
Oracle® iPayment
Implementation Guide

Release 11i

Part No. A95478-05

May 2005

Oracle iPayment Implementation Guide, Release 11i

Part No. A95478-05

Copyright © 2001, 2005, Oracle. All rights reserved.

Contributors: Ramasubramanian Balasundaram, Jonathan Leybovich, Rajiv Menon, Elizabeth Newell,
Aalok Shah

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web
sites. You bear all risks associated with the use of such content. If you choose to purchase any products
or services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface.. xi

1 Overview

Planning Your Implementation ... 1-2
Which Payment System Should You Use? ... 1-3
Is Your Merchant Terminal Based or Host Based?... 1-5
What Electronic Commerce Applications Are You Using?.. 1-6
Which APIs Should Electronic Commerce Applications Handle? ... 1-7
Which Bank Account Transfer Operations Should You Implement? ... 1-8
Which Credit Card and Purchase Card Operations to Implement? ... 1-9
Which Risk Factors Should You Implement? ... 1-10
Does Your Application Need to Present Information in Different Languages? 1-11

Installing Oracle iPayment .. 1-13

2 Configuring iPayment

Overview of Oracle iPayment Implementation Steps ... 2-2
Creating an Oracle iPayment User ... 2-4

Assigning Roles and Responsibilities to an iPayment User .. 2-7
Overview of iPayment Servlets.. 2-8
Implementing Field Installable Servlets ... 2-10
Configuring Oracle iPayment Servlets ... 2-11
Configuring the ECApp Servlet .. 2-14

iv

Setting Up SSL Security for the ECApp Servlet.. 2-15
Configuring iPayment Sample Servlet .. 2-16
Configuring iPayment Loopback Servlet ... 2-18
Setting Up SSL Security for Payment System Servlet Communication .. 2-22
Enabling the Scheduler .. 2-25
Registering Electronic Commerce Applications .. 2-26
Loading Risky Instruments.. 2-28
Enabling the XML Framework ... 2-29
Setting up Entities in the Oracle iPayment User Interface ... 2-30

3 Using iPayment with External Front End Applications

Overview of Oracle iPayment APIs .. 3-2
Implementing Electronic Commerce Applications APIs .. 3-3

Payment Instrument Registration APIs ... 3-5
Payment Processing APIs .. 3-6
Risk Management APIs ... 3-9
Credit Card Validation APIs.. 3-10
Status Update API.. 3-13
Java APIs for Electronic Commerce Application.. 3-16
PL/SQL APIs for Electronic Commerce Applications.. 3-23

Security Considerations ... 3-27

4 Using iPayment with External Payment Systems

Overview of Payment System Integration Model .. 4-2
PaymentService APIs ... 4-3
Routing Engine.. 4-4
Integration Point Component Types ... 4-5
Developing a Custom Payment System Integration .. 4-6

Developing a Custom Payment System Integration for Credit Cards ... 4-7
Developing a Custom Payment System Integration for Debit Cards .. 4-10
Developing a Custom Payment System Integration for Bank Account Cards 4-12
Seeding Data .. 4-15

Defining a Payment System ... 4-16
Account Options .. 4-18

System Payment Profile.. 4-20

v

Credit Card System Payment Profile... 4-21
Debit Card System Payment Profile.. 4-23
Bank Account Payment Profiles.. 4-25

Formats .. 4-27
Format Validation ... 4-29

Developing a Validation Set.. 4-30
Seeding a Validation Set ... 4-33

Extract Generator... 4-35
Extract Formatter... 4-36
Extract Structure .. 4-37
Extract Components ... 4-38

Funds Capture Extract ... 4-39
Common Elements .. 4-51

Transmission Functions.. 4-59
Acknowledgment Parser .. 4-63

A Risk Management

Utilizing Risk Management ... A-2
Risk Management Test Scenarios.. A-4

B Error Handling

Error Handling During Payment Processing ... B-2

C iPayment PL/SQL APIs

Electronic Commerce PL/SQL APIs... C-2
Architectural Overview .. C-3
PL/SQL APIs Procedure Definitions .. C-5

Payment Processing APIs.. C-7
Payment Instrument Registration APIs ... C-53

PL/SQL Record/Table Types Definitions ... C-72
Payments Related Generic Record Types ... C-73
Inbound Payment Operations Related Record Types.. C-80
Outbound Bank Payment Batch Related Record Types.. C-88
Risk Management Record Types... C-95

vi

Inbound Payment Operations Response Record/Table Types.. C-96
Inbound Batch Payment Operations Response Record/Table Types ... C-106
Instrument Registration Related Record Types.. C-109

Sample PL/SQL Code.. C-113

D Back-End APIs for Gateways

Gateway Model Payment System Integration Model Overview... D-2
Payment System Servlet Operations ... D-3
Authorization API... D-4
Purchase Card Authorization API .. D-6
Voice Authorization API .. D-7
Authorization API Output Name-Value Pairs ... D-8
Capture API .. D-9
Void API.. D-12
Return/Credit API ... D-15
Close Batch API ... D-18
Query Transaction Status API .. D-22
Query Batch Status API .. D-25
Transaction Status and Messages ... D-26

OapfStatus... D-27
OapfErrLocation ... D-28
OapfVendErrCode .. D-29
OapfVendErrmsg.. D-30
OapfBatchState ... D-31
OapfOrderId.. D-32

Transaction Types and Transaction States .. D-33
OapfTrxnType: SSL Transactions and Commerce Applications ... D-35

E Extensibility

Overview .. E-2
Implementation ... E-3

Sample Implementation ... E-6

vii

F Configuring CyberCash Servlet

Configuring CyberCash Servlet .. F-2

G Configuring Paymentech

Configuring the Paymentech Servlet .. G-2

H Configuring FDC North

Configuring the FDC North Servlet.. H-2

I Configuring Concord EFSnet

Implementing Concord EFSnet Servlet.. I-2

J Configuring Citibank

Configuring the Citibank Card Servlet ... J-2

K Profile Options

Profile Options .. K-2
iPayment Profile Options ... K-4

Index

viii

ix

Send Us Your Comments

Oracle iPayment Implementation Guide, Release 11i

Part No. A95478-05

Oracle welcomes your comments and suggestions on the quality and usefulness of this document. Your input is
an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document title and
part number, and the chapter, section, and page number (if available). You can send comments to us via the
postal service.

■ Electronic mail: appsdoc_us@oracle.com
■ FAX: (650) 506-7200 Attention: Oracle Applications Documentation
■ Postal service:

Oracle Corporation
Oracle Applications Documentation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) electronic mail
address.

If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

Welcome to Release 11.5.10 of the Oracle iPayment Implementation Guide. This guide is
your primary source of information to implement Oracle iPayment.

This preface contains these topics:

■ Audience for this Guide

■ How To Use This Guide

■ Other Information Sources

■ Installation and System Administration

■ Other Implementation Documentation

■ Training and Support

■ Do Not Use Database Tools to Modify Oracle Applications Data

■ About Oracle

■ Your Feedback

xii

Audience for this Guide
This guide assumes you have a working knowledge of the following:

■ The principles and customary practices of your business area.

■ Oracle iPayment

If you have never used Oracle iPayment, Oracle suggests you attend one or more of the
Oracle iPayment training classes available through Oracle University.

■ The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the Oracle
Applications User’s Guide.

See Other Information Sources for more information about Oracle Applications product
information.

xiii

How To Use This Guide
This document contains the information you need to implement Oracle iPayment.

This manual contains these chapters and appendixes:

■ Chapter 1, "Overview"

Chapter 1 describes the important issues that should be considered prior to
implementing Oracle iPayment.

■ Chapter 2, "Configuring iPayment"

Chapter 2 describes detailed information on the tasks you should perform to implement
Oracle iPayment.

■ Chapter 3, "Using iPayment with External Front End Applications"

Chapter 3 explains the public APIs used in Oracle iPayment with external front end
applications.

■ Chapter 4, "Using iPayment with External Payment Systems"

Chapter 4 explains the APIs used in Oracle iPayment with external payment systems.

■ Appendix A, "Risk Management"

Oracle iPayment supports risk management. Electronic commerce applications can
incorporate this feature to detect fraudulent payments. Appendix A explains how
electronic commerce applications can utilize the risk management functionality of
Oracle iPayment.

■ Appendix B, "Error Handling"

Oracle iPayment returns a response object to each API that an electronic commerce
application calls. Appendix B provides detailed information on the errors that can occur
in Oracle iPayment.

■ Appendix C, "iPayment PL/SQL APIs"

Appendix C describes the public PL/SQL API used by Oracle iPayment. Electronic
commerce applications (EC-Apps) may use these interfaces for processing credit card
and bank account transfer payment related operations.

■ Appendix D, "Back-End APIs for Gateways"

Appendix D describes the back-end processing APIs used in Oracle iPayment.

xiv

■ Appendix E, "Extensibility"

Oracle iPayment can be integrated with a back end payment system by implementing
oracle.apps.iby.extend.TxnCustomizer interface. Appendix E explains how to
implement this interface.

■ Appendix F, "Configuring CyberCash Servlet"

Appendix F describes how to configure the CyberCash servlet.

■ Appendix G, "Configuring Paymentech"

Appendix G describes how to configure the Paymentech servlet.

■ Appendix H, "Configuring FDC North"

Appendix H describes how to configure the FDC North servlet.

■ Appendix I, "Configuring Concord EFSnet"

Appendix I describes how to implement the Concord EFSnet servlet.

■ Appendix J, "Configuring Citibank"

Appendix J describes how to configure the Citibank credit card servlet.

■ Appendix K, "Profile Options"

Appendix K describes profile options for Oracle iPayment.

xv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Accessibility standards will
continue to evolve over time, and Oracle is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit
the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document.
The conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of
text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

xvi

Other Information Sources
You can choose from many sources of information, including online documentation,
training, and support services, to increase your knowledge and understanding of Oracle
iPayment.

If this guide refers you to other Oracle Applications documentation, use only the Release 11i
versions of those guides.

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF).

■ PDF Documentation- See the Online Documentation CD for current PDF
documentation for your product with each release. This Documentation CD is also
available on OracleMetaLink and is updated frequently.

■ Online Help - You can refer to Oracle Applications Help for current HTML online help
for your product. Oracle provides patchable online help, which you can apply to your
system for updated implementation and end user documentation. No system downtime
is required to apply online help.

■ Release Content Document - See the Release Content Document for descriptions of
new features available by release. The Release Content Document is available on
OracleMetaLink.

■ About document - Refer to the About document for information about your release,
including feature updates, installation information, and new documentation or
documentation patches that you can download. The About document is available on
OracleMetaLink.

Related Documentation
Oracle iPayment shares business and setup information with other Oracle Applications
products. Therefore, you may want to refer to other guides when you set up and use Oracle
iPayment.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD
included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

xvii

Guides Related to All Products

Oracle Applications User’s Guide
This guide explains how to enter data, query, run reports, and navigate using the graphical
user interface (GUI). This guide also includes information on setting user profiles, as well as
running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing “Getting Started with Oracle
Applications” from any Oracle Applications help file.

Guides Related to This Product

Oracle Payables User Guide
This manual describes how accounts payable transactions are created and entered into
Oracle Payables. This manual also contains detailed setup information for Oracle Payables
and discusses suppliers, banks, invoices, and also explains how to create payments and run
reports.

Oracle Receivables User Guide
This manual describes how accounts receivables transactions are created and entered into
Oracle Receivables. This manual also contains detailed setup information for Oracle
Payables and discusses customers, banks, invoices, and reporting.

Oracle iPayment Concepts and Procedures Guide
This manual describes an overview of iPayment and its components, and provides
process-oriented, task-based procedures for using the user interface to set up the application
and perform essential business tasks. This manual also provides details on the integration of
iPayment and Oracle Payables and viewing the key performance metrics such as transaction
summaries, payee summaries, and other critical performance indicators.

Oracle iReceivables Implementation Guide
This manual describes the setup tasks that you need to perform for iReceivables and
information you need to configure iReceivables to suit your business requirements.

Oracle Collections User Guide
This manual explains the key features and process flows in Collections.

xviii

Oracle iStore Implementation and Administration Guide
This manual explains the information needed to implement, administer, and maintain Oracle
iStore.

xix

Installation and System Administration

Oracle Applications Concepts
This guide provides an introduction to the concepts, features, technology stack, architecture,
and terminology for Oracle Applications Release 11i. It provides a useful first book to read
before an installation of Oracle Applications. This guide also introduces the concepts behind
Applications-wide features such as Business Intelligence (BIS), languages and character
sets, and Self-Service Web Applications.

Installing Oracle Applications
This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle Rapid
Install, which minimizes the time to install Oracle Applications and the Oracle technology
stack by automating many of the required steps. This guide contains instructions for using
Oracle Rapid Install and lists the tasks you need to perform to finish your installation. You
should use this guide in conjunction with individual product user guides and implementation
guides.

Upgrading Oracle Applications
Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or Release
11.0 products to Release 11i. This guide describes the upgrade process and lists database and
product-specific upgrade tasks. You must be either at Release 10.7 (NCA, SmartClient, or
character mode) or Release 11.0, to upgrade to Release 11i. You cannot upgrade to Release
11i directly from releases prior to 10.7.

Maintaining Oracle Applications
Use this guide to help you run the various AD utilities, such as AutoUpgrade, AutoPatch,
AD Administration, AD Controller, AD Relink, License Manager, and others. It contains
how-to steps, screenshots, and other information that you need to run the AD utilities. This
guide also provides information on maintaining the Oracle applications file system and
database.

Oracle Applications System Administrator’s Guide
This guide provides planning and reference information for the Oracle Applications System
Administrator. It contains information on how to define security, customize menus and
online help, and manage concurrent processing.

xx

Oracle Alert User’s Guide
This guide explains how to define periodic and event alerts to monitor the status of your
Oracle Applications data.

Oracle Applications Developer’s Guide
This guide contains the coding standards followed by the Oracle Applications development
staff and describes the Oracle Application Object Library components that are needed to
implement the Oracle Applications user interface described in the Oracle Applications User
Interface Standards for Forms-Based Products. This manual also provides information to
help you build your custom Oracle Forms Developer forms so that the forms integrate with
Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products
This guide contains the user interface (UI) standards followed by the Oracle Applications
development staff. It describes the UI for the Oracle Applications products and how to apply
this UI to the design of an application built by using Oracle Forms.Oracle Applications
System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications System
Administrator. It contains information on how to define security, customize menus and
online help, and manage concurrent processing.

xxi

Other Implementation Documentation

Oracle Applications Product Update Notes
Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made to
database objects, profile options, and seed data for this interval.

Oracle Workflow Administrator's Guide
This guide explains how to complete the setup steps necessary for any Oracle Applications
product that includes workflow-enabled processes, as well as how to monitor the progress of
runtime workflow processes.

Oracle Workflow Developer's Guide
This guide explains how to define new workflow business processes and customize existing
Oracle Applications-embedded workflow processes. It also describes how to define and
customize business events and event subscriptions.

Oracle Workflow User's Guide
This guide describes how Oracle Applications users can view and respond to workflow
notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference
This guide describes the APIs provided for developers and administrators to access Oracle
Workflow.

Oracle Applications Flexfields Guide
This guide provides flexfields planning, setup and reference information for the Oracle
iPayment implementation team, as well as for users responsible for the ongoing maintenance
of Oracle Applications product data. This guide also provides information on creating
custom reports on flexfields data.

Oracle eTechnical Reference Manuals
Each eTechnical Reference Manual (eTRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle
Applications product. This information helps you convert data from your existing
applications, integrate Oracle Applications data with non-Oracle

xxii

applications, and write custom reports for Oracle Applications products. Oracle eTRM is
available on OracleMetalink

Oracle Self–Service Web Applications Implementation Manual
This manual contains detailed information about the overview and architecture and setup of
Oracle Self–Service Web Applications. It also contains an overview of and procedures for
using the Web Applications Dictionary.

Oracle Order Management APIs and Open Interfaces Manual
This manual contains up-to-date information about integrating with other Oracle
Manufacturing applications and with your other systems. This documentation includes APIs
and open interfaces found in Oracle Order Management Suite.

Other Information Sources
For more information, see the latest versions of the following manuals.

■ iPayment JavaDoc (Available on Metalink)

■ Apache Server Documentation (http://www.apache.com)

■ Apache’s mod-ssl documentation (http://www.mod-ssl.org/docs)

■ Java Developer’s Guide (http://www.sun.com)

xxiii

Training and Support

Training
Oracle offers a complete set of training courses to help you and your staff master Oracle
iPayment and reach full productivity quickly. These courses are organized into functional
learning paths, so you take only those courses appropriate to your job or area of
responsibility.

You have a choice of educational environments. You can attend courses offered by Oracle
University at any one of our many education centers, you can arrange for our trainers to
teach at your facility, or you can use Oracle Learning Network (OLN), Oracle University's
online education utility. In addition, Oracle training professionals can tailor standard courses
or develop custom courses to meet your needs. For example, you may want to use your
organization structure, terminology, and data as examples in a customized training session
delivered at your own facility.

Support
From on-site support to central support, our team of experienced professionals provides the
help and information you need to keep Oracle iPayment working for you. This team includes
your technical representative, account manager, and Oracle’s large staff of consultants and
support specialists with expertise in your business area, managing an Oracle server, and your
hardware and software environment.

xxiv

Do Not Use Database Tools to Modify Oracle Applications
Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data unless
otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and maintain
information in an Oracle database. But if you use Oracle tools such as SQL*Plus to modify
Oracle Applications data, you risk destroying the integrity of your data and you lose the
ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using Oracle
Applications can update many tables at once. But when you modify Oracle Applications
data using anything other than Oracle Applications, you may change a row in one table
without making corresponding changes in related tables. If your tables get out of
synchronization with each other, you risk retrieving erroneous information and you risk
unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications automatically
checks that your changes are valid. Oracle Applications also keeps track of who changes
information. If you enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has changed your
information because SQL*Plus and other database tools do not keep a record of changes.

xxv

About Oracle
Oracle develops and markets an integrated line of software products for database
management, applications development, decision support, and office automation, as well as
Oracle Applications, an integrated suite of more than 160 software modules for financial
management, supply chain management, manufacturing, project systems, human resources
and customer relationship management.

Oracle products are available for mainframes, minicomputers, personal computers, network
computers and personal digital assistants, allowing organizations to integrate different
computers, different operating systems, different networks, and even different database
management systems, into a single, unified computing and information resource.

Oracle is the world’s leading supplier of software for information management, and the
world’s second largest software company. Oracle offers its database, tools, and applications
products, along with related consulting, education, and support services, in over 145
countries around the world.

xxvi

Your Feedback
Thank you for using Oracle iPayment and this user guide.

Oracle values your comments and feedback. In this guide is a reader’s comment form that
you can use to explain what you like or dislike about Oracle iPayment or this user guide.
Mail your comments to the following address or call us directly at (650) 506-7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send electronic mail to appsdoc_us@oracle.com.

Overview 1-1

1
Overview

This chapter presents the important issues you should consider prior to implementing Oracle
iPayment. Topics include:

■ Planning Your Implementation

■ Which Payment System Should You Use?

■ Is Your Merchant Terminal Based or Host Based?

■ What Electronic Commerce Applications Are You Using?

■ Which APIs Should Electronic Commerce Applications Handle?

■ Which Bank Account Transfer Operations Should You Implement?

■ Which Credit Card and Purchase Card Operations to Implement?

■ Which Risk Factors Should You Implement?

■ Does Your Application Need to Present Information in Different Languages?

■ Installing Oracle iPayment

Planning Your Implementation

1-2 Oracle iPayment Implementation Guide

Planning Your Implementation

Before you begin implementing Oracle iPayment, you must make several key business and
application decisions.

The following sections help you find answers to these questions. Your answers determine
which APIs you should use, which parameters you must pass, and which code samples are
relevant to your applications to help you implement Oracle iPayment.

Planning Your Implementation

Overview 1-3

Which Payment System Should You Use?

Oracle iPayment requires partnering with a third party payment system for communicating
to bank processors and acquirer’s banks. Some of the factors which may help you decide
are:

■ Do you want to use an existing integration or build your own?

■ Do you want to integrate with a vendor offering a product or a service?

■ Do you want to integrate with a gateway or a processor model payment system?

■ Does the payment system support the payment methods that you are implementing, (for
example, Concord supports credit card, PINless debit card, Purchase card and
Electronic Funds Transfer transactions)

The following table lists the back-end payment systems that are integrated and shipped with
iPayment, as well as the operations each payment sustem supports.

* CyberCash no longer accepts new customers

** US ACH only

The following table lists some back-end payment systems that provide their own
field-installable servlets for integration with iPayment,and the operations VeriSign supports.

Back End
Payment System

Credit
Card

Purchase
Card

PINless
debit card Inbound

EFT Online
Validation Outbound

CyberCash* Yes No No Yes** No No

Paymentech Yes Yes Yes Yes Yes No

First Data (North) Yes Yes No No No No

Concord EFS Yes Yes Yes Yes No No

Citibank Credit
Card

Yes No No No No No

Note: The supported operations may change. Contact the payment
system for the most recent information.

Which Payment System Should You Use?

1-4 Oracle iPayment Implementation Guide

Back End
Payment System

Credit
Card

Purchase
Card

PINless
debit card Inbound

Electronic
Funds
Transfer Outbound

VeriSign Yes No No Yes No No

Planning Your Implementation

Overview 1-5

Is Your Merchant Terminal Based or Host Based?

The choice of being a terminal-based or host-based merchant is generally determined by the
business type, the number of transactions per day, and the model supported by the acquiring
bank. As a developer of an EC application, you only need to know the type of payee for the
application you are developing, so that you can choose the appropriate APIs.

If your payee is terminal-based, then you may integrate the Close Batch API into the EC
application, to enable the payee to perform close batches through the EC application instead
of the payment system’s native interface. If your payee is host-based, then you may want to
ignore the Close Batch API because the processor automatically closes batches at
predetermined intervals.

If the payee is host-based, then payment capture takes care of getting the payment, and
reconciliation is not necessary. Therefore, the Close Batch API and the Query Batch Status
API are not required for host-based payees.

Note: Processor-model payment systems are always host-based.

What Electronic Commerce Applications Are You Using?

1-6 Oracle iPayment Implementation Guide

What Electronic Commerce Applications Are You Using?

The choice of electronic commerce applications depends on the applications you are using
with iPayment namely:

■ Preintegrated Oracle applications

■ External front-end applications

Preintegrated Oracle applications include iStore, Order Capture, Telesales, Order
Management, Oracle Receivables, Oracle Payables and Collections.

For external front-end applications, you need to decide the iPayment front-end API to be
implemented and then implement them.

Note: You need to follow the instructions present in the respective
documentation for iPayment’s interaction with preintegrated Oracle
applications.

Planning Your Implementation

Overview 1-7

Which APIs Should Electronic Commerce Applications Handle?

Oracle iPayment provides payment instrument registration APIs for registering payment
instruments such as credit cards, bank accounts, PINless debit cards, and purchase cards. It
also provides payment processing APIs that can perform credit card, PINless debit card, and
purchase card operations, such as, authorization, capture, and bank account transfer
operations. Risk management APIs are provided to perform risk analysis. Based on your
requirements, you need to decide the operations your electronic commerce (EC) applications
needs to implement.

Payment Instrument Registration APIs
These APIs are mandatory if you decide to use the offline payment processing feature of
Oracle iPayment Payment APIs in your EC application. EC applications can implement
registration of payment instruments using Payment Instrument Registration APIs, and
instrument identifiers, that are generated, during payment requests with Oracle iPayment.

Payment Processing APIs
You must decide whether to:

■ Implement online or offline payment processing or both

■ Accept credit card, PINless debit card payments, purchase cards, or bank account
transfers or a combination

■ Implement the risk functionality to detect fraudulent transactions

Risk Management APIs
Oracle iPayment provides two Risk management APIs. If you want to perform risk
evaluation independently and not as part of the Authorization API, then these independent
APIs can be called from your EC application.

The following information describes some of the decisions you have to make if you are
accepting bank account transfer payments, credit card, PINless debit card, or purchase card
payments.

Note: Each preintegrated Oracle application implements the iPayment
API relevant to its operation. Therefore, if you are planning to use
preintegrated Oracle application, you need not implement anything
further.

Which Bank Account Transfer Operations Should You Implement?

1-8 Oracle iPayment Implementation Guide

Which Bank Account Transfer Operations Should You Implement?

Oracle iPayment supports offline bank account payment requests. Besides payment requests
for bank account transfers, Oracle iPayment also supports modification, cancellation, and
inquiry operations. There is no need for any special settlement operations.

Oracle iPayment also supports Electronic Funds Transfer online validations for bank
account transfers. The validations are online and real-time whereas the actual funds transfer
are perfomed offline. The funds transfer are not performed online because the transaction
requires one or two business days for completion.

Note: EFT Online Validations are not offered by all payment systems.

Planning Your Implementation

Overview 1-9

Which Credit Card and Purchase Card Operations to Implement?

Oracle iPayment provides APIs for authorization, settlement, and querying transaction
status. You do not have to use all these APIs. You can choose to have your EC application
handle only authorization, thus reducing development costs but requiring the payee to do
more work for settlement and reconciliation.

The following table compares the authorization only with authorization and settlements.

Authorization Only Authorization and Settlement

The integration effort is relatively minimal
because you have to use no more than two APIs.

The integration effort is significant because you
have to use several APIs.

The payee has to settle transactions through the
native payment system administration tool. (For
example, by going to the payment system’s web
page).

The payee can settle transactions directly through
the EC application.

Note: For setting up credit card payments in iStore, see the latest Oracle
iStore and iMarketing Implementation Guides.

Which Risk Factors Should You Implement?

1-10 Oracle iPayment Implementation Guide

Which Risk Factors Should You Implement?

Oracle iPayment provides risk management functionality for credit card, PINless debit card,
and purchase card transactions in EC applications for both business-to-business and
business-to-consumer models. Oracle iPayment includes a number of built-in risk factors
and provides the option to the payees to run or not run the risk evaluation functionality for
each payment operation. Payees can also run the risk evaluation for operations which handle
amounts exceeding a specified amount.

A risk factor includes any information which a payee wants to use to evaluate the risk of the
customer wanting to buy goods or services from the payee. Examples of risk factors are:
address verification, time of purchase, payment amount, etc. These risk factors can be
configured for each payee (merchant or biller).

Risk management functionality enables payees and EC service providers to manage the risk
involved in processing transactions online. It allows businesses to have any number of
predefined risk factors to verify the identity of their customers, assess their customer credit
rating, and risk rating in a secure environment. For more information, see Oracle iPayment
Concepts and Procedures Guide.

Planning Your Implementation

Overview 1-11

Does Your Application Need to Present Information in Different
Languages?

If your application needs to present information in different languages or character sets, then
you need to know about National Language Support (NLS).

Would Your Application Need National Language Support (NLS)?
Your application may need to use NLS if either of the following is true:

■ The EC application and the payment system use different languages or character sets.
For example, the EC application may use a Japanese EUC character set while the
payment system uses a Japanese Shift-JIS character set.

■ Clients of the EC application use different languages. For example, a web site that is
expecting customers from all over the world might want to present its EC application in
different languages for different customers.

To enable character conversion in all these environments, the EC application and the
payment system must convey the language and character set information to Oracle
iPayment.

How Do Applications Convey Language Information to Oracle
iPayment?
To communicate information about the language and character set to Oracle iPayment, an
EC application and payment system servlet must pass a special parameter (NlsLang). This
parameter is a part of every API included in this guide.

NlsLang is an optional parameter. If your EC application does not need to handle
non-Latin1 character set parameters and does not need to communicate to clients or payment
systems in different languages, you do not need to use this parameter.

How does Oracle iPayment Use NlsLang?
If the EC application does not pass the NlsLang parameter, Oracle iPayment passes
information from the EC application to the payment service servlet without performing any
conversion of character sets.

If the EC application does pass a value for NlsLang to Oracle iPayment, then Oracle
iPayment tries to convert parameters based on the value of NlsLang before sending those
parameters to the payment system servlet.

Does Your Application Need to Present Information in Different Languages?

1-12 Oracle iPayment Implementation Guide

To do so, Oracle iPayment first checks its database for the list of preferred and optional
languages for that payment system. The information in the database reflects what the Oracle
iPayment administrator entered using the Oracle iPayment administration user interface.

Second, Oracle iPayment does one of the following, depending on what it finds in the
database:

■ If the database lists a language that matches the value of NlsLang, Oracle iPayment
keeps the value of NlsLang and passes it to the payment system servlet.

■ If the database does not list a language matching the value of NlsLang, Oracle
iPayment uses the language specified as the preferred language for that payment system,
thus changing the value of NlsLang before sending it to the payment system servlet.

Finally, Oracle iPayment converts the values of other parameters so that they are sent to the
payment system servlet in the language specified by NlsLang.

This conversion process works only in one direction. From the EC application to the
payment system servlet. If the payment system sets up NlsLang when it sends the data
back, Oracle iPayment uses that information only to store the value of OapfVendErrmsg
in its database. Oracle iPayment does not convert data sent from the payment system servlet
back to the EC application.

Format of the NLS_LANG Parameter
The value of this parameter follows the same format as Oracle Server’s NLS_LANG
environment variable:

language_territory.charset

For example, JAPANESE_JAPAN.JA16EUC is a valid value for NlsLang.

Format of the Response Body Data From Payment System Servlets
Oracle iPayment does not convert the response received from the payment system servlet in
the response body. It only treats the data as binary and sends it directly to the EC
application.

However, if any binary information is sent (such as wallet data), then Oracle iPayment
converts the character set of the binary data to that specified by the value of NlsLang.

Installing Oracle iPayment

Overview 1-13

Installing Oracle iPayment

To install Oracle iPayment, see the latest Installing Oracle Applications 11i.

Installing Oracle iPayment

1-14 Oracle iPayment Implementation Guide

Configuring iPayment 2-1

2
Configuring iPayment

This chapter presents detailed information on the tasks you should perform to implement
Oracle iPayment. Topics include:

■ Overview of Oracle iPayment Implementation Steps

■ Creating an Oracle iPayment User

■ Overview of iPayment Servlets

■ Implementing Field Installable Servlets

■ Configuring Oracle iPayment Servlets

■ Configuring the ECApp Servlet

■ Setting Up SSL Security for the ECApp Servlet

■ Configuring iPayment Sample Servlet

■ Configuring iPayment Loopback Servlet

■ Setting Up SSL Security for Payment System Servlet Communication

■ Enabling the Scheduler

■ Registering Electronic Commerce Applications

■ Loading Risky Instruments

■ Enabling the XML Framework

■ Setting up Entities in the Oracle iPayment User Interface

Overview of Oracle iPayment Implementation Steps

2-2 Oracle iPayment Implementation Guide

Overview of Oracle iPayment Implementation Steps

This table gives you an overview about the steps that are required for implementing Oracle
iPayment in different scenarios.

Implementation
Steps

Oracle iPayment with other
preintegrated Oracle
Applications1

Standalone new install or 3i
standalone implementation
upgrading to 11i standalone

3i implementation
upgrading to 11i2

Creating an Oracle
iPayment User

Mandatory Mandatory Mandatory

Configuring the ECApp
Servlet

Mandatory Mandatory if you are using
PL/SQL APIs

Mandatory

Configuring iPayment
Sample Servlet

Mandatory only if you want to
test iPayment installation for a
payment gateway.

Mandatory only if you want to test
iPayment installation for a payment
gateway.

Mandatory only if you
want to test iPayment
installation for a
payment gateway.

Configuring iPayment
Loopback Servlet

Mandatory only if you want to
test iPayment installation for a
processor model payment system.

Mandatory only if you want to test
iPayment installation for a
processor model payment system.

Mandatory only if you
want to test iPayment
installation for a
processor model
payment system.

Configuring CyberCash
Servlet

Mandatory only if you are using
Cybercash as a payment system

Mandatory only if you are using
Cybercash as a payment system

Mandatory only if you
are using Cybercash as
a payment system

Configuring
Paymentech

Mandatory only if you are using
Paymentech as a payment system

Mandatory only if you are using
Paymentech as a payment system

Mandatory only if you
are using Paymentech
as a payment system

Configuring FDC North Mandatory only if you are using
FDC (North) as a payment
system

Mandatory only if you are using
FDC (North) as a payment system

Mandatory only if you
are using FDC (North)
as a payment system

Configuring Concord
EFSnet

Mandatory only if you are using
Concord as a payment system

Mandatory only if you are using
Concord as a payment system

Mandatory only if you
are using Concord as a
payment system

Configuring Citibank Mandatory only if you are using
Citibank as a payment system

Mandatory only if you are using
Citibank as a payment system

Mandatory only if you
are using Citibank as a
payment system

Enabling the Scheduler Not Necessary Mandatory Not Necessary

Overview of Oracle iPayment Implementation Steps

Configuring iPayment 2-3

Loading Risky
Instruments

Not Utilized.The integrated
applications do not utilize this
functionality

Optional Not Applicable

Enabling the XML
Framework

Mandatory Mandatory Mandatory

Setting up Entities in the
Oracle iPayment User
Interface

Mandatory Mandatory Mandatory

Implementing Electronic
Commerce Applications
APIs

Not Necessary-has already been
implemented

Mandatory Not Applicable

Implementing Back-end
Payment System APIs

Mandatory if you are not using
existing integration.

Mandatory if you are not using an
existing integration.

Implement as a servlet
and not as a cartridge

1 Preintegrated Oracle Applications include iStore, Order Capture, Telesales, Order Management, Oracle Receivables, Oracle Payables and
Collections.

2 3i Implementation upgrading to 11i but retaining existing functionality (same as a non-Oracle client).

Implementation
Steps

Oracle iPayment with other
preintegrated Oracle
Applications1

Standalone new install or 3i
standalone implementation
upgrading to 11i standalone

3i implementation
upgrading to 11i2

Creating an Oracle iPayment User

2-4 Oracle iPayment Implementation Guide

Creating an Oracle iPayment User

You can access the Oracle iPayment user interfaces by creating separate users based on the
business needs. For example, by using this procedure to create an iPayment administrative
user, the Oracle iPayment administrator is differentiated from the sysadmin user thereby
allowing better security. You can then log in as this created user. A user can have multiple
responsibilities and roles.

Prerequisites
■ Oracle 11i installed.

■ Oracle iPayment with responsibility, menu, security roles, and permissions should be
installed.

Steps
1. Access the Oracle iPayment user interface through the Oracle Admin Console at the

following URL:

http://<machine>:<port>/OA_HTML/US/ICXINDEX.htm

Replace the machine and the port with the name of the machine and the port where the
Apache server is installed.

2. Login as —

Username: SYSADMIN

Password: SYSADMIN

3. Navigate to the Users tabs on the Admin Console, and click on the User Maintenance
link in the side navigation bar.

4. Navigate to Security > User. Click Define.

5. Enter the username and password for the application user.

6. Assign the iPayment Payment Administrator responsibility to the application user in the
Responsibility tabbed region.

Note: The iPayment Administrator User Interface uses Oracle
Application’s standard OA HTML framework. The new user interface
replaces the JTF UI for iPayment administration. To access the daily
business close reports, you continue to login using the JTF UI.

Creating an Oracle iPayment User

Configuring iPayment 2-5

7. Save your work.

8. Use the application user to login and access the new iPayment Administrator UI through
the standard Self Service Applications Login page.

9. Log off as sysadmin and login through the Self Service Applications Login page using
the new username.

You can also use this application user to access the daily business close reports that is in
the JTF UI. In order to do this, you need to perform the following additional setup steps.

To Access the JTF User Interface
1. In the Define User form, add the "iPayment Daily Business Close User" responsibility

for the user you created above.

2. Save your changes.

3. Navigate to Profile > System Profile option in the form.

4. Click User. Type the newly created user name in the field.

5. Search for JTF_PROFILE_DEFAULT% profile option using wildcards.

6. Edit the profile fields for the user id that was created.

JTF_PROFILE_DEFAULT_APPLICATION: appID (for Oracle iPayment it is 673).

There are additional, less important profiles which can also be set up (i.e., ICX_
LANGUAGE). If these profiles are not set up, the site's default profiles are used. For a
complete list of profile options, see ’System Profile Options’ in the latest CRM
Foundation Components Implementation Guide. For more information, see ’Setting
User Responsibilities for an existing AOL User’ in the latest CRM Foundation
Components Concepts and Procedures Guide.

7. Click Save.

8. Exit from Self Service Applications.

9. Login to the Admin Console as SYSADMIN from the following URL:

http://<machine>:<port>/OA_HTML/jtflogin.jsp

10. Navigate to the Users tabs on the Admin Console.

Note: You can link a user to more than one responsibility. For
information, on the valid responsibilities in iPayment, see Assigning Roles
and Responsibilities to an iPayment User.

Creating an Oracle iPayment User

2-6 Oracle iPayment Implementation Guide

11. Click on the User Maintenance link in the side navigation bar.

12. Query the user that you created using the Self Service Applications.

13. Click on the user name link to open the User-Details page. Click Roles.

14. Select the roles associated with the responsibility. Move it to the Assigned Roles
column.

For more information on the valid roles for each responsibility in iPayment, see
Assigning Roles and Responsibilities to an iPayment User.

15. Click Update.

For more information, see ’Assigning Roles to the User’ in the latest CRM Foundation
Components Implementation Guide.

16. You have just finished the additional steps required for accessing the JTF UI. Now you
may access the daily business close reports UI through the JTF login page with the user.

17. Log off as sysadmin and login through the JTF Login page using the newly created user
name to access the iPayment Transaction reporting UI.

When a user with multiple responsibilities logs in for the first time, the system prompts
the user to select a default responsibility.

Creating an Oracle iPayment User

Configuring iPayment 2-7

Assigning Roles and Responsibilities to an iPayment User

You can assign roles and responsibilities to a new user or to an existing user. To create a
user, see Creating an Oracle iPayment User. You can assign multiple responsibilities to a
user. For users with "iPayment Daily Business Close User" responsibility, you should link
the appropriate role as defined in the table below.

This table lists the seeded iPayment responsibilities and their description.

This table lists the responsibility and the corresponding roles

Note: Administrative users can only access the new UIs if they have the
iPayment Payment Administrator responsibility assigned to them. For
existing administrative users, you need to manually assign this
responsibility.

Responsibility Description

System Administrator for
iPayment

Users with this responsibility has access to "Visibility Configuration"
UIs to create and update iPayment Visibility Classes.

iPayment Payment
Administrator

This is the new responsibility required to access the new UI using the
Self Service framework.

iPayment for Payroll Clerk Users with this responsibility can only see the operations screen for
outbound bank payments

iPayment for Receivables
Clerk

Users with this responsibility can only see the operations screen for
inbound bank remittances.

iPayment Daily Business
Close User

Users with this responsibility have access to the iPayment
Transaction Reporting UI.

Responsibility Role Permissions

iPayment Daily
Business Close
User

IBY_DBC_ROLE IBY_DBC_VIEW_PERMISSION

Overview of iPayment Servlets

2-8 Oracle iPayment Implementation Guide

Overview of iPayment Servlets

Oracle iPayment provides a complete payment solution. The Payment System Integration
Model allows integration with third party payment systems for credit card, purchase card,
PINless debit card, and bank account transfer processing. The payment systems
communicate with the payment processors and the acquires/banks to process payment
transactions.

Oracle iPayment integrations packaged with EBusiness suite products start functioning after
you install and configure the ECApp servlet. The ECApp servlet provides an interface to the
iPayment engine to process payment related operations such as authorization, capture, and
return. The ECApp servlet is primarily used for the PL/SQL APIs provided by iPayment.
Click on the following link for steps on configuring the ECApp servlet.

■ Configuring the ECApp Servlet

There are three options for integrating with third party payment systems, also known as back
end payment systems.

■ Use the payment system integration provided by Oracle iPayment. For inbound
payments using credit, PINless debit cards, or purchase cards Oracle iPayment provides
integration with CyberCash, Paymentech, Concord EFS, Citibank, and First Data
(North). Use the following links to guide you to implement the appropriate payment
system in your organization.

Sample Servlet
■ Configuring iPayment Sample Servlet

■ Configuring iPayment Loopback Servlet

Credit Card/Purchase Card Servlets
■ Appendix F, "Configuring CyberCash Servlet"

■ Appendix G, "Configuring Paymentech"

■ Appendix H, "Configuring FDC North"

■ Appendix I, "Configuring Concord EFSnet"

■ Appendix J, "Configuring Citibank"

■ Use the payment integration provided by the vendor. Many payment system vendors
have partnered with Oracle to build integration with Oracle iPayment. These field

Overview of iPayment Servlets

Configuring iPayment 2-9

installable servlets are available from Oracle’s payment system partners, such as
VeriSign.

■ Build integration by using the published Payment System Integration Model for credit
cards, PINless debit cards, and purchase cards. See Implementing Back-end Payment
System APIs for instructions on how to build your own field installable servlets.

Implementing Field Installable Servlets

2-10 Oracle iPayment Implementation Guide

Implementing Field Installable Servlets

Oracle iPayment supports field-installable servlets. These are payment system servlets not
bundled with Oracle iPayment. This feature allows a payee to acquire a new, additional, or
upgraded payment system servlet and configure it in the same way as the payment system
servlets bundled with Oracle iPayment.

The ability to add field-installable servlets provides payment flexibility and allows new
releases of Oracle iPayment and the payment systems to be independent of each other. It
also enables electronic commerce applications to customize the payment system for their
specific needs and regions.

Field-installable payment system servlets for Oracle iPayment are usually available from
Oracle’s payment system partners, such as VeriSign.

Configuring Oracle iPayment Servlets

Configuring iPayment 2-11

Configuring Oracle iPayment Servlets

Oracle iPayment has several Java Servlets, some of which are not configured as a part of
Oracle Applications Rapid Installation process. Follow the instructions given below to
configure them.

These instructions assume that you know how to configure Java Servlets with Apache Web
Server. In particular, we assume you know where to find Apache and JServ configuration
files on the node where the Apache Web Server is installed. For more information, see
Apache documentation available at http://www.apache.org.

Logon to Web Server Node
Log on to your Web Server node as the applmgr user and run the environment file to set up
the Oracle Applications environment. Your environment should have the following variable
defined:

$IBY_TOP refers to the top-level directory of Oracle iPayment installation. In Windows NT
or 2000, Oracle iPayment top level directory is located in %APPL_TOP%\iby.

Verify That a Common Servlet Zone is Configured in Your Environment.
A servlet zone should already exist in your Apache Web Server installation. Check the
jserv.properties file for a line beginning with “zones=”. If you see such a line, a servlet zone
has been set up. By default this zone is called “root”. The root zone is associated with the
zone.properties file. It you are using a different zone and not the root zone, you may have to
make the changes listed below in a different <SERVLET_ZONE>.properties file. Similarly,
your servlets will be invoked as:

Note: This guide includes instructions for several platforms. We assume
you are familiar with the particular platform you are configuring. For
example, environment variables in UNIX look like $ABC/lib. In Windows
NT, the environment variables look like %ABC%\lib.

Note: Apache and Jserv may not interpret environment variables in their
configuration files. Expand any environment variables of the type $ABC
to the values they actually contain on your installation. For example, if
$IBY_TOP is defined at /u03/apps/iby/11.5, you need to replace $IBY_
TOP with /u03/apps/iby/11.5 in the instructions below.

Configuring Oracle iPayment Servlets

2-12 Oracle iPayment Implementation Guide

http://<hostname>:<port>/<SERVLET_ZONE>/<servlet_name>

Click the links below to configure the respective servlets:

■ Configuring the ECApp Servlet

■ Appendix F, "Configuring CyberCash Servlet"

■ Appendix G, "Configuring Paymentech"

■ Appendix H, "Configuring FDC North"

■ Appendix I, "Configuring Concord EFSnet"

Setting iPayment JVM parameters
iPayment back end servlets may be installed on a different host from the iPayment engine.
When installed on a different machine, the servlet has no access to the profile values set up
in the data base. In such case, you can set the values using the JVM parameters for each
iPayment instance.

-DAFLOG_ENABLED=TRUE
-DAFLOG_LEVEL=<vlue such as ERROR>
-DAFLOG_MODULE=iby%
-DAFLOG_FILENAME=<file name with path such as /tmp/aferror1.log>
-DIBY_XML_BASE=<value of XML base>

You can set these parameters by passing them as command line arguments to the Java
executable.

See iPayment Profile Options for more details on the specific profile options that can be set
in the database.

Load Balancing Recommendations
The maximum number of concurrent requests that a servlet can process without blocking is
equal to the number of JServ instances running in its servlet zone. You should have a
number of JServ instances running equal to the average number of concurrent requests, if
not slightly more since, under load balancing, JServ instances are randomly chosen, making
it possible that two concurrent requests could be sent to a JServ instance when an idle one is
already available.

Running multiple JServ instances within a zone does not significantly add to your CPU load
versus running a single instance, but it does add to your memory load as each instance
requires its own JVM. On Solaris, each JVM requires over 6MB of main memory though
less than 4MB are actually used, since JVMs share common libraries.

Configuring Oracle iPayment Servlets

Configuring iPayment 2-13

Note: With most processors, the online port is never released by
iPayment, but must be continuously held. Additionally, most processors
impose a limitation of having only a single active connection, often for
reasons such as security.

As the online port is never released by iPayment, the recommendation is
to have a dedicated JVM for that servlet. Therefore we can have only one
servlet per JVM and hence one port. So iPayment processor model servlets
do not support load balancing.

Configuring the ECApp Servlet

2-14 Oracle iPayment Implementation Guide

Configuring the ECApp Servlet

An ECApp servlet is the only front-end servlet in iPayment. You need to configure the
ECApp servlet in order to use the PL/SQL API of Oracle iPayment and for Oracle iPayment
3i Backward Compatibility API.

Set up the Virtual Path Mapping for ECApp Servlet
The ECApp Servlet is automatically set up (and named ibyecapp) by Rapid Install. You can
use the following instructions to set up the servlet manually, or to confirm that the ECApp
servlet is configured properly.

Add the following line to your zone.properties file in the Servlet Aliases section:
servlet.ecapp.code=oracle.apps.iby.ecservlet.ECServlet

This allows the ECAppservlet to be invoked as: http://<hostname>:<port>/servlet/ecapp

Where <hostname> is the name of the server on which you are running Oracle iPayment.
<port> is the port number where ECAppservlet has been installed.

Setting Up SSL Security for the ECApp Servlet

Configuring iPayment 2-15

Setting Up SSL Security for the ECApp Servlet

If the ECAPP servlet is located at an HTTPS URL, then you must set these two wallet
profile options: IBY: Wallet Location and IBY: Wallet Password. See iPayment Profile
Options for more details.

The public certificate of the web server which hosts the ECAPP servlet must have been
imported as a trusted certificate into the Oracle wallet. See Using Oracle Wallet Manager in
the Oracle Advanced Security Administration Guide.

Configuring iPayment Sample Servlet

2-16 Oracle iPayment Implementation Guide

Configuring iPayment Sample Servlet

The iPayment sample servlet is a gateway model servlet that you can use to test your
iPayment implementation without having to register with a real payment system or set up
and configure the payment system specific servlet. The sample servlet only supports core
iPayment operations such as authorization, capture, and return for credit cards.

You can use the sample servlet to test the integration between your EC application and
iPayment. All transactions sent to the sample servlet should succeed, unless the amount
matches certain pre-set values, in which case an error is induced. You can use the integration
to simulate error scenarios and test error handling in the calling EC application.

This table lists the pre-defined amounts and their associated error codes.

Installing the Sample Servlet
Use the following steps to configure the sample servlet.

1. Add the following alias statement to the configuration file of the servlet zone you wish
the sample servlet to run in:

servlet.oramipp_lop.code=oracle.apps.iby.bep.loop.LoopBackServlet

Amount Error Message

1001 Communication error when contacting the gateway. Please try again.

1002 Given order id used for a previous transactions.

1004 A parameter to this transactions is either malformed or missing.

1005 Generic BEP error occurred. Please check error code.

1008 Transaction. type is not valid or not supported for this merchant.

1016 Internal BEP failure. Please check error code.

1017 Account does not have sufficient funds to complete this transaction.

1019 Invalid credit card number/expiration date.

1020 Authorization declined.

1021 Voice authorization code incorrect.

Note: This line should already be in the properties file after you have
installed iPayment. You only need to verify that it exists.

Configuring iPayment Sample Servlet

Configuring iPayment 2-17

2. In the same configuration file, provide the following servlet parameters:

This table lists the is zone-wide parameters (set by a statement of the form
servlet.default.initArgs=).

Configuring Sample Servlet as a Payment System
Once the sample servlet is installed and configured, the servlet must be added as a payment
system in order to be used. Login to the iPayment administrative GUI as the administrative
user and create a payment system for the sample servlet with the following values:

Name: Sample Servlet

Suffix: lop

Payment System Type: Gateway

Base URL: example- http://localhost:8080/servlets

Administration URL: http://www.yourcompany.net

Supported Payment Instrument: Credit Card

Adding a Merchant Account
For each payee that uses the sample servlet, enter any value for the payment system
identifier:

example - Loop

Testing the Sample Payment System
To test the sample payment system, create a transaction using the pages on the Operations
tab in the iPayment administrative UI. Verify that you have a routing rule which routes the
transaction to the sample payment system and that your transaction matches the routing rule.
For more information, see Understanding Routing Rules and Managing Operations.

Parameter Example Value Description

errorfile /tmp/error.log Debug file used to write errors and stack traces to.

debugfile /tmp/debug.log Log file used to write debugging messages to.

debug true, false Turns debugging on or off.

Note: The sample payment system should already exist in the iPayment
setup. You only need to verify that it exists.

Configuring iPayment Loopback Servlet

2-18 Oracle iPayment Implementation Guide

Configuring iPayment Loopback Servlet

The iPayment loopback servlet is a processor model servlet that you can use to test your
iPayment implementation without having to register with a real payment system or set up
and configure the payment system specific servlet. The loopback servlet supports core
iPayment operations such as authorization, capture, and return for credit cards in addition to
inbound and outbound bank payments.

You can use the loopback servlet to test the integration between your EC application and
iPayment. All transactions sent to the sample servlet should succeed unless the amount
matches certain pre-set values, in which case an error is induced. You can use the integration
to simulate error scenarios and thus test error handling in the calling EC application.

The processor model servlet does not connect to any back-end payment system but emulates
the behavior of a payment system returning successful responses to requests.

See Understanding Gateway-Model and Processor-Model Payment Systems in the Oracle
iPayment Concepts and Procedures Guide for more details.

This table lists the pre-defined amounts and their associated error codes for credit card
transactions. The loopback servlet should return Success for any credit card transaction with
an amount other than the ones specified in the table below.

Installing the Loopback Servlet
The processor model loopback servlet requires no database connectivity and can be installed
on a different host from iPayment. To install on a different host, follow these steps:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

Amount Error Message

10 Invalid Merchant Account.

20 Decline - Do not honor

30 Expired card

40 Hold call: Pick up card - Lost

50 Hold call: Pick up card - Stolen

60 Insufficient funds

70 Expired Card

Configuring iPayment Loopback Servlet

Configuring iPayment 2-19

2. Add $APPL_TOP/java to the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter" to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Configuration
The following configuration steps are mandatory regardless of whether iPayment and the
loopback servlet are on the same machine or not:

1. Add the following alias statement to the configuration file of the servlet zone you wish
the Processor Model Loopback Servlet servlet to run in:

servlet.oramipp_lpr.code=oracle.apps.iby.bep.proc.loopproc.LoopProcServlet.

2. In the same configuration file, provide the following servlet parameters:

For setting the zone-wide parameters, see Table G–1.

This table lists parameters particular to the Loopback servlet (set by a statement of the
form servlet.oramipp_lpr.initArgs=).

Parameter Example Value Description

ARCHIVE /var/archive Directory where iPayment response files will be written
to. If communication between iPayment and the servlet
fails in the middle of a transaction and iPayment retries
that transaction at a later date, the archive directory will
allow the servlet to know the original results of the
transaction and so forward those to iPayment instead of
re-attempting the request (thus avoiding double billing
or double authorization).

MAX_ARCHIVE_
AGE

10 Maximum age (in days) that a response file will be
saved in the archive. The FDC North servlet will remove
all responses in the archive older than this age every
time it starts.

LPR_ONLINE_
IP

192.168.0.1 Please specify any IP address of any valid host machine
to which the servlet can establish a connection. This is a
technical requirement and no data is sent to this
machine.

LPR_ONLINE_
PORT

8000 Port number to use along with the above IP address.

LOCAL_BATCH_
DIR

/tmp/batch Directory where batch files to are written to.

Configuring iPayment Loopback Servlet

2-20 Oracle iPayment Implementation Guide

Configuring Loopback Servlet as a Payment System
Once the loopback servlet is installed and configured, the servlet must be added as a
payment system in order to be used. Login to the iPayment administrative GUI as the
administrative user and create a payment system for the loopback servlet with the following
values:

Name: iPayment Loopback Servlet

Suffix: lpr

Payment System Type: Processor

Base URL: example- http://localhost:8080/servlets

Administration URL: http://localhost:8080/servlets

Supported Payment Instrument: credit card, bank account (BR and DD), bank payment

Adding a Processor Model Loopback Servlet Merchant Account
For each payee that will you want to use Processor Model Loopback Servlet, you can enter
any value as a Payment System Identifier.

example - Loop

Enabling the Scheduler
Because the loopback servlet is a processor-model payment servlet, all transactions except
authorizations should always be OFFLINE transactions. When a BATCHCLOSE operation
is submitted, the iPayment engine picks up and sends the transactions to the loopback
servlet. The servlet does not submit these to any payment system, but the transactions are
updated to a successful status emulating the behavior of a real payment system.

The following is a list of valid tasks you may submit form the scheduler:

BATCHCLOSE

BATCHQUERY

PDCBATCHCLOSE

LOCAL_EFT_
BATCH_DIR

test/12345 Directory where inbound and outbound payment files
are written.

LOCAL_
QUERY_DIR

test/data/12345 Directory where query files are picked up from.

Parameter Example Value Description

Configuring iPayment Loopback Servlet

Configuring iPayment 2-21

PDCBATCHQUERY

PDCBATCHRETRY

EFTBATCHCLOSE

EFTBATCHRETRY

EFTPBATCHRETRY

EFTPBATCHCLOSE

Testing the Sample Payment System
To test the loopback payment system, create a test credit card transaction using the pages on
the Operations tab in the iPayment administrative UI. Verify that you have a routing rule
which routes the transaction to the processor model loopback payment system and that your
transaction matches this rule. For more information see Routing Rules and Managing
Operations in the Oracle iPayment Concepts and Procedures Guide.

You can also generate inbound and outbound bank payment test transactions from Oracle
Payables and Oracle Receivables and test the iPayment implementation by defining
appropriate routing rules.

Setting Up SSL Security for Payment System Servlet Communication

2-22 Oracle iPayment Implementation Guide

Setting Up SSL Security for Payment System Servlet
Communication

When Oracle iPayment communicates with the payment system servlets, the information
exchanged may be sensitive information such as credit card numbers. If the communication
is not secure, it poses a security risk.

The security risk increases in the following circumstances:

■ If Oracle iPayment and the payment systems are installed on separate machines

■ If Oracle iPayment is running outside your firewall

Steps
■ To set up a back end payment system servlet with secured sockets layer follow the

procedures in Apache’s mod-ssl documentation (http://www.mod-ssl.org/docs). Make
sure that your SSL server has a complete certificate chain to the root certificate. SSL’s
client toolkit requires it.

■ Set up the BASE URL parameter of back end payment system using https as the
protocol.

Setting Up SSL Runtime for Oracle iPayment
Oracle iPayment requires a set of runtime libraries for supporting SSL communication.
These runtime SSL libraries are included with the Oracle 8i distribution, but are not installed
on an applications tier by default. If you are using Oracle iPayment, you must follow these
steps to manually configure SSL on your web server.

To configure the SSL:

1. Copy SSL runtime libraries to $JAVA_TOP.

2. Log on to your web server as the applmgr user and run the environment file for the
appropriate product group.

3. Go to the $JAVA_TOP directory, create a subdirectory “ssl”, and enter that
subdirectory. For example:

% cd $JAVA_TOP

% mkdir ssl

% cd ssl

4. Copy the following three files from any 8i installation to the current directory:

Setting Up SSL Security for Payment System Servlet Communication

Configuring iPayment 2-23

$ORACLE_HOME/jlib/javax-ssl-1_1.jar

$ORACLE_HOME/jlib/jssl-1_1.jar

$ORACLE_HOME/lib/libnjssl8.so

5. Set up the runtime environment variables.

If you are building your electronic commerce application as a servlet and JServ is set up
to start automatically, you need to modify CLASSPATH and LD_LIBRARY_PATH in
your servlet engine’s configuration.

If your JServ is set up to start manually, you need to modify the CLASSPATH and LD_
LIBRARY_PATH in your shell environment variables, or in the script used to start
JServ (for example, jservctl).

Here is an example for modifying these variables in the Apache servlet engine (JServ)
configuration file. For Apache JServ, you have to edit the jserv.properties file to set the
CLASSPATH and LD_LIBRARY_PATH environment variables. To add the two SSL
jar files from step 1 to the CLASSPATH, add the following lines to jserv.properties:

wrapper.classpath=$JAVA_TOP/ssl/javax-ssl-1_1.jar

wrapper.classpath=$JAVA_TOP/ssl/jssl-1_1.jar

To add the shared library from step 1 to the LD_LIBRARY_PATH, you must find the
line in jserv.properties that begins with:

wrapper.env=LD_LIBRARY_PATH=

and add the following to the end of that line:

$JAVA_TOP/ssl

Note: $ORACLE_HOME in this case refers to your 8i directory, not
the default Oracle Home, which is based on 8.0.6.

Note: If you do not have an 8i installation on your web server, you can
copy these files from your database server using the ftp command.

Note: Use a colon to separate the directory you are adding from the
existing ones.

Setting Up SSL Security for Payment System Servlet Communication

2-24 Oracle iPayment Implementation Guide

If there is no such LD_LIBRARY_PATH line, create one by adding the following line
to jserv.properties:

wrapper.env=LD_LIBRARY_PATH=$JAVA_TOP/ssl

If you have a stand-alone application, you need to modify CLASSPATH and LD_
LIBRARY_PATH. Append:$JAVA_TOP/ssl/javax-ssl-1_1.jar: $JAVA_
TOP/ssl/javax-ssl-1_1.jar to CLASSPATH and append:$JAVA_TOP/ssl to LD_
LIBRARY_PATH environment variable.

Note: You may not have defined the $JAVA_TOP environment variable
in your environment. In that case, you should include the fully qualified
physical path.

Enabling the Scheduler

Configuring iPayment 2-25

Enabling the Scheduler

The iPayment scheduler provides the ability to handle payment transactions that cannot be
processed in real-time. Such transactions may be of two kinds - transactions that can be
processed some time after they are submitted to iPayment, or transactions where the
back-end payment system cannot process requests in real-time. Scheduling is also useful for
automating recurrent associated tasks such as batch closes. Batch closes are performed in a
processor-model payment system like Paymentech.

The iPayment scheduler can be configured to perform specific tasks with each invocation.
The tasks to be performed are specified through task parameters.

For the scheduler to run successfully, ensure that jsdk.jar library and ApacheJServ.jar are in
the CLASSPATH of the machine where the scheduler is running.

Registering Electronic Commerce Applications

2-26 Oracle iPayment Implementation Guide

Registering Electronic Commerce Applications

All the APIs that an electronic commerce application calls must pass its identifier, which lets
Oracle iPayment track the application that the requests are coming from. The identifier
generated during registration must be stored by the application. You must only register
applications that are not part of the Oracle e-Business suite. All electronic commerce
application needs to pass the identifier in the API calls. Oracle iPayment provides an
ECConfig utility, to add, modify, or list electronic commerce applications.

Requirements for Setting up and Using the ECConfig Utility
■ Java executable in your application environment

■ $APPL_TOP/java in your CLASSPATH environment variable.

This is included in the classpath after you set up the applications environment

■ These two jar files must also exist in the path:

/iAS/Apache/Jsdk/lib/jsdk.jar
/iAS/Apache/Jserv/libexec/ApacheJServ.jar

Using the EcConfig Utility
■ To add an electronic commerce application, use the following command:

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile> oracle.apps.iby.ecapp.EcConfig
add “Ec App Name” “Short Name”
Example: java-DJTFDBCFILE=<dbc file
location>-Dframework.Logging.system.filename=<log file>
-Dservice.Logging.common.filename=<logfile> oracle.apps.iby.ecapp.EcConfig add
“my ec application” “myapp”

■ To modify a registered electronic commerce application, use the following command:

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile> oracle.apps.iby.ecapp.EcConfig
modify <id> 'Ec App Name' 'Short Name'

<id> is the identifier of the electronic commerce application that was generated while
adding the electronic commerce application. You can also retrieve the identifiers of
applications using the list command.

Example: java-DJTFDBCFILE=<dbc file
location>-Dframework.Logging.system.filename=<log file>

Registering Electronic Commerce Applications

Configuring iPayment 2-27

-Dservice.Logging.common.filename=<logfile> oracle.apps.iby.ecapp.EcConfig
modify 1234 “ec app name” “ecapp”

■ To list all the registered electronic commerce applications use the following command:

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile> oracle.apps.iby.ecapp.EcConfig
list

Loading Risky Instruments

2-28 Oracle iPayment Implementation Guide

Loading Risky Instruments

The Risky Instruments upload utility is a Java application used to store risky payment
instruments. It is called RiskyInstrUtil.

Requirements
■ Java executable in your application environment

■ Oracle Applications Java class Library in the CLASSPATH. The Oracle Applications
Java class Library is included in the classpath after you set up the applications
environment.

Java Commands
java-DJTFDBCFILE=<dbc file location> -Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile>
oracle.apps.iby.irisk.admin.RiskyInstrUtil [ADD/DELETE] [filename]

This command requires an operation and a filename. It modifies the risky instruments table
in the database depending on the entries in the file.

Or

java-DJTFDBCFILE=<dbc file location>-Dframework.Logging.system.filename=<log
file> -Dservice.Logging.common.filename=<logfile>
oracle.apps.iby.irisk.admin.RiskyInstrUtil DELETE all

This command deletes all the risky instruments in the table.

File Format
■ Each line corresponds to one risky instrument.

■ The fields are comma separated and are in the following order: Payee identifier,
instrument type, and creditcard number. Instrument type has to be a CREDITCARD.
For example:

payee1, CREDITCARD, 4500234023453345

■ For the add operation, each risky instrument in the file, that has a valid payee identifier,
instrument type, and a new credit card number, is added to the table.

■ For the delete operation, each risky instrument that matches the payee identifier,
instrument type, and the credit card fields, is deleted from the table.

■ The command prints the results of the operation on each risky instrument in the file.

Enabling the XML Framework

Configuring iPayment 2-29

Enabling the XML Framework

iPayment incorporates a XML framework allowing it to communicate with BEPs using
XML. Enabling this framework is mandatory and requires the following steps:

■ Oracle's XML parsing libraries (xmlparserv2.jar and sax2.zip) must be in iPayment's
CLASSPATH. Please check the relevant properties files for the Jserv instance iPayment
is running on. By default, both libraries are included in the Jserv configuration of
Oracle's Internet Application Server (IAS).

■ The IBY: XML_BASE property (and, optionally, the IBY: JAVA_XML_LOG
property) must have correct values. See ’iPayment Properties’ in the Oracle iPayment
Concepts and Procedures Guide for a description of both properties.

Setting up Entities in the Oracle iPayment User Interface

2-30 Oracle iPayment Implementation Guide

Setting up Entities in the Oracle iPayment User Interface

To set up Oracle iPayment user interface, see the Oracle iPayment Concepts and Procedures
Guide.

Using iPayment with External Front End Applications 3-1

3
Using iPayment with External Front End

Applications

This chapter explains the public APIs used in Oracle iPayment. Topics include:

■ Overview of Oracle iPayment APIs

■ Implementing Electronic Commerce Applications APIs

■ Security Considerations

Overview of Oracle iPayment APIs

3-2 Oracle iPayment Implementation Guide

Overview of Oracle iPayment APIs

Oracle iPayment provides APIs which can be implemented.

■ Implementing Electronic Commerce Applications APIs: these APIs are mainly used for
payment processing.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-3

Implementing Electronic Commerce Applications APIs

Oracle iPayment provides various types of APIs to integrate electronic commerce
applications with Oracle iPayment.

If you are using an electronic commerce application other than the preintegrated Oracle
applications, you must implement the electronic commerce application’s APIs to link your
application to iPayment.

Electronic commerce applications can embed the Oracle iPayment functionality within their
application, which eliminates the need to access Oracle iPayment as a standalone
application, and hence improves performance, and simplifies the setup.

This section describes the various APIs that are provided to the electronic commerce
applications for using the features of Oracle iPayment. The APIs were categorized into these
categories:

■ Payment Instrument Registration APIs

■ Payment Processing APIs

■ Risk Management APIs

■ Credit Card Validation APIs

■ Status Update API

Oracle iPayment provides APIs in these programming languages:

■ Java APIs for Electronic Commerce Application

■ PL/SQL APIs for Electronic Commerce Applications

This diagram shows the integration of APIs with Oracle iPayment.

Implementing Electronic Commerce Applications APIs

3-4 Oracle iPayment Implementation Guide

Figure 3–1 Oracle iPayment integrating with APIs

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-5

Payment Instrument Registration APIs

Payment Instrument APIs provide the functionality to register a payor’s bank, credit card,
PINless debit card, or purchase card.

OraInstrAdd
This API is provided to register a user’s bank, credit card, PINless debit card, or purchase
card account information with Oracle iPayment. Oracle iPayment generates a PmtInstId if
this registration is successful. This identifier is used for payment transactions or for deleting,
modifying, or inquiring about this account. Instrument number (credit card number, PINless
debit card, purchase card number, or bank account number) and payor identifier together
have to be unique.

OraInstrMod
This API is provided to modify registered payment instrument account information with
Oracle iPayment.

OraInstrDel
This API is provided to delete registered payment instrument account information.

OraInstrInq
There are two inquiry APIs. One queries instrument information for a single given
instrument. The other queries all registered payment instruments for a given payor. The
result may contain a mix of credit cards, PINless debit cards, purchase cards, or bank
accounts.

Payment Processing APIs

3-6 Oracle iPayment Implementation Guide

Payment Processing APIs

These APIs are the transactional APIs that support various payment operations. The
electronic commerce applications use these APIs to process various transaction types. For
example, authorization of credit cards, PINless debit cards, and purchase cards, transfer of
funds from one bank account to another, capture, cancel, return, and others. A list of such
APIs are provided below.

OraPmtReq
This API supports authorization and authorization with capture for credit card, PINless debit
card, and purchase card payments. This API also supports inbound account transfers and
electronic funds transfer online validation.

When an electronic commerce application is ready to invoke a payment request (possibly
due to a user action), it calls this API. If the operation is successful, a transaction identifier is
generated by Oracle iPayment and is returned as part of the result. This transaction identifier
can be used later by the electronic commerce application to initiate any other operation on a
payment.

For example, to modify a payment or capture a payment, the electronic commerce
application sends this identifier with other information that is needed to perform the
operation requested.

If a payment is either a credit card, PINless debit card, or a purchase card payment, and the
request is online, Oracle iPayment can perform risk analysis with the payment request
(Authorization).

To enable risk analysis with authorization, either setup the payment request with risk flag set
to true in one of its input objects (Refer to Java Documentation for details) or check the
Enabled radio button in the Risk Management Status screen for that payee. If either of the
conditions are satisfied, the electronic commerce application will check the Riskresp object
that is returned as part of the payment response object to the Payment Request API.
Electronic commerce applications can also invoke the Payment Request API to evaluate a
specific formula by passing the PaymentRiskInfo object.

This API is also used after a voice authorization is done to enable Oracle iPayment to handle
follow-on operations. To use it for a voice authorization, set up the payment request’s input
objects with the Voice Authorization flag set to true and the Authorization Code variable set
to the authorization code issued by the financial institution. See Oracle iPayment Java
Documentation for details.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-7

OraPmtCanc
A scheduled payment can be canceled by an electronic commerce application using this API.

OraPmtQryTrxn
This API provides interface for inquiring the status or history of a payment to electronic
commerce application. If a payment has been scheduled and the payment system supports an
inquiry operation, the latest status is obtained from the payment system. Otherwise it sends
the latest status of the payment as it is in Oracle iPayment. History of a payment can also be
obtained.

OraPmtCapture
When a credit card or purchase card is used as part of a payment request and only an
authorization is requested, the electronic commerce application has to capture the payment
at a later time. The following APIs allow the electronic commerce application to capture all
such payments.

OraPmtReturn
This API is used for credit card, PINless debit card, and purchase card specific operations. It
allows processing returns from the payor.

Gateway model payment systems process capture operations online. If the capture is still in
the Gateway's open batch (that is, the batch has not been closed) you should call
OraPmtVoid. If the batch has been closed, you need to call OraPmtReturn. The batch needs
to be closed again before the return is processed. This can be confusing since Gateways can
be set up to close batches automatically, for example, once per day.

Processor model payment systems process captures offline. If the capture is still in
iPayment's open batch, call OraPmtVoid. If the batch has been closed, call OraPmtReturn.
The batch needs to be closed again after the return operation for the return to be processed.

OraPmtInq
This API retrieves the payment related information that was sent at the time of a payment
request (OraPmtReq API). This information includes payment instrument, payee, tangible id
(bill or order), and payor. If the electronic commerce application does not store the payment
information, then this is a useful API to support modification of payment requests. It can
retrieve the payment information and display it to the end user for modification.

Payment Processing APIs

3-8 Oracle iPayment Implementation Guide

OraPmtVoid
This API allows electronic commerce application to void operations submitted earlier.
OraPmtVoid API is supported only to void certain credit card, and purchase card operations.
Oracle iPayment supports both online and offline OraPmtVoid API calls.

Voiding auths electronically is not supported by some processors or gateways. Only a few
card-issuing banks supported it while the vast majority did not. Cancelling an authorization
could only be done manually (by phone) or by letting the auth expire.

Thus, within iPayment, calling OraPmtVoid for an Online Auth results in the current
payment system servlets returning status 8 - Operation not Supported. For an Offline Auth,
you can void the Authorization if it is still in the iPayment open batch and has not yet been
sent to the payment system.

OraPmtCredit
This API provides credit and Electronic Fund Transfer (EFT) operations. Electronic
commerce applications can use this API to give stand-alone credit to the customer. If the
operation is successful, a transaction identifier is generated by Oracle iPayment. This
Identifier is used later to initiate any other operation on the payment. For example, to cancel
the credit, electronic commerce application sends this identifier with other information that
is needed to perform the cancellation.

OraPmtCloseBatch
The Close Batch API allows a payee or an electronic commerce application to close a batch
of previously performed credit card, or purchase card transactions and if necessary PINless
debit card. The transaction types that are included in a batch are: capture, return, and credit.
This operation is mandatory for a terminal-based merchant.

A host-based merchant may not have to explicitly close the batch because the batch is
generally closed at predetermined intervals automatically by the processor. An electronic
commerce application has to get this information from its merchant’s acquirer.

OraPmtQueryBatch
This API provides an interface to the electronic commerce application to query the status of
an existing batch and a closed batch.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-9

Risk Management APIs

These APIs allow electronic commerce applications to do risk analysis independently for
credit card, PINless debit card, and purchase card transactions. These APIs together can
evaluate any risk formula that is configured for a payee.

A risk formula can contain any number of risk factors with different weights associated with
them. When Risk API 1 is called, it evaluates all the factors configured in the formula except
the AVS Code risk factor. If a risk formula has an AVS Code risk factor, then, Risk API 1,
in the response object, indicates that the formula has an AVS Code risk factor. This allows
electronic commerce applications to completely or partially check the risk formula and
decide whether to perform an authorization or not.

If the response of the first Risk API 1 indicates that the payment is not risky, then electronic
commerce application can perform the authorization and complete the rest of the evaluation
by calling Risk API 2.

Electronic commerce applications can call Risk API 2 by passing the same payee id, the
formula name, and the AVS code that was returned during the authorization response and
the risk score that was returned as part of the response in Risk API 1. The response object of
Risk API 2 contains the finally evaluated risk score.

Risk API 1
This API evaluates the risk formula associated with the payee id passed as part of the input
object, PmtRiskInfo. This API can evaluate a specific formula or the implicit formula
depending on the input object. After evaluation, this API constructs the response object
indicating if the AVS Code risk factor is a part of the formula or not by setting the flag,
AVSCodeFlag. If this flag is set to true, then electronic commerce applications need to call
the Risk API 2 to complete the risk evaluation of the formula.

Risk API 2
This API needs to be called when the AVSCodeFlag in RiskAPI 1 response object indicates
that the formula contains AVS Code factor. When this API is called, it only evaluates the
AVS code factor. The input object of this API contains the same payee id and the formula
name that was passed in Risk API 1 and the AVS Code that was returned by the payment
system for the payment request. The response object that this API returns, contains the final
risk score of the formula.

Credit Card Validation APIs

3-10 Oracle iPayment Implementation Guide

Credit Card Validation APIs

The Credit Card Validation APIs provide methods for determining the credit card type of a
credit card number and for doing basic authentication. Since most credit card types specify
the number of digits and a prefix for all valid credit card accounts in their company name, it
is possible to determine the credit card types of most credit card numbers. Also, since the
digits of most credit card types must (using a special algorithm) be evenly divisible by 10, it
is possible to determine if a credit card number is valid or not. These APIs do not perform
some of the more advanced credit card verification techniques available to back end
payment systems, such as billing address verification. These APIs allow many common
errors to be caught, such as wrongly typed or truncated credit card digits. By allowing
common errors to be caught by the electronic commerce application, performance is
improved, since the cost of calling these APIs is much less than sending a request to the
back end payment system.

The Credit Card Validation APIs are created as part of the IBY_CC_VALIDATE package
and this package is installed in the APPS schema.

Main Methods of Credit Card Validation APIs
The Credit Card Validation APIs consist of three main methods.

1. Method StripCC is used to format a raw credit card number input by the customer.
StripCC removes common filler characters such as hyphens and spaces until it
produces a credit card number consisting only of digits. StripCC must be called
before the credit card number is passed to the other methods.

2. Method GetCCType returns the credit card type of a credit card number, where each
credit card type, including values for invalid and unknown types is a constant in the
package.

3. Method ValidateCC, which takes both a credit card number and date. It returns a
boolean value indicating whether the credit card can still be used or not.

DECLARE
-- each character specifies a possible filler characters in the credit

Note: The IN parameters p_api_version and p_init_msg_
list and the OUT parameters x_msg_count and x_msg_data are
ignored. If an unexpected error occurs, x_return_status will be set
to FND_API.G_RET_STS_UNEXP_ERROR. This will happen if the
credit card number has invalid characters in it.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-11

-- card number; i.e. a character that can safely be stripped away
p_fill_chars VARCHAR(3) := '* -#';
p_cc_number VARCHAR(20) := '4111*1111 1111-1111#';
p_api_version NUMBER := 1.0;
p_init_msg_list VARCHAR2(2000) := ' ';
x_return_status VARCHAR2(2000);
x_msg_count NUMBER;
x_msg_data VARCHAR2(2000);
-- will hold the credit card number stripped of all characters except
-- digits; credit card numbers must be of this form for the GetCCType
-- and ValidateCC methods
v_clean_cc VARCHAR(20);
-- variable to be set by GetCCType method
v_cc_type IBY_CC_VALIDATE.CCType;
-- variable set by ValidateCC method; indicates if the credit card is
-- still usable
v_cc_valid BOOLEAN;

-- credit card expr date; rolled to the end of the month
-- by the ValidateCC method
v_expr_date DATE := SYSDATE();
BEGIN
-- the credit card number must first be stripped of all non-digits!!
IBY_CC_VALIDATE.StripCC(p_api_version, p_init_msg_list, p_cc_number,
p_fill_chars, x_return_status, x_msg_count, x_msg_data,
v_clean_cc);
-- check that illegal characters were not found
IF x_return_status != FND_API.G_RET_STS_UNEXP_ERROR THEN
IBY_CC_VALIDATE.GetCCType(p_api_version, p_init_msg_list, v_clean_cc,

x_return_status, x_msg_count, x_msg_data, v_cc_type);
IF x_return_status != FND_API.G_RET_STS_UNEXP_ERROR THEN
IF v_cc_type=IBY_CC_VALIDATE.c_InvalidCC THEN

DBMS_OUTPUT.PUT_LINE('Credit card number not a valid one.');
ELSE

DBMS_OUTPUT.PUT_LINE('Credit card number OK.');
END IF;
IBY_CC_VALIDATE.ValidateCC(p_api_version, p_init_msg_list, v_clean_cc,

v_expr_date, x_return_status, x_msg_count, x_msg_data, v_cc_valid);
IF v_cc_valid THEN

DBMS_OUTPUT.PUT_LINE('Credit card is valid.');
ELSE

DBMS_OUTPUT.PUT_LINE('Credit card number invalid or has expired.');
END IF;

END IF;
END;

Credit Card Validation APIs

3-12 Oracle iPayment Implementation Guide

Note: An overloaded version of the StripCC method exists. It takes all
the same arguments as the version used above except p_fill_chars. It
gets its filler characters from the package constant c_FillerChars,
which allows spaces and hyphens to be interspersed within the credit card
number.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-13

Status Update API

Oracle iPayment has defined a PL/SQL API that must be implemented by electronic
commerce applications when offline payment processing is performed. This API allows the
electronic commerce application to receive a status update. This API must be defined in a
package. The naming convention of the package and signature of the API are defined below.
Electronic commerce applications must implement the package according to the syntax
defined and create the package in the APPS schema if they have offline payments.

The package name has to be of the format <application_short_name>_ecapp_pkg. The
application_short_name is a three-letter short name that was given in electronic commerce
application registration. The package should have defined update_status procedure with the
following signature:

PROCEDURE UPDATE_STATUS(
totalRows IN NUMBER,
txn_id_Tab IN APPS.JTF_VARCHAR2_TABLE_100,
req_type_Tab IN APPS.JTF_VARCHAR2_TABLE_100,
Status_Tab IN APPS.JTF_NUMBER_TABLE,
updatedt_Tab IN APPS.JTF_DATE_TABLE,
refcode_Tab IN APPS.JTF_VARCHAR2_TABLE_100,
o_status OUT VARCHAR2,
o_errcode OUT VARCHAR2,
o_errmsg OUT VARCHAR2,
o_statusindiv_Tab IN OUT APPS.JTF_VARCHAR2_TABLE_100);

The following list describes the field names in the above signature:

1. totalRows: total number of rows being passed for the update.

2. txn_id_Tab: table of transaction identifiers for which the update is sent.

3. req_type_Tab: table of request types corresponding to the Transaction Identifier. For
each transaction, there might be a req_type associated with it and the electronic
commerce application has to update the correct transaction, based on txn_id and req_
type. The reason for having a req-type is to uniquely identify the transaction. For the
same transaction identifiers, there can be multiple transactions. e.g. Authorization and
Capture. Electronic commerce applications can uniquely identify the transaction based
on the values in trxnid and req_type.

This table lists the various kinds of request types and their descriptions.

Status Update API

3-14 Oracle iPayment Implementation Guide

4. Status_Tab: table of statuses corresponding to each transaction.

This table lists the various values and their statuses.

5. updatedt_Tab: table for the last update date for each transaction.

6. refcode_Tab: table for the reference code for each transaction.

7. o_status: the overall status of the procedure. If there are errors in trying to execute the
procedure, electronic commerce application should set up an appropriate value in this
field.

8. o_errcode: the error code for any errors which might have occurred during processing.

9. o_errmsg: the error message for the error.

10. o_statusindiv_Tab: table of status values which have been updated. If the status value
has been updated by the electronic commerce application for a particular transaction, it

req_type Description

ORAPMTCAPTURE Capture transaction

ORAPMTCREDIT Credit transaction

ORAPMTREQ Authorize transaction

ORAPMTRETURN Return transaction

ORAPMTVOID Void transaction

Value Status

0 Paid

5 Payment failed

13 Scheduled

15 Failed

17 Unpaid

18 Submitted

Note: Please refer to Table D-15 for a complete list of values and their
statuses.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-15

should set the value to TRUE for that transaction, otherwise, it should set the value to
FALSE.

When Does the Scheduler Invoke the API?
The Scheduler picks up all the offline payment transactions to be scheduled every time it is
run. After all the offline payment transactions are processed either successfully or
unsuccessfully, the Scheduler has to update the status changes, if any, of each transaction, to
the appropriate electronic commerce application. To update the electronic commerce
application, the Scheduler calls the PL/SQL API, which is implemented by that electronic
commerce application.

Pseudo Code for Implementing the PL/SQL API by Electronic Commerce
Application
For each row update, the status is based on the request type and the transaction identifier. If
the update is successful, then set up the status value appropriately.

for i in 1..totalRows
;update the tables with status, updatedate, and refinfo information
update tables using status_Tab[i], updatedt_Tab[i], refCode_Tab[i] for

the transaction with id txn_id_Tab[i] and req_type_tab[i]
if update is successful

o_statusindiv_Tab[i] := 'TRUE'
else

o_statusindiv_Tab[i] := 'FALSE'
end for;
return

Note: In the above procedure, for each transaction there will be an entry
in the table parameters. If there were ten transactions of this electronic
commerce application, whose status has changed, there will be ten entries
in each table parameters.

Java APIs for Electronic Commerce Application

3-16 Oracle iPayment Implementation Guide

Java APIs for Electronic Commerce Application

All administration and inbound payment processing functionalities are provided via the Java
PaymentService interface. The following information describes how to access and use Java
APIs. Refer to Oracle iPayment JavaDoc for more details.

Obtaining /Releasing the Payment Service Handle
The OraPmt class offers convenient ways to obtain Payment Service handle
(PaymentService) for the user. The application can call various APIs using this handle.

■ To obtain the payment service handle, use the following method:

static public PaymentService init() throws PSException

This API provides Payment Service handle to the user and takes care of all the
necessary session initialization steps.

■ To release a Payment Service handle with the session, use the following method:

static public void end() throws PSException

Sample code
The following code gives an example of how these APIs are used.

public static void main(String[] args) {
try {

PaymentService paymentService = OraPmt.init();
// now you can call all kinds of APIs
//PSResult result = paymentService.OraPmtReq(...);

} catch (PSException pe) {
// exception handling
System.out.println("Error code is: " + pe.getCode());
System.out.println("Error message is: " + pe.getMessage());
}

finally {
try {

Note: Guest user properties need to be setup in the database before any
operation can be performed. Please refer to the Setup Document provided
by CRM Foundation for more details.

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-17

OraPmt.end();
} catch (PSException pe) {

// exception handling
System.out.println("Error code is: " + pe.getCode());
System.out.println("Error message is: " +

pe.getMessage());
}

}
}

Checking Returned Result from Payment Service API
PSResult is the returned object of all PaymentService APIs. To obtain the status of the
operation, use the following API:

public String getStatus();

This API returns one of the following constants:
PSResult.IBY_SUCCESS// action succeeded
PSResult.IBY_WARNING// action succeeded with warning
PSResult.IBY_INFO// not yet in use
PSResult.IBY_FAILURE// action failed

If SUCCESS or WARNING is invoked, a result object can always be obtained by using the
following API:

public Object getResult();

If FAILURE is invoked, a result object may be returned for payment operation APIs, if this
failure occurred with back- end payment system.

The actual object returned varies with each API. It could be an integer or one of the payment
response objects. You need to clearly cast it. For a list of castings, refer to the Oracle
iPayment Java Documentation for the PaymentService interface.

If WARNING or FAILURE is invoked, a warning or error message is returned. Use the
following two APIs to retrieve error codes and error messages.

public String getCode();// get the error code ’IBY_XXXXXX’
public String getMessage(); // get the error message text

The following sample code illustrates the behavior of PSResult object.

public Object checkResult(PSResult pr) {
String status = pr.getStatus();
if (status.equals(PSResult.IBY_FAILURE)) {

Java APIs for Electronic Commerce Application

3-18 Oracle iPayment Implementation Guide

// in case of failure, only error message is expected
System.out.println("error code is : " + pr.getCode());
System.out.println("error message is : " + pr.getMessage());
Object res=pr.getResult();
if (res!=null) System.out.printIn ("failure occured with backend

Payment system");
return res;

}

if (status.equals(PSResult.IBY_SUCCESS)) {
// in case of success, only result object is expected
Object res = pr.getResult();
return res; // you need cast this to specific object
// based on the APIs you called

}

if (status.equals(PSResult.IBY_WARNING)) {
// in case of warning, both result object and message are
// expected
// warning is returned only for Payment APIs in case of
// offline scheduling
System.out.println("warning code is : " + pr.getCode());
System.out.println("warning message is : " + pr.getMessage());
Object res = pr.getResult();
return res; // you need cast it here too

}

// currently IBY_INFO is not yet returned by any PaymentService API
System.out.println("Illegal status VALUE in PSResult! " +
pr.getStatus());
return null;

}

Using Payment Service API
After a payment service handle is obtained via the OraPmt class, you can call any of the
following APIs in Payment Service interface. For details, refer to JavaDoc.

Here is some sample codes for the Payment Instrument API, and Payment Processing APIs.
These codes use the checkResult call.

Registering a Credit Card
public void instrAPISample(PaymentService paymentService,

int ecappId) {
PSResult pr;

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-19

Object obj;
CreditCard cc;
Address addr;
int instrid_cc;
String payerid = "payer1";

addr = new Address("Line1", "Line2", "Line3", "Redwood Shores",
"San Mateo", "CA", "US", "94065");

// credit card
cc = new CreditCard();
cc.setName("My Credit Card");
cc.setFIName("CitiBank");
cc.setInstrBuf("This is my credit card description.");
cc.setInstrNum("4111111111111111"); // the credit card number
cc.setCardType(Constants.CCTYPE_VISA); // the credit card type, should
// match the credit card number, if set
cc.setExpDate(new java.sql.Date(101, 0, 10)); // Jan 10, 2001
cc.setHolderName("Mary Smith");
cc.setHolderAddress(addr);

// add the credit card
pr = paymentService.oraInstrAdd(ecappId, payerid, cc);
obj = checkResult(pr);
if (obj == null) return; // registration failure
instrid_cc = ((Integer) obj).intValue();

System.out.println("Credit card registered successfully " +
"with instrument id " + instrid_cc);

}

Sending a Credit Card Authorization Request
// perform an ONLINE credit card authorization with payment service
public void paymentAPISample(PaymentService paymentService, int ecAppId) {

Bill t;
CoreCreditCardReq reqTrxn;
CreditCard cc;
PSResult pr;
CoreCreditCardAuthResp resp;

// set up the tangible object
t = new Bill();
t.setId("orderId1");

Java APIs for Electronic Commerce Application

3-20 Oracle iPayment Implementation Guide

t.setAmount(new Double(21.00));
t.setCurrency("USD");
t.setRefInfo("refInfo");
t.setMemo("memo");
t.setUserAccount("userAcct");

// set up the transaction object
reqTrxn = new CoreCreditCardReq();
reqTrxn.setNLSLang("American_America.US7ASCII");
reqTrxn.setMode(Transaction.ONLINE);
reqTrxn.setSchedDate(new java.sql.Date(100, 5, 10)); //June 10, 2000
reqTrxn.setAuthType(Constants.AUTHTYPE_AUTHONLY);

// set up the payment instrument
cc = new CreditCard();
cc.setId(100); // assuming we have previously registered credit

// card with instrument id 100

pr = // assuming payee1 has already been configured with the payment
// service
paymentService.oraPmtReq(ecAppId, "payee1", "", cc, t,
reqTrxn);

resp = (CoreCreditCardAuthResp) checkResult(pr);
if (resp == null) return;
System.out.println("Request finished with transaction id: " +
resp.getTID());

}

Registering a Purchase Card
public void instrAPISample(PaymentService paymentService,

int ecappId) {
PSResult pr;
Object obj;
PurchaseCard pc;
Address addr;
int instrid_pc;
String payerid = "payer1";

addr = new Address("Line1", "Line2", "Line3",
"Redwood Shores", "San Mateo", "CA",
"US", "94065");

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-21

// purchase card
pc = new PurchaseCard();
pc.setName("My Purchase Card");
pc.setFIName("CitiBank");
pc.setInstrBuf("This is my purchase card description.");
pc.setInstrNum("4111111111111111"); // the purchase card

// number
pc.setCardType("Constants.CCTYPE_VISA"); // the purchase
// card type, should match the purchase card number, if
// set
pc.setCardSubtype("P");
pc.setExpDate(new java.sql.Date(101, 0, 10));

// Jan 10, 2001
pc.setHolderName("Mary Smith");
pc.setHolderAddress(addr);

// add the purchase card
pr = paymentService.oraInstrAdd(ecappId, payerid, pc);
obj = checkResult(pr);
if (obj == null) return; // registration failure
instrid_pc = ((Integer) obj).intValue();

System.out.println("Purchase Card registered " +
"successfully with instrument id " +
instrid_pc);

}

Sending a Purchase Card Authorization Request
// perform an ONLINE purchase card authorization with

// payment service
public void paymentAPISample(PaymentService paymentService,

int ecAppId) {
Bill t;
PurchaseCardReq reqTrxn;
PurchaseCard pc;
PSResult pr;
CoreCreditCardAuthResp resp; // since purchase card
// authorization responses are identical to credit card
// responses. See javadoc for details.

// set up the tangible object
t = new Bill();
t.setId("orderId1");
t.setAmount(new Double(21.00));

Java APIs for Electronic Commerce Application

3-22 Oracle iPayment Implementation Guide

t.setCurrency("USD");
t.setRefInfo("refInfo");
t.setMemo("memo");
t.setUserAccount("userAcct");

// set up the transaction object
reqTrxn = new PurchaseCardReq();
reqTrxn.setNLSLang("American_America.US7ASCII");
reqTrxn.setMode(Transaction.ONLINE);
reqTrxn.setSchedDate(new java.sql.Date(100, 5, 10));

// June 10, 2000
reqTrxn.setAuthType(Constants.AUTHTYPE_AUTHONLY);
reqTrxn.setPONum("PONum");
reqTrxn.setTaxAmount("1.50");
reqTrxn.setShipToZip("94065");
reqTrxn.setShipFromZip("94404");

// set up the payment instrument
pc = new PurchaseCard();
pc.setId(100); // assuming we have previously registered

// purchase card with instrument id 100

pr = // assuming payee1 has already been configured with
// the payment service
paymentService.oraPmtReq(ecAppId, "payee1", "", pc,

t, reqTrxn);

resp = (CoreCreditCardAuthResp) checkResult(pr);
if (resp == null) return;
System.out.println("Request finished with " +

"transaction id: " + resp.getTID());
}

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-23

PL/SQL APIs for Electronic Commerce Applications

Oracle iPayment provides PL/SQL APIs to those electronic commerce applications that
require or prefer PL/SQL interfaces for processing payment operations. There is an
additional HTTP call when PL/SQL APIs are called. When electronic commerce
applications invoke these PL/SQL APIs, the APIs in return, call the electronic commerce
servlet through HTTP.

Oracle iPayment PL/SQL APIs provide all payment related processing and two Risk APIs.
The functionality of these APIs is the same as the Java APIs.

PL/SQL APIs are created as part of IBY_PAYMENT_ADAPTER_PUB package and these
packages are installed in the APPS schema.

Requirements
1. PL/SQL Package IBY_PAYMENT_ADAPTER_PUB must be installed in the APPS

schema.

2. An administrator must set up Oracle iPayment URL property to Oracle iPayment
electronic commerce servlet’s URL using the iPayment administration user interface
before invoking the APIs.

The following PL/SQL code helps you to understand how Oracle iPayment PL/SQL APIs
can be invoked. This example code invokes the Payment Request API using a credit card. It
also passes risk related information for risk evaluation.

DECLARE
p_api_version NUMBER := 1.0;

--To initialize message list.
p_init_msg_list VARCHAR2(2000) := FND_API.G_TRUE;
p_commit VARCHAR2(2000) := FND_API.G_FALSE;
p_validation_level NUMBER := FND_API.G_VALID_LEVEL_FULL;
p_ecapp_id NUMBER := 0;
p_payee_rec IBY_PAYMENT_ADAPTER_PUB.Payee_rec_type;
p_payer_rec IBY_PAYMENT_ADAPTER_PUB.Payer_rec_type;
p_pmtinstr_rec IBY_PAYMENT_ADAPTER_PUB.PmtInstr_rec_type;
p_tangible_rec IBY_PAYMENT_ADAPTER_PUB.Tangible_rec_type;
p_pmtreqtrxn_rec IBY_PAYMENT_ADAPTER_PUB.PmtReqTrxn_rec_type;
p_riskinfo_rec IBY_PAYMENT_ADAPTER_PUB.RiskInfo_rec_type;
x_return_status VARCHAR2(2000);

-- output/return status
x_msg_count NUMBER;

-- output message count

PL/SQL APIs for Electronic Commerce Applications

3-24 Oracle iPayment Implementation Guide

x_msg_data VARCHAR2(2000);
-- reference string for getting output

message text
x_reqresp_rec IBY_PAYMENT_ADAPTER_PUB.ReqResp_rec_type;

-- request specific output response
object

l_msg_count NUMBER;
l_msg_data VARCHAR2(2000);

BEGIN
p_ecapp_id := 66; -- iPayment generated ECAppID
p_payee_rec.Payee_ID := 'ipay-payee1'; -- payee’s ID
p_payer_rec.Payer_ID := 'ipay-cust1'; -- payer’s ID
p_payer_rec.Payer_Name := 'Cust1'; -- Payer’s (Customer’s name)
p_pmtreqtrxn_rec.PmtMode := 'ONLINE';

-- Payment mode (Can be
ONLINE/OFFLINE)
p_tangible_rec.Tangible_ID := 'tangible_id1'; -- Tangible ID / order ID
p_tangible_rec.Tangible_Amount := 25.50; -- Amount for the transaction
p_tangible_rec.Currency_code := 'USD'; -- Currency for the transaction
p_tangible_rec.RefInfo := 'test_refinfo3';
p_pmtreqtrxn_rec.Auth_Type := upper('authonly'); -- request type
p_pmtinstr_rec.CreditCardInstr.CC_Type := 'Visa';

--
payment instrument type
p_pmtinstr_rec.CreditCardInstr.CC_Num := '4111111111111111';

--
payment instrument number
p_pmtinstr_rec.CreditCardInstr.CC_ExpDate := to_char(sysdate+300);

--
payment instr. Expiration date

--5. RISK INPUTS
p_riskinfo_rec.Formula_Name := 'test3'; -- Risk formula name
p_riskinfo_rec.ShipToBillTo_Flag := 'TRUE';

-- Flag showing if ship to address same as Bill
to address
p_riskinfo_rec.Time_Of_Purchase := '08:45';

-- Time of purchase

IBY_PAYMENT_ADAPTER_PUB.OraPmtReq
(p_api_version,
p_init_msg_list,
p_commit,
p_validation_level,

Implementing Electronic Commerce Applications APIs

Using iPayment with External Front End Applications 3-25

p_ecapp_id ,
p_payee_rec,
p_payer_rec,
p_pmtinstr_rec,
p_tangible_rec,
p_pmtreqtrxn_rec,
p_riskinfo_rec ,
x_return_status,
x_msg_count ,
x_msg_data ,
x_reqresp_rec);

END;
Payment Request Related Response. Printing Only If Status Is Success
If(Char(X_Reqresp_Rec.Response.Status = ‘S’) Then

-- Offline Mode Related Response
If P_Pmtreqtrxn_Rec.Pmtmode = 'OFFLINE' Then

Dbms_Output.Put_Line('Transaction ID = ' || To_Char(X_Reqresp_
Rec.Trxn_ID));

Dbms_Output.Put_Line (‘ X_Reqresp_
Rec.Offlineresp.Earliestsettlement_Date = ' ||

To_Char(X_Reqresp_
Rec.Offlineresp.Earliestsettlement_Date));

Dbms_Output.Put_Line('X_Reqresp_Rec.Offlineresp.Scheduled_Date = '
||
To_Char(X_Reqresp_Rec.Offlineresp.Scheduled_Date));

Else
Dbms_Output.Put_Line('Transaction ID = ' || To_Char(X_Reqresp_

Rec.Trxn_ID));
Dbms_Output.Put_Line('X_Reqresp_Rec.Authcode = ' || X_Reqresp_

Rec.Authcode);
Dbms_Output.Put_Line('X_Reqresp_Rec.Avscode = ' || X_Reqresp_

Rec.Avscode);
Dbms_Output.Put_Line('---');
-- Risk Related Response
If(X_Reqresp_Rec.Riskrespincluded = ‘YES’) Then

Dbms_Output.Put_
Line('---');

Dbms_Output.Put_Line(' X_Reqresp_Rec.Riskresponse.Risk_Score=
'|| X_Reqresp_Rec.Riskresponse.Risk_Score);

Dbms_Output.Put_Line('X_Reqresp_Rec.Riskresponse.Risk_
Threshold_Val= '||

X_Reqresp_
Rec.Riskresponse.Risk_Threshold_Val);

Endif;

PL/SQL APIs for Electronic Commerce Applications

3-26 Oracle iPayment Implementation Guide

Endif;
End If;

Security Considerations

Using iPayment with External Front End Applications 3-27

Security Considerations

Oracle iPayment is architected to send credit card details in the URL. This architecture
requires the logging levels on Apache to be lowered from the default to prevent the credit
card information from appearing in the log files.

In the httpds.conf file, change:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

to:

LogFormat "%h %l %u %t \"%U\" %>s %b" common

Security Considerations

3-28 Oracle iPayment Implementation Guide

Using iPayment with External Payment Systems 4-1

4
Using iPayment with External Payment

Systems

This appendix explains about integrating Oracle iPayment with external payment systems.
The topics covered include:

■ Overview of Payment System Integration Model

■ PaymentService APIs

■ Routing Engine

■ Integration Point Component Types

■ Developing a Custom Payment System Integration

■ Defining a Payment System

■ System Payment Profile

■ Formats

■ Format Validation

■ Extract Generator

■ Extract Formatter

■ Extract Structure

■ Extract Components

■ Transmission Functions

■ Acknowledgment Parser

Overview of Payment System Integration Model

4-2 Oracle iPayment Implementation Guide

Overview of Payment System Integration Model

Oracle iPayment provides a complete payment solution. The Payment System Integration
Model allows integration with third party payment systems for credit card, purchase card,
PINless debit card, and bank account transfer processing. The payment systems
communicate with the payment processors and the acquirers/banks to process payment
transactions.

Though the business flow for credit card, purchase card, and bank account transfer
transactions is the same, the system flow is significantly different, with the addition of many
new modules, both internal and external, such as customizable integration points. The
payment system integration model has changed from an API-centered model to a payment
instruction file creation and delivery model. This model reflects the various customizable
integration points exposed for implementing the custom payment system integration for
iPayment.

Flow in gateway and processor model systems
For gateway-model payment systems, since every transaction is online and involves
real-time communication with the payment system, the above flow occurs for every
transaction operation type, such as authorization, capture, credit, etc.

For processor payment systems, the above flow occurs only for online transaction such as
authorization, batch close, and batch query operations. For other operation types, such as
capture and credit, the transaction is batched without communication to the payment system.
Therefore, the flow completes after format validation occurs.

PaymentService APIs

Using iPayment with External Payment Systems 4-3

PaymentService APIs

The PaymentService API represents the Java class containing all payment transaction APIs
and acts as the entry point into the iPayment engine. Generic validations are performed here.

Routing Engine

4-4 Oracle iPayment Implementation Guide

Routing Engine

The routing engine associates a payment transaction with a payment system and payment
system account. Currently, the routing engine assumes that only a single system payment
profile exists per payment system and that each processor-type payment system has a system
profile defined for each processor.

For implementing custom payment system integrations, a system payment profile must be
defined for the new payment system otherwise the payment system will use the old HTTP
name-value pair BEP APIs.

Integration Point Component Types

Using iPayment with External Payment Systems 4-5

Integration Point Component Types

The table lists the various integration point component types that maybe implemented while
integrating with a payment system.

Integration Point Type Description

Format Creates the payment instruction file based upon transaction data.

Format Validation Set Format or payment system-specific validations transactions.

Transmission Function Implements a transmission protocol for communicating with the
payment system.

Acknowledgement Parser Parses the payment system's acknowledgments.

Payment System Definition Define attributes for the payment system which the user will
provide in the setup UI.

System Payment Profile The payment processing attributes of a payment system's
specification.

Note: Several of the integration component types are developed in Java.

Developing a Custom Payment System Integration

4-6 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration

The following sections list the tasks for developing a custom payment system integration for
the instrument types. The tasks for an instrument type integration must be performed in an
order. If a payment system supports multiple instrument types, combine the tasks for each
instrument type.

Developing a Custom Payment System Integration

Using iPayment with External Payment Systems 4-7

Developing a Custom Payment System Integration for Credit Cards

The table lists the tasks that must be completed for integrating a credit card payment system.

Task Component Type Mandatory Description

Define the Payment
System

Payment System
Definition

Yes Defines the new payment system.

If the payment system is a gateway
and uses the old HTTP name-value
pair BEP APIs, you need not
complete any furhter tasks from this
list but procees to implement the
gateway BEP APIs.

Define payment
system account
options

Payment System
Definition

No Defines the options for all accounts
in the payment system.

Develop an online
authorization format
template

Format Yes Develop a template for XML
Publisher.

Seed the online
authorization format
template

Format Yes Define system data attributes for the
new format.

Develop an online
authorization
transmission function

Transmission Function Yes Implements a transmission function
protocol.

Seed the online
authorization
transmission protocol

Transmission Function Yes Defines a transmission protocol and
associates it with the transmission
function code-point that implements
it. Also defines the protocol
parameters.

Develop an online
authorization
acknowledgement
parser

Acknowledgement
Parser

Yes Implements an acknowledgement
parser.

Seed the online
authorization
acknowledgement
parser

Acknowledgement
Parser

Yes Define system data attributes for the
parser.

Develop a settlement
format template

Format Yes For gateway model payment
system, the format may be identical
to the authorization format template.

Developing a Custom Payment System Integration for Credit Cards

4-8 Oracle iPayment Implementation Guide

Seed the settlement
format template

Format Yes

Develop a settlement
transmission function

Transmission Function Yes For gateway model payment
systems, the transmission function
may be identical to the authorization
transmission function.

Seed the settlement
transmission protocol

Transmission Function Yes

Develop a settlement
acknowledgement
parser

Acknowledgement
Parser

Yes For gateway model payment
systems, the acknowledgement
parser may be identical to the
authorization parser.

Seed the settlement
acknowledgement
parser

Acknowledgement
Parser

Yes

Develop a query
format template

Format The query support is optional for
gateway model payment system.

For most processor payment
systems, an acknowledgement
request message is not defined.

Seed the query
format template

Format Optional for gateway model
payment systems.

Develop a query
transmission function

Transmission Function Optional for gateway model
payment systems.

Seed the query
transmission protocol

Transmission Function Optional for gateway model
payment systems.

Develop an query
acknowledgement
parser

Acknowledgement
Parser

Optional for gateway payment
systems.

Seed the query
acknowledgement
parser

Acknowledgement
Parser

Optional for gateway model
payment systems.

Create credit card
system payment
profile

System Payment
Profile

Yes Defines the payment processing
attributes for the payment system's
credit card processing specification.

Create transaction
validation set

Format Validation Set No Required only for payment
system-specific validations.

Task Component Type Mandatory Description

Developing a Custom Payment System Integration

Using iPayment with External Payment Systems 4-9

Create batch
validation set

Format Validation Set No Never for gateway model payment
system.

For processor model payment
system, required only for payment
system specific validations.

Seed validation set
assignments

Format Validation Set No Required only for payment
system-specific validations.

Task Component Type Mandatory Description

Developing a Custom Payment System Integration for Debit Cards

4-10 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration for Debit Cards

The table lists the tasks that must be completed for integrating a debit card payment system.

Task Component Type Mandatory Description

Define the Payment
System

Payment System
Definition

Yes Defines the new payment system.

Define payment
system account
options

Payment System
Definition

No Defines the options for all accounts
in the payment system.

Develop an online
debit format template

Format Yes Develop a template for XML
Publisher.

Seed the online debit
format template

Format Yes Define system data attributes for the
new format.

Develop an online
debit transmission
function

Transmission Function Yes Implements a transmission function
protocol.

Seed the online debit
transmission protocol

Transmission Function Yes Defines a transmission protocol and
associates it with the transmission
function code-point that implements
it. Also defines the protocol
parameters.

Develop an online
debit
acknowledgement
parser

Acknowledgement
Parser

Yes Implements an acknowledgement
parser.

Seed the online debit
acknowledgement
parser

Acknowledgement
Parser

Yes Define system data attributes for the
parser.

Develop a settlement
format template

Format No Optional for payment system that do
not require debit card settlement.

Seed the settlement
format template

Format No Optional for payment system that do
not require debit card settlement.

Develop a settlement
transmission function

Transmission Function No Optional for payment system that do
not require debit card settlement.

Seed the settlement
transmission protocol

Transmission Function No Optional for payment system that do
not require debit card settlement.

Developing a Custom Payment System Integration

Using iPayment with External Payment Systems 4-11

Develop a settlement
acknowledgement
parser

Acknowledgement
Parser

No Optional for payment system that do
not require debit card settlement.

Seed the settlement
acknowledgement
parser

Acknowledgement
Parser

No Optional for payment system that do
not require debit card settlement.

Develop a query
format template

Format No Optional for payment system that do
not require debit card settlement.

Seed the query
format template

Format No Optional for payment system that do
not require debit card settlement.

Develop a query
transmission function

Transmission Function No Optional for payment system that do
not require debit card settlement.

Seed the query
transmission protocol

Transmission Function No Optional for payment system that do
not require debit card settlement.

Develop an query
acknowledgement
parser

Acknowledgement
Parser

No Optional for payment system that do
not require debit card settlement.

Seed the query
acknowledgement
parser

Acknowledgement
Parser

No Optional for payment system that do
not require debit card settlement.

Create debit card
system payment
profile

System Payment
Profile

Yes Defines the payment processing
attributes for the payment system's
credit card processing specification.

Create transaction
validation set

Format Validation Set No Required only for payment
system-specific validations.

Create batch
validation set

Format Validation Set No Never for gateway model payment
system.

For processor model payment
system, required only for payment
system specific validations.

Seed validation set
assignments

Format Validation Set No Required only for payment
system-specific validations.

Task Component Type Mandatory Description

Developing a Custom Payment System Integration for Bank Account Cards

4-12 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration for Bank
Account Cards

The table lists the tasks that must be completed for integrating a bank account payment
system.

Task Component Type Mandatory Description

Define the Payment
System

Payment System
Definition

Yes Defines the new payment system.

Define payment
system account
options

Payment System
Definition

No Defines the options for all accounts
in the payment system.

Develop an online
verification format
template

Format No Only if online verification supported
by payment system.

Seed the online
verification format
template

Format No Define system data attributes for the
new format.

Develop an online
verification
transmission function

Transmission Function No Implements a transmission function
protocol.

Seed the online
verification
transmission protocol

Transmission Function No Defines a transmission protocol and
associates it with the transmission
function code-point that implements
it. Also defines the protocol
parameters.

Develop an online
verification
acknowledgement
parser

Acknowledgement
Parser

No Implements an acknowledgement
parser.

Seed the online
verification
acknowledgement
parser

Acknowledgement
Parser

No Define system data attributes for the
parser.

Develop a funds
transfer format
template

Format Yes

Developing a Custom Payment System Integration

Using iPayment with External Payment Systems 4-13

Seed the funds
transfer format
template

Format Yes

Develop a funds
transfer transmission
function

Transmission Function Yes

Seed the funds
transfer transmission
protocol

Transmission Function Yes

Develop a funds
transfer
acknowledgement
parser

Acknowledgement
Parser

Yes

Seed the funds
transfer
acknowledgement
parser

Acknowledgement
Parser

Yes

Develop a query
format template

Format Yes

Seed the query
format template

Format No Only if payment system supports
bank account transfer
acknowledgements.

Develop a query
transmission function

Transmission Function No

Seed the query
transmission protocol

Transmission Function No

Develop an query
acknowledgement
parser

Acknowledgement
Parser

No

Seed the query
acknowledgement
parser

Acknowledgement
Parser

No

Create bank account
system payment
profile

System Payment
Profile

Yes Defines the payment processing
attributes for the payment system's
credit card processing specification.

Create transaction
validation set

Format Validation Set No Required only for payment
system-specific validations.

Task Component Type Mandatory Description

Developing a Custom Payment System Integration for Bank Account Cards

4-14 Oracle iPayment Implementation Guide

Create batch
validation set

Format Validation Set No Never for gateway model payment
system.

For processor model payment
system, required only for payment
system specific validations.

Seed validation set
assignments

Format Validation Set No Required only for payment
system-specific validations.

Task Component Type Mandatory Description

Developing a Custom Payment System Integration

Using iPayment with External Payment Systems 4-15

Seeding Data

The two important points to be remembered while seeding data include:

■ Language-specific data

Some tables are segmented, with non-language specific columns appearing in a table
with the _B suffix and language-specific (i.e. translatable) columns appearing in a
parallel table with the _TL suffix. When inserting in the translated column segment
table you must use the appropriate language/country code for the data being added, for
example, "US" for both columns. It will then be necessary to call some sort of _ADD_
LANGUAGE procedure to fill this table out for all the supported languages used during
the installation.

■ WHO columns

Every table has a common set of change-tracking (WHO) columns.

The table lists the the specific functions for the WHO columns.

For the column... Enter the value...

OBJECT_VERSION_NUMBER 1

CREATION_DATE SYSDATE()

CREATED_BY FND_GLOBAL.USER_ID

LAST_UPDATE_DATE SYSDATE()

LAST_UPDATED_BY FND_GLOBAL.USER_ID

LAST_UPDATE_LOGIN FND_GLOBAL.LOGIN_ID

Defining a Payment System

4-16 Oracle iPayment Implementation Guide

Defining a Payment System

The first task in integrating any payment system is defining a payment system. The
definition must include both the payment system’s attributes as well as the account options,
if any, defined for the payment system accounts the users will establish.

Payment System Attributes
The table lists key attributes of the payment system.

Attribute Description Constraints

Payment
System

The name of the payment system.

Supported
Instruments

The instrument types supported by the
payment system.

Must be one of the following
instrument types:

■ Credit Card

■ Purchase Card Level II/Level III

■ PINless debit card

Type Payment system model type. See
Understanding Gateway-Model and
Processor-Model Payment Systems in the
iPayment Concepts and Procedures guide for
a discussion of the differences between the
processor and gateway payment system
models.

Must be either processor or gateway
model payment system.

Suffix Unique 3-letter identifier for the payment
system.

Must not be any of these reserved
suffixes seeded in iPayment. The
reserved suffixes are:

■ cyb (Cybercash)

■ lop (sample gateway system)

■ efs (Concord EFSnet)

■ ptk (Paymentech)

■ fdb (FDC North)

■ cit (Citibank Merchant Services)

■ cep (Citibank Edifact Bank
Transfer)

Defining a Payment System

Using iPayment with External Payment Systems 4-17

All of these attributes can be set in the Payment System details page of the iPayment
administration user interface. See Creating a New Payment System in the iPayment
Concepts and Procedures Guide.

Servlet Base
URL

The URL of the payment system servlet. Must be a URL in this form:
http://<host>:<post>/<servlet
zone>.

Note: For implementing the custom payment system integrations, you
must enter appropriate values while creating a payment system in the
Payment System details page.

Attribute Description Constraints

Account Options

4-18 Oracle iPayment Implementation Guide

Account Options

Account options are attributes defined by the payment system for its user accounts. Once an
account is created in the Payee Account Information page (see Creating a New Payee in the
iPayment Concepts and Procedures Guide), account options may be set if defined for the
payment system. Account options are used for payment instruction file generation and are
represented in the funds capture extract.

Seeding Account Options Definitions
The table lists the attributes of an account option.

For implementing the custom payment system integrations, if any attributes of the user's
payment system account are required as data when generating the payment instruction file,
the account option's definition must be seeded for the payment system

Once the set of account option definitions are determined, the attributes can be seeded in
iPayment by creating a SQL script to insert them.

Attribute Description Constraints

BEPID The primary key of the payment system
to which the account option belongs.

Must refer to an existing
payment system in IBY_
BEPINFO.

ACCOUNT_OPTION_
CODE

The unique code for the account option.
This attribute will appear in the Name
sub-element of the AccountOption
element.

Must be unique per payment
system and must have 30
characters.

ACCOUNT_OPTION_
DATATYPE

The datatype of the account option to
help in UI validation.

Supported values include:

■ VARCHAR2

■ NUMBER

■ DATE

DISPLAY_ORDER The display order of the account option
when shown in the UI.

ACCOUNT_OPTION_
NAME

The description of the account option.

Defining a Payment System

Using iPayment with External Payment Systems 4-19

The attribute BEPID must be the primary key of the payment system owning the account
option, which is easily determined by this query:

SELECT bepid
FROM iby_bepinfo
WHERE (suffix = :BEP_SUFFIX);

When you create a payment system account, The payment system account will automatically
establish itself in the corresponding account options in the UI.

For implementing the custom payment system integrations, please make sure to document
the values.

Note: Insert all attributes except translatable attribute ACCOUNT_
OPTION_NAME into table IBY_BEP_ACCT_OPT_NAME_B. Insert
translatable attribute ACCOUNT_OPTION_NAME into IBY_BEP_
ACCT_OPT_NAME_TL and then call function IBY_FNDCPT_
MLSUTL_PVT. BEP_OPT_ADD_LANGUAGE.

System Payment Profile

4-20 Oracle iPayment Implementation Guide

System Payment Profile

The system payment profile captures the payment processing "meta-data" for a particular
payment system specification. The system payment profile defines attributes such as the
formats and transmission protocols the payment system requires. For every major instrument
type supported by a payment system specification, such as credit card, bank account, and
PINless debit card, a separate system payment profile must be created.

System Payment Profile

Using iPayment with External Payment Systems 4-21

Credit Card System Payment Profile

A credit card profile defines the attributes of a credit card processing specification. A credit
card system payment profile attributes may be seeded in iPayment by creating a SQL script
to insert them.

The attribute PAYMENT_SYSTEM_ID must be the primary key of the payment system
owning the profile, which is easily determined by this query:

SELECT bepid
FROM iby_bepinfo
WHERE (suffix = :BEP_SUFFIX);

This table explains the attributes and allowed values for a credit card system payment
profile.

Note: Insert all attributes except SYS_CC_PROFILE_NAME into table
IBY_FNDCPT_SYS_CC_PF_B. Insert SYS_CC_PROFILE_NAME into
IBY_FNDCPT_SYS_CC_PF_TL and call procedure IBY_FNDCPT_
MLSUTL_PVT.SYS_CC_PROF_ADD_LANGUAGE.

Attribute Name Description Constraint

SYS_CC_PROFILE_CODE Unique identifier for the profile. Must be unique and less than
or equal to 30 characters.

SYS_CC_PROFILE_NAME Name of the system profile.

PAYMENT_SYSTEM_ID Identifier of the payment system
the profile belongs to.

Equals the primary key of the
payment system in IBY_
BEPINFO.

ONLINE_AUTH_
FORMAT_CODE

Code of the authorization payment
instruction format.

Equals an existing format.

ONLINE_AUTH_TRANS_
PRTCL_CODE

Code of the authorization
transmission protocol.

Equals an existing protocol.

ONLINE_AUTH_ACK_
RDR_CODE

Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader.

SETTLEMENT_FORMAT_
CODE

Code of the settlement payment
instruction format.

Equals an existing format.

Credit Card System Payment Profile

4-22 Oracle iPayment Implementation Guide

SETTLEMENT_TRANS_
PRTCL_CODE

Code of the settlement
transmission protocol.

Equals an existing protocol.

SETTLEMENT_ACK_
RDR_CODE

Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader.

QUERY_FORMAT_CODE Code of the settlement payment
instruction format.

Equals an existing format or is
NULL.

QUERY_TRANS_PRTCL_
CODE

Code of the settlement
transmission protocol.

Equals an existing protocol.

QUERY_ACK_RDR_CODE Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader.

Attribute Name Description Constraint

System Payment Profile

Using iPayment with External Payment Systems 4-23

Debit Card System Payment Profile

A debit card system profile defines the attributes of a debit card processing specification. A
debit card system payment profile attributes may be seeded in iPayment by creating a SQL
script to insert them.

The attribute PAYMENT_SYSTEM_ID must be the primary key of the payment system
owning the profile, which is easily determined by this query:

SELECT bepid
FROM iby_bepinfo
WHERE (suffix = :BEP_SUFFIX);

This table explains the attributes and allowed values for a debit card system payment profile.

Note: Insert all attributes except SYS_DC_PROFILE_NAME into table
IBY_FNDCPT_SYS_DC_PF_B. Insert SYS_DC_PROFILE_NAME into
IBY_FNDCPT_SYS_DC_PF_TL and call procedure IBY_FNDCPT_
MLSUTL_PVT.SYS_DC_PROF_ADD_LANGUAGE.

Attribute Name Description Constraint

SYS_DC_PROFILE_CODE Unique identifier for the profile. Must be unique and less than
or equal to 30 characters.

SYS_DC_PROFILE_NAME Name of the system profile.

PAYMENT_SYSTEM_ID Identifier of the payment system
the profile belongs to.

Equals the primary key of the
payment system in IBY_
BEPINFO.

ONLINE_DEB_FORMAT_
CODE

Code of the debit payment
instruction format.

Equals an existing format.

ONLINE_DEB_TRANS_
PRTCL_CODE

Code of the debit transmission
protocol.

Equals an existing protocol.

ONLINE_DEB_ACK_RDR_
CODE

Code of the debit
acknowledgement reader.

Equals an existing
acknowledgment reader.

SETTLEMENT_FORMAT_
CODE

Code of the settlement payment
instruction format.

Equals an existing format.

SETTLEMENT_TRANS_
PRTCL_CODE

Code of the settlement
transmission protocol.

Equals an existing protocol.

Debit Card System Payment Profile

4-24 Oracle iPayment Implementation Guide

SETTLEMENT_ACK_
RDR_CODE

Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader.

SETTLE_REQ_FLAG Settlement required flag. Indicates
if a settlement transaction is
required after a debit in order to
complete the funds transfer

Equals one of the following
values:

■ Y (Yes)

■ N (No)

QUERY_FORMAT_CODE Code of the settlement payment
instruction format.

Equals an existing format or is
NULL.

QUERY_TRANS_PRTCL_
CODE

Code of the settlement
transmission protocol.

Equals an existing protocol.

QUERY_ACK_RDR_CODE Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader.

Attribute Name Description Constraint

System Payment Profile

Using iPayment with External Payment Systems 4-25

Bank Account Payment Profiles

A bank account system profile defines the attributes of a bank account transfer processing
specification. A bank account transfer system payment profile attributes may be seeded in
iPayment by creating a SQL script to insert them.

The attribute PAYMENT_SYSTEM_ID must be the primary key of the payment system
owning the profile, which is easily determined by this query:

SELECT bepid
FROM iby_bepinfo
WHERE (suffix = :BEP_SUFFIX);

This table explains the attributes and allowed values for a bank account payment system
profile.

Note: Insert all attributes except SYS_EFT_PROFILE_NAME into
table IBY_FNDCPT_SYS_EFT_PF_B. Insert SYS_EFT_PROFILE_
NAME into IBY_FNDCPT_SYS_EFT_PF_TL and call procedure IBY_
FNDCPT_MLSUTL_PVT.SYS_EFT_PROF_ADD_LANGUAGE.

Attribute Name Description Constraint

SYS_EFT_PROFILE_CODE Unique identifier for the profile. Must be unique and less than
or equal to 30 characters.

SYS_EFT_PROFILE_
NAME

Name of the system profile.

PAYMENT_SYSTEM_ID Identifier of the payment system
the profile belongs to.

Equals the primary key of the
payment system in IBY_
BEPINFO.

VERIFY_FORMAT_CODE Code of the verify payment
message format. Note that not all
payment systems support bank
account verification.

Equals an existing format or is
NULL.

VERIFY_TRANS_PRTCL_
CODE

Code of the verification
transmission protocol.

Equals an existing protocol or
is NULL.

VERIFY_ACK_RDR_CODE Code of the verification
acknowledgement reader.

Equals an existing
acknowledgment reader or is
NULL.

Bank Account Payment Profiles

4-26 Oracle iPayment Implementation Guide

FUNDS_XFER_FORMAT_
CODE

Code of the funds transfer
payment instruction format.

Equals an existing format.

FUNDS_XFER_TRANS_
PRTCL_CODE

Code of the funds transfer
transmission protocol.

Equals an existing protocol.

FUNDS_XFER_ACK_RDR_
CODE

Code of the funds transfer
acknowledgement reader.

Equals an existing
acknowledgment reader.

QUERY_FORMAT_CODE Code of the settlement payment
instruction format.

Equals an existing format or is
NULL.

QUERY_TRANS_PRTCL_
CODE

Code of the settlement
transmission protocol.

Equals an existing protocol or
is NULL.

QUERY_ACK_RDR_CODE Code of the authorization
acknowledgement reader.

Equals an existing
acknowledgment reader or is
NULL.

Attribute Name Description Constraint

Formats

Using iPayment with External Payment Systems 4-27

Formats

A format corresponds to a payment instruction file format defined by the payment system. A
payment system uses different payment instruction formats during a transaction processing,
such as authorization, settlement. Before creating a format in iPayment, a corresponding
XML Publisher template entity must be available.

Developing a Format Template
This table describes the XML Publisher template attributes fixed by iPayment:

For implementing the custom payment system integrations, a payment instruction template
must be developed for XML Publisher using one of the supported XML Publisher template
types such as eText (RTF), XSL, etc. This template must be provided to the users of your
payment system integration along with instructions regarding the values that should be used
when manually defining the template in the XML Publisher Templates UI page.

Seeding a Format Template
Once an XML Publisher template is created, the corresponding formats entity must be
created in iPayment.

This table explains the attributes for the format template.

Attribute Description Constraint

Data Definition The template's data definition
determines the structure of the data
to which the template is applied.

Always equal to: IBY_FNDCPT_
INSTRUCTION_1_0

Attribute Description Constraint

FORMAT_
CODE

The unique identifier of the format Must be unique and less than or equal to
30 characters.

FORMAT_
TEMPLATE_
CODE

The code of the XML Publisher
template to which this formats
corresponds.

Must correspond to an existing XDO
template.

EXTRACT_ID The extract used by the format. Always equal to:100 (for IBY_FUNDS_
CAPTURE_INSTRUCTION extract
version 1.0).

FORMAT_
TYPE_CODE

The type of format. Always equal to:FUNDS_CAPTURE_
INSTRUCTION

Formats

4-28 Oracle iPayment Implementation Guide

These attributes may be seeded in iPayment by creating a SQL script to insert them. All
attributes except FORMAT_NAME will be inserted into IBY_FORMATS_B.

FORMAT_
NAME

The description of the format.

Note: Insert translatable attribute FORMAT_NAME into IBY_
FORMATS_TL and then call function IBY_FNDCPT_MLSUTL_PVT.
FORMAT_ADD_LANGUAGE.

Attribute Description Constraint

Format Validation

Using iPayment with External Payment Systems 4-29

Format Validation

After routing a transaction to a payment system account, the payment system, system
payment profile, and payment instruction format used for the transaction are displayed. Each
format can have a set of validations associated with it, which is applied to the transaction to
determine if the transaction is valid.

For implementing the custom payment system integrations, you can define format validation
sets if the payment system enforces more stringent validations than iPayment.

Format validation sets allow payment system-specific validations to be performed on a
transaction. This feature is optional and need be implemented only if the generic validations
provided by the iPayment engine are insufficient.

In order to use a validation set with a particular format, these tasks must be performed:

■ Developing a Validation Set

■ Seeding a Validation Set

Note: All attributes except FORMAT_NAME will be inserted into
IBY_FORMATS_B. Insert translatable attribute FORMAT_NAME into
IBY_FORMATS_TL and then call function IBY_FNDCPT_MLSUTL_
PVT. FORMAT_ADD_LANGUAGE.

Developing a Validation Set

4-30 Oracle iPayment Implementation Guide

Developing a Validation Set

Processor-type payment systems define two sets of payment format specifications, one for
online transactions, such as authorizations and another for batched transactions, such as
settlements, credits. Therefore, two types of validation set code-points are supported: one for
individual transaction operations and another for batch operations.

For implementing the custom payment system integrations, the Java class or PL/SQL
package implementing the validation set code-point must be distributed to the user who must
then make it accessible to their system by either placing the class file in the CLASSPATH of
the application server hosting the iPayment engine, or uploading the package to their
database instance.

Batch Validation Sets
A batch validation set must be a PL/SQL procedure.

This table explains the signature of a batch validation:

The important parameters for this signature are p_mbatchid and x_return_status. The first
indicates the batch which is being validated and is a foreign key to the MBATCHID primary
key column of table IBY_BATCHES_ALL. With this primary key the aggregate values of
the batch (e.g. amount totals) stored in IBY_BATCHES_ALL may be validated. The
transactions included in the batch may be queried from table IBY_TRXN_SUMMARIES_
ALL using column MBATCHID as a filter.

If validation for the batch fails parameter x_returns_status should be set to FND_API.G_
RET_STS_SUCCESS. An optional message indicating the cause of the validation set failure
may be returned in parameters x_msg_count and x_msg_data as well using the FND_

Name Data Type Type Description

p_api_version NUMBER IN Version of the API called; may be ignored

p_init_msg_list VARCHAR2 IN Whether to initialize the message list; may be
ignored

p_mbatchid NUMBER IN The identifier of the batch (in table IBY_
BATCHES_ALL)

x_return_status VARCHAR2 OUT Status of the call.

x_msg_count NUMBER OUT Number of error messages on the stack.

x_msg_data VARCHAR2 OUT Message stack of errors.

Format Validation

Using iPayment with External Payment Systems 4-31

MSG APIs. If a batch fails then the batch will be rolled back from the database and batch
close operation execution is halted. No transactions are removed from the batch, however,
even if the transaction are the primary cause for why the batch validation failed. The next
batch close attempt will fail unless that transaction is voided by the user. Oracle
recommends that all transaction validation is done in a transaction validation set.

Transaction Validation Sets
A transaction validation set validates a single transaction immediately after the transaction is
routed and as soon as the payment system and payment system formats for the transaction
are known. Oracle recommends that all validations for an individual transaction is done in a
transaction validation set rather than a batch validation set, even if the transaction, such as a
credit transaction, appears as part of a batch.

A transaction validation set is a Java code-point which implements interface:
oracle.apps.iby.payment.FndCptValidationSet. This interface has a single
function.

This table explains the signature defined by the code-point:

Attribute Name Type Description

ecappId Integer Electronic commerce application id for
the current transaction

payee oracle.apps.iby.ecapp.Payee Transaction payee

pmtInstr oracle.apps.iby.ecapp.PmtInstr Payment instrument used

order oracle.apps.iby.ecapp.Tangible Order

trxn oracle.apps.iby.ecapp.Transaction The transaction performed

<return> oracle.apps.iby.engine.ValidationSe
tResult

Validation results

Note: The payment instrument, order, and transaction objects are
sub-classes of types oracle.apps.iby.ecapp.PmtInstr,
oracle.apps.iby.ecapp.Tangible,
oracle.apps.iby.ecapp.Transaction respectively, and
appropriate for the instrument type and operation type of the transaction
being performed.

Developing a Validation Set

4-32 Oracle iPayment Implementation Guide

The validation set must return as its result an object of type
oracle.apps.iby.engine.ValidationSetResult.

The table list the class attributes.

Attribute Name Type Description

Valid boolean Validation result. If passed then true, else
false.

Message String An encoded iPayment error message string
of the form:FND_MESSAGE_
CODE#TOKEN_NAME1=TOKEN_
VAL1#.

Code String Validation error code, if any.

Format Validation

Using iPayment with External Payment Systems 4-33

Seeding a Validation Set

A validation set must be seeded along with the assignment indicating its use in this case an
assignment between it and payment format it validates.

The table explains the attributes of a validation set definition:

A validation set and its assignment may be seeded in iPayment by creating a SQL script to
insert them.

The table explains the attributes of the validation set assignment:

Attribute Name Description Constraint

VALIDATION_SET_CODE Unique identifier of the validation
set.

Unique and must be less than
or equal to 30 characters.

VALIDATION_SET_
DISPLAY_NAME

Description of the validation set.

VALIDATION_LEVEL_
CODE

The level at which the validation
id done- transactional (funds
capture ORDER) or batch
(payment INSTRUCTION).

Equals the following:

■ ORDER (transactional)

■ INSTRUCTION (batch)

VALIDATION_CODE_
LANGUAGE

Language in which the validation
set was implemented.

Equals the following:

■ JAVA (only if LEVEL
equals ORDER)

■ PLSQL (only if LEVEL
equals INSTRUCTION)

VALIDATION_CODE_
PACKAGE

Language-specific package of the
code-point.

Equals a fully qualified Java
class name or a PL/SQL
package name.

VALIDATION_CODE_
ENTRY_POINT

The code-point function/procedure
name.

Note: Insert all but translatable attribute VALIDATION_SET_
DISPLAY_NAME into IBY_VALIDATION_SETS_B. Insert attribute
VALIDATION_SET_DISPLAY_NAME into IBY_VALIDATION_
SETS_B and call PL/SQL package procedure IBY_PP_MLSUTL_
PVT.VAL_SET_ADD_LANGUAGE.

Seeding a Validation Set

4-34 Oracle iPayment Implementation Guide

Validation set assignments may be directly inserted into table IBY_VAL_ASSIGNMENTS,
with the primary key ID attribute generated from sequence IBY_VAL_ASSIGNMENTS_S.

Attribute Name Description Constraint

VALIDATION_
ASSIGNMENT_ID

Primary key of the
assignment

Equals a unique integer

VALIDATION_SET_CODE Code of the validation set Equals an existing validation set

VAL_ASSIGNMENT_
ENTITY_TYPE

Type of entity the validation
set is assigned to; always a
format

Equals: FORMAT

ASSIGNMENT_ENTITY_
ID

Identifier of the entity the
validation set is assigned to;
always an existing format

Equals the code of an existing
format

Extract Generator

Using iPayment with External Payment Systems 4-35

Extract Generator

The extract generator produces the payment instruction file extract document, a superset of
all data pertaining to the transaction. A format template is applied to the extract to produce a
final payment instruction file.

The payment instruction file extract is a XML document whose structure conforms to XML
schema as defined in file $IBY_TOP/patch115/publisher/defs/IBY_FCI_1_0.xsd. This XML
schema supports transactions for all funds capture instrument types, such as credit card,
bank account, PINless debit card and all funds capture transaction operation types, such as
authorization, online capture, batch close, etc. For more information, see Funds Capture
Extract.

For implementing the custom payment system integrations, the structure of the funds capture
extract must be thoroughly understood to create the payment instruction file templates.

Extract Formatter

4-36 Oracle iPayment Implementation Guide

Extract Formatter

The extract formatter takes the extract document produced by the extract generator and
applies a format template to produce the final payment instruction file. Oracle iPayment uses
the Oracle e-Business Suite application XML Publisher (XDO) as its formatting engine.

For implementing the custom payment system integrations, templates must be created for
every transaction operation type supported by the payment system. If the integration model
for the payment system does not conform to one of formatted payment instruction file
delivery, you can use a ordinary formatting template that produces the unchanged extract
documents as its output, deliver the extract to a servlet using HTTP, and then extract
document to the payment system's native payment request mechanism in the servlet map. An
ordinary template is already seeded by iPayment with a template code IBY_IDENTITY.

Extract Structure

Using iPayment with External Payment Systems 4-37

Extract Structure

The XML Schema is the data source definition for all format templates. This means a single
funds capture extract definition supports both bank account and credit card instrument types.

Element definition Table Legend
The table is an example of an element definition table.

Each table begins with the root element, followed by a series of indented child elements.
The column preceding the child element's name indicates the child element's cardinality.

Cardinality: The values include:

■ ' ' (blank) - cardinality of 1

■ '?' cardinality of 0..1

■ '*' cardinality of 0..n

■ '+' cardinality of 1..n

■ 'n' cardinality of n

Element Name: If indicated in boldface denotes the element is a complex aggregate;
otherwise it is in a normal font.

Datatype: The values include:

■ Aggregate - Complex type consisting of child elements. If the element is not the table's
root element then its structure is defined elsewhere

■ Type - Element conforms to a custom-defined type described in its own table. Elements
that share a type have identical child elements.

■ Scalar - This can be String, Integer, Real, Date, Boolean and are the same as equivalent
SQL types.

Description: Describes the technical or business purpose of the element.

Element Name Datatype Description Data Source

Bank Account Aggregate

? BankAccountID <Identifier>

* BankAccountNumber String

Extract Components

4-38 Oracle iPayment Implementation Guide

Extract Components

The funds capture extract consists of data elements organized hierarchically. Though the
data within most such elements are generated through simple, low-cost data fetches from the
iPayment schema, some are the result of complex, high-cost function calls which result in
unacceptable performance when creating an extract instance. Therefore, the extract engine
supports a series of user-defined rules wherein certain "expensive" elements are not
populated if the rule's conditions are met.

In order to support payment formats with unique data requirements, an extensibility element
called 'Extend' is present at every level of the extract, allowing the user to provide the
required data using their own custom functions.

As the data required to create funds capture instructions change over time, the extract also
changes by the addition of new elements. To support easy transition to new extract
definitions, each extract has a version number associated with it which will be stored with
every user-defined payment format. The product retains the ability to generate all previous
extracts versions and, based upon the stored version number, provides each payment format
with the appropriate extract instance.

Extract Components

Using iPayment with External Payment Systems 4-39

Funds Capture Extract

The funds capture extract has a 5-level structure, where each level except the last contains
one or more sub-levels.

The top level is the funds capture instruction level, and represents a single instructions "file"
to be delivered to the payment system. The 2nd level includes 1 or more payee accounts,
each associated with a single currency and financial institution (bank). The payee accounts
act as destinations for a series of funds capture orders.

A funds capture order, located at the 3rd level, is associated with a payment currency, payer
information and payer bank account. A funds capture order also acts as a grouping for
multiple documents receivable that reside at the 4th level. Each document receivable is
associated with a single order and currency and contains multiple document lines, located at
the 5th level and representing a line item from the associated order.

This diagram illustrates the logical structure.

Funds Capture Extract

4-40 Oracle iPayment Implementation Guide

Funds Capture Instruction Elements
The root element of an funds capture extract, corresponding to the document or file to be
eventually delivered to the external payment system, is FundsCaptureInstruction.

Layout

Element Name Datatype Description Data Source

FundsCaptureInstruction

InstructionInfo Aggregate Information about the instruction.

InstructionSequence Aggregate Sequential, possibly periodic,
identifier of the instruction.

InstructionTotals Aggregate Totals for the instruction, such as
funds capture amount totals and
payment instrument counts.

+ PayeeAccount Aggregate Account (either a bank account or
payment system merchant
account) where captured funds
will be deposited.

* Extend <NameValue> Extensibility element. To be filled
with custom user data.

Element Name Datatype Description Data Source

InstructionInfo

InstructionInternalID Integer Indicates the unique identifier
assigned internally to this funds
capture instruction

InstructionName String Name of the instruction.

InstructionCreationDate Time Date of the instruction's creation. IBY_
BA.CREATE_
DATE

InstructionSentDate Time Date the instruction was sent.

InstructionStatus <Lookup> Current status of the instruction.

Extract Components

Using iPayment with External Payment Systems 4-41

Payee Account Level Elements
The payee account level consists of a BankAccount element, followed by funds capture total
elements, and then 1 or more funds capture order elements.

Layout

Element Name Datatype Description Data Source

InstructionSequence

SequenceName String Name/code of the sequence.

LastValue Integer Last/current value of the sequence.

Element Name Datatype Description Data Source

InstructionTotals

PayeeAccountCount Integer The number of payee accounts in
instruction.

Element Name Datatype Description Data Source

PayeeAccount

PaymentSystemAc-
count

Aggregate (Merchant) account name assigned
to the payee by the acting pay-
ment system.

? BankAccount <BankAc-
count>

Bank account where funds cap-
ture should be deposited.

Payee Aggregate The payee information.

OrderCount Integer Number of funds capture order
using this payer account/instru-
ment as the funds source.

+ FundsCaptureOrder Aggregate Collection of funds capture orders
using the current instrument as the
funds destination.

AccountTotals Aggregate Amount totals for the account

* Extend <NameValue> Extensibility element; to be filled
with custom user data.

Funds Capture Extract

4-42 Oracle iPayment Implementation Guide

Order Level Elements

Data Sources
Data sources for order-level elements come from tables IBY_TRXN_SUMMARIES_ALL
(IBY_TS) , IBY_TRXN_CORE (IBY_TC), and IBY_TANGIBLE (IBY_TG). Joins are
performed using column MTRXNID that acts as a primary key for the first 3 tables. IBY_
TG is joined to IBY_TS using column MTANGIBLEID.

Element Name Datatype Description Data Source

Payee

Name String Payee business name. IBY_PY.DBA_
NAME

Address <Address> Payee business address. IBY_PY.*

ContactInfo <Contact> Contact points for the payee party.

MCC String Merchant category code. IBY_PY.MCC_
CODE

Element Name Datatype Description Data Source

AccountTotals

AuthorizationsTotal <Amount> Total of all authorizations. IBY_BA.

CapturesTotal <Amount> Total of all captures/settlements. IBY_BA.
BATCHSALES

CreditsTotal <Amount> Total of all credits. IBY_
BA.BATCH-
CREDIT

Element Name Datatype Description Data Source

PaymentSystemAccount

AccountName String (Merchant) account name assigned
to the payee by the acting pay-
ment system.

* AccountOption <NameValue> Account configuration option or
value.

Extract Components

Using iPayment with External Payment Systems 4-43

Layout

Element Name Datatype Description Data Source

FundsCaptureOrder

OrderSourceInfo Aggregate Information about the order
requestor.

OrderNumber Aggregate Number and identifiers associated
with the order

PayeeOrderRefID String Payee-assigned order reference
identifier

IBY_
TG.REFINFO

PayeeOrderMemo String Payee-assigned order memo. IBY_
TG.MEMO

OrderMedium Enumeration Medium by which the order was
received. Values include: ECOM-
MERCE, RETAIL, etc.

OrderAmount <Amount> Amount of the order. IBY_
TS.AMOUNT

Payer <3rdPartyInfo
>

Party information about the funds
capture payer.

a PayerBankAccount <BankAc-
count>

The payer's bank account.

a BankAccountTransac-
tion

Aggregate The bank account transaction for
the funds capture.

| Note there is a disjunction
between element groups 'a' and 'b'.
One of them may appear at the
order level.

b PayerCreditCard <CreditCard> The payer's credit card (a source
for the funds capture).

b CreditCardTransac-
tion

Aggregate The credit card transaction for the
funds capture.

b
?

OriginalCCTransac-
tion

Aggregate Original credit card reques which
is a follow-on for the current one.
In almost all cases the originating
request is an authorization and this
element is not present when the
request is an authorization.

Funds Capture Extract

4-44 Oracle iPayment Implementation Guide

c PayerDebitCard <DebitCard> The payer's debit card.

c DebitCardTransaction Aggregate The debit card transaction.

OriginalDCTransac-
tion

Aggregate The original debit card request;
similar to element Original-
CCTransaction.

? DocumentReceivable Aggregate Document receivable associated
with the funds capture, if any.

* Extend <NameValue> Extensibility element; to be filled
with custom user data.

Element Name Datatype Description Data Source

OrderSourceInfo

ApplicationInternalID Integer Internal identifier of the applica-
tion originating the order request.

ApplicationName String Name of the application originat-
ing the order request.

Element Name Datatype Description Data Source

OrderNumber

PayeeOrderNumber String Payee-assigned order number
associated with the funds capture.

Element Name Datatype Description Data Source

BankAccountTransaction

ActionType Enumeration Type of EFT transaction
attempted. Values include:
DEBIT, CREDIT, VERIFY,
VALIDATE.

TransactionDate Date Date of the funds capture.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-45

AuthorizationMethod Enumeration Method by which the payer autho-
rized the transaction. Values
include: WRITTEN, INTERNET_
FORM.

DeliveryMethod Enumeration Method by which the transaction
is to be delivered. Values include:
ACH, FASCIMILE.

* Extend <NameValue> Extensibility element; to be filled
with custom data.

Element Name Datatype Description Data Source

CreditCardTransaction

ActionType Enumeration Type of credit card transaction.
Values include: AUTHORIZA-
TION, AUTHCAPTURE,
VOICEAUTH, CAPTURE,
CREDIT, RETURN, VOID.

IBY_TS.TRX-
NTYPEID

TransactionDate Date Date of the funds capture. IBY_
TS.CREATION
_DATE

? TraceNumber String Payment system-provided trace
number.

? POSData Aggregate Point-of-sale data for card-present
transactions.

IBY_TC.*

? AuthCode String Authorization code. Present for
voice auth transactions.

IBY_TC.
AUTHCODE

? VoiceAuthFlag Boolean Indicates whether the transaction
was a voice authorization.

IBY_
TC.VOICEAU-
THFLAG

* Extend <NameValue> Extensibility element. To be filled
with custom data.

Element Name Datatype Description Data Source

OriginalCCTransaction

Element Name Datatype Description Data Source

Funds Capture Extract

4-46 Oracle iPayment Implementation Guide

ActionType Enumeration Type of credit card transaction.
Values include: AUTHORIZA-
TION, AUTHCAPTURE,
VOICEAUTH, CAPTURE,
CREDIT, RETURN, VOID.

IBY_TS.TRX-
NTYPEID

TransactionDate Date Date of the funds capture. IBY_
TS.CREATION
_DATE

? TraceNumber String Payment system-provided trace
number.

? POSData Aggregate Point-of-sale data for card-present
transactions.

IBY_TC.*

? AuthCode String Authorization code provided by
the payment system during the ini-
tial auth.

IBY_TC.
AUTHCODE

? VoiceAuthFlag Boolean Indicates whether the transaction
was a voice authorization.

IBY_
TC.VOICEAU-
THFLAG

Amount <Amount> Transaction Amount. IBY_
TS.AMOUNT

? AVSCode String AVS response from the initial
auth.

IBY_TC.
AVSCODE

? ReferenceCode String Reference Code IBY_TC.REF-
ERENCECODE

? SecurityValueCheck String Result of the security value check. IBY_
TC.CVV2RES
ULT

? PaymentSystemCode String Payment system code returned
during the initial authorization.

IBY_TS.BEP-
CODE

* Extend <NameValue> Extensibility element. To be filled
with custom data.

IBY_TRXN_
EXTENSIBIL-
ITY.*

Element Name Datatype Description Data Source

DebitCardTransaction

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-47

ActionType Enumeration Type of EFT transaction. Values
include: DEBIT, CREDIT, VER-
IFY, VALIDATE.

TransactionDate Date Date of the funds capture.

* Extend <NameValue> Extensibility element. To be filled
with custom data

Element Name Datatype Description Data Source

OriginalDCTransaction

ActionType Enumeration Type of debit card transaction
attempted.

IBY_TS.TRX-
NTYPEID

TransactionDate Date Date of the funds capture. IBY_
TS.CREATION
_DATE

? TraceNumber String Payment system-provided trace
number.

? AuthCode String Authorization code provided by
the payment system during the ini-
tial auth.

IBY_TC.
AUTHCODE

? PaymentSystemCode String Payment system code returned
during the initial authorization.

IBY_TS.BEP-
CODE

DebitNetworkCode String Debit network code. IBY_
TC.DEBIT_
NETWORK_
CODE

* Extend <NameValue> Extensibility element. To be filled
with custom data

IBY_TRXN_
EXTENSIBIL-
ITY.*

Element Name Datatype Description Data Source

POSData

ReaderCapability Enumeration The card reader capability. IBY_
TC.CARD_
READER_
CAPABILITY

Element Name Datatype Description Data Source

Funds Capture Extract

4-48 Oracle iPayment Implementation Guide

Document Level Elements

Layout

EntryMode Enumeration IBY_
TC.CARD_
ENTRY_
METHOD

CardIdMethod Enumeration IBY_
TC.CARD_ID_
METHOD

AuthSource Enumeration IBY_
TC.CARD_
AUTH_
SOURCE

ReaderData String Card reader data. Must be in text
encoded format if binary

IBY_
TC.READER_
DATA

Element Name Datatype Description Data Source

DocumentReceivable

DocumentID String Identifier assigned to this docu-
ment receivable.

DocumentStatus <Lookup-
Code>

Document Status.

DocumentDate Date

DocumentCreationDate Date Document creation date.

PaymentDueDate Date Document payment due date.

DocumentType <Lookup> Document Type.

DocumentDescription String User-provided document descrip-
tion.

TotalDocumentAm-
ount

<Amount> Total amount of the document.

PaymentAmount <Amount> Amount paid.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-49

Document Line Level Elements

Layout

+ Charge Aggregate Charges applied to the document.

+ Discount Aggregate Discounts applid to the document.

+ Tax Aggregate Taxes applied to the document.

ShipmentOrigin <Address> Shipping origin of goods pro-
vided.

ShipmentDestination <Address> Shipping destination of goods pro-
vided.

+ DocumentLine Aggregate Document lines.

* Extend <NameValue> Extensibility element. To be filled
with custom user data.

Element Name Datatype Description Data Source

DocumentLine

LineID String Identifier for the document line.

LineNumber Integer Number for the document line.

PONumber Purchase Order Number.

LineType <Lookup> Document Type.

LineDescription String Description of the document line.

LineAmount <Amount> Total amount for the line.

? UnitRate Real Price per unit of this item.

? Quantity Real Number of line item units.

? InitOfMeasure Real Unit of measure lookup code.

+ Charge Aggregate Charges applied to the document
line.

+ Discount Aggregate Discounts applid to the document
line.

Element Name Datatype Description Data Source

Funds Capture Extract

4-50 Oracle iPayment Implementation Guide

+ Tax Aggregate Taxes applied to the document
line.

+ DocumentLine Aggregate Document lines.

* Extend <NameValue> Extensibility element. To be filled
with custom user data.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-51

Common Elements

Generic Elements
Currency information comes from FND_CURRENCIES (FND_C), with a join performed on
the curreny code if detailed information is required.

Element Name Datatype Description Data Source

<Currency>

Code String Currency code. Acts as foreign
key into table FND_CURREN-
CIES.

? Symbol String FND_C. SYM-
BOL

? MinAccountableUnit Integer FND_C.
MINIMUM_
ACCOUNTAB
LE_UNIT

Precision Integer FND_C. PRE-
CISION

Element Name Datatype Description Data Source

<Amount>

Value Real Scale of the amount.

Currency Aggregate Currency of the amount.

Element Name Datatype Description Data Source

<NameValue>

Name String Name

Value String Value

Element Name Datatype Description Data Source

<Lookup>

Common Elements

4-52 Oracle iPayment Implementation Guide

Address Elements

Contact Information Elements

Code String Lookup code.

Meaning String Code meaning. FND_LOOK-
UPS.MEAN-
ING

? FormatValue String Value required by the payment
format using this lookup.

Element Name Datatype Description Data Source

<Address>

AddressInternalID Integer The data source of the address
data.

AddressLine1 String

? AddressLine2 String

? AddressLine3 String

City String

? County String

State String

Country String

PostalCode String

Element Name Datatype Description Data Source

<ContactInfo>

ContactName <Person-
Name>

The contact’s personal name.

ContactLocators <Locators> Various means by which the con-
tact may be located or reached.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-53

Bank Account Elements

Element Name Datatype Description Data Source

<PersonName>

FirstName String Person’s first name.

LastName String Person’s first name.

Element Name Datatype Description Data Source

<Locators>

PhoneNumber String Contact phone number.

FaxNumber String Contact fax machine number.

EmailAddress String Contact e-mail address.

? Website String Contact website.

Element Name Datatype Description Data Source

<BankAccount> Aggregate

BankAccountInternalID Integer Identifies the data source of the
parent aggregate.

BankName String Name of the bank.

BankNumber String Number assigned to bank.

BranchInternalID Integer Identifies the data source of all
subsequent branch-related ele-
ments.

BranchName String Name of the bank branch.

BranchNumber String Number of the bank branch.

BranchType <Lookup> Bank branch type.

? FederalBankAc-
countInfo

Aggregate Additional information in case the
bank account is owned by a fed-
eral agency.

AccountHolderName String Name of the account holder.

Common Elements

4-54 Oracle iPayment Implementation Guide

3 BankAssignedIdenti-
fier

Aggregate Identifier assigned to the account
holder by the bank.

EFTUserNumber Aggregate EFT numbers assigned by the
bank to the user.

BankAccountName String Name of the bank account.

BankAccountNumber String The bank account number.

SwiftCode String SWIFT code of the bank account.

IBANNumber String IBAN of the bank account.

CheckDigits String Check digits of the bank account
number.

BankAccountType <Lookup> The account type.

BankAccountCur-
rency

<Currency> Currency by which accounts funds
are denominated.

BankAddress <Address> Address of the bank.

? BankContact <ContactInfo> Contact at the bank.

Element Name Datatype Description Data Source

BankAssignedIdentifier

AssignedIdentifier String Identifier value assigned by the
bank.

AssignedIdentifierType-
Code

String Code giving the identifier type.

AssignedIdentifierType String Description of the identifier type.

Element Name Datatype Description Data Source

EFTUserNumber

AccountLevelEFTNum-
ber

String Account-level EFT user number.

BranchLevelEFTNum-
ber

String Branch-level EFT user number.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-55

Credit Card Elements

Element Name Datatype Description Data Source

FederalBankAc-
countInfo

FederalRFCIdenti-
fier

String Identifier of the US Treasury
Regional Finance Center (RFC)
where disbursement originates for
federal agencies.

HZ_CA.CLASS_
CODE:select class_
codefrom hz_code_
assignmentswhere
(owner_table_name
= 'HZ_PAR-
TIES')and(owner_
table_id = <Branch-
Party.party_
id>)and(class_cate-
gory = 'RFC_IDEN-
TIFIER')andNVL(sta
tus, 'A') = 'A'

FederalAgencyLo-
cationCode

String Agency Location Code used by
federal agency.

CE_BA. AGENCY_
LOCATION_CODE

FederalAbbrevi-
atedAgencyCode

String

FederalEmployerI-
dentificationNum-
ber

String

Element Name Datatype Description Data Source

<CreditCard>

CardNumber String Credit card number.

CardExpiration Date Card expiration date.

? SecurityCode String CVV2 or similar security value.

CardIssuer Enumeration Credit card issuer type: VISA,
MASTERCARD, etc.

CardHolder Aggregate Card holder information.

CardSubtype Enumeration Purchase card subtype. Possible
values defined by lookup IBY_
PURCHASECARD_SUBTYPE.

IBY_TC.CARD_
SUBTYPE_CODE

Common Elements

4-56 Oracle iPayment Implementation Guide

Debit Card Elements

Party Elements
Party elements are those which describe a participant in a financial transaction, with varying
detailspending on whether they are the 1st party (user) or 3rd party (external).

CardDataLevel Enumeration Level of data supported with this
instrument; possible values
defined by lookup IBY_PCARD_
DATA_LEVEL.

Element Name Datatype Description Data Source

CardHolder

HolderName <Person-
Name>

Card holder name

BillingAddress Aggregate Billing address of the card holder

? PhoneNumber String Card holder phone number

? EmailAddress String Card holder e-mail address

Element Name Datatype Description Data Source

<DebitCard>

CardNumber String Credit card number.

CardExpiration Date Card expiration date.

? SecurityValue String Account security code.

CardHolder Aggregate Card holder information.

Element Name Datatype Description Data Source

<1stPartyInfo>

? PartyInternalID Integer Indicates the source of the
party data (HZ_PARTIES)
with the Identifier element
holding PARTY_ID.

Element Name Datatype Description Data Source

Extract Components

Using iPayment with External Payment Systems 4-57

PartyNumber String User-assigned identifier for
this external party.

Name String Full name of the party.

PartyTypeCode String Lookup code for the party
type.

PartyType String The party type.

? TaxIdentifier String Tax number of party.

LegalEntityInter-
nalID

Integer Legal entity data source iden-
tifier, with the identifier ele-
ment holding LEGAL_
ENTITY_ID.

LegalEntityName String Legal name of the party.

Address <Address> Party's address.

Element Name Datatype Description Data Source

<3rdPartyInfo>

? PartyInternalID Integer Indicates the source of the
party data (HZ_PARTIES)
with the Identifier element
holding PARTY_ID.

PartyNumber String User-assigned identifier for
this external party.

Name String Full name of the party.

PartyTypeCode String Lookup code for the party
type.

PartyType String The party type.

? TaxIdentifier String Tax number of party.

Address <Address> Party's address.

FirstPartyReference String Identifier by which this third
party refers to the first.

Element Name Datatype Description Data Source

Common Elements

4-58 Oracle iPayment Implementation Guide

Document Line Elements

Element Name Datatype Description Data Source

Discount

Amount Aggregate Amount of the discount.

RatePercent Real Discount rate in percentage.

DiscountType String Type of discount.

Element Name Datatype Description Data Source

Charge

Amount Aggregate Amount of the charge.

RatePercent Real Charge rate as a percentage.

ChargeType String Type of charge.

Element Name Datatype Description Data Source

Tax

Amount Aggregate Amount of the tax.

RatePercent Real Tax rate as a percentage.

Type String Type of tax.

TaxJurisdiction String Tax jurisdiction.

Transmission Functions

Using iPayment with External Payment Systems 4-59

Transmission Functions

The transmission function is responsible for delivering the payment instruction file to the
payment system and implements a particular transmission protocol. This function can exist
separately from the rest of iPayment, as an independent servlet.

For implementing the custom payment system integrations, transmission function
code-points must be created for each transmission protocol for communicating with the
payment system.

One component of a payment system specification is the transmission protocol used to
deliver payment instruction files to the payment system. A transmission protocol has
transmission parameters associated with it that define the required system data when making
a communication attempt. A transmission protocol also has a defined transmission function
code-point, which is a self-contained unit of code implementing the protocol and
conforming to the interface: oracle.apps.iby.net.TransmitFunction.

This function can exist separately from the rest of iPayment, as its own servlet. The Base
URL parameter in the Payment System details page points to this servlet.

Developing a Transmission Function
A transmission protocol is implemented through a Java class which must implement the
interface oracle.apps.iby.net.TransmitFunction. To implement the interface,
the class must define function transmit().

The table explains the signature of the function:

On implementing the protocol in function transmit(), the function should handle any system
exception that occurs by the exception of type
oracle.apps.iby.exception.PSException such as:

throw new PSException(PSException.COMMUNICATION_ERROR);

Argument Type Type Description

params java.util.Dictionary The map of protocol parameter names and values
representing the transmission configuration. The names
will be taken from the parameter name definitions for
the protocol.

payload iava.io.InputStream The message payload being delivered.

<return> java.io.InputStream The response to the transmission; maybe null.

Transmission Functions

4-60 Oracle iPayment Implementation Guide

If a mandatory transmission protocol parameter is not set, an exception using the same class
type should be thrown such as:

throw new PSException(PSException.CODEPOINT_ARG_ERR,
PSException.CODEPOINT_ARG_ERR_TOKEN_ARG,

<parameter code>);

Once the transmission function class has been created, turn it into a servlet by:

■ Placing the transmission function class in the CLASSPATH of the transmission servlet
class oracle.apps.iby.bep.TransmitServlet.

■ Opening the servlet zone properties file of the application server that will host the
transmission servlet.

■ Creating an alias for the class oracle.apps.iby.bep.TransmitServlet, so
that it can be accessed as http://<host>:<post>/<servlet zone>/oramipp_<suffix>, where

■ <host> and <port> are the hostname and port of the application servlet

■ <servlet zone> is the servlet zone in which the transmission servlet will run

■ <suffix> is the 3-letter payment system suffix

For implementing the custom payment system integrations, the Java class implementing an
employed transmission protocol must be distributed and then placed in the CLASSPATH of
the application server that hosts the transmission function (that is, the application server that
will host the iPayment transmission servlet).

Seeding a Transmission Protocol
When configuring a payment system account for the payment system in the UI, you will
automatically see all transmission protocol parameters defined for the payment system's
system payment profile.

The table lists the attributes of a transmission protocol:

Attribute Name Description Constraint

TRANSMIT_
PROTOCOL_CODE

The unique identifier for the protocol. Must be unique and less than or
equal to 30 characters.

TRANSMIT_
PROTOCOL_NAME

The description of the protocol.

TRANSMIT_CODE_
LANGUAGE

The language in which the transmission
function code-point for the protocol is
implemented.

Must be JAVA.

Transmission Functions

Using iPayment with External Payment Systems 4-61

The table defines the attributes of a transmission protocol's parameters, sub-entities of the
protocol.

A transmission protocol and its parameters can be seeded in iPayment by creating a SQL
script to insert them.

TRANSMIT_CODE_
PACKAGE

The code-point package. The
fully-qualified class name of the
transmission function code-point.

A fully qualified class name.

TRANSMIT_CODE_
ENTRY_POINT

The Code-point entry-point: the
programming language function name
that is called.

Must equal: transmit.

Attribute Name Description Constraints

TRANSMIT_
PARAMETER_CODE

The identifier for the parameter. Must be unique and less than or
equal tp 30 characters among all
parameters defined for the
protocol.

TRANSMIT_
PARAMETER_TYPE

The datatype of the parameter. Supported values are:

■ VARCHAR2

■ NUMBER

MANDATORY_
FLAG

Whether the parameter is mandatory;
used for UI validation during
transmission configuration.

Possible values:

■ Y (Yes)

■ N (No)

TRANSMIT_
PROTOCOL_CODE

The protocol to which this parameter
belongs.

TRANSMIT_
PARAMETER_
NAME

The name of the parameter.

Attribute Name Description Constraint

Transmission Functions

4-62 Oracle iPayment Implementation Guide

Note: Insert all but translatable protocol attribute TRANSMIT_
PROTOCOL_NAME name into tables IBY_TRANSMIT_PROTOCOLS_
B. Insert the translatable attribute TRANSMIT_PROTOCOL_NAME into
IBY_TRANSMIT_PROTOCOLS_TL and call the procedure IBY_PP_
MLSUTL_PVT.TRANS_PROT_ADD_LANGUAGE.

Insert all but translatable protocol parameter attribute TRANSMIT_
PARAMETER_NAME name into tables IBY_TRANSMIT_
PARAMETERS_B. Insert the translatable attribute TRANSMIT_
PARAMETER_NAME into IBY_TRANSMIT_PARAMETERS_TL and
call the procedure IBY_PP_MLSUTL_PVT. TRANS_PARAM_ADD_
LANGUAGE.

Acknowledgment Parser

Using iPayment with External Payment Systems 4-63

Acknowledgment Parser

A payment system sends an acknowledgement upon receiving a payment instruction
delivery. The task of the acknowledgment parser is to parse the response understandable to
iPayment.

For implementing the custom payment system integrations, acknowledgement parsers must
be created for every transmission function. If the payment system does not support
acknowledgement for a protocol, a default acknowledgement parser must still be created
which returns default or trivial values.

Acknowledgement parsers are self-contained code-points that parse responses from the
payment system into a form that can be processed by the iPayment engine.

Seeding an Acknowledgement Parser
The table defines the attributes when seeding an acknowledgement parser:

After the attributes for an acknowledgement parser are defined, they can be seeded in
iPayment by creating a SQL script to insert them into the table IBY_ACK_READERS.

For implementing the custom payment system integrations, the Java class implementing an
acknowledgment parser must be distributed to the user and then place it in the CLASSPATH
of the application server hosting the iPayment engine.

Attribute Name Description Constraint

ACK_READER_
CODE

The unique identifier for the parser. Must be unique and less than or
equal to 30 characters.

READER_
CODE_
LANGUAGE

The language that the transmission function
code-point for the parser is implemented.

Myst be Java.

READER_
CODE_
PACKAGE

The code-point package- the fully-qualified
class name of the acknowledgement parser
code-point.

A fully qualified class name.

READER_
CODE_ENTRY_
POINT

The code-point entry-point: the
programming language function name that is
called.

Must be parse.

Acknowledgment Parser

4-64 Oracle iPayment Implementation Guide

Developing an Acknowledgement Parser
All acknowledgement parsers must sub-class the interface:
oracle.apps.iby.bep.ACKParser. The interface has a single function, parse, with
these interface:

The hints argument to the acknowledgement parser is a collection of name-value pairs
providing information about the transaction the response was created for.

The table lists the possible values in this collection:

Argument Name Type Description

ackFile java.io.InputStream The acknowledgment message or "file".

hints java.util.Dictionary Collection of name-values providing information
about the transaction the acknowledgement is for.
For example, the instrument type used, credit card
issuer, etc.

<return> bep.ACK A corresponding object for the acknowledgment.

Hint Key Description Value

ACKParser.CARD
_ISSUER_HINT

The card issuer; for
acknowledgments
where the structure of
the response varies
based upon the card
issuer.

One of the following card issuer codes:

■ AMEX

■ DINERS

■ DISCOVER

■ ENROUTE

■ JCB

■ MASTERCARD

■ UNKNOWN

■ VISA

ACKParser.INSTR
_TYPE_HINT

The transaction
instrument type.

One of the following values:

■ BANKACCOUNT

■ CREDITCARD

■ PINLESSDEBITCARD

■ PURCHASECARD

Acknowledgment Parser

Using iPayment with External Payment Systems 4-65

The result of an acknowledgement parser returns is an object derived from class:
oracle.apps.iby.bep.ACKParser. This class is a record intended to hold various
response fields mapped from the payment system response.

ACK
The abstract class oracle.apps.iby.bep.ACK defines the most basic
acknowledgement attributes inherited by all sub-classes. The table describes the structure of
this class and all derived sub-classes.

ACKParser.TRXN
_TYPE_ID_HINT

The type of
transaction.

One of the following values:

■ 2 (Auth only)

■ 3 (Auth capture)

■ 5 (Return)

■ 8/9 (Capture)

■ 11 (Credit)

Value data-source is IBY_TRXN_SUMMARIES_
ALL.TRXNTYPEID

Note: The hints are populated only for certain transaction types. For
example, the hints will be not be populated for a batch close operation.

Note: Implicity, for each attribute listed for a particular class there exists
get<AttributeName> and set<AttributeName> functions for accessing the
attributes. The get<AttributeName> returns an object of the attribute's type
and the set<AttributeName> takes an object of the attribute's type as its
single argument.

Attribute Name Type Description

BEPErrorCode String Payment system error code

BEPErrorMessage String Payment system error message

Hint Key Description Value

Acknowledgment Parser

4-66 Oracle iPayment Implementation Guide

TrxnACK
The abstract class oracle.apps.iby.bep.TrxnACK defines common attributes for
transaction acknowledgements. It is a subclass of oracle.apps.iby.bep.ACK and
hence inherits its attributes as well.

Attribute ExtensiblitySet is typed as an array of
oracle.apps.iby.util.NameValuePair objects and may be optionally set by the
parser if the payment system acknowledgement contains important data that do not
correspond to any of the attributes in an appropriate acknowledgements object. Any name
values returned by the ExtensiblitySet attributed are stored in table IBY_TRXN_
EXTENSIBILITY and are included in the extract document of any follow on transaction

Attribute Name Type Description

OrderId String Order identifier for this transaction

TrxnStatus int Status of the transaction. The possible values are:

■ 0 (Success)

■ 1 (Communication error)

■ 2 (Duplicate order id)

■ 3 (Duplicate batch id)

■ 4 (Required field missing)

■ 5 (Payment system error)

■ 8 (Operation not supported)

■ 11 (Pending)

■ 20 (Declined)

TrxnDate java.util.Date Date the transaction was completed.

TrxnReqType String Transaction request type. The possible values are:

■ ORAPMTCAPTURE (Capture)

■ ORAPMTCLOSEBATCH (Batch close)

■ ORAPMTCREDIT (Credit)

■ ORAPMTREQ (Authorization/Auth
Capture/Verification/Debit)

■ ORAPMTRETURN (Return)

■ ORAPMTVOID (Void)

ExtensiblitySet oracle.apps.iby.util.
NameValuePair[]

The collection of extensibility name-value pairs.

Acknowledgment Parser

Using iPayment with External Payment Systems 4-67

using the series of Extend sub-elements which may appear beneath the
OriginalCCTransaction or OriginalDCTransaction elements.

The table explains the attributes of the oracle.apps.iby.util.NameValuePair
class.

CreditCardTrxnACK
The class oracle.apps.iby.bep.CreditCardTrxnACK holds acknowledgment
information for a single credit card transaction. The table lists the attributes (not including
ones derived from its parent class oracle.apps.iby.bep.TrxnACK).

BankAccountTrxnACK
The class oracle.apps.iby.bep.BankAccountTrxnACK holds
acknowledgment information for a single bank account transaction. The table lists the
attributes (including inherited ones from oracle.apps.iby.bep.TrxnACK).

Attribute Name Type Description

Name String The name/key.

Value String The value.

Attribute Name Type Description

AuthCode String Authorization code.

AVSResponse String Address verification system response from the payment system.

SecurityCodeCheck String Payment system response for the credit card security code
(CVV2) check.

RefCode String Reference code.

Attribute Name Type Description

RefCode String Bank reference code.

TrxnAmount oracle.apps.iby.ecapp.Price Actual amount of the transfer.

PostDate java.util.Date Date funds will be posted.

FundsCommitted Boolean Indicates whether funds were committed.

Acknowledgment Parser

4-68 Oracle iPayment Implementation Guide

BatchACK
The abstract class oracle.apps.iby.bep.BatchACK defines common attributes of
batch acknowledgments. The table list the attributes, in addition to those inherited from class
oracle.apps.iby.bep.ACK.

Attribute Name Type Description

BatchId String Identifier of the batch.

BatchStatus int Status of the batch. The possible values are:

■ 0 (Success)

■ 1 (Communication error)

■ 3 (Duplicate batch id)

■ 5 (Payment system error)

■ 11 (Pending)

BatchDate java.util.Date Date of batch submission.

TrxnACKs bep.TrxnACK[] Collection if acknowledgments for the individual
transactions in this batch.

TrxnACKType String Enumerated value indicating transaction acknowledgments.
The values are:

■ BatchACK.TRXN_ACK_ALL (All transactions in the
batch have an acknowledgement)

■ BatchACK.TRXN_ACK_POSITIVE (All transactions
missing an acknowledgement assumed failed)

■ BatchACK.TRXN_ACK_NEGATIVE (All
transactions missing an acknowledgement assumed
successful)

Note: All batch statuses except pending (11) are final. In case a batch
acknowledgement does not exist, for example immediately after a batch
close, or during a batch query which occurs before the batch has been
processed, a batch acknowledgement object with batch status 0 should be
created although there is no existing acknowledgement file.

Acknowledgment Parser

Using iPayment with External Payment Systems 4-69

CreditCardBatchACK
The class oracle.apps.iby.bep.CreditCardBatchACK extends
oracle.apps.iby.bep.BatchACK and contains attributes for credit card batch
acknowledgments. The table explains the attributes.

BankAccountBatchACK
The class oracle.apps.iby.bep.BankAccountBatchACK extends
oracle.apps.iby.bep.BatchACK and contains attributes for credit card batch
acknowledgments. The table explains the attributes.

Attribute Name Type Description

AuthTotal oracle.apps.iby.ecapp.Price Total authorizations completed.

CaptureTotal oracle.apps.iby.ecapp.Price Total authorizations completed.

CreditTotal oracle.apps.iby.ecapp.Price Total credits completed.

Attribute Name Type Description

CreditTotal ecapp.Price Total credits completed.

DebitTotal ecapp.Price Total debits completed.

Acknowledgment Parser

4-70 Oracle iPayment Implementation Guide

Risk Management A-1

A
Risk Management

This appendix explains risk management functionality. Topics in this section include:

■ Utilizing Risk Management

■ Risk Management Test Scenarios

Utilizing Risk Management

A-2 Oracle iPayment Implementation Guide

Utilizing Risk Management

iPayment supports risk management functionality. Electronic commerce applications can
incorporate this feature and detect fraudulent payments. The following information describes
how electronic commerce applications can utilize the risk management functionality of
iPayment.

Risk Factors and Risk Formulas
iPayment is bundled with a set of risk factors. Payees can configure these factors depending
on their business model. The payees can create multiple formulas using different factors and
weights depending on their specific requirements. The ability to create multiple formulas
provides flexibility to payees to accommodate different business scenarios. Each formula
must be set up so that the sum of the weights is equal to 100. If a risk factor value is missing
at the time of risk evaluation, the risk for the missing factor is considered very high in the
formula.

iPayment also defines an implicit formula for each payee with default factors and weights.
Administrators have the flexibility to modify the implicit formula. The following
information describes how and where the implicit formula is used.

Process Flow of Risk Evaluation
1. To enable risk analysis during authorization, either set up the explicit risk flag in the

input transaction object or check Enabled radio button in the Risk Management Status
screen for that payee.

2. When an electronic commerce application makes a Payment Request API call,
iPayment first checks the risk flag and depending on its value, decides if the payee
involved in the payment request is risk enabled or not. If the risk analysis field indicates
that iPayment should perform risk analysis, or if a default value is added in the field and
a payee is risk enabled, iPayment evaluates either the risk formula passed in the
Payment Request API or the implicit formula associated with that payee.

3. Electronic commerce application can pass a specific risk formula name by calling the
overloaded Payment Request API. This API takes PmtRiskInfo object in which
electronic commerce application can set up the formula name and additional
information. If PmtRiskInfo object is not passed and the payee is risk enabled, iPayment
evaluates the implicit formula of that payee.

4. iPayment returns the Risk Response (RiskResp) object as part of the payment response.
If risk evaluation is done successfully, Risk Response object contains the risk score
obtained after evaluation and the threshold value that is set up with the payee. Based on

Utilizing Risk Management

Risk Management A-3

the risk score and the threshold value, the electronic commerce application can decide
whether a payment can be accepted or not

5. If the risk score is more than the threshold value, the payment request is risky.

Process Flow of Independent Risk APIs
Risk API 1

1. When an electronic commerce application invokes Risk API 1, iPayment evaluates the
risk formula sent in the request or the implicit formula associated with that payee.

2. iPayment evaluates all the risk factors that are configured as part of this formula, except
the AVS Code risk factor.

3. After evaluation, iPayment returns Risk response (RiskResp) object as a response to this
API. This response object contains, the status of the API call, AVSCodeFlag indicating
if AVS Code risk factor was part of the formula or not, risk score, and the risk threshold
value that is setup for the payee. Depending on the AVSCodeFlag value, it is be decided
whether to call Risk API 2 or not.

Risk API 2

1. Electronic commerce applications need to call this API with the same PayeeID and
formula name that were used to call Risk API 1. The risk score that was returned as part
of the Risk API 1 response also needs to be sent. When electronic commerce
applications call this API, iPayment checks again if the formula has AVS Code risk
factor configured in it or not. If it is configured, iPayment evaluates the AVS Code risk
factor.

2. After evaluating the AVS Code risk factor, iPayment calculates the final risk score of
the formula using the previous risk score that was sent and the AVS Code risk factor
score. This risk score is sent back to the electronic commerce application as part of the
response object of this API.

Note: Partial risk score is returned if AVS Code risk factor is part of the
risk formula.

Risk Management Test Scenarios

A-4 Oracle iPayment Implementation Guide

Risk Management Test Scenarios

The following are three business scenarios that describe how a merchant can use the Risk
Management functionality.

Merchant Selling Books and Low Priced Goods
In a small business, accepting risky instruments is a critical factor. If a customer is using a
stolen credit card, the merchant should consider this transaction risky and assign this risk
factor a higher weight than the other risk factors. Ship to/bill to address matching and
payment history are also important risk factors. To include AVS Code risk factor, a
merchant can set up a formula with weights as shown in Weight B column in the Risk
Formula Setup-First Case table. The total of all the weights should be 100. For a formula
that a merchant would set up in this case, see Risk Formula Setup for the First Case.

Risk Formula Setup for the First Case
This table shows the risk formula setup for a merchant selling books and low priced goods.

Risk Factor Setup
■ Payment Amount Limit

This table shows the risk levels and the associated payment amounts.

Factors Weight A Weight B

Risky Instruments 30 30

Payment Amount Limit 15 15

Transaction Amount 15 15

Ship to/Bill to 20 10

Payment History 20 10

AVS Code 0 20

Risk Levels Greater than or Equal To

Low 0

Low medium 100

Medium 200

Risk Management Test Scenarios

Risk Management A-5

■ Transaction Amount

A transaction is high risk if the transaction amount exceeds 500 in one week. Otherwise
there is no risk.

■ Payment History

This table shows the risk levels and the number of payments made in the last six months
by a particular customer.

■ AVS Code

This table shows the risk levels and the associated AVS Codes. AVS Code risk factor
evaluation is useful only for customers in the United States.

■ Ship To/bill To and Risky Instruments

Medium high 300

High 400

Risk Levels Greater than or Equal To

Low 6

Low medium 4

Medium 3

Medium high 2

High 0

Risk Level AVS Code

No risk S,Y,U,X,R,E

Low A,Z,W

Low medium

Medium

Medium high

High N

Risk Levels Greater than or Equal To

Risk Management Test Scenarios

A-6 Oracle iPayment Implementation Guide

These risk factors do not require any setup. The evaluation will be done with the data
already existing in the database.

■ Risk Score

A typical threshold value would be between medium and medium high risk score. Risk
Management module evaluates the payment request and returns an overall risk score. If
an overall risk score exceeds the threshold value set up by the merchant, then the
merchant has to decide whether to process the request or to block the request.

Merchant Selling Electronic Goods
Risky instruments is a critical factor in this case. If a customer is using a stolen credit card,
the merchant should consider this transaction risky and assign it a higher weight.

Frequency of purchase is the next important risk factor. Usually customers do not buy
electronic goods frequently, and if they do, the purchases could be a fraudulent.

In this scenario, time of purchase is also should be considered as an important risk factor. If
someone buys many goods after 2:00 AM, it might be a fraudulent purchase.

To include an AVS Code risk factor, a merchant can sets up a formula with weights as
shown in column Weight B in Risk Formula Setup-Second Case table. The total of all the
weights are 100. The AVS Code risk factor evaluation will be useful only for customers in
the United States.

Risk Formula Setup for the Second Case
This table shows the risk formula set up for a merchant selling electronic goods.

Risk Factor Setup
■ Payment Amount Limit

Factor Weight A Weight B

Risky Instruments 30 30

Ship to/Bill to 15 12

Time of Purchase 15 12

Frequency of Purchase 20 10

Payment Amount 10 8

Transaction Amount Limit 10 8

AVS Code 0 20

Risk Management Test Scenarios

Risk Management A-7

This table shows the risk levels and the associated payment amounts.

■ Transaction Amount

This risk factor is considered high risk if the amount exceeds 2,500 in one week.
Otherwise there is no risk.

■ Frequency of Purchase

This risk factor is considered high risk if the frequency of purchase exceeds ten times in
the previous one week.

■ AVS Codes

This table shows the risk levels and the associated AVS codes. AVS codes risk factor
evaluation is only useful for customers in the United States.

■ Ship To/Bill To and Risky Instruments

These risk factors do not require any setup. The evaluation is done through the data
already existing in the database.

■ Risk Score

Risk Levels Greater Than or Equal To

Low 500

Low medium 1000

Medium 1500

Medium high 2000

High 2500

Risk Level AVS Code (Comma Separated)

No risk S, Y, U, X, R, E

Low A,Z,W

Low medium

Medium

Medium high

High N

Risk Management Test Scenarios

A-8 Oracle iPayment Implementation Guide

A typical threshold value is to be between medium and medium high risk score.

The risk management module evaluates the payment request and returns an overall risk
score. If an overall risk score exceeds the threshold value set up by the merchant, the
merchant has to decide whether to process the request or to block the request.

Business to Business Customer
In a business to business scenario, a merchant has an established relationship with his
customer. In this scenario, the Oracle Receivables risk factors take higher precedence. The
merchant is interested in the customer’s payment history, his credit rating, etc. All Oracle
Receivables risk factors are set up through Oracle Receivables interface.

Risk Formula Setup in the Third Case
This table shows a Risk Formula setup for a business to business customer.

Risk Factor Setup
■ Overall Credit Limit: 100,000

■ Transaction Credit Limit: 50,000

■ Risk Codes are set up through Oracle Receivables codes.

This table shows the risk codes and the associated risk scores set up through iPayment
administration user interface.

Factors Weight

Overall Credit Limit 30

Transaction Credit Limit 30

Risk Codes 15

Credit Rating Codes 15

Payment History 10

Risk Codes Risk Score

Low Low

Average Medium

Excellent No risk

Risk Management Test Scenarios

Risk Management A-9

■ Credit Rating Codes are set up through Oracle Receivables interface

This table shows the set up of credit rating codes and the associated risk scores.

■ Risk Score

A typical threshold value is between medium and medium high.

Risk management module evaluates the payment request and returns an overall risk
score. If an overall risk score exceeds the threshold value set up by the merchant, then
the merchant decides whether to process or block the request.

Credit Rating Codes Risk Score

Low Low

Average Medium

Poor High

Excellent No risk

Risk Management Test Scenarios

A-10 Oracle iPayment Implementation Guide

Error Handling B-1

B
Error Handling

This appendix explains error handling and describes the most common errors. Topics in this
section include:

■ Error Handling During Payment Processing

Error Handling During Payment Processing

B-2 Oracle iPayment Implementation Guide

Error Handling During Payment Processing

iPayment returns a response object to each API that an electronic commerce application
calls. If the operation fails, then the response object contains status value (IBY_FAILURE),
indicating that there was a failure while processing the request. In these cases, the electronic
commerce application can get more information about the failure by checking the error code
and the error message. Errors can happen in iPayment for various reasons. For example,
wrong or duplicate data passed by the electronic commerce application, time out while
communicating with Payment Systems, etc. All the errors that can occur in iPayment can be
categorized in these groups:

■ Common Errors

■ Errors Due to Invalid or Duplicate Data

■ Communication Errors

■ Configuration Errors

Common Errors
This table describes the most common errors.

Error Code Description

IBY_0001 Communications error. The payment system, the processor, or
iPayment electronic commerce servlet is not accessible. You should
resubmit the request at a later time.

IBY_0002 Duplicate order identifier.

IBY_0003 Duplicate batch identifier.

IBY_0004 Mandatory fields are required.

IBY_0005 Payment system specific error. Check BEPErrCode and BEPErrMsg
in response objects for more information.

IBY_0006 Batch partially succeeded. Some transactions in the batch failed and
some were processed correctly.

IBY_0007 The batch failed. You should correct the problem and resubmit the
batch.

IBY_0008 Requested action is not supported by the payment system.

IBY_0017 Insufficient funds.

IBY_0019 Invalid credit card or bank account number.

Error Handling During Payment Processing

Error Handling B-3

Errors Due to Invalid or Duplicate Data
In each payment request, a payment instrument from which the money is transferred to the
payee’s account is involved. Generally this information is given by the end user of the
electronic commerce application. Sometimes the end user might enter wrong instrument
number or an instrument number that does not have enough funds. To detect these errors,
iPayment provides two error codes that help electronic commerce applications to prompt the
end user for correct information.

The error codes due to invalid or duplicate data and their descriptions are given in this table.

Communication Errors
Since payment processing requests involve a number of different components connected
over networks, time-out errors or communication errors are possible. For example, a
processor successfully processes a payment request, but the network connection between the
payment system and iPayment, or the network connection between iPayment’s PL/SQL API
package and iPayment electronic commerce servlet break down, causing the electronic
commerce application not to receive the result. In some cases, electronic commerce
application might crash before receiving a response. Before the crash, payment processing
may have completed. Therefore, when electronic commerce application calls the API with
the same information, iPayment considers this a duplicate request and raises an error. To
recover from such errors, iPayment provides two approaches.

In the first approach, which is applicable to OraPmtReq and OraPmtCredit, the electronic
commerce application can try the request with the retry flag set up to TRUE. This makes
iPayment retry the request if it has not processed the request. Otherwise iPayment sends the
same response that was sent when this request was first made.

In the second approach, which is applicable to all other operations except OraPmtReq and
OraPmtCredit, the electronic commerce application needs to find out if the transactions went
through successfully to re-execute any lost transactions. To enable the merchant or business
to query the status of a transaction, you need to integrate the Query Transaction Status API
in the electronic commerce application. This API returns all existing records for a particular
transaction identifier on a payment system.

This table describes the communication error code and its description.

Error Code Description

IBY_0017 Insufficient funds

IBY_0019 Invalid credit card/bank account number

Error Handling During Payment Processing

B-4 Oracle iPayment Implementation Guide

Configuration Errors
These errors occur if payees or payment systems are not configured properly. Make sure that
the URLs are entered correctly and the payee’s payment system identifiers are configured
properly.

Error Code Description

IBY_0001 The payment system, the processor, or iPayment’s electronic
commerce servlet is not accessible. You should resubmit the request
at a later time.

iPayment PL/SQL APIs C-1

C
iPayment PL/SQL APIs

This appendix explains the iPayment PL/SQL API’s.

Electronic Commerce PL/SQL APIs

C-2 Oracle iPayment Implementation Guide

Electronic Commerce PL/SQL APIs

This section describes iPayment 11i PL/SQL API specifications for electronic commerce
applications (EC-Apps) that require/prefer PL/SQL interfaces for processing credit card,
PINless debit card, purchase card, and bank account transfer payment related operations.
These APIs could be invoked by EC-Apps with appropriate values to perform payment
operations.

The following sections contain architectural overview of iPayment PL/SQL APIs, the
signatures of each API, and the definitions for each in/out parameters.

Architectural Overview

iPayment PL/SQL APIs C-3

Architectural Overview

The following diagram shows the overall architecture of iPayment 11i and where the
PL/SQL APIs fit inside this architecture.

Figure D– 1 iPayment Architecture

PL/SQL based EC-Apps can invoke the PL/SQL APIs which are stored in the applications
database. These APIs in turn pass the payment related request, via HTTP, to the iPayment
middle tier through iPayment, receives the response and passes this response to the calling
application through response records.

EC-Apps can invoke the APIs either in an offline or online mode depending on the
requirements of the applications.

For more information on different modes of payment, please see Understanding Offline and
Online Payments in the Oracle iPayment Concepts and Procedures Guide. For the offline
requests, the scheduler is invoked periodically to send appropriate requests to the back end
payment systems and the status returned is passed back to the ECApp. For more information
on how scheduler and offline operations work, see How the Scheduling System Works in

Architectural Overview

C-4 Oracle iPayment Implementation Guide

Oracle iPayment Concepts and Procedures Guide. For more information on how status is
updated, please refer to Status Update API.

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-5

PL/SQL APIs Procedure Definitions

This section consists of the iPayment PL/SQL APIs which are supported in the 11i release.
All the procedures described below are declared public and are stored as part of the
applications database. All these procedures share some common IN and OUT parameters.

This table describes the common IN parameters.

This table describes the common OUT parameters.

p_api_version IN NUMBER This parameter is to conform to the Oracle
applications API standard. It is the version to be used
for the API. The current supported version is 1.0 and
so use 1.0

p_init_msg_list IN VARCHAR2 This parameter is to conform to the Oracle
Applications API standard. Use FND_API.G_FALSE
which is also the default value.

p_commit IN VARCHAR2 This parameter is to conform to the Oracle
Applications API standard and hasn’t been
implemented for these APIs. Use FND_API.G_
FALSE which is also the default value.

p_validation_level IN NUMBER This parameter is to conform to the Oracle
Applications API standard. Use FND_API.G_
VALID_LEVEL_FULL which is also the default
value.

p_ecapp_id IN NUMBER The id of EC-App which is invoking the API.

x_return_status OUT VARCHAR2 Used to indicate the return status of the procedure.
This parameter is to conform to the Oracle
applications API standard.

x_msg_count OUT NUMBER The error message count holds the number of error
messages in the API message list. This parameter
is to conform to the Oracle applications API
standard

x_msg_data OUT VARCHAR2 Contains the error messages. This parameter is to
conform to the Oracle applications API standard

PL/SQL APIs Procedure Definitions

C-6 Oracle iPayment Implementation Guide

If the value of x_return_status is not ‘S’, then the calling program needs to check both the
API message list parameter x_msg_data and the iPayment response objects to identify
whether it is an API implementation error or an iPayment related error. The API message list
messages will hold all API implementation errors, while the API response objects will hold
iPayment related success/errors.

The error message from iPayment may include messages from the back end payment
systems in special response object fields (BEPErrCode, BEPErrMessage, ErrLocation).
Hence the error messages from iPayment are not added into the message list, consistent with
the Java APIs.

The PL/SQL APIs provided by iPayment are of two types:

■ Payment Processing APIs

■ Payment Instrument Registration APIs

Note: These APIs return a single x_return_status as ‘S’ for overall
success, and ‘U’ for any type of errors (both API internal errors and
iPayment processing errors included).

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-7

Payment Processing APIs

These APIs are the transactional APIs that support various payment operations. The
electronic commerce applications use these APIs to process various transaction types. For
example, authorization of credit cards, PINless debit cards, and purchase cards, transfer of
funds from one bank account to another, capture, cancel, return, and others. A list of such
APIs are provided below. All the procedures described below are declared public and are
stored in the PL/SQL Package IBY_PAYMENT_ADAPTER_PUB as part of the
applications database.

The following PL/SQL APIs are described in this section:

■ OraPmtReq

■ OraPmtMod

■ OraPmtCanc

■ OraPmtCapture

■ OraPmtReturn

■ OraPmtVoid

■ OraPmtCredit

■ OraPmtQryTrxn

■ OraPmtCloseBatch

■ OraPmtQueryBatch

■ OraPmtInq

■ OraRiskEval

For more information on Error Codes and their meaning, see Error Handling.

For a description of the PL/SQL records with possible values of all the APIs, see "PL/SQL
Record/Table Types Definitions" in this appendix.

OraPmtReq
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

Payment Processing APIs

C-8 Oracle iPayment Implementation Guide

This API handles new Payment requests from EC-Apps. EC-Apps can make an offline or
online payment requests by setting “PmtMode” attribute in “p_pmtreqtrxn_rec” “OFFLINE”
or “ONLINE”. If the attribute of the record is not set explicitly then, by default, payment is
considered as “ONLINE” request. If “PmtMode” is set to “OFFLINE”, then attribute
“Settlement_date” in “p_pmtreqtrxn_rec” must be set to proper value.

This API can be used to validate a bank account before transferring funds from it, and
initiate a PINless debit card transaction.

Sometimes credit card processing networks decline transactions with a referral message
indicating that the merchant must call the cardholder’s issuing bank to complete the
transaction. The payment information in such cases is submitted over the phone. If the
transaction is approved, the merchant is provided with an authorization code for the
transaction. To facilitate follow-on transactions through iPayment for this voice
authorization (for example, capture or void), OraPmtReq API provides voice authorization
support.

This API returns a transaction ID if payment request is processed successfully, which can be
used later to initiate follow on operation on the payment. For example, to modify a payment
or capture the payment, the EC-App will need to pass this transaction ID along with other
information that is needed to perform the operation requested.

Response object of the API contains risk response if the payee involved in the payment
(on-line) request is risk enabled. EC-Apps can check RiskRespIncluded field in the response
to verify if there is a Risk response from iPayment, and if so, check the RiskResponse record
for details. This API also accepts additional OPTIONAL risk-related input parameters for
evaluating risk of an on-line payment request.

For more information on using Risk Management, see Utilizing Risk Management.

In summary, this API can be used to:

■ Validate a bank account

■ Authorize credit transactions

■ Transfer funds from a bank account

■ Do risk analysis

■ Schedule payments to be made in future (Offline payments)

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-9

Signature
Procedure OraPmtReq (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p_validation_level IN NUMBER:=FND_API.G_VALID

LEVEL_FULL

p_ecapp_id IN NUMBER,

p_payee_rec IN Payee_rec_type,

p_payer_rec IN Payer_rec_type,

p_pmtinstr_rec IN PmtInstr_rec_type,

p_tangible_rec IN Tangible_rec_type,

p_pmtreqtrxn_rec IN PmtReqTrxn_rec_type,

p_riskinfo_rec IN RiskInfo_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_reqresp_rec OUT ReqResp_rec_type)

Overloaded API Signature (without risk objects):
Procedure OraPmtReq (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_API.G_FALSE,

p_validation_level IN NUMBER:=FND_API.G_VALID_

Note: This API is also available in an overloaded form, without the Risk
related input parameter to enable EC-Apps that may not need risk
evaluation functionality to call the OraPmtReq API directly without any
Risk related input. All the other inputs and outputs are identical to the
above API. Only the input parameter p_riskinfo_rec is absent in the
overloaded API’s signature definition.

Payment Processing APIs

C-10 Oracle iPayment Implementation Guide

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payee_rec IN Payee_rec_type,

p_payer_rec IN Payer_rec_type,

p_pmtinstr_rec IN PmtInstr_rec_type,

p_tangible_rec IN Tangible_rec_type,

p_pmtreqtrxn_rec IN PmtReqTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_reqresp_rec OUT ReqResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/

Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_payee_rec IN Payee_rec_type Required

Payee_ID VARCHAR2 Required

p_payer_rec IN Payer_rec_type - Optional

Payer_ID VARCHAR2 Optional

p_pmtinstr_rec IN PmtInstr_rec_type - Required

1. PmtInstr_ID NUMBER Mandatory if 2, 3, 4
and 5 are null

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-11

Note: Address
record is optional
overall, but if
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.

2. CreditCardInstr CreditCardInstr_rec_
type

Mandatory if 1, 3, 4
and 5 are null

CC_Num Required

CC_ExpDate Required

1.CC_
BillingAddr.Address
1

Optional*

2.CC_
BillingAddr.City

Optional*

3.CC_
BillingAddr.State

Optional*

4.CC_
BillingAddr.PostalC
ode

Optional*

5.CC_
BillingAddr.Address
2

Optional

6. CC_
BillingAddr.Address
3

Optional

7.CC_
BillingAddr.County

Optional

8.CC_
BillingAddr.Country

Optional

9. CC_Type Optional

10.CC_HolderName Optional

11. FIName Optional

Parameter
IN/
OUT DataType SubType

Required/

Optional

Payment Processing APIs

C-12 Oracle iPayment Implementation Guide

Note: Address
record is optional
overall, but if
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.

3.PurchasetCardInstr PurchaseCardInstr_
rec_type

Mandatory if 1, 2, 4
and 5 are null

PC_Num Required

PC_ExpDate Required

1.PC_
BillingAddr.Address
1

Optional*

2.PC_
BillingAddr.City

Optional*

3.PC_
BillingAddr.State

Optional*

4.PC_
BillingAddr.PostalC
ode

Optional*

5.PC_
BillingAddr.Address
2

Optional

6. PC_
BillingAddr.Address
3

Optional

7.PC_
BillingAddr.County

Optional

8.PC_
BillingAddr.Country

Optional

9. PC_Type Optional

10.PC_HolderName Optional

11. FIName Optional

12. PC_SubType Mandatory

Parameter
IN/
OUT DataType SubType

Required/

Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-13

Note: Address
record is optional
overall, but if
passed, then the 4
fields Addr1, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.

4. DebitCardInstr DebitCardInstr_rec_
type

Mandatory if 1, 2, 3
and 5 are null

DC_Num Required

DC_ExpDate Required

1.DC_
BillingAddr.Address
1

Optional*

2.DC_
BillingAddr.City

Optional*

3.DC_
BillingAddr.State

Optional*

4.DC_
BillingAddr.PostalC
ode

Optional*

5.DC_
BillingAddr.Address
2

Optional

6. DC_
BillingAddr.Address
3

Optional

7.DC_
BillingAddr.County

Optional

8.DC_
BillingAddr.Country

Optional

9. DC_Type Optional

10.DC_HolderName Optional

11. FIName Optional

5. DualPaymentInstr DualPaymentInstr_
rec_type

Mandatory if 1, 2, 3
and 4 are null

Parameter
IN/
OUT DataType SubType

Required/

Optional

Payment Processing APIs

C-14 Oracle iPayment Implementation Guide

1. PmtInstr_ID Mandatory

2. PmtInstr_
ShortName

Optional

3. BnfPMTInstr_ID Optional

4. BnfPmtInstr_
ShortName

Optional

6. PmtInstr_ShortName VARCHAR2 Optional

p_tangible_rec IN Tangible_rec_type Required

1. Tangible_ID VARCHAR2 Required

2. Tangible_Amount NUMBER Required

3. Currency_Code VARCHAR2 Required

4. RefInfo VARCHAR2 Optional

5. Memo VARCHAR2 Optional

6. Acct_Num VARCHAR2 Optional

7. OrderMedium VARCHAR2 Optional

8. EFTAuthMethod VARCHAR2 Optional

p_pmtreqtrxn_rec IN PmtReqTrxn_rec_type Required

IN PmtMode VARCHAR2 Required

IN CVV2 VARCHAR2 Optional

IN Settlement_Date DATE Mandatory for
PmtMode =
OFFLINE

IN Check_Flag VARCHAR2 Optional with
default value =
‘TRUE’ for
PmtMode =
OFFLINE

Parameter
IN/
OUT DataType SubType

Required/

Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-15

IN Auth_Type VARCHAR2 Mandatory for
Credit Card where
value is
AUTHONLY,
AUTHCAPTURE,
or
AUTHANDCAPT
URE

Mandatory for
Electronic Funds
Transfer Online
Validation where
value is
VALIDATE

IN Retry_Flag VARCHAR2 Optional

IN Org_ID NUMBER Optional

IN NLS_LANG VARCHAR2 Optional

IN PONum NUMBER Mandatory for
Purchase Card

IN TaxAmount NUMBER Optional

IN ShipFromZip VARCHAR2 Optional

IN ShipToZip VARCHAR2 Optional

IN AnalyzeRisk VARCHAR2 Optional

IN Retail Data_rec_type Optional

p_riskinfo_rec IN RiskInfo_rec_type Optional

Formula_Name VARCHAR2 Optional

ShipToBillTo_Flag VARCHAR2 Optional

Time_Of_Purchase VARCHAR2 Optional

Customer_Acct_Num VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/

Optional

Payment Processing APIs

C-16 Oracle iPayment Implementation Guide

x_reqresp_rec OUT ReqResp_rec_type

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response:

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type:

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

OUT Trxn_ID NUMBER

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

(OPERATION
RELATED
RESPONSE)

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT Authcode VARCHAR2

OUT AVSCode VARCHAR2

OUT PmtInstr_Type VARCHAR2

OUT Acquirer VARCHAR2

OUT VpsBatch_ID VARCHAR2

OUT AuxMsg VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/

Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-17

OraPmtMod
API type: Public

Prerequisites for calling the API: Existing scheduled Off-line payment request

Function(s) performed by the API:

This API handles modifications to existing Payment request. This API can be used to
modify a payment requested by an EC-App. Payment modification is relevant in case of
Scheduled (i.e., OFFLINE) payments. Users may decide to modify a payment before it is
sent to the payment system.

The payee and tangible_id cannot be modified. The payment instrument can be modified,
but the modified/new payment instrument should be of the same type as the original request.
(If original instrument is a credit card, the modified instrument should be a credit card.)

Signature
Procedure OraPmtMod (p_api_version IN NUMBER,

(RISK RELATED
RESPONSE)

OUT RiskRespIncluded

RiskResponse

Status

ErrCode

ErrMessage

Additional_
ErrMessage

Risk_Score

Risk_Threshold_
Val

Risk_Flag

VARCHAR2

RiskResp_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

NUMBER

NUMBER

VARCHAR2

(OFFLINE MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement
_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT DataType SubType

Required/

Optional

Payment Processing APIs

C-18 Oracle iPayment Implementation Guide

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER:= FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payee_rec IN Payee_rec_type,

p_payer_rec IN Payer_rec_type,

p_pmtinstr_rec IN PmtInstr_rec_type,

p_tangible_rec IN Tangible_rec_type,

p_modtrxn_rec IN ModTxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_modresp_rec OUT ModResp_rec_type)

Parameters

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_payee_rec IN Payee_rec_type Required

Payee_ID VARCHAR2 Required

p_payer_rec IN Payer_rec_type Optional

Payer_ID VARCHAR2 Optional

Payer_Name VARCHAR2 Optional

p_pmtinstr_rec IN PmtInstr_rec_type Required

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-19

1. PmtInstr_ID NUMBER Mandatory if 2, 3, 4
and 5 are null

Note: Address record
is optional overall,
but if passed, then
the 4 fields Addr1,
City, State, Postal
Code (1,2,3,4)* are
together Mandatory.

.

2. CreditCardInstr CreditCardInstr_
rec_type

Mandatory if 1, 3, 4
and 5 are null

CC_Num Required

CC_ExpDate Required

1.CC_
BillingAddr.Add
ress1

Optional*

2.CC_
BillingAddr.City

Optional*

3.CC_
BillingAddr.Stat
e

Optional*

4.CC_
BillingAddr.Post
alCode

Optional*

5.CC_
BillingAddr.Add
ress2

Optional

6. CC_
BillingAddr.Add
ress3

Optional

7.CC_
BillingAddr.Cou
nty

Optional

8.CC_
BillingAddr.Cou
ntry

Optional

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

Payment Processing APIs

C-20 Oracle iPayment Implementation Guide

9. CC_Type Optional

10.CC_
HolderName

Optional

11. FIName Optional

Note: Address record
is optional overall,
but if passed, then
the 4 fields Addr1,
City, State, Postal
Code (1,2,3,4)* are
together Mandatory.

3.PurchasetCardInstr PurchaseCardIns
tr_rec_type

Mandatory if 1, 2, 4
and 5 are null

PC_Num Required

PC_ExpDate Required

1.PC_
BillingAddr.Add
ress1

Optional*

2.PC_
BillingAddr.City

Optional*

3.PC_
BillingAddr.Stat
e

Optional*

4.PC_
BillingAddr.Post
alCode

Optional*

5.PC_
BillingAddr.Add
ress2

Optional

6. PC_
BillingAddr.Add
ress3

Optional

7.PC_
BillingAddr.Cou
nty

Optional

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-21

8.PC_
BillingAddr.Cou
ntry

Optional

9. PC_Type Optional

10.PC_
HolderName

Optional

11. FIName Optional

12. PC_SubType Mandatory

Note: Address record
is optional overall,
but if passed, then
the 4 fields Addr1,
City, State, Postal
Code (1,2,3,4)* are
together Mandatory.

4. DebitCardInstr DebitCardInstr_
rec_type

Mandatory if 1, 2, 3
and 5 are null

DC_Num Required

DC_ExpDate Required

1.DC_
BillingAddr.Add
ress1

Optional*

2.DC_
BillingAddr.City

Optional*

3.DC_
BillingAddr.Stat
e

Optional*

4.DC_
BillingAddr.Post
alCode

Optional*

5.DC_
BillingAddr.Add
ress2

Optional

6. DC_
BillingAddr.Add
ress3

Optional

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

Payment Processing APIs

C-22 Oracle iPayment Implementation Guide

7.DC_
BillingAddr.Cou
nty

Optional

8.DC_
BillingAddr.Cou
ntry

Optional

9. DC_Type Optional

10.DC_
HolderName

Optional

11. FIName Optional

5. DualPaymentInstr DualPaymentIns
tr_rec_type

Mandatory if 1, 2, 3
and 4 are null

1. PmtInstr_ID Mandatory

2. PmtInstr_
ShortName

Optional

3.
BnfPMTInstr_
ID

Optional

4. BnfPmtInstr_
ShortName

Optional

6. PmtInstr_ShortName VARCHAR2 Optional

p_tangible_rec IN Tangible_rec_type Required

1.Tangible_ID VARCHAR2 Required

2 Tangible_Amount NUMBER Required

3.Currency_Code VARCHAR2 Required

4.RefInfo VARCHAR2 Optional

5. Memo VARCHAR2 Optional

6. Acct_Num VARCHAR2 Optional

7. OrderMedium VARCHAR2 Optional

8. EFTAuthMethod VARCHAR2 Optional

p_modtrxn_rec IN ModTrxn_rec_type Required

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-23

PmtMode VARCHAR2 Required

Trxn_ID NUMBER Required

Auth_Type VARCHAR2 Mandatory for
CreditCard

Mandatory for
Electronic Funds
Transfer Online
Validation where
value is
VALIDATE

Settlement_Date DATE Mandatory for
PmtMode=
OFFLINE

Check_Flag VARCHAR2 Optional with
default value =
‘TRUE’ for
PmtMode =
OFFLINE

IN PONum NUMBER Mandatory for
Purchase
Card

IN TaxAmount NUMBER Optional

IN ShipFromZip VARCHAR2 Optional

IN ShipToZip VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_modresp_rec OUT ModResp_rec_type

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

Payment Processing APIs

C-24 Oracle iPayment Implementation Guide

OraPmtCanc
API type: Public

Prerequisites for calling the API: Existing scheduled Offline payment operation that should
be canceled. The payment operations that can be canceled are payment request, capture etc.

Function(s) performed by the API:

This API handles cancellations of offline payment operations. This API can cancel the entire
operation before it reaches the payment system for offline operations, since the operation
information is maintained in the database. The cancellation will not happen if the payment
operation is already submitted to the payment system.

Signature
Procedure OraPmtCanc (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_
type

NUMBER

VARCHA
R2

VARCHA
R2

VARCHA
R2

OUT Trxn_ID NUMBER

(OFFLINE MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-25

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_canctrxn_rec IN CancelTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_cancresp_rec OUT CancelResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_canctrxn_rec IN CancelTrxn_rec_type Required

IN Trxn_ID NUMBER Required

Req_Type VARCHAR2 Required

IN NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_cancresp_rec OUT CancelResp_rec_type

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response

Status

ErrCodeErr

Message

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

Payment Processing APIs

C-26 Oracle iPayment Implementation Guide

OraPmtCapture
API type: Public

Prerequisites for calling the API: Previously authorized payment request operation.

Function(s) performed by the API:

The Capture API is invoked by the EC-App to perform a capture of a previously authorized
operation. The captured amount may or may not be the same as the authorized amount. An
authorized operation can only be captured once.

Each authorization operation is valid for a limited time until expiration (3-30 days
depending on the cardholder’s bank). If capture cannot be performed before the
authorization expires, the merchant must reauthorize the payment, with a different tangible_
id.

Signature
Procedure OraPmtCapture (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_levelIN NUMBER :=FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_capturetrxn_rec IN CaptureTrxn_rec_type,

x_return_status OUT VARCHAR2,

(CANCEL
OPERATION
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-27

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_capresp_rec OUT CaptureResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_capturetrxn_rec IN CaptureTrxn_rec_type Required

Trxn_ID NUMBER Required

PmtMode VARCHAR2 Required

Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE

Currency VARCHAR2 Required

Price NUMBER Required

NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_capresp_rec OUT CaptureResp_rec_type

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

Payment Processing APIs

C-28 Oracle iPayment Implementation Guide

OraPmtReturn
API type: Public

Prerequisites for calling the API: Previous payment capture operation

Function(s) performed by the API:

This API is invoked by the EC-App to credit a customer account when a customer returns
goods purchased through a previously captured payment operation. Only one return can be
applied against each order, subsequent returns must be treated as standalone credits. The
operation takes in the transaction ID of the initial payment operation, and returns the same
transaction ID as part of the output.

Signature
Procedure OraPmtReturn (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 :=FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER:= FND_API.G_VALID_

(CAPTURE
OPERATION
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT PmtInstr_Type VARCHAR2

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

(OFFLINE MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-29

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_returntrxn_rec IN ReturnTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_retresp_rec OUT ReturnResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_returntrxn_rec IN ReturnTrxn_rec_type Required

Trxn_ID NUMBER Required

PmtMode VARCHAR2 Required

Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE

Currency VARCHAR2 Required

Price NUMBER Required

NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_returnresp_rec OUT ReturnResp_rec_type

Payment Processing APIs

C-30 Oracle iPayment Implementation Guide

OraPmtVoid
API type: Public

Prerequisites for calling the API:Existing payment operations

Function(s) performed by the API:

The Void API voids a capture or return operation for an order before the operation is settled.
It takes in the transaction ID of the initial payment request and returns the same transaction
ID as part of the output. Void Operations can be performed on “Capture”, “Return” and
“Credit” Operations for all back-end Payment Systems, and on “Authorization” operations
for certain back-end payment systems.

(GENERIC
PAYMENT SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

(RETURN
OPERATION
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT PmtInstr_Type VARCHAR2

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

(OFFLINE MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-31

The Void operation has to be used to void the most recent operation for the designated Order
ID. For example, you perform a capture and then a return operation for a particular Order
ID, if you try to void the capture, it’ll result in an error.

Signature
Procedure OraPmtVoid (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 :=FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_voidtrxn_rec IN VoidTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_voidresp_rec OUT VoidResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_voidtrxn_rec IN VoidTrxn_rec_type Required

Trxn_ID NUMBER Required

PmtMode VARCHAR2 Required

Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE

Payment Processing APIs

C-32 Oracle iPayment Implementation Guide

OraPmtCredit
API type: Public

Prerequisites for calling the API: None

Trxn_Type VARCHAR2 Required

NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_voidresp_rec OUT VoicResp_rec_type

(GENERIC
PAYMENT SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

(VOID OPERATION
ONLINE MODE
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT PmtInstr_Type VARCHAR2

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

(OFFLINE MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-33

Function(s) performed by the API:

This API is invoked by the EC-App to credit a customer account in the case that the
merchant wants to issue a “standalone credit” (i.e., a credit not associated with any previous
order). It returns the transaction ID as part of the output.

The OraPmtCredit API is also invoked by EC-App during an EFT transaction.

Signature
Procedure OraPmtCredit (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 :=FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payee_rec IN Payee_rec_type,

p_pmtinstr_rec IN PmtInstr_rec_type,

p_tangible_rec IN Tangible_rec_type,

p_credittrxn_rec IN CreditTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_creditresp_rec OUT CreditResp_rec_type)

Parameters

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_
level

IN NUMBER - Optional

Payment Processing APIs

C-34 Oracle iPayment Implementation Guide

p_ecapp_id IN NUMBER - Required

p_payee_rec IN Payee_rec_type Required

Payee_ID VARCHAR2 Required

p_pmtinstr_rec IN PmtInstr_rec_type Required

1. PmtInstr_ID NUMBER Mandatory if
2, 3, and 4
are null

Note: Address
record is optional
overall, but if
passed, then the 4
fields Addr1,
City, State, Postal
Code (1,2,3,4)*
are together
Mandatory.

2. CreditCardInstr CreditCardInstr_rec_type Mandatory if
1, 3 and 4
are null

CC_Num Required

CC_ExpDate Required

1.CC_BillingAddr.Address1 Optional*

2.CC_BillingAddr.City Optional*

3.CC_BillingAddr.State Optional*

4.CC_BillingAddr.PostalCode Optional*

5.CC_BillingAddr.Address2 Optional

6. CC_BillingAddr.Address3 Optional

7.CC_BillingAddr.County Optional

8.CC_BillingAddr.Country Optional

9. CC_Type Optional

10.CC_HolderName Optional

11. FIName Optional

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-35

Note: Address
record is optional
overall, but if
passed, then the 4
fields Addr1,
City, State, Postal
Code (1,2,3,4)*
are together
Mandatory.

3.PurchasetCardInstr PurchaseCardInstr_rec_type Mandatory if
1 and 2 are
null

PC_Num Required

PC_ExpDate Required

1.PC_BillingAddr.Address1 Optional*

2.PC_BillingAddr.City Optional*

3.PC_BillingAddr.State Optional*

4.PC_BillingAddr.PostalCode Optional*

5.PC_BillingAddr.Address2 Optional

6. PC_BillingAddr.Address3 Optional

7.PC_BillingAddr.County Optional

8.PC_BillingAddr.Country Optional

9. PC_Type Optional

10.PC_HolderName Optional

11. FIName Optional

12. PC_SubType Mandatory

4. PmtInstr_ShortName VARCHAR2 Optional

p_tangible_rec IN Tangible_rec_type Required

1.Tangible_ID VARCHAR2 Required

2 Tangible_Amount NUMBER Required

3.Currency_Code VARCHAR2 Required

4.RefInfo VARCHAR2 Optional

5. Memo VARCHAR2 Optional

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

Payment Processing APIs

C-36 Oracle iPayment Implementation Guide

6. Acct_Num VARCHAR2 Optional

7. OrderMedium VARCHAR2 Optional

8. EFTAuthMethod VARCHAR2 Optional

p_credittrxn_rec IN CreditTrxn_rec_type Required

IN PmtMode VARCHAR2 Required

Settlement_Date DATE Mandatory
for
PmtMode=
OFFLINE

Org_ID NUMBER Optional

NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_creditresp_rec OUT CreditResp_rec_type

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

(CREDIT
OPERATION
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT PmtInstr_Type VARCHAR2

OUT RefCode VARCHAR2

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-37

OraPmtQryTrxn
API type: Public

Prerequisites for calling the API:None

Function(s) performed by the API:

This API provides an interface for querying payment operations details. This API will return
either all the operations performed on the queried transaction id or the latest operation, based
on the value of the History_Flag which is one of the input parameters. Payment Mode is
always ‘ONLINE’ for this operation.

Signature
Procedure OraPmtQryTrxn (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_levelIN NUMBER := FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_querytrxn_rec IN QueryTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

(OFFLINE
MODE
RELATED
RESPONSE)

OUT OffLineResp

EarliestSettlement_Date

Scheduled_Date

DATE

DATE

Parameter
IN/
OUT Data Type Sub Type

Required/
Optional

Payment Processing APIs

C-38 Oracle iPayment Implementation Guide

x_qrytrxnrespsum_rec OUT QryTrxnRespSum_rec_type,

x_qrytrxnrespdet_tbl OUT QryTrxnRespDet_tbl_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_querytrxn_rec IN QueryTrxn_rec_type Required

Trxn_ID NUMBER Required

History_Flag VARCHAR2 Required

NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_qrytrxnrespsum_rec OUT QryTrxnRespSum_rec_
type

OUT Response

Status

ErrCode

ErrMessag

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-39

OraPmtCloseBatch
API type: Public

Prerequisites for calling the API: Existing current batch of operations

Function(s) performed by the API:

This API allows a merchant or business to close a batch of previously performed operations.
The operation types that can be included in a batch are capture, return, and credit. This

x_qrytrxnrespdet_tbl
N.B.: All detail records
name-value pairs will
have ‘-n’ suffixed to
show the index value ‘n’

OUT QryTrxnRespDet_tbl_type

OUT Status NUMBER

OUT StatusMsg VARCHAR2

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT
Trxn_Date DATE

OUT PmtInstr_Type VARCHAR2

OUT Currency VARCHAR2

OUT Price NUMBER

OUT RefCode VARCHAR2

OUT AuthCode VARCHAR2

OUT AVSCode VARCHAR2

OUT Acquirer VARCHAR2

OUT VpsBatch_ID VARCHAR2

OUT AuxMsg VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/
Optional

Payment Processing APIs

C-40 Oracle iPayment Implementation Guide

operation is mandatory for a terminal-based merchant; a host-based merchant may not need
to explicitly close the batch since the batch is generally closed at predetermined intervals
automatically by the processor.

For more information on terminal-based merchant, please refer to “Understanding Terminal
Based Merchant” in the Oracle iPayment Concepts and Procedures Guide.

Signature
Procedure OraPmtCloseBatch (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_

FALSE,

p_commit IN VARCHAR2 := FND_API.G_

FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_batchtrxn_rec IN BatchTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_closebatchrespsum_rec OUT BatchRespSum_rec_type,

x_closebatchrespdet_tbl OUT BatchRespDet_tbl_type

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-41

p_batchtrxn_rec IN BatchTrxn_rec_type Required

IN PmtMode VARCHAR2 Required

PmtType VARCHAR2 Optional

IN Settlement_Date DATE Required if
PmtMode
is
OFFLINE

IN Payee_ID VARCHAR2 Required

IN MerchBatch_ID VARCHAR2 Required

IN BEP_Suffix VARCHAR2 Required

IN BEP_Account VARCHAR2 Required

IN NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_closebatchrespsum_rec OUT BatchRespSum_rec_type

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

(OFFLINE MODE
RELATED RESPONSE)

OUT OffLineResp OffLineResp_rec_
type

OUT EarliestSettlement_Date DATE

Scheduled_Date DATE

OUT NumTrxns NUMBER

OUT MerchBatch_ID VARCHAR2

OUT BatchState NUMBER

OUT BatchDate DATE

Parameter
IN/
OUT DataType SubType

Required/
Optional

Payment Processing APIs

C-42 Oracle iPayment Implementation Guide

OraPmtQueryBatch
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

OUT Payee_ID VARCHAR2

OUT Credit_Amount NUMBER

OUT Sales_Amount NUMBER

OUT Batch_Total NUMBER

OUT Currency VARCHAR2

OUT VpsBatch_ID VARCHAR2

OUT GWBatch_ID VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

x_closebatchrespdet_
tblN.B.: All detail records
name-value pairs will have
‘-n’ suffixed to show the
index value ‘n’

OUT BatchRespDet_tbl_type

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT Status NUMBER

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

OUT NLSLANG VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-43

This API provides an interface to query the status of any previous batch of operations by
providing the Batch ID (that is, MerchBatch_ID) as part of the input. Payment Mode is
always ‘ONLINE’ for this operation.

Signature
Procedure OraPmtQueryBatch (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_

FALSE,

p_commit IN VARCHAR2 :=FND_API.G_

FALSE,

p_validation_level IN NUMBER :=FND_API.G_

VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_batchtrxn_rec IN BatchTrxn_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_qrybatchrespsum_rec OUT BatchRespSum_rec_type,

x_qrybatchrespdet_tbl OUT BatchRespDet_tbl_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_batchtrxn_rec IN BatchTrxn_rec_type Required

IN PmtMode VARCHAR2 Required

Payment Processing APIs

C-44 Oracle iPayment Implementation Guide

(will be NULL since
always PmtMode
=‘ONLINE’)

IN Settlement_Date DATE Mandatory if
PmtMode is
OFFLINE

IN Payee_ID VARCHAR2 Required

IN MerchBatch_ID VARCHAR2 Required

IN BEP_Suffix VARCHAR2 Required

IN BEP_Account VARCHAR2 Required

IN NLS_LANG VARCHAR2 Optional

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_qrybatchrespsum_rec OUT BatchRespSum_rec_type

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

OUT NumTrxns NUMBER

MerchBatch_ID VARCHAR2

BatchState NUMBER

BatchDate DATE

Payee_ID VARCHAR2

Credit_Amount NUMBER

Sales_Amount NUMBER

Batch_Total NUMBER

Currency VARCHAR2

VpsBatch_ID VARCHAR2

GWBatch_ID VARCHAR2

ErrorLocation NUMBER

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-45

OraPmtInq
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This API provides high-level payment information such as Payee, Payer, Instrument, and
Tangible related information. It can be used when all the information regarding a payment is
needed. So an EC-App which does not store all the payment related information locally, can
invoke this API to find all the information pertaining to the payment operation. Typically
used to display the information to the end user for editing in case of OFFLINE operation in
an application like internet payments.

It takes in the ECApp ID and the transaction ID as input parameters.

Signature
Procedure OraPmtInq(p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 :=FND_API.G_FALSE,

BEPErrCode VARCHAR2

BEPErrMessage VARCHAR2

x_qrybatchrespdet_
tblN.B.: All detail records
name-value pairs will
have ‘-n’ suffixed to show
the index value ‘n’

OUT BatchRespDet_tbl_type

OUT Trxn_ID NUMBER

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT Status NUMBER

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2

OUT NLS_LANG VARCHAR2

Parameter
IN/
OUT DataType SubType

Required/
Optional

Payment Processing APIs

C-46 Oracle iPayment Implementation Guide

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_

VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_tid IN NUMBER,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_inqresp_rec OUT InqResp_rec_type)

Parameters

Parameter
IN/
OUT DataType SubType

Required/
Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optional

p_commit IN VARCHAR2 - Optional

p_validation_level IN NUMBER - Optional

p_ecapp_id IN NUMBER - Required

p_tid IN NUMBER - Required

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_inqresp_rec OUT InqResp_rec_type

(GENERIC
PAYMENT
SERVER
RESPONSE)

OUT Response

Status

ErrCode

ErrMessage

NLS_LANG

Response_rec_type

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-47

(INQUIRY
OPERATION
RELATED
RESPONSE)

OUT Payer

Payer_ID

Payer_Name

Payer_rec_type

VARCHAR2

VARCHAR2

OUT Payee

Payee_ID

Payee_rec_type

VARCHAR2

OUT Tangible

Tangible_ID

Tangible_Amount

Currency_Code

RefInfo

Memo

Acct_Num

OrderMedium

EFTAuthMethod

Tangible_rec_type

VARCHAR2

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

VARCHAR2

VARCHAR2

VARCHAR2

Required

Required

Required

Required

Optional

Optional

Optional

Optional

Optional

Parameter
IN/
OUT DataType SubType

Required/
Optional

Payment Processing APIs

C-48 Oracle iPayment Implementation Guide

OraRiskEval
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This API performs risk evaluation without using transactions. For more information on
using this API for evaluating risk, please refer to Appendix A: Risk Management.

OUT PmtInstr

PmtInstr_ID

PmtInstr_ShortName

CreditCardInstr

BankAcctInstr

PmtInstr_rec_type

CreditCardInstr_rec_type

CC_Num

CC_ExpDate

CC_BillingAddr.Address1

CC_BillingAddr.Address2

CC_BillingAddr.Address3

CC_BillingAddr.City

CC_BillingAddr.County

CC_BillingAddr.State

CC_BillingAddr.Country

CC_BillingAddr.PostalCode

CC_Type

CC_HolderName

FIName

BankAcctInstr_rec_type

Bank_ID

BankAcct_Num

BankAcct_Type

Branch_ID

FIName

BankAcct_HolderName

Parameter
IN/
OUT DataType SubType

Required/
Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-49

Signature
Procedure OraRiskEval (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payment_risk_info IN PaymentRiskInfo_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_risk_resp OUT RiskResp_rec_type)

Overloaded API Signature (with AVS information):

Procedure OraRiskEval (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_avs_risk_info IN AVSRiskInfo_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_risk_resp OUT RiskResp_rec_type)

Note: This API is also available in an overloaded form, with Address
Verification System (AVS). The AVS version of the API includes an
additional input parameter, p_avs_risk_info. All the other inputs and
outputs are identical to the API without AVS.

Payment Processing APIs

C-50 Oracle iPayment Implementation Guide

Parameters

OraPmtBankPayBatchReq
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

The OraPmtBankPayBatchReq API handles new bank payment batch requests from Oracle
Payables. The Oracle Payables application passes the payment batch details as a
PmtBankPayBatchReq_Rec_Type record, transaction details as a PmtBankPayBatchTrxn_
Tbl_Type table structure and invoice details as a PmtBankPayInvoice_Tbl_Type table
structure to iPayment. This is an OFFLINE batch submission wherein the batch information
is stored in the iPayment database.

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_ecapp_id IN NUMBER Required

p_avs_risk_info IN AVSRiskInfo_rec_type Required for
Overloaded API

Formula Name VARCHAR2 Optional

Payee_ID NUMBER Required

Previous_Risk_Score VARCHAR2 Required

AVSCode VARCHAR2 Required

p_payment_risk_
info

IN PaymentRiskInfo_rec_
type

Required

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_risk_resp OUT RiskResp_rec_type

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-51

If the batch payment information is saved in the database successfully, then the OUT status
field x_return_status returns a value of FND_API.G_RET_STS_SUCCESS.

Signature
PROCEDURE OraPmtBankPayBatchReq(

p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 DEFAULT FND_API.G_FALSE,

p_commit IN VARCHAR2 DEFAULT FND_API.G_FALSE,

p_validation_level IN NUMBER DEFAULT FND_API.G_VALID_LEVEL_
FULL,

p_ecapp_id IN NUMBER,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

p_pmt_bs_req_rec IN PmtBankPayBSReq_Rec_Type,

p_pmt_batch_req_rec IN PmtBankPayBatchReq_Rec_Type,

p_pmt_batch_trxn_tbl IN PmtBankPayBatchTrxn_Tbl_Type,

p_pmt_invoice_tbl IN PmtBankPayInvoice_Tbl_Type)

Parameters

Parameter IN/OUT DataType Sub Type Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_ecapp_id IN NUMBER Required

p_pmt_bs_req_rec IN PmtBankPayBSReq_
Rec_Type

Required

p_pmt_batch_req_
rec

IN PmtBankPayBatchReq_
Rec_Type

Required

Payment Processing APIs

C-52 Oracle iPayment Implementation Guide

p_pmt_batch_trxn_
tbl

IN PmtBankPayBatchTrxn_
Tbl_Type

Required

p_pmt_invoice_tbl IN PmtBankPayInvoice_
Tbl_Type

Required

x_return_status OUT VARCHAR2 Required

x_msg_count OUT NUMBER Required

x_msg_data OUT VARCHAR2 Required

Parameter IN/OUT DataType Sub Type Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-53

Payment Instrument Registration APIs

Instrument registration APIs provide the functionality to register a payor’s bank, credit card,
PINless debit card, or purchase card. All the procedures described below are declared public
and are stored in the PL/SQL Package IBY_INSTRREG_PUB as part of the applications
database.

The following PL/SQL APIs are described in this section:

■ OraInstrAdd

■ OraInstrmMod

■ OraInstrDel

■ OraInstrInq

OraInstrAdd
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This API can be used to add an instrument to the iPayment. Only one of Credit Card,
PINless Debit Card, Purchase Card or Bank Account can be registered at a time.

If the registration is successful, an Instrument Id is returned. This Instrument Id may be used
to submit a payment transaction. For Bank Account transfers, you need to have a registered
instrument id to submit a transaction. This APIs will internally call IBY_BANKACCT_
PKG. createBankAcct orIBY_CREDITCARD_PKG.createCard to register a new
instrument.

Signature
Procedure OraInstrAdd (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p_validation_level IN NUMBER:=FND_API.G_VALID

LEVEL_FULL

p_payer_id IN VARCHAR2(80),

p_pmtInstrRec IN PmtInstr_rec_type,

Payment Instrument Registration APIs

C-54 Oracle iPayment Implementation Guide

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_instr_id OUT NUMBER(15))

Parameters

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_payer_id IN VARCHAR2 Required

p_pmtInstrRec IN PmtInstr_rec_type Required

1. CreditCardInstr CreditCardInstr_
rec_type

Mandatory if 2, 3 and 4
are not passed.

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.CC_Type Optional

4.CC_Num Required

5.CC_ExpDate Required

6.CC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-55

12. Billing_State Optional

13. Billing_
Country

Optional*

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15. CC_Desc Optional

2.PurchaseCardInstr PurchaseCardIns
tr_rec_type

Mandatory if 1, 3 and 4
are null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.PC_Type Optional

4.PC_Num Required

5.PC_ExpDate Required

6.PC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

12. Billing_State Optional

13. Billing_
Country

Optional*

Parameter
IN/
OUT DataType SubType Required/Optional

Payment Instrument Registration APIs

C-56 Oracle iPayment Implementation Guide

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15, PC_Subtype Required

16. PC_Desc Optional

3.DebitCardInstr DebitCardInstr_
rec_type

Mandatory if 1, 2 and 4
are null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.DC_Type Optional

4.DC_Num Required

5.DC_ExpDate Required

6.DC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

12. Billing_State Optional

13. Billing_
Country

Optional*

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-57

OraInstrmMod
API type: Public

Prerequisites for calling the API: None

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15. DC_Subtype Required

16. DC_Desc Optional

4. BankAcctInstr BankAcctInstr_
rec_type

Mandatory if 1, 2 and 3
are both null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3. Bank_Id Required

4. Branch_ID Optional

5. BankAcct_
Type

Required

6. BankAcct_
Num

Required

7. BankAcct_
HolderName

Required

8. Bank_Desc Optional

5. InstrumentType VARCHAR2 Required.

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_instr_id OUT NUMBER

Parameter
IN/
OUT DataType SubType Required/Optional

Payment Instrument Registration APIs

C-58 Oracle iPayment Implementation Guide

Function(s) performed by the API:

This API can be used to modify an instrument in the iPayment. Only one instrument of type
Credit Card, PINless Debit Card, Purchase Card or Bank Account can be modified at a time.
This APIs will internally call IBY_BANKACCT_PKG. modifyBankAcc or IBY_
CREDITCARD_PKG.modifyCard to modify an existing instrument.

Signature
Procedure OraInstrMod (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p_validation_level IN NUMBER:=FND_API.G_VALID

LEVEL_FULL

p_payer_id IN VARCHAR2(80),

p_pmtInstrRec IN PmtInstr_rec_type,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2)

Note: The instrument record in the database is updated with the input
parameters on an "as is" basis. Since the default value for all the input
parameters (or record type members) is NULL, the record will be updated
with null values for parameters (or members) not assigned a value. This
means that each time an instrument's information is modified, it is
REPLACED with all the information passed in the modification request.
That is, all the prior information is overwritten by the data in the
modification request, assuming that the data passed is the newest.

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-59

Parameters

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_payer_id IN VARCHAR2 Required

p_pmtInstrRec IN PmtInstr_rec_type Required

1. CreditCardInstr CreditCardInstr_
rec_type

Mandatory if 2, 3 and 4
are not passed.

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.CC_Type Optional

4.CC_Num Required

5.CC_ExpDate Required

6.CC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

12. Billing_State Optional

13. Billing_
Country

Optional*

Payment Instrument Registration APIs

C-60 Oracle iPayment Implementation Guide

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15. CC_Desc Optional

2.PurchaseCardInstr PurchaseCardIns
tr_rec_type

Mandatory if 1, 3 and 4
are null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.PC_Type Optional

4.PC_Num Required

5.PC_ExpDate Required

6.PC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

12. Billing_State Optional

13. Billing_
Country

Optional*

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-61

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15, PC_Subtype Required

16. PC_Desc Optional

3.DebitCardInstr DebitCardInstr_
rec_type

Mandatory if 1, 2 and 4
are null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3.DC_Type Optional

4.DC_Num Required

5.DC_ExpDate Required

6.DC_
HolderName

Optional

7.Billing_
Address1

Optional*

8. Billing_
Address2

Optional

9. Billing_
Address3

Optional

10.Billing_City Optional*

11. Billing_
County

Optional

12. Billing_State Optional

13. Billing_
Country

Optional*

Parameter
IN/
OUT DataType SubType Required/Optional

Payment Instrument Registration APIs

C-62 Oracle iPayment Implementation Guide

OraInstrDel
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

Note: Address
record is optional
overall, but if
passed, then the 3
fields Addr1, City,
Country (7,10,13)*
are together
mandatory.

14. Billing_
PostalCode

Optional

15. DC_Subtype Required

16. DC_Desc Optional

4. BankAcctInstr BankAcctInstr_
rec_type

Mandatory if 1, 2 and 3
are both null

1.Instr_Id Should NOT be passed.

2.FIName Optional

3. Bank_Id Required

4. Branch_ID Optional

5. BankAcct_
Type

Required

6. BankAcct_
Num

Required

7. BankAcct_
HolderName

Required

8. Bank_Desc Optional

5. InstrumentType VARCHAR2 Required.

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-63

This API can be used to delete an instrument from the iPayment. Only one instrument of
type Credit Card, PINless Debit Card, Purchase Card or Bank Account can be deleted at a
time. This APIs will finally call IBY_BANKACCT_PKG. deleteBankAcct orIBY_
CREDITCARD_PKG.deleteCreditCard to delete an existing instrument.

Signature
Procedure OraInstrDel (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p_validation_level IN NUMBER:=FND_API.G_VALID

LEVEL_FULL

p_payer_id IN VARCHAR2(80),

p_instr_id IN NUMBER(15),

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2)

Parameters

Note: This is a soft delete. The record is not removed or deleted
physically from the database, the instrument status is made inactive.

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_payer_id IN VARCHAR2 Required

p_instr_id IN NUMBER Required

Payment Instrument Registration APIs

C-64 Oracle iPayment Implementation Guide

OraInstrInq
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This API can be used to inquire about an instrument in the iPayment. This API will have 2
overloaded procedures. The provides flexibility to the calling applications. The two
available flavours are:

a. This inquiry is based on the payer Id and will return all the instruments that are
registered for that payer. Three tables, each containing instruments of the same type
will be returned as output.

b. This inquiry is based on the Instrument Id and will return details for the instrument
that is registered for that Instrument Id and the instrument type. UNREGISTERED
is returned when the instrument does not exist for the given payer_id and instr_id.

Signature (with only payer id)
Procedure OraInstrInq (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_API.G_FALSE,

p_validation_level INNUMBER:=FND_API.G_VALID

LEVEL_FULL,

p_payer_id IN VARCHAR2(80),

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_creditcard_tbl OUT CreditCard_tbl_type,

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-65

x_purchasecard_tbl OUT PurchaseCard_tbl_type,

x_bankacct_tbl OUT BankAcct_tbl_type)

Parameters

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_payer_id IN VARCHAR2 Required

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_creditcard_tbl OUT CreditCard_tbl_type CreditCardInstr_
rec_type

1.Instr_Id

2.FIName

3.CC_Type

4.CC_Num

5.CC_ExpDate

6.CC_
HolderName

7.Billing_
Address1

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

Payment Instrument Registration APIs

C-66 Oracle iPayment Implementation Guide

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. CC_Desc

x_purchasecard_tbl OUT PurchaseCard_tbl_type PurchaseCardIns
tr_rec_type

1.Instr_Id

2.FIName

3.PC_Type

4.PC_Num

5.PC_ExpDate

6.PC_
HolderName

7.Billing_
Address1

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15, PC_Subtype

16. PC_Desc

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-67

Overloaded API Signature (using instrument id)
Procedure OraInstrInq (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_

FALSE,

p_commit IN VARCHAR2:=FND_API.G

_FALSE,

p_validation_level IN NUMBER:=FND_API.G

VALID LEVEL_FULL,

p_payer_id IN VARCHAR2(80),

p_instr_id IN VARCHAR2,

x_return_status OUT VARCHAR2,

x_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR2,

x_pmtInstrRec OUT PmtInstr_rec_type)

x_bankacct_tbl OUT BankAcct_tbl_type BankAcctInstr_
rec_type

1.Instr_Id

2.FIName

3. Bank_Id

4. Branch_ID

5. BankAcct_
Type

6. BankAcct_
Num

7. BankAcct_
HolderName

8. Bank_Desc

Parameter
IN/
OUT DataType SubType Required/Optional

Payment Instrument Registration APIs

C-68 Oracle iPayment Implementation Guide

Parameters

Parameter
IN/
OUT DataType SubType Required/Optional

p_api_version IN NUMBER Required

p_init_msg_list IN VARCHAR2 Optional

p_commit IN VARCHAR2 Optional

p_validation_level IN NUMBER Optional

p_payer_id IN VARCHAR2 Required

p-instr_id IN NUMBER

x_return_status OUT VARCHAR2

x_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

x_pmtInstrRec OUT PmtInstr_rec_type

1. CreditCardInstr CreditCardInstr_
rec_type

1.Instr_Id

2.FIName

3.CC_Type

4.CC_Num

5.CC_ExpDate

6.CC_
HolderName

7.Billing_
Address1

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-69

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. CC_Desc

2. PurchaseCardInstr PurchaseCardIns
tr_rec_type

1.Instr_Id

2.FIName

3.PC_Type

4.PC_Num

5.PC_ExpDate

6.PC_
HolderName

7.Billing_
Address1

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15, PC_Subtype

Parameter
IN/
OUT DataType SubType Required/Optional

Payment Instrument Registration APIs

C-70 Oracle iPayment Implementation Guide

16. PC_Desc

3.DebitCardInstr DebitCardInstr_
rec_type

1.Instr_Id

2.FIName

3.DC_Type

4.DC_Num

5.DC_ExpDate

6.DC_
HolderName

7.Billing_
Address1

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. DC_Subtype

16. DC_Desc

4. BankAcct_tbl_type BankAcctInstr_
rec_type

1.Instr_Id

2.FIName

3. Bank_Id

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL APIs Procedure Definitions

iPayment PL/SQL APIs C-71

4. Branch_ID

5. BankAcct_
Type

6. BankAcct_
Num

7. BankAcct_
HolderName

8. Bank_Desc

5. Instrument Type VARCHAR2.
Can have
following values
defined as
constants

C_
INSTRTYPE_
UNREG,

C_
INSTRTYPE_
BANKACCT,

C_
INSTRTYPE_
CREDITCARD,

C_
INSTRTYPE_
PURCHASECA
RD

Parameter
IN/
OUT DataType SubType Required/Optional

PL/SQL Record/Table Types Definitions

C-72 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

The following PL/SQL record/table types are defined to store the objects (entities) necessary
for the ECApp PL/SQL APIs. For information on Mandatory, Conditionally Mandatory, and
Optional fields in these records/tables, please refer to the ensuing API descriptions, where
these requirements are tabulated.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-73

Payments Related Generic Record Types

1. TYPE Payee_rec_type IS RECORD (

Payee_ID VARCHAR2(80)

);

Payee_ID: ID of the payee

2. TYPE Payer_rec_type IS RECORD (

Payer_ID VARCHAR2(80),

Payer_Name VARCHAR2(80)

);

Payer_ID: ID of the payer

Payee_Name: Name of the payer

3. TYPE Address_rec_type IS RECORD (

Address1 VARCHAR2(80),

Address2 VARCHAR2(80),

Address3 VARCHAR2(80),

City VARCHAR2(80),

County VARCHAR2(80),

State VARCHAR2(80),

Country VARCHAR2(80),

PostalCode VARCHAR2(40),

Phone VARCHAR2(40),

Email VARCHAR2(40)

);

Address1: The first line of the street address.

Address2: The second line of the street address.

Address3: The third line of the street address.

City: City in the address.

Payments Related Generic Record Types

C-74 Oracle iPayment Implementation Guide

State: State in the address.

County: County in the address.

Country: Country code in the address.

Postalcode: Postal code for the address.

Phone: Phone for that address. It is for informational purposes only.

Email: It is not supported right now.

4. TYPE CreditCardInstr_rec_type IS RECORD (

FIName VARCHAR2(80),

CC_Type VARCHAR2(80),

CC_Num VARCHAR2(80),

CC_ExpDate DATE,

CC_HolderName VARCHAR2(80),

CC_BillingAddr Address_rec_type

);

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

CC_Type: Type of credit card (MASTERCARD, VISA, AMEX, …).

CC_Num: For credit card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

CC_ExpDate: Credit Card expiration date.

CC_HolderName: Credit card holder name.

CC_BillingAddr: Address type record for the billing address of the credit card.

5. TYPE PurchaseCardInstr_rec_type IS RECORD (

FIName VARCHAR2(80),

PC_Type VARCHAR2(80),

PC_Num VARCHAR2(80),

PC_ExpDate DATE,

PC_HolderName VARCHAR2(80),

PC_BillingAddr Address_rec_type,

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-75

PC_Subtype VARCHAR2(80)

);

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

PC_Type: Type of purchase card (MASTERCARD, VISA, AMEX, …).

PC_Num: For purchase card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

PC_ExpDate: Purchase Card expiration date.

PC_HolderName: Purchase card holder name.

PC_BillingAddr: Address type record for the billing address of the purchase card.

PC_Subtype: The subtype for purchase card. Possible values are (‘B’/’C’/’P’/’U’) which
are for BUSINESS / CORPORATE / PURCHASE / UNKNOWN.

Financial Institution Name (FIName): Optional.

Bank_ID: Routing number of the bank. Should be at least of non-trivial length 2.

Branch_ID: ID of the branch.

BankAcct_Type: Should be of at least non-trivial length 3. Such as CHECKING.

BankAcct_Num: For bank account number, should be at least of non-trivial length 3.

BankAcct_HolderName: Name of the bank account holder.

6. TYPE DebitCardInstr_rec_type IS RECORD (

FIName VARCHAR2(80),

DC_Type VARCHAR2(80),

DC_Num VARCHAR2(80),

DC_ExpDate Date,

DC_HolderName VARCHAR2(80),

DC_BillingAddr Address_rec_type,

DC_Subtype VARCHAR2(80)

);

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

DC_Type: Type of debit card (MASTERCARD, VISA, AMEX, …).

Payments Related Generic Record Types

C-76 Oracle iPayment Implementation Guide

DC_Num: For debit card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

DC_ExpDate: Debit Card expiration date.

DC_HolderName: Debit card holder name.

DC_BillingAddr: Address type record for the billing address of the purchase card.

DC_Subtype: The subtype for debit card. Possible values are (‘B’/’C’/’P’/’U’) which are
for BUSINESS / CORPORATE / PURCHASE / UNKNOWN.

7. TYPE PmtInstr_rec_type IS RECORD (

PmtInstr_ID NUMBER,

PmtInstr_ShortName VARCHAR2(80),

CreditCardInstrCredit CardInstr_rec_type,

PurchaseCardInstr PurchaseCardInstr_rec_type,

DualPaymentInstr DualPaymentInstr_rec_type,

DebitCardInstr DebitCardInstr_rec_type

);

PmtInstr_ID: The payment instrument ID of an already registered payment instrument.

PmtInstr_ShortName: Short name for the payment instrument.

CreditCardInstr: Credit card instrument type record. Refer #4 for details.

PurchaseCardInstr: Purchase card instrument type record. Refer #5 for details.

DualPaymentInstr: Payment instrument type record.

DebitCardInstr: Debit card instrument type record. Refer #6 for details.

Note: The Payment Instrument Type (i.e., CREDITCARD / DEBIT CARD /
PURCHASECARD / BANKACCOUNT / UNREGISTERED) is derived from the input
data, by verifying which of the input instrument records (i.e., CreditCardInstr,
PurchaseCardInstr, DebitCardInstr, BankAcctInstr, PmtInstr_ID) are provided with input
values. That particular instrument type and its component fields are then passed to the
iPayment11i EC-Servlet. So, either PmtInstr_ID alone is provided for registered
instruments, or one of the other three (CreditCardInstr, PurchaseCardInstr, BankAcctInstr) is
provided as part of payment instrument input.

8. TYPE DualPaymentInstr_rec_type IS RECORD (

PmtInstr_ID NUMBER,

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-77

PmtInstr_ShortName VARCHAR2(80),

BnfPmtInstr_ID NUMBER,

BnfPmtInstr_ShortName VARCHAR2(80),

);

PmtInstr_ID: The payment instrument ID of an already registered payment instrument.

PmtInstr_ShortName: Short name for the payment instrument.

BnfPmtInstr_ID: The payment instrument ID of a registered bank account instrument that
is the beneficiary of the transaction.

BnfPmtInstr_ShortName: Short name for the a registered bank account instrument.

9. TYPE Tangible_rec_type IS RECORD (

Tangible_ID VARCHAR2(80),

Tangible_Amount NUMBER,

Currency_Code VARCHAR2(80),

RefInfo VARCHAR2(80),

Memo VARCHAR2(80),

Acct_Num VARCHAR2(80),

OrderMedium VARCHAR2(80),

EFTAuthMethod VARCHAR2(80),

);

Tangible_ID: It is the order id or bill id. It should be unique for a given payee.

Tangible_Amount: Should be a positive number.

Currency_Code: The 3 letter currency code.

RefInfo: Reference information for this bill/order.

Memo: Memo for this bill/order.

Acct_Num: Account number of the customer, if applicable.

OrderMedium: This parameter indicates the medium or channel through which a
transaction was created. It is used for credit card, purchase card, and debit card transactions
to obtain an improved interchange rate.

Payments Related Generic Record Types

C-78 Oracle iPayment Implementation Guide

EFTAuthMethod: This parameter indicates the method used to receive authorization to
perform an electronic funds transfer to debit a payer’s bank account.

10. SUBTYPE RetailData_Enum IS VARCHAR2(10);

11. TYPE RetailData_rec_type IS RECORD (

Tangible_ID VARCHAR2(80),

IsRetail VARCHAR2(1),

POSEntryMode RetailData_Enum,

POSCapability RetailData_Enum,

POSAuthSource RetailData_Enum,

POSCardIdMethod RetailData_Enum,

POSSwipeData VARCHAR2(300)

Tangible_ID: It is the order id or bill id. It should be unique for a given payee.

IsRetail: Value 'Y' indicates the current transaction is a retail transaction; value 'N' that it is
not.

POSEntryMode: Gives the credit card entry mode at the point-of-sale (POS). The
following constants are have been enumerated for this field:

C_ENTRYMODE_KEYED: Manual/keyed entry.

C_ENTRYMODE_MAGTRACK1: Magnetic reader track 1.

C_ENTRYMODE_MAGTRACK2: Magnetic reader track 2.

C_ENTRYMODE_MAGTRACKALL: Magnetic reader all tracks (track 1 & 2).

C_ENTRYMODE_SMARTCARD_RDR: Smart card reader/chip reader.

C_ENTRYMODE_UNKNOWN: Unknown entry mode.

POSCapability: The card reading capabilities at the point-of-sale. This field takes the
following enumerated values:

C_CAPABILITY_KEY: Keyed/manual entry-only capability.

C_CAPABILITY_MAG_RDR: Magnetic reader capability.

C_CAPABILITY_CHIP_RDR: Chip reader capability.

C_CAPABILITY_UNKNOWN: Unknown capability.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-79

POSAuthSource: The authorization source. This field takes the following enumerated
values:

C_AUTHSRC_ISSUER_PROVIDED: Issuer provided authorization source.

C_AUTHSRC_REFERRAL: Referral authorization source.

C_AUTHSRC_OFFLINE: Off-line authorization.

C_AUTHSRC_NONAPPROVED: Non-approved.

POSCardIdMethod: The card identification method used at the point-of-sale. The field can
have the following enumerated values:

C_CARDID_SIGNATURE: Signature identification.

C_CARDID_PIN: PIN-entry identification.

C_CARDID_UNATTEND_TERM: Unattended terminal identification.

C_CARDID_MAILORDER: Mail order identification.

C_CARDID_NONE: No identification.

POSSwipeData: Swipe data read by a magnetic or chip reader at the point-of-sale. A calling
application that can interface with such a reader may pass this data to iPayment as a
(possibly encoded) string.

Inbound Payment Operations Related Record Types

C-80 Oracle iPayment Implementation Guide

Inbound Payment Operations Related Record Types

1. TYPE PmtReqTrxn_rec_type IS RECORD (

PmtMode VARCHAR2(30),

CVV2 VARCHAR2(10) := NULL,

Settlement _Date Date:=,

Auth_Type VARCHAR2(80),

Check_Flag VARCHAR2(30),

Retry_Flag VARCHAR2(30),

Org_ID NUMBER,

NLS_LANG VARCHAR2(80),

PONum NUMBER,

TaxAmount NUMBER,

ShipFromZip VARCHAR2(80),

ShipToZip VARCHAR2(80),

AnalyzeRisk VARCHAR2(80)

AuthCode VARCHAR2(255)

VoiceAuthFlag VARCHAR2(30)

);

PmtMode: Its value should be either ONLINE or OFFLINE.

CVV2: The Visa CVV2, Mastercard CVC2, or American Express CIP value associated with
the credit card is used for this transaction.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is meaningful
only for OFFLINE Bank Account transfer operations when the user requested settle date is
earlier THAN the earliest date it can be settled by the system. When check flag is set to true,
the operation will be rejected if it cannot be settled by user specified settle date, otherwise,
the operation will get scheduled with the earliest settle date available by the system, and a
warning message will be returned saying unable to meet user specified date.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-81

Retry flag: Should be either 'Y' or 'N'.

Applicable for ONLINE Credit Card Request and Credit operations.

You should set this flag to 'Y' when previous request when the same operation may have
been processed by the back payment system. For example, when first request returns with a
time out status, or when OraPmtQryTrxn failed to retrieve the information. This flag is
passed as is to the backend payment system. Check with individual backend payment system
for further details.

Org_ID: The identifier for the organization submitting the request.

Applicable for new operations (Request, Modify, Credit). Should be a positive integer.

Auth_Type: Applicable for credit card authorization (request), modify, and credit operation
only. Also applicable for electronic funds transfer online validations. Takes one of the
following values:

AUTHONLY: terminal-based/host-based authorization only.

AUTHCAPTURE: host-based authorization and capture together.

VALIDATE: EFT online validations.

NLSLang: The NLS language code.

PONum: Purchase order number for this transaction.

TaxAmount: Amount of transaction that is tax.

ShipFromZip: The ZIP code from which merchandise will be shipped.

ShipToZip: The ZIP code to which merchandise will be shipped.

AnalyzeRisk: The flag that allows the calling application to request risk analysis. Values are
True, False, and Neutral. "True" causes risk analysis to be done and "False" keeps risk
analysis from being done. "Neutral" causes iPayment to use the payee level risk enablement
setting. This defaults to "neutral" if no value is given.

AuthCode: The authorization Code that the financial institution issues after doing a voice
authorization. This field is required if the VoiceAuthFlag is set to ‘Y’.

VoiceAuthFlag: Should be set up to either Y or N. This indicates whether the current
transaction refers to a voice authorization (where the financial institution has already been
contacted directly). If this field is set up as ‘Y’, then the AuthCode field is required to have
the same value.

2. TYPE ModTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,

Inbound Payment Operations Related Record Types

C-82 Oracle iPayment Implementation Guide

PmtMode VARCHAR2(30),

Settlement_Date DATE,

Check_Flag VARCHAR2(30),

Auth_Type VARCHAR2(80),

PONum NUMBER,

TaxAmount NUMBER,

ShipFromZip VARCHAR2(80),

ShipToZip VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be modified.

PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is meaningful
only for OFFLINE operations when the user requested settle date is earlier than the earliest
date it can be settled by the system. When check flag is set to true, the operation will be
rejected if it cannot be settled by user specified settle date, otherwise, the operation will get
scheduled with the earliest settle date available by the system, and a warning message will
be returned saying unable to meet user specified date.

Auth_Type: Applicable for credit card authorization (request), modify, and credit operation
only. Also applicable for electronic funds transfer online validations. Takes one of the
following values:

AUTHONLY: terminal-based/host-based authorization only.

AUTHCAPTURE: host-based authorization and capture together.

VALIDATE: EFT online validations.

PONum: Purchase order number for this transaction.

TaxAmount: Amount of transaction that is tax.

ShipFromZip: The ZIP code from which merchandise will be shipped.

ShipToZip: The ZIP code to which merchandise will be shipped.

3. TYPE CaptureTrxn_rec_type IS RECORD (

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-83

Trxn_ID NUMBER,

PmtMode VARCHAR2(30),

Settlement_Date DATE,

Currency VARCHAR2(80),

Price NUMBER,

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be captured.

PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.

NLSLang: The NLS language code

4. TYPE ReturnTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,

PmtMode VARCHAR2(30),

Settlement_Date DATE,

Currency VARCHAR2(80),

Price NUMBER,

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be returned.

PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.

Inbound Payment Operations Related Record Types

C-84 Oracle iPayment Implementation Guide

NLSLang: The NLS language code

5. TYPE CancelTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,

Req_Type VARCHAR2,

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be returned.

Req_Type: optional field provides the option of canceling other operations (such as Void,
Return, etc.), in addition to scheduled payment requests. By Default, this Req_Type field is
set to ‘ORAPMTREQ’ to cancel the authorization operation.

NLSLang: The NLS language code

6. TYPE QueryTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,

History_Flag VARCHAR2(30),

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be queried.

History_Flag: takes in values => ‘TRUE’ or ‘FALSE’. When set to TRUE, it retrieves the
entire history, otherwise it retrieves the latest one only.

NLSLang: The NLS language code

7. TYPE VoidTrxn_rec_type IS RECORD (

Trxn_ID NUMBER,

PmtMode VARCHAR2(30),

Settlement_Date DATE,

Trxn_Type NUMBER,

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for the operation which has to be voided. The type of the
operation will be specified in Trxn_Type.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-85

PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

NLSLang: The NLS language code.

Trxn_Type: takes the following numeric values:

8. TYPE CreditTrxn_rec_type IS RECORD (

PmtMode VARCHAR2(30),

Settlement_Date DATE,

Retry_Flag VARCHAR2(30),

Org_ID NUMBER,

Lookup Code Meaning Description

2 AuthOnly Online authorization requested for an order

3 AuthCapture Online authorization & capture for an order

4 VoidAuthOnly Void an order authorized but not captured

5 Return Return on an order which is authorized & captured

6 ECRefund Refund on a purchase done using EC cash/coin

7 VoidAuthCapture Voids a previously authorized & captured trxn

8 Capture Capture funds for previously authorized trxn.

9 MarkCapture Marked for capture by terminal based system

10 MarkReturn Marked for return by terminal based system

11 Credit Refund money to customer

13 VoidCapture Void operation captured by host based system

14 VoidMarkCapture Void operation marked for capture by terminal based
system

17 VoidReturn Void return operation for host based system

18 VoidMarkReturn Void operation marked for return by terminal based
system

102 Batch Admin Used for open, purge, query, and close batch operations

Inbound Payment Operations Related Record Types

C-86 Oracle iPayment Implementation Guide

NLS_LANG VARCHAR2(80)

);

PmtMode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Retry flag: Should be either 'Y' or 'N'.

Applicable for ONLINE Credit Card Request and Credit operations.

You should set this flag to 'Y' when previous request with the same operation may have been
processed by the back payment system. For example, when first request returns with a time
out status, or when OraPmtQryTrxn failed to retrieve the information. This flag is passed as
is to the backend payment system. Check with individual backend payment system for
further details.

Org_ID: The identifier for the organization submitting the request.

NLSLang: The NLS language code

9. TYPE BatchTrxn_rec_type IS RECORD (

PmtMode VARCHAR2(30),

PmtType VARCHAR2(30),

Settlement_Date DATE,

Payee_ID NUMBER,

MerchBatch_ID VARCHAR2(80),

BEP_Suffix VARCHAR2(80),

BEP_Account VARCHAR2(80),

NLS_LANG VARCHAR2(80)

);

PmtMode: Its value should be either ONLINE or OFFLINE.

PmtType: Optional, defaulted to empty string. You need specify it if you wish to operate on
a back end payment system rather than the default one.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Payee_ID: It's the payee identifier for whom the batch operation is performed.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-87

MerchBatch_ID: It's the user selected identifier for this operation. Should be a non-empty
string, and should be unique across all merchant batch ids from a particular payee.

BEP_Suffix: The 3-letter suffix of the payment system that is associated with this batch.

BEP_Account: The merchant account the batch is associated with. This is the same value as
the payee's payment system identifier for the given back end payment system.

NLSLang: The NLS language code.

Outbound Bank Payment Batch Related Record Types

C-88 Oracle iPayment Implementation Guide

Outbound Bank Payment Batch Related Record Types

TYPE PmtBankPayInvoice_Rec_Type IS RECORD

(

pmt_batchrequestid NUMBER,

pmt_trxnid NUMBER,

inv_number VARCHAR2(50),

inv_date DATE,

inv_amount NUMBER,

pmt_amount NUMBER);

pmt_batchrequestid: Payment-batch Request ID.

pmt_trxnid: Transaction ID.

inv_number: Invoice Number.

inv_date: Invoice Date.

inv_amount: Invoice Amount.

pmt_amount: Actual payment amount after discount deduction.

TYPE PmtBankPayInvoice_Tbl_Type IS TABLE OF

PmtBankPayInvoice_Rec_Type INDEX BY BINARY_INTEGER;

TYPE PmtBankPayBatchTrxn_Rec_Type IS RECORD (

pmt_batchrequestid NUMBER,

pmt_trxnid NUMBER,

pmt_loc_country VARCHAR2(10),

pmt_priority VARCHAR2(10),

debit_acctno VARCHAR2(30),

fax_mail_to_name VARCHAR2(80),

mail_address1 VARCHAR2(35),

mail_address2 VARCHAR2(35),

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-89

mail_address3 VARCHAR2(35),

mail_addr_city VARCHAR2(35),

mail_addr_state VARCHAR2(35),

mail_addr_zip VARCHAR2(35),

value_amount NUMBER,

ref_amount NUMBER,

value_date DATE,

charge_details VARCHAR2(6),

vat_amount NUMBER,

wht_amount NUMBER,

pmt_details_1 VARCHAR2(20),

pmt_details_2 VARCHAR2(20),

pmt_details_3 VARCHAR2(20),

pmt_details_4 VARCHAR2(20),

trxn_code_clrid VARCHAR2(6),

bnf_name VARCHAR2(80),

bnf_id VARCHAR2(30),

bnf_address_line1 VARCHAR2(30),

bnf_addr_city VARCHAR2(35),

bnf_addr_state VARCHAR2(35),

bnf_addr_zip VARCHAR2(35),

bnf_addr_phone VARCHAR2(20),

bnf_remarks VARCHAR2(80),

bnf_charge_amt NUMBER,

bnf_adjustment_amt VARCHAR2(30),

bnf_bank_name VARCHAR2(30),

bnf_bank_address VARCHAR2(60),

bnf_bank_addr_state VARCHAR2(35),

Outbound Bank Payment Batch Related Record Types

C-90 Oracle iPayment Implementation Guide

bnf_bank_addr_city VARCHAR2(35),

bnf_bank_addr_zip VARCHAR2(20),

bnf_bank_branch_no VARCHAR2(50),

bnf_bank_branch_name VARCHAR2(30),

bnf_bank_branch_type VARCHAR2(25),

bnf_acctno VARCHAR2(30),

bnf_bank_account_name VARCHAR2(80),

bnf_bank_acct_type VARCHAR2(25),

bnf_acct_type VARCHAR2(25),

bnf_faxno_cableaddr VARCHAR2(35),

bnf_site_code VARCHAR2(15),

bnf_swift_code VARCHAR2(30),

bnf_bank_clearing_mtd VARCHAR2(60),

bnf_taxpayer_id VARCHAR2(30),

future_pay_due_date DATE,

cust_ref NUMBER,

intrm_bankcode VARCHAR2(30),

intrm_swiftcode VARCHAR2(30),

intrm_bankname VARCHAR2(60),

intrm_bank_faxno_cbl VARCHAR2(35)}

pmt_batchrequestid: Payment-batch Request ID.

pmt_trxnid: Transaction ID.

pmt_loc_country: Payment Location ISO Country Code.

pmt_priority: Payment Priority.

debit_acctno: Account number to be debited.

fax_mail_to_name: Fax/Mail to Name - Only required if fax beneficiary advice is
required.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-91

mail_address1: Mail to Address 1 - Only required if fax beneficiary advice is
required.

mail_address2: Mail to Address 2 - Only required if fax beneficiary advice is
required.

mail_address3: Mail to Address 3 - Only required if fax beneficiary advice is
required.

mail_addr_city: Mail to City - Only required if fax beneficiary advice is required.

mail_addr_state: Mail to State - Only required if fax beneficiary advice is required.

mail_addr_zip: Mail to Postal Code - Only required if fax beneficiary advice is required.

value_amount: Amount in the payment document.

ref_amount: Amount in the reference currency.

value_date: Date in the payment document.

charge_details: Details of any charges on the invoice.

vat_amount: Amount of the value added tax.

wht_amount: Withholding tax amount.

pmt_details_1: Payment Details 1.

pmt_details_2: Payment Details 2.

pmt_details_3: Payment Details 3.

pmt_details_4: Payment Details 4.

trxn_code_clrid: Transaction Code/Clearing ID.

bnf_name: Beneficiary Name.

bnf_id: Beneficiary ID.

bnf_address_line1: Beneficiary Address.

bnf_addr_city: Beneficiary City.

bnf_addr_state: Beneficiary State.

bnf_addr_zip: Beneficiary Zip.

bnf_addr_phone: Beneficiary Phone.

bnf_remarks: Remarks.

bnf_charge_amt: Beneficiary Charges Amount.

Outbound Bank Payment Batch Related Record Types

C-92 Oracle iPayment Implementation Guide

bnf_adjustment_amt: Adjustment Amount.

bnf_bank_name: Beneficiary Bank Name.

bnf_bank_address: Beneficiary Bank Address.

bnf_bank_addr_state: Beneficiary Bank State.

bnf_bank_addr_city: Beneficiary Bank City.

bnf_bank_addr_zip: Beneficiary Bank Postal Code.

bnf_bank_branch_no: Beneficiary Bank/Branch No.

bnf_bank_branch_name: Beneficiary Bank Branch Name.

bnf_bank_branch_type: Beneficiary Bank Branch Type.

bnf_acctno: Beneficiary Bank Account Number.

bnf_bank_account_name: Beneficiary Bank Account Name.

bnf_bank_acct_type: Beneficiary Bank Account Type i.e Checking or Saving.

bnf_acct_type: Bank account type code. Possible values are: INTERNAL or SUPPLIER for
banks defined for Oracle Payables.

bnf_faxno_cableaddr: Beneficiary Fax No/Cable Address - Only required if fax beneficiary
advice is required.

bnf_site_code: Beneficiary Site Code.

bnf_swift_code: Beneficiary Bank (SWIFT Code).

bnf_bank_clearing_mtd: Beneficiary Bank Clearing Method.

bnf_taxpayer_id: Beneficiary Tax ID.

future_pay_due_date: Future pay date.

cust_ref: Customer Reference.

intrm_bankcode: Intermediary Bank Code.

intrm_swiftcode: Intermediary Bank (SWIFT Code).

intrm_bankname: Intermediary Bank Name.

intrm_bank_faxno_cbl: Intermediary Bank Fax No/Cable Address.

TYPE PmtBankPayBatchTrxn_Tbl_Type IS TABLE OF

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-93

PmtBankPayBatchTrxn_Rec_Type INDEX BY BINARY_INTEGER;

TYPE PmtBankPayBatchReq_Rec_Type IS RECORD(

pmt_batchrequestid NUMBER,

pmt_batch_name VARCHAR2(80),

cust_id NUMBER,

cust_name VARCHAR2(60),

cust_addr1 VARCHAR2(60),

cust_addr2 VARCHAR2(60),

cust_addr3 VARCHAR2(60),

bank_name VARCHAR2(60),

bank_branch_name VARCHAR2(60),

bank_acct_name VARCHAR2(60),

bank_acct_number VARCHAR2(30),

bank_acct_type VARCHAR2(30),

orig_country_code VARCHAR2(25),

pmt_method VARCHAR2(10),

currency_code VARCHAR2(15),

ref_currency_code VARCHAR2(15),

doc_order_lookup_code VARCHAR2(25),

no_of_trxns NUMBER,

batch_total NUMBER,

request_date DATE

);

pmt_batchrequestid: Payment-batch Request ID.

pmt_batch_name: Payment-batch name.

cust_id: Customer ID.

cust_name: Customer Name.

cust_addr1: Customer Address line1.

Outbound Bank Payment Batch Related Record Types

C-94 Oracle iPayment Implementation Guide

cust_addr2: Customer Address line2.

cust_addr3: Customer Address line3.

bank_name: Originating Bank Name.

bank_branch_name: Branch name of the originating bank.

bank_acct_name: Bank account name specific to the bank and branch.

bank_acct_number: Bank account number specific to the bank and branch.

bank_acct_type: Bank account type, i.e whether checking or saving.

orig_country_code: Originating ISO Country Code.

pmt_method: Payment Method - CHECK/ELECTRONIC/WIRE.

currency_code: Currency Code.

ref_currency_code: Reference Currency Code.

doc_order_lookup_code: Type of payment ordering in a batch.

no_of_trxns: Total number of transactions in the batch.

batch_total: Sum total of all the transaction amounts in the batch.

request_date: Date when the batch has been submitted.

TYPE PmtBankPayBSReq_Rec_Type IS RECORD(

pmt_batchset_id NUMBER,

no_of_batches NUMBER

);

pmt_batchset_id: Payment batch-set request ID.

no_of_batches: Total number of payment-batches in the batch-set.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-95

Risk Management Record Types

1. TYPE RiskInfo_rec_type IS RECORD (

Formula_Name VARCHAR2(80),

ShipToBillTo_Flag VARCHAR2(255),

Time_Of_Purchase VARCHAR2(80),

Customer_Acct_Num NUMBER

);

Formula_Name: Name of the formula to be used.

ShipToBillTo_Flag: used to notify whether the “Ship_To” and the “Bill_To” addresses
match or not (‘TRUE’/’FALSE’).

Time_Of_Purchase: Represents the time duration passed in ‘HH:MI’ format in 24 Hours
notation. For example, 11 pm will be denoted as ‘23:00’.

Customer_Acct_Num: Represents the payer’s account number in Oracle Accounts
Receivables. This field is needed in AR - risk factors evaluation.

Note: For more information on using Risk Management, please refer to the documentation
for the “Integrating Risk Management” under the section “Implementing iPayment”.

Inbound Payment Operations Response Record/Table Types

C-96 Oracle iPayment Implementation Guide

Inbound Payment Operations Response Record/Table Types

1. TYPE Response_rec_type IS RECORD (

Status NUMBER,

ErrCode VARCHAR2(80),

ErrMessage VARCHAR2(255),

NLS_LANG VARCHAR2(80)

);

Status: The status for the request. Possible values are (0,1,2 or 3).

ErrCode: The IBY_XXXX error code for the error, if any.

ErrMessage: The error message associated with the error.

NLS_LANG: The NLS code.

NOTE: This record is included in all the responses and the status of the operation can be
found by looking at the value of status. Possible values for Status are: (0 => ‘Success’, 1=>
‘Information’, 2=> ’Warning’, 3=> ’Error’).

For more information on Error Codes and their meaning, please refer to “Error Handling
during Payment Processing” in this document.

2. TYPE OffLineResp_rec_type IS RECORD (

EarliestSettlement_Date DATE,

Scheduled_Date DATE

);

If the payment operation cannot be settled by the settlement date specified in input, due to
lead time of the back end payment system, then

EarliestSettlement_Date: Specifies the earliest date by which the operation can be settled

Scheduled_Date: Specifies the date on which scheduler will pick up the operation.

The OffLineResp_rec_type record outputs can be looked into for payment operations sent
in OFFLINE Mode.

For more information on how the status values are propagated back to the ECApp, please
refer to “Status Update API for Offline Request” in this document.

3. TYPE RiskResp_rec_type IS RECORD (

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-97

Status NUMBER,

ErrCode VARCHAR2(80),

ErrMessage VARCHAR2(255),

Additional_ErrMessage VARCHAR2(255),

Risk_Score NUMBER,

Risk_Threshold_Val NUMBER,

Risky_Flag VARCHAR2(30)

);

Status: The status for the request. Possible values are (0,1,2 or 3).

ErrCode: The IBY_XXXX error code for the error, if any.

ErrMessage: The error message associated with the error.

Additional_ErrMessage: If multiple factors have failed, this field contains additional
messages about why the factors failed.

Risk_Score: Represents the overall risk score of the payment request.

Risk_Threshold_Val: The threshold value that is set for the payee involved in the payment
request.

Risky_Flag: Indicates whether payment is risky or not.

4. TYPE ReqResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

RiskRespIncluded VARCHAR2(30),

RiskResponseRisk Resp_rec_type,

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Authcode VARCHAR2(80),

RefCode VARCHAR2(80),

AVSCode VARCHAR2(80),

Inbound Payment Operations Response Record/Table Types

C-98 Oracle iPayment Implementation Guide

PmtInstr_Type VARCHAR2(80),

Acquirer VARCHAR2(80),

VpsBatch_ID VARCHAR2(80),

AuxMsg VARCHAR2(255),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer to #2 for details.

RiskRespIncluded: Flag used to indicate whether risk response included or not. Possible
values (‘YES’/’NO’)/.

RiskResponse: The risk response record. Refer to #3 for details.

Trxn_ID: The new id generated for this request.

Trxn_Type: The type of the capture operation. Back-end system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

AuthCode: Authorization code that is returned by back end payment system.

RefCode: Reference code that is returned by back end payment system.

AVSCode: AVS code that is returned by back end payment system.

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

Acquirer: Acquirer information that is returned by back end payment system.

VPSBatch_ID: VPSBatchId that is returned by back end payment system.

AuxMsg: Auxiliary message that is returned by back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-99

Note: RiskRespIncluded is a flag (‘YES’/’NO’) that tells the ECAPP that the RiskResponse
Record contains some valid Risk response information.

5. TYPE ModResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Trxn_ID NUMBER

);

Response: The response record. Refer to #1 for details.

OffLineResp: The offline response record. Refer to #2 for details.

Trxn_ID: The new id generated for this request.

6. TYPE VoidResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

RefCode VARCHAR2(80),

PmtInstr_Type VARCHAR2(80),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer to #1 for details.

OffLineResp: The offline response record. Refer to #2 for details.

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. The Back-end system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation.

Inbound Payment Operations Response Record/Table Types

C-100 Oracle iPayment Implementation Guide

RefCode: Reference code that is returned by back end payment system.

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

7. TYPE CancelResp_rec_type IS RECORD (

Response Response_rec_type,

Trxn_ID NUMBER,

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

Trxn_ID: The transaction id for this request.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

8. TYPE CaptureResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

PmtInstr_Type VARCHAR2(80),

RefCode VARCHAR2(80),

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-101

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer to #1 for details.

OffLineResp: The offline response record. Refer to #2 for details.

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

9. TYPE ReturnResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

PmtInstr_TypeV ARCHAR2(80),

RefCode VARCHAR2(80),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

Inbound Payment Operations Response Record/Table Types

C-102 Oracle iPayment Implementation Guide

OffLineResp: The offline response record. Refer #2 for details.

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

RefCode: Reference code that is returned by the back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

10. TYPE CreditResp_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

PmtInstr_Type VARCHAR2(80),

RefCode VARCHAR2(80),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer #2 for details.

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-103

Trxn_Date: The date of the operation.

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

RefCode: Reference code that is returned by the back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

11. TYPE InqResp_rec_type IS RECORD (

Response Response_rec_type,

Payer Payer_rec_type,

Payee Payee_rec_type,

Tangible Tangible_rec_type,

PmtInstr PmtInstr_rec_type

);

Response: The response record. Refer to C.4.4.#1 for details.

Payer: The payer record. Refer to C.4.4.#2 for details.

Payee: The payee record. Refer to C.4.4.#1 for details.

Tangible: The tangible record. Refer to C.4.4.#8 for details.

PmtInstr: The pmtinstr record. Refer to C.4.4.#7 for details.

12. TYPE QryTrxnRespSum_rec_type IS RECORD (

Response Response_rec_type,

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

Inbound Payment Operations Response Record/Table Types

C-104 Oracle iPayment Implementation Guide

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

13. TYPE QryTrxnRespDet_rec_type IS RECORD (

Status NUMBER,

StatusMsg VARCHAR2(255),

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

PmtInstr_Type VARCHAR2(80),

Currency VARCHAR2(80),

Price NUMBER,

RefCode VARCHAR2(80),

AuthCode VARCHAR2(80),

AVSCode VARCHAR2(80),

Acquirer VARCHAR2(80),

VpsBatch_ID VARCHAR2(80),

AuxMsg VARCHAR2(255),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Status: The status for this request

StatusMsg: The status message for this request.

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-105

PmtInstr_Type: Credit card type of the operation, such as 'Visa'.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.

RefCode: Reference code that is returned by back end payment system.

AuthCode: Authorization code that is returned by back end payment system.

AVSCode: AVS code that is returned by back end payment system.

Acquirer: Acquirer information that is returned by back end payment system.

VPSBatch_ID: VPSBatchId that is returned by back end payment system.

AuxMsg: Auxiliary message that is returned by back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

14. TYPE QryTrxnRespDet_tbl_type IS TABLE OF QryTrxnRespDet_rec_type
INDEX BY BINARY_INTEGER;

Inbound Batch Payment Operations Response Record/Table Types

C-106 Oracle iPayment Implementation Guide

Inbound Batch Payment Operations Response Record/Table Types

1. TYPE BatchRespSum_rec_type IS RECORD (

Response Response_rec_type,

OffLineResp OffLineResp_rec_type,

NumTrxns NUMBER,

MerchBatch_ID VARCHAR2(80),

BatchState NUMBER,

BatchDate DATE,

Credit_Amount NUMBER,

Sales_Amount NUMBER,

Batch_Total NUMBER,

Payee_ID VARCHAR2(80),

VpsBatch_ID VARCHAR2(80),

GWBatch_ID VARCHAR2(80),

Currency VARCHAR2(80),

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer #2 for details.

NumTrxns: Total number of individual operations in this batch.

Merch Batch_ID: Merchant-specified unique batch id for this batch operation

BatchState: The state of the batch operation.

BatchDate: The date of the batch operation.

Credit_Amount: Total amount of credits.

Sales_Amount: Total amount of charges.

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-107

Batch_Total: Total amount of the entire batch.

VPSBatch_ID: VPSBatchId returned by the backend payment system.

GWBatch_ID: GWBatchId returned by the backend payment system.

Currency: The currency code used.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

2. TYPE BatchRespDet_rec_type IS RECORD (

Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Status NUMBER,

ErrorLocation NUMBER,

BEPErrCode VARCHAR2(80),

BEPErrMessage VARCHAR2(255),

NLS_LANG VARCHAR2(80)

);

Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. The Back-end system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation.

Status: The status for this request.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middle tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

Inbound Batch Payment Operations Response Record/Table Types

C-108 Oracle iPayment Implementation Guide

NLSLang: The NLS language code

3. TYPE BatchRespDet_tbl_type IS TABLE OF BatchRespDet_rec_type
INDEX BY BINARY_INTEGER;

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-109

Instrument Registration Related Record Types

This section describes the record/table definitions used in the Instrument Registration API.

1. TYPE CreditCardInstr_rec_type IS RECORD (

Instr_Id NUMBER(15),

FIName VARCHAR2(80),

CC_Type VARCHAR2(80),

CC_Num VARCHAR2(80),

CC_ExpDate DATE,

CC_HolderName VARCHAR2(80),

CC_Desc VARCHAR2(240),

Billing_Address1 VARCHAR2(80),

Billing_Address2 VARCHAR2(80),

Billing_Address3 VARCHAR2(80),

Billing_City VARCHAR2(80),

Billing_County VARCHAR2(80),

Billing_State VARCHAR2(80),

Billing_Country VARCHAR2(80),

Billing_PostalCode VARCHAR2(40));

Instr_Id: Unique identifier for the instrument.

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

CC_Type: Type of credit card (MASTERCARD, VISA, AMEX, …)

CC_Num: This should be numeric other than dashes and spaces.

Note: CreditCardInstr_rec_type and PurchaseCardInstr_rec_type
defined in this section are different than ones defined in IBY_
PAYMENT_ADAPTER_PUB. The record types defined in this section do
NOT have Address_rec_type as a member.

Instrument Registration Related Record Types

C-110 Oracle iPayment Implementation Guide

CC_ExpDate: Credit Card expiration date.

CC_HolderName: Credit card holder name.

CC_Desc: Descriptions/Comments, if any.

Billing_Address1: The first line of the street address.

Billing_Address2: The second line of the street address.

Billing_Address3: The third line of the street address.

Billing_City: City in the address.

Billing_State: State in the address.

Billing_County: County in the address.

Billing_Country: Country code in the address.

Billing_Postalcode: Postal code for the address.

2. TYPE PurchaseCardInstr_rec_type IS RECORD (

Instr_Id NUMBER(15),

FIName VARCHAR2(80),

PC_Type VARCHAR2(80),

PC_Num VARCHAR2(80),

PC_ExpDate DATE,

PC_HolderName VARCHAR2(80),

PC_Subtype VARCHAR2(80),

PC_Desc VARCHAR2(240),

Billing_Address1 VARCHAR2(80),

Billing_Address2 VARCHAR2(80),

Billing_Address3 VARCHAR2(80),

Billing_City VARCHAR2(80),

Billing_County VARCHAR2(80),

Billing_State VARCHAR2(80),

Billing_Country VARCHAR2(80),

Billing_PostalCode VARCHAR2(40));

PL/SQL Record/Table Types Definitions

iPayment PL/SQL APIs C-111

Instr_Id: Unique identifier for the instrument.

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

PC_Type: Type of credit card (MASTERCARD, VISA, AMEX, …)

PC_Num: This should be numeric other than dashes and spaces.

PC_ExpDate: Credit Card expiration date.

PC_HolderName: Credit card holder name.

PC_Subtype: The subtype for purchase card. Possible values are ('B'/'C'/'P'/'U') which are
for BUSINESS / CORPORATE / PURCHASE / UNKNOWN.

PC_Desc: Descriptions/Comments, if any.

Billing_Address1: The first line of the street address.

Billing_Address2: The second line of the street address.

Billing_Address3: The third line of the street address.

Billing_City: City in the address.

Billing_State: State in the address.

Billing_County: County in the address.

Billing_Country: Country code in the address.

Billing_Postalcode: Postal code for the address.

3. TYPE BankAcctInstr_rec_type IS RECORD (

Instr_Id NUMBER(15),

FIName VARCHAR2(80),

Bank_Id VARCHAR2(25),

Branch_Id VARCHAR2(30),

BankAcct_Type VARCHAR2(80),

BankAcct_Num VARCHAR2(80),

BankAcct_HolderName VARCHAR2(80),

Bank_Desc VARCHAR2(240));

Instr_Id: Unique identifier for the instrument.

Financial Institution Name (FIName): Optional, should be at least of non-trivial length 3.

Instrument Registration Related Record Types

C-112 Oracle iPayment Implementation Guide

Bank_Id: Routing number of the bank. Should be at least of non-trivial length2. Typically
the international bank identification number.

Branch_Id: Branch Number of the bank. Typically a national Branch Identification Code (
BIC) number.

BankAcct_Type: Should be at least of non-trivial length3. Typical values could be
’CHECKING’, ’SAVING’.

BankAcct_Num: Account number in the branch of the bank.

BankAcct_HolderName: Name of the account holder.

Bank_Desc: Descriptions/Comments, if any.

4. TYPE PmtInstr_rec_type IS RECORD (

InstrumentType VARCHAR2(80):C_INSTRTYPE_UNREG,

CreditCardInstr CreditCardInstr_rec_type,

BankAcctInstr BankAcctInstr_rec_type,

PurchaseCardInstr PurchaseCardInstr_rec_type)

InstrumentType: This holds the type of instrument that is passed in the PmtInstr_rec_type.
It should have one of values - 'CREDITCARD', 'PURCHASECARD' and
'BANKACCOUNT', when being passed as input. When this is passed as an output
parameter, it may also have the value 'UNREGISTERED’ (when the instrument is not
registered in iPayment). Use the constants defined to assign values to this.

CreditCardInstr: Credit card instrument type record. This is described above.

BankAcctInstr: Bank account instrument type record. This is described above.

PurchaseCardInstr: Purchase card instrument type. This is described above.

5. TYPE CreditCard_tbl_type IS TABLE OF CreditCardInstr_rec_type INDEX BY
BINARY_INTEGER.

6. TYPE PurchaseCard_tbl_type IS TABLE OF PurchaseCardInstr_rec_type INDEX
BY BINARY_INTEGER.

7. TYPE BankAcct_tbl_type IS TABLE OF BankAcctInstr_rec_type INDEX BY
BINARY_INTEGER.

Sample PL/SQL Code

iPayment PL/SQL APIs C-113

Sample PL/SQL Code

The following PL/SQL code helps you in understanding how iPayment PL/SQL APIs can be
invoked. This example code invokes the Payment Request API using a credit card. It also
passes risk related information for risk evaluation. After invoking the PL/SQL API, it prints
out all the elements in the response objects.

DECLARE
p_api_versionNUMBER := 1.0;
--To initialize message list.
p_init_msg_listVARCHAR2(2000) := FND_API.G_TRUE;
p_commitVARCHAR2(2000) := FND_API.G_FALSE;
p_validation_levelNUMBER := FND_API.G_VALID_LEVEL_FULL;
p_ecapp_idNUMBER := 0;
p_payee_recIBY_PAYMENT_ADAPTER_PUB.Payee_rec_type;
p_payer_recIBY_PAYMENT_ADAPTER_PUB.Payer_rec_type;
p_pmtinstr_recIBY_PAYMENT_ADAPTER_PUB.PmtInstr_rec_type;
p_tangible_recIBY_PAYMENT_ADAPTER_PUB.Tangible_rec_type;
p_pmtreqtrxn_recIBY_PAYMENT_ADAPTER_PUB.PmtReqTrxn_rec_
type;
p_riskinfo_recIBY_PAYMENT_ADAPTER_PUB.RiskInfo_rec_type;
x_return_statusVARCHAR2(2000);-- output/return status
x_msg_countNUMBER;-- output message count
x_msg_dataVARCHAR2(2000);-- reference string for output
message text
x_reqresp_recIBY_PAYMENT_ADAPTER_PUB.ReqResp_rec_type;
-- request specific output
-- response object
l_msg_countNUMBER;
l_msg_dataVARCHAR2(2000);
BEGIN
-- Common inputs
p_ecapp_id := 66;-- iPayment generated ECAppID
-- Payee related inputs
p_payee_rec.Payee_ID := 'ipay-payee1';-- payee's ID
-- Payer related inputs
p_payer_rec.Payer_ID := 'ipay-cust1';-- payer's ID
p_payer_rec.Payer_Name := 'Cust1';-- Payer's (Customer's name)
-- Payment request operation related input
p_pmtreqtrxn_rec.PmtMode := 'ONLINE';-- Payment mode (Can be
--ONLINE/OFFLINE)
-- Tangible/Bill related inputs
p_tangible_rec.Tangible_ID := 'tangibleid1';-- Tangible ID / orderID
p_tangible_rec.Tangible_Amount := 25.50; -- Amount for the operation

Sample PL/SQL Code

C-114 Oracle iPayment Implementation Guide

p_tangible_rec.Currency_code := 'USD'; -- Currency for the operation
p_tangible_rec.RefInfo := 'test_refinfo3';
p_pmtreqtrxn_rec.Auth_Type := upper('authonly');-- request type
-- Payment instrument related inputs
p_pmtinstr_rec.CreditCardInstr.CC_Type := 'Visa';
-- payment instrument type
p_pmtinstr_rec.CreditCardInstr.CC_Num := '4111111111111111';
-- payment instrument number
p_pmtinstr_rec.CreditCardInstr.CC_ExpDate := to_char(sysdate+300);
-- payment instr. Expiration date
-- Risk related inputs
p_riskinfo_rec.Formula_Name := 'test3';-- Risk formula name
p_riskinfo_rec.ShipToBillTo_Flag := 'TRUE';
-- Flag showing if ship to address same as Bill to address
p_riskinfo_rec.Time_Of_Purchase := '08:45'-- Time of purchase
-- invoking the API
IBY_PAYMENT_ADAPTER_PUB.OraPmtReq(
p_api_version,
p_init_msg_list,
p_commit,
p_validation_level,
p_ecapp_id,
p_payee_rec,
p_payer_rec,
p_pmtinstr_rec,
p_tangible_rec,
p_pmtreqtrxn_rec,
p_riskinfo_rec,
x_return_status,
x_msg_count,
x_msg_data,
x_reqresp_rec);
END;
-- After invoking the API, printing/interpreting the results
-- API status response
-- The status for the API. The value of this status has to be used to
-- find out whether the call was successful or not.
dbms_output.put_line('x_return_status = ' || x_return_status);
-- Payment Request Related Response. Printing Only If Status Is Success
If(Char(X_Reqresp_Rec.Response.Status = ‘S’) Then
-- Offline Mode Related Response
If P_Pmtreqtrxn_Rec.Pmtmode = 'OFFLINE' Then
dbms_output.put_line('Transaction ID = ' || To_Char(X_Reqresp_Rec.Trxn_ID));
dbms_output.put_line (‘X_Reqresp_Rec.Offlineresp.Earliestsettlement_Date = ' ||
To_Char(X_Reqresp_Rec.Offlineresp.Earliestsettlement_Date));

Sample PL/SQL Code

iPayment PL/SQL APIs C-115

dbms_output.put_line('X_Reqresp_Rec.Offlineresp.Scheduled_Date = ' ||To_Char(X_
Reqresp_Rec.Offlineresp.Scheduled_Date));
Else
dbms_output.put_line('Transaction ID = ' || To_Char(X_Reqresp_Rec.Trxn_ID));
dbms_output.put_line('X_Reqresp_Rec.Authcode = ' || X_Reqresp_Rec.Authcode);
dbms_output.put_line('X_Reqresp_Rec.Avscode = ' || X_Reqresp_Rec.Avscode);
dbms_output.put_line('----------------------------------');
-- Risk Related Response
If(X_Reqresp_Rec.Riskrespincluded = ‘YES’) Then
dbms_output.put_line('---------------------------');
dbms_output.put_line(' X_Reqresp_Rec.Riskresponse.Risk_Score= '|| X_Reqresp_
Rec.Riskresponse.Risk_Score);
dbms_output.put_line('X_Reqresp_Rec.Riskresponse.Risk_Threshold_Val= '||
Reqresp_Rec.Riskresponse.Risk_Threshold_Val);
Endif;
Endif;
End If;
-- printing the error messages, if any from the API message list.
for i in 1..x_msg_count loop
dbms_output.put('msg # '||to_char(i)|| fnd_msg_pub.get(i));
dbms_output.new_line();
end loop;
EXCEPTION
when others then
dbms_output.put_line('In When others Exception');
dbms_output.put_line('SQlerr is :'||substr(SQLERRM,1,200));
end;
/

Sample PL/SQL Code

C-116 Oracle iPayment Implementation Guide

Back-End APIs for Gateways D-1

D
Back-End APIs for Gateways

This appendix explains the back-end APIs used by gateway servlets. Topics in this section
include:

■ Gateway Model Payment System Integration Model Overview

■ Payment System Servlet Operations

■ Authorization API

■ Purchase Card Authorization API

■ Voice Authorization API

■ Authorization API Output Name-Value Pairs

■ Capture API

■ Void API

■ Return/Credit API

■ Close Batch API

■ Query Transaction Status API

■ Query Batch Status API

■ Transaction Status and Messages

■ Transaction Types and Transaction States

Gateway Model Payment System Integration Model Overview

D-2 Oracle iPayment Implementation Guide

Gateway Model Payment System Integration Model
Overview

iPayment provides a set of APIs for interfacing with the payment system servlets, including
APIs for authorization, capture, return, void, close batch, query batch status, and query
transaction status. iPayment makes requests to these APIs using HTTP.

This section provides information to enable SSL payment system servlet developers (those
who perform traditional credit-card processing) to create an interface for communication
between iPayment and their payment systems. Also provided is the information that
iPayment sends to payment system servlets, and the format and method of passing the data.

Payment System Servlet Development Prerequisites
Before you build a payment system servlet, you will need a basic understanding of
iPayment. For additional information, see Oracle iPayment Concepts and Procedures Guide
to get an understanding of iPayment and its architecture.

Test Payment System Servlet
After building a payment system servlet, complete the following steps:

1. Add the payment system to iPayment by following the steps of Creating a New
Payment System in the Oracle iPayment Concepts and Procedures Guide.

2. Test and refine your servlet.

Payment System Servlet Operations

Back-End APIs for Gateways D-3

Payment System Servlet Operations

To perform the Payment System Servlet API operations, iPayment passes data to the
payment system servlet in the form of HTTP name-value pairs.

Servlet Virtual Path Mapping
The following example shows the name-value pair format:

http://host name:port/servlet virtual path
?name-value pair(1)
&name-value pair(2)
&name-value pair(n)
&name-value pair(n+1)
...

where:

host name The name of the computer where the payment system is located, for
example, payment.com.

port The listener's port number

servlet virtual path The virtual path to the payment system servlet. This must always
end in oramipp_xxx, where xxx is the three letter suffix chosen
for this payment system.

Authorization API

D-4 Oracle iPayment Implementation Guide

Authorization API

When the payment system servlet receives the authorization request from iPayment, it
formats the request into the payment system's native format and requests that the payment
system perform an online authorization. When the payment system returns the authorization
result, the payment system servlet will reformat the response into the iPayment's format.

Authorization API Input Name-Value Pairs
This table describes the authorization API input name-value pairs. To perform the
Authorization operation, use the name value pairs listed in this table:

Name Value

OapfAction Value=oraauth

OapfOrderId Order number for the transaction. OapfOrderId can contain only
letters, numbers, dashes, underlines, and dots.

OapfCurr ISO 4217 three-letter currency code. For example, usd (US Dollar).

OapfPrice Transaction amount in the format prescribed for the three-letter ISO
4217 currency code

OapfAuthType The authorization type for the transaction: AuthOnly or AuthCapture.

n Use AuthOnly transactions when customers purchase "hard
goods." The funds for these transactions are not captured until
after the goods are shipped.

n Use AuthCapture transactions when customers purchase "soft
goods" such as software "downloadable" from a Web page. The
funds for these transactions are authorized and captured at the
same time.

OapfPmtInstrID Identification (card) number for the selected OapfPmtType

OapfPmtInstrExp Expiration date for the selected OapfPmtType in the format MM/YY
or MM/YYYY. The payment system servlet should be able to accept
both formats.

OapfStoreId Merchant or business identification. The maximum length is 80
characters. It may consist of an Id and a password in the following
format: <StoreId>:<Password>

In addition to the values above, the following name-value pairs are also required if AVS is required
(except for OapfPhone, OapfEmail, and OapfCnty):

OapfCustName The customer's name

Authorization API

Back-End APIs for Gateways D-5

OapfAddr1 The customer's billing address (1st line). The portion of the address
before city, state, and zip code.

OapfAddr2 The customer's billing address (2nd line). The portion of the address
before city, state, and zip code.

OapfAddr3 The customer's billing address (3rd line). The portion of the address
before city, state, and zip code.

OapfCity The customer's city name for billing

OapfCnty The customer's county name for billing

OapfState The customer's state for billing

OapfCntry The customer's country for billing

OapfPostalCode The customer's zip code for billing

OapfPhone The customer's telephone number

OapfEmail The customer's e-mail address

OapfRetry Specifies if this operation is a retry. Values include yes or no. If this
flag is incorrectly turned on, then the servlet should attempt this
transaction a second time as a non-retry transaction.

OapfNlsLang (Optional) Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Name Value

Purchase Card Authorization API

D-6 Oracle iPayment Implementation Guide

Purchase Card Authorization API

The Purchase Card Authorization API is the same as the Authorization API, with the
addition of a few parameters. To perform the Purchase Card Authorization operation, use
name value pairs defined by the Authorization API, and the name value pairs described in
this table:

Name Value

OapfCommCard The type of card being used for the transaction. Possible values are:

n P for Purchase cards

n C for Corporate cards

n B for Business cards

OapfPONum Purchase Order number

OapfTaxAmount Tax amount

OapfShipToZip The ZIP code to which merchandise is to be shipped

OapfShipFromZip The ZIP code from which merchandise is to be shipped

Voice Authorization API

Back-End APIs for Gateways D-7

Voice Authorization API

The Voice Authorization API is the same as the Authorization API or Purchase Card
Authorization API, except that the value for OapfAction should be ‘oravoiceauth’ and a new
field, OapfAuthCode is mandatory.

This table lists the voice authorization input name-value pairs. To perform a Voice
Authorization operation, use name value pairs defined in the Authorization API or Purchase
Card Authorization API, with the following changes and additions:

Name Value

OapfAction Value= oravoiceauth

OapfAuthCode Authorization Code issued by the financial institution, when the voice
authorization is done over the phone.

Authorization API Output Name-Value Pairs

D-8 Oracle iPayment Implementation Guide

Authorization API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP headers
consisting of the name-value pairs listed in this table:

Name Value

OapfOrderId Order number for the transaction. OapfOrderId can contain only
letters, numbers, dashes, underlines, and dots.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States" for a list of values.

OapfStatus The transaction status. See "OapfStatus" for more information.

OapfAuthcode The string for the authorization (approval) code.

OapfTrxnDate The time stamp showing when the transaction is processed in
YYYYMMDDHHMMSS format.

OapfPmtInstrType The payment instrument type. For example, Visa or MasterCard.

OapfErrLocation The error location. See "OapfErrLocation" for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:

OapfAcquirer Name of the acquirer or bank

OapfRefcode The retrieval reference number

OapfAVScode The AVS code

OapfAuxMsg Additional message from the processor

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

Note: If an optional field does not have a value, do not include the
optional field in the header.

Capture API

Back-End APIs for Gateways D-9

Capture API

iPayment invokes the Capture API to perform online capture of previously authorized
transactions.

Capture API Input Name-Value Pairs
To perform the Capture operation, use the name-value pairs listed in this table:

Capture API Output Name-Value Pairs
Output served by the payment system to iPayment returns in the form of HTTP headers
consisting of the name-value pairs listed in this table:

Name Value

OapfAction Value = oracapture.

OapfOrderId Order number for the transaction. OapfOrderId can contain only
letters, numbers, dashes, underlines, and dots.

OapfPrice Transaction amount in the format prescribed for the three-letter ISO
4217 currency code.

OapfCurr ISO 4217 three-letter currency code. For example, usd (US Dollar).

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry Specifies if this operation is a retry. Values include Yes or No.

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

Name Value

OapfStatus The transaction status. See "OapfStatus" for more information.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States" for a list of values.

OapfTrxnDate The time stamp for the time when the transaction is processed. This is
in YYYYMMDDHHMMSS format.

OapfErrLocation The error location. See "OapfErrLocation" for more information.

Capture API

D-10 Oracle iPayment Implementation Guide

Capture API for Terminal-Based Merchant
For a terminal-based merchant, the Capture operation marks the transaction for capture in
the local batch. If the operation completes successfully, it returns the following parameters:

If the operation fails, it returns the following parameters:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

■ OapfVendErrCode

■ OapfVendErrmsg

Capture API for Host-Based Merchant
For a host-based merchant, the Capture operation communicates with the processor to
capture the transaction. If the operation completes successfully, it returns the following
parameters:

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:

OapfRefcode The retrieval reference number.

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

OapfStatus Set to 0000.

OapfTrxnType Set to MarkCapture, 9

OapfTrxnDate Set to the appropriate transaction date.

Name Value

Capture API

Back-End APIs for Gateways D-11

If the operation fails, it returns:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

■ OapfVendErrCode

OapfStatus Set to 0000.

OapfTrxnType Set to MarkCapture, 8

OapfTrxnDate Set to the appropriate transaction date.

OapfRefcode Set to the appropriate retrieval reference number

Void API

D-12 Oracle iPayment Implementation Guide

Void API

The Void API allows the merchant or business to void the following transaction types:

■ Credit transactions

■ Return transactions

■ Capture transactions

The Void API voids the most recent transaction type for an order. For example, the
merchant or business performs authorization--and later capture-- for a transaction. If the
merchant or business performs a void on this order, the capture transaction is voided.

Void API Input Name-Value Pairs
To perform the Void operation, use the name-value pairs listed in this table:

Name Value

OapfAction Value = oravoid.

OapfTrxnType The transaction type to void from the payment system. See
"Transaction Types and Transaction States" for a list of values.

OapfOrderId Order number for the transaction. OapfOrderId can contain only
letters, numbers, dashes, underlines, and dots.

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry Specifies if this operation is a retry. Values include Yes or No.

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

Note: For a terminal-based merchant, the OapfTrxnType should be set
to MarkCapture (9) or MarkReturn (10). For a host-based
merchant, the OapfTrxnType should be set to Capture (8) or Return
(5).

Void API

Back-End APIs for Gateways D-13

Void API Output Name-Value Pairs
Output served by the payment system to iPayment returns in the form of HTTP headers and
consists of the name-value pairs listed in this table:

Void API for Terminal-Based Merchant
For a terminal-based merchant, the Void operation voids the transaction in the local batch. If
the Void operation completes successfully, it returns the following parameters:

If the operation fails, it returns the following parameters:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

Name Value

OapfStatus The transaction status. See "OapfStatus" for more information.

OapfTrxnDate The time stamp for the time when the transaction is processed. This is
in YYYYMMDDHHMMSS format.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States" for a list of values.

OapfErrLocation The error location. See "OapfErrLocation" for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:

OapfRefcode The retrieval reference number.

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

OapfStatus Set to 0000.

OapfTrxnType Set to VoidMarkCapture, 14 or VoidMarkReturn, 18

OapfTrxnDate Set to the appropriate transaction date.

Void API

D-14 Oracle iPayment Implementation Guide

■ OapfVendErrCode

■ OapfVendErrmsg

Void API for Host-Based Merchant
For a host-based merchant, the Void operation communicates with the processor to void the
specified transaction. If the Void operation completes successfully, it returns the following
parameters:

If the operation fails, it returns:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

■ OapfVendErrCode

■ OapfVendErrMsg

OapfStatus Set to 0000.

OapfTrxnType Set to VoidCapture, 13 or VoidReturn, 17

OapfTrxnDate Set to the appropriate transaction date.

OapfRefcode (Optional) Set to the appropriate retrieval reference number.

Return/Credit API

Back-End APIs for Gateways D-15

Return/Credit API

The electronic commerce application invokes the Return/Credit API when goods are
returned. If the authorization and capture transaction records still exist, the merchant or
business will use the existing Order ID to perform a return. If there is no previous
authorization or capture records, the merchant or business will create a new Order ID and
provide the credit card information.

Return/Credit API Input Name-Value Pairs
To perform the Return/Credit operation, use the name-value pairs listed in this table:

Return/Credit API Output Name-Value Pairs
Output served by the payment system to iPayment returns in the form of HTTP headers and
consists of the name-value pairs listed in this table:

Name Value

OapfAction Value = orareturn

OapfOrderId Order number for the transaction. OapfOrderId can contain only
letters, numbers, dashes, underlines, and dots.

OapfPrice Transaction amount in the format prescribed for the three-letter ISO
4217 currency code.

OapfCurr ISO 4217 three-letter currency code. For example usd (US Dollar).

OapfPmtInstrID Identification number (card number). OapfPmtInstrID will be
supplied only for credits.

OapfPmtInstrExp Expiration date for the selected OapfPmtType in the format MM/YY
or MM/YYYY. OapfPmtInstrExp will be supplied only for credits.

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry Specifies if this operation is a retry. Values include Yes or No. If this
flag is incorrectly turned on for a stand-alone retry (i.e., one which
includes payment instrument information) the servlet should attempt
this transaction a second time as a non-retry transaction.

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

Return/Credit API

D-16 Oracle iPayment Implementation Guide

Return/Credit API for Terminal-Based Merchant
For a terminal-based merchant, the Return/Credit operation marks the transaction for return
in the local batch. If the operation completes successfully, it returns the following
parameters:

If the operation fails, it returns the following parameters:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

■ OapfVendErrCode

Name Value

OapfStatus The transaction status. See "OapfStatus" for more information.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States" for a list of values.

OapfTrxnDate The time stamp of when the transaction is processed. This is in
YYYYMMDDHHMMSS format.

OapfPmtInstrType The payment instrument type such as Visa or MasterCard

OapfErrLocation The error location. See "OapfErrLocation" for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optional:

OapfRefcode The retrieval reference number

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

OapfStatus Set to 0000.

OapfTrxnType Set to MarkReturn, 10

OapfTrxnDate Set to the appropriate transaction date

Return/Credit API

Back-End APIs for Gateways D-17

■ OapfVendErrmsg

Return/Credit API for Host-Based Merchant
For a host-based merchant, the Return/Credit operation communicates with the processor to
return/credit the transaction. If the operation completes successfully, it returns the following
parameters:

If the operation fails, it returns the following parameters:

■ OapfStatus

■ OapfTrxnType

■ OapfTrxnDate

■ OapfErrLocation

■ OapfVendErrCode

■ OapfVendErrmsg

OapfStatus Set to 0000.

OapfTrxnType Set to Return, 5.

OapfTrxnDate Set to the appropriate transaction date.

OapfPmtInstrType (Optional) Set to the appropriate payment instrument type.

OapfRefcode (Optional) Set to the appropriate retrieval reference number.

Close Batch API

D-18 Oracle iPayment Implementation Guide

Close Batch API

The merchant or business uses the Close Batch API to close a batch of previously performed
transactions. The transaction types that can be included in a close batch are:

■ Capture transactions

■ Return/Credit transactions

Close Batch API Input Name-Value Pairs
To perform this operation you need the parameters (name-value pairs) listed in this table:

Close Batch API Output Name-Value Pairs
Output served by the payment system to iPayment returns in the form of HTTP headers and
consists of the name-value pairs listed in this table:

Name Value

OapfAction Value = oraclosebatch

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optional:

OapfRetry Specifies if this operation is a retry. Values include Yes or No.

OapfVpsBatchID The payment system batch identification

OapfNlsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS_
LANG environment variable.

Name Value

OapfStatus The transaction status. See "OapfStatus" for more information.

OapfBatchDate The date for this batch

OapfCreditAmount The credit amount. This is the total outflow including return/credit
and void.

OapfSalesAmount The total amount captured

OapfBatchTotal The total amount in this batch

OapfCurr ISO 4217 three-letter currency code. For example, usd (US Dollar).

Close Batch API

Back-End APIs for Gateways D-19

Close Batch API Additional Output
Additional output for the Close Batch API includes the status of individual transactions.
This output differs based on transaction type. The Capture and Return/Credit transaction
types return the following parameters:

■ OapfOrderId-count=<>

■ OapfTrxnType-count=<>

■ OapfStatus-count=<>

■ OapfErrLocation-count=<>

■ OapfVendCode-count=<>

■ OapfVendErrmsg-count=<>

OapfNumTrxns The number of transactions in this batch

OapfStoreID Merchant or business identification. The maximum length is 26
characters.

OapfVpsBatchID The payment system batch identification

OapfGWBatchID The gateway batch identification

OapfBatchState State of the batch. For example, sent, queued, accept, etc. See
"OapfBatchState" for more information.

OapfErrLocation The error location. See "OapfErrLocation" for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

OapfNlsLang (Optional) Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Note: OapfErrLocation, OapfVendCode, and OapfVendErrmsg are only
returned if the OapfStatus field is non-zero. They are returned when there
is some failure for the Order ID during batch close.

Name Value

Close Batch API

D-20 Oracle iPayment Implementation Guide

The OapfNumTrxns field indicates the number of transactions included in the batch. Each
output name-value pair should be appended with a counter to indicate to which transaction it
belongs. The counter should start from 0. For example, assume there are two transactions in
a batch. The output of this batch is:

OapfVpsBatchID: 1234
OapfStatus: PMT-0000
OapfBatchDate: 19970918091000
OapfCreditAmount: 10.00
OapfSalesAmount: 20.00
OapfBatchTotal: 10.00
OapfCurr: usd
OapfNumTrxns: 2
OapfStoreID: abcd
OapfGWBatchID: 5678

OapfOrderId-0=1111
OapfTrxnType-0=8
OapfStatus-0=0000

OapfOrderId-1=2222
OapfTrxnType-1=5
OapfStatus-1=0000

Close Batch API for Terminal-Based Merchant
For a terminal-based merchant, this operation attempts to close out an open batch and cause
funds to change hands. If the batch closes successfully, batch summary as well as transaction
details should be returned. If the close batch fails, the merchant or business, optionally, fixes
offending transactions in the batch and retries. For payment systems that implement retry
logic, use OapfRetry and OapfVpsBatchID for retry. For payment systems that do not
include retry logic, this operation attempts to close out the existing open batch again.

Close Batch API for Host-Based Merchant
For a host-based merchant, if you use the auto close option, this operation returns
OapfStatus=0000. If you use the manual close option, the payment system sends the total to
the processor. The processor checks against its total and closes the batch. If the batch closes
successfully, OapfStatus should be set to 0000 and OapfBatchTotal should be returned. If

Note: The OapfTrxnType should be set to Capture (8) or Return
(5).

Close Batch API

Back-End APIs for Gateways D-21

batch does not close successfully, error messages are returned in OapfStatus and optionally
in OapfErrLocation, OapfVendErrCode, and OapfVendErrmsg.

Query Transaction Status API

D-22 Oracle iPayment Implementation Guide

Query Transaction Status API

The merchant or business uses the Query Transaction Status API to query the status of a
transaction. Both the iPayment database and the payment system database maintain a record
of completed transactions, and these databases may become out of synch due to a
communication link breakdown. Similarly, the electronic commerce application database
and the iPayment database may become out of synch due to a similar condition. This API
returns all existing records for a particular Order ID on a payment system.

Query Transaction Status API Input Name-Value Pairs
To perform this operation, use the name-value pairs listed in this table:

Query Transaction Status API Output Name-Value Pairs
Output from the Query Transaction Status API may consist of multiple records for the same
Order ID, depending on the transaction type. OapfNumTrxns provides the number of
transactions for this Order ID. The output for various transaction types includes the
following parameters:

Auth/AuthCapture:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfAuthcode-count=<>
OapfRefcode-count=<>
OapfAVScode-count=<>
OapfTrxnDate-count=<>
OapfPmtInstrType-count=<>

Name Value

OapfAction Value = oraqrytxstatus

OapfOrderId Order ID to query

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

OapfNlsLang (Optional) Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Query Transaction Status API

Back-End APIs for Gateways D-23

OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>
OapfAcquirer-count=<>
OapfAuxMsg-count=<>

Capture:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfTrxnDate-count=<>
OapfRefcode-count=<>
OapfVpsBatchID-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>

Credit/Return:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfTrxnDate-count=<>
OapfPmtInstrType-count=<>
OapfRefcode-count=<>
OapfVpsBatchID-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>
OapfVendErrmsg-count=<>
OapfAuxMsg-count=<> (optional)

Void:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfStatus-count=<>
OapfTrxnDate-count=<>
OapfRefcode-count=<>
OapfErrLocation-count=<>
OapfVendCode-count=<>

Query Transaction Status API

D-24 Oracle iPayment Implementation Guide

OapfVendErrmsg-count=<>
OapfAuxMsg-count=<>

Query Batch Status API

Back-End APIs for Gateways D-25

Query Batch Status API

The merchant or business uses the Query Batch Status API to query the status of an existing
batch. Terminal-based merchants also use the Query Batch Status API to verify the
transactions for submission to batch close by iPayment. The merchant or business can use
the output from the Query Batch Status API to cross-check the transaction records in the
merchant or business database.

Query Batch Status API Input Name-Value Pairs
To perform the Query Batch Status operation, use the name-value pairs listed in this table:

Query Batch Status API Output Name-Value Pairs
Output from the Query Batch Status API is similar to the output of the Close Batch API
when you provide the OapfVpsBatchID. When you do not provide the OapfVpsBatchID, the
output is all transactions for the terminal-based merchant for a subsequent batch close.
OapfNumTrxns provides the number of transactions for the batch. The output for transaction
types includes the following parameters:

Capture, Return, Credit:

OapfOrderId-count=<>
OapfTrxnType-count=<>
OapfPrice-count=<>
OapfCurr-count=<>
OapfTrxnDate-count=<>

Name Value

OapfAction Value = oraqrybatchstatus

OapfVpsBatchID The payment system batch identification if querying for an existing
batch. If a value is not included, the output is pending batch
transactions.

OapfStoreId Merchant or business identification. The maximum length is 26
characters.

OapfNlsLang (Optional) Language and character-set information for the electronic
commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Transaction Status and Messages

D-26 Oracle iPayment Implementation Guide

Transaction Status and Messages

This section describes the various transaction status codes and error messages returned by
iPayment payment system servlet.

Topics include:

■ OapfStatus

■ OapfErrLocation

■ OapfVendErrCode

■ OapfVendErrmsg

■ OapfBatchState

■ OapfOrderId

Transaction Status and Messages

Back-End APIs for Gateways D-27

OapfStatus

Each transaction (including authorize, capture, return, credit, and void) returns the status in
the OapfStatus field. A value of 0000 or 0 indicates a successfully completed transaction. A
non-zero value indicates that the transaction failed. OapfErrLocation, OapfVendErrCode,
and OapfVendErrmsg provide additional error information.

SSL Payment System Servlet
SSL payment systems must return the values listed in this table to iPayment in the
OapfStatus parameter:

Value Definition

0000 Transaction completed successfully

0001 Communications error: the payment system or the processor is out of
reach. You should resubmit the request at a later time.

0002 Duplicate Order ID

0003 Duplicate Batch ID

0004 Mandatory fields are required.

0005 Payment system specific error. Refer to OapfVendErrCode and
OapfVendErrmsg for more information.

0006 Batch partially succeeded. Some transactions in the batch failed and
some processed correctly.

0007 The batch failed. You should correct the problem and resubmit the
batch.

0008 Requested action not supported

0017 Card has insufficient funds

0019 Invalid credit card

OapfErrLocation

D-28 Oracle iPayment Implementation Guide

OapfErrLocation

The OapfErrLocation parameter contains the values listed in this table:

Value Definition

0 Transaction completed successfully at all levels

1 Transaction failed at the payment system cartridge code

2 Transaction failed at the payment system engine or the payment system
server code

3 Transaction failed at the payment system gateway or equivalent to the
interface that communicates with the bank

4 Transaction failed at the acquirer bank gateway or equivalent to the
bank interface that communicates with the payment system interface

5 Transaction failed at the payment system

6 Transaction failed at iPayment

Transaction Status and Messages

Back-End APIs for Gateways D-29

OapfVendErrCode

OapfVendErrCode contains the payment system's error code. See the documentation that
came with the payment system for more information. This parameter is required only if the
transaction failed at the payment system.

OapfVendErrmsg

D-30 Oracle iPayment Implementation Guide

OapfVendErrmsg

OapfVendErrmsg contains the payment system's message for the error. See the
documentation that came with the payment system for more information. This parameter is
required only if the transaction failed at the payment system.

Transaction Status and Messages

Back-End APIs for Gateways D-31

OapfBatchState

The OapfBatchState parameter indicates the state of the batch based on the processor. If the
state is set to "sent," the merchant needs to query the batch again to find out if the batch is
accepted and also to retrieve transaction details. The OapfBatchState parameter contains the
values listed in this table:

Value Definition

0 Batch accepted

1 Batch sent

2 Batch queued

3 Batch rejected.

4 Batch processed.

5 Batch error

6 Batch not found

7 Batch unknown

Note: The close batch operation returns its status in OapfStatus, and has
the following possible values: 0000, 0003, 0006, and 0007. See
"OapfStatus" for more information.

OapfOrderId

D-32 Oracle iPayment Implementation Guide

OapfOrderId

iPayment uses the Order ID to uniquely identify each transaction. In the Core API, if the
merchant tries to authorize a previously authorized transaction, the payment system will not
accept the authorization. The payment system returns the status "Duplicate Order ID."

How iPayment Uses OapfNlsLang
If the electronic commerce application does not pass the OapfNlsLang parameter, iPayment
passes information from the electronic commerce application to the payment service
cartridge without performing any conversion of character sets.

If the commerce application does pass a value for OapfNlsLang to iPayment, iPayment tries
to convert parameters based on the value of OapfNlsLang before sending those parameters
to the payment system cartridge.

To do so, iPayment first checks its database for the list of preferred and optional languages
for that payment system. (The information in the database reflects what the iPayment
administrator entered using the iPayment Administration user interface.)

Secondly, iPayment does one of the following, depending on what it finds in the database:

■ If the database lists a language that matches the value of OapfNlsLang, iPayment keeps
the value of OapfNlsLang and passes it to the payment system cartridge.

■ If the database does not list a language matching the value of OapfNlsLang, iPayment
uses the language specified as the preferred language for that payment system, thus
changing the value of OapfNlsLang before sending it to the payment system cartridge.

Finally, iPayment converts the values of other parameters so that they are sent to the
payment system cartridge in the language specified by OapfNlsLang.

Notice that this conversion process works in only one direction: from the electronic
commerce application to the payment system cartridge. If the payment system sets
OapfNlsLang when it sends the data back, iPayment uses that information only to store the
value of OapfVendErrmsg in its database. iPayment does not convert data sent from the
payment system cartridge back to the electronic commerce application.

Format of the NLS_LANG Parameter
The value of this parameter follows the same format as Oracle Server's NLS_LANG
environment variable:

language_territory.charset

For example, JAPANESE_JAPAN.JA16EUC is a valid value for OapfNlsLang.

Transaction Types and Transaction States

Back-End APIs for Gateways D-33

Transaction Types and Transaction States

This section defines the values for OapfTrxnType and includes a discussion of transaction
states.

Transaction States
A payment transaction goes through a number of states depending on the operations
performed on it. The following illustration depicts the state changes of a transaction in a host
based system.

When a customer is ready to pay, the transaction is considered to be in the ready to pay state.
If the Authorization API is used, the transaction moves to the authcapture or authonly state
after the authorization is complete. If the Invoice and Pay APIs are used, the transaction
changes to invoice and moves to authonly or authcapture state. A transaction in the authonly

Transaction Types and Transaction States

D-34 Oracle iPayment Implementation Guide

state needs to be captured for funds to be transferred. All authcapture, capture and return
transactions can be voided.

The following graphic illustrates the state changes that a transaction for a terminal based
system may undergo. Capture and return operations in terminal based systems only mark the
transaction for capture or return in the local batch. After a successful close batch operation
the transaction becomes captured or returned.

Transaction Types and Transaction States

Back-End APIs for Gateways D-35

OapfTrxnType: SSL Transactions and Commerce Applications

iPayment returns OapfTrxnType transaction types for the SSL payment system servlet API.
This table lists the OapfTrxnType transaction types (SSL).

Value Type Definition

2 AuthOnly An authorization only requested for an order.

3 AuthCapture An online authorization and capture for an order.

4 VoidAuthOnly Void of an order that was successfully authorized but not captured.
(Electronic Commerce application API only.)

5 Return Perform a return or credit on an order that was successfully
authorized and captured online.

6 ECRefund Perform a refund on an electronic cash/coin purchase.

7 VoidAuthCapture Void a previous authorization and capture online.

8 Capture Capture performed by a host-based or a terminal-based (closed
batch) processor system.

9 MarkCapture Transaction that was marked for capture by a terminal-based
processor system.

10 MarkReturn Transaction that was marked for return by a terminal-based
processor system.

13 VoidCapture Void a transaction captured by a host-based or terminal-based
(close batch) processor system.

14 VoidMarkCapture Void a transaction marked for capture by a terminal-based
processor system.

17 VoidReturn Void a transaction that was returned by a host-based or
terminal-based (close batch) processor system.

18 VoidMarkReturn Void a transaction that was marked for return by a terminal-based
system.

101 SplitAuth A subsequent authorization (Electronic Commerce application API
only.)

OapfTrxnType: SSL Transactions and Commerce Applications

D-36 Oracle iPayment Implementation Guide

Extensibility E-1

E
Extensibility

This appendix explains extensibility and how to implement it.

Overview

E-2 Oracle iPayment Implementation Guide

Overview

Extensibility allows interaction between iPayment and a back-end payment system to be
customized. Note that extensibility only exists for Gateway-model payment systems. This
can be achieved by implementing the following interface:

ibyextend.TxnCustomizer_<BEP SUFFIX>

where <BEP SUFFI X> indicates the 3-letter suffix of the back-end payment system.

Custom parameters may be added to those sent by iPayment before the back end payment
system servlet is contacted. After the back end payment system servlet responds, the
extensibility implementation may take custom parameters that are returned in the response
and store them in the database.

Implementation

Extensibility E-3

Implementation

The Extensibility Interface
To implement extensibility, the Java interface
oracle.apps.iby.extend.TxnCustomizer must be implemented as class

ibyextend.TxnCustomizer_<BEP SUFFIX>.

<BEP SUFFIX> is the three letter suffix of the back end payment system.

The oracle.apps.iby.extend.TxnCustomizer interface has the following
methods:

■ public void preTxn (String bep, Connection dbconn, AddOnlyHashtable txn_req)
throws PSException;

■ public void postTxn (String bep, Connection dbconn, ReadOnlyHashtable txn_resp)
throws PSException;

The parameter bep is the three letter suffix, which is specified during registration in the user
interface, of the back end payment system that the request goes to, dbconn is a connection
open to the APPS schema, and txn_req/txn_resp are collections of name-value pairs
which represent, respectively, the back end payment system request/response.

ReadOnlyHashtable, AddOnlyHashtable Classes
The classes oracle.apps.iby.util.AddOnlyHashtable and
oracle.apps.iby.util.ReadOnlyHashtable are passed as parameters to the
preTxn, postTxn methods respectively. ReadOnlyHashtable has the following
methods, which are the same in signature and behavior as the corresponding methods of the
Java Hashtable class:

keys, containsKey, isEmpty, size, get

AddOnlyHashtable, which is a subclass of ReadOnlyHashtable, has the additional
method put. It differs from the corresponding method in the Java Hashtable class in the
way that only keys not already present in the hashtable can be successfully used for

Note: Both methods can throw a PSException. This allows a
transaction to be aborted if a critical error, for example, SQLException,
occurs in the extensibility implementation class. Releasing the database
connection passed to both methods is the responsibility of iPayment and
should not be done by the extensibility class.

Implementation

E-4 Oracle iPayment Implementation Guide

insertions. The AddOnlyHashtable version of put returns a boolean value which is true
only if the insertion succeeds.

Both types of hashtables are populated with String name-value pairs from one of the back
end payment system integration model. In the case of preTxn, these are input name-value
pairs. In the case of postTxn, these are output name-value pairs. Below is a piece of
sample code illustrating how a value is retrieved:

String orderId = (String)txn_resp.get("OapfOrderId");

See the Back-End Processing APIs section for a complete listing of all names.

Custom Fields
Custom fields should be prefixed by OapfExtend, which is defined as the constant
CUSTOMFIELD_PREFIX in the oracle.apps.iby.extend.TxnCustomizer
class. This applies to both fields inserted in the back end payment system request during the
call to preTxn, and the custom fields returned by the back end payment system servlet and
processed in postTxn. If custom fields do not follow this convention, there is no guarantee
that custom fields will be successfully passed through.

Development, Deployment
To develop extensibility classes, include the location of the The Oracle Applications Java
class library file containing all of iPayment's classes in the CLASSPATH passed to the
compiler.

An extensibility class is deployed by placing it in iPayment's CLASSPATH. Please refer to
the local JServ configuration to determine this value.

Exceptions
An exception may be thrown by either the preTxn or postTxn method in the TxnCustomizer
class. This exception is the class oracle.apps.iby.exception.PSException

It should be thrown whenever a critical error is encountered in the customizer and the
transaction needs to be aborted.

iPayment will take the exception thrown by an extensibility implementation and throw a
new PSException based on it with the following error code:

IBY_0005

Note: Since extensibility classes are part of the ibyextend package, the
class must be located under a directory called ibyextend.

Implementation

Extensibility E-5

The message in the new PSException will have a prefix appended to it, indicating that the
error occurred within the extensibility class.

Sample Implementation

E-6 Oracle iPayment Implementation Guide

Sample Implementation

package ibyextend;

import java.sql.*;
import java.util.Hashtable;
import java.util.Enumeration;

import oracle.apps.iby.extend.TxnCustomizer;
import oracle.apps.iby.util.AddOnlyHashtable;
import oracle.apps.iby.util.ReadOnlyHashtable;
import oracle.apps.iby.exception.PSException;

public class TxnCustomizer_pay implements TxnCustomizer
{

static final String EXTEND_QUERY="select a, b from
iby.iby_extend_pre where order_id = ?";

static final String EXTEND_INSERT="insert into iby.iby_extend_post
values (?,?,?)";

public void preTxn(String bep, Connection dbconn, AddOnlyHashtable
inputs) throws PSException

{ String orderId=(String)inputs.get("OapfOrderId");

try
{ PreparedStatement

stmnt=dbconn.prepareStatement(EXTEND_TESTQUERY);
stmnt.setString(1,orderId);
ResultSet rset=stmnt.executeQuery();

for (int count=1; rset.next(); count++)
{
String cust1=rset.getString(1),

cust2=rset.getString(2);
inputs.put(TxnCustomizer.CUSTOMFIELD_PREFIX

+
"ReqA-"+count,cust1);

inputs.put(TxnCustomizer.CUSTOMFIELD_PREFIX
+
"ReqB-"+count,cust2);

}
rset.close();

Implementation

Extensibility E-7

stmnt.close();
// !! do not close the database connection !!
}

catch (SQLException sqle)
{ throw new PSException("IBY_0005",sqle.getMessage(),false); }

}

public void postTxn(String bep, Connection dbconn,
ReadOnlyHashtable outputs) throws PSException

{ String f1=(String)outputs.get("OapfStatus"),

f2=(String)outputs.get(TxnCustomizer.CUSTOMFIELD_PREFIX+"Resp"),
f3=(String)outputs.get("OapfTrxnDate");

try
{ PreparedStatement

stmnt=dbconn.prepareStatement(EXTEND_TESTINSERT);
stmnt.setString(1,f1);
stmnt.setString(2,f2);
stmnt.setString(3,f3);
stmnt.executeUpdate();
dbconn.commit();
stmnt.close();
// !! do not close the database connection !!

}
catch (SQLException sqle)

{ throw new PSException("IBY_0005",sqle.getMessage(),false); }
}

}

Sample Implementation

E-8 Oracle iPayment Implementation Guide

Configuring CyberCash Servlet F-1

F
Configuring CyberCash Servlet

This appendix explains how to configure the CyberCash servlet.

Configuring CyberCash Servlet

F-2 Oracle iPayment Implementation Guide

Configuring CyberCash Servlet

CyberCash is a Secure Socket Layer (SSL) payment system supporting credit card
transactions using Merchant Connection Kit (MCK) and bank account transfers using
CyberCash’s PayNow services. It supports all Oracle iPayment core operations.

CyberCash Payment System Servlet is only needed if you are planning to process the credit
card and Bank Transfer payments through the CyberCash Service. For more information see
’Payment Systems ’ in the latest Oracle iPayment Concepts and Procedures Guide.

Oracle iPayment integrates with MCK version 3 which connects to CyberCash. Use the
parameters in the Oracle iPayment administration user interface while setting up CyberCash
as the payment system.

This table lists the parameters for setting up CyberCash as the payment system.

Installing the CyberCash Servlet
Use the following procedure to configure CyberCash Merchant Connection Kit, also known
as MCK to work with Oracle iPayment:

1. Download CyberCash's Merchant Connection Kit (MCK) from
http://www.CyberCash.com. Follow CyberCash's instructions to install the MCK.

Note: CyberCash is no longer accepting new customers. If you are not
an existing CyberCash customer, consider using one of the other
out-of-box integrations or contact Verisign, which has written its own
iPayment integration servlet

Property Value

Name CyberCash

Suffix cyb (do not use CYB or Cyb)

Base URL http://<machine_name>.com:<port>/servlet

The machine where CyberCash servlet is to be installed, and any
active port, for example:

http://www.merchant.com:9997/servlet

Admin URL http://amps.CyberCash.com

Configuring CyberCash Servlet

Configuring CyberCash Servlet F-3

2. Go to the directory where the MCK C libraries are located. The installation directory
should be named mck-<version>-<operating system>. For example, if you installed
MCK version 3.2.0.6 on Solaris under the /usr/oracle directory, you should do the
following:

% cd /usr/oracle/mck-3.2.0.6-sparc-sun-solaris2.6/c-api/lib

On Windows NT, the command could be:

D:\>cd \mck-3.2.0.6-nt\c-api\lib

3. Copy the three MCK libraries mentioned below into the $IBY_TOP/lib (or %IBY_
TOP%\lib on Windows NT) directory:

% cp libCCMck.a $IBY_TOP/lib

% cp libmckcrypto.a $IBY_TOP/lib

% cp libmd5hash.a $IBY_TOP/lib

On Windows NT, the commands will be:

D:\> copy CCMck.lib %APPL_TOP%\iby\11.5.0\lib

D:\> copy mckcrypto.lib %APPL_TOP%\iby\11.5.0\lib

D:\> copy md5hash.lib %APPL_TOP%\iby\11.5.0\lib

4. Go to the $IBY_TOP/admin/driver directory:
% cd $IBY_TOP/admin/driver

Note: If your MCK is located inside the firewall and your firewall
requires a proxy for outbound communication, then add the following
parameters to the MCK merchant_conf file. The merchant_conf file is
located in the:

<MCK_HOME>/<merchant-name>/mck-cgi/conf directory:

HTTP_PROXY_HOST=<hostname>

HTTP_PROXY_PORT=<port>

Note: The version number 11.5.0 may differ if you have a different
version. Replace 11.5.0 with your specific version number.

Configuring CyberCash Servlet

F-4 Oracle iPayment Implementation Guide

or
cd %APPL_TOP%\iby\11.5.0\admin\driver (Windows NT/2000)

5. Go to the $IBY TOP/lib directory:
% cd $IBY_TOP/lib.
or
cd %APPL_TOP%\iby\11.5.0\lib (on Windows NT/2000).

6. Start AD Administration with its command name.
For UNIX users: $ adadmin
For NT users: C:\>adadmin.

After you answer the AD administration questions, the utility takes you to the main
menu. Select “Relink Applications programs.”
Log File: the default AD administration log file name is adadmin.log. It is located in
$APPL_TOP/admin/<db_name> is the value of your ORACLE_SID or TWO_TASK
variable. NT users will find the log file in %APPL_TOP%\admin\<db_name>\log.

7. If JServ is set up for automatic startup, set up the wrapper.env variable in the file
jserv.properties as indicated in the following discussion.

.properties file are generally located in the etc directory of your top Jserv engine
directory (for example, /d1/testcomn/util/apache/1.3.9/Apache/Jserv/etc).

wrapper.env=LD_LIBRARY_PATH=$IBY_TOP/bin

In Windows NT and Windows 2000, set:
wrapper.env=PATH=%APPL_TOP%\iby\11.5.0\bin

If the file already contains a line for wrapper.env (wrapper.env=LD_LIBRARY_
PATH=...), append the location indicated in the preceding instructions as you would
append the LD_LIBRARY_PATH environment variable. For example, assume that you
have the following line already in the .properties file, line
wrapper.env=LD_LIBRARY_PATH=$ABC/lib

In this case, you should add :$IBY_TOP/bin to the end of the line as shown below:

wrapper.env=LD_LIBRARY_PATH=$ABC/lib:$IBY_TOP/bin

For Windows NT and Windows 2000, wrapper.env should be set as:

wrapper.env=PATH=%ABC%\lib;%APPL_TOP%\iby\11.5.0\bin

Note: Edit file ibysub01.drv. Make two lines starting with the comment
character active by removing the comment character.

Configuring CyberCash Servlet

Configuring CyberCash Servlet F-5

If JServ is set up for manual startup, set the appropriate environment variable in your
environment shell. This can be done in the jservctl file, or in any other script used to
start JServ. The jservctl file is generally located in the bin directory of your top Jserv
engine directory (for example, /d1/testcomn/util/apache/1.3.9/Apache/Jserv/bin):

export LD_LIBRARY_PATH=$IBY_TOP/bin

In some shells, you will need to set LD_LIBRARY_PATH as follows:

LD_LIBRARY_PATH=$IBY_TOP/bin

In Windows NT and Windows 2000, set it as follows:

PATH=%APPL_TOP%\iby\11.5.0\bin

If there is already a line setting the LD_LIBRARY_PATH (or PATH in Windows) then
append the above location as you would append the
LD_LIBRARY_PATH environment variable, using a colon (:) or, in Windows, a
semicolon (;).

8. Set up a virtual path mapping for the CyberCash servlet.

Insert the following line in the zone.properties file, in the Servlet Aliases section.

servlet.oramipp_cyb.code=oracle.apps.iby.bep.cybercash.CybServlet.

This allows the servlet to be invoked as: http://<hostname>:<port>/servlet/oramipp_
cyb.

9. Set the servlet init parameters. There are several initialization parameters that are
recognized by the Oracle iPayment CyberCash Servlet. Set these initialization
parameters by inserting the following line in the zone property file <SERVLET_
ZONE>.properties file in the Aliased Servlet parameters section.

servlet.oramipp_cyb.initArgs=mckhome=$MCK_HOME,debug=false,logfile=$IBY_
TOP/log/ibycybserv.log

In Windows NT, set it to:

servlet.oramipp_cyb.initArgs=mckhome=%MCK_HOME%,debug=false,logfile=%APPL_
TOP%\iby\log\ibycybserv.log

Note: Replace $MCK_HOME with the absolute path of the MCK
installation and replace $IBY_TOP with the absolute path of the Oracle
iPayment installation.

Configuring CyberCash Servlet

F-6 Oracle iPayment Implementation Guide

The following initialization parameters are recognized by the CyberCash Servlet:

■ Mckhome: This parameter is mandatory. It's the directory path that points to the
location where the CyberCash Merchant Connection Kit is installed. For example, if a
merchant named, test-mck has been installed in such a way that its associated files can
be found under the directory /usr/oracle/mck/test-mck, then mckhome should be set to
/usr/oracle/mck. Transaction requests to Oracle iPayment will fail if mckhome is not set
correctly.

■ debug: This parameter is optional. If set to true, then the servlet will print debugging
information to the body of its responses in plain text. This information includes the
inputs sent to the servlet during the request, and the outputs the servlet sends for its
response. If an exception is thrown during the processing of the request, then a stack
trace is also printed.

■ logfile: This parameter is optional. It's a string which specifies the fully qualified path
name of the log file location. The input and output values of each transaction are written
to this file, and a stack trace if an exception is thrown. If this parameter is not set,
logging will be turned off.

■ singlemerch: This parameter is optional, but may only be set up if the servlet always
uses the same CyberCash merchant. The singlemerch parameter helps improve the
performance of the CyberCash servlet by eliminating some of the overhead work that is
done for multiple merchants. Set up the parameter's value to the CyberCash merchant
id. For example, if you are only using the merchant test-mck, use the following
initialization argument string:

servlet.oramipp_cyb.initArgs=mckhome=$MCK_HOME,debug=false,logfile=$IBY_
TOP/log/ibycybserv.log,singlemerch=test-mck

Performance Considerations for Oracle iPayment CyberCash Servlet
The CyberCash servlet makes calls via JNI to CyberCash's C-implemented Merchant
Connection Kit (MCK). The MCK is not thread-safe when multiple Cybercash merchants
are used. The CyberCash servlet must synchronize access to the MCK, in effect serializing
concurrent requests so that each one begins only after a previous one finishes. To improve
performance in the case of a single merchant, i.e. when the servlet always uses the same
CyberCash merchant, it is recommended that you use the singlemerch parameter. To
improve the performance in cases of both the single merchant or multiple merchants, it is
necessary to take advantage of a new feature in JServ called load balancing. Load balancing
allows requests sent to a single servlet zone to be serviced by multiple JServ instances. Since
each JServ instance is a separate process, calls to the MCK occur in distinct memory spaces,
allowing multiple concurrent requests to the CyberCash servlet to be successfully processed.

Configuring CyberCash Servlet

Configuring CyberCash Servlet F-7

Installing a Load Balanced Servlet Zone
To load balance a servlet zone, make the following changes to your jserv.conf file:

1. For each JServ instance you will reference, include a directive of the form:

ApJServHost <INSTANCE_NAME> <PROTOCOL>://<HOST>:<PORT>

For example: ApJServHost PC1 ajpv12://localhost:7777

2. Group JServ instances into sets with the following directive:

ApJServBalance <SET_NAME> <INSTANCE_NAME>

For example: ApJServBalance set1 PC1

ApJServBalance set1 SUN1

3. Define the load-balanced servlet zone with the directive:

ApJServMount <URL> balance://<SET_NAME >/<SERVLET_ZONE_NAME>

For example: ApJServMount /cybserv balance://set1/cybserv

4. Define the shared memory file used by Apache HTTP listeners to keep track of the
status of JServ instances use the directive:
ApJServShmFile <MEM_FILE>

After jserv.conf is modified to reflect your installation, restart Apache and make sure
each JServ instance within the load balanced zone is running.

To manually start a JServ instance, do the following steps:

Note: Only one protocol is allowed within a zone. You should choose
the default one, such as ajpv12.

Note: Each JServ instance within the set must have a servlet zone of the
given name defined. Using the example above, each JServ instance must
have a cybserv zone.

Note: Note that you may wish to over-write the memory file between
Apache restarts to flush old status information.

Configuring CyberCash Servlet

F-8 Oracle iPayment Implementation Guide

a. Make a copy of your jserv.properties file, assumed to be correctly configured for
the CyberCash servlet, for each JServ instance you will run in the new zone.

b. For each properties file, set port to a value correct for that instance.

c. Set your shell environment variables CLASSPATH and LD_LIBRARY_PATH to
the values the variables have in your jserv.properties file.

d. From the command line run the command:

java -classpath $CLASSPATH org.apache.jserv.JServ <PROPERTY_FILE>
<LOG_FILE> 2>&1

The property file is the jserv.properties file you have configured for that particular
instance.

Load Balancing Recommendations
The maximum number of concurrent requests that the CyberCash servlet will be able to
process without blocking is equal to the number of JServ instances running in its servlet
zone. You should have a number of JServ instances running equal to the average number of
concurrent requests, if not slightly more since, under load balancing, JServ instances are
randomly chosen, making it possible that two concurrent requests could be sent to a JServ
instance when an idle one is already available.

Running multiple JServ instances within a zone will not add significantly to your CPU load
versus running a single instance. It will, however, add to your memory load as each instance
requires its own JVM. On Solaris, each JVM requires over 6MB of main memory though
less than 4MB are actually used since JVMs will share common libraries.

Configuring Paymentech G-1

G
Configuring Paymentech

This appendix explains how to configure the Paymentech payment system.

Configuring the Paymentech Servlet

G-2 Oracle iPayment Implementation Guide

Configuring the Paymentech Servlet

Paymentech is a processor-model payment system which offers online authorization and
batch-based settlement support. Oracle iPayment supports the Online Processing Technical
Specification, Version 7.2, for online transactions and the 120-Byte Technical Specification,
Version 2.1.0, for batch file processing.

Paymentech supports these payment instruments and operations for each payment
instrument:

■ Credit Cards

❍ Online Authorization

❍ Batch Authorization

❍ Batch Authorization and Deposit

❍ Batch Deposit

❍ Batch Credit

❍ Batch Query

■ Purchase Cards

❍ Online Authorization

❍ Batch Authorization

❍ Batch Authorization and Deposit

❍ Batch Deposit

❍ Batch Credit

❍ Batch Query

■ PINless Debit Cards

❍ Online Authorization

❍ Batch Deposit

❍ Batch Query

■ Bank Receipts

❍ Online Verification

❍ Batch Validate and Deposit

Configuring the Paymentech Servlet

Configuring Paymentech G-3

❍ Batch Credit

❍ Batch Query

Prerequisites
Using Paymentech as a payment system has these prerequisites:

■ You must have a leased-line connection to Paymentech's payment servers.

■ You must have one or more valid Paymentech merchant accounts with support for both
IP socket-based online authorization and FTP-based batch-mode settlement.

Please contact Paymentech for help meeting these prerequisites.

The Oracle iPayment Paymentech servlet requires no database connectivity and can be
installed on a different application server than iPayment.

To install the Oracle iPayment Paymentech servlet on a different application server:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/java to the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter" to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Servlet Configuration

Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Paymentech servlet are present in the same machine.

To configure the Oracle iPayment Paymentech servlet:

1. Add this alias statement to the configuration file of the servlet zone that you wish the
Paymentech servlet to run in:

servlet.oramipp_ptk.code=oracle.apps.iby.bep.proc.paymentech.PTServlet

2. In the same configuration file, provide these servlet parameters:

Table G–1 Zone-wide servlet parameters for All Processor Servlets

Parameter Example Value Description

IBY_XML_BASE /appl_
top/iby/11.5.0/xml

The location of the XML files needed by
iPayment's XML framework. This location should
point to a directory with the exact same contents as
$IBY_TOP/xml.

Configuring the Paymentech Servlet

G-4 Oracle iPayment Implementation Guide

Configuring Paymentech in the Oracle iPayment Administrative Interface

Payment System
Paymentech is already seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

IBY_JAVA_
XML_LOG

/tmp/xml.log Debug file used to write XML documents in.

ARCHIVE /var/archive Directory where iPayment response files are
written to. If communication between iPayment
and the servlet fails in the middle of a transaction
and iPayment retries that transaction at a later date,
the archive directory lets the servlet know the
original results of the transaction and forward those
to iPayment instead of re-attempting the request,
which avoids double billing or double
authorization.

MAX_
ARCHIVE_AGE

10 Maximum age (in days) that a response file is
saved in the archive. The Paymentech servlet will
remove all responses in the archive older than this
age every time it starts.

In this parameter... Enter this...

Name Paymentech

Suffix ptk

Payment System Type Processor

Base URL example- http://localhost:8080/servlets

Administration URL http://www.paymentech.net

Supported Payment Instrument Purchase Card, PINless Debit Card, Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

Table G–1 Zone-wide servlet parameters for All Processor Servlets

Parameter Example Value Description

Configuring the Paymentech Servlet

Configuring Paymentech G-5

Payment System Merchant Identifier
After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the payee's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
who will use Paymentech enter a recognizable name for the Paymentech payment system
identifier. If you upgraded iPayment and already have an existing payment system identifier,
you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

On the same page, enter the connectivity information required to communicate with the
payment system servers.

Paymentech uses the same connectivity parameters for all payment instruments supported.

Table G–2 Paymentech account parameters

Parameter Description

Merchant Name Assigned by Paymentech. Company name that appears on the
Paymentech account holder's statement.

Division Number Assigned by Paymentech when a valid merchant account is created.
It is also known as the Merchant ID.

Presenter’s ID Assigned by Paymentech.

PID Password Assigned by Paymentech.

Submitter’s ID Assigned by Paymentech.

SID Password Assigned by Paymentech.

Table G–3 Paymentech online authorization connectivity parameters

Parameter Example Value Description

Socket IP Address 192.168.0.1 IP address of the Paymentech host used for online
authorizations.

Socket Port
Number

8000 Port number to use along with the socket IP
address.

Configuring the Paymentech Servlet

G-6 Oracle iPayment Implementation Guide

Table G–4 Paymentech settlement connectivity parameters

Parameter Example Value Description

FTP Server IP
Address

192.168.0.1 IP address of the Paymentech host used for batch
transactions.

FTP Server Port
Number

8000 Port number to use along with the FTP server IP
address.

FTP Account
Username

Test FTP username to login to the Paymentech batch
transaction server.

FTP Account
Password

Test FTP password to login to the Paymentech batch
transaction server.

Local File
Directory

/tmp/batch Directory where batch files to Paymentech are
temporarily stored.

Remote File
Directory

test/12345 Directory on the Paymentech batch transaction
server where batch files should be uploaded to.

Sent File Name Parameter not used by Paymentech.

Active/Passive
Mode

Active For new connections, Paymentech does not allow
FTP connection in the passive mode. The
Active/Passive Mode parameter should be set to
"Active" for all new merchant connections to
Paymentech.

Table G–5 Paymentech online authorization connectivity parameters

Parameter Example Value Description

FTP Server IP
Address

192.168.0.1 IP address of the Paymentech host used for batch
transactions.

FTP Server Port
Number

8000 Port number to use along with the FTP server IP
address.

FTP Account
Name

test FTP username to login to the Paymentech batch
transaction server.

FTP Account
Password

test FTP password to login to the Paymentech batch
transaction server.

Local File
Directory

/tmp/batch Directory where batch files to Paymentech are
temporarily stored.

Remote File
Directory

test/data/12345 Directory where batch files to Paymentech are
temporarily stored.

batch Name Parameter used internally only.

Configuring the Paymentech Servlet

Configuring Paymentech G-7

Configuring Paymentech Servlet Load Balancing
If you want to load balance the Oracle iPayment Paymentech servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parameters in this XML file for each instance of the servlet:

<xml_base>/data/TransConfig.xml, where xml_base is a system setup parameter.

The structure of the XML file is as follows:
<TransmissionOption>

<Scheme>PTECH_ONLINE_SOCKET_7_2</Scheme>
<Parameter>

<Name>SOCKET_IP</Name>
<Value>10.140.10.150</Value>

</Parameter>
<Parameter>

<Name>SOCKET_PORT</Name>
<Value>80</Value>

</Parameter>
</TransmissionOption>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

The tables list the connectivity parameters that you can set at the servlet level.

Table G–6 Paymentech servlet connectivity parameters

Parameter Example Value Description

Scheme PTECH_ONLINE_
SOCKET_7_2

The transmission protocol for the payment instrument.
Values for Paymentech are: PTECH_ONLINE_
SOCKET_7_2FTP_PUTPTECH_BATCH_2_1_0_
ACK_GET

Table G–7 Paymentech servlet connectivity parameters - parameters for the PTECH_
ONLINE_SOCKET_7_2 scheme

Parameter Example Value Description

SOCKET_IP 192.168.0.1 IP address of the Paymentech host used for online
authorizations.

SOCKET_
PORT

8000 Port number to be used along with the socket IP address.

Configuring the Paymentech Servlet

G-8 Oracle iPayment Implementation Guide

Enabling the Scheduler
Paymentech is a processor-model payment system. All transactions except authorizations are
stored in the iPayment schema and sent to Paymentech only during a batch close operation.
Unless you want to manually control the batch close process by implementing calls to the
iPayment batch close APIs, the iPayment scheduler program must be enabled with support
for these tasks:

Table G–8 Paymentech servlet connectivity parameters - parameters for the FTP_PUT
scheme

Parameter Example Value Description

HOST_IP 192.168.0.1 IP address of the Paymentech host used for batch
transactions.

HOST_PORT 8000 Port number to use along with the host IP address.

USERNAME test FTP username to login to the Paymentech batch
transaction server.

PASSWORD test FTP password to login to the Paymentech batch
transaction server.

LOCAL_DIR /tmp/batch Directory where batch files to Paymentech are
temporarily stored.

REMOTE_
DIR

test/12345 Directory on the Paymentech batch transaction server
where batch files should be uploaded to.

Table G–9 Paymentech servlet connectivity parameters - parameters for the PTECH_
BATCH_3_0_ACK_GET scheme

Parameter Example Value Description

HOST_IP 192.168.0.1 IP address of the Paymentech host used for batch
transactions.

HOST_PORT 8000 Port number to use along with the host IP address.

USERNAME test FTP username to login to the Paymentech batch
transaction server.

PASSWORD test FTP password to login to the Paymentech batch
transaction server.

LOCAL_DIR /tmp/batch Directory where batch files to Paymentech are
temporarily stored.

REMOTE_
DIR

test/data/12345 Directory on the Paymentech batch transaction server
where batch response files may be picked up from.

Configuring the Paymentech Servlet

Configuring Paymentech G-9

■ BATCHCLOSE

■ BATCHQUERY

■ BATCHRETRY

Configuring the Paymentech Servlet

G-10 Oracle iPayment Implementation Guide

Configuring FDC North H-1

H
Configuring FDC North

This appendix explains how to configure the FDC North payment system.

Configuring the FDC North Servlet

H-2 Oracle iPayment Implementation Guide

Configuring the FDC North Servlet

FDC North is a processor-model payment system that offers online authorization and
batch-based settlement support. Oracle iPayment supports the ISO 8583 Format
Authorization Network Processing Specification for Leased Line Merchants for online
transactions and the Magnetic Media and Data Communication Process Specifications
Version 2003.1 for batch file processing.

FDC North supports these payment instruments and operations for each payment instrument:

■ Credit Card

❍ Online Authorization

❍ Batch Deposit

❍ Batch Credit

❍ Batch Query

■ Purchase Card

❍ Online Authorization

❍ Batch Deposit

❍ Batch Credit

❍ Batch Query

Prerequisites
Using FDC North as a payment system has these prerequisites:

■ You must have a leased-line connection to FDC North payment servers.

■ You must have one or more valid FDC North merchant accounts with support for both
IP socket-based online authorization and FTP-based batch-mode settlement.

The Oracle iPayment FDC North servlet requires no database connectivity and can be
installed on a different application server than iPayment.

To install the Oracle iPayment FDC North servlet on a different application server:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/java to the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter" to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

Configuring the FDC North Servlet

Configuring FDC North H-3

3. Follow the configuration steps.

Servlet Configuration

Follow these mandatory configuration regardless of whether iPayment and the Oracle
iPayment FDC North servlet are present in the same machine.

To configure the Oracle iPayment FDC North servlet:

1. Add this alias statement to the configuration file of the servlet zone that you wish the
FDC North servlet to run in:

servlet.oramipp_fdn.code=oracle.apps.iby.bep.proc.fdcnorth.FDCNorthServlet

2. In the same configuration file, provide the servlet parameters.

For setting the zone-wide parameters, see Table G–1.

Configuring FDC North in the Oracle iPayment Administrative Interface

Payment System
FDC North is already seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

Payment System Merchant Identifier
After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the payee's account to the payment

In this parameter... Enter this...

Name FDCNorth

Suffix fdn

Payment System Type Processor

Base URL example- http://localhost:8080/servlets

Administration URL http://www.fdms.com

Supported Payment Instrument Purchase Card, Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

Configuring the FDC North Servlet

H-4 Oracle iPayment Implementation Guide

system, and let you specify the payee's account and connectivity parameters. For each payee
that will use FDC North enter a recognizable name for the FDC North payment system
identifier. If you upgraded iPayment and already have an existing payment system identifier,
you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

Table H–1 FDC North account parameters

Parameter Description

Merchant Type A code to define whether the merchant or supplier is an independent
contractor; has been certified as a small and/or disadvantaged
business entity. Refer First Data specifications for the different
codes to be set for this field. Required for Level 2 (MasterCard
only).

Merchant Account Twelve-digit account number assigned to the merchant outletby
FDC North.

Merchant Postal Code Five or nine-digit merchant US Zip code OR Canadian Postal code
in format ANA_NAN (Example A1B 2C3, with a space in the
fourth position).

Merchant ID Four-digit merchant identification code that is assigned to the
merchant by FDC North.

Merchant City City where the merchant outlet is located.

Merchant Country Code For US merchants, this parameter must contain the existing
two-letter state code with a blank in the third position. For Canadian
merchants, this parameter must contain the two-letter province code
with an asterisk in the third position. For all other foreign
merchants, this parameter must contain a three-letter country code.

Merchant DBA Name Merchant DBA (Doing Business As) name

Merchant Category Code Four-digit code that identifies the type of business conducted by the
merchant. This parameter, which is found on the Enriched Deposit
(E) record, must contain the Merchant Category Code (or SIC
Code) identified in the Authorization Request Message.

Terminal ID Four-character code that identifies a particular terminal at a
merchant location. This parameter is found on the Enriched Deposit
(E) record.

RPS Info Requested payment service value for the merchant. EC for
merchants using E-Commerce; DM for Direct Marketing.

Security Code Security code assigned by FDC North.

Configuring the FDC North Servlet

Configuring FDC North H-5

On the same page, enter the connectivity information that is required to communicate with
the payment system servers.

FDC North uses the same connectivity parameters for all payment instruments supported.

Merchant Customer Service
Number

Required for EC transactions. This parameter should contain the
customer service telephone number in the format 999-999-9999.

Merchant URL Merchant URL or e-mail address information for EC transactions.
First character cannot be a space. Merchant does not have to include
"www".

Merchant Tax ID Federal Tax ID number or Social Security Number for
unincorporated business. Required for Level 2 and MasterCard and
preferred for Visa.

Charge Description The Charge Descriptions that are agreed upon by the client and
American Express at the time the Electronic Submission Addendum
is completed.

Table H–2 FDC North online authorization connectivity parameters

Parameter Example Value Description

Socket IP Address 192.168.0.1 IP address of the FDC North host used for
online authorizations.

Socket Port Number 8000 Port number to use along with the socket IP
address.

Table H–3 FDC North settlement connectivity parameters

Parameter Example Value Description

FTP Server IP
Address

192.168.0.1 IP address of the FDC North host used for
batch transactions.

FTP Server Port
Number

8000 Port number to use along with the FTP
server IP address.

FTP Account
Username

test FTP username to login to the FDC North
batch transaction server.

FTP Account
Password

test FTP password to login to the FDC North
batch transaction server.

Table H–1 FDC North account parameters

Parameter Description

Configuring the FDC North Servlet

H-6 Oracle iPayment Implementation Guide

Configuring FDC North Servlet Load Balancing
The Oracle iPayment FDC North servlet does not support load balancing.

Enabling the Scheduler
FDC North is a processor-model payment system. All transactions except authorizations are
stored in the iPayment schema and sent to FDC North during a batch close operation. Unless

Local File Directory /tmp/batch Directory where batch files to FDC North
are temporarily stored.

Remote File
Directory

test/12345 Directory on the FDC North batch
transaction server where batch files should
be uploaded to.

Submission File
Generation Data
Group

KPTA00Q.DB.KPTD9999.O
UTPUT

Generation Data Group used for uploading
the Submission file to the Mainframe
Server. Provided by FDC North.

Table H–4 FDC North status inquiry connectivity parameters

Parameter Example Value Description

FTP Server IP
Address

192.168.0.1 IP address of the FDC North host used for
batch transactions.

FTP Server Port
Number

8000 Port number to use along with the FTP
server IP address.

FTP Account
Username

test FTP username to login to the FDC North
batch transaction server.

FTP Account
Password

test FTP password to login to the FDC North
batch transaction server.

Local File Directory /tmp/batch Directory where batch files to FDC North
are temporarily stored.

Remote File
Directory

test/data/12345 Directory on the FDC North batch
transaction server where batch response files
may be picked up from.

Acknowledgment
Generation Data
Group

Acknowledgment Generation
Data Group

AcknowledgmentGDG Generation Data
Group used for retrieving the
Acknowledgment file from the Mainframe
Server. Provided by FDC North.

Table H–3 FDC North settlement connectivity parameters

Parameter Example Value Description

Configuring the FDC North Servlet

Configuring FDC North H-7

you want to manually control the batch close process manually by implementing calls to the
iPayment batch close APIs, the iPayment scheduler program must be enabled with support
for these tasks:

■ BATCHCLOSE

■ BATCHQUERY

■ BATCHRETRY

Configuring the FDC North Servlet

H-8 Oracle iPayment Implementation Guide

Configuring Concord EFSnet I-1

I
Configuring Concord EFSnet

This appendix explains how to configure the Concord EFSnet payment system.

Implementing Concord EFSnet Servlet

I-2 Oracle iPayment Implementation Guide

Implementing Concord EFSnet Servlet

Concord EFS is one of the largest electronic payment service providers in the United States,
specializing in credit and debit transaction processing. EFSnet is Concord's Internet payment
processing platform. Concord EFSnet is a gateway type payment system, which offers
online authorization, settlement, refund and query supports. Oracle iPayment supports the
EFSnet Web Services format, Version 2.4.

Oracle iPayment's Concord EFSnet integration supports these payment instruments and the
online operations for each payment instrument:

■ Credit card

❍ Authorization (CreditCardAuthorize)

❍ Capture (CreditCardSettle)

❍ Auth-capture (CreditCardCharge)

❍ Voice authorization (CreditCardVoiceAuthorize)

❍ Refund (CreditCardRefund)

❍ Credit (CreditCardCredit)

❍ Void (VoidTransaction)

❍ Query (QueryTransactions)

■ PINless debit card

❍ Auth-capture (DebitCardChargePINless)

Prerequisites
Using Concord EFSnet as a payment system has these prerequisites:

■ You must be able to access Concord EFSnet’s payment servers using HTTP Protocol.

■ You must have one or more valid Concord EFSnet merchant accounts with support for
HTTP based online authorization and settlement.

The Oracle iPayment Concord EFSnet servlet requires no database connectivity and can be
installed on a different application server than iPayment.

To install the Oracle iPayment Concord EFSnet servlet on a different application
server:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

Implementing Concord EFSnet Servlet

Configuring Concord EFSnet I-3

2. Add $APPL_TOP/java to the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter" to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Servlet Configuration
Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Concord EFSnet servlet are present in the same machine.

To configure the Oracle iPayment Concord EFSnet servlet:

1. Add this alias statement to the configuration file of the servlet zone that you wish the
Oracle iPayment Concord EFSnet servlet to run in:

servlet.oramipp_efs.code=oracle.apps.iby.bep.concord.ConcordBEPServlet

2. In the same configuration file, provide these servlet parameters.

For setting the zone-wide parameters, see Table G–1.

Configuring Concord EFSnet in the Oracle iPayment administrative interface

Payment System
Concord EFSnet is already seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

In this parameter... Enter this...

Name Concord EFSnet

Suffix efs

Payment System Type Gateway

Base URL example- http://localhost:8080/servlets

Administration URL http://www.concordefsnet.com

Supported Payment Instrument Credit Card, PINless debit Card, Purchase Card,
Electronic Funds Transfer

Implementing Concord EFSnet Servlet

I-4 Oracle iPayment Implementation Guide

Payment System Merchant Identifier
After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the payee's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
that will use Concord EFSnet enter a recognizable name for the Concord EFSnet payment
system identifier. If you upgraded iPayment and already have an existing payment system
identifier, you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

On the same page, enter the connectivity information required to communicate with the
payment system servers.

Concord EFSnet uses the same connectivity parameters for all payment instrument types.

Note: Do not change the suffix parameter for seeded payment systems.

Table I–1 Concord EFSNet account parameters

Parameter Description

Store ID EFSnet store name.

Store key EFSnet store password.

Application ID Originating application identifier and version number.

Table I–2 Concord EFSNet connectivity parameters

Parameter Example Value Description

Destination URL https://testefsnet.concordebiz.
com/efsnet.dll

The URL where the transaction request
should be posted.

User proxy http://www-proxy.us.oracle.
com

The proxy used, if any, to connect to the
above URL.

Wallet Location /opt/oracle/wallet Absolute location of the wallet.

Wallet Location welcome Password to open the wallet.

Implementing Concord EFSnet Servlet

Configuring Concord EFSnet I-5

Configuring Concord EFSnet Servlet Load Balancing
If you want to load balance the Oracle iPayment Concord servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parameters in this XML file for each instance of the servlet:

<xml_base>/data/TransConfig.xml, where xml_base is a system setup parameter.

The structure of the XML file is as follows:

<TransmissionOption>
<Scheme>HTTP_POST</Scheme>
<Parameter>

<Name>HTTP_URL</Name>
<Value>10.140.10.150</Value>

</Parameter>
</TransmissionOption>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

These tables list the connectivity parameters that you can set at the servlet level.

Table I–3 Concord EFSnet servlet connectivity parameters

Parameter Example Value Description

Scheme HTTP_POST The transmission protocol for the payment
instrument. Values for Concord EFSnet
are:HTTP_POST

Table I–4 Concord EFSnet servlet connectivity parameters - parameters for the
HTTP_POST scheme

Parameter Example Value Description

HTTP_URL https://testefsnet.concordebiz.
com/efsnet.dll

The URL where the transaction request
should be posted.

PROXY http://www-proxy.us.oracle.
com

The proxy used, if any, to connect to the
above URL.

WALLET_LOC /opt/oracle/wallet Absolute location of the wallet.

WALLET_PASSWD welcome Password to open the wallet.

Implementing Concord EFSnet Servlet

I-6 Oracle iPayment Implementation Guide

Enabling the Scheduler
Concord EFSnet is a gateway-model payment system. Transactions are submitted to the
payment system in real time and you do not need to configure the scheduler.

Configuring Citibank J-1

J
Configuring Citibank

This appendix explains how to configure the Citibank card for transaction processing.

Configuring the Citibank Card Servlet

J-2 Oracle iPayment Implementation Guide

Configuring the Citibank Card Servlet

Citibank is a processor-model payment system which supports two types of transmissions:
Online real-time transactions and Batch file processing. Online real-time transactions are
used for online real-time authorization request. Batch file processing supports batched credit
card authorizations and settlement processing. Oracle iPayment supports the ISO 8583
format for online transactions and the EPF#1 specification for batch file processing.

Oracle iPayment's Citibank integration supports these payment instruments and the
operations for each payment instrument:

■ Credit Card

❍ Online Authorization

❍ Online Authorization and Deposit

❍ Batch Authorization

❍ Batch Authorization and Deposit

❍ Batch Deposit

❍ Batch Credit

❍ Batch Query (does not require communication with Citibank, as Citibank
automatically uploads acknowledgment responses for batch files)

■ Purchase Card

The support for purchase card is similar to credit cards, without any level II or III
information. Citibank treats purchase card transactions similar to credit card
transactions.

Prerequisites
Using Citibank as a payment system has these prerequisites:

■ Establish a connection to Citibank payment servers.

■ Establish one or more valid Citibank merchant IDs with support for both IP
socket-based online authorization and FTP-based batch-mode settlement.

■ Configure an FTP server in the machine where you want to set up the Oracle iPayment
Citibank servlet. You must communicate the IP address of this FTP server along with
the user name and password to Citibank. Citibank will upload the acknowledgment files
to the specified directory in this FTP server.

Configuring the Citibank Card Servlet

Configuring Citibank J-3

The Oracle iPayment Citibank servlet requires no database connectivity and can be installed
on a different application server than iPayment.

To install the Oracle iPayment Citibank servlet on a different application server:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/java to the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter" to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Servlet Configuration
Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Citibank servlet are present in the same machine.

To configure the Oracle iPayment Citibank servlet:

1. Add this alias statement to the configuration file of the servlet zone that you wish the
Citibank servlet to run in:

servlet.oramipp_cit.code=oracle.apps.iby.bep.proc.citibank.CitiServlet

2. In the same configuration file, provide the servlet parameters.

For setting the zone-wide parameters, see Table G–1.

This table lists parameters particular to the Citibank servlet (set via a statement of the
form servlet.oramipp_cit.initArgs=).

Note: Ensure that you have write permissions on the directory where
Citibank uploads the files.

Table J–1 Citibank-specific servlet parameters

Parameter Example Value Description

FILELESS_FTP_ENABLED Y/N If this parameter is set to Y, the servlet creates a
batch file in memory only and uses FTP to send
the batch file to the payment system. If this
parameter is set to N, the servlet first stores the
batch file in local batch directory and then sends
the file. We recommend that you set this
parameter to Y for enhanced security of your
payment information.

Configuring the Citibank Card Servlet

J-4 Oracle iPayment Implementation Guide

Configuring Citibank in the Oracle iPayment Administrative Interface

Payment System
Citibank is seeded in iPayment and you need not create a new payment system. Log in to the
iPayment administrative user interface as the administrative user to review and modify these
parameters:

Payment System Merchant Identifier
After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the payee's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
using Citibank, enter a recognizable name for the Citibank payment system identifier. If you
upgraded iPayment and already have an existing payment system identifier, you should not
change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

In this parameter... Enter this...

Name Citibank

Suffix cit

Payment System Type Processor

Base URL example- http://hostname:8080/servlets

Administration URL http://www.citicorp.com

Supported Payment Instrument Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

Table J–2 Citibank account parameters

Parameter Description

Merchant ID Assigned by Citibank Merchant Services (Citi MS) to identify each
merchant. This parameter provides the correct merchant
information for authorization based upon account type.

Configuring the Citibank Card Servlet

Configuring Citibank J-5

In the same page, enter the appropriate connectivity information to communicate with the
payment system servers.

Citibank uses the same connectivity parameters for all supported payment instrument types.

Acquiring ID The Acquiring Institution ID Code identifies Citi MS to the
Interchange.

Presenter ID Four-letter ID assigned and provided to merchants by Citi MS to
identify each presenter that services are provided to.

Merchant Country Code Two-letter Merchant Country Code as specified in ISO 3166.

Merchant Postal Code Postal code of the merchant originating the transaction. This code
should be either five or nine digits in length.

Merchant DBA Name DBA (Doing Business As) Information contains the name of the
merchant that defines the point of service in both local and
interchange environments.

Merchant DBA City City where the merchant outlet is located. For an EC transaction,
this parameter should contain the customer service telephone
number in the format 999-999-9999.

Merchant DBA State For US merchants, this parameter must contain the existing
two-letter state code. A blank must be placed in the third position.

Card Acceptor Terminal ID The terminal ID at the merchant location.

Terminal Time Offset Terminal time offset in minutes. The first position must be either '+'
or '-'. Example: '+000'

Network Destination Contains four-letter Citibank Merchant Services network
destination for the transaction.

XCF Password Assigned by Citi MS during Merchant setup.

XCF Request Code Assigned by Citi MS during Merchant setup.

Table J–3 Citibank online connectivity parameters

Parameter Example Value Description

Socket IP Address 150.110.233.112 IP address of the Citibank host used for online
transactions.

Socket Port Number 4141 Port number used with the socket IP address.

Table J–2 Citibank account parameters

Parameter Description

Configuring the Citibank Card Servlet

J-6 Oracle iPayment Implementation Guide

Configuring Citibank Servlet Load Balancing
If you want to load balance the Oracle iPayment Citibank servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parameters in this XML file for each instance of the servlet:

<xml_base>/data/TransConfig.xml, where xml_base is a system setup parameter.
The structure of the XML file is as follows:
<TransmissionOption>

<Scheme>CITI_ONLINE_3_0_SOCKET</Scheme>
<Parameter>

<Name>SOCKET_IP</Name>
<Value>10.140.10.150</Value>

Table J–4 Citibank batch connectivity parameters

Parameter Example Value Description

FTP Server IP Address 163.39.230.33 IP address of the Citibank host that is used for
batch transactions.

FTP Server Port Number 21 Port number used with the FTP IP address.

FTP Account Username Oracle1 FTP username to log into Citibank batch
transaction server.

FTP Account Password welcome FTP password to log into Citibank batch
transaction server.

Local File Directory /tmp/batch Directory where batch files are temporarily stored
in the user's system.

Data Class Size SMALL The size of the file transmitted to Citibank's FTP
server (for batch).

Citi Receiving Filename SIAX00Q.GB.SI
AX1011.A01OR
CL(+1)

The name of the file transmitted to Citibank's
FTP server (for batch).

Table J–5 Citibank status inquiry parameters

Parameter Example Value Description

Local File Directory /tmp/query Directory in the user's system where
acknowledgment files are temporarily stored.

Account Merchant Name Oracle Merchant name, assigned by Citibank.

Configuring the Citibank Card Servlet

Configuring Citibank J-7

</Parameter>
<Parameter>

<Name>SOCKET_PORT</Name>
<Value>80</Value>

</Parameter>
</TransmissionOption>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

These tables list the connectivity parameters that you can set at the servlet level.

Table J–6 Citibank servlet connectivity parameters

Parameter Example Value Description

Scheme CITI_ONLINE_
3_0_SOCKET

The transmission protocol for the payment
instrument. Values for Citibank are:CITI_
ONLINE_3_0_SOCKETCITI_BATCH_3_0_
PUTCITI_BATCH_3_0_ACK_GET

Table J–7 Citibank servlet connectivity parameters - parameters for the CITI_
ONLINE_3_0_SOCKET scheme

Parameter Example Value Description

SOCKET_IP 150.110.233.112 IP address of the Citibank host used for online
transactions.

SOCKET_PORT 4141 Port number to use along with the socket IP
address.

Table J–8 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3_0_PUT scheme

Parameter Example Value Description

HOST_IP 163.39.230.33 IP address of Citibank host used for batch
transactions.

HOST_PORT 21 Port number to use along with the host IP address.

USERNAME Oracle1 FTP username to login to Citibank batch
transaction server.

PASSWORD welcome FTP password to login to Citibank batch
transaction server.

Configuring the Citibank Card Servlet

J-8 Oracle iPayment Implementation Guide

Enabling the Scheduler
Because Citibank is a processor-model payment system, all transactions except
authorizations are stored in the iPayment schema and sent to Citibank only during a batch
close operation. Unless you want to manually control the batch close process by
implementing calls to the iPayment batch close APIs, the iPayment scheduler program must
be enabled with support for these tasks:

■ BATCHCLOSE

■ BATCHQUERY

■ BATCHRETRY

LOCAL_DIR /tmp/batch Directory in a user's system where batch files are
temporarily stored.

DATA_CLASS_SIZE SMALL The size of the file transmitted to Citibank's FTP
server (for batch).

FILE_NAME SIAX00Q.GB.SI
AX1011.A01OR
CL(+1)

The name of the file transmitted to Citibank's
FTP server (for batch).

Table J–9 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3_0_ACK_GET scheme

Parameter Example Value Description

LOCAL_DIR /tmp/query Directory in a user's system where
acknowledgment files are temporarily stored.

MERCHANT_NAME Oracle Merchant name, assigned by Citibank.

Table J–8 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3_0_PUT scheme

Parameter Example Value Description

Profile Options K-1

K
Profile Options

This appendix lists the profile options that affect the operation of iPayment. This appendix
includes a brief description of each profile option that you or your system administrator can
set at the site, application, responsibility, or user levels.

Profile Options

K-2 Oracle iPayment Implementation Guide

Profile Options

During implementation, your system administrator sets a value for each user profile option
to specify how Oracle Applications controls access to and processes data.

Profile Options Summary
This table indicates whether you can view or update profile options and at which System
Administrator levels the profile options can be updated: at the user, responsibility,
application, or site levels.

A Required profile option requires you to provide a value. An Optional profile option
already provides a default value which you can change.

The key for this table is:

■ Update - You can update the profile option

■ View Only - You can view the profile option but cannot change it

■ No Access - You cannot view or change the profile option value

See also: Overview of Setting User Profiles, Oracle Applications
System Administrator’s Guide

Profile Option Value Default
User
Access

System
Admin

Access:
User

System Admin
Access:
Responsibility

System
Admin
Access:
Application

System
Admin
Access:
Site

IBY: ECAPP URL Required No Default No
Access

No
Access

No Access No Access Update

IBY: HTTP Proxy Optional No Default No
Access

No
Access

No Access No Access Update

IBY: No Proxy
Domain

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: XML Base Required No Default No
Access

No
Access

No Access No Access Update

IBY: JAVA XML
Log File

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: XML Temp
Directory

Optional No Default No
Access

No
Access

No Access No Access Update

Profile Options

Profile Options K-3

IBY: Outbound
Payment Payer ID

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: Outbound
Payment System
Suffix

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: Default Payee
for BR Remittance

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: UI Visibility
Class

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: Wallet
Location

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: Wallet
Password

Optional No Default No
Access

No
Access

No Access No Access Update

IBY: Registered
Instrument
Encryption

Optional No No
Access

No
Access

No Access No Access Update

IBY: Daily Business
Close Rporting
Currency

Required USD Update Update Updated Update Update

Profile Option Value Default
User
Access

System
Admin

Access:
User

System Admin
Access:
Responsibility

System
Admin
Access:
Application

System
Admin
Access:
Site

iPayment Profile Options

K-4 Oracle iPayment Implementation Guide

iPayment Profile Options

You can use the System Administrator responsibility to set the iPayment profile options.

IBY: ECAPP URL
This property contains the following URL:

http://machine:port/<jsp>/ecapp?

Replace the machine and port with the names of the actual machine and the actual port
where the iPayment ECServlet is installed. Also, make sure that "?" is present at the end of
the URL or append "?" at the end.

This information is mandatory if your EC applications use iPayment PL/SQL APIs or if
your application is an Oracle 3i client.

IBY: HTTP Proxy
This property specifies the proxy-URL. For example, http://www-proxy.us.oracle.com.

To set up this property with an empty value, insert a string starting with <. For example,
<none>.

IBY: No Proxy Domain
This property specifies the domain name for which no proxy is needed. For example,
us.oracle.com.

To set up this property with an empty value, insert a string starting with <. For example,
<none>.

IBY: XML Base
This property specifies the location of files required by iPayment's XML framework, such as
iPayment DTD files. This property should give the location of the $IBY_TOP/xml directory,
where $IBY_TOP is expanded to its fully qualified path name. For example, /usr/appl_
top/iby/11.5.0/xml

IBY: JAVA XML Log File
This optional property gives the full-qualified pathname of the debug file where XML
messages should be written. This file is similar in purpose to the iPayment debug file, but
has been separated from it since XML messages are much larger than single debug
statements. If no value is specified for this property, then XML logging is disabled.

iPayment Profile Options

Profile Options K-5

IBY: XML Temp Directory
Temporary XML work directory, which must be writable by iPayment's application server.
This parameter is optional, but will reduce iPayment's memory usage if provided.

IBY: Outbound Payment Payer ID
Select from the list of values displayed, the payee in iPayment issuing the payment order to
the bank. You can set this only at the site level. You need to define this to send transactions
from Oracle Payables to iPayment.

IBY: Outbound Payment System Suffix
Enter the three-letter suffix of the payment system that will handle your outbound payment
instructions.

IBY: Default Payee for BR Remittance
Select from the list of values displayed, the payee in iPayment remitting the Bills
Receivable. You can set this only at the site level. You need to define this to send BR
remittance batch from Oracle Receivables to iPayment.

IBY: UI Visibility Class
You can define the visibility class profile option at different levels. This value will
determine what data a user can see in the iPayment Operation UI and what mask is applied
to the data before displaying it.

IBY: Wallet Location
Location of the Oracle Wallet.

IBY: Wallet Password
Password to open the Oracle Wallet.

IBY: Registered Instrument Encryption
Determines whether registered payment instruments must be stored in encrypted format; if
set to 'Yes', the system security key must have been provided to the iPayment engine in
order to register/modify payment instruments; use encrypted registered payment instruments
as part of a transaction. The default value is ’No’.

iPayment Profile Options

K-6 Oracle iPayment Implementation Guide

Index-1

Index
A
Account Options, 4-18

seeding, 4-18
ACK, 4-65
acknowledgment parser, 4-63

developing, 4-64
seeding, 4-63

B
BankAccountBatchACK, 4-69
BankAccountTrxnACK, 4-67
BatchACK, 4-68

C
Common Elements, 4-51

address, 4-52
bank account, 4-53
contact information, 4-52
credit card, 4-55
debit card, 4-56
document line, 4-58
generic, 4-51
party, 4-56

Configuring
Citibank Card Servlet, J-2
Concord EFSnet servlet, I-2
CyberCash servlet, F-2
FDC North servlet, H-2
Paymentech servlet, G-2
sample servlet, 2-16

CreditCardBatchACK, 4-69

CreditCardTrxnACK, 4-67
CyberCash

overview, 2-16, 2-18, F-2
parameters, F-2

D
Developing a Validation Set, 4-30

Batch Validation Sets, 4-30
Document Level Elements, 4-48

Layout, 4-48
Document Line Level Elements, 4-49

Layout, 4-49

E
Error handling, B-2
Extensibility, E-2
Extract Components, 4-38
Extract Formatter, 4-36
Extract Generator, 4-35
Extract Structure, 4-37

F
Field-installable cartridges, 2-10
Format Validation, 4-29
Formats, 4-27

developing template, 4-27
seeding template, 4-27

Funds Capture Extract, 4-39
Funds Capture Instruction Elements, 4-40

Layout, 4-40

Index-2

I
inbound batch payment operations response

record/tables, C-106
inbound payment operations related records, C-80
inbound payment operations response

record/tables, C-96
instrument registration related records, C-109
Integration Point Component Types, 4-5
iPayment PL/SQL API, C-5

instrument registration, C-53
OraInstrAdd, C-53
OraInstrDel, C-62
OraInstrInq, C-64
OraInstrmMod, C-57

payment processing, C-7
OraPmtCanc, C-24
OraPmtCloseBatch, C-39
OraPmtCredit, C-32
OraPmtInq, C-45
OraPmtMod, C-17
OraPmtQryTrxn, C-37
OraPmtQueryBatch, C-42
OraPmtReq, C-7
OraPmtReturn, C-28
OraRiskEval, C-48

L
Languages and character sets

and NLS, 1-11

N
NLS, 1-11

O
OapfNlsLang, 1-11
Oracle Payment System Partner, 2-10
Order Level Elements, 4-42

Data Sources, 4-42
Layout, 4-43

outbound bank payment batch related records, C-88

P
Payee Account Level Elements, 4-41

Layout, 4-41
Payment Profile

bank account, 4-25
credit card, 4-21
debit card, 4-23

Payment System
Attributes, 4-16
definition, 4-16

Payment system cartridges, 2-10
Payment System Integration

developing, 4-6
developing for bank accounts, 4-12
developing for credit cards, 4-7
developing for debit cards, 4-10

Payment System Integration Model, 4-2
PaymentService APIs, 4-3
Prerequisites

what to do before you code, 1-2
Profile options

setting, K-2

Q
Questions to answer before you code, 1-2

R
risk management records, C-95
Routing Engine, 4-4

S
Seeding a Validation Set, 4-33
Seeding Data, 4-15

Language-specific data, 4-15
WHO columns, 4-15

System Payment Profile, 4-20

T
transmission function, 4-59

developing, 4-59
transmission protocol

Index-3

seeding, 4-60
TrxnACK, 4-66

Index-4

	Send Us Your Comments
	Preface
	Audience for this Guide
	How To Use This Guide
	Documentation Accessibility

	Other Information Sources
	Online Documentation
	Related Documentation
	Guides Related to All Products
	Guides Related to This Product

	Installation and System Administration
	Other Implementation Documentation
	Training and Support
	Do Not Use Database Tools to Modify Oracle Applications Data
	About Oracle
	Your Feedback

	1 Overview
	Planning Your Implementation
	Which Payment System Should You Use?
	Is Your Merchant Terminal Based or Host Based?
	What Electronic Commerce Applications Are You Using?
	Which APIs Should Electronic Commerce Applications Handle?
	Payment Instrument Registration APIs
	Payment Processing APIs
	Risk Management APIs

	Which Bank Account Transfer Operations Should You Implement?
	Which Credit Card and Purchase Card Operations to Implement?
	Which Risk Factors Should You Implement?
	Does Your Application Need to Present Information in Different Languages?

	Installing Oracle iPayment

	2 Configuring iPayment
	Overview of Oracle iPayment Implementation Steps
	Creating an Oracle iPayment User
	Assigning Roles and Responsibilities to an iPayment User

	Overview of iPayment Servlets
	Implementing Field Installable Servlets
	Configuring Oracle iPayment Servlets
	Configuring the ECApp Servlet
	Setting Up SSL Security for the ECApp Servlet
	Configuring iPayment Sample Servlet
	Configuring iPayment Loopback Servlet
	Setting Up SSL Security for Payment System Servlet Communication
	Enabling the Scheduler
	Registering Electronic Commerce Applications
	Loading Risky Instruments
	Enabling the XML Framework
	Setting up Entities in the Oracle iPayment User Interface

	3 Using iPayment with External Front End Applications
	Overview of Oracle iPayment APIs
	Implementing Electronic Commerce Applications APIs
	Payment Instrument Registration APIs
	Payment Processing APIs
	Risk Management APIs
	Credit Card Validation APIs
	Status Update API
	Java APIs for Electronic Commerce Application
	Using Payment Service API

	PL/SQL APIs for Electronic Commerce Applications

	Security Considerations

	4 Using iPayment with External Payment Systems
	Overview of Payment System Integration Model
	PaymentService APIs
	Routing Engine
	Integration Point Component Types
	Developing a Custom Payment System Integration
	Developing a Custom Payment System Integration for Credit Cards
	Developing a Custom Payment System Integration for Debit Cards
	Developing a Custom Payment System Integration for Bank Account Cards
	Seeding Data

	Defining a Payment System
	Account Options

	System Payment Profile
	Credit Card System Payment Profile
	Debit Card System Payment Profile
	Bank Account Payment Profiles

	Formats
	Format Validation
	Developing a Validation Set
	Seeding a Validation Set

	Extract Generator
	Extract Formatter
	Extract Structure
	Extract Components
	Funds Capture Extract
	Common Elements

	Transmission Functions
	Acknowledgment Parser

	A Risk Management
	Utilizing Risk Management
	Risk Factors and Risk Formulas

	Risk Management Test Scenarios
	Merchant Selling Books and Low Priced Goods
	Merchant Selling Electronic Goods
	Business to Business Customer

	B Error Handling
	Error Handling During Payment Processing
	Common Errors
	Errors Due to Invalid or Duplicate Data
	Communication Errors
	Configuration Errors

	C iPayment PL/SQL APIs
	Electronic Commerce PL/SQL APIs
	Architectural Overview
	PL/SQL APIs Procedure Definitions
	Payment Processing APIs
	Payment Instrument Registration APIs

	PL/SQL Record/Table Types Definitions
	Payments Related Generic Record Types
	Inbound Payment Operations Related Record Types
	Outbound Bank Payment Batch Related Record Types
	Risk Management Record Types
	Inbound Payment Operations Response Record/Table Types
	Inbound Batch Payment Operations Response Record/Table Types
	Instrument Registration Related Record Types

	Sample PL/SQL Code

	D Back-End APIs for Gateways
	Gateway Model Payment System Integration Model Overview
	Payment System Servlet Development Prerequisites

	Payment System Servlet Operations
	Authorization API
	Purchase Card Authorization API
	Voice Authorization API
	Authorization API Output Name-Value Pairs
	Capture API
	Void API
	Return/Credit API
	Close Batch API
	Query Transaction Status API
	Query Batch Status API
	Transaction Status and Messages
	OapfStatus
	OapfErrLocation
	OapfVendErrCode
	OapfVendErrmsg
	OapfBatchState
	OapfOrderId

	Transaction Types and Transaction States
	OapfTrxnType: SSL Transactions and Commerce Applications

	E Extensibility
	Overview
	Implementation
	Sample Implementation

	F Configuring CyberCash Servlet
	Configuring CyberCash Servlet

	G Configuring Paymentech
	Configuring the Paymentech Servlet

	H Configuring FDC North
	Configuring the FDC North Servlet

	I Configuring Concord EFSnet
	Implementing Concord EFSnet Servlet

	J Configuring Citibank
	Configuring the Citibank Card Servlet

	K Profile Options
	Profile Options
	Profile Options Summary

	iPayment Profile Options

	Index

