
Oracle® Applications
Supportability Guide

Release 11i

Part No. B13548-01

July 2004

Describes diagnostics and logging for developers and
administrators.

Oracle Applications Supportability Guide, Release 11i

Part No. B13548-01

Copyright © 2004, Oracle. All rights reserved.

Primary Author: Michelle Cheng

Contributing Authors: Sowmya Subramanian, Sandeep Khemani, Daniel Yoo, Kunal Kapur

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Part I Oracle Diagnostics

1 Oracle Diagnostics Overview

Introduction ... 1-1
Target Audiences .. 1-1

Terminology ... 1-2
Architecture.. 1-3
Supported Features... 1-3
User Interfaces ... 1-4

2 Developing Diagnostic Tests

Test Development Overview .. 2-1
Diagnostic Test Categories .. 2-1
Developing Java Diagnostic Tests ... 2-2

Preliminary Requirements for Java Tests.. 2-2
Java Test Properties .. 2-3
Java Test Execution... 2-4
Java Test Reporting .. 2-5
Java Diagnostic Test Sample Code... 2-6
Pipelining Dependencies ... 2-8
iii

Report Formatting Library .. 2-9
Developing PL/SQL Test Cases.. 2-24

PL/SQL Package Test Case APIs ... 2-25
PL/SQL Utility Packages... 2-33
PL/SQL Diagnostic Test Sample Code.. 2-33

Declarative Diagnostics ... 2-37
Structure of a Declarative Diagnostic Test .. 2-37
Sub-test Types, Metadata Needed, and Use Case Examples ... 2-37
Logical Operators for Comparison... 2-42

Integrating LOVs With Diagnostics .. 2-42
Implementing an LOV ... 2-42
LOV Provider Sample Code.. 2-44
Incorporating LOVs in Diagnostic Test Cases.. 2-46
Default LOVs... 2-47

Oracle Applications Framework Support .. 2-48
Sample Code.. 2-49

Instantiation of Diagnostic User Context Within Diagnostic Test Cases 2-50

3 Diagnostic Security

Key Concepts ... 3-1
Test Group Sensitivity.. 3-1
Diagnostic Roles.. 3-1
Underlying Security Infrastructure.. 3-3

Security Administration .. 3-4
Securing Test Groups ... 3-4
Assigning Diagnostic Roles to Responsibilities ... 3-4

Session Creation / Switching User Context in Test Cases ... 3-4

4 Diagnostics Result Reporting

Database Failover.. 4-1
Accessing Result Logs .. 4-2
Purging Result Logs ... 4-2

Scheduling Routine Purging ... 4-3
Historical Logs: LogViewer... 4-3
iv

5 Launching Oracle Diagnostics

Standalone HTML Guest-User... 5-1
Access ... 5-1
Features .. 5-2
Bookmarking Pages in the Diagnostics UI.. 5-2

CRM System Administrator Console ... 5-2
Features .. 5-3

Oracle Applications Manager... 5-3
Finding Oracle Diagnostics in OAM ... 5-3
Diagnostics Test Summary.. 5-3
Refreshing the Summary Data.. 5-4
Diagnostic Test Details .. 5-4
Using the Support Cart .. 5-4
Launching Oracle Diagnostics from OAM ... 5-4

Command-line Console ... 5-5
Scheduling Batch Diagnostics.. 5-5

Part II Logging

6 Logging Framework Overview

Target Audience .. 6-1
Key Features... 6-1
Terminology ... 6-2
Logging Configuration Parameters ... 6-4

Overview.. 6-4
AFLOG_ENABLED.. 6-5
AFLOG_LEVEL .. 6-6
AFLOG_MODULE ... 6-8
AFLOG_FILENAME.. 6-8
AFLOG_ECHO ... 6-9

7 How to Configure Logging

Using Middle-tier Properties to Configure Logging ... 7-1
Using Java .. 7-1
v

Using C ... 7-2
Using Database Profile Options to Configure Logging .. 7-2
Using Logging to Screen.. 7-3

Enabling Logging to Screen in Oracle Application Framework Pages................................. 7-4
Enabling Logging to Screen in CRM Technology Foundation Pages 7-4

Startup Behavior ... 7-5

8 Logging Guidelines for System Administrators

Recommended Default Site-Level Settings ... 8-1
Recommended Settings for Debugging ... 8-2

Using Logging to Screen.. 8-2
Pinpointing an Error to a Specific User ... 8-2
For High Volumes .. 8-3

Updating Configuration Properties .. 8-3
How to Completely Disable Logging ... 8-4
Purging Log Messages ... 8-4

Using a Concurrent Program .. 8-4
Using Oracle Applications Manager.. 8-4
Using the Oracle CRM System Administrator Console .. 8-5
Using PL/SQL... 8-5

Viewing Log Messages .. 8-5

9 Logging Guidelines for Developers

APIs.. 9-1
Handling Errors ... 9-2
Performance Standards .. 9-2
Module Source... 9-3

Module Name Standards... 9-6
Module Name Examples ... 9-7

Severities .. 9-7
UNEXPECTED .. 9-8
ERROR.. 9-8
EXCEPTION .. 9-8
EVENT.. 9-9
PROCEDURE .. 9-9
vi

STATEMENT... 9-9
Large Text and Binary Message Attachments.. 9-10
Automatic Logging and Alerting for Seeded Message Dictionary Messages 9-12
General Logging Tips... 9-12
How to Log from Java .. 9-12

Core AppsLog ... 9-12
OAPageContext and OADBTransaction APIs ... 9-14
CRM Technology Foundation APIs... 9-14

How to Log from PL/SQL.. 9-16
API Description... 9-16
Example.. 9-17

How to Log from C ... 9-18
How to Log in Concurrent Programs .. 9-19

Debug and Error Logging ... 9-19
Request Log ... 9-19
Output File... 9-20

How to Raise System Alerts ... 9-20
Guidelines for Defining System Alerts.. 9-22

A PL/SQL Helper Packages

Package JTF_DIAGNOSTIC_ADAPTUTIL .. A-1
Function initInputTable ... A-1
Function initReportClob .. A-1
Function compareResults .. A-2
Function compareResults .. A-2
Procedure constructReport ... A-3
Procedure getInputValue .. A-3
Procedure addInput ... A-4
Function addInput.. A-4
Procedure setUp Vars .. A-5
Procedure setUp Vars .. A-5
Procedure addStringToReport.. A-5
Procedure addStringToReport.. A-6

Package JTF_DIAGNOSTIC_COREAPI.. A-6
Procedure Line_Out ... A-6
vii

Procedure Insert_Style_Sheet.. A-6
Procedure ActionErrorPrint .. A-7
Procedure ActionPrint ... A-7
Procedure ActionWarningPrint.. A-8
Procedure WarningPrint.. A-8
Procedure ActionErrorLink... A-9
Procedure ActionWarningLink .. A-9
Procedure ErrorPrint .. A-10
Procedure Show_Table_Header ... A-11
Procedure SectionPrint .. A-11
Procedure Tab0Print... A-11
Procedure Tab1Print... A-12
Procedure Tab2Print... A-12
Procedure Tab3Print... A-13
Procedure BRPrint .. A-13
Procedure CheckFinPeriod.. A-13
Procedure CheckKeyFlexfield... A-14
Procedure CheckProfile ... A-15
Function Column_Exists.. A-16
Procedure Begin_Pre .. A-17
Procedure End_Pre ... A-17
Procedure Display_SQL... A-18
Function Display_SQL ... A-18
Function Run_SQL ... A-19
Function Run_SQL ... A-21
Function Compare_Pkg_Version ... A-22
Procedure Show_Responsibilities .. A-23
Function Display_Table ... A-23
Function Display_Table ... A-24
Function Get_DB_Apps_Version ... A-25
Procedure Show_Header ... A-25
Procedure Show_Footer... A-26
Procedure Show_Link .. A-26
Procedure Show_Link .. A-26
Procedure Send_Email ... A-27
viii

Function Get_Package_Version.. A-27
Function Get_Package_Spec ... A-28
Function Get_Package_Body .. A-28
Procedure Display_Profiles... A-29
Function Get_Profile_Option.. A-29
Procedure Set_Org.. A-30
Procedure Set_Client.. A-30
Procedure Get_DB_Patch_List.. A-31
Function Get_RDBMS_Header... A-31
Procedure Show_Invalids.. A-32

B SQL Trace Options

SQL Trace Options.. B-1
ix

x

Send Us Your Comments

Oracle Applications Supportability Guide, Release 11i

Part No. B13548-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this document.
Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: appsdoc_us@oracle.com
■ FAX: (650) 506-7200 Attn: Oracle Applications Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Applications Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

Welcome to the Oracle Applications Supportability Guide, Release 11i. This manual
is intended to help system administrators, consultants, and application developers
work effectively with Oracle Diagnostics and the Oracle Applications Logging
Framework.

The features described in this guide assume that your implementation of Oracle
Applications is at Release 11.5.10 or later. However, some features may be available
in earlier releases.

This guide assumes you have a working knowledge of the following:

■ The principles and customary practices of your business area.

■ Oracle Applications.

If you have never used Oracle Applications, Oracle suggests you attend one or
more of the Oracle Applications training classes available through Oracle
University.

■ The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the
Oracle Applications User’s Guide.

See for more information about Oracle Applications product information.
xiii

How To Use This Guide
The Oracle Applications Supportability Guide contains the information you need to
understand and use Oracle Applications. This guide contains nine chapters:

■ Chapter 1 provides an overview of Oracle Diagnostics.

■ Chapter 2 describes how to develop diagnostic tests.

■ Chapter 3 describes the security features available in Oracle Diagnostics.

■ Chapter 4 describes result reporting in Oracle Diagnostics.

■ Chapter 5 describes how to launch Oracle Diagnostics.

■ Chapter 6 provides an overview of the Oracle Applications Logging
Framework.

■ Chapter 7 describes how to configure logging for an Oracle Applications
system.

■ Chapter 8 describes logging guidelines for system administrators.

■ Chapter 9 describes logging guidelines for application developers.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.
xiv

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.
xv

Other Information Sources
You can choose from many sources of information, including documentation,
training, and support services, to increase your knowledge and understanding of
Oracle Applications.

If this guide refers you to other Oracle Applications documentation, use only the
Release 11i versions of those guides.

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF).

■ PDF Documentation- See the Online Documentation CD for current PDF
documentation for your product with each release. This Documentation CD is
also available on OracleMetaLink and is updated frequently.

■ Online Help - You can refer to Oracle Applications Help for current HTML
online help for your product. Oracle provides patchable online help, which you
can apply to your system for updated implementation and end user
documentation. No system downtime is required to apply online help.

■ Release Content Document - See the Release Content Document for
descriptions of new features available by release. The Release Content
Document is available on OracleMetaLink.

■ About Document - Refer to the About Document for information about your
release, including feature updates, installation information, and new
documentation or documentation patches that you can download. The About
Document is available on OracleMetaLink.

Related Guides
Oracle Applications shares business and setup information with other Oracle
Applications products. Therefore, you may want to refer to other guides when you
set up and use Oracle Applications.

You can read the guides online by choosing Library from the expandable menu on
your HTML help window, by reading from the Oracle Applications Document
Library CD included in your media pack, or by using a Web browser with a URL
that your system administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.
xvi

Guides Related to All Products

Oracle Applications User’s Guide
This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI). This guide also includes information on setting user
profiles, as well as running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing “Getting Started with Oracle
Applications” from any Oracle Applications help file.

Guides Related to This Product

Oracle Applications System Administrator’s Guide
This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Applications Developer’s Guide
This guide contains the coding standards followed by the Oracle Applications
development staff and describes the Oracle Application Object Library components
that are needed to implement the Oracle Applications user interface described in
the Oracle Applications User Interface Standards for Forms-Based Products. This manual
also provides information to help you build your custom Oracle Forms Developer
forms so that the forms integrate with Oracle Applications.
xvii

Installation and System Administration

Oracle Applications Concepts
This guide provides an introduction to the concepts, features, technology stack,
architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before an installation of Oracle Applications. This guide
also introduces the concepts behind Applications-wide features such as Business
Intelligence (BIS), languages and character sets, and Self-Service Web Applications.

Installing Oracle Applications
This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process is handled
using Oracle Rapid Install, which minimizes the time to install Oracle Applications
and the Oracle technology stack by automating many of the required steps. This
guide contains instructions for using Oracle Rapid Install and lists the tasks you
need to perform to finish your installation. You should use this guide in conjunction
with individual product user guides and implementation guides.

Upgrading Oracle Applications
Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to Release 11i.
You cannot upgrade to Release 11i directly from releases prior to 10.7.

About Document
For information about implementation and user documentation, instructions for
applying patches, new and changed setup steps, and descriptions of software
updates, refer to the About Document for your product. About Documents are
available on OracleMetaLink for most products starting with Release 11.5.8.

Maintaining Oracle Applications
Use this guide to help you run the various AD utilities, such as AutoUpgrade,
AutoPatch, AD Administration, AD Controller, AD Relink, License Manager, and
others. It contains how-to steps, screenshots, and other information that you need to
run the AD utilities. This guide also provides information on maintaining the
Oracle applications file system and database.
xviii

Oracle Applications System Administrator’s Guide
This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide
This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

Oracle Applications Developer’s Guide
This guide contains the coding standards followed by the Oracle Applications
development staff and describes the Oracle Application Object Library components
that are needed to implement the Oracle Applications user interface described in
the Oracle Applications User Interface Standards for Forms-Based Products. This manual
also provides information to help you build your custom Oracle Forms Developer
forms so that the forms integrate with Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products
This guide contains the user interface (UI) standards followed by the Oracle
Applications development staff. It describes the UI for the Oracle Applications
products and how to apply this UI to the design of an application built by using
Oracle Forms.

Other Implementation Documentation

Oracle Applications Product Update Notes
Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products
between Release 11.0 and Release 11i. It includes new features, enhancements, and
changes made to database objects, profile options, and seed data for this interval.

Oracle Workflow Administrator's Guide
This guide explains how to complete the setup steps necessary for any Oracle
Applications product that includes workflow-enabled processes, as well as how to
monitor the progress of runtime workflow processes.
xix

Oracle Workflow Developer's Guide
This guide explains how to define new workflow business processes and customize
existing Oracle Applications-embedded workflow processes. It also describes how
to define and customize business events and event subscriptions.

Oracle Workflow User's Guide
This guide describes how Oracle Applications users can view and respond to
workflow notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference
This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle Applications Flexfields Guide
This guide provides flexfields planning, setup and reference information for the
Oracle Applications implementation team, as well as for users responsible for the
ongoing maintenance of Oracle Applications product data. This guide also provides
information on creating custom reports on flexfields data.

Oracle eTechnical Reference Manuals
Each eTechnical Reference Manual (eTRM) contains database diagrams and a
detailed description of database tables, forms, reports, and programs for a specific
Oracle Applications product. This information helps you convert data from your
existing applications, integrate Oracle Applications data with non-Oracle
applications, and write custom reports for Oracle Applications products. Oracle
eTRM is available on OracleMetalink

Oracle Applications Message Manual
This manual describes all Oracle Applications messages. This manual is available in
HTML format on the documentation CD-ROM for Release 11i.
xx

Training and Support

Training
Oracle offers a complete set of training courses to help you and your staff master
Oracle Applications and reach full productivity quickly. These courses are
organized into functional learning paths, so you take only those courses appropriate
to your job or area of responsibility.

You have a choice of educational environments. You can attend courses offered by
Oracle University at any one of our many education centers, you can arrange for
our trainers to teach at your facility, or you can use Oracle Learning Network
(OLN), Oracle University's online education utility. In addition, Oracle training
professionals can tailor standard courses or develop custom courses to meet your
needs. For example, you may want to use your organization structure, terminology,
and data as examples in a customized training session delivered at your own
facility.

Support
From on-site support to central support, our team of experienced professionals
provides the help and information you need to keep Oracle Applications working
for you. This team includes your technical representative, account manager, and
Oracle’s large staff of consultants and support specialists with expertise in your
business area, managing an Oracle server, and your hardware and software
environment.
xxi

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle Applications data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using
Oracle Applications can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a
row in one table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps
track of who changes information. If you enter information into database tables
using database tools, you may store invalid information. You also lose the ability to
track who has changed your information because SQL*Plus and other database
tools do not keep a record of changes.

About Oracle
Oracle develops and markets an integrated line of software products for database
management, applications development, decision support, and office automation,
as well as Oracle Applications, an integrated suite of more than 160 software
modules for financial management, supply chain management, manufacturing,
project systems, human resources and customer relationship management.

Oracle products are available for mainframes, minicomputers, personal computers,
network computers and personal digital assistants, allowing organizations to
integrate different computers, different operating systems, different networks, and
even different database management systems, into a single, unified computing and
information resource.

Oracle is the world’s leading supplier of software for information management, and
the world’s second largest software company. Oracle offers its database, tools, and
applications products, along with related consulting, education, and support
services, in over 145 countries around the world.
xxii

Part I

 Oracle Diagnostics

This part contains the following chapters:

■ Chapter 1, "Oracle Diagnostics Overview"

■ Chapter 2, "Developing Diagnostic Tests"

■ Chapter 3, "Diagnostic Security"

■ Chapter 4, "Diagnostics Result Reporting"

■ Chapter 5, "Launching Oracle Diagnostics"

Oracle Diagnostics Ove
1

Oracle Diagnostics Overview

1.1 Introduction
Oracle Diagnostics improves the supportability of Oracle Applications by enabling
the creation and execution of diagnostic tests. With Oracle Diagnostics, you can
accomplish the following:

■ Execute tests to prevent and troubleshoot problems.

■ Be alerted automatically when problems occur.

■ Find instructions to help you resolve problems on your own.

■ Easily share detailed information about a problem with Oracle Support.

■ Create your own tests to enhance the supportability of your system.

This chapter provides a high-level overview of the architecture, terminology, and
features of Oracle Diagnostics.

1.1.1 Target Audiences
The target audiences for this manual are as follows:

System Administrators
As a system administrator, running diagnostic tests allows you to check the health
of your system. You can use diagnostic tests to identify and resolve problems
related to:

■ Environment

■ Postinstallation setup

■ Customization
rview 1-1

Terminology
■ Any other functional problems

If you cannot successfully resolve the problem on your own, you can send the
information generated by the tests to Oracle Support.

Implementation Engineers
When performing implementations, you are advised to run diagnostics after every
installation or patching process to confirm that the environment is set up correctly
and there are no outstanding issues to be resolved.

Application Developers and Consultants
You can use this manual to learn how to extend the diagnostic tests provided by
Oracle. By creating your own diagnostic tests, you can diagnose issues specific to
your implementation and diagnose any customizations or extensions that may exist.

1.2 Terminology

Application
Refers to the applications in the FND_applications table.

Groups
An ordered set of one or more related test cases. Every application has one or more
groups.

Diagnostic Test
A diagnostic test case can be written in Java, written in PL/SQL, or created
declaratively. It checks the correct behavior of a particular feature or business
function.

Prerequisites
Each group can have one or more groups as prerequisites. The existence of a
prerequisite implies that the current group will not execute correctly if the
prerequisite group has not executed successfully.

Basic Mode
There are two modes associated with diagnostic tests. When writing tests, a
developer can set up a test to be executable in basic mode, advanced mode (see
below), or both modes. In basic mode, a test is executed with no user interaction,
1-2 Supportability Guide

Supported Features
because the test either requires no input values or has a preconfigured set of input
values.

Advanced Mode
In advanced mode, users can supply specific input values for execution of a
diagnostic test.

1.3 Architecture
Oracle Diagnostics provides a framework to integrate diagnostic test cases and
automate the execution of these test cases. It also provides a mechanism to write
and run unit test cases.

Oracle Diagnostics is robust enough to function even when the environment and
application are not set up properly. A set of "SYSTEM_TESTS" makes sure that the
basic environment and installation are up and running. Information about these test
cases is stored in a system resource file that can be read even when the application
database is down. Metadata about diagnostic tests is stored in diagnostic-specific
tables in the application schema.

Oracle Diagnostics can be launched from Oracle Applications Manager as well as
the CRM System Administrator Console. If for some reason Oracle Applications
Manager and/or the CRM System Administrator Console are not working, you can
launch Oracle Diagnostics through the following page: jtfqalgn.htm. When
launched in this manner, the Oracle Diagnostics will attempt a guest user login. If
this does not succeed, it will run in noSession mode. In this mode, only tests under
"HTML Platform" and tests with low sensitivity security levels can be executed. The
purpose of this mode is to help troubleshoot scenarios when Oracle Applications
are not available.

1.4 Supported Features
Oracle Diagnostics supports the following features:

■ Diagnostic tests that can be written in either Java or PL/SQL.

■ Diagnostic tests can be written declaratively (without coding) through the
Diagnostics UI.

■ A user-friendly Web-based user interface.

■ Metadata about diagnostic tests that is stored in diagnostic schema:
Oracle Diagnostics Overview 1-3

User Interfaces
– Diagnostic tests are grouped together in logical groups. Test groups belong
to a particular application.

– Multiple sets of input values for diagnostic tests can be stored in the
database and also shipped as preseeded data.

■ Diagnostic test results are persisted in the database, and a report viewer is
available through the Web-based UI for viewing historical reports.

■ Each diagnostic test can be an individual test case, or behave as a container that
is made up of a set of individual test cases (called dependencies).

■ Java-based diagnostic tests can be pipelined to pass output parameters from
one test to another test within a container test.

■ Parameters can be defined to be secure. This ensures that the parameter values
are never displayed in visible text to the user.

■ Parameters can be associated with LOVs.

■ Oracle Diagnostics has a built-in notion of security. It checks the responsibility
list of the user and determines if any of the Diagnostic Roles are tied to the
user’s responsibilities. For details, see Chapter 3, "Diagnostic Security".

■ Diagnostic Roles determine the set of operations that can be performed on test
groups, based on the sensitivity of the test group. The Diagnostic Roles
available are as follows:

– Super User: For all test groups of all registered applications, a Super User
can execute tests, perform configuration, view reports, and set up security.

– Application Super User: For all test groups of a given application, an
Application Super User can execute tests, perform configuration, view
reports, and set up security. For test groups of medium or low sensitivity
belonging to other applications, an Application Super User can execute
tests, configure test inputs, and view reports.

– End User: For test groups of low sensitivity belonging to any application,
an End User can execute tests and configure test inputs.

■ Diagnostic test results can be e-mailed.

1.5 User Interfaces
Oracle Diagnostics has a Web-based user interface and a command-line user
interface. You can:
1-4 Supportability Guide

User Interfaces
■ Execute tests, both basic and advanced.

■ Register new applications.

■ Register new groups.

■ Modify or delete existing groups and their attributes such as group name,
group sequence, and group prerequisites.

■ Register new test cases in PL/SQL and Java.

■ Modify or delete existing test cases.

■ Set up one or more set of default values for a test.

Interfaces
The following is a list of the ways in which Oracle Diagnostics can be accessed. For
further information, see Chapter 5, "Launching Oracle Diagnostics".

■ http://<domain_name>/OA_HTML/jtfqalgn.htm

■ http://<domain_name>/OA_HTML/jtflogin.jsp - This leads to the CRM System
Administrator Console. After logging in, click the Diagnostics tab to launch the
Oracle Diagnostics UI.

■ Oracle Applications Manager - Diagnostics can be executed through Oracle
Applications Manager (OAM) as of Release 11.5.9. After opening OAM to the
Applications Dashboard, click the Diagnostics tab to see statistics and log data.
The complete Oracle Diagnostics UI can be launched by clicking the Launch
Diagnostic Tests button.
Oracle Diagnostics Overview 1-5

User Interfaces
1-6 Supportability Guide

Developing Diagnostic
2

Developing Diagnostic Tests

2.1 Test Development Overview
This chapter describes how to develop diagnostic tests. Diagnostic tests can be
written in Java or PL/SQL. Regardless of the test type, designing a useful test case
should include the following steps:

1. Determine what to diagnose.

2. Determine what information is needed to execute the test (the input
parameters).

3. Determine the core code paths to test.

4. Determine the different error cases that this test can expose.

5. Determine how to resolve the error scenarios (fix information).

6. Implement the test.

7. For security purposes, determine the test sensitivity level. For details, see
Chapter 3, "Diagnostic Security".

The following sections describe the different types of test cases, and how to write
test cases in Java and PL/SQL.

2.2 Diagnostic Test Categories
Ideally, each product or project should have diagnostic tests that cover each of the
following categories:

Environmental Problems
This category includes tests that check whether or not a given version of a certain
technology is present. For example, JTT checks the versions of the JDK and JDBC
 Tests 2-1

Developing Java Diagnostic Tests
drivers. Similarly, if your product requires a specific workflow engine version, that
test would belong in this category.

Installation Problems
This category includes tests that check if the installation has completed successfully.
For example, you could write tests that check if the –D parameters that the
application needs are configured correctly. You could also write tests that check if
the servlets that the application needs have been installed.

Postinstallation and Setup Problems
This category includes tests regarding application postinstallation steps. For
example, you can test if the guest user has been set up properly.

Seed Data Issues
Seed data often becomes corrupted during patching. Tests in this category check
that the application seed data is present and valid.

Customization Issues
If your application supports customer-site customizations, you should write tests to
check the validity of all possible customizations.

Common Functional Issues
This category includes tests that address problems resulting from incorrect
functional setups. For example, a task may not be assigned to a field service
representative if the dispatch type is not set correctly. Thus you would write a test
to check the dispatch type.

2.3 Developing Java Diagnostic Tests
This section describes how to develop diagnostic test cases in Java.

2.3.1 Preliminary Requirements for Java Tests
All Java diagnostic test cases must do the following:

■ Extend oracle.apps.jtf.regress.qatool.QATestImpl.

■ Have a no argument constructor.

■ Call "super()" in the first line of the constructor.
2-2 Supportability Guide

Developing Java Diagnostic Tests
2.3.2 Java Test Properties
Set up the following test properties as described. Typically they are set up in the test
constructor.

■ String testName

The name of the test, which appears to the end user in the UI. It is inherited and
should be set in the constructor.

■ String testDescription

Tells the end user the purpose of the test. It is inherited and should be set in the
constructor.

■ String testedComponentName

The logical product component which this test is testing. It will be seen by end
users. It is inherited and should be set in the constructor.

■ Integer mode

This property can be set to one of three values:

– QATestInterface.BASIC_MODE

The test is run with minimal user interaction and as part of the group it
belongs to. If the test requires inputs, then the values will be obtained from
preconfigured values.

– QATestInterface.ADV_MODE

The test can only be run individually. Typically tests that are used for
probing the system for specific input values fall in this category. Inputs are
inserted by the end user when the test is invoked.

– QATestInterface.BOTH_MODE

The test can be executed in either basic or advanced mode. Most tests fall
into this category.

■ version.setClass(QATestImpl test)

The version object is inherited and already instantiated. Calling this method on
the object sets the RCS_ID of this test in the version object.

■ version.addClassName(String fullName)

This method sets up the version information of the core classes that the test
diagnoses. Oracle Diagnostics implicitly adds the class names and their
Developing Diagnostic Tests 2-3

Developing Java Diagnostic Tests
versions (RCS_ID) to the diagnostic report generated when a test is run. This
information is useful when diagnosing problems on a customer instance.

■ (Optional) void addInput(QATestInput input)

Calling this API in the constructor adds a single input parameter to the test.
Call this API once for each of the inputs that the test needs. Inputs can be of
three types: normal (displayed as clear text), secure (not displayed as clear text),
or LOV (value from a list of values). Parameters are wrapped by a QATestInput
object. Details on how to implement an LOV input can be found in Section 2.6,
"Integrating LOVs With Diagnostics".

Note: For test cases that need to start a user session, see Chapter 3, "Diagnostic
Security". This is important because using passwords as input parameters is
highly discouraged.

■ (Optional) String[] dependentClassNames

Tests can specify child tests that are to be executed after this test. The children
should also be well-formed Java diagnostic test cases. This variable can be set to
a String array of the fully qualified class names of the children.

■ (Optional) boolean isDependencyPipelined

If set to true, it specifies that this test and its dependencies should be run with
chaining of input values. Most tests do not need this feature, thus this variable
is set to false by default. For more details about pipelining dependencies, see
Section 2.3.6, "Pipelining Dependencies".

■ (Optional) boolean needNewRequest()

The only test property that is not specified in the constructor. Instead, if the test
needs to be executed with a new HttpServletRequest and HttpServletResponse
object, then the test should overload this method and return true. Setting this to
true implies an extra round trip between the server and the client. Tests that
need to push cookies onto the client may need this feature. However, most tests
do not, and do not have to overload the method.

2.3.3 Java Test Execution
The execution logic is written in one of two versions of the runTest method. Both
must be implemented by the test case. Two signatures of the runTest method exist,
in order to support execution of the test in the context of a servlet and in a
standalone command-line mode. Most diagnostic tests are executed through the
Web-based UI as a servlet. Returning true signals success; returning false signals
failure. The logic written in the runTest methods is executed in its own thread. Tests
2-4 Supportability Guide

Developing Java Diagnostic Tests
that need a framework session should start one at the beginning of the runTest and
should be sure to end the session before the runTest method returns.

■ boolean runTest()

Is called if the test case is executed in a non-JSP environment and therefore does
not take in the HttpServletRequest and HttpServletResponse. Returns true for
success, false for failure. For tests that do not require the request/response
objects, implement all test logic here, and have the other runTest delegate the
call to this runTest.

■ boolean runTest(HttpServletRequest request, HttpServletResponse response)

Is called if the test case is executed in a JSP environment. Returns true for
success, false for failure.

■ (Optional) Object getInputValue(String inputName)

Is called at the beginning of the runTest method to retrieve input values seeded
in the database (if in basic mode) or by the user (if in advanced mode). The
object type returned is dependent on the input type:

– String if the input was type String, Secure String, or LOV.

– Integer if the input was type Integer.

2.3.4 Java Test Reporting
The following reporting APIs are called after the runTest has completed.

■ String getReport()

Should give detailed information about the test execution, and will be
displayed to the end user. For example, in the JTF Menu test, we render the
given user's menu tree. This is displayed regardless of whether the test succeeds
or fails. If HTML tags are involved in the formatting, then the returned string
should begin with "@html ".

■ String getError()

If the test fails, then this should give the end user details about the failure and
its cause. If HTML tags are involved in the formatting, then the returned string
should begin with "@html ".

■ String getFixInfo()
Developing Diagnostic Tests 2-5

Developing Java Diagnostic Tests
If the test fails, then this should give information to the end user about how to
resolve the error. If HTML tags are involved in the formatting, then the returned
string should begin with "@html ".

■ (Optional) boolean isWarning()

If returns true, then tells framework to interpret success as status "Success with
Warnings". The test result reflects this status to the end user, prompting them to
view the report. This is not be called if the test is a failure.

■ (Optional) boolean isFatal()

If returns true, tells the framework to interpret a failure as a "Severe Error", in
which case no other execution will follow this test.

■ (Optional) Hashtable getOutputValues()

If this test is part of a dependency pipeline, then this will be called to get String
name-value pairs to be passed as inputs to the next test. These pairs are added
to initial inputs, and inputs having the same name are overridden.

You can use oracle.apps.jtf.regress.qatool.testcase.SampleTest as a template to
develop your test cases.

2.3.5 Java Diagnostic Test Sample Code
package oracle.apps.jtf.regress.qatool.testcase;

/* These two imports are neccessary **/
import oracle.apps.jtf.regress.qatool.*;
import javax.servlet.http.*;

import java.util.*;

public class SampleTest extends QATestImpl {

 /* Standard RCS_ID needed by all files */
 public static final String RCS_ID = "$Header$";

 public SampleTest() {
 super(); /* call the default constructor */

 /* Set test information */
 testName = “Sample”;
 testDesc = “A template for developers to use when writing test cases”;
 componentName = “Diagnostic Framework”;
2-6 Supportability Guide

Developing Java Diagnostic Tests
 mode = QATestInterface.BOTH_MODE; //or BASIC_MODE, ADVANCED_MODE

 /* Set version information. */
 version.setClass(this); // Set the version of myself

 /* Add version information of all the application classes you are testing */
 version.addClassName("oracle.apps.jtf.menu.Menu");
 version.addClassName("oracle.apps.jtf.region.Region");

 /* Dependency Classes if any needs to be set up */
 /* If this test is made up of other test classes, then add dependent class
names here */
 dependentClassNames = dependencies;

 /* Indicate if dependent classes should be pipelined */
 /* i.e., outputs from one test goes as inputs into the next test */
 isDependencyPipelined = true;

 /* Define parameter list (if any) used by runTest(..) method */
 /* End users will be able to set up values for this parameter list through
the Admin UI */
 /* You can specify if the input is secure - i.e., should not be displayed
in clear text */
 addInput(new QATestInput(“username”, “SYSADMIN”)); // default:
not secure
 addInput(new QATestInput(“resp ID”, new RespLovImpl(), “21841”)); //lov
enabled input. See the “Lov Integration with Diagnostics” section for more
detailed information.
}
 /*** There are methods you HAVE to implement ***/

 public boolean runTest()
{
 / * This method is used when tests run through command-line.
 * If this test is only run in JSP mode, then simply return false */
 return false; // Fail!
 }

 public boolean runTest(HttpServletRequest request, HttpServletResponse
response)
{
 /* this method is used when tests run through JSP mode.
 * Implement what the test actually does */
}

Developing Diagnostic Tests 2-7

Developing Java Diagnostic Tests
 /**
 * Return the error that runTest(..) encountered
 **/
 public String getError() {
 return "TestException: Sample Test failed: Missing -D parameter ";
 }

/**
 * Return the fix (if any) for this error
 **/
 public String getFixInfo() {
 return "Make sure you pass the -D parameter to the Jserv";
 }

/**
 * Should other tests be run, given that this test failed!
**/
 public boolean isFatal() {
 return false; // not fatal
 }

 /* If there are dependent classes, state them here */
 private static final String[] dependencies =
 {"oracle.apps.jtf.regress.qatool.testcase.SetCookieTest",
 "oracle.apps.jtf.regress.qatool.testcase.GetCookieTest"};

}

2.3.6 Pipelining Dependencies
Certain tests can behave as container test cases, which contain a set of one or more
tests to be executed in a specific order. The tests within a container test class are
referred to as dependencies. When a test specifies dependencies to be run, it can
also chain the dependencies so that the outputs of the previous tests are supplied as
inputs for the next dependency in the pipeline. To do this, add the following line in
the test constructor to tell the framework to pass outputs to the next test:

public SessionTest() {
...
dependentClassNames = new String[3];
dependentClassNames[0] =
 "oracle.apps.jtf.regress.qatool.testcase.authenticateTest";
dependentClassNames[1] =
2-8 Supportability Guide

Developing Java Diagnostic Tests
 "oracle.apps.jtf.regress.qatool.testcase.createSessionTest";
dependentClassNames[2] =
 "oracle.apps.jtf.regress.qatool.testcase.ValidateLogoutSessionTest";

isDependencyPipelined = true;
}

Each test must specify the output values it wishes to pass to the next test. This is
done by returning a Hashtable from the getOutputValues() API, which each test
should implement if a member of a pipeline.

public Hashtable getOutputValues() {
 Hashtable out = new Hashtable();
 out.put("Username", this.username);
 out.put("<parameter-name>", "<parameter-value>");
 return out;
}

These outputs are not be passed to the next test unless that test specifies input
parameters of the same name as the output parameters. For example, if
authenticateTest did not specify a "Username" parameter in its constructor (via
"addInput(...)"), then this value would not be passed to it.

Also, the input values that are specified by the main test and are given values from
the database (in basic mode) or the user (in advanced mode) are automatically
passed to each test specified as a dependency, whether the test is
dependency-pipelined or not. However, if a test is dependency-pipelined, then it
can override these original values before passing them to the next test.

2.3.7 Report Formatting Library
A report formatting library is available to teams who want to:

■ Simplify report generation.

■ Have a consistent look and feel across different test reports.

■ Intelligently generate HTML or text based reports.

The test case must instantiate a Report object using the createReportFormatter API
that is defined in the QATestImpl.java base class. This method will return an object
that implements the Report interface. Depending on the context of the test
execution, this object will generate a report in either HTML or text.
Developing Diagnostic Tests 2-9

Developing Java Diagnostic Tests
The test case constructs the test report by populating the Report object with the
correct contents. The following are descriptions of selected key methods, to
demonstrate how the Report object is used.

2.3.7.1 Example Methods

beginSection(String sectionName, String sectionDescription)
For a top-level section (that is, one that has no non-ended beginSections prior to it),
this will render a quicklink at the top of the report for easy navigation. All other
formatting commands will be indented under the section until the section is ended.
It is possible to create sub-sections by nesting beginSections. However, quick-links
will not be generated for sub-sections.

endSection()
Ends the last beginSection.

printError(String errorMessage, String fixInformation)
Adds an error message to the report, along with a message on how the customer
can resolve the error. If this error message occurs within a section, then the
quick-link will be rendered to signal that an error occurred within the section.

printWarning(String errorMessage, String fixInformation)
Behaves like printError, except it will signal to the user that it is only a warning.
The section's quicklink will be rendered as in printError.

println(String output)
Adds a string to the section with a new line. Methods are also available to print
Java primitives.

printTable(String title, String summary, String[] headers, String[][] values)
 Renders a table of information. Column titles are supplied by "headers" and table
values are specified by "values".

String formatNoteLink(String name, String id)
Creates a link to an OracleMetaLink note, where "name" is the diplayed link name
and "id" is the OracleMetaLink note number. Unlike the previous formatting APIs,
this is not automatically added to the report, but is instead returned as a formatted
String. The String can be added to the report by calling println(…), etcetera.
2-10 Supportability Guide

Developing Java Diagnostic Tests
String getReportContents()
This should be called after Report object has been populated. It returns a string
with the formatted report contents and should be returned in the getReport()
method.

2.3.7.2 Sample Code
import oracle.apps.jtf.regress.qatool.report.Report;
…

public class MyReportTest extends QATestImpl {

 Report report = null; //instance variable

 public boolean runTest() {
 report = createReportFormatter();
 report.beginSection("Profile Setup", "Validate if profiles …")

 // test code and report construction
 . . .
 }

 . . .

 public String getReport() {
 if (report == null) {
 return "";
 } else {
 return report.getReportContents();
 }
 }

 . . .
}

2.3.7.3 Report Interface
package oracle.apps.jtf.regress.qatool.report;

import java.io.*;

/**
 * Diagnostic Report. This class handles all the formatting of the diagnostic
 * report, and enforces output (look and feel) consistency and standards
Developing Diagnostic Tests 2-11

Developing Java Diagnostic Tests
 *
 */
public interface Report
{
 public static final String RCS_ID = "$Header: Report.java $";
 /*
 * Methods to support QATestInterface required methods
 */
 /**
 * Returns <code>true</code> if errors exist in the report
 *
 * @return <code>true</code> if errors exist
 */
 public boolean getExceptionsExist();

 /**
 * Returns <code>true</code> if errors exist in the report
 *
 * @return <code>true</code> if errors exist
 */
 public boolean getErrorsExist();

 /**
 * Returns <code>true</code> if warnings exist in the report
 *
 * @return <code>true</code> if warnings exist
 */
 public boolean getWarningsExist();

 /**
 * Returns the full report (including formatting).
 *
 * @return The reportContents value
 */
 public String getReportContents();

 /*
 * Implementor usable methods (non-formatting)
 */
 /**
 * Sets the footer to be printed at the bottom of the report.
2-12 Supportability Guide

Developing Java Diagnostic Tests
 *
 * @param footer The footer
 */
 public void setFooter(String footer);
 /*
 * Formatting methods
 */
 /**
 * Gets the current indent level
 *
 * @return The current indent level
 */
 public int getIndentLevel();

 /**
 * Starts a new section in the report. If this is a top level section,
 * the <code>sectionName</code> will be printed (in bold for HTML)
 * and a quicklink is automatically added. The output after it
 * (i.e. the section contents) will be indented
 * appropriately.
 *
 * @param sectionName Section name to print
 */
 public void beginSection(String sectionName);

 /**
 * Starts a new section in the report. If this is a top level section,
 * the <code>sectionName</code> will be printed (in bold for HTML). The
 * output after it (i.e. the section contents) will be indented
 * appropriately.
 *
 * @param sectionName Section name to print
 * @param quickLink Add this section to quicklinks
 */
 public void beginSection(String sectionName, boolean quickLink);

 /**
 * Starts a new section in the report. If this is a top level section,
 * the <code>sectionName</code> will be printed (in bold for HTML)
 * and a quicklink is automatically added. The
 * output after it (i.e. the section contents) will be indented
 * appropriately.
Developing Diagnostic Tests 2-13

Developing Java Diagnostic Tests
 *
 * @param sectionName Section name to print
 * @param sectionDesc Section description to print
 */
 public void beginSection(String sectionName, String sectionDesc);

 /**
 * Starts a new section in the report. If this is a top level section,
 * the <code>sectionName</code> will be printed (in bold for HTML). The
 * output after it (i.e. the section contents) will be indented
 * appropriately.
 *
 * @param sectionName Section name to print
 * @param sectionDesc Section description to print
 * @param quickLink Add this section to quicklinks
 */
 public void beginSection(String sectionName, String sectionDesc, boolean
quickLink);

 /**
 * Ends a section (and outdents any following output).
 */
 public void endSection();

 /**
 * Add a quicklink to the current location in the report. Doesn't print
 * any visible text to the current location in the report.
 *
 * @param name Quicklink name to show in TOC
 */
 public void addQuickLink(String name);

 /**
 * Adds the error message and fix information to the report.
<code>ERROR</code>
 * and <code>ACTION</code> text and formatting are added automatically.
 *
 * @param errorMessage Error message
 * @param fixInformation Fix information (ACTION)
 */
 public void printError(final String errorMessage, final String
2-14 Supportability Guide

Developing Java Diagnostic Tests
fixInformation);

 /**
 * Adds the exception message and fix information to the report.
<code>ERROR</code>
 * and <code>ACTION</code> text and formatting are added automatically.
 *
 * @param t Throwable to print
 * @param message Description of where the message was caught
 */
 public void printException(Throwable t, String message);

 /**
 * Adds the warning message and fix information to the report.
<code>WARNING</code>
 * and <code>ACTION</code> text and formatting are added automatically.
 *
 * @param warningMessage Warning message to print
 * @param fixInformation Fix information (ACTION)
 */
 public void printWarning(final String warningMessage, final String
fixInformation);

 /**
 * Adds the notice message to the report. <code>ATTENTION</code> text and
 * formatting are added automatically.
 *
 * @param noticeMessage Notice message to print
 */
 public void printNotice(final String noticeMessage);

 /**
 * Adds the notice message and fix information to the report.
<code>ATTENTION</code>
 * and <code>ACTION</code> text and formatting are added automatically.
 *
 * @param noticeMessage Warning message to print
 * @param fixInformation Fix information (ACTION)
 * @deprecated Diagnostic standards do not allow for an action
 * to be specified for Notice/Attention messages
 */
Developing Diagnostic Tests 2-15

Developing Java Diagnostic Tests
 public void printNotice(String noticeMessage, String fixInformation);

 /**
 * Add a blank line
 */
 public void println();

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Text to print
 */
 public void println(String output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Object to print (calls output.toString)
 */
 public void println(Object output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output boolean to print
 */
 public void println(boolean output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Character to print
 */
 public void println(char output);

 /**
2-16 Supportability Guide

Developing Java Diagnostic Tests
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Double to print
 */
 public void println(double output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Float to print
 */
 public void println(float output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output integer to print
 */
 public void println(int output);

 /**
 * Adds the output to the report. Line is terminated with cr/lf (or
 * >br< for html)
 *
 * @param output Long to print
 */
 public void println(long output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Text to print
 */
 public void print(String output);

 /**
Developing Diagnostic Tests 2-17

Developing Java Diagnostic Tests
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Object to print (calls output.toString)
 */
 public void print(Object output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output boolean to print
 */
 public void print(boolean output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Character to print
 */
 public void print(char output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Double to print
 */
 public void print(double output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Float to print
 */
 public void print(float output);

 /**
2-18 Supportability Guide

Developing Java Diagnostic Tests
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output integer to print
 */
 public void print(int output);

 /**
 * Adds the output to the report. Does not add cr/lf (or >br< for
 * html)
 *
 * @param output Long to print
 */
 public void print(long output);

 /*
 * Table/Tree-Table related methods
 */
 /**
 * Prints a table title and column headers. printTableRow should be
 * called to add rows, and printTableClose must be called to add the
 * closing tags for the table.
 *
 * @param title Table title
 * @param summary Table summary (508)
 * @param headers Column headers
 */
 public void printTableHeader(String title, String summary, String[]
headers);

 /**
 * Prints a table title and column headers.printTableRow should be called
 * to add rows, and printTableClose must be called to add the closing
 * tags for the table.
 *
 * @param summary Table summary (508)
 * @param headers Column headers
 */
 public void printTableHeader(String summary, String[] headers);

 /**
Developing Diagnostic Tests 2-19

Developing Java Diagnostic Tests
 * Prints a row in a table
 *
 * @param cells Cell values
 */
 public void printTableRow(String[] cells);

 /**
 * Prints a formatted row in a table. Cell values are formatted depending
 * on the type of value.
 *
 * @param cells Cell values
 */
 public void printTableRow(Object[] cells);

 /**
 * Prints a table row with the first column indented based on
<code>level</code>
 * . Used for printing heirarchy trees.
 *
 * @param cells Cell values
 * @param level Level in heirarchy (indent level)
 */
 public void printTreeRow(String[] cells, int level);

 /**
 * Prints a table row with the first column indented based on
<code>level</code>
 * . Used for printing heirarchy trees.Cell values are formatted
 * depending on the type of value.
 *
 * @param cells Cell values
 * @param level Level in heirarchy (indent level)
 */
 public void printTreeRow(Object[] cells, int level);

 /**
 * Adds closing tags for a table. Must be called before beginning any
 * non-table output.
 */
 public void printTableClose();
2-20 Supportability Guide

Developing Java Diagnostic Tests
 /**
 * Adds closing tags for a table. Must be called before beginning any
 * non-table output. String footer Table footer
 *
 * @param footer Table footer
 */
 public void printTableClose(String footer);

 /**
 * Prints supplied values as table (in HTML as appropriate)
 *
 * @param summary Table summary (508 requirement)
 * @param headers Table column headings
 * @param values Table values
 */
 public void printTable(String summary, String[] headers, String[][] values);

 /**
 * Prints supplied values as table (in HTML as appropriate)
 *
 * @param title Table title/caption
 * @param summary Table summary (508 requirement)
 * @param headers Table column headings
 * @param values Table values
 */
 public void printTable(String title, String summary, String[] headers,
String[][] values);

 /**
 * Prints supplied values as table (in HTML as appropriate)
 *
 * @param title Table title/caption
 * @param summary Table summary (508 requirement)
 * @param footer Table footer
 * @param headers Table column headings
 * @param values Table values
 */
 public void printTable(String title, String summary, String footer, String[]
headers, String[][] values);
Developing Diagnostic Tests 2-21

Developing Java Diagnostic Tests
 /**
 * Prints supplied values as table (in HTML as appropriate)
 *
 * @param summary Table summary (508 requirement)
 * @param headers Table column headings
 * @param values Table values
 * @param levels Indent level for the first column. This is the indent
 * level, not the number of characters to indent.
 */
 public void printTree(String summary, String[] headers, String[][] values,
int[] levels);

 /**
 * Prints supplied values as table (in HTML as appropriate)
 *
 * @param title Table title/caption
 * @param summary Table summary (508 requirement)
 * @param headers Table column headings
 * @param values Table values
 * @param levels Indent level for the first column. This is the indent
 * level, not the number of characters to indent.
 */
 public void printTree(String title, String summary, String[] headers,
String[][] values, int[] levels);

 /**
 * Prints supplied values as tree/table as appropriate for the output
 * format
 *
 * @param title Table title/caption
 * @param summary Table summary (508 requirement)
 * @param footer Table footer
 * @param headers Table column headings
 * @param values Table values
 * @param levels Indent level for the first column. This is the indent
 * level, not the number of characters to indent.
 */
 public void printTree(String title, String summary, String footer, String[]
headers, String[][] values, int[] levels);

 /*
 * Non-printing methods
2-22 Supportability Guide

Developing Java Diagnostic Tests
 */
 /**
 * Format a link to a Metalink note as appropriate for the output format
 *
 * @param name Document name
 * @param id Note number/Doc ID
 * @return The link for printing (pass this to a printXXX method)
 */
 public String formatNoteLink(String name, String id);

 /**
 * Format a link to a Metalink note as appropriate for the output format
 *
 * @param id Note number/Doc ID
 * @return The link for printing (pass this to a printXXX method)
 */
 public String formatNoteLink(String id);

 /**
 * Format a link to a CR file as appropriate for the output format
 *
 * @param name File name/description
 * @param id CR File ID
 * @return The link for printing (pass this to a printXXX method)
 */
 public String formatCRLink(String name, String id);

 /**
 * Format a link to a Metalink note as appropriate for the output format
 *
 * @param name Site name/description (ex. "Metalink")
 * @param url Site URL (ex. "http://metalink.oracle.com/")
 * @return The link for printing (pass this to a printXXX method)
 */
 public String formatLink(String name, String url);

 /*
 * Debug Methods
 */
 /**
 * Prints a list of report sections with the time consumed from the
 * last section
Developing Diagnostic Tests 2-23

Developing PL/SQL Test Cases
 */
 public void printReportTiming();
}

2.4 Developing PL/SQL Test Cases
If you are writing PL/SQL test cases, then use the following steps to successfully
develop a new PL/SQL test case for Oracle Diagnostics.

1. Create a PL/SQL package under the APPS schema with a meaningful naming
structure, like <APP_ID>_<group_name>_<test_name>. This to ensure that the
package is immediately recognizable in the database and can be found when
executing unit tests in the future.

2. Implement core APIs in the PL/SQL test package to plug into Oracle
Diagnostics. These mandatory APIs must be declared in the package header
section in order to be visible and accessible to the rest of the framework. The
mandatory APIs are described in Section 2.4.1, "PL/SQL Package Test Case
APIs". These procedures are briefly summarized below:

■ Implement a runTest(..) procedure to provide core test logic and write to
PL/SQL out parameters for reporting results back to the framework.

■ Implement getDefaultTestParams(..) to provide the framework with test
parameters (if needed).

■ Implement the getTestName(..) , getComponentName(..), and
getTestDesc(..) procedures to feed test metadata back into the framework.

■ (Optional) Implement init() and cleanup() procedures to create/initialize
and drop/free data structures or resources at the beginning and end of each
test.

3. Follow package structure and guidelines:

■ All core APIs from Step 2 above must be declared in the package header in
order to be accessible externally by Oracle Diagnostics.

■ Include the RCS version information for the package specification and
body. This is important, as it is used to determine the version of the test for
reporting purposes.

4. Utilize the two helper packages which assist in the development of PL/SQL
diagnostic tests:

■ JTF_DIAGNOSTIC_ADAPTUTIL
2-24 Supportability Guide

Developing PL/SQL Test Cases
This package provides a set of procedures and functions for object
initialization and manipulation of some of the PL/SQL data structures that
are part of the framework. This package has a broad range of utility APIs.
For example, one procedure retrieves an initialized CLOB, and another
procedure that adds an input to another data structure. The complete API is
published in Appendix A, "PL/SQL Helper Packages".

■ JTF_DIAGNOSTIC_COREAPI

This package provides a a set of helper procedures and functions for
standard formatting of reports. The package contains APIs that provide
both HTML and plain text formatting. APIs are available to return
formatted results from the database. The complete API is published in
Appendix A, "PL/SQL Helper Packages".

2.4.1 PL/SQL Package Test Case APIs
Before developing a test package, you should familiarize yourself with the
procedures that form the core of the PL/SQL diagnostics logic.

2.4.1.1 runTest
Procedure runTest (arg1 IN JTF_DIAG_INPUTTBL,
 arg2 OUT JTF_DIAG_REPORT,
 arg3 OUT CLOB)

This procedure is the main entry point for PL/SQL test execution. The test logic is
executed within this procedure. During test execution, it propagates the JTF_
DIAG_REPORT and CLOB objects with the test report messages and detailed
report data respectively before being returned to the framework.

The JTF_DIAG_INPUTTBL object Is passed into the runTest(..) procedure from the
framework. This object contains the input values for the test that were retrieved
from the getDefaultTestParams(..) procedure. The getDefaultTestParams(..) is
called by the framework prior to the runTest(..) procedure.

There are fourVARCHAR2 fields in a JTF_DIAG_REPORT object. The status,
errStr, fixInfo, and isFatal fields, along with the report CLOB data, must be
propagated in the event of an error occurring in the test. In such cases, the status
string is set to FAILURE. For a successful test run, the status string is set to
SUCCESS. On some occasions, the error which occurs is not sufficiently critical to
halt execution. In this case, the status field should be set with the string WARNING.
This has the effect of displaying the reportClob along with the error that occurred.
All fields may populated as if an error had occurred, but test execution is not halted.
Developing Diagnostic Tests 2-25

Developing PL/SQL Test Cases
If the test status is set to SUCCESS, then only the report CLOB needs to be written
to with correct data. The report CLOB data (if any) is rendered to the UI by the
framework irrespective of test failure, warning, or success.

■ The status field that contains the result of the test is of type VARCHAR2. If the
status field value is SUCCESS, then you are flagging that the test case passed. If
the status field is FAILURE, then you are flagging a test case failure. If the
status field is WARNING, then you are flagging a test case warning.

■ The errStr field contains a string representation of the error (if any). This string
can have up to 4000 characters. For example, you could set the error message to
be a SQLERRM thrown by a caught exception.

■ The fixInfo field contains a string providing suggestions on how to fix the error
(if any). This string can have up to 4000 characters.

■ The isFatal field contains a VARCHAR2 representation of a Boolean value. The
isFatal value can either be "TRUE" or "FALSE". If the value is set to "TRUE",
then the framework is informed that if the test has been reported as failing and
that the current error is a fatal error.

These values can be assigned to their fields in the JTF_DIAG_REPORT object
directly, or with a call to a procedure in the utility package, JTF_DIAGNOSTIC_
ADAPTUTIL.constructReport(..). This procedure takes the report fields described
above and inserts them into the report object ready to be returned to the
framework. The Diagnostic PL/SQL test case adapter massages the data coming
back so that it is available to the framework’s reporting and logging logic.

A CLOB object is returned to the framework upon completion of a test run, as it is
also registered as an OUT parameter. This CLOB must be initialized before it can be
used. You can do this with a call to the JTF_DIAGNOSTIC_
ADAPTUTIL.setUpVars function. Hence, we call this function immediately after
commencing execution of the runTest(..) block. The CLOB object can be written to
with calls to the addStringToReport(..) procedure call in the utility package JTF_
DIAGNOSTIC_ADAPTUTIL. This call appends the passed-in line of text/string or
LONG object to the overall report. Note that if the report is HTML-based, then the
first string added to the report must be "@html".

Oracle Diagnostics provides a package called JTF_DIAGNOSTIC_COREAPI. It
contains a library of APIs which provide for formatted HTML and plain text
reporting. If you do not use this package, then you must provide all HTML
formatting tags for the report (such as colors, new lines, etcetera).

Calls to the core API package JTF_DIAGNOSTIC_COREAPI will write to the same
report CLOB object. For example, the JTF_DIAGNOSTIC_COREAPI.line_out(..)
2-26 Supportability Guide

Developing PL/SQL Test Cases
procedure is the same as JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(..)
where both eventually write to the same CLOB.

All input variables can be retrieved with a call to the getInputValue(..) procedure in
the utility package. This procedure passes in the name of the variable and returns
the associated value. The value returned is of type VARCHAR2. You must convert
this object to other types (INTEGER, NUMBER, etc.) if needed. Variable, value
pairings must be made with calls to the addInput(..) procedure in the
getDefaultTestParams(..) procedure.

The runTest(..) procedure returns a CLOB, which contains a detailed report for the
framework. The PL/SQL OUT variable must reference the report CLOB when the
runTest(..) procedure returns. The report CLOB can be retrieved with a call to JTF_
DIAGNOSTIC_ADAPTUTIL.getReportClob and then be reassigned to the CLOB
OUT variable. In light of this, each runTest(..) procedure typically has logic
implemented before the test returns control to the framework. That is, at the end of
a normal runTest(..) body block and in its exception handler.

Let’s say that the test has OUT variables as below :

runTest(arg1 IN JTF_DIAG_INPUTTBL,
 arg2 OUT JTF_DIAG_REPORT,
 arg3 OUT CLOB)

Before returning to the framework, these OUT variables should be set and pointing
to the correct JTF_DIAG_REPORT report and CLOB. The example below shows
how this can be done:

arg2 := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(‘SUCCESS’,
 ‘Error occurred’,
 ‘Fix the Error’,
 ‘FALSE’)
arg3 := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;

The following code sample demonstrates a simple test which checks if the user
name passed in has an account and is registered in the FND_USER table. It
demonstrates how PL/SQL tests are written for Oracle Diagnostics and
demonstrates some of the more important implementation details mentioned above.

1 PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,
2 report OUT JTF_DIAG_REPORT,
3 reportClob OUT CLOB) IS
4 reportStr LONG;
5 counter NUMBER;
6 c_userid VARCHAR2(50);
Developing Diagnostic Tests 2-27

Developing PL/SQL Test Cases
7 statusStr VARCHAR2(50);
8 errStr VARCHAR2(4000);
9 fixInfo VARCHAR2(4000);
10 isFatal VARCHAR2(50);
11 BEGIN
12 JTF_DIAGNOSTIC_ADAPTUTIL.setUpVars;
13 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘@html’);
14 c_userid := JTF_DIAGNOSTIC_ADAPTUTIL.getInputValue('USERNAME',inputs);
15 SELECT COUNT(*) INTO counter
16 FROM FND_USER
17 WHERE user_name LIKE c_userid;
18 IF (counter > 0) THEN
19 reportStr := ‘The test completed successfully’;
20 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(reportStr);
21 statusStr := 'SUCCESS';
22 ELSE
23 statusStr := 'FAILURE';
24 errStr := 'This test failed as '||counter||' is less than 1 ';
25 fixInfo := ‘Make sure that the username entered is correct’;
26 isFatal := 'FALSE';
27 END IF;
28 report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusStr,
 errStr,
 fixInfo,
 isFatal);
29 reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;
30 EXCEPTION WHEN others THEN
31 JTF_DIAGNOSTIC_COREAPI.errorprint('Error: '||sqlerrm);
32 JTF_DIAGNOSTIC_COREAPI.ActionErrorPrint('This is the exception
 handler');
33 statusStr := 'FAILURE';
34 errStr := sqlerrm ||' occurred in script – Exception handled';
35 fixInfo := 'Avoid throwing exceptions’;
36 isFatal := 'FALSE';
37 report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusStr,
 errStr,
 fixInfo,
 isFatal);
38 reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;
39 END runTest;

The following table provides descriptions of the lines in the above code sample.

Line(s) Description
2-28 Supportability Guide

Developing PL/SQL Test Cases
1-3 The runTest procedure takes the three arguments shown.

4-10 The declaration section of variables used in this example.

12 A call to initialize objects for the current session. Initializes a CLOB for report
writing and initializes the global HTML formatting flag to false. Unless the
first string in the report CLOB is "@html", this ensures that output is in plain
text (the default setting).

13 If the report to be generated contains HTML formatting, then the first string
written to the report must be "@html". In this case, HTML formatting has
been turned on.

14 This line retrieves the value of the variable USERNAME and stores it locally in
the c_userid variable.This is how the test retrieves inputs in the framework
(variables are added in getDefaultTestParams(..) procedure).

15-17 A SQL query to demonstrate using the recently retrieved input value c_
userid.

20 Writing a string to the report CLOB.

21 Setting a local variable with the SUCCESS string. This will be added to the
outgoing JTF_DIAG_REPORT object later in the code when the
constructReport(..) is called.

24 Constructing an error message to return.

25 Providing fix information if an error occurs.

26 Indicating with a VARCHAR2 object that if the error occurs, it is not a fatal
error. Fatal errors have the ability to halt any following tests. True means fatal,
false means not fatal.

28 Here the PL/SQL OUT parameter JTF_DIAG_REPORT is propagated with a
call to the constructReport(..) procedure. The status string error description (if
error occurs), fix Suggestion (if error occurs), and is error fatal (if error occurs)
are added to the JTF_DIAG_REPORT object.

29 Here the PL/SQL OUT parameter CLOB is retrieved and gets assigned the
report CLOB for the current session. The call getReportClob() retrieves the
CLOB initialized by setupVars and written to with the addStringToReport(..)
and JTF_DIAGNOSTIC_COREAPI procedural calls.

31-32 Calling support APIs in the JTF_DIAGNOSTIC_COREAPI package.

33-36 See lines 21-26 above.

37-38 See lines 28 and 29 above. If an exception is being caught, then the report and
reportClob objects have to be assigned and returned in the exception block.
This is similar to how they would be returned in the main block, lines 11-29.
Developing Diagnostic Tests 2-29

Developing PL/SQL Test Cases
2.4.1.2 getDefaultTestParams
Procedure getDefaultTestParams(arg1 OUT JTF_DIAG_INPUTTBL)

In this procedure, you should register any input parameters that the test needs,
along with their default values. This procedure is executed separately from test
execution in order to determine input values (if applicable). This procedure is called
by the framework so that proper input fields are rendered through the framework
UI. The framework requires all inputs that the test is to take as inputs. The JTF_
DIAG_INPUTTBL object is propagated here with values and upon its return is
then queried by the framework. Eventually this object is passed into the runTest(..)
procedure while invoking test execution.

Calls to the utility package procedure addInput(..) add input variables to the JTF_
DIAG_INPUTTBL object that is returned to the framework. The addInput(..)
procedure is overloaded and by default displays the value field on the diagnostic
UI. A call to the addInput(..) procedure with the showValue parameter set to "false"
(Boolean value) hides the value field data on the UI. For example, if you want to
add the parameter "USERNAME", then you might use something like the following:

1 PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_INPUTTBL)IS
2 tempInput JTF_DIAG_INPUTTBL;
3 BEGIN
4 tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
5 tempInput :=
 JTF_DIAGNOSTIC_ADAPTUTIL.addInput(tempInput,'USERNAME','SYSADMIN');
6 defaultInputValues := tempInput;
7 END getDefaultTestParams;

The following table provides descriptions of these code lines.

Lines Description

1 This method expects that defaultInputValues is passed in as an OUT
parameter.

4 Create an initialized JTF_DIAG_INPUTTBL object called temp with a call
to the inputtable() procedure.

5 Add a parameter called USERNAME with SYSADMIN as its default value.
We pass in the JTF_DIAG_INPUTTBL to the addInput(..) procedure and
add the parameter to it.

6 Assign the OUT variable to the object that contains all the recently added
input variables.
2-30 Supportability Guide

Developing PL/SQL Test Cases
2.4.1.3 getTestName
Procedure getTestName(arg1 OUT VARCHAR2)

You should return the name of the test in this procedure. This procedure is accessed
by the framework to query the name of the procedure. If the procedure is missing
or throws an error, then the string "Unknown" will be returned in its place. The
procedure returns a VARCHAR2 object that holds the name of the test. For
example:

PROCEDURE getTestName(name OUT VARCHAR2) IS
BEGIN
 name := 'fnd_user User account test';
END getTestName;

2.4.1.4 getComponentName
Procedure getComponentName(arg1 OUT VARCHAR2)

You should return the name of the test component in this procedure. The
framework accesses this procedure for the name of the component that this test case
belongs to. If the procedure is missing or throws an error, then the string
"Unknown" will be returned in its place. The procedure returns a VARCHAR2
object, which is the name of the test component. For example:

PROCEDURE getComponentName(name OUT VARCHAR2) IS
BEGIN
 name := ‘User Account Tests’;
END getComponentName;

2.4.1.5 getTestDec
Procedure getTestDesc(arg1 OUT VARCHAR2)

You should return a description of the test in this procedure. The framework
accesses this procedure for the description of this test case. If the procedure is
missing or throws an error, then the String "No Description Available" will be used
in its place. The procedure returns a VARCHAR2 object, which contains the
description of the test. For example:

PROCEDURE getTestDesc(desc OUT VARCHAR2) IS
BEGIN
 desc :='fnd_user User account test–checks for a account in fnd_user’
 ‘table’;
Developing Diagnostic Tests 2-31

Developing PL/SQL Test Cases
END getTestDesc;

2.4.1.6 getTestMode
FUNCTION getTestMode RETURN INTEGER

This function returns the current test mode that the current PL/SQL test will
operate as. This function is not manditory and all tests will default to basic mode.

The mode returned by this function can be one of the following:

■ JTF_DIAGNOSTIC_ADAPTUTIL.BASIC_MODE

The test is run with minimal user interaction and as part of the group it belongs
to. If the test requires inputs, then the values will be obtained from
preconfigured values. This is the default mode.

■ JTF_DIAGNOSTIC_ADAPTUTIL.ADVANCED_MODE

The test can only be run individually. Typically tests that are used for probing
the system for specific input values fall in this category. Inputs are inserted by
the customer during test invocation.

■ JTF_DIAGNOSTIC_ADAPTUTIL.BOTH_MODE

The test can be executed in either basic or advanced mode. Most tests fall into
this category.

An example of how a PL/SQL test would explicitly set itself to be an Advanced test
follows below:

 FUNCTION getTestMode return INTEGER IS
 BEGIN
 return JTF_DIAGNOSTIC_ADAPTUTIL.ADVANCED_MODE;
 END getTestMode;

2.4.1.7 init
Procedure init()

This procedure does not take any parameters and is always called prior to the
runTest procedure being executed. In this procedure, implement the code for any
data structures that need to be set up before the test runs. For example:

PROCEDURE init IS
BEGIN
2-32 Supportability Guide

Developing PL/SQL Test Cases
 -- Example, to create a temporary table for the test
 -- execute immediate ‘create table temp_qa(name VARCHAR2(30))’;
 null;
END init;

2.4.1.8 cleanup
Procedure cleanup()

This procedure does not take any parameters and is called after the runTest
procedure has been executed. In this procedure, implement the code for any data
structures that need to be cleaned up after the test runs. Typically, these are the data
structures that were set up in the init() call. You should still implement this
procedure and include a null code block even if there is nothing to be done after the
test is run. For example:

PROCEDURE cleanup IS
BEGIN
 -- Example, to drop the temporary table created in the init() call above.
 -- execute immediate ‘drop table temp_qa’;
 null;
END cleanup;

2.4.2 PL/SQL Utility Packages
As mentioned earlier, Oracle Diagnostics provides two helper packages for the
PL/SQL diagnostic test writing process. Appendix A, "PL/SQL Helper Packages"
provides details about the APIs exposed by each of these packages. Note that the
APIs exposed in the JTF_DIAGNOSTIC_COREAPI package are intended to
facilitate the migration of test cases written by Oracle Support. Details about the
migration support for scripts written by Oracle Support are also provided in
Appendix A, "PL/SQL Helper Packages".

2.4.3 PL/SQL Diagnostic Test Sample Code
Below is a sample package of a diagnostic test case. It demonstrates areas the
following test package criteria:

■ HTML formatting is enabled with the "@html" string in the report CLOB.

Be aware that calls to support APIs can still be made without the @html flag;
the output will be in plain text.

■ Calling support APIs in the JTF_DIAGNOSTIC_COREAPI package.
Developing Diagnostic Tests 2-33

Developing PL/SQL Test Cases
■ Implementing the core diagnostic APIs.

CREATE OR REPLACE PACKAGE JTF_DIAG_FNDUSERACCOUNT AS
/* $Header: filename 115.xx YYYY/MM/DD 24:MM:SS userid [no]ship $ */
 PROCEDURE init;
 PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_INPUTTBL);
 PROCEDURE cleanup;
 PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,
 report OUT JTF_DIAG_REPORT,
 reportClob OUT CLOB);
 PROCEDURE getComponentName(name OUT VARCHAR2);
 PROCEDURE getTestName(name OUT VARCHAR2);
 PROCEDURE getTestDesc(descStr OUT VARCHAR2);
END;
/

CREATE OR REPLACE PACKAGE BODY JTF_DIAG_FNDUSERACCOUNT AS
/* $Header: filename 115.xx YYYY/MM/DD 24:MM:SS userid [no]ship $ */
--
-- procedure to initialize test datastructures
-- executed prior to test run – leave body as null otherwize
--
PROCEDURE init IS
 BEGIN
 -- test writer could insert special setup code here
 null;
 END init;

 --
 -- procedure to clean up any test datastructures that were setup in the init
-- procedure call executes after test run – leave body as null otherwize
--
 PROCEDURE cleanup IS
 BEGIN
 -- test writer could insert special cleanup code here
 NULL;
 END cleanup;

--
-- procedure to execute the PLSQL test
-- the inputs needed for the test are passed in and a report object and CLOB are
-- returned.
-- note the way that support API writes to the report CLOB.
--
 PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,
2-34 Supportability Guide

Developing PL/SQL Test Cases
 report OUT JTF_DIAG_REPORT,
 reportClob OUT CLOB) IS
 reportStr LONG;
 counter NUMBER;
 dummy_v2t JTF_DIAGNOSTIC_COREAPI.v2t;
 c_userid VARCHAR2(50);
 statusStr VARCHAR2(50);
 errStr VARCHAR2(4000);
 fixInfo VARCHAR2(4000);
 isFatal VARCHAR2(50);
 dummy_num NUMBER;
 sqltxt VARCHAR2 (2000);
 BEGIN
 JTF_DIAGNOSTIC_ADAPTUTIL.setUpVars;
 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘@html’);
 JTF_DIAGNOSTIC_COREAPI.insert_style_sheet;
 JTF_DIAGNOSTIC_COREAPI.line_out(‘this also writes to the clob’);
 c_userid := JTF_DIAGNOSTIC_ADAPTUTIL.getInputValue('USERID',inputs);
 SELECT COUNT(*) INTO counter
 FROM FND_USER
 WHERE user_name LIKE c_userid;
 sqltxt := 'select segment1, attribute6 from pa_projects '||
 'where rownum < 5';
 dummy_num:= JTF_DIAGNOSTIC_COREAPI.display_sql(sqltxt,'Disp SQL 2 params');
 IF (counter = 1) THEN
 reportStr := 'The test completed as expected the number of
 accounts registered for '||c_userid||' in
 fnd_user is '||counter;
 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(reportClob,reportStr);
 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘String into report’);
 statusStr := 'SUCCESS';
 ELSE
 JTF_DIAGNOSTIC_COREAPI.ActionErrorPrint('You better do something!');
 statusStr := 'FAILURE';
 errStr := 'This test failed as the accounts for the user '||c_userid||'
 in fnd_user count " '||counter||' " is not = 1 ';
 fixInfo := 'Put informative fix info. here';
 isFatal := 'FALSE';
 END IF;
 report := JTF_DIAGNOSTIC_
ADAPTUTIL.constructReport(statusStr,errStr,fixInfo,isFatal);
 reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;
 END runTest;

 --
Developing Diagnostic Tests 2-35

Developing PL/SQL Test Cases
 -- procedure to report name back to framework
 --
 PROCEDURE getComponentName(name OUT VARCHAR2) IS
 BEGIN
 name := 'SDF Migration tests';
 END getComponentName;

 --
 -- procedure to report test description back to framework
 --
 PROCEDURE getTestDesc(descStr OUT VARCHAR2) IS
 BEGIN
 descStr := 'Checks for a User Account in fnd_user';
 END getTestDesc;

 --
 -- procedure to report test name back to framework
 --
 PROCEDURE getTestName(name OUT VARCHAR2) IS
 BEGIN
 name := 'fnd_user User account test';
 END getTestName;

 --
 -- procedure to provide the default parameters for the test case.
 -- please note the paramters have to be registered through the UI
 -- before basic tests can be run.
 --
 --
 PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_INPUTTBL) IS
 tempInput JTF_DIAG_INPUTTBL;
 BEGIN
 tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
 tempInput := JTF_DIAGNOSTIC_
ADAPTUTIL.addInput(tempInput,'USERID','SYSADMIN');
 -- tempInput := JTF_DIAGNOSTIC_
defaultInputValues := tempInput;
 EXCEPTION
 when others then
 defaultInputValues := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
 END getDefaultTestParams;

END;
/

2-36 Supportability Guide

Declarative Diagnostics
2.5 Declarative Diagnostics
Declarative Diagnostics is a mechanism that allows metadata-based testing of an
application product. Here, a product engineer registers the following metadata:

■ Metadata for test execution.

■ Metadata for validation rules that are used at runtime to determine the success
or failure of the test.

■ Metadata for reporting that the engine uses at runtime to generate reports.
These reports generated by the framework are in a standardized fashion that
includes a test run summary and test details.

Seeding of the above metadata is enabled through UI screens that have been
provided by Oracle Diagnostics.

Declarative diagnostic tests are not a replacement for Java or PL/SQL tests, but a
means of quickly registering setup type tests for your product without writing code.
These are supplemental to the Java or PL/SQL diagnostic tests that you write for
granular functionality testing of your product.

To use declarative diagnostics, an understanding of the practical details of one’s
application and familiarity with Oracle Diagnostics is sufficient.

2.5.1 Structure of a Declarative Diagnostic Test
Every Declarative Diagnostic Test is a "Container" for one or more sub-tests that can
be of different types. The diagnostics engine will execute each sub-test of the
declarative test in the sequence that it was seeded. The success or failure of the
overall Declarative Test is determined by the success or failure of each of the
sub-tests.

Oracle Diagnostics has also provided UI screens for administering declarative
diagnostic tests. For instance, you could re-order the execution sequence of
sub-tests, delete obsolete sub-tests, update existing sub-tests, or add sub-tests to an
existing declarative test.

2.5.2 Sub-test Types, Metadata Needed, and Use Case Examples
The framework provides the ability to seed five different types of sub-tests. It is
important for you to know the nature of each sub-test and how you could use them.
Developing Diagnostic Tests 2-37

Declarative Diagnostics
2.5.2.1 Required Metadata
Each sub-test type has its own metadata needs. However, irrespective of sub-test
type, there are some core metadata elements that each sub-test needs. These are
listed below:

■ Name: A short (< 50 characters) user-defined name that distinguishes the
sub-test from other sub-tests within the same declarative test.

■ Description: An explanation of what the objective of this sub-test is and what it
does. Be mindful that the description should be meaningful not just for you but
also for the end users.

■ Error Type: The nature of the error if the sub-test fails at the time it is run. Each
sub-test can have one of three error types:

– Fatal Error: Implying that in the event of failure of this sub-test, subsequent
sub-tests should not run. This also implies that failing of this sub-test was a
high severity failure.

– Normal Error: Implying that in the event of failure of this sub-test,
subsequent sub-tests should continue to be executed.

– Warning Only: Implying that failing of this sub-test should be flagged for
the system administrator's attention. However, severity of this issue is too
low to be termed as an error.

■ Error Message: In the event of an unsuccessful sub-test execution, the report
generated should have this error message for the system administrator at the
customer's end. Again, please be mindful that this should be meaningful for the
end user to be able to understand what the error means.

■ Fix Information: In the event of an unsuccessful sub-test execution, the report
generated should have information on how to resolve the issue for the system
administrator at the customer's end. This should be as self-explanatory as
possible so that customers can fix issues at their own end without having to
contact customer support.

Finally, the Sub-test Types that can be registered are as follows:

2.5.2.2 Count
This purpose of this sub-test type is to count records of the table, view, or SQL
statement and logically compare that value against a pre-seeded value. For
execution metadata, apart from the core metadata mentioned above, this sub-test
will need:
2-38 Supportability Guide

Declarative Diagnostics
■ From Clause: The name of a table or view.

■ SQL Query or Where Clause: Either a complete SQL statement of the format
"select count(*) from…" if no value is provided for the above (the "From Clause"
field). In case a From Clause has been provided, this field can be used to seed a
where clause in the format "condition = value".

■ Logical Operator: See below.

■ Validation Value 1: A value against which a logical comparison can be made to
determine if running the test was a success or failure. For example, if a value of
2 was provided and the logical operator ">" was seeded, success would imply
that the SQL generated returned greater than two rows.

■ Validation Value 2: Should the logical operator seeded be "BETWEEN", then
two values are need to make a comparison.

Based on the metadata, the framework will generate and execute a SQL statement.
An example of a SQL statement that could be generated is:

select count(*) from FND_GRANTS where grantee_key like 'FND_RESP690:21841'

In the above example, the sub-test is testing to find out the number of records in the
FND_GRANTS table that have a grantee_key of FND_RESP690:21841.

Using the Validation Value 1 (say "2") and the logical operator (say ">"), the
framework will determine if the number of records generated were greater than 2 or
not.

2.5.2.3 Record
The purpose of this sub-test type is to check if the SQL generated based on the
metadata seeded returns any records or not. Developers can seed whether the SQL
should generate records or not and based on that the Diagnostics engine will make
the appropriate comparisons.

For execution metadata, apart from the core metadata mentioned above, this
sub-test will need:

■ SQL Query: A complete SQL statement.

■ A Yes or No selection, indicating whether the query should generate rows or
not.

An example of a SQL statement that could be generated is for this sub-test type
would be:

select * from FND_APPLICATION where application_short_name = 'AOL'
Developing Diagnostic Tests 2-39

Declarative Diagnostics
In this case, if you seed that no records be returned, the framework raises an error
condition incase this query returned any records.

2.5.2.4 Column
This is a more powerful sub-test type, as it allows the handling of complex SQL
queries with multiple selects across multiple tables or views. The returned values
for the selected columns are compared against the corresponding seeded validation
values and logical operators. The sub-test is considered as failed if any one of the
returned values does not meet the comparison test.

For execution metadata, apart from the core metadata mentioned above, this
sub-test will need:

■ From Clause: One or more table or view names. For example, fnd_application
a, fnd_responsibility b if there are multiple tables or views to select from.

■ Select Column Details: The select clause of the query to be generated uses this
metadata. Each column to be selected has the following diagnostic metadata
associated:

– Column Name: Name of columns to be selected. For example,
a.application_short_name or b.responsibility_key if there are more than
one tables or views in the From Clause.

– Logical Operator: Selected from a list of logical operators.

– Validation Value 1: The value with which a comparison for the column's
value should be made.

– Validation Value 2: The second value if the logical operator chosen is
BETWEEN.

■ Where Clause

An example to illustrate the usage of this sub-test type is incase the metadata stored
by the developer is:

From Clause: FND_APPLICATION_TL

Select Column Details:

Column Name: APPLICATION_ID

Logical Operator: =

Validation Value 1: 690
2-40 Supportability Guide

Declarative Diagnostics
Where Clause: APLICATION_SHORT_NAME = 'JTF'

In this case, the framework will generate the following SQL:

select application_id from fnd_application_tl where application_short_name =
'JTF'

Each record fetched by the query will be compared for equality (=, the logical
operator) with 690.

The report generated for this sub-test type will contain the query generated by the
engine and the entire result set that the query returned to the engine.

2.5.2.5 System Parameter
The purpose of this sub-test type is to check if the JVM and system parameters at
the customer end have the desired values. In many cases, several product modules
require manual setup sub-tests that may require -D parameters. Frequently,
customers to not have those values in place. This sub-test makes it convenient to
identify such issues.

For execution metadata, apart from the core metadata mentioned above, this
sub-test will need:

■ System parameter name.

■ The desired value.

The diagnostic engine will only make an equality comparison for the retrieved
value and the desired value. If they do not match, this sub-test is considered to have
failed.

2.5.2.6 Test Container
The purpose of this sub-test is to eliminate the need to write a diagnostic Java test
that is just a container of other diagnostic test cases (called dependencies). The
value-add, apart from eliminating the need to write Java code for containers, is that
you can add Java and PL/SQL diagnostic test cases that are run sequentially by the
diagnostic engine.

The report that is generated for this sub-test is a combination of all the reports
generated by the test cases included in this Test Container.

Tests are run in the sequence that they were registered in this sub-test. This is
identical to run tests that are dependencies. However, as PL/SQL and Java tests can
be run at the same time, the pipelining of inputs will work only for Java test cases
because PL/SQL test cases cannot return output values at this time.
Developing Diagnostic Tests 2-41

Integrating LOVs With Diagnostics
2.5.3 Logical Operators for Comparison
Logical Operators mentioned for all SUB-TEST TYPE definitions above can be one
of the following: <, >, <>, <=, >=, =, BETWEEN.

If the chosen logical operator is <, >, <>, <=, >=, or BETWEEN, then the
assumption is that the Validation Values are a numeric values.

If the logical operator chosen is BETWEEN, then the values will be compared as
numeric values and in the format v1 <= x <= v2, where x is the actual value and v1
and v2 are the seeded validation values 1 and 2.

2.6 Integrating LOVs With Diagnostics
This section discusses how to add LOV inputs to diagnostic test cases. For existing
test cases, minimal changes are necessary. However, you do need to provide an
implementation for a class that extends QALovAbstract to add this functionality.

Use the following procedure to determine whether or not to use an LOV input:

1. Determine which inputs are appropriate for LOV use. Typical LOV candidates
are inputs that require non-mnemonic values and those that are constrained by
other fields.

2. Determine how and where the values of the LOV are to be retrieved. This is
usually satisfied by a database query that retrieves particular columns from a
database table.

3. Extend QALovAbstract.

4. Add the LOV implementation to the test case input.

2.6.1 Implementing an LOV
First, you must have a class that extends the QALovAbstract class.

package oracle.apps.jtf.regress.qatool;

import java.util.Hashtable;

public abstract class QALovAbstract implements QALovInterface {

 public abstract String[] getHeaders();

2-42 Supportability Guide

Integrating LOVs With Diagnostics
 public abstract String[][] getValues(Hashtable context, String filter)
throws Exception;

 public abstract int getValueColumnIndex();

 public String getFilterName() {
 return null;
 }

 public String getDescription() {
 return null;
 }

}

■ String [] getHeaders()

This method determines the names of all the columns that need to be displayed
by the LOV. If your test case needs an LOV with two columns, then you should
return a String array with two values. However, it could be the case that you do
not want to display certain columns to the user. For columns that you want to
hide, you can have their names be an empty String. Any columns that have an
empty String for a name will not be rendered.

■ String [] getValues(...)

This method defines the SQL executions for your LOV data. The framework
handles the rendering. Your only tasks are to execute a SQL query/data
retrieval step, handle any unexpected errors, and return the ResultSet in the
form of a two-dimensional array. The context object will be available for the
LOV implementation. It contains all the inputs needed for the test case. If any
columns are hidden, their values should still be returned by this API.

■ init getValueColumnIndex()

This method defines one of the getHeaders() columns as the index. If your test
case input is the Responsibility ID and getHeaders returns two columns
(Responsibility Name, Responsibility ID), then this method returns the index of
Responsibility ID as it serves as an input to the test case. It is valid to return the
index of a column that is hidden. In this case, the first non-hidden column in the
LOV is selectable. However, when the user clicks this value, then it will be the
value of the hidden column that is passed back to the test case.

■ String getFilterName()
Developing Diagnostic Tests 2-43

Integrating LOVs With Diagnostics
Implementing this API is optional. By default, the prompt that is displayed next
to the search field is the name of the the test input field that this LOV is tied to.
However, by implementing this method, that prompt is whatever String this
API returns.

■ String getDescription()

Implementing this API is optional. By default, there is no description displayed
to the user. By implementing this method, a developer can provide a
description about the LOV for users, such as an explanation of the searchable
field or more details about the type of values being displayed.

2.6.2 LOV Provider Sample Code
The following is an example of an LOV implementation. This class can be used for
LOV Support for any test case which depends on Responsibility ID as one of its
inputs.

package oracle.apps.jtf.regress.qatool;
import java.sql.SQLException;
import java.util.Hashtable;
import java.util.Enumeration;
import oracle.apps.jtf.base.resources.FrameworkException;
import oracle.apps.jtf.aom.transaction.TransactionScope;
import oracle.apps.jtf.base.session.ServletSessionManager;
import com.sun.java.util.collections.ArrayList;

/**
 * An example of an LOV implementation. It fetches the Responsibility Names and Responsibilty ID's
 * based on the Application and User. It also allows filtering by Responsibilty Name.
 *
 */
public class RespLovImpl extends QALovAbstract {

 public static final String RCS_ID = "$Header: RespLovImpl.java 115.1 2002/02/18 21:45:28 bsanghav noship
$" ;
 String[] heading = {"", "Responsibility Key", "Responsibility Name"};
 int valueIndex = 0;
 public final String APPLICATION_ID = "APPLICATIONID";
 public final String USER_NAME = "USERNAME";

 /** Gets the Column headings for the LOV. The call to this method should be made, preferably,
 * after the getValues() method is called. Note that the first element of the array is the empty
 * string. This means that the column is hidden from the user. However, this column will hold
 * our Resp ID values which will populate the input.
 */
 public String[] getHeaders(){
2-44 Supportability Guide

Integrating LOVs With Diagnostics
 return heading;
 }

 /** Gives the index of the value column. Here we are returning "0" which is the index of the
 * hidden column that has the Resp. ID values.
 *
 */
 public int getValueColumnIndex(){
 return valueIndex;
 }

 public String getDescription() {
 return "Select value by clicking on the Responsibility Key. You can restrict the list by giving a
partial" +
 " Responsibility Name in the search field along with '%' as a wildcard";

 }

 public String getFilterName() {
 return "Responsibility Name";
 }

 public String[][] getValues(Hashtable context, String filter) throws Exception {
 Hashtable newContext = new Hashtable(context.size());
 Enumeration en = context.keys();
 if (en == null) throw new FrameworkException("Not enough data supplied to get LOV.");;
 while(en.hasMoreElements()){
 String key = (String)en.nextElement();
 if (key==null) { throw new FrameworkException("Enumeration gave back anull object. Something really
wrong"); }
 String newKey = key.toUpperCase();
 newContext.put(newKey,context.get(key));
 }
 String appId = (String)newContext.get(APPLICATION_ID);
 String userName = (String)newContext.get(USER_NAME);
 int iAppId = -999999; // some non existent appid
 if (appId == null) {
 throw new FrameworkException("Application id not specifed");
 } else {
 try {
 iAppId = Integer.parseInt(appId);
 } catch (NumberFormatException pe){
 throw new FrameworkException("Could not convert Application Id into a numeric value");
 }
 }
 if (userName == null){
 throw new FrameworkException("User Name not specifed");
 }
 try {
Developing Diagnostic Tests 2-45

Integrating LOVs With Diagnostics
 return getData(iAppId,userName.toUpperCase(),filter);
 } catch (SQLException sqe) {
 throw sqe;
 } catch (FrameworkException fwe){
 throw fwe;
 }
 }

 private String[][] getData(int appId,
 String userName,
 String filter) throws FrameworkException,SQLException{
 return getData(appId,userName,filter);
 }

 private String[][] getData(int appId,
 String userName,
 String filter) throws FrameworkException,SQLException{

 String queryString = "select a.RESPONSIBILITY_ID, a.RESPONSIBILITY_KEY, a.RESPONSIBILITY_NAME from
FND_RESPONSIBILITY_VL a , FND_USER_RESP_GROUPS b , FND_USER c where c.USER_NAME = '" + userName + "' and
a.APPLICATION_ID = " + appId + " and b.USER_ID = c.USER_ID and a.RESPONSIBILITY_ID = b.RESPONSIBILITY_ID and
a.RESPONSIBILITY_NAME like '" + filter +"'";

 String[][] rsString = null;

 rsString = Util.getTable(queryString);
 heading = Util.getHeaders(queryString);
 return rsString;
 }
}

2.6.3 Incorporating LOVs in Diagnostic Test Cases
 To incorporate an LOV in a Diagnostic Test Case, you need to make a simple one
line change for every input that is to be an LOV input.

The MenuTest has been modified to plug in the LOV support to one of its inputs.

■ Before using the LOV feature:

private void init() {

 addInput(new QATestInput("Username", "SYSADMIN"));
 addInput(new QATestInput("ApplicationID", new
 Integer(TABAPPID)));
 addInput(new QATestInput("ResponsibilityID",new
 Integer(RESPID)));
2-46 Supportability Guide

Integrating LOVs With Diagnostics
 .
 .

}

■ After using the LOV feature:

private void init() {

 addInput(new QATestInput("Username", "SYSADMIN"));
 addInput(new QATestInput("ApplicationID", new
 Integer(TABAPPID)));
 addInput(new QATestInput("ResponsibilityID", new
 RespLovImpl()));
 .
 .

}

You can always provide a default value for an LOV input using one of the
overloaded methods provided in QATestImpl. In this case:

addInput(new QATestInput("Responsibility ID", new
 RespLovImpl(), "21841"));

2.6.4 Default LOVs
Below are some sample LOV implementations that are provided by Oracle
Diagnostics for use in diagnostic test cases.

■ AppLovImpl.java

This LOV can be tied to an input that requires an application ID. Since
application IDs are not easy to remember, the LOV pairs the application’s full
name with the application ID in the LOV pop-up window. Users can filter the
application ID column using the wildcard character (%).

■ RespLovImpl.java

This LOV can be tied to an input that requires a responsibility ID. The LOV
requires two parameters to be present in the LOV context hashtable:
"Username" and "ApplicationID". In order for this LOV to work, the test must
have input parameters with the exact same input names (ignoring case). When
given the user name and application ID values, it queries the database for
Developing Diagnostic Tests 2-47

Oracle Applications Framework Support
available responsibility IDs with their responsibility names. Users can filter the
responsibility ID column using the wildcard character (%).

■ LangLovImpl.java

This LOV can be tied to an input that requires a language code from the FND_
LANGUAGES table. This LOV has three columns from the FND_LANGUAGES
table: LANGUAGE_CODE, LANGUAGE_ID, and NLS_LANGUAGE . Users
can filter based on the NLS_LANGUAGE column using the wildcard character
(%). Note that this filter is different than the value that will actually be
populated by the LOV (i.e. LANGUAGE_CODE).

■ UserLovImpl.java

This LOV can be tied to an input that requires a valid user name from the FND_
USER table. This LOV pairs the USER_ID and USER_NAME columns from the
FND_USER table. Users can filter the values in the USER_NAME column using
the wildcard character (%).

2.7 Oracle Applications Framework Support
Oracle Diagnostics provides APIs to load Oracle Applications Framework
Application Modules (the base class is
oracle.apps.fnd.framework.OAApplicationModule) within Java test cases based on
the Application Module definition name supplied. Once an Application Module has
been loaded using Diagnostic APIs, you can introspect ViewObjects created on a
standalone basis or pulled out of an Application Module.

The two APIs that have been provided belong to class
oracle.apps.jtf.regress.qatool.OABridge and are as follows:

Secure API
static public OAApplicationModule getApplicationModule(
 String username,
 String appShortName,
 int respID,
 String amDefName) throws FrameworkException;

■ This is a secure API that can only be called by a Diagnostic Super User since this
instantiates a new user context based on the username supplied.

■ It uses the AppsContext of the username supplied to instantiate an
ApplicationModule based on the AM Definition Name supplied.
2-48 Supportability Guide

Oracle Applications Framework Support
■ It can only be called within the runTest method of a Java test case.

Non-secure API
static public OAApplicationModule getApplicationModule(
 String amDefName) throws FrameworkException;

■ This is a regular API that can be called by any user.

■ It instantiates the user context of the user that started diagnostics and uses the
AppsContext of that username to instantiate an ApplicationModule based on
the AM Def Name supplied.

■ This too can only be called within the runTest method of a Java test case.

2.7.1 Sample Code
public boolean runTest() {

 // app module definition name can be a user input

 OAApplicationModule am
 = OABridge.getApplicationModule(amDefName);

 // OR use the secure API which
 // instantiates a user context

 OAApplicationModule am
 = OABridge.getApplicationModule(username,
 appShortName,
 respID,
 amDefName);

 // Obtain view object from the app module.
 // There are many ways
 // one of them is using a simple query
 // string which can be a query string

 String qstring = "select * from fnd_application";

 // Use the qstring for instantiating the
 // view object

 ViewObject vo =
 am.createViewObjectFromQueryStmt("MyVO", qstring);
Developing Diagnostic Tests 2-49

Instantiation of Diagnostic User Context Within Diagnostic Test Cases
 // At this point you can introspect your View objects for validity.

}

2.8 Instantiation of Diagnostic User Context Within Diagnostic Test
Cases

The runTest method of a Java diagnostic test case is run within a new thread that
has been spawned off for that purpose. That thread first instantiates a guest user
session. However, in many instances, the test case requires the same session as that
of the user that launched diagnostics. For achieving that, we are providing further
API support within class oracle.apps.jtf.regress.qatool.QAManager.
This API can only be called inside the runtest method of the Java diagnostic test
case; else an exception will be thrown.

public static void initDiagUserContext() throws Exception;

Once this API is called, the session within the thread will be identical to that of the
session of the user that launched diagnostics.
2-50 Supportability Guide

Diagnostic Se
3

Diagnostic Security

The need for securing diagnostic test cases stems from the fact that test cases have
the ability to diagnose sensitive aspects of an application. As an example, using
diagnostic test cases customers can test shopping cart or leasing applications, check
the sanity of accounting modules, query database tables for data integrity and then
render sensitive information on all those pieces within diagnostic reports. All these
operations are highly sensitive and should be carried out by users that have been
explicitly authorized.

3.1 Key Concepts

3.1.1 Test Group Sensitivity
Every test group that you create will have a sensitivity level associated with it. The
supported sensitivity values are low, medium, and high. Sensitivity is a function of
the type of tests that a group contains. Tests that can display reports which contain
privileged information or perform testing of sensitive aspects a product should
NOT be placed in low sensitivity test groups. It is the developer’s prerogative to
pick a sensitivity level for test groups.

Groups that are marked as medium or high sensitivity can only be executed by
users who have the appropriately privileged diagnostic roles assigned to them.

3.1.2 Diagnostic Roles
A diagnostic role determines the activities or tasks that a user can perform on
Oracle Diagnostics, such as:

■ Running test cases (with different input values if an advanced test).

■ Viewing detailed test reports after tests have been run.
curity 3-1

Key Concepts
■ Configuring input values for test cases.

■ Adding or deleting test cases and test groups across applications registered
with Oracle Diagnostics.

■ Viewing historical reports for test runs.

The following are descriptions of the available diagnostics roles:

3.1.2.1 Diagnostics Super User
Has unrestricted and global privileges for all operations on diagnostics. A user with
this role can execute, configure, view reports and setup security for all groups and
all applications.

This role is granted to the CRM Foundation application responsibility CRM HTML
Administration which has been assigned to user sysadmin. Any one who wants to
view detailed security screens must log in as a user with that responsibility.

3.1.2.2 Application Super User
Has unrestricted and global privileges for the application associated with his or her
responsibility – that is, they can execute, configure, view reports, and set up security
for test groups across his or her own application. However, this role also permits the
user to execute and configure inputs for test groups of low and medium sensitivities
across other applications.

3.1.2.3 End User
The user with this role can execute and configure inputs for test groups of low
sensitivity only. This user cannot view detailed test reports.

3.1.2.4 Anonymous User
This is not an explicit role; if none of the user’s responsibilities have an association
with any of the above three roles, then the user is considered to be an Anonymous
user. For such users, the diagnostics engine restricts access to pseudo application
"HTML Platform". All other test groups across all other applications are restricted
from this user.

Note that access to a test group can be given to any responsibility by means of an
explicit grant (using the diagnostic security screens). In the case of an explicit grant
to a test group, the user can then execute and configure inputs for tests in that
particular test group for which his responsibility has been given the grant. They can
also view detailed reports.
3-2 Supportability Guide

Key Concepts
The table below lists the different abilities of the different diagnostic roles:

3.1.3 Underlying Security Infrastructure
Oracle Diagnostics uses Oracle Applications Object Library Data Security as its
underlying security mechanism. Oracle Applications Object Library Data Security
uses the notion of application responsibilities for administering security. For more
information about Oracle Applications Object Library Data Security, refer to the
Oracle Applications System Administrator’s Guide.

A grant is defined as a permission to access a secured entity. Grants cannot be given
to users directly. Instead, they are given to responsibilities that are assigned to users.
Thus if a grant for executing all tests in the test group "Session Tests" is given to the
responsibility "Marketing Online Executive" of the application "Oracle Marketing
Online", then all users having this responsibility in their responsibility list will
automatically have access to the test group in question. Similarly, if a responsibility
has been granted a certain diagnostic role, all users having that responsibility in
their responsibility list will have been granted that diagnostic role and will be able
to use Diagnostics pursuant to the definition of that diagnostic role.

Task
Diagnostic Super
User

Application Super
User End User Anonymous User

Use LogViewer tab Yes Yes No No

Perform security
configuration

Yes For test groups of
own application

No No

Configure
applications

Yes For own application No No

View detailed
reports

Yes Yes No No

Configure test
inputs

Yes For own application
and low-medium
sensitivity test
groups of other
applications

Low sensitivity test
groups

HTML Platform
only

Send e-mail and
prinet detailed
reports

Yes Yes Summarized reports HTML Platform
only

HTML Platform Yes Yes Yes Yes
Diagnostic Security 3-3

Security Administration
3.2 Security Administration

3.2.1 Securing Test Groups
Test group security can be administered in the following ways:

■ Marking them as medium or high sensitivity test groups when they are created,
this restricting them to Diagnostic Super Users or Application Super Users.

■ Assigning grants to certain responsibilities to have explicit access to test groups
irrespective of the sensitivity level of the test group. For this purpose, navigate
to Configuration > Groups > Select the appropriate group > Choose "Advanced
Security"

This will take you to the "Group Advanced Security" page, through which you
can assign access grants to various responsibilities for the test group in
question.

3.2.2 Assigning Diagnostic Roles to Responsibilities
For this purpose, navigate to Configuration > Security > Select the appropriate
diagnostic role.

This will take you to the "Role Responsibility Assignment" page, through which you
can assign access grants to various responsibilities for the diagnostic role in
question.

3.3 Session Creation / Switching User Context in Test Cases
Diagnostic tests should not seek a password from the user in order to switch the
user context.

The framework's security model provides a mechanism for diagnostic tests to
switch user context in a programmatic and secure way. Only users who have the
Diagnostics Super User role can execute tests that require switching of user
contexts.

Diagnostic tests do not accept a password as input parameter, but accept
application short name and responsibility ID (optional) as input parameters.

Within the runTest(..) method of the test, you need to use the username, application
short name and optionally the responsibilityID and invoke one of the following two
APIs to accomplish the user context switch:
3-4 Supportability Guide

Session Creation / Switching User Context in Test Cases
/**
 * This API can only be called by a Diagnostic Super User
 * Since this API does not take the resp id as a parameter, it uses the value
set for
 * profile option JTF_PROFILE_DEFAULT_RESPONSIBILITY for the username supplied.
 */

QAManager.switchUserContext(String username, String appShortName)
throws InadequatePrivilegeException, Exception;
OR

/**
 * This API can only be called by a Diagnostic Super User
 * This API takes the resp id as a parameter explicitly
 */

QAManager.switchUserContext(String username, String appShortName, int respID)
throws InadequatePrivilegeException, Exception;

If the user does not have a Diagnostic Super User Role assigned, then these APIs
throw an Inadequate Privilege Exception which should be caught by your
runTest(...) method. Also, you should populate the error with fix info and report
parameters to reflect why the SwitchContext operation failed. This is illustrated in
the code sample below.

/**
 * SAMPLE CODE FOR WHAT SHOULD BE USED IN THE RUNTEST METHOD FOR
 * SESSION CREATION
 */

try {

// THIS IS THE APPROPRIATE WAY TO SWITCH USER CONTEXT
QAManager.switchUserContext(username,
 AppUtil.getAppShortName(tabAppID),
 respID);

}catch(InadequatePrivilegeException e){

 error = "Inadequate privileges to call this test. “
Diagnostic Security 3-5

Session Creation / Switching User Context in Test Cases
+ ”Please login using superuser access level “
+ “(Resp: JTF_ADMIN_USER)";

 fixInfo = "";
 report = e.getMessage();
 return false;

}
catch (Exception e) {

 error = "Session cannot be started.";
 fixInfo = "";
 report = e.getMessage();
 return false;

}

3-6 Supportability Guide

Diagnostics Result Rep
4

Diagnostics Result Reporting

The following information is recorded in the database whenever a test is run
through Oracle Diagnostics:

■ A result, with the test execution information.

■ Statistical information, such as how many times a test has been run, the total
number of failures, etcetera.

Storing test results in the database allows for querying and analysis of the test
information. For example, you could find out which tests have failed in the last 24
hours. The statistical information captures summary information about the health of
the system.

4.1 Database Failover
If the database is down (that is, cannot be read from or written to), then report
entries are stored locally on the file system. All test results for that diagnostic
session go to the file system, even if the database comes up at some point in the
session. If the database stays up, then the log entries will go to the database the next
time a session is started.

Report files are only created if the database is down. In this case, they are generated
in the directory specified by the following -D parameter to the JServ:

-Dframework.Logging.system.filename=<some writable directory>

This directory must be writable. When the database is down, there will be one file
per diagnostic session.
orting 4-1

Accessing Result Logs
4.2 Accessing Result Logs
You can view result entries for a tests which have been executed in the current
diagnostic session. There are a three ways to access the test result information in the
UI:

■ Click the test name when viewing all the basic tests in a group.

■ Click View Report when viewing an test run in advanced mode.

■ Click Report after a test has been executed in basic or advanced mode.

Note that this result information is from tests that have been executed in the current
diagnostic session. If you leave Oracle Diagnostics and then re-enter it, you can no
longer see the result entries from prior sessions.

Test result entries are stored in the JTF_DIAGNOSTIC_LOG table. The statistical
information is stored in the JTF_DIAGNOSTIC_STATS table.

4.3 Purging Result Logs
It is good practice to periodically purge result entries to prevent the table from
growing too large. Each test that is run results in a new row in the test result table.
These entries are not automatically cleared, so the table will keep growing without
bound as more tests are run over time.

The statistics table will not grow very large since its size is based on the number of
tests registered, not the number of times these tests have been executed. However,
since the statistics information keeps a running record of different metrics (e.g.,
number of failures) it is important to refresh this information to keep the statistics
relevant to the state of the system.

Test result and statistic entries can be removed from the database by navigating to
Configuration > Applications. The bottom of the screen shows all the result and
statistic entries for the application for all sessions. Deleting the result entries,
removes all the log entries which have been created for this application, regardless
of session. Note that this includes the current diagnostic session.

This page only shows the result entries in the database, and only deletes the log
entries in the database. If any result files have been generated by diagnostic sessions
(if the database was down), then they have to be manually deleted by going the
directory specified by the -Dframework.Logging.system.filename parameter.
4-2 Supportability Guide

Historical Logs: LogViewer
4.3.1 Scheduling Routine Purging

Deleting Diagnostic Logs
You can use the concurrent program "Delete Diagnostic Logs" to delete all Oracle
Diagnostics test reports that are older than a given number of days for one or more
applications. The application list is specified as a space-separated list of application
short names to the concurrent program. The number of days threshold is specified
as another input argument to the concurrent program. A value of "0" causes all logs
to be deleted, regardless of age. The program can be executed through Oracle
Applications Manager or through the Oracle Forms UI for submitting Concurrent
Program Requests.

Deleting Diagnostic Statistics
You can use the concurrent program "Delete Diagnostic Stats"to delete all the
statistics that have been collected about Oracle Diagnostics test executions. This
program can be run in the same way as "Delete Diagnostic Logs".

4.4 Historical Logs: LogViewer
Oracle Diagnostics provides the ability to query the repository of diagnostic test
logs in the database. However, access to the LogViewer is restricted to users with
the Diagnostic Role "Diagnostic Super User". For details, see Chapter 3, "Diagnostic
Security". To authorized users, the LogViewer subtab displays on the Home tab.
The LogViewer allows users to query for logs based on multiple criteria, including
dates, applications, test groups, sessions, test result status, etc. Apart from this, the
diagnostic homepage renders a bin which displays test failures from the past week.
Authorized users can drill down to detailed failure reports from this bin.
Diagnostics Result Reporting 4-3

Historical Logs: LogViewer
4-4 Supportability Guide

Launching Oracle Diagn
5

Launching Oracle Diagnostics

Oracle Diagnostics is available to users in more than one way. This chapter
discusses how to access the different user interfaces that are available, as well as
what can be accomplished in each of them. In summary, Oracle Diagnostics can be
accessed in the following ways:

■ Standalone HTML Guest User

■ CRM System Admistrator Console

■ Oracle Applications Manager

■ Command-line Console

5.1 Standalone HTML Guest-User
Most Diagnostics users will enter the application using this method.

5.1.1 Access
The Standalone HTML End-User entry point to Diagnostics can be reached by going
to the following URL:

http://<host>:<port>/OA_HTML/jtfqalgn.htm

The Tag entry is used to create a unique log file name for the Diagnostic session.
This log file is used to store test results in case the database is inaccessible on the
system. A good value for the Tag field is a person’s username.
ostics 5-1

CRM System Administrator Console
5.1.2 Features
With the Diagnostics Security Framework in version 2.1 and later, anyone entering
Diagnostics using this method is given whatever Diagnostic Role is granted to the
Guest User’s responsibilities. You should grant the Guest User the "End User"
Diagnostic Role if you want the Guest User to be able to do more than work only
with the HTML Platform. For details about Diagnostic Roles, see Chapter 3,
"Diagnostic Security".

Typically, this user will not be able to configure Oracle Diagnostics or view detailed
test reports. In order to perform these functions, the user needs to access
Diagnostics using the CRM System Administrator Console or through Oracle
Application Manager.

5.1.3 Bookmarking Pages in the Diagnostics UI
Oracle Diagnostics supports bookmarking of diagnostic pages. Bookmarking is the
saving of URLs as "Favorites" or "Bookmarks" in the browser. Since bookmarking
captures the URL on the browser, users can quickly navigate to the URL.

Remember that Oracle Diagnostics relies on several session and form post
parameters which may not show up on the URL. In cases where the Diagnostic
engine can find the relevant information through the URL, the appropriate
diagnostic page will be displayed. In all other cases, it will default to the
Diagnostics homepage. If the user session has expired, diagnostics will start a guest
user session -- the guest user may not have the appropriate responsibility to view
the information being sought. In such cases, you should authenticate yourself
before using diagnostic-related bookmarks.

5.2 CRM System Administrator Console
Administrator-level users that need to configure Oracle Diagnostics or view
sensitive data in the detailed test reports should enter using this method or through
Oracle Applications Manager. The CRM System Administrator Console can be
navigated to through the following URL:

http://<host>:<port>/OA_HTML/jtflogin.jsp

Clicking the Diagnostics tab will launch the Oracle Diagnostics user interface.
5-2 Supportability Guide

Oracle Applications Manager
5.2.1 Features
Depending on the users’ responsibilities, they will be assigned a diagnostics role. In
order to have unrestricted access to all diagnostics features such as configuration
and viewing test details, a user must have the Super User Diagnostics Role. For
details, see Chapter 5, "Launching Oracle Diagnostics".

5.3 Oracle Applications Manager
Select features of Oracle Diagnostics appear in Oracle Applications Manager
(OAM). Through the OAM UI, the application administrator can view diagnostic
test execution statistics as well as detailed log reports. If the application
administrator needs to perform other Oracle Diagnostics functions, he or she can
launch the standard Oracle Diagnostics UI from OAM.

Oracle Diagnostics has been integrated with OAM version 2.2 and above.

5.3.1 Finding Oracle Diagnostics in OAM
Log in to Oracle Applications Manager. After successfully logging in, you will
reach the OAM dashboard.

The entry point to Oracle Diagnostics is at the Diagnostics subtab in the dashboard.

5.3.2 Diagnostics Test Summary
Clicking the Diagnostics subtab displays summary information about diagnostic
tests executed on the environment using Oracle Diagnostics.

The diagnostic test results are categorized by applications and thenby groups
within applications. By default, Failures in Past Week is displayed. This means that
only those tests that failed within the last seven days are shown. You can filter the
data by choosing to View only the failures within the last 24 hourse or see all the
tests regardless of when they last failed, or if they even have failed at all. Clicking
on the Expand All link will display the entire hierarchy.

The Status column of the table reflects a rolled-up status for all the entities in the
hierarchy. For instance, the status icon for a group is the worst status of all the
statuses for the tests in that group, and that for an application is the worst status
among all the groups within that application. The status of a test is determined by
the last time the test was executed. The Last Failure Time and Last Execution Time
columns have values only for individual tests.

Clicking on the Status icon will show the details of that test’s last execution.
Launching Oracle Diagnostics 5-3

Oracle Applications Manager
5.3.3 Refreshing the Summary Data
Clicking on the refresh icon next to the Last Updated time will retrieve the latest
Diagnostic summary data from the database. Summary data will only be refreshed
upon logging into OAM or by explicitly clicking the refresh icon. Also, each view is
refreshed separately and has its own Last Updated time. For example, refreshing
data for the Failures Today view will not retrieve new data for the All view.

5.3.4 Diagnostic Test Details
This page shows the detailed report generated when the test was last executed. If
the test has had a failure, then you can also select to view the last failure by
selecting Last Failure then clicking Go. The information displayed is composed of
all the familiar elements Diagnostic log report.

5.3.5 Using the Support Cart
If the issue is a failure that cannot be resolved you can add the details to the OAM
Support Cart. The Support Cart lets you store important screen shots that you can
include when filing a TAR. To do this, click on the Add to Support Cart button at
the top of the screen. This will be followed by a confirmation screen stating that the
page has been successfully added to the Support Cart. Clicking OK will return you
back to the test details page.

To see all the items you have placed in the Support Cart. Click the Support Cart
icon at the very top of the screen. You will see all the screen captures for this
session.

Those captures that have the name oam/diagfwk/testDetails correspond to
Diagnostic test details. Clicking on the View icon will show the screen capture.
Clicking on the Save Cart button will allow you to save the entire cart as a zip file to
be included with your TAR.

5.3.6 Launching Oracle Diagnostics from OAM
Clicking on the Launch Diagnostics button in either test summary or test details
page will pop up a new window containing the full Oracle Diagnostics UI. In the
Oracle Diagnostics window, you can run tests and perform all other operations that
are normally permitted through Oracle Diagnostics.
5-4 Supportability Guide

Scheduling Batch Diagnostics
5.4 Command-line Console
The command-line console is typically used during development or during
installation when a system administrator needs to run regression tests to verify if
different aspects of the system are still functioning after a patch has been installed.

Naturally, you will not be permitted to access any "Configuration" functionality
over the Command-Line Console, since you are implicitly authenticated as a guest
user. This is necessary to keep the data registered with the framework secure.

Oracle Diagnostics can be launched in command-line mode using this command:

java -DJTFDBCFILE=<dbc file> -Dframework.Logging.system.filename=<framework
logfile>
-Dservice.Logging.common.filename=<service logfile>
oracle.apps.jtf.regress.qatool.QAConsole

You need to do the following in this command:

■ Specify the dbc file.

■ Specify the locations of the framework and service log files.

■ Ensure that the classpath being used has the JAVA_TOP, jdbc12.zip, and
jsdk.jar.

5.5 Scheduling Batch Diagnostics
When performing maintenance or verification tasks, you can schedule diagnostic
tests to run in batch mode. The concurrent program "Run Diagnostic Tests" is
provided for this purpose. You can set up this program through Oracle Applications
Manager or Oracle Forms. "Run Diagnostic Tests" can scheduled to execute a single
test, a group of tests, or all groups of tests that are registered under an application.
Launching Oracle Diagnostics 5-5

Scheduling Batch Diagnostics
5-6 Supportability Guide

Part II

 Logging

This part contains the following chapters:

■ Chapter 6, "Logging Framework Overview"

■ Chapter 7, "How to Configure Logging"

■ Chapter 8, "Logging Guidelines for System Administrators"

■ Chapter 9, "Logging Guidelines for Developers"

Logging Framewo
6

Logging Framework Overview

The Oracle Applications Logging Framework provides the ability to store and
retrieve log messages for debugging, error reporting, and alerting purposes.

You can set up, view, and purge log messages through HTML-based user interface
pages that are located in Oracle Applications Manager. For more information about
these pages, refer to the Oracle Applications System Administrator’s Guide or the
Oracle Applications Manager online help.

6.1 Target Audience
The target audience of this and other chapters related to logging are as follows:

System Administrators
As a system administrator, you should monitor alerts and log messages to manage
system activities and troubleshoot problems.

Application Developers and Consultants
You can use this manual to learn how to add alerts and log messages to your code.
Also, you can review log messages for debugging purposes.

6.2 Key Features
■ All Oracle Applications log messages are stored in a central repository.

■ Messages can be correlated across middle-tier and database servers.

■ Autonomous transactions are used to log to the database.

■ Context information is captured internally to facilitate the analysis of messages.
rk Overview 6-1

Terminology
■ Configurable System Alerts allow for e-mail and pager notification.

■ Messages can have attachments up to 4 GB in size.

■ Implementations in Java, PL/SQL, and C.

■ Multiple ways to control which messages are logged:

– Set Oracle Applications Object Library (FND) profiles in the database to
turn on logging, based on the application user, responsibility, application,
or site.

– Set the logging level to control which messages are logged, based on their
severity. There are six severities, ranging from STATEMENT (least severe)
to UNEXPECTED (most severe).

– Filter log messages by source module. Use of a wildcard character (%) is
supported.

– Turn on logging for individual processes.

– Turn on logging for individual threads within a JVM.

6.3 Terminology

Log Message
A complete log message has a set of message identifiers and the actual text of the
log message. The only identifiers that developers must provide are the message,
module, and severity. Everything else is automatically captured by the Logging
Framework.

Log messages include the following:

■ Time Stamp: The time the message was recorded.

■ Log Sequence: A unique sequence number internally generated for the message.

■ User ID: A unique identifier for the application user (foreign key to FND_
USER).

■ Responsibility ID: The user’s current responsibility (foreign key to FND_
RESPONSIBILITY).

■ Application ID: The user’s current application (foreign key to FND_
APPLICATION).
6-2 Supportability Guide

Terminology
■ Session ID: A unique identifier for the application user session (foreign key to
ICX_SESSIONS).

■ Transaction ID: A unique identifier to identify the runtime context of the
application. Four different transaction types are currently supported:

– Concurrent Program (CP): the CP-Id (foreign key to FND_CONCURRENT_
PROGRAMS), Request-Id (foreign key to FND_CONCURRENT_
REQUESTS) are automatically captured.

– Form Function: the Form-Id (foreign key to FND_FORMS), Function-Id
(foreign key to FND_FORM_FUNCTIONS) are automatically captured.

– ICX: the ICX Session-Id (foreign key to ICX_SESSIONS) and ICX
Transaction-Id (foreign key to ICX_TRANSACTIONS) are automatically
captured.

– Service: the Process-Id (foreign key to fnd_concurrent_processes),
Concurrent-Queue-Id (foreign key to fnd_concurrent_queues) are
automatically captured.

■ Node: The host name of the machine where the message was generated.

■ Node IP Address: The IP address of the machine where the message was
generated.

■ JVM ID: A unique identifier for the Java process where the message was
generated.

■ AUDSID: A unique identifier for the database connection
(userenv('SESSIONID')).

■ Process ID: A unique identifier for the database process (v$session.Process).

■ Thread ID: A unique identifier for the thread within the Java process where the
message was generated.

■ Severity: One of six predefined values that indicate the importance of the
message. See the full definition below.

■ Module: Represents the source of the message. Typically in Java this is the full
class name. When a class name starts with "oracle.apps", then the leading
"oracle.apps." is dropped in the logged message. For example:
"oracle.apps.jtf.util.Encoder" is logged as "jtf.util.Encoder".

■ Message Text: The descriptive body of the message. 4000 bytes is the maximum
length currently supported. Please accommodate for multibyte characters
Logging Framework Overview 6-3

Logging Configuration Parameters
appropriately. If additional space is required, then log attachments of up to 4
GB can be added.

Module Filter
A module filter is an optional comma-delimited list of strings that you can
configure to perform logging for specific modules. You can use a wildcard (%) if
desired. For example: "fnd%, jtf%, store%, cart%".

Severity
Each log message belongs to one of the following six severities (listed from least
severe to most severe): 1-STATEMENT, 2-PROCEDURE, 3-EVENT, 4-EXCEPTION,
5-ERROR, or 6-UNEXPECTED.

Logging Level
A logging level is a threshold that you can set to control the logging of messages.
You can set the logging level to any of the six severities defined above. When you
set a logging level, only messages that have a severity greater than or equal to the
defined level are logged. For example, if you set the logging level to 5-ERROR, then
logging occurs for messages that are 5-ERROR and 6-UNEXPECTED. If you set the
logging level to the lowest severity, 1-STATEMENT, then messages of all six
severities are logged.

6.4 Logging Configuration Parameters

6.4.1 Overview
The following parameters govern logging:

■ AFLOG_ENABLED

Specifies if logging is enabled or not. The default value is NULL (False).

■ AFLOG_LEVEL

Specifies the logging level. The default value is NULL (Log.UNEXPECTED).

■ AFLOG_MODULE

Specifies which modules are logged. The default value is NULL (%).

■ AFLOG_FILENAME

Specifies the file where middle-tier log messages are written.
6-4 Supportability Guide

Logging Configuration Parameters
These parameters can be set as middle-tier properties, Oracle Applications Object
Library (FND) profile option values, or a combination of both. Middle-tier
properties are set using Java system properties or C environment variables. The
middle-tier settings take precedence over database settings. This allows you to
control logging globally from the database, or locally from the middle tier.

If a parameter is not set as either a middle-tier property or an Oracle Applications
Object Library (FND) profile option value, then the default value is used. The
middle-tier properties only affect the middle-tier logging, and do not affect the
database (PL/SQL) layer logging.

Each log message has an associated module and level, which are determined by the
author of the message. Whether a log message is actually logged during an enabled
instance (AFLOG_ENABLED=TRUE) depends on how the message's level and
module compare to the settings of AFLOG_LEVEL and AFLOG_MODULE. The
message's level must be greater than or equal to the value of AFLOG_LEVEL, and
the module must match the filter AFLOG_MODULE.

Detailed descriptions of the logging parameters follow.

6.4.2 AFLOG_ENABLED
AFLOG_ENABLED determines if logging is enabled. In the database tier, the
possible values are "Y" and "N". In the middle tier, the possible values are "TRUE"
and "FALSE".

If AFLOG_ENABLED is set to FALSE using middle-tier properties, then no logging
occurs in the middle tier. If AFLOG_ENABLED is set to "N" using Oracle
Applications Object Library (FND) profiles, then no logging occurs in the database
tier.

If AFLOG_ENABLED is TRUE, then log messages of the appropriate level and
module will be logged either to the database or to a file. Since parameter values set
as middle-tier properties take precedence over values set as database profile option
values, logging can be globally enabled or disabled for a specific middle-tier process
using properties. For example, to completely disable middle-tier logging in a JVM,
use "-DAFLOG_ENABLED=FALSE".

For example:

/local/java/jdk1.2.2/bin/java -DAFLOG_ENABLED=FALSE org.apache.jserv.JServ

When AFLOG_ENABLED is set in this way, it overrides any value set using
database profile option values.
Logging Framework Overview 6-5

Logging Configuration Parameters
Likewise, logging can be globally enabled. If "-DAFLOG_ENABLED=TRUE" is
used, logging will be enabled, even for users whose database profile option value
for AFLOG_ENABLED is "N".

The following table shows how middle-tier parameters take precedence over
database profile option values:

6.4.3 AFLOG_LEVEL
AFLOG_LEVEL specifies the logging level. In order to be logged, messages must
have a severity greater than or equal to the value of AFLOG_LEVEL.

Any values set using middle-tier properties take precedence over profile option
values set in the database. For example, the logging level could be set to
"EXCEPTION" in the system properties as:

/local/java/jdk1.2.2/bin/java -DAFLOG_LEVEL=EXCEPTION org.apache.jserv.JServ

Database Tier Value Middle Tier Value Result

Y TRUE Logging occurs in both the
middle tier and the database.

Y FALSE Logging occurs in the database
only.

N TRUE Logging occurs in the middle tier
only.

N FALSE No logging occurs.
6-6 Supportability Guide

Logging Configuration Parameters
The following table lists the supported logging levels:

Logging
Level Value Meaning Audience Examples

Failure Reporting

Unexpected 6 Indicates an
unhandled internal
software failure.
(Typically requires
code or
environment fix.)

System
administrators at
customer sites, and
Oracle development
and support teams.

"Out of memory."
"Required file not
found."
"Data integrity error."
"Configuration error;
required property not
set, cannot access
configuration file."
"Failed to place new
order due to DB
SQLException."
"Failed to obtain
connection for
processing request."

Error 5 Indicates an
external end user
error. (Typically
requires end user
fix.)

System
administrators at
customer sites, and
Oracle development
and support teams.

"Invalid username or
password."
"User entered a
duplicate value for
field."

Exception 4 Indicates a handled
internal software
failure. (Typically
requires no fix.)

Oracle development
and support teams.

"Profile not found."
"Session timed out."
"Network routine
could not connect;
retrying"

Progress Reporting

Event 3 Used for high-level
progress reporting.

Oracle development
and support teams.

"User authenticated
successfully."
"Retrieved user
preferences
successfully."
"Menu rendering
completed."

Procedure 2 Used for API-level
progress reporting.

Oracle development
and support teams.

"Calling PL/SQL
procedure XYZ."
"Returning from
PL/SQL procedure
XYZ."
Logging Framework Overview 6-7

Logging Configuration Parameters
6.4.4 AFLOG_MODULE
Module names have the following form:

<application short name>.<directory>.<file>.<routine>.<label>

For example: "fnd.common.AppsContext.logOut.begin", where <application short
name> = "fnd", <directory> = "common", <file> = "AppsContext", <routine> =
"logOut", and <label> = "begin".

The Java framework write methods that take a "Class" or "this" Object as a
parameter automatically construct the module from the name of the Class. For
example, if a log message is being written from an instance of
"oracle.apps.fnd.common.AppsContext.class", then the module name will be
"fnd.common.AppsContext". Note that the leading "oracle.apps" is always dropped.

The AFLOG_MODULE parameter is a filter against which the module names of log
messages are compared. The percent sign (%) is used as a wildcard character. To
select all modules, set AFLOG_MODULE to "%". To only log messages from the
Class oracle.apps.fnd.common.AppsContext, set AFLOG_MODULE to
"fnd.common.AppsContext%".

6.4.5 AFLOG_FILENAME
The default value is NULL (Log to database. If database logging fails, then log to
the default file ./aferror.log).

AFLOG_FILENAME specifies the file where middle-tier log messages are written. If
a filename is specified as a middle-tier property, then middle-tier log messages are
written to that file. Messages at the PL/SQL layer are always logged to the database
table.

If a filename is not specified as a middle-tier property, then the following occurs:

Statement 1 Used for low-level
progress reporting.

Oracle development
and support teams.

"Obtained Connection
from Pool."
"Got request
parameter."
"Set Cookie with
name, value."

Logging
Level Value Meaning Audience Examples
6-8 Supportability Guide

Logging Configuration Parameters
■ If the database profile option value for the filename is not set in the database or
is inaccessible due to an error, then the log messages are written to the default
file (aferror.log).

■ If the database profile option value for AFLOG_FILENAME is accessible, then
the database value is read.

■ If the database profile option value is null, then messages are logged to the
database.

■ If the database profile option is not null, then messages are logged to the
specified file.

If the middle-tier process does not have write permission on the specified file, then
it logs to the default file. If it cannot write to the default log file, then it writes log
messages to STDERR.

If the full path is not specified in the filename, then the path is considered as relative
to the current working directory.

If a separate log file for each middle-tier process is needed, then give each process a
middle-tier property value for AFLOG_FILENAME.

6.4.6 AFLOG_ECHO
In addition to the four standard log parameters described above, AFLOG_ECHO is
available only in the Java tier. It is used to send log messages to STDERR.

If -DAFLOG_ECHO=TRUE and logging is enabled, then all filtered messages are
also logged to STDERR in addition to the configured file or database.
Logging Framework Overview 6-9

Logging Configuration Parameters
6-10 Supportability Guide

How to Config
7

How to Configure Logging

7.1 Using Middle-tier Properties to Configure Logging
All middle-tier property settings take precedence over profile option settings in the
database. Logging setup is often done by setting the Apache JServ system
properties in the jserv.properties file. This is a quick way to turn on logging for all
sites or users, regardless of the current profile option settings. Middle-tier
properties only affect middle-tier settings. They do not affect logging at the PL/SQL
layer.

7.1.1 Using Java
You can define Java system properties to control logging for each JVM.

The following examples show how to turn on logging for all modules and levels
using Java system properties. We assume that the JVM has write permission for the
file "/path/to/apps.log". As needed, you can substitute any other file to which the
JVM has write permission.

If you plan to log to a file, it is strongly recommended that you override the default
file "aferror.log". This default does not specify a full file path and in some cases may
not be writable by the middle tier process. Therefore, you should explicitly specify a
value for the parameter AFLOG_FILENAME.

7.1.1.1 Using Command Line JVM System Properties
To enable logging for an application (for example, MyClass) that is run from the
command line, add the following parameter values to the command line:

/local/java/jdk1.2.2/bin/java
-DAFLOG_ENABLED=TRUE -DAFLOG_LEVEL=STATEMENT \
-DAFLOG_MODULE=% -DAFLOG_FILENAME=/path/to/apps.log MyClass
ure Logging 7-1

Using Database Profile Options to Configure Logging
7.1.1.2 Using Apache JServ JVM System Properties
To enable logging using Apache JServ JVM system properties, add the following to
the jserv.properties file:

wrapper.bin.parameters=-DAFLOG_ENABLED=TRUE
wrapper.bin.parameters=-DAFLOG_LEVEL=STATEMENT
wrapper.bin.parameters=-DAFLOG_MODULE=%
wrapper.bin.parameters=-DAFLOG_FILENAME=/path/to/apps.log

In this case, the log directory used by JServ is a convenient location for the log file.

7.1.2 Using C
You can define environment variables to control logging for each C process.

The following example shows how to turn on logging for all modules and levels
using C environment variables. In these examples, we assume that the C process
has write permission for the file "/path/to/apps.log". As needed, you can
substitute any other file that the JVM can write to.

Note that the default value of the AFLOG_FILENAME parameter does not specify a
full file path. Therefore, in some cases this file may not be writable by the
middle-tier process. If you plan to log to a file, it is strongly recommended that you
explicitly override the default file "aferror.log". To do so, specify a value for the
parameter AFLOG_FILENAME.

!#/bin/csh
setenv AFLOG_ENABLED Y
setenv AFLOG_LEVEL STATEMENT
setenv AFLOG_MODULE %
setenv AFLOG_FILENAME /path/to/apps.log
./C-Executable

7.2 Using Database Profile Options to Configure Logging
You can configure logging by setting database profile options. The following table
lists profile option names and sample values:

Profile Option Name User Specified Name Sample Value

AFLOG_ENABLED FND: Debug Log Enabled "Y"

AFLOG_MODULE FND: Debug Log Module "%"
7-2 Supportability Guide

Using Logging to Screen
The available levels are Site, Application, Responsibility, and User. User settings
override Responsibility settings, Responsibility settings override Application
settings, and Application settings override Site settings.

To emphasize this point, the following is a summary of the impacts of the different
profile option levels:

■ User: Affects only the given user.

■ Application: Affects all users for the specific application.

■ Responsibility: Affects all users in any application for that responsibility.

■ Site: Affects all users, applications, and responsibilities.

7.3 Using Logging to Screen
In addition to the above methods where log messages are written to a file or the
database, Logging to Screen provides:

■ The ability to enable logging on a per HTTP request or per HTTP session basis.

■ Dynamic configuration which does not require restarting any servers or
changing any log profiles.

■ A convenient lightweight mechanism to diagnose performance issues. Each
message is timestamped to the millisecond.

If Logging to Screen is enabled, then the Java log messages generated for a
particular HTTP Request-Response are buffered in memory and appended to the
end of the generated HTML page.

AFLOG_LEVEL FND: Debug Log Level "ERROR"

AFLOG_FILENAME FND: Debug Log
Filename

"/path/to/apps.log"

Note: When setting up logging at the Site level, we strongly
recommend that you set the the logging level to UNEXPECTED.
ERROR or EXCEPTION are also possibilities. We strongly
discourage setting the logging level for a site to anything other than
UNEXPECTED, ERROR, or EXCEPTION.

Profile Option Name User Specified Name Sample Value
How to Configure Logging 7-3

Using Logging to Screen
This feature does not affect any existing configurations of file or database logging.
File or database logging continues to behave per the configured middle tier log
properties and/or log profile values.

Note that this mechanism currently provides only Java layer messages. Regular file
or database logging should be used if messages from other layers (e.g., PL/SQL) are
needed.

7.3.1 Enabling Logging to Screen in Oracle Application Framework Pages
For security reasons, this feature is only accessible if the "FND: Diagnostics" Profile
is set to "Yes".

Use the following procedure to enable Logging to Screen in pages based on the
Oracle Application Framework:

1. Click the Diagnostics button.

2. Select Show Log to Screen from the drop-down list.

3. Choose an appropriate log level.

4. Optionally, enter a module filter criteria such as jtf*. [In URLs, use the asterisk
symbol (*) as a wildcard character, not the percent sign (%).]

7.3.2 Enabling Logging to Screen in CRM Technology Foundation Pages
For security reasons, this feature is only accessible if the "FND: Diagnostics" Profile
is set to "Yes".

To enable logging to screen in pages based on the CRM Technology Foundation,
append the following to the page’s URL:

jtfdebug
Specify the logging level that should be displayed on the current screen.

jtfdebugfilter
(Optional) If desired, this parameter can be used as a filter to display messages
based on a Java package name.

For example: <current_url>&jtfdebug=STATEMENT&jtfdebugfilter=jtf*

[In URLs, use the asterisk symbol (*) as a wildcard character, not the percent sign
(%).]
7-4 Supportability Guide

Startup Behavior
7.4 Startup Behavior
At startup, applications do not have access to profile values. If middle-tier
properties are not set, then at startup, the system defaults to logging as follows:

■ Logs are stored in the file aferror.log (in the current directory).

■ Logs are stored at the level UNEXPECTED.

■ Logs are stored for all modules.

After a connection to the database has been established, the site-level log profiles
are read. When the user, responsibility, and application have been established, the
Oracle Applications Object Library (FND) profiles are read for that user.

For Java and PL/SQL applications, the logging system is initialized by FND_
GLOBAL.INITIALIZE (which is called from APPS_INITIALIZE), which is called
normally as part of the startup of every Java application session, form, report, or
concurrent program. At that point, it has user information and will log with the
proper user profiles. Before the FND_GLOBAL.INITIALIZE, if the logging system is
called it will self-initialize and log with the site- level profile values.

For Java applications, this is the sequence of startup steps:

1. If any of the log parameters are set as Java system properties, then use them.

2. Logging is not disabled using the Java system property AFLOG_
ENABLED=FALSE, and if any of the remaining log parameters are not set as
system properties, then retrieve the corresponding Oracle Applications Object
Library (FND) profile option values from the database. User-level profile values
override responsibility-level profile values, which override application-level
profile values, which override site-level profile values.

3. If any of the log parameters are not set either as system properties or as profile
values (or they are not accessible due to an error), then use the default values.
How to Configure Logging 7-5

Startup Behavior
7-6 Supportability Guide

Logging Guidelines for System Ad
8

Logging Guidelines for System

Administrators

If your Oracle Applications system is at Release 11.5.10 or later, then set up your
system according to the following guidelines. We recommend that you use Oracle
Applications Manager as the user interface for any log management tasks.

8.1 Recommended Default Site-Level Settings
For normal operations, we recommend that you configure your system as follows:

■ Enabled: On

■ Logging Level: UNEXPECTED

■ Log Repository: Database

■ Module Filter: %

Note: To optimize performance, if your Oracle Applications
system is at Release 11.5.9 or earlier, then it is recommended that
you fully disable logging. Instructions for disabling logging are
provided in this chapter.
ministrators 8-1

Recommended Settings for Debugging
8.2 Recommended Settings for Debugging
If you need to lower the logging level in order to gather information about a system
error, use the following recommended configurations. (As stated above, the default
logging level should be UNEXPECTED. This maintains optimum system
performance.)

8.2.1 Using Logging to Screen
For Java-based pages that are based on the Oracle CRM Technology Foundation or
the Oracle Applications Framework, if you have access to the browser that is
displaying the generated HTML, you can use the logging to screen feature to view
further detail when an error is reported.

This lightweight mechanism works best in cases where:

■ You are interested in Java layer messages only.

■ Debugging of is required for a particular request-response. For example, a JSP
request from a browser.

■ Debugging is required for all request-responses within a specific session.

8.2.2 Pinpointing an Error to a Specific User
You can use Oracle Application Object Library profiles to enable logging for the
specific user, responsibility, and application that were active when the error
occurred. Ask the user to log in again for the profile changes to take effect.
Remember to return the profiles to their usual values after debugging has been
completed.

Caution: If you set the default site-level logging level to
STATEMENT or PROCEDURE, a decrease in system performance
could result. Under that configuration, the large amount of
generated log messages might significantly slow down the system.
Furthermore, if the site-level logging level is set to a low severity
for a long time, then the FND_LOG_MESSAGES table could
potentially run out of space.
8-2 Supportability Guide

Updating Configuration Properties
If you suspect that certain code is causing the problem, then use hierarchical
module filters to restrict which messages are logged. For example: fnd.common.%

Set the logging level according to the appropriate level of detail. Recall that EVENT
messages report key progress events, while EXCEPTION, ERROR, and
UNEXPECTED messages report failures.

8.2.3 For High Volumes
For high load, high volume scenarios, you can log middle-tier messages to a local
file, which is faster than logging to a remote database. To do so, define the AFLOG_
FILENAME property to write all middle tier logging to a local file. Be sure to limit
the number of generated messages:

■ Use Oracle Applications Object Library FND Profiles to restrict logging
according to:

– Specific users

– Specific responsibilties

– Specific applications

■ If you suspect that certain code is causing the problem, then use hierarchical
module filters to restrict which messages are logged. For example:
fnd.common%

■ Set the logging level according to the appropriate level of detail. Recall that
EVENT messages report key progress events, while EXCEPTION, ERROR, and
UNEXPECTED messages report failures.

For maintenance purposes, you should periodically rotate log files and purge old
messages from the database table.

8.3 Updating Configuration Properties
If you have configured logging using middle-tier properties, then you must restart
the affected processes for those processes to use any modified logging properties.

By default, the Oracle Applications Object Library (FND) log database profile
values are cached by each process for performance.

In Release 11.5.9 and later, a cache invalidation mechanism is provided. Thus for all
user, responsibility, application, or site profiles, asking the user to log in again
typically forces the process to re-read the modified profile values.
Logging Guidelines for System Administrators 8-3

How to Completely Disable Logging
Note that the Logging to Screen feature does not require JVMs to be restarted, as it
does not use any middle-tier or database profile values.

8.4 How to Completely Disable Logging
Use the following procedure to completely disable logging:

■ If logging is configured using middle-tier properties, then set the AFLOG_
ENABLED middle-tier properties to FALSE in all appropriate middle-tier
configuration files (for example, jserv.properties) and/or startup scripts.

■ If logging is configured using Oracle Application Object Library profiles in the
database, then use the logging setup screen in Oracle Applications Manager to
turn off logging for all applications, responsibilities, and users. For details, see
the Oracle Applications System Administrator’s Guide or the Oracle Applications
Manager online help.

See the "Updating Configuration Properties" section above for details on how and
when the modified values come into effect.

8.5 Purging Log Messages
You should periodically delete old log messages to account for the space limitations
of the database table. In addition, you should periodically rotate log files.

There are several ways to purge log messages. They are described below:

8.5.1 Using a Concurrent Program
The concurrent program "Purge Debug Log and System Alerts" (Short name:
FNDLGPRG) is the recommended way to purge messages. This program purges all
messages upto the specified date, except messages for active transactions (new or
open alerts, active ICX sessions, concurrent requests, and so on). In Release 11.5.10,
this program is by default scheduled to run daily and purge messages older than 7
days. Internally this concurrent program invokes the FND_LOG_ADMIN APIs,
which are described later in this document.

8.5.2 Using Oracle Applications Manager
In Release 11.5.9 and later, go to System Alerts and Metrics from the Navigate to
drop-down list on the Applications Dashboard. Then click Logs. Refer to the Oracle
Applications Manager online help for instructions on how to use this screen.
8-4 Supportability Guide

Viewing Log Messages
8.5.3 Using the Oracle CRM System Administrator Console
In Release 11.5.8 and later, navigate to Settings > System > Debug Logging.

8.5.4 Using PL/SQL
You can use the FND_LOG_ADMIN PL/SQL package to delete log messages.

For example:

SET SERVEROUTPUT ON
declare
 del_rows NUMBER;
BEGIN
del_rows := fnd_log_admin.delete_all;
DBMS_OUTPUT.PUT_LINE(del_rows || ' rows deleted');
END;

8.6 Viewing Log Messages
This section summarizes the different user interfaces that can be used to view and
work with log messages, and how to access log messages from each UI.

CRM System Adminstrator Console
In Release 11.5.8 and later, navigate to Settings > System > Debug Logging.

Oracle Applications Framework Pages
In Release 11.5.10 and later, when working in Oracle Applications Framework
pages, you can use the following procedure to view log messages.

1. Pages based on the Oracle Applications Framework have a global button
labeled Diagnostics. Click this button to open a window where you can choose
Show Log. (Note that this "Diagnostics" global button does not refer to the
Diagnostics feature in Oracle Applications Manager that enables management
and execution of diagnostic tests.)

2. Select Show Log to open the Logs page within Oracle Applications Manager.
The Logs page is part of the System Alerts and Metrics feature.

Note: For the Diagnostics global button to be visible, the profile
option FND_DIAGNOSTICS must be set to YES.
Logging Guidelines for System Administrators 8-5

Viewing Log Messages
Oracle Applications Manager
In Release 11.5.9 and later, go to System Alerts and Metrics from the Navigate to
drop-down list on the Applications Dashboard. Then click Logs.

Oracle Forms
Navigate to Help > Diagnostics > Logging.
8-6 Supportability Guide

Logging Guidelines for
9

Logging Guidelines for Developers

You should utilize logging APIs frequently throughout your components. This will
aid in localizing problems if a bug is reported. We recommend that you carefully
select where you place logging calls, keep your code readable, and put only useful
and necessary information into log messages.

The log message text, module source, and severity come directly from you through
the coding of the APIs. These three fields cannot be changed or amended other than
through the code, so aim to make the information as informative and concise as
possible.

As a developer, you only need familiarize yourself with a few APIs and the six
severities. Call the appropriate API and pass in the following three fields:

■ Module Source

■ Severity

■ Message Text

All other fields are automatically populated by the APIs.

9.1 APIs
The following APIs are used to write log messages to the database:

■ The FND_LOG PL/SQL package.

■ The oracle.apps.fnd.common.AppsLog Java class.

■ The aflog(*) C APIs.

When the APIs write to the database, they typically communicate with the package
FND_LOG_REPOSITORY. This package is what actually writes the messages. When
debugging middle-tier edge cases, log messages can be sent to a file.
 Developers 9-1

Handling Errors
9.2 Handling Errors
Use the following procedure to handle errors in your code:

Step 1: Log internal error details (for example: Exception Stack Trace, relevant state
information). These details will be used by system administrators, support
personnel, etcetera to diagnose the issue.

Step 2: If the error is severe, then raise a System Alert to notify the system
administrator.

Step 3: If the error affects the end user, report the error to the end user through the
UI (or through a Request Log in the case of a concurrent program). The message
should be a translatable user-friendly message, and should not contain any internal
error details.

9.3 Performance Standards
For performance reasons, you are required to check if logging is enabled for the
severity of your message. This should happen before you create any objects or
concatenate any strings that form your log message. Checking the value of an
integer is less costly than allocating objects or concatenating strings. Remember that
function arguments are constructed before the function call. That is, a string
concatenation would occur before the Log write*(..) call is made! You should
explicitly check if logging is enabled to prevent string creation when logging is
disabled.

Sample Java Code
if(AppsLog.isEnabled(Log.EVENT))
 AppsLog.write("fnd.common.WebAppsContext", str1 + str2, Log.EVENT);

Sample PL/SQL Code
if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 FND_LOG.STRING(FND_LOG.LEVEL_PROCEDURE,
 'fnd.plsql.MYSTUFF.FUNCTIONA.begin', 'Hello, world!');
end if;

Furthermore, you can use a local variable when inside a tight loop or branch of code
that is not sensitive to a context switch for the life of the branch. This avoids
accessing a package global variable, which is more expensive than a local variable.
See the following example:
9-2 Supportability Guide

Module Source
procedure process_rows ()

 l_debug_level number:=FND_LOG.G_CURRENT_RUNTIME_LEVEL;
 l_proc_level number:=FND_LOG.LEVEL_PROCEDURE;

 begin

 for loop
 validation...
 other calls...
 if (l_proc_level >= l_debug_level) then
 fnd_log....
 end if;
 end loop;

 end;

Use a similar optimization for Java and C code wherever possible.

9.4 Module Source
The Module Source is a hierarchical identifier for a particular code block. The main
purpose of the Module Source is to:

■ Uniquely identify the source of the message.

■ Allow the system administrator to enable logging in particular areas, based on
this hierarchy.

For consistency, all module names must be constructed according to the following
rules. The module name identifier syntax is as follows:

<application short name>.<directory>.<file>.<routine>.<label>

Caution: Changes in the Oracle Application Object Library
Session (for example, switching responsibilities) can cause the Log
Profile values to change. In such scenarios, the Oracle Application
Object Library will correctly update FND_LOG.G_CURRENT_
RUNTIME_LEVEL, and corresponding values in C and Java as
well. However, if you have cached the value in your code, you may
not see this change.
Logging Guidelines for Developers 9-3

Module Source
Each syntax component is described in detail below.

<application short name>
Indicates the owner application of the code block, specified in lowercase. For
example: fnd, jtf, wf, sqlgl, inv.

<directory> | <package>
Indicates the directory or package where the file lives. In general, this is the actual
file system directory name. Usually the directory has just one component, but in
some cases, it may have two or more components. In Java, this is the full package
name. See the following table for examples.

<file> | <Class>
Indicates the patchable entity (file) that contains the code. In the case of server
PL/SQL, this is the package name rather than the file name. In Java, it is the class
name. See the following table for examples.

Language Format Example

Java dir[.subdir] commonfunctionSecurity.client

C <src>.dir Src.flex

Library PL/SQL Resource Resource

Forms PL/SQL Forms Forms

Reports PL/SQL Reports Reports

Server PL/SQL Plsql Plsql

Loaders Loaders Loaders

Language Format Example

Java <ClassName> WebAppsContext

C <filename> Fndval

Library PL/SQL <library name> FNDSQF

Forms PL/SQL <form filename> FNDSCAPP

Reports PL/SQL <report filename> FNDMNMNU
9-4 Supportability Guide

Module Source
<routine>
Indicates the code routine, procedure, method, or function. In the case of Oracle
Forms or Oracle Reports code where there is no routine name, this may be the
trigger name. See the following table for examples.

<label>
Is a descriptive name for the part within the routine. The major reason for providing
the label is to make a module name uniquely identify exactly one log call. This
allows support analysts or programmers to know exactly which piece of code
produced your message, without needing to look at the message (which may be
translated). Therefore, you should make labels for each log statement unique within
a routine.

Server PL/SQL <packagename> FND_GLOBAL

Loader <section> Afsload

Language Format Example

Java <method> ValidateSession

C <function> Fdfgvd

Library PL/SQL <package.function> FND_UTILITIES.OPEN_
URL

Forms PL/SQL <package.function> BLOCK_
HANDLER.VALIDATE_
NAME

Forms PL/SQL <function> DETERMINE_NEXT_
BLOCK

Forms PL/SQL <trigger> PRE-FORM

Reports PL/SQL <function> LOOKUP_DISPLAY_
VALUE

Reports PL/SQL <trigger> BEFORE_REPORT

Server PL/SQL <function> INITIALIZE

Loader <action>_<entity> UPLOAD_FUNCTION

Language Format Example
Logging Guidelines for Developers 9-5

Module Source
For grouping a number of log calls from different routines and files that can be
enabled or disabled automatically, a two-part label can be used. The first part is the
functional group name, and the second part is the unique code location.

For example, Oracle Applications Object Library (FND) descriptive flexfield
validation code might have several log calls in different places with labels, such as:

■ desc_flex_val.check_value

■ desc_flex_val.display_window

■ desc_flex_val.parse_code

These could all be enabled by setting the module as "fnd.%.desc_flex_val.%", even
though they may be in different locations in the code.

Messages logged at the PROCEDURE level should use the label "begin" for the
message logged upon entering and "end" or some variation thereof (like "end_
exception") for the message logged upon exiting. For example: begin, end, lookup_
app_id, parse_sql_failed, or myfeature.done_exec.

9.4.1 Module Name Standards
Use the guidelines below to ensure that your code meets the requirement for unique
module names across all applications.

■ A dot (.) must be used as the separator in the module name hierarchy.

■ At minimum, a module name must include the following required components:
<application short name>.<directory>.<file>.

■ The module name cannot contain spaces or commas. Space and comma
characters are reserved for internal parsing. Specifically, nothing except mixed
case alphanumeric characters, underscores, dashes, and the dot separator are
allowed.

■ The module name is compared to without regard to case, so use the same
upper, lower, or mixed case format as the directories, files, and routines that the
module name is based on. For components that aren't natively upper or lower
case (like the application short name and label), use lowercase.

Be aware that system administrators can turn on debugging at different levels
by using the above hierarchy schema. For example, the debug log calls for
fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles would be enabled if
the runtime user enabled logging at any of the following modules:

– fnd
9-6 Supportability Guide

Severities
– fnd.plsql

– fnd.plsql.FND

– fnd.plsql.FND_GLOBAL

– fnd.plsql.FND_GLOBAL.APPS_INITIALIZE

– fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles

9.4.2 Module Name Examples
■ fnd.common.WebAppsContext.validateSession.begin

■ fnd.common.WebAppsContext.validateSession.end

■ fnd.src.dict.afdict.afdget.lookup_shortname

■ fnd.flex.FlexTextField.getSegmentField.lookup_value

■ fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles

■ fnd.resource.FNDSQF.FND_UTILITIES.OPEN_URL.find_browser

■ fnd.loaders.afsload.DOWNLOAD_FORM.check_developer_key

■ fnd.forms.FNDSCSGN.FND_DATA_TABLE.GET_DB_WINDOW_
SIZE.geometry

9.5 Severities
See Section 6.4.3, "AFLOG_LEVEL" for a table that summarizes the available log
severities and their usage.

STATEMENT and PROCEDURE are intended for debugging by internal Oracle
development only. The higher severities, EVENT, EXCEPTION, ERROR and
UNEXPECTED, have a broader audience. We encourage you to monitor and
attempt to resolve ERROR and UNEXPECTED messages.

Log all internal and external failure messages at EXCEPTION, ERROR, or
UNEXPECTED. ERROR and UNEXPECTED messages should be translatable
Message Dictionary messages.

Determining where to insert log messages can be an iterative process. As you learn
more about your code usage, you gain a better understanding of where to insert log
messages that would quickly help isolate the root cause of the error. At a minimum,
you should log messages for the following scenarios:
Logging Guidelines for Developers 9-7

Severities
9.5.1 UNEXPECTED
This severity indicates an unhandled internal software failure which typically
requires a code or environment fix.

Log any unrecoverable errors that could occur in as UNEXPECTED. Be very
selective in using the UNEXPECTED severity in Message Dictionary-based
messages, as messages logged with this severity can be automatically propagated to
system administrators as System Alerts. While all log messages should be concise
and meaningful, UNEXPECTED messages in particular should be thoughtfully
created and reviewed so system administrators can quickly understand the error.

9.5.2 ERROR
This severity indicates an external end user error which typically requires an end
user fix.

Log all user error conditions as ERROR. System administrators may choose to
enable logging for ERROR messages to see the errors their users are encountering.

ERROR messages should use the Message Dictionary and be seeded in FND_NEW_
MESSAGES. If the corresponding error is encountered during runtime, the message
must be logged, and if applicable, displayed appropriately. Please see the section
Section 9.7, "Automatic Logging and Alerting for Seeded Message Dictionary
Messages" for details.

Include the following in ERROR and UNEXPECTED messages:

■ Cause: A message describing the cause of the error, and any appropriate state
variable values. For example, "Invalid user=" + username;

■ "Fix Information" or "Workaround", if known. For example, "Please check your
username and/or password."

9.5.3 EXCEPTION
This severity indicates a handled internal software failure which typically requires
no fix.

Java exceptions should always be logged. Java exceptions are never part of the
normal code flow, and hence should never be ignored. Exceptions should be
handled appropriately in your code, and logged for debugging purposes. Whenever
you raise an exception, log the cause of the exception first. Convenience log APIs
are provided to allow you to pass an exception object in place of the message text. If
9-8 Supportability Guide

Severities
no severity is passed, then Java exceptions are by default logged at severity
EXCEPTION.

Severe exceptions that prevent your product from functioning should be logged at
severity UNEXPECTED. For example, log a SQLException when a user places a
new order as UNEXPECTED.

9.5.4 EVENT
This severity is used for high-level progress reporting. These apply to application
milestones, such as completing a step in a flow, or starting a business transaction.

Whenever your application code reads configurable values, the configured values
must be logged. The value may be obtained from profiles, already known attributes
of an object (for example, the customer's primary address), defaulting rules,
etcetera. Log the source, name, and value. For consistency, the label within the
module field of such messages should be appended with ".config". For example,
"fnd.common.MyClass.MyAPI.config"

9.5.5 PROCEDURE
This severity is used for API-level progress reporting.

Log key functions and APIs as PROCEDURE. The module name for such messages
should contain the function or API name, "begin" at the beginning of the procedure,
and "end" at the end. For example, the validateSession(..) API is a key API that logs
a message at the beginning of the API with module name,
"fnd.common.WebAppsContext.validateSession.begin", and the end,
"fnd.common.WebAppsContext.validateSession.end".

Whenever you override any base class methods, you must log a message in your
derived class's implementation.

The message body should contain the key input values, state values, and return
values. For example, log input and output for all controllers, Request, FormRequest,
FormData methods.

Log messages at integration points, especially when calling another application's
API. Also, use logging when calling procedures across application layers. For
example, when calling a PL/SQL API from the Java layer.

9.5.6 STATEMENT
This severity is used for low-level progress reporting.
Logging Guidelines for Developers 9-9

Large Text and Binary Message Attachments
If you generate SQL (dynamic SQL), it must be logged.

Log all bind variables.

Any user interface choice or dynamic modification of the user interface must be
logged. For example, use of "switcher" beans, or page forwards.

Where appropriate, include relevant state variables.

9.6 Large Text and Binary Message Attachments
In Release 11.5.9 and later, you can use Message Attachment APIs to add additional
context information to log messages and/or System Alerts. This feature provides
efficient buffered writing APIs for logging large attachments. The seeded message
text for such attachments should contain a brief desciption of the error, and the
attachment should contain all relevant context details.

Currently attachments are stored in a database LOB. As of Release 11.5.10
(specifically, with minipack OAM.H), you can view attachments through Oracle
Applications Manager.

Java Code
oracle.apps.fnd.common.AppsLog:
 getAttachmentWriter(String, Message, int); // For text data
 getBinaryAttachmentWriter)String, Message, int, ...); // For binary data

For example:

if(alog.isEnabled(Log.UNEXPECTED))
{
 AttachmentWriter attachment = null;
 Message Msg = new Message("FND", "LOGIN_ERROR");
 Msg.setToken("ERRNO", sqle.getErrorCode(), false);
 Msg.setToken("REASON", sqle.getMessage(), false);
 try
 {
 // 'alog' is instance of AppsLog (not anonymous)
 attachment = alog.getAttachmentWriter(
"fnd.security.LoginManager.authenticate", Msg, Log.UNEXPECTED);
 if (attachment != null)
 {
 // Write out your attachment
 attachment.println("line1");
 attachment.println("line2");
 attachment.println("line3");
9-10 Supportability Guide

Large Text and Binary Message Attachments
 }
 } catch (Exception e)
 {
 // Handle the error
 } finally
 {
 // You must close the attachment!
 if (attachment != null)
 try { attachment.close(); } catch (Exception e) { }
 }
}

PL/SQL Code
FND_LOG.MESSAGE_WITH_ATTACHMENT(..);
FND_LOG_ATTACHMENT.WRITE(..); // For text data
FND_LOG_ATTACHMENT.WRITE_RAW(..); // For binary data

For example:

if(FND_LOG.LEVEL_UNEXPECTED >=
 FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 FND_MESSAGE.SET_NAME('FND', 'LOGIN_ERROR'); -- Seeded Message
 -- Runtime Information
 FND_MESSAGE.SET_TOKEN('ERRNO', sqlcode);
 FND_MESSAGE.SET_TOKEN('REASON', sqlerrm);
 ATTACHMENT_ID := ND_LOG.MESSAGE_WITH_ATTACHMENT(FND_LOG.LEVEL_UNEXPECTED,
'fnd.plsql.Login.validate', TRUE);
 if (ATTACHMENT_ID <> -1) then
 FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line1");
 FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line2");
 FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line3");
 -- You must call CLOSE
 FND_LOG_ATTACHMENT.CLOSE(ATTACHMENT_ID);
 end if;
end if;
Logging Guidelines for Developers 9-11

Automatic Logging and Alerting for Seeded Message Dictionary Messages
9.7 Automatic Logging and Alerting for Seeded Message Dictionary
Messages

Seeded Oracle Applications Object Library Message Dictionary messages can be
made automatically loggable and automatically alertable by setting the
corresponding message metadata attributes.

At runtime, when the Oracle Applications Object Library Message Dictionary APIs
are invoked to retrieve these messages in translated format, they will also be
internally loggedor alerted if the current log configuration permits it.

To be automatically logged, the seeded message's "Log Severity" attribute must be
greater than or equal to the configured log level.

To be automatically alerted, the seeded message's "Alert Category" and "Alert
Severity" attributes must be defined, and the log configuration should be enabled at
least at the 6-UNEXPECTED level.

9.8 General Logging Tips
■ Do not log sensitive information such as passwords or credit card numbers in

unencrypted plain text.

■ For readability, do not code the integer values (1, 2, 3, etc.) in your calls to
designate severity. Always use the appropriate descriptive name listed above.

9.9 How to Log from Java
AppsLog is the class that provides core logging functionality. The Oracle CRM
Technology Foundation provides convenient wrapper APIs around AppsLog. This
section describes how to use AppsLog and the wrapper APIs.

9.9.1 Core AppsLog
In Java, the core Oracle Applications Object Library (FND) logging functionality is
provided by the oracle.apps.fnd.common.AppsLog class. A number of convenience
wrappers are available.

AppsLog is a thread-safe class that allows multiple users and threads to log
messages concurrently. AppsLog objects are typically created and configured based
on a user's log profile settings during the initialization of a user's Oracle
Applications Object Library session. Note that AppsLog is not a static singleton
9-12 Supportability Guide

How to Log from Java
class. As different users can have different log profile settings, multiple AppsLog
objects will exist within a JVM.

Take care to use the correct AppsLog instance, as there can be multiple concurrent
threads and users. Try first to use the current user's AppsContext, and call getLog()
on it to get the AppsLog instance. AppsContext's AppsLog is fully initialized based
on the current user's log profile settings and Java system properties. Depending on
its configuration, it can log to either the database or a file. Do not create static
references to this fully initialized AppsLog. Use APIs to get the appropriate
AppsContext's AppsLog instance every time.

In edge-case scenarios (for example, before an Oracle Applications Object Library
Session is fully initialized and there is no AppsContext available), you can call static
AppsLog.getAnonymousLog() to get a standalone AppsLog that is anonymous,
initialized only based on Java system properties, and can log only to a file.

9.9.1.1 Code Sample
public boolean authenticate(AppsContext ctx, String user, String passwd)
 throws SQLException, NoSuchUserException {
 AppsLog alog = (AppsLog) ctx.getLog();
 if(alog.isEnabled(Log.PROCEDURE)) /*To avoid String Concat if not enabled
*/
 alog.write("fnd.security.LoginManager.authenticate.begin",
 "User=" + user, Log.PROCEDURE);
 /* Never log plain-text security sensitive parameters like passwd! */
 try {
 validUser = checkinDB(user, passwd);
 } catch(NoSuchUserException nsue) {
 if(alog.isEnabled(Log.EXCEPTION))
 alog.write("fnd.security.LoginManager.authenticate",nsue,
Log.EXCEPTION);
 throw nsue; // Allow the caller Handle it appropriately
 } catch(SQLException sqle) {
 if(alog.isEnabled(Log.UNEXPECTED)) {
 alog.write("fnd.security.LoginManager.authenticate", sqle,
Log.UNEXPECTED);
 Message Msg = new Message("FND", "LOGIN_ERROR"); /* System Alert */
 Msg.setToken("ERRNO", sqle.getErrorCode(), false);
 Msg.setToken("REASON", sqle.getMessage(), false);
 /* Message Dictionary messages should be logged using writeEncoded(..)
 * or write(..Message..), and never using write(..String..) */
 alog.write("fnd.security.LoginManager.authenticate", Msg,
Log.UNEXPECTED);
 }
Logging Guidelines for Developers 9-13

How to Log from Java
 throw sqle; // Allow the UI caller to handle it appropriately
 } // End of catch(SQLException sqle)
 if(alog.isEnabled(Log.PROCEDURE)) /* To avoid String Concat if not enabled
*/
 alog.write("fnd.security.LoginManager.authenticate.end", "validUser=" +
validUser, Log.PROCEDURE);
 return success;
 }

9.9.2 OAPageContext and OADBTransaction APIs
The classes oracle.apps.fwk.util.OAPageContext and
oracle.apps.fwk.util.OADBTransaction delegate log calls to the AppsLog class. To
make logging calls in a UI controller, use OAPageContext. To make logging calls
from an application module, use OADBTransaction.

The following are the main logging APIs provided:

9.9.2.1 isLoggingEnabled(int logLevel)
This returns true if logging is enabled for the given log level. In all cases, test that
logging is enabled before creating a message and calling the writeDiagnostics
method.

9.9.2.2 writeDiagnostics(Object module, String messageText, int logLevel)
This writes log messages to the database. Remember that each log message includes
a log sequence, user ID, session ID, module identifier, level, and message.

9.9.3 CRM Technology Foundation APIs
The class oracle.apps.jtf.base.Logger delegates log calls to the AppsLog class. The
following are the main logging APIs provided:

9.9.3.1 Logger.out(String message, int severity, Class module);
Use this API to log your message. The message length can be up to 4000 characters.
For example:

public class MyClass {
…
public boolean myAPI() {
 …
 if(Logger.isEnabled(Logger.STATEMENT)) // Important check for Performance!
9-14 Supportability Guide

How to Log from Java
 Logger.out("My message", Logger.STATEMENT, MyClass.class);
}
}

9.9.3.2 Logger.out(String message, int severity, Object module);
In situations where the "Class" is not available (such as when writing a JSP), you can
use this API and pass in a String. The message length can be up to 4,000 characters.
For example:

<% if(Logger.isEnabled(Logger.ERROR)) // Important check for Performance!
 Logger.out("In JSP land use the JSP Name", Logger.ERROR,
"jtf.html.jtftest.jsp"); %>

9.9.3.3 Logger.out(Exception e, Class module);
Use this API to log an exception. If the "Class" is not available, you can pass in the
String object. If the exception length is greater than 4,000 characters, then the
exception is split and logged in multiple rows. By default, all exceptions are logged
at severity EXCEPTION. If you would like to log an exception at a different severity,
you can use the corresponding APIs that take the severity as one of the arguments.

For example:
Logger.out(Exception e, int severity, Class module);

Note: Do not specify integer values (1, 2, 3, etc.) in your calls to
Logger APIs. Instead, refer to the severity level by the appropriate
name:

Logger.STATEMENT

Logger.PROCEDURE

Logger.EVENT

Logger.EXCEPTION

Logger.ERROR

Logger.UNEXPECTED
Logging Guidelines for Developers 9-15

How to Log from PL/SQL
9.10 How to Log from PL/SQL
PL/SQL APIs are a part of the FND_LOG Package. These APIs assume that
appropriate application user session initialization APIs (for example, FND_
GLOBAL.INITIALIZE(..)) have already been invoked for setting up the user session
properties on the database session. These application user session properties
(UserId, RespId, AppId, SessionId) are internally needed for the Log APIs. In
general, all Oracle Application frameworks invoke these session initialization APIs
for you.

To log plain text messages, use FND_LOG.STRING(..),.

9.10.1 API Description
PACKAGE FND_LOG IS
 LEVEL_UNEXPECTED CONSTANT NUMBER := 6;
 LEVEL_ERROR CONSTANT NUMBER := 5;
 LEVEL_EXCEPTION CONSTANT NUMBER := 4;
 LEVEL_EVENT CONSTANT NUMBER := 3;
 LEVEL_PROCEDURE CONSTANT NUMBER := 2;
 LEVEL_STATEMENT CONSTANT NUMBER := 1;

 /*
 ** Writes the message to the log file for the specified
 ** level and module
 ** if logging is enabled for this level and module
 */
 PROCEDURE STRING(LOG_LEVEL IN NUMBER,
 MODULE IN VARCHAR2,
 MESSAGE IN VARCHAR2);

 /*
 ** Writes a message to the log file if this level and module
 ** are enabled.
 ** The message gets set previously with FND_MESSAGE.SET_NAME,
 ** SET_TOKEN, etc.
 ** The message is popped off the message dictionary stack,
 ** if POP_MESSAGE is TRUE.
 ** Pass FALSE for POP_MESSAGE if the message will also be
 ** displayed to the user later.
 ** Example usage:
 ** FND_MESSAGE.SET_NAME(...); -- Set message
 ** FND_MESSAGE.SET_TOKEN(...); -- Set token in message
 ** FND_LOG.MESSAGE(..., FALSE); -- Log message
 ** FND_MESSAGE.RAISE_ERROR; -- Display message
9-16 Supportability Guide

How to Log from PL/SQL
 */
 PROCEDURE MESSAGE(LOG_LEVEL IN NUMBER,
 MODULE IN VARCHAR2,
 POP_MESSAGE IN BOOLEAN DEFAULT NULL);

 /*
 ** Tests whether logging is enabled for this level and module,
 ** to avoid the performance penalty of building long debug
 ** message strings unnecessarily.
 */
 FUNCTION TEST(LOG_LEVEL IN NUMBER, MODULE IN VARCHAR2)
RETURN BOOLEAN;

9.10.2 Example
Assuming Oracle Applications Object Library session initialization has occurred
and logging is enabled, the following calls would log a message:

begin

 /* Here is where you would call a routine that logs messages */
 /* Important performance check, see if logging is enabled */
 if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 FND_LOG.STRING(FND_LOG.LEVEL_PROCEDURE,
 'fnd.plsql.MYSTUFF.FUNCTIONA.begin', 'Hello, world!');
 end if;
/

The FND_LOG.G_CURRENT_RUNTIME_LEVEL global variable allows callers to
avoid a function call if a log message is not for the current level. It is automatically
populated by the FND_LOG_REPOSITORY package.

if(FND_LOG.LEVEL_EXCEPTION >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 dbg_msg := create_lengthy_debug_message(...);
 FND_LOG.STRING(FND_LOG.LEVEL_EXCEPTION,
 'fnd.form.ABCDEFGH.PACKAGEA.FUNCTIONB.firstlabel', dbg_msg);
end if;

For Forms Client PL/SQL, the APIs are the same. However to check if logging is
enabled, you should call FND_LOG.TEST(..).

For example, when logging Message Dictionary Messages:

if(FND_LOG.LEVEL_UNEXPECTED >=
 FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
Logging Guidelines for Developers 9-17

How to Log from C
 FND_MESSAGE.SET_NAME('FND', 'LOGIN_ERROR'); -- Seeded Message
 -- Runtime Information
 FND_MESSAGE.SET_TOKEN('ERRNO', sqlcode);
 FND_MESSAGE.SET_TOKEN('REASON', sqlerrm);
 FND_LOG.MESSAGE(FND_LOG.LEVEL_UNEXPECTED, 'fnd.plsql.Login.validate', TRUE);
end if;

9.11 How to Log from C
Use the following APIs to log from C:

#define AFLOG_UNEXPECTED 6
#define AFLOG_ERROR 5
#define AFLOG_EXCEPTION 4
#define AFLOG_EVENT 3
#define AFLOG_PROCEDURE 2
#define AFLOG_STATEMENT 1

/*
** Writes a message to the log file if this level and module is
** enabled
*/
void aflogstr(/*_ sb4 level, text *module, text* message _*/);

/*
** Writes a message to the log file if this level and module is
** enabled.
** If pop_message=TRUE, the message is popped off the message
** Dictionary stack where it was set with afdstring() afdtoken(),
** etc. The stack is not cleared (so messages below will still be
** there in any case).
*/
void aflogmsg(/*_ sb4 level, text *module, boolean pop_message _*/);

/*
** Tests whether logging is enabled for this level and module, to
** avoid the performance penalty of building long debug message
** strings
*/
boolean aflogtest(/*_ sb4 level, text *module _*/);

/*
** Internal
** This routine initializes the logging system from the profiles.
9-18 Supportability Guide

How to Log in Concurrent Programs
** It will also set up the current session and username in its state */
void afloginit();

9.12 How to Log in Concurrent Programs

9.12.1 Debug and Error Logging
Use a CP Request Log only for messages intended for end users. Log debug
information and error details (intended for system administrators and support
personnel) to FND_LOG.

PL/SQL, Java, or C code that could be invoked by both CPs and application code
should only use Oracle Applications Object Library (FND) Log APIs. If needed, the
wrapper CP should perform appropriate batching and logging to the Request Log
for progress reporting purposes.

For message correlation, in Release 11.5.10 and later, CP Request Log APIs log
messages to both the Request Log and FND Log at severity EVENT (only if logging
is enabled at EVENT or a lower level).

In Java CPs, use AppsLog for debug and error logging. The AppsLog instance can
be obtained from the CpContext Object by calling getLog().

9.12.2 Request Log

The Request Log is the end user UI for concurrent programs (CPs). When writing
CP code, only translatable, end user-oriented messages should be logged to the
Request Log.

For example, if an end user inputs a bad parameter to the CP, then log an error
message to the Request Log so the end user can take corrective action. A code
sample follows:

-- Seeded Message for End-User
FND_MESSAGE.SET_NAME('FND', 'INVALID_PARAMETER');

Caution: Do not use the Request Log for debug messages or
internal error messages that are oriented to system administrators
and/or Oracle Support. Such messages should only be logged to
FND_LOG.
Logging Guidelines for Developers 9-19

How to Raise System Alerts
-- Runtime Parameter Information
FND_MESSAGE.SET_TOKEN('PARAM_NAME', pName);
FND_MESSAGE.SET_TOKEN('PARAM_VALUE', pValue);
-- Useful for Auto-Logging Errors
FND_MESSAGE.SET_MODULE('fnd.plsql.mypackage.myfuntionA');
fnd_file.put_line(FND_FILE.LOG, FND_MESSAGE.GET);

However, if the CP fails due to an internal software error, then the detailed failure
message should be logged to FND_LOG. Additionally, a high-level generic message
such as "Your request could not be completed due to an internal error"should also
be logged to the Request Log to inform the end user of the error.

9.12.3 Output File

An output file is a formatted file generated by a CP that could be sent to a printer or
viewed in a UI window. An invoice is an example of an output file, for example:

fnd_file.put_line(FND_FILE.OUTPUT, ******** XYZ Invoice ********’);

9.13 How to Raise System Alerts
Raise System Alerts to notify system administrators of serious problems or
potentially serious problems. System Alerts are posted to the Oracle Applicatons
Manager console, and are also sent to subscribed administrators through Workflow
notifications. These messages should be used in cases where one of the following
applies:

■ The person who needs to take action is not the end user who encountered the
problem.

■ The problem is encountered by system processes, where there is no end user.

When a System Alert is posted, a variety of context information is automatically
collected. This may include information about the end user, responsibility, product,
component, OS process, database session, and so on. Oracle Applications Manager
allows users to drill down from a System Alert message to view any collected

Caution: Do not use the Output File for debug messages or
internal error messages that are oriented to system administrators
and/or Oracle Support. Such messages should only be logged to
FND_LOG.
9-20 Supportability Guide

How to Raise System Alerts
context information, associated debug log messages, and other potentially relevant
information.

Additionally, Oracle Applications Manager tracks multiple occurrences of the same
alert message to prevent duplicate notifications from being sent.

All system alert messages must be defined in the Message Dictionary using the
messages form under the system administration responsibility.

Raising a System Alert
■ The message must be logged at the UNEXPECTED severity.

■ The message must be an encoded Message Dictionary message.

■ The message must have two attributes set in the Message Dictionary to facilitate
notification routing:

– Category: System, Product, Security, or User.

– Severity: Critical, Error, or Warning.

PL/SQL Code Sample
...
Exception
 when others then
 if(FND_LOG.LEVEL_UNEXPECTED >=
 FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
 -- To be alertable, seeded message must have
 -- Alert Category & Serverity defined
 FND_MESSAGE.SET_NAME('FND', 'LOGIN_ERROR'); -- Seeded Message
 -- Runtime Information
 FND_MESSAGE.SET_TOKEN('ERRNO', sqlcode);
 FND_MESSAGE.SET_TOKEN('REASON', sqlerrm);
 FND_LOG.MESSAGE(FND_LOG.LEVEL_UNEXPECTED, ’fnd.plsql.Login.validate', TRUE);
 end if;
...

Java Code Sample
if(alog.isEnabled(Log.UNEXPECTED)) {
 // To be alertable, seeded Message MUST have Alert
 // Category & Severity defined.
 Message Msg = new Message("FND", "LOGIN_ERROR");
 Msg.setToken("ERRNO", sqle.getErrorCode(), false);
 Msg.setToken("REASON", sqle.getMessage(), false);
Logging Guidelines for Developers 9-21

How to Raise System Alerts
 alog.write("fnd.security.LoginManager.authenticate", Msg, Log.UNEXPECTED);
}

9.13.1 Guidelines for Defining System Alerts
■ Make System Alert messages short and concise. System Alerts summarize

problems and are used in reports and notifications, which in turn provide links
to the related details.

■ Do not include context information tokens in System Alert messages. For
example, do not include the concurrent program name, Form name, time,
routine, user, responsibility, etcetera in System Alert messages. Such context
information is collected automatically by the logging APIs, and would be
redundant in the System Alert message. Also, the alert message is used for
filtering duplicate notifications. Including context information in the system
alert message would defeat this filtering mechanism.

■ You must set a value for the "Category" attribute. This attribute is used to
categorize alerts and route notifications to the appropriate subscription. The
valid values are as follows:

– System

Alert messages with the category "System" are typically routed to technical
users such as the system administrators or DBAs who maintain the
technology stack.

– Product

Alert messages with the category "Product" are typically routed to
functional administrators or product super users who take care of product
setup and maintenance.

– Security

Alert messages with the category "Security" are to alert administrators
about E-Business Suite security issues.

– User

Alert messages with the category "User" are to alert administrators about
issues reported by end users of the E-Business Suite.

■ You must set a value for the "Severity" attribute. This attribute is used for
sorting and filtering in Oracle Applications Manager. Also, users may subscribe
to notifications for alert messages based on this attribute. The valid values are
9-22 Supportability Guide

How to Raise System Alerts
"Critical," "Error," and "Warning." Use "Critical" when a serious error completely
impedes the progress of an important business process or affects a large user
community. Use "Error" for less serious, more isolated errors. Use "Warning"
when it is unclear whether the error has a negative impact on users or business
processes.

■ Refer to the online help provided in Oracle Applications Manager for more
information about System Alerts.
Logging Guidelines for Developers 9-23

How to Raise System Alerts
9-24 Supportability Guide

PL/SQL Helper Pack
A

PL/SQL Helper Packages

A.1 Package JTF_DIAGNOSTIC_ADAPTUTIL
This package provides helper APIs to initialize and manipulate data structures used
by PL/SQL diagnostic tests.

A.1.1 Function initInputTable

Usage
 initInputTable RETURN JTF_DIAG_INPUTTBL

Returns
Returns an initialized JTF_DIAG_INPUTTBL object.

A.1.2 Function initReportClob

Usage
initReportClob RETURN CLOB

Returns
Returns an initialized CLOB object.
ages A-1

Package JTF_DIAGNOSTIC_ADAPTUTIL
A.1.3 Function compareResults

Usage
compareResults(oper IN VARCHAR2, arg1 IN VARCHAR2, arg2 IN VARCHAR2)
RETURN BOOLEAN

Arguments
This procedure takes a three arguments:

■ oper - The operand of the operation that is to be performed, i.e., ">", "<", or "=".

■ arg1 - The expected String value .

■ arg2 – The string value that is to be tested.

For example, passing in ’=’ ’string1’ ’StRiNg’ would evaluate to true, as the two
strings match. Comparison is not case-sensitive.

Note: These functions are included in the utility package to help you implement
your test case. They are by no means the only way to compare results within the
PL/SQL diagnostic test template. For example:

IF compareResults(‘=’,’STR1’,’STR2’) THEN

is logically the same as:

IF (‘STR1’ = ‘STR2’) THEN

Either can be used while writing test cases.

A.1.4 Function compareResults

Usage
 compareResults(oper IN VARCHAR2, arg1 IN INTEGER, arg2 IN INTEGER)
RETURN BOOLEAN

Arguments
This procedure takes three arguments:

■ oper - The operator of the operation that is to be performed , i.e., ">", "<", or "=".

■ arg1 - The expected value.

■ arg2 - The value that is to be tested.
A-2 Supportability Guide

Package JTF_DIAGNOSTIC_ADAPTUTIL
That is, passing in > 50 1 would evaluate to true, as 50 is greater than 1, and so on.

compareResults(‘>’,1,50) would evaluate to false, as 1 is less than 50.

Note: These functions are included in the utility package to help you implement
your test case. They are by no means the only way to compare results within the
adapter. For example:

IF compareResults(‘>’,5000,10) THEN

is logically the same as:

IF (5000 > 10) THEN
and both return BOOLEAN values.

A.1.5 Procedure constructReport

Usage
constructReport(status IN VARCHAR2, errStr IN VARCHAR2, fixInfo IN
VARCHAR2, isFatal IN VARCHAR2) RETURN JTF_DIAG_REPORT

Parameters
■ status – The result of the test: "SUCCESS", "WARNING", or "FAILURE".

■ errStr - The error that has been populated by the user. It could be SQLERRM or
a user-defined error message, but must be under 4000 characters in length.

■ fixInfo – A string to help the user to fix the associated problem. It must be under
4000 characters in length.

■ isFatal - Either TRUE or FALSE (string representations are not Boolean values).

A.1.6 Procedure getInputValue
getInputValue(argName IN VARCHAR2, inputs IN JTF_DIAG_INPUTTBL)
RETURN VARCHAR2

Parameters
■ argname - The name of the variable you want retrieved.

■ inputs – A JTF_DIAG_INPUTTBL object which is where the associated value is
to be extracted from.
PL/SQL Helper Packages A-3

Package JTF_DIAGNOSTIC_ADAPTUTIL
A.1.7 Procedure addInput

Usage
addInput(inputs IN JTF_DIAG_INPUTTBL, var IN VARCHAR2, val IN
VARCHAR2) RETURN JTF_DIAG_INPUTTBL

Parameters
■ inputs - A JTF_DIAG_INPUTTBL object which is a table of JTF_DIAG_INPUTS

This object breaks down into two varchar2 objects representing the variable
name and a second varchar2 representing the value. The inputs parameter must
be initialized and passed into each additional addInput call to accumulate the
variables as the inputs variable gets appended to with the name,value and is
then returned.

■ var – The name of the variable to add (VARCHAR2).

■ val – The associated value of the variable name passed in (VARCHAR2).

Returns
This function creates a new JTF_DIAG_INPUTS object from the variable and value
passed in and returns this added pairing into the caller function as part of the JTF_
DIAG_INPUTTBL object. As this method is overloaded and no "showValue" is
passed in this instance, this field is set as TRUE by default for this call. That is, the
value field will be visible on the UI layer.

A.1.8 Function addInput

Usage
addInput (inputs IN JTF_DIAG_INPUTTBL, var IN VARCHAR2, val IN
VARCHAR2, showValue IN BOOLEAN) RETURN JTF_DIAG_INPUTTBL

Parameters
■ inputs - A JTF_DIAG_INPUTTBL object which is a table of JTF_DIAG_INPUTS.

This object breaks down into two varchar2 objects representing the variable
name and a second varchar2 representing the value. The inputs parameter must
be initialized and passed into each additional addInput call to accumulate the
variables as the inputs variable gets appended to with the name,value and is
then returned.

■ var – The name of the variable to add (VARCHAR2).
A-4 Supportability Guide

Package JTF_DIAGNOSTIC_ADAPTUTIL
■ val – The associated value of the variable name passed in (VARCHAR2).

■ showValue – A Boolean value to indicate if field is confidential on the UI.

Returns
This function creates a new JTF_DIAG_INPUTS object from the variable and value
passed in and returns this added pairing into the caller function as part of the JTF_
DIAG_INPUTTBL object. The showValue parameter can either be set to TRUE or
FALSE. If value is true then the value field is visible on the UI. If the value is false,
then the value field is confidential on the UI and will be displayed as a hidden field
by a series of asterixes in the value’s place.

A.1.9 Procedure setUp Vars

Usage
setUpVars(reportClob OUT CLOB)

This procedure is deprecated. See setUpVars below.

A.1.10 Procedure setUp Vars

Usage
setUpVars

Replaces setUpVars(CLOB).

This takes no arguments. This procedure initializes global variables for the current
session. For example:

■ The report CLOB is initialized for the session.

■ The global flag (b_html_on) indicating that the report is to be written in HTML is
reset to false (b_html_on)

■ The global flag is set to true when ‘@html’ is the first word written to the CLOB.

A.1.11 Procedure addStringToReport

Usage
addStringToReport (reportClob IN OUT CLOB, reportStr IN LONG)

This procedure is deprecated. See addStringToReport (..) below.
PL/SQL Helper Packages A-5

Package JTF_DIAGNOSTIC_COREAPI
A.1.12 Procedure addStringToReport

Usage
addStringToReport (reportStr IN LONG)

Replaces addStringToReport (CLOB,LONG). It takes a LONG representation of the
report string and appends the string onto the end of the current report CLOB. You
are responsible for adding any string formatting, such as new lines.

A.2 Package JTF_DIAGNOSTIC_COREAPI
This package provides methods that can be used in formatting test reports (both
HTML and plain text).

A.2.1 Procedure Line_Out

Usage
Line_Out ('String')

Parameters
Any text string.

Output
Writes the text to the report CLOB. This procedure is similar to the
addStringToReport procedure in the JTF_DIAGNOSTIC_ADAPTUTIL package.

Example
begin
 JTF_DIAGNOSTIC_COREAPI.Line_Out('Run Gather Schema Statistics');
end;

A.2.2 Procedure Insert_Style_Sheet

Usage
Insert_Style_Sheet
A-6 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
Output
Inserts a style sheet into the output. This API is not normally needed, as the style
sheet is automatically inserted with the header.

A.2.3 Procedure ActionErrorPrint

Usage
ActionErrorPrint ('String');

Parameters
Any text string.

Output
Displays the text string with the word ACTION prior to the string.

Example
begin
 ActionErrorPrint('Run Gather Schema Statistics');
end;

A.2.4 Procedure ActionPrint

Usage
ActionPrint ('String');

Parameters
Any text string.

Output
Displays the text string.

Example
begin
 ActionPrint('Run Gather Schema Statistics');
end;
PL/SQL Helper Packages A-7

Package JTF_DIAGNOSTIC_COREAPI
A.2.5 Procedure ActionWarningPrint

Usage
ActionWarningPrint ('String');

Parameters
Any text string.

Output
Displays the text string in a warning format.

Example
begin
 ActionWarningPrint('Run Gather Schema Statistics');
end;

A.2.6 Procedure WarningPrint

Usage
WarningPrint ('String');

Parameters
Any text string.

Output
Displays the text string in warning format.

Example
begin
WarningPrint('Statistics are not up to date');
end;
A-8 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
A.2.7 Procedure ActionErrorLink

Usage
ActionErrorLink ('Pre_String','Note_Number','Post_String');

ActionErrorLink ('Pre_String','URL','Link_Text', 'Post_String')

Parameters
■ Pre_String - The text to appear prior to the link

■ Note_Number - The number of the OracleMetaLink note being linked to.

■ URL - Any valid URL.

■ Link_Text - Text for the link to the URL.

■ Post_String - Text to appear after the link.

Output
This API displays the pre-link string, the link (as specified either by the note
number or by the URL and link text), and the post-link string all in the format of an
Error Action. It outputs HTML only.

Example
begin
ActionErrorLink('For clarification see note', 112233.1, 'which provides more
information on the subject');
ActionErrorLink('For clarification see the',
'http://someurl.us.com/somepage.html','Development Homepage', 'which provides
more information on the subject');
end;

A.2.8 Procedure ActionWarningLink

Usage
ActionWarningLink ('Pre_String','Note_Number','Post_String');

ActionWarningLink ('Pre_String','URL','Link_Text', 'Post_String');

 Parameters
■ Pre_String - The text to appear prior to the link.
PL/SQL Helper Packages A-9

Package JTF_DIAGNOSTIC_COREAPI
■ Note_Number - The number of the OracleMetaLink note being linked to.

■ URL - Any valid URL.

■ Link_Text - The text for the link to the URL.

■ Post_String - The text to appear after the link.

Output
This API displays the pre-link string, the link (as specified either by the note
number or by the URL and link text), and the post-link string all in the format of an
Warning Action. It outputs HTML only.

Example
begin
ActionWarningLink('For clarification see note', 112233.1, 'which provides more
information on the subject');
ActionWarningLink('For clarification see the',
'http://someurl.us.com/somepage.html','Development Homepage', 'which provides
more information on the subject');
end;

A.2.9 Procedure ErrorPrint

Usage
ErrorPrint ('String');

Parameters
Any text string.

Output
Displays the text string.

Example
begin
 ErrorPrint('Statistics have not been run');
end;
A-10 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
A.2.10 Procedure Show_Table_Header
This is a private text-only procedure used by Display_SQL to display the headers.

A.2.11 Procedure SectionPrint

Usage
SectionPrint ('String');

Parameters
Any text string.

Output
Displays the text string in bold formatting.

Example
begin
SectionPrint('Checking OE Parameters');
end;

A.2.12 Procedure Tab0Print

Usage
Tab0Print ('String');

Parameters
Any text string.

Output
Displays the text string without any indentation.

Example
begin
 Tab0Print('Layer 0');
end;
PL/SQL Helper Packages A-11

Package JTF_DIAGNOSTIC_COREAPI
A.2.13 Procedure Tab1Print

Usage
Tab1Print ('String');

Parameters
Any text string.

Output
Displays the text string with a 0.25 inch indentation.

Example
begin
 Tab1Print('Layer 1');
end;

A.2.14 Procedure Tab2Print

Usage
Tab2Print ('String');

Parameters
Any text string.

Output
Displays the text string with a 0.5 inch indentation.

Example
begin
 Tab2Print('Layer 2');
end;
A-12 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
A.2.15 Procedure Tab3Print

Usage
Tab3Print ('String');

Parameters
Any text string.

Output
Displays the text string with a 0.75 inch indentation.

Example
begin
 Tab3Print('Layer 3');
end;

A.2.16 Procedure BRPrint

Usage
BRPrint;

Output
Displays a blank line.

Example
begin
 Tab3Print('Layer 3');
 BRPrint;
 Tab3Print('Layer 4');
end;

A.2.17 Procedure CheckFinPeriod

Usage
CheckFinPeriod ('Set of Books ID','Application ID');
PL/SQL Helper Packages A-13

Package JTF_DIAGNOSTIC_COREAPI
Parameters
■ Set of Books ID - The ID for the set of books.

■ Application ID - The ID of the application whose periods are being checked.

Output
This API lists the number of defined and open periods and indicates the latest
period. It produces warnings if no periods are open or if the current date is not in an
open period.

Example
CheckFinPeriod(62, 222); -- Check open periods for AR SOB 62
CheckFinPeriod(202, 201); -- Check open periods for PO SOB 202

A.2.18 Procedure CheckKeyFlexfield

Usage
CheckKeyFlexfield ('Key Flexfield Code','Flexfield Structure ID','Print Header');

Parameters
■ Key Flexfield Code - The code of the Key Flexfield to be displayed. For example,

use GL# for the Accounting Flexfield.

■ Flexfield Structure ID - The id_flex_num of the specific structure of the Key
Flexfield whose details are to be displayed. If null (the default), the API prints
the details of all structures.

■ Print Header - A Booleanoperator (true or false) that indicates whether the
output should print a heading before outputting the details of the Key Flexfield.
The default is "true".

Returns
If a value is provided for the flexfield structure ID, this function returns an array of
character strings with the following structure:

1. Name of the flexfield

2. Enabled flag

3. Frozen flag
A-14 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
4. Dynamic insert flag

5. Cross-validation allowed flag

6. Number of enabled segments defined

7. Number of enabled segments with value sets

8. "Y" if any segment has security, otherwise "N"

If no value is passed to the parameter, the function returns an array with null
values.

Output
Displays important information about the flexfield, its structure, and the individual
flexfield segments it contains.

Example
declare
flexarray V2T;
begin
 CheckKeyFlexfield('GL#', 50577, true);
 CheckKeyFlexfield('MSTK', null, false);
 flexarray := CheckKeyFlexfield('GL#', 12345, false);
end;

A.2.19 Procedure CheckProfile

Usage
CheckProfile ('Profile Name', UserID, ResponsibilityID, ApplicationID, 'Default
Value', Indent Level);

Parameters
■ Profile Name - The system name of the profile option being checked.

■ User ID - The identifier of the Oracle Applications user for which the profile
option is to be checked.

■ Responsibility ID - The identifier of the responsibility for which the profile
option is to be checked.

■ Default Value - The value used as a default if the profile option is not set by the
user. The default is NULL.
PL/SQL Helper Packages A-15

Package JTF_DIAGNOSTIC_COREAPI
■ Indent Level - The number of tabs (0,1,2,3) that the output should be indented.
The default is 0.

Returns
If called as a function, the return value will be one of the following:

■ The value of the profile option, if set

■ "DOESNOTEXIST" if the profile option does not exist

■ "DISABLED" if the profile option has been end-dated

■ Null if the profile option is not set

Output
If the profile has been set, this API outputs the profile’s current setting. If not set
and a default value exists, the API displays a warning which indicates that the
default value will be used and what that default value is. If the profile has not been
set and no default value is supplied, the API displays an error which indicates that
the profile option should be set. The output will be indented according to the Indent
Level parameter supplied. If the profile option does not exist or is disabled, then the
API has no output.

Example
declare
 profile_val fnd_profile_option_values.profile_option_value%type;
begin
 profile_val := CheckProfile('PA_SELECTIVE_FLEX_SEG',g_user_id,
 g_resp_id, g_appl_id, null, 1);
 CheckProfile('PA_DEBUG_MODE',g_user_id, g_resp_id, g_appl_id);
 CheckProfile('PA_DEBUG_MODE',g_user_id, g_resp_id, g_appl_id,'Y',2);
end;

A.2.20 Function Column_Exists

Usage
Column_Exists ('Table Name','Column Name');

Parameters
■ Table Name - The name of the table that contains the column being checked.
A-16 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
■ Column Name - The name of the column being checked.

Returns
Returns "Y" if the column exists in the table, "N" if it does not.

Example
declare
 sqltxt varchar2(1000);
begin
 if Column_Exists('PA_IMPLEMENTATIONS_ALL','UTIL_SUM_FLAG') = 'Y'
then;
 sqltxt := sqltxt||' and i.util_sum_flag is not null';
 end if;
end;

A.2.21 Procedure Begin_Pre

Usage
Begin_Pre;

Output
Allows the following output (HTML output only) to be preformatted.

Example
begin
 Begin_Pre;
end;

A.2.22 Procedure End_Pre

Usage
End_Pre;

Output
Closes the Begin_Pre procedure. For HTML output only.
PL/SQL Helper Packages A-17

Package JTF_DIAGNOSTIC_COREAPI
Example
begin
 End_Pre;
end;

A.2.23 Procedure Display_SQL

Usage
Display_SQL ('SQL statement', 'disp_lengths_tbl', 'headers_tbl', 'feedback', 'max
rows');

Output
For text output.

A.2.24 Function Display_SQL

Usage
For HTML output:

a_number := Display_SQL('SQL Statement','Name for Header','Long Flag',
'Feedback', 'Max Rows');

For text output:

a_number := Display_SQL('SQL Statement', 'disp_lengths_tbl', 'headers_tbl',
'Feedback', 'Max Rows');

Parameters
■ SQL Statement - A valid SQL select statement.

■ Name for Header - A text string to serve as a heading for the output.

■ Long Flag - "Y" or "N". If set to "N", then the API will not output any LONG
columns. The default is "Y".

■ Feedback - "Y" or "N". Defines whether to indicate the number of rows selected
automatically in the output. The default is "Y".

■ Max Rows - Limits the number of output rows to this number. A value of null or
zero indicates there can be an unlimited number of output rows. The default is
NULL.
A-18 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
■ disp_lengths_tbl - A table of type "lengths" indicating the display length for each
of the columns in the select. A value must be supplied for each column. If the
value is null, the length of the header will be used.

■ headers_tbl - A table of type "headers" indicating the column heading for each of
the columns in the select. If an individual element of this parameter is null, or if
this parameter is not provided (it is not required), the heading will be the
column alias and the column name.

Returns
This function returns the number of rows selected. If there is an error, then the
function returns -1.

Output
Displays an HTML table.

Example
declare
 num_rows number;
begin
 num_rows := Display_SQL('select * from ar_system_parameters_all', 'AR
Parameters', 'Y', 'N',null);
 num_rows := Display_SQL('select * from pa_implementations_all', 'PA
Implementation Options');
end;

A.2.25 Function Run_SQL

Usage
For HTML-only APIs:

a_number := Run_SQL('Heading', 'SQL statement');

a_number := Run_SQL('Heading', 'SQL statement', 'Feedback');

a_number := Run_SQL('Heading', 'SQL statement', 'Max Rows');

a_number := Run_SQL('Heading', 'SQL statement', 'Feedback', 'Max Rows');

For text-only APIs:
PL/SQL Helper Packages A-19

Package JTF_DIAGNOSTIC_COREAPI
a_number := Run_SQL('Heading', 'SQL statement','disp_lengths_tbl', 'col_headers_
tbl');

a_number := Run_SQL('Heading', 'SQL statement','disp_lengths_tbl','col_headers_
tbl','Feedback');

a_number := Run_SQL('Heading', 'SQL statement','disp_lengths_tbl', 'col_headers_
tbl','Max Rows');

a_number := Run_SQL('Heading', 'SQL statement','disp_lengths_tbl', 'col_headers_
tbl','Feedback', ’Max Rows');

Parameters
■ Heading - A text string to serve as a heading for the output.

■ SQL Statement - Any valid SQL select statement.

■ Feedback - "Y" or "N". Indicates whether to automatically print the number of
rows returned. The default is "Y".

■ Max Rows - Limits the number of output rows to this number. A value of null or
zero indicates there can be an unlimited number of output rows. The default is
NULL.

■ disp_lengths_tbl - A table of type "lengths" indicating the display length for each
of the columns in the select. A value must be supplied for each column. If the
value is null, the length of the header will be used.

■ headers_tbl - A table of type "headers" indicating the column heading for each of
the columns in the select. If an individual element of this parameter is null, or if
this parameter is not provided (it is not required), the heading will be the
column alias and the column name.

Returns
This function returns the number of rows selected. If there is an error, then the
function returns -1.

Output
Displays the SQL statement’s output as an HTML table.

Example
declare
 num_rows number;
begin
A-20 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
 num_rows := Run_SQL('AR Parameters', 'select * from ar_system_parameters_
all');
end;

A.2.26 Function Run_SQL
For HTML-only APIs:

Run_SQL('Heading', 'SQL statement');

Run_SQL('Heading', 'SQL statement', 'Feedback');

Run_SQL('Heading', 'SQL statement', 'Max Rows');

Run_SQL('Heading', 'SQL statement', 'Feedback', 'Max Rows');

For text-only APIs:

Run_SQL('Heading', 'SQL statement', 'disp_lengths_tbl', 'col_headers_tbl');

Run_SQL('Heading', 'SQL statement', 'disp_lengths_tbl','col_headers_
tbl','feedback');

Run_SQL('Heading', 'SQL statement', 'disp_lengths_tbl','col_headers_tbl','max
rows');

Run_SQL('Heading', 'SQL statement', 'disp_lengths_tbl','col_headers_
tbl','feedback','max rows');

Parameters
■ SQL statement - A valid SQL select statement.

■ Heading - A text string to be a heading for the output.

■ disp_lengths_tbl - A table of type "lengths" that indicates the display length for
each of the columns in the select. A value must be supplied for each column,
even if that value is null. If the value is null, the length of the header will be
used.

■ col_headers_tbl - A table of type "headers" that indicates the column heading for
each of the columns in the select. If an individual element of this parameter is
null, or if this parameter is not provided (it is not required), the heading will be
the column alias and the column name.

Output
Displays the SQL statement’s output as an HTML table.
PL/SQL Helper Packages A-21

Package JTF_DIAGNOSTIC_COREAPI
Example
begin
 Run_SQL('AR Parameters', 'select * from ar_system_parameters_all');
end;

A.2.27 Function Compare_Pkg_Version

Usage
Compare_Pkg_Version ('package_name','obj_type','obj_owner', 'outversvar',
'reference_version');

Compare_Pkg_Version ('package_name','obj_type', 'outversvar', 'reference_version');

Parameters
■ package_name - The name of the package whose version is being checked.

■ obj_type - Either "BODY" or "SPEC", to determine which piece to check.

■ obj_owner - The owner of the package being checked. If null or not supplied, the
default value is "APPS".

■ outversvar - A text-out variable to hold the actual package version of the
package as returned from the database.

■ reference_version - A string containing the version to which the package version
should be compared. Uses the format ###.### -- for example, 115.119 (rather
than 11.5.119).

Returns
■ "greater" if the version of the object is greater than the reference

■ "less" if the version of the object is less than the reference

■ "equal" if the version of the object is equal to the reference

■ "null" if either the reference or database version is null

Output
Text only.

Example
declare
A-22 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
Comparison_Var varchar2(8);
Package_Version varchar2(10);
begin
Comparison_Var := Compare_Pkg_Version('PA_UTILS2','BODY','APPS', Package_
Version, '115.13');
Comparison_Var := Compare_Pkg_Version('PA_UTILS2','BODY', Package_Version,
'115.13');
end;

A.2.28 Procedure Show_Responsibilities

Usage
Show_Responsibilities ('username');

Parameters
■ username = a valid Oracle Applications username (case insensitive)

Output
Text only.

Example
begin
 Show_Responsibilities('jdoe');
end;

A.2.29 Function Display_Table

Usage
Display_Table ('Table Name', 'Heading', 'Where Clause', 'Order By', 'Long Flag');

Parameters
■ Table Name - A valid table or view.

■ Heading - A text string to serve as the output heading.

■ Where Clause - The where clause to apply to the table dump.

■ Order By - The "order by" clause to apply to the table dump.
PL/SQL Helper Packages A-23

Package JTF_DIAGNOSTIC_COREAPI
■ Long Flag - "Y" or "N". If set to "N", then this will not output any LONG
columns.

Output
Displays the output of the "select * from table" as an HTML table. This API only
outputs HTML.

Example
begin
 Display_Table('AR_SYSTEM_PARAMETERS_ALL', 'AR Parameters', 'Where Org_id !=
-3113', 'order by org_id, set_of_books_id', 'N');
end;

A.2.30 Function Display_Table

Usage
a_number := Display_Table('Table Name', 'Heading', 'Where Clause', 'Order By',
'Long Flag');

Parameters
■ Table Name - A valid table or view.

■ Heading - A text string to serve as the output heading.

■ Where Clause - The where clause to apply to the table dump.

■ Order By - The "order by" clause to apply to the table dump.

■ Long Flag - "Y" or "N". If set to "N", then this will not output any LONG
columns.

Returns
The number of rows displayed.

Output
Displays the output of the "select * from table" as an HTML table. This API only
outputs HTML.

Example
declare
A-24 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
 num_rows number;
begin
 num_rows := Display_Table('AR_SYSTEM_PARAMETERS_ALL', 'AR Parameters', 'Where
Org_id <> -3113' , 'order by org_id, set_of_books_id', 'N');
end;

A.2.31 Function Get_DB_Apps_Version

Usage
a_varchar := Get_DB_Apps_Version;

Returns
Returns the version of applications found in fnd_product_groups. It also sets the
variable g_appl_version to "10.7","11.0", or "11.5" as appropriate.

Example
declare
 apps_ver varchar2(20);
begin
 apps_ver := Get_DB_Apps_Version;
end;

A.2.32 Procedure Show_Header

Usage
Show_Header ('Note Number', 'Title');

Parameters
■ Note Number - A valid OracleMetaLink note number.

■ Title - A text string to display next to the note link.

Output
Displays standard header information.

Example
begin
PL/SQL Helper Packages A-25

Package JTF_DIAGNOSTIC_COREAPI
 Show_Header('139684.1', 'Oracle Applications Current Patchsets Comparison to
applptch.txt');
end;

A.2.33 Procedure Show_Footer

Usage
Procedure Show_Footer ('Script Name','Header');

Output
Displays a standard footer.

Example
begin
 Show_Footer('AR Setup Script', '$Header: ARTrxInfo.sql 1.0 01/12/11 12:33:24
support $';
end;

A.2.34 Procedure Show_Link

Usage
Procedure Show_Link ('Note Number');

Output
Displays a link to an OracleMetaLink note.

Example
begin
 Show_Link('139684.1');
end;

A.2.35 Procedure Show_Link

Usage
Show_Link('URL', 'Name');
A-26 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
Output
Displays a link to a URL using the name parameter value.

Example
begin
Show_Link('http://metalink.us.oracle.com', 'OracleMetaLink');
end;

A.2.36 Procedure Send_Email

Usage
Send_Email ('Sender', 'Recipient', 'Subject', 'Message', 'SMTP Host');

Output
Sends an e-mail message. There is no screen output.

Example
begin
Send_Email ('sender@company.com','recipient@oracle.com','This is a subject',
'This is a message body','gmsmtp01.oraclecorp.com');
end;

A.2.37 Function Get_Package_Version

Usage
a_varchar := Get_Package_Version ('Object Type', 'Schema', 'Package Name');

Returns
Returns the version of the package or specification.

Example
declare
 spec_ver varchar2(20);
 body_ver varchar2(20);
begin
 spec_ver := Get_Package_Version('PACKAGE','APPS','ARH_ADDR_PKG');
PL/SQL Helper Packages A-27

Package JTF_DIAGNOSTIC_COREAPI
 body_ver := Get_Package_Version('PACKAGE BODY','APPS','ARH_ADDR_PKG');
end;

A.2.38 Function Get_Package_Spec

Usage
a_varchar := Get_Package_Spec('Package Name');

Returns
Returns the version of the package specification in the APPS schema.

Example
declare
 spec_ver varchar2(20);
begin
 spec_ver := Get_Package_Spec('ARH_ADDR_PKG');
end;

A.2.39 Function Get_Package_Body

Usage
a_varchar := Get_Package_Body('Package Name');

Returns
Returns the version of the package body in the APPS schema.

Example
declare
 body_ver varchar2(20);
begin
 body_ver := Get_Package_Body('ARH_ADDR_PKG');
end;
A-28 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
A.2.40 Procedure Display_Profiles

Usage
Display_Profiles (application id, 'profile short name');

Output
Displays all profile settings for the application or profile in an HTML table.

Example
begin
 Display_Profiles(222,null);
 Display_Profiles(null, 'AR_ALLOW_OVERAPPLICATION_IN_LOCKBOX');
end;

A.2.41 Function Get_Profile_Option

Usage
a_varchar := Get_Profile_Option('Short Name');

Parameter
■ Short Name - The short name of the profile option.

Returns
Returns the value of the profile option, based on the user. If Set_Client has not been
run successfully, then it will return the site-level profile option value.

Example
declare
 prof_value varchar2(150);
begin
 prof_value := Get_Profile_Option('AR_ALLOW_OVERAPPLICATION_IN_LOCKBOX')
end;
PL/SQL Helper Packages A-29

Package JTF_DIAGNOSTIC_COREAPI
A.2.42 Procedure Set_Org

Usage
Set_Org (Org_ID);

Parameters
■ Org_ID - The identifier of the organization to be set.

Output
None

Example
begin
 Set_Org(204);
end;

A.2.43 Procedure Set_Client

Usage
Set_Client(UserName, Responsibility_ID);

Set_Client(UserName, Responsibility_ID, Application_ID);

Set_Client(UserName, Responsibility_ID, Application_ID, SecurityGrp_ID);

This procedure validates the UserName, Responsibility_ID, and Application_ID
parameters. If valid, it initializes the session, which results in the operating unit
being set for the session as well. It also sets the global variables g_user_id, g_resp_
id, g_appl_id, and g_org_id, which can then be used throughout the script.

Parameters
■ UserName - The name of the Oracle Applications user.

■ Responsibility_ID - A valid responsibility ID.

■ Application_ID - A valid application ID. If no value is provided, an attempt will
be made to obtain it from the responsibility ID.

■ SecurityGrp_ID - A valid security group ID.
A-30 Supportability Guide

Package JTF_DIAGNOSTIC_COREAPI
Example
begin
 Set_Client('JOEUSER',50719, 222);
end;

A.2.44 Procedure Get_DB_Patch_List

Usage
a_string := Get_DB_Patch_List('Heading', 'Short Name', 'Bug Number', 'Start Date');

Parameters
■ Heading - A text heading for the TABLE or TEXT outputs.

■ Short Name - The short name of the Oracle Applications product.

■ Bug Number - The bug number identifier.

■ Start Date - The earliest applicable bug creation date.

Output
Displays an HTML table of patches that have been applied for the application since
the start date.

Example
begin
 Get_DB_Patch_List(null, 'AD','%', '03-03-2002', 'SILENT');
end;

A.2.45 Function Get_RDBMS_Header

Usage
Get_RDBMS_Header;

Returns
The version of the database from v$version.
PL/SQL Helper Packages A-31

Package JTF_DIAGNOSTIC_COREAPI
Example
declare
RDBMS_Ver := v$version.banner%type;
begin
RDBMS_Ver := Get_RDBMS_Header;
end;

A.2.46 Procedure Show_Invalids

Usage
Show_Invalids('Start String', ’Include Errors', 'Heading');

Parameters
■ Start String - A string indicating the beginning of object names t be included.

The underscore character (_) will be escaped in this string so that it does not act
as a wild card character. For example, "PA_" will not match "PAY", even though
it normally would in SQL*Plus.

■ Include Errors - "Y" or "N". Indicates whether to search on and report the errors
from ALL_ERRORS for each of the invalid objects found. The default is "N".

■ Heading - An optional heading for the table. If null, the heading will be "Invalid
Objects (Starting with 'XXX')" where XXX is the Start String parameter.

Output
This procedure outputs a list of invalid objects whose names starts with the Start
String. For packages, procedures, and functions, file versions will be included.
When requested, error messages associated with the object will be reported.

Example
Show_Invalids('GL_');
A-32 Supportability Guide

SQL Trace Op
B

SQL Trace Options

B.1 SQL Trace Options
Oracle E–Business Suite Forms–based applications allow you to set up SQL Trace
under the Help > Diagnostics menu. The trace options allow you to have server and
background processes write information to associated trace files. When a process
detects an internal error, it writes information about the error to its trace file. For
more information on trace files, see the Oracle database documentation.

The following options are available:

■ No Trace – turns trace off.

■ Regular Trace – generates a regular SQL trace by performing thefollowing
statement:

ALTER SESSION SET SQL_TRACE = TRUE;

■ Trace with Binds – writes bind variable values in the SQL trace file

■ Trace with Waits – writes wait events in the SQL trace file

■ Trace with Binds and Waits – writes both bind variable values and wait events
in the SQL trace file

■ Unlimited Trace File Size – allows an unlimited size for the trace file

Once SQL Trace is enabled using the Help >Diagnostics menu, the system enables
trace for any form launched from the form in which trace was enabled. If trace is
enabled while the Navigator is in focus, any subsequent form launched has trace

Note: Enabling SQL Trace can have a severe performance impact.
For more information, see the Oracle database documentation.
tions B-1

SQL Trace Options
enabled. When any subsequent forms are launched, the menu option indicates that
trace is enabled.

A message is displayed at form startup indicating that trace is enabled.
B-2 Supportability Guide

	Contents
	Send Us Your Comments
	Preface
	Part I� Oracle Diagnostics
	1 Oracle Diagnostics Overview
	1.1� Introduction
	1.1.1� Target Audiences

	1.2� Terminology
	1.3� Architecture
	1.4� Supported Features
	1.5� User Interfaces

	2 Developing Diagnostic Tests
	2.1� Test Development Overview
	2.2� Diagnostic Test Categories
	2.3� Developing Java Diagnostic Tests
	2.3.1� Preliminary Requirements for Java Tests
	2.3.2� Java Test Properties
	2.3.3� Java Test Execution
	2.3.4� Java Test Reporting
	2.3.5� Java Diagnostic Test Sample Code
	2.3.6� Pipelining Dependencies
	2.3.7� Report Formatting Library

	2.4� Developing PL/SQL Test Cases
	2.4.1� PL/SQL Package Test Case APIs
	2.4.2� PL/SQL Utility Packages
	2.4.3� PL/SQL Diagnostic Test Sample Code

	2.5� Declarative Diagnostics
	2.5.1� Structure of a Declarative Diagnostic Test
	2.5.2� Sub-test Types, Metadata Needed, and Use Case Examples
	2.5.3� Logical Operators for Comparison

	2.6� Integrating LOVs With Diagnostics
	2.6.1� Implementing an LOV
	2.6.2� LOV Provider Sample Code
	2.6.3� Incorporating LOVs in Diagnostic Test Cases
	2.6.4� Default LOVs

	2.7� Oracle Applications Framework Support
	2.7.1� Sample Code

	2.8� Instantiation of Diagnostic User Context Within Diagnostic Test Cases

	3 Diagnostic Security
	3.1� Key Concepts
	3.1.1� Test Group Sensitivity
	3.1.2� Diagnostic Roles
	3.1.3� Underlying Security Infrastructure

	3.2� Security Administration
	3.2.1� Securing Test Groups
	3.2.2� Assigning Diagnostic Roles to Responsibilities

	3.3� Session Creation / Switching User Context in Test Cases

	4 Diagnostics Result Reporting
	4.1� Database Failover
	4.2� Accessing Result Logs
	4.3� Purging Result Logs
	4.3.1� Scheduling Routine Purging

	4.4� Historical Logs: LogViewer

	5 Launching Oracle Diagnostics
	5.1� Standalone HTML Guest-User
	5.1.1� Access
	5.1.2� Features
	5.1.3� Bookmarking Pages in the Diagnostics UI

	5.2� CRM System Administrator Console
	5.2.1� Features

	5.3� Oracle Applications Manager
	5.3.1� Finding Oracle Diagnostics in OAM
	5.3.2� Diagnostics Test Summary
	5.3.3� Refreshing the Summary Data
	5.3.4� Diagnostic Test Details
	5.3.5� Using the Support Cart
	5.3.6� Launching Oracle Diagnostics from OAM

	5.4� Command-line Console
	5.5� Scheduling Batch Diagnostics

	Part II� Logging
	6 Logging Framework Overview
	6.1� Target Audience
	6.2� Key Features
	6.3� Terminology
	6.4� Logging Configuration Parameters
	6.4.1� Overview
	6.4.2� AFLOG_ENABLED
	6.4.3� AFLOG_LEVEL
	6.4.4� AFLOG_MODULE
	6.4.5� AFLOG_FILENAME
	6.4.6� AFLOG_ECHO

	7 How to Configure Logging
	7.1� Using Middle-tier Properties to Configure Logging
	7.1.1� Using Java
	7.1.2� Using C

	7.2� Using Database Profile Options to Configure Logging
	7.3� Using Logging to Screen
	7.3.1� Enabling Logging to Screen in Oracle Application Framework Pages
	7.3.2� Enabling Logging to Screen in CRM Technology Foundation Pages

	7.4� Startup Behavior

	8 Logging Guidelines for System Administrators
	8.1� Recommended Default Site-Level Settings
	8.2� Recommended Settings for Debugging
	8.2.1� Using Logging to Screen
	8.2.2� Pinpointing an Error to a Specific User
	8.2.3� For High Volumes

	8.3� Updating Configuration Properties
	8.4� How to Completely Disable Logging
	8.5� Purging Log Messages
	8.5.1� Using a Concurrent Program
	8.5.2� Using Oracle Applications Manager
	8.5.3� Using the Oracle CRM System Administrator Console
	8.5.4� Using PL/SQL

	8.6� Viewing Log Messages

	9 Logging Guidelines for Developers
	9.1� APIs
	9.2� Handling Errors
	9.3� Performance Standards
	9.4� Module Source
	9.4.1� Module Name Standards
	9.4.2� Module Name Examples

	9.5� Severities
	9.5.1� UNEXPECTED
	9.5.2� ERROR
	9.5.3� EXCEPTION
	9.5.4� EVENT
	9.5.5� PROCEDURE
	9.5.6� STATEMENT

	9.6� Large Text and Binary Message Attachments
	9.7� Automatic Logging and Alerting for Seeded Message Dictionary Messages
	9.8� General Logging Tips
	9.9� How to Log from Java
	9.9.1� Core AppsLog
	9.9.2� OAPageContext and OADBTransaction APIs
	9.9.3� CRM Technology Foundation APIs

	9.10� How to Log from PL/SQL
	9.10.1� API Description
	9.10.2� Example

	9.11� How to Log from C
	9.12� How to Log in Concurrent Programs
	9.12.1� Debug and Error Logging
	9.12.2� Request Log
	9.12.3� Output File

	9.13� How to Raise System Alerts
	9.13.1� Guidelines for Defining System Alerts

	A PL/SQL Helper Packages
	A.1� Package JTF_DIAGNOSTIC_ADAPTUTIL
	A.1.1� Function initInputTable
	A.1.2� Function initReportClob
	A.1.3� Function compareResults
	A.1.4� Function compareResults
	A.1.5� Procedure constructReport
	A.1.6� Procedure getInputValue
	A.1.7� Procedure addInput
	A.1.8� Function addInput
	A.1.9� Procedure setUp Vars
	A.1.10� Procedure setUp Vars
	A.1.11� Procedure addStringToReport
	A.1.12� Procedure addStringToReport

	A.2� Package JTF_DIAGNOSTIC_COREAPI
	A.2.1� Procedure Line_Out
	A.2.2� Procedure Insert_Style_Sheet
	A.2.3� Procedure ActionErrorPrint
	A.2.4� Procedure ActionPrint
	A.2.5� Procedure ActionWarningPrint
	A.2.6� Procedure WarningPrint
	A.2.7� Procedure ActionErrorLink
	A.2.8� Procedure ActionWarningLink
	A.2.9� Procedure ErrorPrint
	A.2.10� Procedure Show_Table_Header
	A.2.11� Procedure SectionPrint
	A.2.12� Procedure Tab0Print
	A.2.13� Procedure Tab1Print
	A.2.14� Procedure Tab2Print
	A.2.15� Procedure Tab3Print
	A.2.16� Procedure BRPrint
	A.2.17� Procedure CheckFinPeriod
	A.2.18� Procedure CheckKeyFlexfield
	A.2.19� Procedure CheckProfile
	A.2.20� Function Column_Exists
	A.2.21� Procedure Begin_Pre
	A.2.22� Procedure End_Pre
	A.2.23� Procedure Display_SQL
	A.2.24� Function Display_SQL
	A.2.25� Function Run_SQL
	A.2.26� Function Run_SQL
	A.2.27� Function Compare_Pkg_Version
	A.2.28� Procedure Show_Responsibilities
	A.2.29� Function Display_Table
	A.2.30� Function Display_Table
	A.2.31� Function Get_DB_Apps_Version
	A.2.32� Procedure Show_Header
	A.2.33� Procedure Show_Footer
	A.2.34� Procedure Show_Link
	A.2.35� Procedure Show_Link
	A.2.36� Procedure Send_Email
	A.2.37� Function Get_Package_Version
	A.2.38� Function Get_Package_Spec
	A.2.39� Function Get_Package_Body
	A.2.40� Procedure Display_Profiles
	A.2.41� Function Get_Profile_Option
	A.2.42� Procedure Set_Org
	A.2.43� Procedure Set_Client
	A.2.44� Procedure Get_DB_Patch_List
	A.2.45� Function Get_RDBMS_Header
	A.2.46� Procedure Show_Invalids

	B SQL Trace Options
	B.1� SQL Trace Options

