
Oracle® US Federal Human Resources

Implementation Guide

Release 11i

Part No. B15542-01

November 2004

Oracle US Federal Human Resources Implementation Guide, Release 11i

Part No. B15542-01

Copyright © 1996, 2004, Oracle. All rights reserved.

Primary Author: Louise Raffo

Contributing Author: Juliette Fleming, John Cafolla, Janet McCandless

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement,
and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from
a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a)
the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased products
or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing
with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

Contents

Send Us Your Comments

Preface

1 Introduction

Planning Implementation . 1-1

2 Implementation Guide

Implementation Steps . 2-1
Post Install Steps . 2-1
Implementation Checklist . 2-7
Administration . 2-7
Enterprise and Workforce Management . 2-24
Compensation, Benefits, and Payroll . 2-34
Workforce Sourcing and Deployment . 2-48
Talent Management . 2-52
Workforce Intelligence . 2-56
HR Information Systems . 2-61
Technical Essays . 2-80

DateTrack . 2-80
How DateTrack Works . 2-80

Behavior of DateTracked Forms . 2-80
Table Structure for DateTracked Tables 2-81
Creating a DateTracked Table and View 2-83
Restricting Datetrack Options Available to Forms Users 2-84

Create and Modify DateTrack History Views 2-87
What Can You Create and Modify? . 2-87
What Happens When You Request DateTrack History? 2-87
Rules for Creating or Modifying DateTrack History Views 2-88
Using Alternative DateTrack History Views 2-89
List of DateTrack History Views . 2-91

Batch Element Entry . 2-93
Creating Control Totals for the Batch Element Entry Process 2-93

Setting Up Control Totals . 2-93
Creating the SQL Code . 2-93

iii

Payroll Processes . 2-97
Overview . 2-97

PYUGEN . 2-97
Payroll Action Parameters . 2-99
Overview of the Payroll Processes . 2-99
Assignment Level Interlocks . 2-100

Payroll Run Process . 2-100
Determine Assignments and Elements 2-100
Process Each Assignment . 2-101
Create Run Results and Values . 2-103
Set Up Contexts . 2-103
Run Element Skip Rules . 2-103
Create and Maintain Balances . 2-104
Run Formulas . 2-106

Pre-Payments Process . 2-108
Setting Up Payment Methods . 2-109
Preparing Cash Payments (UK Only) 2-109
Prenotification (US Only) . 2-110
Consolidation Sets . 2-110
Third Party Payments . 2-110
Exchange Rates . 2-111
Overriding Payment Method . 2-111
The Process . 2-111

Payment Processes . 2-112
Magnetic Tape Process . 2-112
Error Handling . 2-124
Example PL/SQL . 2-124
Cheque Writer/Check Writer Process 2-126
The Process . 2-126
Cheque Numbering . 2-129
Voiding and Reissuing Cheques . 2-129
Mark for Retry . 2-130
Rolling Back the Payments . 2-130
SRW2 Report . 2-130
Using or Changing the PL/SQL Procedure 2-132
Cash Process . 2-132

Payroll Action Parameters . 2-132
Action Parameter Values . 2-133
Summary of Action Parameters . 2-133
Parallel Processing Parameters . 2-134
Array Select, Update and Insert Buffer Size Parameters 2-135
Costing Specific Parameters . 2-136
Magnetic Tape Specific Parameters . 2-137
Error Reporting Parameters . 2-137
Rollback Specific Parameters . 2-137

iv

Payroll Process Logging . 2-138
Logging Parameters . 2-139
Miscellaneous Parameters . 2-140
System Management of QuickPay Processing 2-141

Assignment Level Interlocks . 2-141
Action Classifications . 2-142
Rules For Rolling Back and Marking for Retry 2-144

Transfer to the General Ledger Process . 2-146
Costing Process . 2-146

Example of Payroll Costs Allocation . 2-146
Example of Employer Charge Distribution 2-147

The Payroll Archive Reporter (PAR) Process 2-148
PAR Modes . 2-149
Overview of the PAR Process . 2-149
Overview of the Setup Steps . 2-150
Create Database Items for Archiving . 2-150
Write Formulas . 2-153
Write Package Procedures For Assignments And Assignment Actions 2-153
Provide an SRS Definition for the PAR Process 2-154
Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table 2-155
Examples: INITIALIZATION_CODE and ARCHIVE_CODE 2-157

Balances in Oracle Payroll . 2-160
Overview of Balances . 2-161
Latest Balances . 2-161
Balance Dimensions . 2-162
Initial Balance Loading for Oracle Payroll 2-166
Introduction . 2-166
Steps . 2-166
Balance Loading Process . 2-167
Latest Balances . 2-167
Setting Up an Element to Feed Initial Balances 2-168
Setting Up the Initial Balance Values . 2-169
Running the Initial Balance Upload Process 2-172
Balance Initialization Steps . 2-175
Including Balance Values in Reports . 2-177
The Balance Function . 2-178

FastFormula . 2-179
The FastFormula Application Dictionary . 2-179

Entities in the Dictionary . 2-180
Defining New Database Items . 2-181

Calling FastFormula from PL/SQL . 2-189
The Execution Engine Interface . 2-190
Changes in R11i . 2-191
Server Side Interface . 2-191
Client Side Call Interface . 2-196

v

Special Forms Call Interface . 2-200
Logging Options . 2-202

Flexfields . 2-204
Validation of Flexfield Values . 2-204

Referencing User Profile Options . 2-205
Referencing Form block.field Items . 2-206
Referencing FND_SESSIONS Row . 2-207
Incomplete Context Field Value Lists 2-207

Security . 2-208
Extending Security in Oracle HRMS . 2-208

Security Profiles . 2-208
Security Processes . 2-213
Securing Custom Tables . 2-216

APIs . 2-217
APIs in Oracle HRMS . 2-217

API Overview . 2-218
Understanding the Object Version Number (OVN) 2-220
API Parameters . 2-222
API Features . 2-236
Flexfields with APIs . 2-237
Multilingual Support . 2-238
Alternative APIs . 2-239
API Errors and Warnings . 2-240
Example PL/SQL Batch Program . 2-242
WHO Columns and Oracle Alert . 2-244
API User Hooks . 2-245
Using APIs as Building Blocks . 2-264
Handling Object Version Numbers in Oracle Forms 2-265

DataPump . 2-271
Oracle HRMS Data Pump . 2-271

Overview . 2-273
Using Data Pump . 2-275
Running the Meta-Mapper . 2-276
Loading Data Into the Batch Tables . 2-283
Running the Data Pump Process . 2-286
Finding and Fixing Errors . 2-288
Purging Data . 2-291
Sample Code . 2-292
Notes on Using The Generated Interfaces 2-295
Utility Procedures Available With Data Pump 2-297
Table and View Descriptions . 2-298

SQL Trace . 2-308
SQL Trace . 2-308

Using SQL Trace . 2-308
Enabling SQL Trace . 2-309

vi

Locating the Trace File . 2-313
What is TKPROF? . 2-313
Formatting a Trace File using TKPROF 2-314
TKPROF Sort Options . 2-316
Understanding a TKPROF Report . 2-316
Raw SQL Trace File Example . 2-323
Advanced SQL Tracing Using Event 10046 2-324

Backfeed . 2-326
Oracle Generic Third Party Payroll Backfeed 2-326

Overview . 2-327
Setting Up the Generic Payroll Backfeed 2-327
Installing the Oracle Generic Third Party Payroll Backfeed 2-328
Payment Information . 2-329
Balance Types . 2-329
APIs . 2-331
Setting Up Data Pump . 2-331
Deciding Which Upload Option to Use 2-332
Setting Up Data Uploader . 2-332
Using Backfeed to Upload Payroll Run Results 2-335
Creating an Upload Workbook . 2-336
Using the Load Sheets Macro . 2-337
Using the Save Sheets Macro . 2-337
Running Data Uploader . 2-338
Running Data Pump . 2-338
Viewing Third Party Payroll Results in Oracle HRMS 2-339

Index

vii

Send Us Your Comments

Oracle US Federal Human Resources Implementation Guide, Release 11i

Part No. B15542-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your
input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part
number of the documentation and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• Electronic mail: appsdoc_us@oracle.com

• FAX: 650-506-7200 Attn: Oracle US Federal HR Documentation Manager

• Postal service:
Oracle US Federal HR Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail address
(optional).

If you have problems with the software, please contact your local Oracle Support Services.

ix

Preface

Intended Audience
Welcome to Release 11i of the Oracle US Federal Human Resources Implementation Guide.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Oracle HRMS.

If you have never used Oracle HRMS, Oracle suggests you attend one or more of the
Oracle HRMS training classes available through Oracle University

• Oracle Self-Service Web Applications.

To learn more about Oracle Self-Service Web Applications, read the Oracle Self-Service
Web Applications Implementation Manual.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the
Oracle Applications User’s Guide.

See Related Documents for more information about Oracle Applications product
information.

See Related Documents on page xii for more Oracle Applications product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to facilitate access by
the disabled community. Accessibility standards will continue to evolve over time, and
Oracle is actively engaged with other market-leading technology vendors to address
technical obstacles so that our documentation can be accessible to all of our customers.
For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

xi

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Introduction
2 Implementation Guide

Related Documents
Oracle HRMS shares business and setup information with other Oracle Applications
products. Therefore, you may want to refer to other user guides when you set up
and use Oracle HRMS.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD
included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle store at
http://oraclestore.oracle.com.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI). This guide also includes information on setting user
profiles, as well as running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing ”Getting started with Oracle
Applications” from any Oracle Applications help file.

Guides Related to This Product

OA Personalization Framework and OA Extensibility Framework

Learn about the capabilities of the 5.6 Framework technologies.

Oracle Human Resources Management Systems Enterprise and Workforce Management
Guide

Learn how to use Oracle HRMS to represent your agency. This includes setting up
your organization hierarchy, recording details about jobs and positions within your
agency, defining person types to represent your workforce, and also how to manage
your budgets and costs.

Oracle Human Resources Management Systems Workforce Sourcing, Deployment,
and Talent Management Guide

xii

Learn how to use Oracle HRMS to represent your workforce. This includes recruiting
new workers, recording and managing the workforce using for example by processing
Request for Personnel Actions and mass actions, and reporting on your workforce.

Oracle Human Resources Management Systems Compensation and Benefits
Management Guide

Learn how to use Oracle HRMS to manage compensation. For example, read how to
process compensation and awards, set up automated step increases, and federal benefits
such as Federal Health Employee Benefits and Thrift Savings Plans. You can also learn
about setting up earnings and deductions for payroll processing, managing leave and
absences, and reporting on compensation.

Oracle Human Resources Management Systems Configuring, Reporting, and System
Administration in Oracle HRMS

Learn about extending and configuring Oracle HRMS, managing
security, auditing, information access, and letter generation.

Oracle Human Resources Management Systems Implementation Guide

Learn about the setup procedures you need to carry out in order to successfully
implement Oracle HRMS in your enterprise.

Oracle Human Resources Management Systems FastFormula User Guide

Learn about the different uses of Oracle FastFormula, and understand the rules and
techniques you should employ when defining and amending formulas for use with
Oracle applications.

Oracle Human Resources Management Systems Deploy Self-Service Capability Guide

Set up and use self-service human resources (SSHR) functions for managers, HR
Professionals, and employees.

Oracle Human Resources Management Systems Deploy Strategic Reporting (HRMSi)

Implement and administer Oracle Human Resources Management Systems Intelligence
(HRMSi) in your environment.

Oracle Human Resources Management Systems Strategic Reporting (HRMSi) User Guide

Learn about the workforce intelligence reports included in the HRMSi product, including
Daily Business Intelligence reports, Discoverer workbooks, and Performance
Management Framework reports.

Implementing Oracle Approvals Management

Use Oracle Approvals Management (AME) to define the approval rules that determine
the approval processes for Oracle applications. Download this guide from Oracle
MetaLink, Note: 282529.1.

Oracle iRecruitment Implementation Guide

Set up Oracle iRecruitment to manage all of your enterprise’s recruitment needs.

Oracle Learning Management User Guide

Set up and use Oracle Learning Management to accomplish your online and offline
learning goals.

Oracle Learning Management Implementation Guide

xiii

Implement Oracle Learning Management to accommodate your specific business
practices.

Oracle Time and Labor Implementation and User Guide

Learn how to capture work patterns such as shift hours so that this information can be
used by other applications such as General Ledger.

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features, technology
stack, architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before an installation of Oracle Applications. This guide also
introduces the concepts behind Applications-wide features such as Business Intelligence
(BIS), languages and character sets, and Self-Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle
Rapid Install, which minimizes the time to install Oracle Applications and the Oracle
technology stack by automating many of the required steps. This guide contains
instructions for using Oracle Rapid Install and lists the tasks you need to perform
to finish your installation. You should use this guide in conjunction with individual
product user guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

"About" Document

For information about implementation and user document, instructions for applying
patches, new and changes setup steps, and descriptions of software updates, refer
to the "About" document for your product. "About" documents are available on
OracleMetaLink for most products starting with Release 11.5.8.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as
AutoUpgrade, AutoPatch, AD Administration, AD Controller, AD Relink, License
Manager, and others. It contains how-to steps, screenshots, and other information that
you need to run the AD utilities. This guide also provides information on maintaining
the Oracle applications file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

xiv

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle Applications
development staff and describes the Oracle Application Object Library components that
are needed to implement the Oracle Applications user interface described in the Oracle
Applications User Interface Standards for Forms-Based Products. This manual also provides
information to help you build your custom Oracle Forms Developer forms so that the
forms integrate with Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products

This guide contains the user interface (UI) standards followed by the Oracle Applications
development staff. It describes the UI for the Oracle Applications products and how to
apply this UI to the design of an application built by using Oracle Forms.

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made
to database objects, profile options, and seed data for this interval.

Oracle Workflow Administrator’s Guide

This guide explains how to complete the setup steps necessary for any Oracle
Applications product that includes workflow-enabled processes, as well as how to
monitor the progress of runtime workflow processes.

Oracle Workflow Developer’s Guide

This guide explains how to define new workflow business processes and customize
existing Oracle Applications-embedded workflow processes. It also describes how to
define and customize business events and event subscriptions.

Oracle Workflow User’s Guide

This guide describes how Oracle Applications users can view and respond to workflow
notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference information for the
Oracle HRMS implementation team, as well as for users responsible for the ongoing
maintenance of Oracle Applications product data. This guide also provides information
on creating custom reports on flexfields data.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle
Applications product. This information helps you convert data from your existing
applications, integrate Oracle Applications data with non-Oracle applications, and
write custom reports for Oracle Applications products. Oracle eTRM is available on
OracleMetalink.

xv

Oracle Applications Message Manual

This manual describes all Oracle Applications messages. this manual is available in
HTML format on the documentation CD-ROM for Release 11i.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get
out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xvi

1
Introduction

Planning Implementation
The flexibility of Oracle HRMS enables you to develop an implementation project plan
that meets your own specific business needs for Oracle Human Resources, Oracle
Payroll, Oracle Advanced Benefits, Oracle Learning Management, and Oracle
Self-Service Human Resources (SSHR).

With Oracle HRMS you choose the functions you want to implement initially. You
implement other functions when you need to use them.

For example, you might decide to implement for HR users, and then to add payroll
processing capabilities in a subsequent phase. Alternatively, you might decide to
implement payroll functions during your initial phase. You could choose to extend your
range of HR information and functions later.

Decision making is an important part of any implementation process and before you
begin to configure Oracle HRMS you must decide how you want to use the system.

Adopting a staged, or incremental, approach to implementation lets you focus on those
areas of the system you want to use.

Working in partnership with Oracle you can call on skilled consultants to provide you
with all of the training, and technical and professional expertise you need. Together you
can successfully implement an HRMS system that matches your specific business needs
in the most efficient and cost-effective manner.

HRMS Configuration Workbench
You can manage your implementation using the HRMS Configuration Workbench. The
Workbench delivers a configuration interview that helps you make the best configuration
choices for your enterprise. The interview is based on the distilled knowledge of good
practice from the experience of hundreds of customers working in different industries
and geographies.

Use the Quick Start option in the Workbench to generate prototype configurations that
include all the essential definitions for using HR and Payroll. You can create alternative
prototypes by answering the interview questions slightly differently. The Quick Start
option generates default settings for other required system components in HR and
Payroll that you would typically set up manually. Work through your business processes
using the prototypes to experience the effect of alternative configuration choices.

When you are satisfied with your prototype configuration you can proceed to use the full
configuration management toolset in the Workbench. For the Full Implementation, you
should make sure you complete all the details about your enterprise before you generate

Introduction 1-1

the full configuration. You can load the full configuration only once, so you need to
include all the required detail before you load it.

When you have loaded the full configuration, you have a basic implementation that
matches the business processes of your enterprise. Evaluate what additional features
you require, and follow the implementation steps to add features and extend your
configuration.

Read more about the Configuration Workbench in the Getting Started guide on
MetaLink, Note 281421.1.

1-2 Oracle US Federal Human Resources Implementation Guide

2
Implementation Guide

Implementation Steps

Before You Start
Before you begin implementing Oracle HRMS, you must ensure your legislation-specific
startup data is installed. The installation is normally done by the MIS Manager. You
need this startup data before you use Elements, Payment Methods or Legislation Specific
Flexfield Structures.

See Installing Oracle Applications for more information.

Also, check to see whether there are any post installation steps you need to perform
before you start to implement Oracle HRMS.

See: Post Install Steps, page 2-1.

Post Install Steps
There are two generic post install utilities for Oracle HRMS in Release 11i:

• DataInstall enables you to specify all the legislations that you want to install
for HR and Payroll, and HR only. This means that when you subsequently
perform an installation or upgrade, you can install your legislations in a single
operation. DataInstall provides a series of menus from which you can specify the
legislation and product combinations.

• AutoPatch (adpatch) applies the installation or upgrade combinations that you
have previously specified in DataInstall.

Canada and USA

If you are installing Oracle Payroll (Canada and US) you also need to install Quantum, a
third party taxation product, produced by Vertex, that Oracle Payroll (Canada and
US) uses.

France

If you are installing a French localization, there are two additional post install steps for
that must be completed for Oracle HR for France. These are:

• Run the Seed French Data process

• Create a new EUL (End User Layer) in Discoverer and enable user access to database
tables and views by running the Grant HR Access to Discoverer process

Implementation Guide 2-1

Federal

If you are installing the US Federal HR localization, there is one additional step to be
able to produce bitmap reports.

To Run the DataInstall Utility (Required):
To specify legislations using DataInstall:

1. Run the DataInstall utility to select legislations using the command:

jre oracle.apps.per.DataInstall <APPS Username> <APPS pa ssword>

Note: In multiple sets of book installs, supply the username and
password of the first APPS account.

The DataInstall Main Menu is displayed.

2. Choose option 1. This displays a screen showing a list of product localization
combinations that you can choose.

For each product or localization that already has legislation data on the database, the
Action will be defaulted to upgrade. This cannot be changed.

If the Legislation/Verticalization is Federal HR only

If you are upgrading Oracle Federal HR, choose both Oracle Federal HR and Oracle
Human Resources from the list of product localizations.

3. Select any new installations that you want to implement. For example, if you wanted
to install Canada Payroll, number 3, you would type 3I. This would also set the
action on Canada Human Resources to Install as dependencies are maintained.

If you are installing an additional legislation, to correct a mistake use the
Clear option. If you have selected to install an additional Payroll and HR
legislation, clearing the Payroll legislation will clear the HR legislation also.

You cannot use Force Install for upgrades. You only need to use Force Install if you
want to reapply steps in the Global Legislation Driver that have already been applied.

4. If you select a localization other than US or GB, you are returned to the main menu.

If you select a US or GB localization the DataInstall - College Data Option screen
is displayed showing whether college data is currently installed for US and GB
localizations. The install option is only available if you have no existing college
data. If you have existing data then the localization will default to Upgrade, though
this can be changed.

Choose Remain if you want to keep the existing data and not apply the upgrade, or
choose Clear to set the action to null.

You cannot use Force Install at this point.

Press Return to display the main menu and make further changes or exit.

5. If you are installing a US or Canadian localization and you have installed Oracle
Payroll, select the JIT/Geocodes option from the DataInstall menu to load the
latest JIT/Geocodes data.

This option is also available to Oracle HR customers who wish to validate North
American addresses using Vertex Geocodes data and/or maintain employee tax data

2-2 Oracle US Federal Human Resources Implementation Guide

in Oracle HR. However, customers who do not have Oracle Payroll must obtain a
license from Vertex before installing this data.

Press Return to display the main menu and make further changes or exit.

6. When you choose to exit the DataInstall Actions Confirmation screen is displayed.

Select Y to save your changes and exit, or select N to exit without saving your
changes.

When you have exited, the DataInstall Actions Summary screen is displayed. This
summarizes the actions that will be taken when the program exits, or when
ADPATCH is run with the Global Legislation driver.

Run the Global Legislation Driver using AutoPatch (adpatch) (Required):
1. The Generic HR Post Install Driver delivers the generic entity horizon and all the

selected localizations. To run it, type in the following commands:

$ cd $PER_TOP/patch/115/driver

$ adpatch

Then apply the driver hrglobal.drv

2. After applying the Global Legislation Driver, examine the out file hrlegend.lst. This
logs any localizations selected in the DataInstall utility but which have not been
applied by this driver. Refer to the Installation Manual to ensure that everything has
been applied correctly, or contact World-wide Support.

If the Legislation is UK

3. Examine the following out files:

• pegbutcl.lst. This file logs the step that removes previously seeded user tables
for the UK legislation before delivering the latest version. It may also show
where seed data names have been changed between releases.

• perleggb.lst. This file logs the housekeeping step that gets rid of redundant UK
seed data after delivery of the latest version. It also records the new balance
feeds that have been inserted following an upgrade from Oracle Human
Resources to Oracle HRMS.

• The log file produced by the FFXBCP formula compilation step. The name of
the FFXBCP log follows the naming convention of the <request_id> log, and
is included in the last section of the adpatch log.

These files are used by Oracle Support Services to diagnose problems with seed data
following an upgrade. SQL errors indicate severe problems. Keep these files for
reference in the event of any future problems with UK seed data.

Install Quantum for Oracle Payroll (Canada and US) (Conditionally
Required):
1. Set up a directory structure to hold the Quantum product.

By default, Oracle Payroll looks for the Quantum product in the
$PAY_TOP/vendor/quantum directory, however, you can choose where it is placed
and override the default location.

Implementation Guide 2-3

Tip: You could create a $PAY_TOP/vendor/quantum_versions
directory and a $PAY_TOP/vendor/quantum symbolic link
pointing to the correct version of Quantum, since the Quantum
products release cycle may be different from Oracle Payroll.

2. Unpack the Quantum Components from the CD.

Oracle Applications provide a CD on which will be a ZIP file called pyvendor.zip in
a directory called pay. On the ZIP file will be one directory per operating system
that is supported by Oracle Payroll (US). Uncompress the pyvendor.zip file
and move the required version into the directory structure created in Step 1. For
example, uncompress the file then do the following:

$ mv SOLARIS/2.2.4 $PAY_TOP/vendor/quantum_versions

$ ln -s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP /vendor/qu
antum

The extraction from the compressed file will create a directory called (<operating
system>/2.2.4) and two sub directories (lib and utils) along with a number of files in
each directory. One of the files created is devenv, this devenv file is the same as the
$FND_TOP/usrxit/devenv file except that some of the lines are uncommented. The
uncommented lines relate to instructions on how the Oracle Payroll process
PYUGEN should be linked. The lines that are uncommented are:

VND_VERTEX=’$(PAY_TOP)/vendor/quantum’

VND_LINK=’$(VND_VERTEX)/lib/libvprt.a \

$(VND_VERTEX)/lib/libqutil.a \

$(VND_VERTEX)/libloc.a \

$(VND_VERTEX)/lib/libcb63.a’

$ ln -s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP /vendor/qu
antum

VNDPAYSL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v. o $(VND_LINK)
’

VNDPAYPL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v. o $(VND_LINK)
’

export VND_VERTEX VND_LINK VNDPAYPL VNDPAYSL

Note: Some of these settings relate to the location of the
Quantum product, thus if the Quantum product is not in
$PAY_TOP/vendor/quantum this file needs to be edited.

If you have made any changes to your $FND_TOP/usrxit/devenv file, you must
merge these differences into the file. If you have not already made any changes then
you can simply copy 2.2.4/devenv to $FND_TOP_usrxit/devenv.

3. Relink the Oracle Payroll executable PYUGEN using adrelink.

2-4 Oracle US Federal Human Resources Implementation Guide

$ adrelink force=y ranlib=y "pay PYUGEN"

Ensure that the adrelink completed successfully by checking the log file.

4. Build the Quantum product’s data files.

To build Quantum’s data files, firstly create a directory to hold the data files. Oracle
Payroll assumes that these data files are in $PAY_TOP/vendor/quantum/data.

Secondly, run the utility dbcreate that is in the Quantum utils directory. This utility
will show a menu of either Payroll or Geocoder. Choose the Payroll option and at the
prompt "Enter the Payroll datasource name:" enter the directory into which the data
files are to be placed, for example, /apps/pay/11.5/vendor/quantum/data. Once
the processing is complete, the menu will reappear and the utility can be exited.

Note: Ensure that the file permissions of the data files are set to
readable for all the relevant users. If this is not done then Oracle
Payroll will not be able to access these files.

5. Populate the Quantum data files.

Once the data files have been created they need to be populated with taxation
data. The taxation data is held in a file called qfpt.dat, which will be delivered in the
pyvendor.zip file. Copy this file into the Quantum product area. Once this has been
done the data file update utility can be run. This is located in the utils directory
called vprtmupd. Select the Update Payroll Tax option from the menu, and answer
the displayed questions. The first prompts for the datasource, this should be the
location of the data files created in the previous step. The second is the location of
the qfpt.dat file. For example:

Enter Datasource: /apps/[ay/11.5/vendor/quantum/data

Enter the path of the update file: /apps/pay/11.5/vendor/q uantum

Note: The update file supplied is a default file, it is not guaranteed
to calculate taxes correctly. Its purpose is to allow you to perform
testing prior to contacting Vertex to request the correct update file.

6. Register the Quantum Data Files location.

If the data files for Quantum have not been placed in the default location
($PAY_TOP/vendor/quantum/data), then the location of these files must
be supplied to Oracle Payroll. This is performed by placing a row in the
PAY_ACTION_PARAMETERS table:

SQL> insert into pay_action_parameters

2 values (’TAX_DATA’, ’/apps/quantum/data’);

Run the Seed French Data process :
1. This process creates and populates some of the user defined tables used by the

various French reports for the Business Group of the current responsibility. It also
delivers the example data for the Bilan Social. It should be run for each Business
Group that contains data for the French legislation.

Implementation Guide 2-5

For information on the user defined tables created by this process see: User Defined
Tables Used by the Bilan Social, Oracle HRMS Enterprise and Workforce Management
Guide , and User Defined Tables, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Run the Seed French Data process in the Submit Requests window.

Create an EUL and Enable User Access to Database Tables and Views by
Running the Grant HR Access to Discoverer process (France):
In order to use the supplied business area and Discoverer workbooks you must perform
the following steps:

1. Create an EUL

If you do not have an existing Oracle Discoverer EUL you must create one before
you can import the HR France - Bilan Social business area.

See: Oracle Discoverer Administration Guide for further information on creating
an EUL.

2. Import the hrfrbsel.eex file

Once you have a suitable EUL you must import the hrfrbsel.eex file. This will
deliver the HR France - Bilan Social business area. This file is contained in the
Bilan Social Discoverer Components zip file that can be obtained from Oracle
World Wide Support.

See: Oracle Discoverer Administration Guide for further information on importing files.

3. Run the Grant HR Access to Discoverer process

The EUL user must be given the correct permissions in order to access the tables and
views in the database that are used by the Bilan Social. To do this, you must run
Grant HR Access to Discoverer process in the Submit Requests window.

You will now be prompted to enter the following parameters:

• the connect string for the database on which the Bilan Social data is stored

• your EUL user name

• your EUL password

Choose Submit. The process will now run and assign the appropriate permissions to
your EUL user.

US Federal HR Print Reports:
To be able to produce bitmap and postscript reports, you must relink ar60runb.

1. Chenv to the environment.

2. Make sure that FND_TOP and APPL_TOP are correct.

3. cd $FND_TOP/bin

4. adrelink.sh force=y "fnd ar60runb"

2-6 Oracle US Federal Human Resources Implementation Guide

Implementation Checklist
Use the following checklists to record which parts of Oracle HRMS you want to
use. Then refer to the implementation flowcharts to see the high level steps you must
complete for each business function you have chosen to implement.

❒ Post Install Steps, page 2-1 (Required)

Refer to the Post Install Steps to see any steps you must perform before you
implement Oracle HRMS.

❒ Administration, page 2-24 (Required)

Includes key and descriptive flexfields, Extra Information Types
(EITs), currencies, "View All" HRMS User, and lookups.

❒ Enterprise and Workforce Management, page 2-7 (Required)

Includes organizations, jobs, positions, budgets, person types, collective
agreements, complaint tracking, and government reporting.

❒ Compensation and Benefits, page 2-34 (Optional)

Includes grades and their relationship to pay, mass salary actions, compensation and
awards, benefits eligibility, leave and absence management, and element sets.

❒ Workforce Sourcing and Deployment, page 2-48 (Required)

Includes person types, assignment statuses and special personal information.

❒ Talent Management, page 2-52 (Optional)

Includes recruitment, career management, evaluation and appraisals and succession
planning.

❒ Workforce Intelligence, page 2-56 (Optional)

Includes predefined Discoverer workbooks and a predefined Discoverer End User
Layer based on HRMS transactional tables.

❒ HR Information Systems, page 2-61 (Optional)

Includes reports, letter generation, configuration, task flows, user security, US
Federal workflow and maintenance forms, audit requirements and Oracle
Applications Help, and Web Applications Desktop Integrator (Web ADI). Includes
setting the frequency for US federal processes and reports.

Administration
The administration steps are usually performed by the System Administrator. Sign on to
the system using your System Administrator username and password. Contact your
DBA if you do not know this information.

Define Key Flexfields
There are six Key Flexfield Structures you must define before you can define a Business
Group in Oracle HRMS. These are:

• Job

• Position

• Grade

Implementation Guide 2-7

• People Group

• Cost Allocation

• Competence

You can also define the Collective Agreement Grades flexfield at this time, or you can do
it after defining your Business Group.

The application comes with predefined information. The entire flexfield information
for Grade is predefined as are the value sets for the Job and Position key flexfield
segments. You can define additional segments of Job and Position, as well as those in
People Group and Cost Allocation based on your agency’s requirements.

Before you begin your implementation of these key flexfields you must clearly specify
your requirements. This specification must include the following details for each key
flexfield:

• The Structure Name and the number of Segments

• The Flexfield Segment Names, Order, Validation Options and Qualifiers

• The Flexfield Value Sets to be used and any lists of values

After you have completed the definition of a key flexfield, you need to run the Create
Key Flexfield Database Items process concurrent process to generate Database Items
for the individual segments of the Flexfield. This applies to your Job, Position, Grade
, Competence, and People Group Key Flexfields only.

Important: If you used the Configuration Workbench, you have
already defined the structures for your Job, Position, and Grade
key flexfields. You may want to add more validation, such as
cross-validation. The Workbench created default structures for the
other flexfields associated with a business group (People Group, Cost
Allocation, and Competence). If you plan to use these flexfields in your
implementation, you must update the default structures to display the
segments you require.

Define Job Flexfield

After you have specified your requirements for recording and reporting Job
information, follow this implementation sequence:

Step 1: Define Job Flexfield Value Sets

To validate the values which a user can enter for any segment, you must
define a specific Value Set. A predefined value set for Occupational Series is
provided, GHR_US_OCC_SERIES.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set will also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Sets window.

See: Defining Value Sets, Oracle Applications Developer's Guide

2-8 Oracle US Federal Human Resources Implementation Guide

Step 2: Define Job Flexfield Segments

Define the first segment of the Job key flexfield the Occupational Series using the
supplied value set, GHR_US_OCC_SERIES. Define the remaining segments that you
want to use for your Business Group

Note the Occupational Series segment number. You use this information later when you
enter the US Federal Org Information for your business groups.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to create new job name combinations in the Job window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Setting up the Job Key Flexfield, Configuring, Reporting, and System Administration
Guide, Oracle US Federal Human Resource Key Flexfields, Configuring, Reporting, and
System Administration Guide

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 3: Define Job Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value Set used by a Job
Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 4: Define Job Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 5: Define Job Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 6: Freeze and Compile Your Job Flexfield Structure

You are now ready to freeze your Job Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. The application now freezes and compiles your Job Flexfield
definition. Compiling the flexfield definition enables the Job Flexfield window with the
defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

Implementation Guide 2-9

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 7: Run Create Key Flexfield Database Items Process

If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Define Position Flexfield

After you have specified your requirements for recording and reporting Position
information in your enterprise, follow this implementation sequence:

Step 8: Define Position Flexfield Value Sets

To validate the values which a user can enter for any segment, you must define a
specific Value Set.

The following value sets have been predefined for the required US Federal HR segments
for position:

• Position Title (GHR_US_POSITION_TITLE)

• Position Description Number (GHR_US_POS_DESC_NUM)

• Sequence Number (GHR_US_SEQUENCE_NUM)

• Agency/Subelement Code (GHR_US_AGENCY_CODE).

The attributes of the Value Set control the type of values that you can enter, and how
many characters each segment can hold. The attributes of the Value Set also control
how the application validates the values.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 9: Define Position Flexfield Segments

At a minimum, you must define the following four required segments using the
supplied value sets.

• Use one of the first five segments (Segment 1, 2, 3, 4, or 5) for Position Title

• Use the remaining segments for Position Description Number, Sequence
Number, and Agency/Subelement Code,

You can define up to 30 segments within the structure. For the segments that you
add, you can define a list of valid codes or values.

Note the segment numbers for Position Title, Position Description Number, Sequence
Number, and Agency/Subelement Code. You use this information later when you enter
the US Federal Org Information for your business groups.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to create new position name combinations in the Position window.

2-10 Oracle US Federal Human Resources Implementation Guide

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Setting up the Position Key Flexfield, Configuring, Reporting, and System
Administration Guide, Oracle US Federal Human Resource Key Flexfields, Configuring,
Reporting, and System Administration Guide

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 10: Define Position Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value Set used by a
Position Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 11: Define Position Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 12: Define Position Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 13: Freeze and Compile Your Position Flexfield Structure

You are now ready to freeze your Position Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and save
your changes. The application now freezes and compiles your Position Flexfield
definition. Compiling the flexfield definition enables the Position Flexfield window with
the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 14: Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Implementation Guide 2-11

Define Grade Flexfield

The Grade key flexfield structure is predefined for you upon installation and is not
extensible. The structure contains two segments:

• define the pay plan (GHR_US_PAY_PLAN) is the first segment

• define the grade (GHR_US_GRADE_OR_LEVEL) is the second segment

You only need to freeze and compile the predefined structure. Later on during
implementation you associate the US Federal Grade flexfield with the Business Group
you set up.

To view the structure, use the Key Flexfield Segments window.

See: Oracle US Federal Human Resource Key Flexfields, Configuring, Reporting, and
System Administration Guide

Step 15: Freeze and Compile the Grade Flexfield Structure

Navigate to the Key Flexfield Segments window. Query the US Federal Grade Key
Flexfield. (US Federal Grade Flexfield is the code name; US Government Grade Flexfield
is the View name). Enter Yes in the Freeze Flexfield Definition field. The application now
freezes and compiles your Grade Group Flexfield definition.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 16: Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Define People Group Flexfield

People Group information is associated with employee and contingent worker
assignments and is used to identify special groups of employees in your enterprise, such
as members of a union.

Note: You must define at least one segment for the People Group
Key Flexfield.

If you do not, you will not be able to use the Assignment window for
employees, applicants, or contingent workers.

After you have specified your requirements to take best advantage of the flexibility of the
application for recording and reporting People Group information in your enterprise, the
implementation sequence you follow is:

Step 17: Define People Group Flexfield Value Sets

To validate the values which a user can enter for any segment, you must define a
specific Value Set.

2-12 Oracle US Federal Human Resources Implementation Guide

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set will also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 18: Define People Group Flexfield Segments

Define a structure for your People Group Flexfield which contains the segments you
want to use for your Business Group. You will use this structure to enter People Group
details in the Assignment window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to enter People Group information in the Assignment window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

See: Oracle US Federal Human Resource Key Flexfields, Configuring, Reporting, and
System Administration Guide

Step 19: Define People Group Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value Set used by a People
Group Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 20: Define People Group Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 21: Define People Group Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Implementation Guide 2-13

Step 22: Freeze and Compile Your People Group Flexfield Structure

You are now ready to freeze your People Group Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and save
your changes. The application now freezes and compiles your People Group Flexfield
definition. Compiling the flexfield definition enables the People Group Flexfield window
with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 23: Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Define Cost Allocation Flexfield

Cost Allocation information normally records the details of employee costing associated
with payroll results. If you have installed Oracle Payroll, you can accumulate the costs
associated with your payroll results and transfer these to your General Ledger system. If
you have not installed Oracle Payroll you can use the costing flexfield to enter your cost
allocation information.

After you have specified your requirements for recording and reporting costing
information, follow this implementation sequence:

Warning: You must define at least one segment for the Cost Allocation
Key Flexfield. If you do not, you will experience problems using
windows with the flexfield window.

Step 24: Define Cost Allocation Flexfield Value Sets

To validate the values which a user can enter for any segment, you must define a
specific Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set will also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 25: Define Cost Allocation Flexfield Segments and Qualifiers

Define a structure for your Cost Allocation Flexfield which contains the segments you
want to use for your Business Group. You will use this structure to enter your payroll
costing details in Oracle HRMS.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to enter Costing details anywhere on the system.

2-14 Oracle US Federal Human Resources Implementation Guide

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

The Cost Allocation Flexfield is the only key flexfield in Oracle HRMS that makes
use of Qualifiers. You use Segment Qualifiers to control the level at which costing
information can be entered to the system. Each Qualifier determines the level at which
costing information can be entered. The following table illustrates the six possible
choices for each segment:

Qualifier Effect on window

Payroll Enter segment values in the Payroll window.

Link Enter segment values in the Element Link
window.

Balancing Enter balancing segment values in the Element
Link window.

Organization Enter segment values in the Costing Information
window for the Organization.

Assignment Enter segment values in the Costing window
for the assignment.

Entry Enter segment values in the Element Entries
window.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 26: Define Cost Allocation Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value Set used by a Cost
Allocation Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 27: Define Cost Allocation Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 28: Define Cost Allocation Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Implementation Guide 2-15

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 29: Freeze and Compile Your Cost Allocation Flexfield Structure

You are now ready to freeze your Cost Allocation Flexfield definition. Navigate to the
Key Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. The application now freezes and compiles your Cost Allocation
Flexfield definition. Compiling the flexfield definition enables the Cost Allocation
Flexfield window with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Define Competence Key Flexfield

The Competence Key Flexfield is used to record information about a multi-level
competencies. This enables you to record more details about a competence.

After you have specified your requirements to take best advantage of the flexibility of
Oracle Human Resource Management Systems for recording and reporting competence
information in your enterprise, the implementation sequence which you follow is:

Step 30: Define Competence Flexfield Value Sets

To validate the values that a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set will control the type of values that can be entered, and
how many characters each segment can hold. The attributes of the Value Set will also
control how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 31: Define Competence Flexfield Segments

Define a structure for your Competence Flexfield that contains the segments you want
to use. You will use this structure to enter your competence details in the Competence
window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not
be able to enter new details in the Competence window.

You must specify one of the segments as the Default Attribute using the flexfield
qualifier. You must also attach the Others flexfield qualifier to all other segments
in the structure.

If you intend to upload SkillScape competencies you should try to ensure that you set
up segment 1 to record the competence name as this is the segment into which the
competence name is automatically uploaded. If you define another segment to hold the
competence name you must alter the file $PER_TOP/patch/115/sql/peducomp.sql so
that the reference to segment1 is changed to the segment in which you hold the name.

2-16 Oracle US Federal Human Resources Implementation Guide

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 32: Define Competence Flexfield Segments Values

If you have chosen Independent or Dependent validation for a Value Set used by a
Competence Flexfield Segment, you must define your list of valid values for the Value
Set.

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 33: Define Competence Flexfield Cross-Validation Rules

Define any Cross-Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window.

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 34: Define Competence Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Define Shorthand Aliases window.

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 35: Freeze and Compile Your Competence Flexfield Structure

You are now ready to freeze your Competence Flexfield definition. Navigate to the
Define Key Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field
and save your changes. The application now freezes and compiles your Competence
Flexfield definition. Compiling the flexfield definition enables the flexfield window with
the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Define Collective Agreement Grades Key Flexfield

The Collective Agreement Grades Key Flexfield records information about how an
employee is graded or ranked in a collective agreement. The Collective Agreement
Grades Key Flexfield enables you to specify any number of structures. Each grade
structure is defined as a separate structure of the flexfield. You then link a specific
structure to a collective agreement in the Agreement Grades window.

Note: Oracle US Federal HRMS does not use this flexfield. You may
skip these steps and proceed to Defining Descriptive Flexfields.

Implementation Guide 2-17

It is not mandatory to define your collective agreement grades key flexfield now. You
can do it after you have defined your Business Groups.

After you have specified your requirements for recording and reporting agreement grade
information in your enterprise, the implementation sequence which you follow is:

Step 36: Design your Collective Agreement Grades Flexfield Structures

You need to design a Collective Agreement Grades Flexfield Structure for each Grade
Structure you want to hold in Oracle Human Resources. For each structure you must
include the following:

• The Structure Title (the Grade Structure) and the number of Segments.

• The Flexfield Segment Names (the Grade Factors), Order and Validation Options.

• The Flexfield Value Sets to be used and any lists of values.

Note: Your system administrator performs this step.

Step 37: Define Collective Agreement Grades Flexfield Value Sets

To validate the values that a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set will control the type of values that can be entered, and
how many characters each segment can hold. The attributes of the Value Set will also
control how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 38: Define Collective Agreement Grades Flexfield Segments

Define a structure for your Collective Agreement Grades Flexfield that contains the
segments you want to use. You use this structure to create your Reference Grades in
the Define Agreement Grades window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot enter
new details in the Define Agreement Grades window.

When you access the grades in the Assignment window they display in the numerical
order defined in the Number column of the Segments Summary window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 39: Define Collective Agreement Grades Flexfield Segments Values

If you have chosen Independent or Dependent validation for a Value Set used by a
Collective Agreement Grades Flexfield Segment, you must define your list of valid
values for the Value Set.

2-18 Oracle US Federal Human Resources Implementation Guide

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 40: Define Collective Agreement Grades Flexfield Cross-Validation Rules

Define any Cross-Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window.

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 41: Define Collective Agreement Grades Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Define Shorthand Aliases window.

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 42: Freeze and Compile Your Collective Agreement Grades Flexfield Structure

You are now ready to freeze your Collective Agreement Grades Flexfield
definition. Navigate to the Define Key Flexfield Segments window. Enter Yes in the
Freeze Flexfield Definition field and save your changes. Oracle Human Resource
Management Systems now freezes and compiles your Collective Agreement Grades
Flexfield definition. Compiling the flexfield definition enables the flexfield window with
the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Descriptive Flexfields
Use descriptive flexfields in Oracle HRMS to define your own additional fields to the
standard windows. For example, if you want to record Driver’s License Number for any
person you can define a segment of the Additional Personal Details flexfield to record this
additional information.

After this, you can enter a Driver’s License Number in the Person window after the
standard Personal details.

Note: The descriptive flexfield is defined at the level of the
base-table. This means that any window which uses the base-table will
display the same descriptive flexfield segments. In this example, the
Driver’s License Number will appear in the Contact window, as well
as the Person window.

Before you begin to implement any descriptive flexfield you must clearly specify your
requirements. You must include the following details:

• The Context and the number of Segments for each Context

• The Flexfield Segment Names, Order and Validation Options

Implementation Guide 2-19

• The Flexfield Value Sets to be used and any lists of values

You can define two types of descriptive flexfield Segments:

• Global Segments

Segments always appear in the flexfield window.

• Context-Sensitive Segments

Segments appear only when a defined context exists. You can prompt a user to enter
the context, or you can provide the context automatically from a reference field in
the same region.

Note: Often you can choose between using a code, a ’base-table’
field, and a field which contains a meaning or description. You should
always use base-table fields as reference fields for Context-Sensitive
segments. These fields usually have the same name as the column
in the base table.

Some of the Standard Reports supplied with the system include
descriptive segment values. If you follow this suggestion, these reports
will be able to use the prompts you define - otherwise they will apply a
generic prompt to the data.

Note: If you want to include descriptive flexfield Segment Values in the
Lookups list for DateTrack History you need to modify the DateTrack
History Views that are supplied with the system.

Define Descriptive Flexfields

Step 43: Register a Reference Field

You must use the Application Developer Responsibility to update the definition of the
descriptive flexfield. From the Descriptive Flexfields window, navigate to the Reference
Fields block and enter the name of the Reference Field you want to use.

Warning: Some descriptive flexfields are predefined and
protected. These are used to deal with specific legislative and reporting
needs of individual countries or industries.

Do not attempt to alter the definitions of these protected flexfields. These
definitions are a fundamental part of Oracle HRMS. Any change to them
may lead to errors in the operating of the application.

Oracle HRMS may use other segments of these flexfields in the
future. Therefore, do not add segments to any protected flexfield. This
can impair your ability to upgrade your system.

Use the Descriptive Flexfields window

Step 44: Define Flexfield Value Sets

If you want to validate the values which a user can enter for any segment you must
define a specific Value Set.

• The attributes of the Value Set will control the type of values that can be entered, and
how many characters each segment can hold.

2-20 Oracle US Federal Human Resources Implementation Guide

• The attributes of the Value Set will also control how the values are to be validated.

Note: Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 45: Define Descriptive Flexfield Segments.

Define the segments of your descriptive flexfield for each Context.

You do not need to use a Value Set to validate a segment. If you do not specify a Value
Set then a user can enter any alphanumeric value up to a limit of 150 characters.

1. Use Global Context to define any segments which will always appear in the flexfield
window.

2. Enter your own Context Name to define segments which will appear only for
that context.

3. Freeze and compile your descriptive flexfield definitions.

Warning: Any segment you define as "Required" is required for every
record on the system. You can encounter two common problems:

• If you define a ’Required’ segment after you have entered records: Existing records
will not have any value in this segment and the system will prompt you with an
error when you query an existing record.

• Some descriptive flexfields are used in more than one block. For example, any
’Required’ segments for Additional Personal Details must be entered for every
Employee,Contingent Worker, Applicant or Contact.

Use the Descriptive Flexfield Segments window.

See: Defining Descriptive Flexfield Structures, Oracle Applications Flexfields Guide

Step 46: Define Flexfield Segment Values

If you have chosen Independent validation for a Value Set used by a descriptive flexfield
Segment, you must define a list of valid values for the Value Set.

Use the Define Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 47: Run Create Descriptive Flexfields Database Items Process

When you have defined your descriptive flexfields you should run the Create Descriptive
Flexfields Database Items process to create database items for your non-context-sensitive
descriptive flexfield segments.

You should rerun this process whenever you create additional non-context-sensitive
descriptive flexfield segments.

Note: If you require Database Items for Context Sensitive flexfield
segments you should consult your Oracle Support Representative for
full details of how to add other Database Items.

Implementation Guide 2-21

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Extra Information Types (EITs)
Extra Information Types are a type of descriptive flexfield that let you add an unlimited
number of information types to six of the most important entities in Oracle HRMS.

For example, you might want to use the EIT on Assignment to hold information about
project work within an assignment.

Note: With Organizations you can group the EITs by classification so
that when a user selects a classification they will see the EITs associated
with the classification. This means that there are some additional steps
to implement EITs for an Organization.

Define Extra Info Types (Excluding Organizations)

Step 48: Define Extra Information Types

Once you have decided which extra information types you require, select the relevant
descriptive flexfield by title. Create a new record in the Context Field Values region and
enter the name of your new Information Type in the Code field. Enter the segment
values and compile the descriptive flexfield.

Important: There are some predefined EITs in Oracle US Federal
Human Resources. These definitions are a fundamental part of your
installation and any change to them may lead to errors in the operation
of the system. Do not attempt to alter the definitions of these protected
flexfields or to add other segments to them. It is possible that Oracle will
use other segments of these flexfields in the future. Any changes you
make can affect your ability to upgrade your system in the future.

Use the Descriptive Flexfield Segments window.

See: Setting up Extra Information Types (Excluding Organization EITs), Oracle HRMS
Configuring, Reporting, and System Administration Guide

Step 49: Set Up Responsibility Access for Extra Information Types

EITs do not appear automatically in any responsibility. You must set up responsibility
level access for EITs. Alternatively, use CustomForm security to add individual EITs
to a specific taskflow window. This level of security is usually defined later in the
implementation when you need to restrict access for users.

Note: This security does not apply to EITs on organizations.

Use the Information Types Security window.

See: Setting Up Extra Information Types for a Responsibility, Configuring, Reporting,
and System Administration Guide.

Define Extra Info Types for Organization

EITs for organization classifications are set up differently from other EITs. When
you define them you must also associate them with the Classification of the

2-22 Oracle US Federal Human Resources Implementation Guide

Organization. When a user selects the classification then the system will display the
correct set of EITs.

Step 50: Define Organization Classification

Define a new organization classification if you want to group your EITs in a specific
way. You do not need to do this, if you can use a classification that already exists.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 51: Set up Extra Information Types for an Organization Classification

Define a new EIT and then enter a row into the HR_ORG_INFORMATION TYPES
table. Then specify for which organization classifications this EIT is available.

See: Setting Up Extra Information Types for an Organization Classification, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Administration
These are tasks for your System Administrator.

Important: If you used the Configuration Workbench, you can skip
these steps. The Workbench enables the currencies for the countries in
which your enterprise operates, and creates a user called HRMS_USER
for each business group.

Step 52: Enable Currencies

All major currencies are predefined with Oracle Applications. The codes used are the
ISO standard codes for currencies. However, you must enable the specific currencies you
want to use for your base currency, or for any compensation and benefit information.

The ’base currency’ is the default currency used by your Business Group, USD.

Note: Oracle HRMS does not use extended precision. You can control
the precision in any calculation using a formula.

Use the Currencies window

See: Enabling Currencies, Oracle HRMS Configuring, Reporting, and System Administration
Guide.

Step 53: Define ’View All’ HRMS User

Before you can access any of the HRMS windows you must create a new Application
User. with access to one of the default Responsibilities supplied with the system.

Use the Users window.

See: Users Window, Oracle Applications System Administrator's Guide

Implementation Guide 2-23

Enterprise and Workforce Management

Organization Structures
Using the Configuration Workbench, you create the key organization structures for your
enterprise and map them into an organization hierarchy. You also define the locations
for these organizations. The Workbench creates a "View All" responsibility for each
business group, and sets the required user profile options.

You can create additional organizations and locations to represent internal divisions or
departments, and external organizations for reporting or third-party payments.

If you have used the Configuration Workbench you can skip steps 1, 2 and 6 through
8. You might want to set additional user profile options (step 3).

Step 1: Adapt or Create Business Group

A business group is a special class of organization. Every business group can have its
own set of default values, with its own internal organizations, positions, payrolls,
employees, contingent workers, applicants, compensations and benefits.

A ’Setup’ business group is supplied with Oracle HRMS. This business group is used
by the default responsibility. You can use this business group with all of its default
definitions as the starting point for your own business group, or you can define other
business groups to meet your own needs.

Warning: The Setup business group has a default legislation code of US
and a default base currency of USD.

If you intend to process payrolls in your business group, or you intend
to implement legislation for another territory, you may need to create a
new business group with a valid legislation code and base currency. The
system uses these values to copy in the predefined data it needs to
comply with local legislative and processing requirements.

You cannot change these definitions after they have been saved.

Use the Organization window.

See: Adapting and Creating a New Business Group, Oracle HRMS Enterprise and
Workforce Management Guide

Step 2: Create a ’View All’ Responsibility for the Business Group

If you are using the Setup Business Group supplied with Oracle HRMS, you can omit
this step.

Use the Responsibility window.

See: Defining a ’View All’ Responsibility, Oracle HRMS Enterprise and Workforce
Management Guide

Step 3: Set User Profile Option Values for Responsibility

Set the HR User Profile Options for the new responsibility. You must set up the HR: User
Type option.

You can also set up other User Profile Options.

Use the System Profile Values window.

2-24 Oracle US Federal Human Resources Implementation Guide

See: System Profile Values Window, Oracle Applications System Administrator’s Guide

Step 4: Define Lookup Types and Values

Lookups supply many of the lists of values in Oracle HRMS. For example, the
Job, Position, Person, and Assignment windows use Lookups for Extra Information.

Many Lookup Types have been predefined and include value sets. Others are
predefined, such as Appropriation Codes and Bargaining Unit Status, but you need to
define values for them.

For information about which Lookup Types are predefined and contain value sets and
which ones are extensible, refer to the reference tables:

• Assignment Information Types, Configuring, Reporting, and System Administration
Guide

• RPA Extra Information Type Descriptions, Configuring, Reporting, and System
Administration Guide

• Elements, Configuring, Reporting, and System Administration Guide

• Location Information Type Description, Configuring, Reporting, and System
Administration Guide

• Organization Information Type Description, Configuring, Reporting, and System
Administration Guide

• Person Information Types, Configuring, Reporting, and System Administration Guide

• Position Information Types, Configuring, Reporting, and System Administration Guide

• RPA Extra Information Types and NOACs, Configuring, Reporting, and System
Administration Guide

• Person Analysis Special Information Types, Configuring, Reporting, and System
Administration Guide

Lookup Values are the valid entries that appear in the list of values. They make choosing
information quick and easy, and they ensure that users enter only valid data into Oracle
HRMS.

You can add new Lookups Values at any time to extensible Lookup types. You can set
the Enable Flag for a Value to No, so that it will no longer appear in the list of values, or
you can use the Start and End Dates to control when a value will appear in a list for
all non-system Lookup Types.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 5: Set up Auto Orgs Optional Step

You can enable the automatic creation of HR organizations using the Auto Orgs
functionality. If your enterprise has a close relationship between its financial structure
and line management hierarchy, then this means you only have to maintain your
financial structure in GL and the corresponding line manager hierarchy is automatically
synchronized.

See: Implementing Automatic Company Cost Center Creation, Oracle HRMS Enterprise
and Workforce Management Guide

Implementation Guide 2-25

For further information on setting up multiple organizations see Multiple Organizations in
Oracle Applications R11i, available on MetaLink

Step 6: Create Locations

Create each work location used by your agency and associate it with a Duty
Station, using the supplied Duty Stations Lookups. You define each location and address
once only. This saves you time if you have several organizations with the same address.

The Location name is displayed on the Assignment form. To more easily identify the
specific Duty Station Location, it is recommended that you enter the Duty Station
number as the location name.

Use the Location window.

See:Setting up Locations, Enterprise and Workforce Management Guide

Step 7: Create Organizations

Organizations are the basic work structure of any enterprise. They usually represent the
functional, management, or reporting groups which exist within a business group.

In addition to these internal organizations you can define other organizations for
reporting purposes or to represent carriers for benefits.

Tip: When you install Oracle HRMS you will find a predefined list of
Organization Classifications. These values are defined for the Lookup
Type ORG_CLASS, and provide options for all users of the Organization
window.

You can disable the Lookup values you will not use in your
implementation in the Application Utilities Lookups window.

If you intend loading historic assignment details into Oracle HRMS, make sure you enter
valid dates. You cannot assign an employee or contingent worker to an organization
before the start date of the organization.

Tip: Consider using a fixed date as a default for your initial setup, for
example, 01-JAN-1951. This will simplify your data-entry.

Use the Organization window.

See: Creating an Organization, Enterprise and Workforce Management Guide.

Step 8: Enter Organization Classifications and Additional Information

Enter the appropriate classifications for each organization and details for any Extra
Information types.

Use the Organization window.

See: Entering Organization Classifications, Oracle HRMS Enterprise and Workforce
Management Guide

See: Entering Additional Information, Enterprise and Workforce Management Guide

Step 9: Enter Business Group Additional Information

For each business group you set up, you need to enter additional information, specifying
the names of the key flexfield structures that you set up previously for

2-26 Oracle US Federal Human Resources Implementation Guide

Job, Position, Grade, Group, and Costing. This information is required to process and
update to the HR database Requests for Personnel Actions.

Use the Organization window.

See: Entering Businss Group Information, Enterprise and Workforce Management Guide

Step 10: Set up HR Organization and US Federal Org Reporting Information

You specify HR Organization for all organizations to which you intend to assign
employees. For these organizations, you also enter the the US Federal Org Report
information which is required when generating federal reports such as the Notification
of Personnel Action and the Central Personnel Data File (CPDF) reports.

Use the Organization window.

See: Federal reports, see HR Organizations: Entering US Federal Reporting Information,
Enterprise and Workforce Management Guide

Step 11: Define Organization Hierarchies

A business group can include any number of organizations. You can represent your
management or other reporting structures by arranging these organizations into
reporting hierarchies. An organization can belong to any number of hierarchies, but it
can only appear once in any hierarchy.

Note: You may find it easier to define the primary reporting hierarchy
using the top organization and one other. Then you can add
organizations into the hierarchy when you make your definitions in the
Organization window.

Organization reporting lines change often and you can generate a new version of a
hierarchy at any time with start and end dates. In this way, you can keep the history
of your organizational changes, and you can also use this feature to help you plan
future changes.

When you use DateTrack you see the ’current’ hierarchy for your effective date.

Important: Your primary reporting hierarchy will usually show
your current management reporting structure. You can define other
hierarchies for other reporting needs.

You can create organization hierarchies using the:

• Organization Hierarchy Window

See: Creating Organization Hierarchies, Oracle HRMS Enterprise and Workforce
Management Guide .

• Organization Hierarchy Diagrammers (they enable you to create your hierarchies
graphically, and to make intuitive drag-and-drop changes).

See: Adding Organizations or Positions to a Hierarchy, Oracle HRMS Enterprise and
Workforce Management Guide

Step 12: Run the Create Federal HR Valid Combinations

The application provides a concurrent manager process that supplies valid grade and
pay plan combinations that are used during implementation when defining your
agency’s positions.

Implementation Guide 2-27

Use the Submit Request Window.

See: Running the Federal Valid Combinations Process, Compensation and Benefits
Management Guide

Jobs
If you used the Configuration Workbench, you may already have loaded jobs from a
spreadsheet in the Workbench. You can skip the Define Jobs step.

Step 13: Define Job Groups

As part of a working relationship, a person can simultaneously perform a number of
roles in addition to being an employee or contingent worker. These can range from
initiatives defined by the enterprise, such as fire warden, to legislative defined roles such
as Health and Safety Representative. In Oracle HRMS, these are know as supplementary
roles. Supplementary roles are set up as jobs in the Job window

Each job is held in a Job Group. The Job Group is used to store jobs of a similar type
together in one group. All standard jobs created in Oracle HRMS, that is, those jobs that
define the role the person is employed to fulfil, must be stored in the default HR Job
Group. This Job Group is automatically created for your business group.

If you want to set up supplementary roles you must set up additional job groups to
store these roles.

Use the Job Groups window.

See: Creating a Job Group, Oracle HRMS Enterprise and Workforce Management Guide

Step 14: Define Jobs

Jobs provide a way to categorize related positions, independent of specific
organizations. You use the Job window to define a job and associate it to an Occupational
Series Code.

A ’Job Name’ is a unique combination of values in the segments of the job flexfield
structure that you have linked to your business group.

There are a number of ways to add information about a job. Primarily, you use Extra
Information flexfields to store additional job-related information.

Use the Job window.

See: Defining a Job, Enterprise and Workforce Management Guide

Define a Context for Mass Actions

The Contexts form determines what information you can view, enter, and change on the
Mass Assignment Update and Position Copy forms. A predefined global Context form
contains the default position and assignment attribution that appear on the forms. When
you create a new Context, you can choose the attributes to display based on a user’s
Application, Legislation, and Responsibility.

Step 15: Set up a new Context

Create a new context defining the Application, Legislation, and Responsibility.

Use the Contexts window.

2-28 Oracle US Federal Human Resources Implementation Guide

See: Defining a Context for Mass Actions, Configuring, Reporting, and System
Administration Guide

Step 16: Specify which Attributes to Include

Define the attributes to include in the Display, Change List, and Criteria columns.

Use the Contexts window.

See: Defining a Context for Mass Actions, Configuring, Reporting, and System
Administration Guide

Positions
If you used the Configuration Workbench, you may already have loaded positions from
a spreadsheet in the Workbench. You can skip the Define Positions step.

Step 17: Create Classified Position Descriptions (Optional)

Many agencies require classified position descriptions that describe the position’s
responsibilities, requirements, and working conditions. You can create as well as classify
position descriptions.

Use the Position Description window.

See: Classifying Position Descriptions, Enterprise and Workforce Management Guide

Step 18: Define Position Hiring Statuses

Each position must have a hiring status: Proposed, Active, Frozen, Eliminated or
Deleted. You can create user names for these system hiring statuses, and define more
than one user name for each system name, if required.

Use the User Types and Statuses window.

See: Defining Hiring Statuses, Oracle HRMS Enterprise and Workforce Management Guide

Step 19: Define Positions

In Oracle HRMS a position is a job within an organization. You use positions to define
your structural information.

A ’Position Name’ is a unique combination of values in the segments of the position
flexfield structure that you have linked to your business group.

Use the Position window.

See: Define a Position, Enterprise and Workforce Management Guide

Step 20: Enter Additional Information about Positions

You use Extra Information flexfield to store additional position-related information.

See: Define a Position, Enterprise and Workforce Management Guide

Step 21: Set up the Synchronize Positions Process to Run Nightly

Oracle HRMS uses the Synchronize Positions process to update the non-datetracked
Positions table (PER_ALL_POSITIONS) with changes made to the datetracked table
(HR_ALL_POSITIONS_F). When you run the process, any datetracked changes with
an effective date on or before today are applied to the non-datetracked table. Future
dated changes are not applied until they become effective.

Implementation Guide 2-29

Running the Synchronize Positions process every night ensures that the application
automatically updates the table with the position changes that become effective each
day. If a power or computer failure disrupts this process, you can start it manually
from the Submit a New Request window.

Warning: Ensure that the resubmission interval is set to run every night.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User Guide

Step 22: Create a Position Hierarchy

You structure position hierarchies to represent the management reporting lines for
your agency’s departments and sections. Hierarchies represent reporting relationships
that cross organizations, position and organization information for the Requests for
Personnel Action, and hierarchical relationships for the Organizational Component
Translation report.

You can create position hierarchies using the:

• Position Hierarchy Window

See: Creating a Position Hierarchy, Enterprise and Workforce Management Guide

• Position Hierarchy Diagrammers (they enable you to create your hierarchies
graphically, and to make intuitive drag-and-drop changes).

See: Adding Organizations or Positions to a Hierarchy, Oracle HRMS Enterprise and
Workforce Management Guide

Complaint Tracking
Before your agency enters a complaint into the application, you must set up the
Complaint Tracking window according to your agency’s requirements.

Setup involves consideration of implementing security for users of Complaint Tracking
windows and reports, adding agency-specific fields and Lookup values to windows, and
setting up EEO Officials in the application.

Your setup may include one or more of the following steps, depending on your
implementation:

Step 23: Define a Secure Responsibility for EEO Complaint Tracking Users

Use the Security Profile window.

See: Defining a Security Profile, Configuring, Reporting, and System Administration Guide

Step 24: Add lookup values for:

• Serviced HR Office (GHR_US_HR_OFFICE)

• Serviced EEO Office (GHR_US_EEO_OFFICE)

• Servicing Organization (GHR_US_SERVICED ORG)

• Servicing organizations are those involved in processing the complaints.

• Discriminating organizations (GHR_US_DISCRIMINATING_ORG)

Use the Lookup Values window.

2-30 Oracle US Federal Human Resources Implementation Guide

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Configuring, Reporting, and System Administration
Guide, Removing Lookup Values, Configuring, Reporting, and System Administration Guide

Step 25: Set up person types

By defining additional person types, such as ADR Facilitator or Administrative
Judge, you can include information when you enter people in the application that allows
you to query them by type of function.

See: Defining Person Types, Enterprise and Workforce Management Guide

Step 26: Define a request group for EEO reporting users.

See: Request Groups, Configuring, Reporting, and System Administration Guide

Step 27: Add agency-specific taskflows

Use the Define Taskflow window.

See: Defining Taskflows, Configuring, Reporting, and System Administration Guide

Step 28: Enter EEO Officials into the application

Complaint officials must be entered in the application before they can be assigned to
a complaint.

Use the People window.

See: Entering a New Person, Workforce Sourcing, Deployment, and Talent Management Guide

See: Entering People Involved in Processing the Complaint, Enterprise and Workforce
Management Guide

Step 29: Generate docket numbers

If you do not want to enter docket numbers manually in the Complaint Tracking
window, you can generate your own docket numbers using the same SQL operation
that you do to generate numbers for Request Number field in an RPA (Request for
Personal Action).

New Hire Reporting

Step 30: Check GRE Federal and State Identification Numbers

Ensure that a federal identification number and a SUI identification number, if
appropriate, is on record for each GRE that submits New Hire reports.

Use the Organization window.

See: GREs: Entering the IRS Identification Number, Enterprise and Workforce Management
Guide

Step 31: Enter the GRE Contact Person

Enter the GRE contact person.

Use the Organization window.

See: Entering New Hire Report Information for a GRE, Enterprise and Workforce
Management Guide

Implementation Guide 2-31

Step 32: Enter New Hire Information for Every Employee

When you use the online system to hire an employee you enter the appropriate New
Hire status in the Employment Information region of the Person window.

• The default is null

• Enter Incl or Excl

• The status automatically changes to Done after a run of the New Hire report
includes the employee.

Warning: When you load your current employees into the database, the
default New Hire Status is null. You must enter a value of Done or Excl
in the New Hire Status field if you do not want to include them in your
first run of the New Hire report.

Do this manually, or as part of your data loading.

Use the Person window.

See: Entering Additional Personal Information (People Window), Workforce Sourcing,
Deployment, and Talent Management Guide

Evaluation Systems

Step 33: Define Evaluation Types Optional Step

With Oracle HRMS you can record summary evaluation information for Jobs, or
Positions in the Evaluation window.

Define the name of your evaluation system as a value for the Lookup Type
EVAL_SYSTEM.

To record detailed evaluation scores for the Hay System or any other system you can
enable the Additional Evaluation Details descriptive flexfield to hold and validate
this information.

You can also hold comment or review information for each evaluation you undertake.

Note: If you use more than one evaluation system you may want to
define the segments as context sensitive to the System Name.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Human Resource Budgets

Step 34: Define Lookup Types and Values Optional Step

Oracle HRMS delivers the following seeded budget measurement
units: Money, Hours, Headcount, Full Time Equivalent, and Percent Full Time
Equivalent. You cannot extend the delivered budget measurement units, but you can
copy and rename an existing measurement unit.

Define values for BUDGET_MEASUREMENT_TYPE.

2-32 Oracle US Federal Human Resources Implementation Guide

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 35: Define Period Types Optional Step

The most common period types are already predefined in Oracle HRMS. You can change
the names of these predefined types but you cannot add any new types.

Use the Period Types window.

See: Renaming Period Types, Oracle HRMS Enterprise and Workforce Management Guide

Step 36: Define Budgetary Calendars Optional Step

You use calendars to define the budget years for your staffing budgets.

Use the Budgetary Calendar window.

See: Defining Budgetary Calendars, Oracle HRMS Enterprise and Workforce Management
Guide

Step 37: Define Budget Sets Optional Step

A budget set is comprised of one or more elements. You define a budget set to record the
money or hours or other budget measurement units in your budget. Oracle HRMS uses
budget sets to track actual expenditures and commitments.

Use the Budget Set window.

See: Defining Budget Sets, Oracle HRMS Enterprise and Workforce Management Guide

Step 38: Migrate an Existing Oracle HRMS Budget to the New Budget Tables Optional Step

If you created a budget in Oracle HRMS prior to Release 11i, you can use an existing
budget as the basis for a new budget worksheet.

Run the Migrate Budget Data process from the Submit Requests window to migrate an
existing budget to the new database tables for Budgets.

See: Migrating a Budget to Oracle HRMS, Oracle HRMS Enterprise and Workforce
Management Guide

Step 39: Set Up the HR Budget in Oracle General Ledger Optional Step

If you are transferring a budget from Oracle HRMS to Oracle General Ledger, you must
first define the budget in Oracle General Ledger.

Use the Define Budget window in Oracle General Ledger to define the budget.

See: Setting Up an Oracle HRMS Budget for Transfer to Oracle General Ledger, Oracle
HRMS Enterprise and Workforce Management Guide

Step 40: Define Budget Characteristics Optional Step

You set up budget characteristics to define the Oracle HRMS work structure for which
you are establishing a budget. The primary entities against which you can create a
budget are job, position, grade, and organization. You can also create a budget for a
combination of these entities.

Defining the characteristics of a budget also requires you to define the budget
measurement units (Money or Headcount, for example). Optionally, you can select the
elements that are used to process budget funding commitments during a budgetary

Implementation Guide 2-33

period. For budgets that are transferred to Oracle General Ledger, you can map Oracle
HRMS Costing Segments to GL Chart of Account Segments.

Use the Budget Characteristics window.

See: Defining Budget Characteristics, Oracle HRMS Enterprise and Workforce Management
Guide

Person Types

Step 41: Define Person Types Required Step

You can define your own names to identify the "types" of people in your system.

Note: Person Type is a common option for Form Customization.

Use the Person Types window.

See: Defining Person Types, Enterprise and Workforce Management Guide

Collective Agreements
A collective agreement is an agreement that defines the terms and conditions of
employment for all employees that are covered by its terms. Agreements are typically
negotiated and agreed by external bodies such as Trade Unions and Representatives of
Employers.

Step 42: Setting Up Collective Agreements Optional Step

If your enterprise uses collective agreements, follow the steps in the referenced topic to
enter a collective agreement, set up the eligibility criteria for the agreement, and to apply
the values defined in the agreement to the eligible employees.

See: Setting Up a Collective Agreement, Oracle HRMS Enterprise and Workforce
Management Guide

Medical Assessments, Disabilities and Work Incidents

Step 43: Define Lookup Types and Values Optional Step

If you want to record medical assessments, disabilities, or work incidents for the people
in your enterprise, you must define Lookup Values for the Lookup Types that are used in
those windows.

See: User and Extensible Lookups, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Compensation, Benefits, and Payroll
Oracle HRMS uses elements to represent all types of earnings, deductions and
benefits. Elements hold the information you need to manage compensation and benefits.

2-34 Oracle US Federal Human Resources Implementation Guide

Before you start defining elements, you should make all of your decisions about the
definitions and rules for eligibility.

If you plan to load details of employee entry history you should consider using a fixed
date, such as 01-JAN-1901, as a default for your initial setup definitions. This will
simplify your data-entry.

Many implementation steps are shared by Standard and Advanced Benefits. Federal
Employee Health Benefits, Thrift Savings Plans, and Thrift Savings Plan Catch-Up
Contribution plans are predefined for you. See: Federal Employee Health Benefits
Overview, Compensation and Benefits Management Guide, Thrift Savings Plan Overview,
Compensation and Benefits Management Guide.

Define Grade Related Information Optional Steps

If you have agency-specific pay plans, you can add them to the system. The grade and
step values are also extensible.

Step 1: Add the Pay Plan

The Federal Maintenance Pay Plan window lists the predefined pay plans. Use this
window to add other pay plans and to indicate whether the pay plan is eligible for
Within-Grade-Increases.

Use the Pay Plan window.

See: Add a Pay Plan, Compensation and Benefits Management Guide

Step 2: Review the Values for Grades or Levels

The product comes with an extensive list of values for grades and steps that you can
extend, GHR_US_GRADE_OR_LEVEL.

Use the Lookup Values window.

See: Add Grades, Compensation and Benefits Management Guide

Step 3: Review the Values for Steps or Rates

The product comes with an extensive list of values for grades and steps that you can
extend, GHR_US_STEP.

Use the Lookup Tables window.

See: Add Steps, Compensation and Benefits Management Guide

Step 4: Associate the Pay Plan and Grade

To create valid pay plan and grade combinations, you associate the pay plan with
the appropriate grade or level.

Use the Grades window.

See: Associate Pay Plans and Grades, Compensation and Benefits Management Guide

Step 5: Create a Pay Table

A pay table can include one or more pay plans. For example, the Oracle Federal
Standard Pay Table includes several pay plans. You can create your agency-specific
basic and special rate pay tables.

Use the Table Structure window.

See: Set up Pay Tables, Compensation and Benefits Management Guide

Implementation Guide 2-35

Step 6: Enter the Pay Values

You enter and can later maintain the values for the pay tables.

Use the Table Values window.

See: Enter Pay Values, Compensation and Benefits Management Guide

Define Payroll Information

You must include a payroll in the employee assignment before you can make
nonrecurring entries of any element for an employee. Nonrecurring entries are only
valid for one payroll period.

Step 7: Define Payment Methods

Standard categories of payment methods such as Direct Deposit are predefined with
your system. You can define your own names for each of these methods.

Use the Organizational Payment Method window.

Step 8: Define Consolidation Sets

When you define your business group the system will automatically generate a default
Consolidation Set. If you have not installed Oracle Payroll you can skip this step.

Consolidation sets are used by Oracle Payroll where you want to gather the results from
different payroll runs into a single set for reporting or transfer to other systems. You
can define any number of additional consolidation sets.

Use the Consolidation Sets window.

Step 9: Define Payrolls

You define your own payroll groups to meet your business needs for processing and
payment. Agencies must define at least:

• One biweekly payroll and name it BiWeekly.

The biweekly payroll is the one that most federal offices use. The effective date for
the payroll should begin at a date that accommodates all records that the agency
plans to convert.

• One monthly payroll

The monthly payroll is used as the default benefits assignment payroll for
ex-employees and beneficiaries. The effective date for the payroll should begin at a
date that accommodates all records that the agency plans to convert.

Note: The payroll calendar is different from the budgetary calendar
in Oracle HR. You define your budgetary calendar for headcount or
staffing budgets.

Use the Payroll window.

Administration Steps for Standard and Advanced Benefits

Step 10: Add the Benefits Tabbed Region to the People Window Optional Step

A person with a responsibility of system administrator or application developer can use
the Menus window to add the benefits alternate region to the People window.

2-36 Oracle US Federal Human Resources Implementation Guide

1. Query the BEN_MANAGER menu in the Menu field.

2. Add a new line and select HR View Benefits in the Function field.

3. Save your work

Use the Menus window.

See: Menus Window, Configuring, Reporting, and System Administration Guide

Step 11: Define a Monthly Payroll Required Step

You must define a monthly payroll for each business group you maintain. When you
process employee terminations, a copy of the person’s assignment record is created as a
benefits assignment. Benefits assignments are used to maintain eligibility for continuing
benefits, and always have a payroll with a monthly period.

Note: If you have already defined payroll information, including
monthly payrolls for each Business Group, you can skip this step.

Use the Payroll window.

See:Defining Benefits Defaults for a Business Group, Enterprise and Workforce Management
Guide

Benefits Eligibility
You define participation eligibility profiles to determine eligibility for benefits. You can
also use eligibility factors to determine variable contribution and distribution rates
for a benefit.

Step 12: Define Benefits Groups Optional Step

You define a benefits group as a category of people who can be either included or
excluded from receiving a benefit or a standard activity rate. A benefit group is one
optional component of an eligibility profile or a variable rate profile.

Use the Benefits Groups window.

See: Defining Benefits Groups, Oracle HRMS Compensation and Benefits Management Guide

Step 13: Define Postal Code (ZIP) Ranges Optional Step

You define postal code (zip) ranges if you limit benefits eligibility based on a person’s
home address or if an activity rate varies based on a person’s address.

Postal code ranges are also a component of service areas.

Use the Postal Zip Ranges window.

See: Defining Postal Zip Ranges, Oracle HRMS Compensation and Benefits Management
Guide

Step 14: Define Service Areas Optional Step

You can define a service area to group people who live in a region by their postal codes. A
service area is one optional component of an eligibility profile or a variable rate profile.

Use the Service Areas window.

See: Defining Service Areas, Oracle HRMS Compensation and Benefits Management Guide

Implementation Guide 2-37

Step 15: Define Regulations Optional Step

You define regulations as discrete rules, policies, or requirements that a governmental or
policy making body defines regarding the administration of one or more benefits.

Use the Regulations window.

See: Defining Regulations, Oracle HRMS Compensation and Benefits Management Guide

Define Derived Eligibility Factors

A derived factor is a system calculated value that you can use to determine eligibility for
a benefit or to determine an activity rate.

Step 16: Define Derived Compensation Level Factors Optional Step

Define compensation level factors to determine how the system derives a person’s
compensation level based on a person’s stated salary or a balance type that you specify.

Use the Derived Factors window.

See: Defining Derived Factors: Compensation Level, Oracle HRMS Compensation and
Benefits Management Guide

Step 17: Define Derived Percent of Full Time Employment Factors Optional Step

Define percent of full time factors to determine how the system derives a person’s
percent of full time employment.

Use the Derived Factors window.

See: Defining Derived Factors: Percent of Full Time Employment, Oracle HRMS
Compensation and Benefits Management Guide

Step 18: Define Derived Hours Worked in Period Factors Optional Step

Define hours worked in period factors to determine how the system derives the number
of hours a person worked in a given period.

Use the Derived Factors window.

See: Defining Derived Factors: Hours Worked in Period, Oracle HRMS Compensation
and Benefits Management Guide

Step 19: Define Age Factors Optional Step

Define age factors to determine how the system derives a person’s age.

Use the Derived Factors window.

See: Defining Derived Factors: Age, Oracle HRMS Compensation and Benefits Management
Guide

Step 20: Define Length of Service Factors Optional Step

Define length of service factors to determine how the system calculates a person’s
length of service.

Use the Derived Factors window.

See: Defining Derived Factors: Length of Service, Oracle HRMS Compensation and Benefits
Management Guide

2-38 Oracle US Federal Human Resources Implementation Guide

Step 21: Define Combination Age and Length of Service Factors Optional Step

Define combination age and length of service factors to combine an age factor and a
length of service factor.

Use the Derived Factors window.

See: Defining Derived Factors: Combination Age and Length of Service, Oracle HRMS
Compensation and Benefits Management Guide

Define Eligibility Profiles Optional Steps

Step 22: Define an Eligibility Profile Optional Step

Defining an eligibility profile is the primary way in which you implement eligibility
requirements for a benefit. You link an eligibility profile with a compensation object (a
benefit that you define) so that when eligibility processes run, only the persons meeting
the eligibility profile requirements are eligible to receive the benefit.

Use the Participation Eligibility Profiles window.

See: Defining an Eligibility Profile, Oracle HRMS Compensation and Benefits Management
Guide

Step 23: Define Dependent Coverage Eligibility Profiles Optional Step

You define dependent coverage eligibility profiles to enforce eligibility requirements for
dependents.

Use the Dependent Coverage Eligibility Profiles window.

See: Defining a Dependent Coverage Eligibility Profile, Oracle HRMS Compensation
and Benefits Management Guide

Compensation Objects
You define compensation objects as the benefits that you offer to your employees and
other eligible participants.

Compensation objects are arranged according to the compensation object hierarchy:

• Program

• Plan Type

• Plan

• Option

Definitions that you set at the program level cascade to the plan types, plans, and options
in that program unless you override the definition at a lower point in the hierarchy.

Step 24: Define Reimbursable Goods and Service Types Optional Step

Define goods and services that you approve for reimbursement. You then associate one
or more goods and services types with a reimbursement plan.

Use the Goods and Services window.

See: Defining Reimbursable Goods and Service Types, Oracle HRMS Compensation
and Benefits Management Guide

Implementation Guide 2-39

Step 25: Define a Program or Plan Year Period Optional Step

You define a program or plan year period to set the coverage boundaries for the duration
of a benefit program or plan.

Use the Program/Plan Year window.

See: Defining a Program or Plan Year Period, Oracle HRMS Compensation and Benefits
Management Guide

Step 26: Define Plan Types Optional Step

You define plan types to categorize common types of benefits, such as medical plans
or savings plans.

Use the Plan Types window.

See: Defining Plan Types, Oracle HRMS Compensation and Benefits Management Guide

Step 27: Define Options Optional Step

You define options to indicate the coverage levels available under a plan or to define
investment options for a savings plan.

Use the Options window.

See: Defining Options, Oracle HRMS Compensation and Benefits Management Guide

Step 28: Define Plans Optional Step

A plan is a benefit in which an eligible participant can enroll. Common plans include
medical, group term life insurance, and stock purchase plans.

Use the Plans window.

See: Defining a Benefits Plan, Oracle HRMS Compensation and Benefits Management Guide

Step 29: Define Reimbursement Plans Optional Step

Use reimbursement plans to define goods and services that eligible participants may
purchase. The participant can submit a reimbursement claim for the cost of the good or
service that was purchased out-of-pocket.

Use the Plan Reimbursement window.

See: Defining a Reimbursement Plan, Oracle HRMS Compensation and Benefits Management
Guide

Step 30: Define Programs Optional Step

You define a program to group together the benefits that you offer as a package. A
program typically is comprised of plan types, plans, and options.

Use the Programs window.

See: Defining a Benefits Program, Oracle HRMS Compensation and Benefits Management
Guide

Elements
Before you define any elements, you should make all of your decisions about the
definitions and rules for eligibility.

2-40 Oracle US Federal Human Resources Implementation Guide

Define Input Value Validation Optional Steps

Step 31: Define Lookup Types and Values Optional Step

You define new Lookup Types to create additional lists of values to validate any element
input value with a character datatype.

Note: You can also use Lookup Types to validate a flexfield
segment. Use the Table Validation option for the Value Set and use the
Lookups table as the source of your list.

You can add new Lookup Values at any time. You can set the Enable Flag for a Value to
No, so that it will no longer appear in the list of values, or you can use the Start and
End Dates to control when a value will appear in a list.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 32: Define User Tables Optional Step

With Oracle HRMS you can set up any number of User-Defined Tables. A user-defined
table is a "matrix" of columns that hold different values for the same row. You can access
this information using the GET_TABLE_VALUE function in any formula.

For example, you may want to set up a single table to hold union pay
rates, deductions, and benefit levels for different job groups. Use the rows to hold "Job
Group" and the columns to hold the specific values for each job group.

You can define exact row values or an inclusive range of values.

Use the Table Structure window.

See: Setting Up User Tables, Columns and Rows: , Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 33: Define Table Values Optional Step

You now need to define the table values.

Use the Table Values window.

See: Entering Table Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 34: Define Element Validation Formulas Optional Step

When you define input values you can use a formula to validate any entry to that
input value.

Important: You must define the formula before you define the element
input value. The type of formula is Element Input Validation.

Use the Formula window.

See: Writing Formulas for Validation, Oracle HRMS FastFormula User Guide

Implementation Guide 2-41

Define Other Elements Optional Steps

Step 35: Define Elements and Input Values

Elements are the basic components of all compensation and benefit types. The product
comes with predefined elements that you use with a Request for Personnel Action
(RPA). Nature of Action Codes (NOACs) determine how you initiate, update, or modify
an element using the RPA. You can also create elements using the Element window.

See: Defining an Element, Compensation and Benefits Management Guide.

Step 36: Define Element Links

You can give an entry to an employee only when they are eligible for that
element. Employees are eligible for an element when their assignment details match the
link details.

You can link an element to any combination of organization, group, grade, job, position,
payroll, location, or employment category. However, the Oracle US Federal Human
Resources predefined elements must be linked to all payrolls.

Use the Element Link window.

See: Defining Element Links, Compensation and Benefits Management Guide

Step 37: Activate Predefined Elements

When you install Oracle HRMS a number of predefined elements are installed. These
elements represent the legislative deductions that are processed in the payroll run.

To activate these predefined elements you need only define links for them. You must link
the elements predefined for Oracle US Federal Human Resources to all payrolls. You
cannot change the assignment components for these predefined links.

Use the Element Link window.

See: Defining Element Links, Compensation and Benefits Management Guide

Activity Rates and Coverage Calculations
Activity rate calculations determine the contribution rate necessary to purchase a benefit
and the distribution rate for benefits that provide distributions.

Step 38: Calculate Variable Activity Rates Optional Step

You define variable activity rate calculations if an activity rate for a compensation
object can vary by participant.

Use the Variable Rate Profiles window.

See: Defining General Information for a Variable Rate Profile, Oracle HRMS Compensation
and Benefits Management Guide

Step 39: Calculate Coverages Optional Step

You define the amount of coverage available under a benefit plan for those plans that
offer a range of coverage options. Your coverage calculation can include the minimum
and maximum coverage level available regardless of the calculation result. For
Advanced Benefits customers, coverage levels can vary based on life events.

Use the Coverages window.

2-42 Oracle US Federal Human Resources Implementation Guide

See: Defining a Coverage Calculation for a Plan, Oracle HRMS Compensation and Benefits
Management Guide

Step 40: Define Across Plan Type Coverage Limits Optional Step

You can define the minimum and maximum coverage amount that a participant can
elect across plan types in a program.

Use the Coverage Across Plan Types window.

See: Defining a Coverage Limit Across Plan Types, Oracle HRMS Compensation and
Benefits Management Guide

Step 41: Calculate Actual Premium Costs Optional Step

You need to maintain the criteria used to calculate the actual premium cost that a plan
sponsor owes to a benefits supplier.

Use the Actual Premiums window.

See: Defining an Actual Premium, Oracle HRMS Compensation and Benefits Management
Guide

Step 42: Define Period-to-Date Limits Optional Step

You define period-to-date contribution limits for those plans or options in plan that
restrict participant contribution levels in a year period. When you define a standard
contribution, you can associate a period-to-date limit for those plans or options in
plan that require contribution restrictions.

Use the Period-to-Date Limits window.

See: Defining Period-to-Date Limits, Oracle HRMS Compensation and Benefits Management
Guide

Step 43: Define Activity Rates for Standard Contribution/Distribution Optional Step

You define a standard activity rate calculation to calculate a benefit’s contribution or
a distribution amount.

Note: You must have already created the corresponding elements.

Use the Standard Contributions/Distributions window.

See: Defining Activity Rates for a Standard Contribution/Distribution, Oracle HRMS
Compensation and Benefits Management Guide

Additional Setup for Health and Welfare

Step 44: Define Reporting Groups Optional Step

You can define a reporting group that you link to one or more programs and plans. When
you run a report for a reporting group, the report results are based on the programs and
plans that you include in the reporting group.

You can also define the regulatory bodies and regulations govern a reporting group.

Use the Reporting Groups window.

See: Defining a Reporting Group, Oracle HRMS Compensation and Benefits Management
Guide

Implementation Guide 2-43

Step 45: Define Benefit Balances Optional Step

Benefit balances are useful for transitioning legacy system data to Oracle HRMS. You
define a benefit balance type and then assign a value to that type for a given person
using the Person Benefit Balances window.

Use the Benefit Balances window.

See: Defining a Benefit Balance, Oracle HRMS Compensation and Benefits Management
Guide

Absence Management and Accruals
You can set up as many plans as you need to permit employees to accrue PTO to use
for vacation or sick leave. Each plan has the units of Hours or Days, and can have
its own rules regarding accrual frequency, accrual bands, ceilings, carryover, start
dates, entitlement of employees with different assignment statuses, and so on.

Note: Oracle Federal Human Resources includes predefined
accrual elements that can accept reverse payroll data from an
agency. However, you need to set up an absence type and link the
predefined elements to it.

Set Up Absence Management

Step 46: Set Up Proration and Notifications Optional Step

If you want to associate recurring elements with absence types, you must set up
proration and retro notifications. This ensures that absences that end in the middle of a
payroll period are detected and processed by the payroll run, and that retrospective
changes to absences are recorded in the Retro Notifications report.

Note: Proration is available to Oracle Payroll users in selected
localizations only.

See: Setting Up Absence Management, Oracle HRMS Compensation and Benefits
Management Guide

Step 47: Define an Absence Element Optional Step

For each of your accrual plans, or each type of absence you are tracking, you define
a nonrecurring element and input value to hold the actual time taken for vacation
or sick leave.

If you use Oracle Payroll and the proration functionality is available for your
localization, you can use a recurring element instead. This enables you to begin
processing a long term absence before you enter an end date, and to apportion time
correctly over payroll periods.

Use the Element window.

See: Defining and Linking an Absence Element, Oracle HRMS Compensation and Benefits
Management Guide

Step 48: Link the Absence Element Optional Step

Link each absence element to define who is eligible to take this kind of absence.

Use the Element Link window.

2-44 Oracle US Federal Human Resources Implementation Guide

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management Guide

Step 49: Define Categories of Absence Types Optional Step

Define categories of absence types as values for the Lookup Type
ABSENCE_CATEGORY, and your absence reasons as values for the Lookup Type
ABSENCE_REASON.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 50: Define Absence Types and Associate with Absence Elements Optional Step

If you expect to record absent time using the Absence Detail window, define absence
types, associating each with an absence element.

Use the Absence Attendance Type window.

See: Defining an Absence Type, Oracle HRMS Compensation and Benefits Management Guide

Step 51: Make Initial Element Entries Optional Step

For an absence type with a decreasing balance, use the Element Entries window or
the Element Entry API to make initial element entries for employees eligible for the
type. You can also initialize a decreasing balance by entering a negative value using
BEE. For example, if you enter -16 hours using BEE, a decreasing balance starts at 16
hours. However, be aware that using BEE creates an absence record that will show
on employees’ absence history.

If you want to make batch entries, see Making Batch Element Entries Using BEE, Oracle
HRMS Configuring, Reporting, and System Administration Guide.

Step 52: Create Payroll Formula to Calculate Absence Duration Optional Step

If you defined a recurring element, create a payroll formula that handles proration
to process the element and calculate the appropriate absence duration in each pay
period (taking into account the number of days or hours in a month, working and
shift patterns, public holidays, and so on).

See: Sample Payroll Formulas Enabled for Proration, Oracle HRMS FastFormula User
Guide

Set Up Accrual Plans

After completing the absence management setup steps, follow these additional steps
to set up a PTO accrual plan:

Step 53: Define New Accrual Start Rules Optional Step

There are three seeded start rules: Hire Date, Beginning of Calendar Year, and Six
Months After Hire Date. If you need other rules, define them as values for the Lookup
Type US_ACCRUAL_START_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 2-45

Step 54: Decide on Accrual and Carry Over Formulas Optional Step

Decide which Accrual and Carry Over formulas to use. You can use the seeded
formulas, configure them, or write your own.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Using Oracle FastFormula

Step 55: Write Ineligibility Formula Optional Step

If your Accrual formula defines a period of ineligibility and you want to use Batch
Element Entry (BEE) to enter absences against the accrual plan, define an Ineligibility
formula. BEE calls this formula to check whether an employee is eligible to use accrued
PTO.

Note: If you use the seeded Accrual formulas, you do not need to define
an Ineligibility formula. They use a period of ineligibility entered on the
Accrual Plan form, and BEE validation can use the same value.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Using Oracle FastFormula

Step 56: Define New Accrual Categories Optional Step

There are several seeded accrual categories. If you need additional categories, define
them as values for the Lookup Type US_PTO_ACCRUAL.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 57: Select PTO Balance Type Optional Step

Oracle Payroll users: If you want to use a payroll balance to store gross accruals, decide
whether the payroll run should update accruals as of the run’s date earned (the date the
payroll run uses to determine which element entries to process) or date paid (the date that
appears on pay advices). Select your choice for the business group.

See: Business Groups: Selecting a PTO Balance Type, Oracle HRMS Enterprise and
Workforce Management Guide

Step 58: Create Balance Dimensions Optional Step

Oracle Payroll users: If you want to use a payroll balance to store gross accruals, consider
whether you need to define a new balance dimension. Dimensions are predefined
that reset the balance each year on 1 January, 1 June, or hire date anniversary. If you
require your balance to accumulate over a different period of time, or reset at a different
date, you must create your own balance dimension.

See: Balances in Oracle Payroll, page 2-160

Step 59: Define a PTO Accrual Plan Optional Step

Define the accrual plan, selecting the formulas and absence element it is to use.

Use the Accrual Plan window.

See: Defining a PTO Accrual Plan, Oracle HRMS Compensation and Benefits Management
Guide

2-46 Oracle US Federal Human Resources Implementation Guide

Step 60: Set Up Length of Service Bands Optional Step

Optionally, set up length of service bands for the plan.

Use the Accrual Bands window.

See: Setting Up Length of Service Bands, Oracle HRMS Compensation and Benefits
Management Guide

Step 61: Review the Net Calculation Rules Optional Step

Review the net calculation rules for the plan. If necessary, create additional elements and
associate them with the plan by selecting them in the Net Calculation Rules window.

See: Changing Net Accrual Calculations, Oracle HRMS Compensation and Benefits
Management Guide

Element Sets and Batch Control Totals

Step 62: Define Element Sets Optional Step

In Oracle HRMS you can define a set of elements to:

• Restrict access to elements using Form Customization

• Distribute costs across a Distribution Set of elements

• Process a restricted set in a Payroll Run

• Enter values for a restricted set using BEE (Batch Element Entry)

You define an element set as a named list of elements such as Salary, or Salary and
Bonus. You can also define an element set using the classification. For example, you can
restrict access to all elements in the classification Earnings.

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set , Oracle HRMS Compensation and Benefits
Management Guide

Step 63: Define Batch Control Types Optional Step

If you use Batch Element Entry, you can set up batch control types to sum the entries in
any numerical input value. This enables users to validate a BEE batch against control
totals to check for missing lines or miskeying of amounts.

Use the Application Utilities Lookups window.

See: Setting Up BEE Validation Using Control Totals, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Basic Benefits
If you are beginning a new setup for benefits administration, we recommend that you
implement the Standard Benefits feature set. Federal Employee Health Benefits and
Thrift Savings Plan benefits are implemented using Standard Benefits. Basic Benefits
provides a limited set of features and is provided mainly for compatibility with earlier
releases.

Implementation Guide 2-47

Step 64: Set Up Basic Benefits Optional Step

To set up basic benefits, you define elements for benefits plans, use element links to
establish eligibility, and create benefit carriers as organizations.

See: Setting up Basic Benefits, Compensation and Benefits Management Guide

Workforce Sourcing and Deployment
Oracle HRMS enables you to define your own names to identify the ’types’ of people
in your system, and to identify the status of employees and contingent workers in
each assignment using your own names.

Recruitment

Step 1: Define Assignment Statuses for Applicants

Assignment Statuses for applicants enable you to define the distinct stages of your own
recruitment processes.

With Oracle HRMS you can use your own names to identify these stages. For
example, you might want to define a special status to identify applicants who have been
invited to a First Interview and applicants who have been Rejected on Application.

These user statuses enable you to track the recruitment circumstances of all your
applicants.

Note: Do not modify the predefined Oracle US Federal HR assignment
statuses, because they are used in the Request for Personnel Action
process.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Workforce Sourcing, Deployment, and Talent
Management Guide

Setup for Employees and Contingent Workers

Step 2: Define Assignment Statuses for Employees and Contingent Workers Required Step

With Oracle HRMS you can identify the status of employees and contingent workers in
each assignment using your own names.

Note: Do not modify the predefined Oracle US Federal HR assignment
statuses, because they are used in the Request for Personnel Action
process.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Workforce Sourcing, Deployment, and Talent
Management Guide

Special Personal Information (Personal Analysis Key Flexfield Structures)
Use the Personal Analysis Key Flexfield to record special personal information that
is not included as standard information. You define each type of information as a

2-48 Oracle US Federal Human Resources Implementation Guide

separate Structure of the flexfield. For example, you might set up a structure to hold
medical information.

This flexfield is used in the following areas:

• Special Information details for People

• Matching requirements for Jobs and Positions

You need to design a Personal Analysis Flexfield Structure for each Special Information
Type you want to hold in Oracle HRMS. For each structure you must include the
following:

• The Structure Name and the number of Segments.

• The Flexfield Segment Names, Order and Validation Options.

• The Flexfield Value Sets to be used and any lists of values.

Defining the Flexfield Structure is a task for your System Administrator.

Note: You cannot use the Create Key Flexfield Database Items process
to create database items for the segments of your Personal Analysis
Flexfield structures.

Step 3: Run the Create Federal HR Special Info Types Process

The application provides a concurrent manager process that configures the Personal
Analysis key flexfield to store Oracle US Federal HR-related information and
associates it to the People window. The Special Information stores information for
education, conditions of employment, conduct performance, language, performance
appraisal, and special consideration.

Use the Submit Request Window.

See: Running the Federal Special Information Types Process, Use the Personal Analysis
Key Flexfield to record special personal information that is not included as standard information.
You define each type of information as a separate <emphasis role="italic">Structure</emphasis>
of the flexfield. For example, you might set up a structure to hold medical information

Step 4: Define Personal Analysis Flexfield Value Sets

If you want to validate the values which a user can enter for any segment you must
define a specific Value Set.

The attributes of the Value Set will control the type of values that can be entered, and
how many characters each segment can hold. The attributes of the Value Set will also
control how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments
of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide

Step 5: Define Personal Analysis Flexfield Segments

Define a structure for your Personal Analysis Flexfield which contains the segments
you want to use. You will use this structure to enter details in the Special Information
Types window.

Implementation Guide 2-49

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to enter new details in the Special Information Types window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 6: Define Personal Analysis Flexfield Segment Values

If you have chosen Independent or Dependent validation for a Value Set used by a
Personal Analysis Flexfield Segment, you must define your list of valid values for
the Value Set.

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 7: Define Personal Analysis Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 8: Define Personal Analysis Flexfield Aliases

Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 9: Freeze and Compile Your Personal Analysis Flexfield Structure

You are now ready to freeze your flexfield definition. Navigate to the Define Flexfield
Segments window. Enter Yes in the Freeze Flexfield Definition field and save your
changes. Oracle Human Resource Management Systems now freezes and compiles your
Personal Analysis Flexfield definition. Compiling the flexfield definition enables the
flexfield window with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 10: Register Special Information Types for the Business Group

After you have defined your Personal Analysis Flexfield Structures you must link
them to your Business Group.

You do this using your view-all responsibility.

• Select each Information Type you want to use in this Business Group.

• Select the categories for each type.

2-50 Oracle US Federal Human Resources Implementation Guide

• Job for Job Requirements

• Position for Position Requirements

• Skills for use with Oracle Training Administration

• Other for use with Person Special Information

• OSHA for a special information type set up to record information about
employees’ work-related injuries or illness

Tip: If you do not check the Other category, you cannot use the type
to hold information for a person. This means that you could also use
the Special Information Types to hold any type of information for a
Job or a Position only.

Use the Special Information Types window.

See: Enabling Special Information Types, Workforce Sourcing, Deployment, and Talent
Management Guide

Requirements Matching
If you have decided to set up competencies, you can enter these as requirements for jobs
and positions and match them against people’s competence profiles.

If you have other job and position requirements that you want to record, but not define
as competencies, you can set them up using the Personal Analysis key flexfield. You can
set up each type of requirement as a Special Information Type, which is one instance of
the flexfield.

For each Special Information Type, you can also choose whether to enable entry of
information for people so that you can match people against the job or position
requirements. A standard report (Skills Matching) has been provided to match the
requirements of a job and the Special Information details of people in the system.

Important: US users: If you want to include essential job or position
requirements in your ADA reporting, make sure you have entered these
requirements for your jobs or positions.

Step 11: Define Requirements for Jobs Optional Step

You can define the attributes required by any employee who is assigned to a job. These
attributes may be Essential or Desirable.

Definitions of requirements can use the same personal analysis flexfield structures and
segments you have defined for special personal information.

Use the Job window.

See: Entering Job and Position Requirements, Oracle HRMS Enterprise and Workforce
Management Guide

Step 12: Define Requirements for Positions Optional Step

After you define positions in your enterprise, you can define the attributes required
by any employee assigned to that position. These attributes may be Essential or
Desirable. The requirements are based on the same personal analysis flexfield structures
you have defined for special personal information.

Implementation Guide 2-51

Use the Position window.

See: Entering Job and Position Requirements, Oracle HRMS Enterprise and Workforce
Management Guide

Create Restricted RPAS
The product comes with a standard RPA and a restricted version, Oracle Federal
Restricted Request for Personnel Action. The standard unrestricted form includes all
the fields that the Personnelist can access. The restricted form limits the data fields
provided and masks commonly restricted data items, such as the social security number
and date of birth.

Step 13: Create a new Restricted RPA form

Adding a new form is a task for the application administrator.

Use the Lookup Type window, GHR_US_RESTRICTED_FORM.

See: Creating a Restricted RPA, Workforce Sourcing, Deployment, and Talent Management
Guide

Step 14: Add fields to the Restricted RPA form

Restricted forms don’t change the underlying process methods, only the view of the
data. You can limit users’ access and view of specific fields and data items. Fields can be
coded as Non Display or Display Only.

Use the Restricted Form Process Methods window.

See: Creating a Restricted RPA, Workforce Sourcing, Deployment, and Talent Management
Guide

Talent Management

Competencies and Qualifications
If you are developing the competence approach as part of your performance
management system, you must identify your enterprise’s strategic business goals or
objectives you want the competence approach to address. You can then set up your
methods of measurement, create your competencies and create your assessment and
appraisal templates.

If you are using Oracle Self-Service Human Resources to provide self-service human
resource management for managers and employees, you also need to perform additional
implementation steps.

See: Implementation Steps for Self-Service HR (SSHR), Oracle HRMS Deploy Self-Service
Capability Guide

Step 1: Define HR:Global Competence Flex Structure Profile Option Optional Step

Define the competence key flexfield structure to be used when creating global
competencies. If you do not have a value in this field then you will not be able to
create global competencies.

Use the System Profile Values window.

See: User Profiles, Oracle HRMS Configuring, Reporting, and System Administration Guide

2-52 Oracle US Federal Human Resources Implementation Guide

Step 2: Create Rating Scales Optional Step

Create rating scales if you want to describe your enterprise’s competencies in a general
way.

Use the Rating Scales window.

See: Creating a Rating Scale, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 3: Create Competencies Optional Step

Create competencies that best meet the needs of your enterprise. If you are using the
individual method, you need to set up the proficiency levels for each competence you
create.

For a unit standard competence, you enter its Qualifications Framework details, identify
the qualifications to which achievement of the competence can contribute, and specify its
outcomes and assessment criteria. You must also set the Cluster field to Unit Standard.

Use the Competencies window.

See: Creating a Competence, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 4: Create Competence Types Optional Step

You might want to group related competencies together, for example, for advertising a
vacancy, or for reporting purposes.

Create the competence types you require using the Lookup COMPETENCE_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 5: Group Competencies into Types Optional Step

You now need to group related competencies together.

Use the Competence Types window.

See: Grouping Competencies into Types, Oracle HRMS Workforce Sourcing, Deployment,
and Talent Management Guide

Step 6: Define Competence Requirements Optional Step

To ensure your enterprise meets its current and future goals, you will need to define
your competence requirements.

Use the Competence Requirements window.

Defining Competency Requirements - Core or Generic Competencies, Oracle HRMS
Workforce Sourcing, Deployment, and Talent Management Guide

Defining Competency Requirements - No Core Competencies, Oracle HRMS Workforce
Sourcing, Deployment, and Talent Management Guide

Step 7: Enter Work Choices for a Job or Position Optional Step

You can enter work choices that can affect an employee’s, applicant’s, contractor’s, or
ex-employee’s capacity to be deployed within your enterprise (or a customer’s). Work
Choices include willingness to travel, willingness to relocate, and preferred working

Implementation Guide 2-53

hours and work schedule. You can enter work choices for a job or position, and compare
these with the personal work choices entered for people.

Use the Work Choices window.

See: Entering Work Choices for a Job or Position, Oracle HRMS Enterprise and Workforce
Management Guide.

Step 8: Define Functions (to Implement the Competence Approach in OLM) Optional Step

If you have Oracle Human Resources and Oracle Learning Management (OLM) installed
in your enterprise, you can hold the qualifications, attributes, and knowledge that
students can expect to attain by attending training courses as competencies, skills or a
mixture of both (competencies and skills).

You can use parameters to enable selected users to add competencies gained through a
course directly to a learner’s Competence Profile.

Use the Form Functions window.

See: Form Functions Window, Oracle Applications System Administrator's Guide

Step 9: Create Qualification Types Optional Step

You can enter all the qualification types your enterprise recognizes.

For Qualifications Framework qualifications, you record the Qualifications Framework
details and identify the unit standard competencies that lead to the qualification.

Use the Qualification Types window.

See: Creating Qualification Types, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Step 10: Create Schools and Colleges Optional Step

You need to create schools and colleges that deliver the qualifications your enterprise
recognizes. These are then used to record where a person gained the qualification. If
you have not automatically loaded these schools and colleges into Oracle Human
Resources, you can enter them manually.

Note: Schools and colleges you enter are available to all business groups
you create, therefore only load or enter them once.

Use the Schools and Colleges window.

See: Creating Schools and Colleges, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Evaluations and Appraisals

Step 11: Implement Oracle Self-Service Human Resources (SSHR) Optional Step

You must also perform other SSHR implementation tasks, such as configuring SSHR
web processes using Oracle Workflow, before you can create your appraisal and
assessment templates.

See: Implementation Steps for Self-Service HR (SSHR), Oracle HRMS Deploy Self-Service
Capability Guide.

2-54 Oracle US Federal Human Resources Implementation Guide

Step 12: Create an Assessment Template Optional Step

You can create assessment templates for all the different evaluations your enterprise
performs.

Use the Assessment Template window.

See: Creating an Assessment Template, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Step 13: Create an Appraisal Template Optional Step

You can create appraisal templates to provide instructions to appraisers, to identify
which questions belong to which appraisal and to identify which performance rating
scale to use.

You can use one of the example appraisal templates we provide and modify them to suit
your own needs, or you can create your own.

Use the Appraisal Template window.

See: Creating or Changing an Appraisal Template, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Career and Succession Planning
The flexibility provided by Oracle Human Resources means you can handle your
enterprise’s career and succession plans using one of a number of models. Which
model you decide to use depends upon whether your enterprise’s career and succession
planning is based upon jobs or positions, and whether your enterprise is using a
Windows interface only, or a mixture of the Web and Windows.

Career Paths show the progression paths which are available within your enterprise. You
can map out career paths for both jobs and positions.

By planning successors for jobs and positions you always have a shortlist of qualified
candidates. You can also identify training and development needs to prepare an
employee for a job or position and model different succession options.

Model Career and Succession Plans Based on Jobs (Option 1)

If your enterprise’s career and succession planning is based upon jobs, you can use
career paths to show possible progressions to one job from any number of other jobs.

Important: In the US, for AAP-Workforce Analysis reporting use the
career path functionality to build the lines of progression for the jobs
included in your AAP plans.

Use the Career Path Names and Map Career Paths windows.

See: Defining Career Paths, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 14: Create and Map Career Paths Optional Step

Career paths are based on the structures of your enterprise rather than the people you
employ. You may also want to record personal aspirations and progression paths for
individual employees. There are several ways to do this.

Use the Career Path Names and Map Career Paths windows.

Implementation Guide 2-55

See: Defining Career Paths, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 15: Enter Work Choices Optional Step

You can use work choices to help identify a person’s career plan.

Use the Work Choices windows.

See: Entering Work Choices for a Job or Position, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Model Career and Succession Plans Based on Positions (Option 2)

If your enterprise’s career and succession planning is based upon positions, you can
create additional position hierarchies to show any type of progression. These might
represent existing line management structures, or even cut across departmental or
job-type boundaries.

Step 16: Create Position Hierarchies Optional Step

Optionally, create position hierarchies to show career paths, if you want to show typical
career progression.

Use the Position Hierarchy window.

See: Creating a Position Hierarchy, Oracle HRMS Enterprise and Workforce Management
Guide

Step 17: Use Succession Planning (SSHR with a Line Manager Responsibility) Optional Step

If you are using SSHR you can use the Succession Planning function to record one or
more next positions for each employee. And create, and rank, a group of qualified
employees if a position becomes available.

Use the Succession Planning function in SSHR.

Step 18: Use Suitability Matching (SSHR with a Line Manager Responsibility) Optional Step

If you are using SSHR you can use the Suitability Matching function to compare the
competence profile of an employee, or employees, with the competency needs of a
position.

Use the Suitability Matching function in SSHR.

Step 19: Use Attachments or Special Information Types Optional Step

Consider holding succession plan information against people as attachments or using a
special information type.

Use the Personal Analysis Key Flexfield.

See: Special Information Types, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Workforce Intelligence
These implementation steps are required to enable you to view data in the HRMS
Discoverer business areas and workbooks. They assume that you already have installed
Discoverer. For information on Discoverer installation, see: Discoverer Administration
Guide.

2-56 Oracle US Federal Human Resources Implementation Guide

Discoverer Workbooks
Follow the steps below to implement Workforce Intelligence Discoverer workbook
reports. If you do not complete these steps, reports will be available to you, but they will
not display data correctly. You need to perform some of these steps periodically, so that
the reports reflect changes in your enterprise data. See: Programs to Populate Workforce
Intelligence Discoverer Reports, Configuring, Reporting, and System Administration Guide

Set Up and Configure Workforce Required Steps

Workforce is not necessarily a count of the number of employees within your
enterprise. Instead, it is a count based on employee assignments and budget
measurement type. Calculations depend either on your budget measurement values for
assignments, or they use a FastFormula..

Step 1: Set budget measurement values Optional Step

Set budget measurement values for each employee assignment within Oracle Human
Resources. Reports and performance measures then calculate workforce using the
budget values.

If you do not set a budget measurement value for an assignment, and a Business Group
default does not exist, the reports and performance measures either calculate workforce
using Oracle FastFormula, or they will not include the workforce for an assignment.

Use the Assignment Budget Values window.

See: Entering Assignment Budget Values, Oracle HRMS Enterprise and Workforce
Management Guide

Step 2: Setup the Workforce FastFormula Templates Optional Step

If you want to configure how workforce is counted do not set a budget measurement
type and assignment measurement value for an assignment. The reports will then use
Oracle FastFormula to calculate workforce.

HRMSi provides two predefined workforce formulas:

• TEMPLATE_HEAD

• TEMPLATE_FTE

Use the Formula window.

See: Configuring Workforce Calculations using Oracle FastFormula, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Set Up a Currency Conversion Rate Type Required Steps

Step 3: Enter a Currency Conversion Rate Type Required Step

Workforce Intelligence uses the conversion rates set up in the GL Daily Rate
window. You can enter a specific conversion rate type for Workforce Intelligence, such
as Corporate or Spot.

Use the Oracle Human Resources Table Values window.

See: Entering a Conversion Rate Type, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 2-57

Set Up and Configure Training Hours Optional Steps

Within Oracle Training Administration OTA you can record the duration of a training
event using a time period of your choice.

For example, rather than recording an event in hours you might record it in weeks or
months. To enable the workbooks to display the number of hours of a training event, a
predefined Oracle FastFormula, TEMPLATE_BIS_TRAINING_CONVERT_DURATION,
converts your time periods into hours.

OTA is installed with four predefined time periods. If you record the duration of events
using these predefined time periods the formula automatically converts them into the
following hours:

• D (Day) = 8 Hours

• W (Week) = 40 Hours

• M (Month) = 169 Hours

• Y (Year) = 2028 Hours

Note: You set up time periods in Oracle Training Administration using
the Lookup type FREQUENCY.

Step 4: Amend the Default Training Hours Optional Step

Amend the FastFormula TEMPLATE_BIS_TRAINING_CONVERT_DURATION if you
have set up different time periods using the Lookup type FREQUENCY.

Use the Formula window.

See: Amending the Default Training Hours, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Step 5: Add Additional Training Time Periods Optional Step

Amend the FastFormula TEMPLATE_BIS_TRAINING_CONVERT_DURATION if the
number of hours per time period does not match those of your enterprise.

Use the Formula window.

See: Adding Additional Training Time Periods, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Set up Cross Business Group Reporting Optional Steps

If users are using a local security profile they will only be able to see information in a
specific business group. The business group is defined in the security profile attached to
the responsibility.

For Discoverer reports, you may want to enable users to see data that spans business
groups.

Step 6: Provide users with a global security profile Optional Step

If you want to enable cross business reporting, provide users with a global security
profile. A global security profile provides cross business group reporting because it does
not specify a business group.

Use the Global Security Profile window.

2-58 Oracle US Federal Human Resources Implementation Guide

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Identify the Reporting Organization Required Steps

HRMS Discoverer workbooks will not run unless the application can identify an
organization to report on. If a workbook cannot identify the reporting organization, it
will fail to generate certain report parameter lists and will produce the following error
message when displaying the report parameter page:

“No values were found for the parameter Organization whilst attempting to build the
list of values. To run this report your system must have the parameter Organization set
up. Please contact your system administrator.”

The application identifies an organization through a business group. You must therefore
ensure that you assign a business group correctly to report users. How you assign the
business group depends on which security model you implement and whether you are
using a local or global security profile. See the options below.

Step 7: Set the Profile Option HR: Security Optional Step

If you have implemented the standard HRMS security model, with a local security
profile, you must set the profile option HR: Security to the business group you want
to report on.

The reports identify the business group through the profile option HR: Business
Group. The application automatically sets this profile option to the value in the
HR: Security profile option.

Set up the business group in the profile option HR: Security. Use the System Profile
Values window.

See: System Profile Values Window , Oracle Applications System Administrator's Guide

Step 8: Set the Profile Option HR: Business Group Optional Step

If you have implemented the standard HRMS security model, with a global security
profile, the HR: Business Group profile option is not set automatically.

Set the profile option HR: Business Group at responsibility level to the business group
that you want to report on.

Use the System Profile Values window.

See: Defining Preferences with User Profile Options, Oracle Applications System
Administrator's Guide

Step 9: Associate a Business Group with a Security Profile Optional Step

If you have implemented the Security Groups Enabled security model, the HR: Business
Group profile option is not used. You associate a business group with a security profile.

Use the Assign Security Profile window.

See: Assigning Security Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 2-59

Restrict Discoverer Workbook Access Required Steps

Step 10: Grant Access to Discoverer Business Areas Required Step

Grant access privileges to the Discoverer business area to determine which workbooks
users can create or view.

Use Oracle Discoverer Administration Edition.

See: Grant Business Area Access, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Check the Vacancy Status Options Required Steps

Step 11: Check the Vacancy Status Options Required Step

To ensure the reports that cover vacancies return accurate results, you need to ensure
that users close vacancies by using the status of CLOSED. You may have to obsolete an
old vacancy status option that results in the status of C.

Use the Application Utilities Lookups window.

See: Check the Vacancy Status Options, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Populate Summary Tables Required Steps

To ensure your HRMS Discoverer workbooks run correctly and efficiently, you need to
run concurrent programs to populate summary tables with your hierarchy data and
workforce measurement values.

For a full discussion of these concurrent programs, and when you need to run
them, see: Programs for Populating Workforce Intelligence Discoverer Reports, Oracle
HRMS Configuring, Reporting, and System Administration Guide

Step 12: Populate the Organization Hierarchy Summary Table Required Step

All reports that use organization hierarchy gather information from the Organization
Hierarchy Summary table. Populate this summary table with your organization
hierarchy data. The table ensures that you are getting the best possible performance
from your reports.

To populate the summary table, run the concurrent program HRI Load All Organization
Hierarchy Versions.

Use the Submit Requests window.

See: Populating the Organization Hierarchy Summary Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 13: Populate the Supervisor Hierarchy History Table Required Step

All reports that use supervisor hierarchy gather information from the Supervisor
Hierarchy Summary table. Populate this summary table with your supervisor hierarchy
data. The table ensures that you are getting the best possible performance from your
reports.

To populate the summary table, run the concurrent program HRI Load All Supervisor
Hierarchies.

Use the Submit Requests window.

2-60 Oracle US Federal Human Resources Implementation Guide

See: Populating the Supervisor Hierarchy History Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 14: Populate the Workforce Measurement Value History Table Required Step

Many reports use Workforce Measurement Values (WMVs). WMVs currently include
headcount and full-time equivalent (FTE) assignment budget values.

Run the concurrent program HRI Load Workforce Measurement Value History to
populate the Workforce Measurement Value History table with the WMVs used by
your reports.

Use the Submit Requests window.

See: Populating the Workforce Measurement Value History Table, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Step 15: Populate the Generic Hierarchy Summary Table Required Step

Some US specific Discoverer workbooks use a ’Vets, EEO, AAP, OSHA, Multi Work Sites’
hierarchy. They require information about the current generic hierarchy.

Run the concurrent program HRI Load All Generic Hierarchy Versions to calculate
and collect the required data.

Use the Submit Requests window.

See: Populating the Generic Hierarchy Summary Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 16: Collect Organization Hierarchy Structures Optional Step

The Organization Rollup – Current folder in the Discoverer End User Layer uses
organization hierarchies held in the HRI_ORG_PARAMS and HRI_ORG_PARAM_LIST
tables. If you build Discoverer reports using the Organization Rollup – Current
folder, you must populate these tables with your organization hierarchies.

To populate the tables, run the concurrent program BIS Load Organization Hierarchy
Summary Table.

See: Collecting Organization Hierarchy Structures, Oracle HRMS Configuring, Reporting,
and System Administration Guide

HR Information Systems

Reports

Step 1: Use Standard Reports or Write New Reports Optional Step

A number of standard reports are supplied with Oracle HRMS. These reports have
been written using Oracle Reports V.2 and registered as concurrent programs with the
Standard Requests Submission (SRS) feature of Oracle Applications.

You can use these Standard Reports or write your own reports and register these as
additional reports which users can request from the Submit a New Request window.

Implementation Guide 2-61

UK Payroll Implementation Only

In the UK, P45 and Pay Advice reports supplied with Oracle Payroll are designed for
use with preprinted stationery. These reports use two special printer drivers to control
the print format.

• P45 paygbp45.prt

• Pay Advice paygbsoe.prt

If your printer does not accept the same control characters as the DEC LN03 printer, you
may need to modify the special SRW driver files.

When you install Oracle Payroll the two sample files are stored in the $PAY_TOP/srw
directory. You should copy the files to $FND_TOP/$APPLREP and then register them
using the Printer Drivers window.

Step 2: Register Reports as Concurrent Programs Optional Step

After you have written your new reports and saved them in the correct subdirectory, you
must register the report as a concurrent program. You also register the parameters
which can be submitted with the report. For example, you may have written a report to
display personal details and you want to submit employee name to limit the output to
include one person at a time.

Use the Concurrent Programs window.

See: Concurrent Programs Window, Oracle Applications System Administrator's Guide

Step 3: Define Report Sets Optional Step

You can define sets of Reports:

• To restrict user access to specific reports.

A set of reports can be linked to a Responsibility.

• To simplify requesting a report

You can run a report set in one request, rather than a request for each report.

Use the Request Set window.

See: Defining Request Sets, Oracle Applications System Administrator's Guide

Standard Letter Generation
You can use standard letters in HRMS to help you to manage your enterprise’s
recruitment or enrollments, for example. You do this by issuing standard letters to
applicants or students, triggered by changes in assignment or enrollment status.

Oracle HRMS provides you with three different methods to create standard letters:

• Method 1 Concurrent Processing using Word Processors, page 2-62

• Method 2: Concurrent Processing using Oracle Reports, page 2-64

• Method 3: Create Mail Merge Letters using Web ADI, page 2-64

Method 1 - Concurrent Processing using Word Processors

You can create standard letters using Multimate, WordPerfect or Microsoft Word.

2-62 Oracle US Federal Human Resources Implementation Guide

Step 4: Plan Standard Letter Requirements Optional Step

You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 5: Write a SQL*Plus Script Optional Step

Oracle HRMS supplies you with SQL*Plus scripts as templates for extracting database
information for standard letters. You can copy the SQL*Plus script templates and modify
them to create the standard letters you require.

See: Writing a SQL*Plus Script for MultiMate or WordPerfect, Oracle HRMS Configuring,
Reporting, and System Administration Guide

See: Writing a SQL*Plus Script for Microsoft Word, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 6: Register the SQL*Plus Script Optional Step

Register your SQL*Plus program with Oracle HRMS. You register your program so that
you can run it as a concurrent program. Name the file PERWP*** (or OTAWP***). You
must use this prefix for the system to recognize it as a type of letter.

Use the Concurrent Programs window.

See: Registering the SQL*Plus Script, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 7: Link the SQL*Plus Script to the Letter Optional Step

Link your SQL*Plus script with a letter and one or more statuses. In Oracle Human
Resources, you can link one or more applicant assignment statuses with each recruitment
letter. A request for the letter is then created automatically when an applicant is given
an associated assignment status. For example, you can link your standard recruitment
rejection letter to the status Rejected so that the letter is triggered when you set an
applicant’s assignment status to Rejected

Use the Letter window.

See: Linking the SQL*Plus Script with aLetter, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 8: Writing a Skeleton Letter Optional Step

Write a skeleton letter using your word processor. Include the appropriate merge codes
from the data source for the word processor you are using.

See: Writing a Skeleton Letter, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 9: Requesting Letters Optional Step

When you, or other users, set the status for an applicant or enrollment that triggers your
standard letters, Oracle HRMS creates a letter request automatically, with the status of
Pending. It also adds the applicant’s or student’s name to the request. You can view the
pending request and names through the Request Letter window.

Use the Request Letter window.

See: Requesting Letters/Running the Report, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Implementation Guide 2-63

Step 10: Merging the Data Files Optional Step

You now need to merge the data in the Data File with your skeleton letters.

See: Merging the Data File with the Standard Letter, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Method 2 - Concurrent Processing using Oracle Reports

You can create a report for each letter using Oracle Reports, or another tool of your
choice. The report contains the skeleton letter text and Select statements specifying the
data to be extracted from the Oracle database.

Step 11: Plan Standard Letter Requirements Optional Step

You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 12: Write and Register the Report Optional Step

You now need to write and register the report.

See: Writing and Registering the Report, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 13: Link the Report with a Letter Optional Step

You need to link your report with a letter and one or more statuses. In Oracle Human
Resources, you can link one or more applicant assignment statuses with each recruitment
letter. A request for the letter is then created automatically when an applicant is given an
associated assignment status. In Oracle Training Administration, you can link one or
more enrollment statuses with each enrollment letter. A request for the letter is then
created automatically when an enrollment is given an associated status.

Use the Letter window.

See: Linking the Report With a Letter, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 14: Run the Report Optional Step

When you, or other users, set the status for an applicant or enrollment that triggers your
standard letters, Oracle HRMS creates a letter request automatically, with the status of
Pending. It also adds the applicant’s or student’s name to the request. You can view the
pending request and names through the Request Letter window.

Then, when you change the letter request from Pending to Requested, Oracle HRMS
runs the report that you created.

Use the Request Letter window.

See: Registering Letters/Running the Report, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Method 3 Create Mail Merge Letters Using Web ADI

Step 15: Create Mail Merge Letters Optional Step

Define Web ADI integrators and layouts and set up template letters.

2-64 Oracle US Federal Human Resources Implementation Guide

See Creating Mail Merge Letters Using Web ADI, Oracle HRMS Configuring, Reporting,
and System Administration Guide

People Management Templates

Step 16: Extend the Checklist Lookup Values Optional Step

You can add your own values to the supplied list of checklist items and statuses to be
included in a template.

Define values for the CHECKLIST_ITEM and CHECKLIST_STATUS Lookup Types.

Define values for BUDGET_MEASUREMENT_TYPES

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 17: Write Formulas for Templates Optional Step

You can use formulas to configure the people management templates in the following
ways:

• Template Validation Formula

• Template Information Formula

• People Management Message Formula for the Assignment Field

• People Management Message Formula for the Message Tokens

Use the Formulas window.

See: Writing Formulas for Templates, Oracle HRMS FastFormula User Guide

Step 18: Configure Templates Optional Step

You can use the People Management Configurator to create templates for your users
to use. We recommend that you use one of the supplied templates as a basis for your
configured version.

Use the People Management Configurator.

See: Using the People Management Configurator, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 19: Set up Notification Messages Optional Step

You can setup additional notification messages to be used with the people management
templates.

Use Oracle Workflow

See: Notification Messages Issued from Templates Forms, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Oracle HRMS Configuration

Step 20: Define Elements and Distribution Sets Optional Step

Select element classifications or individual elements to define a set. There are three
types of set:

Implementation Guide 2-65

• Customization set

• Run set

• Distribution set

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set, Oracle HRMS Compensation and Benefits
Management Guide.

Step 21: Define Configured Version of a Window Optional Step

Form Customization lets you restrict the types of information a user can access in a
specific window.

You can define your own window titles for any window configuration option. Remember
that the user guides and the online help use the default window names to identify
windows.

You can call the configured window in two ways:

• Define a customized node in a task flow

• Add the customization as an argument to the menu function which calls the window

Use the Form Customization window.

See: Configuring a Window With Customform, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 22: Add Configured Window to a Menu or a Task flow Optional Step

You must add your configured windows to a menu or task flow.

See: Adding Configured Windows to a Menu or a Task Flow, Oracle HRMS Configuring,
Reporting, and System Administration Guide.

Step 23: Restrict Access to Query-Only Mode Optional Step

You can restrict access to query-only mode for an individual form.

See: Restricting Access to Query-Only Mode, Oracle HRMS Configuring, Reporting,
and System Administration Guide.

Step 24: Change the Default National Address Style Optional Step

The different national address styles are held and configured in the Personal Address
Information descriptive flexfield using the Descriptive Flexfield Segments window. You
can change the national address style for any country.

See: Changing Default National Address Styles, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 25: Use Parameters for HRMS Form Functions to Hide Sensitive Data Optional Step

You can prevent sensitive data from appearing on the Enter a person window by using
parameters for HRMS window functions.

See: Using Parameters for HRMS Form Functions, Oracle HRMS Configuring, Reporting,
and System Administration Guide

2-66 Oracle US Federal Human Resources Implementation Guide

Task Flows
A task flow defines the selection of windows you want to use when performing a specific
task. These can be arranged in sequence or as branched groups of Nodes, and you can
include configured windows as nodes in your task flow.

Warning: Do not use apostrophes (’) or percent (%) symbols in task flow
names or task flow node names.

You can create task flows using:

• Forms, page 2-67

• Workflow, page 2-67

Create Task Flows Using Forms

Step 26: Define Task Flow Nodes Optional Step

All of the task flow windows provided with Oracle HRMS have nodes predefined
for them. You can define new task flow nodes to provide different versions of these
windows. For example, if you wanted to use CustomForm on a specific node in a
task flow.

Use the Define Task Flow Nodes window.

See: Defining Task Flow Nodes, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 27: Define Task Flows Optional Step

Arrange the nodes of your task flows in sequential or branched groups

Use the Task Flow window.

See: Defining Task Flows, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Create Task Flows Using Workflow

Step 28: Create a Top Level Process Optional Step

You must define a top level process for each task flow. The top level process can contain
sub processes, but not any other top level processes.

You use the Process Diagrammers within Oracle Workflow to create your task flows. You
do this by adding and connecting the windows you want to appear.

You must create a top level process, sub processes are optional.

See: Creating a Top Level Process, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 29: Create Sub Processes Optional Step

You can group a logical set of task flow windows into a sub process, which can then be
used by several top level processes. This simplifies process modelling. Each sub process
can contain other sub processes. There are two rules to note regarding sub processes:

• A sub process cannot be defined as runnable.

Implementation Guide 2-67

• When you use a sub process in another process, you must connect the sub process to
the Top Node window.

See: Creating Sub Processes, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 30: Create Button Labels Optional Step

You can enter the label you want to appear on the task flowed windows, such as Photo
(for the Picture window), and such. Each task flow window activity has an attribute
called Button Label. Use this attribute to override the default button label for a window
and to define an access key (or keyboard shortcut).

See: Creating Button Labels, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 31: Position Button Display Optional Step

You can position the display order of buttons on the window. For example, you might
want the first button to display the Picture window.

See: Positioning Button Display, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 32: Identify Windows or Blocks to Display Optional Step

If you are creating task flows using the combined People and Assignment
window, complete this step, otherwise skip this step.

For most task flow windows, you must display the first block of the window on
entry. However, when you use the Combined People and Assignment window in
a task flow, you must specify whether to display the People window (or block) or the
Assignment window on entry.

See: Identifying Windows or Blocks to Display, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 33: Identify Configured Forms to Include in the Task Flow Optional Step

If you have created a configured version of a window, you can use it in the task flow. If
not, you can skip this step.

See: Identifying Configured Forms to Include in the Task Flow, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 34: Verify and Save the Workflow Optional Step

When you have completed the task flow definition within Oracle Workflow, use the
Workflow Verify function to check that your workflow conforms to Oracle Workflow
modeling rules. When you have successfully verified the Workflow, save it to the
HRMS database.

See: Verifying and Saving the Workflow, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 35: Generate a Task Flow From Oracle Workflow Optional Step

After modelling a task flow in Oracle Workflow and saving it to the database, you must
generate task flow definitions.

Use the Define Task Flow window.

2-68 Oracle US Federal Human Resources Implementation Guide

See: Generating a Task Flow From Oracle Workflow, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Menus

Step 36: Define Menu Functions Optional Step

Menus are composed of submenus and functions and all Oracle Applications are
supplied with default functions and menus to give you access to all of the available
windows.

Warning: You should not modify the default functions and menus
supplied with the system. On upgrade, these defaults will be
overwritten.

If you want to add window configuration options or task flows you
should define your own menus.

Use the Form Functions window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 37: Define Menus Optional Step

The supplied menus give you access to all of the available submenus. However, a
number of seeded functions are not enabled on these menus. You need to add them for
the responsibilities that should have access to these functions:

Use the Menus window.

See: Defining Menus, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Step 38: Disable the Multiple Windows Feature Optional Step

In most Oracle Applications, you can open multiple windows from the Navigator
window without closing the window you already have open. HRMS, however, does not
support Multiform functionality.

Important: You must disable this feature on menu structures that access
Oracle HRMS windows.

See: Disabling Multiple Windows, Oracle HRMS Configuring, Reporting, and System
Administration Guide

User Security
Any system that holds human resource and payroll information must be secured
against unauthorized access. To reach employee information you need the correct
security clearance.

The responsibility for defining and maintaining the internal security of your system is
usually given to your system administrator.

Implementation Guide 2-69

Defining Security for HRMS Users

Defining the access limits of each user is a multi-stage process which defines which
records a user can see and which forms and windows they can see and use.

There are two security models to enable you to set up the right type of security for
your enterprise:

• Standard HRMS security model

Set up standard security if your enterprise sets up a different responsibility for
each business group.

• Security Groups Enabled security model

Use Security Groups Enabled security if your enterprise wants to enable many
business groups for one responsibility. This type of security is most commonly
used by Service Centers.

See Defining Security for HRMS Users, page 2-70

Defining Security for Reporting Users

You can also create reporting users who have read only access to data. This can be useful
if you want to permit access to the data from another system.

See: Defining Security for Reporting Users, page 2-73.

Defining Security for HRMS Users (Optional)

Step 39: Set up the Enable Security Groups option for your Security Model

• If you are using Standard HRMS security, ensure that the Enable Security Groups
profile option is set to No at site and application level.

• If you are using Security Groups Enabled security, ensure that the Enable Security
Groups profile option is set to Yes at the application level.

Important: Once you have changed to Security Groups Enabled Security
you cannot revert to the Standard Security model.

Use the System Profiles Value window

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Step 40: (Security Groups Enabled Model only) Run the Enable Multiple Security Group Process

If you are using the Security Groups Enabled model, you must run the Enable Multiple
Security Group process to set up Oracle HRMS to use security groups.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Step 41: Define a Security Profile

Use the Security Profile window (to give access to a single business group) or the
Global Security Profile window (to allow users to access records from more than one
business group).

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

2-70 Oracle US Federal Human Resources Implementation Guide

Step 42: Ensure Required Functions or Menus are Set Up

This is required for the responsibility. For menu functions calling configured forms or
task flows, you must enter a parameter in the Parameter field of the Form Functions
window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 43: Ensure Required Request Group is Set Up

You can define the groups of standard reports and processes that a user can run from the
Submit a New Request window. Every responsibility can have access to one request
group.

Use the Request Group window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

See: Request Groups Window, Oracle Applications System Administrator's Guide

Step 44: Define a Responsibility

You need to define a responsibility.

Use the Responsibilities window.

See: Responsibilities Window, Oracle Applications System Administrator's Guide

Step 45: Set the User Profile Option Values for Responsibility

Set the HR User Profile Options for the new responsibility.

You must set up the following:

• HR: User Type

Use this profile option to limit field access on windows shared between Oracle
Human Resources and Oracle Payroll.

• HR:Cross Business Group

Set this profile option to Yes if you want users to be able to view some information
across all business groups in your enterprise.

For details of the information you can make available to users across business
groups, see User Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

• HR: Security Profile

• If you are using the Standard Security model, enter the security profile for the
responsibility. This must be set up at responsibility level, otherwise the default
view-all security profile is used. Using Standard HRMS security you can only
set up one security profile for a responsibility.

• If you are using the Security Groups Enabled security model, do not set up or amend
the HR: Security Profile option using the System Profile Values window. To set
up or change this profile option use the Assign Security Profile window.

You can set also set up other User Profile Options.

Use the System Profile Values window.

Implementation Guide 2-71

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Step 46: Associate a Responsibility With a Set of Help Files

Oracle Applications Help for HRMS defaults to Global help, but you can associate a
responsibility with a set of help files for a localization, such as Canada, US or UK, or
for a verticalization such as Oracle Federal HRMS. You do this by setting the user
profile Help_Localization_Code.

See: User Profiles, Oracle HRMS Configuring, Reporting, and System Administration Guide

In addition to associating a responsibility with a localization or a verticalization you can
also specify that a particular responsibility should have access to a configured subset of
the localized or verticalized help files.

See: Customizing Oracle Applications Help, Oracle Applications System Administrator's
Guide

Step 47: Create Usernames and Passwords

• If you are using the Standard Security model, you need to create usernames and
passwords and link responsibilities to users.

• If you are using the Security Groups Enabled security model, you need to create
usernames and passwords. Do not link responsibilities and security groups
(business groups) to users in the Users window for HRMS; instead, use the HRMS
Assign Security Profile window.

Important: If you do enter a responsibility and security group in this
window when using Security Groups Enabled security, you still need
to use the Assign Security Profile window, to link your user to a
responsibility and security profile. If you do not use the Assign Security
Profile window, the default view-all security profile is used and your
user will be able to see all records in the business group.

Use the Users window.

See: Users Window, Oracle Applications System Administrator's Guide

Step 48: (Security Groups Enabled Model only) Assign Security Profiles

If you are using the Security Groups Enabled model, associate a security profile with a
user, responsibility and business group.

Important: You cannot use the HRMS Assign Security Profile window to
link responsibilities to users if you are setting up Standard Security.

Use the Assign Security Profile window.

See: Assigning Security Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 49: Run Security List Maintenance Process (PERSLM)

Oracle HRMS uses the Security List Maintenance process to generate the lists of
organizations, positions, payrolls, employees, contingent workers, and applicants that
each security profile can access.

Important: When you initiate the Security List Maintenance process you
must enter the resubmission interval to run the process every night

2-72 Oracle US Federal Human Resources Implementation Guide

You must do this so that the system will automatically update the lists
with the data changes you make every day.

If a power or computer failure should disrupt this process, you can
initiate it manually from the Submit a New Request window.

When this process has completed successfully you can sign on to the system using the
new username and responsibility.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Defining Security for Reporting Users (Optional)

Step 50: Create a New Reporting User Oracle ID

If you want reporting users to have the same restricted access to records as your online
users, ask your ORACLE Database Administrator to create a new ORACLE User ID.

Reporting Users have read only access to data. This can be useful if you want to permit
access to the data from another system.

Note: You need to inform Reporting Users of their Reporting Username
and Password.

Step 51: Register the New Oracle ID

Register the new ORACLE ID with Application Object Library.

Use the Register window.

Step 52: Define a Security Profile

Using a view-all responsibility, you can define security profiles in the Security Profile
window.

Use the Security Profile window.

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 53: Run Generate Secure User Process (SECGEN)

The Generate Secure User process will grant permissions to the new Reporting User
ORACLE ID. Until you run this process, reporting users cannot access Oracle HRMS
data using this security profile.

1. Select Generate Secure User.

2. In the Parameters window, enter the security profile you created for the ORACLE ID.

3. Submit your request.

A concurrent request ID appears in the ID field. You can check the progress of your
request on the View Concurrent Requests window.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Implementation Guide 2-73

Web Applications Desktop Integrator (Web ADI)

Step 54: Set Up Web ADI Optional Step

You can set up Web Applications Desktop Integrator (Web ADI) to export information
from your Oracle HRMS database to desktop applications, for example, spreadsheets.

See Implementing Web ADI for Use with Oracle HRMS, Oracle HRMS Configuring,
Reporting, and System Administration Guide

See: Upgrade Information for Converting from ADE to Web ADI, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Audit Requirements

Step 55: Turn on Auditing Optional Step

To turn on Auditing, set the AuditTrail:Activate profile option to Yes at Site or
Application level.

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Turning Audit on has no noticeable effect on the performance of the system and users
will not be aware of any extra delay in committing their transactions.

Step 56: Estimate File Sizing and Management Needs Optional Step

Whenever you choose to audit the actions of users of the system you are deciding to
keep the details of all the transactions which take place. This will include before and
after details as well as the details of who made the change and when.

Warning: In normal use the auditing of data can soon generate large
volumes of audit data, which even when stored in a compressed format
will continue to grow in size until you reach the limits imposed by your
environment. If you reach the limits during active use then users will be
unable to use the system until you remedy the problem.

You are strongly advised to consider the scope of your audit activities and how you will
use the data you accumulate. Also you should consider how often you will report on the
audit data, and when you will archive and purge your audit data.

If you need more advice on this you should contact your Oracle Support representative.

Step 57: Define Audit Installations Optional Step

If you have installed more than one Oracle Application you can audit across multiple
installations. For Oracle HRMS you should enable auditing for the HR user and the
APPLSYS user.

Use the Audit Installations window.

See: Audit Installations Window, Oracle Applications System Administrator's Guide

Step 58: Define Audit Tables and Columns Optional Step

With Oracle Applications you can define the level of detail you want to audit. You define
the individual fields of each record that you want to audit.

• Query the Table you want to audit

2-74 Oracle US Federal Human Resources Implementation Guide

• Enter the columns you want to audit for that table

Use the Audit Tables window.

See:Audit Tables Window, Oracle Applications System Administrator's Guide

Step 59: Define Audit Groups Optional Step

You can define one or more Audit Groups for your installation. You might find this
useful if you have more than one Oracle Application installed.

Use the Audit Groups window.

See: Audit Groups Window, Oracle Applications System Administrator's Guide

Step 60: Run AuditTrail Update Tables Process and AuditTrail Update Datetracked Tables Process Optional Step

To start the AuditTrail activity you must submit the AuditTrail Update Tables Process for all
tables, and the AuditTrail Update Datetracked Tables Process for all datetracked tables.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User's Guide

Modification of US Federal Workflow
Oracle Federal HR has predefined workflow attributes for several processes. You can
customize the attributes for the following Item Types as follows:

• GHR Personnel Action

If you route an action at least once or save it to your workflow worklist, the
application does not send an FYI Notification when it successfully updates an
action. (An FYI Notification is a message in your worklist that informs you of an
action taken by the application.)

You can customize the workflow process to have the application send an FYI
Notification to the person who performs the Update to HR, or to the person who
performs the update to HR and the Approver.

• GHR Within Grade Increase

The application does not send an FYI Notification to the Personnel Office (POI)
worklist when it successfully updates an Automatic Within Grade Increase (WGI)
action. You can customize the workflow process to have the application send a
Notification to the POI worklist.

When an Automatic WGI is processed for an employee, the action is sent to the
POI worklist for approval. You can customize the workflow process to require a
Supervisor’s approval before it is sent to the POI for approval.

See: Copying the Original Workflow Item Type, Configuring, Reporting, and System
Administration Guide

Step 61: Configure GHR Personnel Action: Notify Update HR User

When a personnel action is successfully updated to the HR database, the application
does not send a Notification to the person who last updated the action to the HR
database. If you want this person to receive an FYI Notification, change the default
attribute from No to Yes.

Use Workflow to change this attribute.

Implementation Guide 2-75

See: Changing a Workflow Attribute, Configuring, Reporting, and System Administration
Guide

Step 62: Configure GHR Personnel Action: Notify Only Update HR User

When a personnel action is successfully updated to the database, the application sends a
Notification to the last person who updated the action to the HR database. If you want
the Approver to also receive the Notification, change the default attribute from Yes to No.

Use Workflow to change this attribute.

See: Changing a Workflow Attribute, Configuring, Reporting, and System Administration
Guide

Step 63: Configure GHR Within Grade Increase: Use Personnel Office Only

When an Automatic WGI action is processed, the application sends a Notification to
the Personnel Office (POI). If you want the supervisor to receive a Notification so that
he or she can approve the action before it’s sent to the Personnel Office, change the
default attribute from Yes to No.

Use Workflow to change this attribute.

See: Changing a Workflow Attribute, Configuring, Reporting, and System Administration
Guide

Step 64: Configure GHR Within Grade Increase: Notify Personnel Office (POI) of Update to HR Success

When an Automatic WGI action is successfully updated to the HR database, the
application does not send a Notification to the POI. If you want the POI to receive a
Notification, change the default attribute from No to Yes.

Use Workflow to change this attribute.

See: Changing a Workflow Attribute, Configuring, Reporting, and System Administration
Guide

US Federal Workflow Routing
You can route forms such as the Request for Personnel Action and the Position
Description to a variety of destinations including individuals, groupboxes, or routing
lists. You use the Routing Groups and Groupboxes and Routing Lists maintenance forms
to set up your routing groups, groupboxes, and routing lists.

Step 65: Define Your Routing Group

Use the Routing Group and Groupbox Details window or the Routing Group and
Routing List Details window.

Arrange your Routing Groups so that users who need to exchange information are part
of the same Routing Group. You can assign users to more than one Routing Group, but
once an action is initiated within a Routing Group, you can only route it to other
members of the same Routing Group, not to a different Routing Group.

See: Setting Up Routing Groups, Configuring, Reporting, and System Administration Guide

Step 66: Assign Users to Routing Groups and to Roles within that Routing Group

Roles are designations that describe each member’s workflow activities within a Routing
Group. You can assign multiple roles to each user in a Routing Group.

Use the People Extra Information window.

2-76 Oracle US Federal Human Resources Implementation Guide

See: Adding a User to a Routing Group, Configuring, Reporting, and System Administration
Guide

Step 67: Set Up Groupboxes and Add Users to Them

Groupboxes are a convenient way to pool work for multiple users, so that any user
assigned to the Groupbox can process the action. Use the Routing Group and Groupbox
Details window.

See: Setting up Groupboxes, Configuring, Reporting, and System Administration Guide

Step 68: Set Up Routing Lists and Add Users to Them

A routing list is a predefined list of routing destinations. The list defines the order in
which a person or groupbox receives a workflow notification.

Use the Routing Group and Routing List Details window.

See: Setting up Routing Lists, Configuring, Reporting, and System Administration Guide

Define the Personnel Office ID Information Required Steps

Step 69: Define a Routing Groupbox

The Personnel Office ID (POI) groupbox is used as a standard groupbox, a central
routing point for RPAs, a destination where the application sends actions that have
errors (RPAs, Mass Action and Auto WGI processes).

To have the application route personnel actions to the Personnel Office, you need to
define a Routing Group and Groupbox for each Personnel Office ID that your agency
uses. You must also add one member who will be the Approving Official.

Use the Routing Group and Groupbox Details window.

See: Setting up Routing Groups, Groupboxes, and Routing Lists, Configuring, Reporting,
and System Administration Guide

Step 70: Complete the Personnel Office Information

For each POI that your agency uses, you must complete the POI groupbox information
on the Personnel Office ID Federal Maintenance Form by entering the Groupbox
Name and the Approver’s Full Name. The application enters the Approving Officer’s
name, working title, and approval date on the Notifications of Personnel Action for all
mass actions. After you set up the groupbox for the Personnel Office ID, you enter
the Approving Officer’s name and enter the groupbox name that you set up for the
Personnel Office.

Use the Personnel Office Identifiers window.

See: Maintaining Personnel Office ID Information, Configuring, Reporting, and System
Administration Guide

Define a Groupbox Required Steps

Step 71: Define a Groupbox for the Workflow Administrator

If there’s an error when routing a Within Grade Increase, Position Description, or other
personnel action, and the application does not find a designated groupbox, such as a
Personnel Office groupbox, it sends the notification to the Workflow Administrator’s
groupbox.

Implementation Guide 2-77

Use the Routing Group and Groupbox Details window.

See: Setting up a Workflow Administrator’s Groupbox, Configuring, Reporting, and
System Administration Guide

Agency Legal Authority Codes, Remarks, and Insertion Data
If your agency has agency-specific Legal Authority Codes (LACs), Remarks, and
accompanying insertion data, you can add them and associate them to Nature of Action
Codes (NOACs).

Step 72: Add Agency LACs

You can add new LACs or update existing ones.

Use the Lookup Values window, GHR_US_LEGAL_AUTH_CODE.

See: Defining Legal Authority Codes, Configuring, Reporting, and System Administration
Guide

Step 73: Associate Agency LACs to NOACs

After adding a LAC, you can associate it to a NOAC. You can associate a single LAC to
more than one NOAC, as well as several LACs to one NOAC.

Use the NOA Legal Authorities Federal Maintenance window.

See: Associating Legal Authority Codes to NOACs, Configuring, Reporting, and System
Administration Guide

Step 74: Add Remark Codes and Descriptions

If your agency maintains agency-specific Remarks, you can add and update their Codes
and Descriptions.

Use the Remarks Codes and Descriptions Federal Maintenance window.

See: Adding and Deleting Remarks, Configuring, Reporting, and System Administration
Guide

Step 75: Associate Remarks and NOACs.

You can associate several Remarks to a single NOAC, as well as a single Remark to
several NOACs.

Use the Remark Codes and Descriptions Federal Maintenance window.

See: Associating Remarks to NOACs, Configuring, Reporting, and System Administration
Guide

Step 76: Enter Insertion Data for Remarks and Legal Authority Codes

The product includes descriptive flexfields for NOAC, Remark, and Legal Authority
descriptions. These flexfields have five context-sensitive segments for insertion values
that correspond to the underscores in the descriptions.

Note: Underscores represent insertion data only. Make sure that your
Remarks, Legal Authority Codes, or NOACs do not contain underscores
unless they have corresponding insertion segments.

Adding insertion data is a task for the application administrator.

2-78 Oracle US Federal Human Resources Implementation Guide

Use the Descriptive Flexfield Segments window.

See: Insertion Data, Configuring, Reporting, and System Administration Guide.

Productivity Event Categories and Codes

Step 77: Set up Event Categories

Define Categories in Lookup type GHR_US_EVENT_CATEGORIES. A category may
contain multiple events. Entries include Code, Meaning, and Description.

Use the Lookup Types window.

See: Setting up Event Codes, Configuring, Reporting, and System Administration Guide

Step 78: Set up Event Codes

When you route an RPA, the application enters an RPA status in the Routing
History. Some actions that you take to process an RPA are external to the routing
process, such as obtaining confirmation from another organization. You can record these
actions as events. For each event you can enter a Start Date Description, End Date
Description, Category Code, Standard completion Time, From Date, and To Date.

Use the Enter and Maintain Event Codes window.

See: Setting up Event Codes, Configuring, Reporting, and System Administration Guide

Note: If you need to capture more information related to a category, you
can extend this Lookup type by defining other Attributes.

Schedule for US Federal Processes

Step 79: Set the Frequency for Producing Federal Reports

You can determine when and how often the system processes federal reports, such
as the Notification of Personnel Action, or the Central Personnel Data File (CPDF)
Dynamics and Status reports.

Use the Concurrent Manager Submit Requests window.

See: Reports and Processes in Oracle HR, Configuring, Reporting, and System
Administration Guide

Step 80: Set the Frequency for Running the Within Grade Increases (WGI) process

The default WGI process automatically determines eligible employees, creates an
RPA, and updates a WGI when the employee’s WGI Pay Date is reached. Your system
administrator can customize the workflow process to require a response from the
Personnel Office or the Supervisor:

• Personnel Office receives a notification and no response is required

• Personnel Office receives a notification and a response is required

• Supervisor receives a notification and a response is required. The system then sends
the notification to the Personnel Office.

Your system administrator can further customize the WGI eligibility criteria with user
hooks. For example, the system administrator might customize the WGI eligibility to
include a procedure that checks Rating of Record on the US Government Performance
Appraisal flexfield.

Implementation Guide 2-79

The system identifies employees eligible for a WGI 90 days before the WGI Pay Date and
generates a future effective WGI Request for Personnel Action. You can schedule the
frequency with which the system processes automatic Within Grade Increases.

Use the Concurrent Manager Submit Requests window.

See: Scheduling the Automatic WGI Process, Compensation and Benefits Management Guide

Step 81: Set the Frequency for Processing Future Actions

You can process and update Requests for Personnel Action that have a future effective
date. When the effective date is reached, the system performs a final update and
generates a Notification of Personnel Action. You can set the frequency with which the
system processes all RPAs that have come due.

Use the Concurrent Manager Submit Requests window.

See: Processing Future Actions, Workforce Sourcing, Deployment, and Talent Management
Guide

Technical Essays

DateTrack

How DateTrack Works

DateTrack adds the dimension of time to an application’s database. The value
of a DateTracked record depends on the date from which you are viewing the
data. For example, querying an employee’s annual salary with an effective date
of 12-JUL-1992 might give a different value than a query with an effective date of
01-DEC-1992. However, the application and the user see the employee’s pay as a single
record.

Behavior of DateTracked Forms

This section describes the behavior of forms that incorporate DateTracking.

When you begin to update or delete a record on a DateTracked form, you are prompted
with a number of choices. This section describes the choices and their effect on the
DateTracked table.

The term "today" refers to the effective date set by the user.

Update

When a user first alters a field in a DateTracked block in the current Commit unit, he or
she sees a choice of Update prompts as follows:

• UPDATE - Updated values are written to the database as a new row, effective from
today until 31-DEC-4712. The old values remain effective up to and including
yesterday.

• CORRECTION - The updated values override the old record values and inherit the
same effective dates.

If the user selects UPDATE, DateTrack checks whether the record being updated
starts today. If it does, a message warns that the previous values will be lost (because
DateTrack can only store information on a day by day basis). DateTrack then changes the
mode for that record to CORRECTION.

2-80 Oracle US Federal Human Resources Implementation Guide

Next, if UPDATE was selected, DateTrack checks whether the record being updated
has already had future updates entered. If it has been updated in the future, the user
is further prompted for the type of update, as follows:

• UPDATE_CHANGE_INSERT (Insert) - The changes that the user makes remain
in effect until the effective end date of the current record. At that point the future
scheduled changes take effect.

• UPDATE_OVERRIDE (Replace) - The user’s changes take effect from now until the
end date of the last record in the future. All future dated changes are deleted.

In most forms, users are prompted for the update mode for each record they update. In
some forms, they are asked for the update mode for only the first record they
update. Any other rows updated take the same update mode. Users are not prompted
again, until they have committed or cleared any outstanding changes.

Delete

When deleting a record, the user is prompted for the type of delete. There are four
options, as follows:

• DELETE (End Date) - This is the DateTracked delete. The record that the user is
currently viewing has its effective end date set to today’s date. The record disappears
from the form although the user can requery it.

• ZAP (Purge) - This is the total delete. All records matching the key value, whatever
their date stamps, are deleted.

• FUTURE CHANGE (All) - This choice causes any future dated changes to the
current record, including a future DateTracked delete, to be removed. The current
record has its effective end date set to 31-DEC-4712.

The record can again be displayed by requerying.

• DELETE NEXT CHANGE (Next Change) - This choice causes the next change to the
current DateTracked record to be removed.

Where another future dated DateTracked row exists for this record, it is removed
and the current row has its effective end date set to the effective end date of the
deleted row.

Where no future DateTracked row exists, but the current row has an end date
other than 31-DEC-4712, then this option causes the effective end date to be set to
31-DEC-4712. This means that a date effective end is considered to be a change.

Notice that this option again removes the current row from the form, though it
can be displayed again by requerying.

Insert

The user is not prompted for any modes when inserting a record. The effective start
date is always set to today (Effective Date). The effective end date is set as late as
possible. Usually this is 31-DEC-4712, although it can be earlier especially when the
record has a parent DateTracked record.

Table Structure for DateTracked Tables

A DateTracked (DT) record is what the application and the user see: a single DT record
for each key value. However, this DT record may change over time, so it may correspond
to one or more physical rows in the database. The history for the record is held by storing
a row when the record is created, and an extra row every time the record changes. To
control these rows, every DateTracked table must include these columns:

Implementation Guide 2-81

EFFECTIVE_START_DATE DATE NOT NULL

EFFECTIVE_END_DATE DATE NOT NULL

The effective start date indicates when the record was inserted. The effective end date
indicates when the record was deleted or updated. A deleted record has the highest end
date of all the rows with that key, but for an updated record there will be at least one row
for this key with a higher effective end date.

As time support is not provided, the effective start date commences at 0000 hours and
the effective end date finishes at 2359 hours. This means that a DT record can change
at most once per day.

Example

Table Showing Example of DateTracked Table Contents

EMPID EMPNAME SALARY EFFECTIVE_
START_DATE

EFFECTIVE_
END_DATE

3203 SMITH 17,000 12-MAR-1989 19-JUL-1989

3203 SMITH 18,200 20-JUL-1989 20-JUL-1989

3203 SMITH 18,400 21-JUL-1989 01-DEC-1989

The table above shows the physical table after the user has done the following:

• Set the effective date to 12-MAR-1989. Inserted record for SMITH.

• Set the effective date to 20-JUL-1989. Updated SMITH record with new salary.

• Set the effective date to 21-JUL-1989. Again updated SMITH record with new salary.

• Set the effective date to 1-DEC-1989. Deleted record for SMITH.

The table below shows what the user sees on querying the SMITH record at different
effective dates.

Table of Example Query Results for a DateTracked Table

EFFECTIVE DATE EMPID EMPNAME SALARY

11-MAR-1989 ** no rows retrieved

12-JUN-1989 3203 SMITH 17,000

21-JUL-1989 3203 SMITH 18,400

02-DEC-1989 ** no rows retrieved

2-82 Oracle US Federal Human Resources Implementation Guide

Because the primary key column in the table is no longer unique, any indexes
on the table that included the primary key column must now also include the
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE columns.

List of DateTracked Tables

To get a list of the DateTracked tables used in Oracle Human Resources, select from the
data dictionary where the table name is like Application Short Name%F. Substitute in
the HRMS application short code you are interested in (such as PER or BEN).

For each of the DateTracked tables there is a DateTracked view called <TABLE NAME>
and a synonym pointing to the full table called <TABLE NAME_F>.

Creating a DateTracked Table and View

The previous section described the table structure of a DateTracked table. This section
describes the steps to go through to create a DateTracked table and view.

You must use the following nomenclature for DateTracked tables:

Base table: <TABLE NAME_F>

DateTracked view: <TABLE NAME>

In addition to the DateTracked view, there is another view that shows the rows in the
table as of SYSDATE. The name of this view is derived by replacing the _F at the end of
the table name by _X.

Example

To incorporate DateTrack on to an existing table called EMPLOYEES, follow these steps:

1. Create a new table called EMPLOYEES_F that is identical to EMPLOYEES but
with the columns EFFECTIVE_START_DATE and EFFECTIVE_END_DATE
added. Normally you would set the EFFECTIVE_START_DATE and
EFFECTIVE_END_DATE columns to the maximum range.

CREATE TABLE EMPLOYEES_F AS

SELECT EMPLOYEES.*,

TO_DATE(’01-01-0001’,’DD-MON-YYYY’) EFFECTIVE_START_ DATE,

TO_DATE(’31-12-4712’,’DD-MON-YYYY’) EFFECTIVE_END_DA TE

FROM EMPLOYEES;

ALTER TABLE EMPLOYEES_F

MODIFY (EFFECTIVE_START_DATE NOT NULL,

EFFECTIVE_END_DATE NOT NULL);

Remove the old table.

DROP TABLE EMPLOYEES

If the old table already has the two new columns, just rename it.

RENAME EMPLOYEES TO EMPLOYEES_F;

Implementation Guide 2-83

2. Create the New Unique Indexes of the DateTracked Table by dropping
the old indexes, creating the new unique indexes as old unique index +
EFFECTIVE_START_DATE + EFFECTIVE_END_DATE, and creating the new
non-unique indexes the same as the old non-unique indexes.

3. Create a DateTracked view called EMPLOYEES. This view uses the entry in
FND_SESSIONS for the current user effective id for the effective date.

CREATE VIEW EMPLOYEES AS

SELECT *

FROM EMPLOYEES_F

WHERE EFFECTIVE_START_DATE <=

(SELECT EFFECTIVE_DATE

FROM FND_SESSIONS

WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))

AND EFFECTIVE_END_DATE >=

(SELECT EFFECTIVE_DATE

FROM FND_SESSIONS

WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))

4. To create the view EMPLOYEES_X based on the table EMPLOYEES_F, use the
following SQL:

CREATE VIEW EMPLOYEES_X AS

SELECT *

FROM EMPLOYEES_F

WHERE EFFECTIVE_START_DATE <= SYSDATE

AND EFFECTIVE_END_DATE >= SYSDATE

Restricting Datetrack Options Available to Forms Users

When a user edits or deletes a datetracked record, the system displays a window asking
the user what type of update or deletion to perfom. Before it displays this window, the
system calls a custom library event (called DT_SELECT_MODE). It passes in the list of
buttons that DateTrack would normally display (such as Update and Correction).

Your custom code can restrict the buttons displayed. If necessary, it can require
that the user is given no update or delete options, and receives an error message
instead. However, it cannot display buttons that DateTrack would not normally display
for the entity, effective date, and operation the user is performing.

2-84 Oracle US Federal Human Resources Implementation Guide

If the user chooses Update and future changes exist, the custom library event point may
be executed a second time so your custom code can determine whether the user is given
the two update options: Insert and Replace.

Global Variables

The following global variables can be used at the DT_SELECT_MODE event. They are
not available at any other CUSTOM library event.

Implementation Guide 2-85

Table of Global Variables at DT_SELECT_MODE Event

Global Variable Name Read/Write Description

g_dt_update Read and write Set to TRUE when the product
would normally display the
Update button on the mode
selection window. Otherwise
set to FALSE.

g_dt_correction Read and write Set to TRUE when the product
would normally display the
Correction button on the mode
selection window. Otherwise
set to FALSE.

g_dt_update_change_insert Read and write Set to TRUE when the product
would normally display the
Insert button on the mode
selection window. Otherwise
set to FALSE.

g_dt_update_override Read and write Set to TRUE when the product
would normally display the
Replace button on the mode
selection window. Otherwise
set to FALSE.

g_dt_zap Read and write Set to TRUE when the product
would normally display the
Purge button on the mode
selection window. Otherwise
set to FALSE.

g_dt_delete Read and write Set to TRUE when the product
would normally display the
End Date button on the mode
selection window. Otherwise
set to FALSE.

g_dt_future_change Read and write Set to TRUE when the product
would normally display
the All button on the mode
selection window. Otherwise
set to FALSE.

g_dt_delete_next_change Read and write Set to TRUE when the product
would normally display the
Next button on the mode
selection window. Otherwise
set to FALSE.

Important: Custom code can change a TRUE value to FALSE. However, if
it tries to change a FALSE value to TRUE, the system ignores this change.

2-86 Oracle US Federal Human Resources Implementation Guide

Enabling the DT_SELECT_MODE Event

To enable the DT_SELECT_MODE event, add the following code to the STYLE procedure
in the CUSTOM package, CUSTOM library:

if event_name = ’DT_SELECT_MODE’ then

return custom.after;

else

return custom.standard;

end if;

Example Custom Code

Suppose you wanted to stop the Delete mode button from being displayed on the Mode
Selection window when DateTrack would normally make it available. You could add the
following code to the EVENT procedure in the CUSTOM package, CUSTOM library:

if (event_name = ’DT_SELECT_MODE’) then

if name_in(’GLOBAL.G_DT_DELETE’) = ’TRUE’ then

copy(’FALSE’, ’GLOBAL.G_DT_DELETE’);

end if;

end if;

Create and Modify DateTrack History Views

DateTrack History is available in most windows where you can enter date tracked
information. DateTrack History enables you to track changes made to records and
fields, and by whom. You can select the fields you want to focus on and view the
changed values in those fields over time.

DateTrack History is available from a button on the toolbar.

What Can You Create and Modify?

You can create new views or modify existing views to customize the information
displayed. You can:

• Create a view to join to other tables. This enables you to use a meaningful table
name as a column header. By contrast, the base table can only display an ID
of another table.

• Determine the fields to display, by modifying the views.

• Modify views to display column names aliases for the meaningful names you have
defined for descriptive flexfield segments.

• Determine which view to use dependent on criteria of your choice, such as the
Business Group ID.

What Happens When You Request DateTrack History?

When you request DateTrack History, Oracle HRMS extracts the information from one of
three sources. The application looks first for the alternative view specified by the custom

Implementation Guide 2-87

library and if one exists, extracts the information from there. If there isn’t an alternative
view specified, it looks next for a default DateTrack History view from which to extract
the information, and if that doesn’t exist, it extracts the information from the base table. It
then displays the information in the DateTrack History Change Field Summary window.

The name of the default DateTrack History view is the same as that of the base
table, except that the suffix _F is replaced by _D. For example, if the base table is
PER_ALL_PEOPLE_F, the application looks for a view called PER_ALL_PEOPLE_D.

Note: It is possible to define more than one History view for each
datetracked table, so there might be examples where the History view
name does not follow this naming convention.

When a view exists, the application reads the information about the entity name and
column prompts from the DateTrack tables:

• DT_TITLE_PROMPTS_TL

• DT_DATE_PROMPTS_TL

• DT_COLUMN_PROMPTS_TL

If the column information is not available in the DT_COLUMN_PROMPTS_TL table, the
information is obtained from the view definition. The DateTrack History code modifies
the column names of the table or view before presenting them. Underscores are replaced
by spaces and the first letter of each word appears in upper case.

Rules for Creating or Modifying DateTrack History Views

DateTrack History views should have the same name as the corresponding base
table, wherever possible, except that the suffix _F is replaced by _D. If you are using
custom library to specify an alternative view, the view name is different, but you should
still use the _D suffix.

All views must contain the following columns:

• The primary key of the base table

• The effective start date of the base table

• The effective end date of the base table

• The last updated date column

• The last updated by column (obtain the actual user name by an outer join to
FND_USER_VIEW).

Note: There is a limit of 35 columns in Date Track History views. The
primary key, effective start date, and effective end date columns must
be present in the view but cannot be seen in the DateTrack History
windows.

Do not edit the supplied DateTrack History view creation scripts. If you want to
customize the supplied DateTrack History views, copy the scripts and modify the copies
instead. After an upgrade, you should check that your customizations are consistent
with the new views supplied with the upgrade. If so, you can rerun your customized
view creation scripts to recreate your customized views.

2-88 Oracle US Federal Human Resources Implementation Guide

Update Folder Definitions When Adding Columns

Adding an additional column to DateTrack History views can affect the column
order, and if you have previously saved folders, the data displayed and the prompts
might no longer match up. This is because the Date Track History Change Field
Summary window displays the column names in alphabetical order, but with the
effective date values in the first two columns.

We recommend that you update any folder definitions straight after you apply the new
view to the database, otherwise the data displayed and the prompts in folders might
not match up in future.

Example of a DateTrack History View

In this example, the base table is PAY_GRADE_RULES_F.

create or replace view pay_grade_rules_d
(grade_rule_id,

effective_start_date,
effective_end_date,
maximum,
mid_value,
minimum,
grade,
rate_type,
last_update_date,
last_updated_by)

AS
select GRULE.grade_rule_id,

GRULE.effective_start_date,
GRULE.effective_end_date,
GRULE.maximum,
GRULE.mid_value,
GRULE.minimum,
GRADE.name,
HR1.meaning,
GRULE.last_update_date,
FUSER.user_name

from pay_grade_rules_f GRULE
, per_grades GRADE
, hr_lookups HR1
, fnd_user_view FUSER
where GRADE.grade_id = GRULE.grade_or_spinal_point_id

and HR1.lookup_code (+)= GRULE.rate_type
and HR1.lookup_type (+)= ’RATE_TYPE’
and FUSER.user_id (+)= GRULE.last_updated_by

Using Alternative DateTrack History Views

Before the DateTrack History Change Field Summary window displays, the system calls
a custom library event (called DT_ CALL_HISTORY). It passes in details of the current
record and which DateTrack view the product normally uses. You can write custom code
to change the name of the view DateTrack History should use. Your code can include IF
statements that determine which view to use in different circumstances.

Note: It is your responsibility to ensure that the alternative view exists
in your database and the relevant users have select access to it.

Implementation Guide 2-89

For each additional view, you need to insert extra rows into the DT_TITLE_PROMPTS_TL
and DT_COLUMN_PROMPTS_TL tables, based on the view name. Use SQL*Plus
scripts to maintain the extra table contents and view definitions.

Global Variables

The following global variables can used at the DT_CALL_HISTORY event. They are not
available at any other CUSTOM library event.

Table of Global Variables

Global Variable Name Read/Write Description

g_dt_basetable Read only Name of the database table
where the data is held. For
example: PER_ALL_PEO
PLE_F

g_dt_uidfield Read only Name of the surrogate ID
on the database table. For
example: PERSON_ID

g_dt_uidvalue Read only The surrogate ID value for the
current record.

g_dt_alternative_history_
view

Read and Write Usually DateTrack History
queries the history data from
a database view that has the
same name as the database
table, except the _F suffix is
changed to _D. In that case
this global variable is null. For
example when the database
table is PER_ALL_PEOPLE_
F, the PER_ALL_PEOPLE_D
view is used. If you want
to use a different view, set
this global variable to the
actual view name (even if the
variable is initially null).

Enabling the DT_ CALL_HISTORY Event

To enable the DT_CALL_HISTORY event add the following code to the STYLE procedure
in the CUSTOM package, CUSTOM library:

if event_name = ’DT_CALL_HISTORY’ then

return custom.after;

else

return custom.standard;

end if;

2-90 Oracle US Federal Human Resources Implementation Guide

Example Custom Code

Suppose you want to use a different view whenever the standard product would
normally use the PER_ALL_PEOPLE_D view. Add the following code to the EVENT
procedure in the CUSTOM package, CUSTOM library:

if (event_name = ’DT_CALL_HISTORY’) then

if name_in(’global.g_dt_basetable’) = ’PER_ALL_PEOPLE_ F’ then

copy

(’NAME_OF_OTHER_VIEW’

,’global.g_dt_alternative_history_view’

);

end if;

end if;

List of DateTrack History Views

The supplied views and view creation scripts are as follows:

Table of DateTrack History Views

View Name Based on (table) View Creation Script

BEN_BENEFIT_CONTRIBUT
IONS_D

BEN_BENEFIT_CONTRIBUT
IONS_F

pedtbbcf.sql

HXT_ADD_ASSIGN_INFO_D HXT_ADD_ASSIGN_INFO_F hxtdtaas.sql

HXT_ADD_ELEM_INFO_D HXT_ADD_ELEM_INFO_F hxtdtael.sql

HXT_SUM_HOURS_
WORKED_D

HXT_SUM_HOURS_
WORKED_F

hxtdtsum.sql

HXT_TIMECARDS_D HXT_TIMECARDS_F hxtdttim.sql

PAY_ALL_PAYROLLS_D PAY_ALL_PAYROLLS_F pydtpayr.sql

PAY_BALANCE_FEEDS_D PAY_BALANCE_FEEDS_F pydtbalf.sql

PAY_CA_EMP_FED_TAX_
INFO_D

PAY_CA_EMP_FED_TAX_
INFO_F

pycadtfd.sql

PAY_CA_EMP_PROV_TAX_
INFO_D

PAY_CA_EMP_PROV_TAX_
INFO_F

pycadtpv.sql

PAY_COST_ALLOCATIONS_
D

PAY_COST_ALLOCATIONS_
F

pydtpcst.sql

PAY_ELEMENT_LINKS_D PAY_ELEMENT_LINKS_F pydtelin.sql

Implementation Guide 2-91

View Name Based on (table) View Creation Script

PAY_ELEMENT_TYPES_D PAY_ELEMENT_TYPES_F pydtetyp.sql

PAY_FORMULA_RESULT_
RULES_D

PAY_FORMULA_RESULT_
RULES_F

pydtfmrr.sql

PAY_GRADE_RULES_D PAY_GRADE_RULES_F pydtgrdt.sql

PAY_INPUT_VALUES_D PAY_INPUT_VALUES_F pydtinpv.sql

PAY_LINK_INPUT_VALUES_
D

PAY_LINK_INPUT_VALIES_
F

pydtliiv.sql

PAY_ORG_PAYMENT_
METHODS_D

PAY_ORG_PAYMENT_
METHODS_F

pydtpaym.sql

PAY_PERSONAL_
PAYMENT_METHODS_D

PAY_PERSONAL_
PAYMENT_METHODS_F

pydtppym.sql

PAY_STATUS_PROCESSING_
RULES_D

PAY_STATUS_PROCESSING_
RULES_F

pydtstpr.sql

PAY_USER_COLUMN_
INSTANCES_D

PAY_USER_COLUMN_
INSTANCES_F

pydtucin.sql

PAY_USER_ROWS_D PAY_USER_ROWS_F pydtussrr.sql

PER_ALL_ASSIGNMENTS_D PER_ALL_ASSIGNMENTS_F pedtasgn.sql

PER_ALL_PEOPLE_D PER_ALL_PEOPLE_F pedtpepl.sq

PER_ASSIGNMENT_
BUDGET_VALUES_D

PER_ASSIGNMENT_
BUDGET_VALUES_F

pedtabv.sql

PER_COBRA_COVERAGE_
BENEFITS_D

PER_COBRA_COVERAGE_
BENEFITS_F

pedtccbf.sql

PER_GRADE_SPINES_D PER_GRADE_SPINES_F pedtgrsp.sql

PER_SPINAL_POINT_
PLACEMENTS_D

PER_SPINAL_POINT_
PLACEMENTS_F

pedtsppp.sql

PER_SPINAL_POINT_STE
PS_D

PER_SPINAL_POINT_STE
PS_F

pedtspst.sql

PER_PERSON_TYPE_
USAGES_D

PER_PERSON_TYPE_
USAGES_F

pedtptu.sql

PER_CONTRACTS_D PER_CONTRACTS_F pedtctc.sql

2-92 Oracle US Federal Human Resources Implementation Guide

Batch Element Entry

Creating Control Totals for the Batch Element Entry Process

Batch control totals provide a mechanism for customizing the validation of batch
contents to meet particular user requirements. This validation may be done for
example, by doing total, or average operations on the batch lines and matching the
values with values entered by the user.

Batches can be entered and viewed using the Batch Header window, and other windows
available from it.

Setting Up Control Totals

A control total type is predefined for checking the number of lines in a batch (control
type = Total Lines).

You can create control totals to sum numerical element input values by defining a lookup
for the lookup type CONTROL_TYPE. See: Setting Up BEE Validation Using Control
Totals, Oracle HRMS Configuring, Reporting, and System Administration Guide

If you need other kinds of control totals, you can define lookups for them, but you must
also write a validation procedure for checking the batch against the total. The next
section explains how to write this validation procedure.

Creating the SQL Code

The following procedure is delivered with a null statement in it. Replace the null
statement with your customized control total validation code.

• Procedure: check_control

• Package: user_check

• File: pyusrchk.pkb

Parameters

The check_control procedure is executed during the batch validation phase of the BEE
process. The parameters passed to this procedure are:

• p_batch_id The batch ID.

• p_control_type The name of the control total.

• p_control_total The user entered value to match.

Two other parameters (p_status, p_message) are used in this procedure to return an error
code and message to the system if the batch control total validation fails.

Batch Lines

Each line of batch data is stored as a record in the pay_batch_lines table. The data is
stored in the fields value_1 - value_15. The number of the field corresponds to the
column in the Batch Lines window.

For example, if you want to validate a check digit, you could use the following PL/SQL
code as a basis:

PROCEDURE check_control

(

Implementation Guide 2-93

p_batch_id IN NUMBER,

p_control_type IN VARCHAR2,

p_control_total IN VARCHAR2,

p_status IN OUT VARCHAR2,

p_message OUT VARCHAR2

) IS

total NUMBER;

BEGIN

-- Check the control type is the one we’re expecting

IF p_control_type = ’CHECK_DIGIT’ THEN

-- Calculate the MOD 10 of total values in value_1

SELECT MOD(NVL(SUM(value_1),0),10) INTO total FROM pay_b atch_
lines

WHERE batch_id = p_batch_id;

-- Compare with the user entered value

IF total <> p_control_total THEN

-- Create the error message to return and set the status to E(r ro
r)

p_message := ’Control total TOT1 (’ || p_control_total ||

’does not match calculated value (’ || total |
|

’)’;

p_status := ’E’;

ENDIF;

ENDIF;

END check_control;

This, however, is a very simplistic example. If batch lines within the same batch
are entered for more than one element then the value columns may vary between
elements. Here is a more complex example to validate the check digit on the input
value ’Identification’:

PROCEDURE check_control

(

2-94 Oracle US Federal Human Resources Implementation Guide

p_batch_id IN NUMBER,

p_control_type IN VARCHAR2,

p_control_total IN VARCHAR2,

p_status IN OUT VARCHAR2,

p_message OUT VARCHAR2

) IS

CURSOR c1 IS

SELECT DISTINCT element_type_id

FROM pay_batch_lines

WHERE batch_id = p_batch_id;

--

r1 c1%ROWTYPE;

total NUMBER;

value_num NUMBER;

sqlstr VARCHAR2(200);

c2 INTEGER;

ret INTEGER;

BEGIN

--

-- Check the control type is the one we’re expecting

IF p_control_type = ’CHECK_DIGIT2’ THEN

total := 0;

--

-- Loop through each element in the batch lines

FOR r1 IN c1 LOOP

--

-- Find out the value number that ’Identification’ is in

SELECT display_sequence

INTO value_num

Implementation Guide 2-95

FROM pay_input_values iv,

pay_batch_headers bh,

pay_element_types et

WHERE bh.batch_id = p_batch_id AND

iv.business_group_id = bh.business_group_id AND

et.element_type_id = r1.element_type_id AND

iv.element_type_id = et.element_type_id AND

iv.name = ’Identification’;

--

-- Create an SQL string to add the values

sqlstr := ’SELECT MOD(NVL(SUM(value_’ || value_num ||

’),0),10) ’ ||

’FROM pay_batch_lines ’ ||

’WHERE batch_id = ’ || p_batch_id || ’ AND ’

||’element_type_id = ’’’ ||

r1.element_type_id || ’’’’;

--

-- Call the string using dynamic SQL and put the value in ’tota l’

c2 := dbms_sql.open_cursor;

dbms_sql.parse (c2,sqlstr,dbms_sql.v7);

dbms_sql.define_column (c2,1,total);

ret := dbms_sql.execute (c2);

ret := dbms_sql.fetch_rows (c2);

--

-- Check we got some values back

if ret > 0 then

dbms_sql.column_value (c2,1,total);

else

total := 0;

2-96 Oracle US Federal Human Resources Implementation Guide

end if;

--

dbms_sql.close_cursor (c2);

--

-- Check the total matches the user entered value and create a n

-- error message if it doesn’t

IF total <> p_control_total THEN

p_message := ’Check digit expected ’||p_control_total||

’ but got ’||to_char(total);

p_status := ’E’;

END IF;

END LOOP;

END IF;

END check_control;

Payroll Processes

Overview

Oracle Payroll provides you with the flexibility you require to run your regular pay
cycle in the best way to meet your business needs. To do this, we provide you with a
modular batch process called PYUGEN.

PYUGEN

PYUGEN is a generic process that can perform several actions. The Oracle Payroll
system administrator specifies which actions it can perform by registering it with certain
parameter sets and defaults.

The parameter identifies the specific payroll process to execute. These are predefined
in Oracle Payroll; the values are not visible to the user.

The following figure illustrates the payroll processes executed by PYUGEN, and the
typical sequence in which they are performed. Each process performs specific actions
required to calculate and generate your employees’ pay.

Implementation Guide 2-97

Pay Cycle Sequence

hr_400.gif

Checking Registration Details

You can check the registration details for each payroll process using the Concurrent
Programs window. These details are predefined and are protected from change. During
implementation you can add your own versions of these payroll processes to simplify
the running of a pay cycle for your users. For example, you might want to define a
separate payroll run process for each payroll, with different:

• Names

• Security

• Default values for different users

2-98 Oracle US Federal Human Resources Implementation Guide

Consult your Oracle Applications System Administrator’s Guide for more information on
registering concurrent programs.

Payroll Action Parameters

Payroll action parameters are system-level parameters that control aspects of the Oracle
Payroll batch processes. It is important to recognize that the effects of setting values for
specific parameters may be system wide.

See: Payroll Action Parameters, page 2-132

Overview of the Payroll Processes

The first process you run in your pay cycle is the Payroll Run process. This process
calculates the gross to net payment for your employees. After the successful completion
of the Payroll Run, you start the Pre-Payments process. This process distributes
employees’ pay over the payment methods employees have requested. It also allocates
payments to third parties.

The next step is to start one of the payment processes to produce payments for
employees:

• MAGTAPE (for example BACS in the UK or NACHA in the US)

• CHEQUE (Cheque Writer or Check Writer)

• CASH (Cash) - for UK only

The payment processes take the unpaid prepayment values allocated to each payment
type and produce the required payment file. It is these processes that actually produce
payments for employees.

The Costing process allocates payroll run results to cost segments. The Transfer to the
General Ledger process transfers cost information to Oracle General Ledger interface
tables.

See Also

Payroll Run Process, page 2-100

Pre-Payments Process, page 2-108

Payment Processes, page 2-112

• Magnetic Tape Process, page 2-112

• Cheque Writer/Check Writer Process, page 2-126

• Cash Process, page 2-132

Costing Process, page 2-146

Transfer to General Ledger Process, page 2-146

Supporting Processes

In addition to this regular cycle of activities there are other processes that support the
correction and completion of each cycle. These include:

• Mark for Retry

• Retry

• Rollback

• QuickPay

Implementation Guide 2-99

• RetroPay

• Advance Pay

• Archive

See the guide Running Your Payroll Using Oracle HRMS for more information about these
supporting processes. See: The Payroll Archive Reporter (PAR) Process, page 2-148 for
information about the Archive process.

Assignment Level Interlocks

The sequence in which the PYUGEN calculates payment is critical to the success
of processing. This is because each process builds upon the results of the previous
process in the sequence. The sequence of the processing is also determined by issues of
data integrity. For example, the Pre-Payments process (which prepares the payments
according to the payment methods) uses the results of the Payroll Run process (which
calculates the gross to net payment).

To ensure correct payments, you cannot change Payroll Run results without also
changing the prepayment results. Oracle Payroll uses assignment level interlock rules to
enforce this.

See: Assignment Level Interlocks, page 2-141.

Payroll Run Process

The Payroll Run process calculates the gross to net payment for your employees.

This process uses payroll actions to represent each payroll run. It identifies which
assignments have payroll actions performed on them - that action is an assignment
action of the type payroll.

The results from processing each element for an assignment are the run result
values. These individual results are accumulated into balances that summarize gross to
net, and in particular the payment balances. Payment balances are taken forward by
Pre-Payments, which is the next process in the regular pay cycle.

Determine Assignments and Elements

The first phase of the Payroll Run process is to determine the assignments and elements
to be included in the current batch. The user specifies these by selecting an assignment
set and element set when initiating the run. The default is All.

The Payroll Run accesses a number of specific entities for processing. It identifies
whether they are used for select, update, delete or insert. Where an entity is
datetracked, the Payroll Run process also identifies any datetracked information that
has changed, and actions it accordingly. For example, an update of a datetracked entity
may require an actual insert into the table.

The following list indicates the main entities for processing:

Key: S = Select, U = Update, D = Delete, I = Insert.

2-100 Oracle US Federal Human Resources Implementation Guide

Entity Name Datetracked? Processing

Payroll Action No S, U, I

Assignment Action No S, U, I

Element Entry Yes S, U

Element Entry Value Yes S, U

Person Latest Balance No S, U, I

Assignment Latest Balance No S, U, I

Balance Context No S, U, I

Action Context No S, I

Run Result No S, U, I

Run Result Value No S, U, I

Process Each Assignment

The Payroll Run applies the appropriate processing to each assignment. For a specific
payroll run, this is identified by an assignment action. The following ’pseudo code’
represents the processing that occurs:

get assignment status();

if assignment status is ’Process’ then

load element entries and values ();

load latest balances ();

while(entries to process)

create run results if necessary ();

set up User Defined Context Area ();

/* third party hook */

get processing mode for entry ();

if(we are not skipping) then

look for formula to run ();

if(there is formula to execute) then

execute formula ();

if(error detected) then

Implementation Guide 2-101

handle error ();

end if;

end if;

post run results and feed balances ();

end if ;

end while ;

flush run results and values ();

write / update latest balances ();

end if ;

Element Entry Processing

Element entries hold the entry values that are input to the gross to net calculations. The
result of processing each entry value is a run result value. Before processing each
assignment, Payroll Run loads all entries for that assignment into memory. This includes
any pre-inserted run results and values.

By default, nonrecurring entries are only fetched if they are unprocessed in the current
pay period. Recurring entries are always fetched and processed when you submit a
payroll run. You must use frequency rules, element skip formulas, or element sets to
limit the inclusion of recurring entries.

If you make an additional entry of a recurring element, the Payroll Run processes the
additional entry as a nonrecurring entry. (Additional entries are not used by Oracle
Payroll in the US.)

Processing Priority

The sequence of processing entries for each assignment is determined by the processing
priority of the element, and the subpriority order of each entry. When the subpriority
is null, entries are ordered by:

1. processing priority

2. element_type_id

3. entry type

Payroll Run checks for Overrides and Replacement entries before calculating normal
entries and additional entries for non-US legislations.

If subpriority is specified, the in-memory list is reordered to reflect this. Adjustments
and target entries are kept together.

Termination Processing

Payroll Run implements the entry processing rules for a terminated assignment.

For the US legislation, this means that if the date earned of Payroll Run is between the
actual date of termination and the final process date for an assignment, the assignment is
processed only when there exists an unprocessed nonrecurring entry for the assignment.

For non-US legislations, a user can also enter a last standard process date. This means
that if the date earned of Payroll Run is between the last standard process date and the

2-102 Oracle US Federal Human Resources Implementation Guide

final process date for an assignment, the assignment is processed only when there exists
an unprocessed nonrecurring entry for the assignment.

An additional entry counts as nonrecurring for termination purposes.

Create Run Results and Values

For every entry that is processed there must be a run result; for each entry value there
must be a run result value. If these do not already exist, by pre-insertion, then the
appropriate run results and values are created in memory and are inserted into the
database, ready for Payroll Run to process.

For example, a nonrecurring entry may have pre-inserted run results and values if
you have entered the Pay Value.

Pre-inserted values are automatically deleted by a rollback or mark for retry
operation, and Payroll Run re-establishes them. However on the rollback of a
reversal, nonrecurring pre-inserted values are re-established.

At the same time, Payroll Run uses the current exchange rate for the payroll to perform
any currency conversions. This happens if the input and output currency codes of the
element are different. You can define an element with any input currency.

If the element contributes to a payment balance for the employee the output currency
must be the base currency of the Business Group. Payment balances can be converted
into other currencies as part of the PrePayments process linked to payment methods.

Set Up Contexts

Before an entry is processed, Payroll Run sets up the contexts that are needed by
FastFormula for Payroll and Element Skip formulas. This may include legislative specific
contexts. The values of all the contexts are held in a special data structure, known as
the User Defined Context Area (UDCA). The generic contexts that are always created
provide additional route information for the formula. These are:

• ORIGINAL_ENTRY_ID

• ELEMENT_ENTRY_ID

• BUSINESS_GROUP_ID

• PAYROLL_ACTION_ID

• PAYROLL_ID, ASSIGNMENT_ID

• ASSIGNMENT_ACTION_ID

• DATE_EARNED

• ELEMENT_TYPE_ID

• TAX_UNIT

• JURISDICTION

• SOURCE_ID

A special third party interface is called so that the value of legislative specific contexts
can be set. This has been used extensively for US legislations.

Run Element Skip Rules

Element Skip Rules enable you to define specific formula criteria to determine whether
an entry is processed or not. A skip rule formula must return a skip_flag value of Y or N.

Implementation Guide 2-103

Where appropriate, a skip formula is fired and any input values are taken from the in
memory run result values (to allow for any currency conversion). When looking at the
skipping of an adjustment, the formula inputs are taken from the entry values of the
normal target entry, not the adjustment entry itself.

There may also be legislative-specific skip rules predefined for specific elements. This
additional third party skip hook is called at the same time that the internal function looks
for a normal skip formula. This legislative specific skip rule is defined in ’C’ code.

Element Entry Processing Modes

Payroll Run uses processing modes to control whether entries of an element are
processed. At first, the mode is set to indicate that it should process. Then, depending
on the entry type and whether a skip rule has fired, a different mode may be set. This
controls the processing of the current entry and (possibly) other entries of the same
element. For example, when processing an Override entry, the mode is set to
Override. This mode persists throughout the processing of this element, so no other
entries are processed.

Create and Maintain Balances

Payroll Run needs to be able to access and maintain balances and latest balances. In
summary, the Payroll Run:

• Loads any existing assignment- or person-level latest balances into memory

• Checks all loaded balances for expiry, and sets them to zero if they have expired

• Creates new in memory latest balances, where required

• Adds the appropriate run results to the current value of balances in memory

• Writes the new balances to the database (for some balance dimensions types only)

For more information about latest balances, see: Balances in Oracle Payroll, page 2-160.

Loading Balances Into Memory

Any existing assignment-level or person-level latest balances (and any associated
balance contexts) are loaded into memory before any entries are processed. The basic
data structure for this is a doubly linked list, kept ordered by balance_type_id. The
balance values themselves are held and manipulated as Oracle Numbers. The fetch is a
union, in this case because the two types of balances are held in separate tables.

Expiry Checking of Latest Balances

Latest balances should expire (that is, return to zero) at a time determined by their
dimension. For example, a YTD (Year to Date) balance expires at the end of the year.

All loaded balances are checked for expiry. If they have expired, they are set to zero. The
expiry step is entirely separate from the loading step, due to the need to deal with
balance context values.

To process expiry checking, the Payroll Run calls Expiry Checking code that is held in
a PL/SQL package. To prevent performance from being degraded, the number of
accesses required is cut down by making certain assumptions about the different expiry
checking levels. The assumptions made are determined by the balance’s expiry checking
type. See: Expiry Checking Type, page 2-165.

Creation of In Memory Latest Balances

Not all balances are loaded from the database, some have to be created. Once they have
been created, they have to be maintained.

2-104 Oracle US Federal Human Resources Implementation Guide

For some dimension types, the newly created or updated balances must be written
to the tables.

A balance’s dimension type determines how it is treated by the payroll run. For
example, balances with the dimension type F are fed but not stored, so the Payroll Run
creates a balance in memory. For a description of the dimension types, see: Dimension
Type, page 2-164.

There are three places in the code where in memory balances are created. One place is for
dimension types A, P and F, and two places are for type R.

• An in memory balance is created when a formula has just accessed a defined balance
with the dimension type A, P or F and which is not already held as an in memory
balance. The in memory balance is created using the value accessed by the formula.

• An in memory balance with a value of zero is created before the execution of a
formula, if the formula accesses a defined balance with the run level balance
dimension type (R). (A run level balance must be zero, by definition.)

• In memory balances with a value of zero are created before balance feeding time if
the code is attempting to feed defined balances with run level dimension types (R).

The corollary of the above rules is that, except for the Run Level dimension type, a latest
balances can only be created for a particular defined balance when that balance is
accessed by an executed formula.

Run Results Added to In Memory Balances

Next, the appropriate run results are added to the current value of the balance.

A summary of the algorithm that is used is:

1. For each processed run result, look at the balance feeds, which identify the balance
types that are potentially fed by each run result value.

2. Scan the in memory balances to see if there are any potential feeds.

3. If there are, perform feed checking.

The feed checking strategy is determined by the feed checking type on the
appropriate balance dimension. See: Feed Checking Type, page 2-165.

4. If the result of feed checking is that the run result should feed the
balance, then: balance value = balance value + (result value * scale).

In the case of run result values that might feed run level balances, Payroll Run might need
to create them in memory, before feed checking occurs. Since Payroll Run cannot identify
which balances might be required at this point, it has to create all those it might need.

In practice, this means it creates balances for each of the run level defined balances that
might potentially be fed by the run result being examined.

Note: If the dimension type is R and the feed checking type is set to
S, this represents a special case for United States legislation. A different
algorithm is used in this case.

Writing of In Memory Balances

The contents of the in memory balances (and any associated contexts) need to be written
to the database as appropriate, that is, where the replace flag on the in memory balance
is set. Only balances with a dimension type of A or P are written. This occurs after all
entries have been processed for the current assignment action.

Implementation Guide 2-105

After all element entries have been processed for the assignment, the in memory balance
list is scanned, data is moved to an array buffer and then array inserted or updated
on the database.

Run Formulas

Payroll Run calls FastFormula to enable it to perform its complex calculations.

Note: Even if a formula has been defined against an element using a
formula processing rule, it does not fire if the Pay Value is not null.

The FastFormula Interface

The interface used by Payroll Run to access FastFormula is made up of two
sections, which are:

• The common part of the interface (available to any product)

This sets up pointers from Formula’s internal data structures to the data to be input
to the formula (contexts and inputs) and output from the formula (formula results).

• A special interface

This is designed especially for Payroll Run, and allows access to Formula’s database
item cache.

Execution of FastFormula by Payroll Run

Payroll Run goes through the following steps:

1. Declares that a new formula is executed.

2. Formula tells the run code what formula contexts, inputs and outputs are required.

3. The in memory balance chain is scanned.

If the formula might access any of the defined balances held as latest balances, it
writes the current value of the balance to the FastFormula database item cache.

4. Any formula contexts are satisfied. All the values are taken from the User Defined
Context Area (UDCA).

5. Values that are passed to the formula as ’inputs are’ variables are satisfied. This
is done by looking for a run result value that has an associated Input Value name
matching the input variable name.

6. The outputs that FastFormula has told the run code about are directed to a buffer
area.

Execute the Formula

The third party post formula hook is called. This enables special legislative dependent
functions to manipulate the formula results before they are processed by Payroll
Run. For instance, it enables certain run results to be suppressed.

The formula results are processed.

Processing the Formula Results

Following the execution of a formula, Payroll Run loops through any returned
results, processing them as required by the formula result rules. It looks for a formula
result rule name that matches the formula result that has been returned. There are
several types of result rule, and they are summarized below, from an internal processing
point of view.

2-106 Oracle US Federal Human Resources Implementation Guide

Message Rule

If the severity level of the message is fatal, it causes an assignment level
error. Otherwise, the message is written to the messages table. Note that the length
of a message is restricted to the size that can be held in the run result values table
(currently 60 characters).

Direct Rule

If the Unit Of Measure is Money, the value is rounded as necessary. Then the run result
value chain is searched for the entry holding the Pay Value and is updated. The replace
flag is set to indicate this.

Indirect and Order Indirect Rule

These two types are grouped together, because they cause very similar
processing. During the processing of the current element entry, all indirects are held on a
temporary chain, and merged into the main entry chain later.

First of all the temporary chain is searched. If there is no existing entry for the element, a
new one is created and added to the chain. Then, in the indirect rule case only, the
appropriate entry value is located and updated with the new value. In the Order Indirect
case, the subpriority of the indirect entry is set to the formula result value.

Note: If two formula result rules target the same input value, the second
result to be processed takes precedence.

Following the processing of all formula results, the chain of indirects is merged into
the main element entry chain at the appropriate point. What is appropriate depends
on the main processing priority and the subpriority (which can be set using the Order
Indirect rule).

Payroll Run prevents the processing priority of an indirect element from being the same
as the element that gives rise to the indirect. However, the form continues to disallow
this. Same priority indirects was provided specifically for United States legislative
requirements.

Same priority indirects can cause problems, however, because they create an endless
loop.

Update Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element entry to
update. This procedure then performs the date effective update. If this entry happens to
exist further down the entry chain, its value is updated to reflect the change.

Stop Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element entry to stop. This
procedure then performs the date effective delete.

Run Result Processing

The run result and their associated run result values form the corollary of element entries
and element entry values. The entries express eligibility to certain elements, whilst the
results and values contain the after effect of processing those entries.

During processing, run results and values are held in memory, hung off the in memory
element entry chain. This reflects their close connection in database terms.

Creation of Run Results and Run Result Values

Results and values are created internally in one of three ways:

Implementation Guide 2-107

• Loaded when entries and entry values are loaded - as pre-inserted results, arising
from nonrecurring element entries.

• Created by Payroll Run before processing the appropriate element entry if there are
any missing results and values.

• Created via indirect results.

Defaulting of Run Result Values

Payroll Run handles Hot and Cold defaulting while it checks that results and values
exist. If results and values do already exist, and are null, Payroll Run attempts to
default them.

If currency conversion is required, it is performed at the same time. Internally, it uses
Oracle Numbers for the calculation. Following this, if it is processing an input value
with a ’Money’ Unit of Measure, it performs rounding on the result as necessary.

Writing Results and Values to the Database (Flushing)

The process moves the results and values to a special buffer and then writes the run
results and values to the database (update or insert). It uses array processing techniques
(similar to the technique used by latest balances).

This process is usually referred to as flushing the results and there are two circumstances
that may trigger it:

• If the process is about to execute a formula that accesses a database item not held
in memory. The route for that database item might need to access run results that
have been generated so far in Payroll Run itself. This assumption is made because
there is no way of finding out for sure.

• When all the element entries for the assignment action have been processed, any
remaining results and values are flushed.

Payroll Data Cache

During processing, Payroll Run has to access attributes of certain entities that represent
static definition data. For instance, it may need to know the element name or the balance
feeds for a particular input value. Furthermore, the same data typically requires access
many times over. If this data were selected from the database every time it was needed, it
would cause severe performance degradation.

To resolve this problem, a special static payroll data cache was introduced. All the
appropriate data for the entity is loaded into memory the first time it is accessed. From
then on, any subsequent accesses to the data can go straight to memory.

Pre-Payments Process

The Pre-Payments process prepares the payments generated by the Payroll Run for
payment. It prepares payments for each assignment and inserts the results into
PAY_PRE_PAYMENTS for each payment method for an assignment.

The Pre-Payments process also:

• Calculates the amount of money to pay through each payment method for an
assignment, and converts any currency if the payment method is in a foreign
currency.

• Handles the preparation of third party payments.

2-108 Oracle US Federal Human Resources Implementation Guide

For example, garnishments, court orders and child maintenance. Third party
payments are managed through the definition of special payment methods for the
employee.

Setting Up Payment Methods

During implementation, you set up your own specific payment methods with source
account details. When you hire an employee, you can record one or more payment
methods for the employee, and apportion payment by percentage or amount. You can
also record payment methods in different currencies.

The Pre-Payments process prepares payments following the payment methods for each
assignment. There are three predefined payment types that Oracle Payroll processes:

• Cheque/Check

• Magnetic Tape (such as NACHA/BACS)

• Cash (UK only)

You can set up as many payment methods as you require (based on the three predefined
payment types) to support your business needs.

Every payroll has a default payment method. Pre-payments uses the default method
when there is no personal payment method entered for a specific assignment.

Note: You cannot have a default method of type Magnetic Tape. This is
because Magnetic Tape payment methods require knowledge of the
employee’s bank account details, including prenotification details in
the US.

See Prenotification, page 2-110

Payment methods are processed in order of their priority for an assignment. For
example, an employee may want:

1. 50% of the salary to be paid directly into their bank account by Magnetic Tape
payment

2. 100 dollars paid by Cheque/Check

3. 100 dollars paid in Cash

Pre-Payments prepares the payments in priority order, provided that the amount to
be paid covers the payments. If there is less to be paid than the payment methods
specify, the system pays up to 100% and stops. If there is more to be paid than the
payment methods specify, the system adds the excess to the last payment method.

Preparing Cash Payments (UK Only)

If you are using Oracle Payroll to prepare cash payments, you can calculate the
banknote and coinage requirements for each employee. Pre-Payments breaks down the
amount into the individual monetary units for payment and insert the results into the
PAY_COIN_ANAL_ELEMENTS table.

You can define the monetary units for each currency you pay for cash payments
administered through Oracle Payroll. You can also define cash analysis rules to specify
minimum numbers of each denomination of the currency.

Setting Up a Cash Rule

The are two steps to setting up a cash rule:

Implementation Guide 2-109

1. Alter the package body hr_cash_rules

The alteration should test for the name of the cash rule you want to set up and
then perform the payment. For example, if the rule name is ’TENS AND FIVES’
then enter the following:

if cash_rule = ’TENS AND FIVES’ then

--

hr_pre_pay.pay_coin(6, 10)

hr_pre_pay.pay_coin(3, 5)

--

-- number to pay ---^ ^--- unit value of currency

--

end if;\

Using this cash rule with a currency of dollar results in a minimum of 6 ten dollars
and 3 five dollars being paid (given sufficient funds).

2. Register the rule.

3. Enter the Lookup Values window and query the Lookup type of CASH ANALYSIS.

4. Add the new Cash rule with the meaning and description fields set to TENS AND
FIVES.

5. Use the cash rule when setting up an organization payment method.

Prenotification (US Only)

Prenotification validation (also known as prenoting) applies to payment methods of the
type Magnetic Tape. This validation is performed when bank details require checking
before a payment can be made. For example, when an employee has changed banks
or changed bank details, a payment value of zero is made to the employee’s bank
account. The payment is then made by subsequent methods, or by the default method.

Consolidation Sets

Pre-Payments is run for a consolidation set. A consolidation set is a tag that ties groups
of actions together. You can use a consolidation set to prepay all assignment actions in
the set that have not yet been prepaid. These assignment actions can be for different
payrolls and different time periods. For example, you could use a consolidation set
to force the magnetic tape process to pay both of a company’s payrolls where one
is monthly and one is weekly.

Third Party Payments

Third party payments are post tax deductions from an employee’s salary, that are paid to
organizations or individuals. For example, court orders are payable to a municipal court
whereas child support orders may be directly payable to a spouse, or other individual.

These payments are processed in a slightly different way. The element entry that
produces the run result value for the payment holds details of which payment method to
use. This enables you to make more than one entry of a third party payment element to an

2-110 Oracle US Federal Human Resources Implementation Guide

assignment, with each entry representing a payment to a different party. For example, an
employee can pay a third party element of Child Support to two different people.

Third party payments can only be made by magnetic tape or cheque/check. Cash
payments are not allowed. In addition, these methods pay the full amount of the
payments, so only one method is used. There is no default method for these payments, so
a payment method must always be specified. US: If the magnetic tape prenote validation
fails, the process creates an error for that assignment.

Exchange Rates

Pre-Payments calculates the currency conversion if the payment is in a different currency
to that of the remuneration balance (the element output currency in the case of third
party payments). If the process cannot find the exchange rate for the two currencies, it
creates an error for the assignment.

Overriding Payment Method

You can specify an overriding payment method when making a prepayments run. This
method overrides the personal payment methods, so the full amount of the payment is
made by the overriding method. The only exceptions are the third party payments; these
are paid by the method specified in the element entry.

The overriding payment method can be either:

• Cash

• Cheque/check

You cannot specify magnetic tape payments as an override method, as this type of
payment requires prior knowledge of bank account details.

The Process

The Pre-Payments process creates payroll actions and assignment actions. The
assignment actions are based on assignment actions of the payroll/consolidation set
specified that do not have interlocks to a prepayment process. The interlocks guarantee
that Payroll Run cannot be rolled back until Pre-Payments is rolled back. Thus, the new
assignment actions are created with interlocks to the run’s assignment actions.

See: Assignment Level Interlocks, page 2-141

Chunking

The assignment actions are split into groups called chunks, the size of which are denoted
by the CHUNK_SIZE action parameter in the PAY_ACTION_PARAMETERS table. The
process could spawn several threads (child processes), depending on the THREADS
action parameter. Each thread then picks a chunk to process, processes the assignment
actions and then picks another chunk until all the chunks are processed. The number of
threads can be used to enhance performance on multiprocessor machines.

PL/SQL Procedures

The main part of the C process (the section that performs the payment), is a harness for
PL/SQL procedures. The PL/SQL procedures create the entries in the Pre-Payment table.

The threads process the assignment actions by:

• Retrieving the third party details and recording third party payments as defined by
the personal payment methods

• Retrieving the value for the assignment’s remuneration balance using the PL/SQL
balance functions

Implementation Guide 2-111

• Recording payment of this value as defined by the payment methods

Error Handling

Errors encountered while processing can be at two levels:

• Payroll action level

These errors are fatal.

• Assignment level

These errors occur while processing assignment actions. If an error is encountered
at this level, it marks the assignment action’s status as in Error, and continues
processing. If the process then completes, it marks the payroll action status as
Complete.

Using the MAX_ERRORS_ALLOWED action parameter you can set the number of
assignment errors that can be processed before an error should be raised at payroll action
level. If MAX_ERRORS_ALLOWED is not found then the chunk size is used as a default.

All the error messages are written to the PAY_MESSAGE_LINES table with a more
detailed explanation in the log file.

This method of handling errors enables Pre-Payments to continue processing if minor
errors are encountered. For example, if Pre-Payments has thousands of assignments to
process and a few are paid by cash but the currency details have not been loaded, the
process creates an error for the assignments with cash payments ("Process unable to
perform the cash breakdown"). Most assignment actions complete, only the assignments
with errors have to be rerun.

Payment Processes

After running the Pre-Payments process to prepare the results for payment (according to
the payment methods), you produce payments for your employees.

With Oracle Payroll, you can run the following types of payment process:

• The Magnetic Tape process - MAGTAPE

See: Magnetic Tape Process, page 2-112

• The Cheque process - CHEQUE

See: Cheque Writer/Check Writer Process, page 2-126

• The Cash Payments process - CASH (UK only)

See: Cash Process, page 2-132

The payment processes take the unpaid prepayment values allocated to each payment
type and produce the required payment file.

You can also record any manual payments you make to a specific employee. These
payments are not handled by the Payments processes. Recording a manual payment has
the effect of marking the prepayment as paid.

Magnetic Tape Process

The Magnetic Tape process generates the payment due and writes the data to a file on
magnetic tape. It is this tape that is taken to the bank for payment.

There are two types of magnetic tape file, which are created differently:

• Payments

2-112 Oracle US Federal Human Resources Implementation Guide

• End of year tax reporting

The actual format of these tapes is legislation specific.

The tape process is a simple ’C’ harness which calls Oracle stored procedures and
FastFormula formulas to produce the required tape file. The routine is generic: you can
use it for any task that requires magnetic tape reporting. The actual structure and content
of the tape is defined entirely by the stored procedure and a series of formulas.

Some examples that use the routine are:

• BACS

• NACHA

• W2

• P35 submissions (and equivalent in other countries)

Note: The order of the entries in the magnetic file is critical. Therefore
the Magnetic Tape process cannot run with multiple threads (unlike the
PrePayments or Cheque/Check Writer processes).

See also:

The Payroll Archive Reporter (PAR) Process, page 2-148

Running the Magnetic Tape Payments Process

The payroll assignment action creation code is the entry point to the Magnetic Tape
Payments process. Employee magnetic tape payments are recorded in Oracle HRMS as
payroll and assignment actions with interlocks to the relevant pre-payment assignment
actions. The interlocks prevent the pre-payments actions being rolled back while the
magnetic tape actions exist.

Third party payments (such as the company’s health plan contributions) do not result
in payroll and assignment actions, and therefore would use the magnetic tape report
interface.

Batch Process Parameters

You run PYUGEN with the following parameters:

• consolidation_set_id - mandatory

Defines which set of unpaid pre-payments are paid.

• payment_type_id - mandatory

Defines the driving PL/SQL procedure.

• effective_date - optional

Identifies the effective date for processing.

• payroll_id - optional

Restricts the assignments processed to those on the specified payroll on the effective
date

• start_date - optional

Specifies how far back the process searches for target prepayments. If this parameter
is not specified, then the process scans back to the beginning of time.

• organisation_payment_method_id - optional

Implementation Guide 2-113

Creates assignment actions interlocking to unpaid prepayments for that payment.

• legislative - optional

Free-format parameters, available to all payroll actions. Your localization team may
use these to pass in a number of legislation-specific parameters, made accessible to
the payroll action through the entity horizon.

PL/SQL Procedure for the Payment Type

The system uses the PL/SQL driving procedure specified for the payment type on the
database (for example, <package name>.<procedure name>). The PL/SQL procedure
for the Magnetic Tape Writer process must drive off the assignment actions and not
further restrict the assignments processed. Further restricting the assignments presents
the danger of leaving some magnetic tape assignment actions never processed. When
the process first runs the PL/SQL, one of the parameters passed is the payroll action
id (PAYROLL_ACTION_ID).

The Magnetic Tape process actions prepayments with an effective date on or before the
effective date of the magnetic tape action. The magnetic tape effective date defaults to
session date in an AOL environment, and sysdate outside AOL.

Output Filenames

The magnetic tape file generated is named as per the normal file-naming standards:

p<trunc(conc_request_id, 5)>.mf

The file name is padded with zeros if the length of the request id is shorter than five
characters, (for example, p03451.mf).

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is defined, and
otherwise to $PAY_TOP/$APPLOUT.

Several other files can be produced by this process. You can use these files to audit the
assignments that are being processed. The audit files are created in the same way, except
that the file extension .a<file_number>. So if a formula returns a value for audit file 6
then a file with the extension .a6 is created in the correct directory using the concurrent
request id as described above.

Running Magnetic Tape Reports

Magnetic Tape reports are not recorded as payroll and assignment actions. The entry
point is the specific Magnetic Tape code, PYUMAG. The PL/SQL determines which
assignments to process.

Mandatory Parameters

• Driving PL/SQL procedure (<package name>.<procedure name>)

• Output file (full pathname included)

Optional Parameters

• Audit file prefix (the prefix to the extension, plus the full path)

• Effective date (the parameters to the driving PL/SQL procedure)

The optional parameters to the PL/SQL must be tokenised, so that the generic tape
writer process can populate the PL/SQL tables for parameter name and parameter
value. These tables constitute the interface between the generic writer process and
the driving PL/SQL procedure.

See: The PL/SQL Driving Procedure, page 2-117

2-114 Oracle US Federal Human Resources Implementation Guide

The magnetic tape action only processes formulas with an effective date on or before the
effective date of the magnetic tape action. The magnetic tape effective date defaults to
session date, in an AOL environment, and sysdate outside AOL.

Output Filenames

The magnetic tape filename is generated if it is not supplied to the process. The filename
is in the format:

o<trunc(conc_request_id, 5)>.mf

When an audit file prefix is not set but the process tries to write to an audit, the
concurrent request id is used as the prefix and .out used as the extension. In these
circumstances all audit returns are written to this file.

SRS Definitions

Using SRS, the generic tape writer process is defined once as an executable. You can then
define any number of concurrent programs that invoke that executable. Each concurrent
program can have its own set of parameters, its own hidden parameters, defaults and so
on. For example, we can define two concurrent programs:

• W2 report

• Illinois Quarterly State Tax report

They would both use the magnetic tape writer executable PYUMAG, each with a hidden
parameter specifying the appropriate PL/SQL procedure, and possibly, each with
specific parameters. They appear as completely distinct reports to the user. This would
be set up in the SRS process interface.

Similarly, magnetic payments can be made to appear as distinct processes to the user
- the only difference is that the payment type is the hidden parameter, and the generic
code determines the driving PL/SQL procedure from that.

How the Magnetic Tape Process Works

Magnetic tapes are usually broken down into:

• Records

• Fields

The sequence in which the process writes the records to tape follows strictly defined
rules. As a result, you can write a piece of code to return the name of the next record
to write to tape.

Similarly, the actual records have strict field place and length requirements. For example:

Record Fields

Tape Header Batch Id, Company Name, Batch Record
Length, and so on

Employee Employee Id, Salary, Age, Job, and so on

Tape Footer No. of Records Processed, Salary Total, and so
on

Implementation Guide 2-115

C Harness, PL/SQL, and Formulas

The following figure illustrates the Magnetic Tape process.

A C code harness performs the file handling (opening, closing and writing to files), and
enables the PL/SQL and the formulas to interface.

The driving PL/SQL code sequences records by returning the name of a formula.

Each formula writes one type of record, such as the Tape Header, to tape. It defines the
contents of the record.

The process of getting the formula and record name, then writing the record to tape is
repeated until all the records are processed.

Context and Parameter Values

The driving PL/SQL determines which type of record is required at any stage of the
processing, and uses context and parameter values to communicate with the formula.

The following figure illustrates how the C code acts as an interface between the PL/SQL
and formula, and how the data is passed as context values.

Context Values

Formulas use database items to reference variable values. For example, the employee
and assignment number could be different for each run of the formula and record.

2-116 Oracle US Federal Human Resources Implementation Guide

The database item is held within the database, which consists of components to make up
a SQL statement. As the value could be different for each run of the formula, the ’where’
clause of the statement is slightly different. This is done by substituting key values into
the ’where’ clause that uniquely select the required value. These substitution values
are known as context values.

Context values are set by the driving PL/SQL procedure that places the values into a
PL/SQL table. The PL/SQL table is passed back to the C code, which in turn places it in
the formula structure.

Parameter Values

Parameter values are used to store the variable data to be transferred between the
formula and the PL/SQL. For example, the running totals are passed to the formula
in this way.

The parameters can be:

• Passed into the C process from the command line

• Created by the driving PL/SQL procedure

• Created by the formula

Only the driving PL/SQL procedure and the formula can update the values.

The PL/SQL Driving Procedure

The PL/SQL driving procedure determines the format of the magnetic tape file. You can
write this procedure from scratch by opening cursors processing a particular formula
for each fetch of the cursor, or you can use the generic PL/SQL. The generic PL/SQL
drives off the magnetic tape batch tables.

The interface between the ’C’ process and the stored procedure makes extensive use
of PL/SQL tables. PL/SQL tables are single column tables that are accessed by an
integer index value. Items in the tables use indexes beginning with 1 and increasing
contiguously to the number of elements. The index number is used to match items
in the name and value tables.

The names of the tables used to interface with the PL/SQL procedure are:

• pay_mag_tape.internal_prm_names

• pay_mag_tape.internal_prm_values

• pay_mag_tape.internal_cxt_names

• pay_mag_tape.internal_cxt_values

The first two tables (pay_mag_tape.internal_prm_names and pay_mag_tape.internal_
prm_values) are used to pass parameter details to the PL/SQL and formula. These are
reserved for the number of entries in the parameter tables and the formula ID that
is to be executed. The second two tables (pay_mag_tape.internal_cxt_names and
pay_mag_tape.internal_cxt_values) are used to set the context rules for the database
items in the formula. These are reserved for the number of entries in the context tables.

The Generic PL/SQL

The Magnetic Tape process uses generic PL/SQL that drives off several tables that
contain cursor names. These cursors and tables control the format of the magnetic tape.

These cursors retrieve three types of data:

• Data that is used in subsequent cursors

Implementation Guide 2-117

• Data that is to be used as context value data

• Data to be held as parameter/variable data

Example

Here are two select statements as examples:

cursor business is

select business_group_id,

’DATE_EFFECTIVE=C’, effective_start_date

from per_business_groups

cursor assignment is

select ’ASSIGN_NO=P’, assignment_id

from pay_assignments

In the above example, the first select (DATE_EFFECTIVE) is a context value that is
passed to a subsequent formula. The business_group_id column is retrieved for use in
subsequent cursors. It is accessed by using a function described later.

The second select (ASSIGN_NO=P) is used as a parameter.

When the cursor is opened, it assigns rows in a retrieval table that it can select into
(the number of rows depends on the number of columns retrieved by the cursor). For
example, if the above cursors were used, and the previous example was run, the retrieval
table would look like this:

After First Run After Second Run

50000 50000

DATE_EFFECTIVE= DATE_EFFECTIVE=C

16-MAR-1997 16-MAR-1997

ASSIGN_NO=P

50367

Functions to Access Data

Some cursors require access to data previously selected. This can be achieved in two
ways:

• If the column was selected as a context or an individual column (like business
group in the previous example), use the get_cursor_return function. It returns the
value, given the cursor name and the column position in the select statement. For
example, to get the business group in the above select statement use the following
command:

pay_magtape_generic.get_cursor_return(’business’, 1)

2-118 Oracle US Federal Human Resources Implementation Guide

• Or, select the value as a parameter and access a function that retrieves that value
given the parameter name. For example to get the ASSIGN_NO parameter value
use the following command:

pay_magtape_generic.get_parameter_value(’ASSIGN_NO’)

Context and Parameter Data

The formula requires two types of data:

• Context

• Parameter

The context data is held in PL/SQL tables, which are filled by the PL/SQL with data
retrieved by the cursors, as described above. The context rules are inherited to lower
levels unless the lower level cursor retrieves a different value for that context name. The
PL/SQL always uses the lowest level context value for a particular context. For
example, if the second cursor above retrieved a context value for DATE_EFFECTIVE, this
value would be used for the formula until the cursor is closed. It is at a lower level in
the retrieval table than the previous DATE_EFFECTIVE. When the cursor is closed, the
rows in the retrieval table are reclaimed and the DATE_EFFECTIVE context reverts to
the first one.

The Parameter data is also held in tables, but unlike context values the values are not
level dependent. The formula can access these values by selecting the parameter on
the input line. If the formula returns a value for that parameter, it overwrites the entry
in the table. If the formula returns a parameter that does not exist, the parameter
is entered in the table.

Cursor/Block Table

The driving structure for the package procedure is held in two database tables:

• PAY_MAGNETIC_BLOCKS

• PAY_MAGNETIC_RECORDS (the Formula/Record table, see below)

The PAY_MAGNETIC_BLOCKS table is as follows:

Name Null? Type

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

BLOCK_NAME NOT NULL VARCHAR2 (80)

MAIN_BLOCK_FLAG NOT NULL VARCHAR2 (30)

REPORT_FORMAT NOT NULL VARCHAR2 (30)

CURSOR_NAME VARCHAR2 (80)

NO_COLUMN_RETURNED NUMBER (5)

Implementation Guide 2-119

Example

block_id cursor_
name

block_name no_of_
select_
values

main_block type

1 company_
curs

companies 2 Y CA

2 employee_
curs

employees 2 N CA

3 assignment_
curs

assignments 1 N CA

• Block_id is system generated.

• No_of_select_values is the number of columns retrieved by the select statement
specified by cursor_name.

• Main_block signifies the starting block to use. Only one of these can be set to Y for
a given report.

• Type refers to the type of report that the select statement represents.

Formula/Record Table

The PAY_MAGNETIC_RECORDS table is as follows:

Name Null? Type

FORMULA_ID NOT NULL NUMBER (9)

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

NEXT_BLOCK_ID NUMBER (9)

LAST_RUN_EXECUTED_
MODE

NOT NULL VARCHAR2 (30)

OVERFLOW_MODE NOT NULL VARCHAR2 (30)

SEQUENCE NOT NULL NUMBER (5)

FREQUENCY NUMBER (5)

2-120 Oracle US Federal Human Resources Implementation Guide

Example

formula_
name

block_id seq next_block frequency O/F exec.last

formula 1 1 1 - - N N

formula 2 1 2 2 - N N

formula 3 2 1 - - N N

formula 4 2 2 3 - N N

formula 5 3 1 - - N N

formula 6 2 3 - - N N

formula 7 1 3 - - N N

Formulas/records can be of three general types:

• Standard formulas executed for every row returned from cursor

• Intermediate formulas executed once every x number of rows

• Formula executed depending on the result of the previous formula (overflow
formula)

The table columns are as follows:

• Block id refers to the block that this formula is part of.

• Seq refers to the sequence in the block.

• Next_block column signifies that after this formula has run, the cursor defined by
next_block should be opened and that block’s formula should be run until there are
no more rows for that cursor.

• Frequency is used by the intermediate formula to specify the number of rows to
be skipped before the formula is run.

• O/F (overflow) specifies whether the formula is an overflow. If it is (set to Y), and
if the last formula returned the TRANSFER_RUN_OVERFLOW flag set to Y, then
the formula runs.

Similarly, if the formula is a Repeated overflow (set to R), and the
TRANSFER_RUN_OVERFLOW flag is set to Y then that formula is continually
repeated until the formula does not return TRANSFER_RUN_OVERFLOW set to Y.

• Exec.last can apply to all the types of formula but most commonly the intermediate
formulas. This column specifies that the formula can run one extra time after the last
row has been retrieved from the cursor.

For intermediate formula this column can be set to 4 different values:

• N - Never run after last row returned

• A - Always run after last row returned

• R - Run only if the intermediate formula has run for this cursor

Implementation Guide 2-121

• F - Run only if this is the first run of the formula for this cursor

Note: For overflow and standard formula only N and A are valid.

Using the above specification the formulas could be retrieved in the following sequence:

The generic PL/SQL procedure identifies which type of report to process. It does this by
passing the parameter MAGTAPE_REPORT_ID when calling the process. The previous
figure illustrates how MAGTAPE_REPORT_ID=CA is passed when calling the process.

The Formula Interface

Typically, a magnetic tape consists of a number of record types. Oracle suggests having a
formula associated with (generating) each record type. The formulas do the following:

• Define the field positions in the records

• Perform calculations

• Report on the details written to tape (auditing)

• Raise different levels of error messages

A PL/SQL stored procedure provides the main control flow and determines the order in
which the formulas are called.

The routine uses FastFormula to prepare records The records are written to an ASCII file
in preparation for transfer to magnetic tape. To implement the required actions, there are
more formula result rule types. These are listed below:

2-122 Oracle US Federal Human Resources Implementation Guide

Result Rule Types Purpose

TRANSFER This transfers the output parameter to the
input of the stored procedure. The parameter
may or may not be modified by the stored
procedure before being used in the next
execution of the formula.

WRITE TO TAPE This instructs the process to write the result
to the magnetic tape file. This is always a
character string that represents the desired
record. The writes are performed in the order
in which they are returned from the formula.

REPORT FILE This writes the string result to an "audit" file.

ERROR This instructs the process that an ERROR/
WARNING has been detected within the
formula. Thus the process should handle the
error appropriately.

Naming Convention

These are not implemented in the traditional manner using the formula result rules
table. They use the naming convention:

WRITE TO TAPE results are named WRITE_<result_name>.

TRANSFER results follow a similar convention, but the result_name part must be the
name of the parameter. For example, a result company_total_income would be named
transfer_company_total_income.

The REPORT result must identify which file is to be written to. The file number is
embedded in the formula return name For example: REPORT1_<result_name> - this
writes to report/audit file 1.

Reports

Reports can be written during the production of the magnetic tape file. These reports
could be used to check the details that are produced. A number of reports can be created
in the same run. The number can be limited by using the ADD_MAG_REP_FILES action
parameter in the PAY_ACTION_PARAMETERS table.

Each report is accessed by using a prefix that denotes the file, for example, REPORT1_ to
denote report number 1, REPORT2_to denote report number 2, and so on. If a report
number is outside the range of the ADD_MAG_REP_FILES value, an invalid return
error is reported. The report files are opened as and when needed with the names of
the files previously described.

FastFormula Errors

Errors can be of three types:

• Payroll errors

These are identified by a return of ERROR_PAY_<error_name>.

• Assignment errors

These are denoted by ERROR_ASS_<error_name>.

• Warning errors

Implementation Guide 2-123

These are denoted by ERROR_WARN_<error_name>.

The actual messages themselves have to be prefixed with the assignment action id or
payroll action id. This is done to insert the messages into the PAY_MESSAGE_LINES
table. Warning messages are regarded as being at the assignment action level and
require the assignment action id. If no id is supplied, the message is only written to the
log file. No id must be supplied when running a magnetic tape report, since no actions
exist for reports. Only payments have actions.

Example

Here are some examples of the format to use:

Error Message Meaning

ERROR_PAY_TEXT1 = ’50122: Unexpected value’ - Payroll action id 50122 with
message ’Unexpected Value’

ERROR_PAY_TEXT1 = ’:Unexpected value’ - No payroll action id just a
message

ERROR_ASS_TEXT1 = ’56988: Unexpected value’

ERROR_ASS_TEXT1 = ’Unexpected value’

ERROR_WARN_TEXT1 = ’56988: Unexpected value’

ERROR_WARN_TEXT1 = ’:Unexpected value’

Error Handling

Magnetic tape either fully completes the process, or marks the whole run with a status
of error.

Within this there are two types of errors:

• Payroll action level errors, which are fatal

If this form of error is encountered, the error is reported and the process terminates.

• Assignment action level

These can be set up in formulas and result in the error message being reported and
the process continuing to run. This can be used to report on as many errors as
possible during the processing so that they can be resolved before the next run.

The payroll action errors at the end of the run if assignment action level errors are
encountered.

A description of the error message is written to the Log file. Also an entry is placed in
the PAY_MESSAGE_LINES table if the action id is known.

Example PL/SQL

The following piece of PL/SQL code could be used to format a magnetic tape payment
(drives off assignment actions). An alternative to writing a PL/SQL procedure would be
to use the generic procedure and populate the batch magnetic tape tables.

Note: This example only works for a business group of ’MAG Test GB’
(the legislative formula is for GB only).

2-124 Oracle US Federal Human Resources Implementation Guide

create or replace package body pytstm1
as
CURSOR get_assignments(p_payroll_action_id NUMBER)

IS
SELECT ppp.org_payment_method_id,ppp.personal_paymen t_method_id,

ppp.value, paa.assignment_id
FROM pay_assignment_actions paa, pay_pre_payments ppp
WHERE paa.payroll_action_id = p_payroll_action_id
AND ppp.pre_payment_id = paa.pre_payment_id
ORDER BY ppp.org_payment_method_id;

Also need to:
Test that the assignment are date effective?
Order by name or person_number or other ?
p_business_grp NUMBER;
--
--
PROCEDURE new_formula
IS
--
p_payroll_action_id NUMBER;
assignment NUMBER;
p_org_payment_method_id NUMBER;
p_personal_payment_method_id NUMBER;
p_value NUMBER;
--
--
FUNCTION get_formula_id (p_formula_name IN VARCHAR2)

RETURN NUMBER IS
p_formula_id NUMBER;
BEGIN

SELECT formula_id
INTO p_formula_id
FROM ff_formulas_f
WHERE formula_name = p_formula_name

AND (business_group_id = p_business_grp
OR (business_group_id IS NULL

AND legislation_code = ’GB’)
OR (business_group_id IS NULL AND legislation_code IS NULL)

);
-- RETURN p_formula_id;
--
END get_formula_id;
--
BEGIN
--
pay_mag_tape.internal_prm_names(1) :=
’NO_OF_PARAMETERS’; -- Reserved positions
pay_mag_tape.internal_prm_names(2) := ’NEW_FORMULA_ID ’;-- --
Number of parameters may be greater than 2 because formulas
may be -- keeping running totals.--
pay_mag_tape.internal_cxt_names(1) := ’Number_of_cont exts’;
pay_mag_tape.internal_cxt_values(1) := 1; --
Initial value---- IF NOT get_assignments%ISOPEN THEN
-- New file-- pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’REPORT_HEADER_1’);-- if
pay_mag_tape.internal_prm_names(3) = ’PAYROLL_ACTION_ ID’

then p_payroll_action_id :=

Implementation Guide 2-125

to_number(pay_mag_tape.internal_prm_values(3)); end i f;--
OPEN get_assignments (p_payroll_action_id);-- ELSE----
FETCH get_assignments INTO
p_org_payment_method_id,
p_personal_payment_method_id, p_value,
assignment;-- IF get_assignments%FOUND THEN
-- New company
pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_cxt_names(2) := ’ASSIGNMENT_ID’ ;
pay_mag_tape.internal_cxt_values(2) := assignment;
pay_mag_tape.internal_cxt_names(3) := ’DATE_EARNED’;
pay_mag_tape.internal_cxt_values(3) := to_char (sysdat e,’DD-MON-YY
YY’);
pay_mag_tape.internal_cxt_values(1) := 3;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’ENTRY _DETAIL’);
ELSE-- pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’REPORT_CONTROL_1’);
CLOSE get_assignments;
-- END IF;
--END IF;--
END new_formula;
BEGIN
-- ’MAG test BG’ used as an example. The business group could b e
-- retrieved using the payroll action id.

select business_group_id
into p_business_grp
from per_business_groups
where name = ’MAG test BG’;

--END pytstm1;

Cheque Writer/Check Writer Process

Note: For ease, we refer to the Cheque Writer/Check Writer process as
Cheque Writer throughout this technical essay.

You run the Cheque Writer process to produce cheque payments for unpaid pre-payment
actions. Before you run the process, you need to set up certain things, for example, the
SRW2 report and the ’order by’ option to sequence cheques (if required).

You run Cheque Writer through Standard Reports Submission (SRS). Unlike the
Magnetic Tape process, you can have multiple threads in Cheque Writer.

The Process

The Cheque Writer process has two distinct steps:

2-126 Oracle US Federal Human Resources Implementation Guide

Step 1 - Create Cheque Assignment Actions

Cheque Writer creates cheque assignment actions for each of the target
pre-payments, subject to the restrictions of the parameters specified. The target
pre-payments must be unpaid-that is, never been paid-or if they have been paid, then
voided.

Cheque Writer creates assignment actions in two stages:

1. Multiple threads insert ranges of assignment actions, which interlock back to
previous actions.

This happens in the same way as Pre-Payments and Magnetic Tape create
assignment actions.

See: The Process, page 2-111 (Pre-Payments)

See: Running the Magnetic Tape Payments Process, page 2-113

2. A single thread runs through all the assignment actions in a specific order to update
the chunk and cheque number.

The order is specified by a PL/SQL procedure that you can customize. The thread
divides the assignment actions equally into chunks, one chunk per thread. It assigns
each action a cheque number.

See: Using or Changing the PL/SQL Procedure, page 2-132

At this stage, the status of the assignment actions is ’Unprocessed’.

Note: Cheque Writer creates an assignment action and cheque for each
target pre-payment of the assignment. Consequently, a single Cheque
Writer run can produce more than one cheque for a single assignment.

Step 2 - Submit SRW2 Report

When Cheque Writer has created the assignment actions and interlocks, each thread
submits the specified SRW2 report as a synchronously spawned concurrent process. The
reports produce files in a specific cheque format.

If the spawned concurrent process is successful, the status of the assignment actions
is changed to ’Complete’. If the process fails, the status of the assignment actions is
changed to ’In Error’. So, if you resubmit Cheque Writer, it can start at the point of
submitting the report.

In this respect, Cheque Writer is similar to the magnetic tape process: the whole process
must be successful before the payroll action is Complete. But, while the Magnetic
Tape process can mark individual assignment actions In Error, Cheque Writer marks
all assignment actions In Error.

Batch Process Parameters

The batch process has a number of parameters users can enter. The definition of
the printer type (for example, laser or line printer for the report output) is not a
parameter. The default for this is specified as part of the registration of the concurrent
process for the report. Consult your Oracle Applications System Administrators Guide for
more information on printers and concurrent programs.

• payroll_id - optional

This parameter restricts the cheques generated according to the current payroll of
the assignment. It is a standard parameter to most payroll processes.

Implementation Guide 2-127

• consolidation_set_id - mandatory

This parameter restricts the target pre-payments for Cheque Writer to those which
are for runs of that consolidation set.

• start_date - optional

This parameter specifies how far back, date effectively, Cheque Writer searches for
target pre-payments. If this parameter is not specified, Cheque Writer scans back to
the beginning of time.

• effective_date - optional

This parameter specifies the effective date for the execution of Cheque Writer. If it is
null, the effective date is taken to be the effective date held in FND_SESSIONS. If
there is no such row, then it is defaulted to SYSDATE.

• payment_type_id - mandatory

This parameter specifies which payment type is being paid. For UK legislation, it
must be a payment type which is of payment category Cheque. For US legislation, it
must be a payment type which is of payment category Check.

• org_payment_method_id - optional

This parameter restricts the target prepayments to those which are for that
organization payment method. It would be used where different cheque styles are
required by organization payment method.

• order_by_option - mandatory

This parameter specifies which order by option is called to create and order the
cheque assignment actions. By providing this as a parameter, the user can specify
what ordering they want to take effect for the generated cheques.

• report_name - mandatory

This parameter is the name of the SRW2 report that is synchronously spawned
by Cheque Writer to generate the print file of cheques and any attached pay
advices, and such.

A user-extensible lookup is provided.

• start_cheque_number - mandatory

This parameter specifies the contiguous range of numbers to be assigned to cheques
generated.

• end_cheque_number - optional

This parameter specifies the contiguous range of numbers to be assigned to cheques
generated. If this parameter is specified, this range constrains how many cheque
assignment actions are created. Cheque Writer is the only payroll action that does
not necessarily process, what would otherwise be, all of its target actions.

If the end number is not specified, Cheque Writer assigns numbers sequentially from
the start number onwards for all generated cheque assignment actions.

If cheques must be printed for different contiguous ranges (as may occur when using
up the remnants of one box of cheque stationery, before opening another box), then
the Cheque Writer process must be invoked separately for each contiguous range.

2-128 Oracle US Federal Human Resources Implementation Guide

Cheque Numbering

The cheque stationery onto which the details are printed is typically authorized, and has
the cheque number preprinted on it. It is common in the UK for there to be a further
cheque number box which is populated when the cheque is finally printed. It is this
number that the generating payroll system uses.

Usually, these two numbers are the same. It is not known whether any clearing system
invalidates the cheque if they are not. However, it seems likely that if you need to
trace the path of a cheque through a clearing system, the preprinted cheque number
would prove most useful, and hence, it should be the number recorded for the cheque
payment on the payroll system.

It is a user’s responsibility to ensure that the cheque numbers used by Cheque Writer
(and recorded on the system) are identical to those on the preprinted stationery. In
certain circumstances, you might want to use numbers that are not the same. In this
case, the cheque number recorded by the payroll system is simply a different cheque
identifier from the preprinted cheque number.

Note: Preprinted stationery usually comes in batches, for example, boxes
of 10000. Therefore, you may want to use different ranges of cheque
numbers when printing off cheques at the end of the pay period. For
example, you may have to print off 2500 cheques using the remains of
one box (numbered 9500 - 10000) and then an unopened box (numbered
20001 - 30000). Cheque Writer uses the start and end cheque number
parameters to enforce these ranges.

Voiding and Reissuing Cheques

Under some circumstances, users might need to void a cheque and optionally issue a
replacement. For example, an employee loses their cheque and requests a replacement, or
you discover that the employee has previously left employment and should not have
been paid. In both cases the first step is to void the cheque. This activity may also
involve contacting the bank that holds the source account and cancelling the cheque.

Note: Voiding a cheque does not prevent the payment from being
made again.

Voiding and reissuing a cheque is different from rolling back and reprinting a
cheque. You void a cheque when it has actually been issued and you need to keep a
record of the voided cheque. You rollback when a cheque has not yet been issued. For
example, during a print run your printer might jam on a single cheque and think it has
printed more than one. These cheques have not been issued and the batch process
should be rolled back and restarted for those actions.

Depending on the reason for voiding, a user may want to issue another cheque. This is
known as ’reissuing’. This requires no extra functionality. The user has the choice of
issuing a manual cheque and recording the details online, or of resubmitting the batch
process for automatic printing.

You cannot reprocess actions that have already been paid. The process only creates
payments for those actions that have never been paid, or have been voided.

Implementation Guide 2-129

Mark for Retry

Cheque Writer actions can be marked for retry. As with the rollback process, when
marking a Cheque Writer payroll action for retry, the user can determine which
assignment actions are to be marked by specifying an assignment set parameter.

Marking cheque assignment actions for retry does not remove the assignment
actions, but simply updates their status to ’Marked For Retry’ (standard behavior for all
action types). The assigned cheque numbers are left unaltered. Hence, on retry, Cheque
Writer generates a new print file.

The reason for this is that we cannot reassign cheque numbers for assignment actions of
a cheque payroll action. The payroll action stores the start and end cheque numbers
specified. If different ranges of numbers could be used on several retries of the payroll
action, then some of its assignment actions could be assigned numbers outside the
range held on the payroll action.

Rolling Back the Payments

If a user wants to assign new cheque numbers, they must rollback the Cheque Writer
payroll and assignment actions, and submit a separate batch request.

Note: It usually makes sense to roll back all of the cheques. If you
mark individual cheques for retry, their cheque numbers are unlikely
to be contiguous and it would be difficult to print these on the correct
preprinted cheque stationery.

SRW2 Report

You may need to set up the format for the cheque stationery. The SRW2 report, invoked
by Cheque Writer is passed in two parameters:

• payroll_action_id (of the cheque action)

• chunk number (to be processed)

For this purpose, the report must take the parameters named PACTID and CHNKNO.

By the time the report is run, the appropriate assignment actions have been created and
cheque numbers assigned according to the order specified in the order by parameter.

The report must drive off the assignment actions for the cheque payroll action and
chunk number specified. It must generate one cheque for each assignment action. The
cheque number is held directly on the assignment action, while the amount to be paid is
retrieved from the associated pre-payment.

The report must maintain the order of the cheques when printed out, the report must
process the assignment actions in order of cheque number.

Example SELECT statement

The following select statement illustrates how to drive a report:

select to_number(ass.serial_number),

ass.assignment_action_id,

round(ppa.value,2),

ppf.last_name,

2-130 Oracle US Federal Human Resources Implementation Guide

ppf.first_name

from per_people_f ppf,

per_assignments_f paf,

pay_assignment_actions ass,

pay_pre_payments ppa

where ass.payroll_action_id =:PACTID

and ass.chunk_number =:CHNKNO

and ppa.pre_payment_id = ass.pre_payment_id

and ass.assignment_id = paf.assignment_id

and ass.status <>’C’

and paf.person_id = ppf.person_id

order by to_number(ass.serial_number)

Registering the Report

Once the SRW2 report is written, you must register it as a Cheque Writer report. This is
similar to registering ’Cash Analysis Rules’ for the Pre-Payments process.

You must also define a new Lookup Value for the Type of ’CHEQUE_REPORT’. Enter
the report name and description.

In a similar way to the Magnetic Tape process, the file generated by the report is named:

p<trunc(conc_request_id,5)>.c<chunk_number>

The file name is padded with zeros if the length of the request id is shorter than five
characters, for example, p03451.cl.

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is defined, and
otherwise to $PAY_TOP/$APPLOUT.

If Cheque Writer is run with multiple threads, it produces several files. This is
because Cheque Writer assignment actions are split into several chunks, one chunk
per thread. So, each thread can pick a chunk and process it. This is done to improve
performance on machines with multiple processors. For example, if there are four
threads processing, there would be four files produced:

• p03451.c1

• p03451.c2

• p03451.c3

• p03451.c4

Cheque Writer creates a fifth file (by the process that concatenates the four files into
one). The name of this file is p03451.ch.

Implementation Guide 2-131

Using or Changing the PL/SQL Procedure

Cheque Writer updates the assignment actions with the cheque and chunk number
in the sequence determined by a PL/SQL procedure, called anonymously from
the process. A default PL/SQL procedure is provided with the generic product
- pay_chqwrt_pkg.chqsql.

The default sort order is:

1. Organization

2. Department

3. Surname

4. First name

You can change this procedure to set up several different sorting orders by
criteria, denoted by a flag passed to the procedure. You should copy the core select
statement, and alter the subquery to order according to your own business needs.

The advantage of giving access to the whole SQL statement is that the cheques can
be ordered by any criteria. If we had only allowed specification of an ORDER BY
clause, then the ordering would have been restricted to attributes on those tables already
in the FROM clause of the core SQL statement.

To set up new order by requirements, change the pay_chqwrt_pkg.chqsql package
procedure. You could add the following IF statement when checking the procname
variable:

else if procname = ’NEW ORDER BY’ then

sqlstr := ’select’

The select statement could be a copy of the existing select statement but with the order
by clause changed. The select statement must return the assignment action’s rowid.

Based on this information the assignment action can be given a serial/cheque number
and assigned to a chunk.

Similarly, as with the SRW2 report the new order by option has to be registered before it
can be used. This is done in a similar manner except that the Lookup Type is CHEQUE
PROCEDURE. Enter a meaningful description in the Meaning field and the name of the
option, for example NEW ORDER BY, in the Description field.

Cash Process

The Cash process indicates to the system that payment has been made, and prevents
pre-payments from being rolled back.

Note: This is a UK-only process.

Payroll Action Parameters

Payroll action parameters are system-level parameters that control aspects of the Oracle
Payroll batch processes. It is important to recognize that the effects of setting values for
specific parameters may be system wide. The text indicates where parameters are related
to specific processes. For some parameters you should also understand the concept of
array processing and how this affects performance.

2-132 Oracle US Federal Human Resources Implementation Guide

Action Parameter Values

Predefined values for each parameter are supplied with the system, but you can override
these values as part of your initial implementation and for performance tuning.

Action parameter values are specified by inserting the appropriate rows into the
following table: PAY_ACTION_PARAMETERS, which has two columns:

PARAMETER_NAME NOT NULL VARCHAR2(30)

PARAMETER_VALUE NOT NULL VARCHAR2(80)

The payroll batch processes read values from this table on startup, or provide
appropriate defaults, if specific parameter values are not specified.

Summary of Action Parameters

The following list shows user enterable action parameters and values with any
predefined default value.

Note: Case is significant for these parameters.

Implementation Guide 2-133

Parameter Value Default

ADD_MAG_
REP_FILES

1 or more 4

BAL BUFFER
SIZE

1 or more 30

CHUNK
SHUFFLE

Y or N N

CHUNK_SIZE 1 - 16000 20

EE BUFFER
SIZE

1 or more 40

LOG_AREA See later

LOG_ASS
IGN_END

See later

LOG_ASS
IGN_START

See later

LOGGING See later

MAX_
ERRORS_
ALLOWED

1 or more CHUNK_SIZE
or 20 (if no
chunk size)

MAX_S
INGLE_UNDO

1 or more 50

RR BUFFER
SIZE

1 or more 20

RRV BUFFER
SIZE

1 or more 30

COST BUFFER 1 or more 20

THREADS 1 or more 1

TRACE Y or N N

USER_
MESSAGING

Y or N N

Note: All parameter names without underscores also have an alias with
underscores (except CHUNK SHUFFLE).

Parallel Processing Parameters

THREADS
Parameter Name: THREADS

2-134 Oracle US Federal Human Resources Implementation Guide

Parameter Value: 1 or more

Default Value:1

Oracle Payroll is designed to take advantage of multiprocessor machines. This means
that you can improve performance of your batch processes by splitting the processing
into a number of ‘threads’. These threads, or sub-processes, will run in parallel.

When you submit a batch process to a concurrent manager the THREADS parameter
determines the total number of sub-processes that will run under the concurrent
manager. The master process will submit (THREADS - 1) sub-processes.

Set this parameter to the value that provides optimal performance on your server. The
default value, 1, is set for a single processor machine. Benchmark tests on multiprocessor
machines show that the optimal value is around two processes per processor. So, for
example, if the server has 6 processors, you should set the initial value to 12 and test
the impact on performance of variations on this value.

Important: The concurrent manager must be defined to allow the
required number of sub-processes to run in parallel. This is a task for
your Applications System Administrator.

CHUNK_SIZE
Parameter Name: CHUNK_SIZE

Parameter Value: 1 - 16000

Default Value: 20

Size of each commit unit for the batch process. This parameter determines the number
of assignment actions that are inserted during the initial phase of processing and the
number of assignment actions that are processed at one time during the main processing
phase.

Note: This does not apply to the Cheque Writer/Check Writer, Magnetic
Tape or RetroPay processes.

During the initial phase of processing this parameter defines the array size for
insert. Large chunk size values are not desirable and the default value has been set
as a result of benchmark tests.

Each thread processes one chunk at a time.

Array Select, Update and Insert Buffer Size Parameters

The following parameters control the buffer size used for ’in-memory’ array
processing. The value determines the number of rows the buffer can hold.

Note: These parameters apply to the Payroll Run process only.

When you set values for these parameters you should note that there is a trade-off
between the array size, performance and memory requirements. In general, the
greater the number of rows fetched, updated or inserted at one time, the better the
performance. However, this advantage declines at around 20.

Implementation Guide 2-135

Therefore, the improvement between values 1 and 20 is large, while between 20 and 100
it is small. Note also that a higher value means greater memory usage. For this reason, it
is unlikely that you will gain any advantage from altering the default values.

CHUNK_SIZE
Parameter Name: CHUNK_SIZE

Parameter Value: 1 - 16000

Default Value: 20

Size of each commit unit for the batch process. As before.

RR BUFFER SIZE
Parameter Name: RR BUFFER SIZE

Parameter Value: 1 or more

Default Value: 20

Size of the Run Result buffer used for array inserts and updates: one row per Run Result.

RRV BUFFER SIZE
Parameter Name: RRV BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

Size of the Run Result Value buffer used for array inserts and updates: one row per Run
Result Value. Typically this will be set to (RR BUFFER SIZE * 1.5).

BAL BUFFER SIZE
Parameter Name: BAL BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

Size of the Latest Balance buffer used for array inserts and updates: 1 row per Latest
Balance.

EE BUFFER SIZE
Parameter Name: EE BUFFER SIZE

Parameter Value: 1 or more

Default Value: 40

Size of the buffer used in the initial array selects of Element Entries, Element Entry
Values, Run Results and Run Result Values per assignment.

Costing Specific Parameters

COST BUFFER SIZE
Parameter Name: COST BUFFER SIZE

Parameter Value: 1 or more

2-136 Oracle US Federal Human Resources Implementation Guide

Default Value: 20

Size of the buffer used in the array inserts and selects within the Costing process.

Magnetic Tape Specific Parameters

ADD_MAG_REP_FILES
Parameter Name: ADD_MAG_REP_FILES

Parameter Value: 1 or more

Default Value: 4

The maximum number of additional audit or report files the magnetic tape process
can produce.

Error Reporting Parameters

In every pay cycle you would expect some errors to occur in processing individual
assignments, especially in the Payroll Run. These errors are usually caused by incorrect
or missing data in the employee record. For practical reasons, you would not want the
entire run to fail on a single assignment failure. However, if many assignments generate
error conditions one after the other, this will usually indicate a serious problem, and you
will want to stop the entire process to investigate the cause. For processes that support
assignment level errors you can use the MAX_ERRORS_ALLOWED parameter to
control the point at which you want to stop the entire process to investigate these errors.

The processes that use this feature are:

• Payroll Run

• Pre-Payments

• Costing

• Rollback

MAX_ERRORS_ALLOWED
Parameter Name: MAX_ERRORS_ALLOWED

Parameter Value: 1 or more

Default Value: CHUNK_SIZE or 20 (if no chunk size)

The number of consecutive actions that may have an error before the entire process is
given a status of ’Error’.

Rollback Specific Parameters

Rollback of specific payroll processes can be executed in two ways. A batch process
can be submitted from the Submit Requests window. Alternatively, you can roll back
a specific process by deleting it from the Payroll Process Results window or the
Assignment Process Results window. When you roll back from a window this parameter
controls the commit unit size.

MAX_SINGLE_UNDO
Parameter Name: MAX_SINGLE_UNDO

Parameter Value: 1 or more

Implementation Guide 2-137

Default Value: 50

The maximum number of assignment actions that can be rolled back in a single commit
unit when rollback is executed from a form. Although you can change the default
limit, you would usually use the Rollback process from the SRS screen if it is likely to
be breached.

Payroll Process Logging

During installation and testing of your Oracle Payroll system you may need to turn on the
detailed logging options provided with the product. Use the LOGGING parameter to
provide a large volume of detailed information that is useful for investigating problems.

Detailed logging options should only be switched on when you need to investigate
problems that are not easily identified in other ways. The logging activities will have an
impact on the overall performance of the process you are logging. Usually, this feature is
needed during your initial implementation and testing before you go live. In normal
operation you should switch off detailed logging.

Important: If you need to contact Oracle Support for assistance in
identifying or resolving problems in running your payroll processes, you
should prepare your log file first. Define the Logging Category, Area
and range of Assignments and then resubmit the problem process.

Logging Categories

Logging categories define the type of information included in the log. This lets you focus
attention on specific areas that you consider may be causing a problem. You can set any
number of these by specifying multiple values:

• G General (no specific category) logging information

Output messages from the PY_LOG macro for general information. This option does
not sort the output and you should normally choose a list of specific categories.

• M Entry or exit routing information

Output information to show when any function is entered and exited, with messages
such as ’In: pyippee’, ’Out : pyippee’. The information is indented to show the
call level, and can be used to trace the path taken through the code at function
call level. Often, this would be useful when attempting to track down a problem
such as a core dump.

• P Performance information

Output information to show the number of times certain operations take place at the
assignment and run levels and why the operation took place. For example, balance
buffer array writes.

• E Element entries information

Output information to show the state of the in-memory element entry structure, after
the entries for an assignment have been fetched, and when any item of the structure
changes; for example, addition of indirects or updates. This also shows the
processing of the entry.

• L Balance fetching information

Output information to show the latest balance fetch and subsequent expiry stage.

• B Balance maintenance information

2-138 Oracle US Federal Human Resources Implementation Guide

Output information to show the creation and maintenance of in-memory balances

• I Balance output information

Output information to show details of values written to the database from the
balance buffers.

• R Run results information

Output information to show details of run results and run result values written to
the database from the Run Results or Values buffer.

• F Formula information

Output information to show details of formula execution. This includes formula
contexts, inputs and outputs.

• C C cache structures information.

Output information to show details of the payroll cache structures and changes to
the entries within the structure.

• Q C cache query information

Output information to show the queries being performed on the payroll cache
structures.

• S C Cache ending status information

Output information to show the state of the payroll cache before the process
exits, whether ending with success or error. Since much of the logging information
includes id values, this can be used to give a cross reference where access to the
local database is not possible.

• V Vertex (available to US and Canadian customers only)

Output information to show the values being passed in and out of the Vertex tax
engine.

This option also creates a separate file in the Out directory showing the internal
settings of the engine.

Logging Parameters

LOGGING
Parameter Name: LOGGING

Parameter Value: G, M, P, E, L, B, I, R, F, C, Q, S, V

Default Value: No logging

LOG_AREA
Parameter Name: LOG_AREA

Parameter Value: Function to start logging

Default Value: No default

LOG_ASSIGN_START
Parameter Name: LOG_ASSIGN_START

Implementation Guide 2-139

Parameter Value: Assignment to start logging

Default Value: All assignments

LOG_ASSIGN_END
Parameter Name: LOG_ASSIGN_END

Parameter Value: Assignment to end logging, including this one

Default Value: All assignments

Output Log File

When you enable the logging option the output is automatically included in the log file
created by the concurrent manager. You can review or print the contents of this log file.

Except for the General category, the log file will contain information in a concise format
using id values. This keeps the size of the log file to a minimum while providing all
the technical detail you need.

To help you understand the output for each logging category, other than ’G’ and ’M’, the
log file contains a header indicating the exact format.

Miscellaneous Parameters

USER_MESSAGING
Parameter Name: USER_MESSAGING

Parameter Value: Y/N

Default Value: N

Set this to parameter to ’Y’ to enable detailed logging of user readable information to
the pay_message_lines table. This information includes details about the elements and
overrides that are processed during the Payroll Run.

Note: This information is useful when you are investigating
problems, but you may find that it is too detailed for normal working.

TRACE
Parameter Name: TRACE

Parameter Value: Y/N

Default Value: N

Set this parameter to ’Y’ to enable the database trace facility. Oracle trace files will be
generated and saved in the standard output directory for your platform.

Warning: Use the trace facility only to help with the investigation of
problems. Setting the value to ‘Y’ causes a significant deterioration in
database performance. If you experience a significant problem with the
performance of your payroll processes, check that you have reset this
parameter to the default value - ’N’.

2-140 Oracle US Federal Human Resources Implementation Guide

System Management of QuickPay Processing

When users initiate a QuickPay run or a QuickPay prepayments process, the screen
freezes until the process finishes. QuickPay is set up to manage any cases in which the
concurrent manager fails to start the process within a specified time period, or starts
it but fails to complete it within the specified period. This situation can sometimes
arise when, for example, many high priority processes hit the concurrent manager
at the same time.

The system’s management of the screen freeze occurring when a user initiates a
QuickPay process involves:

• Checking the concurrent manager every few seconds for the process completion.

• Unfreezing the screen and sending an error message to the user when the process
has not completed within a maximum wait time.

The error message includes the AOL concurrent request ID of the process. The user
must requery the process to see its current status.

System administrators can improve the speed of QuickPay processing at their
installation by:

• Changing the default for the interval at which checks for process completion occur.

By default, the check of the concurrent manager occurs at 2 second
intervals. The parameter row QUICKPAY_INTERVAL_WAIT_SEC in the table
PAY_ACTION_PARAMETERS sets this default.

• Changing the default for the maximum wait time.

The maximum wait time allowed for a QuickPay process to complete defaults
to 300 seconds (5 minutes), after which the system issues an error message. The
parameter row QUICKPAY_MAX_WAIT_SEC in the PAY_ACTION_PARAMETERS
table sets this default.

• Defining a new concurrent manager exclusively for the QuickPay run and
prepayments processes.

To change the defaults for the interval at which checks occur or for the maximum
wait time:

• Insert new rows (or update existing rows) in the table PAY_ACTION_PARAMETERS.

Notice that QUICKPAY_INTERVAL_WAIT_SEC and QUICKPAY_MAX_WAIT_SEC are
codes for the Lookup type ACTION_PARAMETER_TYPE.

To define a new concurrent manager exclusively for the two QuickPay processes:

1. Exclude the two QuickPay processes from the specialization rules for the standard
concurrent manager.

2. Include them in the specialization rules for the new QuickPay concurrent manager
to be fewer than those of the standard concurrent manager. Doing so reduce the time
it takes to start requests for the QuickPay processes.

Assignment Level Interlocks

When you process a payroll, you run a sequence of processes that each perform an
action on the assignments.

The sequence in which you run the processes is critical to the success of processing, as
each process uses, and builds upon, the results of the previous process in the

Implementation Guide 2-141

sequence. The sequence of the processing is also determined by issues of data
integrity. For example, the Pre-Payments process (which prepares the payments
according to the payment methods) uses the results of the Payroll Run process (which
calculates the gross to net payment).

It is essential for correct payments that the results cannot be changed without also
changing the prepayment results. To prevent this from occurring (and for data
integrity), Oracle Payroll uses assignment level interlock rules.

Action Classifications

The payroll processes (such as Payroll Run and Costing) and action types (such as
QuickPay) are classified as Sequenced or Unsequenced. The action classification
determines how interlock processing rules are applied.

Processes and Action Types Classification Insert Interlock Rows?

Payroll Run Sequenced No

QuickPay Sequenced No

Reversal Sequenced Yes

Balance Adjustment Sequenced No

Balance Initialization Sequenced No

Pre-Payments Unsequenced Yes

QP PrePayments Unsequenced Yes

Ext/Manual Payments Unsequenced Yes

Magnetic Tape Transfer Unsequenced Yes

Advance Pay Sequenced No

Cheque Writer Unsequenced Yes

Cash Unsequenced Yes

Costing Unsequenced Yes

Transfer to GL Unsequenced Yes

Retropay by Action Sequenced No

Retropay by Aggregate Sequenced No

Sequenced Actions

These actions exist at the same level and must be processed in strict sequence, for
example, Payroll Run before QuickPay. The general rule is that you cannot insert a
sequenced action for an assignment if there is another sequenced action in the future, or
if there is an incomplete sequenced action in the past.

2-142 Oracle US Federal Human Resources Implementation Guide

There are exceptions for Process Reversal and Balance Adjustment. And, there may
be specific legislative requirements that have implications for this rule. For more
information, see Pay Period Dependent Legislation, page 2-143.

The sequence rule uses the effective date of the payroll action. If there is more than
one action with the same effective date, the action sequence number determines the
sequence of processing.

Unsequenced Actions

You can insert unsequenced actions for an assignment even when there are other
assignment actions for that assignment in the future or in the past. For example, you can
run the Costing process before or after you run the PrePayments process.

Pay Period Dependent Legislation

The rules that govern the calculation of tax for employees with multiple assignments
vary between legislations, and this determines how the rules for interlocking are applied.

For example, in the UK when you calculate tax, you must take account of all earnings for
all assignments in a pay period. For this type of legislation, the interlock rules check the
sequence of actions for all assignments and a failure on one assignment in a pay period
may be caused by an action that applies to another assignment.

For example, if you process an employee who is on both a monthly and a weekly
payroll, you cannot roll back the monthly pay run for that employee if you have
subsequently processed and paid them on the weekly payroll. You would have to
roll back the payments process for the weekly assignment before you could roll back
their monthly payroll action.

In other legislations, for example in the US, each assignment is considered separately
and interlock failure for one assignment does not cause failure for any others.

Action Interlock Rows

When interlocks are inserted for an assignment action, they lock the action that is being
processed. For example, a pre-payment interlock points to the payroll run action to be
paid, thus locking the run from being deleted. The existence of a sequenced action
prevents the insertion of sequenced actions prior to that action. That is, sequenced
actions have to happen in order.

Checking for Marked For Retry Actions

There is one special rule for assignment actions that are marked for retry. If you attempt
to retry a Payroll Run or QuickPay action, the system checks there are no sequenced
assignment actions marked for retry existing in the past for any assignments (or
people, in some legislations) that you are attempting to process.

Specific Rules for Sequenced Actions

An assignment action is not inserted if any of the following situations exist:

• There is an incomplete sequenced action for the assignment with a date on or
before the insertion date

• There is a sequenced action for the assignment with any action status, at a date
after the insertion date

• There is a non removable action at a date after the insertion date

There are two exceptions:

• Reversal

• Balance Adjustment.

Implementation Guide 2-143

When a reversal or balance adjustment is inserted, the system maintains the action
sequence by changing the action sequence numbers for any assignment actions that exist
later in the pay period.

Specific Rules for Unsequenced Actions

An unsequenced assignment action is not inserted if there is an interlock for the
assignment action currently being processed from another unsequenced assignment
action.

For example, if we had performed a QuickPay followed by a QuickPay Pre-Payment, a
subsequent Pre-Payments process would not insert an assignment action/interlock to
the QuickPay. This is because the QuickPay Pre-Payment would have inserted an action
and an interlock, and Pre-Payments has the same action classification.

Rules For Rolling Back and Marking for Retry

This table summarizes the rules for retry and rollback of payroll and assignment
actions. For some processes, you cannot roll back actions only for an individual
assignment. For example you cannot roll back an individual from the Magnetic Transfer
process. This process actually produces the magnetic tape file so you must roll back the
whole process, and then redo it.

2-144 Oracle US Federal Human Resources Implementation Guide

Action Type
Name

Payroll Action
- Retry

Payroll Action
- Rollback

Assignment
Action - Retry

Assignment
Action -
Rollback

Payroll Run Yes Yes Yes Yes

QuickPay Yes Yes Yes No

Reversal No Yes No No

Balance
Adjustment

No Yes No No

Balance
Initialization

No Yes No No

Purge Yes No No No

Pre-Payments Yes Yes Yes Yes

QP PrePayments Yes Yes Yes No

Ext/Manual
Payment

No Yes No No

Magnetic Tape
Transfer

Yes Yes No Yes

Cheque Writer Yes Yes Yes Yes

Cash No Yes No Yes

Costing Yes Yes Yes Yes

Transfer to GL Yes Yes No No

Advance Pay Yes Yes Yes Yes

Retropay by
Aggregate

Yes Yes Yes Yes

Retropay by
Action

Yes Yes Yes Yes

Rolling Back Sequenced Actions

You cannot roll back a sequenced action if there is a later sequenced action for the
assignment, except for Balance Adjustments or Reversals. For example, you cannot roll
back a payroll run in one period, if you have already processed another payroll run
in the next pay period.

Marking Actions For Retry

You cannot mark a sequenced action for retry if there is a later sequenced action for the
assignment, except for Balance Adjustments or Reversals. However, you can do this if
the future action causing the lock is itself marked for retry.

You can retry an unsequenced action if the locking action is itself marked for retry.

Implementation Guide 2-145

Transfer to the General Ledger Process

After you have run the post-run process Costing (which accumulates costing results), you
are ready to transfer the results to the General Ledger or other systems.

This process can be submitted using multiple threads, in the same way as the Payroll Run.

Costing Process

After running the payroll processes, you start the post-run process, Costing. The
Costing process accumulates results for transfer to the General Ledger and other
applications. This process sorts the run results in accordance with the information you
have selected from the Cost Allocation flexfield at all levels, by the following:

• Company

• Set of Books

• Cost Center

• General Ledger

• Labour Distribution Accounts

Examples of the cost allocation of payroll results and of the distribution of employer
charges over selected employee earnings appear in the following table.

If your installation also includes Oracle General Ledger, run the Transfer to the General
Ledger process after you have run the Costing process. This transfers the results from
the Costing process to Oracle General Ledger.

Example of Payroll Costs Allocation

The following table displays payroll run results for four employees, using accounts and
work structures identified using the Cost Allocation key flexfield. The example Costing
Process Results table illustrates how the Costing process allocates these payroll results to:

• Accounts and cost centers for the General Ledger

• Accounts for cost centers and product lines within cost centers, for labour
distribution purposes

Sample Payroll Results

Employee Cost
Center

Product
Line

Salary Wages Overtime Union
Dues

Employee 1 Production H201 100% 1,000 400 20

Employee 2 Sales H305 100% 1,500

Employee 3 Production H201 50%
H202 50%

2,000 600 30

Employee 4 Sales H305 20%
H310 40%

1,000

The following table illustrates the allocation of costs from these sample run results.

2-146 Oracle US Federal Human Resources Implementation Guide

Example Costing Process Results

Account
Code

Production Sales H201 H202 H305 H307 H310

Salaries 2,500 1,700 400 E400

Wages 3,000 2,000 1,000

Overtime 1,000 700 300

Union
Dues
Liability

50

Example Costing Process Results (continued)

Account Code Results

Clearing Account contains balancing credits for earnings
Salary, Wages and Overtime, and balancing
debits for deduction Union Dues

Example of Employer Charge Distribution

When you give links for elements representing employer charges and the costable type
Distributed, the Costing process distributes the employer charges as overhead for
each employee over a set of employees’ earnings. This example shows how employer
payments totalling 100 dollars are distributed over a set of earnings including wages and
overtime, for the cost center Production and the product lines H201 and H202.

Overhead Distribution for the Production Cost Center
Total paid to Production Cost Center as Wages run result: $3, 000.
00

Total paid to Production Cost Center as Overtime run result: $1,0
00.00

Total for Earnings types specified for Distribution: $4,00 0.00

Ratio for Wages distribution, Production Cost Center = 3000 /4000
= .75

Wages overhead = Pension Charge 100 x .75 = 75.00

Ratio for Overtime distribution, Production Cost Center = 1 000/40
00 = .25

Overtime overhead = Pension Charge 100 x .25 = 25.00

Overhead Distribution for the Product Lines H210 and H202
Total paid for Product Line H201 as Wages run result: $2,000. 00

Total paid for Product Line H202 as Wages run result: $1,000. 00

Implementation Guide 2-147

Total paid for Product Lines H201 and H202 as Wages: $3,000.0 0

Ratio for Wages distribution, Product Line H201 = 2000/3000 = 0.6
667

Product Line H201 overhead = Total Wages overhead $75 x .6667 = $
50.00

Ratio for Wages distribution, Product Line H202 = 1000/3000 = 0.3
334

Product Line H202 overhead = Total Wages overhead $75 x .3334 = $
25.00

Total paid for Product Line H201 as Overtime run result: $700 .00

Total paid for Product Line H202 as Overtime run result: $300 .00

Total paid for Product Lines H201 and H202 as Overtime: $1,00 0.00

Ratio for Overhead distribution, Product Line H201 = 700/10 00 = .
7

Product Line H201 overhead = Total Overtime overhead $25 x .7 = $
17.50

Ratio for Overhead distribution, Product Line H202 = 300/10 00 = 0
.3

Product Line H202 overhead = Total Overtime overhead $25 x .3 = $
7.50

Table: Distribution of Overhead Over Cost Center and Production Line Totals

Account Code Cost Center -
Production

Product Line H201 Product Line H202

Wages 3,000 2,000 1,000

Employer Liability
Distribution

75 50 25

Overtime 1,000 700 300

Employer Liability
Distribution

25 17.50 7.50

The Payroll Archive Reporter (PAR) Process

Using the Payroll Archive Reporting (PAR) process, you can produce complex payroll
reports on employee assignments on a periodic basis, for example at the end of the tax
year, or for each tax quarter. You can submit these reports to a tax authority or other
governmental body using magnetic tape.

2-148 Oracle US Federal Human Resources Implementation Guide

If necessary, you can archive the data reported on exactly as it appears in the reports. This
covers the possibility that the payroll department, or external authorities receiving the
reports, may need to review the data at some future time.

If archiving is not required, you can still retain a record of the production of the reports
and which employee assignments were included in them.

The primary use of the PAR process is for magnetic tape reporting, but you can also use
it (in Archive mode) for reports delivered using Oracle Report Writer.

The generic PAR process described here may not meet the payroll reporting requirements
of all HRMS payroll localizations. Therefore your localization team may have made
changes such as extending the data reported on to include payroll actions, payrolls, or
organizations.

PAR Modes

To support flexibility in its use, PAR can be run in three different modes:

• Magnetic Tape with Archive

In this mode, PAR archives the values needed for reporting in the FastFormula
archive tables (FF_ARCHIVE_ITEMS and FF_ARCHIVE_ITEM_CONTEXTS). It
then produces a report on magnetic tape based on the archived values.

• Archive

In this mode, PAR only archives values needed for reporting in the FastFormula
archive tables.

Having run the PAR process in Archive mode, you can extract data from the
FastFormula archive tables using either Oracle Report Writer or a magnetic tape
process.

• Magnetic Tape without Archive

In this mode, PAR produces a report on magnetic tape and maintains a record of the
report production (in the table PAY_PAYROLL_ACTIONS) and/or records of the
individual assignments reported on (in the table PAY_ASSIGNMENT_ACTIONS).

Note: When you produce magnetic tape reports using the alternative
process PYUMAG, there is no record of the report production.

Notice that running PAR in Archive mode and then in Magnetic Tape without Archive
mode is convenient if you need to produce a number of reports by magnetic tape, each
of which requires a subset of a large set of data. All the data can be archived at once
in Archive mode, and then the individual reports can be produced for magnetic tape
delivery in Magnetic Tape without Archive mode.

Overview of the PAR Process

The PAR process operates as follows:

1. It creates a payroll action with associated assignment actions. In these actions, PAR
code evaluates live database items (that is, items that point to live tables)
representing the data needed for a payroll report. The PAR code uses contexts for the
database items as necessary.

2. When run in the Archiver or Magnetic Tape with Archiver modes, PAR then
stores the results of the database evaluations in the FastFormula archive tables
(FF_ARCHIVE_ITEMS and FF_ARCHIVE_ITEM_CONTEXTS).

Implementation Guide 2-149

3. When run in the Magnetic Tape with Archiver or Magnetic Tape without Archiver
modes, PAR code retrieves values from the archive tables by evaluating archive
database items, and includes the values in reports delivered by magnetic tape.

Overview of the Setup Steps

To set up the PAR process

1. Decide on the employee data to report on and to archive, and the formatting of
the reports.

2. Create the archive and live database items that are needed to produce the data in the
reports, setting contexts for them as necessary.

See: Create Database Items for Archiving, page 2-150

3. For Archive mode or Magnetic Tape with Archive mode, write formulas that
determine which database items are to be archived. For Magnetic Tape with Archiver
and Magnetic Tape without Archiver modes, write formulas that format strings as
required by tape formats, and provide error and warning messages to users.

See: Write Formulas, page 2-153

4. Write package procedures that determine the assignments and assignment actions
for PAR to process for the reports.

See: Write Package Procedures for Assignments and Assignment Actions, page 2-153

5. Provide an SRS (Standard Report Submission) definition from which users can
launch the PAR process.

See: Provide an SRS Definition for the PAR Process, page 2-154

6. Identify your custom reports, formulas and package procedures to the system by
making the appropriate entries in the table PAY_REPORT_FORMAT_MAPPINGS_F.

See: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table, page 2-155

Create Database Items for Archiving

For its archiving function, PAR uses both live database items (which point at live
tables), and archive database items (which point at the archive tables to retrieve archived
data). For each archive database item, there must be a corresponding live database
item. You are responsible for creating the archive database items, and for any live
database items you need that do not already exist.

For example, for the archive database item A_INCOME_TAX_YTD referenced in a
formula, there must be a live database item INCOME_TAX_YTD. PAR runs this live
database item and places the value in the archive table FF_ARCHIVE_ITEMS.

Archive Database Item Creation: Background

The entity relationship diagram below shows the relationship of the PAR tables to
other tables in generic HRMS:

2-150 Oracle US Federal Human Resources Implementation Guide

The FF_ARCHIVE_ITEMS table records a snapshot of what particular database items
evaluate to on a run of PAR.

The creation of archive database items includes the creation of archive routes. You
define these in FF_ROUTES, with definition texts that are simple select statements from
the two tables FF_ARCHIVE_ITEM_CONTEXTS and FF_ARCHIVE_ITEMS. Notice
however that you must define these based on the number of contexts being passed
into the routes, and the data type of the contexts. There are however, seeded Archive
Routes, which you may be able to make use of rather than defining your own; these
are detailed in the next section.

You define the route context usages in the table FF_ROUTE_CONTEXT_USAGES. The
recommended way to do this is to retrieve from FF_CONTEXTS the context IDs that the
live and archive routes require, and then define new route context usages based on the
new archive routes. The route parameter is always defined based on the new archive
route and a parameter name of User Entity ID.

Here is an example of a more complex archive route:

l_text := ’ff_archive_items target,
ff_archive_item_contexts fac,
ff_archive_item_contexts fac1

where target.user_entity_id = &U1
and target.context1 = &B1 /* context assignment action id */
and fac.archive_item_id = target.archive_item_id
and fac.context = to_char(&B2) /* 2nd context of source_id * /
and fac1.archive_item_id = target.archive_item_id

The simple structure underlying this relatively complex route is still evident. Each
context added just represents a further join to FF_ARCHIVE_ITEM_CONTEXTS.

Seeded Generic Archive Routes

The seeded generic archive routes fall into two categories: routes that have only one
context (using ASSIGNMENT_ACTION_ID) and routes that have two contexts.

Implementation Guide 2-151

Routes with One Context

For the generic archive routes with one context, three datatypes are supported for
that context, and therefore three such routes are automatically created when you run
the automatic database item generator:

• A Character Context route, mapping onto a FF_CONTEXT of datatype ’T’
(Text). This is named ARCHIVE_SINGLE_CHAR_ROUTE.

• A Numeric Context route, mapping onto a FF_CONTEXT of datatype ’N’
(Number). This is named ARCHIVE_SINGLE_NUMBER_ROUTE.

• A Date Context route, mapping onto a FF_CONTEXT of datatype ’D’ (Date). This is
named ARCHIVE_SINGLE_DATE_ROUTE.

Here is the text for ARCHIVE_SINGLE_CHAR_ROUTE:

ff_archive_items target
where target.user_entity_id = &U1
and target.context1 = &B1

Routes with Two Contexts

For the generic archive routes that have two contexts, the automatic database item
generator references the table FF_ARCHIVE_ITEM_CONTEXTS, whose column
CONTEXT is stored as a Varchar2(30). It makes the assumption that the first context
stored in FF_ARCHIVE_ITEMS is a number, and is an assignment action ID. It can seed
only one such ’two-context archive route’ by decoding the where clause of the generic
archive route as follows:

ff_archive_items target,
ff_archive_item_contexts context
ff_contexts ffc
where target.user_entity_id = &U1
and target.context1 = &B1
and target.archive_item_id = context.archive_item_id
and ffc.context_id = context.context_id
and context.context = decode(ffc.data_type,’T’, &B2, ’D’ , fnd_date
.date_to_canonical(&B2),
to_char(&B2));

Running the Archive Database Item Generator

You make several calls to the procedure for running the interface to the archive database
item generator, one for each of the database items that you want to archive. The
procedure is as follows:

procedure pay_archive_utils.create_archive_dbi(
p_live_dbi_name IN VARCHAR2(30),
p_archive_route_name IN VARCHAR2(30) DEFAULT NULL,
p_secondary_context_name IN VARCHAR2(30));

Contexts for Database Items

Using the standard set_context procedure, you set global contexts or assignment level
contexts for those database items that require contexts. INITIALIZATION_CODE sets
the global contexts for formulas, for example, PAYROLL_ID. ARCHIVE_CODE sets the
context for the assignment level contexts, such as ASSIGNMENT_ID.

See: Examples: INITIALIZATION_CODE and ARCHIVE_CODE, page 2-157.

2-152 Oracle US Federal Human Resources Implementation Guide

Write Formulas

To run PAR in Archive or Magnetic Tape with Archive mode, you write formulas that
identify the database items used in the archiving process. To run PAR in Magnetic Tape
with Archive or Magnetic Tape without Archive modes, you must write formulas to
format strings as required, and to provide warnings and errors.

The PAR process uses the entry existing for a report in the column REPORT_FORMAT of
the table PAY_REPORT_FORMAT_MAPPING_F to find the formulas associated with the
appropriate magnetic tape format in the table PAY_MAGNETIC_BLOCKS.

See also: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table, page
2-155.

Write Package Procedures For Assignments And Assignment Actions

You must code two package procedures as follows:

• The RANGE_CODE procedure, to specify ranges of assignments to be processed in
the archive.

• The ASSIGNMENT_ACTION_CODE procedure, to create the assignment actions
to be processed.

RANGE_CODE Example

This package procedure returns a select statement. This select statement returns the
person_id that has the assignment for which PAR must create an assignment action.

--
procedure range_cursor (pactid in number,
sqlstr out varchar2) is
begin
--
sqlstr := ’select distinct person_id

from per_people_f ppf,
pay_payroll_actions ppa
where ppa.payroll_action_id = :payroll_action_id
and ppa.business_group_id = ppf.business_group_id
order by ppf.person_id’;

--
end range_cursor;

Note: There must be one and only one entry of :payroll_action_id in the
string, and the statement must be, order by person_id.

ASSIGNMENT_ACTION_CODE Example

This package procedure further restricts and creates the assignment action.

Implementation Guide 2-153

--
procedure action_creation(pactid in number,

stperson in number,
endperson in number,
chunk in number) is

--
CURSOR c_state IS

SELECT ASG.assignment_id assignment_id
FROM per_assignments_f ASG,

pay_payroll_actions PPA
WHERE PPA.payroll_action_id = pactid

AND ASG.business_group_id = PPA.business_group_id
AND ASG.person_id between stperson and endperson
AND PPA.effective_date between ASG.effective_start_dat e

and ASG.effective_end_date
ORDER BY ASG.assignment_id;

--
lockingactid number;
begin

for asgrec in c_state loop
--
-- Create the assignment action to represent the person / tax

unit
-- combination.
--
select pay_assignment_actions_s.nextval

into lockingactid
from dual;

--
-- insert into pay_assignment_actions.
hr_nonrun_asact.insact(lockingactid,asgrec.assignme nt_id, pa

ctid,chunk, NULL);
end loop;

end action_creation;
--

Note: Four values are passed into the procedure. Start and End person
MUST be used to restrict the creation here, as these are used for
multithreading. Similarly, chunk must also be used and passed to the
insact procedure. This actually creates the action.

Provide an SRS Definition for the PAR Process

The PAR process is a batch process that users start from the Submit Requests
window. You need to set up the SRS definition for your process. The parameters for
this definition are as follows:

2-154 Oracle US Federal Human Resources Implementation Guide

Table of Parameters for the PAR Process

Parameter Name Mandatory?

report_type Yes

report_qualifier Yes

start_date No *

effective_date No *

report_category Yes

business_group_id Yes

magnetic_file_name No

report_file_name No

legislative_parameters No *

* The PAR process requires the start_date and effective_date. However, these can be set
either by entries to the standard parameters or by using special legislative parameters
START_DATE and END_DATE. These special parameters are passed to the parameter
legislative_parameters in the form START_DATE=<date> and END_DATE=<date>.

Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table

You control PAR processing by entries you make in the table PAY_REPORT_FORMAT_
MAPPINGS_F. The columns for this table are as shown in the following table:

Column Name Type Comments

REPORT_TYPE NOT NULL VARCHAR2(30) A short name of the report.
Example: SQWL (for State
Quarterly Wage Listing)

REPORT_QUALIFIER NOT NULL VARCHAR2(30) A qualifying name for the
report. Example: for SQWL it
could be the state name (such
as Texas or California).

REPORT_FORMAT NOT NULL VARCHAR2(30) A foreign key to the PAY_
MAGNETIC_BLOCKS table.
Needed when running in ALL
modes.

EFFECTIVE_START_DATE NOT NULL DATE

EFFECTIVE_END_DATE NOT NULL DATE

Implementation Guide 2-155

Column Name Type Comments

RANGE_CODE VARCHAR2(60) The name of a package
procedure that you code to
specify ranges of assignments
to be processed in the archive.
For example code, see: Write
Package Procedure for
Assignments and Assignment
Actions, page 2-153.

ASSIGNMENT_ACTION_
CODE

VARCHAR2(60) The name of a package
procedure that you code to
create the assignment actions
to be processed. For example
code, see: Write Package
Procedure for Assignments
and Assignment Actions, page
2-153.

INITIALIZATION_CODE VARCHAR2(60) A package procedure that
sets any global contexts
needed for the lifetime of the
archiving. Will likely be used
infrequently, but you must
create the procedure (see:
Contexts for Database Items,
page 2-152 and Examples:
INITIALIZATION_CODE
and ARCHIVE_CODE, page
2-157. If no value is entered in
this column, PAR performs no
archiving.

ARCHIVE_CODE VARCHAR2(60) Sets contexts at the assignment
action level to be used during
the archive. Will likely be
used instead of INITIALIZAT
ION_CODE. See: Contexts
for Database Items, page
2-152 and Examples: INIT
IALIZATION_CODE and
ARCHIVE_CODE, page 2-157.

MAGNETIC_CODE VARCHAR2(60) The standard generic magnetic
tape driving PL/SQL
procedure (see: Magnetic
Tape Process, page 2-112). To
produce the magnetic tape,
PAR uses REPORT_FORMAT
as a foreign key to the table
PAY_MAGNETIC_BLOCKS.
If no value is entered for
MAGNETIC_CODE, PAR
does not produce a magnetic
tape.

2-156 Oracle US Federal Human Resources Implementation Guide

Column Name Type Comments

REPORT_CATEGORY NOT NULL VARCHAR2(30) Indicator of the media type.
Naming standards are:

RT - Reel to Reel Tape

SD - Floppy Disk

REPORT - Paper Report

ARCHIVE - Archive

REPORT_NAME VARCHAR2(60) This remains null for runs
in the Magnetic Tape with
Archive, Archive, and
Magnetic Tape without
Archive modes. Available for
future use with other possible
modes.

SORT_CODE VARCHAR2(60) Entered only when processing
a report for which the delivery
vehicle is Oracle Report
Writer. Enter the name of a
package procedure, which
you have coded, that returns
the assignment actions in
the order they should be
processed in.

The key to this table is REPORT_TYPE, REPORT_QUALIFIER, REPORT_CATEGORY,
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE.

Examples: INITIALIZATION_CODE and ARCHIVE_CODE

INITIALIZATION_CODE
/* Name : archinit

Purpose : This performs the US specific initialization
section.

*/
procedur e archinit(p_payroll_action_id in number) is

jurisdiction_code pay_state_rules.jurisdiction_code% TYPE;
l_state VARCHAR2(30);

begin
null;
end archinit;
ARCHIVE_CODE

Note: This code sets the contexts by assignment action. There are two
ways of setting contexts, one using the set_context function, the other
using the PL/SQL context table. The context table is used only when
contexts can have multiple values, as in this example for SOURCE_ID
and SOURCE_TEXT.

/* Name : archive_data
Purpose : T his performs the ZA specific employee

context setting.

Implementation Guide 2-157

*/
procedure archive_data(p_assactid in number, p_effectiv e_date in d
ate) is

asgid pay_assignment_actions.assignment_id%type;
l_count number;
l_context_no number;
aaseq number;
aaid number;
paid number;

cursor cursars is
select distinct code

from pay_za_irp5_bal_codes
where code in (4001, 4002, 4003, 4004, 4005, 4006, 4007);

cursor curclr is
select distinct nvl(pet.element_information1, ’&&&’)

element_information1
from pay_element_types_f pet,

pay_element_classifications pec,
pay_assignment_actions paa,
pay_payroll_actions ppa

where paa.assignment_action_id = p_assactid
and pec.classification_name = ’Deductions’
and pec.classification_id = pet.classification_id
and ppa.payroll_action_id = paa.payroll_action_id
and exists (select ’’

from pay_assignment_actions paa2,
pay_payroll_actions ppa2,
pay_run_results prr

where paa2.assignment_id = paa.assignment_id
and paa2.payroll_action_id =

ppa2.payroll_action_id
and paa2.assignment_action_id =

prr.assignment_action_id

and prr.element_type_id = pet.element_type_id
and ppa2.effective_date between ppa.start_date

and ppa.effective_date
);

begin
SELECT aa.assignment_id

into asgid
FROM pay_assignment_actions aa

WHERE aa.assignment_action_id = p_assactid;

l_context_no := pay_archive.g_context_values.sz;

for i in 1..l_context_no loop
pay_archive.g_context_values.name(i) := NULL;
pay_archive.g_context_values.value(i) := NULL;

end loop;
pay_archive.g_context_values.sz := 0;
l_count := 0;

/* Set up the assignment id, date earned and tax unit id contex ts
*/

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

2-158 Oracle US Federal Human Resources Implementation Guide

’ASSIGNMENT_ID’;
pay_archive.g_context_values.value(l_count) := asgid;

SELECT MAX(paa.action_sequence)
INTO aaseq
FROM pay_assignment_actions paa,

pay_payroll_actions ppa,
pay_action_classifications pac,
pay_payroll_actions ppa_arch,
pay_assignment_actions paa_arch

WHERE
paa_arch.assignment_action_id = p_assactid
and paa_arch.payroll_action_id =

ppa_arch.payroll_action_id

and paa.assignment_id = paa_arch.assignment_id
AND paa.payroll_action_id = ppa.payroll_action_id
AND ppa.action_type = pac.action_type
AND pac.classification_name = ’SEQUENCED’
AND ppa.effective_date between ppa_arch.start_date

and ppa_arch.effective_date
and exists (select ’’

from pay_payroll_actions ppa2,
pay_assignment_actions paa2,
pay_run_results prr,
pay_element_types_f pet

where ppa2.time_period_id =
ppa.time_period_id

and ppa2.payroll_action_id =
paa2.payroll_action_id

and paa2.assignment_action_id =
prr.assignment_action_id

and prr.element_type_id =
pet.element_type_id

and ppa2.effective_date between
pet.effective_start_date and

pet.effective_end_date
and paa2.assignment_id = paa.assignment_i

d
and pet.element_name =

’ZA_Tax_On_Lump_Sums’)
and not exists (select ’’

from pay_assignment_actions paa3,
ff_archive_items fai,
ff_user_entities fue

where paa3.assignment_id =
paa_arch.assignment_id

and paa_arch.payroll_action_id =
paa3.payroll_action_id

and paa3.assignment_action_id =
fai.context1

and fai.user_entity_id =
fue.user_entity_id

and fue.user_entity_name =
’A_PAY_PROC_PERIOD_ID’

and fai.value = ppa.time_period_id);
if aaseq is null then

Implementation Guide 2-159

SELECT MAX(paa.action_sequence)
INTO aaseq
FROM pay_assignment_actions paa,

pay_payroll_actions ppa,
pay_action_classifications pac

WHERE
paa.assignment_id = asgid
AND paa.payroll_action_id = ppa.payroll_action_id
AND ppa.action_type = pac.action_type
AND pac.classification_name = ’SEQUENCED’
AND ppa.effective_date <= p_effective_date;

end if;
SELECT assignment_action_id, payroll_action_id

INTO aaid, paid
FROM pay_assignment_actions

WHERE
assignment_id = asgid
AND action_sequence = aaseq;

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’ASSIGNMENT_ACTION_ID’;
pay_archive.g_context_values.value(l_count) :=aaid ;
pay_archive.balance_aa := aaid;

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’PAYROLL_ACTION_ID’;
pay_archive.g_context_values.value(l_count) :=paid ;
for clrrev in curclr loop

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’SOURCE_TEXT’;
pay_archive.g_context_values.value(l_count) :=

clrrev.element_information1;
end loop;
for sarrec in cursars loop

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) := ’SOURCE _ID’;

pay_archive.g_context_values.value(l_count) := sarrec .code
;

end loop;
-

pay_archive.g_context_values.sz := l_count;
-

end archive_data;

Balances in Oracle Payroll

This essay deals with the definition and use of balances and balance dimensions in
Oracle Payroll. It also explains how to deal with the issue of loading initial balances. This
essay does not provide any detail on how to add balance dimensions to the system.

Terms

This essay assumes that you are already familiar with the database design diagrams and
tables contained in the Oracle HRMS Technical Reference Manual.

2-160 Oracle US Federal Human Resources Implementation Guide

If you are not already familiar with the setup and use of balances, or the concepts
of employee assignment, assignment actions, database items, or payroll processing
in Oracle FastFormula you should refer to your Oracle HRMS user guides for more
information.

For additional information on how the Payroll Run processes balances, see also: Payroll
Run Process - Create and Maintain Balances, page 2-100.

Overview of Balances

In Oracle Payroll a balance is defined as the accumulation of the results of a payroll
calculation. The balance has a name, feeds and dimensions.

For example, the balance GROSS PAY is the accumulation of the results of processing all
‘Earnings’. However, the idea of a dimension is unique to Oracle Payroll. Dimensions
enable you to view the value of a balance using a combination of different criteria. So, you
might want to view the value of Gross Pay for one employee for the current pay
period, or for the year to date. The actual balance and dimension you would use in a
formula or a report would be the GROSS_PAY_ASG_PTD or the GROSS_PAY_ASG_YTD.

In general, balances in Oracle Payroll can be thought of as the ‘calculation rules’ for
obtaining the balance value. Most values are not held explicitly in the database. This
approach has many advantages: New balances can be defined and used at any time
with any feeds and dimensions; balance values do not need to be stored explicitly
in the database, taking up valuable storage space and causing problems with data
archiving and purging.

Balance Types

These are the balance names, for example Gross Pay and Net Pay. Balance types always
have a numeric Unit Of Measure, and in some instances a currency code.

Balance Feeds

Balance feeds define the input values that contribute to a balance. For example the pay
values of all earnings types contribute to the Gross Pay balance. Feeds can add to (+)
or subtract from (-) a balance

Balance Dimensions

The balance dimension is identified by the database item suffix for the balance. For
example, ’_YTD’ indicates the balance value is for the year to date. Balance dimensions
are predefined in Oracle Payroll.

Defined Balances

The defined balance is the name used to identify the combination of Balance Type and
Balance Dimension. For example, GROSS_PAY_ASG_YTD. When you use the Balance
window to define a new balance, Oracle Payroll automatically generates database items
for every balance dimension you select. You can then access the value directly within
any formula. In any detailed calculation or report on balances you always refer to
the ‘defined balance’ to return a value.

Latest Balances

To optimize the performance of payroll processing, some balance values are held
explicitly in the database and these are referred to as Latest Balance Values. The payroll
process accesses and updates latest balance values as it runs. In some cases it clears and
then resets values, for example when you do a rollback. All of this is invisible to the user
and is managed by the payroll process.

Implementation Guide 2-161

Note: If you need to return the value of a balance in a report you should
use the balance function pay_balance_pkg.get_value. See: Including
Balance Values in Reports, page 2-177.

Expiry

An important concept for latest balances is that of ‘expiry’. For example, consider the
GROSS_PAY_YTD balance. When you cross the tax year boundary you would expect
the value to return to zero. This ‘expiry’ of a balance is maintained internally by Oracle
Payroll and there is code to work out if we have crossed such a boundary.

Important: Even if a defined balance has expired in theory for a payroll
run, it is not actually zeroed on the database unless it is subsequently
updated by the same payroll run. Thus, following a Payroll Run, you
may well see balances that you would have expected to have
expired, but have their old values.

Balance Contexts

There is occasionally a requirement to report balances where the combination of
ASSIGNMENT_ACTION_ID and BALANCE_TYPE_ID does not uniquely identify the
individual balance values that should be reported. For example in the US legislation you
need to maintain balance dimensions for particular states, while in the UK legislation
you need to maintain balance dimensions for distinct tax offices.

Both of these requirements are met by the definition of special balance contexts. These
are legislative specific ’C’ code and appear to you as part of the balance dimensions.

User definition of additional balance contexts is not yet supported because of the major
impact these may have on the overall performance of the payroll process. Bad code in
the definition of these contexts can run exceptionally slowly, especially when you
accumulate a large number of run results.

Context Balances - a UK Example

To report on context balances, we must define the relevant balances with the
ELEMENT_PTD and ELEMENT_ITD dimensions. The further context that is required
to identify the values is taken from the PAY_RUN_RESULTS.SOURCE_ID. This is
obtained from the balance feed joining to the PAY_RUN_RESULT_VALUES table, then to
PAY_RUN_RESULTS.

Using this value, we can select via the PAY_ASSIGNMENT_LATEST_BALANCES ->
PAY_BALANCE_CONTEXT_VALUES method. Or, if there is no latest balance, by the
route code call, which in the UK can be done with a function call:

hr_gbbal.calc_element_ptd_bal(ASSIGNMENT_ACTION_ID,

BALANCE_TYPE_ID,

SOURCE_ID);

(or calc_element_itd_bal with the same parameters).

Balance Dimensions

This essay describes what a balance dimension is and what it does, and how the various
parts interact with formulas and the Payroll Run.

2-162 Oracle US Federal Human Resources Implementation Guide

A balance dimension defines how the value of a specific balance should be
calculated. The balance dimension is also an entity with its own attributes that are
associated with balance calculations.

Database Item Suffix

The database item suffix identifies the specific dimension for any named balance. The
‘defined balance’ name is the combination of the balance and the suffix. For example, the
suffix ’_ASG_YTD’ in ’GROSS_SALARY_ASG_YTD’ identifies that the value for the
gross salary balance is calculated for one assignment, for the year to date.

Routes

The balance dimension route is a foreign key to the FF_ROUTES table. A route
is a fragment of SQL code that defines the value to be returned when you access a
balance. As with other database items, the text is held in the DEFINITION_TEXT column
of the FF_DATABASE_ITEMS table.

The select clause of the statement is always:

select nvl(sum(fnd_number.canonical_to_number(TARGET .result_value
) * FEED.scale), 0)

Thus, a balance could be defined as the sum of those run result values that feed the
balance type (‘Gross Salary’ in our example), across a certain span of time (in our
example, this is since the start of the current tax year).

The SQL statement itself must follow a number of rules, and an example appears below:

pay_balance_feeds_f FEED
,pay_run_result_values TARGET
,pay_run_results RR
,pay_payroll_actions PACT
,pay_assignment_actions ASSACT
,pay_payroll_actions BACT
,pay_assignment_actions BAL_ASSACT

where BAL_ASSACT.assignment_action_id = \&B1
and BAL_ASSACT.payroll_action_id = BACT.payroll_action _id
and FEED.balance_type_id = \&U1
and FEED.input_value_id = TARGET.input_value_id
and TARGET.run_result_id = RR.run_result_id
and RR.assignment_action_id = ASSACT.assign_action_id
and ASSACT.payroll_action_id = PACT.payroll_action_id
and PACT.effective_date between

FEED.effective_start_date and FEED.effective_end_date
and RR.status in (’P’,’PA’)
and PACT.effective_date >=

(select to_date(’06-04-’ || to_char(to_number(
to_char(BACT.effective_date,’YYYY’))

+ decode(sign(BACT.effective_date - to_date(’06-04-’
|| to_char(BACT.effective_date,’YYYY’),’DD-MM-YYYY’

)),-1,-1,0)),’DD-MM-YYYY’)
from dual)

and ASSACT.action_sequence <= BAL_ASSACT.action_sequen ce
and ASSACT.assignment_id = BAL_ASSACT.assignment_id’);

This example is the route for a UK based assignment level year to date balance that uses
the 6th of April as the start of the tax year.

Comments

The route is made up of the following parts:

Implementation Guide 2-163

1. Return all possible actions for the assignment

2. Identify the possible feeds to the balance

3. - feed checking

4. Restrict the period for which you sum the balance

- expiry checking

Note: The expiry and feed checking parts have a special significance
that will become obvious later.

Specific table aliases should be used as they have a particular meaning.

• The BAL_ASSACT table is the ‘source’ assignment action, that is, the current action
for this assignment.

• The ASSACT table is the ‘target’ assignment action, that is, the action for those
results that feed the balance.

• The PACT table is the ‘target’ payroll action, that is, used to define the date of the
ASSACT assignment actions.

• We join to the BACT table, getting all the Payroll Actions in which the assignment
appears.

• We join to the FEED table for the balance type and get all the TARGET input values
that could possibly feed this balance.

• The run results that feed must be processed (’P’ or ’PA’).

• The complicated looking sub-query returns the start of the current tax year, which is
from when we are summing the balance. That is, the results that feed the balance
will be between the start of the current tax year and the current action sequence.

Dimension Type

Dimension type determines how a balance is treated by the Payroll Run, and for
predefined dimensions this is optimized for performance of the payroll run.

The dimension type can take one of the following values:

• N - Not fed and not stored. This dimension type does not create a latest balance
at any time. A balance with this dimension will always have its SQL re-executed
whenever that balance is executed.

• F - Fed but not stored. This dimension type creates a balance ‘in memory’ during
the Payroll Run. This balance is fed by the run code but it does not store a latest
balance on the database.

• R - Run Level balance. This dimension type is used specifically for those balances
that total for the current run and must be used with the appropriate route. No latest
balance value is stored on the database.

• A - Fed and stored at assignment level. This dimension type creates an assignment
level latest balance and stores it in the PAY_ASSIGNMENT_LATEST_BALANCES
table.

• P - Fed and stored at person level. This dimension type creates a person level latest
balance and stores it in the PAY_PERSON_LATEST_BALANCES table.

2-164 Oracle US Federal Human Resources Implementation Guide

Feed Checking Type

The feed checking type controls the feed checking strategy used during the payroll
run. This type is used to keep the in memory balance up to date by deciding whether a
run result should feed the balance. It can have the following values:

• Null This is the default value, and means that all the run result values included by
the existing balance feeds will feed the balance.

• P Payroll Run executes the package procedure defined in the expiry_checking_code
column on the dimension. An expiry flag parameter indicates whether feeding
should occur or not.

• E Equality feed checking is done. That is, feeding occurs if there is a match between
the in memory balance context values and the contexts held in the UDCA (User
Defined Context Area).

The following additional types are for US and Canadian legislative balances only:

• J Jurisdiction checking is done.

• S Subject Feed Checking is done.

• T A combination of ’E’ and ’S’ feed checking types.

• M A combination of feed checking types ’S’, ’J’ and ’E’.

Expiry Checking Type

Latest balances should expire (that is, return to zero) at a time determined by their
dimension. For example, a YTD (Year to Date) balance expires at the end of the year.

All loaded balances are checked for expiry by the Payroll Run, according to their
expiry checking type:

• N - Never expires: balances are never set to zero.

• P - Payroll Action Level: for these types, a list of the expiry check results for each
owning action/balance dimension are kept.

Once expiry checking code has been called for such a combination, it does not
need to be checked again for other balances that have the same combination, thus
avoiding multiple calls to the database.

The expiry checking is balance context independent - the list of balance contexts is
not passed to the expiry checking code.

• A - Assignment Action Level: no assumptions can be made, expiry checking code is
always called. The expiry checking is balance context dependent - the list of the
balance contexts is passed to the expiry checking code.

• D - Date Expiry: the date expiry checking mechanism looks at the balance
dimension/balance contexts combination of the balance being expiry checked, and
scans the in-memory list to see if a balance with the same combination has already
been expiry checked.

If so, the expiry date is taken from that stored on the in-memory balance.

The expiry checking is balance context dependent-the list of the balance contexts
is passed to the expiry checking code.

Implementation Guide 2-165

Initial Balance Loading for Oracle Payroll

This essay describes the functionality available with Oracle Payroll to assist in the
loading of initial balance values from an existing payroll system.

Introduction

Whether you are implementing Oracle Payroll for the first time, or upgrading from an
earlier release you will need to set initial values for your legislative balances. It is
essential for the accurate calculation of legislated deductions in Oracle Payroll that the
initial values for these balances are correct.

This section shows you how to set up and load these initial balance values before you
begin to process payrolls. After you have begun processing payrolls you may need to
repeat this process for additional user balances you define in the future.

Warning: The steps you follow to load initial balances are completely
different from the steps an end user follows to adjust a balance. You
must not use the balance loading method to make balance adjustments.

Balances and Balance Adjustments in Oracle Payroll

In Oracle Payroll a balance is the accumulation of the results of a payroll calculation. The
balance has a name, feeds and dimensions. The results that feed a specific balance
are known as the ‘balance feeds’ and these can add or subtract from the total. The
balance loading process calculates and inserts the correct run results to set the initial
values with effect from the upload date.

Balances are calculated directly from the run results that are designated as feeding the
balance. This approach ensures run results and balance values are always in step and it
removes the need to store and maintain extra information in the database. In effect, the
definition of a balance is really the definition of the ‘calculation’ that is performed to
return the balance value.

The run results that feed a defined balance are usually the results of processing elements
during a payroll run. However, there may be times when balance values have to
be adjusted manually. You do this by making an entry of an element as a ‘balance
adjustment’. When you make a balance adjustment online, the effect is to create a single
processed run result for the element. This run result automatically feeds, or adjusts, all
the balances that are normally fed by the element. In this way, you are able to cascade
the adjustment to all affected balances.

Important: When performing an online balance adjustment you must
be careful to choose the right element and input value. However, if
you make a mistake you can always go back and delete and re-enter
the adjustment. You delete balance adjustments from the Payroll or
Assignment Actions windows.

Steps

There are three basic steps involved in loading initial balance values:

1. Define an element and input value to feed each specific balance

2. Set up the initial balance values in the tables

PAY_BALANCE_BATCH_HEADERS

PAY_BALANCE_BATCH_LINES

2-166 Oracle US Federal Human Resources Implementation Guide

3. Run the Initial Balance Upload process

• Use the SRS window.

• Use Validate, Transfer, Undo and Purge modes as needed.

Balance Loading Process

When you run the initial balance loading process you set values for each balance
relative to a specific date - the Upload Date. The process creates datetracked balance
entries, or ‘adjustments’, to ensure your legislative balances are correct from the upload
date. Maintenance of balance information after this date is managed by the system, or by
using the balance adjustments.

Consider the following example of three dimensions for gross pay balance values for
one employee.

• Gross Pay Ptd 1000.00

• Gross Pay Qtd 3250.00

• Gross Pay Ytd 6250.00

The balance loading process must calculate the actual values required for each entry
and the effective date for these entries. The result of the calculation is the creation of
3 balance entries.

• _PTD balance entry value is 1000.00

• _QTD balance entry value is 2250.00

• _YTD balance entry value is 3000.00

Balance Loading

The result is that the cumulative values of the individual entries match the initial
requirement for each balance.

• Gross Pay Ptd = 1000.00

• Gross Pay Qtd = 1000.00 + 2250.00 = 3250.00

• Gross Pay Ytd = 1000.00 + 2250.00 + 3000.00 = 6250.00

Latest Balances

To improve payroll run performance Oracle Payroll sets and maintains ’Latest Balance
Values’. If these values are not set, the balance value is created by summing the run

Implementation Guide 2-167

results for the balance. If a large number of assignments have no value then there could
be a significant impact on the first payroll run. Therefore, loading the latest balances
prior to the first payroll run has significant implications for performance.

Note: Some balances cannot have latest balances, such as those that are
used in-memory but not stored.

When you are deciding which balances and dimensions you should include in the initial
loading process, consider the balances that are used in the payroll run. For example, if
the payroll run uses the balance bal_YTD, but the upload process loads bal_PTD
only, then the latest balance value for bal_PTD exists but not for bal_YTD. The first
payroll run would have to evaluate bal_YTD.

In the normal payroll run the latest balance value is associated with the last assignment
action that uses the defined balance. The balance upload process attempts to simulate
this action by creating a number of balance adjustment entries prior to the upload date.

Important: If the defined balance includes contexts then the latest
balance can only be created on a balance adjustment payroll action
that has context values that do not contradict the latest balance that is
to be created.

In Oracle Payroll, each balance adjustment entry is considered to be a separate
assignment action. These adjustments are performed in date order - earliest first. The
last balance adjustment, with the highest assignment action number, is used to create
the latest balance.

Setting Up an Element to Feed Initial Balances

Because of the complex web of feeds that can exist for any specific balance there is a
simple mechanism to let you set the initial value for any specific balance. The basic
principle is that you require a special element input value to feed each specific balance;
and you set each balance separately.

Elements to Initialize Legislative Balances

Oracle Payroll comes with the predefined elements and input values you need to set
initial values for all your legislative balances.

Important: US and Canadian users should run a special PL/SQL script
(paybalup.pkb) to create the elements and inputs needed to feed the
predefined legislative balances. This script has been registered as an SRS
process - Initial Balance Structure Creation. You will need to create batch
lines for each of these elements.

Users in other legislations need only link the predefined elements that feed the legislative
balances that must be initialized.

Elements to Initialize User-defined Balances

For all other balances you need to set up the elements that will provide the entry
values for each of your initial balances. There are some rules for setting up elements
for initial balance feeds.

Element

• Must have a start date 01-JAN-0001

2-168 Oracle US Federal Human Resources Implementation Guide

This rule simplifies the validation by making sure that the element and input value
to feed the balance are always available.

• Must have a classification of ’Initial Balance Feed’

This classification is excluded from the list of classifications available when you
define a balance. You can only set up manual balance feeds for this type of element.

• Must be ‘Adjustment Only’

• Must be a nonrecurring type

• Must be processable in a payroll run

Input Values

• Must have a start date 01-JAN-0001

• Each input value must feed only one balance

If you need to set initial values for a large number of balances you can define multiple
input values for a single element with each input value feeding a different balance.

Element Link

• Must have a start date 01-JAN-0001

• Criteria must be only Link To All Payrolls - ’Yes’

Supported Balances

All the balances supported by the initialization process are set at the assignment
level. Balances at the person level are set indirectly by accumulating the values from all
the assignments.

Setting Up the Initial Balance Values

There can be many different sources for the initial balance value to be loaded. For
example, you may be migrating from a previous version of Oracle Payroll, or from
another payroll system, or you may hold this information in another system.

Two batch interface tables are supplied with Oracle HRMS to standardize the process of
loading the initial balance values. You can load information directly into these tables
and you can also review, update and insert values manually. This gives you total
flexibility for setting values. It also enables you to define and manage the loading of
separate batches as logical groups.

Implementation Guide 2-169

PAY_BALANCE_BATCH_HEADERS

Name Null? Type

BUSINESS_GROUP_ID NUMBER(15)

PAYROLL_ID NUMBER(9)

BATCH_ID NOT NULL NUMBER(9)

BATCH_NAME NOT NULL VARCHAR2(30)

BATCH_STATUS NOT NULL VARCHAR2(30)

UPLOAD_DATE NOT NULL DATE

BATCH_REFERENCE VARCHAR2(30)

BATCH_SOURCE VARCHAR2(30)

BUSINESS_GROUP_NAME VARCHAR2(60)

PAYROLL_NAME VARCHAR2(80)

Each batch identifies the payroll that is being uploaded and the date of the upload. Other
identifiers can be set to identify uniquely each batch as shown, for example, in the
following table.

Batch Name Batch Ref Batch Source Payroll Upload Date

Weekly Payroll 0001 SQL*Loader Pay1 01-Jan-1995

Weekly Payroll 0002 SQL*Loader Pay1 01-Jan-1995

Monthly Payroll 0003 SQL*Loader Pay2 01-Jan-1995

Semi Monthly
Payroll

0001 Screen Pay3 01-Aug-1995

2-170 Oracle US Federal Human Resources Implementation Guide

PAY_BALANCE_BATCH_LINES

Name Null? Type

ASSIGNMENT_ID NUMBER(10)

BALANCE_DIMENSION_ID NUMBER(9)

BALANCE_TYPE_ID NUMBER(9)

PAYROLL_ACTION_ID NUMBER(9)

BATCH_ID NOT NULL NUMBER(9)

BATCH_LINE_ID NOT NULL NUMBER(9)

BATCH_LINE_STATUS NOT NULL VARCHAR2(30)

VALUE NOT NULL NUMBER

ASSIGNMENT_NUMBER VARCHAR2(30)

BALANCE_NAME VARCHAR2(80)

DIMENSION_NAME VARCHAR2(80)

GRE_NAME VARCHAR2(60)

JURISDICTION_CODE VARCHAR2(30)

ORIGINAL_ENTRY_ID NUMBER(15)

Each batch has a set of batch lines that include details of the assignment, the balance and
the value for each dimension. You can also include other contexts for a specific balance.

Assignment Balance Dimension Value

101 Gross Pay PTD 1000.00

101 Gross Pay QTD 3250.00

101 Gross Pay YTD 6250.00

101-2 Gross Pay PTD 750.00

Note: The tables provide support for either a system ID (such as
assignment_id) or a user ID (such as assignment_number) for each
piece of information. This allows maximum flexibility when you are
populating the batch tables.

The rule is that if both are specified then the system ID overrides the
user ID. Here is a list of the system IDs and user IDs that can be specified
when setting up the tables:

Implementation Guide 2-171

System ID User ID

BUSINESS_GROUP_ID BUSINESS_GROUP_NAME

PAYROLL_ID PAYROLL_NAME

ASSIGNMENT_ID ASSIGNMENT_NUMBER

BALANCE_DIMENSION_ID DIMENSION_NAME

BALANCE_TYPE_ID BALANCE_NAME

ORIGINAL_ENTRY_ID

GRE_NAME (US and Canada only)

JURISDICTION_CODE (US and Canada only)

If an error occurs during the processing of the batch, the error message is written to the
PAY_MESSAGE_LINES table with a source_type of H (header) or L (line).

Running the Initial Balance Upload Process

You run the Initial Balance Upload process from the SRS window to upload values from
the batch tables. You can run this process in one of four modes:

• Validate

• Transfer

• Undo Transfer

• Purge

Prerequisites

On the upload date, every assignment in the batch must belong to the payroll identified
in the batch header.

The payroll must have a sufficient number of time periods prior to the upload date to
allow the setting of the initial balances.

Other specific criteria, such as the GRE or Legal Company, are not validated by the initial
balance loading process. It is your responsibility to validate this information.

Note: The validation process contains a predefined hook to enable
you to apply your own additional validation procedure to your own
balances. The procedure should be named validate_batch_line.

The process will check for valid data but will not set it.

Modes
Validate Mode

There is no validation of the batch tables prior to running this process. The process
validates data in PAY_BALANCE_BATCH_LINES, but does not transfer these to the

2-172 Oracle US Federal Human Resources Implementation Guide

Oracle HRMS database. It marks valid lines with V (Validated), and lines in error with E
(Error), and sends error messages to the PAY_MESSAGE_LINES table.

The validation process is split into two phases:

• The first phase checks the integrity of the data in the batch tables.

• The second phase checks that it is possible to create all the required balance
adjustment entries.

The validate process also populates the system ID entries in the table. This ensures that
all subsequent processing has access to the system IDs.

All batch lines are validated independently and are marked with their individual status
at the end of the process.

Transfer Mode

Transfer mode repeats the first phase of the validation check to ensure the integrity of the
data in the batch tables and the existence of all system IDs.

The process calculates the balance adjustment entries required for each assignment. This
list is checked and aggregated where values are shared and actual entries are then
created for the assignment. This is repeated for each assignment in the batch. Successful
transfer is marked with a status of T - Transferred.

Note: If any line for an assignment is in error, none of the lines for the
assignment are transferred into the HRMS database. Failures are logged
in the messages table against the batch line being processed and the
batch line is marked as I - Invalid.

If the value of the adjustment is zero then no entry is created. For example:

Balance_PTD = 500

Balance_QTD = 500

There is no need for an adjustment to the QTD dimension since the value is already set
by the PTD.

It is likely that there will be large volumes of data to load, so the work is periodically
committed to preserve successful work and to reduce the number of rollback segments
required.

Note: The commit size is specified by the CHUNK_SIZE parameter
in PAY_ACTION_PARAMETERS. The default for CHUNK_SIZE is 20
successful assignments.

This is the same parameter used by other payroll processes to determine
commit frequency.

If a batch has been processed with partial success, you can resubmit the batch and
only those assignments with batch lines that have not been Transferred are processed
again. You can also restart the batch process if it failed during processing, for example if
it ran out of tablespace.

Undo Transfer

This mode removes all the balance adjustment entries created by the transfer process and
return the status of the batch lines to U.

Implementation Guide 2-173

Note: The data in the batch tables is kept. You can correct any batch
lines with incorrect values and repeat the transfer.

Purge

Purges all data in a batch regardless of current status. When a batch is purged all the
messages, batch lines and the batch header are removed. This enables you to reclaim
space once a batch is successfully transferred.

Use Purge mode only when you are sure that the balances for all assignments in a batch
have been successfully entered into the HRMS database.

Warning: Once you have purged a batch, all the entries for that batch are
deleted. This action cannot be undone.

Process Flow

The normal sequence for using these modes to load initial balances is shown in the
following diagram:

Process Flow

Error Statuses

Any errors encountered are recorded in the messages table against the object being
validated: either the batch itself or an individual batch line. The status set against the
batch or batch lines is dependent on the mode the process is running in as well as
the status of other batch lines.

Batch Line Status

The status of each batch line can be one of the following :

• V - Valid; the batch line is OK

• E - Invalid; the batch line has an error

2-174 Oracle US Federal Human Resources Implementation Guide

• T - Transferred; the batch line has been successfully transferred

Batch Status

The status of the batch is dependent on the statuses of the batch lines within the batch:

• T - Transferred; all lines in the batch have been transferred

• P - Partially Transferred; some lines in the batch have been transferred

• V - Valid; all the lines in the batch are valid and none have been transferred

• E - Invalid; some of the lines in the batch are invalid and none have been transferred

Validation Problems

There are two common problems you should check.

The adjustment request for a balance dimension may be incorrect. For example, suppose
an assignment has the following upload requests:

• <Balance>_QTD = 1500.00

• <Balance>_YTD = 1000.00

The YTD value is lower than the QTD value. This may be valid, if the balance decreases
over time. However, balances normally increase so it is advisable to check a balance
that has been decreased.

Secondly, an invalid adjustment error may occur, where the process could not find
the correct date to do the adjustment. The cause of this error depend on the balance
dimension that is being processed.

However, it is always good practice to make sure that all the business group details are
correct, and there are enough payroll periods for the balance to be set. To check which
date is being used for each assignment balance, use the following SQL:

select BL.dimension_name,
pay_balance_upload.dim_expiry_date
(BH.business_group_id
,BH.upload_date
,BL.dimension_name
,BL.assignment_id
,BL.gre_name
,BL.jurisdiction_code
,BL.original_entry_id) expiry_date
from pay_balance_batch_headers BH
,pay_balance_batch_lines BL
where BH.batch_name = ’&Batch_Name’
and BL.batch_id = BH.batch_id
and BL.assignment_number = ’&Assignment_Number’
and BL.balance_name = ’&Balance_Name’
;

If the expiry date is set to ’31-DEC-4712’ then the adjustment date could not be found.

Balance Initialization Steps

Here’s a simple check list on how to set up the data:

1. Create payrolls in Oracle Payroll with periods going back to the start of the
year. Enter all employees into Oracle HRMS and give them assignments to these
payrolls.

Implementation Guide 2-175

Important: The next step applies to US and Canadian users
only. Users in other legislations need only define links for the
predefined balance loading elements.

2. From the Submit Requests window, run the Initial Balance Structure Creation
process, selecting a batch name as the parameter. For each batch, this process creates:

• An input value to hold the amount of each balance and of any context, and
enough elements with the special classification Balance Initialization to hold
all the input values created

• The necessary links and balance feeds for these elements

3. Create any other elements you need to initialize balances for your own earnings
and deductions.

• Follow the requirements listed above. See: Setting Up an Element to Feed
Initial Balances, page 2-168.

• Use multiple input values to reduce the number of elements

• Define one balance feed for each input value

Note: Each balance must have one initial balance feed only.

Multiple input values for one element must feed balances that
have the same ’upload date’.

4. Group employees into batches for managing initialization of their
balances. Enter an identifying header for each batch (these headers go into the
PAY_BALANCE_BATCH_HEADERS table). Each header contains the following
information:

• Business Group name and payroll name

• Batch name and ID number

• Upload date: the date on which the balances in the current system will be
correct and ready for transfer

For example:

Batch Name Business Group Payroll Name Upload Date

Upload 1 BG name Full Time 1 13-AUG-1995

5. Create a batch line for each balance to be transferred (these lines go into the
PAY_BALANCE_BATCH_LINES table). A batch line includes the following
information:

• Employee assignment number

• Balance name and dimension, such as quarter to date or year to date

• Balance value

• Balance context where appropriate. For US and Canadian users the context may
include a GRE and a jurisdiction (federal, state, local, or provincial).

Note: The process uses your balance feed definitions to determine
which element input value to use.

2-176 Oracle US Federal Human Resources Implementation Guide

• For example:

Asg. Number Balance Dimension Value

60001 Salary PTD 700
60001 Salary QTD 1400
60001 Salary YTD 2400
60001 Tax Paid PTD 2200
60001 Tax Paid QTD 2400
60001 Tax Paid YTD 2400

Important: The Tax Paid YTD value is not required because it has
the same value as the QTD. However, this balance is included to
create a value for the latest balance, and improve the performance
of the first payroll run.

6. From the Submit Requests window, run the Initial Balance Upload process. Select
the mode in which to run this process as a parameter. Available modes are:

• Validate

Validate batch lines but do not transfer

Send error messages to PAY_MESSAGE_LINES

• Transfer

Validate and transfer batch lines

If any line for an assignment is in error, none of the lines for the assignment
are transferred

• Undo

Removes balance initialization entries from the database and marks the lines as
U in the batch lines table.

• Purge

Purges all lines in the batch lines table, regardless of how they are marked.

Note: Use Purge mode only when you are sure that the balances
for all assignments in a batch have been successfully entered
into the HRMS database.

Including Balance Values in Reports

This section describes the PL/SQL interface for the balance function that enables you
to access balance values for inquiry and reporting tools.

UK users - see: Including Balance Values in Reports (UK Only), Oracle HRMS
Implementation Guide (UK)

Tip: If you need to report the same balance value many times in
different reports you might consider creating a reporting table. You
would simply include the balance function in your PL/SQL script to
populate this table.

Implementation Guide 2-177

Advantages

Using this PL/SQL function to retrieve balance values has several advantages:

• You can easily call the function from a form or SRW2 report.

• You can access latest balance values, where they exist. This will optimize
performance automatically.

The Balance Function

The interface to the balance function is flexible and easy to use. Hard coded knowledge
of contexts within the function are kept to a minimum and the balance function is
controlled as follows:

• Before the function is called, calls are made to another PL/SQL function to set up the
contexts to be used. These are held in package level PL/SQL tables. This enables
the balance function to operate without hard coded knowledge of the contexts, and
reduces client-server calls for several balances.

• The ’C’ balance user exit works in two modes: date and assignment action. The
balance function does not pass a mode parameter; instead the mode is resolved by
using the PL/SQL overloading feature. This simplifies the interface.

The PL/SQL code resides in one package.

pay_balance_pkg

Procedure : Initialize the contexts:
procedure set_context (p_context_name in varchar2, p_con text_val
ue in varchar2);

For example:

pay_balance_pkg.set_context (’TAX_UNIT_ID’, p_tax_uni t_id);

This is called to set up ALL contexts required for a balance, with the exclusion
of assignment action id. Context values are maintained throughout the entire
session. Subsequent calls with the same context name update the value.

Note: The context name can be specified in any case. The routine
converts all context names to upper case.

Function : Get balance value (Assignment action mode):
function get_value (p_defined_balance_id in number,
p_assignment_action_id in number,
p_always_get_db_item in boolean default false)
return number;
Function : Get balance value (Date mode):
function get_value (p_defined_balance_id in number,
p_assignment_id in number,
p_virtual_date in date,
p_always_get_db_item in boolean default false)
return number;

The balance value is returned by this function. The parameters required for the function
have been kept to a minimum. Legislation code and business group id are derived by the
PL/SQL function when the balance SQL has to be built up from ff_routes.

Note: If the balance uses business_group_id as a context then this must
be set up using the set_context routine.

2-178 Oracle US Federal Human Resources Implementation Guide

The parameter ’p_always_get_db_item’ can be ignored. It is used for
testing purposes. If this value is set to ’true’ then the function will not
even look for a latest balance value, and will always derive the balance
from the database item.

Example

This example shows how to access parameterized balances supporting jurisdiction- and
GRE-based taxation (US and Canada specific).

In the UK, with the exception of court orders, no use is made of parameterized balances.

Note: For balances that are not parameterized, no calls to
pay_balance_pkg.set_context are necessary.

1. Set up the contexts

pay_balance_pkg.set_context (’TAX_UNIT_ID’, 1);
pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’01 -123-4567’);

2. Retrieve the balance value

bal_value := pay_balance_pkg.get_value (p_def_balance_ id, p_asg_a
ction_id);

3. Retrieve the balance for a different jurisdiction code but using
the same value for tax unit id

pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’99 -999-1234’);
bal_value := pay_balance_pkg.get_value (p_def_balance_ id, p_asg_ac
tion_id);

FastFormula

The FastFormula Application Dictionary

The FastFormula Application Dictionary is designed to hide the complexity of the
application database from the FastFormula user. When you write a formula, you
reference database items. The Dictionary contains the information that FastFormula
requires to generate the SQL and PL/SQL error checking code that extracts these
database items.

For example, in a formula you might refer to the database item
EMPLOYEE_LAST_NAME. When the formula is run, FastFormula uses information
in the Dictionary to build up a complete SELECT statement to extract the name from
the database.

Normally, you do not need to be aware of the contents of the Dictionary. For
example, when you define a new element, several database items are generated
automatically. The information that enables FastFormula to extract these new items
is generated at the same time.

However, if you do need to define new database items directly in the Dictionary, you
must also load the associated information. The next section describes the entities that
you must create in the Dictionary. The following section gives step-by-step instructions
for defining new database items.

Implementation Guide 2-179

Entities in the Dictionary

Suppose FastFormula is running a formula that references the database item
EMPLOYEE_LAST_NAME from the table PER_PEOPLE. The SQL required to extract
EMPLOYEE_LAST_NAME is as follows:

SELECT TARGET.last_name
FROM per_people TARGET
, per_assignments ASSIGN
WHERE TARGET.person_id = ASSIGN.person_id
AND ASSIGN.assignment_id = &B1

This section explains where this information is stored in the Dictionary and how
FastFormula builds it up to form the SQL statement.

Note that the Dictionary stores information at the physical level. That is, it stores parts of
the text of SQL statements, which are used by FastFormula to build up the complete
statements. It does not store information about entities and relationships.

Database Items and User Entities

EMPLOYEE_LAST_NAME is a value in the USER_NAME column of table
FF_DATABASE_ITEMS in the Dictionary. When FastFormula runs a formula in which
EMPLOYEE_LAST_NAME is a variable, it accesses this table for two reasons:

• It gets the value in the DEFINITION_TEXT column. This is the value
that appears in the SELECT clause of the SQL. In our example, it is
PER_PEOPLE.LAST_NAME. (TARGET is an alias for PER_PEOPLE.)

• It identifies the user entity of which the database item is a part. A user entity is a
group of one or more database items that can be accessed by the same route. In our
example, the user entity might be EMPLOYEE_DETAILS.

Routes and Route Parameters

Using the user entity ID, FastFormula checks the table FF_USER_ENTITIES to identify
the route associated with the user entity. The route is the text of the SQL statement
following the FROM keyword. It is held in the table FF_ROUTES. In our example, the
route is:

per_people TARGET,
per_assignments ASSIGN
WHERE TARGET.person_id = ASSIGN.person_id
AND ASSIGN.assignment_id = &B1

If several user entities use the same route, the route contains one or more placeholders
of the form &U# (where # is a sequence number). Each placeholder references a
parameter in table FF_ROUTE_PARAMETERS. FastFormula identifies the parameter
ID from this table.

The values of the parameters are different for each user entity. Using the parameter
ID, FastFormula accesses the value of the parameter for the relevant user entity in
table FF_ROUTE_PARAMETER_VALUES. Since each user entity has a different set of
parameter values, the text of the route is different for each user entity.

In our example, only one user entity uses the route so there are no route parameters.

Contexts and Route Context Usage

The route may contain another type of placeholder of the form &B# (where
is a sequence number). These placeholders reference contexts in the table
FF_ROUTE_CONTEXT_USAGES. FastFormula identifies the ID of the context from

2-180 Oracle US Federal Human Resources Implementation Guide

this table, and then the name of the context from table FF_CONTEXTS. Contexts are
predefined in FF_CONTEXTS and you should not change them. Examples are Payroll
ID, Organization ID, and Date Earned.

The value of the context is not fixed. It is passed through by the formula at run time.

In our example, the route requires one context, which is Assignment ID.

Formula Types and Formula Type Context Usage

When you define a formula, you assign it to a formula type, such as Payroll formulas
or QuickPaint formulas. The type of the formula determines the contexts for which it
provides values. This is defined in table FF_FTYPE_CONTEXT_USAGES.

For example, a QuickPaint formula feeds through values for the contexts Assignment ID
and Date Earned. Thus, when you define a QuickPaint formula, you can use database
items that require the contexts Assignment ID and Date Earned. However, any database
items that use the other contexts in their routes are not available to you. They do not
appear in the list of values.

This is a mechanism to restrict the database items that a formula can use. It can only use
database items that are appropriate to the formula context.

It follows that if a database item is based on a route that does not require any contexts
(for example, a SELECT from DUAL), then every formula type in the system is able to
access the database item.

Summary of How FastFormula Uses the Dictionary

1. FastFormula gets the value in the DEFINITION_TEXT column of FF_DATABASE
ITEMS and puts it in the SELECT clause of the SQL.

2. It gets the user entity ID from FF_DATABASE ITEMS and uses it to get the route
ID from FF_USER_ENTITIES.

3. It uses the route ID to get the route text from FF_ROUTES and puts it in the FROM
clause of the SQL.

4. If the route contains a placeholder of the form &U#, FastFormula accesses
FF_ROUTE_PARAMETERS to identify the parameter ID. Then it uses the
parameter ID to get the value of the parameter for the relevant user entity in table
FF_ROUTE_PARAMETER_VALUES.

5. If the route contains a placeholder of the form &B#, FastFormula accesses
FF_ROUTE_CONTEXT_USAGES to identify the context ID. Then it uses the context
ID to get the name of the context in table FF_CONTEXTS. This must be one of the
contexts for which the formula passes through values (determined by the formula
type in table FF_FTYPE_CONTEXT_USAGES).

Defining New Database Items

Before defining new items, you should consider the following issues:

• To which business group and legislation should the database item be available?

• Can the database item have a null value? Can it be non-existent?

Availability of Database Items

The two attributes Business Group ID and Legislation Code are associated with each
user entity. These attributes determine the availability of the database items belonging
to the user entity. If the Business Group ID is set to a particular value, then only
formulas operating under that business group can ’see’ the database item. If the Business

Implementation Guide 2-181

Group ID is set to null, the database item can be ’seen’ by all business groups. The
same principle applies to Legislation Code.

New database items that you define must be associated with a specific business code
and legislation. Generic startup items supplied as part of the core system are available
to all formulas. Your localization group has added legislation-specific items that are
available to all business groups under that legislation.

Note: The name of the database item must be unique within a business
group.

Null & Not Found Conditions

To enable validation, you must define two flags in the FastFormula Application
Dictionary:

• The NULL_ALLOWED_FLAG is a column on the table FF_DATABASE_ITEMS, and
hence applies to each database item. If the SQL statement to extract the database
item may return a null value, you must set this flag to yes (Y). If you set the flag to
no and a null value is returned, FastFormula will report an error.

• The NOTFOUND_ALLOWED_FLAG is a column on the table
FF_USER_ENTITIES, and hence applies to all the database items belonging to a
particular user entity. If the SQL statement to extract database items may return no
rows for any of the items, you must set this flag to yes (’Y’). If you set the flag to no
and the SQL statement fails to return a row, FastFormula will report an error.

The formula writer must provide a default for a database item used in a formula, unless
both of these flags are set to no. For more information on defaults, refer to the guide
Using Oracle FastFormula.

Steps To Generate A Database Item

To illustrate the steps to generate database items, we will use the example of a user entity
called GRADE_RATE_USER_ENTITY, which comprises three database items:

• GRADE_VALUE

• GRADE_MINIMUM

• GRADE_MAXIMUM

This user entity may share its route (GRADE_ROUTE) with other user entities. Each
user entity uses a unique value for the route parameter RATE_ID, so that the WHERE
clause for each entity is different. If the entities are in the same business group, the
USER_NAME of each database item must be unique. One way to achieve this is to include
the rate name in the USER_NAME; for example: <RATE_NAME>_GRADE_VALUE.

In this example, we suppose that the value of RATE_ID for GRADE_RATE_USER_ENT
ITY is 50012. For simplicity we consider only one user entity for the route.

The three database items are stored in table PAY_GRADE_RULES. To extract these
items, FastFormula uses an assignment ID passed by the formula. This is the formula
context.

This is the SQL required to extract these database items:

2-182 Oracle US Federal Human Resources Implementation Guide

SELECT <DEFINITION_TEXT>
FROM pay_grade_rules TARGET
, per_assignments ASSIGN
WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_i d
AND TARGET.rate_type = ’G’
AND ASSIGN.assignment_id = &B1
AND TARGET.rate_id = &U1

<DEFINITION_TEXT> may be one of the three database items listed below:

Database Item Name <DEFINITION_TEXT>

GRADE_VALUE TARGET.value

GRADE_MINIMUM TARGET.minimum

GRADE_MAXIMUM TARGET.maximum

The following steps describe how to load the information into the Dictionary so that
FastFormula can generate this SQL. An example of PL/SQL that loads the information is
given at the end of this section.

1. Write the SQL

Write and test the SQL statement using SQL*Plus to ensure that the statement is
correct. The SQL statement must not return more than one row because FastFormula
cannot process multiple rows.

2. Load the Route

This is best done using a PL/SQL routine. Wherever possible, use the sequence
value for the primary keys (such as FF_ROUTES_S.NEXTVAL) to populate the
table. The route is held in the table FF_ROUTES as a ’long’ data type. So, using the
example above, you could assign the route to a long variable as follows:

set escape \
DECLARE

l_text long;
BEGIN

l_text := ’/ * route for grade rates */
pay_grade_rules TARGET,
per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id
AND TARGET.rate_type = ’’G’’
AND ASSIGN.assignment_id = \&B1
AND TARGET.rate_id = \&U1’;
END;

Note the following changes from the original SQL that was given earlier:

• Each ’&’ is preceded with the escape character.

• The single quote mark is replaced with two single quote marks.

• A comment may be placed at the start of the route if required.

3. Load the Contexts

Implementation Guide 2-183

The next step is to load the contexts into the table FF_ROUTE_CONTEXT_USAGES.
The columns in this table are as follows:

Name Null? Type

ROUTE_ID NOT NULL NUMBER(9)

CONTEXT_ID NOT NULL NUMBER(9)

SEQUENCE_NO NOT NULL NUMBER(9)

Use the current sequence number for the route ID. This is FF_ROUTES_S.CURRVAL
if you used the sequence FF_ROUTES_S.NEXTVAL to populate the table
FF_ROUTES. You can obtain the context ID for the particular formula context
(assignment ID in our example) from the table FF_CONTEXTS. The sequence
number is simply the ’B’ number.

For the example, you would insert one row for the route into the table
FF_ROUTE_CONTEXT_USAGES (see the PL/SQL for the example, at the end
of this section).

4. Insert Rows in the User Entity Table

For each route, insert at least one row in the table FF_USER_ENTITIES. This
table holds the Business Group ID, Legislation Code, the ROUTE_ID, and the
NOTFOUND_ALLOWED_FLAG.

5. Insert Rows for Route Parameters

For each placeholder of the form &U# in the route, you must insert a row into
two tables:

• FF_ROUTE_PARAMETERS, which references the route, and

• FF_ROUTE_PARAMETER_VALUES, which contains the actual value for the
route parameter, and references the user entity.

The columns in these tables are as follows:

SQL> desc ff_route_parameters

Name Null? Type

ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

ROUTE_ID NOT NULL NUMBER(9)

DATA_TYPE NOT NULL VARCHAR2(1)

PARAMETER_NAME NOT NULL VARCHAR2(80)

SEQUENCE_NO NOT NULL NUMBER(9)

SQL> desc ff_route_parameter_values

2-184 Oracle US Federal Human Resources Implementation Guide

Name Null? Type

ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

USER_ENTITY_ID NOT NULL NUMBER(9)

VALUE NOT NULL VARCHAR2(80)

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER(15)

LAST_UPDATE_LOGIN NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

The data type held in FF_ROUTE_PARAMETERS is either a number (N) or a text
value (T).

In our example, the route parameter is RATE_ID. For GRADE_RATE_USER_ENT
ITY, its value is 50012. The values you would insert into these tables for the example
are shown in the sample PL/SQL at the end of this section.

6. Insert the Database Item

You can now insert the database items. For our example, there are three rows in
the table FF_DATABASE_ITEMS that refer to the same user entity. The columns in
this table are as follows:

SQL> desc ff_database_items

Name Null? Type

USER_NAME NOT NULL VARCHAR2(80)

USER_ENTITY_ID NOT NULL NUMBER(9)

DATA_TYPE NOT NULL VARCHAR2(1)

DEFINITION_TEXT NOT NULL VARCHAR2(240)

NULL_ALLOWED_FLAG NOT NULL VARCHAR2(1)

DESCRIPTION VARCHAR2(240)

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER(15)

LAST_UPDATE_LOGIN NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

Implementation Guide 2-185

The USER_NAME must be unique within the business group.

The values you would insert into this table for the three example database items are
shown in the sample PL/SQL at the end of this section.

When you create the database items, it is useful to populate the other columns, such
as LAST_UPDATE_DATE, and CREATION_DATE.

Example

The following PL/SQL creates the database items in the example::

set escape \
DECLARE

l_text long;
l_user_entities_seq number;
l_route_id number;

BEGIN
--
-- assign the route to a local variable
--

l_text := ’/* route for grade rates */
pay_grade_rules TARGET,
per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_i d
AND TARGET.rate_type = ’’G’’
AND ASSIGN.assignment_id = \&B1
AND TARGET.rate_id = \&U1’;
--
-- insert the route into the table ff_routes
--
insert into ff_routes

(route_id,
route_name,
user_defined_flag,
description,
text,
last_update_date,
creation_date)

values (ff_routes_s.nextval,
’GRADE_ROUTE’,
’Y’,
’Route for grade rates’,
l_text,
sysdate,
sysdate);

--
-- load the context
--
insert into ff_route_context_usages

(route_id,
context_id,
sequence_no)

select ff_routes_s.currval,
context_id,
1

from ff_contexts
where context_name = ’ASSIGNMENT_ID’;
--

2-186 Oracle US Federal Human Resources Implementation Guide

-- create a user entity
--
select ff_user_entities_s.nextval
into l_user_entities_seq
from dual;
--
select ff_routes_s.currval
into l_route_id
from dual;
--
insert into ff_user_entities

(user_entity_id,
business_group_id,
legislation_code,
route_id,
notfound_allowed_flag,
user_entity_name,
creator_id,
creator_type,
entity_description,
last_update_date,
creation_date)

values (l_user_entities_seq,
1, -- example business group id
’GB’, -- example legislation
l_route_id,
’Y’,
’GRADE_RATE_USER_ENTITY’,
50012, -- example creator id
’CUST’,
’Entity for the Grade Rates’,
sysdate,
sysdate);

--
-- insert the route parameters
--
insert into ff_route_parameters

(route_parameter_id,
route_id,
data_type,
parameter_name,
sequence_no)

select ff_route_parameters_s.nextval,
l_route_id,
’N’,
’Grade Rate ID’,
1

from dual;
--
insert into ff_route_parameter_values

(route_parameter_id,
user_entity_id,
value,
last_update_date,
creation_date)

select ff_route_parameters_s.currval,
l_user_entities_seq,
50012,

Implementation Guide 2-187

sysdate,
sysdate

from dual;
--
-- insert the three database items
--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_VALUE’,
l_user_entities_seq,
’T’,
’TARGET.value’,
’Y’,
’Actual value of the Grade Rate’,
sysdate,
sysdate);

--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_MINIMUM’,
l_user_entities_seq,
’T’,
’TARGET.minimum’,
’Y’,
’Minimum value of the Grade Rate’,
sysdate,
sysdate);

2-188 Oracle US Federal Human Resources Implementation Guide

--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_MAXIMUM’,
l_user_entities_seq,
’T’,
’TARGET.maximum’,
’Y’,
’Maximum value of the Grade Rate’,
sysdate,
sysdate);

END;
/

Calling FastFormula from PL/SQL

Oracle FastFormula provides an easy to use tool for professional users. Using simple
commands and syntax, users can write their own validation rules or payroll calculations.

Until R11 the execution engine for calling formulas and dealing with the outputs has
been hidden within the Oracle HR and Payroll products. The original engine for calling
PL/SQL was written in Pro*C. It is complex and can be called only from user exits or
directly from another ’C’ interface.

Now, there is a new execution engine or interface that lets you call formulas directly
from Forms, Reports or other PL/SQL packages. This interface means that you can call
existing validation or payroll formulas and include them in online or batch processes. It
also means that you can define and call your own formulas for other types of validation
and calculation. With FastFormula you automatically have access to the database items
(DBIs) and functions of Oracle HRMS and you automatically have calculations and
business rules that are datetracked.

The basic concepts of FastFormula remain the same as before:

Inputs -> Process -> Outputs

As you now have complete freedom to decide the inputs you provide and what happens
to the outputs produced by a formula you must write the calling code to handle both
inputs and outputs.

For optimal performance when calling FastFormula from PLSQL, generate the Formula
Wrapper after compiling the formula. You can execute a formula even if you did not
compile it before you generated the Formula Wrapper. The Bulk Compile Formulas
process automatically generates the Formula Wrapper.

Generate the Formula Wrapper only when necessary. The Formula Wrapper generates
a PLSQL package body, and the generation process may cause runtime errors in
FastFormula calls that occur at the same time. You do not need to generate the Formula
Wrapper when you test formulas.

Implementation Guide 2-189

This essay provides an overview and technical details to show you how to call
FastFormula from PL/SQL. You should be familiar with PL/SQL coding techniques and
with Oracle FastFormula but you will not need to understand the internal working of
the execution engine.

The Execution Engine Interface

There are two interfaces to the execution engine for FastFormula.

• Server-side

Use this interface for any formulas to be executed by batch processes or on the
server. See: Server Side Interface, page 2-191

• Client-side

Use this interface only when a direct call is required from forms and reports to
execute a formula immediately. You could also write a custom ’wrapper’ package to
call the server engine from the client. See: Client Side Call Interface, page 2-196

Note: Some Oracle tools currently use PL/SQL V1.x only. This version
does not support the table of records data structure needed by the
server interface. The client-side version was written to get around
this current limitation.

Location of the Files

The execution engine files are stored in $FF_TOP/admin/sql

• ffexec.pkh and ffexec.pkb

Server side execution engine package header and body files.

• ffcxeng.pkh and ffcxeng.pkb

Client side versions of execution engine package header and body files.

Note: There is a special interface in the ff_client_engine module that is
designed specifically for the forms client. This interface avoids the
overhead of a large number of network calls using a fixed number of
parameters. See: Special Forms Call Interface, page 2-200

Datetracked Formulas

All formulas in Oracle HRMS products are datetracked, enabling you to use DateTrack
to maintain a history of changes to your validation rules or calculations.

In the predefined interfaces to the execution engine the system automatically manages
the setting or changing of the effective date. When you execute your own formulas you
must also manage the setting of the effective date for the session. This means that
before calling any of the execution engine interfaces you may need to insert a row into
the FND_SESSIONS table. This is required if there is no row in FND_SESSIONS for the
current SQL*PLUS session_id or the formula or formulas to be executed access database
items that reference datetracked tables.

Important: Always check the effective date for the formula to be
executed. This date affects the values of the database items and any
functions that you include in the formula.

2-190 Oracle US Federal Human Resources Implementation Guide

Changes in R11i

Server Side and Client Side Interfaces

In R11i the client side interfaces are provided for backwards compatibility. The client
side PL/SQL environments used with R11i are able to use the server side interface.

NUMBER and DATE Inputs and Outputs

Input values must be passed in as strings in the correct formats. In R11i, use the
routine FND_NUMBER.NUMBER_TO_CANONICAL to format NUMBER inputs. Use
FND_DATE.DATE_TO_CANONICAL to format DATE inputs.

Output values are passed back as strings formatted as described above. To convert a
NUMBER output to a NUMBER value, use the routine FND_NUMBER.CANONICAL_
TO_NUMBER. Use FND_DATE.CANONICAL_TO_DATE to convert DATE outputs
to DATE values.

For forms code, using the corresponding routines from the APP_NUMBER and
APP_DATE packages may result in improved performance.

This set of changes applies to all the interfaces to the FastFormula execution engine.

DATE_EARNED and BALANCE_DATE Contexts

In R11i, the datatype of DATE_EARNED and BALANCE_DATE contexts is DATE. Prior
to R11i, these contexts had a datatype of TEXT.

Server Side Interface

This section describes the interface to the server execution engine and how to call
the module from other PL/SQL.

This version of the interface is preferred. It combines maximum flexibility with relatively
low network demands. However, it can only be used with PL/SQL V2.3 and above as it
requires support for the table of records data structure.

User Data Structures

There are two important user data structures when you use the server side
interface. These are the inputs table and the outputs table:

Inputs Table

Name Description

NAME The input name, such as RATE, or
ASSIGNMENT_ID

DATATYPE Can be DATE, NUMBER, or TEXT

CLASS The type of input : CONTEXT or INPUT

This field is not required, as it is not necessary
to know if an input is a context or a normal
input value to call the formula correctly.

VALUE The actual value to pass to the formula as a
Context or an Input.

This field is a type of varchar2(240). This
means that for NUMBER and DATE datatypes
the value passed in has to be in the appropriate
format. See the example code for how this
works.

Implementation Guide 2-191

Outputs Table

Name Description

NAME The output name, such as RESULT1, or
MESSAGE

DATATYPE Can be DATE, NUMBER, or TEXT

VALUE The actual value returned from the formula

Note: The names of all inputs and outputs must be in upper case
and the same name can appear in both the inputs and the outputs
tables, for example where an input value is also a return value from the
formula. However, a CONTEXT can only appear in the inputs table.

Both inputs and outputs tables are initialized by a call to the ff_exec.init_formula
procedure and then contain details of all the inputs, including contexts that are needed
to execute the formula and all the outputs that will be returned.

You are responsible for holding these tables between the initialization and execution calls.

Important: Although the index values for these tables are positive in
value, the caller should not assume that they start at 1. Always use the
"first" and "last" table attributes when accessing and looping through
these tables. See also: Examples, page 2-193.

Available Calls

The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out or in/out).

Procedure : init_formula

This call initializes the execution engine for a specific formula. That is, it declares to
the engine that a formula is about to be run. It must be called before a formula is
executed, but that formula can then be executed as many times as desired without
having to call the initialization procedure again. This will be understood from the
examples further on.

Table of parameters to init_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective date to execute

p_inputs ff_exec.inputs_t Input variable information

p_outputs ff_exec.outputs_t Output variable information

2-192 Oracle US Federal Human Resources Implementation Guide

Procedure : run_formula

This call actually executes the formula, taking inputs as specified and returning any
results from the formula. The init_formula procedure must have been called before this
is used (see examples).

Table of parameters to run_formula

Parameter Name Data Type Comments

p_inputs ff_exec.inputs_t Inputs to the formula

p_outputs ff_exec.outputs_t Outputs from the formula

p_use_dbi_cache boolean If TRUE, the database item
cache will be active during
execution, else will not.
Defaults to TRUE

Further Comments

The p_inputs and p_outputs parameters could be NULL if the formula does not have
any inputs and/or outputs (although the latter is rather unlikely).

The p_use_dbi_cache would only be set to FALSE under unusual circumstances requiring
the disabling of the cacheing of database item values. This might be required if the
engine is called from code that would invalidate the values for fetched database items.

For instance, if the database item ASG_STATUS was accessed from within a formula
used in business rule validation used in turn to alter the Assignment’s status, we might
want to disable the Database Item cache in case we attempted to read that database
item in a subsequent formula.

Examples

The following examples assume we are going to execute the following formula. Note
that the DATABASE_ITEM requires an ASSIGNMENT_ID context.

The formula itself does not represent anything meaningful, it is for illustration only.

inputs are input1, input2 (date), input3 (text)

dbi = DATA BASE_ITEM

ret1 = input1 * 2

return ret1, input2, input3

The following anonymous block of PL/SQL could be used to execute the formula. In this
case, it is called a number of times, to show how we can execute many times having
initialized the formula once.

declare

l_input1 number;

l_input2 date;

l_input3 va rchar2(80);

Implementation Guide 2-193

l_assignment_id number;

l_formula_id number;

l_effective_date date;

l_inputs ff_exec.inputs_t;

l_outputs ff_exec.outputs_t;

l_loop_cnt number;

l_in_cnt number;

l_out_cnt number;

begin

-- Set up some the values we will need to exec formula.

l_formula_id := 100;

l_effective_date := to_date(’06-05-1997’, ’DD-MM-YYYY’);

l_input1 := 1000.1;

l_input2 := to_date(’01-01-1990’, ’dd-mm-yyyy’);

l_input3 := ’INPUT TEXT’;

l_assignment_id := 400;

-- Insert FND_SESSIONS row.

insert into fnd_sessions (

session_id,

effective_date)

values (userenv(‘sessionid’),

l_effective_date);

-- Initialise the formula.

ff_exec.init_formula(l_formula_id, l_effective_date, l_inputs,

l_outputs);

-- We are now in a position to execute the formula.

-- Notice that we are illustrating here that the formula can

-- be executed a number of times, in this case setting a new

-- input value for input1 each time.

2-194 Oracle US Federal Human Resources Implementation Guide

for l_loop_cnt in 1..10 loop

-- The input and output table have been initialized. We now
have

-- to set up the values for the inputs required. This includ
es

-- those for the ’inputs are’ statement and any contexts.

for l_in_cnt in l_inputs.first..l_inputs.last loop

if(l_inputs(l_in_cnt).name = ’INPUT1’) then

-- Deal with input1 value.

l_inputs(l_in_cnt).value := fnd_number.number_to_cano nica
l(l_input1);

elsif(l_inputs(l_in_cnt).name = ’INPUT2’) then

-- Deal with input2 value.

l_inputs(l_in_cnt).value := fnd_date.date_to_canonica l(l_
input2);

elsif(l_inputs(l_in_cnt).name = ’INPUT3’) then

-- Deal with input3 value.

l_inputs(l_in_cnt).value := l_input3;

-- no conversion required.

elsif(l_inputs(l_in_cnt).name = ’ASSIGNMENT_ID’) then

-- Deal with the ASSIGNMENT_ID context value.

l_inputs(l_in_cnt).value := l_assignment_id;

end if;

end loop;

ff_exec.run_formula(l_inputs, l_outputs);

-- Now we have executed the formula. We are able

-- to display the results.

for l_out_cnt in l_outputs.first..l_outputs.last loop

hr_utility.trace(’output name : ’ || l_outputs(l_out_cn
t).name);

hr_utility.trace(’output datatype : ’ || l_outputs(l_out _cn
t).datatype);

Implementation Guide 2-195

hr_utility.trace(’output value : ’ || l_outputs(l_out_cn
t).value);

end loop;

end loop;

-- We can now continue to call as many formulas as we like,

-- always remembering to begin with a ff_exec.init_formula call
.

-- Note: There is no procedure to be called to

-- shut down the execution engine.

end;

/

As noted earlier, if you are attempting to call the execution engine from a client that is
not running the appropriate version of PL/SQL, it will be necessary to create a package
that ’covers’ calls to the engine or consider calling the client engine, specified below.

Client Side Call Interface

This section attempts to describe in detail the interface to the client execution engine
from a user perspective, and how to call the module from other PL/SQL.

Note: These client side calls are designed to avoid any use of
overloading, which causes problems when procedures are called
from forms.

When Should I Use This Interface?

This interface can be used when the version of PL/SQL on the client is prior to V2.3 (does
not support tables of records). It is probably the easiest interface to use. However, it is
not recommended where high performance is required, due to the greater number of
network round-trips. In these cases, consider using the special forms interface.

User Data Structures

There are no user visible data structures in the client side call.

Available Calls

The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out, or in/out).

Procedure : init_formula

This call initializes the execution engine for a specific formula. That is, it declares to
the engine that a formula is about to be run. It must be called before a formula is
executed, but that formula can then be executed as many times as desired without
having to call the initialization procedure again. This will be understood from the
examples further on.

2-196 Oracle US Federal Human Resources Implementation Guide

Table of parameters to init_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

Procedure : set_input

This call sets the value of an input to a formula. To cope with the different datatypes
that FastFormula can handle, the values have to be converted to the appropriate
character strings.

Table of parameters to set_input

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_value varchar2 Input value to set

Procedure : run_formula

This call actually executes the formula, taking inputs as specified and returning any
results from the formula. The init_formula procedure must have been called before this
is used (see examples).

There are no parameters to run_formula.

Procedure : get_output

This call gets the output values returned from a formula. To cope with the different
datatypes that FastFormula can handle, the output has to be converted as appropriate.

Table of parameters to get_output

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_return_value varchar2 Value of varchar2 output

Examples

The following examples rely on the same formula used above.

inputs are input1, input2 (date), input3 (text)

dbi = DATABASE_ITEM

ret1 = input1 * 2

return ret1, input2, input3

The following anonymous block of PL/SQL can be used to run the formula.

Implementation Guide 2-197

declare

l_input1 number;

l_input2 date;

l_input3 varchar2(80);

l_output1 number;

l_output2 varchar2(12);

l_output3 varchar2(80);

l_assignment_id number;

l_formula_id number;

l_effective_date date;

l_loop_cnt number;

begin

-- Set up the values we need to execute the formula.

l_formula_id := 100;

l_effective_date := to_date(’06-05-1997’, ’DD-MM-YYYY’);

l_input1 := 1000.1;

l_input2 := to_date(’01-01-1990’, ’dd-mm-yyyy’);

l_input3 := ’INPUT TEXT’;

l_assignment_id := 400;

-- Insert FND_SESSIONS row.

insert into fnd_sessions (

session_id,

effective_date)

values (userenv(‘sessionid’),

l_effective_date);

-- Initialize the formula. ff_client_engine.init_formul a(l_formul
a_id,l_effective_date);

-- We are not in a position to execute the formula.

-- Notice that we are illustrating here that the formula can

2-198 Oracle US Federal Human Resources Implementation Guide

-- be executed a number of times, in this case setting a new

-- input value for input1 each time.

for l_loop_cnt in 1..10 loop

-- The input and output tables have been initialized.

-- We now have to set up the values for the inputs required.

-- This includes those for the ’inputs are’ statement

-- and any contexts.

-- Note how the user has to know the number of inputs the

-- formula has.

ff_client_engine.set_input(’INPUT1’, fnd_number.numb er_to_can
onical(l_input1));

ff_client_engine.set_input(’INPUT2’, fnd_date.date_t o_canonic
al(l_input2));

ff_client_engine.set_input(’INPUT3’, l_input3);

ff_client_engine.set_input(’INPUT3’, l_input3);

ff_client_engine.set_input(’ASSIGNMENT_ID’, l_assign ment_id);

ff_client_engine.run_formula;

-- Now we have executed the formula. Get the results.

ff_client_engine.get_output(’RET1’, l_output1);

ff_client_engine.get_output(’INPUT2’, l_output2);

ff_client_engine.get_output(’INPUT3’, l_output3);

-- OK. Finally, display the results.

hr_utility.trace(’RET1 value : ’ || output1);

hr_utility.trace(’INPUT2 value : ’ || l_output2);

hr_utility.trace(’INPUT3 value : ’ || output3)

end loop;

-- We can now continue to call as many formulas as we like,

-- always remembering to begin with a

-- ff_client.init_formula call.

-- Note: There is no procedure to be called to

Implementation Guide 2-199

-- shut down the execution engine.

end;

/

Special Forms Call Interface

This section attempts to describe in detail the interface to the special forms client
execution engine interface from a user perspective, and how to call the module from
forms.

When Should I Use This Interface?

This interface is recommended for use when you want to execute a formula directly from
a form or report client that does not support PL/SQL V2.3 or above (that is, does not
allow PL/SQL tables of records).

User Data Structures

There are no user visible data structures in the client side call.

Available Calls

The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out, or in/out).

Procedure : run_id_formula

This call initializes the execution engine for a specific formula, then runs the formula
taking the input and context arguments specified. Finally it returns the appropriate
results to the user via a further set of arguments. This form of call therefore requires only
one network round-trip. The disadvantage is that it is limited to the number of inputs
and returns that it can cope with (this is based round the PL/SQL V1.0 limitations).

Note: Use this procedure call when the formula_id for the formula to
execute is known. Another procedure call (run_name_formula - see
below) is used where only the name is known.

2-200 Oracle US Federal Human Resources Implementation Guide

Table of parameters to run_id_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

p_input_name01 . . . 10 varchar2 input name 01 . . . 10

p_input_value01 . . . 10 varchar2 input value 01 . . . 10

p_context_name01 . . . 14 varchar2 context name 01 . . . 14

p_context_value01 . . . 14 varchar2 context value 01 . . . 14

p_return_name01 . . . 10 varchar2 return name 01 . . . 10

p_return_value01 . . . 10 varchar2 return value 01 . . . 10

Procedure : run_name_formula

This call initializes the execution engine for a specific formula, then runs the formula
taking the input and context arguments specified. Finally it returns the appropriate
results to the user via a further set of arguments. This form of call therefore requires only
one network round-trip. The disadvantage is that it is limited to the number of inputs
and returns that it can cope with (this is based round the PL/SQL V1.0 limitations).

Note: Use this procedure call when you know the name and type for the
formula to execute. Use the run_id_formula call (see above) when only
the id is known.

Implementation Guide 2-201

Table of parameters to run_name_formula

Parameter
Name

Data Type Comments

p_formula_
type_name

number Formula type

p_formula_
name

varchar2 Name of
formula to
execute

p_effective_
date

date Effective
execution date

p_input_
name01 . . . 10

varchar2 input name 01
. . . 10

p_input_
value01 . . . 10

varchar2 input value 01
. . . 10

p_context_
name01 . . . 14

varchar2 context name
01 . . . 14

p_context_
value01 . . . 14

varchar2 context value
01 . . . 14

p_return_
name01 . . . 10

varchar2 return name 01
. . . 10

p_return_
value01 . . . 10

varchar2 return value 01
. . . 10

Logging Options

Sometimes things may go wrong when attempting to execute formulas via the PL/SQL
engine. In many cases, the error messages raised will make it obvious where the problem
is. However, there are cases where some more information is needed.

You can set the execution engine to output logging information. This section explains
how to activate and use the logging options

Note: The logging output makes use of the standard Oracle HR trace
feature.

Enabling Logging Options

You set logging options for the execution engine by calling the ff_utils.set_debug
procedure. This procedure has the definition:

procedure set_debug
(

p_debug_level in binary_integer
);

Since the numeric values for the options are power of two values, each represented by
a constant, the appropriate values are added together.

2-202 Oracle US Federal Human Resources Implementation Guide

For instance, to set the routing and dbi cache debug options (see below) use the following
call (from SQLPLUS).

SQL> execute ff_utils.set_debug(9)

The value 9 is (1 + 8).

If preferred, you can use the constants that have been defined. For example:

SQL> execute ff_utils.set_debug(ff_utils.ROUTING +

ff_exec.DBI_CACHE_DBG)

FF_DEBUG Profile Option

If the execution engine is being called from a form, you can enable logging options using
the FF_DEBUG profile option.

You use a series of characters to indicate which logging options you want to set. You
must specify X, as this enables user exit logging. For example, if you set the profile
option to XDR, you initiate the database item cache and routing information.

The full list of characters you can specify is as follows (see Summary of Available
Information for a description of each logging option).

Table of Values for FF_DEBUG Profile Option

Character Equivalent to . . .

R ff_utils.ROUTING

F ff_exec.FF_DBG

C ff_exec.FF_CACHE_DBG

D ff_exec.DBI_CACHE_DBG

M ff_exec.MRU_DBG

I ff_exec.IO_TABLE_DBG

Summary Of Available Information

What follows is a brief discussion of each logging option, with its symbolic and
equivalent binary value used to set it.

Note: To interpret the output of many of these options, you require some
familiarity with the workings of the execution engine code.

ff_utils.ROUTING : 1

Routing. Outputs information about the functions and procedures that are accessed
during an execution engine run. An example of the visible output would be:

• In : run_formula

• Out : run_formula

ff_exec.FF_DBG : 2

This debug level, although defined in the header, is not currently used.

Implementation Guide 2-203

ff_exec.FF_CACHE_DBG : 4

Formula Cache Debug. Displays information about the currently executing
formula, including its data item usage rows.

ff_exec.DBI_CACHE_DBG: 8

Database Item Cache Debug. Displays information about those items held in the
database item cache. These items are not constrained to a particular formula.

ff_exec.MRU_DBG : 16

Most Recently Used Formula chain. Displays information about those formulas
currently held in the MRU chain. The information displayed includes the table
index, formula_id, sticky flag and formula name.

ff_exec.IO_TABLE_DBG : 32

Input and Output Table Debug. Shows information about items currently held in the
input and output tables. This includes both information set by the user and the formula
engine.

How Should the Options Be Used?

Only general advice can be given, since there is no way of predicting what the problem
may be. Some hints are:

ROUTING is useful only for those who understand the code. Tracing the procedures may
illuminate a problem - perhaps an error is being raised and it is not obvious where from.

FF_CACHE_DBG will confirm what basic formula information is held by the execution
engine. This is useful to see if it looks as you expect.

IO_TABLE_DBG will confirm what is really being passed to and from a formula.

Flexfields

Validation of Flexfield Values

Oracle Self Service HR, Web ADI and some forms use the HRMS APIs to record data
in the database. Custom programs at your site, such as data upload programs, may
also use the APIs.

From Release 11i (and R11.0 Patch Set D), the APIs validate flexfield values using value
sets (in the same way as the professional Forms user interface). This provides the
benefit that value set definitions only need to be implemented and maintained in one
location. In previous releases, the APIs validated flexfield values using PL/SQL callouts
to Skeleton Flexfield Validation server-side packages. These packages are no longer used.

This essay explains how to solve some problems you may encounter when the APIs use
flexfield value sets. These problems occur when the value sets refer to objects that are
not automatically available to API validation.

In summary, problems may occur when value sets refer to:

• User profile options

• Form block.field items

• A row in the FND_SESSIONS database table

Problems may also be caused by:

• Incomplete context field value lists

2-204 Oracle US Federal Human Resources Implementation Guide

The rest of this essay explains these issues in more detail with recommended
solutions. For all of these solutions, the changes are not apparent to end users and it is
not necessary to change where the data is physically held in the database.

Referencing User Profile Options

Referencing profile options in value sets does not cause a problem in the Professional
Forms UI or Self Service HR. When a user logs on to these interfaces, the profiles are
available, defined at site, application, responsibility, or user level.

However, when the APIs are executed directly in a SQL*Plus database session, there is
no application log-on. If the profile is not defined at site level, its value will be null. Even
if the profile is defined at site level, this may not give the appropriate values. For
example, the PER_BUSINESS_GROUP_ID profile is defined at site level with a value of
zero, for the Setup Business Group. If you do not use the Setup Business Group, the
flexfield validation finds no rows and all data values are rejected as invalid.

Recommended Solution

Ensure any profiles you reference in value sets are set to the appropriate values before
the flexfield validation is performed. You can do this using API user hooks. The
following example uses the PER_BUSINESS_GROUP_ID profile.

Using API User Hooks to Set Business Group ID

hr_401.gif

Define a Before Process user hook call to set the PER_BUSINESS_GROUP_ID
profile. Where the API user hook provides a mandatory p_business_group_id
parameter, the profile can be set directly from this parameter value. Otherwise first
derive the business_group_id value from the database tables using the API’s mandatory
primary key parameter value.

The PER_BUSINESS_GROUP_ID profile must only be populated when it is undefined
or set to zero. If the profile is defined with a non-zero value then it should not be
changed. This is to ensure there is no impact on the Professional UI and Self Service HR.

Implementation Guide 2-205

The Before Process user hook package should also remember when it has actually set the
PER_BUSINESS_GROUP_ID profile. This can be done with a package global variable.

The second part of the solution is to define an After Process user hook to reset the
PER_BUSINESS_GROUP_ID profile back to its original zero or null value. This is only
necessary when the Before Process actually changed the value. This is to ensure the
profile will be populated with the correct value when the API is called a second time.

For further information on using API user hooks, see the "APIs in Oracle HRMS",
page 2-217 essay.

Alternative Solution

If you have only one program experiencing this problem, you could modify the
program to set the PER_BUSINESS_GROUP_ID profile immediately before each API
call. However, if you introduce any other programs in the future calling the same
API, you would have to remember to set the PER_BUSINESS_GROUP_ID profile in
these programs too.

Referencing Form block.field Items

If a value set references Form block.field items, an error is raised when the API
executes the flexfield validation because the Form item values cannot be resolved on
the server-side. This problem affects Oracle Self Service HR and any custom code
that calls the API.

Recommended Solution

There are three parts to this solution:

1. Modify the value sets so all block.item references are changed to custom profile
names. These profiles do not have to be defined within the Oracle Applications data
dictionary because profiles can be created and set dynamically at run-time.

2. To ensure the modified value sets work, the profiles must be populated before the
APIs execute the flexfield validation. As with the PER_BUSINESS_GROUP_ID
profile problem, this requires an API Before Process user hook to populate the
profile values. Some of the required values will not be immediately available from
the user hook package parameters. However any missing values can be derived
from the HRMS tables.

3. To ensure the flexfield validation continues to work in the Professional UI, the profile
values need to be populated before the flexfield pop-up window is displayed. This
can be done using the CUSTOM library. For the specific Forms when certain events
occur, read the Form items to populate the custom profiles.

Important: There may be some instances in the Self Service screens
where it is not possible to display these flexfield values. This is because
there is no Web page equivalent to the Forms’ CUSTOM library to
ensure the custom profiles are correctly populated. This will not be
resolved until a future Release.

Alternative Solution

Another method would be to extend the value set Where clauses to obtain the required
values from the database. This may require joins to additional database tables. This
removes the need to reference Form block.field items. However, this solution is only
suitable where values can be obtained from records already in the database. Attempting
to reference columns on the record being processed by the current API call will
fail. During an insert operation those values will not be available from the database

2-206 Oracle US Federal Human Resources Implementation Guide

table when the flexfield validation executes. During an update operation the pre-update
values will be obtained.

Referencing FND_SESSIONS Row

The FND_SESSIONS database table is used to obtain the current user’s DateTrack
effective date. This table is only maintained by the Professional UI. The APIs and Self
Service modules do not insert or update any rows in this table. So when the value set is
executed from these modules, the join fails to find any rows.

Recommended Solution

Using an API Before Process user hook, if a row does not already exist in the
FND_SESSIONS table for this database session, then insert one. The EFFECTIVE_DATE
column should be set from the p_effective_date parameter made available at the user
hook. It is important to ensure the EFFECTIVE_DATE column is set to a date value
with no time component, that is, trunc(<date>). Otherwise some join conditions will
still fail to find valid table rows.

When the API Before Process user hook has inserted a row into FND_SESSIONS, the
After Process user hook should delete it. This ensures that when a second call to the same
API is made, the FND_SESSIONS.EFFECTIVE_DATE column is set to the correct value.

If performance is a concern for batch uploading of data, it may be more efficient for the
batch upload program to insert the FND_SESSIONS row before the first API call. That
will only be acceptable if the set of records will be processed with the same effective
date. The API user hooks will still need to be defined to ensure that other programs
and interfaces work as required.

Alternative Solution

Another method would be to follow the same approach as the referencing Form
block.field items solution. Instead of the value set using the FND_SESSIONS table to
obtain the effective date, it could use a custom profile. This avoids the insert and delete
DML steps. However, there is an impact on the Professional UI so the CUSTOM library
will need to be changed to set the profile value.

Incomplete Context Field Value Lists

Using the APIs, you might see the following error if a flexfield’s reference value does not
appear in the flexfield Context Field Values list:

ORA-20001: Column ATTRIBUTE_CATEGORY, also known as CONTEXT, cannot
have value X.

Suppose a flexfield uses the business_group_id as the reference field. When the API
is called, the p_attribute_category parameter should be set to the business_group_id
value. When the API validates the Flexfield Context Field (ATTRIBUTE_CATEGORY), it
checks whether the business_group_id being used exists in the Flexfield Context Field
Values list. If not, the API raises an error.

Recommended Solution

Ensure that the flexfield Context Field Values lists contain all possible values.

Alternative Solution

In some flexfield structures, there are some contexts where only the global data
elements apply (there are no context-specific segments). You might consider setting
the p_attribute_category parameter to null for these context values. This avoids the
need to list these context values in the Context Field Values list. However, this is not
recommended because it may cause other data errors to go undetected. For example, if

Implementation Guide 2-207

the context field is set to null when a more specific value should be used, any mandatory
segment validation associated with that other value will not be executed.

Security

Extending Security in Oracle HRMS

Oracle Human Resources provides a flexible approach to controlling access to
tables, records, fields, forms, and functions. You can match each employee’s level of
access to their responsibilities.

For a discussion of security in Oracle HRMS and how to set it up to meet your
requirements, refer to the help topics on Security, Oracle HRMS Configuring, Reporting,
and System Administration Guide, and to the implementation steps for Defining User
Security, page 2-69

This essay does not repeat the definitions and description in the setup steps and
security chapter. It builds on that information to describe the objects and processes that
implement the security system. Read this essay if you need to:

• Add custom tables to the standard security system

• Integrate your own security system with the supplied mechanisms

Security Profiles

All Oracle Applications users access the system through a responsibility that is linked to
a security group and a security profile. The security group determines which business
group the user can access. The security profile determines which records (related to
organizations, positions and payrolls) the user can access within the business group.

There are two types of security profile:

• Unrestricted

• Restricted

A responsibility with an unrestricted security profile has unrestricted access to data
in Oracle HRMS tables. It connects to the APPS Oracle User. If you connect to an
unrestricted security profile, the data you see when you select from a secure view is the
same data you see if you select from the table on which the secure view is based.

When you connect to the APPS Oracle User with a restricted security profile you can
access the secure tables directly if you want to bypass the security restrictions defined
in your security profile. You might want to do this to perform uniqueness checks, or
to resolve foreign keys.

Restricted security profiles can optionally make use of read-only, or reporting
users. These are separate Oracle Users, one per restricted security profile, that have
read-only access to Oracle tables and views. Reporting users do not have execute
privilege on Oracle HRMS PL/SQL packages, and do not have direct access to the
secured Oracle HRMS tables.

Restricted security profiles may restrict access to the following entities (the exact
restrictions are determined by the definition of the security profiles):

• Organizations

• People

2-208 Oracle US Federal Human Resources Implementation Guide

• Assignments

• Positions

• Vacancies

• Payrolls

All other entities are unrestricted; that is, restricted security profiles can access all records
of tables, views and sequences associated with these entities.

Secure Tables and Views

The following Oracle HRMS tables are secured:

• HR_ALL_ORGANIZATION_UNITS

• PER_ALL_POSITIONS

• HR_ALL_POSITIONS_F

• PER_ALL_VACANCIES

• PER_ALL_PEOPLE_F

• PER_ALL_ASSIGNMENTS_F

• PAY_ALL_PAYROLLS_F

Some of these tables (namely PER_ALL_PEOPLE_F, PER_ALL_ASSIGNMENTS_F, HR_
ALL_POSITIONS_F, and PAY_ALL_PAYROLLS_F) are datetracked. The following table
details the views that are based on the secured tables listed above.

Table of Secure Tables and Views

Table or View Description

HR_ORGANIZATION_UNITS Secure view of Organization table

HR_ALL_ORGANIZATION_UNITS Organization table

PER_ORGANIZATION_UNITS Secure view of Organization view (HR Orgs
only)

PER_ALL_ORGANIZATION_UNITS Unsecured view of Organization view (HR
Orgs only)

HR_ALL_POSITIONS Unrestricted view of datetracked Positions
table, effective at session date

HR_ALL_POSITIONS_F Datetracked Positions table

HR_POSITIONS Secure view of datetracked Positions
table, effective at session date

HR_POSITIONS_F Secure view of datetracked Positions table

HR_POSITIONS_X Secure view of datetracked Positions
table, effective at system date

PER_POSITIONS Secure view of non-datetracked Positions table

Implementation Guide 2-209

Table or View Description

PER_ALL_POSITIONS Non-datetracked Positions table

PER_VACANCIES Secure view of Vacancies table

PER_ALL_VACANCIES Vacancies table

PER_ASSIGNMENTS Secure view of Assignments table, effective at
session date

PER_ASSIGNMENTS_F Secure view of Assignments table

PER_ASSIGNMENTS_X Secure view of Assignments table, effective at
system date

PER_ALL_ASSIGNMENTS Unrestricted view of Assignments table,
effective at session date

PER_ALL_ASSIGNMENTS_F Assignments table

PER_PEOPLE Secure view of Person table, effective at session
date

PER_PEOPLE_F Secure view of Person table

PER_PEOPLE_X Secure view of Person table, effective at system
date

PER_ALL_PEOPLE Unrestricted view of Person table, effective at
session date

PER_ALL_PEOPLE_F Person table

PAY_PAYROLLS Secure view of Payrolls table, effective at
session date

PAY_PAYROLLS_F Secure view of Payrolls table

PAY_PAYROLLS_X Secure view of Payrolls table, effective at
system date

PAY_ALL_PAYROLLS Unrestricted view of Payrolls table, effective at
session date

PAY_ALL_PAYROLLS_F Payrolls table

Accessing Oracle HRMS Data Through Restricted Security Profiles

When you connect to the APPS Oracle User you can access all Oracle HRMS database
objects without having to perform any additional setup.

This is not the case for reporting users: two conditions must be met to enable reporting
users to access Oracle HRMS tables and views:

2-210 Oracle US Federal Human Resources Implementation Guide

• A public synonym must exist for each table and view. Public synonyms have the
same name as the tables and views to which they point. They are created during
installation of Oracle HRMS.

• The reporting user must have been granted permissions to access the tables and
views by the SECGEN process. Reporting users are granted SELECT permission
only. See below for more information about SECGEN.

How Secure Views Work

The information that is visible through a secure view depends on the definition of the
security profile through which the view is being accessed.

If you have connected with a restricted security profile the information you can see is
derived from denormalized lists of organizations, positions, people and payrolls.

The lists are used only when required. For example, the payroll list is empty for a
security profile that can see all payrolls, and in the case of a security profile that can
see all applicants but a restricted set of employees, the Person list contains employees
but no applicants.

If the HR:Cross Business Groups profile option is ’N’, the secure views return data only
for the current business group.

If the HR:Cross Business Groups profile option is ’Y’, the secure views return data
for all business groups, subject to any further restrictions that apply by virtue of the
current security profile.

Here is the text of the HR_ORGANIZATION_UNITS secure view:

SELECT HAO.ORGANIZATION_ID, HAOTL.NAME
FROM HR_ALL_ORGANIZATION_UNITS HAO,

HR_ALL_ORGANIZATION_UNITS_TL HAOTL
WHERE DECODE(HR_SECURITY.VIEW_ALL, ’Y’, ’TRUE’,

HR_SECURITY.SHOW_RECORD
(’HR_ALL_ORGANIZATION_UNITS’,HAOTL.ORGANIZATION_ID))=’TRUE’

AND DECODE(HR_GENERAL.GET_XBG_PROFILE,
’Y’, HAO.BUSINESS_GROUP_ID,
HR_GENERAL.GET_BUSINESS_GROUP_ID_ = HAO.BUSINESS_GROUP_ID

AND HAO.ORGANIZATION_ID = HAOTL.ORGANIZATION_ID
AND HAOTL.LANGUAGE = USERENV(’LANG’)

Most HR security logic is encapsulated in a PL/SQL package, HR_SECURITY.

HR_SECURITY.VIEW_ALL returns the value of the VIEW_ALL_FLAG for the current
security profile.

HR_SECURITY.SHOW_RECORD is called if the current security profile is a restricted
security profile. It validates whether the row in question is visible through the current
security profile.

HR_GENERAL.GET_XBG_PROFILE returns the value of the HR:Cross Business Group
profile option.

HR_GENERAL.GET_BUSINESS_GROUP_ID returns the current business group ID. The
HR: Business Group profile option supplies this ID.

Security Context

The HR security context contains values for all the attributes of the current security
profiles. It is implemented using PL/SQL globals. The current security profile is
derived as follows:

Implementation Guide 2-211

1. If you have logged onto Oracle Applications using the Oracle Applications
sign-on screen, your security context is automatically set as part of the Oracle
Applications sign-on procedure. Your current security_profile_id is derived from the
responsibility and security group you select during sign-on.

2. If you have connected to an HR reporting user your current
security_profile_id is taken from the PER_SECURITY_PROFILES table, where
REPORTING_ORACLE_USERNAME matches the name of the Oracle User to
which you have connected.

3. If it is not possible to derive a security_profile_id by either of the above two
methods, the system looks for the default view-all security profile created for the
business group. This gives you unrestricted access to the business group. If it
cannot find this, the current security_profile_id is set to null, which prevents you
from accessing any records.

So, if you connect directly to the APPS Oracle User through SQL*Plus, you will have
unrestricted access to the HRMS tables. But if you connect to an HR reporting user, your
access is restricted according to the definition of your security profile.

You can simulate the security context for an Oracle Applications session by
calling FND_GLOBAL.APPS_INITIALIZE (user_id, resp_id, resp_appl_id, and
security_group_id), passing the IDs of the user, responsibility, application, and security
group for the sign-on session you want to simulate. The security_group_id is defaulted
to zero (that is, the setup business group).

Note: FND_GLOBAL is not accessible from HR reporting users.

Security Lists

The security profile list tables contain denormalized lists of people, positions,
organizations and payrolls.

Security profile lists are intersection tables between a security profile and secured
tables, as follows:

Security List Table Name Columns

PER_PERSON_LIST SECURITY_PROFILE_ID, PERSON_ID

PER_POSITION_LIST SECURITY_PROFILE_ID, POSITION_ID

PER_ORGANIZATION_LIST SECURITY_PROFILE_ID, ORGANIZATION_
ID

PAY_PAYROLL_LIST SECURITY_PROFILE_ID, PAYROLL_ID

PER_PERSON_LIST_CHANGES SECURITY_PROFILE_ID, PERSON_ID

These tables are periodically refreshed by the Security List Maintenance process
(PERSLM). They are also written to when some relevant business processes are
performed through Oracle HR, for example, employee hire or transfer.

If people are being secured via the supervisor hierarchy and organizations, positions and
payrolls are not secured, the security list tables mentioned above are not used, and the
Security List Maintenance process need not be run. The list of visible people is derived
dynamically based on the current user.

2-212 Oracle US Federal Human Resources Implementation Guide

If, however, supervisor security is being used in conjunction with organization and/or
position and/or payroll security, you must run the Security List Maintenance process
periodically to refresh the security list tables. The list of visible people is derived
dynamically based on the current user, and is a subset of the people that are visible via
the PER_PERSON_LIST table.

Security Processes

Three processes are used to implement Oracle HRMS security:

• Grant Secure Role Permission (ROLEGEN)

• Generate Secure User (SECGEN)

• Security List Maintenance (PERSLM)

ROLEGEN runs automatically as part of an installation or upgrade. If you are not setting
up reporting users, you need not run SECGEN.

Refer to the topic on Security Processes, Oracle HRMS Configuring, Reporting, and System
Administration Guide for details of how to submit SECGEN and PERSLM from the Submit
Requests window. This section describes how the processes work.

ROLEGEN: Grant Secure Role Permission Process

A role is a set of permissions that can be granted to Oracle users or to other roles. Roles
are granted to users by the SECGEN process (see below).

The ROLEGEN process must run before you run SECGEN. ROLEGEN
dynamically grants select permissions on Oracle HRMS tables and views to the
HR_REPORTING_USER role. This role must exist before ROLEGEN runs.

The HR_REPORTING_USER role is created during the install of Oracle
HRMS. ROLEGEN is run during the install of Oracle HRMS.

Note: As ROLEGEN runs as part of the installation and upgrade
processes, you do not need to run ROLEGEN manually.

ROLEGEN performs the following actions:

• Creates public synonyms for HRMS tables and views, excluding unsecured tables
(%_ALL_%)

• Revokes all existing permissions from HR_REPORTING_USER roles

• Grants SELECT permissions to HR_REPORTING_USER role for HRMS tables
and views

SECGEN - Generate Secure User Process

You run SECGEN for a specified security profile. It grants the HR_REPORTING_USER
role to the Oracle User associated with the security profile.

SECGEN must be run after ROLEGEN. However, once SECGEN has been run for a
particular security profile, you need not rerun it even if ROLEGEN is run again.

SECGEN is a PRO*C process with embedded SQL statements. You initiate it from
the Submit Requests window.

PERSLM - Security List Maintenance Process

You should run PERSLM periodically (for example, nightly) to refresh the security lists
upon which the secure views are built.

Implementation Guide 2-213

Important: This process has the capability to run
multi-threaded, allowing it to take advantage of the capabilities of your
hardware. To take full advantage of this feature, you need to perform a
number of additional setup steps. Details of these are available in
the Oracle HRMS & Benefits Tuning & System Health Check - Release
11i, available on Metalink (Note 226987.1).

PERSLM is a PL/SQL procedure that you submit from the Submit Requests window. It
builds the required security lists based on the restrictions defined for the security profiles
being processed.

For each security profile within the scope specified when the process is
submitted, PERSLM performs the following steps:

1. If the View All flag is Y, the process ends leaving all security lists empty for the
specified security profile.

2. Builds a payroll list.

If the View All Payrolls flag is Y, the process leaves the payroll list empty. If the View
All Payrolls flag is N, the process checks the Include Payroll flag. If this flag is Y, the
process makes a list of all payrolls in the pay_security_payrolls list. If the flag is
N, the process makes a list of all payrolls except those in the pay_security_payrolls
list. The pay_security_payrolls list is populated when you enter payrolls on the
Define Security Profile screen.

3. Builds an organization list.

If the View All Organizations flag is Y, the process leaves the organization list
empty. If this flag is N, the process builds a list of all organizations below the top
one you specified for the organization hierarchy you chose on the Define Security
Profile screen. The process uses the version of the hierarchy that is effective on
the date passed to PERSLM. If the Include Top Organization flag is Y, the top
organization you specified is included in the list. Any organizations specifically
listed in the Define Security Profile window are included or excluded as specified. If
the Exclude Business Group flag is N, the business group is included in the list
to allow newly entered employees and applicants to be visible before they are
assigned to an organization.

4. Builds a position list.

If the View All Positions flag is Y, the process builds a list of all positions within
the organizations on the organization list. If this flag is N, the process builds a list
of all positions below the top one you specified for the position hierarchy you
chose on the Define Security Profile screen. The process uses the version of the
hierarchy that is effective on the date passed to PERSLM. If the Include Top Position
flag is Y, the top position you specified is included in the list. The list of positions
is built up for all organizations on the organization list, or for all organizations if
the View All Organizations flag is Y.

5. Builds a person list.

The process creates person list information for all people within the specified
scope, including terminated employees, applicants, and contingent workers. The
process uses the assignment data effective on the date passed to PERSLM to
determine eligibility for current employees, applicants, and contingent workers. For
terminated employees, applicants, and contingent workers, the process identifies the

2-214 Oracle US Federal Human Resources Implementation Guide

maximum effective end date for any assignment defined for the person, and uses the
assignment data effective on this date to determine eligibility.

The system processes future-dated hires, placements, or applicants using the date
when the assignment becomes effective.

Note: If the process is running for a terminated person with a
future-dated hire or placement, the system uses the future-dated
assignment information to determine eligibility. If a terminated
employee or contingent worker is also a current or future
applicant, the system determines eligibility using both the
terminated assignment data and the current or future assignment
data.

The mechanism used to generate the person list depends on the value selected for
the "Generate For" parameter selected at the time PERSLM was submitted:

• One Named Security Profile

The process generates the list of people visible to the security profile identified
by the Security Profile parameter. This process runs single-threaded.

For the named profile, PERSLM determines what security restrictions have been
entered and dynamically builds a SQL statement to identify all the people who
match the restriction criteria as follows:

• If the View Employee field is Restricted then process all Employee
assignments. If the View Employee field is either None or All then no data
for employees is written to the person list table and access is controlled
within the secure view.

• If the View Contingent Worker field is Restricted then process all Contingent
Worker assignments. If the View Contingent Worker field is either None or
All then no data for contingent workers is written to the person list table
and access is controlled within the secure view.

• If the View Applicant field is Restricted then process all Applicant
assignments provided that the Applicant is not also an Employee or
Contingent Worker, in which case access is granted based on their Employee
or Contingent Worker assignment. If the View Applicant field is either
None or All then no data for applicants is written to the person list table
and access is controlled within the secure view.

• If the Organization Security Type is "Secure by Organization
Hierarchy and/or Organization List" then PERSLM restricts access to
Employees, Applicants and Contingent Workers with a current assignment
to organizations in the organization list.

• If the View All Positions flag is N, then PERSLM restricts access to
Employees, Applicants and Contingent Workers with a current assignment
to positions in the position list. PERSLM includes people who are not
currently assigned to a position.

• If the View All Payrolls flag is N, then PERSLM restricts access to Employees
and Applicants with a current assignment to payrolls in the payroll list.

Implementation Guide 2-215

• If the Custom Restriction flag is Y, then PERSLM restricts access to
Employees, Applicants and Contingent Workers using the conditions
defined within the custom restriction.

If a security profile contains multiple restrictions then data is only written to
the person list table for people who satisfy all the restrictions defined.

• All Security Profiles, All Global Security Profiles, All Security Profiles in
One Named Business Group

The process generates the list of people visible to the security profiles within
the scope of the option selected. For example, if the "All Global Security
Profiles" option is selected, the person list information is regenerated for
all global security profiles but for no business group-specific profiles. This
process is implemented using the Oracle Payroll Archiver process, allowing
it to run multi-threaded if your system has been configured correctly. See the
Oracle HRMS & Benefits Tuning & System Health Check - Release 11i, available on
Metalink (Note 226987.1), for information on configuring your system to run
multi-threaded processes.

When generating security lists for one of these options, all people in the system
are checked and processed for eligibility. (If you elect to generate list information
for security profiles in a single named business group, then only people defined
within that business group are processed. For the other two options all people
within the database are processed.)

The individual assignments for people requiring processing are examined
to determine which security profiles can access them. Based on the
Organization, Position, and Payroll data present on the assignment the set of
security profiles that can see the assignment is determined using the restrictions
defined on each security profile within scope and Organization, Position and
Payroll list information previously generated for those security profiles. In
addition, any custom restriction for each of the profiles is evaluated to ensure
that the assignment and person comply with any criteria entered.

6. Adds person list changes.

PERSLM adds a person to the person list if an entry exists in the
PER_PERSON_LIST_CHANGES table, there is no current period of service, and
there is no current application for the person. It only adds people if they are not
already in the list.

7. Contacts (Persons with system person type ’OTHER’)

Some security profiles restrict a user’s access to contacts. If this is the case, the
process generates access to the contacts who are related to the current and
terminated employees, applicants, and contingent workers within the user’s security
profile. The process also allows access to contacts who are unrelated to any person
within the system. The process uses the PER_CONTACT_RELATIONSHIPS table
to determine a contact’s relationships.

Securing Custom Tables

If you have created your own custom tables, perform the following steps to make them
accessible to reporting users:

1. Create table.

2-216 Oracle US Federal Human Resources Implementation Guide

Select a table name that does not conflict with any tables or views that might exist in
Oracle Applications.

Do not use two or three character prefixes such as HR, PER, PAY, FF, DT, SSP, GHR,
BEN, OTA, HXT, EDW, HRI, HXC, PQH, PQP or IRC.

2. Grant select access on the table to HR_REPORTING_USER role, from the user
that owns the custom table.

GRANT SELECT ON custom_table TO hr_reporting_user;

You must repeat this step every time you perform an installation or
upgrade. However, you do not need to rerun SECGEN as existing reporting users
that have already been granted access to the HR_REPORTING_USER role will
automatically receive any new permissions added to the role.

3. Create a synonym to the table.

If you use public synonyms, remember that the Oracle user from which you create
the public synonym must have CREATE PUBLIC SYNONYM system privilege.

CREATE PUBLIC SYNONYM custom_table
FOR base_table_account.custom_table;

APIs

APIs in Oracle HRMS

An Application Programmatic Interface (API) is a logical grouping of external process
routines. The Oracle HRMS strategy delivers a set of PL/SQL packaged procedures and
functions that together provide an open interface to the database. For convenience we
have called each of these packaged procedures an API.

This document provides all the technical information you need to be able to use these
APIs and covers the following topics:

• API Overview, page 2-218

Describes how you can use the Oracle HRMS APIs and the advantages of this
approach.

• Understanding the Object Version Number (OVN), page 2-220

Explains the role of the object version number. The APIs use it to check whether a
row has been updated by another user, to prevent overwriting their changes.

• API Parameters, page 2-222

Explains where to find information about the parameters used in each API;
parameter naming conventions; the importance of naming parameters in the API
call instead of relying on parameter list order; and how to use default values to
avoid specifying all parameters. Also explains the operation of certain control
parameters, such as those controlling DateTrack operations.

• API Features, page 2-236

Explains that commits are handled by the calling program, not the APIs, and the
advantages of this approach. Also explains how to avoid deadlocks when calling
more than one API in the same commit unit.

Implementation Guide 2-217

• Flexfields with APIs, page 2-237

Describes how the APIs validate key flexfield and descriptive flexfield values.

• Multilingual Support, page 2-238

Explains how to use the Multilingual Support APIs.

• Alternative APIs, page 2-239

Explains that we provide legislation-specific APIs for some business processes, such
as Create Address.

• API Errors and Warnings, page 2-240

Explains how the APIs raise errors and warnings, and how the calling code can
handle them. A message table is provided for handling errors in batch processes.

• Example PL/SQL Batch Program, page 2-242

Shows how to load a batch of person address data and how to handle validation
errors.

• WHO Columns and Oracle Alert, page 2-244

Explains how to populate the WHO columns (which record the Applications user
who caused the database row to be created or updated) when you use the APIs.

• API User Hooks, page 2-245

A user hook is a location where you can add processing logic or validation to an
API. There are hooks in the APIs for adding validation associated with a particular
business process. There are also hooks in table-level modules for validation on
specific data items. This section explains where user hooks are available and how to
implement them. It also explains their advantages over database triggers.

• Using APIs as Building Blocks, page 2-264

Explains how you can write your own APIs that call one or more of the supplied
APIs.

• Handling Object Version Numbers in Oracle Forms, page 2-265

Explains how to implement additional Forms logic to manage the object version
number if you write your own forms that call the APIs.

API Overview

Fundamental to the design of all APIs in Oracle HRMS is that they should provide
an insulating layer between the user and the data-model that would simplify all
data-manipulation tasks and would protect customer extensions on upgrade. They are
parameterized and executable PL/SQL packages that provide full data validation
and manipulation.

The API layer enables us to capture and execute business rules within the database - not
just in the user interface layer. This layer supports the use of alternative interfaces to
HRMS, such as web pages or spreadsheets, and guarantees all transactions comply
with the business rules that have been implemented in the system. It also simplifies
integration of Oracle HRMS with other systems or processes and provides supports
for the initial loading

2-218 Oracle US Federal Human Resources Implementation Guide

Alternative User Interfaces

The supported APIs can be used as an alternative data entry point into Oracle
HRMS. Instead of manually typing in new information or altering existing data using
the online forms, you can implement other programs to perform similar operations.

These other programs do not modify data directly in the database. They call the APIs
which:

1. Ensure it is appropriate to allow that particular business operation

2. Validate the data passed to the API

3. Insert/update/delete data in the HR schema

APIs are implemented on the server-side and can be used in many ways. For example:

• Customers who want to upload data from an existing system. Instead of employing
temporary data entry clerks to type in data, a program could be written to extract
data from the existing system and then transfer the data into Oracle HRMS by
calling the APIs.

• Customers who purchase a number of applications from different vendors to build a
complete solution. In an integrated environment a change in one application may
require changes to data in another. Instead of users having to remember to go into
each application repeating the change, the update to the HRMS applications could
be applied electronically. Modifications can be made in batches or immediately
on an individual basis.

• Customers who want to build a custom version of the standard forms supplied with
Oracle HRMS. An alternative version of one or more forms could be implemented
using the APIs to manage all database transactions.

• Customers who want to develop web-based interfaces to allow occasional users to
access and maintain HR information without the cost of deploying or supporting
standard Oracle HRMS forms. This is the basis of most Self-Service functions that
allow employees to query and update their own information, such as change of
name, address, marital status. This also applies to managers who want to query
or maintain details for the employees they manage.

• Managers who are more familiar with spreadsheet applications may want to export
and manipulate data without even being connected to the database and then upload
modifications to the HRMS database when reconnected.

In all these examples, the programs would not need to modify data directly in the Oracle
HRMS database tables. The specific programs would call one or more APIs and these
would ensure that invalid data is not written to the Oracle HRMS database and that
existing data is not corrupted.

Advantages of Using APIs

Why use APIs instead of directly modifying data in the database tables?

Oracle does not support any direct manipulation of the data in any application using
PL/SQL. APIs provide you with many advantages:

• APIs enable you to maintain HR and Payroll information without using Oracle forms.

• APIs insulate you from the need to fully understand every feature of the database
structure. They manage all the inter-table relationships and updates.

• APIs are guaranteed to maintain the integrity of the database. When
necessary, database row level locks are used to ensure consistency between different

Implementation Guide 2-219

tables. Invalid data cannot be entered into the system and existing data is protected
from incorrect alterations.

• APIs are guaranteed to apply all parts of a business process to the database. When
an API is called, either the whole transaction is successful and all the individual
database changes are applied, or the complete transaction fails and the database is
left in the starting valid state, as if the API had not been called.

• APIs do not make these changes permanent by issuing a commit. It is the
responsibility of the calling program to do this. This provides flexibility between
individual record and batch processing. It also ensures that the standard commit
processing carried out by client programs such as Forms is not affected.

• APIs help to protect any customer-specific logic from database structure changes
on upgrade. While we cannot guarantee that any API will not change to support
improvements or extensions of functionality, we are committed to minimize the
number of changes and to provide appropriate notification and documentation
if such changes occur.

Note: Writing programs to call APIs in Oracle HRMS requires
knowledge of PL/SQL version 2. The rest of this essay explains how to
call the APIs and assumes the reader has knowledge of programming
in PL/SQL.

Understanding the Object Version Number (OVN)

Nearly every row in every database table is assigned an object_version_number. When
a new row is inserted, the API usually sets the object version number to 1. Whenever
that row is updated in the database, the object version number is incremented. The row
keeps that object version number until it is next updated or deleted. The number is not
decremented or reset to a previous value.

Note: The object version number is not unique and does not replace
the primary key. There can be many rows in the same table with the
same version number. The object version number indicates the version
of a specific primary key row.

Whenever a database row is transferred (queried) to a client, the existing object version
number is always transferred with the other attributes. If the object is modified by the
client and saved back to the server, then the current server object version number is
compared with the value passed from the client.

• If the two object version number values are the same, then the row on the server
is in the same state as when the attributes were transferred to the client. As no
other changes have occurred, the current change request can continue and the
object version number is incremented.

• If the two values are different, then another user has already changed and committed
the row on the server. The current change request is not allowed to continue because
the modifications the other user made may be overwritten and lost. (Database locks
are used to prevent another user from overwriting uncommitted changes.)

The object version number provides similar validation comparison to the online
system. Forms interactively compare all the field values and displays the "Record has
been modified by another user" error message if any differences are found. Object
version numbers allow transactions to occur across longer periods of time without
holding long term database locks. For example, the client application may save the row

2-220 Oracle US Federal Human Resources Implementation Guide

locally, disconnect from the server and reconnect at a later date to save the change to the
database. Additionally, you do not need to check all the values on the client and the
server.

Example

Consider creating a new address for a Person. The create_person_address API
automatically sets the object_version_number to 1 on the new database row. Then, two
separate users query this address at the same time. User A and user B will both see the
same address details with the current object_version_number equal to 1.

User A updates the Town field to a different value and calls the update_person_address API
passing the current object_version_number equal to 1. As this object_version_number
is the same as the value on the database row the update is allowed and the
object_version_number is incremented to 2. The new object_version_number is returned
to user A and the row is committed in the database.

User B, who has details of the original row, notices that first line of the address is
incorrect. User B calls the update_person_address API, passing the new first line and
what he thinks is the current object_version_number (1). The API compares this value
with the current value on the database row (2). As there is a difference the update is not
allowed to continue and an error is returned to user B.

To correct the problem, user B then re-queries this address, seeing the new town and
obtains the object_version_number 2. The first line of the address is updated and the
update_person_address API is called again. As the object_version_number is the same
as the value on the database row the update is allowed to continue.

Therefore both updates have been applied without overwriting the first change.

Understanding the API Control Parameter p_object_version_number

Most published APIs have the p_object_version_number control parameter.

• For create style APIs, this parameter is defined as an OUT and will always be
initialized.

• For update style APIs, the parameter is defined as an IN OUT and is mandatory.

The API ensures that the object version number(s) match the current value(s) in the
database. If the values do not match, the application error HR_7155_OBJECT_LOCKED
is generated. At the end of the API call, if there are no errors the new object version
number is passed out.

For delete style APIs when the object is not DateTracked, it is a mandatory IN
parameter. For delete style APIs when the object is DateTracked, it is a mandatory IN
OUT parameter.

The API ensures that the object version number(s) match the current value(s)
in the database. When the values do not match, the application error
HR_7155_OBJECT_LOCKED is raised. When there are no errors for DateTracked objects
that still list, the new object version number is passed out.

See:

Understanding the p_datetrack_update_mode control parameter, page 2-232

Understanding the p_datetrack_delete_mode control parameter, page 2-234

Handling Object Version Numbers in Oracle Forms, page 2-265

Implementation Guide 2-221

Detecting and Handling Object Conflicts

When the row being processed does not have the correct object version number, the
application error HR_7155_OBJECT_LOCKED is raised. This error indicates that a
particular row has been successfully changed and committed since you selected the
information. To ensure that the other changes are not overwritten by mistake, re-select
the information, reapply your changes, and re-submit to the API.

API Parameters

This section describes parameter usage in Oracle HRMS.

Locating Parameter Information

You can find the parameters for each API in one of two ways, either by looking at the
documentation in the package header creation scripts or by using SQL*Plus.

Package Header Creation Scripts

For a description of each API, including a list of IN parameters and OUT
parameters, refer to the documentation in the package header creation scripts.

For core product APIs, which are included in the first version of a main release, scripts
are located in the product TOP admin/sql directories. Refer to filenames such as
*api.pkh. Localization-specific APIs follow a *LLi.pkh naming standard, where LL is
the two letter localization code.

For example, details for all the APIs in the hr_employee_api package can be found in the
$PER_TOP/admin/sql/peempapi.pkh file.

New APIs that were not included in the first version of a main release, or are
localization-specific, may be provided in different operating system directories.

Oracle only supports the APIs listed in the following documentation:

• Publicly Callable Business Process APIs in Oracle HRMS, Oracle HRMS Configuring,
Reporting, and System Administration Guide

• The What’s New in Oracle HRMS topic in the help system. This will list any new
APIs introduced after the first version of a main Release.

These lists are a reduced set of the server side code that matches all of the following
three criteria:

• The database package name ends with "_API".

• The package header creation script filename conforms to the *api.pkh or *LLi.pkh
naming standard, where LL is a two letter localization code.

• The individual API documentation has an "Access" section with a value of "Public".

Many other packages include procedures and functions, which may be called from the
API code itself. Direct calls to any other routines are not supported, unless explicitly
specified, because API validation and logic steps will be bypassed. This may corrupt
the data held within the Oracle HRMS application suite.

Using SQL*Plus to List Parameters

If you simply want a list of PL/SQL parameters, use SQL*Plus. At the SQL*Plus
prompt, use the describe command followed by the database package name, period, and
the name of the API. For example, to list the parameters for the create_grade_rate_value
API, enter the following at the SQL> prompt:

describe hr_grade_api.create_grade_rate_value

2-222 Oracle US Federal Human Resources Implementation Guide

Parameter Names

Each API has a number of parameters that may or may not be specified. Most parameters
map onto a database column in the HR schema. There are some control parameters that
affect the processing logic that are not explicitly held on the database.

Every parameter name starts with p_. If the parameter maps onto a database column, the
remaining part of the name is usually the same as the column name. Some names may
be truncated due to the 30 character length limit. The parameter names have been
made slightly different to the actual column name, using a p_ prefix, to avoid coding
conflicts when a parameter and the corresponding database column name are both
referenced in the same section of code.

When a naming conflict occurs between parameters, a three-letter short code (identifying
the database entity) is included in the parameter name. Sometimes there is no physical
name conflict, but the three-letter short code is used to avoid any confusion over the
entity with which the parameter is associated.

For example, create_employee contains examples of both these cases. Part of the
logic to create a new employee is to insert a person record and insert an assignment
record. Both these entities have an object_version_number. The APIs returns both
object_version_number values using two OUT parameters. Both parameters cannot be
called p_object_version_number, so p_per_object_version_number holds the value for
the person record and p_asg_object_version_number holds the value for the assignment
record.

Both these entities can have text comments associated with them. When any comments
are passed into the create_employee API, they are only noted against the person
record. The assignment record comments are left blank.

To avoid any confusion over where the comments have allocated in the database, the
API returns the id using the p_per_comment_id parameter.

Parameter Named Notation

When calling the APIs, it is strongly recommended that you use "Named Notation,"
instead of "Positional Notation." Thus, you should list each parameter name in the call
instead of relying on the parameter list order.

Using "Named Notation" helps protect your code from parameter interface
changes. With future releases, it eases code maintenance when parameters are added or
removed from the API.

For example, consider the following procedure declaration:

procedure change_age
(p_name in varchar2
,p_age in number
;

Calling by ’Named Notation’:

begin
change_age

(p_name => ’Bloggs’
,p_age => 21
);

end;

Calling by ’Positional Notation’:

Implementation Guide 2-223

begin
change_age

(’Bloggs’
,21
);

end;

Using Default Parameter Values

When calling an API it may not be necessary to specify every parameter. Where a
PL/SQL default value has been specified it is optional to specify a value.

If you want to call the APIs from your own forms, then all parameters in the API call
must be specified. You cannot make use of the PL/SQL declared default values because
the way Forms calls server-side PL/SQL does not support this.

Default Parameters with Create Style APIs

For APIs that create new data in the HR schema, optional parameters are usually
identified with a default value of null. After validation has been completed, the
corresponding database columns will be set to null. When calling the API, you must
specify all the parameters that do not have a default value defined.

However, some APIs contain logic to derive some attribute values. When you pass in
the PL/SQL default value the API determines a specific value to set on the database
column. You can still override this API logic by passing in your own value instead of
passing in a null value or not specifying the parameter in the call.

Take care with IN OUT parameters, because you must always include them in the
calling parameter list. As the API can pass values out, you must use a variable to pass
values into this type of parameter.

These variables must be set with your values before calling the API. If you do not
want to specify a value for an IN OUT parameter, use a variable to pass a null value
to the parameter.

Important: Check the comments in each API package header creation
script for details of when each IN OUT parameter can and cannot
be set with a null value.

The create_employee API contains examples of all these different types of parameter.

procedure create_employee
(
...
,p_sex in varchar2
,p_person_type_id in number

default null
...
,p_email_address in varchar2

2-224 Oracle US Federal Human Resources Implementation Guide

default null
,p_employee_number in out varchar2
...
,p_person_id out number
,p_assignment_id out number
,p_per_object_version_number out number
,p_asg_object_version_number out number
,p_per_effective_start_date out date
,p_per_effective_end_date out date
,p_full_name out varchar2
,p_per_comment_id out number
,p_assignment_sequence out number
,p_assignment_number out varchar2
,p_name_combination_warning out boolean
,p_assign_payroll_warning out boolean
,p_orig_hire_warning out boolean
);

Because no PL/SQL default value has been defined, the p_sex parameter must be
set. The p_person_type_id parameter can be passed in with the ID of an Employee
person type. If you do not provide a value, or explicitly pass in a null value, the API
sets the database column to the ID of the active default employee system person type
for the business group. The comments in each API package header creation script
provide more information.

The p_email_address parameter does not have to be passed in. If you do not specify
this parameter in your call, a null value is placed on the corresponding database
column. (This is similar to the user of a form leaving a displayed field blank.)

The p_employee_number parameter must be specified in each call. When you do not
want to set the employee number, the variable used in the calling logic must be set to
null. (For the p_employee_number parameter, you must specify a value for the business
group when the method of employee number generation is set to manual. Values are
only passed out when the generation method is automatic or national identifier.)

Example 1

An example call to the create_employee API where the business group method of
employee number generation is manual, the default employee person type is required
and the e-mail attributes do not need to be set.

Implementation Guide 2-225

declare
l_emp_num varchar2(30);
l_person_id number;
l_assignment_id number;
l_per_object_version_number number;
l_asg_object_version_number number;
l_per_effective_start_date date;
l_per_effective_end_date date;
l_full_name varchar2(240);
l_per_comment_id number;
l_assignment_sequence number;
l_assignment_number varchar2(30);
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;
l_orig_hire_warning boolean;

begin
--
-- Set variable with the employee number value,
-- which is going to be passed into the API.
--
l_emp_num := 4532;
--
-- Put the new employee details in the database
-- by calling the create_employee API
--
hr_employee.create_employee

(p_hire_date =>

to_date(’06-06-1996’,’DD-MM-YYYY’)
,p_business_group_id => 23
,p_last_name => ’Bloggs’
,p_sex => ’M’
,p_employee_number => l_emp_num
,p_person_id => l_person_id
,p_assignment_id => l_assignment_id
,p_per_object_version_number => l_per_object_version_ number
,p_asg_object_version_number => l_asg_object_version_ number
,p_per_effective_start_date => l_per_effective_start_ date
,p_per_effective_end_date => l_per_effective_end_date
,p_full_name => l_full_name
,p_per_comment_id => l_per_comment_id
,p_assignment_sequence => l_assignment_sequence
,p_assignment_number => l_assignment_number
,p_name_combination_warning => l_name_combination_war ning
,p_assign_payroll_warning => l_assign_payroll_warning
,p_orig_hire_warning => l_orig_hire_warning
);

end;

Note: The database column for employee_number is defined as varchar2
to allow for when the business group method of employee_number
generation is set to National Identifier.

2-226 Oracle US Federal Human Resources Implementation Guide

Example 2

An example call to the create_employee API where the business group method of
employee number generation is Automatic, a non-default employee person type must be
used and the email attribute details must be held.

declare
l_emp_num varchar2(30);
l_person_id number;
l_assignment_id number;
l_per_object_version_number number;
l_asg_object_version_number number;
l_per_effective_start_date date;
l_per_effective_end_date date;
l_full_name varchar2(240);
l_per_comment_id number;
l_assignment_sequence number;
l_assignment_number varchar2(30);
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;
l_orig_hire_warning boolean;

begin
--
-- Clear the employee number variable
--
l_emp_num := null;
--
-- Put the new employee details in the database
-- by calling the create_employee API
--
hr_employee.create_employee

(p_hire_date =>

to_date(’06-06-1996’,’DD-MM-YYYY’)
,p_business_group_id => 23
,p_last_name => ’Bloggs’
,p_sex => ’M’
,p_person_type_id => 56
,p_email_address => ’bloggsf@uk.uiq.com’
,p_employee_number => l_emp_num
,p_person_id => l_person_id
,p_assignment_id => l_assignment_id
,p_per_object_version_number => l_per_object_version_ number
,p_asg_object_version_number => l_asg_object_version_ number
,p_per_effective_start_date => l_per_effective_start_ date
,p_per_effective_end_date => l_per_effective_end_date
,p_full_name => l_full_name
,p_per_comment_id => l_per_comment_id
,p_assignment_sequence => l_assignment_sequence
,p_assignment_number => l_assignment_number
,p_name_combination_warning => l_name_combination_war ning
,p_assign_payroll_warning => l_assign_payroll_warning
,p_orig_hire_warning => l_orig_hire_warning
);
--
-- The l_emp_num variable is now set with the
-- employee_number allocated by the HR system.
--

Implementation Guide 2-227

end;

Default Parameters with Update Style APIs

With update style APIs the primary key and object version number parameters
are usually mandatory. In most cases it is not necessary provide all the parameter
values. You only need to specify any control parameters and the attributes you are
actually altering. It is not necessary (but it is possible) to pass in the existing values of
attributes that are not being modified. Optional parameters have one of the following
PL/SQL default values, depending on the datatype as shown in the following table:

Data Type Default value

varchar2 hr_api.g_varchar2

number hr_api.g_number

date hr_api.g_date

These hr_api.g_ default values are constant definitions, set to special values. They
are not hard coded text strings. If you need to specify these values, use the constant
name, not the value. The actual values are subject to change.

Care must be taken with IN OUT parameters, because they must always be included
in the calling parameter list. As the API is capable of passing values out, you must
use a variable to pass values into this type of parameter. These variables must be set
with your values before calling the API. If you do not want to explicitly modify that
attribute you should set the variable to the hr_api.g_... value for that datatype. The
update_emp_asg_criteria API contains examples of these different types of parameters.

procedure update_emp_asg_criteria

(...

,p_assignment_id in number

,p_object_version_number in out number

...

,p_position_id in number

default hr_api.g_number

...

,p_special_ceiling_step_id in out number

...

,p_employment_category in varchar2

default hr_api.g_varchar2

,p_effective_start_date out date

2-228 Oracle US Federal Human Resources Implementation Guide

,p_effective_end_date out date

,p_people_group_id out number

,p_group_name out varchar2

,p_org_now_no_manager_warning out boolean

,p_other_manager_warning out boolean

,p_spp_delete_warning out boolean

,p_entries_changed_warning out varchar2

,p_tax_district_changed_warning out boolean

);

Note: Only the parameters that are of particular interest have been
shown. Ellipses (...) indicate where irrelevant parameters to this
example have been omitted.

The p_assignment_id and p_object_version_number parameters are mandatory and
must be specified in every call. The p_position_id parameter is optional. If you do not
want to alter the existing value, then exclude the parameter from your calling logic or
pass in the hr_api.g_varchar2 constant or pass in the existing value.

The p_special_ceiling_step_id parameter is IN OUT. With certain cases the API sets this
attribute to null on the database and the latest value is passed out of the API. If you do
not want to alter this attribute, set the calling logic variable to hr_api.g_number.

Example

The following is an example call to the update_emp_asg_criteria API, with which you do
not want to alter the position_id and special_ceiling_step_id attributes, but you do want
to modify the employment_category value.

Implementation Guide 2-229

declare
l_assignment_id number;
l_object_version_number number;
l_special_ceiling_step_id number;
...

begin
l_assignment_id := 23121;
l_object_version_number := 4;
l_special_ceiling_step_id := hr_api.g_number;
hr_assignment_api.update_emp_asg_criteria

(...
,p_assignment_id => l_assignment_id
,p_object_version_number => l_object_version_number
...
,p_special_ceiling_step_id => l_special_ceiling_step_ id
...
,p_employment_category => ’FT’
...
);

--
-- As p_special_ceiling_step_id is an IN OUT parameter the
-- l_special_ceiling_step_id variable is now set to the sam e

-- value as on the database. i.e. The existing value before
-- the API was called or the value which was derived by the

-- API. The variable will not be set to hr_api.g_number.
--

end;

Default Parameters with Delete Style APIs

Most delete style APIs do not have default values for any attribute parameters. In rare
cases parameters with default values work in a similar way to those of update style APIs.

Parameters with NOCOPY

Starting from Applications Release 11.5.9, many PL/SQL APIs have been enhanced to
make use of the PL/SQL pass by reference feature. The NOCOPY compiler directive is
defined with OUT and IN OUT parameters. This improves run-time performance and
reduces memory usage.

For the majority of calling programs, when an API with or without NOCOPY is called
with valid data values, there will be no noticeable difference in behavior. However, there
are some subtle differences, which calling programs need to take into consideration.

Use Different Variables

When calling a PL/SQL API, ensure that different variables are used to capture values
returned from the OUT and IN OUT parameters. Using the same variable with multiple
OUT parameters, or an IN only parameter and also an OUT parameter, can lead to the
API behaving incorrectly. In some circumstances this can cause data corruption. Even
if you are not interested in knowing or processing the returned value you must use
different variables.

Error Processing

At the start of any procedure call, PL/SQL sets the variables from the calling program
used with OUT only NOCOPY parameters to null. If a validation issue or other problem
is detected by the API, an error is raised as a PL/SQL exception. Any OUT parameter
values that the API has calculated before the error is detected are cleared with null. This
ensures that the variables in the calling program used with the OUT parameters do not
contain any misleading values.

2-230 Oracle US Federal Human Resources Implementation Guide

When NOCOPY has not been specified, the variables contain the values that existed
immediately before the procedure call began. This difference in behavior is noticed only
by calling programs that contain an exception handler and that attempt to read the
variable expecting to see the value that the variable contained before the call.

If the calling program needs to know the variable value that existed before the API was
called, you must declare and populate a separate variable.

There is no change to the behavior of IN only and IN OUT parameters, regardless of the
existence of the NOCOPY compiler directive. After an error occurs, the variable used
with the IN or IN OUT parameter holds the value that existed immediately before the
procedure call began.

Understanding the p_validate Control Parameter

Every published API includes the p_validate control parameter. When this parameter is
set to FALSE (the default value), the procedure executes all validation for that business
function. If the operation is valid, the database rows/values are inserted or updated or
deleted. Any non warning OUT parameters, warning OUT parameters and IN OUT
parameters are all set with specific values.

When the p_validate parameter is set to TRUE, the API only checks that the operation is
valid. It does so by issuing a savepoint at the start of the procedure and rolling back to
that savepoint at the end. You do not have access to these internal savepoints. If the
procedure is successful, without raising any validation errors, then non-warning OUT
parameters are set to null, warning OUT parameters are set to a specific value, and IN
OUT parameters are reset to their IN values.

In some cases you may want to write your PL/SQL routines using the public API
procedures as building blocks. This enables you to write routines specific to your
business needs. For example, say that you have a business requirement to apply a
DateTracked update to a row and then apply a DateTrack delete to the same row in
the future. You could write an "update_and_future_del" procedure that calls two
of the standard APIs.

When calling each standard API, p_validate must be set to false. If true is used the
update procedure call is rolled back. So when the delete procedure is called, it is
working on the non-updated version of the row. However when p_validate is set to
false, the update is not rolled back. Thus, the delete call operates as if the user really
wanted to apply the whole transaction.

If you want to be able to check that the update and delete operation is valid, you must
issue your own savepoint and rollback commands. As the APIs do not issue any
commits, there is no danger of part of the work being left in the database. It is the
responsibility of the calling code to issue commits. The following simulates some of
the p_validate true behavior.

Example

[Dummy text - remove in Epic]

savepoint s1;
update_api_prc(.........);
delete_api_prc(..........);
rollback to s1;

You should not use our API procedure names for the savepoint names. An unexpected
result may occur if you do not use different names.

Implementation Guide 2-231

Understanding the p_effective_date Control Parameter

Most APIs that insert/update/delete data for at least one DateTrack entity have a
p_effective_date control parameter. This mandatory parameter defines the date you
want an operation to be applied from. The PL/SQL datatype of this parameter is date.

As the smallest unit of time in DateTrack is one day, the time portion of the
p_effective_date parameter is not used. This means that the change always comes
into effect just after midnight.

Some APIs have a more specific date for processing. For example, the create_employee
API does not have a p_effective_date parameter. The p_hire_date parameter is used as
the first day the person details come into effect.

Example 1

This example creates a new grade rate that starts from today.

hr_grade_api.create_grade_rate_value

(...

,p_effective_date => trunc(sysdate)

...);

Example 2

This example creates a new employee who joins the company at the start of March 1997.

hr_employee_api.create_employee

(...

,p_hire_date => to_date(’01-03-1997’,’DD-MM-YYYY’)

...);

Some APIs that do not modify data in DateTrack entities still have a p_effective_date
parameter. The date value is not used to determine when the changes take effect. It is
used to validate Lookup values. Each Lookups value can be specified with a valid date
range. The start date indicates when the value can first be used. The end date shows the
last date the value can be used on new records and set when updating records. Existing
records, which are not changed, can continue to use the Lookup after the end date.

Understanding the p_datetrack_update_mode Control Parameter

Most APIs that update data for at least one DateTrack entity have a
p_datetrack_update_mode control parameter. It enables you to define the type of
DateTrack change to be made. This mandatory parameter must be set to one of the
values in the following table:

2-232 Oracle US Federal Human Resources Implementation Guide

p_datetrack_update_mode Value Description

UPDATE Keep history of existing information

CORRECTION Correct existing information

UPDATE_OVERRIDE Replace all scheduled changes

UPDATE_CHANGE_INSERT Insert this change before next scheduled
change

It may not be possible to use every mode in every case. For example, if there are
no existing future changes for the record you are changing, the DateTrack modes
UPDATE_OVERRIDE and UPDATE_CHANGE_INSERT cannot be used.

Some APIs that update DateTrack entities do not have a p_datetrack_update_mode
parameter. These APIs automatically perform the DateTrack operations for that business
operation.

Each dated instance for the same primary key has a different object_version_number.
When calling the API the p_object_version_number parameter should be set to the value
that applies as of the date for the operation (that is, p_effective_date).

Example

Assume grade rate values shown in the following table already exist in the
pay_grade_rules_f table:

Grade_rule_id Effective Start_
Date

Effective_ End_
Date

Object_
Version_
Number

Value

12122 01-JAN-1996 20-FEB-1996 2 45

12122 21-FEB-1996 20-JUN-1998 3 50

Also assume that the grade rate value was updated to the wrong value on
21-FEB-1996. The update from 45 to 50 should have been 45 to 55 and you want to
correct the error.

Implementation Guide 2-233

declare
l_object_version_number number;
l_effective_start_date date;
l_effective_end_date date;

begin
l_object_version_number := 3;
hr_grade_api.update_grade_rate_value

(p_effective_date => to_date(’21-02-1996’,’DD-MM-YYYY ’)
,p_datetrack_update_mode => ’CORRECTION’
,p_grade_rule_id => 12122
,p_object_version_number => l_object_version_number
,p_value => 55
,p_effective_start_date => l_effective_start_date
,p_effective_end_date => l_effective_end_date
);

-- l_object_version_number will now be set to the value
-- as on database row, as of 21st February 1996.

end;

Understanding the p_datetrack_delete_mode Control Parameter

Most APIs that delete data for at least one DateTrack entity have a
p_datetrack_delete_mode control parameter. It enables you to define the type of
DateTrack deletion to be made. This mandatory parameter must be set to one of the
values in the following table:

p_datetrack_delete_mode Value Description

ZAP Completely remove from the database

DELETE Set end date to effective date

FUTURE_CHANGE Remove all scheduled changes

DELETE_NEXT_CHANGE Remove next change

It may not be possible to use every mode in every case. For example, if there are
no existing future changes for the record you are changing, the DateTrack modes
FUTURE_CHANGE and DELETE_NEXT_CHANGE cannot be used. Some APIs that
update DateTrack entities do not have a p_datetrack_delete_mode parameter. These
APIs automatically perform the DateTrack operations for that business operation. Refer
to the comments in each API package header creation script for further details.

Each dated instance for the same primary key has a different object_version_number.
When calling the API the p_object_version_number parameter should be set to the value
that applies as of the date for the operation (that is, p_effective_date).

Example

Assume that the grade rate values shown in the following table already exist in the
pay_grade_rules_f table:

2-234 Oracle US Federal Human Resources Implementation Guide

Grade_rule_id Effective_
Start_Date

Effective_ End_
Date

Object_
Version_
Number

Value

5482 15-JAN-1996 23-MAR-1996 4 10

5482 24-MAR-1996 12-AUG-1996 8 20

Also assume that you want to remove all dated instances of this grade rate value from
the database.

declare
l_object_version_number number;
l_effective_start_date date;
l_effective_end_date date;

begin

l_object_version_number := 4;

hr_grade_api.update_grade_rate_value
(p_effective_date => to_date(’02-02-1996’, ’DD-MM-YYYY ’)
,p_datetrack_delete_mode => ’ZAP’
,p_grade_rule_id => 5482
,p_object_version_number => l_object_version_number
,p_effective_start_date => l_effective_start_date
,p_effective_end_date => l_effective_end_date
);

-- As ZAP mode was used l_object_version_number now is null.
end;

Understanding the p_effective_start_date and p_effective_end_date Parameters

Most APIs that insert/delete/update data for at least one DateTrack entity have the
p_effective_start_date and p_effective_end_date control parameters.

Both of these parameters are defined as OUT.

The values returned correspond to the effective_start_date and effective_end_date
database column values for the row that is effective as of p_effective_date.

These parameters are set to null when all the DateTracked instances of a particular
row are deleted from the database (that is, when a delete style API is called with a
DateTrack mode of ZAP).

Example

Assume that the grade rate values in the following table already exist in the
pay_grade_rules_f table:

Grade_rule_id Effective_ Start_Date Effective_ End_Date

17392 01-FEB-1996 24-MAY-1996

17392 25-MAY-1996 01-SEP-1997

Implementation Guide 2-235

The update_grade_rate_value API is called to perform a DateTrack mode of
UPDATE_CHANGE_INSERT with an effective date of 10-MAR-1996. The API then
modifies the database rows as shown in the following table:

Grade_rule_id Effective_ Start_Date Effective_ End_Date

17392 01-FEB-1996 09-MAR-1996

17392 10-MAR-1996 24-MAY-1996

17392 25-MAY-1996 01-SEP-1997

The API p_effective_start_date parameter is set to 10-MAR-1996 and
p_effective_end_date to 24-MAY-1996.

Understanding the p_language_code Parameter

The p_language_code parameter is only available on create and update style
Multilingual Support APIs. It enables you to specify which language the translation
values apply to. The parameter can be set to the base or any installed language. The
parameter default value of hr_api.userenv_lang is equivalent to:

select use renv(’LANG’)

from dual;

If this parameter is set to null or hr_api.g_varchar2, the hr_api.userenv_lang default
is still used.

See: Multilingual Support, page 2-238

API Features

Commit Statements

None of the HRMS APIs issue a commit. It is the responsibility of the calling code to
issue commit statements. This ensures that parts of a transaction are not left in the
database. If an error occurs, the whole transaction is rolled back. Therefore API work
is either all completed or none of the work is done. You can use the HRMS APIs as
"building blocks" to construct your own business functions. This gives you the flexibility
to issue commits where you decide.

It also avoids conflicts with different client tools. For example, Oracle Forms only issues
a commit if all the user’s changes are not in error. This could be one or more record
changes, which are probably separate API calls.

Avoiding Deadlocks

If calling more than one API in the same commit unit, take care to ensure deadlock
situations do not happen. Deadlocks should be avoided by accessing the tables in the
order they are listed in the table locking ladder. For example, you should update or
delete rows in the table with the lowest Processing Order first.

If more than one row in the same table is being touched, then lock the rows in ascending
primary key order. For example, if you are updating all the assignments for one
person, then change the row with the lowest assignment_id first.

If it is impossible or impractical for operations to be done in locking ladder order, explicit
locking logic is required. When a table is brought forward in the processing order, any
table rows that have been jumped and will be touched later must be explicitly locked

2-236 Oracle US Federal Human Resources Implementation Guide

in advance. Where a table is jumped and none of the rows are going to be updated or
deleted, no locks should be taken on that table.

Example

Assume that the locking ladder order is as shown in the following table:

Table Processing Order

A 10

B 20

C 30

D 40

Also assume that your logic has to update rows in the following order:

A 1st

D 2nd

C 3rd

Then your logic should:

1. Update rows in table A.

2. Lock rows in table C. (Only need to lock the rows that are going to be updated in
step 4.)

3. Update rows in table D.

4. Update rows in table C.

Table B is not locked because it is not accessed after D. Your code does not have to
explicitly lock rows in tables A or D, because locking is done as one of the first steps in
the API.

In summary, you can choose the sequence of updates or deletes, but table rows must be
locked in the order shown by the table locking ladder.

Flexfields with APIs

APIs validate the Descriptive Flexfield and Key Flexfield column values using the
Flexfield definitions created using the Oracle Application Object Library Forms.

As the API Flexfield validation is performed within the database, the value set
definitions should not refer directly to Forms objects such as fields. Server-side
validation cannot resolve these references so any checks will fail. Care should also be
taken when referencing profiles, as these values may be unavailable in the server-side.

Even where the Forms do not currently call the APIs to perform their commit time
processing, it is strongly recommended that you do not directly refer to any Form fields
in your value set definitions. Otherwise problems may occur with future upgrades. If
you want to perform other field validation or perform Flexfield validation that cannot be
implemented in values sets, use API User Hooks.

Implementation Guide 2-237

See: API User Hooks, page 2-245

For further information about, and solutions to, some problems that you may encounter
with flexfield validation, see: Validation of Flexfield Values, page 2-204.

The APIs do not enforce Flexfield value security. This can only be done when using
the Forms user interface.

For each Descriptive Flexfield, Oracle Applications has defined a structure
column. In most cases the structure column name ends with the letters, or is
called, "ATTRIBUTE_CATEGORY". The implementation team can associate this structure
column with a reference field. The structure column value can affect which Flexfield
structure is for validation. When reference fields are defined and you want to call the
APIs, it is your responsibility to populate and update the ATTRIBUTE_CATEGORY
value with the reference field value.

For Descriptive Flexfields, the APIs usually perform the Flexfield validation after other
column validation for the current table. For Key Flexfield segments, values are held
on a separate table, known as the combination table. As rows are maintained in the
combination table ahead of the main product table, the APIs execute the Flexfield
validation before main product table column validation.

In Release 11.0 and before, it was necessary to edit copies of the skeleton Flexfield
validation package body creation scripts before the APIs could perform Flexfield
validation. The technology constraints that made this technique necessary have now
been lifted. These skeleton files *fli.pkb are no longer shipped with the product.

Multilingual Support

Several entities in the HRMS schema provide Multilingual Support (MLS), where
translated values are held in _TL tables. For general details of the MLS concept refer to
the following documentation:

See: Oracle Applications Concepts Manual for Principles of MLS, and Oracle Applications
Install Guide for Configuration of MLS.

As the non-translated and translated values are identified by the same surrogate key ID
column and value, the Multilingual Support APIs manage both groups of values in the
same PL/SQL procedure call.

Create and update style APIs have a p_language_code parameter which you use to
indicate which language the translated values apply to. The API maintains the required
rows in the _TL table, setting the source_lang and language columns appropriately. These
columns, and the p_language_code parameter, hold a language_code value from the
FND_LANGUAGES table.

The p_language_code parameter has a default value of hr_api.userenv_lang, which
is equivalent to:

select userenv(’LANG’)

from dual;

Setting the p_language_code parameter enables you to maintain translated data for
different languages within the same database session. If this parameter is set to null or
hr_api.g_varchar2 then the hr_api.userenv_lang default is still used.

When a create style Multilingual Support API is called, a row is inserted into the _TL
table for each base and installed language. For each row, the source_lang column equals
the p_language_code parameter and the translated column values are the same. When

2-238 Oracle US Federal Human Resources Implementation Guide

the other translated values are available they can be set by calling the update API, setting
the p_language_code parameter to the appropriate language code.

Each call to an update style Multilingual Support API can amend the non-translated
values and one set of translated values. The API updates the non-translated values
in the main table and translated data values on corresponding row, or rows, in the
_TL table. The translated columns are updated on rows where the p_language_code
parameter matches the language or source_lang columns. Including a matching against
the source_lang column ensures translations that have not been explicitly set remain
synchronised with the created language. When a translation is being set for the first
time the source_lang column is also updated with the p_language_code value. If you
want to amend the values for another translation, call the update API again setting the
p_language_code and translated parameters appropriately.

For delete style Multilingual Support APIs there is no p_language_code parameter. When
the non-translated data is removed, all corresponding translation rows in the _TL table
are also removed. So the API does not need to perform the process for a particular
language.

When a Multilingual Support API is called more than one row may be processed in the
_TL table. To avoid identifying every row that will be modified, _TL tables do not
have an object_version_number column. The main table, holding the non-translated
values, does have an object_version_number column. When you use a Multilingual
Support API, set the p_object_version_number parameter to the value from the main
table, even when only updating translated values.

Alternative APIs

In some situations it is possible to perform the same business process using more
than one API. This is especially the case where entities hold extra details for different
legislations. Usually there is a main API, which can be used for any legislation, and also
specific versions for some legislations. Whichever API is called, the same validation
and changes are made to the database.

For example, there is an entity to hold addresses for people. For GB style addresses
some of the general address attributes are used to hold specific details, as shown
in the following table:

Implementation Guide 2-239

PER_ADDRESSES Table
Column Name

create_person_address API
Parameter Name

create_gb_person_ address
API Parameter Name

style p_style N/A

address_line1 p_address_line1 p_address_line1

address_line2 p_address_line2 p_address_line2

address_line3 p_address_line3 p_address_line3

town_or_city p_town_or_city p_town

region_1 p_region_1 p_county

region_2 p_region_2 N/A for this style

region_3 p_region_3 N/A for this style

postal_code p_postal_code p_postcode

country p_country p_country

telephone_number_1 p_telephone_number_1 p_telephone_number

telephone_number_2 p_telephone_number_2 N/A for this style

telephone_number_3 p_telephone_number_3 N/A for this style

Note: Not all database columns names or API parameters have been
listed.

The p_style parameter does not exist on the create_gb_person_address API because this
API only creates addresses for one style.

Not all of the address attributes are used in every style. For example, the region_2
attribute cannot be set for a GB style address. Hence, there is no corresponding
parameter on the create_gb_person_address API. When the create_person_address API
is called with p_style set to "GB" then p_region_2 must be null.

Both interfaces are provided to give the greatest flexibility. If your company only
operates in one location, you may find it more convenient to call the address style
interface that corresponds to your country. If your company operates in various locations
and you want to store the address details using the local styles, you may find it more
convenient to call the general API and specify the required style on creation.

Refer to comments in each API package header creation script for further details of
where other alternative interfaces are provided.

See also: User Hooks and Alternative Interface APIs, page 2-262

API Errors and Warnings

Failure Errors

When calling APIs, validation or processing errors may occur. These errors are raised
like any other PL/SQL error in Oracle applications.

2-240 Oracle US Federal Human Resources Implementation Guide

When an error is raised, all the work done by that single API call is rolled back. As the
APIs do not issue any commits, there is no danger that part of the work will be left in the
database. It is the responsibility of the calling code to issue commits.

Warning Values

Warnings are returned using OUT parameters. The names of these parameters ends
with _WARNING. In most cases the datatype is boolean. When a warning value is
raised, the parameter is set to true. Other values are returned when the datatype is not
boolean. Refer to the comments in each API package header creation script for further
details.

The API assumes that although a warning situation has been flagged, it is acceptable to
continue. If there was risk of a serious data problem, a PL/SQL error would have been
raised and processing for the current API call would have stopped.

However, in your particular organization you may need to make a note about the
warning or perform further checks. If you do not want the change to be kept in the
database while this is done, you will need to explicitly roll back the work the API
performed.

Example

When the create_employee API is called, the p_name_combination_warning parameter is
set to true when person details already in the database include the same combination of
last_name, first_name and date_of_birth.

declare
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;

begin
savepoint on_name_warning;
hr_employee.create_employee

(p_validate => false
...
,p_last_name => ’Bloggs’
,p_first_name => ’Fred’
,p_date_of_birth => to_date(’06-06-1964’, ’DD-MM-YYYY’)
...
,p_name_combination_warning => l_name_combination_war ning
,p_assign_payroll_warning => l_assign_payroll_warning
);

if l_name_combination_warning then
-- Note that similar person details already exist.
-- Do not hold the details in the database until it is
-- confirmed this is really a different person.
rollback to on_name_warning;

end if;
end;

Note: It would not have been necessary to rollback the API work if the
p_validate parameter had been set to true.

You should not use our API procedure names for the savepoint names. An unexpected
result may occur if you do not use different names.

Handling Errors in PL/SQL Batch Processes

In a batch environment, errors raised to the batch process must be handled and recorded
so that processing can continue. To aid the development of such batch processes, we

Implementation Guide 2-241

provide a message table called HR_API_BATCH_MESSAGE_LINES and some APIs, as
shown in the following table:

API Name Description

create_message_line Adds a single error message to the
HR_API_BATCH_MESSAGE_LINES table.

delete_message_line Removes a single error message to the
HR_API_BATCH_MESSAGE_LINES table.

delete_message_lines Removes all error message lines for a particular
batch run.

For a full description of each API, refer to the comments in the package header creation
script.

For handling API errors in a PL/SQL batch process it is recommended that any messages
should be stored in the HR_API_BATCH_MESSAGE_LINES table.

Example PL/SQL Batch Program

Assume a temporary table has been created containing employee addresses. The
addresses need to be inserted into the HR schema. The temporary table holding the
address is called temp_person_address, as in the following table. It could have been
populated from an ASCII file using Sql*Loader.

TEMP_PERSON_ADDRESSES Table

Column Name DataType

person_id number

primary_flag varchar2

date_from date

address_type varchar2

address_line1 varchar2

address_line2 varchar2

address_line3 varchar2

town varchar2

county varchar2

postcode varchar2

country varchar2

telephone_number varchar2

2-242 Oracle US Federal Human Resources Implementation Guide

Sample Code
declare

--
l_rows_processed number := 0; -- rows processed by api l_com

mit_point number := 20; - Commit after X successful rows
l_batch_run_number hr_api_batch_message_lines.batch_ run_

number%type;
l_dummy_line_id hr_api_batch_message_lines.line_id%t ype;

l_address_id per_addresses.address_id%type;
l_object_version_number_id per_addresses.object_vers ion_number_i

d%type;
--
-- select the next batch run number
--
cursor csr_batch_run_number is

select nvl(max(abm.batch_run_number), 0) + 1
from hr_api_batch_message_lines abm;

--
-- select all the temporary ’GB’ address rows
--
cursor csr_tpa is

select tpa.person_id
, tpa.primary_flag
, tpa.date_from
, tpa.address_type
, tpa.address_line1
, tpa.address_line2
, tpa.address_line3
, tpa.town
, tpa.county
, tpa.postcode
, tpa.country
, tpa.telephone_number
, tpa.rowid

from temp_person_addresses tpa
where tpa.address_style = ’GB’;

begin
-- open and fetch the batch run number
open csr_batch_run_number;
fetch csr_batch_run_number into l_batch_run_number;
close csr_batch_run_number;
-- open and fetch each temporary address row
for sel in csr_tpa loop

begin
-- create the address in the HR Schema
hr_person_address_api.create_gb_person_address

(p_person_id => sel.person_id
,p_effective_date => trunc(sysdate)
,p_primary_flag => sel.primary_flag
,p_date_from => sel.date_from
,p_address_type => sel.address_type
,p_address_line1 => sel.address_line1
,p_address_line2 => sel.address_line2
,p_address_line3 => sel.address_line3
,p_town => sel.town
,p_county => sel.county
,p_postcode => sel.postcode

Implementation Guide 2-243

,p_country => sel.country
,p_telephone_number => sel.telephone_number
,p_address_id => l_address_id
,p_object_version_number => l_object_version_number
);

-- increment the number of rows processed by the api
l_rows_processed := l_rows_processed + 1;
-- determine if the commit point has been reached
if (mod(l_rows_processed, l_commit_point) = 0) then

-- the commit point has been reached therefore commit
commit;

end if;
exception

when others then
--
-- An API error has occurred
-- Note: As an error has occurred only the work in the

-- last API call will be rolled back. The
-- uncommitted work done by previous API calls will not

be -- affected. If the error is ora-20001 the fnd_message
.get -- function will retrieve and substitute all tokens
for -- the short and extended message text. If the erro
r is -- not ora-20001, null will be returned.

--
hr_batch_message_line_api.create_message_line

(p_batch_run_number => l_batch_run_number
,p_api_name =>

’hr_person_address_api.create_gb_person
_address’

,p_status => ’F’
,p_error_number => sqlcode
,p_error_message => sqlerrm
,p_extended_error_message => fnd_message.get
,p_source_row_information => to_char(sel.rowid)
,p_line_id => l_dummy_line_id);

end;
end loop;
-- commit any final rows
commit;

end;

You can view any errors that might have been created during the processes by selecting
from the HR_API_BATCH_MESSAGE_LINES table for the batch run completed, as
follows:

select *

from hr_api_batch_message_lines abm

where abm.batch_run_number = :batch_run_number

order by abm.line_id;

WHO Columns and Oracle Alert

In many tables in Oracle Applications there are standard WHO columns. These include:

• LAST_UPDATE_DATE

2-244 Oracle US Federal Human Resources Implementation Guide

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The values held in these columns usually refer to the Applications User who caused the
database row to be created or updated. In the Oracle HRMS Applications these columns
are maintained by database triggers. You cannot directly populate these columns, as
corresponding API parameters have not been provided.

When the APIs are executed from an Application Form or concurrent manager
session, then these columns will be maintained just as if the Form had carried out
the database changes.

When the APIs are called from a SQL*Plus database session, the CREATION_DATE
and LAST_UPDATE_DATE column will still be populated with the database sysdate
value. As there are no application user details, the CREATED_BY, LAST_UPDATED_BY
and LAST_UPDATE_LOGIN column will be set to the "anonymous user" values.

If you want the CREATED_BY and LAST_UPDATED_BY columns to be populated
with details of a known application user in a SQL*Plus database session, then before
executing any HRMS APIs, call the following server-side package procedure once:

fnd_global.apps_initialize

If you call this procedure it is your responsibility to pass in valid values, as incorrect
values are not rejected. The above procedure should also be called if you want to use
Oracle Alert and the APIs.

By using AOL profiles, it is possible to associate a HR security profile with an AOL
responsibility. Care should be taken when setting the apps_initialize resp_id parameter
to a responsibility associated with a restricted HR security profile. To ensure API
validation is not over restrictive, you should only maintain data held within that
responsibility’s business group.

To maintain data in more than one business group in the same database session, use a
responsibility associated with an unrestricted HR security profile.

API User Hooks

APIs in Oracle HRMS support the addition of custom business logic. We have called
this feature ‘API User Hooks’. These hooks enable you to extend the standard business
rules that are executed by the APIs. You can include your own validation rules or
further processing logic and have it executed automatically whenever the associated
API is executed.

Consider:

• Customer-specific data validation

For example, when an employee is promoted you might want to restrict the change
of grade to a single step, unless they work at a specific location, or have been in
the grade for longer than six months.

• Maintenance of data held in extra customer-specific tables

For example, you may want to store specific market or evaluation information about
your employees in database tables that were not supplied by Oracle Applications.

Implementation Guide 2-245

• Capturing the fact that a particular business event has occurred

For example, you may want to capture the fact that an employee is leaving
the enterprise to send an electronic message directly to your separate security
database, so the employee’s office security pass can be disabled.

User hooks are locations in the APIs where extra logic can be executed. When the API
processing reaches a user hook, the main processing stops and any custom logic is
executed. Then, assuming no errors have occurred, the main API processing continues.

Caution: You must not edit the API code files supplied by Oracle. These
are part of the delivered product code and, if they are modified, Oracle
may be unable to support or upgrade your implementation. Oracle
Applications support direct calls only to the published APIs. Direct calls
to any other server-side package procedures or functions that are written
as part of the Oracle HRMS product set are not supported, unless
explicitly specified.

Implementing API User Hooks

All the extra logic that you want to associate with APIs should be implemented as
separate server-side package procedures using PL/SQL. The analysis and design of your
business rules model is specific to your implementation. This essay focuses on how you
can associate the rules you decide to write with the API user hooks.

After you have written and loaded into the database your server-side package, you need
to associate your package with one or more specific user hooks. There are 3 special APIs
to insert, update and delete this information. To create the links between the delivered
APIs and the extra logic, execute the supplied pre-processor program. This looks at the
data you have defined, the package procedure you want to call and builds logic to
execute your PL/SQL from the specific user hooks. This step is provided to optimize the
overall performance of API execution with user hooks. Effectively each API knows the
extra logic to perform without needing to check explicitly.

As the link between the APIs and the extra logic is held in data, upgrades are easier to
support. Where the same API user hooks and parameters exist in the new version, the
pre-processor program can be executed again. This process rebuilds the extra code
needed to execute your PL/SQL from the specific user hooks without the need for
manual edits to Oracle applications or your own source code files.

To implement API user hooks

1. Identify the APIs and user hooks where you want to attach your extra
logic. See: Available User Hooks, page 2-247

2. Identify the data values available at the user hooks you intend to use. See: Data
Values Available at User Hooks, page 2-250

3. Implement your extra logic in a PL/SQL server-side package
procedure. See: Implementing Extra Logic in a Separate Procedure Package,
page 2-251

4. Register your extra PL/SQL packages with the appropriate API user hooks by
calling the hr_api_hook_call_api.create_api_hook_call API. Define the mapping data
between the user hook and the server-side package procedure. See: Linking Custom
Procedures to User Hooks, page 2-253

5. Execute the user hook pre-processor program. This validates the parameters to
your PL/SQL server-side package procedure and dynamically generates another

2-246 Oracle US Federal Human Resources Implementation Guide

package body directly into the database. This generated code contains PL/SQL to
call the custom package procedures from the API user hooks. See: The API User
Hook Pre-processor Program, page 2-258

Available User Hooks

API user hooks are provided in the HRMS APIs that create, maintain or delete
information. For example, the create_employee and update_emp_asg_criteria APIs.

Note: User hooks are not provided in alternative interface APIs. For
example, create_us_employee and create_gb_employee are both
alternatives to the create_employee API. You should associate any extra
logic with the main API. Also user hooks are not provided in utility style
APIs such as create_message_line.

A PL/SQL script is available that lists all the different user hooks.

See: API User Hook Support Scripts, page 2-264

In the main APIs for HRMS there are two user hooks:

• Before Process

• After Process

There are different versions of these two user hooks in each API. For example, there is a
Before Process and an After Process user hook in the create_employee API and a different
Before Process and After Process user hook in the update_person API. This enables you
to link your own logic to a specific API and user hook.

Main API User Hooks

Before Process Logic

Before Process user hooks execute any extra logic before the main API processing logic
modifies any data in the database. In this case, the majority of validation will not have
been executed. If you implement extra logic from this type of user hook, you must
remember that none of the context and data values have been validated. It is possible the
values are invalid and will be rejected when the main API processing logic is executed.

Implementation Guide 2-247

After Process Logic

After Process user hooks execute any extra logic after all the main API validation and
processing logic has successfully completed. All the database changes that are going to
be made by the API have been made. Any values provided from these user hooks have
passed the validation checks. Your extra validation can assume the values provided are
correct. If the main processing logic does not finish, due to an error, the After Process
user hook is not called.

Note: You cannot alter the core product logic, which is executed
between the ’Before Process’ and ’After Process’ user hooks. You can
only add extra custom logic at the user hooks.

Core Product Logic

Core Product Logic is split into a number of components. For tables that can be altered
by an API there is an internal row handler code module. These rows handlers are
implemented for nearly all the tables in the system where APIs are available. They
control all the insert, update, delete and lock processing required by the main APIs. For
example, if a main API needs to insert a new row into the PER_ALL_PEOPLE_F table it
will not perform the DML itself. Instead it will execute the PER_ALL_PEOPLE_F row
handler module.

Oracle Applications does not support any direct calls to these internal row handlers, as
they do not contain the complete validation and processing logic. Calls are only allowed
to the list of supported and published APIs.

This list is provided in the Publicly Callable Business Process APIs in Oracle HRMS ,
Oracle HRMS Configuring, Reporting, and System Administration Guide topic. Any new
APIs introduced in the new version of a release will be listed in What’s New in Oracle
HRMS available on Metalink.

This list is provided in the Publicly Callable Business Process APIs in Oracle HRMS topic
in the guide Configuring, Reporting and System Administration in Oracle HRMS and in
Oracle HRMS Help. Any new APIs introduced in the new version of a release will be
listed in the What’s New in Oracle HRMS topic in the help system.

In each of the row handler modules three more user hooks are available, After Insert, After
Update and After Delete. The user hook extra logic is executed after the validation specific
to the current table columns has been successfully completed and immediately after
the corresponding table DML statement.

These row handler user hooks are provided after the DML has been completed for
two reasons:

• All core product validation has been carried out. So you know that the change to
that particular table is valid.

• For inserts, the primary key value is not known until the row has actually been
inserted.

Note: Although the update or delete DML statements may have been
executed, the previous - before DML, column values are still available
for use in any user hook logic. This is explained in more detail in a
later section of this essay.

2-248 Oracle US Federal Human Resources Implementation Guide

When an API inserts, updates or deletes records in more than one table there are many
user hooks available for your use. For example, the create_employee API can create
data in up to six different tables.

Create Employee API Summary Code Module Structure

In the above diagram, create_employee is the supported and published API. Only three
of the internal row handlers have been shown, PER_ALL_PEOPLE_F, PER_PERIODS_
OF_SERVICE and PER_ALL_ASSIGNMENTS_F. These internal row handlers must
not be called directly.

Order of user hook execution:

1st) Create employee API Before Process user hook.

2nd) PER_ALL_PEOPLE_F row handler After Insert user hook.

3rd) PER_PERIODS_OF_SERVICE row handler After Insert user hook.

4th) PER_ALL_ASSIGNMENT_F row handler After Insert user hook.

...

last) Create employee API After Process user hook.

Note: Core product validation and processing logic is executed between
each of the user hooks.

When a validation or processing error is detected, processing is immediately aborted
by raising a PL/SQL exception. API validation is carried out in each of the separate
code modules. For example, when the create_employee API is used, validation logic is
executed in each of the row handlers that are executed. Let’s assume that a validation
check is violated in the PER_PERIODS_OF_SERVICE row handler. The logic defined
against the first two user hooks is executed. As a PL/SQL exception is raised, the 3rd
and all remaining user hooks for that API call are not executed.

Note: When a DateTrack operation is carried out on a particular
record, only one row handler user hook is executed. For example, when

Implementation Guide 2-249

updating a person record using the DateTrack mode ’UPDATE’, only
the After Update user hook is executed in the PER_ALL_PEOPLE_F
row handler.

The published APIs are also known as Business Processes as they perform a business
event within HRMS.

Data Values Available at User Hooks

In general, where a value is known inside the API it will be available to the custom
user hook code.

All values are read only. None of the values can be altered by user hook logic.

None of the AOL WHO values are available at any user hook, including:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The p_validate parameter value is not available at any user hook. Any additional
processing should be done regardless of the p_validate value.

Data values are made available to user hook logic using individual PL/SQL procedure
parameters. In most cases the parameter name matches the name of the corresponding
database column name with a p_ prefix. For example, the NATIONALITY column
on the PER_ALL_PEOPLE_F table has a corresponding user hook parameter name
of p_nationality.

Before Process and After Process User Hook Data Values

• IN parameter values on each published API are available at the Before Process and
After Process user hooks. At the Before Process hook none of the values are validated.

• OUT parameter values on the published API are only available from the After
Process user hook. They are unavailable from the Before Process user hook because
no core product logic has been executed to derive them.

• IN OUT parameter values on the published API are available at the Before Process
and After Process user hooks. The potentially invalid IN value is available at the
Before Process user hook. The value passed out of the published API is available at
the After Process user hook.

From the row handler After Insert user hook only column values that can be populated or
are derived during insert are available.

From the After Update user hook two sets of values are available: the new values and the
old values. That is, the values that correspond to the updated record and the values
that existed on the record before the DML statement was executed. The new value
parameter names correspond to the database column name with a p_ prefix. The old
values parameter names match the database column name with a p_ prefix and a _o
suffix. For example, the new value parameter name for the NATIONALITY column
on the PER_ALL_PEOPLE_F table is p_nationality. The old value parameter name is
p_nationality_o.

2-250 Oracle US Federal Human Resources Implementation Guide

Except for the primary key ID, if a database column cannot be updated a new value
parameter is not available. There is still a corresponding parameter without the _o
suffix. For example, the BUSINESS_GROUP_ID column cannot be updated on the
PER_ALL_PEOPLE_F table. At the After Update user hook a p_business_group_id_o
parameter is available. But there is no new value p_business_group_id parameter.

From the After Delete user hooks only old values are available with _o suffix style
parameter names. The primary key ID value is available with a parameter that does
not have the _o suffix.

Old values are only made available at the row handler After Update and After Delete user
hooks. Old values are NOT available from any of the Before Process, After Process or
After Insert user hooks.

Wherever the database column name is used, the end of the name may be truncated, to
fit the PL/SQL 30 character limit for parameter names.

For DateTrack table row handlers, whenever data values are made available from the
After Insert, After Update or After Delete user hooks, the provided new and old values
apply as of the operation’s effective_date. If past or future values are required the custom
logic needs to select them explicitly from the database table. The effective_start_date and
effective_end_date column and DateTrack mode value are made available.

A complete list of available user hooks and the data values provided can be found
by executing a PL/SQL script.

See: API User Hook Support Scripts, page 2-264

Implementing Extra Logic In a Separate Package Procedure

Any extra logic that you want to link to an API with a user hook must be implemented
inside a PL/SQL server-side package procedure.

Note: These procedures can do anything that can be implemented in
PL/SQL except ‘commit’ and full ‘rollbacks’.

The APIs have been designed to perform all of the work associated with a business
process. If it is not possible to complete all of the database changes then the API fails and
rolls back all changes. This is achieved by not committing any values to the database
within an API. If an error occurs in later processing all database changes made up to
that point are rolled back automatically.

Important: Commits or full rollbacks are not allowed in any API code as
they would interfere with this mechanism. This includes user-hooks
and extra logic. If you attempt to issue a commit or full rollback
statement, the user hook mechanism will detect this and raise its own
error.

When an invalid value is detected by extra validation, you should raise an error using
a PL/SQL exception. This automatically rolls back any database changes carried out
by the current call to the published API. This rollback includes any changes made
by earlier user hooks.

The user hook code does not support any optional or decision logic to decide when your
custom code should be executed. If you link extra logic to a user hook it will always be
called when that API processing point is reached. You must implement any conditional
logic inside your custom package procedure. For example, suppose you want to check
that ‘Administrators’ are promoted by one grade step only with each change. As your

Implementation Guide 2-251

extra logic will be called for all assignments, regardless of job type, you should decide if
you need to check for the job of ‘Administrator’ before checking the grade details.

Limitations

There are some limitations to implementing extra logic as custom PL/SQL code. Only
calls to server-side package procedures are supported. But more than one package
procedure can be executed from the same user hook. Custom PL/SQL cannot be
executed from user hooks if it is implemented in:

• Stand alone procedures (not defined within a package)

• Package functions

• Stand alone package functions (not defined within a package)

• Package procedures that have overloaded versions

Note: Do not try to implement commit or full rollback statements in
your custom PL/SQL. This will interfere with the API processing and
will generate an error.

When a parameter name is defined it must match exactly the name of a data value
parameter that is available at the user hooks where it will be executed. The parameter
must have the same datatype as the user hook data value. Any normal implicit PL/SQL
data conversions are not supported from user hooks. All the package procedure
parameters must be defined as IN, without any default value. OUT and IN OUT
parameters are not supported in the custom package procedure.

At all user hooks many data values are available. When implementing a custom
package procedure every data value does not have to be listed. Only the data values for
parameters that are required for the custom PL/SQL need to be listed.

A complete list of available user hooks, data values provided and their datatypes can
be found by executing a PL/SQL script.

See: API User Hook Support Scripts, page 2-264

When you have completed your custom PL/SQL package you should execute
the package creation scripts on the database and test that the package procedure
compiles. Then test that this carries out the intended validation on a test database.

Example

A particular enterprise requires the previous last name for all married females when they
are entered in the system. This requirement is not implemented in the core product, but
an implementation team can code this extra validation in a separate package procedure
and call it using API user hooks. When marital status is ‘Married’ and sex is ‘Female’, use
a PL/SQL exception to raise an error if the previous last name is null. The following
sample code provides a server-side package procedure to perform this validation rule.

Create Or Replace Package cus_extra_person_rules as

procedure extra_name_checks

(p_previous_last_name in varchar2

,p_sex in varchar2

,p_marital_status in varchar2

2-252 Oracle US Federal Human Resources Implementation Guide

);

end cus_extra_person_rules;

/

exit;

Create Or Replace Package Body cus_extra_person_rules as

procedure extra_name_checks

(p_previous_last_name in varchar2

,p_sex in varchar2

,p_marital_status in varchar2

) is

begin

-- When the person is a married female raise an

-- error if the previous last name has not been

-- entered

if p_marital_status = ’M’ and p_sex = ’F’ then

if p_previous_last_name is null then

dbms_standard.raise_application_error

(num => -20999

,msg => ’Previous last name must be entered for married
females’

);

end if;

end if;

end extra_name_checks;

end cus_extra_person_rules;

/

exit;

Linking Custom Procedures to User Hooks

After you have executed the package creation scripts on your intended database, link the
custom package procedures to the appropriate API user hooks. The linking between user

Implementation Guide 2-253

hooks and custom package procedures is defined as data in the HR_API_HOOK_CALLS
table.

There are three special APIs to maintain data in this table:

• hr_api_hook_call_api.create_api_hook_call

• hr_api_hook_call_api.update_api_hook_call

• hr_api_hook_call_api.delete_api_hook_call

HR_API_HOOK_CALLS

• The HR_API_HOOK_CALLS table must contain one row for each package
procedure linking to a specific user hook.

• The API_HOOK_CALL_ID column is the unique identifier.

• The API_HOOK_ID column specifies the user hook to link to the package procedure.

This is a foreign key to the HR_API_HOOKS table. Currently the user
hooks mechanism only support calls to package procedures, so the
API_HOOK_CALL_TYPE column must be set to ’PP’.

• The ENABLED_FLAG column indicates if the user hook call should be included.

It must be set to ’Y’ for Yes, or ’N’ for No.

• The SEQUENCE column is used to indicate the sequence of hook calls. Lowest
numbers are processed first.

The user hook mechanism is also used by Oracle to supply
application, legislation, and vertical market specific PL/SQL. The sequence numbers
from 1000 to 1999 inclusive, are reserved for Oracle internal use.

You can use sequence numbers less than 1000 or greater than 1999 for custom
logic. Where possible we recommend you use sequence numbers greater than
2000. Oracle specific user hook logic will then be executed first. This will avoid the
need to duplicate Oracle’s additional logic in the custom logic.

There are two other tables that contain data used by the API user hook
mechanism, HR_API_MODULES and HR_API_HOOKS.

HR_API_MODULES Table

The HR_API_MODULES table contains a row for every API code module that contains
user hooks.

2-254 Oracle US Federal Human Resources Implementation Guide

HR_API_MODULES Main Columns Description

API_MODULE_ID Unique identifier

API_MODULE_TYPE A code value representing the type of the API
code module.

’BP’ for Business Process APIs - the published
APIs.

’RH’ for the internal Row Handler code
modules.

MODULE_NAME The value depends on the module type.

For ’BP’ the name of the published API, such
as CREATE_EMPLOYEE.

For ’RH’ modules the name of the table, such
as PER_PERIODS_OF_SERVICE.

HR_API_HOOKS Table

The HR_API_HOOKS table is a child of the HR_API_MODULES table. It contains a
record for each user hook in a particular API code module.

HR_API_HOOKS Main Columns Description

API_HOOK_ID Unique identifier

API_MODULE_ID Foreign key. Parent ID to the HR_API_
MODULES table.

API_HOOK_TYPE Code value representing the type of user hook.

The API_HOOK_TYPE code represents the type of user hook, as shown in the following
table:

User Hook Type API_HOOK_TYPE

After Insert AI

After Update AU

After Delete AD

Before Process BP

After Process AP

Caution: Data in the HR_API_MODULES and HR_API_HOOKS tables
is supplied and owned by Oracle. Oracle also supplies some data in the
HR_API_HOOK_CALLS table. Customers must not modify data in
these tables. Any changes you make to these tables may affect product
functionality and may invalidate your support agreement with Oracle.

Implementation Guide 2-255

Note: Data in these tables may come from more than one source and
API_MODULE_IDs and API_HOOK_IDs may have different values on
different databases. Any scripts you write must allow for this difference.

Full details for each of these tables can be found in the Oracle HRMS electronic Technical
Reference Manual (eTRM) available on MetaLink.

Example

For the example where you want to make sure previous name is entered, the extra
validation needs to be executed whenever a new person is entered into the system. The
best place to execute this validation is from the PER_ALL_PEOPLE_F row handler
After Insert user hook.

The following PL/SQL code is an example script to call the create_api_hook_call API. This
tells the user hook mechanism that the cus_extra_person_rules.extra_name_checks package
procedure should be executed from the PER_ALL_PEOPLE_F row handler After Insert
user hook.

declare

--

-- Declare cursor statements

--

cursor cur_api_hook is

select ahk.api_hook_id

from hr_api_hooks ahk

, hr_api_modules ahm

where ahm.module_name = ’PER_ALL_PEOPLE_F’

and ahm.api_module_type = ’RH’

and ahk.api_hook_type = ’AI’

and ahk.api_module_id = ahm.api_module_id;

--

-- Declare local variables

--

l_api_hook_id number;

l_api_hook_call_id number;

l_object_version_number number;

begin

2-256 Oracle US Federal Human Resources Implementation Guide

--

-- Obtain the ID if the PER_ALL_PEOPLE_F

-- row handler After Insert API user hook.

--

open cursor csr_api_hook;

fetch csr_api_hook into l_api_hook_id;

if csr_api_hook %notfound then

close csr_api_hook;

dbms_standard.raise_application_error

(num => -20999

,msg => ’The ID of the API user hook was not found’

);

end if;

close csr_api_hook;

--

-- Tell the API user hook mechanism to call the

-- cus_extra_person_rules.extra_name_checks

-- package procedure from the PER_ALL_PEOPLE_F row

-- handler module ’After Insert’ user hook.

--

hr_api_hook_call_api.create_api_hook_call

(p_validate => false

,p_effective_date =>

to_date(’01-01-1997’, ’DD-MM-YYYY’)

,p_api_hook_id => l_api_hook_id

,p_api_hook_call_type => ’PP’

,p_sequence => 3000

,p_enabled_flag => ’Y’

,p_call_package =>

Implementation Guide 2-257

’CUS_EXTRA_PERSON_RULES’

,p_call_procedure => ’EXTRA_NAME_CHECKS’

,p_api_hook_call_id => l_api_hook_call_id

,p_object_version_number =>

l_object_version_number

);

commit;

end;

In this example, the previous_last_name, sex and marital_status values can be updated. If
you want to perform the same checks when the marital_status is changed, then the
same validation will need to be executed from the PER_ALL_PEOPLE_F After Update
user hook. As the same data values are available for this user hook, the same custom
package procedure can be used. Another API hook call definition should be created
in HR_API_HOOK_CALLS by calling the create_api_hook_call API again. This time
the p_api_hook_id parameter needs to be set to the ID of the PER_ALL_PEOPLE_F
After Update user hook.

The API User Hook Pre-processor Program

Adding rows to the HR_API_HOOK_CALLS table does not mean the extra logic will be
called automatically from the user hooks. You must run the API user hooks pre-processor
program after the definition and the custom package procedure have both been created
in the database. This looks at the calling definitions in the HR_API_HOOK_CALLS table
and the parameters listed on the custom server-side package procedures.

Note: Another package body will be dynamically built in the
database. This is known as the hook package body.

There is no operating system file that contains a creation script for the hook package
body. It is dynamically created by the API user hook pre-processor program. Assuming
the various validation checks succeed, this package will contain hard coded calls to
the custom package procedures.

If no extra logic is implemented, the corresponding hook package body will still be
dynamically created. It will have no calls to any other package procedures.

The pre-processor program is automatically executed at the end of some server-side
Oracle install and upgrade scripts. This ensures versions of hook packages bodies
exist in the database. If you do not want to use API user hooks then no further setup
steps are required.

The user hook mechanism is used by Oracle to provide extra logic for some
applications, legislations, and vertical versions of the products. Calls to this PL/SQL are
also generated into the hook package body.

Caution: It is IMPORTANT that you do not make any direct edits to
the generated hook package body. Any changes you make may affect
product functionality and may invalidate your support agreement
with Oracle. If you choose to make alternations, these will be lost the
next time the pre-processor program is run. This will occur when the

2-258 Oracle US Federal Human Resources Implementation Guide

Oracle install or upgrade scripts are executed. Other developers in the
implementation team could execute the pre-processor program.

If any changes are required, modify the custom packages or the calling definition data in
the HR_API_HOOK_CALLS table. Then rerun the pre-processor program to generate a
new version of the hook package body. For example, if you want to stop calling a
particular custom package procedure then:

1. Call the hr_api_hook_call_api.update_api_hook_call API, setting the p_enabled_flag
parameter to ’N’.

2. Execute the API user hook pre-processor program so the latest definitions are read
again and the hook package body is dynamically recreated.

If you want to include the call again, then repeat these steps and set the p_enabled_flag
parameter in the hr_api_hook_call_api.update_api_hook_call API to ’Y’.

If you want to permanently remove a custom call from a user hook then remove the
corresponding calling definition. Call the hr_api_hook_call_api.delete_api_hook_call API.

Remember that the actual call from the user hook package body will be removed only
when the pre-processor program is rerun.

Running the Pre-processor Program

The pre-processor program can be run in two ways.

• Execute the hrahkall.sql script in SQL*Plus

This creates the hook package bodies for all of the different API code modules.

• Execute the hrahkone.sql script in SQL*Plus

This creates the hook package bodies for just one API code module - one main API
or one internal row handler module.

An api_module_id must be specified with this script. The required ID values are
found in the HR_API_MODULES table.

Both the hrahkall.sql and hrahkone.sql scripts are stored in the $PER_TOP/admin/sql
operating system directory.

Example

Continuing the previous example: After the calling definitions and custom package
procedure have been successfully created in the database the api_module_id can be
found with the following SQL statement:

select api_module_id

from hr_api_modules

where api_module_type = ’RH’

and module_name = ’PER_ALL_PEOPLE_F’;

Then execute the hrahkone.sql script. When prompted, enter the api_module_id returned
by the SQL statement above. This will generate the hook package bodies for all of
the PER_ALL_PEOPLE_F row handler module user hooks After Insert, After Update
and After Delete.

Implementation Guide 2-259

Log Report

Both pre-processor programs produce a log report. The hrahkall.sql script only lists
errors. So if no text is shown after the ’Created on’ statement, all the hook package
bodies have been created without any PL/SQL or application errors. The hrahkone.sql
script outputs a successful comment or error details. If any errors occurred, a PL/SQL
exception is deliberately raised at the end of both scripts. This highlights to the calling
program that a problem has occurred.

When errors do occur the hook package body code may still be created with valid
PL/SQL. For example, if a custom package procedure lists a parameter that is not
available, the hook package body is still successfully created. No code is created to
execute that particular custom package procedure. If other custom package procedures
need to be executed from the same user hook, code to perform those calls is still created
- assuming they pass all the standard PL/SQL checks and validation checks.

Important: It is important that you check these log reports to confirm the
results of the scripts. If a call could not be built the corresponding row in
the HR_API_HOOK_CALLS table will also be updated. The STATUS
column will be set to ’I’ for Invalid Call and the ENCODED_ERROR
column will be populated with the AOL application error message
in the encoded format.

The encoded format can be converted into translated text by the following PL/SQL:

declare

l_encoded_error varchar2(2000);

l_user_read_text varchar2(2000);

begin

-- Substitute ??? with the value held in the

-- HR_API_HOOK_CALLS.ENCODED_ERROR column.

l_encoded_error := ???;

fnd_message.set_encoded(encoded_error);

l_user_read_text := fnd_message.get;

end;

It is your responsibility to review and resolve any problems recorded in the log
reports. Options:

• Alter the parameters in the custom package procedures.

• If required, change the data defined in the HR_API_HOOK_CALLS table.

When you have resolved any problems, rerun the pre-processor program.

The generated user hook package bodies must be less than 32K in size. This restriction is
a limit in PL/SQL. If you reach this limit, you should reduce the number of separate
package procedures called from each user hook. Try to combine your custom logic
into fewer procedures.

2-260 Oracle US Federal Human Resources Implementation Guide

Note: Each linked custom package procedure can be greater than 32K in
size. Only the user hook package body that is dynamically created in the
database must be less than 32K.

One advantage of implementing the API user hook approach is that your extra logic is
called every time the APIs are called. This includes any HRMS Forms or Web pages
that perform their processing logic by calling the APIs.

Important: The user hook mechanism that calls your custom logic
is supported as part of the standard product. However the logic
in your own custom PL/SQL procedures cannot be supported by
Oracle Support.

Recommendations for Using the Different Types of User Hook

Consider your validation rules in two categories:

• Data Item Rules

Rules associated with a specific field in a form or column in a table. For
example, grade assigned must always be valid for the Job assigned.

• Business Process Rules

Rules associated with a specific transaction or process. For example, when you
create a secondary assignment you must include a special descriptive segment value.

Data Item Rules

The published APIs are designed to support business processes. This means that
individual data items can be modified by more than one API. To perform extra data
validation on specific data items (table columns), use the internal row handler module
user hooks.

By implementing any extra logic from the internal row handler code user hooks, you will
cover all of the cases where that column value can change. Otherwise you will need to
identify all the APIs that can set or alter that database column.

Use the After Insert, After Update or After Delete user hooks for data validation. These
hooks are preferred because all of the validation associated with the database table row
must be completed successfully before these user hooks are executed. Any data values
passed to custom logic will be valid as far as the core product is concerned.

If the hook call definition is created with a sequence number greater than 1999, then
any Oracle legislation or vertical market specific logic will also have been successfully
executed.

Note: If extra validation is implemented on the After Insert user
hook, and the relevant data values can be updated, then you should
consider excluding similar logic from the After Update user hook. Old
values - before DML, are available from the After Update and After
Delete user hooks.

Business Process Rules

If you want to detect that a particular business event has occurred, or you only want
to perform some extra logic for a particular published API, use the Before Process and
After Process user hooks.

Implementation Guide 2-261

Where possible, use the After Process user hook, as all core product validation for the
whole API will have been completed. If you use the Before Process user hook you must
consider that all data values could be invalid in your custom logic. None of the core
product validation has been carried out at that point. References to the HR_LOOKUPS
view, any views that join to HR_LOOKUPS and lookup code validation cannot be
performed at the Before Process user hook. Values that affect the lookup code validation
are not derived and set until after this point.

Data values provided at the Before Process and After Process user hooks will be the same
as the values passed into the API. For update type business processes the API caller
has to specify only the mandatory parameters and the values they actually want to
change. When the API caller does not explicitly provide a parameter value, the system
reserved default values will be used, as shown in the vollowing table:

Data Type Default Value

varchar2 hr_api.g_varchar2

number hr_api.g_number

date hr_api.g_date

Depending on the parameters specified by the API caller, these default values may be
provided to Before Process and After Process user hooks. That is, the existing column
value in the database is only provided if the API calling code happens to pass the same
new value. If the real database value is required then the custom package procedures
must select it explicitly from the database.

This is another reason why After Update and After Delete user hooks are preferred. At the
row handler user hooks the actual data value is always provided. Any system default
values will have been reset with their existing database column value in the row handler
modules. Any extra logic from these user hooks does need to be concerned with the
system reserved default values.

If any After Process extra logic must access the old database values then a different user
hook needs to be used. It will not be possible to use the After Process user hook because
all the relevant database rows will have been modified and the old values will not be
provided by the user hook mechanism. Where API specific extra logic requires the old
values, they will need to be explicitly selected in the Before Process user hook.

User Hooks and Alternative Interface APIs

Alternative Interface APIs provide an alternative version of the generic APIs. Currently
there are legislative or vertical specific versions of the generic APIs.

For example, create_us_employee and create_gb_employee are two alternative interfaces to
the generic create_employee API. These alternatives make clear how specific legislative
parameters are mapped onto the parameters of the generic API.

In the future other alternative APIs may be provided to support specific implementations
of generic features, such as elements and input values.

Important: User hooks are not provided in alternative interface
APIs. User hooks are provided only in the generic APIs. In this example
the user hooks are provided in the create_employee API and not in the
create_us_employee and create_gb_employee APIs.

2-262 Oracle US Federal Human Resources Implementation Guide

Alternative interface APIs always perform their processing by executing the generic API
and any extra logic in the generic API user hooks is executed automatically when the
alternative APIs are called. This guarantees consistency in executing any extra logic and
reduces the administrative effort to set up and maintain the links.

Example 1

You want to perform extra validation on the job and payroll components of employee
assignments to make sure only ‘Machine Workers’ are included in the ‘Weekly’
payroll. There is more than one published API that allows the values to be set when a
new assignment is created or an existing assignment is updated.

Tip: Implement the extra validation in a custom server-side package
procedure. Link this to the two user hooks, After Insert and After
Update, in the PER_ALL_ASSIGNMENTS_F table internal row handler
module.

Example 2

You have a custom table and you want to create data in this table when a new employee
is created in the system, or an existing applicant is converted into an employee. The data
in the custom table does not need to be created in any other scenario.

Tip: Implement the third party table; insert DML statements in a custom
server-side package procedure. Link this to two user hooks: After Process
in the create_employee API module and After Process in the hire_applicant
API module.

Comparison with Database Triggers

User hooks have a number of advantages over database triggers for implementing
extra logic.

• Database triggers can only be defined against individual table DML statements. The
context of a particular business event may be unavailable at the table level because
the event details are not held in any of the columns on that table.

• Executing a database trigger is inefficient compared with executing a server-side
package procedure.

• The mutating table restriction stops values being selected from table rows that are
being modified. This prevents complex multi-row validation being implemented
from database triggers. This complex validation can be implemented from API user
hooks, as there are no similar restrictions.

• On DateTrack tables it is extremely difficult to implement any useful logic from
database triggers. With many DateTrack modes, a single transaction may affect more
than one row in the same database table. Each dated instance of a DateTrack record
is physically held on a different database row.

For example, a database trigger that fires on insert cannot tell the difference between
a new record being created or an insert row from a DateTrack ’UPDATE’ operation.

Note: DateTrack ’UPDATE’ carries out one insert and one update
statement. The context of the DateTrack mode is lost at the database
table level. You cannot re-derive this in a database trigger due to the
mutating table restriction.

Implementation Guide 2-263

• With DateTrack table row handler user hooks more context and data values are
available. The After Insert user hook is only executed when a new record is
created. The DateTrack mode name is available at After Update and After Delete user
hooks. The date range over which the record is being modified is also available at
these user hooks. The validation_start_date value is the first day the record is affected
by the current DateTrack operation. The last day the record is affected is known as
the validation_end_date.

API User Hook Support Scripts

You can create a complete list of available user hooks and the data values provided
by executing the hrahkpar.sql script in SQL*Plus. This script can be found in the
$PER_TOP/admin/sql operating system directory. As the output is long, it is
recommended to spool the output to an operating system text file.

The user hook pre-processor program can be executed in two ways. To create the hook
package bodies for all of the different API code modules, execute the hrahkall.sql script
in SQL*Plus. To create the hook package bodies for just one API code module, such as
one main API or one internal row handler module, execute the hrahkone.sql script in
SQL*Plus. An api_module_id must be specified with this second script. The required
api_module_id value can be obtained from the HR_API_MODULES table. Both the
hrahkall.sql and hrahkone.sql scripts can be found in the $PER_TOP/admin/sql operating
system directory.

Using APIs as Building Blocks

The API code files supplied with the product must not be edited directly for any
custom use.

Caution: Any changes you make may affect product functionality
and may invalidate your support agreement with Oracle and prevent
product upgrades.

Oracle Applications supports direct calls to the published APIs. Direct calls to any other
server-side package procedures or functions written as part of the Oracle HRMS product
set are not supported, unless explicitly specified.

There are supported methods for adding custom logic, using the APIs provided. In
addition to the API user hook mechanism, you can use the published APIs as building
blocks to construct custom APIs.

Example

Suppose you always obtain a new employee’s home address when they join your
enterprise. The address details must be recorded in the HR system because you run
reports that expect every employee to have an address.

You could write your own API to create new employees with an address. This API
would call the standard create_employee API and then immediately afterwards call
the standard create_address API.

2-264 Oracle US Federal Human Resources Implementation Guide

Create Employee/Create Address APIs

With API user hooks it is not possible to change any of the data values. So the building
block approach can be used to default or set any values before the published API is called.

The major disadvantage with the building block approach is that any Forms or Web
pages supplied by Oracle will NOT call any custom APIs. If a user interface is required
then you must also create your own custom Forms or Web pages to implement calls
to your custom APIs.

Handling Object Version Numbers in Oracle Forms

If you intend to write your own Forms that call the APIs, you will need to implement
additional Forms logic to correctly manage the object version number. This is required
because of the way Forms can process more than one row in the same commit unit.

Example

Consider the following example of what can happen if only one form’s block item is
used to hold the object version number:

1. The user queries two rows and updates both.

Row OVN in Database OVN in Form

A 6 6

B 3 3

2. The user presses commit.

Implementation Guide 2-265

Row A has no user errors and is validated in the API. The OVN is updated in the
database and the new OVN is returned to the form.

Row OVN in Database OVN in Form

A 7 7

B 3 3

3. The form calls the API again for row B.

This time there is a validation error on the user-entered change. An error message is
raised in the form and Forms issues a rollback to the database. However, the OVN
for row A in the form is now different from the OVN in the database.

Row OVN in Database OVN in Form

A 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

Now the API will error when it validates the changes to row A. The two OVNs
are different.

Solution

The solution to this problem is to use a non-basetable item to hold the new version
number. This item is not populated at query time.

1. The user queries two rows and updates both.

Row OVN in Database OVN in Form New_OVN in Form

A 6 6

B 3 3

2. The user presses commit.

Row A is valid, so the OVN is updated in the database and the new OVN is
returned to the form.

Note: The actual OVN in the form is not updated.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 3 3

3. The forms calls the API again for row B.

2-266 Oracle US Federal Human Resources Implementation Guide

The validation fails and an error message is raised in the form. Forms issues a
rollback to the database.

Row OVN in Database OVN in Form New_OVN in Form

A 6 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

The API is called to validate row A again. The OVN value is passed, not the
NEW_OVN. There is no error because the OVN in the database now matches the
OVN it was passed. The API passes back the updated OVN value.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 3 3

5. The API is called again to validate row B.

The validation is successful; the OVN is updated in the database and the new OVN
value is returned to the form. The commit in the form and the database is successful.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 4 3 4

What would happen when the user updates the same row again without
re-querying? Following on from the previous step:

6. When the user starts to update row A, the on-lock trigger will fire.

The trigger updates the OVN when New_OVN is not null. (Theoretically the on-lock
trigger will only fire if the previous commit has been successful. Therefore the
New_OVN is the OVN value in the database.)

Row OVN in Database OVN in Form New_OVN in Form

A 7 7 7

7. The on-lock trigger then calls the API to take out a lock using OVN.

The lock is successful as the OVN values match.

Implementation Guide 2-267

Row OVN in Database OVN in Form New_OVN in Form

A 7 7 7

8. The user continues with the update, the update API is called, and the commit is
successful.

Row OVN in Database OVN in Form New_OVN in Form

A 8 7 8

If user does delete instead of update, the on_lock will work in the same way. When
key_delrec is pressed, the delete API should be called with p_validate set to true. Doing
so ensures that the delete is valid without removing the row from the database.

Therefore, the OVN value in the form should be set with the New_OVN, when
New_OVN is not null. This ensures that the delete logic is called with the OVN value in
the database.

However, there is another special case that has to be taken into consideration. It is
possible for the user to update a row (causing a new OVN value to be returned from the
API), the update of the next row in the same commit unit fails, the user navigates back to
the first row and decides to delete it. To stop the new_OVN from being copied into the
OVN in the form, only do the copy in key_delrec if the record_status is query.

Example Code Using the Grade Rate Values

The above descriptions are handled in the following example. In this
example, <block_name>.object_version_number is a basetable item and
<block_name>.new_object_version_number is non-basetable.

Forms Procedure Called from the ON-INSERT Trigger
procedure insert_row is
begin

--
-- Call the api insert routine
--
hr_grade_api.create_grade_rate_value

(<parameters>
,p_object_version_number => :<block_name>.object_vers ion_num

ber
,p_validate => false
);

end insert_row;

2-268 Oracle US Federal Human Resources Implementation Guide

Forms Procedure Called from the ON-UPDATE Trigger
procedure update_row is

l_api_ovn number;
begin

-- Send the old object version number to the API
l_api_ovn := :<block_name>.object_version_number;
--
-- Call the api update routine
--
hr_grade_api.update_grade_rate_values

(<parameters>
,p_object_version_number => l_api_ovn
,p_validate => false
);

-- Remember the new object version number returned from the A P
I

:<block_name>.new_object_version_number := l_api_ovn;
end update_row;

Forms Procedure Called from the ON-DELETE Trigger
procedure delete_row is
begin

--
-- Call the api delete routine
--
hr_grade_api.delete_grade_rate_values

(<parameters>
,p_object_version_number => :<block_name>.object_vers ion_num

ber
,p_validate => false
);

end delete_row;

Forms Procedure Called from the KEY-DELREC Trigger
procedure key_delrec_row is

l_api_ovn number;

l_rec_status varchar2(30);
begin

-- Ask user to confirm they really want to delete this row.
--

-- Only perform the delete checks if the

-- row really exists in the database.

--

l_rec_status := :system.record_status;

if (l_rec_status = ‘QUERY’) or (l_rec_status = ‘CHANGED’) t he
n

--
-- If this row just updated then the

Implementation Guide 2-269

-- new_object_version_number will be not null.

-- If that commit was successful then the

-- record_status will be QUERY, therefore use

-- the new_object_version_number. If the commit

-- was not successful then the user must have

-- updated the row and then decided to delete

-- it instead. Therefore just use the

-- object_version_number.

--(Cannot just copy the new_ovn into ovn

-- because if the new_ovn does not match the

-- value in the database the error message will

-- be displayed twice. Once from key-delrec and

-- again when the on-lock trigger fires.)

--
if (:<block_name>.new_object_version_number is not null) an

d
(l_rec_status = ’QUERY’) then

l_api_ovn := :<block_name>.new_object_version_number;
else

l_api_ovn := :<block_name>.object_version_number;
end if;
--
-- Call the api delete routine in validate mode
--
hr_grade_api.delete_grade_rate_values

(p_validate => true

,<parameters>
,p_object_version_number => l_api_ovn
,p_validate => true
);

end if;
--
delete_record;

end key_delrec_row;

2-270 Oracle US Federal Human Resources Implementation Guide

Forms Procedure Called from the ON-LOCK Trigger
procedure lock_row is

l_counter number;
begin

l_counter := 0;
LOOP

BEGIN
l_counter := l_counter + 1;
--
-- If this row has just been updated then
-- the new_object_version_number will be not null.
-- That commit unit must have been successful for the
-- on_lock trigger to fire again, so use the
-- new_object_version_number.
--
if :<block_name>.new_object_version_number is not null t hen

:<block_name>.object_version_number :=
:<block_name>.new_object_version_number;

end if;
--
-- Call the table handler api lock routine
--
pay_grr_shd.lck

(<parameters>
,p_object_version_number => :<block_name>.object_vers ion

_number
);

return;
EXCEPTION

When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then
APP_EXCEPTION.Record_Lock_Error(l_counter);

END;
end LOOP;

end lock_row;

DataPump

Oracle HRMS Data Pump

This essay provides the information that you need to understand and use the Oracle
HRMS Data Pump. To understand this information you should already have a good
functional and technical knowledge of the Oracle HRMS product architecture, including:

• The data model for Oracle HRMS and the importance of DateTrack.

• The API strategy and how to call APIs directly.

• How to code PL/SQL. Some PL/SQL code is normally required to convert legacy
data for use with Data Pump.

• The HRMS parameters that control the running of concurrent processes (for
example, to make the process run in parallel).

Restrictions

This essay does not describe the entire Data Pump schema in detail. Details are given as
needed for some of the tables and in most cases you will use the PL/SQL routines to

Implementation Guide 2-271

insert data to these batch interface tables. Full details are provided in the Oracle HRMS
electronic Technical Reference Manual (eTRM), available on MetaLink.

Oracle delivers seed data to enable Data Pump API calls to use features such as passing
in user values instead of system identifiers. This support is not available for all of the
APIs that are delivered with Oracle HRMS. This essay describes a mechanism for calling
APIs using Data Pump where the supporting seed data is not present.

For the list of supported APIs, see Publicly Callable Business Process APIs. , Oracle
HRMS Configuring, Reporting, and System Administration GuideSupport for other APIs
is planned in future releases.

When purging data from the Data Pump tables, take extra care that you do not
delete information on User Keys that you might need for future loading of external
data. See: User Key Values, page 2-296.

Contents

This essay includes the following sections:

• Overview, page 2-273

Provides an overview of the Data Pump, including its key components and special
features.

• Using Data Pump, page 2-275

Describes the steps for using Data Pump, at a high level. Each step is explained in
more detail in the following sections:

• Running the Meta-Mapper, page 2-276.

• Loading Data Into the Batch Tables, page 2-283.

• Running the Data Pump Process, page 2-286.

• Finding and Fixing Errors, page 2-288

• Purging Data, page 2-291

• Sample Code, page 2-292

Illustrates how you could call the batch lines procedures.

• Notes on Using the Generated Interfaces, page 2-295

Explains some of the factors you should consider when using the view and PL/SQL
packages generated by the Meta-Mapper process for each API.

• Utility Procedures Available with Data Pump, page 2-297

Describes the utility procedures that are provided in the HR_PUMP_UTILS package.

• Using Data Pump with Unsupported APIs, page 2-300

Outlines techniques for calling APIs using Data Pump in the absence of seed data for
Data Pump support.

• APIs Supported by the GENERATEALL Command, page 2-299

Lists the APIs for which the GENERATEALL command generates code.

• Table and View Descriptions, page 2-298

Describes the specific tables and views you use with Data Pump.

2-272 Oracle US Federal Human Resources Implementation Guide

Overview

Oracle HRMS has a set of predefined APIs that are business process related and you are
strongly advised always to use these APIs to load data. The predefined APIs enforce
all the business rules in the system and guarantee the integrity of any data loaded
into the system.

The Oracle HRMS Data Pump supports rapid implementation by simplifying and
standardizing the common tasks associated with loading batch data into the Oracle
HRMS tables. This is done by providing a set of predefined batch tables and standard
processes that simplify the tasks of data-loading using the supported APIs.

With the Oracle Data Pump you:

1. Map the data items from your external system to the parameter values of the
appropriate APIs.

Because you map data to the parameters of the APIs you do not need to know the
complexity of the HRMS data model. For example, to create an employee you need
to co-ordinate inserting data into multiple tables. The create_employee API does this
automatically, using the parameter values you pass in.

A special feature of the Data Pump is that you can use user values in place of system
IDs for the API parameters. These are translated automatically by the Data Pump.

2. Load your data into a single generic batch lines table. (There is also a single batch
header table to help you manage your batch loading processes.)

The Data Pump works with a single generic batch lines table. It generates a specific
view for each API so that you can easily review and update the data for each API
using the parameter names for the API.

Also, there are PL/SQL interface routines to insert your external data into the
generic batch lines table.

3. Run a standard process that automatically calls the appropriate API for each line of
data in the batch table.

Components of Data Pump

Data Pump consists of the following components:

Meta-Mapper Process

This process generates the specific PL/SQL procedures and views for each of the
supported API modules you want to use.

Use the Meta-Mapper to generate a set of views that you can use to examine or update
data in the batch tables. For example you might want to correct data or change the
order in which data is loaded.

Note: The Meta-Mapper is similar to an install process. You must run
the Meta-Mapper before making a data pump API call. Meta-Mapper
usually runs during the loading of your software, but there are occasions
when you may need to run Meta-Mapper manually. For example, if you
cannot find Meta-Mapper, or if you version displays as invalid, then you
should run Meta-Mapper manually.

Batch Header Table and Batch Lines Table

Use these two tables to hold the header and lines information from your external data.

• HR_PUMP_BATCH_HEADERS

Implementation Guide 2-273

• HR_PUMP_BATCH_LINES

Note: The Meta-Mapper creates views based on the batch
lines table called HRDPV_<API Procedure Name>, for
example, HRDPV_CREATE_EMPLOYEE.

PL/SQL Routines

Use the predefined and generated PL/SQL routines to insert your external or legacy
data into the batch lines table. Meta-Mapper generates a separate routine for each
API that is supported by the Data Pump.

• HR_PUMP_UTILS.CREATE_BATCH_HEADER(...)

• HRDPP_<API Procedure Name>.INSERT_BATCH_LINES

For example, HRDPP_ CREATE_EMPLOYEE .INSERT_BATCH_LINES

There is also a help routine to provide detailed information on the parameter options
for specific procedures.

• HR_PUMP_META_MAPPER.HELP (<package_name>, <procedure_name>)

The Data Pump Engine Process

The Data Pump Engine process is a standard concurrent process that performs the actual
data validation and loading operations. It takes these parameters:

• Batch name

• Processing mode

• Action Parameter Group

Special Features of Data Pump

The following is a list of the special features provided with Data Pump:

User Keys

Data Pump enables you to define the combination of data items that uniquely identify
records for loading into Oracle HRMS. For example, when you are loading data for a
Person, you could use a combination of Last Name, First Name, Date of Birth, and
Gender to identify that person uniquely in Oracle HRMS.

You store these user key definitions in the table HR_PUMP_BATCH_LINES_USER_KEYS.

Use Actual Values

In nearly all cases you can load data using actual names or values without having to
identify a system value in Oracle HRMS. The conversion of name to ID is transparent
to the user. For example, you can use a real Job Name without needing to identify the
JOB_ID in Oracle HRMS; or you can use the value ‘Male’ for gender without needing to
know that the code value is ‘M’.

Alternative Meta-Mapper Generation Mode

It is possible to call the Meta-Mapper so that Data Pump API call is essentially a direct call
to the API. This feature is most useful in the absence of seed data for Data Pump support.

Automatic Parallel Processing Of Batch Load Process

Data Pump automatically supports parallel processing on multi-processor systems
without any extra code. You turn this on by inserting or updating a row for THREADS
in the PAY_ACTION_PARAMETER_VALUES table.

2-274 Oracle US Federal Human Resources Implementation Guide

This is the same parameter that controls parallel processing for the Payroll Run and
other processes in Oracle HRMS.

Note: When you are using parallel processing, use the P_LINK_VALUE
parameter in the batch lines to group transactions that must be run
within the same thread.

Explicit User Ordering of Operations

When loading batch lines with related data you must perform some operations in a strict
sequence. For example, entering salary information for an employee must take place
after the employee record has been created.

With Data Pump, you use the P_USER_SEQUENCE parameter to control the order of
processing of batch lines.

Note: Data Pump cannot validate the sequence numbers you enter. It
accepts the sequence and tries to process as instructed. If you use
incorrect numbers the process may return validation errors when it
tries to load your data in the wrong sequence. See: Running the Data
Pump, page 2-286.

Validation Mode Operation

When you submit the Data Pump concurrent process you can choose to run it in
validation mode. This enables you to review errors in batches or in related records in a
batch and to change them before any of them are committed to the HRMS database.

Processing Batches

When you run Data Pump the process only loads data that has not already been
processed successfully. This means that you can run a batch, review and correct errors
for any specific lines, and then rerun the same batch. You can repeat this process until
you have successfully loaded all lines in the batch.

To do this you submit the concurrent process with the same batch name. All unprocessed
or errored lines are reprocessed automatically.

Logging Options

There are many logging options with Data Pump that help you find errors when running
the process.

Using Data Pump

To use Data Pump, follow this sequence of tasks:

1. Decide which of the supported API modules you require for loading your external
data and run the Meta-Mapper to generate interface procedures for these APIs.

See: Running the Meta-Mapper, page 2-276.

2. Use the predefined PL/SQL routines and those created by the Meta-Mapper to
transfer your external data into the Data Pump tables.

See: Loading Data Into the Batch Tables, page 2-283.

Note: For each entity that requires a User Key you must
include the value you want to use as a unique identifier. For
example, the parameters P_PERSON_USER_KEY and
P_ASSIGNMENT_USER_KEY for create_employee.

Implementation Guide 2-275

3. Optional. Run Data Pump in validation mode to check and correct data before
it is loaded.

See: Running the Data Pump Process, page 2-286.

4. Run Data Pump to load data from batch tables into the Oracle HRMS tables.

Note: When you load a record for the first time, Data Pump
automatically inserts your user key value from the batch
lines, and the unique key ID generated by the API into the
HR_PUMP_BATCH_LINE_USER_KEYS table. This combination
is used for all further data loads that update existing records in
Oracle HRMS.

For example, P_PERSON_USER_KEY = USER_KEY_VALUE and
PERSON_ID = UNIQUE_KEY_ID.

5. Review any errors and correct causes.

See: Finding and Fixing Errors, page 2-288.

6. If necessary, rerun Data Pump to load corrected batch lines.

See: Rerunning the Data Pump Process, page 2-291.

Repeat 5 and 6 until all lines are successfully loaded.

7. Optional. Purge data from the batch tables.

See: Purging Data, page 2-291.

Running the Meta-Mapper

Based on your implementation you might decide that you do not need to use all of the
predefined APIs to load external data. Run the Meta-Mapper for all APIs or for each
single API that you select. The Meta-Mapper generates a specific PL/SQL package
and view for each API.

Note: For APIs with overloaded interfaces, the Meta-Mapper will only
generate code for the latest interface. The latest interface is the interface
that has the greatest number of mandatory parameters.

Use the following SQL*PLUS command to generate packages and views for a number of
APIs. (Not, however, all APIs, as the GENERATEALL name appears to suggest):

sql> execute hr_pump_meta_mapper.generateall;

See also: APIs Supported by the GENERATEALL Command., page 2-299

Use the following SQL*PLUS command to generate packages and views for one API:

sql> execute hr_pump_meta_mapper.generate(< package_name>,< procedure_name>);

For example:

sql> execute hr_pump_meta_mapper.generate(’hr_employe e_api’, ’cr
eate_employee’);

The naming convention for the view is hrdpv_<api_module_name> and the naming
convention for the PL/SQL package is hrdpp_<api module name>. This applies unless
the name would exceed 30 bytes, in which case the name is truncated to 30 bytes. In

2-276 Oracle US Federal Human Resources Implementation Guide

the example, the name of the view is hrdpv_create_employee, and the name of the
package is hrdpp_create_employee.

You can use the view to insert legacy data into the HRMS schema or the batch tables, or
to update data already in the batch lines table. The PL/SQL package contains an
insert_batch_lines procedure to make it easy to insert data from your external systems
into the batch lines table; and a call procedure that executes the API on the rows in the
batch lines table.

View Generated by the Meta-Mapper

For each API the Meta-Mapper generates a view on the HR_PUMP_BATCH_LINES
table that reflects the parameters of the API. This makes it easier to examine
and update row values. The name of the view reflects the API name. For
example, HRDPV_CREATE_EMPLOYEE. For a full listing of this view see: Table and
View Descriptions , page 2-298.

In addition to the parameters for the API, the Meta-Mapper always creates the following
columns in the view:

Column Description

--- -

BATCH_ID Foreign key to HR_PUMP_BATCH_HEADERS

BATCH_LINE_ID Foreign key to HR_PUMP_BATCH_LINES.

Primary key generated using the
hr_pump_batch_lines_s sequence.

API_MODULE_ID Foreign key to HR_API_MODULES.
This tells Data Pump which api to
call for each row.

LINE_STATUS Load status of this API:

‘U’ - Unprocessed.
This must be the initial value for all

lines

’C’ - Complete.
The API call was successful and the

changes have been committed.

’E’ - Error.

’V’ - Validated
The API call was successful but the
changes have not been committed.

USER_SEQUENCE Used to control processing order.
For example, to make sure that address
for an employee is loaded after the
employee record has been created.

Implementation Guide 2-277

LINK_VALUE Use a unique link_value to link multiple
rows in a single batch.
Set this value when using parallel
processing to make sure that related

rows in a batch are processed together.

BUSINESS_GROUP_NAME Alternative business group name to us e
for a particular API call. If not null,
this overrides the value specified in
the batch header

Meta-Mapper also creates other columns for specific APIs. For example, some of the
columns on the create employee view are:

• P_EFFECTIVE_DATE

• P_MANAGER_FLAG

• P_ASSIGNMENT_USER_KEY

Other columns are created to reflect the PL/SQL OUT values returned from the API so
that you can examine these values. For example:

• P_NO_MANAGERS_WARNING

You do not need to know which columns of the batch lines table hold specific parameters
for the API.

Required Columns

If you use the view to insert data to the batch lines table then remember that in addition
to the data required for the insert batch line procedure you also need :

• batch_line_id

Primary key generated using the hr_pump_batch_lines_s sequence.

• line_status

Must be set to ’U’ (unprocessed).

• api_module_id

Foreign key to hr_api_modules.

The following query gets the api_module_id for create employee:

SELECT API_MODULE_ID

FROM HR_API_MODULES

WHERE UPPER(MODULE_NAME) = ’CREATE_EMPLOYEE’

AND UPPER(MODULE_PACKAGE) = ’HR_EMPLOYEE_API’;

PL/SQL Package Generated by the Meta-Mapper

The Meta-Mapper also generates a separate package for each API to make it easier for you
to load data to the batch lines table or to review the content of the table for specific APIs.

For example, the create_employee package hrdpp_create_employee contains two
procedures:

• insert_batch_lines

2-278 Oracle US Federal Human Resources Implementation Guide

• call

Insert Batch Lines Procedure

Use this procedure to simplify loading data into the batch lines table.

See also: Default and Null Values for API Parameters., page 2-285

A call to this procedure creates one row in the batch lines table, complete with all the
parameters. For create employee, some of the parameters are:

p_batch_id number in

p_data_pump_batch_line_id number in default

p_data_pump_business_grp_name varchar2 in default

p_user_sequence number in default

p_link_value number in default

p_hire_date date in

p_last_name varchar2 in

p_sex varchar2 in

p_per_comments varchar2 in default

p_date_employee_data_verified date in default

p_date_of_birth date in default

p_email_address varchar2 in default

p_employee_number varchar2 in

p_expense_check _send_to_addres varchar2 in default

p_first_name varchar2 in default

p_known_as varchar2 in default

p_marital_status varchar2 in default

p_middle_names varchar2 in default

p_nationality varchar2 in default

p_national_identifier varchar2 in default

p_previous_last_name varchar2 in default

p_registered_disabled_flag varchar2 in default

p_title varchar2 in default

p_attribute1 varchar2 in default

Implementation Guide 2-279

p_attribute2 varchar2 in default

p_attribute3 varchar2 in default

p_attribute4 varchar2 in default

p_attribute5 varchar2 in default

p_attribute6 varchar2 in default

p_attribute7 varchar2 in default

p_attribute8 varchar2 in default

...

...

p_resume_exists varchar2 in default

p_resume_last_updated date in default

p_second_passport_exists varchar2 in default

p_student_status varchar2 in default

p_work_schedule varchar2 in default

p_suffix varchar2 in default

p_person_user_key varchar2 in

p_assignment_user_key varchar2 in

p_user_person_type varchar2 in default

p_vendor_name varchar2 in default

p_correspondence_language varchar2 in default

This example does not show all the parameters as there are many more.

The optional p_data_pump_business_grp_name parameter specifies a business group
name to override the name specified in the batch header.

The optional p_data_pump_batch_line_id parameter specifies the batch_line_id for the
inserted row (if necessary an existing row with this batch_line_id will be deleted).

Note: This procedure requires two user key values p_person_user_key
and p_assignment_user_key. You must supply values for these keys. If
you use Data Pump to create records in Oracle HRMS then Data Pump
automatically inserts your key values and the HRMS key values
generated by the APIs into the user keys table. For subsequent actions
Data Pump can use these keys to match records from your external
system with the Oracle HRMS records. A more detailed explanation and
example is included in a later section of this document.

2-280 Oracle US Federal Human Resources Implementation Guide

Call Procedure

This is the actual ’wrapper’ procedure executed by the Data Pump process to call
the API and pass in the appropriate parameter values. The procedure takes two
arguments: p_business_group_id and p_batch_line_id.

Note: Direct calls to this procedure are NOT supported. You must use
the Data Pump concurrent process to execute the procedures.

Meta-Mapper Help Procedure

The Meta-Mapper package also includes a help procedure hr_pump_meta_mapper help
that returns information on the generated PL/SQL package and view names, and the
batch lines table parameter values for a given API.

The help procedure has two parameters:

• p_module_package

The name of API PL/SQL package

• p_module_name

The name of API PL/SQL procedure

You must set server output on before calling this procedure.

For example, use the following SQL*PLUS to get help for hr_employee_api.create_employee:

sql> set serveroutput on size 1000000;
sql> execute hr_pump_meta_mapper.help(’hr_employee_ap i’, ’create_
employee’);

The output is as follows:

Generated package: hrdpp_create_employee

Generated view: hrdpv_create_employee

Parameter Name Type In/Out Default? Lookup Type

--------------- ----- ------ -------- -----------

P_HIRE_DATE DATE IN

P_LAST_NAME VARCHAR2 IN

P_SEX LOOKUP IN SEX

P_PER_COMMENTS VARCHAR2 IN DEFAULT

P_DATE_EMPLOYEE

_DATA_VERIFIED DATE IN DEFAULT

P_DATE_OF_BIRTH DATE IN DEFAULT

P_EMAIL_ADDRESS VARCHAR2 IN DEFAULT

P_EMPLOYEE_NUMBER VARCHAR2 IN

Implementation Guide 2-281

P_EXPENSE_CHECK
_SEND_TO_ADDRES LOOKUP IN DEFAULT HOME_OFFICE

P_FIRST_NAME VARCHAR2 IN DEFAULT

P_KNOWN_AS VARCHAR2 IN DEFAULT

P_MARITAL_STATUS LOOKUP IN DEFAULT MAR_STATUS

P_MIDDLE_NAMES VARCHAR2 IN DEFAULT

P_NATIONALITY LOOKUP IN DEFAULT NATIONALITY

P_NATIONAL_IDENTIFIER VARCHAR2 IN DEFAULT

P_PREVIOUS_LAST_NAME VARCHAR2 IN DEFAULT

P_REGISTERED_DISABLED_FLAG LOOKUP IN DEFAULT YES_NO

P_TITLE LOOKUP IN DEFAULT TITLE

P_WORK_TELEPHONE VARCHAR2 IN DEFAULT

P_ATTRIBUTE_CATEGORY VARCHAR2 IN DEFAULT

P_ATTRIBUTE1 VARCHAR2 IN DEFAULT

P_ATTRIBUTE2 VARCHAR2 IN DEFAULT

P_ATTRIBUTE3 VARCHAR2 IN DEFAULT

P_ATTRIBUTE4 VARCHAR2 IN DEFAULT

P_ATTRIBUTE5 VARCHAR2 IN DEFAULT

P_ATTRIBUTE6 VARCHAR2 IN DEFAULT

...

P_ASSIGNMENT_SEQUENCE NUMBER OUT

P_ASSIGNMENT_NUMBER VARCHAR2 OUT

P_NAME_COMBINATION_WARNING BOOLEAN OUT

P_ASSIGN_PAYROLL_WARNING BOOLEAN OUT

P_USER_PERSON_TYPE VARCHAR2 IN DEFAULT

P_VENDOR_NAME VARCHAR2 IN DEFAULT

P_CORRESPONDENCE_LANGUAGE VARCHAR2 IN DEFAULT

...

The following is an explanation of the help output:

2-282 Oracle US Federal Human Resources Implementation Guide

• In the above example, the insert_batch_lines procedure is: hrdpp_create_employee.
insert_batch_lines.

• The Parameter Name column shows the name of the parameter as it appears in the
insert_batch_lines procedure and generated view.

• A parameter can have type USER_KEY which means that it is a user
key (see the section User Key Values, page 2-296 for more details). For
example, P_SUPERVISOR_USER_KEY USER_KEY IN DEFAULT. User key
parameters are implicitly of type VARCHAR2.

• DATE parameter values are passed to the insert_batch_lines procedure as
VARCHAR2 strings in YYYY/MM/DD format.

Note: The date format used by Data Pump is YYYY/MM/DD. For
dates in Oracle HRMS, the internal date format is YYYY/MM/DD
HH24:MM:SS.

• BOOLEAN parameter values are passed to the insert_batch_lines procedure as
VARCHAR2 strings with the values TRUE or FALSE’.

• The In/Out column has the value IN for parameters that are PL/SQL IN or IN/OUT
when passed to the API, or are user key parameters. If the parameter is an API
PL/SQL OUT parameter, then the In/Out column value is OUT.

• Only IN parameters are arguments to the insert_batch_lines procedure. OUT
parameters appear in the generated view.

• The Default column has the value DEFAULT if the parameter’s value is not required
in the batch lines table. For mandatory parameters this column is empty.

• Mandatory parameter values must be passed to the insert_batch_lines procedure.

• If the parameter is a lookup parameter, the Lookup Type column contains the
name of the parameter’s lookup type.

Loading Data Into the Batch Tables

The Meta-Mapper generates a specific PL/SQL package and view for each API. Use these
PL/SQL interface procedures and views for loading data into the batch tables, except
where stated otherwise in this document.

It is particularly important that inserts are performed exclusively through the
interfaces. There are two reasons for this:

• Using the PL/SQL procedure insulates you from the complexities of the underlying
schema.

• Using the PL/SQL procedure insulates you from any schema changes that might
be made in any future release. This is important if you intend to use Data Pump
on a continuing basis.

Tip: Test the validity of the legacy data capture code on a subset of
the batch to be loaded. For example, if you plan to load details for
100000 people, test your routines to validate and load a subset of 100
representative people. This should help you to identify and resolve
any obvious problems with your capture code before you attempt to
load the bulk of your data.

Implementation Guide 2-283

The Batch Interface Tables

The main objective of the interface design was to keep everything as simple as
possible. The result is that Data Pump only has one batch header and one batch lines
table for loading data for all APIs. Views are generated by the Meta-Mapper with
specific column names for each API.

Each row of the batch lines table holds the reference to an API and data values. Data
Pump executes each API with the data passed in as parameters.

How to Control Processing Order

There are many instances where you need to control the order in which batch lines are
loaded into the database. For example, Data Pump would generate an error if it tried to
create an address for a person before it created the person.

To control the order in which operations are performed, use the p_user_sequence
parameter to set the order manually. Choose some appropriate numeric values for this
parameter when you insert the data to the batch lines table. Data Pump uses these
numbers to determine processing order.

Different Approaches to Batch Loading

There are a number of approaches you can take when setting the order for processing
batch lines.

One approach would be to load disparate data in separate batches. For example load
personal information in one batch and address information in a second batch.

Another approach would be to create a batch containing lines with related API calls. For
example, you could load person, address, and assignment information for one employee
as part of one batch. In this approach, if you are using the parallel processing option, you
would use the p_link_value parameter to make sure all the lines are processed in the same
chunk. Use the default or p_user_sequence parameter to make sure that the different API
calls are made in the correct order within the linked group.

Processing Order When Running Parallel

The Data Pump process has been optimized to take advantage of parallel processing
options. If you want to run a multi-threaded process there are some special
considerations for ordering batch lines.

When you run the Data Pump process in parallel, the concurrent manager generates
multiple threads, each of which processes a defined number of batch lines before it
commits them to the database. The number of lines is controlled by the CHUNK_SIZE
payroll action parameter - see Other Parameters, page 2-287 for details.

With parallel processing and chunking of lines, in theory a transaction that includes
more than one line could be split between processes. This would mean that lines might
not be processed in the order set by the p_user_sequence parameter.

You can prevent this by using the p_link_value parameter. This parameter tells Data
Pump that a set of batch lines must be processed in the same chunk. Use the same link
value for all the lines that must be processed by the same thread - this will automatically
extend the number of rows processed by a single thread when necessary.

When lines have a common link value, they must also be in consecutive user sequence in
order to be processed within a single chunk.

For example, in the following table, only the lines with the user sequences 1, 2 and 5 are
guaranteed to be processed in the same thread.

2-284 Oracle US Federal Human Resources Implementation Guide

User Sequence Link Value

1 1

2 1

5 1

8 2

10 1

Note: When running Data Pump in parallel you may find that
performance does not scale as expected. Remember that running
business process APIs in parallel may cause lock contention because of
extended validation. For example, in the past, the personal payment
method and element entry APIs were known to have problems in
this area.

Default and Null Values for API Parameters

Specifying a Default or NULL Parameter Value

Part of the design for the APIs in Oracle HRMS is that many parameters have default
values set for them. This means that they can be called directly without having to
pass values for all parameters.

When you use Data Pump there is a similar mechanism that means you do not have to
supply values for all parameters.

The following rules apply:

• If an insert batch lines parameter is passed NULL or is not passed a value and can be
defaulted, the appropriate default value will be passed to the API module itself.

• If you want to set up an explicit NULL value for a parameter, use the special reserved
string <NULL>. You may want to do this to update to a null value.

Any other value passed as a parameter will be the value inserted into the batch line and
subsequently passed to the appropriate API process.

Indicator Parameters

The insert_batch_lines procedure may be generated with indicator parameters. Each
indicator parameter is generated in addition to the corresponding standard parameter
e.g. I_AMOUNT (indicator parameter), P_AMOUNT (standard parameter). The
indicator parameters are generated to allow the special value NULL to be specified for
non-mandatory number and date parameters whose default value is not NULL. If the
indicator parameter = Y then the value NULL is written to the batch lines table, otherwise
the standard parameter’s value is used. The usual case for this is for update APIs where
a number or date value needs to be updated to NULL

Assumed Default Values

Occasionally, when the value NULL is used to specify a non-mandatory parameter, the
wrong default value gets passed to the API call. The usual reason for this is that the
parameter in question has a non-standard default value, but the seed data has not taken

Implementation Guide 2-285

this into account. In such case, the correct default value for the parameter should be
explicitly set in the batch lines row for the Data Pump API call.

The meta-mapper assumes, that unless seeded otherwise, certain default values for API
parameters - this is because it is not possible to get the actual default values from the
database. The default value used for a create API (e.g. create_employee) is NULL. For all
other APIs, the default values used are shown in the following table:

Parameter Type Default Value

BOOLEAN NULL

DATE HR_APLG_DATE

LONG NULL

NUMBER HR_APLG_NUMBER

VARCHAR2 HR_APLG_VARCHAR2

Default and Null Values for Mapped Parameters

A mapped parameter is one where an actual value (or a user key) is used rather than
a system identifier in the Data Pump API call. The meta-mapper call procedure
calls a mapping function before making the API call to resolve the system identifier
value from the input value. Such a mapping function will usually have two or more
parameters – an obvious name parameter e.g. P_JOB_NAME, and other parameters
such as P_EFFECTIVE_DATE.

If one or more of the mapping function parameters is set to <NULL> in batch lines then
the mapped parameter is passed to the API as NULL. Otherwise, if one or more of the
mapping function parameters is set to NULL in batch lines and the default value is
NULL or an HR_API value (e.g. HR_API.G_NUMBER) then the mapped parameter is
passed to the API with its default value.

Recommendation: To use this feature, set the name parameter to <NULL> or NULL
in the batch lines table. There is no need to worry about what the other mapping
function parameters could be.

Running the Data Pump Process

Use the Submit Reports and Processes form to start the Data Pump Engine process. It
takes these parameters:

• BATCH NAME

The batch_name is one of the batches inserted via the create_batch_header procedure.

• VALIDATE FLAG

Default value for this flag is No. This commits all valid lines to the database.

If the validate flag is set to Yes, the process runs in validation mode. The APIs are
called, but their results are rolled back. Use this mode to check and correct data
before committing changes to the database.

• ACTION PARAMETER GROUP

2-286 Oracle US Federal Human Resources Implementation Guide

The action parameter group specifies the set of action parameter values to configure
this Data Pump run.

The default value for this parameter is set from the HR: Data Pump Action Parameter
Group profile option.

Note: Before running the Data Pump process you should decide
whether to use parallel threads and whether you want to turn on any
logging options.

Overview of Data Pump Action Parameters

Data Pump process running can be controlled through the action parameter value
settings. A number of these action parameters (THREADS, CHUNK_SIZE, MAX_
ERRORS_ALLOWED) are also used by the other processes e.g. the payroll run.

With action parameter groups it is possible to have separate action parameter values
for different processes, something that is highly recommended. Another use of action
parameter groups is to switch in an action parameter group for debugging e.g. so that
Data Pump is run as a single thread with logging switched on.

Any action parameters not set within the specified action parameter group take
their values from the default action parameter group (the null action parameter
group). Furthermore, if action parameters are NULL then the Data Pump process
uses default values for them.

You can set action parameter values from the Action Parameters form (navigate to
Process And Reports->Action Parameters).

Running In Parallel

To enable parallel processing you set a value for the THREADS parameter in
PAY_ACTION_PARAMETER_VALUES.

The threads value includes the starting process. That means that if you set a value of
2, the main engine code starts with one slave process to make a total of two concurrent
processes. When running in parallel, the ’master’ process may finish before the slave
processes. This is normal.

Note: The THREADS parameter also controls the parallel execution
of the other Oracle Payroll processes. We recommend that you use
action parameter groups to separate action parameters for Data Pump
from normal payroll processing.

Other Parameters

There are six other payroll action parameters you can set for Data Pump.

CHUNK_SIZE

Default = 10

Controls how many batch API calls are processed at a time per thread when running
in parallel. It also controls the number of API calls per commit. Note that there are
certain circumstances under which the actual number can vary from this number. For
example, it can be higher if the p_link_value parameter is set.

MAX_ERRORS_ALLOWED

Default = 20

Implementation Guide 2-287

Controls how many errors in calling an API will be tolerated before the entire Data Pump
engine fails. This is the number of errors per parallel thread.

PUMP_DEBUG_LEVEL

Use this parameter to turn on logging for tracking errors generated by the Data Pump
process. For a list of valid values for this parameter, see Logging Options, page 2-288.

DATA_PUMP_DISABLE_CONTINUOUS_CALC

Default = N

Use this parameter to turn off continuous calculation triggers. This may be desirable for
performance reasons. The value Y turns off the continuous calculation triggers.

DATA_PUMP_NO_FND_AUDIT

Default = N

Use this parameter to turn off Oracle Applications auditing. This may be desirable for
performance reasons. The value Y turns off the auditing.

DATA_PUMP_NO_LOOKUP_CHECKS

Default = N

Use this parameter to turn off lookup validation in the Data Pump API call. The Data
Pump API call assumes that values for lookup parameters are passed in as lookup
codes only. This may be desirable for performance reasons. The value Y turns off
the lookup validation.

Checking Run Status

The Data Pump runs as a concurrent process. You can check process status at any time
using the View Concurrent Requests window. The concurrent manager only reports
failure if the entire process has failed. Usually this happens because the number of errors
exceeded the value set by the MAX_ERRORS_ALLOWED parameter.

Note: Even if the concurrent process completes successfully there may
be some data errors encountered by the process. You should always
check for batch line errors.

Finding and Fixing Errors

This section deals with the logging options available for tracking errors generated by the
Data Pump process, as well as hints and tips on how to deal with these.

Logging Options

You enable logging options for Data Pump by inserting appropriate values in
the PAY_ACTION_PARAMETERS_VALUES table for the PUMP_DEBUG_LEVEL
parameter.

Note: Turning logging on always affects the overall performance of the
data pump process. You should only use logging to help track down
problems when they occur. Remember also to switch logging off after
you have solved your problem.

Valid values for PUMP_DEBUG_LEVEL are as follows.

Tip: The first three options are likely to be the most useful to you.

2-288 Oracle US Federal Human Resources Implementation Guide

Option Description

AMD API Module Debug (enables
trace output from API)

RRP Range Row Processing
logging (logs the number of
errors that occurred for each
unit of work, or range)

GID Get_id function failure
information (logs failures
in functions that map user
values to IDs)

MSG Output specific logging
messages

ROU Routing information (entry
to and exit from procedures)

WCD Wrapper cache debug
logging

STK Stack dump logging (trace
information on failure)

EXT Exit information (trace
information on success)

RRI Range row insert logging

BLI Batch Line Information
(output the batch line
number for the batch line
being processed).

CLF Concurrent Log File (logging
messages output with
the MSG option go to the
concurrent manager log file).

You can combine any number of these options by concatenating the values, separated
by a colon. For example, the string ’MSG:RRI:RRP’ combines MSG, RRI, and RRP
debugging.

How to View Logging Output

When you enable logging options, output is produced for every thread that may be
running. Use the PYUPIP command to view this output.

To use this command you will need to know the ID for the concurrent process you are
logging. Online you can use the View My Requests window to find the Concurrent
Request IDs. Alternatively, you can query from the HR_PUMP_REQUESTS table. One
row is inserted for each process that is running. For example:

select * from hr_pump_requests;

Implementation Guide 2-289

Typical output would be:

BATCH_ID REQUEST_ID PROCESS_TYPE

----------- --------------- -----------------

8437 98533 MASTER

8437 98534 SLAVE

This tells us that there are two processes running, and the request_id values are 98533
and 98534.

Use PYUPIP to trace the output in a separate command line window. For example:

PYUPIP <user/password>@database REQID98533

PYUPIP <user/password>@database REQID98534

Note: If you are running multiple threads, you should trace all the
threads. If you do not choose all threads, this means that the processing
comes to halt when the database trace pipe fills up. It may be advisable
to run a single thread only when tracing.

How to Find Errors in Batch Lines

When an error occurs during processing, Data Pump generates one or more rows in the
HR_PUMP_BATCH_EXCEPTIONS table. There will be multiple rows if the API supports
multiple messaging. In this release you must use SQL*PLUS to view this information.

Additionally, you can use SQL*PLUS to query rows in HR_PUMP_BATCH_LINES
where the LINE_STATUS has a value of E - error.

Note: In validation mode LINE_STATUS is set to V- validated, for
a successful API call. In update mode LINE_STATUS is set to to C
- complete, for a successful API call.

Investigating the Cause of Errors

Investigation strategies depend on the type of error and the indications of its origin. For
some errors you may need experience with the use of APIs and the Oracle HRMS
application to recognize what might be wrong.

Some specific advice for Data Pump follows:

• Start with the columns of the HR_PUMP_BATCH_EXCEPTIONS table to identify
which batch line has caused the error. Use this to check the parameters and values
of the batch line itself.

• One common error is ’no data found’. This is most likely to happen because of an
error in one of the functions called to convert user meaning to ID values. In this
case, the exact cause of the error will not be obvious from looking in the exceptions
table. More information can be gained from using the GID logging value. When
failure occurs, the name of the function that failed, plus the argument values passed
in, is displayed in the trace.

• The AMD logging value can be used to help track down problems. It activates the
logging in the API modules themselves - providing copious output to examine.

2-290 Oracle US Federal Human Resources Implementation Guide

• Another common cause of errors is incorrect ordering of the data load. For
instance, attempting to load a person’s address before the person. An associated
error may occur if you are using parallel processing and do not use LINK_VALUE to
associate multiple batch lines.

• When running in validation mode, ordering errors will occur if the batch is not split
up into chunks that are independent of the results of other chunks. This will occur
even if the validation is done with a single thread. The reason is that the results of
APIs over a single chunk are rolled back to release rollback segments. This is another
reason to use the p_link_value parameter to control the running of a load.

How to Fix Errors

The most common cause of errors is likely to be that incorrect values have been loaded
via the insert_batch_lines procedure and that these need to be corrected.

Using The Views To Correct Data

Use the HRDPV_ views on HR_PUMP_BATCH_LINES to correct values in the
appropriate columns. You can use normal update statements on these views and this
makes fixing data problems much simpler.

Warning: When using the views to make changes to problem data, you
must not alter the LINE_STATUS on the HR_PUMP_BATCH_LINES
table. The Data Pump engine uses this for processing.

Note: Views on HR_PUMP_BATCH_LINES display rows only for
the APIs for which they were generated. Any attempt to update the
API_MODULE_ID column with an incorrect value will fail with an
ORA-1402 error. The views are generated with a WITH CHECK
OPTION on the where-clause to prevent you from using a view to
generate any row that the view could not select.

(The same warning applies to inserting rows into
HR_PUMP_BATCH_LINES using the generated views.)

Rerunning The Data Pump Process

After you have fixed any problems you can rerun the batch by submitting the Data
Pump process again using the same batch name. You can submit the process any number
of times until all lines are successfully completed. Batch lines with a status of E - error;
U- unprocessed; or V -validated are automatically reprocessed.

You do not have to take any action to remove rows from the exception table. Data Pump
automatically deals with this.

Lines validated in previous Data Pump runs are reprocessed even if the Data Pump is run
in validation mode because the results of the associated API calls would have been rolled
back in the previous runs. Only lines with a status of C -complete are not reprocessed.

Purging Data

Currently there is no purge process provided with Data Pump to remove data
automatically from batch tables, other than the automatic removal of rows in the
exception tables. In all other instances, you should consider what data needs to be
purged and when.

Important: You should take extra care when purging any data from
the user key values table. For example, deleting assignment and

Implementation Guide 2-291

person user keys would mean that you could not create a secondary
assignment for that employee unless you first use the add_user_key
procedure to recreate the purged user keys. We therefore recommend
that the USER_KEYS table is only purged when Data Pump processing
has been completed.

How To Purge

In all cases you should start with the following actions:

TRUNCATE TABLE HR_PUMP_REQUESTS;

TRUNCATE TABLE HR_PUMP_RANGES;

Simple Purge Of All Rows

If you want to purge all rows regardless of status then use the following:

TRUNCATE TABLE HR_PUMP_BATCH_EXCEPTIONS;

TRUNCATE TABLE HR_PUMP_BATCH_LINE_USER_KEYS;

TRUNCATE TABLE HR_PUMP_BATCH_LINES;

TRUNCATE TABLE HR_PUMP_BATCH_HEADERS;

Purge Of All Successful Rows

This is more complicated. You should purge data only when all loads have been
successful. This avoids the danger of purging rows that are still needed. Perform the
following actions:

• Use the HR_PUMP_BATCH_LINES.LINE_STATUS column to tell which rows have
been successful, and therefore can be purged.

• Look for a status of C. Of course, if all rows in a batch have status C then simply
purge all rows in that batch.

• Remove all appropriate rows in the following tables, in the order shown below:

• HR_PUMP_BATCH_EXCEPTIONS

• HR_PUMP_BATCH_LINE_USER_KEYS

• HR_PUMP_BATCH_LINES

If all rows in HR_PUMP_BATCH_LINES have been deleted, remove the appropriate
batch from the HR_PUMP_BATCH_HEADER table.

Sample Code

This section contains some sample code showing how you could call the batch lines
procedures.

This example is artificial in that the data for the API calls is generated. However, it shows
how we can prepare the Data Pump to create a number of batch lines that:

• Create an employee

• Create an address for the employee

• Update the default assignment criteria

• Create a secondary assignment

2-292 Oracle US Federal Human Resources Implementation Guide

The example also illustrates the use of p_link_value to make sure that the separate
transactions for each employee and assignment are processed by the same thread.

------------------------ start of example ------------- ----------
create or replace package hrdp_cre_emp as
procedure hrdp_cre_emp (p_start in number, p_end in number);
end hrdp_cre_emp;
/
create or replace package body hrdp_cre_emp as
/*

* Insert a number of batch lines in preparation for
* running the data pump engine, which will then
* - create an employee
* - create an address for the employee
* - update the criteria of the default assignment
* - create a secondary assignment
*/

procedure hrdp_cre_emp (p_start in number, p_end in number) is
l_last_name varchar2(40);
l_hire_date date;
l_birthday date;
l_first_name varchar2(40);
l_asgno varchar2(40);
-- These are the ’out’ values.
l_special_ceiling_step_id number;
l_person_user_key varchar2(100);
l_address_user_key varchar2(100);
l_assignment_user_key varchar2(100);
l_assignment_user_key2 varchar2(100);
l_link_value number;
l_commit_count number;
l_commit_limit number;
l_emp_count number;
l_address_line1 varchar2(256);

begin
l_commit_limit := 10; -- commit after every 10 employees.
l_commit_count := 0;
l_first_name := ’David’;
l_hire_date := to_date(’1997/12/01’, ’YYYY/MM/DD’);
l_birthday := to_date(’1970/01/01’, ’YYYY/MM/DD’);
l_link_value := 0;
for emp_count in p_start..p_end loop

-- Prepare to create an employee.
l_last_name := ’DUMP’ || lpad(emp_count, 5, ’0’);
l_person_user_key := l_last_name || ’ : PER USER KEY’;
l_assignment_user_key := l_last_name || ’ : ASG USER KEY’;
l_address_user_key := l_last_name || ’ : ADDR USER KEY’;
l_address_line1 := to_char(emp_count) || ’, Union Square’ ;
hr_utility.trace(’Last Name : ’ || l_last_name);
-- Allow linking together so that these API calls process
-- by the same thread.
l_link_value := l_link_value + 1;
hrdpp_create_employee.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_person_user_key => l_person_user_key,

Implementation Guide 2-293

p_assignment_user_key => l_assignment_user_key,
p_hire_date => l_hire_date,
p_last_name => l_last_name,
p_sex => ’Male’,
p_employee_number => null,
p_per_comments => ’Comments for : ’ || l_last_nam

e,
p_date_of_birth => l_birthday,
p_email_address => ’somebody@us.oracle.com’,
p_first_name => l_first_name,
p_user_person_type => ’Employee’

);
-- Create an address for the person.
hrdpp_create_us_person_address.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_effective_date => l_hire_date,
p_primary_flag => ’Yes’,
p_date_from => l_hire_date,
p_address_type => ’Home’,
p_address_line1 => l_address_line1,
p_city => ’Golden Valley’,
p_county => ’Los Angeles’,
p_state => ’California’,
p_zip_code => ’91350’,
p_country => ’US’,
p_person_user_key => l_person_user_key,
p_address_user_key => l_address_user_key

);
-- Let’s update some criteria.
l_special_ceiling_step_id := hr_api.g_number;
hrdpp_update_emp_asg_criteria.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_effective_date => l_hire_date,
p_datetrack_update_mode => ’CORRECTION’,
p_assignment_user_key => l_assignment_user_key,
p_payroll_name => ’Monthly’,
p_special_ceiling_step_id => l_special_ceiling_step_

id
);
l_assignment_user_key2 := l_assignment_user_key || ’2’;
hrdpp_create_secondary_emp_asg.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_assignment_user_key => l_assignment_user_key2,
p_person_user_key => l_person_user_key,
p_effective_date => l_hire_date,
p_assignment_number => l_asgno,
p_comments => ’asg created by data pump’

,
p_organization_name => ’Setup Business Group’,

2-294 Oracle US Federal Human Resources Implementation Guide

p_grade_name => ’faz1’,
p_job_name => ’TEST’,
p_payroll_name => ’Monthly’

);
l_hire_date := l_hire_date + 1;
l_commit_count := l_commit_count + 1;
if(l_commit_count = l_commit_limit) then

-- Commit after so many employees.
hr_utility.trace(’Commit after ’ || l_commit_limit || ’ e

mployees.’);
commit;
l_commit_limit := 1;

end if;
end loop;

end hrdp_cre_emp;
/

Notes on Using The Generated Interfaces

The Meta-Mapper process generates a view and PL/SQL packages for each API. This
section explains some of the factors that you should keep in mind when using them.

Finding System IDs from Names or Values

When you use APIs you must supply lookup codes and surrogate primary keys for
many parameters. For example:

...

p_sex => ’M’,

p_payroll_id => 13456,

...

Without Data Pump you would need to write additional code to convert values from
your external system to Oracle HRMS system IDs for each API.

However, with Data Pump you have a set of predefined procedures for each of the
supported APIs that automatically convert user names or values into lookups and
system IDs. For example:

...

p_sex => ’Male’,

p_payroll_name => ’Monthly Payroll’,

...

Note: For lookup parameters, you can use the meaning or the lookup
code itself. For non-lookup type IDs you will find an alternative
parameter to use.

Exceptions

There are three major exceptions to the use of names for parameter values:

• Flexfield Attribute Parameters

Implementation Guide 2-295

• PL/SQL IN/OUT Parameters

• Legislation Specific Lookup Parameters

Flexfield Attribute Parameters

Most of the API processes include flexfield attribute parameters with names like
P_SEGMENT18 or P_ATTRIBUTE20. Data Pump cannot know what the mappings
of these values are in your specific implementation and therefore value conversion
is not supported.

This means that you must take responsibility for passing the correct lookup code
or other value as appropriate.

PL/SQL IN/OUT Parameters

When an API performs a combination of different actions then you need to provide the
appropriate ID or code values for the parameters rather than the user meanings. This
should not be a great problem where the values for these items can be derived before the
Data Pump run.

For example, in hr_assignment_api.update_emp_asg , p_special_ceiling_step_id must be
passed in as an ID, even though other APIs require it to be a user key.

Note: You cannot provide user keys for PL/SQL IN/OUT parameters
of the API because the Data Pump code that calls the specific API has
no way to determine whether the user key existed before the API
call and therefore whether it is to be created or its ID value updated
after the API call.

Many APIs generate a comment_id as an output parameter. However, you are not
required to supply a user key value for the comment_id. This avoids the generation of a
lot of meaningless user keys.

Note: A comment_id user key is required for the comment_id
parameters to the element entry creation and update APIs. You must
add these user keys if you require them for the element entry API calls.

Legislation Specific Lookup Parameters

A similar situation arises with legislation-specific business process API calls where a
specific lookup in the legislation-specific API call corresponds to a generic parameter
in the generic business process API call.

For example, the p_region_1 parameter in the hr_person_address_api.
create_person_address API corresponds to p_county lookup parameter in the
hr_person_address_api.create_gb_person_address API.

When calling hr_person_address_api.create_person_address for a GB address via Data
Pump, you would have to pass the ’GB_COUNTY’ lookup code for the p_region_1
parameter. Alternatively you could use the ’GB_COUNTY’ lookup meaning if you used
hr_person_address_api.create_gb_person_address.

Note: You should use legislation-specific APIs where these are available.

User Key Values

When you are mapping data from your external system to Oracle HRMS you will
find that there are some cases where an ID value for an Oracle entity cannot be
derived from a logical unique key or name. Examples of this are Person, Assignment

2-296 Oracle US Federal Human Resources Implementation Guide

and Address. Consider the unique identifier for a person. It is very difficult, if not
impossible, to identify a person uniquely. In theory different people may share the same
first and last names, gender, birth date, marital status, and so forth.

There are similar problems if an entity does not have a logical key, and its surrogate
ID cannot be derived easily from the names of any of its component entities. For
example, it isn’t easy to identify a unique Element Link by looking simply at names of its
components - Payroll, Job, Position etc.

Or, the entity may be an abstract entity specific to the Oracle Applications products and
is only identifiable using an ID value. For example an ID_FLEX_NUM.

The solution provided by Data Pump is to enable you to set a ’User Key’ value. This
value must be a unique character string. It could be a unique ID taken from your external
system or it could be a concatenation of multiple values. For example a user key for a
person could be the person’s name concatenated with the existing employee number
from your legacy system. An illustration would be:

p_person_user_key => ’Joe Bloggs’ || ’2345’, -- name + emp no

You must define user key values for any parameters with a name that ends
’user_key’. Data Pump uses these user key values to identify IDs for the records in the
Oracle HRMS system.

Note: User key values must be unique across all entities. For example, it
is not possible to have a Person user key value of ’SMITH1001’, and an
Assignment user key value also of ’SMITH1001’.

In most cases you will have one user key value for each system ID. However, with Data
Pump you can define many different user keys for the same system ID. This is important
if you are loading data from different external systems and the unique keys do not match.

User keys are held as rows in the HR_PUMP_BATCH_LINE_USER_KEYS table.

Creating User Key Values

User keys are created in one of two ways:

• Data Pump inserts new user keys

Using Data Pump you must specify user keys for several API parameters. After a
successful call to an API that creates a new record, Data Pump inserts a new row in
the user keys table with the name you specified and the system ID value returned
from the API. The returned ID value is a PL/SQL OUT parameter to the API.

• Manually insert a new user key

If you have already loaded data from an external system, or you want to create
multiple user keys for the same system ID you can manually insert rows into
HR_PUMP_BATCH_LINE_USER_KEYS using the add_user_key utility procedure.

Once the user keys have been created you can use the same key with other APIs to
update an existing entity, or to specify another entity. For example, two person user keys
can be used to specify a contact relationship.

Utility Procedures Available With Data Pump

This section lists the utility procedures that are provided with the Data Pump.

All the procedures are in the HR_PUMP_UTILS package.

Implementation Guide 2-297

create_batch_header
Parameters :

p_batch_name : unique batch name.
p_business_group_name : name of business group (optional)
p_reference : user reference value (optional)

Returns
The hr_pump_batch_headers.batch_id.

Description :
Creates a batch header row. This should be used to create
the row rather than direct insert.

An example of a call to this procedure is:

declare
l_batch_id number;

begin
l_batch_id := hr_pump_utils.create_batch_header

(’Employees for Dept 071’, ’AKA Enterprises’);
end;

add_user_key
Procedure : add_user_key
Parameters :

p_user_key_value : unique user key value.
p_unique_key_id : ID associated with the user key.

Description :
Creates a user key for use with Data Pump API calls.
add_user_key is used to add a user key when the object
referred to by the ID value has not been created by Data
Pump. This may happen when the object has no creation API but
is required as a user key parameter to an API called by Data
Pump, or if the object was created before Data Pump was
available.

modify_user_key
Procedure : modify_user_key
Parameters :

p_user_key_value : unique user key value identifying
the user key to be changed.

p_new_user_key_value : new unique user key value.
p_unique_key_id : new ID associated with the user

key.
Description :

The main purpose of modify_user_key is to fix an incorrect
user key created by add_user_key. If either
p_new_user_key_value or p_unique_key_id are null then the
corresponding column is not updated for the user key.

Table and View Descriptions

The following section provides more detailed descriptions of the specific tables and
views you use with Data Pump.

2-298 Oracle US Federal Human Resources Implementation Guide

APIs Supported by the GENERATEALL Command

Package Name Business Process

HR_APPLICANT_API CREATE_APPLICANT

CREATE_GB_APPLICANT

CREATE_US_APPLICANT

HR_ASSIGNMENT_API ACTIVATE_EMP_ASG

ACTUAL_TERMINATION_EMP_ASG

CREATE_SECONDARY_EMP_ASG

CREATE_GB_SECONDARY_EMP_ASG

CREATE_US_SECONDARY_EMP_ASG

SUSPEND_EMP_ASG

UPDATE_EMP_ASG

UPDATE_EMP_ASG_CRITERIA

UPDATE_GB_EMP_ASG

UPDATE_US_EMP_ASG

HR_CONTACT_API CREATE_PERSON

HR_CONTACT_REL_ API CREATE_CONTACT

HR_EMPLOYEE_API CREATE_EMPLOYEE

CREATE_GB_EMPLOYEE

CREATE_US_EMPLOYEE

HR_EX_ EMPLOYEE_API ACTUAL_TERMINATION_EMP

FINAL_PROCESS_EMP

HR_JOB_API CREATE_JOB

HR_JOB_REQUIREMENT_API CREATE_JOB_REQUIREMENT

HR_PERSONAL_PAY_METHOD_API CREATE_GB_PERSONAL_PAY_METHOD

CREATE_PERSONAL_PAY_METHOD

CREATE_US_PERSONAL_PAY_METHOD

DELETE_PERSONAL_PAY_METHOD

Implementation Guide 2-299

Package Name Business Process

UPDATE_PERSONAL_PAY_METHOD

UPDATE_GB_ PERSONAL_PAY_METHOD

UPDATE_US_ PERSONAL_PAY_METHOD

HR_PERSON_ADDRESS_API CREATE_GB_PERSON_ADDRESS

CREATE_PERSON_ADDRESS

CREATE_US_PERSON_ADDRESS

UPDATE_PERSON_ADDRESS

UPDATE_GB_PERSON_ADDRESS

UPDATE_US_PERSON_ADDRESS

HR_PERSON_API UPDATE_PERSON

UPDATE_GB_PERSON

UPDATE_US_PERSON

HR_POSITION_API CREATE_POSITION

UPDATE_POSITION

HR_POSITION_REQUIREMENT_API CREATE_POSITION_REQUIREMENT

HR_SIT_API CREATE_SIT

HR_VALID_GRADE_API CREATE_VALID_GRADE

PY_ELEMENT_ENTRY_API CREATE_ELEMENT_ENTRY

DELETE_ELEMENT_ENTRY

UPDATE_ELEMENT_ENTRY

Using Data Pump with Unsupported APIs

Sometimes the necessary seed data for a Data Pump call to a particular API is not
present. The usual problem when running the meta-mapper generate is the lack of
mapping functions to resolve system identifiers from user values, for example:

ORA-2001: Seed data error: Mapping function get_set_of_books_id does not exist. Please
contact your support representative.

This type of error is usually caused by API parameters with names ending in _ID, for
example, P_JOB_ID.

You can call the meta-mapper in an alternative generate mode that essentially generates
a direct call to the API rather than processing parameter values beforehand to get

2-300 Oracle US Federal Human Resources Implementation Guide

system values. Making a Data Pump call with this generate mode requires a better
understanding of the API itself than is required when using the standard generate mode.

Use this SQL*PLUS command to generate packages and views for an API:

sql > execute hr_pump_meta_mapper.generate (<package_name>, <procedure_name>,
false) ;

Use these SQL*PLUS commands to display the help text for the API:

sql > set serveroutput on size 1000000;

sql > execute hr_pump_meta_mapper.generate (<package_name>, <procedure_name>,
false) ;

The view and package generated are the same as in the standard generation
mode discussed earlier in this essay. They can be used as described in this
essay. However, when using this generate mode you should note that:

• There must be a row for the API with API_MODULE_TYPE A1 or BP in
HR_API_MODULES. Note that Oracle does not support customer creation of rows
in HR_API_MODULES. This is because problems can occur if the data is delivered
in future patches.

• You must explicitly set the correct default values for API parameters when you make
the Data Pump API call. This is because API parameter default values are not
predefined and the meta-mapper makes assumptions about the default parameter
values. For details about these assumptions, see Default and NULL Values for API
Parameters, page 2-285 (Assumed Default Values).

• You will have to resolve the system values when you set up the data for each
individual API call. This is because the generated Data Pump API does not have
user keys, or names to identify the system values. This also restricts the mix of API
calls within a batch because you cannot pass system identifiers implicitly between
API calls. The same restriction applies to the object version number where an
API call creates or updates an object.

Table and View Descriptions

The following section provides more details of the specific tables and views that you use
with Oracle HRMS Data Pump

HR_API_MODULES

API modules supported by Data Pump

Name Description

------------------------- --------------------

API_MODULE_ID Sequence generated unique ID.

API_MODULE_TYPE Type of the API represented by:

’RH’ - Row Handler

(not of interest to Data Pump).

’BP’ - Business Process API.

Implementation Guide 2-301

’AI’ - Alternative Interface API.

MODULE_NAME API procedure name.

MODULE_PACKAGE API package name when the

module type is ’BP’ or ’AI’.

HR_PUMP_BATCH_LINE_USER_KEYS

This table holds key mappings between your external system and the Oracle HRMS
system. These keys are required for specific entities where it may be difficult to identify
the record uniquely in Oracle HRMS from a single field in the batch line table. For
example, you might want to use Name||National Identifier from the external system
to map to Person ID in Oracle HRMS.

This table is populated automatically by the Data Pump process when you create new
records in Oracle HRMS. For example when you load your legacy data. You can insert
new lines to this table if you have already loaded your legacy data.

You can have multiple external key mappings to the same unique_key_id in Oracle
HRMS. For example, if you want to interface data from an external payroll system and
an external benefits system to Oracle HR where the unique IDs are different.

Name Null? Type Description

--------------------------- -------- ---- ------------ -

USER_KEY_ID NOT NULL NUMBER(9)

BATCH_LINE_ID NUMBER(9)

USER_KEY_VALUE NOT NULL VARCHAR2(240) User Defined

key to identif
y

a record.

UNIQUE_KEY_ID NOT NULL NUMBER(15) Unique Key in

Oracle HRMS

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER(15)

LAST_UPDATE_LOGIN NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

HR_PUMP_BATCH_HEADERS

This table holds batch header information for Data Pump. BATCH_NAME is a
parameter for the Data Pump concurrent process.

Name Null? Type Description

2-302 Oracle US Federal Human Resources Implementation Guide

----------------------- -------- ----- -------------

BATCH_ID NOT NULL NUMBER(9)

BATCH_NAME NOT NULL VARCHAR2(80) Unique name for

the batch

BATCH_STATUS NOT NULL VARCHAR2(30) Status can be
decoded using

’ACTION STATUS’
lookup type

REFERENCE VARCHAR2(80)

BUSINESS_GROUP_NAME VARCHAR2(80)

LAST_UPDATE_DATE DATE

LAST_UPDATE_LOGIN NUMBER(15)

LAST_UPDATED_BY NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

HR_PUMP_BATCH_LINES

This table holds the individual batch lines that will be loaded by Data Pump

Name Null? Type Description

------------------- -------- ---- -------------

BATCH_LINE_ID NOT NULL NUMBER(9) Sequence generated ID

BATCH_ID NOT NULL NUMBER(9) Foreign key to

HR_PUMP_BATCH_HEADERS

API_MODULE_ID NOT NULL NUMBER(9) Foreign key to

HR_API_MODULES

LINE_STATUS NOT NULL VARCHAR2(1) Load status of this API

’U’ Unprocessed (initia
l

value)

’V’ - Validated but

record not committed

’C’ - Complete and
record

Implementation Guide 2-303

committed

’E’ - Error

PROCESS_SEQUENCE NUMBER(9)

USER_SEQUENCE NUMBER(9)

LINK_VALUE NUMBER

PVAL001 VARCHAR2(2000)

PVAL002 VARCHAR2(2000)

PVAL003 VARCHAR2(2000)

PVAL004 VARCHAR2(2000)

PVAL005 VARCHAR2(2000)

PVAL006 VARCHAR2(2000)

PVAL007 VARCHAR2(2000)

PVAL008 VARCHAR2(2000)

PVAL009 VARCHAR2(2000)

PVAL010 VARCHAR2(2000)

PVAL230 VARCHAR2(2000)

PLONGVAL LONG

BUSINESS_GROUP_NAME VARCHAR2(240)

HR_PUMP_BATCH_EXCEPTIONS

Holds exception information.

Name Description

------------------------ ------------

EXCEPTION_SEQUENCE Sequence generated unique ID.

EXCEPTION_LEVEL Decode using ’MESSAGE_LEVEL’ lookup.

SOURCE_ID BATCH_ID or BATCH_LINE_ID.

SOURCE_TYPE Indicates what SOURCE_ID holds:

’BATCH_HEADER’ : BATCH_ID

’BATCH_LINE’ : BATCH_LINE_ID

EXCEPTION_TEXT Text of exception.

2-304 Oracle US Federal Human Resources Implementation Guide

HRDPV_CREATE_EMPLOYEE
Name Null? Type

------------------------------------ ----

BATCH_ID NOT NULL NUMBER(9)

BATCH_LINE_ID NOT NULL NUMBER(9)

API_MODULE_ID NOT NULL NUMBER(9)

LINE_STATUS NOT NULL VARCHAR2(1)

USER_SEQUENCE NUMBER(9)

LINK_VALUE NUMBER

BUSINESS_GROUP_NAME VARCHAR2(240)

P_HIRE_DATE VARCHAR2(2000)

P_LAST_NAME VARCHAR2(2000)

P_SEX VARCHAR2(2000)

P_PER_COMMENTS VARCHAR2(2000)

P_DATE_EMPLOYEE_DATA_VERIFIED VARCHAR2(2000)

P_DATE_OF_BIRTH VARCHAR2(2000)

P_EMAIL_ADDRESS VARCHAR2(2000)

P_EMPLOYEE_NUMBER VARCHAR2(2000)

P_EXPENSE_CHECK_SEND_TO_ADDRES VARCHAR2(2000)

P_FIRST_NAME VARCHAR2(2000)

P_KNOWN_AS VARCHAR2(2000)

P_MARITAL_STATUS VARCHAR2(2000)

P_MIDDLE_NAMES VARCHAR2(2000)

P_NATIONALITY VARCHAR2(2000)

P_NATIONAL_IDENTIFIER VARCHAR2(2000)

P_PREVIOUS_LAST_NAME VARCHAR2(2000)

P_REGISTERED_DISABLED_FLAG VARCHAR2(2000)

P_TITLE VARCHAR2(2000)

P_WORK_TELEPHONE VARCHAR2(2000)

Implementation Guide 2-305

P_ATTRIBUTE_CATEGORY VARCHAR2(2000)

P_ATTRIBUTE1 VARCHAR2(2000)

P_ATTRIBUTE2 VARCHAR2(2000)

P_ATTRIBUTE3 VARCHAR2(2000)

...

P_ATTRIBUTE30 VARCHAR2(2000)

P_PER_INFORMATION_CATEGORY VARCHAR2(2000)

P_PER_INFORMATION1 VARCHAR2(2000)

P_PER_INFORMATION2 VARCHAR2(2000)

P_PER_INFORMATION3 VARCHAR2(2000)

...

P_PER_INFORMATION30 VARCHAR2(2000)

P_BACKGROUND_CHECK_STATUS VARCHAR2(2000)

P_BACKGROUND_DATE_CHECK VARCHAR2(2000)

P_BLOOD_TYPE VARCHAR2(2000)

P_FAST_PATH_EMPLOYEE VARCHAR2(2000)

P_FTE_CAPACITY VARCHAR2(2000)

P_HONORS VARCHAR2(2000)

P_INTERNAL_LOCATION VARCHAR2(2000)

P_LAST_MEDICAL_TEST_BY VARCHAR2(2000)

P_LAST_MEDICAL_TEST_DATE VARCHAR2(2000)

P_MAILSTOP VARCHAR2(2000)

P_OFFICE_NUMBER VARCHAR2(2000)

P_ON_MILITARY_SERVICE VARCHAR2(2000)

P_PRE_NAME_ADJUNCT VARCHAR2(2000)

P_PROJECTED_START_DATE VARCHAR2(2000)

P_RESUME_EXISTS VARCHAR2(2000)

P_RESUME_LAST_UPDATED VARCHAR2(2000)

P_SECOND_PASSPORT_EXISTS VARCHAR2(2000)

2-306 Oracle US Federal Human Resources Implementation Guide

P_STUDENT_STATUS VARCHAR2(2000)

P_WORK_SCHEDULE VARCHAR2(2000)

P_SUFFIX VARCHAR2(2000)

P_PERSON_USER_KEY VARCHAR2(2000)

P_ASSIGNMENT_USER_KEY VARCHAR2(2000)

P_PER_OBJECT_VERSION_NUMBER VARCHAR2(2000)

P_ASG_OBJECT_VERSION_NUMBER VARCHAR2(2000)

P_PER_EFFECTIVE_START_DATE VARCHAR2(2000)

P_PER_EFFECTIVE_END_DATE VARCHAR2(2000)

P_FULL_NAME VARCHAR2(2000)

P_PER_COMMENT_ID VARCHAR2(2000)

P_ASSIGNMENT_SEQUENCE VARCHAR2(2000)

P_ASSIGNMENT_NUMBER VARCHAR2(2000)

P_NAME_COMBINATION_WARNING VARCHAR2(2000)

P_ASSIGN_PAYROLL_WARNING VARCHAR2(2000)

P_USER_PERSON_TYPE VARCHAR2(2000)

P_VENDOR_NAME VARCHAR2(2000)

P_CORRESPONDENCE_LANGUAGE VARCHAR2(2000)

PAY_ACTION_PARAMETER_GROUPS
Name Null? Type

----------------------------------- ----

ACTION_PARAMETER_GROUP_ID NOT NULL NUMBER(9)

ACTION_PARAMETER_GROUP_NAME NOT NULL VARCHAR2(30)

PAY_ACTION_PARAMETER_VALUES
Name Null? Type

----------------------------------- ----

PARAMETER_NAME NOT NULL VARCHAR2(30)

PARAMETER_VALUE NOT NULL VARCHAR2(80)

ACTION_PARAMETER_GROUP_ID NUMBER(9)

Implementation Guide 2-307

Note: The PAY_ACTION_PARAMETERS view just returns those ro ws from
PAY_ACTION_PARAMETER_VALUES that have a NULL_ACTION_PARAMETER_GRO

UP_ID

SQL Trace

SQL Trace

The SQL trace facility provides you with performance information on individual SQL
statements. You can enable the trace facility for either a session or an instance.

For each SQL statement traced, the following performance information is generated:

• SQL statement text

• Parse, Execute and Fetch count, CPU/elapsed times, physical/logical reads and
rows processed

• The optimized goal

• Misses in the library cache during parse

• The Explain Plan at time of SQL execution (Oracle 8.1.6+)

• User for which the parse occurred

• Recursive SQL depth

When you enable the trace facility, the performance information for executed SQL
statements is written out to a trace file until the SQL trace facility is disabled.

Note: You need Oracle 8.1.6 and Oracle Applications Release 11i to be
able to use SQL Trace.

Using SQL Trace

To use SQL Trace, first enable it, then the desired SQL application/process/statement(s)
are executed. When all the SQL statements have been executed, SQL Trace is disabled.

Viewing the Content of the Trace

Once you have generated the Trace file, you can convert it into a user-friendly report
using the Oracle reporting program TKPROF. Alternatively, you can view the generated
raw trace file directly.

2-308 Oracle US Federal Human Resources Implementation Guide

Using SQL Trace

Note: If you enable SQL Trace, an additional processing overhead is
incurred, although the impact on performance is minor.

Enabling SQL Trace

You enable and disable SQL Trace through the init.ora parameter sql_trace. The
parameter accepts a Boolean value of TRUE or FALSE. The parameter
is set at the system level in the init.ora file. Alternatively, you can set it
dynamically for a session using the SQL command ALTER SESSION, or PL/SQL
dbms_session.set_sql_trace, dbms_system.set_sql_trace_in_session.

These are Oracle supplied packaged procedures.

Related Trace init.ora Parameters

The following table details parameters that enable timings, directory location, maximum
trace file size and trace file access protections to be specified and adhered to when
SQL Trace is enabled.

Implementation Guide 2-309

Related Trace init.ora Parameters

Parameter Meaning

timed_statistics Specifies if time statistics are to be collected
or not. Valid values are TRUE or FALSE. The
timing has a resolution of 1/100th of a
second. Any operation that is less than this
may not be timed accurately. If this parameter
is FALSE, timings are not recorded and are
shown as 0 in the trace file. For tkprof the ’cpu’
and ’elapsed’ times will be 0.

max_dump_file_size Specifies the maximum SQL Trace file size
in O/S blocks if just a number, bytes if K or
M is specified or unlimited if UNLIMITED is
specified. If the size of the trace exceeds the
size of max_dump_file_size then the *** Trace
file full *** message appears at the end of the
file.

user_dump_dest Specifies the directory where the SQL Trace is
to be placed. If the values is ?/log then ? means
$ORACLE_HOME because the DBA has not
changed the default trace file destination.

_trace_files_public Specifies if a trace file is written out with
public access settings. Valid values are TRUE
or FALSE.

init.ora Parameters

You can view these init.ora parameters from an Oracle Session by examining the
v$parameters table below:

SELECT name

,value

FROM v$parameter

WHERE name IN

(’timed_statistics’

,’max_dump_file_size’

,’user_dump_dest’

,’_trace_file_public’);

NAM VALUE

----------------- ------

timed_statistics TRUE

user_dump_dest usr/oracleHR/log

2-310 Oracle US Federal Human Resources Implementation Guide

max_dump_file_size 204800

_trace_file_public TRUE

Selecting SQL Trace init.ora Parameters

You can set the timed_statistics and max_dump_file_size dynamically at either the
session or system level, using the ALTER SESSION or ALTER SYSTEM commands.

ALTER SESSION SET timed_statistics=TRUE;

ALTER SYSTEM SET timed_statistics=FALSE;

ALTER SESSION SET max_dump_file_size=204800;

ALTER SYSTEM SET max_dump_file_size=204800;

You can only set the user_dump_dest parameter dynamically at the system level. You
can only set the _trace_file_public parameter in the init.ora file.

Tracing Oracle Payroll Processes and Reports

When SQL Trace is enabled for Oracle Payroll processes, each process produces a trace
file for the session in which the Trace is executed. If the process is run in parallel, for
example, the Payroll Run, a trace file is produced for each thread.

You can enable and disable Trace for Oracle Payroll processes and reports by setting the
parameter TRACE in the PAY_ACTION_PARAMETERS table. You can do this by one of
two methods, using SQL *Plus, or the Action Parameters window.

Method 1: Using SQL *Plus

You can set the parameter to Y (enable trace), or to N (disable trace). For example:

/* To enable SQL Trace */

UPDATE pay_action_parameters

SET parameter_value = ’Y’

WHERE parameter_name = ’TRACE’;

COMMIT;

/* To disable SQL Trace */

UPDATE pay_action_parameters

SET parameter_value = ’N’

WHERE parameter_name = ’TRACE’;

COMMIT;

Method 2: Using the Action Parameters Window

Alternatively, you can enable Trace using the Action Parameters window.

1. Select Trace as the parameter name.

2. Enter Y to enable trace, or N to disable trace.

Implementation Guide 2-311

Tracing HRMS Application Forms

You can trace HRMS Application forms if the system administrator has granted access to
the ’HR Debug Tools’ facility.

1. Select Help->Diagnostics->Trace from the menu option.

2. Check the Trace check box.

Uncheck the Trace check box if you want to disable the utility.

Dynamically Tracing from SQL *Plus

You can use either the ALTER SESSION or PL/SQL packaged procedure
dbms_session.set_sql_trace to trace from SQL *Plus. Whichever method you
use, SQL_TRACE is enabled, the SQL statements are executed and SQL_TRACE is
disabled to stop the trace.

SQL> ALTER SESSION SET SQL_TRACE=TRUE;

SQL> Execute SQL statements

SQL> ALTER SESSION SET SQL_TRACE=FALSE;

Or

SQL> EXECUTE dbms_session.set_sql_trace(TRUE);

SQL> Execute SQL statements

SQL> EXECUTE dbms_session.set_sql_trace(FALSE);

You can run the SQL Trace facility in any current active Oracle Session by using the
dbms_system.set_sql_trace_in_session packaged procedure. This procedure accepts
the three following arguments:

• SID

• SERIAL#

• SQL_TRACE

You can determine the SID and SERIAL# values from the v$session table. Further
filtration on the v$session columns osuser name, username, and such, can help identify
the SID/SERIAL# values. For example:

SELECT s.sid,

s.serial#

FROM v$session s

WHERE s.osuser = ’afergusson’

AND s.username = ’APPS’

SID SERIAL#

--- --------

15 19201

2-312 Oracle US Federal Human Resources Implementation Guide

execute

dbms_system.set_sql_trace_in_session(15,19201, TRUE) ;

The SQL_TRACE argument is Boolean and accepts TRUE or FALSE values.

Locating the Trace File

You specify the location of the Trace file using the user_dump_dest parameter. The Trace
file name is dependent on the operating system:

• On UNIX, the trace file name is SID_ora_PID.trc

• On NT, the trace file name is oraPID.TRC

SID is the Oracle System Identifier, and PID is the operating system Process
Identifier. The PID is determined by interrogating the v$process and v$session dynamic
tables for a specific active session ID.

The example below illustrates selecting a PID for a specific active session.

SELECT p.spid,

FROM v$session s, v$process p

WHERE s.audsid = &sessionid

AND p.addr = s.paddr:

SPID

89012

What is TKPROF?

TKPROF is a program that formats a raw SQL Trace file into a user-friendly file. The
program reads the Trace file and creates a file that has the following section:

• Header

• Body

• Summary.

The header section contains the version of TKPROF, any sort options used and a glossary
of terms. The body section displays the following information for each user level SQL
statement traced:

• SQL statement text

• Tabulated Parse

• Execute and Fetch statistics

• Number of library cache misses during Parse

• Parsing user id

If specified, TKPROF also:

Implementation Guide 2-313

• Shows the explain plans when the SQL Trace was executed and when TKPROF
was run

• Creates a SQL script that creates a table and inserts a row of statistics for each
SQL statement

The power of TKPROF is the ability to sort the SQL statements. The sorting helps identify
and sequence statements that are using the most resources. At the end of the report, a
tabular summary for all the user level and recursive SQL statements is provided.

Formatting a Trace File using TKPROF

You execute TKPROF from the command line. Although TKPROF has many
arguments, generally only two mandatory and three optional arguments are used. The
execution syntax and arguments are as follows:

tkprof infile outfile sort=options explain=username/password@db print=integer

The tkprof arguments are:

Table of tkprof Arguments

Argument Meaning

infile Specifies the raw SQL Trace file

outfile Specifies the file that TKPROF will create the
report in

explain Optionally specifies the Oracle username,
password and DB connector where each
SQL statement is to be explained. For Oracle
8.1.6, if explain is specified, then two plans are
provided. The first plan is for when the SQL
Trace was generated (and is always present
regardless of the explain option setting). The
second plan is generated when TKPROF is
executed

print Limits the number of SQL statements to
be included in the report. The argument
accepts an integer value. This is particularly
useful is you have a large SQL Trace file. For
example, you may want to examine the
worst 25 SQL statements only and would use
print=25

sort Optionally specifies a sort order in descending
order. The order comprises of one or more
options. If the sort argument is omitted, the
SQL statements are ordered in the order they
are located in the trace file. More than one
option can be specified provided a space
separates them. The options available are
shown in the following table.

2-314 Oracle US Federal Human Resources Implementation Guide

Table of Sort Options

Sort Options Meaning

PRSCNT Number of times parsed

PRSCPU CPU time spent parsing

PRSELA Elapsed time spent parsing

PRSDSK Number of physical reads from disk during
parse

PRSQRY Number of consistent mode block reads during
parse

PRSCU Number of current mode block reads during
pars

PRSMIS Number of library cache misses during parse

EXECNT Number of executes

EXECPU CPU time spent executing

EXEELA Elapsed time spent executing

EXEDSK Number of physical reads from disk during
execute

EXEQRY Number of consistent mode block reads during
execute

EXECU Number of current mode block reads during
execute

EXEROW Number of rows processed during execute

EXEMIS Number of library cache misses during execute

FCHCNT Number of fetches

FCHCPU CPU time spent fetching

FCHELA Elapsed time spent fetching

FCHDSK Number of physical reads from disk during
fetch

FCHQRY Number of consistent mode block reads during
fetch

FCHCU Number of current mode block reads during
fetch

FCHROW Number of rows fetched

Implementation Guide 2-315

Typical TKPROF Execution Examples:

• Standard report

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp

• Report with Explain option

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp explain=apps/apps@hrdb

• Report with explain, sorted by execute/fetch elapsed time for the worst 25 statements

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp explain=apps/apps@hrdb sort= exeela
fchela print=25

TKPROF Sort Options

TKPROF provides a number of sort options which can be specified to sort the traced SQL
statements. Some recommended sort options are listed below:

• Sort by logical IO

tkprof infile outfile sort=exeqry execu fchqry fchcu

• Sort by physical IO

tkprof infile outfile sort=exeqry execu fchqry fchcu

• Sort by CPU time (only if the timed_statistics is enabled)

tkprof infile outfile sort=execpu fchcpu prscpu

• Sort by elapsed time (only if the timed_statistics is enabled) tkprof infile outfile
sort=exeela fchela prsela

• Sort by library cache misses

tkprof infile outfile sort=prsmis

HRMS Development prefers both a Raw SQL Trace file and a TKPROF report sorting by
execute elapsed (exeela) time and fetch elapsed (fchela) time providing timed_statistics
is set to TRUE. If timed_statistics is FALSE, then the execute disk (exedsk), execute query
(exeqry) and execute cpu (execu) sort options should be used.

Understanding a TKPROF Report

After running tkprof, the resulting file contains a report which is divided into three
sections:

• Header

• Body

• Summary

TKPROF Header

The header shows the TKPROF version, date of run, the SQL Trace infile, any sort options
(default if no options specified) and a glossary for terms used in the statistic table.

2-316 Oracle US Federal Human Resources Implementation Guide

TKPROF header

TKPPROF Body

The body contains all the SQL statements which have been traced. Each SQL statement
is shown with it statistics and explain plan in sorted order.

Implementation Guide 2-317

TKPROF body

1.Illustrates the SQL Statement Being Traced

The SQL statement being processed is shown, together with any bind variables without
truncation. Only the following SQL statements are truncated to 25 characters:

SET ROLE, GRANT, ALTER USER, ALTER ROLE, CREATE USER, CREATEROLE

2 Illustrates the Parse, Execute and Fetch Tabular Statistics for the SQL Statement

The tabular statistics table below is the most important information to examine for
each parse, execute and fetch call.

2-318 Oracle US Federal Human Resources Implementation Guide

Tabular Statistics

Call Purpose

parse The parse call is responsible for syntax/
semantic checking, type checking, execution
plan generation and the building of a shared
cursor. Depending on the SQL statement
being parsed, either a hard or soft parse will
be performed. If the SQL statement was not
found in the shared cached then a hard parse
if performed. A hard parse will perform
all of the parsing steps required and is the
most expensive parse operation. If the SQL
statement does exist in the shared cache then a
complete parse operation does not need to be
performed because the shared cursor definition
can be used, this is known as a soft parse

execute Will execute the SQL statement or in the event
of a SELECT prepare for fetching.

fetch Fetches rows which are returned from a
SELECT SQL statement. For a SELECT that
contains an ORDER BY or a FOR UPDATE
clause, rows may be accessed during execute.

count The number of calls for each call type.

cpu CPU time in seconds (always zero if
timed_statistics is FALSE). For parse, if a
statement was found in the shared pool (i.e. no
library cache misses) then this will be 0.

elapsed Elapsed time in seconds (always zero if
timed_statistics is FALSE).

disk Number of physical reads of buffers from the
database files. (Physical I/O).

query Number of buffers gets in a consistent (query)
mode from memory. (Logical I/O). This
column usually reflects the processing of a
SELECT statement.

current Number of buffers read in current mode from
memory. This column usually reflects the
processing of a DML INSERT, UPDATE or
DELETE statement.

rows The number of rows processed by each
type. For SELECT statements, the number of
rows will be in the fetch column. For INSERT,
UPDATE and DELETE statements, the number
of rows will in the execute column.

The statistics can be useful in determining other statistical values and pointers to where
particular problems are occurring.

Implementation Guide 2-319

For example:

Total logical IO buffer gets

total logical IO = query total + current total

This statistic provides the total number of data buffers retrieved from memory.

Logical IO per row

logical IO per row = total logical IO / total rows

This statistic will provides the total number of data buffers retrieved from memory for
each row processed. The greater the number of logical IOs performed the greater the
row cost. Ideally this ratio should be as low as possible.

Logical IO per execute

logical IO per execute = total logical IO / execute count

This statistic is similar to ’logical IO per row’ but is based on per execute.

Parses per execute

parses per execute = parse count / execute count

This statistic determines the number of parses per execute. If this value is close to or
is 1 (providing more than 1 execute has taken place) then a parse is being performed
for each execute and the cursor is not being re-used. The shared pool size may not be
large enough and may need increasing.

Buffer cache miss rate

buffer cache miss rate = disk total / total logical IO

This statistic provides the miss rate for data not being cached in memory. Ideally this
figure should be less than 10%.

Average time per execution

avg. time per execute = elapsed total/execute count

This statistic provides the average time it takes to execute the statement. The figure is
really a guideline to determine if it is acceptable by the end user.

Average rows per fetch

avg. rows per fetch = fetch rows/fetch count

This statistic will provide the average number of rows fetched per fetch call. This is
particularly useful in determining if array fetching is being used.

3. Illustrates the Number of Misses in the Library Cache During Parse, the Optimizer
Mode Used and the Parsing User Id

The statistic ’Misses in library cache during parse indicates if the SQL statement was
hard or soft parsed. If a miss has occurred (i.e. > 0) then the SQL statement was not
found in the shared cursor cache and was hard parsed. If a miss did not occur (i.e. = 0)
the SQL was found in the shared cursor cache and was soft parsed. If this statistic is
consistently being set (e.g. > 0) then investigation will be required to determine why the
SQL is not being shared.

The statistic ’Optimizer goal’ shows the goal used by the Optimizer to process the SQL
statement. The goal will be one of the following values:

2-320 Oracle US Federal Human Resources Implementation Guide

CHOOSE, FIRST_ROWS, ALL_ROWS or RULE

The ’Parsing user id’ shows the user who issued the SQL command.

4. The Explain Plan Generated when the SQL Statement was Traced

The runtime explain plan is generated when the SQL statement was executed. This
explain plan is always present regardless if the explain option is specified as a tkprof
argument (although sometimes it is not shown if the user does not have access to all
the underlying objects). Additionally, the plan contains object ids instead of names for
referenced objects. These object ids map directly onto the all/dba/user_objects tables
where the object_name can be retrieved.

5. The Explain Plan Generated when the SQL Statement was Processed by TKPROF
Provided the Explain Argument was Specified

By providing TKRPOF with the explain argument, each SQL statement will be explained
during the TKRPOF processing. The fundamental difference between this and the
explain plan generated at SQL Trace execution is they can be different if any of the
underlying objects or corresponding database statistics have changed (if using the Cost
Based Optimizer). Also, all object names are displayed instead of object ids.

The ’Rows’ column shows the number of rows processed by each operation.

TKPROF Summary

The summary is located at the end of the TKPROF file after all the traced SQL statements.

Implementation Guide 2-321

TKPROF summary

1. Illustrates Overall Totals for Non-Recursive SQL Statements

Non-recursive SQL statements are user level SQL statements, such as SQL written by
developers.

The ’OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS’ tabular table
contains the sum of all user issued statements not including an Recursive SQL issued
(see number 3 below for Recursive SQL description).

2. Illustrates the Library Cache Misses During Execute and Parse

As mentioned previous in the body section, the library cache misses indicates the
number of Non-recursive SQL Statements not being shared, for example, user.

2-322 Oracle US Federal Human Resources Implementation Guide

3. Illustrates the Overall Totals for Recursive SQL Statements

Recursive SQL are internal statements issued by Oracle in to complete a user SQL
statement. Typical examples are dynamic space management, getting missing data
dictionary information, and so on.

Statistics for Recursive SQL are not included in the statistics for the SQL statements
which issued the calls. Therefore, the total resources/cost for a SQL statement is the SQL
statement plus all corresponding Recursive SQL values.

The ’OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS’ tabular table contains
the sum of all the Recursive SQL in the SQL Trace file. These figures are important to
determine how much extra work is being performed internally by Oracle in order to
satisfy the user SQL statements.

4. Illustrates the Library Cache Misses During Parse

As mentioned previous in the body section, the library cache misses indicates the
number of Recursive SQL Statements not being shared.

5. Illustrates the Summary of SQL Statements Processed

Provides a quick summation of the number of ’user SQL statements in session’
(Non-recursive), ’0 internal SQL statements in session’ (Recursive) and ’SQL statements
in session’ (total of Non-recursive + Recursive SQL statements).

6. Illustrates the TKRPOF Compatibility and Processing Statistics

Lists the SQL Trace file which has been processed, the trace file compatibility and sort
options. Additionally the number of sessions, unique SQL statements and number of
lines in the SQL Trace file are provided.

Raw SQL Trace File Example

The following example illustrates a simple, raw SQL Trace file produced for three
SQL statements:

• ALTER SESSION SET SQL_TRACE=TRUE

• SELECT

• ALTER SESSION SET SQL_TRACE=FALSE.

The Trace file is more difficult to read than the TKRPOF report, and is not in any
sorted order.

Implementation Guide 2-323

Example Trace file

Advanced SQL Tracing Using Event 10046

The 10046 Event enables extra information on bind variables and waits to be reported
in the Raw SQL Trace file. This extra information is determined by setting the event
level. The Event has four level settings which are described in the table below:

Event Level Settings

Level Setting

1 Default SQL Trace

4 Include bind variable information

8 Include wait event information

12 Include bind variable and wait event
information

By default, each SQL Trace is set to level 1. To enable extra information to be reported, the
10046 Event is set to the desired reporting level using the ALTER SESSION command.

ALTER SESSION SET EVENTS ’10046 trace name context forever, level
1’;

2-324 Oracle US Federal Human Resources Implementation Guide

ALTER SESSION SET EVENTS ’10046 trace name context forever, level
4’;

ALTER SESSION SET EVENTS ’10046 trace name context forever, level
8’;

ALTER SESSION SET EVENTS ’10046 trace name context forever, level
12’;

By setting the event level to either 4, 8 or 12, the extra information is reported in the Raw
SQL Trace file if SQL Trace is enabled. It is important to note that TKPROF ignores any
extra information reported from setting events.

Event 10046 Bind Variable information

When the 10046 is set to level 4 or 12 bind variable information is provided if the traced
SQL statement contains bind variables. This is particularly useful if you need to review
the bind variable values being used.

Event 10046 Bind Variable Information

Event 10046 Wait Event information

When the 10046 is set to level 8 or 12, wait event information is provided if the traced
SQL statement contains waits. The wait event names are the same events which are from
V$SYSTEM_EVENT. Each event has three parameters:

• p1

• p2

• p3

These are the same as the parameters in V$SESSION_WAIT. For a full event and
parameter description please refer to the Oracle 8i Reference Release 2 (8.1.6) Part
Number A76961-01, Appendix A - Oracle Wait Events.

Tracing for Wait Events can be very useful in identifying why the elapsed time of a
SQL statement is higher than expected. For example, the session may be waiting on a
latch, I/O, SQL*Net, and so on.

Implementation Guide 2-325

Event 10046 Wait Event Information

Backfeed

Oracle Generic Third Party Payroll Backfeed

This essay provides the information that you need to understand and use the Oracle
Generic Third Party Payroll Backfeed. To understand this information you should
already have a good functional and technical knowledge of the Oracle HRMS product
architecture, including:

• The data model for Oracle HRMS.

• The API strategy and how to call APIs directly.

• How to code PL/SQL.

• The HRMS parameters that control the running of concurrent processes.

• How to use and configure Data Pump.

Contents

This essay contains the following sections:

• Overview, page 2-327

Provides an overview of Oracle Generic Third Party Payroll Backfeed

• Setting Up Oracle Generic Third Party Payroll Backfeed, page 2-327

Describes the steps for setting up Third Party Payroll Backfeed at a high level. Each
step is explained in more detail in the following sections:

• Installing the Generic Payroll Backfeed, page 2-328

• Payment Information, page 2-329

• Balance Types, page 2-329

• Setting Up Data Pump, page 2-331

2-326 Oracle US Federal Human Resources Implementation Guide

• Setting Up the Data Uploader, page 2-332

• Using Backfeed to Upload Payroll Run Results, page 2-335

Describes the steps for using Third Party Payroll Backfeed at a high level. Each step
is explained in more detail in the following sections:

• Using the Load Sheets Macro, page 2-337

• Using the Save Sheets Macro, page 2-337

• Running Data Uploader, page 2-338

• Running Data Pump, page 2-338

• Viewing Third Party Payroll Run Results in Oracle HRMS, page 2-339

Describes how you view the payroll run results in Oracle HRMS windows.

Overview

If you use a third party payroll system, Oracle Generic Third Party Payroll Backfeed
enables you to upload information supplied by your payroll system for a payroll run into
the Oracle HRMS tables. This information can include payment information and balance
details calculated by your third party payroll system. You can then view this information
using Oracle HRMS windows and generate reports based on this information.

Backfeed Process

The payroll results data that is uploaded using Backfeed is held in specific Backfeed
tables, not tables belonging to Oracle Payroll. This means that if you are using Oracle
Payroll and a third party payroll system, your Oracle Payroll implementation is not
impacted by Backfeed.

This generic version of Oracle Third Party Payroll Backfeed is vendor independent. It
can be configured during implementation to fit the requirements of your third party
payroll system and your HRMS implementation.

Setting Up the Generic Payroll Backfeed

To set up the Generic Payroll Backfeed, follow this sequence of tasks:

1. Install the Generic Payroll Backfeed

Implementation Guide 2-327

See: Installing the Oracle Generic Third Party Payroll Backfeed, page 2-328

2. Ensure that payment information is set up for Oracle HRMS if you intend to upload
payment information using Backfeed.

See: Payment Information, page 2-329

3. Enter the names of the balance types that will be uploaded into Oracle HRMS
from your third party payroll system.

See: Balance Types, page 2-329

4. Decide which upload option to use.

See: Deciding Which Upload Option to Use, page 2-332

5. Set Up Data Pump.

See: Setting Up Data Pump, page 2-331

6. Run Data Pump Meta-Mapper.

See the Oracle HRMS Data Pump technical essay for further details.

7. Set up Data Uploader

See: Setting Up Data Uploader, page 2-332

8. Add the View Third Party Payroll Employee Run Results, View Third Party Payroll
Organization Run Results and the Enter Third Party Payroll Balance Types form
functions to your menus. Use the Menus window.

See: Oracle Applications System Administrator’s Guide

9. Create new folder definitions in the Third Party Payroll Run Employee Results
window and the Third Party Payroll Run Organization Results, if required, so
information relevant to your enterprise is displayed.

Installing the Oracle Generic Third Party Payroll Backfeed

Release 11i

If you are using Oracle HRMS 11i you should apply the patches listed below. You can
obtain these patches from Oracle Support or Metalink.

Note: These patches are subject to change. Please contact Oracle
Support for the latest information.

Install the Backfeed tables - Patch Number 1287911

This patch installs the Third Party Payroll Backfeed tables, APIs, forms, and views.

Install Data Pump Configuration Data - Patch Number 1313097

This patch delivers some Data Pump configuration data that enables Data Pump to call
the Backfeed APIs. Also included are some PL/SQL functions that resolve the Oracle
HR system ids. These functions make certain assumptions about your Oracle HRMS
implementation. The functions are documented in the Reference Information section of
this document. If the assumptions are not valid for your implementation you will have
to configure some of the scripts that are delivered by patch 1313097.

Install Data Uploader - Patch Numbers 1164750 and 1316578

These patches deliver the Data Uploader and seed data to enable you to use the Data
Uploader functionality as part of your Third Party Payroll Backfeed. If you have changed

2-328 Oracle US Federal Human Resources Implementation Guide

the PL/SQL functions that are delivered in patch 1313097, you may need to change the
seed data delivered by patch 1316578.

Install Enhancement to support Descriptive Flexfields - Patch Number 1928571

This patch delivers the updates to tables, views, business views, forms, APIs, row
handlers, messages and datapump scripts required to support descriptive flexfields. You
should install this patch if you wish to hold additional information against a balance
amount, payment detail, payroll run or processed assignment, or if you want to use the
business views; for example to create Oracle Discover reports.

Release 11.0

If you are using Oracle HRMS 11.0.x you should apply the patches listed below. You can
obtain these patches from Oracle Support or Metalink.

Note: These patches are subject to change. Please contact Oracle
Support for the latest information.

Install the Backfeed tables - Patch Number 1198005

This patch installs the Third Party Payroll Backfeed tables, APIs, forms, and views.

Install Data Pump - Patch Numbers 1053696 and 1077660

These patches deliver enhancements to Data Pump and some Data Pump configuration
data that enables Data Pump to call the Backfeed APIs. Also included are some
PL/SQL functions that resolve the Oracle HR system ids. These functions make certain
assumptions about your Oracle HRMS implementation. The functions are documented
in the Reference Information section of this document. If the assumptions are not valid
for your implementation you will have to configure some of the scripts that are delivered
by patch 1077660.

Install Data Uploader - Patch Numbers 1325570 and 1176584

These patches deliver the Data Uploader and seed data to enable you to use the Data
Uploader functionality as part of your Third Party Payroll Backfeed. If you have changed
the PL/SQL functions that are delivered in patch 1077660, you may need to change the
seed data delivered by patch 1176584.

Install the Business Views - Patch Number 1198041

This patch delivers the business views for the Oracle Generic Third Party Payroll
Backfeed. You should install this if you want to use the business views, for example to
create Oracle Discoverer reports.

Payment Information

All employees for whom payments information is to be loaded using the Backfeed must
have personal payment methods set up in Oracle HRMS before the Backfeed is run.

This information should be entered using the Organizational Payment Method, and
the Personal Payment Method windows.

See: Payrolls and Other Employment Groups, and Employment Information, Oracle
Human Resources User’s Guide

While uploading payment details a currency code must be provided. This currency code
must match the currency of the payment method.

Balance Types

Balances that are maintained by your third party payroll system can be loaded into
the Backfeed tables. Each third party payroll balance that you want to hold in the

Implementation Guide 2-329

Backfeed tables must be defined as a Backfeed balance type in Oracle HRMS before
you run the Backfeed.

Note: Backfeed balance types are not the same as Oracle Payroll
balance types.

Balance dimensions can be held for any of the balance types you create. The balance
dimensions that can be held for each balance type are:

• Year-to-date balance

• Fiscal year-to-date balance

• Period-to-date balance

• Month-to-date balance

• Quarter-to-date balance

• Run amount

You must set up the balance types required by your enterprise before you upload any
payroll run data to the HRMS system. When setting up your balance types you can link
them to any user defined element input value. This enables you to easily generate
reports that can link the balance types to their associated elements.

When uploading monetary balance amounts a currency code must be provided. This
currency code must match the currency of the balance or its associated element, as
appropriate. One of the following checks is done to ensure the currency of the balance
details being loaded is the same as those defined for the balance type:

• If the balance type for the amount being uploaded is associated with an element, a
check is done to ensure that the amount being uploaded is in the same currency as
the input currency for the associated element.

• If the balance type for the amount being loaded is not associated with an element, a
check is done to ensure that the amount being uploaded is in the same currency
entered for the balance type.

Balance types must be set up using the Third Party Payroll Balance Types window.

To set up balance types:

1. Enter a display name for the balance type and enter a valid from date. If
required, you can also enter a valid to date. The balance type will not be available
after this date.

2. Enter an internal name. This is used to identify the balance type internally and must
be unique within the Business Group.

3. Enter a category if required. This can be used to group balance types for reporting
purposes. For example, you could group together all balance types relating to
employee holidays in a category called Holidays.

4. Do one of the following:

• Select a user defined element and an input value to link to the balance type. The
Currency and Unit fields will be populated according to the element and input
values you have selected.

• Select a unit for the balance type and, if required, a currency.

2-330 Oracle US Federal Human Resources Implementation Guide

5. The In Use check box indicates whether a balance type has any balance amounts
recorded against it. If it does you are not permitted to change the balance type’s
currency, units element name or internal name.

6. Save your changes.

APIs

Data is maintained in the Backfeed tables using business process APIs. These are
interfaces that enable you to create, update and delete information from the Oracle
tables. These APIs call one or more row handlers. Row handlers maintain the data
in a single table by validating the data being passed in before allowing it to be
created, updated, or deleted. Row handlers should not be called directly.

See the APIs in Oracle HRMS technical essay for further details.

We recommend you use Data Pump to upload your third party payroll run data into
the Oracle HRMS Backfeed tables. You launch Data Pump as a concurrent program
from the Run Reports and Process window. Data Pump will automatically call the
appropriate Backfeed APIs.

Setting Up Data Pump

One of the features of Data Pump is the ability to resolve internal id values using other
information that has been passed in. Functions have to be created when implementing
a Data Pump front end to resolve these ids. These functions will differ for each
implementation as each enterprise maps the data in different ways depending on how
they have implemented Oracle HRMS.

See the Oracle HRMS Data Pump technical essay before you attempt to configure Data
Pump.

Configuring the Data Pump Front End

The Generic Payroll Backfeed uses a package called PER_BF_GEN_DATA_PUMP. This
contains some functions that are used to resolve the internal system ids, such as
payroll_id (the function for this is called get_payroll_id).

The function definitions are delivered in two scripts; pebgendp.pkh and pebgendp.pkb. If
you are using Oracle HRMS 11.0 they are located in $PER_TOP/patch/110/sql. If you
are using Oracle HRMS 11i they are located in $PER_TOP/patch/115/sql.

If the assumptions made by the supplied functions are not appropriate to your enterprise
you will have to modify the functions to reflect the way in which you have implemented
Oracle HRMS. We recommend that you make a copy of the package and make your
changes to the copy.

If you do not need to alter any of the parameters in the generic functions, but need to
change the body of the function, you can do this and run your amended version against
your database. To do this you must navigate to the directory containing your configured
script and enter the following:

sqlplus <apps_username>/<apps_pwd>@<database_name> @< package_body
_name.pkb>

If, however, you need to change the parameters in the functions, or add new functions, as
well as altering the package, you will have to run both scripts against the database. To do
this navigate to the directory containing your configured scripts and enter the following:

Implementation Guide 2-331

sqlplus <apps_username>/<apps_pwd>@<database_name> @< package_head
er_name.pkh>

sqlplus <apps_username>/<apps_pwd>@<database_name> @< package_body
_name.pkb>

You must also run the Data Pump Meta-Mapper. This regenerates the Data Pump APIs
and views specific to the Third Party Payroll Backfeed interface. For more information
on how to do this, and other Data Pump functionality that you may want to use, please
refer to the Oracle HRMS Data Pump technical essay.

If you do make any changes to the parameters in the supplied generic functions, or add
any new functions, you will also need to configure the Data Uploader front end.

See: Configuring the Data Uploader Front End, page 2-335

Deciding Which Upload Option to Use

In order to use Data Pump to upload the third party payroll run data into the Backfeed
tables you must first get this data into the Data Pump batch tables. There are two
alternative approaches to achieving this:

• Use APIs generated by the Data Pump Meta-Mapper

If you decide to use this option you will need to write a PL/SQL program to read
your payroll results data and insert it into the Data Pump batch tables using the
Data Pump APIs.

• Use Data Uploader

If you decide to use this option you will need to format your payroll run results data
file into a flat file in a format that is readable by the Data Uploader.

You must decide which is the best approach for you based on your technical resources
and the source of your payroll results data.

Setting Up Data Uploader

Data Uploader takes data held in tab delimited text files and uploads it to the Data Pump
batch tables using the packages and views created when Data-Pump Meta-Mapper is
run. To use Data Uploader you must get your payroll run data into tab delimited files
of the format required by Data Uploader. To help you format your payroll run data
files, a Microsoft Excel workbook called bfexampl.xls has been supplied. This shows
how your data must be set out. Once formatted you can use the Save Sheets macro to
export the data held in the Excel worksheets into the tab delimited text files used by Data
Uploader. This, and the Load Sheets macro are supplied in the bfmacros.xls file.

Using Excel to Create Files

Although you can use the Excel macros during the early stages of a Backfeed
implementation to create files that can be read by Data Uploader, you should stop using
Excel once you are using Backfeed in a production environment. We suggest that you
automate the creation of the tab delimited Data Uploader files, instead.

You can continue to use Excel for debugging purposes, if the files are small enough for
Excel to handle, if problems occur when running the Data Uploader part of Backfeed.

Example Files

The example files consist of:

2-332 Oracle US Federal Human Resources Implementation Guide

bfexampl.xls

• Header Sheet. This contains basic information for the workbook such as the
individual worksheet names.

• Payroll Run Sheet. This holds details relating to the entire run such as the processing
date. This contains data to be used by the the create_payroll_run API.

• Balance Amounts Sheet. This holds the employee balance details for the run
defined in the Payroll Run worksheet. This contains data to be used by the the
create_balance_amount API.

• Payment Details Sheet. This holds the employee payment details for the run
defined in the Payroll Run worksheet. This contains data to be used by the
create_payment_details API.

• Processed Assignments Sheet. This holds the processed assignment details for a
particular employee assignment relating to the run defined in the Payroll Run
worksheet. This contains data to be used by the create_processed_assignment API.

bfmacros.xls

• Save Sheets Macro. This is a macro that saves the individual sheets in the workbook
as individual tab delimited text files

• Load Sheets Macro. This is a macro that loads the individual text files based on
the Header file.

Header Sheet

The Header Sheet contains information about the complete set of data that is to be
uploaded. It defines standard information such as batch name and date, and also
specifies the files that are to be used in this upload.

You must enter a batch name that will uniquely identify this upload. You will be asked
for this batch name when you run the Data Pump process.

The text between the Files Start and Files End rows are the file names for the individual
sheets. The first column contains the name of the sheet, and the second column contains
the name of the text file. This is the name that the related sheet will be saved as, or
uploaded from if you use the macros.

Payroll Run Sheet

Every payroll run has information that relates to the entire run such as processing
date, periods start and end dates, and a unique identifier for the run. This worksheet
contains this type of information.

At the top of the sheet, between the Descriptor Start and Descriptor End columns, the
details relating to the run are held. It is likely that these will remain the same for all
your data uploads.

The User Key row contains an entry that allows the Data Uploader and Data Pump
functionality to uniquely refer to the payroll run that is being inserted from other sheets
that need this reference, such as the Balance Amounts Sheet and the Payment Details
Sheet. The default entry for this is %$Business Group%:payroll_identifier. You should
not need to change this as the combination of Business Group ID and the payroll
identifier should always uniquely identify a payroll run.

The ID column is the way the Data Uploader identifies a row in the spreadsheet and
can be used by other sheets in the same workbook to refer to a particular row. In this
case, both the Balance Amount Sheet and the Payment Details Sheet have a column

Implementation Guide 2-333

called Payroll_run_id that will refer to the row in this sheet. Each row of your data
should have a different, sequential number in the ID column.

Balance Amounts Sheet

The Balance Amounts worksheet holds the balance information relating to each
employee for a particular payroll run.

The row beneath the the Data Start row contains the column titles of the API. Your
payroll run balance amount details for each employee need to go between this row and
the Data End row. A currency code must be provided for all monetary amounts.

The ID column needs to be populated with sequential numbers starting from 1.

The column named Payroll_Run_id refers to the ID column in the Payroll Run
worksheet. This number will be the same for all the rows in the payroll run.

Payment Details Sheet

The Payment Amount Sheet holds the payment details for each employee processed
in a payroll run.

The row beneath the the Data Start row contains the column titles of the API. Your
payment details for a particular run need to go between this row and the Data End
rows. You must provide a currency code for all monetary amounts.

The ID column needs to be populated with sequential numbers starting from 1.

The column named Payroll_Run_id refers to the ID column in the Payroll Run
worksheet. This number will be the same for all the rows in the payroll run.

Processed Assignments Sheet

The Processed Assignment Sheet holds the assignment details for each employee
processed on a payroll run.

The row beneath the Data Start row contains the column titles of the API. Your processed
assignment details for a particular employee and payroll run need to go between this
row and the Data End row.

The ID column needs to be populated with sequential numbers starting from 1.

The column named Payroll_Run_id refers to the ID column in the Payroll Run
Worksheet. This number will be the same for all the rows in the payroll run.

This worksheet is only required if additional information is held within the processed
assignment descriptive flexfield. If there is no additional information then the processed
assignment will be created by the balance amount api or payment detail api.

If this worksheet is not required (for reasons mentioned above) then the name and text
file for processed assignment must be removed from the header sheet.

Save Sheets Macro

This Excel macro saves the individual Worksheets as tab delimited text files. The name
of each text file, with the exception of the Header Sheet, is held in the Header Sheet. You
are prompted to enter a name for the Header Sheet when you run the macro.

Load Sheets Macro

To use this macro you must have a tab delimited text file of your Header Sheet. This
macro loads the text files specified in the Header Sheet as worksheets into workbook
from which the macro was run. The text files to be loaded must be in the same directory
as the selected Header Sheet text file.

2-334 Oracle US Federal Human Resources Implementation Guide

Specifying the Upload Directories for Data Uploader

You must specify the location in which files to be imported using the Data Uploader
must be placed. The following steps describe the tasks that must be completed to do this:

1. In the initialization file for the database, your Database Administrator must specify
the directory that will hold the files to be uploaded. This is done by including the
path of the required directory in the UTL_FILE_DIR parameter.

2. Your System Administrator must enter the full path to this directory in the HR: Data
Exchange Directory user profile option. Use the System Profile Values window. You
can set this profile option at site, application and responsibility level, depending
on the security you want to impose.

Configuring the Data Uploader Front End

The generic Data Uploader parameters are defined in a script called pedugens.sql. It
is separated into different sections for creating parameters for Payroll Run, Balance
Amounts etc.

If you are using Oracle HRMS 11.0 this script is located in $PER_TOP/patch/110/sql. If
you are using Oracle HRMS 11i it is located in $PER_TOP/patch/115/sql.

If you have changed the parameters in the Data Pump functions to resolve the system
ids, or added new functions and used Meta-Mapper to regenerate the Data Pump
APIs, you must include a column containing the data specified in the new parameters
in the appropriate sheet of your Excel upload workbook. See: Creating an Upload
Workbook, page 2-336.

You must then amend the pedugens.sql script to map the new data in the Excel column
to the API used by the Data Uploader.

The following is an example of code that is used to create the Data Uploader mapping
details for the create_balance_amount API:

HRDU_DO_API_TRANSLATE.hrdu_insert_mapping(
p_api_module => ’create_balance_amount’,
p_column_name => ’balance_type_name’,
p_mapped_to_name => ’p_balance_type_name’);

The p_api_module parameter identifies which Microsoft Excel worksheet holds the data
that will be uploaded using this api. In this case it is create_balance_amount. The
p_column_name parameter passes in the associated Excel worksheet column name, in
this case, balance_type_name. The p_mapped_to_name parameter passes the Data
Pump view column that is to be associated with the Excel worksheet, in this case
p_balance_type_name.

You will need to add an insert statement for any new columns that you have added to
the upload workbook, whether they are in existing or new functions.

Using Backfeed to Upload Payroll Run Results

To upload payroll run results using Backfeed, follow this sequence of tasks:

1. Save the payroll run results from your third party payroll system into a text file.

2. Create an upload workbook.

See: Creating an Upload Workbook, page 2-336

3. Format the payroll run data into the format required by Data Uploader.

Implementation Guide 2-335

See: Formatting the Payroll Run Data into the Format Required by Data Uploader,
page 2-336

4. Use Data Uploader concurrent process to load the information from the text file into
the Data Pump batch tables.

See: Running Data Uploader, page 2-338

Note: If you decided not to use Data Uploader to load the payroll
run data into the Data Pump Batch table, but to write a PL/SQL
program that uploads the data using the APIs generated by the Data
Pump Meta-Mapper, you should ignore steps 3 and 4.

5. Run the Data Pump concurrent process to upload the data from the Data Pump
batch tables into the Backfeed tables.

See: Running Data Pump, page 2-338

Creating an Upload Workbook

You must create an upload workbook based on the bfexampl.xls file that meets the need
of your enterprise before you use Data Uploader.

You can change the names of the files specified in the Header Sheets to whatever you
would like the files saved as. For example, if you want to keep a file record of all the
payroll runs you have uploaded into the Backfeed tables, you may want to prefix the
files with the payroll identifier for the run they relate to.

You can amend the layout of the worksheet and remove any unnecessary worksheets
as detailed below:

If you are only using the balance detail functionality and not the payment detail
functionality, you can remove the line from the Header Sheet detailing the Payment
Detail sheet and delete the Payment Detail Sheet. You can also remove the Balance
Details functionality in the same way if you do not want to use it.

If there are any non-essential columns, such as check_type or ftd_amount, that you are
not using, you can remove them from the worksheet. Ensure that you do not remove
any columns that will prevent the data being loaded via Data Pump. For example, you
cannot remove the ID or payroll identifier columns because these are essential to the
operation of both Data Pump and Data Uploader.

As well as this, you can change the order of the data columns (with the exception of the
ID column) to suit your preference. You must also add any new columns required by
changes you have made to your Data Pump front end.

See: Configuring the Data Pump Front End, page 2-331

Formatting the Payroll Run Data into the Format Required by Data Uploader

There are a number of methods that you can use to format the payroll run data into the
format required by Data Uploader. You can choose the method that suits the working
practices of your enterprise.

One method would be to format your payroll run data using your operating system
tools and load it into another spreadsheet. You can then cut and paste it into position
in the upload workbook and use the Save Sheets macro to save the worksheets into
individual tab delimited text files.

Alternatively, you could save the upload worksheets without any data in using the Save
Sheets macro, and use operating system tools to put the data into the correct position. To

2-336 Oracle US Federal Human Resources Implementation Guide

ensure that the data is correctly formatted you could use the Load Sheets macro to reload
the data into Excel so that you can view it. Reloading the data into Excel to check it is not
necessary for correct operation of the Data Uploader tool, but it is recommended.

For worksheets with minimal data, another method would be to enter the data manually
into Excel and then save it using the Save Sheets macro.

Using the Load Sheets Macro

The Load Sheets macro enables you to load the text files specified in a tab delimited text
file version of your Header Sheet into a workbook. The files are loaded from the same
directory in which the header text file is stored

To run the Load Sheets macro

1. Ensure you have a version of your Header Sheet, in the same format as the first
worksheet in bfexampl.xls, saved as a tab delimited text file. This defines the text
files you want to load and the names of the Excel worksheets that should be created
when they are loaded.

2. Ensure that the text files you want to upload are stored in the same directory as the
Header Sheet text file.

3. Open the workbook into which you want to load the files. If this workbook does not
contain the Load Sheets macro you must copy it in from another workbook.

4. Choose Macro from the Tools menu and select the Load Sheets macro in the
displayed Macros window.

5. Enter the path of the directory that contains the Header Sheet text file and choose OK.

Note: The last character you must enter in this path must be a
"\", for example C:\upload\.

6. Enter the name of the Header Sheet text file and choose OK. The files are loaded
into the workbook.

Note: When the files are loaded into the workbook the name of
the worksheet containing the header information, i.e. the first
worksheet, will always be header_sheet.

Using the Save Sheets Macro

The Save Sheets macro enables you to save a multiple sheet Excel workbook into
corresponding tab delimited text files. Each text file will be given the name specified
in the Header Sheet and will be saved in the specified directory. The first worksheet
in the workbook, the Header Sheet, will create the header file that will be used by
Data Uploader.

To run the Save Sheets macro:

1. Ensure that the required Excel workbook is open. If this workbook does not contain
the Save Sheets macro you must copy it in from another workbook.

2. Ensure the worksheet containing the Header information is called header_sheet. If it
is not you must rename this worksheet or the macro will fail.

3. Choose Macro from the Tools menu and select the Save Sheets macro in the
displayed Macros window.

Implementation Guide 2-337

4. Enter the path of the directory in which you want to save the text files. This
should be the directory defined by your System Administrator during the set up of
Backfeed. Choose OK.

Note: The last character you must enter in this path must be a
"\", for example C:\upload\.

5. Enter a name for the header file. This will default to the name of the first worksheet
in the workbook. You will need to specify this file when you run the Data Uploader
process. Choose OK.

Running Data Uploader

The Data Uploader takes the information held in the text files you have created and loads
them into the Data Pump batch tables. The files that are used in each upload are defined
by the header file you select when running the HR Data Uploader concurrent process.

Note: You can load the payroll run data into the Data Pump tables using
another method if you desire.

Once the setup tasks have been completed you run the Data Uploader in the Submit
Requests window.

To run the Data Uploader process:

1. Ensure that the files you want to upload are in the directory specified during the
Backfeed setup by your Database and System Administrators.

2. In the Submit Requests window, select the HR Data Uploader concurrent process.

3. Enter the file name of the header file you want to use and choose submit.

Tracking Errors Using Data Uploader

If any errors are detected whilst using Data Uploader, you must view the concurrent
request log file for more information.

Running Data Pump

Once you have the payroll run data in the Data Pump batch tables you must run the
Data Pump Engine concurrent process to upload the data into the Backfeed tables.

To run the Data Pump Engine concurrent process:

1. Select the Data Pump Engine concurrent process.

2. Enter the required batch name and indicate whether you want the process to be
validated.

The batch name will be of the form: <batch name>-<batch ID> where batch name
relates to the batch name entered in the header file and batch ID is the internally
allocated ID. For example:

Week12-1234

3. Choose Submit.

For information on finding and fixing errors in Data Pump see the Oracle HRMS Data
Pump technical essay.

2-338 Oracle US Federal Human Resources Implementation Guide

Viewing Third Party Payroll Results in Oracle HRMS

After uploading your third party payroll results into the Backfeed tables, you can view
them by:

• Employee (in the Third Party Payroll Run Employee Results window)

• Organization, job, grade, group, position, or location (in the Third Party Payroll Run
Organization Results window)

These windows each contain two folders, Balance Details and Payment Details, that
enable you to display the information you require using the standard folder utilities.

To query payroll run details using the Find Third Party Payroll Run Employee Results
window:

1. Do one or any number of the following:

• Enter a full or partial query on the person’s name. Where a prefix has been
defined for the person, a full name query should be in the format ’Maddox, Miss
Julie’.

• Enter a query on employee number, assignment number, payroll, or payroll
identifier.

• Specify an earliest and latest date for payroll period start and end dates, and
payroll process dates. This means that you can retrieve a range of payroll
run results.

2. Choose the Find button.

The payroll run details found by the query are displayed in the Third Party Payroll
Run Employee Results window. If the query found more than one record, you can
use the [Down Arrow] key or choose Next Record from the Go menu to display
the next record.

To query payroll run details using the Find Third Party Payroll Run Organization Results
window:

1. Do one or any number of the following:

• Enter a query on organization, people group, job, position, grade, or location.

• Enter a query on payroll, or payroll identifier.

• Specify an earliest and latest date for payroll period start and end dates, and
payroll process dates. This means that you can retrieve a range of payroll
run results.

2. Choose the Find button.

The payroll run details found by the query are displayed in the Third Party Payroll
Run Organization Results window. If the query found more than one record, you
can use the [Down Arrow] key or choose Next Record from the Go menu to display
the next record.

To view third party payroll run results:

1. Query the required information using the Find Third Party Payroll Run Employee
Results window or the Find Third Party Payroll Run Organization Results window.

• If you queried using the Find Third Party Payroll Run Employee Results
window, details about the employee and the payroll run are displayed, including
additional flexfield information.

Implementation Guide 2-339

• If you queried using the Find Third Party Payroll Run Organization Results
window, details about the payroll run are displayed, including additional
flexfield information. The find window remains open in the background so that
you can refer to it to see the query that has retrieved the displayed results.

2. Choose the Balance Details alternative region. This displays all the balance
information relating to the displayed employee and payroll run such as run
amount, financial year to date amount, and element name. Any additional flexfield
information will also be displayed here. You can use standard folder tools to control
the data that is displayed in this folder.

3. Choose the Payment Details alternative region. This displays all the payment
information relating to the displayed employee and payroll run such as check
number, payment date, and amount. Any additional flexfield information will also
be displayed here. You can use standard folder tools to control the data that is
displayed in this folder.

2-340 Oracle US Federal Human Resources Implementation Guide

Index

A
Absence elements, 2-44

linking, 2-44
Absence Management

calculating absence duration, 2-45
making initial element entries, 2-45
proration and notifications, 2-44

Absence management, 2-44
Absence types

defining, 2-45
defining categories, 2-45

ABSENCE_REASON, 2-45
Accrual plans

setting up, 2-45
Action classifications (for payroll processes and
actions), 2-142
Activity rates, 2-42
Adjustment element entries, 2-103
APIs

errors and warnings, 2-240
legislative versions, 2-239
loading legacy data, 2-273
multilingual support, 2-238
parameters, 2-222
user hooks, 2-245
uses of, 2-219

Applicants
assignment statuses, 2-48

Appraisal, 2-54
Archiving

payroll reports, 2-148
Assessment, 2-54
Assignment level interlocks, 2-141

overview, 2-100
rolling back/mark for retry, 2-144

Assignment sets, 2-100
Assignment statuses

applicants, 2-48
defining, 2-48

Assignments, 2-48
processing payroll, 2-101

Auto Orgs, 2-25

B
Balance adjustments, 2-166

Balances
balance dimensions, 2-161, 2-162
contexts, 2-162
creating and maintaining, 2-104
dimension types, 2-105
feed checking types, 2-105
including values in reports, 2-177
initialization steps, 2-175
latest balances, 2-161
loading initial values, 2-166
overview, 2-160

Balances and latest balances
processing by Payroll Run, 2-104

Batch Element Entry (BEE)
creating control totals, 2-93

Benefits
eligibility, 2-37

Budgets
implementing, 2-32

Business Groups
defining, 2-24

See also Organizations

C
Career management

See Talent management
Career planning, 2-55
Cash payments, 2-109

process, 2-132
Cheque Writer

cheque numbering, 2-129
mark for retry, 2-130
PL/SQL, 2-132
process, 2-126
rolling back payments, 2-130
sorting the cheques/checks, 2-132
SRW2 report, 2-130
voiding and reissuing cheques, 2-129

Collective agreements, 2-34
Compensation objects

setting up, 2-39
Competencies, 2-53
Complaint tracking, 2-30
Consolidation sets, 2-110
Context field values list for flexfields, 2-207

Index-1

Contexts
and formula types, 2-181
for archive database items, 2-152
for payroll run formulas, 2-103
of balances, 2-162
set by Magnetic Tape process, 2-116
used by FastFormula, 2-180

Control, 2-61
Correction

in a datetracked block, 2-80
Costing process, 2-146
Coverage calculations, 2-42
Create Federal HR Valid Combinations, 2-27
Currencies

conversion by Prepayments process, 2-111
processing by Payroll Run, 2-103

Custom Library events
DT_ CALL_HISTORY, 2-89
DT_SELECT_MODE, 2-84

Custom tables
making available to reporting users, 2-216

Customization
using API user hooks, 2-245
using database triggers, 2-263

D
Data Install Utility, 2-1
Data Pump, 2-271

logging options, 2-288
Database items, 2-181

and user entities, 2-180
defining, 2-181
for archiving, 2-150

Database triggers, 2-263
DateTrack, 2-80

creating a datetracked table, 2-83
history views, 2-87
restricting options available to users, 2-84

DateTrack History views, 2-87
changing the view displayed, 2-89
list of, 2-91

Deadlocks
avoiding, 2-236

Defined balances, 2-161
Deleting a datetracked record, 2-81
Descriptive flexfields

defining, 2-19, 2-22, 2-22
Dimension types (of balances), 2-105, 2-164
Dimensions (of balances), 2-161
Disabilities, 2-34

E
Element entries

processing by Payroll Run, 2-102
Element sets, 2-47, 2-100
Element skip rules, 2-103

Element validation formulas, 2-41
Elements

and distribution sets, 2-65
entry processing, 2-102
to feed initial balances, 2-168

Eligibility
derived factors, 2-38
eligibility profiles, 2-39

Employee assignment statuses
defining, 2-48

End of year reports, 2-148
Error reporting

payroll action parameters, 2-137
Evaluation systems

evaluations, 2-54
implementing, 2-32

Event codes, 2-79
Exchange rates

Pre-Payments, 2-111
Expiry checking

of latest balances, 2-104, 2-162
types, 2-165

F
FastFormula

calling from PL/SQL, 2-189
Fastformula

application dictionary, 2-179
Feed checking types (of balances), 2-105, 2-165
Flexfields

and APIs, 2-237
Cost Allocation, 2-146
validation by APIs, 2-204

FND_SESSIONS table, 2-207
Form block.field items

referenced in flexfield value sets, 2-206
Form functions

using parameters, 2-66
Formula

errors, 2-123
for archiving payroll reports, 2-153
interface, 2-122
payroll run, 2-106
result rules, 2-106
types and contexts, 2-181

Functions, 2-71

G
Global Legislation Driver, 2-1
Grades

defining, 2-35

I
Implementation Planning, 1-1
Implementing Oracle HRMS

Index-2

checklists, 2-7
setup steps, 2-1
steps, 2-7

Initial Balance Structure Creation process, 2-176
Initial Balance Upload process, 2-172
Input values

validation, 2-41
Interlocks, 2-141

J
Job Groups, 2-28
Jobs

defining, 2-28

K
Key flexfields

setting up, 2-7

L
Latest balances, 2-161

initial loading, 2-167
Legacy data

loading using Data Pump, 2-273
Legal Authority Codes, 2-78
Letters

generating, 2-62
LISTGEN, 2-213
Locations, 2-26
Logging

payroll action parameter, 2-138
Lookups

creating Lookup values, 2-25

M
Magnetic Tape

formula errors, 2-123
formula interface, 2-122
PL/SQL, 2-117
process, 2-112
reports, 2-114
structure, 2-115

Mark for retry
Cheque Writer, 2-130
interlock rules, 2-143, 2-144

Mass Actions
Defining a Context, 2-28

Medical assessments, 2-34
Menus, 2-71

defining, 2-69
Meta-Mapper process, 2-273

running, 2-276

N
New hire reporting

setting up, 2-31

O
Object version number, 2-220

handling in Oracle Forms, 2-265
Oracle Human Resources

post install, 2-1
Organization Hierarchy, 2-27

Populate, 2-57
Organizations, 2-26

classifications, 2-26
defining, 2-24

See also Business Groups
Override element entries, 2-104

P
Parallel processing, 2-134
Parameters

CHUNK_SIZE, 2-111, 2-133, 2-173
for APIs, 2-222
for Cheque/Check Writer process, 2-127
for Data Pump, 2-286
for Magnetic Tape process, 2-113
MAX_ERRORS_ALLOWED, 2-112
Payroll Action, 2-132
THREADS, 2-111, 2-133

PAY_BALANCE_BATCH_HEADERS, 2-170
PAY_BALANCE_BATCH_LINES, 2-171
Payment methods, 2-109

overriding, 2-111
Payment process, 2-112
Payroll action parameters, 2-132

error reporting, 2-137
logging, 2-138, 2-139
parallel processing, 2-134
rollback, 2-137

Payroll Archive Reporter process, 2-148
Payroll data cache, 2-108
Payroll processes, 2-97

overview, 2-97
Payroll Run

balances and latest balances, 2-104
create run results and values, 2-103
element skip rules, 2-103
entities for processing, 2-100
expiry checking of latest balances, 2-104
formula, 2-106
in memory latest balances, 2-104
process, 2-100
processing each assignment, 2-101
processing element entries, 2-102
processing priority, 2-102
set up contexts, 2-103

Payrolls
defining, 2-36

People, 2-48

Index-3

People Management Templates
configuring, 2-65

Person Types, 2-34
Plans

setting up, 2-39
Position Hierarchy, 2-30
Position Hiring Statuses, 2-29
Positions

defining, 2-29
Synchronize Positions Process, 2-29

Post install steps
Federal legislation, 2-1
French legislation, 2-1
Oracle HRMS, 2-1
Payroll (Canada and USA), 2-1

Pre-Payments
exchange rates, 2-111
overriding payment method, 2-111
preparing cash payments, 2-109
setting up payment methods, 2-109
third party payments, 2-110

Prenotification validation, 2-110
Printing on preprinted stationery

P45 and Pay Advices, 2-62
Processes

Cheque/Check Writer, 2-126
Costing, 2-146
Initial Balance Structure Creation, 2-176
Initial Balance Upload, 2-166, 2-172
Magnetic Tape, 2-112
Payment, 2-112
Payroll Archive Reporter, 2-148
Payroll Run, 2-100
Pre-Payments, 2-108
PYUGEN, 2-97
Transfer to General Ledger, 2-146

Processing priority
of entries in Payroll Run, 2-102

Profile options
See System profiles

Program setup, 2-39
PYUGEN, 2-97
PYUMAG, 2-114, 2-149

Q
Quantum

Installing for Oracle Payroll (US), 2-1
QuickPay

system administration, 2-141

R
Rating scales, 2-53
Raw SQL Trace file

example, 2-323
Remarks, 2-78
Reporting groups, 2-43

Reports
defining, 2-61
Magnetic Tape, 2-114
payroll, 2-148

Request for Personnel Action
Restricted RPA, 2-52

Responsibilities
associating with help files, 2-72
defining, 2-71
setting user profile options, 2-71
View All, 2-24

ROLEGEN, 2-213
Rollback

payroll action parameters, 2-137
Rolling back

cheque/check payments, 2-130
interlock rules, 2-144

Routes
for archive database items, 2-150
of balance dimensions, 2-163
used by FastFormula, 2-180

Run results
creation by Payroll Run, 2-107

S
Schedule

frequency for reports, 2-79
frequency Within Grade Increases, 2-79
processing Future Actions, 2-79

SECGEN, 2-213
Secure tables and views

Secure Tables and Views, 2-209
Security

customizing, 2-208
profiles, 2-70, 2-208
setting up, 2-69

Skills matching
defining requirements, 2-51

Special information types
personal information, 2-48

SQL Trace
advanced, 2-324

event 10046, 2-324
facility, 2-308
init.ora parameters, 2-310
locating the file, 2-313
Payroll processes and reports, 2-311

SRW2 report, 2-127, 2-130
Standard letters

setting up, 2-62
Startup data, 2-1
Steps

post install, 2-1
Succession management

See Talent management
Succession planning, 2-55
System profiles

Index-4

AuditTrail:Activate, 2-74

T
Talent management, 2-52
Task flows, 2-67
Termination of assignments

processing by Payroll Run, 2-102
Third party payments, 2-110
TKPROF, 2-308, 2-313

body, 2-317
formatting a trace file, 2-314
header, 2-316
sort options, 2-316
summary, 2-321

Trace
facility

SQL, 2-308
Transfer to General Ledger process, 2-146

U
Update

in a datetracked block, 2-80
User hooks

in APIs, 2-245
to populate custom profiles, 2-206
to set user profile options, 2-205

User interfaces
and APIs, 2-219

User keys, 2-274
User profile options

for responsibility, 2-24
referenced in flexfield value sets, 2-205

User security
See Security

User tables
defining, 2-41
table values, 2-41

V
View All HRMS User

View All, 2-23
Voiding and reissuing cheques, 2-129

W
Web Applications Desktop Integrator (Web ADI),
2-74
Work incidents, 2-34
Workflow

modify attributes, 2-75
Workforce Intelligence, 2-56

Discoverer reports, 2-57

Index-5

	Contents
	Preface
	Intended Audience
	TTY Access to Oracle Support Services
	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Accessibility of Links to External Web Sites in Documentation

	Structure
	Related Documents
	Do Not Use Database Tools to Modify Oracle Applications Data

	Introduction
	Planning Implementation
	HRMS Configuration Workbench

	Implementation Guide
	Implementation Steps
	Before You Start

	Post Install Steps
	Implementation Checklist
	Administration
	Define Key Flexfields
	Define Job Flexfield
	Define Position Flexfield
	Define Grade Flexfield
	Define People Group Flexfield
	Define Cost Allocation Flexfield
	Define Competence Key Flexfield
	Define Collective Agreement Grades Key Flexfield

	Descriptive Flexfields
	Define Descriptive Flexfields

	Extra Information Types (EITs)
	Define Extra Info Types (Excluding Organizations)
	Define Extra Info Types for Organization

	Administration

	Enterprise and Workforce Management
	Organization Structures
	Jobs
	Define a Context for Mass Actions

	Positions
	Complaint Tracking
	New Hire Reporting
	Evaluation Systems
	Human Resource Budgets
	Person Types
	Collective Agreements
	Medical Assessments, Disabilities and Work Incidents

	Compensation, Benefits, and Payroll
	UNKNOWN
	Define Grade Related Information
	Define Payroll Information

	Administration Steps for Standard and Advanced Benefits
	Benefits Eligibility
	Define Derived Eligibility Factors
	Define Eligibility Profiles

	Compensation Objects
	Elements
	Define Input Value Validation
	Define Other Elements

	Activity Rates and Coverage Calculations
	Additional Setup for Health and Welfare
	Absence Management and Accruals
	Set Up Absence Management
	Set Up Accrual Plans

	Element Sets and Batch Control Totals
	Basic Benefits

	Workforce Sourcing and Deployment
	Recruitment
	Setup for Employees and Contingent Workers
	Special Personal Information (Personal Analysis Key Flexfield Structures)
	Requirements Matching
	Create Restricted RPAS

	Talent Management
	Competencies and Qualifications
	Evaluations and Appraisals
	Career and Succession Planning
	Model Career and Succession Plans Based on Jobs (Option 1)
	Model Career and Succession Plans Based on Positions (Option 2)

	Workforce Intelligence
	Discoverer Workbooks
	Set Up and Configure Workforce
	Set Up a Currency Conversion Rate Type
	Set Up and Configure Training Hours
	Set up Cross Business Group Reporting
	Identify the Reporting Organization
	Restrict Discoverer Workbook Access
	Check the Vacancy Status Options
	Populate Summary Tables

	HR Information Systems
	Reports
	Standard Letter Generation
	Method 1 - Concurrent Processing using Word Processors
	Method 2 - Concurrent Processing using Oracle Reports
	Method 3 Create Mail Merge Letters Using Web ADI

	People Management Templates
	Oracle HRMS Configuration
	Task Flows
	Create Task Flows Using Forms
	Create Task Flows Using Workflow

	Menus
	User Security
	Defining Security for HRMS Users (Optional)
	Defining Security for Reporting Users (Optional)

	Web Applications Desktop Integrator (Web ADI)
	Audit Requirements
	Modification of US Federal Workflow
	US Federal Workflow Routing
	Define the Personnel Office ID Information
	Define a Groupbox

	Agency Legal Authority Codes, Remarks, and Insertion Data
	Productivity Event Categories and Codes
	Schedule for US Federal Processes

	Technical Essays
	DateTrack
	How DateTrack Works
	Create and Modify DateTrack History Views

	Batch Element Entry
	Creating Control Totals for the Batch Element Entry Process

	Payroll Processes
	Overview
	Payroll Run Process
	Pre-Payments Process
	Payment Processes
	Payroll Action Parameters
	Assignment Level Interlocks
	Transfer to the General Ledger Process
	Costing Process
	The Payroll Archive Reporter (PAR) Process
	Balances in Oracle Payroll

	FastFormula
	The FastFormula Application Dictionary
	Calling FastFormula from PL/SQL

	Flexfields
	Validation of Flexfield Values

	Security
	Extending Security in Oracle HRMS

	APIs
	APIs in Oracle HRMS

	DataPump
	Oracle HRMS Data Pump

	SQL Trace
	SQL Trace

	Backfeed
	Oracle Generic Third Party Payroll Backfeed

	Index

