explicit Statements .. 4-1
4.1.2 Iterator Statements... 4-2
4.1.2.1 Multiple Iterators in One Statement .. 4-2
4.2 Expressions .. 4-3
4.3 Keywords ... 4-4
4.3.1 CONSTRAIN.. 4-4
4.3.2 CONTRIBUTE...TO ... 4-5
4.3.2.1 CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or

Collections ... 4-5
4.3.3 COMPATIBLE...OF ... 4-5
4.3.4 FOR ALL....IN... 4-6
4.3.5 WHERE ... 4-7
4.3.6 COLLECT.. 4-7
4.4 Operators.. 4-7
4.4.1 Predefined Operators Supported By CDL ... 4-7
4.4.2 Operator Results .. 4-9
4.4.3 Operator Precedence ... 4-9
4.4.4 LIKE and NOT LIKE Operators ... 4-10
4.4.5 Text Concatenation Operator.. 4-10
4.4.6 COLLECT Operator.. 4-10
4.5 Functions ... 4-12
4.5.1 Arithmetic .. 4-12
4.5.2 Trigonometric .. 4-13
4.5.3 Logical .. 4-14
4.5.4 Set .. 4-15
4.5.5 Text.. 4-15
4.5.6 Hierarchy or Compound ... 4-15
4.5.7 Function Overflows and Underflows .. 4-16
4.6 Operands ... 4-17
4.6.1 References .. 4-17
4.6.1.1 Model Object Identifiers ... 4-17
4.6.1.2 Simple Model Node References .. 4-18
4.6.1.3 Compound Model Node References Showing Context....................................... 4-18
4.6.1.4 Property References .. 4-19
4.6.2 Formal Parameters.. 4-20
4.6.2.1 Local Variables and Data Types .. 4-21
4.6.2.2 Local Variables and References ... 4-21
4.6.3 Literals .. 4-22
4.6.3.1 Numeric Literals .. 4-22
4.6.3.2 Boolean Literals.. 4-22
4.6.3.3 Text Literals .. 4-22
iv

4.6.3.4 Collection Literals.. 4-23
4.7 Separators.. 4-24
4.8 Comments and Whitespace.. 4-25
4.8.1 Comments .. 4-25
4.8.2 Whitespace and Line Terminators ... 4-26

A CDL Formal Grammar

A.1 Notation Used in Presenting CDL Grammar .. A-1
A.1.1 Examples of Notation Used in Presenting CDL Grammar... A-2
A.2 Terminal Symbols .. A-3
A.2.1 Keyword Symbols... A-3
A.2.2 Operator Symbols ... A-4
A.2.3 Literal Symbols.. A-4
A.2.4 Separator Symbols .. A-5
A.2.5 Identifier Symbols... A-5
A.2.6 Comment Symbols.. A-6
A.2.7 Whitespace Symbols... A-7
A.3 Nonterminal Symbols.. A-7
A.4 EBNF Source Code Definitions for CDL Terminal Symbols ... A-9

B CDL Validation

B.1 Validation of CDL.. B-1
B.1.1 The Parser .. B-1
B.1.1.1 Calling the Oracle Configurator Parser.. B-1
B.1.1.2 The Parser’s Validation Criteria .. B-1
B.1.2 The Compiler... B-2
B.1.2.1 Calling the Oracle Configurator Compiler .. B-2
B.1.2.2 The Compiler’s Validation Criteria... B-2
B.2 The Input Stream to the Oracle Configurator Parser.. B-2
B.2.1 Unicode Characters .. B-3
B.3 Name Substitution ... B-3
B.3.1 Name Persistency ... B-3
B.3.2 Ambiguity Resolution.. B-3

Index
v

vi

List of Examples

3–1 Example Explicit Statement in CDL... 3-2
3–2 Example Iterator Statement in CDL ... 3-3
3–3 Incremental Rules and Their Equivalent As a Rolled Up Rule .. 3-3
3–4 Alternative Rule Designs With Equivalent Rule Intent .. 3-4
3–5 Alternative Rule Design with Narrowed Conditions.. 3-4
3–6 Alternative Rule Design using AllTrue function ... 3-4
4–1 Multiple Iterators in One CONSTRAIN Statement ... 4-2
4–2 Multiple Iterators in One CONTRIBUTE...TO Statement... 4-3
4–3 Simple Mathematical Expression in a CDL Rule ... 4-3
4–4 Nested Mathematical Expression in a CDL Rule ... 4-3
4–5 Mathematical Expressions in Rule Statements ... 4-3
4–6 Expressions Resulting in a BOOLEAN Value .. 4-3
4–7 Expressions Resulting in an INTEGER or DECIMAL Value.. 4-4
4–8 Constraint Statements with the CONSTRAIN Keyword.. 4-4
4–9 Constraint Statements Without the CONSTRAIN Keyword .. 4-5
4–10 Constraint Statement with the FOR ALL...IN Iterator .. 4-5
4–11 CONTRIBUTE...TO Statements .. 4-5
4–12 Property-based Compatibility Rule ... 4-6
4–13 FOR ALL ... IN ... Clause.. 4-6
4–14 FOR ALL ... IN ... and WHERE Clause using Node Properties ... 4-6
4–15 LIKE Expression Resulting in a BOOLEAN Value ... 4-10
4–16 COLLECT Operator, Single Contribution.. 4-10
4–17 COLLECT Operator, Single Contribution.. 4-11
4–18 COLLECT Operator Contributions ... 4-11
4–19 COLLECT Operator with DISTINCT.. 4-11
4–20 Invalid Input Range Error .. 4-16
4–21 Intermediate Value Propagation Error ... 4-16
4–22 Calculated Input Value Out of Range Error .. 4-16
4–23 Calculated Value Not Within Valid Range Error.. 4-17
4–24 Full Path Model Node References ... 4-18
4–25 Relative Path Model Node Reference ... 4-19
4–26 Invalid Property References with CONTRIBUTE...TO Statements.................................. 4-20
4–27 Formal Parameter... 4-21
4–28 Valid Local Variable of Inferred Data Type ... 4-21
4–29 Valid Formal Parameter and Reference.. 4-21
4–30 Formal Parameter and an Invalid Reference ... 4-21
4–31 Text Literals .. 4-22
4–32 Text Literal with Escapes .. 4-22
4–33 Multiple-Line Text Literal... 4-23
4–34 A Valid Collection of Integer Literals ... 4-23
4–35 Valid Collection of Nodes... 4-23
4–36 Valid Collections of Decimals .. 4-24
4–37 Invalid Collection .. 4-24
4–38 CDL Comments.. 4-25
4–39 Multiple Line Comments within a Statement Rule .. 4-25
A–1 EBNF for Keyword Symbols .. A-3
A–2 EBNF for Operator Symbols... A-4
A–3 EBNF for Literal Symbols ... A-4
A–4 EBNF for Separator Symbols.. A-5
A–5 EBNF for Identifier Symbols .. A-6
A–6 EBNF for Comment Symbols ... A-6
A–7 EBNF for Whitespace Symbols .. A-7
A–8 EBNF for Nonterminal Symbols .. A-7
A–9 EBNF Source Code for Terminal Symbols ... A-9

vii

List of Figures

3–1 Example House Model ... 3-2

viii

List of Tables

1–1 Terminology Used in This Book .. 1-2
1–2 CDL Statement Syntax Notation.. 1-3
2–1 Kinds of Relationships or Constraints Available in CDL .. 2-2
2–2 Implicit Conversion of Data Type ... 2-4
4–1 CONTRIBUTE A TO B where B is a BOM Option Class or a Collection........................... 4-5
4–2 Operators Listed by Type ... 4-8
4–3 Mapping of Operators and Data Types .. 4-9
4–4 Precedence of Operators ... 4-9
4–5 Arithmetic Functions.. 4-12
4–6 Trigonometric Functions.. 4-14
4–7 Logical Functions .. 4-14
4–8 Set Functions.. 4-15
4–9 Text Functions ... 4-15
4–10 Compound Function .. 4-15
4–11 Representations of Model Object Identifiers... 4-17
4–12 Property References.. 4-19
4–13 Types of Numeric Literals ... 4-22
4–14 Escaped Characters Inside Double Quotes ... 4-23
4–15 Valid CDL Separators... 4-25
A–1 Notation Used in Presenting CDL Grammar (EBNF) ... A-1
A–2 Values for Unicode Escapes Allowed in Identifiers .. A-6

Send Us Your Comments

Oracle Configurator Constraint Definition Language Guide, Release 11i

Part No. B13606-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: czdoc_us@oracle.com

■ FAX: 781-238-9898. Attn: Oracle Configurator Documentation

■ Postal service:

Oracle Corporation
Oracle Configurator Documentation
10 Van de Graaff Drive
Burlington, MA 01803-5146
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.
ix

x

Preface

Welcome to the Oracle Configurator Constraint Definition Language Guide. This guide
describes the semantics and syntax of the Constraint Definition Language or CDL. Use
this document together with the other books in the Oracle Configurator
documentation set to prepare for and implement rule definitions that are entered as
text rather than created interactively in Oracle Configurator Developer. The text can be
entered as a Statement Rule in Configurator Developer.

This preface describes how the guide is organized, who the intended audience is, and
how to interpret the typographical conventions and syntax notation.

Intended Audience
This guide is intended for anyone responsible for creating and supporting rule
definitions written in CDL, including Statement Rules in Oracle Configurator
Developer. This guide assumes that you understand the kinds and behavior of
configuration rules that are available in Oracle Configurator.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation Screen readers may not always
correctly read the code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line; however, some
screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.
xi

TTY Access to Oracle Support Services Oracle provides dedicated Text Telephone
(TTY) access to Oracle Support Services within the United States of America 24 hours a
day, seven days a week. For TTY support, call 800.446.2398.

Structure
This guide contains a table of contents, lists of examples, tables and figures, a reader
comment form, a preface, several chapters, appendixes, a glossary, and an index.
Within the chapters, information is organized in numbered sections of several levels.
Note that level does not imply importance or degree of detail. For instance, first-level
sections in one chapter may not contain information of equivalent detail to the
first-level sections in another chapter.

Chapter 1, "Introduction"
This chapter provides a high-level overview of CDL and the criteria for valid,
executable rule definitions.

Chapter 2, "Principles of CDL"
This chapter introduces the principles of defining configuration rules using CDL.

Chapter 3, "Model Example"
This chapter introduces an example Model that is used to illustrate correct CDL
semantics and syntax.

Chapter 4, "CDL Elements"
This chapter presents detailed information about the elements of CDL.

Appendix A, "CDL Formal Grammar"
This appendix provides a programmer’s reference of CDL syntax.

Appendix B, "CDL Validation"
This appendix provides additional information about the Oracle Configurator parser’s
expectations and requirements during rule validation.

Glossary
This guide contains a glossary of terms used throughout the Oracle Configurator
documentation set.

The Index provides an alternative method of searching for key concepts and product
details.

Related Documents
For more information, see the following manuals in Release 11i of the Oracle Product
documentation set:

■ Oracle Configurator Developer User’s Guide

■ Oracle Configurator Implementation Guide

■ Oracle Configurator Installation Guide

■ Oracle Configurator Extensions and Interface Object Developer’s Guide

■ Oracle Configurator Methodologies
xii

■ Oracle Configurator Modeling Guide

■ Oracle Configurator Performance Guide

Be sure you are familiar with the information and limitations described in the About
Oracle Configurator documentation on Metalink, Oracle’s technical support Web site.

Conventions
In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

See Section 1.4, "Syntax Notation" for conventions specific to CDL.

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and Oracle
Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using Metalink, Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

Log into your MetaLink account and navigate to the Configurator TAR template:

Convention Meaning

 .

 .

 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example or
relevant to the discussion have been omitted

boldface text Boldface type in text indicates a new term, a term defined in the
glossary, specific keys, and labels of user interface objects. Boldface
type also indicates a menu, command, or option, especially within
procedures

italics Italic type in text, tables, or code examples indicates user-supplied text.
Replace these placeholders with a specific value or string.

[] Brackets enclose optional clauses from which you can choose one or
none.

> The left bracket alone represents the MS DOS prompt.

$ The dollar sign represents the DIGITAL Command Language prompt
in Windows and the Bourne shell prompt in Digital UNIX.

% The percent sign alone represents the UNIX prompt.

name() In text other than code examples, the names of programming language
methods and functions are shown with trailing parentheses. The
parentheses are always shown as empty. For the actual argument or
parameter list, see the reference documentation. This convention is not
used in code examples.
xiii

1. Choose the TARs link in the left menu.

2. Click on Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

a. Choose Product: Oracle Configurator or Oracle Configurator Developer

b. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using
MetaLink.

For a complete listing of available Oracle Support Services and phone numbers, see:

www.oracle.com/support/

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For general information about the logging options available when working in
Configurator Developer, see the Oracle Configurator Developer User’s Guide.

For details about the logging methods available in Configurator Developer and a
runtime Oracle Configurator, see:

■ The Oracle Applications System Administrator’s Guide for descriptions of the Oracle
Applications Manager UI screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so
on.

■ The Oracle Applications Supportability Guide, which includes logging guidelines for
both System Administrators and developers, and related topics.

■ The Oracle Applications Framework Release 11i Documentation Road Map
(Metalink Note # 275880.1).
xiv

Intro
1

Introduction

This chapter introduces the Constraint Definition Language and contains the following
sections:

■ Overview of the Constraint Definition Language (CDL)

■ Relationships Expressed in CDL

■ Terminology

■ Syntax Notation

1.1 Overview of the Constraint Definition Language (CDL)
The Constraint Definition Language (CDL) is a modeling language. CDL allows you to
define configuration rules, the constraining relationships among items in
configuration models, by entering them as text. A rule defined in CDL is an input
string of characters that is stored in the CZ schema of the Oracle Applications
database, validated by a parser, translated into executable code by a compiler, and
interpreted at runtime by Oracle Configurator.

You use CDL to define a Statement Rule in Oracle Configurator Developer by entering
the rule’s definition as text rather than interactively assembling the rule’s elements.
Because you use CDL to define them, Statement Rules can express more complex
constraining relationships than interactively defined configuration rules can.

See the Oracle Configurator Developer User’s Guide for information about creating
Statement Rules in Configurator Developer.

CDL also supports writing rules in rule-writing environments other than Configurator
Developer for the purpose of importing rules directly into the CZ schema. For details
about the availability of this functionality, see the latest About Oracle Configurator
documentation on Metalink, Oracle’s technical support Web site.

1.2 Relationships Expressed in CDL
Using CDL, you can define the following relationships that are supported by the rules
available in Oracle Configurator Developer:

■ Logical

■ Numeric

■ Property-based compatibility

■ Comparison
duction 1-1

Terminology
The other types of relationships that can be defined in Configurator Developer
(Explicit Compatibility rules and Design Charts) cannot be expressed in CDL.

For more information about the kinds of relationships that are supported in CDL, see
Table 2–1, " Kinds of Relationships or Constraints Available in CDL" on page 2-2.

1.3 Terminology
Table 1–1 lists terms that are used throughout this guide. The Model that is used for all
examples in this guide is explained in Chapter 3.

Table 1–1 Terminology Used in This Book

Term Description

Cartesian product A set of tuples that is constructed from two or more given sets
and comprises all permutations of single elements from each set
such that the first element of the tuple is from the first set and
the second is from the second set, and so on.

clause A segment of a rule statement consisting of a keyword and
expression.

collection A set of multiple operands within parentheses and separated by
commas.

compiler The part of Oracle Configurator that first parses rule definitions
and then generates code that is executable at runtime.

explicit statement Explicit statements express relations among explicitly identified
participants and restrict execution of the rule to those
participants and the Model containing those participants.

expression A subset of the statement that contains operators and operands

formal identifier A variable that is defined in the scope of an iterator statement to
represent an iterating identifier.

iterator statement Iterators are query-like statements that iterate, or repeat, over
one or multiple relations or constraints.

non-terminal The kind of symbols used in the notation for presenting CDL
grammar that represent the names of grammar rules.

parser A component of the Oracle Configurator compiler that analyzes
the syntactic and semantic correctness of statements used in rule
definitions.

relationship A type of constraint expressed in a single statement or clause. A
relationship can be equivalent to a simple rule. A Statement Rule
expresses one or more relationship types but is not itself a type
of relationship.

signature The distinct combination of a function’s attributes, such as name,
number of parameters, type of parameters, return type,
mutability, and so on.

singleton A single operand that is not within a collection.

statement The entire sentence that expresses the rule’s intent. A CDL rule
definition can consist of multiple statements, each consisting of
clauses containing expressions, and separated by semi-colons.

terminal The kind of symbols used in the notation for presenting CDL
grammar that represent the names, characters, or literal strings
of tokens.
1-2 Oracle Configurator Constraint Definition Language Guide

Syntax Notation
See the Glossary for additional terms.

1.4 Syntax Notation
Table 1–2 describes the valid syntax notation for CDL. This notation is used
throughout this book for CDL examples and in the syntax reference in Appendix A,
"CDL Formal Grammar".

In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Enter key at the end of a line of input.

See also Conventions in the Preface.

token The result of translating characters into recognizable lexical
meaning. All text strings in the input stream to the parser, except
whitespace characters and comments, are tokens. For more
information about the use of special characters, see the Oracle
Configurator Developer User’s Guide.

unicode A 16-bit character encoding scheme allowing characters from
Western European, Eastern European, Cyrillic, Greek, Arabic,
Hebrew, Chinese, Japanese, Korean, Thai, Urdu, Hindi and all
other major world languages, to be encoded in a single character
set.

Table 1–2 CDL Statement Syntax Notation

Symbol Description

-- or // A double hyphen or double slash begins a single line comment
that extends to the end of the line.

/* */ A slash asterisk and an asterisk slash delimits a multiline
comment that can span multiple lines.

&lower case Lower case prefixed by the ampersand sign is used for names of
formal parameters and iterator local variables.

UPPER CASE Upper case is used for keywords and names of predefined
variables or formal parameters.

Mixed Case Mixed case is used for names of user-defined Model nodes,
names of user-defined rules

; A semi-colon indicates the end of one statement and the
beginning of the next

Table 1–1 (Cont.) Terminology Used in This Book

Term Description
Introduction 1-3

Syntax Notation
1-4 Oracle Configurator Constraint Definition Language Guide

Principles o
2

Principles of CDL

This chapter presents some principles to keep in mind when working in CDL,
including the following topics:

■ Before You Begin

■ Anatomy of a Configuration Rule Written in CDL

■ Data Types

2.1 Before You Begin
Before defining a rule in CDL, consider exploring the following key questions:

■ What Model Structure Nodes and Properties Are Participants in the Rule?

■ Is the Model Structure Likely To Change Often?

■ What Does the Rule Need To Do?

■ What Types of Expressions Define the Relationships or Constraints You Need?

2.1.1 What Model Structure Nodes and Properties Are Participants in the Rule?
The answer matters because it helps you choose which kind of CDL statement to use.
CDL supports explicit and iterator statements.You use explicit statements to express
relationships involving specifically named individual nodes or Properties in your
Model structure. If you want a set of related nodes (such as all window models of a
house) to participate in a series of identical rules, use iterator statements instead of
repeating the same rule for each individual node.

2.1.2 Is the Model Structure Likely To Change Often?
If the structure is not static and expected to change often, you may want to define rules
that use Properties, rather than explicitly including nodes in the rule’s definition. This
reduces the amount of required maintenance whenever the Model structure changes.
For more information, see the Oracle Configurator Modeling Guide.

2.1.3 What Does the Rule Need To Do?
In other words, what type of relationship do you need to define? The answer matters
because not all types of relationships can be expressed using CDL.

The available types of constraints and relationships that can be expressed in CDL
include Logic, Numeric, Property-based Compatibility, and Comparison. See
f CDL 2-1

Anatomy of a Configuration Rule Written in CDL
Table 2–1, " Kinds of Relationships or Constraints Available in CDL" on page 2-2 for
details.

For information about each type of relation, see the Oracle Configurator Developer User’s
Guide.

2.1.4 What Types of Expressions Define the Relationships or Constraints You Need?
Table 2–1 shows which CDL keywords are used to express which type of relationship.
For example, to define a Numeric constraint that contributes a value of 10 to Total X
when Option A is selected, use the CONTRIBUTE and TO keywords.

2.2 Anatomy of a Configuration Rule Written in CDL
This section provides an overview of how the syntax, semantics, and lexical structure
of a rule written in CDL relate to one another. This section contains the following
topics:

■ Rule Definition

■ Rule Statements

■ Comments and Whitespace

■ Case Sensitivity

■ Quotation Marks

For guidance in converting an existing rule to a Statement Rule, see the Oracle
Configurator Developer User’s Guide.

2.2.1 Rule Definition
A configuration rule has a name, associated Model, definition, other attributes such as
Effectiveness and Usage, and optionally a description. The rule definition can be
written in CDL and consists of whitespace characters, comments, and one or more
individual statements that express the intent of the rule.

When creating a Statement Rule in Oracle Configurator Developer, you enter the name
and description in input fields and the rule definition in the text box provided for that
purpose.

Table 2–1 Kinds of Relationships or Constraints Available in CDL

Rule Types CDL Keywords

Logical or Comparison Use the CONSTRAIN keyword and one operator. If you need to
express a constraint between one or more options in your Model,
then, at a minimum, use the CONSTRAIN keyword with the
IMPLIES, EXCLUDES, DEFAULTS, NEGATES, or REQUIRES
relation keyword

Numeric Use the CONTRIBUTE and TO keywords when adding a value
to a Numeric Feature, Option Count, Total, Resource, or the
minimum or maximum total number of instances.

Use the CONTRIBUTE (-1)* and TO keywords when subtracting
a numeric values from a Numeric Feature, Option count, Total,
Resource or instance count.

Compatibility Use the COMPATIBLE keyword and at least two identifiers to
indicate the nodes you want to compare.
2-2 Oracle Configurator Constraint Definition Language Guide

Anatomy of a Configuration Rule Written in CDL
For more information about entering rule definitions in Oracle Configurator
Developer, see the Oracle Configurator Developer User’s Guide.

2.2.2 Rule Statements
Statements define the rule’s intent, such as to contribute a value of 10 to Total X when
Option A is selected.

Multiple statements in a rule definition must be separated from one another with
semi-colons (;). CDL supports two kinds of statements: Explicit and Iterator. For more
information, see Section 4.1, "CDL Statements" on page 4-1.

CDL statements are parsed as tokens; everything in CDL is a token, except whitespace
characters and comments. For more information about how CDL is parsed, see
Appendix B, "CDL Validation".

Statements consist of one or more clauses. Clauses consist of keywords and one or
more expressions. Keywords are predefined tokens that determine CDL syntax and
make it more readable and easy to use. CONSTRAIN and CONTRIBUTE are examples
of keywords.

An expression is the part of a statement that contains an operator and the operands
involved in a rule operation. An operator is a predefined keyword, function, or
character that involves the operands in logical, functional, or mathematical operations.
REQUIRES and the plus sign (+) are examples of operators. Operands are also called
rule participants. An operand can be an expression, a literal, or an identifier. The literal
or identifier operand can be present in the rule as a singleton or as a collection.

Literals are tokens of a specific data type, such as Numeric, Boolean (True or False), or
Text. An identifier is a token that consists of a sequence of letters and digits. Identifiers
identify Model objects or formal parameters. When an identifier identifies a Model
object it refers to a Model node or Property and the sequence of letters and digits starts
with a letter. These kinds of identifiers are called references. When an identifier is a
formal parameter, it identifies a local variable and is used in an iterator statement.
Formal parameters are a sequence of letters and digits prefixed with an ampersand
(&).

For greater readability and to convey meaning such as the order of operations, CDL
supports separators. Separators are tokens that maintain the structure of the rule by
establishing boundaries between tokens, grouping them based on some syntactic
criteria. Separators are single characters such as the semi-colon between statements or
the parentheses around an expression.

For more information about these statements and the CDL elements they contain, see
Chapter 4, "CDL Elements". For help with determining the CDL elements that
correspond to particular rules, assemble a Logic, Numeric, Compatibility, or
Comparison rule interactively in Oracle Configurator Developer, and then convert it to
a Statement Rule. When you do this, Configurator Developer displays the rule’s
current definition in CDL. You can then expand or enhance the rule by typing
additional statements, keywords, identifiers, structure node names, and so on.

2.2.3 Comments and Whitespace
Comments are included in rule definitions at your discretion to explain the rule.
Whitespace, which includes spaces, line feeds, and carriage returns, format the input
for better readability. See Section 4.8.1, "Comments" on page 4-25 and Section 4.8.2,
"Whitespace and Line Terminators" on page 4-26 for details.
Principles of CDL 2-3

Data Types
2.2.4 Case Sensitivity
Keywords are not case sensitive.

Keyword operators are not case sensitive.

Model object identifiers are case sensitive.

Formal parameters are case sensitive and cannot be in quotes.

The constants E and PI as well as the scientific E are not case sensitive.

The keywords TRUE and FALSE are not case sensitive.

Text literals are case sensitive.

All keywords, constant literals, and so on are not case sensitive.

2.2.5 Quotation Marks
Model structure nodes with the same name as a keyword must be quoted when
referred to in CDL

2.3 Data Types
Following are valid data types when defining a rule in CDL:

■ INTEGER

■ DECIMAL

■ BOOLEAN

■ TEXT

■ Node types

Under certain circumstances, a data type of a variable is not compatible with the type
expected as an argument. The Oracle Configurator parser does not support explicit
conversion or casting between the data types. The parser performs implicit conversion
between compatible types. See Table 2–2 for details.

If a rule definition has wrong data types, the parser returns a type mismatch error
message. Example 4–37, "Invalid Collection" on page 4-24 shows a collection whose
data types cannot be implicitly converted to be compatible.

Note: Operands are not case sensitive with the exception of Model
object identifiers (node names), formal parameters or variables, User
Property names, and text literals.

Table 2–2 Implicit Conversion of Data Type

Source data type

(or collection of the same type)

Implicitly converts to

 (or collection of the same type)

INTEGER DECIMAL

NODE of type BOM Standard Item, BOM Option Class,
BOM Model, Option Feature, Option, or Boolean Feature

BOOLEAN

INTEGER

DECIMAL

Node type
2-4 Oracle Configurator Constraint Definition Language Guide

Data Types
Unless specified otherwise, all references to matching types throughout this document
assume the implicit data type conversions.

NODE of type Integer Feature INTEGER

DECIMAL

NODE of type Decimal Feature DECIMAL

NODE of type Text Feature TEXT

Note: Although TEXT is included as a data type here, it can only be
used in a static context. You cannot use a TEXT literal, reference, or
expression in the actual body of a CONSTRAINT or CONTRIBUTE
expression. The Oracle Configurator compiler validates this condition
when you generate logic for the Model.

Table 2–2 (Cont.) Implicit Conversion of Data Type

Source data type

(or collection of the same type)

Implicitly converts to

 (or collection of the same type)
Principles of CDL 2-5

Data Types
2-6 Oracle Configurator Constraint Definition Language Guide

Model Exa
3

Model Example

This chapter presents an example that is used throughout this book to illustrate CDL.

■ The House Model and its Window Submodel

■ Example Explicit Statements

■ Example Iterator Statements

■ CDL Flexibility

For help understanding the syntax notation of the examples in this and subsequent
chapters, see Section 1.4, "Syntax Notation" on page 1-3.

3.1 The House Model and its Window Submodel
House is the parent Model, with Window its child Model.
mple 3-1

Example Explicit Statements
Figure 3–1 Example House Model

Figure 3–1 shows the Model House as the parent Model, with Window its child Model.
The Window Model contains a Frame Component and a Glass Component with
Features and Options.

3.2 Example Explicit Statements
For a description and general information about explicit statements, see Section 4.1.1
on page 4-1.

An example configuration rule calculates the size of glass to be put into a window
frame for each Window instance. The glass is to be inserted into the Frame 1/2 inch at
each side. To capture such a rule, you would provide a name, such as
WindowGlassSize, a description, and then associate the rule with the Window Model.

Example 3–1 shows the definition of WindowGlassSize written in CDL.

Example 3–1 Example Explicit Statement in CDL

CONTRIBUTE Frame.Width - 2 * Frame.Border + 2 * 0.5
TO Glass.Width;
CONTRIBUTE Frame.Height - 2 * Frame.Border + 2 * 0.5
TO Glass.Height;
3-2 Oracle Configurator Constraint Definition Language Guide

CDL Flexibility
Two statements explicitly express two Contributes to relationships between the value
of the Frame’s dimensions and the glass to determine the required glass size. A
semi-colon indicates the end of each statement and the whole rule definition.

3.3 Example Iterator Statements
For a description and general information about iterators, see Section 4.1.2 on page 4-2.

An example configuration rule constrains the window frame color so that for some
colors, the finish is glossy. An iterator lets you define a rule that selects the glossy
finish based on a Property.

In Example 3–2, the variable &color refers to all the Options of the Feature Color, in
the Frame Component of the Window Model. The rule selects a glossy finish when
one of those colors is selected AND the Property RequiresGlossyFinish is true.

Example 3–2 Example Iterator Statement in CDL

CONSTRAIN &color IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("RequiresGlossyFinish") = "True";

The reference to a particular Property value allows the constraining relation to be
applied to a subset of the Color Options without explicitly naming the specific color.
During validation, every node in Color is checked for a Property
RequiresGlossyFinish. The result is that the rule iterates over all the children of Color,
and for each color with the Property value set to true, the rule constrains the finish to
Glossy.

The advantage of using an iterator statement is that if you add another color to the
Frame Model, the rule definition does not have to be modified. Iterator statements
significantly reduce the development and maintenance cost of the Model. With proper
planning, the complete set of constraints could stay constant while the Model structure
evolves over numerous publications.

For alternative rule definitions with similar intent, see Section 3.4, "CDL Flexibility" on
page 3-3.

3.4 CDL Flexibility
CDL flexibly supports many ways of writing the same or similar rules. This section
presents the following topics:

■ Incremental Rules

■ Alternative Rule Designs

3.4.1 Incremental Rules
CDL provides the flexibility to express complex rules as a series of incremental rules or
those incremental rules as the subexpressions of a single, rolled up rule. Example 3–3
shows two rule anatomies that express the same behavior.

Example 3–3 Incremental Rules and Their Equivalent As a Rolled Up Rule

Incremental rules of a complex Numeric Rule.

CONTRIBUTE Frame.Width TO Glass.Width;
CONSUMES 2* Frame.Border FROM Glass.Width;
Model Example 3-3

CDL Flexibility
CONTRIBUTE 2 * 0.5 TO Glass.Width;

Rolled up complex Numeric Rule express the same behavior as the incremental rules.

CONTRIBUTE Frame.Width - (2 * Frame.Border) TO Glass.Width;

3.4.2 Alternative Rule Designs
As with Oracle Configurator, generally, CDL provides flexibility to express similar rule
intent in various ways. Consider Example 3–2 on page 3-3, which could be designed
differently, as shown in Example 3–4.

Example 3–4 Alternative Rule Designs With Equivalent Rule Intent

To select a glossy finish for every Option of the Feature Color, make the Boolean
Property RequiresGlossyFinish imply a glossy finish.

CONSTRAIN &color.Property("RequiresGlossyFinish") IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)

In this rule, logic generation executes the rule on every RequiresGlossyFinish
Property in the Options of the frame’s Color Feature. Alternatively, you could write a
WHERE clause that limits the rule to only those Options of the frame’s Color Feature
whose RequiresGlossyFinish Property equals true, as shown in Example 3–2.

Limiting the logic generation to the condition expressed in the WHERE clause is
equivalent to applying a filter before execution, which usually results in better
performance. When a rule iterates over a large number of options or combinations (for
example, a Cartesian product), the WHERE clause does not necessarily improve
performance.

Example 3–5 Alternative Rule Design with Narrowed Conditions

In Example 3–4, the rule binds Frame.Finish.Glossy to true at startup, merely
because Property RequiresGlossyFinish exists. A different approach might be to
add a Special Property that limits the Options over which the rule iterates to those
that alone should have a glossy finish.

CONSTRAIN &color IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("Special") = "True"
AND &color.Property("RequiresGlossyFinish") = "True";

Here, the variable &color refers to all the Options of the Feature Color, in the Frame
Component of the Window Model. All Options in the Feature Color have the
Special Property and this rule only iterates over those colors that are identified by
&color.Property("Special")= "True". Of that subset of colors, the rule selects
a glossy finish when one of those colors is selected AND the Property
RequiresGlossyFinish is true.

Example 3–6 shows the same rule intent as Example 3–5 using the AllTrue function.

Example 3–6 Alternative Rule Design using AllTrue function

CONSTRAIN AllTrue (&color, &color.Property ("RequiresGlossyFinish"))
IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("Special") = "True";
3-4 Oracle Configurator Constraint Definition Language Guide

CDL Elem
4

CDL Elements

Rules written in CDL include the following elements:

■ CDL Statements

■ Expressions

■ Keywords

■ Operators

■ Functions

■ Operands

■ Separators

■ Comments and Whitespace

For an overview of CDL elements, as well as details about case sensitivity and
quotation marks, see Section 2.2, "Anatomy of a Configuration Rule Written in CDL"
on page 2-2.

For syntax abstracts, see Appendix A, "CDL Formal Grammar"

4.1 CDL Statements
A rule definition written in CDL consists of one or more statements that define the
rule’s intent. The two kinds of statements are:

■ Explicit Statements

■ Iterator Statements

The difference between explicit and iterator statements is in the types of participants
involved.

4.1.1 Explicit Statements
Explicit statements express relationships among explicitly identified participants and
restrict execution of the rule to those participants and the Model containing those
participants.

In an explicit statement, you must identify each node and Property that participates in
the rule by specifying its location in the Model structure. An explicit statement applies
to a specific Model, thus all participants of an explicit statement are explicitly stated in
the rule definition.

CDL supports several kinds of explicit statements, which are identified by the
keywords CONSTRAIN, CONTRIBUTE, and COMPATIBLE.
ents 4-1

CDL Statements
See Appendix A, "CDL Formal Grammar" for the syntax definition of statements.

Example 4–8 on page 4-4, shows such an explicit statement consisting of a single
expression of the logical implies relation.

See Section 4.2, "Expressions" on page 4-3 for more information about the precise
syntax of explicit statements.

4.1.2 Iterator Statements
Iterators are query-like statements that iterate, or repeat, over elements such as
constants, Model references, or expressions of these. Iterators express relations among
participants that are Model node elements of a collection or participants that are
identified by their Properties and allow the rule to be applied to Options of Option
Features with the same Properties. Iterators allow you to use the Properties of Model
nodes to specify the participants of constraints or contributions. This is especially
useful for maintaining persistent sets of constraints when the Model structure or its
Properties change frequently. Iterators can also be used to express relationships
between combinations of participants, such as with Property-based Compatibility
Rules.

Iterator statements can use local variables that are bound to one or more iterators over
collections. This is a way of expressing more than one constraint or contribution in a
single implicit form. During compilation, a single iterator statement explodes into one
or more constraints or contributions. See Section 4.4.6, "COLLECT Operator" on
page 4-10 for more information.

The available iterators that make a rule statement an iterator statement are:

■ FOR ALL....IN

■ WHERE

See Appendix A, "CDL Formal Grammar" for the syntax definition of statements.

Example 4–10 on page 4-5 shows an iterator statement consisting of a single expression
of the logical Defaults relation and the iterator.

See Section 4.2, "Expressions" on page 4-3 for more information about the precise
syntax of kinds of iterator statements.

For an additional example of a rule statement that contains an iterator, see
Example 3–2 on page 3-3.

4.1.2.1 Multiple Iterators in One Statement
The syntax of the FOR ALL clause allows for multiple iterators. The statement can be
exploded to a Cartesian product of two or more collections.

Example 4–1, is an example of a Cartesian product as the rule iterates over all the
Options of the Tint Feature in the Glass Component and over all the Options of the
Color Feature in the Frame Component of the Window Model in Figure 3–1 on
page 3-2. Whenever the Stain Property of the Color Options equals the Stain
Property of the Tint Options, the selected color pushes the corresponding stain true.
So, for example, when &color.Property ("stain") and &tint.Property
("stain") both equal Clear, selecting the White Option causes the Clear Option to be
selected.

Example 4–1 Multiple Iterators in One CONSTRAIN Statement

CONSTRAIN &color IMPLIES &tint
FOR ALL
4-2 Oracle Configurator Constraint Definition Language Guide

Expressions
&color IN OptionsOf(Frame.Color),
&tint IN OptionsOf(Glass.Tint)
WHERE &color.Property ("stain") = &tint.Property ("stain");

The difference between this and a Property-based Compatibility Rule is that
Example 4–1 selects participants without over constraining them, while a compatibility
test deselects participants that do not pass the test. For more information on designing
rules and the impact on performance, see Section 3.4.2, "Alternative Rule Designs" on
page 3-4.

In Example 4–2, the numeric value of Feature a contributes to Feature b for all the
Options of a and b when the value of their Property Prop2 is equal.

Example 4–2 Multiple Iterators in One CONTRIBUTE...TO Statement

CONTRIBUTE &var1 TO &var2
FOR ALL &var1 IN {OptionsOf(a)}, &var2 IN {OptionsOf(b)}
WHERE &var1.Property("Prop2") = &var2.Property("Prop2");

4.2 Expressions
An expression is part of a CDL statement. It has two operands that are connected by
an operator, or functions and their arguments. See Appendix A, "CDL Formal
Grammar" for the syntax definition of expressions. See Section 4.4, "Operators",
Section 4.6, "Operands", and Section 4.5, "Functions" for details.

Example 4–3 shows a simple mathematical expression where the two operands are 2
and frame.border, and the operator is * (multiplication).

Example 4–3 Simple Mathematical Expression in a CDL Rule

2 * frame.border

Example 4–4 shows a simple mathematical expression of Example 4–3 used as the
second operand in another expression, where the first operand is
window.frame.width and the operator is - (subtraction).

Example 4–4 Nested Mathematical Expression in a CDL Rule

window.frame.width - 2 * frame.border

See Section 4.4.3 on page 4-9 for details about the precedence of operators.

For an example of CDL rules using these expressions, consider the Window Model in
Example 3–1. If you want to calculate the size of the glass to be put into a window
frame where the glass is inserted in the frame 1/2 inch at each side, and the frame
border is 1 inch, you might write the two Contributes To rules in Example 4–5.

Example 4–5 Mathematical Expressions in Rule Statements

CONTRIBUTE window.frame.width - 2 * frame.border + 2 * 0.5 TO glass.width;
CONTRIBUTE window.frame.height - 2 * frame.border + 2 * 0.5 TO glass.height;

Following are some additional examples of expressions.

Example 4–6 Expressions Resulting in a BOOLEAN Value

a > b
a AND b
CDL Elements 4-3

Keywords
(a + b) * c > 10
a.prop LIKE "%abc%"

Example 4–7 Expressions Resulting in an INTEGER or DECIMAL Value

a + b
((a + b) * c)^10

4.3 Keywords
Keywords consist of Unicode characters and are predefined identifiers within a
statement.

Keywords include the following:

■ CONSTRAIN

■ CONTRIBUTE...TO

■ COMPATIBLE...OF

■ FOR ALL....IN

■ WHERE

■ COLLECT

See Section A.2.1, "Keyword Symbols" on page A-3 for the syntax definition of these
keywords in expressions.

4.3.1 CONSTRAIN
The CONSTRAIN keyword is used at the beginning of a constraint statement. A
constraint statement uses an expression to express constraining relationships. You can
omit the CONSTRAIN keyword from a constraint statement.

Each constraint statement must contain one and only one of the following keyword
operators:

■ IMPLIES

■ EXCLUDES

■ REQUIRES

■ NEGATES

■ DEFAULTS

For a description of these constraints, see the section on Logic Rules in the Oracle
Configurator Developer User’s Guide.

Example 4–8 and Example 4–9 show constraint statements with and without the
CONSTRAIN keyword.

Example 4–8 Constraint Statements with the CONSTRAIN Keyword

CONSTRAIN a IMPLIES b;
CONSTRAIN (a+b) * c > 10 NEGATES d;
4-4 Oracle Configurator Constraint Definition Language Guide

Keywords
Example 4–9 Constraint Statements Without the CONSTRAIN Keyword

a IMPLIES b;
(a + b) * c > 10 NEGATES d;

Example 4–10 expresses that if one Option of Feature F1 is selected, then by default
select all the rest of the Options. See Section 3.4.2 on page 3-4 for other examples of a
CONSTRAIN statement with a FOR ALL iterator.

Example 4–10 Constraint Statement with the FOR ALL...IN Iterator

CONSTRAIN F1 DEFAULTS &var1
FOR ALL &var1 IN F1.Options();

4.3.2 CONTRIBUTE...TO
Unlike constraint statements, contribute statements contain numeric expressions. In a
contribute statement, the CONTRIBUTE and TO keywords are required. See Section A,
"CDL Formal Grammar" for the syntax definition of these keywords in expressions.

Example 4–11 CONTRIBUTE...TO Statements

CONTRIBUTE a TO b;
CONTRIBUTE (a + b) * c TO d;

CONTRIBUTE...TO is the CDL representation of the Numeric Rule in Oracle
Configurator Developer.

For a description of a Contributes to rule, see the section on Numeric Rules in the
Oracle Configurator Developer User’s Guide.

4.3.2.1 CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or
Collections
Caution must be taken when writing rules with decimal operands and using BOM
Option Classes, or collections. Table 4–1, explains what action should be taken when A
contributes to B and B is either a BOM Option Class with multiple options, or B is a
collection.

4.3.3 COMPATIBLE...OF
The COMPATIBLE keyword is used at the beginning of a compatibility statement that
defines compatibility based on Property values between Options of different Features,
Standard Items of different BOM Option Classes, or between Options of a Feature and

Table 4–1 CONTRIBUTE A TO B where B is a BOM Option Class or a Collection

If AND Then

A resolves to a decimal Option 1 and Option 2 are both integers Use the Round() function on A

Option 1 and Option 2 are both decimals No further action is needed on A

Option 1 is decimal and Option 2 is integer Use Round() function on A to meet the
most limiting restriction - Option 2 an
integer.

A in an integer Option 1 and Option 2 are both integers No further action is needed on A

Option 1 and Option 2 are both decimals

Option 1 is decimal and Option 2 is integer
CDL Elements 4-5

Keywords
Standard Items of a BOM Option Class. COMPATIBLE...OF is the CDL representation
of a Property-based Compatibility Rule in Oracle Configurator Developer.

A Compatibility statement requires the keyword COMPATIBLE and two or more
identifiers. The syntax of COMPATIBLE...OF is essentially the same as that of FOR
ALL....IN. For each formal identifier in the COMPATIBLE clause, there must be a
matching identifier in the OF clause. The conditional expression determining the set of
desired combinations is in the WHERE clause.

The CDL of a Property-based Compatibility must include at least two iterators. For
additional information about using a WHERE clause, see Section 4.3.5 on page 4-7.

In Example 4–12, the rule iterates over all the Options of the Tint Feature in the
Glass Component and over all the Options of the Color Feature in the Frame
Component of the Window Model in Figure 3–1 on page 3-2. A color and tint are
compatible whenever the Color Option’s Stain Property equals the Tint Option’s
Stain Property.

Example 4–12 Property-based Compatibility Rule

COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.Property("stain") = &tint.Property("stain");

For a description of Compatibility, including order of evaluation, see the section on
Property-based Compatibility Rules in the Oracle Configurator Developer User’s Guide.

See Section A, "CDL Formal Grammar" for the syntax definition of these keywords in
expressions.

4.3.4 FOR ALL....IN
The FOR ALL and IN keywords begin the two clauses of an iterator statement. The IN
keyword specifies the source of iteration

See Section A, "CDL Formal Grammar" for the syntax definition of these keywords in
iterator expressions.

In Example 4–13, the result is 3 contributions to option d.

Example 4–13 FOR ALL ... IN ... Clause

CONTRIBUTE &var TO d
FOR ALL &var IN {a, b, c};

In Example 4–14, the result is as many contributions to Feature d as there are children
in Feature a, whose Property prop3 is less than 5. This example also shows a
collection enclosed in braces (see Section 4.6.3.4, "Collection Literals" on page 4-23).

Example 4–14 FOR ALL ... IN ... and WHERE Clause using Node Properties

CONTRIBUTE &var.Property("NumProp") + 10 TO d
FOR ALL &var IN {OptionsOf(a)}
WHERE &var.Property("prop3") < 5;

Note: The IN clause can contain only literal collections or collections
of model nodes, such as OptionsOf. There is no specification of
instances, so all instances of a given Model use the same iteration.
4-6 Oracle Configurator Constraint Definition Language Guide

Operators
In both examples, a single statement explodes into one or more constraints or
contributions without explicitly repeating each one. In both examples, the iterator
variable can also participate in the left hand side of the contribute statement.

4.3.5 WHERE
The WHERE keyword begins a clause of an iterator statement that acts as a filter to
eliminate iterations that do not match with the WHERE criteria.

See Section A, "CDL Formal Grammar" for the syntax definition of this keyword in
iterator expressions.

In Example 4–14, the result is only as many contributions to option d as there are
children in the criteria specified in the WHERE clause.

4.3.6 COLLECT
The COLLECT keyword is used exclusively as an operator. For details about the
COLLECT keyword, see Section 4.4.6, "COLLECT Operator" on page 4-10.

4.4 Operators
Operators are predefined tokens consisting of Unicode characters to be used as the
expression operators among the expression operands. An operator specifies the
operation to be performed at runtime between the operands. This section includes the
following topics.

■ Predefined Operators Supported By CDL

■ Operator Results

■ Operator Precedence

■ LIKE and NOT LIKE Operators

■ Text Concatenation Operator

■ COLLECT Operator

4.4.1 Predefined Operators Supported By CDL
See Appendix A, "CDL Formal Grammar" for the syntax definition of operators.
Table 4–2 lists the predefined operators supported by CDL.

Note: The conditional expression in the WHERE clause must be
static. When using the COLLECT operation in a WHERE and an IN
clause, the operands must be static. All User Properties on nodes and
all constants are static operands. As a result, operands in the WHERE
clause of a COMPATIBLE...OF statement can only be Properties.

Note: Configurator Developer evaluates Property-based
Compatibility Rules from the top down, and gives no priority or
precedence to an expression based on its use of the AND or OR
operator. In other words, the system evaluates the first relation you
enter, followed by the second, and so on.
CDL Elements 4-7

Operators
Table 4–2 lists the predefined operators supported by CDL. Comparison types include
comparing a numeric valued Feature with a property of a selected Option, or
comparing a Property value with the name of an Option.

Table 4–2 Operators Listed by Type

Operator
Type Operators Description

Logical AND AND requires two operands and returns true if both are true.

Logical OR OR requires two operands and returns true if either is true.

Logical NOT NOT requires one operand and returns its opposite value: false if
the operand is true, true if the operand is false.

Logical NotTrue NotTrue requires one operand and returns true if its logic state is
false or unavailable. For additional information about using
NotTrue, see the Oracle Configurator Modeling Guide.

Logical REQUIRES REQUIRES requires two operands. See the Oracle Configurator
Developer User’s Guide for details.

Logical IMPLIES IMPLIES requires two operands. See the Oracle Configurator
Developer User’s Guide for details.

Logical EXCLUDES EXCLUDES requires two operands. See the Oracle Configurator
Developer User’s Guide for details.

Logical NEGATES NEGATES requires two operands. See the Oracle Configurator
Developer User’s Guide for details.

Logical DEFAULTS DEFAULTS requires two operands. See the Oracle Configurator
Developer User’s Guide for details.

Logical and
Comparison

LIKE LIKE requires two text literal operands and returns true if they
match. See Section 4.4.4 for restrictions.

Logical and
Comparison

NOT LIKE NOT LIKE requires two text literal operands and returns true if
they do not match. See Section 4.4.4 for restrictions

Logical,
Arithmetic,
and
Comparison

= Equals requires two operands and returns true if both are the
same.

Logical,
Arithmetic,
and
Comparison

> Greater than requires two operands and returns true if the first is
greater than the second.

Logical,
Arithmetic,
and
Comparison

< Less than requires two operands and returns true if the first is
less than the second.

Logical,
Arithmetic,
and
Comparison

<> Not equal requires two operands and returns true if they are
different.

Logical,
Arithmetic,
and
Comparison

<= Less than or equal to requires two operands and returns "true" if
the first operand is less than or equal to the second.

Logical,
Arithmetic,
and
Comparison

>= Greater than or equal requires two operands and returns "true" if
the first operand is greater than or equal to the second.
4-8 Oracle Configurator Constraint Definition Language Guide

Operators
4.4.2 Operator Results
The result of each expression operator can participate as an operand of another
operator as long as the return type of the former matches with the argument type of
the latter. See Section 2.3, "Data Types" on page 2-4 for more information about
allowable data types of operands.

Table 4–3 lists the basic return types of the operators.

4.4.3 Operator Precedence
Operators are processed in the order given in the following list. Operators with equal
precedence are evaluated left to right.

Table 4–4 lists the precedence of expression operators in CDL.

Arithmetic * Performs arithmetic multiplication on numeric operands.

Arithmetic / Performs arithmetic division on numeric operands.

Arithmetic - Performs arithmetic subtraction on numeric operands.

Arithmetic + Performs arithmetic addition on numeric operands.

Arithmetic ^ Performs arithmetic exponential on numeric operands.

Arithmetic % Performs arithmetic modulo on numeric operands.

Text + Performs a concatenation of text strings. See Section 4.4.5 for
restrictions.

Other () , . - parentheses () are used to group sub-expressions

comma (,) is used to separate function arguments

dot (.) is used for referencing objects in the Model tree structure

unary minus (-) is used to make positive values negative and
negative values positive.

Table 4–3 Mapping of Operators and Data Types

Operator(s) Data type

Arithmetic INTEGER, DECIMAL

Logical BOOLEAN

Comparison BOOLEAN

Table 4–4 Precedence of Operators

Operator Precedence (direction) Description

() 1 (right) Parenthesis

. 2 (left) Navigation

^ 3 (right) Arithmetic power

Unary +, -

NOT, NotTrue

4 Unary plus and minus, Not and
NotTrue

*, /, % 5 (left) Arithmetic multiplication and divisions

Table 4–2 (Cont.) Operators Listed by Type

Operator
Type Operators Description
CDL Elements 4-9

Operators
4.4.4 LIKE and NOT LIKE Operators
Although LIKE and NOT LIKE are included as text relational operators, they can only
be used in static context; for example, the WHERE clause of iterators. As with any
TEXT data type, you cannot use LIKE and NOT LIKE with runtime participants unless
it evaluates to a constant string. Oracle Configurator Developer validates this
condition when you generate logic.

Example 4–15 LIKE Expression Resulting in a BOOLEAN Value

a.prop LIKE "%eig%"

A TRUE result is returned if the text of a.prop contains the characters ’eig’, such as
a.prop =’weight’ or ’eight’. FALSE is returned if the text of a.prop=’rein’. For more
information on the LIKE operator and the use of wildcards, see the Oracle Configurator
Developer User’s Guide.

 For a list of comparison operators, see Table 4–2 on page 4-8.

4.4.5 Text Concatenation Operator
Although "+" is included as a text concatenation operator, it can only be used in static
context; for example, the WHERE clause of iterators. As with any TEXT data type, you
cannot use text concatenation in the actual body of a constrain or contributor
statement unless it evaluates to a constant string. Oracle Configurator Developer
validates this condition when you generate logic.

4.4.6 COLLECT Operator
A collection of values can be created using an aggregation function such as Min(...),
Max(...), Sum(...), AnyTrue(...). An iterator can use the COLLECT operator to specify
the domain of the collection that is passed to the aggregation function. In many cases
FOR ALL serves that purpose. Example 4–16 shows a single contribution of the
maximum value of the collection of children of Feature a using a COLLECT operator
and a FOR ALL iterator.

Example 4–16 COLLECT Operator, Single Contribution

CONTRIBUTE Max(COLLECT &var FOR ALL &var IN {OptionsOf(a)}) TO d;

has the same result as

CONTRIBUTE Max &var TO d

Binary +, - 6 (left) Arithmetic plus and minus, text
concatenation

<, >, =, <=, >=, <>

LIKE, NOT LIKE

7 (left) Comparison operators

AND 8 (left) Logical AND

OR 9 (left) Logical OR

DEFAULTS, EXCLUDES,
NEGATES, IMPLIES,
REQUIRES

10 (left) Logic operators

Table 4–4 (Cont.) Precedence of Operators

Operator Precedence (direction) Description
4-10 Oracle Configurator Constraint Definition Language Guide

Operators
FOR ALL &var IN {OptionsOf(a)} ;

The COLLECT operator is necessary when limiting an aggregate. Example 4–17 shows
a rule where the iteration of the FOR ALL and WHERE clauses result in an error for
every element of the collection {Option11, Option32, OptionsOf(Feature1)}
that does not contain the Property P1.

Example 4–17 COLLECT Operator, Single Contribution

CONSTRAIN &varA IMPLIES Component.Featuure.Option
FOR ALL &varA IN {Option11, Option32, OptionsOf(Feature1)}
WHERE &varA.Property("P1") = 5;

Example 4–18 uses COLLECT, which prevents the error.

Example 4–18 COLLECT Operator Contributions

CONSTRAIN &varA IMPLIES Component.Featuure.Option
FOR ALL &varA IN {Option11, Option32, {COLLECT &varB
 FOR ALL &varB IN OptionsOf(Feature2)
 WHERE &varB.Property("P1") = 5}};

COLLECT can be used in any context that expects a collection. The COLLECT operator
can be used along with a complex expression and a WHERE clause for filtering out
elements of the source domain of the collection. See Section 4.3.5, "WHERE" on
page 4-7 for more information.

Since COLLECT is an operator that returns a collection, it can also be used inside of a
collection literal, as long as the collection literal has a valid inferred data type. The
Oracle Configurator compiler flattens the collection literal during logic generation,
which allows collections to be concatenated. See Section 4.6.3.4, "Collection Literals" on
page 4-23 for details.

The COLLECT operator can have only one iterator, because the return type is a
collection of singletons. CDL does not support using a Cartesian product with the
COLLECT operator.

The COLLECT operator cannot put dynamic variables in the IN and WHERE clauses,
as this may result in a collection that is unknown at compile time. For additional
information, see Section 4.3.5, "WHERE" on page 4-7.

The COLLECT operator can use the DISTINCT keyword to collect distinct values from
a Property, as shown in Example 4–19, which prevents the selection of options having
different values for the Property Shape from the Option Feature Feature3.
Feature3 has zero Minimum Selections and no limit on Maximum Selections.

Example 4–19 COLLECT Operator with DISTINCT

AnyTrue({COLLECT &opt1
 FOR ALL &opt1 IN {'Feature3'.Options()}
 WHERE &opt1.Property("Shape") = &shape})
EXCLUDES
AnyTrue({COLLECT &opt2
 FOR ALL &opt2 IN {'Feature3'.Options()}
 WHERE &opt2.Property("Shape") <> &shape})
FOR ALL &shape IN
 {COLLECT DISTINCT &node.Property("Shape")
 FOR ALL &node IN 'Feature3'.Options()}
CDL Elements 4-11

Functions
4.5 Functions
In addition to operators, expressions can also contain functions, which may take
arguments and return results that can be used in the rest of the expression. All
standard mathematical functions are implemented in CDL.

The result of each function can participate as an operand of another operator or
function as long as the return type of the former matches with the argument type of
the latter.

Functions perform operations on their arguments and return values which are used in
evaluating the entire statement. Functions must have their arguments enclosed in
parentheses and separated by commas if there is more than one argument. Function
arguments can be expressions.

For example, both of the following operations have the correct syntax for the Round
function, provided that Feature-1 and Feature-2 are numeric Features:

Round (13.4)
Round (Feature-1 / Feature-2)

CDL supports the following functions:

■ Arithmetic

■ Trigonometric

■ Logical

■ Set

■ Text

■ Hierarchy or Compound

This section also contains information about Function Overflows and Underflows on
page 4-16

4.5.1 Arithmetic
Table 4–5 lists the arithmetic functions that are available in CDL. The term infinity is
defined as a number without bounds. It can be either positive or negative.

Table 4–5 Arithmetic Functions

Function Description

Abs(x) Takes a single number as an argument and returns the positive
value (0 to +infinity). The domain range is -infinity to +infinity.
Returns the positive value of x. Abs(-12345.6) results in 12345.6

Round(x) Takes a single decimal number as an argument and returns the
nearest integer. If the A side of a numeric rule is a decimal
number, contributing to an imported BOM that accepts decimal
quantities, then the Round(x) function is unavailable. The reason
that the Round(x) function is unavailable is that the contributed
value does not need to be rounded as the B side accepts decimal
quantities. This function is available when the BOM item accepts
only integer values.

RoundDownToNearest(x,y) This is a binary function. x is a number between -infinity and
+infinity, y is a number greater than 0 and less than +infinity. A
number is returned between -infinity and +infinity. The first
argument is rounded to the nearest smaller multiple of the
second argument. For example, RoundDownToNearest(433,75)
returns 375.
4-12 Oracle Configurator Constraint Definition Language Guide

Functions
4.5.2 Trigonometric
Table 4–6 lists the compound functions that are available in CDL

RoundToNearest(x,y) This is a binary function. x is a number between -infinity and
+infinity, y is a number greater than 0 and less than +infinity. A
number is returned between -infinity and +infinity.
RoundToNearest(433,10) returns 430.

RoundUpToNearest(x,y) This is a binary function. The number x is between -infinity and
+infinity, and the number y is greater than 0 and less than
+infinity. A number is returned between -infinity and +infinity.
The first argument is rounded up to the nearest multiple of the
second argument. For example, RoundUpToNearest(34.1,0.125)
returns 34.125.

Ceiling(x) Takes a single decimal number as an argument and returns the
next higher integer. For example, ceiling(4.3) returns 5, and
ceiling(-4.3) returns -4.

Floor(x) Takes a single decimal number as an argument and returns the
next lower integer. For example, floor(4.3) returns 4, and
floor(-4.3) returns -5.

Log(x) Takes a single number greater than 0 and less than +infinity and
returns a number between -infinity and +infinity. Returns the
logarithmic value of x. An error occurs if x=0.

Log10(x) Takes a single number greater than 0 and less than +infinity and
returns a number between -infinity and +infinity. Returns the
base 10 logarithm of x. An error occurs if x=0.

Min(x,y,z...) Returns the smallest of its numeric arguments.

Max(x,y,z...) Returns the largest of its numeric arguments.

Mod(x,y) This is a binary function. Returns the remainder of x/y where x
and y are numbers between -infinity and +infinity. If y is 0, then
division by 0 is treated as an error. If x=y, then the result is 0. For
example, Mod(7,5) returns 2.

Exp(x) Returns e raised to the x power. Takes a single number between
-infinity and +infinity and returns a value between 0 and
+infinity.

Pow(x,y) This is a binary function. Returns the result of x raised to the
power of y. The number x is between -infinity and +infinity. The
integer y is between -infinity and +infinity and the returned
result is between -infinity and +infinity. If y=0, then the result is
1. For example, Pow(6,2) returns 36.

Sqrt(x) Sqrt(x) returns the square root of x. Takes a single number
between 0 and +infinity and returns a value between 0 and
+infinity. An input of -x results in an error.

Truncate(x,y) Truncate(x,y) takes a single number x and truncates it to the
number of y integers after the decimal point. The default value
of y is 0. For example, truncate(4.15678) returns 4 and
truncate(4.15678,2) returns 4.15.

Table 4–5 (Cont.) Arithmetic Functions

Function Description
CDL Elements 4-13

Functions
4.5.3 Logical
Table 4–7 lists the logical functions that are available in CDL.

Table 4–6 Trigonometric Functions

Function Description

Sin(x) Takes a single number x between -infinity and +infinity and
returns a value between -1 and +1.

ASin(x) Takes a single number between -1 and +1 and returns a value
between -pi/2 and +pi/2. ASin(x) returns the arc sine of x. An
input outside the range between -1 and +1 results in an error.

Sinh(x) Returns the hyperbolic sine of x in radians. Takes a single
number between -infinity and +infinity and returns a value
between -1 and +infinity. An error is returned when the result
exceeds the double. For example, sinh(-99) is valid but sinh(999)
results in an error.

Cos(x) Takes a single number between -infinity and +infinity and
returns a value between -1 and +1. Returns the cosine of x.

ACos(x) Takes a single number between -1 and +1 and returns a value
between 0 and pi. ACos(x) returns the arc cosine of x. An input
outside the range between -1 and +1 results in an error.

Cosh(x) Takes a single number between -infinity and +infinity and
returns a value between -infinity and +infinity. Returns the
hyperbolic cosine of x in radians. An error is returned if x
exceeds the max of a double: cosh(-200) is valid whereas
cosh(-2000) results in an error.

Tan(x) Takes a single number x between -infinity and +infinity and
returns a value between -infinity and +infinity.

ATan(x) Takes a single number between -infinity and +infinity and
returns a value between -pi/2 and +pi/2. ATan(x) returns the arc
tangent of x.

Tanh(x) Returns the hyperbolic tangent of x. Takes a single number x
between -infinity and +infinity and returns a value between -1
and +1.

ATan2(x,y) The arc tangent function is a binary function. The x and y values
are between -infinity and +infinity. It returns a value between -pi
and +pi. This is the four-quadrant tangent inverse.

Table 4–7 Logical Functions

Function Description

AllTrue A logical AND expression. Accepts one or more logical values or
expressions. Returns true if all of the arguments are true, or false
if any argument is false. Otherwise, the value of AllTrue is
unknown.

AnyTrue A logical OR expression. Accepts one or more logical values or
expressions. Returns true if any of the arguments are true, or
false if all arguments are false. Otherwise, the value of AnyTrue
is unknown.

NotTrue Accepts a single logical value or expression. Returns True if the
argument is False or unknown. If the argument is True, the value
of NotTrue is unknown. For additional information about using
NotTrue, see the Oracle Configurator Modeling Guide.
4-14 Oracle Configurator Constraint Definition Language Guide

Functions
4.5.4 Set
Table 4–8 lists the set functions that are available in CDL.

4.5.5 Text
Although the Text functions are included here, they can only be used in static context;
for example the WHERE clause of iterators.

Table 4–9 lists the text functions that are available in CDL

4.5.6 Hierarchy or Compound
In addition, several functions are available to support backward compatibility for
functions in Configurator Developer that operate over the Model structure hierarchy.

Table 4–10 lists the compound function that is available in CDL.

Table 4–8 Set Functions

Function Description

Count Returns the count or number of members in the collection.

Min Returns the smallest numeric member in the collection.

Max Returns the largest numeric member in the collection.

Note: As with any TEXT data type, do not use a text function in the
body of a CONSTRAINT or CONTRIBUTE statement unless it
evaluates to a constant string. The compiler validates this condition.

Table 4–9 Text Functions

Function Description

Matches Compares two operands of text literals and returns true if they
match.

NotMatches Compares two operands of text literals and returns true if they
do not match.

BeginsWith Compares two operands of text literals and returns true if the
first begins with the character(s) of the second.

EndsWith Compares two operands of text literals and returns true if the
first ends with the character(s) of the second.

Equals Compares two operands of text literals and returns true if the
first equals the second.

NotEquals Compares two operands of text literals and returns true if the
first does not equal the second

Table 4–10 Compound Function

Function Description

OptionsOf Takes BOM Option Class, Component, or Feature as an
argument and returns its Options.
CDL Elements 4-15

Functions
4.5.7 Function Overflows and Underflows
It is possible that some arithmetic functions produce an error either because of the
resulting size (larger than the largest positive or negative double) or an invalid input.
Entering a meaningful rule violation message can be helpful when debugging errors.

For more information about violation messages, see the Oracle Configurator Developer
User’s Guide.

Following are some examples of possible error messages.

Example 4–20 Invalid Input Range Error

Consider a Numeric rule in which Acos(A-integer) contributes to a Total. When the
input is out of the valid domain range (-1 to 1), Oracle Configurator returns the
following error message.

There is a contradiction selecting A-Integer

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.

Calculation of ACos(x) - x is not a valid value.

Example 4–21 Intermediate Value Propagation Error

It is possible that propagation through some math functions results in an unexpected
error because of an intermediate value propagated to the argument of the function.
The following Model has a Feature with two counted Options (Option1 and Option2),
a Resource (R) with no initial value (default is 0), and a Total (T) with no initial value
(default is 0).

Numeric Rule 1: Contribute Option1 *-1 to R

Numeric Rule 2: Sqrt(R) contribute to T

If Option1 is 1, then R has a value of -1. Numeric rule 2 tried to calculate the Sqrt(-1)
and Oracle Configurator returns the following error message.

There is a contradiction selecting 0ption1.

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.

The result of an intermediate rule gives R an invalid value.

Example 4–22 Calculated Input Value Out of Range Error

The following Model has a Boolean Feature (B1), a Feature with two counted Options
(Option1 and Option2), a Resource (R) with no initial value (default is 0), and a Total
(T) with no initial value (default is 0).

Numeric Rule 1: (Option1)*2000 contribute to T

Numeric Rule 2: Contribute CosH(T) * -1 to R

If Option1 is 1, then T has a value of 2000 and CosH(T) produces a result that is
greater than the max of a double and Oracle Configurator returns the following error
message.

There is a contradiction selecting 0ption1.
4-16 Oracle Configurator Constraint Definition Language Guide

Operands
To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.

This rule uses the value calculated from Numeric Rule 1 - 0ption1 * 2000.

Example 4–23 Calculated Value Not Within Valid Range Error

A Model has two integer Features (I1 and I2) with initial values of 0. Totals (T1 and T2)
with no specified initial values. The Numeric rule ACos(I1-I2) contributes to T1. If I1 is
1 and I2 is 3, then I1-I2 is outside the valid range (-1 to 1) for ACos(x). Oracle
Configurator returns the following error message.

There is a contradiction selecting I2.

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.

The resulting value of I1 - I2 is outside the valid range of ACos(x).

4.6 Operands
Operands are the rule participants upon which the actions of keywords and operators
are executed. The following are kinds of operands:

■ References

■ Formal Parameters

■ Literals

See Appendix A, "CDL Formal Grammar" for the syntax definition of operands.

4.6.1 References
References are identifiers that refer to Model objects by name (Model nodes or Model
Properties). At runtime, the object or its value is used in the rule. A reference could be
a Model node or a Property reference.

4.6.1.1 Model Object Identifiers
A Model object identifier is a token that refers by name to a particular object in the
Model structure. At runtime it's the node or the value that is actually used in the rules
they participate in depending on the context.

Model object identifiers have two different representations: quoted with the single
quote ('...'), or not quoted. They do not have to be quoted if they refer to Model nodes
with names that contain only letters or digits, but they must be quoted otherwise (for
example, if the name contains a space, special character or is the same as a keyword.).

For example:

Note: This behavior depends on the order in which the relations
are propagated.

Table 4–11 Representations of Model Object Identifiers

Model Object Identifier Refers to...

House Model called House.
CDL Elements 4-17

Operands
See Section 4.6.1, "References" on page 4-17 for details.

4.6.1.2 Simple Model Node References
References to Model nodes can be made through simple identifiers specifying the
name of the Model node. Model node references are context dependent. Since there is
no restriction on uniqueness of the Model node names, just using a Model identifier
may be ambiguous depending on the context.

For example, based on the House Model shown in Figure 3–1, "Example House Model"
on page 3-2, the context of the property Color is ambiguous because it could refer to
the Frame or to the House.

Color -- this refers to Color in Frame

But in the context of House:

Color -- this refers to Color in House

Descendant Model nodes in the current Model context are always with higher priority
than ancestor nodes. Thus Color in context Frame is not ambiguous (since Frame is a
descendant node of House), but Color of the House is. When it is not possible to
uniquely refer to a model node in the context of a rule, the rule developer must use
compound identifiers (see Section 4.6.1.3).

4.6.1.3 Compound Model Node References Showing Context
Compound Model node references are sequences of Model node identifiers separated
by the dot character (.). Compound references uniquely identify Model nodes in a
particular context by presenting Model node paths. Compound references are
necessary because Configurator Developer allows Model nodes to have identical
names in the same Model structure as long as they are not siblings. In other words,
Compound references are used for navigation in the Model structure.

The most explicit path is the full path. A full path contains all levels of the hierarchy
by node name, including Model, nested components, references, Option Classes, and
Features.

In Example 4–24, the first line shows the full path of Option Dark in the Feature Tint
in the Component Glass in the referenced Model SideWindow2 in the parent Model
House. The second line shows the full path of Color in Frame in FrontWindow1 in
House.

Example 4–24 Full Path Model Node References

...
House.SideWindow2.Glass.Tint.Dark
...
House.FrontWindow1.Frame.Color
...

You can omit any head of the path that does not disambiguate the reference. So to refer
precisely and only to Color in the context of House, you must specify enough of the

'House' Model called House.

'Total Material' Node called Total Material. Because the node name contains a
space, it must be quoted.

Table 4–11 (Cont.) Representations of Model Object Identifiers

Model Object Identifier Refers to...
4-18 Oracle Configurator Constraint Definition Language Guide

Operands
head of the path. The reference in Example 4–25 unambiguously refers to Color in
Frame in FrontWindow1 in the House Model.

Example 4–25 Relative Path Model Node Reference

...
FrontWindow1.Frame.Color
...

4.6.1.4 Property References
Identifiers that refer to System and User Properties of Model nodes must also be
compound. When referring to User Properties, you must use the explicit method
Property(). For example, in the context of Figure 3–1 on page 3-2,
House.FrontWindow1.Property("Position")refers to the User Property called
Position. House.FrontWindow1.Position instead refers to a child Model node
called Position.

When referring to System Properties, use the name of the System Property name
directly. For example, FrontWindow1.MinInstances() refers to the
MinInstances System Property.

Table 4–12 lists all methods available on Model node identifiers. Return Type indicates
the data type of the value returned by the method cited in the Relationship column.
Mutable, if Yes, means the value returned is affected by changes in the state of the
Model at runtime including instantiation of nodes.

Table 4–12 Property References

Relationship Applies to Mutable Return type Description

<identifier>.Name() All model
nodes

No TEXT Resolves to the
model node name
of the current
identifier.

<identifier>.Description() All model
nodes

No TEXT Resolves to the
model node
description of the
current identifier.

<identifier>.Options(), Option
Features,
BOM Option
Classes,
BOM Models

Yes NODE[] Resolves to a
collection of
references to all
child model nodes
of the current
identifier.

<identifier>.Property("<text
literal>")

All model
nodes

No BOOLEAN,
INTEGER,
DECIMAL,
or TEXT

Resolves to a
reference to the
named
user-defined
property of the
current identifier.
Return type
depends on the
type of the
user-defined
property.
CDL Elements 4-19

Operands
The Oracle Configurator parser does not allow the following property references on
the left hand side of the rule when using CONTRIBUTE...TO statements:

■ <identifier>.Selection.State

■ <identifier>.Property("<text literal>")

Example 4–27 shows invalid use of property references used in CONTRIBUTE...TO
statements.

Example 4–26 Invalid Property References with CONTRIBUTE...TO Statements

CONTRIBUTE a TO b.Selection().State()
CONTRIBUTE a TO b.Property("RequiresGlossyFinish")

See the Oracle Configurator Developer User’s Guide for valid Model structure nodes and
System Properties that can be used when defining rules.

4.6.2 Formal Parameters
Formal parameters are local variables defined in rule iterators. They consist of the
name of the identifier, prefixed with the ampersand character (&). Each parameter

<identifier>.MinInstances()
<identifier>.MaxInstances()

Components
and BOM
models

Yes INTEGER Resolves to the
dynamic min/max
number of
instances available
at runtime.

<identifier>.InstanceName() Components
and BOM
models

No TEXT Resolves to the
instance name of
the current
identifier.

<identifier>.Selection() Features and
option
classes that
have
Maximum
Number of
Selections = 1

Yes NODE Resolves to the
dynamic child
model node of the
current identifier
that is selected at
runtime.

<identifier>.State() Boolean
Features,
Option
Features,
Options, and
BOM nodes

Yes BOOLEAN Resolves to the
dynamic state of
the model node.

<identifier>.Value() Features and
BOM nodes

Yes INTEGER,
DECIMAL or
TEXT

Resolves to the
dynamic value of
the model node.
Return type
depends on the
model node type.

<identifier>.Quantity() Options and
BOM nodes

Yes INTEGER or
DECIMAL

Resolves to the
dynamic quantity
of the model node.
Return type
depends on the
model node type.

Table 4–12 (Cont.) Property References

Relationship Applies to Mutable Return type Description
4-20 Oracle Configurator Constraint Definition Language Guide

Operands
must be unique among the others. Since formal parameters are always prefixed there
is no danger of ambiguity with model node references. Model nodes with the same
name as a formal parameter (&win) must be in quotes when referred to in CDL
('&win').

In Example 4–27, the parameter &var is used in the CONTRIBUTE statement. It is
declared in the FOR ALL iterator, and it is used in the WHERE clause.

Example 4–27 Formal Parameter

CONTRIBUTE &var.Property("NumProp") + 10 TO d
FOR ALL &var IN a.Options()
WHERE &var.Property("prop3") < 5;

4.6.2.1 Local Variables and Data Types
Local variables are used exclusively for rule iterators (FOR ALL) and are implicitly
declared a data type equivalent to the inferred type of the iterator collection. This
allows the Oracle Configurator parser to catch data type errors rather than leaving it to
the compiler.

Example 4–28 shows an acceptable use of a local variable of inferred type NODE.

Example 4–28 Valid Local Variable of Inferred Data Type

...
CONSTRAIN &Color.selected().property("dark") IMPLIES Frame.Glass.Tint.Dark
FOR ALL &Color in OptionsOf(House);
...

Once the inferred type of the local variable is determined, the Oracle Configurator
parser can validate its use in the context. For example, a local variable of type NODE
can be combined with a Model object identifier to produce a compound reference to a
Model node or Property.

4.6.2.2 Local Variables and References
The Oracle Configurator parser allows the reference shown in Example 4–29, but an
error displays when you generate logic if &LocalVar evaluates to a node or a
Property (not the name).

Example 4–29 Valid Formal Parameter and Reference

...
&NodeArg.Child(&LocalVar)
...
The Oracle Configurator parser does not allow the references shown in Example 4–30.
In the first line, a formal parameter can appear only at the beginning of a Model object
reference. In the second line, a Property must evaluate to Property value.

Example 4–30 Formal Parameter and an Invalid Reference

...
&NodeArg.&LocalVar
&NodeArg.Property(&LocalVar)
...
CDL Elements 4-21

Operands
4.6.3 Literals
CDL supports the use of literals of any of the primitive data types:

■ Numeric Literals

■ Boolean Literals

■ Text Literals

■ Collection Literals

See Appendix A, "CDL Formal Grammar" for the syntax definition of literals.

4.6.3.1 Numeric Literals
Numeric literals are simply presented as a sequence of digits as in Java.

4.6.3.2 Boolean Literals
Boolean literals are presented by the keywords TRUE and FALSE.

4.6.3.3 Text Literals
Text literals are presented by a sequence of Unicode characters enclosed in double
double-quotes ("..."). Comments and whitespace characters are not detected inside text
literals. Literal concatenation is allowed using the plus (+) operator - this allows long
text literals to be placed on multiple lines. The resulting terminal symbol is still
returned as a single literal.

Example 4–31 Text Literals

...
"This is a text literal"
...
"This text is not a /*comment*/. "+
"All symbols are included in the literal"
...

Example 4–32 Text Literal with Escapes

...
"This \"text\"\n is quoted and on two lines"
...

Table 4–13 Types of Numeric Literals

Numeric Literal Description

3 Integer literal

128 Integer literal

25.1234 Decimal literal

.01 Decimal literal

6.137E+23 Decimal literal

1e-9 Decimal literal

E Decimal literal, the constant e

PI Decimal literal, the constant PI
4-22 Oracle Configurator Constraint Definition Language Guide

Operands
Example 4–33 Multiple-Line Text Literal

...
"This is also a text literal "+
"that continues on this line "+
"and this. It forms one long line of text"
...

Table 4–14 shows the escaped characters that can be used inside the double quotes:

4.6.3.4 Collection Literals
Collection literals are not exactly literals in the token sense as they are described in the
syntactical grammar. They consist of a sequence of tokens (identifiers or literals)
separated by commas (",") and enclosed by braces ("{" and "}"), as shown in
Example 4–34 through Example 4–37.

In Example 4–34, Collection 2 shows an element of a collection being specified as
another collection. Collections that contain other collections are flattened into a flat list
of elements when the rule is compiled. In other words, the content of the inner
collection is substituted into the outer collection.

Example 4–34 A Valid Collection of Integer Literals

Collection 1

...
{3, 25, 0, -34, 128}
...

Collection 2

...
{3, 25, {0, -34}, 128}
...

Example 4–35 shows several valid collections of Model nodes.

Example 4–35 Valid Collection of Nodes

Collection 1

...
{A, B, OptionsOf(C)}
...

Collection 2

Table 4–14 Escaped Characters Inside Double Quotes

Escaped
Character

Hexadecimal
Value Abbreviation Description

\t \u0009 HT horizontal tab

\n \u000a LF linefeed

\f \u000c FF form feed

\r \u000d CR carriage return

\" \u0022 " double quote

\\ \u005c \ backslash
CDL Elements 4-23

Separators
...
{A, B, C1, C2, C3}
...

Collection 3

...
{MyTotal, MyFeature}
...

Collection 4

...
{FrontWindow1, FrontWindow3, SideWindow2}
...

In Example 4–35, Collection 2 is the same as Collection 1 with exploded children of C.
And Collections 3 and 4 contain Model node names.

Only collections of homogenous data types are allowed in CDL. That means you
cannot mix integer and text literals in a single collection. But you can mix them if the
different literals can be implicitly converted to the same type. See Section 2.3, "Data
Types" on page 2-4 for more information about implicit conversions. Validation of a
homogeneous collection checks that all elements in the collection are valid for all uses
of the collection.

As shown in the following examples, the inferred data type of the collection is the least
common type of all elements:

In Example 4–36, Collection 1 is a valid collection of decimal literals. Collection 2 is
also a valid collection of decimals because MyTotal converts to a decimal.

Example 4–36 Valid Collections of Decimals

Collection 1

...
{3, 25.0, 1e-9, -34}
...

Collection 2

...
{MyTotal, {1e-9, -34}}
...

Example 4–37 shows an invalid collection because there is no distinct data type that
can be inferred.

Example 4–37 Invalid Collection

...
{"aha", 25, 128, true}
...

4.7 Separators
Separators are characters that serve as syntactic filling between the keywords and the
expressions. Their goal is to maintain the structure of the token stream by introducing
boundaries between the tokens and by grouping the tokens through some syntactic
4-24 Oracle Configurator Constraint Definition Language Guide

Comments and Whitespace
criteria. See Appendix A, "CDL Formal Grammar" for the syntax definition of
separators.

Table 4–15 lists the separators that are valid in CDL.

4.8 Comments and Whitespace
Both comments and the whitespace category of elements are not tokens and therefore
ignored by the Oracle Configurator parser.

See Section A, "CDL Formal Grammar" for the syntax definition of comments and
whitespace.

4.8.1 Comments
You can add either single-line or multi-line comments to a rule written in CDL.
Single-line comments are preceded by two hyphens ("- -") or a two slashes ("//") and
end with the new line separator (such as a carriage return or line feed). A multi-line
comment is preceded by a slash and an asterisk ("/*"). An asterisk followed by a slash
("*/") indicates the end of the comment.

Example 4–38 shows single-line and multi-line comments.

Example 4–38 CDL Comments

-- This is a single-line comment
// This is also a single-line comment
/* This is a multi-line comment,
 spanning across lines */

Example 4–39 shows multiple comment lines within a Statement Rule.

Example 4–39 Multiple Line Comments within a Statement Rule

/******************
* This constrains the color of the frame
* to the tint of the glass.
*/
BLACK -- This comes from Frame.Color.Black
IMPLIES
Dark -- This comes from Glass.Tint.Dark

The constraint shown in Example 4–39 can also be written as follows without losing its
syntax and semantics:

Black IMPLIES Dark

Table 4–15 Valid CDL Separators

Separator Description

(The open parenthesis indicates the beginning of function
arguments or the beginning of an expression.

) The close parenthesis indicates the end of function arguments or
the end of an expression

, The comma separates arguments or collection elements.

; The semi-colon separates statements.

. The dot character separates identifiers in compound references.
CDL Elements 4-25

Comments and Whitespace
See Section A.2.6, "Comment Symbols" on page A-6 for more information.

4.8.2 Whitespace and Line Terminators
Whitespace characters include the following:

■ Blank spaces (’ ’)

■ Tabs (’\t’)

■ New lines (’\n’)

■ Line feed (’\l’)

■ Carriage return (’\r’)

■ Form feed (’\f’)
4-26 Oracle Configurator Constraint Definition Language Guide

CDL Formal Gra
A

CDL Formal Grammar

This appendix presents the following topics:

■ Notation Used in Presenting CDL Grammar

■ Terminal Symbols

■ Nonterminal Symbols

■ EBNF Source Code Definitions for CDL Terminal Symbols

A.1 Notation Used in Presenting CDL Grammar
The notation used in this appendix to present the lexical grammar of CDL follows the
Extended Backus-Naur Form (EBNF) symbols. Table A–1 describes the EBNF symbols
to help you read this appendix.

Table A–1 Notation Used in Presenting CDL Grammar (EBNF)

Symbol Description

| A vertical bar separates alternatives within brackets, braces, or
alternative productions.

[] Square brackets enclose optional items.

{} Braces enclose repetition.

* An asterisk shows that the preceding element can be repeated 0
or more times.

+ A plus shows that the preceding element can be repeated 1 or
more times.

? A question mark shows that the preceding element can be
repeated 0 or 1 times.

- A minus shows that the trailing element has been excluded from
the preceding element.

: A colon shows assignment of the production(s) that follow,
separated by a vertical bar (|) if multiple.

::= In Section A.3, "Nonterminal Symbols" on page A-7, a doubled
colon followed by an equals sign shows assignment of the
production(s) that follow.

In Section A.4, "EBNF Source Code Definitions for CDL Terminal
Symbols" on page A-9, a pound sign shows that a symbol name
is private to the set of terminal symbols.
mmar A-1

Notation Used in Presenting CDL Grammar
The grammar presented in this appendix includes productions containing a
nonterminal symbol followed by a sequence of terminal or nonterminal symbols.
Alternative sequences start with a vertical bar. For an explanation of syntax
typographical conventions and symbols, see also Section 1.4, "Syntax Notation" on
page 1-3.

A.1.1 Examples of Notation Used in Presenting CDL Grammar
This section provides examples of the use of the notation described in Table A–1 on
page A-1. You can use it to interpret the definitions provided in Section A.2, "Terminal
Symbols" on page A-3 and Section A.3, "Nonterminal Symbols" on page A-7.

Example 1
The following definition is from Section A.2.1, "Keyword Symbols" on page A-3:

CONSTRAIN
: "CONSTRAIN"

This definition means that the the terminal symbol CONSTRAIN is defined as the
character string CONSTRAIN.

Example 2
The following definition is from Section A.2.3, "Literal Symbols" on page A-4:

INTEGER_LITERAL
: "0" | <NONZERO_DIGIT> (<DIGIT>)*

This definition means that the the terminal symbol INTEGER_LITERAL is defined as:

■ the digit 0, or

■ a single occurrence of the symbol NONZERO_DIGIT followed by 0 or more
occurrences of the symbol DIGIT

Example 3
The following definition is from Section A.3, "Nonterminal Symbols" on page A-7:

Constraint
::= (<CONSTRAIN>)? ConstrainingExpression

This definition means that the nonterminal symbol Constraint is defined as 0 or 1
occurrences of the symbol CONSTRAIN followed by the symbol
ConstrainingExpression.

< > Angle brackets enclose the name of a terminal symbol. In
Section A.4 on page A-9, angle brackets also enclose the
definition of a terminal symbol.

TERMINAL Terminal symbols represent the names, characters, or literal
strings of tokens. Quoted upper case is used for terminal
symbols. CONSTRAIN and WHERE are examples of terminal
symbols.

NonTerminal Nonterminal symbols represent the names of grammar rules.
Unquoted mixed case is used for non-terminals.
ConstrainingExpression and BooleanExpression are examples of
nonterminal symbols.

Table A–1 (Cont.) Notation Used in Presenting CDL Grammar (EBNF)

Symbol Description
A-2 Oracle Configurator Constraint Definition Language Guide

Terminal Symbols
A.2 Terminal Symbols
This section summarizes the terminal symbols (lexical productions) for CDL, in the
form of EBNF. For your convenience in using this section, the names of symbols
referenced in another symbols or rule are cross-references linked to their definitions.
For example, the cross-reference link CONSTRAIN is used in some rules; in that rule
you can use the link to jump to the definition of the symbol CONSTRAIN.

The format of the EBNF coding in this section has been edited slightly for easier
reading. To examine the precise set of terminal symbol definitions, see Section A.4,
"EBNF Source Code Definitions for CDL Terminal Symbols" on page A-9.

See Table A–1, " Notation Used in Presenting CDL Grammar (EBNF)" on page A-1 for
informationon the notation used in this section.

A.2.1 Keyword Symbols
See Section 4.3, "Keywords" on page 4-4 for an explanation of this topic.

Example A–1 EBNF for Keyword Symbols

CONSTRAIN
: "CONSTRAIN"
CONTRIBUTE
: "CONTRIBUTE"
COMPATIBLE
: "COMPATIBLE"
OF
: "OF"
FORALL
: "FOR ALL"
IN
: "IN"
WHERE
: "WHERE"
COLLECT
: "COLLECT"
DISTINCT
: "DISTINCT"
WHEN
: "WHEN"
WITH
: "WITH"
TO
: "TO"
REQUIRES
: "REQUIRES"
IMPLIES
: "IMPLIES"
EXCLUDES
: "EXCLUDES"
NEGATES
: "NEGATES"
DEFAULTS
: "DEFAULTS"
FUNC_PTR
: "@"

CDL Formal Grammar A-3

Terminal Symbols
A.2.2 Operator Symbols
See Section 4.4, "Operators" on page 4-7 for an explanation of this topic.

Example A–2 EBNF for Operator Symbols

PLUS
: "+"
MINUS
: "-"
MULTIPLY
: "*"
DIVIDE
: "/"
ZDIV
: "ZDIV"
MOD
: "%"
EXP
: "^"
EQUALS
: "="
NOT_EQUALS
: "<>"
GT
: ">"
GE
: ">="
LT
: "<"
LE
: "<="
NOT
: "NOT"
NOTTRUE
: "NOTTRUE"
AND
: "AND"
OR
: "OR"
LIKE
: "LIKE"

A.2.3 Literal Symbols
See Section 4.6.3, "Literals" on page 4-22 for an explanation of this topic. Table 4–14,
" Escaped Characters Inside Double Quotes" on page 4-23 describes the values of
TEXT_LITERAL.

Example A–3 EBNF for Literal Symbols

END
: "\\0"
DIGITS
: (<DIGIT>)+
DIGIT
: "0" | <NONZERO_DIGIT>
NONZERO_DIGIT
A-4 Oracle Configurator Constraint Definition Language Guide

Terminal Symbols
: ["1"-"9"]
TEXT_LITERAL
: "\"" (~["\"","\\","\n","\r"]
| "\\" ["n","t","b","r","f","\\","\""]
)* "\""
INTEGER_LITERAL
: "0" | <NONZERO_DIGIT> (<DIGIT>)*
DECIMAL_LITERAL
: (<INTEGER_LITERAL> "." (<DIGITS>)? (<EXPONENTIAL>)?
| <INTEGER_LITERAL> <EXPONENTIAL>
| "." <DIGITS> (<EXPONENTIAL>)?
| "PI"
| "E"
)
EXPONENTIAL
: "E" (<PLUS> | <MINUS>)? <INTEGER_LITERAL>
BOOLEAN_LITERAL
: "TRUE"
| "FALSE"

A.2.4 Separator Symbols
See Section 4.7, "Separators" on page 4-24 for an explanation of this topic.

Example A–4 EBNF for Separator Symbols

DOT
: "."
COMMA
: ","
SEMICOLON
: ";"
LPAREN
: "("
RPAREN
: ")"
LBRACKET
: "{"
RBRACKET
: "}"

A.2.5 Identifier Symbols
See the following sections for an explanation of this topic:

■ Section 4.6.1, "References" on page 4-17

■ Section 4.6.1.1, "Model Object Identifiers" on page 4-17

■ Section 4.6.1.4, "Property References" on page 4-19

■ Section B.2.1, "Unicode Characters" on page B-3

Table A–2 lists the values allowed in the LETTER symbol.
CDL Formal Grammar A-5

Terminal Symbols
Example A–5 EBNF for Identifier Symbols

USER_PROP_IDENTIFIER
: "property"
SIMPLE_IDENTIFIER
: <LETTER> (<LETTER_OR_DIGIT>)*
FORMAL_IDENTIFIER
: "&" <LETTER> (<LETTER_OR_DIGIT>)*
QUOTED_IDENTIFIER
: "'" (~["\'"] | "\\'")* "'"
LETTER
: ["\u0024", "\u0041"-"\u005a", "\u005f", "\u0061"-"\u007a",
 "\u00c0"-"\u00d6", "\u00d8"-"\u00f6", "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff", "\u3040"-"\u318f", "\u3300"-"\u337f",
 "\u3400"-"\u3d2d", "\u4e00"-"\u9fff", "\uf900"-"\ufaff"]
LETTER_OR_DIGIT
: <LETTER> | <DIGIT> | ("\\" ("\"" | "\'" | "\\") | "\'") >

A.2.6 Comment Symbols
See Section 4.8.1, "Comments" on page 4-25 for an explanation of this topic.

Example A–6 EBNF for Comment Symbols

"//"
: IN_SINGLE_LINE_COMMENT
"--"
: IN_SINGLE_LINE_COMMENT

Table A–2 Values for Unicode Escapes Allowed in Identifiers

Unicode Character

"\u0024" $ (dollar sign)

"\u0041"-"\u005a" A through Z

"\u005f" _ (underscore)

"\u0061"-"\u007a" a through z

"\u00c0"-"\u00d6" Latin Capital Letter A With Grave through Latin Capital Letter
O With Diaeresis

"\u00d8"-"\u00f6" Latin Capital Letter O With Stroke through Latin Small Letter O
With Diaeresis

"\u00f8"-"\u00ff" Latin Small Letter O With Stroke through Latin Small Letter Y
With Diaeresis

"\u0100"-"\u1fff" Latin Capital Letter A With Macron through Greek Dasia

"\u3040"-"\u318f" Hiragana Letter Small A through Hangul Letter Araeae

"\u3300"-"\u337f" Square Apaato through Square Corporation

"\u3400"-"\u3d2d" CJK Unified Ideographs

"\u4e00"-"\u9fff" CJK Unified Ideographs

"\uf900"-"\ufaff" CJK Compatibility Ideographs
A-6 Oracle Configurator Constraint Definition Language Guide

Nonterminal Symbols
"/*"
: IN_MULTI_LINE_COMMENT
IN_SINGLE_LINE_COMMENT
:
<SINGLE_LINE_COMMENT: "\n" | "\r" | "\r\n" > : DEFAULT
IN_MULTI_LINE_COMMENT
:
< : "*/" > : DEFAULT
IN_SINGLE_LINE_COMMENT,IN_MULTI_LINE_COMMENT
:
 < ~[] >

A.2.7 Whitespace Symbols
See Section 4.8.2, "Whitespace and Line Terminators" on page 4-26 for an explanation
of this topic.

Example A–7 EBNF for Whitespace Symbols

WHITESPACE
: (" " | "\t" | "\f" | <LINE_BREAK>)+
LINE_BREAK
: "\n" | "\r" | "\r\n"

A.3 Nonterminal Symbols
This section summarizes the nonterminal symbols for CDL, in the form of EBNF. For
your convenience in using this section, the names of symbols referenced in another
symbols or rule are cross-references linked to their definitions. For example, the
cross-reference link Expression is used in some rules; in that rule you can use the link
to jump to the definition of the symbol Expression.

See Table A–1, " Notation Used in Presenting CDL Grammar (EBNF)" on page A-1 for
informationon the notation used in this section.

Example A–8 EBNF for Nonterminal Symbols

Statements
::= ((Statement)?) (";" (Statement)?)* (<END> | <EOF>)

Statement
::= (Constraint | Contribute | Compatible)

Constraint
::= (<CONSTRAIN>)? ConstrainingExpression

ConstrainingExpression
::= (Expression ((ConstrainingOperator Expression) (ForAll)?)?)

ConstrainingOperator
::= (<REQUIRES> | <IMPLIES> | <EXCLUDES> | <NEGATES> | <DEFAULTS>)

Contribute
::= (<CONTRIBUTE> Expression <TO> Reference) (ForAll)?

Compatible
CDL Formal Grammar A-7

Nonterminal Symbols
::= (<COMPATIBLE> (<FORMAL_IDENTIFIER> <OF> Reference) (("," <FORMAL_
IDENTIFIER> <OF> Reference))+ Where)

Method
::= (<SIMPLE_IDENTIFIER> Arguments)

Event
::= (<SIMPLE_IDENTIFIER> (":" <TEXT_LITERAL>)?)

EventScope
::= (<SIMPLE_IDENTIFIER>)

ForAll
::= (<FORALL> Iterator ("," Iterator)* (Where)?)

Where
::= (<WHERE> Expression)

Iterator
::= (<FORMAL_IDENTIFIER> <IN> (CollectionExpression | CollectionLiteral |
Function | Reference))

Expression
::= OrExpression

OrExpression
::= (AndExpression (<OR> OrExpression)?)

AndExpression
::= (EqualityExpression (<AND> AndExpression)?)

EqualityExpression
::= (RelationalExpression ((<EQUALS> | <NOT_EQUALS> | <LIKE>)
EqualityExpression)?)

RelationalExpression
::= (AdditiveExpression ((<GT> | <GE> | <LT> | <LE>) RelationalExpression)?)

AdditiveExpression
::= (MultiplicativeExpression (((<PLUS> | <MINUS>) AdditiveExpression))?)

MultiplicativeExpression
::= (UnaryExpression (((<MULTIPLY> | <DIVIDE> | <ZDIV> | <MOD>)
MultiplicativeExpression))?)

UnaryExpression
::= ((((<PLUS> | <MINUS> | <NOT> | <NOTTRUE>))? ExponentExpression))

ExponentExpression
::= (PrimaryExpression ("^" ExponentExpression)?)

PrimaryExpression
::= (CollectionExpression | Literal | "(" Expression ")" | Function | Reference)

CollectionExpression
::= "{" "COLLECT" ((<DISTINCT>))? Expression ForAll "}"

Literal
::= ((<INTEGER_LITERAL>) | (<DECIMAL_LITERAL>) | (<BOOLEAN_LITERAL>) | (
<TEXT_LITERAL>) | CollectionLiteral)
A-8 Oracle Configurator Constraint Definition Language Guide

EBNF Source Code Definitions for CDL Terminal Symbols

Arguments
::= "(" (ExpressionList)? ")"

ExpressionList
::= ExpressionElement ("," ExpressionElement)*

ExpressionElement
::= ((<FUNC_PTR> (FunctionName | AnyOperator)) | Expression)

CollectionLiteral
::= "{" (ExpressionList)? "}"

Function
::= (FunctionName Arguments)
See Section 4.5, "Functions" for a list of available functions.

Reference
::= ((ModelIdentifier (<DOT> ModelIdentifier)* (<DOT> SysPropIdentifier)* (
<DOT> UserPropIdentifier)?) | (ArgumentIdentifier (<DOT> SysPropIdentifier)*
(<DOT> UserPropIdentifier)?))

UserPropIdentifier
::= (<USER_PROP_IDENTIFIER> "(" <TEXT_LITERAL> ")")

SysPropIdentifier
::= (<SIMPLE_IDENTIFIER> Arguments)

ModelIdentifier
::= ((<SIMPLE_IDENTIFIER> | <QUOTED_IDENTIFIER>))

ArgumentIdentifier
::= <FORMAL_IDENTIFIER>

FunctionName
::= (<SIMPLE_IDENTIFIER> | <FORMAL_IDENTIFIER> | <QUOTED_IDENTIFIER>)

AnyOperator
::= (ConstrainingOperator | <CONTRIBUTE> | <COMPATIBLE> | <PLUS> | <MINUS> |
<MULTIPLY> | <DIVIDE> | <ZDIV> | <MOD> | <EXP> | <EQUALS> | <NOT_EQUALS> | <GT> |
<GE> | <LT> | <LE> | <NOT> | <NOTTRUE> | <AND> | <OR> | <LIKE>)

A.4 EBNF Source Code Definitions for CDL Terminal Symbols
This section provides the precise set of definitions for the terminal symbols of CDL,
taken directly from the defining source code. For a version of these definitions that is
edited slightly for easier reading, see Section A.2, "Terminal Symbols" on page A-3.

Example A–9 EBNF Source Code for Terminal Symbols

SPECIAL_TOKEN : /* whitespace */
{
 < WHITESPACE: (" " | "\t" | "\f" | <LINE_BREAK>)+ >
| < LINE_BREAK: "\n" | "\r" | "\r\n" >
}

MORE : /* comments */
CDL Formal Grammar A-9

EBNF Source Code Definitions for CDL Terminal Symbols
{

 "//" : IN_SINGLE_LINE_COMMENT
| "--" : IN_SINGLE_LINE_COMMENT
| "/*" : IN_MULTI_LINE_COMMENT
}

<IN_SINGLE_LINE_COMMENT>
SPECIAL_TOKEN :
{

 <SINGLE_LINE_COMMENT: "\n" | "\r" | "\r\n" > : DEFAULT
}

<IN_MULTI_LINE_COMMENT>
SPECIAL_TOKEN :
{

 <MULTI_LINE_COMMENT: "*/" > : DEFAULT
}

<IN_SINGLE_LINE_COMMENT,IN_MULTI_LINE_COMMENT>
MORE :
{

 < ~[] >
}

TOKEN : /* literals */
{ < END: "\\0" >
| < #DIGITS: (<DIGIT>)+ >
| < #DIGIT: "0" | <NONZERO_DIGIT> >
| < #NONZERO_DIGIT: ["1"-"9"] >
| < TEXT_LITERAL: "\"" (~["\"","\\","\n","\r"]
 | "\\" ["n","t","b","r","f","\\","\""]
)* "\"" >
| < INTEGER_LITERAL: "0" | <NONZERO_DIGIT> (<DIGIT>)* >
| < DECIMAL_LITERAL: (<INTEGER_LITERAL> "." (<DIGITS>)? (<EXPONENTIAL>)?
 | <INTEGER_LITERAL> <EXPONENTIAL>
 | "." <DIGITS> (<EXPONENTIAL>)?
 | "PI"
 | "E"
) >
| < #EXPONENTIAL: "E" (<PLUS> | <MINUS>)? <INTEGER_LITERAL> >
| < BOOLEAN_LITERAL: "TRUE" | "FALSE" >
}

TOKEN : /* operators */
{
 < PLUS: "+" >
| < MINUS: "-" >
| < MULTIPLY: "*" >
| < DIVIDE: "/" >
| < ZDIV: "ZDIV" >
| < MOD: "%" >
| < EXP: "^" >
| < EQUALS: "=" >
| < NOT_EQUALS: "<>" >
A-10 Oracle Configurator Constraint Definition Language Guide

EBNF Source Code Definitions for CDL Terminal Symbols
| < GT: ">" >
| < GE: ">=" >
| < LT: "<" >
| < LE: "<=" >
| < NOT: "NOT" >
| < NOTTRUE: "NOTTRUE" >
| < AND: "AND" >
| < OR: "OR" >
| < LIKE: "LIKE" >
}

TOKEN : /* keywords */
{
 < CONSTRAIN: "CONSTRAIN" >
| < CONTRIBUTE: "CONTRIBUTE" >
| < COMPATIBLE: "COMPATIBLE" >
| < OF: "OF" >
| < FORALL: "FOR ALL" >
| < IN: "IN">
| < WHERE: "WHERE" >
| < COLLECT: "COLLECT" >
| < DISTINCT: "DISTINCT" >
| < WHEN: "WHEN" >
| < WITH: "WITH" >
| < TO: "TO" >
| < REQUIRES: "REQUIRES" >
| < IMPLIES: "IMPLIES" >
| < EXCLUDES: "EXCLUDES" >
| < NEGATES: "NEGATES" >
| < DEFAULTS: "DEFAULTS" >
| < FUNC_PTR: "@" >
}

TOKEN : /* separators */
{
 < DOT: "." >
| < COMMA: "," >
| < SEMICOLON: ";" >
| < LPAREN: "(" >
| < RPAREN: ")" >
| < LBRACKET: "{" >
| < RBRACKET: "}" >
}

TOKEN : /* identifiers */
{

 < USER_PROP_IDENTIFIER: "property" >
| < SIMPLE_IDENTIFIER: <LETTER> (<LETTER_OR_DIGIT>)* >
| < FORMAL_IDENTIFIER: "&" <LETTER> (<LETTER_OR_DIGIT>)* >
| < QUOTED_IDENTIFIER: "'" (~["\'"] | "\\'")* "'" >
| < #LETTER: ["\u0024", "\u0041"-"\u005a", "\u005f", "\u0061"-"\u007a",
 "\u00c0"-"\u00d6", "\u00d8"-"\u00f6", "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff", "\u3040"-"\u318f", "\u3300"-"\u337f",
 "\u3400"-"\u3d2d", "\u4e00"-"\u9fff", "\uf900"-"\ufaff"] >
| < #LETTER_OR_DIGIT: <LETTER> | <DIGIT> | ("\\" ("\"" | "\'" | "\\") | "\'")
>

CDL Formal Grammar A-11

EBNF Source Code Definitions for CDL Terminal Symbols
}

A-12 Oracle Configurator Constraint Definition Language Guide

CDL Va
B

CDL Validation

To create correct CDL syntax and understand errors that occur during CDL rule
validation, it is helpful to know what the Oracle Configurator parser requires. This
appendix provides information on the following topics:

■ Validation of CDL

■ The Input Stream to the Oracle Configurator Parser

■ Name Substitution

B.1 Validation of CDL
As with any language, CDL requires a precise syntax and grammar to ensure that it
can be interpreted by Oracle Configurator. The Oracle Configurator parser handles
validation at the level of individual rules. A compiler uses the parser to validate the
entire set of rules in a configuration model, and then translates them into executable
code.

B.1.1 The Parser
The Oracle Configurator parser analyzes the CDL input stream of a rule definition.
The parser ignores whitespace and comments and only analyzes the tokens of the
input stream to determine if the rule definition is valid.

The parser validates the grammar and structure of rule definition tokens according to
the Extended Backus-Naur Form (EBNF). For more information, see Appendix A. The
parser is part of the compiler. For details about the compiler, Section B.1.2 on page B-2.

B.1.1.1 Calling the Oracle Configurator Parser
In Configurator Developer, clicking the following buttons in the Statement Rule
Details page calls the Oracle Configurator parser:

■ Validate Rule Text

■ Apply

■ Apply and Create Another

B.1.1.2 The Parser’s Validation Criteria
Unless the following are true, the parser returns an error:

■ All tokens are known CDL elements

■ The token order is correct according to CDL syntax
lidation B-1

The Input Stream to the Oracle Configurator Parser
■ Data types match within an expression

■ Model nodes specified in the rule exist in the Model structure, and can be
unambiguously identified by the specified path

■ Operators are valid

■ Model names that are identical to a CDL keyword are in quotation marks

■ Node names containing spaces are in single quotation marks

■ Comment statements are properly delimited with a double hyphen, double slash,
or /* and */

■ A variable (formal identifier) contains an ampersand (&) preceding the variable
name

■ A variable name is declared only once in the same scope

■ A variable appears only once in a single statement (&NodeArg.&LocalVar)

B.1.2 The Compiler
The Oracle Configurator compiler parses all the rule definitions in a Model and then
translates the rule set into executable code that can be interpreted by the runtime
Oracle Configurator engine.

B.1.2.1 Calling the Oracle Configurator Compiler
The compiler runs when you generate logic for the Model or if UI conditions change
during UI Refresh.

For more information about generating logic in Configurator Developer, see the Oracle
Configurator Developer User’s Guide.

For information about generating logic programmatically using CZ_
modelOperations_pub.GENERATE_LOGIC and CZ_modelOperations_
pub.REFRESH_JRAD_UI, see the Oracle Configurator Implementation Guide.

B.1.2.2 The Compiler’s Validation Criteria
Unless the following are true, the compiler returns an error:

■ Text expressions evaluate to a static string (information that does not change at
runtime)

■ The data type of arguments match

■ The passed parameter resolves to a reference to an existing Model node or
Property

■ User Properties must be static strings

For example, &A.Property("Hi") but not &A.Property(B.value)

■ Participants of LIKE and NOT LIKE evaluate to a static string

■ All rule participants exist in the Model structure

B.2 The Input Stream to the Oracle Configurator Parser
The input stream presented to the Oracle Configurator parser for lexical analysis is a
sequence of Unicode characters. The input stream is processed through the following
translations:
B-2 Oracle Configurator Constraint Definition Language Guide

Name Substitution
■ All Unicode escaped characters from the input stream are translated into raw
Unicode characters. For information about the format, see Section B.2.1, "Unicode
Characters" on page B-3

■ All input characters are translated via the lexical rules into lexemes. The lexemes
are whitespace characters, comments, and tokens. Whitespace characters and
comments are ignored.

If there are errors in the lexical translation of characters into tokens they will be
raised as parser errors.

■ Successfully translated tokens are presented for syntactical analysis as a stream of
terminal symbols. Tokens in the input stream can be one of the following types

– Keyword

– Operator

– Literal

– Identifiers

– Separator.

Additional details about each token type are provided in Chapter 4, "CDL
Elements".

B.2.1 Unicode Characters
Unicode escaped characters are of the format \uxxxx where xxxx is the hexadecimal
value representing the character in the Unicode character set. For example the Unicode
escape of the character "?" is "\u003f".

B.3 Name Substitution
When parsing identifiers that are references, the Oracle Configurator parser extracts
the identity of each identifier (ps_node_id/model_ref_expl_id) and stores it with the
intermediate representation of the identifier. This preserves the semantics of the rules
regardless of name changes or modifications to the Model structure.

B.3.1 Name Persistency
Since the model object identifiers are case insensitive, the Oracle Configurator parser
must preserve the original format of the rule definition. If the Model structure or node
names participating in the rule do not change, Configurator Developer displays the
original text exactly as it was entered.

If the name of a rule participant changes, Configurator Developer automatically
updates the displayed rule definition at the time of viewing or in the Model Report to
prevent you from being misdirected to a different or no longer existing Model node.

B.3.2 Ambiguity Resolution
Model structure changes or changes to a node can cause one or more of the references
participating in a rule definition to become ambiguous. You must manually resolve
ambiguities by inserting or removing identifiers from the reference, as needed.
CDL Validation B-3

Name Substitution
B-4 Oracle Configurator Constraint Definition Language Guide

Glossary

This glossary contains definitions that you may need while working with Oracle
Configurator.

API

Application Programming Interface

applet

A Java application running inside a Web browser. See also Java and servlet.

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that
determines which Java classes are loaded for Configurator Extensions and in what
order.

argument

A data value or object that is passed to a method or a Java class so that the method can
operate.

ATO

Assemble to Order

ATP

Available to Promise

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

bill of material

A list of Items associated with a parent Item, such as an assembly, and information
about how each Item relates to that parent Item.

Bills of Material

The application in Oracle Applications in which you define a bill of material.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.
Glossary-1

BOM

See bill of material.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM
Standard Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO rules, and other
data are also imported into Configurator Developer. In Configurator Developer, you
can extend the structure of the BOM Model, but you cannot modify the BOM Model
itself or any of its attributes.

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Model created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

bug

See defect.

build

A specific instance of an application during its construction. A build must have an
install program early in the project so that application implementers can unit test their
latest work in the context of the entire available application.

CDL

See Constraint Definition Language.

CIO

See Oracle Configuration Interface Object (CIO).

command event

An event that is defined by a character string, which is considered the command for
which listeners are listening.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to
determine the selection state of a logical Item (Option, Boolean Feature, or
List-of-Options Feature) based on a comparison of two numeric values (numeric
Features, Totals, Resources, Option counts, or numeric constants). The numeric
Glossary-2

values being compared can be computed or they can be discrete intervals in a
continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,
Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility
relationship where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model. Corresponds to one UI screen of selections in a
runtime Oracle Configurator.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

concurrent program

Executable code (usually written in SQL*Plus or Pro*C) that performs the function(s)
of a requested task. Concurrent programs are stored procedures that perform actions
such as generating reports and copying data to and from a database.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration engine

The part of the runtime Oracle Configurator that uses configuration rules to validate
a configuration. Compare generated logic.

Configuration Interface Object

See Oracle Configuration Interface Object (CIO).

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime
Oracle Configurator window. See also model.
Glossary-3

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which
end users make selections to configure an orderable product. A configuration session
is limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so
that the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection between client and database that allows data communication.

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node’s parent to a referenced Model.

Constraint Definition Language

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models containing connectivity and
trackable components. Configurations created from Container Models can be tracked
and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total
value. See also Total.
Glossary-4

Consumes from

A relation used to create a specific type of Numeric Rule that decrementing a total
value, such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CTO

Configure to Order

customer

The person for whom products are configured by end users of the Oracle
Configurator or other ERP and CRM applications. Also the end users themselves
directly accessing Oracle Configurator in a Web store or kiosk.

customer requirements

The needs of the customer that serve as the basis for determining the configuration of
products, systems, and services. Also called needs assessment. See guided buying or
selling.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well
as specific tables used during the construction of the configurator.

data import

Populating the CZ schema with enterprise data from ERP or legacy systems via
import tables.

data source

A programmatic reference to a database. Referred to by a data source name (DSN).

DBMS

Database Management System

default

A predefined value. In a configuration, the automatic selection of an option based on
the preselection rules or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state
of Features or Options in a default relation to other Features and Options. For
example, if A Defaults B, and you select A, B becomes Logic True (selected) if it is
available (not Logic False).

defect

A failure in a product to satisfy the users' requirements. Defects are prioritized as
critical, major, or minor, and fixes range from corrections or workarounds to
enhancements. Also known as a bug.
Glossary-5

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

developer

The person who uses Oracle Configurator Developer to create a configurator. See also
implementer and user.

Developer

The tool (Oracle Configurator Developer) used to create configuration models.

DHTML

Dynamic Hypertext Markup Language

discontinued item

A discontinued item is one that exists in an installed configuration of a component (as
recorded in Oracle Install Base), but has been removed from the instance of the
component being reconfigured, either by deletion or by deselection.

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly
accessing the application via a Web browser or kiosk. Compare user.

enterprise

The systems and resources of a business.

environment

The arena in which software tools are used, such as operating system, applications,
and server processes.

ERP

Enterprise Resource Planning. A software system and process that provides
automation for the customer's back-room operations, including order processing.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure
inside which a listener listens for an event is called the event binding scope. The part
of model structure that is the source of an event is called the event execution scope. See
also command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User
Glossary-6

False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Negates relation.

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

functional specification

Document describing the functionality of the application based on user requirements.

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided
selling questions trigger configuration rule that automatically select some product
options and exclude others based on the end user’s responses.

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

HTML

Hypertext Markup Language

implementation

The stage in a project between defining the problem by selecting a configuration
technology vendor, such as Oracle, and deploying the completed configuration
application. The implementation stage includes gathering requirements, defining test
cases, designing the application, constructing and testing the application, and
delivering it to end users. See also developer and user.

implementer

The person who uses Oracle Configurator Developer to build the model structure,
rules, and UI customizations that make up a runtime Oracle Configurator. Commonly
also responsible for enabling the integration of Oracle Configurator in a host
application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For
example, if A Implies B, and you select A, B becomes Logic True. If you deselect A (set
to User False), there is no effect on B, meaning it could be User or Logic True, User or
Logic False, or Unknown. See Requires relation.
Glossary-7

import server

A database instance that serves as a source of data for Oracle Configurator’s
Populate, Refresh, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

import tables

Tables mirroring the CZ schemaItem Master structure, but without integrity
constraints. Import tables allow batch population of the CZ schema’s Item Master.
Import tables also store extractions from Oracle Applications or legacy data that
create, update, or delete records in the CZ schema Item Master.

initialization message

The XML message sent from a host application to the Oracle Configurator Servlet,
containing data needed to initialize the runtime Oracle Configurator. See also
termination message.

Instance

An Oracle Configurator Developer attribute of a component’s node that specifies a
minimum and maximum value. See also instance.

instance

A runtime occurrence of a component in a configuration. See also instantiate. Compare
count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component
in the runtime user interface of a configuration model.

integration

The process of combining multiple software components and making them work
together.

integration testing

Testing the interaction among software programs that have been integrated into an
application or system. Also called system testing. Compare unit test.

item

A product or part of a product that is in inventory and can be delivered to customers.

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either
entered manually in Oracle Configurator Developer or imported from Oracle
Applications or a legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.
Glossary-8

Java

An object-oriented programming language commonly used in internet applications,
where Java applications run inside Web browsers and servers. Used to implement the
behavior of Configurator Extensions. See also applet and servlet.

Java class

The compiled version of a Java source code file. The methods of a Java class are used
to implement the behavior of Configurator Extensions.

JavaServer Pages

Web pages that combine static presentation elements with dynamic content that is
rendered by Java servlets.

JSP

See JavaServer Pages.

legacy data

Data that cannot be imported without creating custom extraction programs.

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

load

Storing the configuration model data in the Oracle Configurator Servlet on the Web
server. Also, the time it takes to initialize and display a configuration model if it is not
preloaded.

The burden of transactions on a system, commonly caused by the ratio of user
connections to CPUs or available memory.

log file

A file containing errors, warnings, and other information that is output by the running
application.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the
logical state (User or Logic True, User or Logic False, or Unknown) of Features and
Options in the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

maintainability

The characteristic of a product or process to allow straightforward maintenance,
alteration, and extension. Maintainability must be built into the product or process
from inception.

maintenance

The effort of keeping a system running once it has been deployed, through defect
fixes, procedure changes, infrastructure adjustments, data replication schedules, and
so on.
Glossary-9

Metalink

Oracle’s technical support Web site at:

http://www.oracle.com/support/metalink/

method

A function that is defined in a Java class. Methods perform some action and often
accept parameters.

Model

The entire hierarchical "tree" view of all the data required for configurations,
including model structure, variables such as Resources and Totals, and elements in
support of intermediary rules. Includes both imported BOM Models and Models
created in Configurator Developer. May consist of BOM Option Classes and BOM
Standard Items.

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

model-driven UI

The graphical views of the model structure and rules generated by Oracle
Configurator Developer to present end users with interactive product selection based
on configuration models.

model structure

Hierarchical "tree" view of data composed of elements (Models, Components,
Features, Options, BOM Models, BOM Option Class nodes, BOM Standard Item
nodes, Resources, and Totals). May include reusable components (References).

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic
state of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). See Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents
a Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item node.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes
from.

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.
Glossary-10

OC

See Oracle Configurator.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configuration Interface Object (CIO)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the
runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator architecture

The three-tier runtime architecture consists of the User Interface, the generated logic,
and the CZ schema. The application development architecture consists of Oracle
Configurator Developer and the CZ schema, with test instances of a runtime Oracle
Configurator.

Oracle Configurator Developer

The suite of tools in the Oracle Configurator product for constructing and maintaining
configurators.

Oracle Configurator engine

The part of the Oracle Configurator product that validates runtime selections. See also
generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering Legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by
end users to make the selections of a configuration.
Glossary-11

performance

The operation of a product, measured in throughput and other data.

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

preselection

The default state in a configurator that defines an initial selection of Components,
Features, and Options for configuration.

A process that is implemented to select the initial element(s) of the configuration.

product

Whatever is ordered and delivered to customers, such as the output of having
configured something based on a model. Products include intangible entities such as
services or contracts.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model,
Oracle Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

prototype

A construction technique in which a preliminary version of the application, or part of
the application, is built to facilitate user feedback, prove feasibility, or examine other
implementation issues.

PTO

Pick to Order

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same
configuration model, but each publication corresponds to only one Model and User
Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and
running an Oracle Applications concurrent process to copy data to a specific database.

RDBMS

Relational Database Management System
Glossary-12

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another
Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options.
For example, if A Requires B, and if you select A, B is set to Logic True (selected).
Similarly, if you deselect A, B is set to Logic False (deselected). See Implies relation.

resource

Staff or equipment available or needed within an enterprise.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can
have an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

reusable component

See reference and model structure.

reusability

The extent to and ease with which parts of a system can be put to use in other systems.

rules

Also called business rules or configuration rule. In the context of Oracle Configurator
and CDL, a rule is not a "business rule." Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and
Numeric Rule.

runtime

The environment and context in which applications are run, tested, or used, rather
than developed.

The environment in which an implementer (tester), end user, or customer configures
a product whose model was developed in Oracle Configurator Developer. See also
configuration session.
Glossary-13

schema

The tables and objects of a data model that serve a particular product or business
process. See also CZ schema.

server

Centrally located software processes or hardware, shared by clients.

servlet

A Java application running inside a Web server. See also Java, applet, and Oracle
Configurator Servlet.

solution

The deployed system as a response to a problem or problems.

SQL

Structured Query Language

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle
Configurator Constraint Definition Language (text) rather than interactively
assembling the rule’s elements.

system

The hardware and software components and infrastructure integrated to satisfy
functional and performance requirements.

termination message

The XML message sent from the Oracle Configurator Servlet to a host application
after a configuration session, containing configuration outputs. See also initialization
message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

unit test

Execution of individual routines and modules by the application implementer or by
an independent test consultant to find and resolve defects in the application. Compare
integration testing.
Glossary-14

update

Moving to a new version of something, independent of software release. For instance,
moving a production configurator to a new version of a configuration model, or
changing a configuration independent of a model update.

upgrade

Moving to a new release of Oracle Configurator or Oracle Configurator Developer.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

user requirements

A description of what the configurator is expected to do from the end user's
perspective.

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

variable

Parts of the Model that are represented by Totals, Resources, or numeric Features.

verification

Tests that check whether the result agrees with the specification.

Web

The portion of the Internet that is the World Wide Web.

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

XML

Extensible Markup Language, a highly flexible markup language for transferring data
between Web applications. Used for the initialization message and termination
message of the Oracle Configurator Servlet.
Glossary-15

Glossary-16

Index
Symbols
+ See addition
{} See braces
[] See brackets
: See colon
, See comma
*/ See comments
⁄ * See comments
⁄ ⁄ See comments
 - See comments
+ See concatenation
⁄ See division
. See dot
' ' See double quotes
= See equals
- See exclusion
> See greater than
>= See greater than or equal
< See less than
<= See less than or equal
* See multiplication
 ::= See NonTerminal symbols
!= See not equal
<> See not equal
() See parentheses
% See percent
^ See power
* See repetition
+ See repetition
? See repetition
; See semi-colon
- See subtraction
 <> See Terminal symbols
See Terminal symbols
- See unary minus
+ See unary plus
| See vertical bar

A
Abs

arithmetic function, 4-12
ACos

trigonometric function, 4-14
adding

literals concatenation, 4-22
text concatenation, 4-9

addition
concatenation, 4-22

addition (operator)
description, 4-9
precedence, 4-10

AllTrue logical function
definition, 4-14
example, 3-4

AND (logical operator)
description, 4-8
precedence, 4-10

AnyTrue logical function
defined, 4-14

Arithmetic
operator type, 4-9

arithmetic
CDL functions, 4-12

ASin
trigonometric function, 4-14

ATan
trigonometric function, 4-14

ATan2
trigonometric function, 4-14

B
BeginsWith

text function, 4-15
BOOLEAN data type, 2-4
Boolean literals

See literals
braces (CDL separator)

collections, 4-23
example, 4-6

usage, A-1
brackets (CDL separator)

usage, A-1

C
Cartesian product

definition, 1-2
iterator statements, 4-2
restriction in CDL, 4-11
Index-1

case-sensitivity
constants, 2-4
formal parameters, 1-3, 2-4
identifiers, 1-3, 2-4, B-3
iterators, 1-3
keywords, 2-4
literals, 2-4

Boolean, 2-4
text, 2-4

Model nodes, 2-4, B-3
operands, 2-4
predefined CDL keywords, 1-3

CDL (Constraint Definition Language)
conditional expressions, 4-6, 4-7
considerations, 2-1
expressing

configuration rules, 1-1
flexibility, 3-3
overview, 1-1
precedence of operators, 4-9
principles, 2-1
readability, 2-3
rule anatomy, 2-2
terminology, 1-2
unavailable rule relationships, 1-2

CDL functions
arithmetic, 4-12
logical, 4-14
set, 4-15
text, 4-15
trigonometric, 4-13

CDL keywords
case sensitivity, 2-4
COLLECT, 4-10

with DISTINCT, 4-11
COMPATIBLE, 4-5

explicit statements, 4-1
CONSTRAIN

explicit statements, 4-1
keyword operators, 4-4
Logic and Comparison Rules, 2-2
restriction, 2-5
text functions, 4-15

CONTRIBUTE, 4-5
explicit statements, 4-1

DEFAULTS, 4-4, 4-8, 4-10
DISTINCT, 4-11
EXCLUDES, 4-4, 4-8, 4-10
FOR ALL...IN, 4-2, 4-6
IMPLIES, 4-4, 4-8, 4-10
NEGATES, 4-4, 4-8, 4-10
predefined, 1-3
REQUIRES, 4-4, 4-8, 4-10
WHERE, 3-4, 4-7

CDL separators
-, A-1
*, A-1
+, A-1
:, A-1
::=, A-1

?, A-1
[], A-1
{}, A-1
|, A-1

Ceiling
arithmetic function, 4-13

characters
whitespace, 4-22, 4-26

clause
definition, 1-2

COLLECT (CDL keyword)
static operands, 4-7

COLLECT (operator)
iterator statement, 4-10
with Property values, 4-11

collection literals
See literals

collections
CDL operands, 1-2
COLLECT (operator), 4-11
definition, 1-2
valid data types, 4-24

colon
assignment, A-1

comma (CDL separator)
collections, 4-23
definition, 4-25
function arguments, 4-9, 4-12

comments
adding to rule definition, 4-25
definition, 2-3
detection in text literals, 4-22
multi-line, 4-25
rule definitions, 4-25
single-line, 4-25
validation, B-2

Comparison Rules
CDL operators, 4-8

COMPATIBLE (CDL keyword)
explicit statements, 4-1
Property-based Compatibility Rule

representation, 4-5
compiler

 See Oracle Configurator compiler
concatenation (operator)

description, 4-9
static usage, 4-10

constants
case sensitivity, 2-4

CONSTRAIN (CDL keyword)
constraint statement, 4-4
explicit statement, 4-1
restriction, 2-5, 4-15
use, 2-2

Constraint Definition Language
See CDL (Constraint Definition Language)

CONTRIBUTE (CDL keyword)
explicit statements, 4-1
expression example, 4-3
Numeric Rule representation, 4-5
Index-2

Cos
trigonometric function, 4-14

Cosh
trigonometric function, 4-14

Count set function
definition, 4-15

D
data types

rules, 2-4
validation, B-2

debugging
log files, xiv

DECIMAL data type, 2-4
DEFAULTS (logical keyword operator)

constraint statement, 4-4
definition, 4-8
precedence, 4-10

design questions
CDL rules, 2-1
Statement Rules, 2-1

designing
rules, 2-1, 3-4

division (operator)
description, 4-9
precedence, 4-9

dot (CDL separator)
precedence, 4-9
use in identifiers, 4-9

double quotes
around literals, 4-22

E
E (CDL numeric constant), 2-4, 4-22
EndsWith (operator)

text function, 4-15
equals (operator)

description, 4-8
precedence, 4-10
text function, 4-15

errors
troubleshooting, xiv

EXCLUDES (logical keyword operator)
constraint statements, 4-4
definition, 4-8
precedence, 4-10

exclusion
minus, A-1

Exp
arithmetic function, 4-13

explicit statements
compared to iterator, 2-1
definition, 1-2
how to use, 4-1

expressions
conditional, 4-6, 4-7
definition, 1-2, 4-3
equivalency, 3-3

precedence based on operator, 4-7

F
FALSE (Boolean literal keyword), 2-4, 4-22
Floor

arithmetic function, 4-13
FOR ALL...IN (CDL keyword)

iterator statement, 4-2, 4-6
formal parameters

case sensitivity, 2-4
functions

arithmetic, 4-12
CDL, 4-12
logical, 4-14
set, 4-15
text, 4-15
trigonometric, 4-13

G
greater than (operator)

description, 4-8
precedence, 4-10

greater than or equal (operator)
description, 4-8
precedence, 4-10

H
heirarchy

CDL function OptionsOf, 4-15

I
identifiers

case sensitivity, 1-3, 2-4, B-3
definition, 1-2
Model object, 4-17

IMPLIES (logical keyword operator)
constraint statements, 4-4
definition, 4-8
precedence, 4-10

importing
rules, 1-1

INTEGER data type, 2-4
iterator statements

advantage of using, 3-3
Cartesian product, 4-2
compared to explicit, 2-1
definition, 1-2, 4-2
local variables, 4-21
multiple, 4-2

iterators
case-sensitivity, 1-3
Property-based Compatibility Rules, 4-2

K
keywords

See CDL keywords
Index-3

L
less than (operator)

description, 4-8
precedence, 4-10

less than or equal (operator)
description, 4-8
precedence, 4-10

LIKE (operator)
description, 4-8
precedence, 4-10
usage, 4-10

literals
Boolean operand, 4-22
case sensitivity, 2-4
collection, 4-11
collection operand, 4-23
concatenation, 4-22
numeric operand, 4-22
text

case sensitivity, 2-4
concatenation, 4-10
containing comments, 4-22
with escapes, 4-22
multiple lines, 4-22

text operand, 4-22
types, 4-22

Log
arithmetic function, 4-13

log files
troubleshooting errors, xiv

Log10
arithmetic function, 4-13

logic
generating

OptionsOf function, 3-4
logical

functions
CDL, 4-14

operator type, 4-8

M
maintenance

rule design, 2-1
Matches

text function, 4-15
Max

arithmetic function, 4-13
Max set function

definition, 4-15
messages

function overflows and underflows, 4-16
Min

arithmetic function, 4-13
Min set function

defined, 4-15
Mod

arithmetic function, 4-13
Model structure

identifiers, 4-17

nodes
use in rules, 2-1

Models
design

structure changes, 2-1, 4-2
identification in rules, 2-2

multiplication (operator)
description, 4-9
precedence, 4-9

N
NEGATES (logical keyword operator)

constraint statements, 4-4
definition, 4-8
precedence, 4-10

NoMatches
text function, 4-15

NonTerminal symbols
::=, A-1
Constraint, A-2
definition, A-2

NOT (operator)
description, 4-8
precedence, 4-9

not equal (operator)
description, 4-8
precedence, 4-10

NOT LIKE (operator)
description, 4-8
precedence, 4-10
usage, 4-10

NotEquals
text function, 4-15

NotTrue logical function
CDL operator, 4-8
definition, 4-14
precedence, 4-9

O
operands

case sensitivity, 2-4
definition, 4-17
References, 4-17

operators
Arithmetic, 4-9
comparison, 4-8
definition, 4-7
Logical, 4-8
precedence, 4-9
validation, B-2

OptionsOf compound function
definition, 4-15
iterator statement, 4-2
useage of logic generation, 3-4

OR (logical operator)
description, 4-8
precedence, 4-10

Oracle Configurator
Index-4

log files, xiv
TAR template, xiii

Oracle Configurator compiler
definition, 1-2
validation criteria, B-2

Oracle Configurator Developer
importing data to, 1-1
log files, xiv
product support, xiii

Oracle Configurator parser
definition, 1-2
Statement Rules, B-1
validating, B-1
validation criteria, B-1

P
parameters

formal definition, 4-20
parentheses (CDL separator)

function arguments, 4-12
precedence, 4-9
use in expressions, 4-9, 4-25

parser
 See Oracle Configurator parser

percent (operator)
description, 4-9
precedence, 4-9

PI (CDL numeric constant), 2-4, 4-22
Pow

arithmetic function, 4-13
power (operator)

description, 4-9
precedence, 4-9

precedence of operators, 4-9
Product Support, xiii
product support for Oracle Configurator

Developer, xiii
Properties

example, 3-3
Property-based Compatibility Rules, 4-6
referring to, 4-19
rules, 2-1
System Properties, 4-19
User Properties, 2-4, 4-7, B-2

Property-based Compatibility Rules
CDL, 4-6
evaluation, 4-7
iterators, 4-2

R
References

compound Model nodes, 4-18
compound Properties, 4-19
Model structure, 4-17
operands, 4-17
path, 4-18

relationships
CDL keywords, 2-2

definition, 1-2, 2-1
repetition

asterisk, A-1
braces, A-1
plus, A-1
question mark, A-1

REQUIRES (logical keyword operator)
constraint statements, 4-4
definition, 4-8
precedence, 4-10

Round
arithmetic function, 4-12

RoundDownToNearest
arithmetic function, 4-12

RoundToNearest
arithmetic function, 4-13

RoundUpToNearest
arithmetic function, 4-13

rules
anatomy, 3-3
in CDL, 1-1
CDL rule definition, 2-2
data types in rule definitions, 2-4
description, 2-2
designing, 2-1, 3-4
format of input, 2-3
Model association, 2-2
naming, 2-2
persistent constraints, 4-2
subexpressions

grouping, 4-9, 4-25
rolled up, 3-3

validation, B-2

S
scientific E (CDL numeric constant), 2-4, 4-22
semi-colon (CDL separator)

separating statements, 2-3, 4-25
separators

definition, 4-24
signatures

definition, 1-2
Sin

trigonometric function, 4-14
singleton

definition, 1-2
SinH

trigonometric function, 4-14
Sqrt

arithmetic function, 4-13
Statement Rules

defining, 2-2
definition, 1-1
Oracle Configurator parser, B-1

statements
constraint, 4-4
contributes, 4-5
definition, 1-2, 4-1
explicit, 1-2, 4-1
Index-5

explicit versus iterator, 2-1, 4-1
iterators

Cartesian product, 4-2
compared to explicit, 2-1
definition, 1-2, 4-2
multiple, 4-2

multiple in one CDL rule definition, 2-3
subtraction (operator)

description, 4-9
precedence, 4-10

Support, xiii
System Properties

referring to, 4-19

T
Tan

trigonometric function, 4-14
TanH

trigonometric function, 4-14
TAR, xiii
Technical Assistance Request (TAR), xiii
Terminal symbols

#, A-1
<>, A-2
CONSTRAIN, A-2
definition, A-2
INTEGER_LITERAL, A-2

text
CDL functions, 4-15

TEXT data type, 2-4
text expressions

validation, B-2
text literals

See literals
tokens

definition, 1-3
validation, B-1

trigonometric CDL functions, 4-13
troubleshooting

analyzing errors, xiv
TRUE (Boolean literal keyword), 2-4, 4-22
Truncate

arithmetic function, 4-13

U
unary minus (operator)

description, 4-9
precedence, 4-9

unary plus (operator)
precedence, 4-9

unicode
definition, 1-3

User Properties
validation, B-2

V
validation

Oracle Configurator compiler, B-2

Oracle Configurator parser, B-1
Statement Rules, B-1

variables
local, 4-21

vertical bar (CDL separator)
usage, A-1

violation messages
function overflows and underflows, 4-16

W
WHERE (CDL keyword)

conditional expression, 4-6
example, 3-4
iterator statement, 4-7

whitespace
characters, 4-26

in literals, 4-22
definition, 2-3
rule definitions, 4-25
text literals, 4-22
Index-6

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	Product Support

	1 Introduction
	1.1 Overview of the Constraint Definition Language (CDL)
	1.2 Relationships Expressed in CDL
	1.3 Terminology
	1.4 Syntax Notation

	2 Principles of CDL
	2.1 Before You Begin
	2.1.1 What Model Structure Nodes and Properties Are Participants in the Rule?
	2.1.2 Is the Model Structure Likely To Change Often?
	2.1.3 What Does the Rule Need To Do?
	2.1.4 What Types of Expressions Define the Relationships or Constraints You Need?

	2.2 Anatomy of a Configuration Rule Written in CDL
	2.2.1 Rule Definition
	2.2.2 Rule Statements
	2.2.3 Comments and Whitespace
	2.2.4 Case Sensitivity
	2.2.5 Quotation Marks

	2.3 Data Types

	3 Model Example
	3.1 The House Model and its Window Submodel
	3.2 Example Explicit Statements
	3.3 Example Iterator Statements
	3.4 CDL Flexibility
	3.4.1 Incremental Rules
	3.4.2 Alternative Rule Designs

	4 CDL Elements
	4.1 CDL Statements
	4.1.1 Explicit Statements
	4.1.2 Iterator Statements
	4.1.2.1 Multiple Iterators in One Statement

	4.2 Expressions
	4.3 Keywords
	4.3.1 CONSTRAIN
	4.3.2 CONTRIBUTE...TO
	4.3.2.1 CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or Collections

	4.3.3 COMPATIBLE...OF
	4.3.4 FOR ALL....IN
	4.3.5 WHERE
	4.3.6 COLLECT

	4.4 Operators
	4.4.1 Predefined Operators Supported By CDL
	4.4.2 Operator Results
	4.4.3 Operator Precedence
	4.4.4 LIKE and NOT LIKE Operators
	4.4.5 Text Concatenation Operator
	4.4.6 COLLECT Operator

	4.5 Functions
	4.5.1 Arithmetic
	4.5.2 Trigonometric
	4.5.3 Logical
	4.5.4 Set
	4.5.5 Text
	4.5.6 Hierarchy or Compound
	4.5.7 Function Overflows and Underflows

	4.6 Operands
	4.6.1 References
	4.6.1.1 Model Object Identifiers
	4.6.1.2 Simple Model Node References
	4.6.1.3 Compound Model Node References Showing Context
	4.6.1.4 Property References

	4.6.2 Formal Parameters
	4.6.2.1 Local Variables and Data Types
	4.6.2.2 Local Variables and References

	4.6.3 Literals
	4.6.3.1 Numeric Literals
	4.6.3.2 Boolean Literals
	4.6.3.3 Text Literals
	4.6.3.4 Collection Literals

	4.7 Separators
	4.8 Comments and Whitespace
	4.8.1 Comments
	4.8.2 Whitespace and Line Terminators

	A CDL Formal Grammar
	A.1 Notation Used in Presenting CDL Grammar
	A.1.1 Examples of Notation Used in Presenting CDL Grammar

	A.2 Terminal Symbols
	A.2.1 Keyword Symbols
	A.2.2 Operator Symbols
	A.2.3 Literal Symbols
	A.2.4 Separator Symbols
	A.2.5 Identifier Symbols
	A.2.6 Comment Symbols
	A.2.7 Whitespace Symbols

	A.3 Nonterminal Symbols
	A.4 EBNF Source Code Definitions for CDL Terminal Symbols

	B CDL Validation
	B.1 Validation of CDL
	B.1.1 The Parser
	B.1.1.1 Calling the Oracle Configurator Parser
	B.1.1.2 The Parser’s Validation Criteria

	B.1.2 The Compiler
	B.1.2.1 Calling the Oracle Configurator Compiler
	B.1.2.2 The Compiler’s Validation Criteria

	B.2 The Input Stream to the Oracle Configurator Parser
	B.2.1 Unicode Characters

	B.3 Name Substitution
	B.3.1 Name Persistency
	B.3.2 Ambiguity Resolution

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

