ORACLE

Oracle® iPayment
Implementation Guide

Release 11/
Part No. A95478-05

May 2005

Oracle iPayment Implementation Guide, Release 11i
Part No. A95478-05
Copyright © 2001, 2005, Oracle. All rights reserved.

Contributors: Ramasubramanian Balasundaram, Jonathan Leybovich, Rajiv Menon, Elizabeth Newell,
Aalok Shah

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web
sites. You bear all risks associated with the use of such content. If you choose to purchase any products
or services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Contents

SENA US YOUT COMMENTS ...ttt ee s ee e et et et eeeee s eeeee s es et et eeeeesesseseeenessesseee et seeneees iX
=] =01 =3P P TP Xi

1 Overview

Planning Your ImMplementationccociioiiiiis ettt es e st aen e ere s e neanes 1-2
Which Payment System Should YOU USE?occ ettt st et aen e s e e 1-3
IsYour Merchant Terminal Based or HOSt BaSEA?...........ooveeiririne e 1-5
What Electronic Commerce ApplicationS Are Y OU USING?......cccovvivvieiienien e sieseestienie e enese s 1-6
Which APIs Should Electronic Commerce Applications Handl€?ccccovvevivevviee e, 1-7
Which Bank Account Transfer Operations Should Y ou Implement?..........cccceveveviee e eene e, 1-8
Which Credit Card and Purchase Card Operations to Implement?...........ccccco e vevesieeseeveneenen 1-9
Which Risk Factors Should Y ou IMPIEMENE?.........occviiiiceire sttt 1-10
Does Your Application Need to Present Information in Different Languages?cccceevveuenen. 1-11

INstalling Oracle iPAYMENLccoioiiiiie ettt e sbeer e seeentenresneannas 1-13

2 Configuring iPayment

Overview of Oracle iPayment Implementation SLEPScccvevviiiriiiive vt et 2-2
Creating an OracleiPayMeEnt USEEcccce e iiieie et st st st aes e sr s e sneanse e aneas 2-4

Assigning Roles and Responsibilitiesto an iPayment USErcccocvveiveven e sieste s 2-7
OVerView Of IPayMENT SENVIELS.c.uii ettt et e e sa e e sre s seeer s 2-8
Implementing Field Installable SErVIELS ..o e e 2-10
Configuring OracleiPayment SErVIELS ... st 2-11
Configuring the ECAPP SEIVIELottt st et es e st es e e e e e e e 2-14

Setting Up SSL Security for the ECAPD SENVIEL.......c.vii et et 2-15

Configuring iPayment Sample SErVIEL ... e er e e e 2-16
Configuring iPayment L oopback SErVIEL ..ot 2-18
Setting Up SSL Security for Payment System Servlet Communicationcccceveeveieecireceeiene, 2-22
ENabling the SCREAUIETocuoieeeeeee e et st aen e ere e ereense s 2-25
Registering Electronic Commerce APPliCatioNScecieiecieei st 2-26
L 0ading RiSKY INSEFUMENTS.....cuiiii ittt et e e e se e st stesraen e sreenteeneennenns 2-28
Enabling the XML FrameWOrIKccciiiiiiiiiiiiis et ettt st sraen e sreenteene e nns 2-29
Setting up Entitiesin the OracleiPayment User Interface........ccocvvvvveve v 2-30

Using iPayment with External Front End Applications

Overview of Oracle iPaymMeENt APIScoocioecee ettt st st e se e e e e e 3-2
Implementing Electronic Commerce ApplicatioNS APIS ..o ieiiceire e 3-3
Payment Instrument REQISLIation APIScie it st s sr s e er e aeeneeneas 3-5
PaymMent ProCESSING APLS........cie ettt st st et sate e e e e et e e se et e seesraen e snaenteeneannas 3-6
RiSK MaNaQEMENE APIS........ccicie ettt ettt e re e s re e et e sa et see st aen e eraenteeneennas 3-9
Credit Card Validation APIS.........ociiiii ettt e et en bbb e s 3-10
10 SR U o0 = = 3-13
Java APIs for Electronic Commerce APPliCatioN.........ccovevieieriesiieie e e e 3-16
PL/SQL APIsfor Electronic Commerce APPliCaliONS..........ccuveveieeieeiiie s se s s seesiaeseeesee e e 3-23
= o O] Y OTe 1= T o = = 1T) TS 3-27

Using iPayment with External Payment Systems

Overview of Payment System Integration MOAeccoooviciiiiin s 4-2
L Y= 18 = Yoo N I 4-3
[01U 1 T T =X o 1 1SS 4-4
Integration POiNt COMPONENT TYPES......iiiiie e et e e e ete e e e e s st sraeste s aes e enaenseeneannes 4-5
Developing a Custom Payment System [Ntegrationcccccceveiveieniesinie s 4-6
Developing a Custom Payment System Integration for Credit Cards..........ccovovevieviecneivceceenne, 4-7
Developing a Custom Payment System Integration for Debit Cards.........cocooevvevvevevievnninninns 4-10
Developing a Custom Payment System Integration for Bank Account Cards...........ccccevvvienienns 4-12
S (1o [D = U 4-15
DefiNiNg @ PaymMent SYSLEIMcociiiici ettt e se e st e st s te st aen e eneanteeneannenns 4-16
oot o 18 | A o) 4 o] 4-18
System PaymMent Profil........oi ettt sa et nraenre e 4-20

Credit Card System Payment Profil...........occeiice ettt e 4-21

Debit Card System Payment Profil€.........coociveiie it 4-23
Bank Account Payment Profil€S........coiiiiiioi ettt st st st en e e 4-25
[0 0. F= L OO PRP 4-27
FOrmMat ValidatioNccceie ettt st st st s teeren e eaeeneeene e se s e e sae s seeste e saesrensaenes 4-29
Developing @ Validation Set........ccccvieiieiie i ettt sr e st en e anns 4-30
Seeding @V alidation SEL.........ccoiciiiie e e e et en e ans 4-33
= To T = T = o T OSSR 4-35
= Lo o P PRSP 4-36
= Lo A U (oAU | PRSP ROI 4-37
oA = Lo A OF0 g T o To T o ST PSPPI 4-38
FUNAS Capture EXIFACEc.ve ettt et e e s e e s e e s b e ste st e sbeenaeneeeneannas 4-39
COMIMON EIEMENESeeuie ettt sttt et ea e e te e e e e e et e st e sa e s neesee et aestesraesteeneenseeneannes 4-51
= 1S RSSO 4-59
ACKNOWIEAGMENT P SEXovi ettt sttt e e e ae e e ne e st sr et e sae st aesteententeeneennas 4-63

A Risk Management

UtiliZING RISK M @NAQEMENTocuieie ettt ettt et e e e e se e st sae st e s e st aen e nneensenneanes A-2
Risk Management TESE SCENAITOS......cccvirviiiireeiiesesteesestaese e este s e e e e see s e e sressaesrees e staes e ereansesseanes A-4

B Error Handling

Error Handling During Payment PrOCESSINGcccvurieriieieeeeieeeee e eseessesseesseestens e ssaessesneensessssnes B-2

C iPayment PL/SQL APIs

Electronic Commerce PLISQL APIS...... ettt st sb e e b s ere e snbe C-2
AT CHITECIUN Al OVEIVIBIW ...ttt ettt e st b et e be bbb e et e et en b C-3
PL/SQL APISProcedure DEfINITIONScceeiiiiie ittt st ettt se e sbe s sae e s er e asraesae e e s C-5
Payment ProCESSING APIS... ..ottt st et e st es e e este e e e e st e sa e s e saentaeseenneenes C-7
Payment Instrument REQISLFation APISccoieiie e ce ettt ste s e ere s C-53
PL/SQL Record/Table Types DefiNitiONSccocvioiveiie ettt eenae e C-72
Payments Related Generic RECOII TYPEScocvivieiiiriie ettt ese et sraenaeeneeneas C-73
Inbound Payment Operations Related RECOIrd TYPES.......ccvvvieeireiieiiertiesieeriesieeseeesvesseneesnee e C-80
Outbound Bank Payment Batch Related RECOrd TYPES......cccvvvviveiriiis s sente et C-88
Risk Management RECOI TYPES......ccuiiieririeiieeiesstesteestesraeste s aestesseessesnessseeseessessaessanstesssessesseanses C-95

vi

Inbound Payment Operations Response Record/Table TYPES.........cvveieeieeieereeieeniesseeseesseesien s C-96

Inbound Batch Payment Operations Response Record/Table TYPES.......cccccveeveveveieceeieeeeenne, C-106
Instrument Registration Related RECOI TYPES......coveivieieviireie et e e s srees e C-109
SAMPIE PL/SQL COUC......ei ettt et et et st e sa et stesraesbeeraenteeneanseennennas C-113

Back-End APIs for Gateways

Gateway Model Payment System Integration M odel OVErVIeW.cceevevecie e e D-2
Payment System Servliet OPeratioNS.......cccecciiceiieiei sttt sre e e sreerae s D-3
AULNOTTZAEION AP ...ttt b et st st eb e et b e eb et ae b sb e et b e e et D-4
Purchase Card AUthOriZation AP ...t e e D-6
V0ICE AULNOMTZALION AP ..ottt ettt b bbb bbb es e e s b s D-7
Authorization APl OQutput Name-ValUE PairScccccievieiecieie ettt st sraen e sn e e D-8
LOF=T o] (0[N] PSSP D-9
RV o Lo BN OO O TP U TR TSTOTRRN D-12
RELUIN/CIEAIT AP ..ttt et e b bbb e b et es e st eneer e D-15
ClOSE BALCN AP ...ttt bbb et h bt he bbb bt e en e et enpen e D-18
Query Transaction SLALUS APoo ittt s st s e erees e e aae e e see s e e sren e D-22
QUENY BatCh STALUS AP ...ttt et ettt st st st een e ereen e eneanaesneennesnesrenneeas D-25
Transaction SatUS anNd M ESSAGEScccvireireierresterteesteesteste e tesease s seeseesresstessaesrees e steessanseensensesnees D-26
(@0 B = {1 TSP D-27
(@ o) i =5 oo 1 o o [TSP D-28
(@0 V=0T | (o [TSP D-29
L@ o V=0T | 1S SO S D-30
OAPFBAICNSLALE. ... c.veceiee e ettt e se e bt e st en e ere s e en e nneenes D-31
L@ o) (@ o =/ o TSP D-32
Transaction Typesand TranSaction SLAtEScccveveeiiieie st sttt es e e ne e D-33
OapfTrxnType: SSL Transactions and Commerce ApPliCatioNS.......c.ccovevverceerierreeses e see e D-35
Extensibility
OVEI VB ...ttt ettt e e b e e ettt eh et bt eh s e bt Sh £8 £ 1Eeaeb £ 1Eeat ek eb £t beeh e b e e be e nb seen b en e ne e ene E-2
g o1 =g T a1 = o o S P E-3
SaMPIe IMPIEMENEALTIONceiiieieee e e e s r s s teeraen e enaenreeneannes E-6

F Configuring CyberCash Servlet
Configuring Cyber Cash Servlet

G Configuring Paymentech
Configuring the Paymentech Servlet

H Configuring FDC North
Configuring the FDC North Servlet

| Configuring Concord EFSnet
Implementing Concord EFSnet Servlet

J Configuring Citibank
Configuring the Citibank Card Servlet

K Profile Options

Profile Options
iPayment Profile Options

Index

vii

viii

Send Us Your Comments

Oracle iPayment Implementation Guide, Release 11/
Part No. A95478-05

Oracle welcomes your comments and suggestions on the quality and usefulness of this document. Your input is
an important part of the information used for revision.

Did you find any errors?

Isthe information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document title and
part number, and the chapter, section, and page number (if available). You can send commentsto usviathe
postal service.

Electronic mail: appsdoc_us@oracle.com

FAX: (650) 506-7200 Attention: Oracle Applications Documentation
Postal service:

Oracle Corporation

Oracle Applications Documentation

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like areply, please give your name, address, telephone number, and (optionally) electronic mail

address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

Welcometo Release 11.5.10 of the Oracle iPayment Implementation Guide. Thisguideis
your primary source of information to implement Oracle iPayment.

This preface contains these topics:

Audience for this Guide

How To Use This Guide

Other Information Sources

Installation and System Administration

Other Implementation Documentation

Training and Support

Do Not Use Database Tools to Modify Oracle Applications Data
About Oracle

Your Feedback

xi

Audience for this Guide

i

This guide assumes you have a working knowledge of the following:
« Theprinciples and customary practices of your business area.
« OracleiPayment

If you have never used Oracle iPayment, Oracle suggests you attend one or more of the
Oracle iPayment training classes avail able through Oracle University.

« TheOracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the Oracle
Applications User’s Guide.

See Other Information Sources for more information about Oracle Applications product
information.

How To Use This Guide

This document contains the information you need to implement Oracle i Payment.

This manual contains these chapters and appendixes:

Chapter 1, "Overview"

Chapter 1 describes the important issues that should be considered prior to
implementing Oracle i Payment.

Chapter 2, "Configuring iPayment"

Chapter 2 describes detailed information on the tasks you should perform to implement
Oracle iPayment.

Chapter 3, "Using iPayment with External Front End Applications"

Chapter 3 explains the public APIs used in Oracle iPayment with external front end
applications.

Chapter 4, "Using iPayment with External Payment Systems"
Chapter 4 explains the APIs used in Oracle iPayment with external payment systems.
Appendix A, "Risk Management"

Oracle iPayment supports risk management. Electronic commerce applications can
incorporate this feature to detect fraudulent payments. Appendix A explains how
el ectronic commerce applications can utilize the risk management functionality of
Oracle iPayment.

Appendix B, "Error Handling"

Oracle iPayment returns a response object to each API that an electronic commerce
application calls. Appendix B provides detailed information on the errors that can occur
in Oracle iPayment.

Appendix C, "iPayment PL/SQL APIs"

Appendix C describes the public PL/SQL API used by Oracle iPayment. Electronic
commerce applications (EC-Apps) may use these interfaces for processing credit card
and bank account transfer payment related operations.

Appendix D, "Back-End APIs for Gateways"
Appendix D describes the back-end processing APIs used in Oracle iPayment.

Xiii

Xiv

Appendix E, "Extensibility"

Oracle iPayment can be integrated with a back end payment system by implementing
oracle.apps.iby.extend. TxnCustomizer interface. Appendix E explains how to
implement this interface.

Appendix F, "Configuring CyberCash Servlet"

Appendix F describes how to configure the CyberCash servlet.
Appendix G, "Configuring Paymentech"

Appendix G describes how to configure the Paymentech servlet.
Appendix H, "Configuring FDC North"

Appendix H describes how to configure the FDC North servlet.
Appendix I, "Configuring Concord EFSnet"

Appendix | describes how to implement the Concord EFSnet servlet.
Appendix J, "Configuring Citibank"

Appendix J describes how to configure the Citibank credit card servlet.
Appendix K, "Profile Options'

Appendix K describes profile options for Oracle i Payment.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Accessibility standards will
continue to evolve over time, and Oracle is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit
the Oracle Accessibility Program Web site at

http:/ /www.oracle.com /accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document.
The conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of
text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

XV

Other Information Sources

You can choose from many sources of information, including online documentation,
training, and support services, to increase your knowledge and understanding of Oracle
iPayment.

If this guide refers you to other Oracle Applications documentation, use only the Release 11i
versions of those guides.

Online Documentation

All Oracle Applications documentation is available online (HTML or PDF).

« PDF Documentation- See the Online Documentation CD for current PDF
documentation for your product with each release. This Documentation CD is also
available on OracleMetaLink and is updated frequently.

« OnlineHéep - You can refer to Oracle Applications Help for current HTML online help
for your product. Oracle provides patchable online help, which you can apply to your
system for updated implementation and end user documentation. No system downtime
is required to apply online help.

« Release Content Document - See the Release Content Document for descriptions of
new features available by release. The Release Content Document is available on
OracleMetaL.ink.

« About document - Refer to the About document for information about your release,
including feature updates, installation information, and new documentation or
documentation patches that you can download. The About document is available on
OracleMetaL.ink.

Related Documentation

Oracle iPayment shares business and setup information with other Oracle Applications
products. Therefore, you may want to refer to other guides when you set up and use Oracle
iPayment.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD
included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the graphical
user interface (GUI). This guide aso includes information on setting user profiles, aswell as
running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing “Getting Started with Oracle
Applications” from any Oracle Applications help file.

Guides Related to This Product

Oracle Payables User Guide

This manual describes how accounts payabl e transactions are created and entered into
Oracle Payables. This manual aso contains detailed setup information for Oracle Payables
and discusses suppliers, banks, invoices, and also explains how to create payments and run
reports.

Oracle Receivables User Guide

This manual describes how accounts receivabl es transactions are created and entered into
Oracle Receivables. This manual aso contains detailed setup information for Oracle
Payables and discusses customers, banks, invoices, and reporting.

Oracle iPayment Concepts and Procedures Guide

This manual describes an overview of iPayment and its components, and provides
process-oriented, task-based procedures for using the user interface to set up the application
and perform essential businesstasks. This manual aso provides details on the integration of
iPayment and Oracle Payables and viewing the key performance metrics such as transaction
summaries, payee summaries, and other critical performance indicators.

Oracle iReceivables Implementation Guide
This manual describes the setup tasks that you need to perform for iReceivables and

information you need to configure iReceivables to suit your business requirements.

Oracle Collections User Guide
This manual explainsthe key features and process flowsin Collections.

Xvii

Oracle iStore Implementation and Administration Guide

This manual explains the information needed to implement, administer, and maintain Oracle
iStore.

Xviii

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features, technology stack, architecture,
and terminology for Oracle Applications Release 11i. It provides a useful first book to read
before an installation of Oracle Applications. This guide also introduces the concepts behind
Applications-wide features such as Business Intelligence (BIS), languages and character
sets, and Self-Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle Rapid
Install, which minimizes the time to install Oracle Applications and the Oracle technology
stack by automating many of the required steps. This guide contains instructions for using
Oracle Rapid Install and lists the tasks you need to perform to finish your instalation. You
should use this guide in conjunction with individual product user guides and implementation
guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or Release
11.0 products to Release 11i. This guide describes the upgrade process and lists database and
product-specific upgrade tasks. You must be either at Release 10.7 (NCA, SmartClient, or
character mode) or Release 11.0, to upgrade to Release 11i. You cannot upgrade to Release
11i directly from releases prior to 10.7.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as AutoUpgrade, AutoPatch,
AD Administration, AD Controller, AD Relink, License Manager, and others. It contains
how-to steps, screenshots, and other information that you need to run the AD utilities. This
guide also provides information on maintaining the Oracle applications file system and
database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications System
Administrator. It contains information on how to define security, customize menus and
online help, and manage concurrent processing.

Xix

XX

Oracle Alert User’s Guide

This guide explains how to define periodic and event a ertsto monitor the status of your
Oracle Applications data.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle Applications devel opment
staff and describes the Oracle Application Object Library components that are needed to
implement the Oracle Applications user interface described in the Oracle Applications User
Interface Sandards for Forms-Based Products. This manual also providesinformation to
help you build your custom Oracle Forms Developer forms so that the forms integrate with
Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products

This guide contains the user interface (Ul) standards followed by the Oracle Applications
development staff. It describes the Ul for the Oracle Applications products and how to apply
this Ul to the design of an application built by using Oracle Forms.Oracle Applications
System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications System
Administrator. It contains information on how to define security, customize menus and
online help, and manage concurrent processing.

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as areference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made to
database objects, profile options, and seed data for this interval.

Oracle Workflow Administrator's Guide

This guide explains how to complete the setup steps necessary for any Oracle Applications
product that includes workflow-enabled processes, as well as how to monitor the progress of
runtime workflow processes.

Oracle Workflow Developer's Guide

This guide explains how to define new workflow business processes and customize existing
Oracle Applications-embedded workflow processes. It also describes how to define and
customize business events and event subscriptions.

Oracle Workflow User's Guide

This guide describes how Oracle Applications users can view and respond to workflow
notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access Oracle
Workflow.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup and reference information for the Oracle
iPayment implementation team, as well asfor users responsible for the ongoing maintenance
of Oracle Applications product data. This guide a so providesinformation on creating
custom reports on flexfields data.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (ETRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle
Applications product. This information helps you convert data from your existing
applications, integrate Oracle A pplications data with non-Oracle

XXi

XXii

applications, and write custom reports for Oracle Applications products. Oracle eTRM is
available on OracleMetalink

Oracle Self-Service Web Applications Implementation Manual

This manual contains detailed information about the overview and architecture and setup of
Oracle Self-Service Web Applications. It aso contains an overview of and procedures for
using the Web Applications Dictionary.

Oracle Order Management APIs and Open Interfaces Manual

This manua contains up-to-date information about integrating with other Oracle
Manufacturing applications and with your other systems. This documentation includes APIs
and open interfaces found in Oracle Order Management Suite.

Other Information Sources
For more information, see the latest versions of the following manuals.

« iPayment JavaDoc (Available on Metalink)
« Apache Server Documentation (http://www.apache.com)
« Apache's mod-ssl documentation (http://www.mod-ssl.org/docs)

« JavaDeveoper’s Guide (http://www.sun.com)

Training and Support

Training

Oracle offers a compl ete set of training courses to help you and your staff master Oracle
iPayment and reach full productivity quickly. These courses are organized into functional
learning paths, so you take only those courses appropriate to your job or area of
responsibility.

You have a choice of educational environments. You can attend courses offered by Oracle
University at any one of our many education centers, you can arrange for our trainersto
teach at your facility, or you can use Oracle Learning Network (OLN), Oracle University's
online education utility. In addition, Oracle training professionals can tailor standard courses
or develop custom courses to meet your needs. For example, you may want to use your
organization structure, terminology, and data as examples in a customized training session
delivered at your own facility.

Support

From on-site support to central support, our team of experienced professionals provides the
help and information you need to keep Oracle iPayment working for you. Thisteam includes
your technical representative, account manager, and Oracle’s large staff of consultants and
support specialists with expertise in your business area, managing an Oracle server, and your
hardware and software environment.

XXiii

Do Not Use Database Tools to Modify Oracle Applications

Data

XXIV

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data unless
otherwiseinstructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and maintain
information in an Oracle database. But if you use Oracle tools such as SQL*Plus to modify
Oracle Applications data, you risk destroying the integrity of your data and you lose the
ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using Oracle
Applications can update many tables at once. But when you modify Oracle Applications
data using anything other than Oracle Applications, you may change arow in one table
without making corresponding changes in related tables. If your tables get out of
synchronization with each other, you risk retrieving erroneous information and you risk
unpredictabl e results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications automatically
checks that your changes are valid. Oracle Applications also keeps track of who changes
information. If you enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has changed your
information because SQL * Plus and other database tools do not keep arecord of changes.

About Oracle

Oracle develops and markets an integrated line of software products for database
management, applications development, decision support, and office automation, as well as
Oracle Applications, an integrated suite of more than 160 software modules for financial
management, supply chain management, manufacturing, project systems, human resources
and customer relationship management.

Oracle products are available for mainframes, minicomputers, personal computers, network
computers and personal digital assistants, allowing organizations to integrate different
computers, different operating systems, different networks, and even different database
management systems, into asingle, unified computing and information resource.

Oracleisthe world's leading supplier of software for information management, and the
world’'s second largest software company. Oracle offers its database, tools, and applications
products, along with related consulting, education, and support services, in over 145
countries around the world.

XXV

Your Feedback

XXVi

Thank you for using Oracle iPayment and this user guide.

Oracle vaues your comments and feedback. In this guide is a reader’s comment form that
you can use to explain what you like or dislike about Oracle iPayment or this user guide.
Mail your comments to the following address or call us directly at (650) 506-7000.

Oracle Applications Documentation M anager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

USA.

Or, send eectronic mail to appsdoc_us@oracle.com.

1

Overview

This chapter presents the important issues you should consider prior to implementing Oracle
iPayment. Topics include:

Planning Your Implementation

Which Payment System Should You Use?

Is Your Merchant Terminal Based or Host Based?

What Electronic Commerce Applications Are You Using?

Which APIs Should Electronic Commerce Applications Handle?

Which Bank Account Transfer Operations Should You Implement?

Which Credit Card and Purchase Card Operations to Implement?

Which Risk Factors Should You Implement?

Does Your Application Need to Present Information in Different Languages?
Installing Oracle iPayment

Overview 1-1

Planning Your Implementation

Planning Your Implementation

Before you begin implementing Oracle iPayment, you must make several key business and
application decisions.

The following sections help you find answers to these questions. Your answers determine
which APIs you should use, which parameters you must pass, and which code samples are
relevant to your applications to help you implement Oracle i Payment.

1-2 Oracle iPayment Implementation Guide

Planning Your Implementation

Which Payment System Should You Use?

Oracle iPayment requires partnering with athird party payment system for communicating
to bank processors and acquirer’s banks. Some of the factors which may help you decide
are:

« Do you want to use an existing integration or build your own?
« Do you want to integrate with avendor offering a product or a service?
« Do you want to integrate with a gateway or a processor model payment system?

« Does the payment system support the payment methods that you are implementing, (for
example, Concord supports credit card, PINIess debit card, Purchase card and
Electronic Funds Transfer transactions)

The following table lists the back-end payment systems that are integrated and shipped with
iPayment, as well as the operations each payment sustem supports.

Back End Credit Purchase PINless EFT Online

Payment System Card Card debit card Inbound Validation Outbound
CyberCash* Yes No No Yes** No No
Paymentech Yes Yes Yes Yes Yes No

First Data (North) Yes Yes No No No No
Concord EFS Yes Yes Yes Yes No No
Citibank Credit Yes No No No No No

Card

* CyberCash no longer accepts new customers

** USACH only

Note: The supported operations may change. Contact the payment
system for the most recent information.

The following table lists some back-end payment systems that provide their own
field-installable servlets for integration with iPayment,and the operations VeriSign supports.

Overview 1-3

Which Payment System Should You Use?

Electronic
Back End Credit Purchase PINless Funds
Payment System Card Card debit card Inbound Transfer Outbound
VeriSign Yes No No Yes No No

1-4 Oracle iPayment Implementation Guide

Planning Your Implementation

Is Your Merchant Terminal Based or Host Based?

The choice of being aterminal-based or host-based merchant is generally determined by the
business type, the number of transactions per day, and the model supported by the acquiring
bank. As a developer of an EC application, you only need to know the type of payee for the
application you are devel oping, so that you can choose the appropriate APIs.

If your payee isterminal-based, then you may integrate the Close Batch API into the EC
application, to enable the payee to perform close batches through the EC application instead
of the payment system’s native interface. If your payee is host-based, then you may want to
ignore the Close Batch API because the processor automatically closes batches at
predetermined intervals.

If the payee is host-based, then payment capture takes care of getting the payment, and
reconciliation is not necessary. Therefore, the Close Batch API and the Query Batch Status
API are not required for host-based payees.

Note: Processor-model payment systems are always host-based.

Overview 1-5

What Electronic Commerce Applications Are You Using?

What Electronic Commerce Applications Are You Using?

The choice of electronic commerce applications depends on the applications you are using
with iPayment namely:

« Preintegrated Oracle applications
« External front-end applications

Preintegrated Oracle applicationsinclude i Store, Order Capture, Telesales, Order
Management, Oracle Receivables, Oracle Payables and Collections.

Note: You need to follow the instructions present in the respective
documentation for iPayment’sinteraction with preintegrated Oracle
applications.

For external front-end applications, you need to decide the iPayment front-end API to be
implemented and then implement them.

1-6 Oracle iPayment Implementation Guide

Planning Your Implementation

Which APIs Should Electronic Commerce Applications Handle?

Oracle iPayment provides payment instrument registration APIs for registering payment
instruments such as credit cards, bank accounts, PINIess debit cards, and purchase cards. It
also provides payment processing APIs that can perform credit card, PINIess debit card, and
purchase card operations, such as, authorization, capture, and bank account transfer
operations. Risk management APIs are provided to perform risk analysis. Based on your
regquirements, you need to decide the operations your electronic commerce (EC) applications
needs to implement.

Note: Each preintegrated Oracle application implements the i Payment
API relevant to its operation. Therefore, if you are planning to use
preintegrated Oracle application, you need not implement anything
further.

Payment Instrument Registration APIs

These APIs are mandatory if you decide to use the offline payment processing feature of
Oracle iPayment Payment APIsin your EC application. EC applications can implement
registration of payment instruments using Payment |nstrument Registration APIs, and
instrument identifiers, that are generated, during payment requests with Oracle iPayment.

Payment Processing APIs
You must decide whether to:
« Implement online or offline payment processing or both

« Accept credit card, PINless debit card payments, purchase cards, or bank account
transfers or a combination

« Implement the risk functionality to detect fraudulent transactions

Risk Management APIs

Oracle iPayment provides two Risk management APIs. If you want to perform risk
evaluation independently and not as part of the Authorization API, then these independent
APIscan be called from your EC application.

The following information describes some of the decisions you have to make if you are
accepting bank account transfer payments, credit card, PINIess debit card, or purchase card
payments.

Overview 1-7

Which Bank Account Transfer Operations Should You Implement?

Which Bank Account Transfer Operations Should You Implement?

Oracle iPayment supports offline bank account payment requests. Besides payment requests
for bank account transfers, Oracle iPayment also supports modification, cancellation, and
inquiry operations. Thereis no need for any specia settlement operations.

Oracle iPayment also supports Electronic Funds Transfer online validations for bank
account transfers. The validations are online and real-time whereas the actual funds transfer
are perfomed offline. The funds transfer are not performed online because the transaction
requires one or two business days for completion.

Note: EFT Online Validations are not offered by all payment systems.

1-8 Oracle iPayment Implementation Guide

Planning Your Implementation

Which Credit Card and Purchase Card Operations to Implement?

Oracle iPayment provides APIsfor authorization, settlement, and querying transaction
status. You do not have to use all these APIs. You can choose to have your EC application
handle only authorization, thus reducing development costs but requiring the payee to do

more work for settlement and reconciliation.

The following table compares the authorization only with authorization and settlements.

Authorization Only

Authorization and Settlement

Theintegration effort isrelatively minima

because you have to use no more than two APIs.

Theintegration effort is significant because you
have to use severa APIs.

The payee has to settle transactions through the
native payment system administration tool. (For
example, by going to the payment system’s web
page).

The payee can settle transactions directly through
the EC application.

Note: For setting up credit card paymentsin iStore, see the latest Oracle
iStore and iMarketing Implementation Guides.

Overview 1-9

Which Risk Factors Should You Implement?

Which Risk Factors Should You Implement?

Oracle iPayment provides risk management functionality for credit card, PINIess debit card,
and purchase card transactions in EC applications for both business-to-business and
business-to-consumer models. Oracle iPayment includes a number of built-in risk factors
and provides the option to the payeesto run or not run the risk evaluation functionality for
each payment operation. Payees can also run the risk evaluation for operations which handle
amounts exceeding a specified amount.

A risk factor includes any information which a payee wants to use to evaluate the risk of the
customer wanting to buy goods or services from the payee. Examples of risk factors are:
address verification, time of purchase, payment amount, etc. These risk factors can be
configured for each payee (merchant or biller).

Risk management functionality enables payees and EC service providersto manage the risk
involved in processing transactions online. It allows businesses to have any number of
predefined risk factors to verify the identity of their customers, assess their customer credit
rating, and risk rating in a secure environment. For more information, see Oracle iPayment
Concepts and Procedures Guide.

1-10 Oracle iPayment Implementation Guide

Planning Your Implementation

Does Your Application Need to Present Information in Different
Languages?

If your application needs to present information in different languages or character sets, then
you need to know about National Language Support (NLS).

Would Your Application Need National Language Support (NLS)?
Your application may need to use NLSif either of the following istrue:

« The EC application and the payment system use different languages or character sets.
For example, the EC application may use a Japanese EUC character set while the
payment system uses a Japanese Shift-JIS character set.

« Clients of the EC application use different languages. For example, aweb sitethat is
expecting customers from all over the world might want to present its EC application in
different languages for different customers.

To enable character conversion in al these environments, the EC application and the
payment system must convey the language and character set information to Oracle
iPayment.

How Do Applications Convey Language Information to Oracle
iPayment?
To communicate information about the language and character set to Oracle iPayment, an

EC application and payment system servlet must pass a specia parameter (NI sLang). This
parameter is a part of every API included in this guide.

NI sLang isan optional parameter. If your EC application does not need to handle
non-L atinl character set parameters and does not need to communicate to clients or payment
systems in different languages, you do not need to use this parameter.

How does Oracle iPayment Use NIsLang?

If the EC application does not passthe NI sLang parameter, Oracle iPayment passes
information from the EC application to the payment service servlet without performing any
conversion of character sets.

If the EC application does pass avalue for Nl sLang to Oracle iPayment, then Oracle
iPayment tries to convert parameters based on the value of NI sLang before sending those
parameters to the payment system servlet.

Overview 1-11

Does Your Application Need to Present Information in Different Languages?

To do so, Oracle iPayment first checks its database for the list of preferred and optional
languages for that payment system. The information in the database reflects what the Oracle
iPayment administrator entered using the Oracle iPayment administration user interface.

Second, Oracle iPayment does one of the following, depending on what it findsin the
database:

« If the database lists alanguage that matches the value of NI sLang, Oracle iPayment
keeps the value of NI sLang and passes it to the payment system servlet.

« If the database does not list alanguage matching the value of NI sLang, Oracle
iPayment uses the language specified as the preferred language for that payment system,
thus changing the value of NI sLang before sending it to the payment system servlet.

Finally, Oracle iPayment converts the values of other parameters so that they are sent to the
payment system servlet in the language specified by NI sLang.

This conversion process works only in one direction. From the EC application to the
payment system servlet. If the payment system setsup NI sLang when it sends the data
back, Oracle iPayment uses that information only to store the value of Gapf VendEr r msg
in its database. Oracle iPayment does not convert data sent from the payment system servlet
back to the EC application.

Format of the NLS_LANG Parameter

The value of this parameter follows the same format as Oracle Server’'sNLS _LANG
environment variable:

| anguage_territory. charset

For example, JAPANESE _JAPAN. JA16EUCisavalid valuefor Nl sLang.

Format of the Response Body Data From Payment System Servlets

Oracle iPayment does not convert the response received from the payment system servlet in
the response body. It only treats the data as binary and sendsiit directly to the EC
application.

However, if any binary information is sent (such as wallet data), then Oracle iPayment
converts the character set of the binary data to that specified by the value of Nl sLang.

1-12 Oracle iPayment Implementation Guide

Installing Oracle iPayment

Installing Oracle iPayment

To install Oracle iPayment, see the latest Installing Oracle Applications 11..

Overview 1-13

Installing Oracle iPayment

1-14 Oracle iPayment Implementation Guide

2

Configuring iPayment

This chapter presents detailed information on the tasks you should perform to implement
Oracle iPayment. Topicsinclude:

« Overview of Oracle iPayment Implementation Steps
« Creating an Oracle iPayment User

« Overview of iPayment Servlets

« Implementing Field Installable Servlets

« Configuring OracleiPayment Servlets

« Configuring the ECApp Serviet

« Setting Up SSL Security for the ECApp Servlet

« Configuring iPayment Sample Servlet

« Configuring iPayment Loopback Servlet

« Setting Up SSL Security for Payment System Servlet Communication
« Enabling the Scheduler

« Registering Electronic Commerce Applications

« Loading Risky Instruments

« Enabling the XML Framework

« Setting up Entitiesin the Oracle iPayment User Interface

Configuring iPayment 2-1

Overview of Oracle iPayment Implementation Steps

Overview of Oracle iPayment Implementation Steps

Thistable gives you an overview about the steps that are required for implementing Oracle
iPayment in different scenarios.

Oracle iPayment with other Standalone new install or 3i

Implementation preintegrated Oracle standalone implementation 3i implementation

Steps Applications? upgrading to 11i standalone upgrading to 11i?

Creating an Oracle Mandatory Mandatory Mandatory

iPayment User

Configuring the ECApp Mandatory Mandatory if you are using Mandatory

Servlet PL/SQL APIs

Configuring iPayment Mandatory only if you want to Mandatory only if youwanttotest Mandatory only if you

Sample Servlet test iPayment installation for a iPayment installation for apayment want to test iPayment
payment gateway. gateway. installation for a

payment gateway.

Configuring iPayment Mandatory only if you want to Mandatory only if youwanttotest Mandatory only if you
L oopback Servlet test iPayment installation for a iPayment installation for a want to test iPayment
processor model payment system. processor model payment system. installation for a
processor model

payment system.
Configuring CyberCash Mandatory only if you areusing Mandatory only if you are using Mandatory only if you
Servlet Cybercash as apayment system Cybercash as a payment system are using Cybercash as

a payment system
Configuring Mandatory only if you areusing Mandatory only if you are using Mandatory only if you
Paymentech Paymentech as a payment system Paymentech as a payment system are using Paymentech

as apayment system

Configuring FDC North Mandatory only if you areusing Mandatory only if you are using Mandatory only if you

FDC (North) as a payment FDC (North) as apayment syssem areusing FDC (North)
system as a payment system
Configuring Concord Mandatory only if you areusing Mandatory only if you are using Mandatory only if you
EFSnet Concord as a payment system Concord as a payment system are using Concord asa
payment system
Configuring Citibank Mandatory only if youareusing Mandatory only if you are using Mandatory only if you
Citibank as a payment system Citibank as a payment system areusing Citibank asa
payment system
Enabling the Scheduler Not Necessary Mandatory Not Necessary

2-2 Oracle iPayment Implementation Guide

Overview of Oracle iPayment Implementation Steps

Implementation

Oracle iPayment with other
preintegrated Oracle

Standalone new install or 3i
standalone implementation

3i implementation

Steps Applications? upgrading to 11i standalone upgrading to 11i?
L oading Risky Not Utilized.The integrated Optiona Not Applicable
Instruments applications do not utilize this

functionality
Enabling the XML Mandatory Mandatory Mandatory
Framework
Setting up Entitiesinthe Mandatory Mandatory Mandatory
Oracle iPayment User
Interface
Implementing Electronic Not Necessary-has already been Mandatory Not Applicable

Commerce Applications
APIs

implemented

Implementing Back-end
Payment System APIs

Mandatory if you are not using
exigting integration.

Mandatory if you are not using an

exigting integration.

Implement as a serviet
and not as a cartridge

1 Preintegrated Oracle Applications include i Store, Order Capture, Telesales, Order Management, Oracle Receivables, Oracle Payables and

Collections.

2 3i Implementation upgrading to 11i but retaining existing functionality (same as a non-Oracle client).

Configuring iPayment 2-3

Creating an Oracle iPayment User

Creating an Oracle iPayment User

You can access the Oracle iPayment user interfaces by creating separate users based on the
business needs. For example, by using this procedure to create an iPayment administrative
user, the Oracle iPayment administrator is differentiated from the sysadmin user thereby
alowing better security. You can then log in as this created user. A user can have multiple
responsibilities and roles.

Note: TheiPayment Administrator User Interface uses Oracle
Application’s standard OA HTML framework. The new user interface
replaces the JTF Ul for iPayment administration. To access the daily
business close reports, you continue to login using the JTF UI.

Prerequisites
« Oracle 11i installed.

« OracleiPayment with responsibility, menu, security roles, and permissions should be

installed.

Steps

1. Accessthe Oracle iPayment user interface through the Oracle Admin Console at the
following URL.:

http://<machine>:<port>/OA_HTML/US/ICXINDEX.htm

Replace the machine and the port with the name of the machine and the port where the
Apache server isinstalled.

2. Loginas—
Username: SY SADMIN
Password: SYSADMIN

3. Navigate to the Users tabs on the Admin Console, and click on the User Maintenance
link in the side navigation bar.

4. Navigate to Security > User. Click Define.
5. Enter the username and password for the application user.

6. Assign theiPayment Payment Administrator responsibility to the application user in the
Responsibility tabbed region.

2-4 Oracle iPayment Implementation Guide

Creating an Oracle iPayment User

Save your work.

Use the application user to login and access the new iPayment Administrator Ul through
the standard Self Service Applications Login page.

Log off as sysadmin and login through the Self Service Applications Login page using
the new username.

You can aso use this application user to access the daily business closereportsthat isin
the JTF Ul. In order to do this, you need to perform the following additional setup steps.

Note: You can link a user to more than one responsibility. For
information, on the valid responsibilitiesin iPayment, see Assigning Roles
and Responsibilities to an iPayment User.

To Access the JTF User Interface

1.

o o & W DN

10.

In the Define User form, add the "iPayment Daily Business Close User" responsibility
for the user you created above.

Save your changes.

Navigate to Profile > System Profile option in the form.

Click User. Type the newly created user name in the field.

Search for JTF_PROFILE_DEFAULT% profile option using wildcards.

Edit the profile fields for the user id that was created.
JTF_PROFILE_DEFAULT_APPLICATION: applD (for Oracle iPayment it is 673).

There are additional, less important profiles which can also be set up (i.e., ICX _
LANGUAGE). If these profiles are not set up, the site's default profiles are used. For a
complete list of profile options, see’ System Profile Options' in the latest CRM
Foundation Components | mplementation Guide. For more information, see ’ Setting
User Responsibilities for an existing AOL User’ in the latest CRM Foundation
Components Concepts and Procedures Guide.

Click Save.

Exit from Self Service Applications.

Login to the Admin Console as SY SADMIN from the following URL:
http://<machine>:<port>/OA_HTML/jtflogin.jsp

Navigate to the Users tabs on the Admin Console.

Configuring iPayment 2-5

Creating an Oracle iPayment User

11.
12.
13.
14.

15.

16.

17.

Click on the User Maintenance link in the side navigation bar.
Query the user that you created using the Self Service Applications.
Click on the user name link to open the User-Details page. Click Roles.

Select the roles associated with the responsibility. Moveit to the Assigned Roles
column.

For more information on the valid roles for each responsibility in iPayment, see
Assigning Roles and Responsibilities to an iPayment User.

Click Update.

For more information, see’ Assigning Roles to the User’ in the latest CRM Foundation
Components Implementation Guide.

You have just finished the additiona steps required for accessing the JTF Ul. Now you
may access the daily business close reports Ul through the JTF login page with the user.

Log off as sysadmin and login through the JTF Login page using the newly created user
name to access the iPayment Transaction reporting Ul.

When a user with multiple responsibilities logsin for the first time, the system prompts
the user to select a default responsibility.

2-6 Oracle iPayment Implementation Guide

Creating an Oracle iPayment User

Assigning Roles and Responsibilities to an iPayment User

You can assign roles and responsibilities to a new user or to an existing user. To create a
user, see Creating an Oracle iPayment User. You can assign multiple responsibilitiesto a
user. For users with "iPayment Daily Business Close User" responsibility, you should link
the appropriate role as defined in the table below.

Note: Administrative users can only access the new Uls if they have the
iPayment Payment Administrator responsibility assigned to them. For
existing administrative users, you need to manually assign this
responsibility.

Thistable lists the seeded iPayment responsibilities and their description.

Responsibility Description

System Administrator for Users with this responsibility has access to "Visibility Configuration”
iPayment Ulsto create and update iPayment Visibility Classes.

iPayment Payment Thisisthe new responsibility required to access the new Ul using the
Administrator Self Service framework.

iPayment for Payroll Clerk Users with this responsibility can only see the operations screen for
outbound bank payments

iPayment for Receivables Users with this responsibility can only see the operations screen for

Clerk inbound bank remittances.
iPayment Daily Business Users with this responsibility have access to the iPayment
Close User Transaction Reporting Ul.

Thistable lists the responsibility and the corresponding roles

Responsibility Role Permissions

iPayment Dailly IBY_DBC_ROLE IBY_DBC_VIEW_PERMISSION
Business Close

User

Configuring iPayment 2-7

Overview of iPayment Servlets

Overview of iPayment Servlets

Oracle iPayment provides a complete payment solution. The Payment System Integration
Model allows integration with third party payment systems for credit card, purchase card,
PINless debit card, and bank account transfer processing. The payment systems
communicate with the payment processors and the acquires/banks to process payment
transactions.

Oracle iPayment integrations packaged with EBusiness suite products start functioning after
you install and configure the ECApp servlet. The ECApp servlet provides an interface to the
iPayment engine to process payment related operations such as authorization, capture, and
return. The ECApp servlet is primarily used for the PL/SQL APIs provided by iPayment.
Click on the following link for steps on configuring the ECApp servlet.

« Configuring the ECApp Servlet

There are three options for integrating with third party payment systems, also known as back
end payment systems.

« Usethe payment system integration provided by Oracle iPayment. For inbound
payments using credit, PINIess debit cards, or purchase cards Oracle iPayment provides
integration with CyberCash, Paymentech, Concord EFS, Citibank, and First Data
(North). Use the following links to guide you to implement the appropriate payment
system in your organization.

Sample Servlet
« Configuring iPayment Sample Servlet

« Configuring iPayment Loopback Servlet

Credit Card/Purchase Card Servlets
« Appendix F, "Configuring CyberCash Servlet"

« Appendix G, "Configuring Paymentech"

« Appendix H, "Configuring FDC North"

« Appendix I, "Configuring Concord EFSnet"
« Appendix J, "Configuring Citibank"

« Usethe payment integration provided by the vendor. Many payment system vendors
have partnered with Oracle to build integration with Oracle iPayment. These field

2-8 Oracle iPayment Implementation Guide

Overview of iPayment Servlets

installable servlets are available from Oracl€'s payment system partners, such as
VeriSign.

Build integration by using the published Payment System Integration Model for credit
cards, PINIess debit cards, and purchase cards. See |mplementing Back-end Payment
System APIs for instructions on how to build your own field installable servlets.

Configuring iPayment 2-9

Implementing Field Installable Servlets

Implementing Field Installable Servlets

Oracle iPayment supports field-installable servlets. These are payment system servlets not
bundled with Oracle iPayment. This feature allows a payee to acquire a new, additional, or
upgraded payment system servlet and configure it in the same way as the payment system

servlets bundled with Oracle iPayment.

The ability to add field-installabl e servlets provides payment flexibility and allows new
releases of Oracle iPayment and the payment systemsto be independent of each other. It
al so enables el ectronic commerce applications to customize the payment system for their
specific needs and regions.

Field-installable payment system servlets for Oracle iPayment are usually available from
Oracle's payment system partners, such as VeriSign.

2-10 Oracle iPayment Implementation Guide

Configuring Oracle iPayment Servlets

Configuring Oracle iPayment Servlets

Oracle iPayment has several Java Servlets, some of which are not configured as a part of
Oracle Applications Rapid Installation process. Follow the instructions given below to
configure them.

These instructions assume that you know how to configure Java Servlets with Apache Web
Server. In particular, we assume you know where to find Apache and JServ configuration
files on the node where the Apache Web Server is installed. For more information, see
Apache documentation available at http://www.apache.org.

Note: Thisguideincludesinstructions for severa platforms. We assume
you are familiar with the particular platform you are configuring. For
example, environment variablesin UNIX look like $ABC/lib. In Windows
NT, the environment variables |ook like %ABC%\lib.

Logon to Web Server Node

Log on to your Web Server node as the applmgr user and run the environment file to set up
the Oracle Applications environment. Your environment should have the following variable
defined:

$IBY_TOP refers to the top-level directory of OracleiPayment installation. In Windows NT
or 2000, Oracle iPayment top level directory islocated in %APPL_TOP%\iby.

Note: Apache and Jserv may not interpret environment variablesin their
configuration files. Expand any environment variables of the type $ABC
to the values they actually contain on your installation. For example, if
$IBY _TOP s defined at /u03/apps/iby/11.5, you need to replace $IBY _
TOP with /u03/apps/iby/11.5 in the instructions below.

Verify That a Common Servlet Zone is Configured in Your Environment.

A servlet zone should already exist in your Apache Web Server install ation. Check the
jserv.propertiesfile for aline beginning with “zones=". If you see such aline, a serviet zone
has been set up. By default this zone is called “root”. The root zone is associated with the
zone.properties file. It you are using a different zone and not the root zone, you may have to
make the changes listed below in adifferent <SERVLET_ZONE>.propertiesfile. Similarly,
your servietswill be invoked as:

Configuring iPayment 2-11

Configuring Oracle iPayment Servlets

http://<hostname>:<port>/<SERVLET_ZONE>/<servlet_name>
Click the links below to configure the respective servlets:

« Configuring the ECApp Servlet

« Appendix F, "Configuring CyberCash Servlet"

« Appendix G, "Configuring Paymentech"

« Appendix H, "Configuring FDC North"

« Appendix I, "Configuring Concord EFSnet"

Setting iPayment JVM parameters

iPayment back end servlets may be installed on a different host from the iPayment engine.
When installed on a different machine, the servlet has no access to the profile values set up
in the data base. In such case, you can set the values using the VM parameters for each
iPayment instance.

- DAFLGG ENABLED=TRUE

-DAFLOG LEVEL=<vl ue such as ERRCR>

- DAFLOG MIDULE=i by%

- DAFLOG FI LENAVE=<fil e nane with path such as /tnp/aferrorl.|og>

-D BY_XM._BASE=<val ue of XM. base>

You can set these parameters by passing them as command line arguments to the Java
executable.

See iPayment Profile Options for more details on the specific profile options that can be set
in the database.

Load Balancing Recommendations

The maximum number of concurrent requests that a servlet can process without blocking is
equal to the number of JServ instances running in its serviet zone. You should have a
number of JServ instances running equal to the average number of concurrent requests, if
not slightly more since, under load balancing, JServ instances are randomly chosen, making
it possible that two concurrent requests could be sent to a JServ instance when anidle oneis
aready available.

Running multiple JServ instances within a zone does not significantly add to your CPU load
versus running asingle instance, but it does add to your memory load as each instance
requiresits own VM. On Solaris, each VM requires over 6MB of main memory though
less than 4MB are actually used, since JV Ms share common libraries.

2-12 Oracle iPayment Implementation Guide

Configuring Oracle iPayment Servlets

Note: With most processors, the online port is never released by
iPayment, but must be continuously held. Additionally, most processors
impose alimitation of having only a single active connection, often for
reasons such as security.

Asthe online port is never released by iPayment, the recommendation is
to have a dedicated VM for that serviet. Therefore we can have only one
servlet per VM and hence one port. So iPayment processor model servlets
do not support load balancing.

Configuring iPayment 2-13

Configuring the ECApp Servlet

Configuring the ECApp Servlet

An ECApp serviet is the only front-end servlet in iPayment. You need to configure the
ECApp servlet in order to use the PL/SQL API of Oracle iPayment and for Oracle iPayment
3i Backward Compatibility API.

Set up the Virtual Path Mapping for ECApp Servlet

The ECApp Servlet is automatically set up (and named ibyecapp) by Rapid Install. You can
use the following instructions to set up the servlet manually, or to confirm that the ECApp
servlet is configured properly.

Add the following line to your zone.properties file in the Servlet Aliases section:
servlet.ecapp.code=oracle.apps.iby.ecserviet. ECServlet

This allowsthe ECAppservlet to be invoked as: http://<hosthname>:<port>/servlet/ecapp

Where <hostname> is the name of the server on which you are running Oracle iPayment.
<port> isthe port number where ECAppservlet has been installed.

2-14 Oracle iPayment Implementation Guide

Setting Up SSL Security for the ECApp Servlet

Setting Up SSL Security for the ECApp Servlet

If the ECAPP servlet is located at an HTTPS URL, then you must set these two wallet
profile options: IBY: Wallet Location and IBY: Wallet Password. See iPayment Profile
Options for more details.

The public certificate of the web server which hosts the ECAPP servlet must have been
imported as a trusted certificate into the Oracle wallet. See Using Oracle Wallet Manager in
the Oracle Advanced Security Administration Guide.

Configuring iPayment 2-15

Configuring iPayment Sample Servlet

Configuring iPayment Sample Servlet

The iPayment sample servlet is a gateway model servlet that you can use to test your
iPayment implementation without having to register with area payment system or set up
and configure the payment system specific servlet. The sample servlet only supports core
iPayment operations such as authorization, capture, and return for credit cards.

You can use the sample servlet to test the integration between your EC application and
iPayment. All transactions sent to the sample servlet should succeed, unless the amount
matches certain pre-set values, in which case an error is induced. You can use the integration
to simulate error scenarios and test error handling in the calling EC application.

Thistable lists the pre-defined amounts and their associated error codes.

Amount Error Message

1001 Communication error when contacting the gateway. Please try again.
1002 Given order id used for a previous transactions.

1004 A parameter to this transactionsis either maformed or missing.
1005 Generic BEP error occurred. Please check error code.

1008 Transaction. typeis not valid or not supported for this merchant.
1016 Internal BEP failure. Please check error code.

1017 Account does not have sufficient funds to complete this transaction.
1019 Invalid credit card number/expiration date.

1020 Authorization declined.

1021 Voice authorization code incorrect.

Installing the Sample Servlet
Use the following stepsto configure the sample servlet.

1. Addthefollowing alias statement to the configuration file of the serviet zone you wish
the sample servlet to run in:

servl et. oram pp_| op. code=or acl e. apps. i by. bep. | oop. LoopBackSer vl et

Note: Thisline should already be in the properties file after you have
installed iPayment. You only need to verify that it exists.

2-16 Oracle iPayment Implementation Guide

Configuring iPayment Sample Servlet

2. Inthe same configuration file, provide the following servlet parameters:

Thistable liststhe is zone-wide parameters (set by a statement of the form
servlet.default.initArgs=).

Parameter Example Value Description

errorfile /tmplerror.log Debug file used to write errors and stack traces to.
debugfile /tmp/debug.log Log file used to write debugging messages to.
debug true, false Turns debugging on or off.

Configuring Sample Servlet as a Payment System

Once the sample servlet isinstalled and configured, the serviet must be added as a payment
system in order to be used. Login to the iPayment administrative GUI as the administrative
user and create a payment system for the sample servlet with the following va ues:

Name: Sample Servlet

Suffix: lop

Payment System Type: Gateway

Base URL : example- http://localhost:8080/servlets
Administration URL: http://www.yourcompany.net

Supported Payment | nstrument: Credit Card

Note: The sample payment system should already exist in the iPayment
setup. You only need to verify that it exists.

Adding a Merchant Account
For each payee that uses the sample servlet, enter any value for the payment system
identifier:

example - Loop

Testing the Sample Payment System

To test the sample payment system, create a transaction using the pages on the Operations
tab in the iPayment administrative Ul. Verify that you have arouting rule which routes the
transaction to the sample payment system and that your transaction matches the routing rule.
For more information, see Understanding Routing Rules and Managing Operations.

Configuring iPayment 2-17

Configuring iPayment Loopback Servlet

Configuring iPayment Loopback Servlet

The iPayment loopback servlet isa processor model servlet that you can use to test your
iPayment implementation without having to register with area payment system or set up
and configure the payment system specific servlet. The loopback servlet supports core
iPayment operations such as authorization, capture, and return for credit cardsin addition to
inbound and outbound bank payments.

You can use the loopback servlet to test the integration between your EC application and
iPayment. All transactions sent to the sample servlet should succeed unless the amount
matches certain pre-set values, in which case an error is induced. You can use the integration
to simulate error scenarios and thus test error handling in the calling EC application.

The processor model servlet does not connect to any back-end payment system but emulates
the behavior of a payment system returning successful responses to requests.

See Understanding Gateway-Model and Processor-Model Payment Systemsin the Oracle
iPayment Concepts and Procedures Guide for more details.

Thistable lists the pre-defined amounts and their associated error codes for credit card
transactions. The loopback servlet should return Success for any credit card transaction with
an amount other than the ones specified in the table below.

Amount Error Message

10 Invalid Merchant Account.

20 Decline - Do not honor

30 Expired card

40 Hold cal: Pick up card - Lost
50 Hold cal: Pick up card - Stolen
60 Insufficient funds

70 Expired Card

Installing the Loopback Servlet

The processor model loopback servlet requires no database connectivity and can be installed
on adifferent host from iPayment. To install on a different host, follow these steps:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2-18 Oracle iPayment Implementation Guide

Configuring iPayment Loopback Servlet

2. Add $APPL_TOP/javato the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter” to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Configuration

The following configuration steps are mandatory regardless of whether iPayment and the
loopback servlet are on the same machine or not:

1. Addthefollowing alias statement to the configuration file of the serviet zone you wish
the Processor Model Loopback Servlet serviet to runin;

servl et. oram pp_| pr. code=or acl e. apps. i by. bep. pr oc. | coppr oc. LoopPr ocSer vl et .

2. Inthe same configuration file, provide the following servlet parameters:

For setting the zone-wide parameters, see Table G-1.

Thistable lists parameters particular to the Loopback servlet (set by a statement of the
form servlet.oramipp_lpr.initArgs=).

Parameter Example Value Description

ARCHIVE Ivar/archive Directory where iPayment response files will be written
to. If communication between iPayment and the servlet
failsin the middle of atransaction and iPayment retries
that transaction at a later date, the archive directory will
alow the servlet to know the original results of the
transaction and so forward those to iPayment instead of
re-attempting the regquest (thus avoiding double billing
or doubl e authorization).

MAX_ARCHIVE_ 10 Maximum age (in days) that aresponse file will be

AGE saved in the archive. The FDC North servlet will remove
al responsesin the archive older than this age every
timeit starts.

LPR_ONLINE_ 192.168.0.1 Please specify any IP address of any valid host machine

1P to which the servlet can establish aconnection. Thisisa
technical requirement and no datais sent to this
machine.

LPR_ONLINE_ 8000 Port number to use along with the above | P address.

PORT

LOCAL_BATCH_ /tmp/batch Directory where batch files to are written to.

DIR

Configuring iPayment 2-19

Configuring iPayment Loopback Servlet

Parameter Example Value Description

LOCAL_EFT_ test/12345 Directory where inbound and outbound payment files
BATCH_DIR are written.

LOCAL _ test/data/12345 Directory where query files are picked up from.
QUERY_DIR

Configuring Loopback Servlet as a Payment System

Once the loopback servlet isinstalled and configured, the servliet must be added as a
payment system in order to be used. Login to the iPayment administrative GUI asthe
administrative user and create a payment system for the loopback servlet with the following
values:

Name: iPayment Loopback Servlet

Suffix: lpr

Payment System Type: Processor

Base URL : example- http://localhost:8080/servlets

Administration URL : http://loca host:8080/servlets

Supported Payment | nstrument: credit card, bank account (BR and DD), bank payment

Adding a Processor Model Loopback Servlet Merchant Account

For each payee that will you want to use Processor Model Loopback Servlet, you can enter
any value as a Payment System Identifier.

example - Loop

Enabling the Scheduler

Because the loopback servlet is a processor-model payment servlet, all transactions except
authorizations should always be OFFLINE transactions. When a BATCHCL OSE operation
is submitted, the iPayment engine picks up and sends the transactions to the loopback
servlet. The serviet does not submit these to any payment system, but the transactions are
updated to a successful status emulating the behavior of areal payment system.

Thefollowing isalist of valid tasks you may submit form the scheduler:
BATCHCLOSE

BATCHQUERY

PDCBATCHCLOSE

2-20 Oracle iPayment Implementation Guide

Configuring iPayment Loopback Servlet

PDCBATCHQUERY
PDCBATCHRETRY
EFTBATCHCLOSE
EFTBATCHRETRY
EFTPBATCHRETRY
EFTPBATCHCLOSE

Testing the Sample Payment System

To test the loopback payment system, create atest credit card transaction using the pages on
the Operations tab in the iPayment administrative Ul. Verify that you have arouting rule
which routes the transaction to the processor model loopback payment system and that your
transaction matches this rule. For more information see Routing Rules and Managing
Operations in the Oracle iPayment Concepts and Procedures Guide.

You can aso generate inbound and outbound bank payment test transactions from Oracle
Payables and Oracle Receivables and test the iPayment implementation by defining
appropriate routing rules.

Configuring iPayment 2-21

Setting Up SSL Security for Payment System Servlet Communication

Setting Up SSL Security for Payment System Servlet
Communication

When Oracle iPayment communicates with the payment system servlets, the information
exchanged may be sensitive information such as credit card numbers. If the communication
iS not secure, it poses a security risk.

The security risk increasesin the following circumstances:
« If OracleiPayment and the payment systems are installed on separate machines

« If OracleiPayment is running outside your firewall

Steps

« To set up aback end payment system servlet with secured sockets layer follow the
procedures in Apache’s mod-ssl documentation (http://www.mod-ssl.org/docs). Make
sure that your SSL server has a complete certificate chain to the root certificate. SSL's
client toolkit requiresit.

« Set upthe BASE URL parameter of back end payment system using https as the
protocol.

Setting Up SSL Runtime for Oracle iPayment

Oracle iPayment requires a set of runtime libraries for supporting SSL communication.
These runtime SSL libraries are included with the Oracle 8i distribution, but are not installed
on an applicationstier by default. If you are using Oracle iPayment, you must follow these
steps to manually configure SSL on your web server.

To configurethe SSL.:
1. Copy SSL runtime libraries to $JAVA_TOP.

2. Logonto your web server as the applmgr user and run the environment file for the
appropriate product group.

3. Gotothe$JAVA_TOPdirectory, create asubdirectory “ssl”, and enter that
subdirectory. For example:

% cd $JAVA_TOP
% mkdir sdl
% cd ssl

4. Copy thefollowing three files from any 8i installation to the current directory:

2-22 Oracle iPayment Implementation Guide

Setting Up SSL Security for Payment System Servlet Communication

$ORACLE_HOMEJjlib/javax-sd-1_1.jar
$ORACLE_HOMEJjlibljss-1_1.jar
$ORACLE_HOMElib/libnjssi8.so

Note: $ORACLE_HOME in this case refers to your 8i directory, not
the default Oracle Home, which is based on 8.0.6.

Note: If you do not have an 8i installation on your web server, you can
copy these files from your database server using the ftp command.

Set up the runtime environment variables.

If you are building your electronic commerce application asa servlet and JServ is set up
to start automatically, you need to modify CLASSPATH and LD_LIBRARY_PATH in
your servlet engine’s configuration.

If your JServ is set up to start manually, you need to modify the CLASSPATH and LD _
LIBRARY _PATH in your shell environment variables, or in the script used to start
JServ (for example, jservctl).

Here is an example for modifying these variablesin the Apache servlet engine (JServ)
configuration file. For Apache JServ, you have to edit the jserv.properties file to set the
CLASSPATH and LD_LIBRARY _PATH environment variables. To add the two SSL
jar filesfrom step 1 to the CLASSPATH, add the following linesto jserv.properties:

wrapper.classpath=$JAVA_TOP/ssl/javax-sd-1_1.jar
wrapper.classpath=$JAVA_TOP/ssl/jssl-1_1.jar

To add the shared library from step 1to the LD_LIBRARY _PATH, you must find the
linein jserv.properties that begins with:

wrapper.env=LD_LIBRARY_PATH=
and add the following to the end of that line:
$IAVA_TOP/ssl

Note: Use acolon to separate the directory you are adding from the
existing ones.

Configuring iPayment 2-23

Setting Up SSL Security for Payment System Servlet Communication

If thereisno such LD_LIBRARY _PATH line, create one by adding the following line
to jserv.properties:

wrapper.env=LD_LIBRARY_PATH=3$JAVA_ TOP/sdl

If you have a stand-alone application, you need to modify CLASSPATH and LD _
LIBRARY_PATH. Append:$JAVA_TOP/ssl/javax-sdl-1_1.jar: $JAVA_

TOP/ssl/javax-sdl-1_1.jar to CLASSPATH and append:$JAVA_TOP/ssl to LD
LIBRARY _PATH environment variable.

Note: You may not have defined the $JAVA_TOP environment variable
in your environment. In that case, you should include the fully qualified
physica path.

2-24 Oracle iPayment Implementation Guide

Enabling the Scheduler

Enabling the Scheduler

The iPayment scheduler provides the ability to handle payment transactions that cannot be
processed in real-time. Such transactions may be of two kinds - transactions that can be
processed some time after they are submitted to iPayment, or transactions where the
back-end payment system cannot process requestsin real-time. Scheduling is also useful for
automating recurrent associated tasks such as batch closes. Batch closes are performed in a
processor-model payment system like Paymentech.

The iPayment scheduler can be configured to perform specific tasks with each invocation.
The tasks to be performed are specified through task parameters.

For the scheduler to run successfully, ensure that jsdk.jar library and ApacheJServ.jar arein
the CLASSPATH of the machine where the scheduler is running.

Configuring iPayment 2-25

Registering Electronic Commerce Applications

Registering Electronic Commerce Applications

All the APIs that an electronic commerce application calls must passitsidentifier, which lets
Oracle iPayment track the application that the requests are coming from. The identifier
generated during registration must be stored by the application. You must only register
applications that are not part of the Oracle e-Business suite. All electronic commerce
application needs to pass the identifier in the API calls. Oracle iPayment provides an
ECConfig utility, to add, modify, or list electronic commerce applications.

Requirements for Setting up and Using the ECConfig Utility
« Javaexecutable in your application environment

« SAPPL_TOP/javain your CLASSPATH environment variable.
Thisisincluded in the classpath after you set up the applications environment
« Thesetwo jar files must also exist in the path:

/iIAS/ApachelJsdk/lib/jsdk.jar
liAS/ApachelJserv/libexec/ApachelServ.jar

Using the EcConfig Utility
« To add an electronic commerce application, use the following command:

j ava- DOTFDBCH LE=<dbc fil e | ocati on>- ¥ r amewor k. Loggi ng. system fi | enane=<| og

fil e> - Dservi ce. Loggi ng. conmon. fi | enane=<I ogfi | e> or acl e. apps. i by. ecapp. EcConfi g
add “Ec App Nare” “Short Name”

Exanpl e: j ava- DOTFDBCH LE=<dbc fil e

| ocati on>- Of r armewor k. Loggi ng. systemfi | ename=<l og fil e>

- Dservi ce. Loggi ng. common. fi | ename=<l ogfi | e> oracl e. apps. i by. ecapp. EcConfi g add
“ny ec application” “nyapp’

« To modify aregistered e ectronic commerce application, use the following command:

j ava- DOTFDBCHI LE=<dbc fil e | ocati on>- ¥ r amewor k. Loggi ng. system fi | enane=<| og
fil e> - Dservi ce. Loggi ng. conmon. fi | enane=<I ogfi | e> or acl e. apps. i by. ecapp. EcConfi g
nodi fy <id>'Ec App Nane' ' Short Nane'

<id> istheidentifier of the electronic commerce application that was generated while
adding the electronic commerce application. You can also retrieve the identifiers of
applications using the list command.

Exanpl e: j ava- DOTFDBCH LE=<dbc fil e
| ocati on>- Of r armewor k. Loggi ng. systemfi | ename=<l og fil e>

2-26 Oracle iPayment Implementation Guide

Registering Electronic Commerce Applications

- Dservi ce. Loggi ng. common. fi | ename=<l ogfi | e> oracl e. apps. i by. ecapp. EcConfi g
nodi fy 1234 “ec app nane” “ecapp’

« Tolist all the registered e ectronic commerce applications use the following command:

j ava- DOTFDBCHI LE=<dbc fil e | ocati on>- ¥ r amewor k. Loggi ng. system fi | enane=<| og
fil e> - Dservi ce. Loggi ng. conmon. fi | enane=<I ogfi | e> or acl e. apps. i by. ecapp. EcConfi g
list

Configuring iPayment 2-27

Loading Risky Instruments

Loading Risky Instruments

The Risky Instruments upload utility is a Java application used to store risky payment
instruments. It is called RiskylInstrUtil.

Requirements
« Javaexecutable in your application environment

« Oracle Applications Java class Library in the CLASSPATH. The Oracle Applications
Javaclass Library isincluded in the classpath after you set up the applications
environment.

Java Commands

j ava- DOTFDBCH LE=<dbc fil e | ocation> - X ranewor k. Loggi ng. systemfi | enane=<l og
file> -Dservi ce. Loggi ng. common. fi | enane=< ogfi | e>
oracle.apps.iby.irisk.admn. Rskylnstril [ADD DELETE [fil enane]

This command requires an operation and afilename. It modifies the risky instruments table
in the database depending on the entriesin thefile.
Or

j ava- DOTFDBCHI LE=<dbc fil e | ocati on>- ¥ r amewor k. Loggi ng. system fi | enane=<| og
file> -Dservi ce. Loggi ng. common. fi | enane=< ogfi | e>
oracle.apps.iby.irisk.admn. Rskylnstruil DELETE all

This command deletes al the risky instruments in the table.

File Format
« Eachline corresponds to one risky instrument.

« Thefields are comma separated and are in the following order: Payee identifier,
instrument type, and creditcard number. Instrument type has to be aCREDITCARD.
For example:

payeel, CREDITCARD, 4500234023453345

« For the add operation, each risky instrument in the file, that has a valid payee identifier,
instrument type, and a new credit card number, is added to the table.

« For the delete operation, each risky instrument that matches the payee identifier,
instrument type, and the credit card fields, is deleted from the table.

« The command prints the results of the operation on each risky instrument in the file.

2-28 Oracle iPayment Implementation Guide

Enabling the XML Framework

Enabling the XML Framework

iPayment incorporates a XML framework allowing it to communicate with BEPs using
XML. Enabling this framework is mandatory and requires the following steps:

Oracle's XML parsing libraries (xmlparserv2.jar and sax2.zip) must be in iPayment's
CLASSPATH. Please check the relevant properties files for the Jserv instance iPayment
is running on. By default, both libraries are included in the Jserv configuration of
Oracle's Internet Application Server (1AS).

The IBY: XML_BASE property (and, optionaly, the IBY: JAVA_XML_LOG
property) must have correct values. See’iPayment Properties’ in the Oracle iPayment
Concepts and Procedures Guide for a description of both properties.

Configuring iPayment 2-29

Setting up Entities in the Oracle iPayment User Interface

Setting up Entities in the Oracle iPayment User Interface

To set up Oracle iPayment user interface, see the Oracle iPayment Concepts and Procedures
Guide.

2-30 Oracle iPayment Implementation Guide

3

Using iPayment with External Front End
Applications

This chapter explains the public APIs used in Oracle iPayment. Topics include:
Overview of Oracle iPayment APIs
Implementing Electronic Commerce Applications APIs

Security Considerations

Using iPayment with External Front End Applications 3-1

Overview of Oracle iPayment APIs

Overview of Oracle iPayment APIs

Oracle iPayment provides APIswhich can be implemented.

« Implementing Electronic Commerce Applications APIs: these APIs are mainly used for
payment processing.

3-2 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

Implementing Electronic Commerce Applications APIs

Oracle iPayment provides various types of APIs to integrate electronic commerce
applications with Oracle i Payment.

If you are using an electronic commerce application other than the preintegrated Oracle
applications, you must implement the electronic commerce application’s APIsto link your
application to iPayment.

Electronic commerce applications can embed the Oracle i Payment functionality within their
application, which eliminates the need to access Oracle iPayment as a standal one
application, and hence improves performance, and simplifies the setup.

This section describes the various APIs that are provided to the el ectronic commerce
applications for using the features of Oracle iPayment. The APIs were categorized into these
categories:

« Payment Instrument Registration APIs

« Payment Processing APIs

« Risk Management APIs

» Credit Card Validation APIs

« StatusUpdate API

Oracle iPayment provides APIsin these programming languages:

« JavaAPIsfor Electronic Commerce Application

« PL/SQL APIsfor Electronic Commerce Applications

This diagram shows the integration of APIs with Oracle iPayment.

Using iPayment with External Front End Applications 3-3

Implementing Electronic Commerce Applications APIs

Figure 3—-1 Oracle iPayment integrating with APIs

iPayment
Repositary
11i ECAPP
PL/iEGL APz
Scheduler
AP HTTP Paytnent
calk System
Cartridge
EC .‘“\.FIICI ECZerviet
(USIHEPTSL)B@L iPayment iPayment
11i : 11i
iPayment
EC App) Paymert e
E(?J;E; Java Engine System HTTR
Jawa APIs) APz APz

3-4 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

Payment Instrument Registration APIs

Payment Instrument APIs provide the functionality to register a payor’s bank, credit card,
PINless debit card, or purchase card.

OralnstrAdd

This APl is provided to register a user’s bank, credit card, PINIess debit card, or purchase
card account information with Oracle iPayment. Oracle iPayment generates a Pmtinstid if
thisregistration is successful. Thisidentifier isused for payment transactions or for deleting,
modifying, or inquiring about this account. Instrument number (credit card number, PINless
debit card, purchase card number, or bank account number) and payor identifier together
have to be unique.

OralnstrMod

This APl is provided to modify registered payment instrument account information with
Oracle iPayment.

OralnstrDel
This APl is provided to delete registered payment instrument account information.

Oralnstring

There are two inquiry APIs. One queries instrument information for a single given
instrument. The other queries al registered payment instruments for a given payor. The
result may contain amix of credit cards, PINIess debit cards, purchase cards, or bank
accounts.

Using iPayment with External Front End Applications 3-5

Payment Processing APIs

Payment Processing APIs

These APIs are the transactional APIs that support various payment operations. The

€l ectronic commerce applications use these APIs to process various transaction types. For
example, authorization of credit cards, PINless debit cards, and purchase cards, transfer of
funds from one bank account to another, capture, cancel, return, and others. A list of such

APlsare provided below.

OraPmtReq

This APl supports authorization and authorization with capture for credit card, PINIess debit
card, and purchase card payments. This APl aso supports inbound account transfers and
electronic funds transfer online validation.

When an electronic commerce application is ready to invoke a payment request (possibly
due to auser action), it calls this API. If the operation is successful, atransaction identifier is
generated by Oracle iPayment and is returned as part of the result. This transaction identifier
can be used later by the electronic commerce application to initiate any other operation on a
payment.

For example, to modify a payment or capture a payment, the el ectronic commerce
application sendsthis identifier with other information that is needed to perform the
operation requested.

If apayment is either a credit card, PINIess debit card, or a purchase card payment, and the
reguest is online, Oracle iPayment can perform risk analysis with the payment request
(Authorization).

To enable risk analysis with authorization, either setup the payment request with risk flag set
to true in one of itsinput objects (Refer to Java Documentation for details) or check the
Enabled radio button in the Risk Management Status screen for that payee. If either of the
conditions are satisfied, the el ectronic commerce application will check the Riskresp object
that is returned as part of the payment response object to the Payment Request API.
Electronic commerce applications can also invoke the Payment Request API to evaluate a
specific formula by passing the PaymentRiskinfo object.

This APl isaso used after avoice authorization is done to enable Oracle iPayment to handle
follow-on operations. To useit for a voice authorization, set up the payment request’s input
objects with the Voice Authorization flag set to true and the Authorization Code variable set
to the authorization code issued by the financia institution. See Oracle iPayment Java
Documentation for details.

3-6 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

OraPmtCanc
A scheduled payment can be canceled by an electronic commerce application using this API.

OraPmtQryTrxn

This API provides interface for inquiring the status or history of a payment to electronic
commerce application. If a payment has been scheduled and the payment system supports an
inquiry operation, the latest status is obtained from the payment system. Otherwise it sends
the latest status of the payment asit isin Oracle iPayment. History of apayment can aso be
obtained.

OraPmtCapture

When a credit card or purchase card is used as part of a payment request and only an
authorization is requested, the el ectronic commerce application has to capture the payment
a alater time. The following APIs allow the el ectronic commerce application to capture al
such payments.

OraPmtReturn

This APl isused for credit card, PINIless debit card, and purchase card specific operations. It
alows processing returns from the payor.

Gateway model payment systems process capture operations online. If the captureis still in
the Gateway's open batch (that is, the batch has not been closed) you should call
OraPmtVoid. If the batch has been closed, you need to call OraPmtReturn. The batch needs
to be closed again before the return is processed. This can be confusing since Gateways can
be set up to close batches automatically, for example, once per day.

Processor model payment systems process captures offline. If the captureis still in
iPayment's open batch, call OraPmtVoid. If the batch has been closed, call OraPmtReturn.
The batch needs to be closed again after the return operation for the return to be processed.

OraPmting

This API retrieves the payment related information that was sent at the time of a payment
request (OraPmtReq API). This information includes payment instrument, payee, tangibleid
(bill or order), and payor. If the electronic commerce application does not store the payment
information, then thisis a useful API to support modification of payment requests. It can
retrieve the payment information and display it to the end user for modification.

Using iPayment with External Front End Applications 3-7

Payment Processing APIs

OraPmtVoid

This APl alows el ectronic commerce application to void operations submitted earlier.
OraPmtVoid API is supported only to void certain credit card, and purchase card operations.
Oracle iPayment supports both online and offline OraPmtVoid API calls.

Voiding auths electronically is not supported by some processors or gateways. Only afew
card-issuing banks supported it while the vast mgjority did not. Cancelling an authorization
could only be done manually (by phone) or by letting the auth expire.

Thus, within iPayment, calling OraPmtVoid for an Online Auth results in the current
payment system servlets returning status 8 - Operation not Supported. For an Offline Auth,
you can void the Authorization if it is still in the iPayment open batch and has not yet been
sent to the payment system.

OraPmtCredit

This API provides credit and Electronic Fund Transfer (EFT) operations. Electronic
commerce applications can use this API to give stand-alone credit to the customer. If the
operation is successful, a transaction identifier is generated by Oracle iPayment. This
Identifier isused later to initiate any other operation on the payment. For example, to cancel
the credit, electronic commerce application sends this identifier with other information that
is needed to perform the cancellation.

OraPmtCloseBatch

The Close Batch API allows a payee or an e ectronic commerce application to close a batch
of previously performed credit card, or purchase card transactions and if necessary PINIess
debit card. The transaction types that are included in a batch are: capture, return, and credit.
This operation is mandatory for a terminal-based merchant.

A host-based merchant may not have to explicitly close the batch because the batch is
generally closed at predetermined intervals automatically by the processor. An electronic
commerce application has to get this information from its merchant’s acquirer.

OraPmtQueryBatch

This API provides an interface to the electronic commerce application to query the status of
an existing batch and a closed batch.

3-8 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

Risk Management APIs

These APIs allow electronic commerce applications to do risk analysis independently for
credit card, PINless debit card, and purchase card transactions. These APIs together can
evaluate any risk formulathat is configured for a payee.

A risk formula can contain any number of risk factors with different weights associated with
them. When Risk APl 1iscalled, it evauates all the factors configured in the formula except
the AV'S Code risk factor. If arisk formulahas an AVS Code risk factor, then, Risk API 1,

in the response object, indicates that the formula has an AV S Code risk factor. This alows
el ectronic commerce applications to completely or partialy check the risk formulaand
decide whether to perform an authorization or not.

If the response of the first Risk API 1 indicates that the payment is not risky, then electronic
commerce application can perform the authorization and complete the rest of the evaluation
by calling Risk API 2.

Electronic commerce applications can call Risk APl 2 by passing the same payeeid, the
formula name, and the AV S code that was returned during the authorization response and
the risk score that was returned as part of the response in Risk API 1. The response object of
Risk API 2 contains the finally evaluated risk score.

Risk API'1

This APl evaluates the risk formula associated with the payee id passed as part of the input
object, PmtRiskInfo. This API can eva uate a specific formula or the implicit formula
depending on the input object. After evaluation, this API constructs the response object
indicating if the AVS Code risk factor is a part of the formula or not by setting the flag,

AV SCodeFlag. If thisflag is set to true, then electronic commerce applications need to call
the Risk API 2 to complete the risk evauation of the formula.

Risk API 2

This API needs to be called when the AV SCodeFlag in RiskAPI 1 response object indicates
that the formula contains AV S Caode factor. When this APl is called, it only evaluates the
AV S code factor. The input object of this API contains the same payee id and the formula
name that was passed in Risk API 1 and the AV S Code that was returned by the payment
system for the payment request. The response object that this API returns, contains the final
risk score of the formula.

Using iPayment with External Front End Applications 3-9

Credit Card Validation APIs

Credit Card Validation APIs

The Credit Card Validation APIs provide methods for determining the credit card type of a
credit card number and for doing basic authentication. Since most credit card types specify
the number of digits and a prefix for all valid credit card accountsin their company name, it
is possible to determine the credit card types of most credit card numbers. Also, since the
digits of most credit card types must (using a special agorithm) be evenly divisible by 10, it
is possible to determine if acredit card number isvalid or not. These APIs do not perform
some of the more advanced credit card verification techniques available to back end
payment systems, such as billing address verification. These APIs allow many common
errors to be caught, such as wrongly typed or truncated credit card digits. By alowing
common errorsto be caught by the electronic commerce application, performanceis
improved, since the cost of calling these APIs is much less than sending a request to the
back end payment system.

The Credit Card Validation APIs are created as part of the | BY _CC_VALI DATE package
and this package is installed in the APPS schema.

Main Methods of Credit Card Validation APIs
The Credit Card Validation APIs consist of three main methods.

1. Method St ri pCCisusedtoformat araw credit card number input by the customer.
St r i pCCremoves common filler characters such as hyphens and spaces until it
produces a credit card number consisting only of digits. St ri pCC must be called
before the credit card number is passed to the other methods.

2. Method Get CCType returns the credit card type of a credit card number, where each
credit card type, including values for invalid and unknown types is a constant in the
package.

3. Method Val i dat eCC, which takes both a credit card number and date. It returns a
boolean value indicating whether the credit card can still be used or not.

Note: ThelN parametersp_api _version andp_init_nsg_

i st andthe OUT parametersx_nsg_count andx_nsg_dat a are
ignored. If an unexpected error occurs, X_r et urn_st at us will be set
to FND_API . G_RET_STS_UNEXP_ERROR. Thiswill happen if the
credit card number hasinvalid charactersinit.

DECLARE
-- each character specifies a possible filler characters in the credit

3-10 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

-- card nunber; i.e. a character that can safely be stripped anay
pfill _chars VAR(HAR(3) :="'* -#;

p_cc_nunber VARCHAR(20) :='4111*1111 1111- 1111# ;

p_api _version NUMBER : = 1. 0;

p_init_nmsg |ist VARCHAR2(2000) :="' ';

X_return_status VARCHARZ2(2000);

X_nsg_count NUMBER

Xx_Irsg_dat a VARCHAR2(2000) ;

-- wll hold the credit card nunber stripped of all characters except
-- digits; credit card nunbers nust be of this formfor the Get CClType
-- and Val i dat eCC net hods

v_cl ean_cc VARCHAR 20);

-- variable to be set by Get OCType net hod

v_cc_type | BY OC VALI DATE CCType;

-- variable set by ValidateOC nethod; indicates if the credit card is
-- still usable

v_cc_val i d BOOLEAN

-- credit card expr date; rolled to the end of the nonth

-- by the ValidateCC net hod

v_expr_date DATE : = SYSDATH);

BEG N

-- the credit card nunber nust first be stripped of all non-digits!!
| BY GC VALIDATE StripQOd p_api _version, p_init_nsg_list, p_cc_nunber,

p_fill _chars, x_return_status, x_nsg_count, X _nsg_data,
v_clean cc);
-- check that illegal characters were not found

IF x_return_status !'= FN\D APl. G RET_STS UNEXP_ERRCR THEN
| BY OC VALI DATE Get CCType(p_api _version, p_init_nsg_list, v_clean_cc,
X_return_status, x_nsg_count, X_nsg_data, v_cc_type);
IF x_return_status !'= FN\D APl. G RET_STS UNEXP_ERRCR THEN
| F v_cc_type=l BY GC VALI DATE c_I nval i dGC THEN
CBVE CUTPUT. PUT_LINE' redit card nunber not a valid one.');
B.SE
CBVE CUTPUT. PUT_LINE' Gredit card nunber QK ');
BEND | F;
| BY GC VALI DATE. Val i dateQQ p_api _version, p_init_nsg_list, v_clean cc,
v_expr_date, x_return_status, x_nmsg_count, x_nsg_data, v_cc_valid);
IF v_cc valid THEN
CBVE QUTPUT. PUT_LINE' Oredit card is valid.");
B.SE
DBVBE QUTPUT. PUT_LINE' Oredit card nunber invalid or has expired.');
BEND | F;
BEND | F;
END,

Using iPayment with External Front End Applications 3-11

Credit Card Validation APIs

Note: An overloaded version of the St r i pCC method exists. It takes all
the same arguments as the version used above exceptp_fi |l _chars.It
getsitsfiller characters from the package constant c_Fi | | er Char s,

which allows spaces and hyphens to be interspersed within the credit card

number.

3-12 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

Status Update API

Oracle iPayment has defined a PL/SQL API that must be implemented by el ectronic
commerce applications when offline payment processing is performed. This API allows the
electronic commerce application to receive a status update. This APl must be defined in a
package. The naming convention of the package and signature of the API are defined bel ow.
Electronic commerce applications must implement the package according to the syntax
defined and create the package in the APPS schemaif they have offline payments.

The package name has to be of the format <application_short_name>_ecapp_pkg. The
application_short_name is athree-letter short name that was given in electronic commerce
application registration. The package should have defined update_status procedure with the
following signature:

PROCEDURE UPDATE_STATUY(

t ot al Rows IN NUMBER

txn_i d_Tab IN APPS, JTF_VARCHAR2_TABLE 100,
reqg_type_Tab IN APPS. JTF_VARCHAR2_TABLE 100,
Satus_Tab IN APPS, JTF_NUMBER TABLE,

updat edt _Tab IN APPS, JTF_DATE TABLE,

ref code_Tab IN APPS, JTF_VARCHAR2_TABLE 100,
o_status aJr VARCHAR?,

o_errcode aur VARCHAR?,

o_errnsg aJr VARCHAR?,

o_statusi ndi v_Tab | N QUT APPS. JTF_VARCHAR?_TABLE 100);

The following list describes the field names in the above signature:
1. totalRows: total number of rows being passed for the update.
2. txn_id_Tab: table of transaction identifiers for which the update is sent.

3. reg_type Tab: table of request types corresponding to the Transaction Identifier. For
each transaction, there might be areq_type associated with it and the electronic
commerce application has to update the correct transaction, based on txn_id and req_
type. Thereason for having areg-typeis to uniquely identify the transaction. For the
same transaction identifiers, there can be multiple transactions. e.g. Authorization and
Capture. Electronic commerce applications can uniquely identify the transaction based
on the valuesin trxnid and req_type.

Thistable lists the various kinds of request types and their descriptions.

Using iPayment with External Front End Applications 3-13

Status Update API

req_type Description
ORAPMTCAPTURE Capture transaction
ORAPMTCREDIT Credit transaction
ORAPMTREQ Authorize transaction
ORAPMTRETURN Return transaction
ORAPMTVOID Void transaction

4, Satus Tab: table of statuses corresponding to each transaction.

Thistable lists the various values and their statuses.

Value Status

0 Paid

5 Payment failed
13 Scheduled

15 Failed

17 Unpaid

18 Submitted

Note: Please refer to Table D-15 for a complete list of values and their
statuses.

5. updatedt_Tab: table for the last update date for each transaction.
6. refcode_Tab: table for the reference code for each transaction.

7. 0_status: the overall status of the procedure. If there are errorsin trying to execute the
procedure, electronic commerce application should set up an appropriate value in this
field.

8. o_errcode: the error code for any errors which might have occurred during processing.
9. o_errmsg: the error message for the error.

10. o_statusindiv_Tab: table of status values which have been updated. If the status value
has been updated by the electronic commerce application for a particular transaction, it

3-14 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

should set the value to TRUE for that transaction, otherwise, it should set the value to
FALSE.

Note: Inthe above procedure, for each transaction there will be an entry
in the table parameters. If there were ten transactions of this electronic
commerce application, whose status has changed, there will be ten entries
in each table parameters.

When Does the Scheduler Invoke the API?

The Scheduler picks up all the offline payment transactions to be scheduled every timeitis
run. After all the offline payment transactions are processed either successfully or
unsuccessfully, the Scheduler hasto update the status changes, if any, of each transaction, to
the appropriate electronic commerce application. To update the electronic commerce
application, the Scheduler calls the PL/SQL API, which isimplemented by that electronic
commerce application.

Pseudo Code for Implementing the PL/SQL API by Electronic Commerce
Application

For each row update, the statusis based on the request type and the transaction identifier. If
the update is successful, then set up the status val ue appropriately.

for i in 1..total Rows

;update the tables with status, updatedate, and refinfo infornation

updat e tables using status Tab[i], updatedt_Tab[i], refCode_Tab[i] for
the transaction with id txn_id Tab[i] and req_type_tab[i]

if update is successful

o_statusindiv_Tab[i] :="'TRE
el se

o_statusindiv_Tab[i] :="'FALSE
end for;
return

Using iPayment with External Front End Applications 3-15

Java APIs for Electronic Commerce Application

Java APIs for Electronic Commerce Application

All administration and inbound payment processing functionalities are provided via the Java
PaymentService interface. The following information describes how to access and use Java
APIs. Refer to Oracle iPayment JavaDoc for more details.

Note: Guest user properties need to be setup in the database before any
operation can be performed. Please refer to the Setup Document provided
by CRM Foundation for more details.

Obtaining /Releasing the Payment Service Handle

The OraPmt class offers convenient ways to obtain Payment Service handle
(PaymentService) for the user. The application can call various APIs using this handle.
« To obtain the payment service handle, use the following method:

static public PaynentService init() throws PSException

This APl provides Payment Service handle to the user and takes care of al the
necessary session initialization steps.

« To release aPayment Service handle with the session, use the following method:

static public void end() throws PSException

Sample code
The following code gives an example of how these APIs are used.

public static void main(Sring[] args) {
try {
Payrent Servi ce paynent Service = QaPnt.init();
/!l nowyou can call all kinds of APl's
//PSResult result = paynent Servi ce. OdaPm Req(...);

} catch (PSException pe) {
/1 exception handling
Systemout.printIn("Eror code is: " + pe.getCode());
Systemout.printl n("Eror nessage is: " + pe.get Message());

}

finally {
try {

3-16 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

QaPm.end();
} catch (PSException pe) {
/1 exception handling
Systemout. printl n("Eror code is: " + pe.getCode());
Systemout. printl n("Eror nessage is: " +
pe. get Message()) ;

Checking Returned Result from Payment Service API

PSResult is the returned object of all PaymentService APIs. To obtain the status of the
operation, use the following API:

public Sring getSatus();

This APl returns one of the followi ng constants:
PSResul t. | BY SUOCESS/ action succeeded

PSResul t. | BY WARN NG/ action succeeded with warni ng
PSResul t. I BY INF@/ not yet in use

PSResul t. | BY FAILURE/ action failed

If SUCCESS or WARNING isinvoked, aresult object can always be obtained by using the
following API:

public (bject getResult();

If FAILURE isinvoked, aresult object may be returned for payment operation APIs, if this
failure occurred with back- end payment system.

The actual object returned varies with each API. It could be an integer or one of the payment
response objects. You need to clearly cast it. For alist of castings, refer to the Oracle
iPayment Java Documentation for the PaymentService interface.

If WARNING or FAILURE isinvoked, awarning or error message is returned. Use the
following two APIsto retrieve error codes and error messages.

public Sring getCode();// get the error code 'l BY_ XXOXX
public String getMessage(); // get the error nessage text
The following sample code illustrates the behavior of PSResult object.

public bject checkResult(PSResult pr) {
String status = pr.getStatus();
if (status.equal s(PSResult.|BY_FALURE)) {

Using iPayment with External Front End Applications 3-17

Java APIs for Electronic Commerce Application

/1l in case of failure, only error nessage is expected

Systemout.printIn("error code is : " + pr.getCode());

Systemout.printIn("error nessage is : " + pr.getMessage());

(oj ect res=pr.get Resul t ();

if (res!=null) Systemout.println ("failure occured w th backend
Payrent systent);

return res;

}

if (status.equal s(PSResult.|BY SUXCESS)) {
/1 in case of success, only result object is expected
bject res = pr.get Result();
return res; // you need cast this to specific object
/1 based on the APl's you call ed

if (status.equal s(PSResult. | BY WRNING) {
/1l in case of warning, both result object and nessage are
/1 expected
/l warning is returned only for Paynent APls in case of
/1 offline scheduling
Systemout. println("warning code is : " + pr.getCode());
Systemout. println("warning nessage is : " + pr.get Message());
oject res = pr.getResul t();
return res; // you need cast it here too

}

/1 currently IBY INFOis not yet returned by any Paynent Service AP
Systemout.printin("Illegal status VALLE in PSResult! " +
pr.getStatus());

return nul l;

}

Using Payment Service API

After apayment service handle is obtained via the OraPmt class, you can call any of the
following APIs in Payment Service interface. For details, refer to JavaDoc.

Here is some sample codes for the Payment Instrument API, and Payment Processing APIs.
These codes use the checkResult call.

Registering a Credit Card

public void instrAP Sanpl e(Payrment Ser vi ce paynent Ser vi ce,
i nt ecappl d) {
PSResul t pr;

3-18 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

oj ect obj;

QeditCrd cc;

Address addr;

int instrid_cc;

String payerid = "payer1";

addr = new Address("Linel", "Line2", "Line3", "Redwood Shores",
"San Mateo", "CA', "US', "94065");

/1 credit card

cc = new GeditCard();

cc.setName("M Qedit Card");

cc.setFl Nare("d tiBank");

cc.setlnstrBuf ("This is ny credit card description.");
cc.setlnstrNun("4111111111111111"); // the credit card nunber
cc. set CardType(Qonstants. CCTYPE M SA); // the credit card type, should
/1l match the credit card nunber, if set

cc. set ExpDat e(new j ava. sqgl . Dat (101, 0, 10)); // Jan 10, 2001
cc. set Hol der Nane("Mary Smith");

cc. set Hol der Addr ess(addr) ;

/! add the credit card

pr = paynent Servi ce. oral nstr Add(ecappl d, payerid, cc);
obj = checkResult (pr);

if (obj = null) return; // registration failure
instrid cc = ((Integer) obj).intVal ue();

Systemout. printl n("CGedit card regi stered successfully " +
"with instrunent id" + instrid_cc);

Sending a Credit Card Authorization Request

/1 performan ONLINE credit card authorization wth paynment service
public void paynent APl Sanpl e(Paynent Servi ce paynent Service, int ecAppld) {
Bill t;
CoreQredi t CardReq reqTr xn;
QeditCrd cc;
PSResul t pr;
Cor eQr edi t Car dAut hResp resp;

/1 set up the tangible object

t =newBll();
t.setld("orderldl");

Using iPayment with External Front End Applications 3-19

Java APIs for Electronic Commerce Application

. set Amount (new Doubl e(21. 00)) ;
.set Qurrency("UsD');

.set RefInfo("refInfo");

. set Mermo(" neno") ;

. set Wser Account ("user Acct");

— o o+ —+

/1 set up the transaction object

reqTrxn = new CoreQ edi t CardReq() ;

reqTr xn. set NLSLang(" Averi can_Anerica. USTASA 1 ");

reqTr xn. set Mde(Transacti on. O\LI NE) ;

r eqTr xn. set SchedDat e(new j ava. sql . Date(100, 5, 10)); //June 10, 2000
reqTr xn. set Aut hType(Gonst ant s. AUTHTYPE_AUTHO\LY) ;

/1 set up the paynent instrunent

cc = new GeditCard();

cc.set1d(100); // assuming we have previously registered credit
/l card with instrunent id 100

pr =// assunming payeel has al ready been configured with the paynent
/1 service
paynent Servi ce. or aPnt Req(ecAppl d, "payeel", "", cc, t,
reqTrxn);

resp = (QoreQ edi t Car dAut hResp) checkResul t (pr);

if (resp==null) return;

Systemout. printl n("Request finished with transaction id: " +
resp.getTlX));

Registering a Purchase Card

publ i c void instrAP Sanpl e(Paynent Servi ce paymnent Ser vi ce,
int ecappl d) {
PSResul t pr;
oj ect obj ;
Pur chaseCard pc;
Address addr;
int instrid_pc;
Sring payerid = "payerl";

addr = new Address("Li nel", "Line2", "Line3",

"Redwood Shores", "San Mateo", "CA',
"US', "94065");

3-20 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

/1 purchase card
pc = new PurchaseCard();
pc. set Nane("M/ Purchase Card");
pc. set H Nane("d ti Bank");
pc. setInstrBuf ("This is ny purchase card description.");
pc. set I nstrNun{"4111111111111111"); // the purchase card
/1 nunber
pc. set Car dType(" Gonstants. GCTYPE M SA'); // the purchase
/1 card type, should match the purchase card nunber, if
/1l set
pc. set Car dSubt ype("P') ;
pc. set ExpDat e(new j ava. sqgl . Dat (101, 0, 10));
/1 Jan 10, 2001
pc. set Hol der Nane("Mary Smth");
pc. set Hol der Addr ess(addr) ;

/! add the purchase card

pr = paynent Servi ce. or al nstr Add(ecappl d, payerid, pc);
obj = checkResul t(pr);

if (obj == null) return; // registration failure
instrid pc = ((Integer) obj).intVal ue();

Systemout. println("Purchase Card registered " +
"successfully with instrunent id" +
instrid_pc);

Sending a Purchase Card Authorization Request

/1 performan ONLI NE purchase card authorization with
/1 paynent service
public void paynent APl Sanpl e(Payrent Ser vi ce paynent Ser vi ce,
int ecAppld) {

Bll t;
Pur chaseCar dReq reqTr xn;
Pur chaseCard pc;
PSResul t pr;
QoreQ edi t Car dAut hResp resp; // since purchase card
/1 authorization responses are identical to credit card
/1 responses. See javadoc for details.

/1 set up the tangi bl e object

t =newBIlI();
t.setld("orderldl");

t. set Anount (new Doubl e(21. 00));

Using iPayment with External Front End Applications 3-21

Java APIs for Electronic Commerce Application

.setQurrency("UD');
.setRefInfo("reflnfo");

. set Meno(" neno") ;

. set User Account (" user Acct") ;

— o~ o~

/1 set up the transaction object

reqTrxn = new Pur chaseCar dReq() ;

reqTrxn. set NLSLang(" Aneri can_Amrerica. USTASA |") ;

reqTr xn. set Mbde(Transact i on. O\LI NE) ;

reqTr xn. set SchedDat e(new j ava. sql . Date(100, 5, 10));
/1 June 10, 2000

reqTr xn. set Aut hType(Qonst ant s. AUTHTYPE_AUTHO\LY) ;

reqTr xn. set PONum(" PONunt) ;

reqTr xn. set TaxAmount (" 1. 50") ;

reqTr xn. set Shi pToZi p(" 94065") ;

reqTr xn. set Shi pFroni p("94404") ;

/1 set up the paynent instrunent

pc = new PurchaseCard();

pc. set1d(100); // assuming we have previously registered
/1 purchase card with instrument id 100

pr =// assunmng payeel has al ready been configured with
/1 the paynent service
paynent Ser vi ce. or aPmt Req(ecAppl d, "payeel", "", pc,
t, reqTrxn);

resp = (GoreCredit CardAut hResp) checkResul t (pr);

if (resp==null) return;

Systemout. println("Request finished with " +
"transaction id: " +resp.getTI());

3-22 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

PL/SQL APIs for Electronic Commerce Applications

Oracle iPayment provides PL/SQL APIs to those e ectronic commerce applications that
require or prefer PL/SQL interfaces for processing payment operations. Thereis an
additional HTTP call when PL/SQL APIsare called. When electronic commerce
applicationsinvoke these PL/SQL APIs, the APIsin return, call the electronic commerce
servlet through HTTPR.

Oracle iPayment PL/SQL APIs provide all payment related processing and two Risk APIs.
The functionality of these APIsisthe same as the Java APIs.

PL/SQL APIs are created as part of IBY_PAYMENT_ADAPTER_PUB package and these
packages are installed in the APPS schema.

Requirements

1. PL/SQL Package |BY PAYMENT_ADAPTER_PUB must beinstalled in the APPS
schema.

2. Anadministrator must set up Oracle iPayment URL property to Oracle iPayment
electronic commerce servlet's URL using the iPayment administration user interface
before invoking the APIs.

The following PL/SQL code helps you to understand how Oracle iPayment PL/SQL APIs
can be invoked. This example code invokes the Payment Request APl using a credit card. It
also passes risk related information for risk evaluation.

DECLARE
p_api _version NUMBER : = 1.0;

--To initialize nmessage |ist.

p_init_nmsg |ist VARCHAR2(2000) := FND APl.G TRE

p_comi t VARCHAR2(2000) := FND APl . G FALSE
p_validation_|evel NUMBER := FND APl. G VALID LEVEL_FULL;
p_ecapp_id NUMBER : = O;

p_payee_rec | BY_PAYMENT_ADAPTER PUB. Payee_rec_type;
p_payer_rec | BY_ PAYMENT_ADAPTER PUB. Payer _rec_type;
p_pminstr_rec |BY_PAYMENT _ADAPTER PUB. Pntlnstr_rec_type;
p_tangible rec | BY _ PAYMENT_ADAPTER PUB. Tangi bl e_rec_t ype;
p_pnireqgtrxn_rec | BY_PAYMENT_ADAPTER PUB. Pnt ReqTrxn_rec_t ype;
p_riskinfo_rec | BY _ PAYMENT_ADAPTER PUB. R skl nfo_rec_type;
X_return_status VARCHAR2(2000) ;

-- output/return status
X_nsg_count NUMBER,
-- output nessage count

Using iPayment with External Front End Applications 3-23

PL/SQL APIs for Electronic Commerce Applications

X_Irsg_dat a VARCHAR2(2000) ;
-- reference string for getting out put
nessage t ext
X_reqgresp_rec | BY PAYMENT_ADAPTER PUB. ReqResp_rec_type;
-- request specific output response

obj ect
| _nsg_count NUMBER
| _nsg_data VARCHAR2(2000) ;
BEG N
p_ecapp_id : = 66; -- i Paynent generated ECAppl D
p_payee_rec. Payee | D : = "i pay- payeel; -- payee’s I D
p_payer _rec.Payer ID :="'ipay-custl; -- payer’s I D
p_payer _rec.Payer Nane :="'Qustl'; -- Payer’s (Qustoner’s namne)

p_pmreqgtrxn_rec. PmiMde :="'OLINE ;

-- Payrment node (Can be

O\LI NE CFFLI NB)

p_tangible rec. Tangible ID :='"tangible idl; -- Tangible ID/ order 1D
p_tangi bl e_rec. Tangi bl e_Avount := 25.50; -- Amunt for the transaction
p_tangi bl e rec. Qurrency_code :="'USD; -- Qurrency for the transaction
p_tangi ble rec. RefInfo := "test _refinfo3 ;
p_pmireqgtrxn_rec. Auth_Type : = upper (' authonly'); -- request type
p_pminstr_rec.editCardinstr.CC Type := "M sa';

paynent i nstrunent type
p_pminstr_rec. GeditCardinstr.OC Num:="'4111111111111111";

payrent i nstrunent nunber
p_pminstr_rec. editCardlnstr.OC ExpDate : = to_char (sysdat e+300);

paynent instr. Expiration date

--5. RSKINUTS
p_riskinfo_rec. Formula Nane := "test3; -- Rsk formula nane
p_riskinfo_rec. ShipToB |1 To Flag :='TRE ;
-- Hag showing if ship to address sane as Bl
to address
p_riskinfo_rec. Tine_(&_Purchase :="'08:45';
-- Tine of purchase

| BY_PAYMENT_ADAPTER PUB. O aPnt Req
(p_api _version,
p_init_nsg |list,
p_commt,
p_validation_|evel,

3-24 Oracle iPayment Implementation Guide

Implementing Electronic Commerce Applications APIs

p_ecapp_id,
p_payee_r ec,
p_payer _r ec,
p_pniinstr_rec,
p_tangi bl e_rec,
p_pnireqtrxn_rec,
p_riskinfo_rec ,
X_return_status,
X_msg_count
x_nsg_data
X_reqresp_rec);
END,
Payrment Request Rel ated Response. Printing Only If Satus |I's Success
| f(Char (X _Regresp_Rec. Response. Status = *S) Then

-- Gfline Mde Rel ated Response
If P_Pmreqgtrxn_Rec. Pninode = ' GFFLINE Then

Dons_Qut put . Put _Line(* Transaction ID =" || To_Char (X Reqgresp_
Rec. Trxn_ID);

Cons_Qutput.Put_Line (* X Regresp_
Rec. G flineresp. Earliestsettlement_Date ="' ||

To_Char (X _Regresp_

Rec. 0 flineresp. Earliestsettlement_Date));

Cons_Qutput. Put_Line(' X Regresp_Rec. G flineresp. Schedul ed Date ="

I
To_Char (X _Regresp_Rec. O fli neresp. Schedul ed_Date));

H se
Dons_Qut put . Put _Line(* Transaction ID =" || To_Char (X Regresp_
Rec. Trxn_ID);
Dons_Qut put . Put _Li ne(" X Regresp_Rec. Authcode ="' || X Regresp_
Rec. Aut hcode) ;
Dos_Qut put . Put _Li ne(" X _Reqgresp_Rec. Avscode ="' || X Regresp_
Rec. Avscode) ;
Dons_Qutput. Put _Line(' -------------------“--““c-“oomme -)

-- R sk Rel ated Response
I f (X Regresp_Rec. R skrespincluded = ‘' YES') Then
Cons_Qut put. Put _
Ling(=---m-mm e ")
Cons_Qutput. Put_Line(" X Regresp_Rec. R skresponse. R sk_Score=
"|| X_Regresp_Rec. R skresponse. R sk_Score);
Cons_Qut put. Put _Li ne(' X Regresp_Rec. R skresponse. R sk_
Threshold_Val= ']
X Regresp_

Rec. R skresponse. R sk_Threshol d_Val);

Endi f;

Using iPayment with External Front End Applications 3-25

PL/SQL APIs for Electronic Commerce Applications

Endi f;
End If;

3-26 Oracle iPayment Implementation Guide

Security Considerations

Security Considerations

Oracle iPayment is architected to send credit card detailsin the URL. This architecture
requires the logging levels on Apache to be lowered from the default to prevent the credit
card information from appearing in the log files.

In the httpds.conf file, change:
LogFormat "%h %l %u %t \"%r\" %>s %b" common
to:

LogFormat "%h %l %u %t \"%U\" %>s %b" common

Using iPayment with External Front End Applications 3-27

Security Considerations

3-28 Oracle iPayment Implementation Guide

A

Using iPayment with External Payment

Systems

This appendix explains about integrating Oracle iPayment with external payment systems.
The topics covered include:

Overview of Payment System Integration Model
PaymentService APIs

Routing Engine

Integration Point Component Types

Developing a Custom Payment System Integration
Defining a Payment System

System Payment Profile

Formats

Format Validation

Extract Generator

Extract Formatter

Extract Structure

Extract Components

Transmission Functions

Acknowledgment Parser

Using iPayment with External Payment Systems 4-1

Overview of Payment System Integration Model

Overview of Payment System Integration Model

Oracle iPayment provides a complete payment solution. The Payment System Integration
Model allows integration with third party payment systems for credit card, purchase card,
PINless debit card, and bank account transfer processing. The payment systems
communicate with the payment processors and the acquirers/banks to process payment
transactions.

Though the business flow for credit card, purchase card, and bank account transfer
transactions is the same, the system flow is significantly different, with the addition of many
new modules, both internal and external, such as customizable integration points. The
payment system integration model has changed from an API-centered model to a payment
instruction file creation and delivery model. This model reflects the various customizable
integration points exposed for implementing the custom payment system integration for
iPayment.

Flow in gateway and processor model systems

For gateway-model payment systems, since every transaction is online and involves
real-time communication with the payment system, the above flow occurs for every
transaction operation type, such as authorization, capture, credit, etc.

For processor payment systems, the above flow occurs only for online transaction such as
authorization, batch close, and batch query operations. For other operation types, such as
capture and credit, the transaction is batched without communication to the payment system.
Therefore, the flow compl etes after format validation occurs.

4-2 Oracle iPayment Implementation Guide

PaymentService APls

PaymentService APIs

The PaymentService API represents the Java class containing all payment transaction APIs
and acts as the entry point into the iPayment engine. Generic validations are performed here.

Using iPayment with External Payment Systems 4-3

Routing Engine

Routing Engine

The routing engine associates a payment transaction with a payment system and payment
system account. Currently, the routing engine assumes that only a single system payment
profile exists per payment system and that each processor-type payment system has a system
profile defined for each processor.

For implementing custom payment system integrations, a system payment profile must be
defined for the new payment system otherwise the payment system will use the old HTTP
name-value pair BEP APIs.

4-4 Oracle iPayment Implementation Guide

Integration Point Component Types

Integration Point Component Types

The table lists the various integration point component types that maybe implemented while
integrating with a payment system.

Integration Point Type Description

Format Creates the payment instruction file based upon transaction data.

Format Validation Set Format or payment system-specific validations transactions.

Transmission Function Implements a transmission protocol for communicating with the
payment system.

Acknowledgement Parser Parses the payment system's acknowledgments.

Payment System Definition Define attributes for the payment system which the user will
provide in the setup UI.

System Payment Profile The payment processing attributes of a payment system's
specification.

Note: Several of the integration component types are developed in Java.

Using iPayment with External Payment Systems 4-5

Developing a Custom Payment System Integration

Developing a Custom Payment System Integration

The following sections list the tasks for developing a custom payment system integration for
the instrument types. The tasks for an instrument type integration must be performed in an

order. If a payment system supports multiple instrument types, combine the tasks for each
instrument type.

4-6 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration

Developing a Custom Payment System Integration for Credit Cards

The table lists the tasks that must be completed for integrating a credit card payment system.

Task Component Type Mandatory Description

Definethe Payment Payment System Yes Defines the new payment system.

System Definition If the payment system is a gateway
and usesthe old HTTP name-value
pair BEP APIs, you need not
complete any furhter tasks from this
list but procees to implement the
gateway BEP APIs.

Define payment Payment System No Defines the options for all accounts

system account Definition in the payment system.

options

Develop an online Format Yes Develop atemplate for XML

authorization format Publisher.

template

Seed the online Format Yes Define system data attributes for the

authorization format new format.

template

Develop an online Transmission Function Yes Implements a transmission function

authorization protocol.

transmission function

Seed the online Transmission Function Yes Defines atransmission protocol and

authorization associates it with the transmission

transmission protocol function code-point that implements
it. Also defines the protocol
parameters.

Develop an online Acknowledgement Yes Implements an acknowledgement

authorization Parser parser.

acknowledgement

parser

Seed the online Acknowledgement Yes Define system data attributes for the

authorization Parser parser.

acknowledgement

parser

Develop asettlement Format Yes For gateway model payment

format template

system, the format may be identical
to the authorization format template.

Using iPayment with External Payment Systems 4-7

Developing a Custom Payment System Integration for Credit Cards

Task Component Type

Mandatory Description

Seed the settlement Format
format template

Develop asettlement Transmission Function
transmission function

Seed the settlement Transmission Function
transmission protocol

Develop asettlement Acknowledgement
acknowledgement Parser
parser

Seed the settlement Acknowledgement
acknowledgement Parser
parser

Develop aquery Format
format template

Seed the query Format

format template

Develop aquery Transmission Function
transmission function

Seed the query Transmission Function
transmission protocol

Develop an query Acknowledgement
acknowledgement Parser

parser

Seed the query Acknowledgement
acknowledgement Parser

parser

Create credit card System Payment
system payment Profile
profile

Create transaction Format Validation Set
validation set

4-8 Oracle iPayment Implementation Guide

Yes

Yes

Yes

No

For gateway model payment
systems, the transmission function
may be identical to the authorization
transmission function.

For gateway model payment
systems, the acknowledgement
parser may beidentical to the
authorization parser.

The query support is optional for
gateway model payment system.

For most processor payment
systems, an acknowledgement
reguest message is not defined.

Optional for gateway model
payment systems.

Optional for gateway model
payment systems.

Optional for gateway model
payment systems.

Optional for gateway payment
systems.

Optional for gateway model
payment systems.

Defines the payment processing
atributes for the payment system's
credit card processing specification.

Required only for payment
system-specific validations.

Developing a Custom Payment System Integration

Task Component Type Mandatory Description
Create batch Format Validation Set No Never for gateway model payment
validation set system.

Seed validation set
assignments

For processor model payment
system, required only for payment
system specific validations.

Format Validation Set No Required only for payment
system-specific validations.

Using iPayment with External Payment Systems 4-9

Developing a Custom Payment System Integration for Debit Cards

Developing a Custom Payment System Integration for Debit Cards

The table lists the tasks that must be compl eted for integrating a debit card payment system.

Task Component Type Mandatory Description

Definethe Payment Payment System Yes Defines the new payment system.

System Definition

Define payment Payment System No Defines the options for all accounts

system account Definition in the payment system.

options

Develop an online Format Yes Develop atemplate for XML

debit format template Publisher.

Seed the online debit Format Yes Define system data attributes for the

format template new format.

Develop an online Transmission Function Yes Implements a transmission function

debit transmission protocol.

function

Seed the online debit Transmission Function Yes Defines a transmission protocol and

transmission protocol associates it with the transmission
function code-point that implements
it. Also defines the protocol
parameters.

Develop an online Acknowledgement Yes Implements an acknowledgement

debit Parser parser.

acknowledgement

parser

Seed the online debit Acknowledgement Yes Define system data attributes for the

acknowledgement Parser parser.

parser

Develop asettlement Format No Optional for payment system that do

format template not require debit card settlement.

Seed the settlement Format No Optional for payment system that do

format template not require debit card settlement.

Develop asettlement Transmission Function No Optional for payment system that do

transmission function not require debit card settlement.

Seed the settlement Transmission Function No Optional for payment system that do

transmission protocol

4-10 Oracle iPayment Implementation Guide

not require debit card settlement.

Developing a Custom Payment System Integration

Task

Component Type

Mandatory Description

Develop a settlement
acknowledgement
parser

Seed the settlement
acknowledgement
parser

Develop aquery
format template

Seed the query
format template

Develop aquery

transmission function

Seed the query
transmission protocol

Develop an query
acknowledgement
parser

Seed the query
acknowledgement
parser

Create debit card
system payment
profile

Create transaction
validation set

Create batch
validation set

Seed validation set
assignments

Acknowledgement
Parser

Acknowledgement
Parser

Format

Format

No

No

No

No

Transmission Function No

Transmission Function No

Acknowledgement
Parser

Acknowledgement
Parser

System Payment
Profile

No

Yes

Format Validation Set No

Format Validation Set No

Format Validation Set No

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Optional for payment system that do
not require debit card settlement.

Defines the payment processing
atributes for the payment system's
credit card processing specification.

Required only for payment
system-specific validations.

Never for gateway model payment
system.

For processor model payment
system, required only for payment
system specific validations.

Required only for payment
system-specific validations.

Using iPayment with External Payment Systems 4-11

Developing a Custom Payment System Integration for Bank Account Cards

Developing a Custom Payment System Integration for Bank
Account Cards

The table lists the tasks that must be compl eted for integrating a bank account payment

system.

Task Component Type Mandatory Description

Definethe Payment Payment System Yes Defines the new payment system.

System Definition

Define payment Payment System No Defines the options for all accounts

system account Definition in the payment system.

options

Develop an online Format No Only if online verification supported

verification format by payment system.

template

Seed the online Format No Define system data attributes for the

verification format new format.

template

Develop an online Transmission Function No Implements a transmission function

verification protocol.

transmission function

Seed the online Transmission Function No Defines a transmission protocol and

verification associates it with the transmission

transmission protocol function code-point that implements
it. Also defines the protocol
parameters.

Develop an online Acknowledgement No Implements an acknowledgement

verification Parser parser.

acknowledgement

parser

Seed the online Acknowledgement No Define system data attributes for the

verification Parser parser.

acknowledgement

parser

Develop afunds Format Yes

transfer format

template

4-12 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration

Task Component Type Mandatory Description

Seed the funds Format Yes

transfer format

template

Develop afunds Transmission Function Yes

transfer transmission

function

Seed the funds Transmission Function Yes

transfer transmission

protocol

Develop afunds Acknowledgement Yes

transfer Parser

acknowledgement

parser

Seed the funds Acknowledgement Yes

transfer Parser

acknowledgement

parser

Develop aquery Format Yes

format template

Seed the query Format No Only if payment system supports

format template bank account transfer
acknowledgements.

Develop aquery Transmission Function No

transmission function

Seed the query Transmission Function No

transmission protocol

Develop an query Acknowledgement No

acknowledgement Parser

parser

Seed the query Acknowledgement No

acknowledgement Parser

parser

Create bank account System Payment Yes Defines the payment processing

system payment Profile atributes for the payment system's

profile credit card processing specification.

Create transaction Format Validation Set No Required only for payment

validation set

system-specific validations.

Using iPayment with External Payment Systems 4-13

Developing a Custom Payment System Integration for Bank Account Cards

Task Component Type Mandatory Description

Create batch Format Validation Set No
validation set

Seed validation set Format Validation Set No
assignments

Never for gateway model payment
system.

For processor model payment
system, required only for payment
system specific validations.

Required only for payment
system-specific validations.

4-14 Oracle iPayment Implementation Guide

Developing a Custom Payment System Integration

Seeding Data

The two important points to be remembered while seeding data include:
« Language-specific data

Some tables are segmented, with non-language specific columns appearing in atable
with the _B suffix and language-specific (i.e. trandatable) columns appearing in a
paralel table with the _TL suffix. When inserting in the translated column segment
table you must use the appropriate language/country code for the data being added, for
example, "US" for both columns. It will then be necessary to call some sort of _ADD_
LANGUAGE procedure to fill this table out for all the supported languages used during
the install ation.

« WHO columns
Every table has a common set of change-tracking (WHO) columns.

Thetable lists the the specific functions for the WHO columns.

For the column... Enter the value...
OBJECT_VERSION_NUMBER 1

CREATION_DATE SYSDATE()
CREATED_BY FND_GLOBAL.USER_ID
LAST_UPDATE_DATE SYSDATE()
LAST_UPDATED_BY FND_GLOBAL.USER_ID
LAST_UPDATE_LOGIN FND_GLOBAL.LOGIN_ID

Using iPayment with External Payment Systems 4-15

Defining a Payment System

Defining a Payment System

Thefirst task in integrating any payment system is defining a payment system. The
definition must include both the payment system’s attributes as well as the account options,
if any, defined for the payment system accounts the users will establish.

Payment System Attributes
The table lists key attributes of the payment system.

Attribute Description Constraints
Payment The name of the payment system.
System
Supported The instrument types supported by the Must be one of the following
Instruments payment system. instrument types:
« Credit Cad

. Purchase Card Levd Il/Levd 111
. PINless debit card

Type Payment system model type. See Must be either processor or gateway
Understanding Gateway-Model and model payment system.

Processor-Model Payment Systemsin the
iPayment Concepts and Procedures guide for
adiscussion of the differences between the
processor and gateway payment system

models.
Suffix Unique 3-letter identifier for the payment Must not be any of these reserved
system. suffixes seeded in iPayment. The

reserved suffixes are:

« cyb (Cybercash)

« lop (sample gateway system)

« €efs(Concord EFSnet)

« ptk (Paymentech)

« fdb (FDC North)

« Cit (Citibank Merchant Services)

« cep (Citibank Edifact Bank
Transfer)

4-16 Oracle iPayment Implementation Guide

Defining a Payment System

Attribute Description Constraints

Servlet Base The URL of the payment system servlet. Must be aURL in thisform:

URL http://<host>:<post>/<servlet
zone>.

All of these attributes can be set in the Payment System details page of the iPayment
administration user interface. See Creating a New Payment System in the iPayment
Concepts and Procedures Guide.

Note: For implementing the custom payment system integrations, you
must enter appropriate values while creating a payment system in the
Payment System details page.

Using iPayment with External Payment Systems 4-17

Account Options

Account Options

Account options are attributes defined by the payment system for its user accounts. Once an
account is created in the Payee Account Information page (see Creating a New Payeein the
iPayment Concepts and Procedures Guide), account options may be set if defined for the
payment system. Account options are used for payment instruction file generation and are
represented in the funds capture extract.

Seeding Account Options Definitions
The table lists the attributes of an account option.

Attribute Description Constraints
BEPID The primary key of the payment system Must refer to an existing
to which the account option belongs. payment systemin IBY _
BEPINFO.
ACCOUNT_OPTION_ Theunique code for the account option. Must be unique per payment
CODE This attribute will appear inthe Name system and must have 30
sub-element of the AccountOption characters.
element.

ACCOUNT_OPTION_ The datatype of the account optionto Supported va uesinclude:

DATATY PE help in Ul vdidation. . VARCHAR?2
. NUMBER
. DATE

DISPLAY_ORDER The display order of the account option
when shown in the Ul.

ACCOUNT_OPTION_ The description of the account option.
NAME

For implementing the custom payment system integrations, if any attributes of the user's
payment system account are required as data when generating the payment instruction file,
the account option's definition must be seeded for the payment system

Once the set of account option definitions are determined, the attributes can be seeded in
iPayment by creating a SQL script to insert them.

4-18 Oracle iPayment Implementation Guide

Defining a Payment System

Note: Insert al attributes except translatabl e attribute ACCOUNT _
OPTION_NAME into table IBY_BEP_ACCT_OPT_NAME_B. Insert
trandatable attribute ACCOUNT_OPTION_NAME into IBY_BEP_
ACCT_OPT_NAME_TL and then cdl function IBY _FNDCPT _
MLSUTL_PVT. BEP_OPT_ADD_LANGUAGE.

The attribute BEPID must be the primary key of the payment system owning the account
option, which is easily determined by this query:

SELECT bepi d
FROM i by_bepi nfo
WHERE (suffix = :BEP_SUFF X) ;

When you create a payment system account, The payment system account will automatically
establish itself in the corresponding account optionsin the Ul.

For implementing the custom payment system integrations, please make sure to document
the values.

Using iPayment with External Payment Systems 4-19

System Payment Profile

System Payment Profile

The system payment profile captures the payment processing "meta-data’ for a particular
payment system specification. The system payment profile defines attributes such as the
formats and transmission protocol s the payment system requires. For every major instrument
type supported by a payment system specification, such as credit card, bank account, and
PINless debit card, a separate system payment profile must be created.

4-20 Oracle iPayment Implementation Guide

System Payment Profile

Credit Card System Payment Profile

A credit card profile defines the attributes of acredit card processing specification. A credit
card system payment profile attributes may be seeded in iPayment by creating a SQL script
to insert them.

Note: Insert al attributes except SYS CC_PROFILE_NAME into table
IBY_FNDCPT_SYS CC_PF B. Insert SYS CC_PROFILE_NAME into
IBY_FNDCPT_SYS CC_PF_TL and call procedure IBY_FNDCPT_
MLSUTL_PVT.SYS CC_PROF_ADD_LANGUAGE.

The attribute PAYMENT_SY STEM_ID must be the primary key of the payment system
owning the profile, which is easily determined by this query:

SH_ECT bepi d

FROM i by_bepi nfo

WHERE (suffix = :BEP_SUFF X) ;

Thistable explains the attributes and allowed values for a credit card system payment
profile.

Attribute Name Description Constraint

SYS CC_PROFILE_CODE Unique identifier for the profile. Must be unique and less than
or equal to 30 characters.

SYS CC_PROFILE_NAME Name of the system profile.
PAYMENT_SYSTEM_ID Identifier of the payment system Equals the primary key of the

the profile belongs to. payment system in IBY _
BEPINFO.

ONLINE_AUTH_ Code of the authorization payment Equals an existing format.
FORMAT_CODE instruction format.
ONLINE_AUTH_TRANS_ Code of the authorization Equals an existing protocol.
PRTCL_CODE transmission protocol.
ONLINE_AUTH_ACK _ Code of the authorization Equals an existing
RDR_CODE acknowledgement reader. acknowledgment reader.

SETTLEMENT_FORMAT_ Code of the settlement payment Equals an existing format.
CODE instruction format.

Using iPayment with External Payment Systems 4-21

Credit Card System Payment Profile

Attribute Name

Description

Constraint

SETTLEMENT_TRANS_
PRTCL_CODE

SETTLEMENT_ACK_
RDR_CODE

QUERY_FORMAT_CODE

QUERY_TRANS PRTCL_
CODE

QUERY_ACK_RDR_CODE

Code of the settlement
transmission protocol.

Code of the authorization
acknowledgement reader.

Code of the settlement payment
instruction format.

Code of the settlement
transmission protocol.

Code of the authorization
acknowledgement reader.

Equals an existing protocol.
Equals an existing
acknowledgment reader.

Equals an existing format or is
NULL.

Equals an existing protocol.

Equals an existing
acknowledgment reader.

4-22 Oracle iPayment Implementation Guide

System Payment Profile

Debit Card System Payment Profile

A debit card system profile defines the attributes of a debit card processing specification. A
debit card system payment profile attributes may be seeded in iPayment by creating a SQL

script to insert them.

Note:

Insert al attributes except SYS DC_PROFILE_NAME into table

IBY_FNDCPT_SYS DC_PF_B. Insert SYS_DC_PROFILE_NAME into
IBY_FNDCPT_SYS DC_PF_TL and call procedure IBY _FNDCPT_
MLSUTL_PVT.SYS_DC_PROF_ADD_LANGUAGE.

The attribute PAYMENT_SY STEM_ID must be the primary key of the payment system

owning the profile, which is easily determined by this query:

SH_ECT bepi d
FROM i by_bepi nfo

WHERE (suffix = :BEP_SUFF X) ;

Thistable explains the attributes and allowed values for a debit card system payment profile.

Attribute Name

Description

Constraint

SYS DC_PROFILE_CODE

SYS DC_PROFILE_NAME
PAYMENT_SYSTEM_ID

ONLINE_DEB_FORMAT _
CODE

ONLINE_DEB_TRANS_
PRTCL_CODE

ONLINE_DEB_ACK_RDR_
CODE

SETTLEMENT_FORMAT_
CODE

SETTLEMENT_TRANS_
PRTCL_CODE

Unique identifier for the profile.

Name of the system profile.

Identifier of the payment system
the profile belongs to.

Code of the debit payment
instruction format.

Code of the debit transmission
protocol.

Code of the debit
acknowledgement reader.

Code of the settlement payment
instruction format.

Code of the settlement
transmission protocol.

Must be unique and less than
or equal to 30 characters.

Equals the primary key of the
payment system in IBY _
BEPINFO.

Equals an existing format.
Equals an existing protocol.
Equals an existing
acknowledgment reader.

Equals an existing format.

Equals an existing protocol.

Using iPayment with External Payment Systems 4-23

Debit Card System Payment Profile

Attribute Name Description Constraint

SETTLEMENT_ACK _ Code of the authorization Equals an existing

RDR_CODE acknowledgement reader. acknowledgment reader.

SETTLE_REQ FLAG Settlement required flag. Indicates Equals one of the following
if asettlement transaction is values:

required after adebit in order to

complete the funds transfer - Y (Yey
« N (No)
QUERY_FORMAT_CODE Code of the settlement payment Equals an existing format or is
instruction format. NULL.
QUERY_TRANS PRTCL_ Code of the settlement Equals an existing protocol.
CODE transmission protocol.
QUERY_ACK_RDR_CODE Caode of the authorization Equals an existing
acknowledgement reader. acknowledgment reader.

4-24 Oracle iPayment Implementation Guide

System Payment Profile

Bank Account Payment Profiles

A bank account system profile defines the attributes of a bank account transfer processing
specification. A bank account transfer system payment profile attributes may be seeded in
iPayment by creating a SQL script to insert them.

Note:

Insert al attributes except SYS EFT_PROFILE_NAME into

table IBY_FNDCPT_SYS EFT_PF B.Insert SYS EFT_PROFILE_
NAME into IBY_FNDCPT_SYS EFT_PF_TL and call procedure IBY _
FNDCPT_MLSUTL_PVT.SYS EFT_PROF_ADD_LANGUAGE.

The attribute PAYMENT_SY STEM_ID must be the primary key of the payment system

owning the profile, which is easily determined by this query:

SH_ECT bepi d
FROM i by_bepi nfo

WHERE (suffix = :BEP_SUFF X) ;

Thistable explains the attributes and allowed values for a bank account payment system

profile.

Attribute Name

Description

Constraint

SYS EFT_PROFILE_CODE

SYS EFT_PROFILE_
NAME

PAYMENT_SYSTEM_ID

VERIFY_FORMAT_CODE

VERIFY_TRANS PRTCL _
CODE

VERIFY_ACK_RDR_CODE

Unique identifier for the profile.

Name of the system profile.

Identifier of the payment system
the profile belongs to.

Code of the verify payment
message format. Note that not al
payment systems support bank
account verification.

Code of the verification
transmission protocol.

Code of the verification
acknowledgement reader.

Must be unique and less than
or equal to 30 characters.

Equals the primary key of the
payment system in IBY _
BEPINFO.

Equals an existing format or is
NULL.

Equals an existing protocol or
isNULL.

Equals an existing
acknowledgment reader or is
NULL.

Using iPayment with External Payment Systems 4-25

Bank Account Payment Profiles

Attribute Name

Description

Constraint

FUNDS_XFER_FORMAT _
CODE

FUNDS_XFER_TRANS_
PRTCL_CODE

FUNDS_XFER_ACK_RDR_
CODE

QUERY_FORMAT_CODE

QUERY_TRANS PRTCL _
CODE

QUERY_ACK_RDR_CODE

Code of the funds transfer
payment instruction format.

Code of the funds transfer
transmission protocol.

Code of the fundstransfer
acknowledgement reader.

Code of the settlement payment
instruction format.

Code of the settlement
transmission protocol.

Code of the authorization
acknowledgement reader.

Equals an existing format.
Equals an existing protocol.
Equals an existing

acknowledgment reader.

Equals an existing format or is
NULL.

Equals an existing protocol or
isNULL.

Equals an existing
acknowledgment reader or is
NULL.

4-26 Oracle iPayment Implementation Guide

Formats

Formats

A format corresponds to a payment instruction file format defined by the payment system. A
payment system uses different payment instruction formats during a transaction processing,
such as authorization, settlement. Before creating aformat in iPayment, a corresponding
XML Publisher template entity must be available.

Developing a Format Template
Thistable describes the XML Publisher template attributes fixed by i Payment:

Attribute Description Constraint

Data Definition The template's data definition Always equd to: IBY_FNDCPT _
determinesthe structure of thedata INSTRUCTION_1 0
to which the template is applied.

For implementing the custom payment system integrations, a payment instruction template
must be developed for XML Publisher using one of the supported XML Publisher template
types such as eText (RTF), XSL, etc. This template must be provided to the users of your
payment system integration aong with instructions regarding the values that should be used
when manually defining the template in the XML Publisher Templates Ul page.

Seeding a Format Template

Once an XML Publisher template is created, the corresponding formats entity must be
created in iPayment.

Thistable explains the attributes for the format template.

Attribute Description Constraint

FORMAT _ The unique identifier of theformat Must be unique and less than or equal to

CODE 30 characters.

FORMAT _ The code of the XML Publisher Must correspond to an existing XDO

TEMPLATE_ template to which this formats template.

CODE corresponds.

EXTRACT_ID The extract used by the format. Always equal t0:100 (for IBY _FUNDS _
CAPTURE_INSTRUCTION extract
version 1.0).

FORMAT _ The type of format. Always equd to:FUNDS CAPTURE _

TYPE_CODE INSTRUCTION

Using iPayment with External Payment Systems 4-27

Formats

Attribute Description Constraint
FORMAT _ The description of the format.
NAME

These attributes may be seeded in iPayment by creating a SQL script to insert them. All
attributes except FORMAT_NAME will be inserted into IBY_FORMATS B.

Note: Insert translatable attribute FORMAT_NAME into IBY _
FORMATS_TL and then call function IBY_FNDCPT_MLSUTL_PVT.
FORMAT_ADD_LANGUAGE.

4-28 Oracle iPayment Implementation Guide

Format Validation

Format Validation

After routing a transaction to a payment system account, the payment system, system
payment profile, and payment instruction format used for the transaction are displayed. Each
format can have a set of validations associated with it, which is applied to the transaction to
determine if the transaction isvalid.

Note: All attributes except FORMAT_NAME will be inserted into
IBY _FORMATS B. Insert trand atable attribute FORMAT_NAME into
IBY_FORMATS_TL and then call function IBY_FNDCPT_MLSUTL _
PVT. FORMAT_ADD_LANGUAGE.

For implementing the custom payment system integrations, you can define format validation
sets if the payment system enforces more stringent validations than iPayment.

Format validation sets allow payment system-specific validations to be performed on a
transaction. This feature is optional and need be implemented only if the generic validations
provided by the iPayment engine are insufficient.

In order to use avalidation set with a particular format, these tasks must be performed:
« Developing aValidation Set
« Seeding aVaidation Set

Using iPayment with External Payment Systems 4-29

Developing a Validation Set

Developing a Validation Set

Processor-type payment systems define two sets of payment format specifications, one for
online transactions, such as authorizations and another for batched transactions, such as
settlements, credits. Therefore, two types of validation set code-points are supported: one for
individual transaction operations and another for batch operations.

For implementing the custom payment system integrations, the Java class or PL/SQL
package implementing the validation set code-point must be distributed to the user who must
then make it accessible to their system by either placing the class file in the CLASSPATH of
the application server hosting the iPayment engine, or uploading the package to their
database instance.

Batch Validation Sets
A batch validation set must be a PL/SQL procedure.

This table explains the signature of a batch validation:

Name Data Type Type Description

p_api_version NUMBER IN Version of the API called; may be ignored

p_init_msg_list VARCHAR2 IN Whether to initialize the message list; may be
ignored

p_mbatchid NUMBER IN Theidentifier of the batch (in table IBY _
BATCHES ALL)

x_return_status VARCHAR2 OUT Status of the call.

X_msg_count NUMBER ouT Number of error messages on the stack.

X_msg_data VARCHAR2 OUT Message stack of errors.

The important parameters for this signature are p_mbatchid and x_return_status. The first
indicates the batch which is being validated and is aforeign key to the MBATCHID primary
key column of table IBY _BATCHES_ALL. With this primary key the aggregate values of
the batch (e.g. amount totals) stored in IBY_BATCHES ALL may bevalidated. The
transactions included in the batch may be queried from table IBY _TRXN_SUMMARIES _
ALL using column MBATCHID as afilter.

If validation for the batch fails parameter x_returns_status should be set to FND_API.G _
RET_STS SUCCESS. An optional message indicating the cause of the validation set failure
may be returned in parameters x_msg_count and x_msg_data aswell using the FND_

4-30 Oracle iPayment Implementation Guide

Format Validation

MSG APIs. If abatch fails then the batch will be rolled back from the database and batch
close operation execution is halted. No transactions are removed from the batch, however,
even if the transaction are the primary cause for why the batch validation failed. The next
batch close attempt will fail unlessthat transaction is voided by the user. Oracle
recommends that all transaction validation is done in a transaction validation set.

Transaction Validation Sets

A transaction validation set validates a single transaction immediately after the transaction is
routed and as soon as the payment system and payment system formats for the transaction
are known. Oracle recommends that all validations for an individual transaction isdonein a
transaction validation set rather than a batch validation set, even if the transaction, such asa
credit transaction, appears as part of abatch.

A transaction validation set is a Java code-point which implements interface:
oracl e. apps. i by. paynment . FndCpt Val i dat i onSet . Thisinterface has asingle
function.

Thistable explains the signature defined by the code-point:

Attribute Name Type Description
ecappld Integer Electronic commerce application id for
the current transaction
payee oracle.apps.iby.ecapp.Payee Transaction payee
pmtlnstr oracle.apps.iby.ecapp.Pmtlnstr Payment instrument used
order oracle.apps.iby.ecapp.Tangible Order
trxn oracle.apps.iby.ecapp.Transaction The transaction performed
<return> oracle.apps.iby.engine VaidationSe Validation results
tResult

Note: The payment instrument, order, and transaction objects are
sub-classes of typesor acl e. apps. i by. ecapp. Pnt I nstr,
oracl e. apps. i by. ecapp. Tangi bl e,

oracl e. apps. i by. ecapp. Transact i on respectively, and
appropriate for the instrument type and operation type of the transaction
being performed.

Using iPayment with External Payment Systems 4-31

Developing a Validation Set

The validation set must return asits result an object of type
oracl e. apps. i by. engi ne. Val i dati onSet Resul t .

The table list the class attributes.

Attribute Name Type Description

Valid boolean Validation result. If passed then true, else
false.

Message String An encoded iPayment error message string

of the form:FND_MESSAGE _
CODE#TOKEN_NAME1=TOKEN_
VAL 1#.

Code String Validation error code, if any.

4-32 Oracle iPayment Implementation Guide

Format Validation

Seeding a Validation Set

A validation set must be seeded along with the assignment indicating its use in this case an
assignment between it and payment format it validates.

The table explains the attributes of avalidation set definition:

Attribute Name

Description Constraint

VALIDATION_SET_CODE

VALIDATION_SET_
DISPLAY_NAME

VALIDATION_LEVEL_
CODE

VALIDATION_CODE_
LANGUAGE

VALIDATION_CODE_
PACKAGE

VALIDATION_CODE_
ENTRY_POINT

Unique identifier of the validation Unique and must be less than
Set. or equal to 30 characters.

Description of the validation set.

Thelevel a which thevalidation Equalsthe following:

id done- transactional (funds .
capture ORDER) or batch « ORDER (transactional)
(payment INSTRUCTION). « INSTRUCTION (batch)

Language in which the validation Equals the following:

set was implemented. . JAVA (only if LEVEL
equals ORDER)

. PLSQL (only if LEVEL
equals INSTRUCTION)

Language-specific package of the Equalsafully quaified Java
code-point. class name or a PL/SQL
package name.

The code-point function/procedure
name.

A validation set and its assignment may be seeded in iPayment by creating a SQL script to

insert them.

Note: Insert al but trandatable attribute VALIDATION_SET _
DISPLAY_NAME into IBY_VALIDATION_SETS B. Insert attribute
VALIDATION_SET_DISPLAY_NAME into IBY _VALIDATION_
SETS B and call PL/SQL package procedure IBY_PP_MLSUTL _
PVT.VAL_SET_ADD_LANGUAGE.

The table explains the attributes of the validation set assignment:

Using iPayment with External Payment Systems 4-33

Seeding a Validation Set

Attribute Name Description Constraint
VALIDATION_ Primary key of the Equals a unique integer
ASSIGNMENT_ID assignment

VALIDATION_SET_CODE Code of the validation set Equals an existing validation set

VAL_ASSIGNMENT _ Type of entity thevalidation Equals: FORMAT
ENTITY_TYPE set isassigned to; always a
format

ASSIGNMENT_ENTITY_ Identifier of the entity the Equals the code of an existing
ID validation set isassigned to; format
always an exigting format

Validation set assignments may be directly inserted into table IBY _VAL_ASSIGNMENTS,
with the primary key ID attribute generated from sequence IBY _VAL_ASSIGNMENTS S.

4-34 Oracle iPayment Implementation Guide

Extract Generator

Extract Generator

The extract generator produces the payment instruction file extract document, a superset of
al data pertaining to the transaction. A format template is applied to the extract to produce a
final payment instruction file.

The payment instruction file extract isa XML document whose structure conformsto XML
schema as defined in file $IBY _TOP/patch115/publisher/defs/IBY_FCI_1 0.xsd. This XML
schema supports transactions for all funds capture instrument types, such as credit card,
bank account, PINIess debit card and all funds capture transaction operation types, such as
authorization, online capture, batch close, etc. For more information, see Funds Capture
Extract.

For implementing the custom payment system integrations, the structure of the funds capture
extract must be thoroughly understood to create the payment instruction file templates.

Using iPayment with External Payment Systems 4-35

Extract Formatter

Extract Formatter

The extract formatter takes the extract document produced by the extract generator and
applies aformat template to produce the final payment instruction file. OracleiPayment uses
the Oracle e-Business Suite application XML Publisher (XDO) as its formatting engine.

For implementing the custom payment system integrations, templates must be created for
every transaction operation type supported by the payment system. If the integration model
for the payment system does not conform to one of formatted payment instruction file
delivery, you can use a ordinary formatting template that produces the unchanged extract
documents as its output, deliver the extract to a servlet using HTTP, and then extract
document to the payment system's native payment request mechanism in the servlet map. An
ordinary template is already seeded by iPayment with atemplate code IBY _IDENTITY.

4-36 Oracle iPayment Implementation Guide

Extract Structure

Extract Structure

The XML Schemaisthe data source definition for al format templates. This means asingle
funds capture extract definition supports both bank account and credit card instrument types.

Element definition Table Legend
Thetable isan example of an element definition table.

Element Name Datatype Description Data Source
Bank Account Aggregate
? BankAccountlD <ldentifier>

* BankAccountNumber String

Each table begins with the root element, followed by a series of indented child elements.
The column preceding the child element's name indicates the child element's cardinality.

Cardinality: The valuesinclude:

"" (blank) - cardinality of 1
'? cardindlity of 0..1
" cardinality of 0..n
'+' cardinality of 1..n

'n' cardinality of n

Element Name: If indicated in boldface denotes the element is a complex aggregate;
otherwiseit isin anormal font.

Datatype: The vauesinclude:

Aggregate - Complex type consisting of child elements. If the element is not the table's
root element then its structure is defined elsewhere

Type - Element conforms to a custom-defined type described in its own table. Elements
that share atype haveidentical child elements.

Scalar - Thiscan be String, Integer, Real, Date, Boolean and are the same as equivalent

SQL types.

Description: Describes the technical or business purpose of the element.

Using iPayment with External Payment Systems 4-37

Extract Components

Extract Components

The funds capture extract consists of data el ements organized hierarchically. Though the
datawithin most such elements are generated through simple, low-cost data fetches from the
iPayment schema, some are the result of complex, high-cost function calls which result in
unacceptable performance when creating an extract instance. Therefore, the extract engine
supports a series of user-defined rules wherein certain "expensive" elements are not
populated if the rule's conditions are met.

In order to support payment formats with unique data requirements, an extensibility element
called 'Extend' is present at every level of the extract, allowing the user to provide the
required data using their own custom functions.

Asthe data required to create funds capture instructions change over time, the extract also
changes by the addition of new elements. To support easy transition to new extract
definitions, each extract has a version number associated with it which will be stored with
every user-defined payment format. The product retains the ability to generate al previous
extracts versions and, based upon the stored version number, provides each payment format
with the appropriate extract instance.

4-38 Oracle iPayment Implementation Guide

Extract Components

Funds Capture Extract

The funds capture extract has a 5-level structure, where each level except the last contains
one or more sub-levels.

The top level isthe funds capture instruction level, and represents a single instructions "file"
to be delivered to the payment system. The 2" level includes 1 or more payee accounts,
each associated with asingle currency and financial institution (bank). The payee accounts
act as destinations for a series of funds capture orders.

A funds capture order, located at the 3" level, is associated with a payment currency, payer
information and payer bank account. A funds capture order also acts as a grouping for
multiple documents receivable that reside at the 4" level. Each document receivableis
associated with asingle order and currency and contains multiple document lines, located at
the 5th level and representing a line item from the associated order.

Thisdiagram illustrates the logical structure.

FundsCapturelnstruction

Payeefccount

FundsCaptureOrder

Payes H Payerlnstrumeant m

DecumentRaceivable

DocumentLine

Using iPayment with External Payment Systems 4-39

Funds Capture Extract

Funds Capture Instruction Elements

The root element of an funds capture extract, corresponding to the document or file to be
eventually delivered to the external payment system, is FundsCaptur el nstruction.

Layout

Element Name Datatype

Description

Data Source

FundsCapturel nstruction
Instructioninfo Aggregate
InstructionSequence Aggregate

InstructionTotals Aggregate

+ PayeeAccount Aggregate

* Extend <NameValue>

Information about the instruction.

Sequentia, possibly periodic,
identifier of the instruction.

Totals for the instruction, such as
funds capture amount totals and
payment instrument counts.

Account (either a bank account or
payment system merchant
account) where captured funds
will be deposited.

Extensibility element. To befilled
with custom user data.

Element Name Datatype

Description

Data Source

Instructionlnfo

IngtructioninternallD Integer

InstructionName String

InstructionCreationDate Time

InstructionSentDate Time

InstructionStatus <L ookup>

Indicates the unique identifier
assigned internaly to this funds
capture instruction

Name of the instruction.

Date of the instruction's creation.

Date the instruction was sent.

Current status of the instruction.

IBY
BA.CREATE_
DATE

4-40 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source

InstructionSequence

SequenceName String Name/code of the sequence.
LastValue Integer Last/current value of the sequence.
Element Name Datatype Description Data Source

InstructionTotals

PayeeA ccountCount Integer The number of payee accountsin
instruction.

Payee Account Level Elements

The payee account level consists of aBankAccount element, followed by funds capture total
elements, and then 1 or more funds capture order elements.

Layout
Element Name Datatype Description Data Source
PayeeAccount

PaymentSystemAc- Aggregate (Merchant) account name assigned

count to the payee by the acting pay-

ment system.
? BankAccount <BankAc- Bank account where funds cap-
count> ture should be deposited.
Payee Aggregate The payee information.
OrderCount Integer Number of funds capture order

using this payer account/instru-
ment as the funds source.

+ FundsCaptureOrder Aggregate Collection of funds capture orders
using the current instrument as the
funds destination.

AccountTotals Aggregate Amount totals for the account

* Extend <NameValue> Extensibility element; to befilled
with custom user data

Using iPayment with External Payment Systems 4-41

Funds Capture Extract

Element Name Datatype Description Data Source
Payee
Name String Payee business name. IBY_PY.DBA_
NAME
Address <Address> Payee business address. IBY_PY.*
ContactInfo <Contact> Contact points for the payee party.
MCC String Merchant category code. IBY_PY.MCC_
CODE
Element Name Datatype Description Data Source
AccountTotals
AuthorizationsTotal <Amount> Total of all authorizations. IBY_BA.
CapturesTotal <Amount> Total of all captures/settlements. IBY_BA.
BATCHSALES
CreditsTotal <Amount> Total of all credits. IBY_
BA .BATCH-
CREDIT
Element Name Datatype Description Data Source
PaymentSystemAccount
AccountName String (Merchant) account name assigned
to the payee by the acting pay-
ment system.
* AccountOption <NameValue> Account configuration option or
value.

Order Level Elements

Data Sources

Data sources for order-level elements come from tablesIBY _TRXN_SUMMARIES ALL
(IBY_TS), IBY_TRXN_CORE (IBY_TC), and IBY_TANGIBLE (IBY_TG). Joinsare
performed using column MTRXNID that acts as aprimary key for the first 3 tables. IBY _
TGisjoined to IBY_TS using column MTANGIBLEID.

4-42 Oracle iPayment Implementation Guide

Extract Components

Layout
Element Name Datatype Description Data Source
FundsCaptureOrder
Order Sourcel nfo Aggregate Information about the order
requestor.
Order Number Aggregate Number and identifiers associated
with the order
PayeeOrderRefID String Payee-assigned order reference IBY _
identifier TGREFINFO
PayeeOrderMemo String Payee-assigned order memo. IBY _
TGMEMO
OrderMedium Enumeration Medium by which the order was
received. Vauesinclude: ECOM-
MERCE, RETAIL, etc.
Order Amount <Amount> Amount of the order. IBY_
TSAMOUNT
Payer <3rdPartylnfo Party information about the funds

a PayerBankAccount

a BankAccountTransac-
tion

b PayerCreditCard

b CreditCardTransac-
tion

b OriginalCCTransac-
? tion

>

<BankAc-
count>

Aggregate

<CreditCard>

Aggregate

Aggregate

capture payer.

The payer's bank account.

The bank account transaction for
the funds capture.

Note there isadigunction
between element groups'a and 'b'.
One of them may appear at the
order level.

The payer's credit card (a source
for the funds capture).

The credit card transaction for the
funds capture.

Original credit card reques which
isafollow-on for the current one.
In aimost al cases the originating

reguest is an authorization and this

element is not present when the
reguest is an authorization.

Using iPayment with External Payment Systems 4-43

Funds Capture Extract

Element Name Datatype Description Data Source
¢ PayerDebitCard <DebitCard> The payer's debit card.
¢ DebitCardTransaction Aggregate The debit card transaction.
OriginalDCTransac- Aggregate The origina debit card request;
tion similar to element Original-
CCTransaction.
? DocumentReceivable Aggregate Document receivable associated
with the funds capture, if any.
* Extend <NameValue> Extensibility element; to befilled
with custom user data
Element Name Datatype Description Data Source
Order Sourcel nfo
ApplicationinternalID Integer Internal identifier of the applica-
tion originating the order request.
ApplicationName String Name of the application originat-
ing the order request.
Element Name Datatype Description Data Source
Order Number
PayeeOrderNumber String Payee-assigned order number
associated with the funds capture.
Element Name Datatype Description Data Source
BankAccountTransaction
ActionType Enumeration Typeof EFT transaction
attempted. Values include:
DEBIT, CREDIT, VERIFY,
VALIDATE.
TransactionDate Date Date of the funds capture.

4-44 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
AuthorizationMethod Enumeration Method by which the payer autho-
rized the transaction. Values
include: WRITTEN, INTERNET _
FORM.
DdiveryMethod Enumeration Method by which the transaction
isto be delivered. Values include:
ACH, FASCIMILE.
* Extend <NameValue> Extensibility element; to befilled
with custom data.
Element Name Datatype Description Data Source
CreditCardTransaction
ActionType Enumeration Type of credit card transaction. IBY_TS.TRX-
Vauesinclude AUTHORIZA- NTYPEID
TION, AUTHCAPTURE,
VOICEAUTH, CAPTURE,
CREDIT, RETURN, VOID.
TransactionDate Date Date of the funds capture. IBY _
TS.CREATION
_DATE
? TraceNumber String Payment system-provided trace
number.
? POSData Aggregate Point-of-sale data for card-present IBY_TC.*
transactions.
? AuthCode String Authorization code. Present for IBY_TC.
voice auth transactions. AUTHCODE
? VoiceAuthFlag Boolean Indicates whether the transaction IBY _
was a voice authorization. TC.VOICEAU-
THFLAG
* Extend <NameValue> Extensibility element. To befilled
with custom data.
Element Name Datatype Description Data Source

OriginalCCTransaction

Using iPayment with External Payment Systems 4-45

Funds Capture Extract

Element Name Datatype Description Data Source

ActionType Enumeration Type of credit card transaction. IBY_TS.TRX-
Vauesinclude AUTHORIZA- NTYPEID
TION, AUTHCAPTURE,
VOICEAUTH, CAPTURE,
CREDIT, RETURN, VOID.

TransactionDate Date Date of the funds capture. IBY _
TS.CREATION
_DATE
? TraceNumber String Payment system-provided trace
number.
? POSData Aggregate Point-of-sale data for card-present IBY_TC.*
transactions.
? AuthCode String Authorization code provided by IBY_TC.
the payment system during theini- AUTHCODE
tial auth.
? VoiceAuthFlag Boolean Indicates whether the transaction IBY _
was a voice authorization. TC.VOICEAU-
THFLAG
Amount <Amount> Transaction Amount. IBY_
TSAAMOUNT
? AVSCode String AV S response from the initial IBY_TC.
auth. AVSCODE
? ReferenceCode String Reference Code IBY_TC.REF-
ERENCECODE
? SecurityValueCheck String Result of the security value check. IBY_
TC.CVV2RES
ULT
? PaymentSystemCode String Payment system code returned IBY_TS.BEP-
during theinitial authorization. CODE
* Extend <NameValue> Extensibility element. To befilled IBY_TRXN_
with custom data. EXTENSIBIL-
ITY.*
Element Name Datatype Description Data Source

DebitCardTransaction

4-46 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
ActionType Enumeration Type of EFT transaction. Values
include: DEBIT, CREDIT, VER-
IFY, VALIDATE.
TransactionDate Date Date of the funds capture.
* Extend <NameValue> Extensibility element. To befilled
with custom data
Element Name Datatype Description Data Source
OriginalDCTransaction
ActionType Enumeration Type of debit card transaction IBY_TS.TRX-
attempted. NTY PEID
TransactionDate Date Date of the funds capture. IBY _
TS.CREATION
_DATE
? TraceNumber String Payment system-provided trace
number.
? AuthCode String Authorization code provided by IBY_TC.
the payment system during theini- AUTHCODE
tia auth.
? PaymentSystemCode String Payment system code returned IBY_TS.BEP-
during theinitial authorization. CODE
DebitNetworkCode String Debit network code. IBY _
TC.DEBIT_
NETWORK _
CODE
* Extend <NameValue> Extensibility element. To befilled IBY_TRXN_
with custom data EXTENSIBIL-
ITY.*
Element Name Datatype Description Data Source
POSData
ReaderCapability Enumeration The card reader capability. IBY _
TC.CARD_
READER_
CAPABILITY

Using iPayment with External Payment Systems 4-47

Funds Capture Extract

Element Name Datatype Description Data Source
EntryMode Enumeration IBY _
TC.CARD_
ENTRY_
METHOD
CardldMethod Enumeration IBY _
TC.CARD_ID_
METHOD
AuthSource Enumeration IBY _
TC.CARD_
AUTH_
SOURCE
ReaderData String Card reader data. Must beintext IBY_
encoded format if binary TC.READER_
DATA
Document Level Elements
Layout
Element Name Datatype Description Data Source
DocumentReceivable
DocumentID String Identifier assigned to this docu-
ment receivable.
DocumentStatus <Lookup- Document Status.
Code>
DocumentDate Date
DocumentCreationDate Date Document creation date.
PaymentDueDate Date Document payment due date.
DocumentType <Lookup> Document Type.
DocumentDescription String User-provided document descrip-
tion.
TotalDocumentAm- <Amount> Total amount of the document.
ount
PaymentAmount <Amount> Amount paid.

4-48 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
+ Charge Aggregate Charges applied to the document.
+ Discount Aggregate Discounts applid to the document.
+ Tax Aggregate Taxes applied to the document.
ShipmentOrigin <Address> Shipping origin of goods pro-
vided.
ShipmentDestination ~ <Address> Shipping destination of goods pro-
vided.
+ DocumentLine Aggregate Document lines.
* Extend <NameValue> Extensibility element. To befilled
with custom user data
Document Line Level Elements
Layout
Element Name Datatype Description Data Source
DocumentLine
LinelD String Identifier for the document line.
LineNumber Integer Number for the document line.
PONumber Purchase Order Number.
LineType <Lookup> Document Type.
LineDescription String Description of the document line.
LineAmount <Amount> Total amount for theline.
? UnitRate Real Price per unit of thisitem.
? Quantity Real Number of line item units.
? InitOfMeasure Real Unit of measure lookup code.
+ Charge Aggregate I(_:harg&s applied to the document
ine.
+ Discount Aggregate Discounts applid to the document

line.

Using iPayment with External Payment Systems 4-49

Funds Capture Extract

Element Name Datatype Description Data Source
+ Tax Aggregate Taxes applied to the document
line.
+ DocumentLine Aggregate Document lines.
* Extend <NameValue> Extensibility element. To befilled

with custom user data.

4-50 Oracle iPayment Implementation Guide

Extract Components

Common Elements

Generic Elements

Currency information comes from FND_CURRENCIES (FND_C), with ajoin performed on
the curreny code if detailed information is required.

Element Name Datatype Description Data Source
<Currency>
Code String Currency code. Acts as foreign
key into table FND_CURREN-
CIES.
? Symbol String FND_C. SYM-
BOL
? MinAccountableUnit Integer FND_C.
MINIMUM _
ACCOUNTAB
LE_UNIT
Precision Integer FND_C. PRE-
CISION
Element Name Datatype Description Data Source
<Amount>
Vaue Real Scale of the amount.
Currency Aggregate Currency of the amount.
Element Name Datatype Description Data Source

<NameValue>

Name String Name

Value String Value
Element Name Datatype Description Data Source
<L ookup>

Using iPayment with External Payment Systems 4-51

Common Elements

Element Name Datatype Description Data Source
Code String L ookup code.
Meaning String Code meaning. FND_LOOK-
UPS.MEAN-
ING
? FormatVaue String Value required by the payment

format using this lookup.

Address Elements

Element Name Datatype Description Data Source
<Address>
AddressinternalID Integer The data source of the address
data
AddressLinel String
? AddressLine2 String
? AddressLine3 String
City String
? County String
State String
Country String
PostalCode String

Contact Information Elements

Element Name Datatype Description Data Source

<Contactlnfo>

ContactName <Person- The contact’s personal name.
Name>
ContactL ocators <Locators> Various means by which the con-

tact may be located or reached.

4-52 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
<PersonName>
FirstName String Person’s first name.
LastName String Person’s first name.
Element Name Datatype Description Data Source
<L ocators>
PhoneNumber String Contact phone number.
FaxNumber String Contact fax machine number.
EmailAddress String Contact e-mail address.
? Website String Contact website.
Bank Account Elements
Element Name Datatype Description Data Source
<BankA ccount> Aggregate
BankAccountinternalID Integer Identifies the data source of the
parent aggregate.
BankName String Name of the bank.
BankNumber String Number assigned to bank.
BranchinternalID Integer Identifies the data source of all
subsequent branch-related ele-
ments.
BranchName String Name of the bank branch.
BranchNumber String Number of the bank branch.
BranchType <L ookup> Bank branch type.
? FederalBankAc- Aggregate Additional information in case the
countlnfo bank account is owned by afed-
eral agency.
AccountHolderName String Name of the account holder.

Using iPayment with External Payment Systems 4-53

Common Elements

Element Name Datatype Description Data Source
3 BankAssignedidenti- Aggregate Identifier assigned to the account
fier holder by the bank.
EFTUserNumber Aggregate EFT numbers assigned by the
bank to the user.
BankAccountName String Name of the bank account.
BankA ccountNumber String The bank account number.
SwiftCode String SWIFT code of the bank account.
IBANNumber String IBAN of the bank account.
CheckDigits String Check digits of the bank account
number.
BankA ccountType <L ookup> The account type.
BankAccountCur- <Currency> Currency by which accounts funds
rency are denominated.
BankAddress <Address> Address of the bank.
? BankContact <Contactinfo> Contact at the bank.
Element Name Datatype Description Data Source

BankAssignedldentifier

Assignedidentifier String Identifier value assigned by the
bank.

AssignedidentifierType- String Code giving the identifier type.

Code

AssignedidentifierType String Description of the identifier type.
Element Name Datatype Description Data Source
EFTUserNumber

AccountLevel EFTNum- String Account-level EFT user number.

ber

BranchLevel EFTNum- String Branch-level EFT user number.

ber

4-54 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
FederalBankAc-
countlnfo
Federad RFCldenti- String Identifier of the US Treasury HZ_CA.CLASS
fier Regional Finance Center (RFC) CODE:sdlect class
where disbursement originatesfor codefrom hz_code
federa agencies. assignmentswhere
(owner_table_name
='HZ_PAR-

TIES)and(owner_
table_id = <Branch-
Party.party_
id>)and(class_cate-
gory ='RFC_IDEN-
TIFIER)andNVL (sta

tus, 'A") ='A
Federa AgencyLo- String Agency Location Code used by CE_BA. AGENCY _
cationCode federa agency. LOCATION_CODE
Federa Abbrevi- String
atedAgencyCode
Federa Employerl- String
dentificationNum-
ber
Credit Card Elements
Element Name Datatype Description Data Source
<CreditCard>
CardNumber String Credit card number.
CardExpiration Date Card expiration date.
? SecurityCode String CVV2 or similar security value.
Cardlssuer Enumeration Credit card issuer type: VISA,
MASTERCARD, etc.
CardHolder Aggregate Card holder information.
CardSubtype Enumeration Purchase card subtype. Possible IBY _TC.CARD_

values defined by lookup IBY _ SUBTYPE_CODE
PURCHASECARD_SUBTYPE.

Using iPayment with External Payment Systems 4-55

Common Elements

Element Name Datatype Description Data Source

CardDatalevel Enumeration Level of data supported with this
instrument; possible values
defined by lookup IBY_PCARD _

DATA_LEVEL.
Element Name Datatype Description Data Source
CardHolder
Holder Name <Person- Card holder name

Name>
BillingAddress Aggregate Billing address of the card holder
? PhoneNumber String Card holder phone number

? EmailAddress String Card holder e-mail address

Debit Card Elements

Element Name Datatype Description Data Source
<DebitCard>

CardNumber String Credit card number.

CardExpiration Date Card expiration date.
? SecurityValue String Account security code.

CardHolder Aggregate Card holder information.

Party Elements

Party elements are those which describe a participant in afinancial transaction, with varying
detailspending on whether they are the 1% party (user) or 3" party (external).

Element Name Datatype Description Data Source

<1stPartylnfo>

? PartylnternallD Integer Indicates the source of the
party data (HZ_PARTIES)
with the Identifier element
holding PARTY _ID.

4-56 Oracle iPayment Implementation Guide

Extract Components

Element Name Datatype Description Data Source
PartyNumber String User-assigned identifier for
this externa party.
Name String Full name of the party.
Party TypeCode String L ookup code for the party
type.
PartyType String The party type.
? Taxldentifier String Tax number of party.
Lega EntityInter- Integer Legal entity data source iden-
nallD tifier, with the identifier ele-
ment holding LEGAL _
ENTITY_ID.
LegaEntityName String Legal name of the party.
Address <Address> Party's address.
Element Name Datatype Description Data Source

<3rdPartylnfo>

? PartylnternallD Integer Indicates the source of the
party data (HZ_PARTIES)
with the Identifier element
holding PARTY _ID.

PartyNumber String User-assigned identifier for
this externa party.

Name String Full name of the party.

Party TypeCode String L ookup code for the party
type.

Party Type String The party type.

? Taxldentifier String Tax number of party.
Address <Address> Party's address.
FirstPartyReference String Identifier by which thisthird

party refersto the first.

Using iPayment with External Payment Systems 4-57

Common Elements

Document Line Elements

Element Name Datatype Description Data Source
Discount

Amount Aggregate Amount of the discount.

RatePercent Real Discount rate in percentage.

DiscountType String Type of discount.
Element Name Datatype Description Data Source
Charge

Amount Aggregate Amount of the charge.

RatePercent Real Charge rate as a percentage.

ChargeType String Type of charge.
Element Name Datatype Description Data Source
Tax

Amount Aggregate Amount of the tax.

RatePercent Real Tax rate as a percentage.

Type String Type of tax.

TaxJurisdiction String Tax jurisdiction.

4-58 Oracle iPayment Implementation Guide

Transmission Functions

Transmission Functions

The transmission function is responsible for delivering the payment instruction file to the
payment system and implements a particular transmission protocol. This function can exist
separately from the rest of iPayment, as an independent servlet.

For implementing the custom payment system integrations, transmission function
code-points must be created for each transmission protocol for communicating with the
payment system.

One component of a payment system specification is the transmission protocol used to
deliver payment instruction files to the payment system. A transmission protocol has
transmission parameters associated with it that define the required system datawhen making
a communication attempt. A transmission protocol also has a defined transmission function
code-point, which is a self-contained unit of code implementing the protocol and
conforming to the interface: or acl e. apps. i by. net. Transm t Functi on.

Thisfunction can exist separately from the rest of iPayment, asits own servlet. The Base
URL parameter in the Payment System details page pointsto this servlet.

Developing a Transmission Function

A transmission protocol isimplemented through a Java class which must implement the
interface or acl e. apps. i by. net. Transni t Functi on. To implement the interface,
the class must define function transmit().

The table explains the signature of the function:

Argument Type Type Description

params javautil.Dictionary ~ The map of protocol parameter names and values
representing the transmission configuration. The names
will be taken from the parameter name definitions for

the protocoal.
payload iavaio.lnputStream The message payload being delivered.
<return> javaio.lnputStream The response to the transmission; maybe null.

On implementing the protocol in function transmit(), the function should handle any system
exception that occurs by the exception of type
oracl e. apps. i by. excepti on. PSExcepti on suchas:

t hr ow new PSExcept i on(PSExcept i on. CCMMN CATI ON FRR(R) ;

Using iPayment with External Payment Systems 4-59

Transmission Functions

If a mandatory transmission protocol parameter is not set, an exception using the same class
type should be thrown such as:

t hr ow new PSExcept i on(PSExcept i on. CCDEPA NT_ARG ERR
PSExcept i on. GCCDEPA NT_ARG ERR TAKEN ARG
<paranet er code>);

Once the transmission function class has been created, turn it into a servlet by:

« Placing the transmission function class in the CLASSPATH of the transmission servlet
classoracl e. apps. i by. bep. Transni t Servl et .

« Opening the servlet zone propertiesfile of the application server that will host the
transmission servlet.

« Creating an dliasfor theclassor acl e. apps. i by. bep. Transni t Servl et , so
that it can be accessed as http://<host>:<post>/<servlet zone>/oramipp_<suffix>, where

« <host> and <port> are the hostname and port of the application servlet
« <servlet zone> isthe servlet zone in which the transmission servlet will run
« <suffix> isthe 3-letter payment system suffix

For implementing the custom payment system integrations, the Java class implementing an

employed transmission protocol must be distributed and then placed in the CLASSPATH of
the application server that hosts the transmission function (that is, the application server that
will host the iPayment transmission servlet).

Seeding a Transmission Protocol

When configuring a payment system account for the payment system in the Ul, you will
automatically see all transmission protocol parameters defined for the payment system's
system payment profile.

The table lists the attributes of atransmission protocol:

Attribute Name Description Constraint

TRANSMIT _ The unique identifier for the protocol. Must be unique and less than or
PROTOCOL_CODE equal to 30 characters.
TRANSMIT _ The description of the protocol.

PROTOCOL_NAME

TRANSMIT_CODE_ Thelanguageinwhich thetransmission Must be JAVA.
LANGUAGE function code-point for the protocol is
implemented.

4-60 Oracle iPayment Implementation Guide

Transmission Functions

Attribute Name Description Constraint
TRANSMIT_CODE_ The code-point package. The A fully qualified class name.
PACKAGE fully-qualified class name of the

transmission function code-point.
TRANSMIT_CODE_ The Code-point entry-point: the Must equal: transmit.
ENTRY_POINT programming language function name

that is called.

The table defines the attributes of atransmission protocol's parameters, sub-entities of the
protocol.

Attribute Name Description Constraints

TRANSMIT _ Theidentifier for the parameter. Must be unique and less than or

PARAMETER_CODE equal tp 30 characters among all
parameters defined for the
protocol.

TRANSMIT _ The datatype of the parameter. Supported values are:

PARAMETER_TYPE . VARCHAR2

« NUMBER
MANDATORY _ Whether the parameter is mandatory; Possible values:
FLAG used for Ul validation during
o . . « Y (Yes)
transmission configuration.
« N (No)
TRANSMIT _ The protocol to which this parameter
PROTOCOL_CODE belongs.
TRANSMIT _ The name of the parameter.
PARAMETER_
NAME

A transmission protocol and its parameters can be seeded in iPayment by creating a SQL
script to insert them.

Using iPayment with External Payment Systems 4-61

Transmission Functions

Note: Insert al but trandatable protocol attribute TRANSMIT_
PROTOCOL_NAME name into tablesIBY _TRANSMIT_PROTOCOLS
B. Insert the translatable attribute TRANSMIT_PROTOCOL_NAME into
IBY_TRANSMIT_PROTOCOLS TL and call the procedure IBY _PP_
MLSUTL_PVT.TRANS PROT_ADD_LANGUAGE.

Insert all but translatable protocol parameter attribute TRANSMIT _
PARAMETER_NAME nameinto tables IBY_TRANSMIT_
PARAMETERS_B. Insert the trandlatabl e attribute TRANSMIT _
PARAMETER_NAME into IBY_TRANSMIT_PARAMETERS_TL and
call the procedure IBY_PP_MLSUTL_PVT. TRANS PARAM_ADD _
LANGUAGE.

4-62 Oracle iPayment Implementation Guide

Acknowledgment Parser

Acknowledgment Parser

A payment system sends an acknowledgement upon receiving a payment instruction
delivery. The task of the acknowledgment parser is to parse the response understandabl e to
iPayment.

For implementing the custom payment system integrations, acknowledgement parsers must
be created for every transmission function. If the payment system does not support
acknowledgement for a protocol, a default acknowledgement parser must still be created
which returns default or trivial values.

Acknowledgement parsers are self-contained code-points that parse responses from the
payment system into aform that can be processed by the iPayment engine.

Seeding an Acknowledgement Parser
The table defines the attributes when seeding an acknowledgement parser:

Attribute Name Description Constraint
ACK_READER_ The unique identifier for the parser. Must be unique and less than or
CODE equal to 30 characters.
READER _ The language that the transmission function Myst be Java.

CODE_ code-point for the parser isimplemented.

LANGUAGE

READER _ The code-point package- the fully-qualified A fully qualified class name.
CODE_ class name of the acknowledgement parser

PACKAGE code-point.

READER _ The code-point entry-point: the Must be parse.
CODE_ENTRY_ programming language function namethat is

POINT called.

After the attributes for an acknowledgement parser are defined, they can be seeded in
iPayment by creating a SQL script to insert them into the table IBY _ACK_READERS.

For implementing the custom payment system integrations, the Java class implementing an
acknowledgment parser must be distributed to the user and then placeit in the CLASSPATH
of the application server hosting the iPayment engine.

Using iPayment with External Payment Systems 4-63

Acknowledgment Parser

Developing an Acknowledgement Parser
All acknowledgement parsers must sub-class the interface:

oracl e. apps. i by. bep. ACKPar ser . Theinterface has a single function, parse, with

these interface:

Argument Name Type Description
ackFile javaio.lnputStream The acknowledgment message or "file".
hints javautil.Dictionary Collection of name-values providing information

about the transaction the acknowledgement isfor.
For example, the instrument type used, credit card

issuer, etc.

<return> bep.ACK A corresponding object for the acknowledgment.

The hints argument to the acknowledgement parser is a collection of name-value pairs
providing information about the transaction the response was created for.

The table lists the possible values in this collection:

Hint Key Description Value
ACKParser.CARD The card issuer; for One of the following card issuer codes:
_ISSUER_HINT acknowledgments
AMEX
where the structure of
the response varies « DINERS
_based upon the card . DISCOVER
issuer.
« ENROUTE
. JXB
« MASTERCARD
« UNKNOWN
« VISA
ACKParser.INSTR The transaction One of the following values:
_TYPE_HINT instrument type. BANKACCOUNT
« CREDITCARD
« PINLESSDEBITCARD
« PURCHASECARD

4-64 Oracle iPayment Implementation Guide

Acknowledgment Parser

Hint Key Description Value

ACKParser. TRXN Thetype of One of the following values:
TYPE_ID_HINT transaction.
_ 1D « 2 (Authonly)

« 3 (Auth capture)

« 5 (Return)
« 8/9 (Capture)
« 11 (Credit)

Value data-sourceis IBY_TRXN_SUMMARIES _
ALL.TRXNTYPEID

Note: The hints are populated only for certain transaction types. For
example, the hints will be not be populated for a batch close operation.

The result of an acknowledgement parser returnsis an object derived from class:
oracl e. apps. i by. bep. ACKPar ser . Thisclassis arecord intended to hold various
response fields mapped from the payment system response.

ACK

The abstract classor acl e. apps. i by. bep. ACK defines the most basic
acknowledgement attributes inherited by all sub-classes. The table describes the structure of
this class and all derived sub-classes.

Note: Implicity, for each attribute listed for a particular classthere exists
get<AttributeName> and set<AttributeName> functions for accessing the
atributes. The get<AttributeName> returns an object of the attribute's type
and the set<AttributeName> takes an object of the attribute'stype as its
single argument.

Attribute Name Type Description
BEPErrorCode String Payment system error code
BEPErrorM essage String Payment system error message

Using iPayment with External Payment Systems 4-65

Acknowledgment Parser

TrxnACK

The abstract classor acl e. apps. i by. bep. Tr xnACK defines common attributes for
transaction acknowledgements. It isa subclass of or acl e. apps. i by. bep. ACKand

hence inherits its attributes as well.

Attribute Name Type

Description

Orderld String
TrxnStatus int
TrxnDate javautil.Date

TrxnReqType String

Extensiblity Set

oracle.apps.iby.util.
NameValuePair|]

Order identifier for this transaction

Status of the transaction. The possible values are:

0 (Success)

1 (Communication error)

2 (Duplicate order id)

3 (Duplicate batch id)

4 (Required field missing)
5 (Payment system error)

8 (Operation not supported)
11 (Pending)

20 (Declined)

Date the transaction was compl eted.

Transaction request type. The possible values are:

ORAPMTCAPTURE (Capture)
ORAPMTCLOSEBATCH (Batch close)
ORAPMTCREDIT (Credit)

ORAPMTREQ (Authorization/Auth
Capture/Verification/Debit)

ORAPMTRETURN (Return)
ORAPMTVOID (Void)

The collection of extensibility name-value pairs.

Attribute ExtensiblitySet is typed as an array of

oracl e. apps.iby.util. NaneVal uePai r objectsand may be optionaly set by the
parser if the payment system acknowledgement contains important data that do not
correspond to any of the attributesin an appropriate acknowledgements object. Any name
values returned by the ExtensiblitySet attributed are stored in table IBY _TRXN_
EXTENSIBILITY and are included in the extract document of any follow on transaction

4-66 Oracle iPayment Implementation Guide

Acknowledgment Parser

using the series of Extend sub-elements which may appear beneath the
Origina CCTransaction or Origina DCTransaction €lements.

The table explains the attributes of the or acl e. apps. i by. util . NameVal uePai r
class.

Attribute Name Type Description
Name String The name/key.
Value String The value.

CreditCardTrxnACK

Theclassor acl e. apps. i by. bep. Credi t Car dTr xnACK holds acknowledgment
information for asingle credit card transaction. The table lists the attributes (not including
ones derived from its parent cl ass or acl e. apps. i by. bep. Tr xnACK).

Attribute Name Type Description

AuthCode String Authorization code.
AV SResponse String Address verification system response from the payment system.

SecurityCodeCheck String Payment system response for the credit card security code
(CVV2) check.

RefCode String Reference code.

BankAccountTrxnACK

Thecl ass oracl e. apps. i by. bep. BankAccount Tr xnACK holds
acknowledgment information for a single bank account transaction. The table lists the
attributes (including inherited ones from or acl e. apps. i by. bep. Tr xnACK).

Attribute Name Type Description

RefCode String Bank reference code.

TrxnAmount oracle.apps.iby.ecapp.Price Actual amount of the transfer.

PostDate javautil.Date Date fundswill be posted.
FundsCommitted Boolean Indicates whether funds were committed.

Using iPayment with External Payment Systems 4-67

Acknowledgment Parser

BatchACK

The abstract classor acl e. apps. i by. bep. Bat chACK defines common attributes of
batch acknowledgments. The table list the attributes, in addition to those inherited from class
oracl e. apps. i by. bep. ACK.

Attribute Name Type Description
Batchld String Identifier of the batch.
BatchStatus int Status of the batch. The possible values are:

« 0(Success)

« 1 (Communication error)
« 3 (Duplicate batch id)

« 5 (Payment system error)
« 11 (Pending)

BatchDate javautil.Date Date of batch submission.

TrxnACKs bep. TrxnACK[] Collection if acknowledgments for the individual
transactionsin this batch.

TrxnACKType String Enumerated value indi cating transaction acknowledgments.
The values are:

« BatchACK.TRXN_ACK_ALL (All transactionsin the
batch have an acknowledgement)

« BachACK.TRXN_ACK_POSITIVE (All transactions
missing an acknowledgement assumed failed)

« BachACK.TRXN_ACK_NEGATIVE (All
transactions missing an acknowledgement assumed
successful)

Note: All batch statuses except pending (11) are final. In case a batch
acknowledgement does not exist, for example immediately after a batch
close, or during a batch query which occurs before the batch has been
processed, a batch acknowledgement object with batch status O should be
created although there is no existing acknowledgement file.

4-68 Oracle iPayment Implementation Guide

Acknowledgment Parser

CreditCardBatchACK

Theclassor acl e. apps. i by. bep. Cr edi t Car dBat chACK extends

oracl e. apps. i by. bep. Bat chACK and contains attributes for credit card batch
acknowledgments. The table explains the attributes.

Attribute Name Type Description

AuthTotal oracle.apps.iby.ecapp.Price Total authorizations compl eted.
CaptureTotal oracle.apps.iby.ecapp.Price Total authorizations compl eted.
CreditTotal oracle.apps.iby.ecapp.Price Total credits completed.

BankAccountBatchACK

Theclassor acl e. apps. i by. bep. BankAccount Bat chACK extends

oracl e. apps. i by. bep. Bat chACK and contains attributes for credit card batch
acknowledgments. The table explains the attributes.

Attribute Name Type Description
CreditTotal ecapp.Price Total credits completed.
DebitTotal ecapp.Price Total debits completed.

Using iPayment with External Payment Systems 4-69

Acknowledgment Parser

4-70 Oracle iPayment Implementation Guide

A

Risk Management

This appendix explains risk management functionality. Topicsin this section include:
« Utilizing Risk Management
« Risk Management Test Scenarios

Risk Management A-1

Utilizing Risk Management

Utilizing Risk Management

iPayment supports risk management functionality. Electronic commerce applications can
incorporate this feature and detect fraudulent payments. The following information describes
how electronic commerce applications can utilize the risk management functionality of
iPayment.

Risk Factors and Risk Formulas

iPayment is bundled with a set of risk factors. Payees can configure these factors depending
on their business model. The payees can create multiple formulas using different factors and
weights depending on their specific requirements. The ability to create multiple formulas
provides flexibility to payees to accommodate different business scenarios. Each formula
must be set up so that the sum of the weightsis equal to 100. If arisk factor valueis missing
a the time of risk evaluation, the risk for the missing factor is considered very high in the
formula.

iPayment also defines an implicit formulafor each payee with default factors and weights.
Administrators have the flexibility to modify the implicit formula. The following
information describes how and where the implicit formulais used.

Process Flow of Risk Evaluation

1. To enablerisk analysis during authorization, either set up the explicit risk flag in the
input transaction object or check Enabled radio button in the Risk Management Status
screen for that payee.

2. When an electronic commerce application makes a Payment Request API call,
iPayment first checks the risk flag and depending on its value, decides if the payee
involved in the payment request is risk enabled or not. If the risk analysis field indicates
that iPayment should perform risk analysis, or if adefault value is added in thefield and
apayeeisrisk enabled, iPayment evaluates either the risk formula passed in the
Payment Request API or theimplicit formula associated with that payee.

3. Electronic commerce application can pass a specific risk formula name by calling the
overloaded Payment Request API. This API takes PmtRisklnfo object in which
el ectronic commerce application can set up the formula name and additional
information. If PmtRisklnfo object is not passed and the payeeis risk enabled, iPayment
evaluates the implicit formula of that payee.

4. iPayment returns the Risk Response (RiskResp) object as part of the payment response.
If risk evaluation is done successfully, Risk Response object contains the risk score
obtained after evaluation and the threshold value that is set up with the payee. Based on

A-2 Oracle iPayment Implementation Guide

Utilizing Risk Management

5.

the risk score and the threshold value, the el ectronic commerce application can decide
whether a payment can be accepted or not

If the risk score is more than the threshold value, the payment request is risky.

Process Flow of Independent Risk APIs
Risk API 1

1.

When an electronic commerce application invokes Risk API 1, iPayment evaluates the
risk formula sent in the request or the implicit formula associated with that payee.

iPayment evaluates all the risk factors that are configured as part of thisformula, except
the AV'S Code risk factor.

After evaluation, iPayment returns Risk response (RiskResp) object as aresponse to this
API. Thisresponse object contains, the status of the API call, AV SCodeFlag indicating
if AVS Code risk factor was part of the formula or not, risk score, and the risk threshold
value that is setup for the payee. Depending on the AV SCodeFlag value, it is be decided
whether to call Risk API 2 or not.

Note: Partial risk scoreisreturned if AVS Code risk factor is part of the
risk formula.

Risk API 2

1.

Electronic commerce applications need to call this APl with the same PayeelD and
formula name that were used to call Risk API 1. The risk score that was returned as part
of the Risk API 1 response aso needs to be sent. When electronic commerce
applications call this API, iPayment checks again if the formula has AV S Code risk
factor configured in it or not. If it is configured, iPayment evaluates the AV S Code risk
factor.

After evaluating the AV S Code risk factor, i Payment calculates the final risk score of
the formula using the previous risk score that was sent and the AV'S Code risk factor
score. Thisrisk score is sent back to the electronic commerce application as part of the
response object of this API.

Risk Management A-3

Risk Management Test Scenarios

Risk Management Test Scenarios

The following are three business scenarios that describe how a merchant can use the Risk
Management functionality.

Merchant Selling Books and Low Priced Goods

In asmall business, accepting risky instrumentsis a critical factor. If a customer isusing a
stolen credit card, the merchant should consider this transaction risky and assign this risk
factor a higher weight than the other risk factors. Ship to/bill to address matching and
payment history are also important risk factors. To include AV'S Code risk factor, a
merchant can set up a formula with weights as shown in Weight B column in the Risk
Formula Setup-First Case table. The total of al the weights should be 100. For aformula
that a merchant would set up in this case, see Risk Formula Setup for the First Case.

Risk Formula Setup for the First Case
Thistable shows the risk formula setup for a merchant selling books and low priced goods.

Factors Weight A Weight B
Risky Instruments 30 30
Payment Amount Limit 15 15
Transaction Amount 15 15
Ship to/Bill to 20 10
Payment History 20 10
AVS Code 0 20

Risk Factor Setup
« Payment Amount Limit

Thistable shows therisk levels and the associated payment amounts.

Risk Levels Greater than or Equal To
Low 0

Low medium 100

Medium 200

A-4 Oracle iPayment Implementation Guide

Risk Management Test Scenarios

Risk Levels Greater than or Equal To
Medium high 300
High 400

« Transaction Amount

A transaction is high risk if the transaction amount exceeds 500 in one week. Otherwise
thereis no risk.

« Payment History

Thistable showsthe risk levels and the number of payments madein the last six months
by a particular customer.

Risk Levels Greater than or Equal To

Low 6

Low medium

Medium high

4
Medium 3
2
0

High

« AVSCode

Thistable showsthe risk levels and the associated AV S Codes. AV S Code risk factor
evaluation is useful only for customersin the United States.

Risk Level AVS Code
No risk SY,UXRE
Low AZW

Low medium

Medium

Medium high

High N

« Ship To/bill To and Risky Instruments

Risk Management A-5

Risk Management Test Scenarios

These risk factors do not require any setup. The evaluation will be done with the data
aready existing in the database.

« Risk Score

A typical threshold value would be between medium and medium high risk score. Risk
Management modul e evaluates the payment request and returns an overall risk score. If
an overall risk score exceeds the threshold val ue set up by the merchant, then the
merchant has to decide whether to process the request or to block the request.

Merchant Selling Electronic Goods
Risky instrumentsisacritical factor in this case. If a customer is using a stolen credit card,
the merchant should consider this transaction risky and assign it ahigher weight.

Frequency of purchaseis the next important risk factor. Usually customers do not buy
electronic goods frequently, and if they do, the purchases could be a fraudulent.

In this scenario, time of purchase is also should be considered as an important risk factor. If
someone buys many goods after 2:00 AM, it might be a fraudulent purchase.

To include an AV S Code risk factor, a merchant can sets up aformulawith weights as
shown in column Weight B in Risk Formula Setup-Second Case table. The total of al the
weights are 100. The AVS Caode risk factor evaluation will be useful only for customersin
the United States.

Risk Formula Setup for the Second Case
Thistable shows the risk formula set up for a merchant selling electronic goods.

Factor Weight A Weight B
Risky Instruments 30 30

Ship to/Bill to 15 12

Time of Purchase 15 12
Frequency of Purchase 20 10
Payment Amount 10 8
Transaction Amount Limit 10 8

AVS Code 0 20

Risk Factor Setup
« Payment Amount Limit

A-6 Oracle iPayment Implementation Guide

Risk Management Test Scenarios

Thistable shows therisk levels and the associated payment amounts.

Risk Levels Greater Than or Equal To
Low 500

Low medium 1000

Medium 1500

Medium high 2000

High 2500

Transaction Amount

Thisrisk factor is considered high risk if the amount exceeds 2,500 in one week.
Otherwise thereisno risk.

Frequency of Purchase

Thisrisk factor is considered high risk if the frequency of purchase exceedsten timesin
the previous one week.

AV S Codes

Thistable shows the risk levels and the associated AV'S codes. AV S codes risk factor
evaluation is only useful for customersin the United States.

Risk Level AVS Code (Comma Separated)
No risk SY,UXRE

Low AZW

Low medium

Medium

Medium high

High N

Ship To/Bill To and Risky Instruments

These risk factors do not require any setup. The evaluation is done through the data
aready existing in the database.

Risk Score

Risk Management A-7

Risk Management Test Scenarios

A typical threshold value isto be between medium and medium high risk score.

The risk management module eval uates the payment request and returns an overall risk
score. If an overall risk score exceeds the threshold value set up by the merchant, the
merchant has to decide whether to process the request or to block the request.

Business to Business Customer

In a business to business scenario, a merchant has an established relationship with his
customer. In this scenario, the Oracle Receivables risk factors take higher precedence. The
merchant isinterested in the customer’s payment history, his credit rating, etc. All Oracle
Receivablesrisk factors are set up through Oracle Receivables interface.

Risk Formula Setup in the Third Case
Thistable shows a Risk Formula setup for a business to business customer.

Factors Weight
Overdl Credit Limit 30
Transaction Credit Limit 30
Risk Codes 15
Credit Rating Codes 15
Payment History 10

Risk Factor Setup
« Overdl Credit Limit: 100,000

« Transaction Credit Limit: 50,000
« Risk Codes are set up through Oracle Receivabl es codes.

Thistable shows the risk codes and the associated risk scores set up through i Payment
administration user interface.

Risk Codes Risk Score
Low Low
Average Medium
Excellent No risk

A-8 Oracle iPayment Implementation Guide

Risk Management Test Scenarios

« Credit Rating Codes are set up through Oracle Receivables interface
This table shows the set up of credit rating codes and the associated risk scores.

Credit Rating Codes Risk Score
Low Low
Average Medium
Poor High
Excellent No risk

« Risk Score

A typical threshold value is between medium and medium high.

Risk management module eval uates the payment request and returns an overall risk
score. If an overall risk score exceeds the threshold value set up by the merchant, then
the merchant decides whether to process or block the request.

Risk Management A-9

Risk Management Test Scenarios

A-10 Oracle iPayment Implementation Guide

B

Error Handling

This appendix explains error handling and describes the most common errors. Topicsin this
section include:

« Error Handling During Payment Processing

Error Handling B-1

Error Handling During Payment Processing

Error Handling During Payment Processing

iPayment returns aresponse object to each API that an electronic commerce application
calls. If the operation fails, then the response object contains status value (IBY_FAILURE),
indicating that there was a failure while processing the request. In these cases, the electronic
commerce application can get more information about the failure by checking the error code
and the error message. Errors can happen in iPayment for various reasons. For example,
wrong or duplicate data passed by the electronic commerce application, time out while
communicating with Payment Systems, etc. All the errors that can occur in iPayment can be
categorized in these groups:

« Common Errors
« ErrorsDueto Invalid or Duplicate Data
« Communication Errors

« Configuration Errors

Common Errors
This table describes the most common errors.

Error Code Description

IBY_0001 Communications error. The payment system, the processor, or
iPayment el ectronic commerce servlet is not accessible. You should
resubmit the request at alater time.

IBY_0002 Duplicate order identifier.

IBY_0003 Duplicate batch identifier.

IBY_0004 Mandatory fields are required.

IBY_0005 Payment system specific error. Check BEPErrCode and BEPErrMsg
in response objects for more information.

IBY_0006 Batch partially succeeded. Some transactions in the batch failed and
some were processed correctly.

IBY_0007 The batch failed. You should correct the problem and resubmit the
batch.

IBY_0008 Requested action is not supported by the payment system.

IBY_0017 Insufficient funds.

IBY_0019 Invalid credit card or bank account number.

B-2 Oracle iPayment Implementation Guide

Error Handling During Payment Processing

Errors Due to Invalid or Duplicate Data

In each payment request, a payment instrument from which the money is transferred to the
payee's account isinvolved. Generally thisinformation is given by the end user of the

€l ectronic commerce application. Sometimes the end user might enter wrong instrument
number or an instrument number that does not have enough funds. To detect these errors,
iPayment provides two error codes that help electronic commerce applications to prompt the
end user for correct information.

The error codes due to invalid or duplicate data and their descriptions are given in this table.

Error Code Description
IBY_0017 Insufficient funds
IBY_0019 Invalid credit card/bank account number

Communication Errors

Since payment processing requests involve a number of different components connected
over networks, time-out errors or communication errors are possible. For example, a
processor successfully processes a payment request, but the network connection between the
payment system and iPayment, or the network connection between iPayment’s PL/SQL API
package and i Payment el ectronic commerce servlet break down, causing the electronic
commerce application not to receive the result. In some cases, € ectronic commerce
application might crash before receiving aresponse. Before the crash, payment processing
may have completed. Therefore, when electronic commerce application calls the API with
the same information, iPayment considers this a duplicate request and raises an error. To
recover from such errors, iPayment provides two approaches.

In the first approach, which is applicable to OraPmtReq and OraPmtCredit, the electronic
commerce application can try the request with the retry flag set up to TRUE. This makes
iPayment retry the request if it has not processed the request. Otherwise iPayment sends the
same response that was sent when this request was first made.

In the second approach, which is applicable to all other operations except OraPmtReq and
OraPmtCredit, the electronic commerce application needsto find out if the transactions went
through successfully to re-execute any lost transactions. To enable the merchant or business
to query the status of atransaction, you need to integrate the Query Transaction Status APl
in the electronic commerce application. This API returns all existing records for a particular
transaction identifier on a payment system.

This table describes the communication error code and its description.

Error Handling B-3

Error Handling During Payment Processing

Error Code Description

IBY_0001 The payment system, the processor, or iPayment’s el ectronic
commerce servlet is not accessible. You should resubmit the request
at alater time.

Configuration Errors

These errors occur if payees or payment systems are not configured properly. Make sure that
the URL s are entered correctly and the payee’s payment system identifiers are configured

properly.

B-4 Oracle iPayment Implementation Guide

C

IPayment PL/SQL APIs

This appendix explains the iPayment PL/SQL API’s.

iPayment PL/SQL APIs C-1

Electronic Commerce PL/SQL APIs

Electronic Commerce PL/SQL APIs

This section describes iPayment 11i PL/SQL API specifications for electronic commerce
applications (EC-Apps) that require/prefer PL/SQL interfaces for processing credit card,
PINless debit card, purchase card, and bank account transfer payment related operations.
These APIs could be invoked by EC-Apps with appropriate values to perform payment
operations.

The following sections contain architectural overview of iPayment PL/SQL APIs, the
signatures of each API, and the definitions for each in/out parameters.

C-2 Oracle iPayment Implementation Guide

Architectural Overview

Architectural Overview

EC Application

PLISQL APIs

The following diagram shows the overall architecture of iPayment 11i and where the
PL/SQL APIsfit inside this architecture.

Figure D—1 [Payment Architecture

o Field Installed
% Payment
Ej Processor
T
- = HTTP Feg L] serviet
S g
= = o E
3 = HTTPReq | 3 | Paymentech
= 2 W servlet
& 2 AP ReR™ ™
L | o 5 =
o) O
H oL iPayment =
faa] B o Field Inztalled
= Engine E S Payment
o = E % Gatesnay
£ L
=) TP Reg L serviet
D =
! (N fin) ol 2
HTTPReq | () ; HTTP Reg | & | Concord EFS
L o & Servlet
[V -
ATTF e ™

Scheduler

PL/SQL based EC-Apps can invoke the PL/SQL APIswhich are stored in the applications
database. These APIsin turn pass the payment related request, viaHTTR, to the iPayment
middle tier through iPayment, receives the response and passes this response to the calling
application through response records.

EC-Apps can invoke the APIs either in an offline or online mode depending on the
requirements of the applications.

For more information on different modes of payment, please see Understanding Offline and
Online Payments in the Oracle iPayment Concepts and Procedures Guide. For the offline
requests, the scheduler is invoked periodically to send appropriate requests to the back end
payment systems and the status returned is passed back to the ECApp. For more information
on how scheduler and offline operations work, see How the Scheduling System Worksin

iPayment PL/SQL APIs C-3

Architectural Overview

Oracle iPayment Concepts and Procedures Guide. For more information on how statusis
updated, please refer to Status Update API.

C-4 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

PL/SQL APIs Procedure Definitions

This section consists of the iPayment PL/SQL APIs which are supported in the 11i release.
All the procedures described below are declared public and are stored as part of the
applications database. All these procedures share some common IN and OUT parameters.

This table describes the common IN parameters.

p_api_version

IN NUMBER

This parameter isto conform to the Oracle
applications API standard. It is the version to be used
for the API. The current supported version is 1.0 and
souse 1.0

p_init_msg_list

IN VARCHARZ2

This parameter isto conform to the Oracle
Applications API standard. Use FND_API.G_FALSE
which is also the default value.

p_commit

IN VARCHAR2

This parameter isto conform to the Oracle
Applications API standard and hasn’t been
implemented for these APIs. Use FND_API.G_
FAL SE which is also the default value.

p_validation_level

IN NUMBER

This parameter isto conform to the Oracle
Applications API standard. Use FND_API.G_
VALID_LEVEL_FULL which is also the default
value.

p_ecapp_id

IN NUMBER

Theid of EC-App which isinvoking the API.

This table describes the common OUT parameters.

X_return_status

OUT VARCHAR2

Used to indicate the return status of the procedure.
This parameter isto conform to the Oracle
applications API standard.

X_msg_count

OUT NUMBER

The error message count holds the number of error
messages in the APl message list. This parameter
isto conform to the Oracle applications API
standard

X_msg_data

OUT VARCHAR2

Contains the error messages. This parameter isto
conform to the Oracle applications API standard

iPayment PL/SQL APIs C-5

PL/SQL APIs Procedure Definitions

Note: These APIsreturn asingle x_return_statusas‘S' for overall
success, and ‘U’ for any type of errors (both API internal errors and
iPayment processing errors included).

If the value of x_return_statusisnot ‘S', then the calling program needs to check both the
APl message list parameter x_msg_data and the iPayment response objects to identify
whether it is an APl implementation error or an iPayment related error. The API message list
messages will hold all API implementation errors, while the API response objects will hold
iPayment related success/errors.

The error message from iPayment may include messages from the back end payment
systems in special response object fields (BEPErrCode, BEPErrMessage, ErrLocation).
Hence the error messages from iPayment are not added into the message list, consistent with
the JavaAPIs.

The PL/SQL APIs provided by iPayment are of two types:
« Payment Processing APIs

« Payment Instrument Registration APIs

C-6 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Payment Processing APIs

These APIs are the transactional APIs that support various payment operations. The

€l ectronic commerce applications use these APIs to process various transaction types. For
example, authorization of credit cards, PINIess debit cards, and purchase cards, transfer of
funds from one bank account to another, capture, cancel, return, and others. A list of such
APlsare provided below. All the procedures described below are declared public and are
stored in the PL/SQL Package IBY _PAYMENT_ADAPTER_PUB as part of the
applications database.

The following PL/SQL APIs are described in this section:

« OraPmtReq
« OraPmtMod
« OraPmtCanc

« OraPmtCapture

« OraPmtReturn

« OraPmtVoid

= OraPmtCredit

« OraPmtQryTrxn

= OraPmtCloseBatch

« OraPmtQueryBatch

« OraPmting

« OraRiskEval

For more information on Error Codes and their meaning, see Error Handling.

For adescription of the PL/SQL records with possible values of all the APIs, see"PL/SQL
Record/Table Types Definitions” in this appendix.

OraPmtReq
API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

iPayment PL/SQL APIs C-7

Payment Processing APIs

This APl handles new Payment requests from EC-Apps. EC-Apps can make an offline or
online payment requests by setting “ PmtMode” attributein “p_pmtreqtrxn_rec” “OFFLINE”
or “ONLINE”. If the attribute of the record is not set explicitly then, by default, payment is
considered as “ONLINE” request. If “PmtMode” is set to “OFFLINE”, then attribute
“Settlement_date” in “p_pmtreqgtrxn_rec” must be set to proper value.

This APl can be used to validate a bank account before transferring funds fromit, and
initiate a PINless debit card transaction.

Sometimes credit card processing networks decline transactions with a referral message
indicating that the merchant must call the cardholder’s issuing bank to complete the
transaction. The payment information in such casesis submitted over the phone. If the
transaction is approved, the merchant is provided with an authorization code for the
transaction. To facilitate follow-on transactions through iPayment for this voice
authorization (for example, capture or void), OraPmtReq API provides voice authorization
support.

This API returns atransaction ID if payment request is processed successfully, which can be
used later to initiate follow on operation on the payment. For example, to modify a payment
or capture the payment, the EC-App will need to pass this transaction ID along with other
information that is needed to perform the operation requested.

Response object of the API contains risk response if the payee involved in the payment
(on-line) request isrisk enabled. EC-Apps can check RiskResplncluded field in the response
to verify if thereis aRisk response from iPayment, and if so, check the RiskResponse record
for details. This API also accepts additional OPTIONAL risk-related input parameters for
evaluating risk of an on-line payment request.

For more information on using Risk Management, see Utilizing Risk Management.
In summary, this API can be used to:

« Validate abank account

= Authorize credit transactions

= Transfer funds from a bank account

« Dorisk analysis

« Schedule payments to be made in future (Offline payments)

C-8 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Note: ThisAPI isalso availablein an overloaded form, without the Risk
related input parameter to enable EC-Apps that may not need risk
evaluation functionality to call the OraPmtReq API directly without any
Risk related input. All the other inputs and outputs are identical to the
above API. Only the input parameter p_riskinfo_rec is absent in the
overloaded API’s signature definition.

Signature
Procedure OraPmtReq (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p vdidation leved IN NUMBER=F\D_AP.G_VALID
LEVEL_FULL

p_ecapp_id IN NUMBER,

p_payee rec IN Payee rec_type,
p_payer_rec IN Payer_rec_type,
p_pmtinstr_rec IN Pmitinstr_rec_type,
p_tangible rec IN Tangible rec_type,
p_pmiregirxn rec IN PmtRegTrn_rec type
p_riskinfo_rec IN RiskInfo_rec type,
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,

x_regresp_rec OUT ReqResp_rec_type)

Overloaded API Signature (without risk objects):

Procedure OraPmtReq (p_api_version IN NUMBER,
p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE,
p_commit IN VARCHAR2:=FND_API.G_FALSE,
p vdidation levd IN NUMBER=FND_AP.G VALID_

iPayment PL/SQL APIs C-9

Payment Processing APIs

LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_payee rec IN Payee rec_type,
p_payer_rec IN Payer_rec_type,
p_pmtinstr_rec IN Pmtinstr_rec_type,
p_tangible rec IN Tangible rec_type,
p_pmiregirxn rec IN PmtRegTrn_rec type
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,

x_regresp_rec OUT ReqResp_rec_type)

Parameters
IN/ Required/

Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_payee_rec IN Payee rec_type Required

Payee 1D VARCHAR2 Required
p_payer_rec IN Payer_rec_type - Optiond

Payer_ID VARCHAR2 Optiond
p_pmtinstr_rec IN Pmtinstr_rec_type - Required

1. Pmtinstr_ID NUMBER Mandatory if 2, 3, 4

and 5 are null

C-10 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
Note: Address 2. CreditCardInstr CreditCardinstr_rec_ Mandatoryif 1, 3, 4
record is optional type and 5 are null
overal, but if
passed, then the 4
fields Addrl, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.
CC_Num Required
CC_ExpDate Required
1.CC_ Optiona*
BillingAddr.Address
1
2.CC_ Optiona*
BillingAddr.City
3.CC_ Optiona*
BillingAddr.State
4.CC_ Optiona*
BillingAddr.PostalC
ode
5.CC_ Optiona
BillingAddr.Address
2
6.CC_ Optiona
BillingAddr.Address
3
7.CC_ Optiona
BillingAddr.County
8.CC_ Optiona
BillingAddr.Country
9. CC_Type Optiond
10.CC_HolderName Optional
11. FIName Optiond

iPayment PL/SQL APIs C-11

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
Note: Address 3.PurchasetCardinstr PurchaseCardinstr_ Mandatory if 1, 2, 4
record is optional rec_type and 5 are null
overal, but if
passed, then the 4
fields Addrl, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_ Optiona*
BillingAddr.Address
1
2.PC_ Optiona*
BillingAddr.City
3.PC_ Optiona*
BillingAddr.State
4PC_ Optiona*
BillingAddr.PostalC
ode
5.PC_ Optiona
BillingAddr.Address
2
6. PC_ Optiona
BillingAddr.Address
3
7.PC_ Optiona
BillingAddr.County
8.PC_ Optiona
BillingAddr.Country
9. PC_Type Optiond
10.PC_HolderName Optional
11. FIName Optiond
12. PC_SubType Mandatory

C-12 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
Note: Address 4. DebitCardlInstr DebitCardInstr_rec_ Mandatory if 1, 2, 3
record is optional type and 5 are null
overal, but if
passed, then the 4
fields Addrl, City,
State, Postal Code
(1,2,3,4)* are
together Mandatory.
DC_Num Required
DC_ExpDate Required
1.DC_ Optiona*
BillingAddr.Address
1
2.DC_ Optiona*
BillingAddr.City
3.DC_ Optiona*
BillingAddr.State
4DC_ Optiona*
BillingAddr.PostalC
ode
5.DC_ Optiona
BillingAddr.Address
2
6.DC_ Optiona
BillingAddr.Address
3
7.DC_ Optiona
BillingAddr.County
8.DC_ Optiona
BillingAddr.Country
9. DC_Type Optiona
10.DC_HolderName Optional
11. FIName Optiond
5. Dual Paymentlnstr DualPaymentinstr_ Mandatory if 1, 2, 3
rec_type and 4 are null

iPayment PL/SQL APIs C-13

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
1. Pmtingtr_ID Mandatory
2. Pmtinstr_ Optiona
ShortName
3.BnfPMTIngtr_ID Optiona
4, BnfPmtInstr_ Optiona
ShortName
6. Pmtinstr_ShortName VARCHAR2 Optiond
p_tangible rec IN Tangible_rec_type Required
1. Tangible ID VARCHAR2 Required
2. Tangible_Amount NUMBER Required
3. Currency_Code VARCHAR2 Required
4. RefInfo VARCHAR2 Optiond
5. Memo VARCHAR2 Optiond
6. Acct_Num VARCHAR2 Optiond
7. OrderMedium VARCHAR2 Optiond
8. EFTAuthMethod VARCHAR?2 Optiona
p_pmtreqgtrxn_rec IN PmtReqTrxn_rec_type Required
IN PmtMode VARCHAR2 Required
IN CvVv2 VARCHAR?2 Optiona
IN Settlement_Date DATE Mandatory for
PmtMode =
OFFLINE
IN Check_Flag VARCHAR2 Optional with
default value =
‘TRUE’ for
PmtMode =
OFFLINE

C-14 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
IN Auth_Type VARCHAR2 Mandatory for
Credit Card where
vaueis
AUTHONLY,
AUTHCAPTURE,
or
AUTHANDCAPT
URE
Mandatory for
Electronic Funds
Transfer Online
Validation where
vaueis
VALIDATE
IN Retry _Flag VARCHAR2 Optiond
IN Org_ID NUMBER Optionad
IN NLS_LANG VARCHAR2 Optional
IN PONum NUMBER Mandatory for
Purchase Card
IN TaxAmount NUMBER Optiona
IN ShipFromZip VARCHAR2 Optionad
IN ShipToZip VARCHAR2 Optiond
IN AnalyzeRisk VARCHAR2 Optiona
IN Retail Data_rec_type Optiona
p_riskinfo_rec IN RiskInfo_rec_type Optiond
Formula_Name VARCHAR2 Optiona
ShipToBillTo_Flag VARCHAR2 Optiona
Time_Of_Purchase VARCHAR2 Optiond
Customer_Acct Num VARCHAR2 Optiond
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2

iPayment PL/SQL APIs C-15

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
X_regresp_rec OUT RegResp_rec_type
(GENERIC OUT Response: Response_rec_type:
gIAg\é\l\//lgé\lT Status NUMBER
RESPONSE) ErrCode VARCHAR2

ErrM essage VARCHAR?2
NLS LANG VARCHAR2

OUT Trxn_ID NUMBER

OUT RefCode VARCHAR2

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR2
(OPERATION
RELATED
RESPONSE)

OUT Trxn_Type NUMBER

OUT Trxn_Date DATE

OUT Authcode VARCHAR2

OUT AVSCode VARCHAR2

OUT Pmtinstr_Type VARCHAR2

OUT Acquirer VARCHAR2

OUT VpsBatch_ID VARCHAR2

OUT AuxMsg VARCHAR2

C-16 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT DataType SubType Optional
(RISK RELATED OUT RiskResplncluded VARCHAR2
RESPONSE) RiskResponse RiskResp_rec_type

Status NUMBER

ErrCode VARCHAR2

ErrM essage VARCHAR?2

Additiona_ VARCHAR2

ErrM essage

Risk_Score NUMBER

Risk_Threshold_

val NUMBER

Risk_Flag

VARCHAR2

(OFFLINE MODE OUT OffLineResp
RELATED .
RESPONSE) EarliestSettlement DATE

_Date

Scheduled Date DATE
OraPmtMod
API type: Public

Prerequisites for calling the API: Existing scheduled Off-line payment request
Function(s) performed by the API:

This APl handles modifications to existing Payment request. This API can be used to
modify a payment requested by an EC-App. Payment modification isrelevant in case of
Scheduled (i.e., OFFLINE) payments. Users may decide to modify a payment beforeit is
sent to the payment system.

The payee and tangible_id cannot be modified. The payment instrument can be modified,
but the modified/new payment instrument should be of the same type as the original request.
(If original instrument is a credit card, the modified instrument should be a credit card.)

Signature
Procedure OraPmtMod (p_api_version IN NUMBER,

iPayment PL/SQL APIs C-17

Payment Processing APIs

pint msy lig IN VARCHAR2:=ND_API.G FALSE,

p_commit IN VARCHAR2 := FND_API.G_FALSE,

p veiddion levd IN NUMBER:= FIND_AP.G VALID_
LEVE_RULL,

p_ecapp_id IN NUMBER,

p_payee rec IN Payee rec_type,
p_payer_rec IN Payer_rec_type,
p_pmtinstr_rec IN Pmtinstr_rec_type,
p_tangible rec IN Tangible rec_type,
p_modtrxn_rec IN ModTxn_rec_type,
X_return_status OUT VARCHAR?2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,
x_modresp_rec OUT ModResp_rec_type)

Parameters
IN/ Required/

Parameter OUT Data Type Sub Type Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_payee_rec IN Payee rec_type Required

Payee ID VARCHAR2 Required
p_payer_rec IN Payer_rec_type Optiond

Payer ID VARCHAR2 Optionad

Payer Name VARCHAR2 Optionad
p_pmtinstr_rec IN Pmtlinstr_rec_type Required

C-18 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
1. Pmtingtr_ID NUMBER Mandatory if 2, 3, 4
and 5 are null

Note: Addressrecord 2. CreditCardlnstr
is optional overal,

but if passed, then

the 4 fields Addr1,

City, State, Postal

Code (1,2,3,4)* are

together Mandatory.

CreditCardinstr_
rec_type

CC_Num
CC_ExpDate

1.CC_
BillingAddr.Add
ressl

2.CC_
BillingAddr.City

3.CC_
BillingAddr.Stat
e

4.CC_
BillingAddr.Post
aCode

5.CC_
BillingAddr.Add
ress2

6. CC_
BillingAddr.Add
ress3

7.CC_
BillingAddr.Cou
nty

8.CC_
BillingAddr.Cou
ntry

iPayment PL/SQL APIs C-19

Mandatory if 1, 3, 4
and 5 are null

Required
Required
Optiona*

Optiona*

Optiona*

Optiona*

Optiona

Optiona

Optiona

Optiona

Payment Processing APIs

IN/ Required/
Parameter OUT Data Type Sub Type Optional
9. CC_Type Optiona
10.CC_ Optiona
HolderName
11. FIName Optional
Note: Addressrecord 3.PurchasetCardInstr PurchaseCardins Mandatory if 1,2, 4
is optional overal, tr_rec_type and 5 are null
but if passed, then
the 4 fields Addr1,
City, State, Postal
Code (1,2,3,4)* are
together Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_ Optiona*
BillingAddr.Add
ressl
2.PC_ Optiona*
BillingAddr.City
3.PC_ Optiona*
BillingAddr.Stat
e
4.PC_ Optiona*
BillingAddr.Post
alCode
5.PC_ Optiona
BillingAddr.Add
ress2
6. PC_ Optiona
BillingAddr.Add
ress3
7.PC Optiona

C-20 Oracle iPayment Implementation Guide

BillingAddr.Cou
nty

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT Data Type Sub Type Optional
8.PC_ Optiona
BillingAddr.Cou
ntry
9. PC_Type Optiond
10.PC_ Optiona
HolderName

11. FIName Optionad
12. PC_SubType Mandatory

Note: Addressrecord 4. DebitCardinstr DebitCardinstr_ Mandatory if 1,2, 3
is optional overal, rec_type and 5 are null

but if passed, then

the 4 fields Addr1,

City, State, Postal

Code (1,2,3,4)* are

together Mandatory.

DC_Num Required
DC_ExpDate Required

1.DC_ Optiona*
BillingAddr.Add
ressl

2.DC_ Optiona*
BillingAddr.City

3.DC_ Optiona*
BillingAddr.Stat
e

4.DC_ Optiona*
BillingAddr.Post
alCode

5.DC_ Optiona
BillingAddr.Add
ress2

6.DC_ Optiona
BillingAddr.Add
ress3

iPayment PL/SQL APIs C-21

Payment Processing APIs

IN/ Required/

Parameter OUT Data Type Sub Type Optional
7.DC_ Optiona
BillingAddr.Cou
nty
8.DC_ Optiona
BillingAddr.Cou
ntry
9. DC_Type Optiona
10.DC_ Optiona
HolderName

11. FIName Optionad

5. DualPaymentl nstr DualPaymentlns Mandatory if 1,2, 3
tr_rec_type and 4 are null

1. Pmtingtr_ID Mandatory

2. Pmtinstr_ Optiona
ShortName

3. Optiona
BnfPMTInstr_

ID

4. BnfPmtinstr_ Optional
ShortName

6. Pmtinstr_ShortName VARCHAR2 Optiond

p_tangible rec IN Tangible _rec_type Required
1.Tangible ID VARCHAR2 Required
2 Tangible_Amount NUMBER Required
3.Currency_Code VARCHAR2 Required
4.Reflnfo VARCHAR2 Optiond
5. Memo VARCHAR2 Optiond
6. Acct_Num VARCHAR2 Optiond
7. OrderMedium VARCHAR2 Optiond

8. EFTAuthMethod VARCHAR?2 Optiona
p_modtrxn_rec IN ModTrxn_rec_type Required

C-22 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
PmtMode VARCHAR2 Required
Trxn_ID NUMBER Required
Auth_Type VARCHAR2 Mandatory for
CreditCard
Mandatory for

Electronic Funds
Transfer Online
Vadidation where

vaueis
VALIDATE
Settlement_Date DATE Mandatory for
PmtMode=
OFFLINE
Check_Flag VARCHAR2 Optional with
default value =
‘TRUFE’ for
PmtMode =
OFFLINE
IN PONum NUMBER Mandatory for
Purchase
Cad
IN TaxAmount NUMBER Optionad
IN ShipFromZip VARCHAR2 Optiond
IN ShipToZip VARCHAR2 Optiond
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_modresp_rec OUT ModResp_rec_type

iPayment PL/SQL APIs C-23

Payment Processing APIs

IN/ Required/
Parameter OUT Data Type Sub Type Optional
(GENERIC OUT Response Response_rec_
PAYMENT Status type
SERVER NUMBER
RESPONSE) ErrCode
VARCHA
ErrMessage R2
NLS LANG VARCHA
R2
VARCHA
R2
OUT Trxn_ ID NUMBER

(OFFLINEMODE OUT OffLineResp

RELATED)
RESPONSE) EarliestSettlement_Date DATE
Scheduled_Date
DATE
OraPmtCanc
API type: Public

Prerequisites for calling the API: Existing scheduled Offline payment operation that should
be canceled. The payment operations that can be canceled are payment request, capture etc.

Function(s) performed by the API:

This APl handles cancellations of offline payment operations. This API can cance the entire
operation before it reaches the payment system for offline operations, since the operation
information is maintained in the database. The cancellation will not happen if the payment
operation is aready submitted to the payment system.

Signature
Procedure OraPmtCanc (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,
p_commit IN VARCHAR2:=FND_API.G_FALSE,
p_vdidation level IN NUMBER:=FND_AP.G VALID_

C-24 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_canctrxn_rec IN Cancd Trxn_rec_type,
X_reumn daius OUT VARCHARZ,
x_msg_count OUT NUMBER,
x_msg_data OUT VARCHAR2,
x_cancresp rec OUT CancdResp_rec type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiona
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_canctrxn_rec IN Cance Trxn_rec_type Required
IN Trxn_ID NUMBER Required
Req_Type VARCHAR2 Required
IN NLS LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR2
X_cancresp_rec OUT CancelResp_rec _type
(GENERIC OUT Response Response_rec_type
EAEE\'\/AIEQT Status NUMBER
RESPONSE) ErrCodeErr VARCHAR2
Message VARCHAR2
NLS LANG VARCHAR2

iPayment PL/SQL APIs C-25

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
(CANCEL
OPERATION
RELATED
RESPONSE)

OUT Trxn_ID NUMBER

OUT ErrorLocation NUMBER

OUT BEPErrCode VARCHAR2

OUT BEPErrMessage VARCHAR?2
OraPmtCapture
API type: Public

Prerequisites for calling the API: Previously authorized payment request operation.
Function(s) performed by the API:

The Capture API isinvoked by the EC-App to perform a capture of a previously authorized
operation. The captured amount may or may not be the same as the authorized amount. An
authorized operation can only be captured once.

Each authorization operation isvalid for alimited time until expiration (3-30 days
depending on the cardholder’s bank). If capture cannot be performed before the
authorization expires, the merchant must reauthorize the payment, with a different tangible

id.

Signature

Procedure OraPmtCapture (p_api_version IN NUMBER,
pint mggy lis IN VARCHAR2:=FND_API.G FALSE,
p_commit IN VARCHAR2:=FND_AP..G_FALSE,
p_vdidation_levelIN NUMBER :=FND_API.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p cepturerxn rec IN - Capturelrxn _rec type,
X_return_datus OUT VARCHARZ,

C-26 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

X_Imsg_count OUT NUMBER,
X_msg_data OUT VARCHAR?2,
X_capresp_rec OUT CaptureResp_rec_type)
Parameters
IN/ Required/
Parameter ouT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_capturetrxn_rec IN CaptureTrxn_rec_type Required
Trxn_ID NUMBER Required
PmtMode VARCHAR2 Required
Settlement_Date DATE Mandatory if
PmtModeis
OFFLINE
Currency VARCHAR2 Required
Price NUMBER Required
NLS LANG VARCHAR2 Optional
X_return_status OouT VARCHAR?2
X_msg_count OouT NUMBER
x_msg_data OUT VARCHAR2
X_capresp_rec ouT CaptureResp_rec_type
(GENERIC OouT Response Response_rec_type
gAE\é\I\//Igé\IT Status NUMBER
RESPONSE) ErrCode VARCHAR2
ErrMessage VARCHAR2
NLS LANG VARCHAR2

iPayment PL/SQL APIs C-27

Payment Processing APIs

IN/ Required/
Parameter ouT DataType SubType Optional
(CAPTURE
OPERATION
RELATED
RESPONSE)

ouT Trxn_ID NUMBER

OouT Trxn_Type NUMBER

OouT Trxn_Date DATE

OouT Pmtinstr_Type VARCHAR?2

ouT RefCode VARCHAR2

ouT ErrorLocation NUMBER

ouT BEPErrCode VARCHAR2

OouT BEPErrM essage VARCHAR?2
(OFFLINE MODE OUT OffLineResp
RELATED .
RESPONSE) EarliestSettlement_Date DATE

Scheduled_Date DATE

OraPmtReturn
API type: Public

Prerequisites for calling the API: Previous payment capture operation

Function(s) performed by the API:

This APl isinvoked by the EC-App to credit a customer account when a customer returns
goods purchased through a previously captured payment operation. Only one return can be
applied against each order, subsequent returns must be treated as standalone credits. The
operation takes in the transaction ID of theinitial payment operation, and returns the same
transaction 1D as part of the output.

Signature
Procedure OraPmtReturn (

C-28 Oracle iPayment Implementation Guide

p_api_version

p_init mgy lig

p_commit

p_vdidation levd

IN
IN

IN

NUMBER,
VARCHAR2 :=FND_API.G_FALSE,
VARCHAR2 := FND_AP.G_FALSE,
NUMBER:= AIND_APL.G_VALID_

PL/SQL APIs Procedure Definitions

LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_reumtrxn_rec IN ReurnTrxn_rec _type,
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,
x_retresp_rec OUT ReturnResp_rec_type)

Parameters
IN/ Required/

Parameter OUT DataType SubType Optional

p_api_version IN NUMBER - Required

p_init_msg_list IN VARCHAR2 - Optiond

p_commit IN VARCHAR2 - Optiona

p_validation_level IN NUMBER - Optiond

p_ecapp_id IN NUMBER - Required

p_returntrxn_rec IN ReturnTrxn_rec_type Required
Trxn_ID NUMBER Required
PmtMode VARCHAR2 Required
Settlement_Date DATE Mandatory if

PmtModeis
OFFLINE

Currency VARCHAR2 Required
Price NUMBER Required
NLS LANG VARCHAR2 Optional

X_return_status OUT VARCHAR2

X_msg_count OUT NUMBER

x_msg_data OUT VARCHAR2

X_returnresp_rec OUT ReturnResp_rec_type

iPayment PL/SQL APIs C-29

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
(GENERIC OUT Response Response_rec_type
PAYMENT SERVER
RESPONSE) Status NUMBER
ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2
(RETURN
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtlnstr_Type VARCHAR?2
OUT RefCode VARCHAR2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR?2

(OFFLINE MODE OUT OffLineResp

RELATED .

RESPONSE) EarliestSettlement_Date DATE
Scheduled_Date DATE

OraPmtVoid

API type: Public

Prerequisites for calling the API:Existing payment operations
Function(s) performed by the API:

The Void API voids a capture or return operation for an order before the operation is settled.
It takes in the transaction ID of theinitial payment request and returns the same transaction
ID as part of the output. Void Operations can be performed on “ Capture”, “ Return” and
“Credit” Operations for all back-end Payment Systems, and on “Authorization” operations

for certain back-end payment systems.

C-30 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

The Void operation hasto be used to void the most recent operation for the designated Order
ID. For example, you perform a capture and then a return operation for a particular Order
ID, if you try to void the capture, it'll result in an error.

Signature

Procedure OraPmtVoid (p_api_version IN NUMBER,
p_init msy ligt IN VARCHARZ2 :=FND_API.G_FALSE,
p_commit IN VARCHAR2 :=FND_AP.G FALSE,
p_vdidation_level IN NUMBER:= FND_API.G_VALID_
LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_voidtrxn_rec IN VoidTrxn_rec_type,
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHARZ2,
X_voidresp_rec OUT VoidResp_rec_type)
Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_voidtrxn_rec IN VoidTrxn_rec_type Required
Trxn_ID NUMBER Required
PmtMode VARCHAR2 Required
Settlement_Date DATE Mandatory if
PmtModeis
OFFLINE

iPayment PL/SQL APIs C-31

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
Trxn_Type VARCHAR2 Required
NLS LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR2
X_voidresp_rec OUT VoicResp_rec_type
(GENERIC OUT Response Response_rec_type
EAE\Q\P/ICI)EI{I\] ;—E)SERV ER Status NUMBER
ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS LANG VARCHAR2
(VOID OPERATION
ONLINE MODE
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtlnstr_Type VARCHAR?2
OUT RefCode VARCHAR2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2
(OFFLINE MODE OUT OffLineResp
EEE@SE@E) EarliestSettlement_Date DATE

Scheduled_Date DATE

OraPmtCredit
API type: Public

Prerequisites for calling the API: None

C-32 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Function(s) performed by the API:

ThisAPI isinvoked by the EC-App to credit a customer account in the case that the
merchant wants to issue a “ standalone credit” (i.e., a credit not associated with any previous
order). It returns the transaction 1D as part of the output.

The OraPmtCredit API is aso invoked by EC-App during an EFT transaction.

Signature
Procedure OraPmtCredit (p_api_version IN NUMBER,

p_init msg_list IN VARCHAR2 :=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_API.G_FALSE,

p_vdidaion_ leve IN NUMBER:= FND_AP.G_VALID_

LEVEL_FULL,

p_ecapp_id IN NUMBER,

p_payee rec IN Payee rec_type,

p_pmtinstr_rec IN Pmtlnstr_rec_type,

p_tangible_rec IN Tangible rec type,

p_credittrxn_rec IN CreditTrxn_rec_type,

X_return_status OUT VARCHARZ2,

X_msg_count OUT NUMBER,

x_msg_data OUT VARCHAR?2,

x_creditresp_ rec OUT CreditResp_rec_type)
Parameters

IN/ Required/

Parameter OUT Data Type Sub Type Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_ IN NUMBER - Optiona
level

iPayment PL/SQL APIs C-33

Payment Processing APIs

IN/ Required/
Parameter OUT Data Type Sub Type Optional
p_ecapp_id IN NUMBER - Required
p_payee_rec IN Payee rec_type Required
Payee 1D VARCHAR2 Required
p_pmtinstr_rec IN Pmtlinstr_rec_type Required
1. Pmtingtr_ID NUMBER Mandatory if
2,3,and4
arenull
Note: Address 2. CreditCardInstr CreditCardInstr_rec_type Mandatory if
record is optional 1,3and 4
overal, but if arenull
passed, then the 4
fields Addrl,
City, State, Postal
Code (1,2,3,4)*
are together
Mandatory.
CC_Num Required
CC_ExpDate Required
1.CC_BillingAddr.Addressl Optiona*
2.CC_BillingAddr.City Optional*
3.CC_BillingAddr.State Optional*

4.CC_BillingAddr.PostalCode Optional*
5.CC_BillingAddr.Address2 Optiond
6. CC_BillingAddr.Address3 Optiond
7.CC_BillingAddr.County Optiona
8.CC_BillingAddr.Country Optiond

9. CC_Type Optiond
10.CC_HolderName Optiona
11. FIName Optionad

C-34 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
Note: Address 3.PurchasetCardI nstr PurchaseCardinstr_rec_type Mandatory if
record is optional land 2 are
overal, but if null
passed, then the 4
fields Addrl,
City, State, Postal
Code (1,2,3,4)*
are together
Mandatory.
PC_Num Required
PC_ExpDate Required
1.PC_BillingAddr.Addressl Optiona*
2.PC_BillingAddr.City Optiona*
3.PC_BillingAddr.State Optiona*
4.PC_BillingAddr.PostalCode Optional*
5.PC_BillingAddr.Address2 Optiond
6. PC_BillingAddr.Address3 Optiond
7.PC_BillingAddr.County Optiond
8.PC_BillingAddr.Country Optiond
9. PC_Type Optiond
10.PC_HolderName Optiona
11. FIName Optiond
12. PC_SubType Mandatory
4, Pmtinstr_ShortName VARCHAR2 Optiond
p_tangible rec IN Tangible_rec_type Required
1.Tangible ID VARCHAR2 Required
2 Tangible_Amount NUMBER Required
3.Currency_Code VARCHAR2 Required
4.RefInfo VARCHAR2 Optiond
5. Memo VARCHAR2 Optiond

iPayment PL/SQL APIs C-35

Payment Processing APIs

IN/ Required/
Parameter OUT Data Type Sub Type Optional
6. Acct_Num VARCHAR2 Optiond
7. OrderMedium VARCHAR2 Optiona
8. EFTAuthMethod VARCHAR2 Optional
p_credittrxn_rec IN CreditTrxn_rec_type Required
IN PmtMode VARCHAR2 Required
Settlement_Date DATE Mandatory
for
PmtMode=
OFFLINE
Org_ID NUMBER Optionad
NLS_LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
x_creditresp_ rec OUT CreditResp_rec_type
(GENERIC OUT Response Response_rec_type
PAYMENT
SERVER Status NUMBER
RESPONSE) ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS_LANG VARCHAR2
(CREDIT
OPERATION
RELATED
RESPONSE)
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Pmtlnstr_Type VARCHAR?2
OUT RefCode VARCHAR2

C-36 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT Data Type Sub Type Optional
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR?2
OUT BEPErrMessage VARCHAR?2
(OFFLINE OUT OffLineResp
MODE EarliestSettlement_Date DATE
RELATED -
RESPONSE) Scheduled_Date
DATE
OraPmtQryTrxn
API type: Public

Prerequisites for calling the API:None

Function(s) performed by the API:

This APl provides an interface for querying payment operations details. This APl will return
either all the operations performed on the queried transaction id or the latest operation, based
on the value of the History Flag which is one of the input parameters. Payment Mode is

aways ‘ONLINE’ for this operation.

Signature

Procedure OraPmtQryTrxn (p_api_version IN

p_init mgy ligt
p_commit

NUMBER,
IN VARCHARZ2:=FND_AP.G_FALSE,
IN VARCHAR2 :=FND_AP.G FALSE,

p_vdidation levdllN NUMBER:= FND_AP.G_VALID_

p_ecapp_id
p_querytrxn rec
X_return_status
X_msg_count

X_msg_data

LEVEL_FULL,
IN NUMBER,
IN QueryTrxn rec type,
OUT VARCHAR2,
OUT NUMBER,
OUT VARCHAR2,

iPayment PL/SQL APIs C-37

Payment Processing APIs

X_grytrxnrespsum_rec OUT QryTrxnRespSum_rec_type,

X_grytrxnrespdet_thl OUT QryTrxnRespDet_thl_type)

Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_querytrxn_rec IN QueryTrxn_rec_type Required
Trxn_ID NUMBER Required
History_Flag VARCHAR2 Required
NLS LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR2
x_grytrxnrespsum_rec OUT QryTrxnRespSum_rec_
type
OUT Response Response_rec_type
Status NUMBER
ErrCode VARCHAR2
ErrMessag VARCHAR2
NLS LANG VARCHAR2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2

C-38 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/

Parameter OUT DataType SubType Optional

X_grytrxnrespdet_thl OUT QryTrxnRespDet_tbl_type

N.B.: All detail records

name-value pairs will

have ‘-n’ suffixed to

show theindex value ‘n’
OUT Status NUMBER
OUT StatusMsg VARCHAR2
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER

Trxn_Date DATE

ouT
OUT Pmtinstr_Type VARCHAR2
OUT Currency VARCHAR?2
OUT Price NUMBER
OUT RefCode VARCHAR2
OUT AuthCode VARCHAR2
OUT AVSCode VARCHAR2
OUT Acquirer VARCHAR2
OUT VpsBatch_ID VARCHAR2
OUT AuxMgy VARCHAR2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2

OraPmtCloseBatch
API type: Public

Prerequisites for calling the API: Existing current batch of operations

Function(s) performed by the API:

This APl alows a merchant or business to close a batch of previously performed operations.
The operation types that can be included in a batch are capture, return, and credit. This

iPayment PL/SQL APIs C-39

Payment Processing APIs

operation is mandatory for a terminal-based merchant; a host-based merchant may not need
to explicitly close the batch since the batch is generally closed at predetermined intervals
automatically by the processor.

For more information on terminal -based merchant, please refer to “ Understanding Terminal
Based Merchant” in the Oracle iPayment Concepts and Procedures Guide.

Signature
Procedure OraPmtCloseBatch (p_api_version IN NUMBER,

pinit msylis IN VARCHAR2:=FND_API.G_

FALSE,

p_commit IN VARCHAR2:=FND_AP.G_
FALSE,

p_vdidation levd IN NUMBER:= FND_API.G_VALID_
LEVEL_FULL,

p_ecapp_id IN NUMBER,

p bachtrxn rec IN BatchTrxn _rec type,
X_reumn_daius OUT VARCHARZ,
X_msg_count OUT NUMBER,
X_mgy_dda OUT VARCHARZ,
X_closshatchrespsum_rec OUT BatchRespSum _rec type,

X_closshatchrespdet_thl OUT BatchRespDet thl_type
Parameters
IN/ Required/

Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required

C-40 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
p_batchtrxn_rec IN BatchTrxn_rec_type Required
IN PmtMode VARCHAR2 Required
PmtType VARCHAR2 Optiona
IN Settlement_Date DATE Required if
PmtM ode
is
OFFLINE
IN Payee ID VARCHAR?2 Required
IN MerchBatch_ID VARCHAR?2 Required
IN BEP_Suffix VARCHAR2 Required
IN BEP_Account VARCHAR?2 Required
IN NLS LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR2

X_closebatchrespsum_rec OUT BatchRespSum_rec_type

OUT Response Response_rec_type
Status NUMBER
ErrCode VARCHAR2
ErrMessage VARCHAR2
NLS LANG VARCHAR2
(OFFLINE MODE OUT OffLineResp OffLineResp_rec_
RELATED RESPONSE) type
OUT EarliestSettlement_Date DATE
Scheduled_Date DATE
OUT NumTrxns NUMBER
OUT MerchBatch_ID VARCHAR2
OUT BatchState NUMBER
OUT BatchDate DATE

iPayment PL/SQL APIs C-41

Payment Processing APIs

IN/ Required/

Parameter OUT DataType SubType Optional
OUT Payee ID VARCHAR2
OUT Credit_Amount NUMBER
OUT Sales Amount NUMBER
OUT Batch_Total NUMBER
OUT Currency VARCHAR2
OUT VpsBatch_ID VARCHAR2
OUT GWBatch_ ID VARCHAR2
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2

X_closebatchrespdet OUT BatchRespDet_thl_type

tbIN.B.: All detail records

name-value pairs will have

‘-n’ suffixed to show the

index value ‘n’
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Status NUMBER
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2
OUT NLSLANG VARCHAR2

OraPmtQueryBatch

API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

C-42 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

This API provides an interface to query the status of any previous batch of operations by
providing the Batch ID (that is, MerchBatch_ID) as part of the input. Payment Modeis
aways ‘ONLINE’ for this operation.

Signature
Procedure OraPmtQueryBatch (p_api_version IN NUMBER,
p_init msg_list IN VARCHAR2 :=FND_API.G_
FALSE,
p_commit IN VARCHAR2 :=FND_API.G_
FALSE,
p_vdidation_level IN NUMBER :=FND_API.G_
VALID_LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_batchtrxn_rec IN BatchTrxn_rec_type,
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
x_msg_data OUT VARCHAR2,
X_grybatchrespsum_rec OUT BatchRespSum_rec_type,
X_grybatchrespdet_thl OUT BatchRespDet_thl_type)
Parameters
IN/ Required/
Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_batchtrxn_rec IN BatchTrxn_rec_type Required
IN PmtMode VARCHAR2 Required

iPayment PL/SQL APIs C-43

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
(will be NULL since IN Settlement_Date DATE Mandatory if
aways PmtM ode PmtModeis
='ONLINE’) OFFLINE
IN Payee ID VARCHAR2 Required
IN MerchBatch_ID VARCHAR2 Required
IN BEP_Suffix VARCHAR2 Required
IN BEP_Account VARCHAR2 Required
IN NLS LANG VARCHAR2 Optional
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR2
X_grybatchrespsum_rec OUT BatchRespSum_rec_type
OUT Response Response_rec_type
Status NUMBER
ErrCode VARCHAR2
ErrMessage VARCHAR?2
NLS LANG VARCHAR2
OUT NumTrxns NUMBER
MerchBatch_ID VARCHAR2
BatchState NUMBER
BatchDate DATE
Payee ID VARCHAR2
Credit_Amount NUMBER
Sales_ Amount NUMBER
Batch_Total NUMBER
Currency VARCHAR2
VpsBatch ID VARCHAR2
GWBatch_ID VARCHAR2
ErrorLocation NUMBER

C-44 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
BEPErrCode VARCHAR2
BEPErrM essage VARCHAR2
X_grybatchrespdet OUT BatchRespDet_thl_type
tbIN.B.: All detail records
name-value pairs will
have‘-n’ suffixed to show
theindex value ‘n’
OUT Trxn_ID NUMBER
OUT Trxn_Type NUMBER
OUT Trxn_Date DATE
OUT Status NUMBER
OUT ErrorLocation NUMBER
OUT BEPErrCode VARCHAR2
OUT BEPErrMessage VARCHAR2
OUT NLS LANG VARCHAR2
OraPmting
API type: Public

Prerequisites for calling the API: None

Function(s) performed by the API:

This APl provides high-level payment information such as Payee, Payer, Instrument, and
Tangible related information. It can be used when all the information regarding a payment is
needed. So an EC-App which does not store al the payment related information locally, can
invoke this API to find all the information pertaining to the payment operation. Typically
used to display the information to the end user for editing in case of OFFLINE operation in
an application like internet payments.

It takes in the ECApp ID and the transaction ID as input parameters.

Signature

Procedure OraPmting(p_api_version IN

p_init mgy ligt IN

NUMBER,
VARCHARZ :=FND_API.G_FALSE,

iPayment PL/SQL APIs C-45

Payment Processing APIs

p_commit IN VARCHAR2 := FND_APL.G FALSE,
p_vdidation levd IN NUMBER := FND_AP.G_
VALID_LEVEL_FULL,

p_ecapp_id IN NUMBER,
p_tid IN NUMBER,
X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHAR2,

X_ingresp_rec OUT IngResp_rec _type)

Parameters
IN/ Required/

Parameter OUT DataType SubType Optional
p_api_version IN NUMBER - Required
p_init_msg_list IN VARCHAR2 - Optiond
p_commit IN VARCHAR2 - Optiona
p_validation_level IN NUMBER - Optiond
p_ecapp_id IN NUMBER - Required
p_tid IN NUMBER - Required

X_return_status OUT VARCHAR2

X_msg_count OUT NUMBER

x_msg_data OUT VARCHAR?2

X_ingresp_rec OUT IngResp_rec_type

(GENERIC OUT Response Response_rec_type

gA&\é\l\//lgé\lT Status NUMBER

RESPONSE) ErrCode VARCHAR2
ErrM essage VARCHAR?2
NLS LANG VARCHAR2

C-46 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/ Required/
Parameter OUT DataType SubType Optional
(INQUIRY
OPERATION
RELATED
RESPONSE)
OUT Payer Payer_rec_type
Payer 1D VARCHAR?2
Payer Name VARCHAR?2
OUT Payee Payee rec_type
Payee ID VARCHAR?2
OUT Tangible Tangible _rec_type Required
Tangible_ID VARCHAR2 Required
Tangible_Amount NUMBER Required
Currency_Code VARCHAR2 Required
RefInfo VARCHAR2 Optiona
Memo VARCHAR2 Optiona
Acct_Num VARCHAR2 Optiona
OrderMedium VARCHAR2 Optiona
EFTAuthMethod VARCHAR?2 Optiona

iPayment PL/SQL APIs C-47

Payment Processing APIs

IN/ Required/
Parameter OUT DataType SubType Optional
OUT Pmtlnstr Pmtinstr_rec_type
Pmtinstr_ID
PmtInstr_ShortName
CreditCardInstr CreditCardinstr_rec_type
CC_Num
CC_ExpDate

CC_BillingAddr.Addressl
CC_BillingAddr.Address2
CC_BillingAddr.Address3
CC_BillingAddr.City
CC_BillingAddr.County
CC_BillingAddr.State
CC_BillingAddr.Country
CC_BillingAddr.PostalCode
CC_Type
CC_HolderName
FIName

BankA cctlnstr BankAcctinstr_rec_type
Bank_ID
BankAcct_Num
BankAcct_Type
Branch_ID
FIName
BankAcct_HolderName

OraRiskEval
API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

This APl performsrisk evaluation without using transactions. For more information on
using this API for evaluating risk, please refer to Appendix A: Risk Management.

C-48 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Note: ThisAPI isalso available in an overloaded form, with Address
Verification System (AVS). The AV S version of the API includes an
additional input parameter, p_avs risk_info. All the other inputs and
outputs are identical to the API without AV'S.

Signature
Procedure OraRiskEval (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,
p_commit IN VARCHAR2 := FND_API.G_FALSE,
p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_payment_risk_info IN PaymentRiskinfo_rec_type,
X_return_status OUT VARCHAR?Z,
x_msg_count OUT NUMBER,
x_msg_dataOUT VARCHAR2,
X_risk_resp OUT RiskResp_rec_type)
Overloaded API Signature (with AVS information):
Procedure OraRiskEval (p_api_version IN NUMBER,
p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE,
p_commit IN VARCHAR2 := FND_API.G_FALSE,
p_validation_level IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
p_ecapp_id IN NUMBER,
p_avs risk_info IN AV SRiskinfo_rec_type,
X_return_status OUT VARCHAR?Z,
Xx_msg_count OUT NUMBER,
x_msg_dataOUT VARCHAR2,
X_risk_resp OUT RiskResp_rec_type)

iPayment PL/SQL APIs C-49

Payment Processing APIs

Parameters
IN/
Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_ecapp_id IN NUMBER Required
p_avs risk_info IN AV SRiskInfo_rec_type Requiredfor
Overloaded API
Formula Name VARCHAR2 Optiond
Payee ID NUMBER Required
Previous_Risk_Score VARCHAR2 Required
AV SCode VARCHAR2 Required
p_payment_risk_ IN PaymentRiskinfo_rec_ Required
info type
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR?2
X_risk_resp OUT RiskResp_rec_type

OraPmtBankPayBatchReq
API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

The OraPmtBankPayBatchReqg APl handles new bank payment batch requests from Oracle
Payables. The Oracle Payables application passes the payment batch details as a
PmtBankPayBatchReq Rec_Type record, transaction details as a PmtBankPayBatchTrxn_
Thl_Type table structure and invoice details as a PmtBankPaylnvoice_Tbl_Type table
structure to iPayment. Thisis an OFFLINE batch submission wherein the batch information
is stored in the iPayment database.

C-50 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

If the batch payment information is saved in the database successfully, then the OUT status
field x_return_status returns avalue of FND_API.G_RET_STS SUCCESS.

Signature
PROCEDURE OraPmtBankPayBatchReq|(

p_api_version IN NUMBER,
p_init_msg_list IN VARCHAR2 DEFAULT FND_API.G_FALSE,
p_commit IN VARCHAR2 DEFAULT FND_API.G_FALSE,

p_validation_level IN NUMBER DEFAULT FND_API.G_VALID_LEVEL_
FULL,

p_ecapp_id IN NUMBER,

X_return_status OUT VARCHAR?Z,

x_msg_count OUT NUMBER,

x_msg_dataOUT VARCHAR?2,

p_pmt_bs req rec IN PmtBankPayBSReq_Rec_Type,
p_pmt_batch_req rec IN PmtBankPayBatchReq_Rec_Type,
p_pmt_batch_trxn_tbl IN PmtBankPayBatchTrxn_Thl_Type,
p_pmt_invoice _tbl IN PmtBankPaylnvoice Thl_Type)

Parameters
Parameter IN/OUT DataType Sub Type Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optional
p_commit IN VARCHAR2 Optional
p_validation_level IN NUMBER Optional
p_ecapp_id IN NUMBER Required
p_pmt_bs req rec IN PmtBankPayBSReq Required
Rec_Type
p_pmt_batch req IN PmtBankPayBatchReq Required
rec Rec_Type

iPayment PL/SQL APIs C-51

Payment Processing APIs

Parameter IN/OUT DataType Sub Type Required/Optional
p_pmt_batch_trxn_ IN PmtBankPayBatchTrxn_ Required
tbl Thl_Type
p_pmt_invoice tbl IN PmtBankPaylnvoice Required

Thl_Type
X_return_status ouT VARCHAR2 Required
X_msg_count ouT NUMBER Required
X_msg_data ouT VARCHAR2 Required

C-52 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Payment Instrument Registration APIs

Instrument registration APIs provide the functionality to register a payor’s bank, credit card,
PINless debit card, or purchase card. All the procedures described below are declared public
and are stored in the PL/SQL Package IBY _INSTRREG_PUB as part of the applications
database.

The following PL/SQL APIs are described in this section:
« OralnstrAdd

« OralnstrmMod

= OralnstrDéel

« Oralnstring

OralnstrAdd
API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

This APl can be used to add an instrument to the iPayment. Only one of Credit Card,
PINless Dehit Card, Purchase Card or Bank Account can be registered at atime.

If the registration is successful, an Instrument Id is returned. This Instrument Id may be used
to submit a payment transaction. For Bank Account transfers, you need to have aregistered
instrument id to submit atransaction. This APIswill internally call IBY _BANKACCT _
PKG. createBankAcct orIBY _CREDITCARD_PKG.createCard to register a new
instrument.

Signature
Procedure OralnstrAdd (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE

p_commit IN VARCHAR2:=FND_API.G_FALSE

p vdidation leved IN NUMBER=F\D_AP.G_VALID
LEVEL_FULL

p_payer_id IN VARCHAR2(80),

p_pmtinstrRec IN Pmtinstr_rec_type,

iPayment PL/SQL APIs C-53

Payment Instrument Registration APIs

X_return_status OUT VARCHARZ2,
X_msg_count OUT NUMBER,
X_msg_data OUT VARCHARZ2,
X_instr_id OUT NUMBER(15))
Parameters
IN/
Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_payer_id IN VARCHAR2 Required
p_pmtinstrRec IN Pmtinstr_rec_type Required
1. CreditCardlnstr CreditCardingtr_ Mandatory if 2, 3and 4
rec_type are not passed.
Llinstr_Id Should NOT be passed.
2.FIName Optiona
3.CC_Type Optiond
4.CC_Num Required
5.CC_ExpDate Required
6.CC_ Optiona
HolderName
7.Billing_ Optiona*
Addressl
8. Billing_ Optiona
Address2
9. Billing_ Optiona
Address3
10.Billing_City Optiona*
11. Billing_ Optiona
County

C-54 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType SubType Required/Optional
12. Billing_State Optiona
13. Billing_ Optiona*
Country
Note: Address 14. Billing_ Optiona
record is optional Postal Code

overal, but if
passed, then the 3
fields Addrl, City,
Country (7,10,13)*
are together
mandatory.

15. CC_Desc Optiond

2.PurchaseCardInstr PurchaseCardins Mandatory if 1, 3 and 4
tr_rec_type arenull
Linstr_Id Should NOT be passed.
2.FIName Optiona
3.PC_Type Optiond
4.PC_Num Required
5.PC_ExpDate Required
6.PC_ Optiona
HolderName
7.Billing_ Optiona*
Addressl
8. Billing_ Optionad
Address2
9. Billing_ Optionad
Address3

10.Billing_City Optiona*

11. Billing_ Optiona
County

12. Billing_State Optiona

13. Billing_ Optiona*
Country

iPayment PL/SQL APIs C-55

Payment Instrument Registration APIs

IN/

Parameter OUT DataType SubType Required/Optional

Note: Address 14. Billing_ Optiona

record is optional Postal Code

overal, but if

passed, then the 3

fields Addrl, City,

Country (7,10,13)*

are together

mandatory.
15, PC_Subtype Required
16. PC_Desc Optional

3.DebitCardlInstr DebitCardinstr_ Mandatory if 1, 2 and 4

rec_type arenull
Llinstr_Id Should NOT be passed.
2.FIName Optiona
3.DC_Type Optiona
4.DC_Num Required
5.DC_ExpDate Required
6.DC_ Optionad
HolderName
7.Billing_ Optiona*
Addressl
8. Billing_ Optiona
Address2
9. Billing_ Optiona
Address3
10.Billing_City Optiona*
11. Billing_ Optiona
County
12. Billing_State Optiona
13. Billing_ Optiona*
Country

C-56 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType SubType Required/Optional
Note: Address 14. Billing_ Optiona
record is optional Postal Code
overal, but if

passed, then the 3
fields Addrl, City,
Country (7,10,13)*
are together
mandatory.

4. BankAcctinstr

5. InstrumentType

X_return_status OUT VARCHAR2

X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
X_instr_id OUT NUMBER

15. DC_Subtype Required
16. DC_Desc Optiond
BankAcctinstr_ Mandatory if 1,2 and 3

rec_type are both null

Linstr_Id Should NOT be passed.
2.FIName Optiona

3. Bank_Id Required

4. Branch_ID Optiona

5. BankAcct_ Required
Type

6. BankAcct_ Required
Num

7. BankAcct_ Required
HolderName

8. Bank_Desc Optiona
VARCHAR?2 Required.

OralnstrmMod
API type: Public

Prerequisites for calling the API: None

iPayment PL/SQL APIs C-57

Payment Instrument Registration APIs

Function(s) performed by the API:

This API can be used to modify an instrument in the iPayment. Only one instrument of type
Credit Card, PINless Debit Card, Purchase Card or Bank Account can be modified at atime.
This APIswill internally call IBY _BANKACCT_PKG. modifyBankAcc or IBY _
CREDITCARD_PKGmodifyCard to modify an existing instrument.

Note: Theinstrument record in the database is updated with the input
parameters on an "asis" basis. Since the default value for all the input
parameters (or record type members) is NULL, the record will be updated
with null values for parameters (or members) not assigned a value. This
means that each time an instrument's information is modified, it is
REPLACED with al the information passed in the modification request.
That is, al the prior information is overwritten by the datain the
maodification request, assuming that the data passed is the newest.

Signature
Procedure OralnstrMod (p_api_version IN

p_init_msg_list IN
p_commit IN
p_vdidation levd IN

p_payer_id IN
p_pmtinstrRec IN
X_return_status OUT
X_msg_count ouT
X_msg_data ouT

C-58 Oracle iPayment Implementation Guide

NUMBER,
VARCHAR2:=FND_API.G_FALSE
VARCHAR2:=FND_API.G_FALSE
NUMBER=F\D_AP.G_VALID
LEVEL_FULL

VARCHAR2(80),
Pmtinstr_rec_type,

VARCHAR2,

NUMBER,

VARCHAR?2)

PL/SQL APIs Procedure Definitions

Parameters
IN/
Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_payer_id IN VARCHAR2 Required
p_pmtinstrRec IN Pmtinstr_rec_type Required
1. CreditCardlnstr CreditCardinstr_ Mandatory if 2, 3and 4
rec_type are not passed.
Linstr_Id Should NOT be passed.
2.FIName Optiona
3.CC_Type Optiond
4.CC_Num Required
5.CC_ExpDate Required
6.CC_ Optiona
HolderName
7.Billing_ Optiona*
Addressl
8. Billing_ Optiona
Address2
9. Billing_ Optiona
Address3

10.Billing_City Optiona*

11. Billing_ Optiona
County

12. Billing_State Optiona
13. Billing_ Optiona*
Country

iPayment PL/SQL APIs C-59

Payment Instrument Registration APIs

IN/
Parameter OUT DataType SubType Required/Optional
Note: Address 14. Billing_ Optiona
record is optional Postal Code

overal, but if
passed, then the 3
fields Addrl, City,
Country (7,10,13)*
are together
mandatory.

15. CC_Desc Optiond

2.PurchaseCardinstr PurchaseCardins Mandatory if 1, 3 and 4
tr_rec_type arenull
Llinstr_Id Should NOT be passed.
2.FIName Optiona
3.PC_Type Optiond
4.PC_Num Required
5.PC_ExpDate Required
6.PC_ Optiona
HolderName
7.Billing_ Optiona*
Addressl
8. Billing_ Optionad
Address2
9. Billing_ Optiona
Address3

10.Billing_City Optiona*

11. Billing_ Optiona
County

12. Billing_State Optiona

13. Billing_ Optiona*
Country

C-60 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType SubType Required/Optional
Note: Address 14. Billing_ Optiona
record is optional Postal Code
overal, but if

passed, then the 3
fields Addrl, City,
Country (7,10,13)*
are together
mandatory.

3.DebitCardlnstr

15, PC_Subtype Required
16. PC_Desc Optiond
DebitCardinstr_ Mandatory if 1, 2 and 4

rec_type arenull
Linstr_Id Should NOT be passed.
2.FIName Optiona
3.DC_Type Optiona
4.DC_Num Required
5.DC_ExpDate Required
6.DC_ Optiona
HolderName

7.Billing_ Optiona*
Addressl

8. Billing_ Optiona
Address2

9. Billing_ Optiona
Address3

10.Billing_City Optiona*

11. Billing_ Optionad
County

12. Billing_State Optiona

13. Billing_ Optiona*
Country

iPayment PL/SQL APIs C-61

Payment Instrument Registration APIs

IN/
Parameter OUT DataType SubType Required/Optional
Note: Address 14. Billing_ Optiona
record is optional Postal Code
overal, but if
passed, then the 3
fields Addrl, City,
Country (7,10,13)*
are together
mandatory.
15. DC_Subtype Required
16. DC_Desc Optionad
4, BankAcctlnstr BankAcctinstr_ Mandatory if 1,2 and 3
rec_type are both null
Linstr_Id Should NOT be passed.
2.FIName Optiona
3. Bank_Id Required
4. Branch_ID Optiona
5. BankAcct_ Required
Type
6. BankAcct_ Required
Num
7. BankAcct_ Required
HolderName
8. Bank_Desc Optiona
5. InstrumentType VARCHAR2 Required.
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
X_msg_data OUT VARCHAR2
OralnstrDel
API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

C-62 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

This API can be used to delete an instrument from the iPayment. Only one instrument of
type Credit Card, PINless Debit Card, Purchase Card or Bank Account can be deleted at a
time. This APIswill finally call IBY_BANKACCT_PKG. deleteBankAcct orIBY _
CREDITCARD_PKG.deleteCreditCard to delete an existing instrument.

Note:

Thisis a soft delete. The record is not removed or deleted

physicaly from the database, the instrument status is made inactive.

Signature

Procedure OralnstrDel (p_api_version IN

p_init_msg_list IN
p_commit IN

p_vdidation levd IN

NUMBER,

VARCHAR2:=FND_API.G_FALSE
VARCHAR2:=FND_API.G_FALSE
NUMBER=RND_AP.G_VALID

LEVEL_RULL

p_payer_id IN VARCHAR2(80),

p_instr_id IN NUMBER(15),

X_return_status OUT VARCHARZ2,

X_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR?2)
Parameters

IN/

Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_payer_id IN VARCHAR2 Required
p_instr_id IN NUMBER Required

iPayment PL/SQL APIs C-63

Payment Instrument Registration APIs

Parameter IC’)\ll/JT DataType SubType Required/Optional
X_return_status OUT VARCHAR2

X_msg_count OUT NUMBER

x_msg_data OUT VARCHAR?2

Oralnstring

API type: Public

Prerequisites for calling the API: None
Function(s) performed by the API:

This API can be used to inquire about an instrument in the iPayment. This APl will have 2
overloaded procedures. The provides flexibility to the calling applications. The two
available flavours are:

a. Thisinquiry isbased on the payer Id and will return all the instruments that are
registered for that payer. Three tables, each containing instruments of the sametype
will be returned as output.

b. Thisinquiry isbased on the Instrument Id and will return details for the instrument
that is registered for that Instrument Id and the instrument type. UNREGISTERED
is returned when the instrument does not exist for the given payer_id and instr_id.

Signature (with only payer id)
Procedure Oralnstring (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_FALSE,

p_commit IN VARCHAR2:=FND_API.G_FALSE,

p_vdidation leve INNUMBER=FND_AP.G_VALID
LEVEL_FULL,

p_payer_id IN VARCHAR2(80),

X_return_status OUT VARCHARZ2,

X_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR2,

x_creditcard_thl OUT CreditCard_thl_type,

C-64 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

X_purchasecard_tbl OUT PurchaseCard_thl_type,
X_bankacct_tbl OUT BankAcct_thl_type)
Parameters
IN/

Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_payer_id IN VARCHAR2 Required
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR?2
x_creditcard_tbl OUT CreditCard_tbl_type CreditCardinstr_

rec_type

Llinstr_ld

2.FIName

3.CC_Type

4.CC_Num

5.CC_ExpDate

6.CC_

HolderName

7.Billing_

Addressl

8. Billing_

Address2

9. Billing_

Address3

10.Billing_City

11. Billing_

County

iPayment PL/SQL APIs C-65

Payment Instrument Registration APIs

IN/
Parameter OUT DataType SubType Required/Optional

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. CC_Desc

X_purchasecard_tbl OUT PurchaseCard_thl_type PurchaseCardins
tr_rec_type

Linstr_ld
2.FIName
3.PC_Type
4.PC_Num
5.PC_ExpDate

6.PC_
HolderName

7.Billing_
Addressl

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15, PC_Subtype
16. PC_Desc

C-66 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType SubType Required/Optional

X_bankacct_tbl OUT BankAcct_tbl_type BankAcctinstr_
rec_type

Llinstr_ld
2.FIName

3. Bank_Id
4. Branch_ID

5. BankAcct_
Type

6. BankAcct_
Num

7. BankAcct_
HolderName

8. Bank_Desc

Overloaded API Signature (using instrument id)

Procedure Oralnstring (p_api_version IN NUMBER,

p_init_msg_list IN VARCHAR2:=FND_API.G_
FALSE,

p_commit IN VARCHAR2:=FND_API.G
_FALSE,

p_vdidation levd IN NUMBER=FND_AP.G
VALID LEVEL_FULL,

p_payer_id IN VARCHAR2(80),

p_instr_id IN VARCHAR2,

X_return_status OUT VARCHARZ2,

X_msg_count OUT NUMBER,

X_msg_data OUT VARCHAR2,

X_pmtinstrRec OUT Pmtlnstr_rec_type)

iPayment PL/SQL APIs C-67

Payment Instrument Registration APIs

Parameters

IN/
Parameter OUT DataType SubType Required/Optional
p_api_version IN NUMBER Required
p_init_msg_list IN VARCHAR2 Optiond
p_commit IN VARCHAR2 Optiona
p_validation_level IN NUMBER Optiond
p_payer_id IN VARCHAR2 Required
p-instr_id IN NUMBER
X_return_status OUT VARCHAR2
X_msg_count OUT NUMBER
x_msg_data OUT VARCHAR?2
X_pmtInstrRec OUT Pmtlnstr_rec _type

C-68 Oracle iPayment Implementation Guide

1. CreditCardInstr

CreditCardinstr_
rec_type

Linstr_ld
2.FIName
3.CC_Type
4.CC_Num
5.CC_ExpDate

6.CC_
HolderName

7.Billing_
Addressl

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

PL/SQL APIs Procedure Definitions

IN/
Parameter OUT DataType SubType Required/Optional

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. CC_Desc

2. PurchaseCardlnstr PurchaseCardins
tr_rec_type

Linstr_ld
2.FIName
3.PC_Type
4.PC_Num
5.PC_ExpDate

6.PC_
HolderName

7.Billing_
Addressl

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15, PC_Subtype

iPayment PL/SQL APIs C-69

Payment Instrument Registration APIs

IN/
Parameter OUT DataType SubType Required/Optional

16. PC_Desc

3.DebitCardInstr DebitCardinstr_
rec_type

Linstr_ld
2.FIName
3.DC_Type
4.DC_Num
5.DC_ExpDate

6.DC_
HolderName

7.Billing_
Addressl

8. Billing_
Address2

9. Billing_
Address3

10.Billing_City

11. Billing_
County

12. Billing_State

13. Billing_
Country

14. Billing_
PostalCode

15. DC_Subtype
16. DC_Desc

4. BankAcct_tbl_type BankAcctinstr_
rec_type

Linstr_ld
2.FIName
3. Bank_Id

C-70 Oracle iPayment Implementation Guide

PL/SQL APIs Procedure Definitions

Parameter

IN/
OUT DataType

SubType Required/Optional

5. Instrument Type

4. Branch_ID

5. BankAcct_
Type

6. BankAcct_
Num

7. BankAcct_
HolderName

8. Bank_Desc

VARCHAR2.
Can have
following values
defined as
constants

C_
INSTRTY PE_
UNREG,

C_
INSTRTY PE_
BANKACCT,

C_
INSTRTY PE_
CREDITCARD,

C_

INSTRTY PE_
PURCHASECA
RD

iPayment PL/SQL APIs C-71

PL/SQL Record/Table Types Definitions

PL/SQL Record/Table Types Definitions

The following PL/SQL record/table types are defined to store the objects (entities) necessary
for the ECApp PL/SQL APIs. For information on Mandatory, Conditionally M andatory, and
Optional fields in these records/tables, please refer to the ensuing API descriptions, where
these requirements are tabulated.

C-72 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Payments Related Generic Record Types

1.

Payee ID

TY PE Payee rec_typelS RECORD (

VARCHAR2(80)

);

Payee ID: ID of the payee

2. TYPE Payer_rec_typelSRECORD (
Payer_ID VARCHAR2(80),
Payer_Name VARCHAR2(80)

);

Payer _ID: ID of the payer

Payee Name: Name of the payer

3. TYPE Address rec_typelS RECORD (

Addressl VARCHAR2(80),
Address2 VARCHAR2(80),
Address3 VARCHAR2(80),
City VARCHAR2(80),
County VARCHAR2(80),
State VARCHAR2(80),
Country VARCHAR2(80),
Postal Code VARCHAR2(40),
Phone VARCHAR2(40),
Email VARCHAR2(40)

)i

Addressl: Thefirst line of the street address.
Address2: The second line of the street address.
Address3: The third line of the street address.
City: City in the address.

iPayment PL/SQL APls

C-73

Payments Related Generic Record Types

Sate: State in the address.

County: County in the address.

Country: Country code in the address.

Postalcode: Postal code for the address.

Phone: Phone for that address. It is for informational purposes only.
Email: It is not supported right now.

4. TYPECreditCardlnstr_rec_type ISRECORD (

FIName VARCHARZ2(80),
CC_Type VARCHAR2(80),
CC_Num VARCHAR2(80),
CC_ExpDate DATE,

CC_HolderName VARCHAR2(80),
CC _BillingAddr Address rec_type

);
Financial I nstitution Name (FI Name): Optional, should be at least of non-trivia length 3.
CC_Type: Type of credit card (MASTERCARD, VISA, AMEX, ...).

CC_Num: For credit card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

CC_ExpDate: Credit Card expiration date.

CC_Holder Name: Credit card holder name.

CC_BillingAddr: Address type record for the billing address of the credit card.
5. TYPE PurchaseCardlnstr_rec_typelS RECORD (

FIName VARCHAR2(80),
PC_Type VARCHAR2(80),
PC_Num VARCHAR2(80),
PC_ExpDate DATE,
PC_HolderName VARCHAR2(80),
PC_BillingAddr Address rec_type,

C-74 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

PC_Subtype VARCHAR2(80)
);
Financial Institution Name (FI Name): Optional, should be at least of non-trivia length 3.
PC_Type: Type of purchase card (MASTERCARD, VISA, AMEX, ...).

PC_Num: For purchase card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

PC_ExpDate: Purchase Card expiration date.
PC_HolderName: Purchase card holder name.
PC_BillingAddr: Address type record for the billing address of the purchase card.

PC_Subtype: The subtype for purchase card. Possible valuesare (‘B’/'C'/'P'/'U’) which
are for BUSINESS/ CORPORATE / PURCHASE / UNKNOWN.

Financial Institution Name (FI Name): Optional.

Bank_|D: Routing number of the bank. Should be at least of non-trivial length 2.
Branch_ID: ID of the branch.

BankAcct_Type: Should be of at least non-trivial length 3. Such as CHECKING.
BankAcct_Num: For bank account number, should be at least of non-trivia length 3.
BankAcct_Holder Name: Name of the bank account holder.

6. TYPE DebitCardinstr_rec_type ISRECORD (

FIName VARCHAR2(80),
DC_Type VARCHAR2(80),
DC_Num VARCHAR2(80),
DC_ExpDate Date,
DC_HolderName VARCHAR2(80),
DC_BillingAddr Address rec_type,
DC_Subtype VARCHAR2(80)

);
Financial Institution Name (FI Name): Optional, should be at least of non-trivia length 3.
DC_Type: Type of debit card (MASTERCARD, VISA, AMEX, ...).

iPayment PL/SQL APIs C-75

Payments Related Generic Record Types

DC_Num: For debit card number, it should be numeric other than dashes and spaces.
However, it will be stored without any spaces or dashes.

DC_ExpDate: Debit Card expiration date.
DC_Holder Name: Debit card holder name.
DC_BillingAddr: Address type record for the billing address of the purchase card.

DC_Subtype: The subtype for debit card. Possible valuesare (‘B’/'C'/'P'/’U’) which are
for BUSINESS/ CORPORATE / PURCHASE / UNKNOWN.

7. TYPEPmtinstr_rec_type |ISRECORD (
Pmtinstr_ID NUMBER,
PmtInstr_ShortName VARCHAR2(80),
CreditCardInstrCredit Cardinstr_rec_type,

PurchaseCardl nstr PurchaseCardinstr_rec_type,
Dual Paymentlnstr Dual Paymentlnstr_rec_type,
DebitCardlnstr DebitCardinstr_rec_type

);

Pmtinstr_ID: The payment instrument 1D of an already registered payment instrument.
Pmtlnstr_ShortName: Short name for the payment instrument.

CreditCardlnstr: Credit card instrument type record. Refer #4 for details.
PurchaseCardinstr: Purchase card instrument type record. Refer #5 for details.
DualPaymentlnstr: Payment instrument type record.

DebitCardl nstr: Debit card instrument type record. Refer #6 for details.

Note: The Payment Instrument Type (i.e., CREDITCARD / DEBIT CARD /
PURCHASECARD / BANKACCOUNT / UNREGISTERED) is derived from the input
data, by verifying which of the input instrument records (i.e., CreditCardinstr,
PurchaseCardlnstr, DebitCardinstr, BankA cctlnstr, Pmtinstr_ID) are provided with input
values. That particular instrument type and its component fields are then passed to the
iPayment1li EC-Servlet. So, either Pmtinstr_ID aoneis provided for registered
instruments, or one of the other three (CreditCardIinstr, PurchaseCardlnstr, BankAcctInstr) is
provided as part of payment instrument input.

8. TYPE DualPaymentinstr_rec_type S RECORD (
Pmtinstr_ID NUMBER,

C-76 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

PmtInstr_ShortName VARCHAR2(80),

BnfPmtinstr_ID NUMBER,

BnfPmtinstr_ShortName VARCHAR2(80),
);
PmtlInstr_ID: The payment instrument 1D of an already registered payment instrument.
Pmtlnstr_ShortName: Short name for the payment instrument.

BnfPmtlnstr_ID: The payment instrument ID of aregistered bank account instrument that
is the beneficiary of the transaction.

BnfPmtlnstr_ShortName: Short name for the a registered bank account instrument.

9. TYPE Tangible rec _typel SRECORD (

Tangible_ID VARCHAR2(80),
Tangible_Amount NUMBER,

Currency_Code VARCHAR2(80),
Reflnfo VARCHAR2(80),
Memo VARCHAR2(80),
Acct_Num VARCHAR2(80),
OrderMedium VARCHAR2(80),
EFTAuthMethod VARCHAR2(80),

)i

Tangible _ID: It isthe order id or bill id. It should be unique for a given payee.
Tangible_Amount: Should be a positive number.

Currency_Code: The 3 letter currency code.

Reflnfo: Reference information for this bill/order.

Memo: Memo for this bill/order.

Acct_Num: Account number of the customer, if applicable.

Order M edium: This parameter indicates the medium or channel through which a
transaction was created. It is used for credit card, purchase card, and debit card transactions
to obtain an improved interchange rate.

iPayment PL/SQL APIs C-77

Payments Related Generic Record Types

EFTAuthMethod: This parameter indicates the method used to receive authorization to
perform an electronic funds transfer to debit a payer’s bank account.

10. SUBTYPE RetailData_Enum IS VARCHAR2(10);
11. TYPE RetailData _rec_type S RECORD (

Tangible_ID VARCHAR2(80),
IsRetall VARCHAR2(1),

POSEntryMode RetailData_Enum,
POSCapability RetaillData_Enum,
POSA uthSource RetailData_Enum,
POSCardldMethod RetailData_Enum,
POSSwipeData VARCHAR2(300)

Tangible_ID: It isthe order id or bill id. It should be unique for a given payee.

IsRetail: Value'Y' indicates the current transaction is aretail transaction; value 'N' that it is
not.

POSEnNtryM ode: Givesthe credit card entry mode at the point-of-sale (POS). The
following constants are have been enumerated for thisfield:

C_ENTRYMODE_KEYED: Manua/keyed entry.
C_ENTRYMODE_MAGTRACK 1: Magnetic reader track 1.
C_ENTRYMODE_MAGTRACK2: Magnetic reader track 2.

C_ ENTRYMODE_MAGTRACKALL: Magnetic reader al tracks (track 1 & 2).
C_ENTRYMODE_SMARTCARD_RDR: Smart card reader/chip reader.
C_ENTRYMODE_UNKNOWN: Unknown entry mode.

POSCapability: The card reading capabilities at the point-of-sale. This field takes the
following enumerated val ues:

C_CAPABILITY_KEY: Keyed/manual entry-only capability.
C_CAPABILITY_MAG_RDR: Magnetic reader capability.
C_CAPABILITY_CHIP_RDR: Chip reader capability.
C_CAPABILITY_UNKNOWN: Unknown capability.

C-78 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

POSAuthSource: The authorization source. This field takes the following enumerated
values:

C_AUTHSRC_ISSUER_PROVIDED: Issuer provided authorization source.
C_AUTHSRC_REFERRAL : Referral authorization source.
C_AUTHSRC_OFFLINE: Off-line authorization.
C_AUTHSRC_NONAPPROVED: Non-approved.

POSCardl dMethod: The card identification method used at the point-of-sale. The field can
have the following enumerated val ues:

C_CARDID_SIGNATURE: Signature identification.
C_CARDID_PIN: PIN-entry identification.
C_CARDID_UNATTEND_TERM: Unattended terminal identification.
C_CARDID_MAILORDER: Mail order identification.
C_CARDID_NONE: No identification.

POSSwipeData: Swipe data read by a magnetic or chip reader at the point-of-sale. A caling
application that can interface with such areader may passthis datato iPayment asa
(possibly encoded) string.

iPayment PL/SQL APIs C-79

Inbound Payment Operations Related Record Types

Inbound Payment Operations Related Record Types

1. TYPEPmtReqTrxn_rec_typelSRECORD (

PmtMode
CvVv2
Settlement _Date
Auth_Type
Check_Flag
Retry _Flag
Org_ID
NLS_LANG
PONum
TaxAmount
ShipFromZip
ShipToZip
AnayzeRisk
AuthCode
VoiceAuthFlag

);

VARCHAR2(30),
VARCHAR2(10) := NULL,
Date:=,
VARCHAR2(80),
VARCHAR2(30),
VARCHAR2(30),
NUMBER,
VARCHARZ2(80),
NUMBER,
NUMBER,
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80)
VARCHAR2(255)
VARCHAR2(30)

PmtM ode: Its value should be either ONLINE or OFFLINE.

CVV2: TheVisaCVV2, Mastercard CVC2, or American Express CIP value associated with
the credit card is used for this transaction.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is meaningful
only for OFFLINE Bank Account transfer operations when the user requested settle dateis
earlier THAN the earliest date it can be settled by the system. When check flag is set to true,
the operation will be rejected if it cannot be settled by user specified settle date, otherwise,
the operation will get scheduled with the earliest settle date available by the system, and a
warning message will be returned saying unable to meet user specified date.

C-80 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Retry flag: Should be either "Y' or 'N".
Applicable for ONLINE Credit Card Request and Credit operations.

You should set thisflag to "Y' when previous request when the same operation may have
been processed by the back payment system. For example, when first request returns with a
time out status, or when OraPmtQryTrxn failed to retrieve the information. Thisflag is
passed as isto the backend payment system. Check with individua backend payment system
for further details.

Org_ID: Theidentifier for the organization submitting the request.
Applicable for new operations (Request, Modify, Credit). Should be a positive integer.

Auth_Type: Applicablefor credit card authorization (request), modify, and credit operation
only. Also applicable for electronic funds transfer online validations. Takes one of the
following values:

AUTHONLY: terminal-based/host-based authorization only.
AUTHCAPTURE: host-based authorization and capture together.
VALIDATE: EFT online validations.

NL SLang: The NLS language code.

PONum: Purchase order number for this transaction.

TaxAmount: Amount of transaction that is tax.

ShipFromZip: The ZIP code from which merchandise will be shipped.
ShipToZip: The ZIP code to which merchandise will be shipped.

AnalyzeRisk: The flag that allows the calling application to request risk analysis. Values are
True, False, and Neutral. "True" causesrisk analysis to be done and "False" keeps risk
analysis from being done. "Neutral" causes iPayment to use the payee level risk enablement
setting. This defaultsto "neutra” if no valueis given.

AuthCode: The authorization Code that the financial institution issues after doing avoice
authorization. This field is required if the VoiceAuthFlag issetto ‘Y’.

VoiceAuthFlag: Should be set up to either Y or N. Thisindicates whether the current
transaction refers to a voice authorization (where the financia institution has already been
contacted directly). If thisfieldisset upas‘Y’, then the AuthCode field is required to have
the same value.

2. TYPEModTrxn_rec typelSRECORD (
Trxn_ID NUMBER,

iPayment PL/SQL APIs C-81

Inbound Payment Operations Related Record Types

PmtMode VARCHAR2(30),
Settlement_Date DATE,
Check_Flag VARCHAR2(30),
Auth_Type VARCHAR2(80),
PONum NUMBER,
TaxAmount NUMBER,
ShipFromZip VARCHAR2(80),
ShipToZip VARCHAR2(80)

);
Trxn_ID: Thetransaction id for the operation which has to be modified.
PmtM ode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Check flag: Ignored for ONLINE requests, optional for OFFLINE requests. It is meaningful
only for OFFLINE operations when the user requested settle date is earlier than the earliest
date it can be settled by the system. When check flag is set to true, the operation will be
rejected if it cannot be settled by user specified settle date, otherwise, the operation will get
scheduled with the earliest settle date available by the system, and a warning message will
be returned saying unable to meet user specified date.

Auth_Type: Applicablefor credit card authorization (request), modify, and credit operation
only. Also applicable for eectronic funds transfer online validations. Takes one of the
following values:

AUTHONLY: terminal-based/host-based authorization only.
AUTHCAPTURE: host-based authorization and capture together.
VALIDATE: EFT online validations.

PONum: Purchase order number for this transaction.

TaxAmount: Amount of transaction that istax.

ShipFromZip: The ZIP code from which merchandise will be shipped.
ShipToZip: The ZIP code to which merchandise will be shipped.

3. TYPE CaptureTrxn_rec_type ISRECORD (

C-82 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,

Currency VARCHAR2(80),
Price NUMBER,
NLS_LANG VARCHAR2(80)

);
Trxn_ID: Thetransaction id for the operation which has to be captured.
PmtM ode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.
NL SLang: The NLS language code

4. TYPE ReturnTrxn_rec_type | SRECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,

Currency VARCHAR2(80),
Price NUMBER,
NLS_LANG VARCHAR2(80)

);
Trxn_ID: Thetransaction id for the operation which has to be returned.
PmtM ode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.

iPayment PL/SQL APIs C-83

Inbound Payment Operations Related Record Types

NL SL ang: The NL S language code
5. TYPE CancelTrxn_rec_typelSRECORD (

Trxn_ID NUMBER,
Req_Type VARCHAR?Z,
NLS LANG VARCHAR2(80)

);
Trxn_ID: Thetransaction id for the operation which has to be returned.

Req_Type: optional field provides the option of canceling other operations (such as Void,
Return, etc.), in addition to scheduled payment requests. By Default, this Req_Typefieldis
set to ‘ORAPMTREQ’ to cancel the authorization operation.

NL SL ang: The NLS language code
6. TYPE QueryTrxn_rec_typel SRECORD (

Trxn_ID NUMBER,
History_Flag VARCHAR2(30),
NLS LANG VARCHAR2(80)

);
Trxn_ID: Thetransaction id for the operation which has to be queried.

History _Flag: takesin values=>‘TRUE’ or ‘FALSE’. When set to TRUE, it retrieves the
entire history, otherwise it retrieves the latest one only.

NL SL ang: The NLS language code
7. TYPEVoidTrxn_rec_type S RECORD (

Trxn_ID NUMBER,
PmtMode VARCHAR2(30),
Settlement_Date DATE,
Trxn_Type NUMBER,
NLS_LANG VARCHAR2(80)

);

Trxn_ID: Thetransaction id for the operation which has to be voided. The type of the
operation will be specified in Trxn_Type.

C-84 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

PmtM ode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

NL SLang: The NLS language code.

Trxn_Type: takesthe following numeric values:

Lookup Code Meaning Description

2 AuthOnly Online authorization requested for an order

3 AuthCapture Online authorization & capture for an order

4 VoidA uthOnly Void an order authorized but not captured

5 Return Return on an order which is authorized & captured

6 ECRefund Refund on a purchase done using EC cash/coin

7 VoidA uthCapture Voids a previously authorized & captured trxn

8 Capture Capture funds for previously authorized trxn.

9 MarkCapture Marked for capture by terminal based system

10 MarkReturn Marked for return by terminal based system

11 Credit Refund money to customer

13 VoidCapture Void operation captured by host based system

14 VoidMarkCapture Void operation marked for capture by terminal based
system

17 VoidReturn Void return operation for host based system

18 VoidMarkReturn Void operation marked for return by terminal based
system

102 Batch Admin Used for open, purge, query, and close batch operations

8. TYPE CreditTrxn_rec_typelS RECORD (

PmtMode
Settlement_Date

Retry Flag

Org_ID

VARCHAR2(30),
DATE,
VARCHAR2(30),
NUMBER,

iPayment PL/SQL APIs C-85

Inbound Payment Operations Related Record Types

NLS LANG VARCHAR2(80)
):
PmtM ode: Its value should be either ONLINE or OFFLINE.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Retry flag: Should be either "Y' or 'N".
Applicable for ONLINE Credit Card Request and Credit operations.

You should set thisflag to "Y' when previous request with the same operation may have been
processed by the back payment system. For example, when first request returns with atime
out status, or when OraPmtQryTrxn failed to retrieve the information. This flag is passed as
isto the backend payment system. Check with individua backend payment system for
further details.

Org_I D: Theidentifier for the organization submitting the request.
NL SL ang: The NLS language code
9. TYPEBatchTrxn_rec typelSRECORD (

PmtMode VARCHAR2(30),
PmtType VARCHAR2(30),
Settlement_Date DATE,

Payee ID NUMBER,
MerchBatch_ID VARCHARZ2(80),
BEP_Suffix VARCHAR2(80),
BEP_Account VARCHAR2(80),
NLS_LANG VARCHAR2(80)

):
PmtM ode: Its value should be either ONLINE or OFFLINE.

PmtType: Optional, defaulted to empty string. You need specify it if you wish to operate on
a back end payment system rather than the default one.

Settlement_Date: Ignored for all ONLINE requests, required for OFFLINE requests. It is
the date by which you wish the operation to be settled.

Payee ID: It'sthe payee identifier for whom the batch operation is performed.

C-86 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

MerchBatch_ID: It's the user selected identifier for this operation. Should be a non-empty
string, and should be unique across all merchant batch ids from a particular payee.

BEP_Suffix: The 3-letter suffix of the payment system that is associated with this batch.

BEP_Account: The merchant account the batch is associated with. Thisis the same vaue as
the payee's payment system identifier for the given back end payment system.

NL SLang: The NLS language code.

iPayment PL/SQL APIs C-87

Outbound Bank Payment Batch Related Record Types

Outbound Bank Payment Batch Related Record Types

TY PE PmtBankPaylInvoice_Rec_Type IS RECORD
(

pmt_batchrequestid NUMBER,

pmt_trxnid NUMBER,

inv_number VARCHAR2(50),

inv_date DATE,

inv_amount NUMBER,

pmt_amount NUMBER);

pmt_batchrequestid: Payment-batch Request ID.

pmt_trxnid: Transaction ID.

inv_number: Invoice Number.

inv_date: Invoice Date.

inv_amount: Invoice Amount.

pmt_amount: Actua payment amount after discount deduction.
TY PE PmtBankPaylnvoice_Thl_Type IS TABLE OF
PmtBankPayInvoice Rec Type INDEX BY BINARY_INTEGER;
TY PE PmtBankPayBatchTrxn_Rec_Type IS RECORD (
pmt_batchrequestid NUMBER,

pmt_trxnid NUMBER,

pmt_loc_country VARCHAR2(10),

pmt_priority VARCHAR2(10),

debit_acctno VARCHAR2(30),

fax_mail_to_name VARCHAR2(80),

mail_addressl VARCHAR2(35),

mail_address2 VARCHAR2(35),

C-88 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

mail_address3 VARCHAR2(35),
mail_addr_city VARCHAR2(35),
mail_addr_state VARCHAR2(35),
mail_addr_zip VARCHAR2(35),
vaue_amount NUMBER,
ref_amount NUMBER,

value_date DATE,

charge _details VARCHAR2(6),
vat_amount NUMBER,

wht_amount NUMBER,
pmt_details_1 VARCHAR2(20),
pmt_details_2 VARCHAR2(20),
pmt_details_3 VARCHAR2(20),
pmt_details_4 VARCHAR2(20),
trxn_code_clrid VARCHARZ2(6),
bnf_name VARCHAR2(80),

bnf_id VARCHAR2(30),
bnf_address linel VARCHAR2(30),
bnf_addr_city VARCHAR2(35),
bnf_addr_state VARCHAR2(35),
bnf_addr_zip VARCHAR2(35),
bnf_addr_phone VARCHAR2(20),
bnf_remarks VARCHAR2(80),
bnf_charge_amt NUMBER,
bnf_adjustment_amt VARCHAR2(30),
bnf_bank_name VARCHAR2(30),
bnf_bank_address VARCHAR2(60),
bnf_bank_addr_state VARCHAR2(35),

iPayment PL/SQL APIs C-89

Outbound Bank Payment Batch Related Record Types

bnf_bank_addr_city VARCHAR2(35),
bnf_bank_addr_zip VARCHAR2(20),
bnf_bank_branch_no VARCHAR2(50),
bnf_bank_branch_name VARCHAR2(30),
bnf_bank_branch_type VARCHAR2(25),
bnf_acctno VARCHAR2(30),
bnf_bank_account_name VARCHAR2(80),
bnf_bank_acct_type VARCHAR2(25),
bnf_acct_type VARCHAR2(25),
bnf_faxno_cableaddr VARCHAR2(35),
bnf_site code VARCHAR2(15),
bnf_swift_code VARCHAR2(30),
bnf_bank_clearing_ mtd VARCHAR2(60),
bnf_taxpayer_id VARCHAR2(30),
future_pay due _date DATE,

cust_ref NUMBER,

intrm_bankcode VARCHAR2(30),
intrm_swiftcode VARCHAR2(30),
intrm_bankname VARCHAR2(60),
intrm_bank_faxno_chl VARCHAR2(35)}

pmt_batchrequestid: Payment-batch Request ID.
pmt_trxnid: Transaction ID.

pmt_loc_country: Payment Location |SO Country Code.
pmt_priority: Payment Priority.

debit_acctno: Account number to be debited.

fax_mail_to_name: Fax/Mail to Name - Only required if fax beneficiary adviceis
required.

C-90 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

mail_addressl: Mail to Address 1 - Only required if fax beneficiary adviceis
required.

mail_address2: Mail to Address 2 - Only required if fax beneficiary adviceis
required.

mail_address3: Mail to Address 3 - Only required if fax beneficiary adviceis
required.

mail_addr_city: Mail to City - Only required if fax beneficiary advice isrequired.
mail_addr_state: Mail to State - Only required if fax beneficiary advice isrequired.
mail_addr_zip: Mail to Postal Code - Only required if fax beneficiary adviceis required.
value_amount: Amount in the payment document.

ref_amount: Amount in the reference currency.

value_date: Date in the payment document.

charge_details: Details of any charges on the invoice.

vat_amount: Amount of the value added tax.

wht_amount: Withholding tax amount.

pmt_details 1: Payment Details 1.

pmt_details 2: Payment Details 2.

pmt_details 3: Payment Details 3.

pmt_details 4: Payment Details 4.

trxn_code_clrid: Transaction Code/Clearing ID.

bnf_name: Beneficiary Name.

bnf_id: Beneficiary ID.

bnf_address _linel: Beneficiary Address.

bnf_addr_city: Beneficiary City.

bnf_addr_state: Beneficiary State.

bnf_addr_zip: Beneficiary Zip.

bnf_addr_phone: Beneficiary Phone.

bnf_remarks: Remarks.

bnf_charge amt: Beneficiary Charges Amount.

iPayment PL/SQL APIs C-91

Outbound Bank Payment Batch Related Record Types

bnf_adjustment_amt: Adjustment Amount.
bnf_bank_name: Beneficiary Bank Name.
bnf_bank_address: Beneficiary Bank Address.
bnf_bank_addr_state: Beneficiary Bank State.
bnf_bank_addr_city: Beneficiary Bank City.
bnf_bank_addr_zip: Beneficiary Bank Postal Code.
bnf_bank_branch_no: Beneficiary Bank/Branch No.
bnf_bank_branch_name: Beneficiary Bank Branch Name.
bnf_bank_branch_type: Beneficiary Bank Branch Type.
bnf_acctno: Beneficiary Bank Account Number.
bnf_bank_account_name: Beneficiary Bank Account Name.
bnf_bank_acct_type: Beneficiary Bank Account Typei.e Checking or Saving.

bnf_acct_type: Bank account type code. Possible values are: INTERNAL or SUPPLIER for
banks defined for Oracle Payables.

bnf_faxno_cableaddr: Beneficiary Fax No/Cable Address - Only required if fax beneficiary
adviceisrequired.

bnf_site_code: Beneficiary Site Code.

bnf_swift_code: Beneficiary Bank (SWIFT Code).
bnf_bank_clearing_mtd: Beneficiary Bank Clearing Method.
bnf_taxpayer_id: Beneficiary Tax ID.

future_pay_due _date: Future pay date.

cust_ref: Customer Reference.

intrm_bankcode: Intermediary Bank Code.
intrm_swiftcode: Intermediary Bank (SWIFT Code).
intrm_bankname: Intermediary Bank Name.

intrm_bank_faxno_cbl: Intermediary Bank Fax No/Cable Address.

TY PE PmtBankPayBatchTrxn_Thl_Type IS TABLE OF

C-92 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

PmtBankPayBatchTrxn_Rec_Type INDEX BY BINARY _INTEGER,;
TY PE PmtBankPayBatchReq Rec_Type IS RECORD(

pmt_batchrequestid NUMBER,
pmt_batch_name VARCHAR2(80),
cust_id NUMBER,

cust_name VARCHAR2(60),
cust_addrl VARCHAR2(60),
cust_addr2 VARCHAR2(60),
cust_addr3 VARCHAR2(60),
bank_name VARCHAR2(60),
bank_branch_name VARCHAR2(60),
bank_acct_name VARCHAR2(60),
bank_acct_number VARCHAR2(30),
bank_acct_type VARCHAR2(30),
orig_country_code VARCHARZ2(25),
pmt_method VARCHAR2(10),
currency_code VARCHAR2(15),
ref_currency_code VARCHARZ2(15),

doc_order_lookup_code VARCHAR2(25),

no_of trxns NUMBER,
batch_total NUMBER,
request_date DATE

pmt_batchrequestid: Payment-batch Request ID.

pmt_batch_name: Payment-batch name.

cust_id: Customer ID.
cust_name: Customer Name.

cust_addr1: Customer Addresslinel.

iPayment PL/SQL APIs C-93

Outbound Bank Payment Batch Related Record Types

cust_addr2: Customer Addressline2.

cust_addr 3: Customer Addressline3.

bank_name: Originating Bank Name.

bank_branch_name: Branch name of the originating bank.
bank_acct_name: Bank account name specific to the bank and branch.
bank_acct_number: Bank account number specific to the bank and branch.
bank_acct_type: Bank account type, i.e whether checking or saving.
orig_country_code: Originating 1SO Country Code.

pmt_method: Payment Method - CHECK/ELECTRONIC/WIRE.
currency_code: Currency Code.

ref_currency_code: Reference Currency Code.
doc_order_lookup_code: Type of payment ordering in a batch.
no_of_trxns: Total number of transactionsin the batch.

batch_total: Sum total of al the transaction amounts in the batch.

request_date: Date when the batch has been submitted.

TY PE PmtBankPayBSReq Rec_Type IS RECORD(
pmt_batchset_id NUMBER,
no_of batches NUMBER

);

pmt_batchset_id: Payment batch-set request ID.
no_of_batches: Total number of payment-batches in the batch-set.

C-94 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Risk Management Record Types

1. TYPERiskinfo_rec_typelSRECORD (

Formula_Name VARCHAR2(80),
ShipToBillTo_Flag VARCHAR2(255),
Time_Of_Purchase VARCHAR2(80),

Customer_Acct_Num NUMBER
);
Formula_Name: Name of the formulato be used.

ShipToBillTo_Flag: used to notify whether the “Ship_To” and the “Bill_To” addresses
match or not (‘TRUE'/'FALSE’).

Time_Of_Purchase: Represents the time duration passed in ‘HH:MI’ format in 24 Hours
notation. For example, 11 pm will be denoted as * 23:00'.

Customer_Acct_Num: Represents the payer’s account number in Oracle Accounts
Receivables. Thisfield isneeded in AR - risk factors evaluation.

Note: For more information on using Risk Management, please refer to the documentation
for the “Integrating Risk Management” under the section “Implementing iPayment”.

iPayment PL/SQL APIs C-95

Inbound Payment Operations Response Record/Table Types

Inbound Payment Operations Response Record/Table Types

1. TYPE Response _rec type |SRECORD (

Status NUMBER,
ErrCode VARCHAR2(80),
ErrMessage VARCHAR2(255),
NLS LANG VARCHAR2(80)

);

Satus: The status for the request. Possible values are (0,1,2 or 3).
ErrCode: TheIBY_XXXX error code for the error, if any.
ErrMessage: The error message associated with the error.

NLS LANG: The NLS code.

NOTE: Thisrecord isincluded in al the responses and the status of the operation can be
found by looking at the value of status. Possible values for Status are: (0 => ‘ Success', 1=>
‘Information’, 2=>"Warning’, 3=>"Error’).

For more information on Error Codes and their meaning, please refer to “Error Handling
during Payment Processing” in this document.

2. TYPE OffLineResp_rec_typelS RECORD (
EarliestSettlement_Date DATE,
Scheduled_Date DATE

);

If the payment operation cannot be settled by the settlement date specified in input, due to
lead time of the back end payment system, then

EarliestSettlement_Date: Specifies the earliest date by which the operation can be settled
Scheduled_Date: Specifies the date on which scheduler will pick up the operation.

The OffLineResp_rec_type record outputs can be looked into for payment operations sent
in OFFLINE Mode.

For more information on how the status values are propagated back to the ECApp, please
refer to “ Status Update API for Offline Request” in this document.

3. TYPERiskResp_rec typelSRECORD (

C-96 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Status NUMBER,
ErrCode VARCHAR2(80),
ErrMessage VARCHAR2(255),
Additional_ErrMessage VARCHAR2(255),
Risk_Score NUMBER,
Risk_Threshold_Val NUMBER,
Risky_Flag VARCHAR2(30)

);

Satus: The status for the request. Possible values are (0,1,2 or 3).
ErrCode: TheIBY_XXXX error code for the error, if any.
ErrMessage: The error message associated with the error.

Additional_ErrMessage: If multiple factors have failed, thisfield contains additional
messages about why the factors failed.

Risk_Score: Represents the overall risk score of the payment request.

Risk_Threshold_Val: The threshold value that is set for the payee involved in the payment
request.

Risky_Flag: Indicates whether payment is risky or not.
4. TYPE ReqResp_rec typel SRECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
RiskRespl ncluded VARCHAR2(30),
RiskResponseRisk Resp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Authcode VARCHAR2(80),
RefCode VARCHAR2(80),

AV SCode VARCHAR2(80),

iPayment PL/SQL APIs C-97

Inbound Payment Operations Response Record/Table Types

Pmtinstr_Type VARCHAR2(80),
Acquirer VARCHAR2(80),
VpsBatch_ID VARCHAR2(80),
AuxMsg VARCHAR2(255),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);
Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer to #2 for details.

RiskResplncluded: Flag used to indicate whether risk response included or not. Possible
values (‘'YES/'NO')/.

RiskResponse: The risk response record. Refer to #3 for details.
Trxn_ID: The new id generated for this request.

Trxn_Type: The type of the capture operation. Back-end system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

AuthCode: Authorization code that isreturned by back end payment system.
RefCode: Reference code that is returned by back end payment system.

AV SCode: AV 'S code that is returned by back end payment system.
Pmtlnstr_Type: Credit card type of the operation, such as 'Visa.

Acquirer: Acquirer information that isreturned by back end payment system.
VPSBatch_ID: VPSBatchld that is returned by back end payment system.
AuxMsg: Auxiliary message that is returned by back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

C-98 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Note: RiskRespincluded isaflag (‘' YES /’NO’) that tells the ECAPP that the RiskResponse
Record contains some valid Risk response information.

5. TYPE ModResp_rec typelSRECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER

);

Response: The response record. Refer to #1 for details.
OffLineResp: The offline response record. Refer to #2 for details.
Trxn_ID: The new id generated for this request.

6. TYPE VoidResp_rec_typelSRECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

RefCode VARCHAR2(80),
Pmtinstr_Type VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer to #1 for details.
OffLineResp: The offline response record. Refer to #2 for details.
Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. The Back-end system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation.

iPayment PL/SQL APIs C-99

Inbound Payment Operations Response Record/Table Types

RefCode: Reference code that is returned by back end payment system.
Pmtlinstr_Type: Credit card type of the operation, such as 'Visa.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

7. TYPE CancelResp_rec type |SRECORD (

Response Response _rec_type,
Trxn_ID NUMBER,
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);
Response: The response record. Refer #1 for details.
Trxn_ID: The transaction id for this request.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

8. TYPE CaptureResp_rec_typelS RECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Pmtinstr_Type VARCHAR2(80),
RefCode VARCHAR2(80),

C-100 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer to #1 for details.
OffLineResp: The offline response record. Refer to #2 for details.
Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.
Pmtlinstr_Type: Credit card type of the operation, such as 'Visa.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

9. TYPE ReturnResp_rec_typelSRECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,
Pmtinstr_TypeV ARCHAR2(80),
RefCode VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);
Response: The response record. Refer #1 for details.

iPayment PL/SQL APIs C-101

Inbound Payment Operations Response Record/Table Types

OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: Thetransaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.
Pmtlnstr_Type: Credit card type of the operation, such as 'Visa.
RefCode: Reference code that is returned by the back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

10. TYPE CreditResp_rec_typelS RECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
Trxn_ID NUMBER,

Trxn_Type NUMBER,

Trxn_Date DATE,

Pmtinstr_Type VARCHAR2(80),
RefCode VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Response: The response record. Refer #1 for details.
OffLineResp: The offline response record. Refer #2 for details.
Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

C-102 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Trxn_Date: The date of the operation.
Pmtlinstr_Type: Credit card type of the operation, such as 'Visa.
RefCode: Reference code that is returned by the back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

11. TYPE IngResp_rec_type ISRECORD (

Response Response _rec_type,
Payer Payer_rec_type,
Payee Payee rec_type,
Tangible Tangible rec_type,
Pmtlnstr Pmtinstr_rec_type

);

Response: The response record. Refer to C.4.4.#1 for details.
Payer: The payer record. Refer to C.4.4.#2 for details.
Payee: The payee record. Refer to C.4.4.#1 for details.
Tangible: Thetangible record. Refer to C.4.4.#8 for details.
Pmtlnstr: The pmtinstr record. Refer to C.4.4.#7 for details.
12. TYPE QryTrxnRespSum_rec_typelS RECORD (

Response Response _rec_type,
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);
Response: The response record. Refer #1 for details.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

iPayment PL/SQL APIs C-103

Inbound Payment Operations Response Record/Table Types

BEPErrCode: The error code, if applicable, returned by the back end payment system.
BEPErrMessage: The error message, if applicable, returned by the back end payment

system.

13. TYPE QryTrxnRespDet_rec_type IS RECORD (
Status NUMBER,
StatusMsg VARCHAR2(255),
Trxn_ID NUMBER,
Trxn_Type NUMBER,
Trxn_Date DATE,
Pmtinstr_Type VARCHAR2(80),
Currency VARCHAR2(80),
Price NUMBER,
RefCode VARCHAR2(80),
AuthCode VARCHARZ2(80),
AV SCode VARCHAR2(80),
Acquirer VARCHAR2(80),
VpsBatch_ID VARCHAR2(80),
AuxMsg VARCHAR2(255),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

);

Satus: The status for this request

StatusM sg: The status message for this request.
Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. Backend system may distinguish between
Capture and MarkCapture.

Trxn_Date: The date of the operation.

C-104 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Pmtlnstr_Type: Credit card type of the operation, such as 'Visa.

Currency: Should be a 3-letter code.

Price: Should be a positive amount. The amount of money to be captured.
RefCode: Reference code that is returned by back end payment system.
AuthCode: Authorization code that isreturned by back end payment system.
AV SCode: AVS code that is returned by back end payment system.
Acquirer: Acquirer information that is returned by back end payment system.
VPSBatch_ID: VPSBatchld that is returned by back end payment system.
AuxMsg: Auxiliary message that is returned by back end payment system.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

14. TYPE QryTrxnRespDet_tbl_typelS TABLE OF QryTrxnRespDet_rec_type
INDEX BY BINARY_INTEGER;

iPayment PL/SQL APIs C-105

Inbound Batch Payment Operations Response Record/Table Types

Inbound Batch Payment Operations Response Record/Table Types

1. TYPE BatchRespSum_rec_typelS RECORD (

Response Response _rec_type,
OffLineResp OffLineResp_rec_type,
NumTrxns NUMBER,
MerchBatch_ID VARCHARZ2(80),
BatchState NUMBER,
BatchDate DATE,

Credit_ Amount NUMBER,

Sales Amount NUMBER,
Batch_Total NUMBER,

Payee ID VARCHAR2(80),
VpsBatch_ID VARCHAR2(80),
GWBatch_ID VARCHAR2(80),
Currency VARCHAR2(80),
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255)

):

Response: The response record. Refer #1 for details.

OffLineResp: The offline response record. Refer #2 for details.

NumTrxns. Total number of individual operationsin this batch.

Merch Batch_I D: Merchant-specified unique batch id for this batch operation

BatchSate: The state of the batch operation.

BatchDate: The date of the batch operation.

Credit_Amount: Total amount of credits.

Sales Amount: Total amount of charges.

C-106 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Batch_Total: Total amount of the entire batch.

VPSBatch_ID: VPSBatchld returned by the backend payment system.
GWBatch_ID: GWBatchld returned by the backend payment system.
Currency: The currency code used.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system.

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

2. TYPE BatchRespDet_rec_type |SRECORD (

Trxn_ID NUMBER,
Trxn_Type NUMBER,
Trxn_Date DATE,

Status NUMBER,
ErrorLocation NUMBER,
BEPErrCode VARCHAR2(80),
BEPErrMessage VARCHAR2(255),
NLS_LANG VARCHAR2(80)

);
Trxn_ID: The transaction id for this request.

Trxn_Type: The type of the capture operation. The Back-end system may distinguish
between Capture and MarkCapture.

Trxn_Date: The date of the operation.
Satus: The status for this request.

ErrorLocation: The error location, if applicable. It is a number which indicates what place
the error has occurred, like middie tier or the back end payment system.

BEPErrCode: The error code, if applicable, returned by the back end payment system

BEPErrMessage: The error message, if applicable, returned by the back end payment
system.

iPayment PL/SQL APIs C-107

Inbound Batch Payment Operations Response Record/Table Types

NL SL ang: The NL S language code

3. TYPE BatchRespDet_tbl_type ISTABLE OF BatchRespDet_rec_type
INDEX BY BINARY_INTEGER;

C-108 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Instrument Registration Related Record Types

This section describes the record/table definitions used in the Instrument Registration API.

Note: CreditCardlnstr_rec_typeand PurchaseCardinstr_rec_type
defined in this section are different than ones defined in IBY _
PAYMENT_ADAPTER_PUB. The record types defined in this section do
NOT have Address_rec_type as a member.

1. TYPE CreditCardinstr_rec type |ISRECORD (

Instr_Id

FIName
CC_Type
CC_Num
CC_ExpDate
CC_HolderName
CC_Desc
Billing_Addressl
Billing_Address2
Billing_Address3
Billing_City
Billing_County
Billing_State
Billing_Country
Billing_PostalCode

NUMBER(15),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
DATE,
VARCHAR2(80),
VARCHAR2(240),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(80),
VARCHAR2(40));

Instr_ld: Unique identifier for the instrument.

Financial Institution Name (FI Name): Optional, should be at least of non-trivial length 3.
CC_Type: Type of credit card (MASTERCARD, VISA, AMEX, ...)

CC_Num: This should be numeric other than dashes and spaces.

iPayment PL/SQL APIs C-109

Instrument Registration Related Record Types

CC_ExpDate: Credit Card expiration date.

CC_Holder Name: Credit card holder name.

CC_Desc: Descriptions/Comments, if any.
Billing_Addressl: Thefirst line of the street address.
Billing_Address2: The second line of the street address.
Billing_Address3: The third line of the street address.
Billing_City: City in the address.

Billing_State: State in the address.

Billing_County: County in the address.
Billing_Country: Country code in the address.
Billing_Postalcode: Postal code for the address.

2. TYPE PurchaseCardlnstr_rec_typelS RECORD (

Instr_Id NUMBER(15),
FIName VARCHAR2(80),
PC_Type VARCHAR2(80),
PC_Num VARCHAR2(80),
PC_ExpDate DATE,
PC_HolderName VARCHAR2(80),
PC_Subtype VARCHAR2(80),
PC_Desc VARCHAR2(240),
Billing_Addressl VARCHAR2(80),
Billing_Address2 VARCHAR2(80),
Billing_Address3 VARCHAR2(80),
Billing_City VARCHAR2(80),
Billing_County VARCHAR2(80),
Billing_State VARCHAR2(80),
Billing_Country VARCHAR2(80),
Billing_PostalCode VARCHAR2(40));

C-110 Oracle iPayment Implementation Guide

PL/SQL Record/Table Types Definitions

Instr_ld: Unique identifier for the instrument.

Financial Institution Name (FI Name): Optional, should be at least of non-trivial length 3.
PC_Type: Type of credit card (MASTERCARD, VISA, AMEX, ...)

PC_Num: This should be numeric other than dashes and spaces.

PC_ExpDate: Credit Card expiration date.

PC_HolderName: Credit card holder name.

PC_Subtype: The subtype for purchase card. Possible values are (‘'B'/'C'/'P/'U") which are
for BUSINESS / CORPORATE / PURCHASE / UNKNOWN.

PC_Desc: DescriptionssfComments, if any.
Billing_Addressl: Thefirst line of the street address.
Billing_Address2: The second line of the street address.
Billing_Address3: The third line of the street address.
Billing_City: City in the address.

Billing_State: State in the address.

Billing_County: County in the address.
Billing_Country: Country code in the address.
Billing_Postalcode: Postal code for the address.

3. TYPE BankAcctIinstr_rec_typelS RECORD (

Instr_Id NUMBER(15),
FIName VARCHAR2(80),
Bank_lId VARCHAR2(25),
Branch_Id VARCHAR2(30),
BankAcct_Type VARCHAR2(80),
BankAcct_Num VARCHAR2(80),
BankAcct_HolderName VARCHAR2(80),
Bank_Desc VARCHAR2(240));

Instr_ld: Unique identifier for the instrument.

Financial Institution Name (FI Name): Optional, should be at least of non-trivial length 3.

iPayment PL/SQL APIs C-111

Instrument Registration Related Record Types

Bank_ld: Routing number of the bank. Should be at least of non-trivial length2. Typically
the international bank identification number.

Branch_Id: Branch Number of the bank. Typically a national Branch Identification Code (
BIC) number.

BankAcct_Type: Should be at least of non-trivial length3. Typical vaues could be
"CHECKING', 'SAVING'.

BankAcct_Num: Account number in the branch of the bank.
BankAcct_Holder Name: Name of the account holder.
Bank_Desc: Descriptions/Comments, if any.

4. TYPEPmtlnstr_rec_typel SRECORD (

InstrumentType VARCHAR2(80):C_INSTRTYPE_UNREG,
CreditCardInstr CreditCardInstr_rec_type,

BankAcctlnstr BankAcctinstr_rec_type,

PurchaseCardl nstr PurchaseCardinstr_rec_type)

InstrumentType: This holds the type of instrument that is passed in the Pmtlinstr_rec_type.
It should have one of values - 'CREDITCARD', 'PURCHASECARD' and
'BANKACCOUNT', when being passed as input. When this is passed as an output
parameter, it may also have the value 'UNREGISTERED’ (when the instrument is not
registered in iPayment). Use the constants defined to assign va ues to this.

CreditCardlnstr: Credit card instrument type record. This is described above.
BankAcctInstr: Bank account instrument type record. Thisis described above.
PurchaseCardInstr: Purchase card instrument type. Thisis described above.

5. TYPE CreditCard_tbl_type IS TABLE OF CreditCardinstr_rec_type INDEX BY
BINARY_INTEGER.

6. TYPE PurchaseCard_tbl_type IS TABLE OF PurchaseCardinstr_rec_type INDEX
BY BINARY_INTEGER.

7. TYPE BankAcct_tbl_type IS TABLE OF BankAcctlnstr_rec_type INDEX BY
BINARY_INTEGER.

C-112 Oracle iPayment Implementation Guide

Sample PL/SQL Code

Sample PL/SQL Code

The following PL/SQL code helps you in understanding how iPayment PL/SQL APIs can be
invoked. This example code invokes the Payment Request API using a credit card. It also
passes risk related information for risk evaluation. After invoking the PL/SQL API, it prints
out al the elementsin the response objects.

DECLARE

p_api _versi onNUMBER : = 1. 0;

--To initialize nmessage |ist.
p_init_nsg_listVARCHAR2(2000) := FND APl. G TRE
p_commi t VARCHAR2(2000) : = FN\D APl . G FALSE
p_validation_| evel NOMBER : = FND APl . G VALID LEVEL FULL;
p_ecapp_i dNUMBER : = O;

p_payee_recl BY PAYMENT _ADAPTER PUB. Payee rec_t ype;
p_payer _recl BY PAYMENT _ADAPTER PUB. Payer rec_type;
p_pminstr_recl BY PAYMENT _ADAPTER PUB. Pt I nstr_rec_type;
p_t angi bl e_recl BY PAYMENT_ADAPTER PUB. Tangi bl e_rec_t ype;
p_pntreqtrxn_recl BY PAYMENT_ADAPTER PUB. Pt ReqTr xn_rec_
type;

p_ri ski nfo_recl BY PAYMENT_ADAPTER PUB. R skl nfo_rec_type;
X_return_stat usVARCHAR2(2000) ; -- out put/return status
X_nsg_countNUMBER - - out put nessage count

X_Irsg_dat aVARCHAR2(2000) ; - - reference string for out put
nessage text

X_reqresp_recl BY PAYMENT_ADAPTER PUB. RegResp_rec_t ype;
-- request specific out put

-- response obj ect

| _nsg_count NUMBER

| _nsg_dat aVARCHAR2(2000) ;

BEG N

-- Qonmon i nput s

p_ecapp_id : = 66;-- iPayment generated ECAppl D

-- Payee related i nputs

p_payee rec. Payee |D:="ipay-payeel ;-- payee's |ID
-- Payer related i nputs
p_payer_rec.Payer ID:="ipay-custl ;-- payer's ID

p_payer_rec.Payer_Nane := 'Qust1' ;-- Payer's (Qustoner's nane)

-- Paynent request operation related input

p_pmreqgtrxn_rec. PmMde :="'O\LINE ;-- Paynent node (Can be

--O\LI NE CFFLI NB)

-- Tangible/B Il related inputs

p_tangible rec. Tangible ID:="tangibleidl ;-- Tangible ID/ orderlD
p_tangi bl e_rec. Tangi bl e Anount : = 25.50; -- Amunt for the operation

iPayment PL/SQL APIs C-113

Sample PL/SQL Code

p_tangible rec.Qurrency _code :="'UD; -- Qurrency for the operation
p_tangible rec. Refinfo :="test_refinfo3';

p_pnireqtrxn_rec. Auth_Type : = upper (' authonly');-- request type

-- Paynent instrunent related i nputs

p_pminstr_ rec. deditCardinstr. QC Type := 'Msa';

-- paynent instrunent type

p_pminstr_ rec. editCardlinstr. CC Num: = "'4111111111111111";

-- paynent instrunent nunber

p_pminstr_rec. OeditCardlnstr. QC ExpDate : = to_char(sysdat e+300);

-- paynent instr. Expiration date

-- Rsk related inputs

p_riskinfo rec. Formula Nane := "test3' ;-- R sk formul a nane
p_riskinfo_rec. ShipToBill To Hag :="'TRE ;

-- Hag showing if ship to address same as B Il to address

p_riskinfo rec. Tine_(d_Purchase := '08:45 -- Tinme of purchase

-- invoking the APl

| BY_PAYMENT_ADAPTER PUB. Or aPnt Req(

p_api _version,

p_init_nsg_list,

p_commt,

p_validation_|evel,

p_ecapp_i d,

p_payee_rec,

p_payer _rec,

p_pniinstr_rec,

p_tangi bl e_rec,

p_pnireqtrxn_rec,

p_riskinfo_rec,

X_return_stat us,

X_ITsg_count,

X_Irsg_dat a,

X_reqresp_rec);

END,

-- After invoking the AP, printing/interpreting the results

-- APl status response

-- The status for the APl. The value of this status has to be used to
-- find out whether the call was successful or not.

dbns_out put. put _line(" x_return_status ="' || x_return_status);

-- Payrment Request Rel ated Response. Printing Only If Satus |I's Success
| f(Char (X _Regresp_Rec. Response. Satus = ‘S') Then

-- Gfline Mde Rel ated Response

If P Pntreqgtrxn_Rec. Primode = ' GFFLINE Then

dbns_out put. put _li ne(* Transaction ID =" || To_Char(X Regresp_Rec. Trxn_ID);
dbns_out put. put _line (‘X Regresp_Rec. O0flineresp. Earliestsettlenent_Date ="' ||
To_Char (X Regresp_Rec. O flineresp. Earliestsettl enent_Date));

C-114 Oracle iPayment Implementation Guide

Sample PL/SQL Code

dbns_out put . put _li ne(' X Reqresp_Rec. Oflineresp. Schedul ed_Date ="' ||To_Char(X_
Regresp_Rec. 0 flineresp. Schedul ed_Date));

Hse

dbns_out put. put _li ne(* Transaction ID =" || To_Char(X Regresp_Rec. Trxn_ID);
dbns_out put . put _|i ne(" X Regresp_Rec. Authcode ="' || X Regresp_Rec. Aut hcode) ;
dbns_out put . put _|i ne(" X Regresp_Rec. Avscode ="' || X Reqgresp_Rec. Avscode);
dbns_output. put_line(" -----=------c-ccmm oo ");

-- R sk Rel ated Response

I f (X _Reqgresp_Rec. R skrespincluded = * YES') Then

dbns_output. put _line('--------------“-“-""u--- ")

dbns_out put . put _li ne(" X Reqresp_Rec. R skresponse. R sk_Score= '|| X Regresp_
Rec. R skresponse. R sk_Score);

dbns_out put. put _line(' X Regresp_Rec. R skresponse. R sk_Threshol d_Val = '||
Regresp_Rec. R skresponse. R sk_Threshol d_Val);

Endi f;

Endi f;

End If;

-- printing the error nessages, if any fromthe APl nessage |ist.
for i in 1..x_nsg_count | oop

dbns_out put. put (' nsg # '||to_char(i)|| fnd_nsg_pub.get(i));
dbns_out put. new i ne();

end | oop;

EXCEPTI ON

when others then

dbns_out put. put _line(' In Wen others Exception');

dbns_out put. put _line("' SQerr is :'|]|substr(SQLERRV 1, 200));
end;

/

iPayment PL/SQL APIs C-115

Sample PL/SQL Code

C-116 Oracle iPayment Implementation Guide

D

Back-End APIs for Gateways

This appendix explains the back-end APIs used by gateway servlets. Topicsin this section

include:

Gateway Model Payment System Integration Model Overview
Payment System Servlet Operations
Authorization AP

Purchase Card Authorization API

Voice Authorization AP

Authorization APl Output Name-Vaue Pairs
Capture API

Void API

Return/Credit API

Close Batch API

Query Transaction Status API

Query Batch Status API

Transaction Status and M essages

Transaction Types and Transaction States

Back-End APIs for Gateways D-1

Gateway Model Payment System Integration Model Overview

Gateway Model Payment System Integration Model
Overview

iPayment provides a set of APIsfor interfacing with the payment system servlets, including
APIsfor authorization, capture, return, void, close batch, query batch status, and query
transaction status. iPayment makes requests to these APIs using HTTP.

This section provides information to enable SSL payment system servlet developers (those
who perform traditional credit-card processing) to create an interface for communication
between iPayment and their payment systems. Also provided isthe information that
iPayment sends to payment system servlets, and the format and method of passing the data.

Payment System Servlet Development Prerequisites

Before you build a payment system servlet, you will need a basic understanding of
iPayment. For additional information, see Oracle iPayment Concepts and Procedures Guide
to get an understanding of iPayment and its architecture.

Test Payment System Servlet
After building a payment system servlet, complete the following steps:

1. Add the payment system to iPayment by following the steps of Creating a New
Payment System in the Oracle iPayment Concepts and Procedures Guide.

2. Test and refine your serviet.

D-2 Oracle iPayment Implementation Guide

Payment System Servlet Operations

Payment System Servlet Operations

To perform the Payment System Serviet API operations, iPayment passes data to the
payment system servlet in the form of HTTP name-value pairs.

Servlet Virtual Path Mapping
The following example shows the name-value pair format:

http://host name: port/servliet virtual path
?nane- val ue pair(1)

&nane- val ue pair(2)

&nane- val ue pai r(n)

&nane- val ue pai r(n+l)

where:

host name The name of the computer where the payment system islocated, for
example, payment.com.
port The listener's port number

serviet virtua path The virtual path to the payment system servlet. This must always
endinor am pp_xxX, where xxx isthe three letter suffix chosen
for this payment system.

Back-End APIs for Gateways D-3

Authorization API

Authorization API

When the payment system servlet receives the authorization request from iPayment, it
formats the request into the payment system'’s native format and requests that the payment
system perform an online authorization. When the payment system returns the authorization
result, the payment system servlet will reformat the response into the iPayment's format.

Authorization API Input Name-Value Pairs

This table describes the authorization API input name-va ue pairs. To perform the
Authorization operation, use the name value pairslisted in this table:

Name Value

OapfAction Value=oraauth

OapfOrderld Order number for the transaction. OapfOrderld can contain only
letters, numbers, dashes, underlines, and dots.

OapfCurr SO 4217 three-letter currency code. For example, usd (US Dollar).

OapfPrice Transaction amount in the format prescribed for the three-letter SO
4217 currency code

OapfAuthType The authorization type for the transaction: AuthOnly or AuthCapture.

n Use AuthOnly transactions when customers purchase "hard
goods." The fundsfor these transactions are not captured until
after the goods are shipped.

n Use AuthCapture transactions when customers purchase " soft
goods' such as software "downloadable" from a Web page. The
funds for these transactions are authorized and captured at the

sametime.
OapfPmtinstriD Identification (card) number for the selected OapfPmtType
OapfPmtlnstrExp Expiration date for the selected OapfPmtType in the format MM/Y'Y
or MM/YYYY. The payment system servlet should be able to accept
both formats.
OapfStoreld Merchant or business identification. The maximum length is 80

characters. It may consist of an Id and a password in the following
format: <Storeld>:<Password>

In addition to the values above, the following name-value pairs are a so required if AVSisrequired
(except for OapfPhone, OapfEmail, and OapfCnty):

OapfCustName The customer's name

D-4 Oracle iPayment Implementation Guide

Authorization API

Name Value

OapfAddrl The customer's billing address (1st line). The portion of the address
before city, state, and zip code.

OapfAddr2 The customer's billing address (2nd line). The portion of the address
before city, state, and zip code.

OapfAddr3 The customer's billing address (3rd line). The portion of the address
before city, state, and zip code.

OapfCity The customer's city name for billing

OapfCnty The customer's county name for billing

OapfState The customer's state for billing

OapfCntry The customer's country for billing

OapfPostal Code The customer's zip code for billing

OapfPhone The customer's tel ephone number

OapfEmail The customer's e-mail address

OapfRetry Specifiesif this operation is aretry. Valuesinclude yes or no. If this
flag isincorrectly turned on, then the servlet should attempt this
transaction a second time as a non-retry transaction.

OapfNIsLang (Optional) Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Back-End APIs for Gateways D-5

Purchase Card Authorization API

Purchase Card Authorization API

The Purchase Card Authorization API is the same as the Authorization API, with the
addition of afew parameters. To perform the Purchase Card Authorization operation, use
name value pairs defined by the Authorization API, and the name value pairs described in

thistable:
Name Value

OapfCommCard The type of card being used for the transaction. Possible values are:
n P for Purchase cards
» Cfor Corporate cards
n Bfor Business cards

OapfPONum Purchase Order number

OapfTaxAmount Tax amount

OapfShipTozip

The ZIP code to which merchandise is to be shipped

OapfShipFromZip

The ZIP code from which merchandise is to be shipped

D-6 Oracle iPayment Implementation Guide

Voice Authorization API

Voice Authorization API

The Voice Authorization API is the same as the Authorization API or Purchase Card
Authorization API, except that the value for OapfA ction should be ‘ oravoiceauth’ and anew
field, OapfAuthCode is mandatory.

Thistable lists the voice authorization input name-value pairs. To perform a Voice
Authorization operation, use name value pairs defined in the Authorization API or Purchase
Card Authorization API, with the following changes and additions:

Name Value
OapfAction Value= oravoiceauth
OapfAuthCode Authorization Code issued by the financial institution, when the voice

authorization is done over the phone.

Back-End APIs for Gateways D-7

Authorization APl Output Name-Value Pairs

Authorization APl Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP headers
consisting of the name-value pairs listed in this table:

Name Value

OapfOrderld Order number for the transaction. OapfOrderld can contain only
letters, numbers, dashes, underlines, and dots.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States' for alist of values.

OapfStatus The transaction status. See "Oapf Status" for more information.

OapfAuthcode The string for the authorization (approval) code.

OapfTrxnDate The time stamp showing when the transaction is processed in

YYYYMMDDHHMMSS format.

OapfPmtinstrType

The payment instrument type. For example, Visaor MasterCard.

OapfErrLocation The error location. See "OapfErrLocation” for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system

documentation for more information.

The following name-value pairs are optiona:

OapfAcquirer

Name of the acquirer or bank

OapfRefcode Theretrieval reference number

OapfAV Scode The AVS code

OapfAuxMsg Additional message from the processor

OapfNIsLang Language and character-set information for the electronic commerce

application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Note: If anoptional field does not have a value, do not include the
optional field in the header.

D-8 Oracle iPayment Implementation Guide

Capture API

Capture API

iPayment invokes the Capture API to perform online capture of previously authorized

transactions.

Capture API Input Name-Value Pairs
To perform the Capture operation, use the name-vaue pairs listed in this table:

Name

Value

OapfAction

Value = oracapture.

OapfOrderld

Order number for the transaction. OapfOrderld can contain only
letters, numbers, dashes, underlines, and dots.

OapfPrice

Transaction amount in the format prescribed for the three-letter SO
4217 currency code.

OapfCurr

SO 4217 three-letter currency code. For example, usd (US Dollar).

OapfStoreld

Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optiona:

OapfRetry

Specifiesif this operation is aretry. Valuesinclude Yes or No.

OapfNIsLang

Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Capture API Output Name-Value Pairs

Output served by the payment system to iPayment returns in the form of HTTP headers
consisting of the name-value pairs listed in this table:

Name

Value

OapfStatus

The transaction status. See "Oapf Status" for more information.

OapfTrxnType

The transaction type from the payment system. See "Transaction
Types and Transaction States' for alist of values.

OapfTrxnDate

The time stamp for the time when the transaction is processed. Thisis
inYYYYMMDDHHMMSS format.

OapfErrLocation

The error location. See "OapfErrLocation” for more information.

Back-End APIs for Gateways D-9

Capture API

Name Value

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optiona:

OapfRefcode Theretrieval reference number.

OapfNIsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Capture API for Terminal-Based Merchant

For aterminal-based merchant, the Capture operation marks the transaction for capturein
the local batch. If the operation completes successfully, it returns the following parameters:

OapfStatus Set to 0000.
OapfTrxnType Setto Mar kCapture, 9
OapfTrxnDate Set to the appropriate transaction date.

If the operation fails, it returns the following parameters:
« OagpfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

« OapfVendErrCode

« OapfVendErrmsg

Capture API for Host-Based Merchant

For a host-based merchant, the Capture operation communicates with the processor to
capture the transaction. If the operation completes successfully, it returns the following
parameters:

D-10 Oracle iPayment Implementation Guide

Capture API

OapfStatus Set to 0000.

OapfTrxnType Setto Mar kCapture, 8

OapfTrxnDate Set to the appropriate transaction date.
OapfRefcode Set to the appropriate retrieval reference number

If the operation fails, it returns:
« OapfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

« OapfVendErrCode

Back-End APIs for Gateways D-11

Void API

Void API

The Void API alows the merchant or businessto void the following transaction types:
« Credit transactions

« Return transactions

« Capture transactions

The Void API voids the most recent transaction type for an order. For example, the
merchant or business performs authorization--and later capture-- for atransaction. If the
merchant or business performs avoid on this order, the capture transaction is voided.

Void API Input Name-Value Pairs
To perform the Void operation, use the name-value pairslisted in thistable:

Name Value

OapfAction Value = oravoid.

OapfTrxnType The transaction type to void from the payment system. See
"Transaction Types and Transaction States' for alist of values.

OapfOrderld Order number for the transaction. OapfOrderld can contain only
letters, numbers, dashes, underlines, and dots.

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optiona:

OapfRetry Specifiesif this operation is aretry. Valuesinclude Yes or No.

OapfNIsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Note: For aterminal-based merchant, the Oapf TrxnType should be set
to Mar kCapture (9) orMarkReturn (10) . For ahost-based
merchant, the OapfTrxnType should be setto Capt ure (8) orRet urn

(5).

D-12 Oracle iPayment Implementation Guide

Void API

Void API Output Name-Value Pairs

Output served by the payment system to iPayment returnsin the form of HTTP headers and
consists of the name-value pairs listed in this table;

Name Value

OapfStatus The transaction status. See "Oapf Status" for more information.

OapfTrxnDate The time stamp for the time when the transaction is processed. Thisis
inYYYYMMDDHHMMSS format.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States' for alist of values.

OapfErrLocation The error location. See "OapfErrLocation" for more information.

OapfVendErrCode The payment system error code. See the payment system

documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optiona:

OapfRefcode Theretrieval reference number.

OapfNIsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Void API for Terminal-Based Merchant

For aterminal-based merchant, the Void operation voids the transaction in the local batch. If
the Void operation completes successfully, it returns the following parameters:

OapfStatus Set to 0000.
OapfTrxnType Setto Voi dMar kCapture, 14 orVoi dvarkReturn, 18
OapfTrxnDate Set to the appropriate transaction date.

If the operation fails, it returns the following parameters:
« OapfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

Back-End APIs for Gateways D-13

Void API

« OapfVendErrCode
« OapfVendErrmsg

Void API for Host-Based Merchant

For a host-based merchant, the Void operation communicates with the processor to void the
specified transaction. If the Void operation completes successfully, it returns the following
parameters:

OapfStatus Set to 0000.

OapfTrxnType Setto Voi dCapture, 13 or Voi dReturn, 17
OapfTrxnDate Set to the appropriate transaction date.

OapfRefcode (Optional) Set to the appropriate retrieval reference number.

If the operation fails, it returns:
« OapfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

« OapfVendErrCode

« OapfVendErrMsg

D-14 Oracle iPayment Implementation Guide

Return/Credit API

Return/Credit API

The electronic commerce application invokes the Return/Credit APl when goods are
returned. If the authorization and capture transaction records still exist, the merchant or
business will use the existing Order ID to perform areturn. If there isno previous
authorization or capture records, the merchant or business will create a new Order ID and
provide the credit card information.

Return/Credit APl Input Name-Value Pairs
To perform the Return/Credit operation, use the name-value pairslisted in thistable:

Name Value

OapfAction Vaue = orareturn

OapfOrderld Order number for the transaction. OapfOrderld can contain only
letters, numbers, dashes, underlines, and dots.

OapfPrice Transaction amount in the format prescribed for the three-letter SO
4217 currency code.

OapfCurr SO 4217 three-letter currency code. For example usd (US Dallar).

OapfPmtlinstriD Identification number (card number). OapfPmtinstriD will be
supplied only for credits.

OapfPmtlinstrExp Expiration date for the selected OapfPmtType in the format MM/Y'Y
or MM/YYYY. OapfPmtinstrExp will be supplied only for credits.

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optiona:

OapfRetry Specifiesif this operation is aretry. Valuesinclude Yes or No. If this
flag isincorrectly turned on for a stand-aloneretry (i.e., one which
includes payment instrument information) the servlet should attempt
this transaction a second time as a non-retry transaction.

OapfNIsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Return/Credit APl Output Name-Value Pairs

Output served by the payment system to iPayment returnsin the form of HTTP headers and
consists of the name-value pairs listed in this table;

Back-End APIs for Gateways D-15

Return/Credit API

Name Value

OapfStatus The transaction status. See "Oapf Status" for more information.

OapfTrxnType The transaction type from the payment system. See "Transaction
Types and Transaction States' for alist of values.

OapfTrxnDate The time stamp of when the transaction is processed. Thisisin
YYYYMMDDHHMMSS format.

OapfPmtinstrType The payment instrument type such as Visaor MasterCard

OapfErrLocation The error location. See "OapfErrLocation” for more information.

OapfVendErrCode The payment system error code. See the payment system

documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

The following name-value pairs are optiona:

OapfRefcode Theretrieval reference number

OapfNIsLang Language and character-set information for the electronic commerce
application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Return/Credit API for Terminal-Based Merchant

For aterminal-based merchant, the Return/Credit operation marks the transaction for return
in the loca batch. If the operation completes successfully, it returns the following

parameters:

OapfStatus Set to 0000.

OapfTrxnType Set to Mar kRet urn, 10
OapfTrxnDate Set to the appropriate transaction date

If the operation fails, it returns the following parameters:
« OapfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

« OapfVendErrCode

D-16 Oracle iPayment Implementation Guide

Return/Credit API

« OapfVendErrmsg

Return/Credit API for Host-Based Merchant

For a host-based merchant, the Return/Credit operation communi cates with the processor to
return/credit the transaction. If the operation completes successfully, it returns the following
parameters:

OapfStatus Set to 0000.
OapfTrxnType SettoRet urn, 5.
OapfTrxnDate Set to the appropriate transaction date.

OapfPmtinstrType (Optional) Set to the appropriate payment instrument type.
OapfRefcode (Optional) Set to the appropriate retrieval reference number.

If the operation fails, it returns the following parameters:
« OapfStatus

« OapfTrxnType

« OapfTrxnDate

« OapfErrLocation

« OapfVendErrCode

« OapfVendErrmsg

Back-End APIs for Gateways D-17

Close Batch API

Close Batch API

The merchant or business uses the Close Batch API to close a batch of previously performed
transactions. The transaction types that can be included in a close batch are;

« Capture transactions

=« Return/Credit transactions

Close Batch API Input Name-Value Pairs
To perform this operation you need the parameters (name-val ue pairs) listed in this table:

Name Value

OapfAction Value = oraclosebatch

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

The following name-value pairs are optiona:

OapfRetry Specifiesif this operation is aretry. Valuesinclude Yes or No.
OapfVpsBatchID The payment system batch identification
OapfNIsLang Language and character-set information for the electronic commerce

application. The format is the same as for the Oracle Server NLS _
LANG environment variable.

Close Batch API Output Name-Value Pairs

Output served by the payment system to iPayment returnsin the form of HTTP headers and
consists of the name-value pairs listed in this table:

Name Value

OapfStatus The transaction status. See "Oapf Status" for more information.

OapfBatchDate The date for this batch

OapfCreditAmount The credit amount. Thisisthe total outflow including return/credit
and void.

OapfSa esAmount The total amount captured

OapfBatchTotad The total amount in this batch

OapfCurr SO 4217 three-letter currency code. For example, usd (US Dollar).

D-18 Oracle iPayment Implementation Guide

Close Batch API

Name Value
OapfNumTrxns The number of transactions in this batch
OapfStorelD Merchant or business identification. The maximum length is 26

characters.

OapfVpsBatchID

The payment system batch identification

OapfGWBatchID

The gateway batch identification

OapfBatchState

State of the batch. For example, sent, queued, accept, etc. See
"OapfBatchState" for more information.

OapfErrLocation

The error location. See "OapfErrLocation” for more information.

OapfVendErrCode The payment system error code. See the payment system
documentation for more information.

OapfVendErrmsg The payment system error message. See the payment system
documentation for more information.

OapfNIsLang (Optional) Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Close Batch API Additional Output

Additional output for the Close Batch API includes the status of individual transactions.
This output differs based on transaction type. The Capture and Return/Credit transaction
types return the following parameters:

« OapfOrderld-count=<>

« OapfTrxnType-count=<>

« OapfStatus-count=<>

« OapfErrL ocation-count=<>

« OapfVendCode-count=<>

« OapfVendErrmsg-count=<>

Note:

OapfErrLocation, OapfVendCode, and OapfVendErrmsg are only

returned if the OapfStatus field is non-zero. They are returned when there
is some failure for the Order 1D during batch close.

Back-End APIs for Gateways D-19

Close Batch API

The OapfNumTrxns field indicates the number of transactionsincluded in the batch. Each
output name-value pair should be appended with a counter to indicate to which transaction it
belongs. The counter should start from 0. For example, assume there are two transactionsin
abatch. The output of thisbatch is:

Gapf VpsBatchl D 1234
Qapf S at us: PMI- 0000

Capf Bat chDat e: 19970918091000
Qapf O edi t Anount: 10. 00

Qapf Sal esAmount : 20. 00

Qapf Bat chTot al : 10. 00

Qapf Qurr: usd

Qapf NUnir xns: 2

Qapf S orel D abcd

Capf GNBat chl D 5678

Gapf O der | d- 0=1111
Qapf Tr xnType- 0=8
Qapf S at us- 0=0000

Gapf O der | d- 1=2222
Qapf Tr xnType- 1=5
Qapf S at us- 1=0000

Note: The OapfTrxnType should be set to Capt ure (8) or Ret urn
(5).

Close Batch API for Terminal-Based Merchant

For aterminal-based merchant, this operation attemptsto close out an open batch and cause
funds to change hands. If the batch closes successfully, batch summary aswell as transaction
details should be returned. If the close batch fails, the merchant or business, optionally, fixes
offending transactions in the batch and retries. For payment systems that implement retry
logic, use OapfRetry and OapfVpsBatchlD for retry. For payment systems that do not
include retry logic, this operation attempts to close out the existing open batch again.

Close Batch API for Host-Based Merchant

For a host-based merchant, if you use the auto close option, this operation returns
OapfStatus=0000. If you use the manual close option, the payment system sends the total to
the processor. The processor checks against itstotal and closes the batch. If the batch closes
successfully, OapfStatus should be set to 0000 and OapfBatchTotal should be returned. If

D-20 Oracle iPayment Implementation Guide

Close Batch API

batch does not close successfully, error messages are returned in Oapf Status and optionally
in OapfErrLocation, OapfVendErrCode, and OapfVendErrmsg.

Back-End APIs for Gateways D-21

Query Transaction Status API

Query Transaction Status API

The merchant or business uses the Query Transaction Status APl to query the status of a
transaction. Both the iPayment database and the payment system database maintain arecord
of completed transactions, and these databases may become out of synch dueto a
communication link breakdown. Similarly, the electronic commerce application database
and the iPayment database may become out of synch due to a similar condition. This API
returns all existing records for a particular Order ID on a payment system.

Query Transaction Status API Input Name-Value Pairs
To perform this operation, use the name-value pairs listed in this table:

Name Value

OapfAction Value = oragrytxstatus

OapfOrderld Order ID to query

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

OapfNIsLang (Optional) Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Query Transaction Status APl Output Name-Value Pairs

Output from the Query Transaction Status APl may consist of multiple records for the same
Order 1D, depending on the transaction type. OapfNumTrxns provides the number of
transactions for this Order 1D. The output for various transaction types includes the
following parameters:

Auth/AuthCapture:

Qapf O der | d- count =<>

Qapf Tr xnType- count =<>
Qapf S at us- count =<>

Qapf Pri ce- count =<>

Qapf Qurr - count =<>

Qapf Aut hcode- count =<>
Qapf Ref code- count =<>

Qapf AVScode- count =<>

Qapf Tr xnDat e- count =<>
Qapf Pnt | nst r Type- count =<>

D-22 Oracle iPayment Implementation Guide

Query Transaction Status API

Qapf B rLocat i on- count =<>
Qapf VendGode- count =<>
Qapf VendEr r nsg- count =<>
Qapf Acqui r er - count =<>
Qapf AuxMsg- count =<>

Capture:

Qapf O der | d- count =<>
Qapf Tr xnType- count =<>
Qapf S at us- count =<>
Qapf Pri ce- count =<>

Qapf Pri ce- count =<>

Qapf Qurr - count =<>

Qapf Tr xnDat e- count =<>
Qapf Ref code- count =<>
Qapf VpsBat chl D count =<>
Qapf B rLocat i on- count =<>
Qapf VendGode- count =<>
Qapf VendEr r nsg- count =<>

Credit/Return:

Qapf O der | d- count =<>
Qapf Tr xnType- count =<>
Qapf S at us- count =<>

Qapf Pri ce- count =<>

Qapf Qurr - count =<>

Qapf Tr xnDat e- count =<>
Qapf Pnt | nst r Type- count =<>
Qapf Ref code- count =<>
Qapf VpsBat chl D count =<>
Qapf B rLocat i on- count =<>
Qapf VendGode- count =<>
Qapf VendEr r nsg- count =<>

Capf AuxMsg- count =<> (opti onal)

Void:

Qapf O der | d- count =<>
Qapf Tr xnType- count =<>
Qapf S at us- count =<>

Qapf Tr xnDat e- count =<>
Qapf Ref code- count =<>
Qapf B rLocat i on- count =<>
Qapf VendGode- count =<>

Back-End APIs for Gateways D-23

Query Transaction Status API

Qapf VendEr r nsg- count =<>
Qapf AuxMsg- count =<>

D-24 Oracle iPayment Implementation Guide

Query Batch Status API

Query Batch Status API

The merchant or business uses the Query Batch Status API to query the status of an existing
batch. Terminal-based merchants also use the Query Batch Status API to verify the
transactions for submission to batch close by iPayment. The merchant or business can use
the output from the Query Batch Status API to cross-check the transaction records in the
merchant or business database.

Query Batch Status API Input Name-Value Pairs
To perform the Query Batch Status operation, use the name-value pairslisted in thistable:

Name Value

OapfAction Value = oragrybatchstatus

OapfVpsBatchID The payment system batch identification if querying for an existing
batch. If avalueis not included, the output is pending batch
transactions.

OapfStoreld Merchant or business identification. The maximum length is 26
characters.

OapfNIsLang (Optional) Language and character-set information for the electronic

commerce application. The format is the same as for the Oracle
Server NLS_LANG environment variable.

Query Batch Status API Output Name-Value Pairs

Output from the Query Batch Status API is similar to the output of the Close Batch API
when you provide the OapfV psBatchl D. When you do not provide the OapfV psBatchID, the
output is all transactions for the terminal-based merchant for a subsequent batch close.
OapfNumTrxns provides the number of transactions for the batch. The output for transaction
types includes the following parameters:

Capture, Return, Credit:

Qapf O der | d- count =<>
Qapf Tr xnType- count =<>
Qapf Pri ce- count =<>
Qapf Qurr - count =<>
Qapf Tr xnDat e- count =<>

Back-End APIs for Gateways D-25

Transaction Status and Messages

Transaction Status and Messages

This section describes the various transaction status codes and error messages returned by
iPayment payment system servlet.

Topicsinclude:

« OapfStatus

« OapfErrLocation

« OapfVendErrCode
« OapfVendErrmsg
« OapfBatchState

« OapfOrderld

D-26 Oracle iPayment Implementation Guide

Transaction Status and Messages

OapfStatus

Each transaction (including authorize, capture, return, credit, and void) returns the status in
the Oapf Status field. A value of 0000 or 0 indicates a successfully completed transaction. A
non-zero value indicates that the transaction failed. OapfErrLocation, OapfVendErrCode,
and OapfVendErrmsg provide additional error information.

SSL Payment System Servlet

SSL payment systems must return the values listed in this table to iPayment in the
OapfStatus parameter:

Value Definition

0000 Transaction completed successfully

0001 Communications error: the payment system or the processor is out of
reach. You should resubmit the request at alater time.

0002 Duplicate Order ID

0003 Duplicate Batch ID

0004 Mandatory fields are required.

0005 Payment system specific error. Refer to OapfVendErrCode and
OapfVendErrmsg for more information.

0006 Batch partially succeeded. Some transactions in the batch failed and
some processed correctly.

0007 The batch failed. You should correct the problem and resubmit the
batch.

0008 Requested action not supported

0017 Card hasinsufficient funds

0019 Invalid credit card

Back-End APIs for Gateways D-27

OapfErrLocation

OapfErrLocation

The OapfErrL ocation parameter contains the values listed in this table;

Value Definition

0 Transaction completed successfully at all levels

1 Transaction failed at the payment system cartridge code

2 Transaction failed a the payment system engine or the payment system
server code

3 Transaction failed at the payment system gateway or equivalent to the
interface that communicates with the bank

4 Transaction failed at the acquirer bank gateway or equivalent to the
bank interface that communicates with the payment system interface

5 Transaction failed at the payment system

6 Transaction failed at iPayment

D-28 Oracle iPayment Implementation Guide

Transaction Status and Messages

OapfVendErrCode

OapfVendErrCode contains the payment system's error code. See the documentation that
came with the payment system for more information. This parameter is required only if the
transaction failed at the payment system.

Back-End APIs for Gateways D-29

OapfVendErrmsg

OapfVendErrmsg

OapfVendErrmsg contains the payment system's message for the error. See the
documentation that came with the payment system for more information. This parameter is
required only if the transaction failed at the payment system.

D-30 Oracle iPayment Implementation Guide

Transaction Status and Messages

OapfBatchState

The OapfBatchState parameter indicates the state of the batch based on the processor. If the
state is set to "sent," the merchant needs to query the batch again to find out if the batch is
accepted and also to retrieve transaction details. The OapfBatchState parameter contains the
valueslisted in this table:

Value Definition

Batch accepted

Batch sent

Batch queued

Batch rejected.
Batch processed.

Batch error

Batch not found

N oM W[N],]| O

Batch unknown

Note: The close batch operation returns its status in OapfStatus, and has
the following possible values: 0000, 0003, 0006, and 0007. See
"Oapf Status' for more information.

Back-End APIs for Gateways D-31

OapfOrderld

OapfOrderld

iPayment uses the Order 1D to uniquely identify each transaction. In the Core API, if the
merchant tries to authorize a previously authorized transaction, the payment system will not
accept the authorization. The payment system returns the status "Duplicate Order I1D."

How iPayment Uses OapfNIsLang

If the electronic commerce application does not pass the OapfNIsL ang parameter, iPayment
passes information from the electronic commerce application to the payment service
cartridge without performing any conversion of character sets.

If the commerce application does pass a value for OapfNIsLang to iPayment, iPayment tries
to convert parameters based on the value of OapfNIsLang before sending those parameters
to the payment system cartridge.

To do so, iPayment first checks its database for the list of preferred and optional languages
for that payment system. (The information in the database refl ects what the iPayment
administrator entered using the iPayment Administration user interface.)

Secondly, iPayment does one of the following, depending on what it finds in the database:

« If the database lists alanguage that matches the value of OapfNIsLang, iPayment keeps
the value of OapfNIsLang and passesit to the payment system cartridge.

« If the database does not list a language matching the value of OapfNIsLang, iPayment
uses the language specified as the preferred language for that payment system, thus
changing the value of OapfNIsLang before sending it to the payment system cartridge.

Finally, iPayment converts the values of other parameters so that they are sent to the
payment system cartridge in the language specified by OapfNIsLang.

Notice that this conversion process worksin only one direction: from the electronic
commerce application to the payment system cartridge. |f the payment system sets
OapfNIsLang when it sends the data back, iPayment uses that information only to store the
value of OapfVendErrmsg in its database. iPayment does not convert data sent from the
payment system cartridge back to the electronic commerce application.

Format of the NLS_LANG Parameter

The value of this parameter follows the same format as Oracle Server's NLS LANG
environment variable:

| anguage_territory. charset

For example, JAPANESE_JAPAN.JA16EUC isavalid value for OapfNIsLang.

D-32 Oracle iPayment Implementation Guide

Transaction Types and Transaction States

Transaction Types and Transaction States

This section defines the values for Oapf TrxnType and includes a discussion of transaction
states.

Transaction States

A payment transaction goes through a number of states depending on the operations

performed on it. The following illustration depicts the state changes of atransaction in a host
based system.

Transaction State Diagram: Host Based System
(SSL and SET Systems)

Ready To Pay

Authorize

Authorize

AuthCapture
VoidAuthCapture

VoidAuthOnly

VoidCapture

When a customer is ready to pay, the transaction is considered to be in the ready to pay state.
If the Authorization API is used, the transaction moves to the authcapture or authonly state
after the authorization is complete. If the Invoice and Pay APIs are used, the transaction
changes to invoice and moves to authonly or authcapture state. A transaction in the authonly

Back-End APIs for Gateways D-33

Transaction Types and Transaction States

state needs to be captured for funds to be transferred. All authcapture, capture and return
transactions can be voided.

The following graphic illustrates the state changes that a transaction for a terminal based
system may undergo. Capture and return operations in terminal based systems only mark the
transaction for capture or return in the local batch. After a successful close batch operation
the transaction becomes captured or returned.

Transaction State Diagram: Terminal Based System
(SSL Systems)

Ready To Pay

Authorize

Invoice

MarkCapture

Void

VoidMarkCapture

Void Close Batch

VoidMarkReturn

D-34 Oracle iPayment Implementation Guide

Transaction Types and Transaction States

OapfTrxnType: SSL Transactions and Commerce Applications

iPayment returns Oapf TrxnType transaction types for the SSL payment system servlet API.
Thistable lists the Oapf TrxnType transaction types (SSL).

Value Type Definition

2 AuthOnly An authorization only requested for an order.

3 AuthCapture An online authorization and capture for an order.

4 VoidAuthOnly Void of an order that was successfully authorized but not captured.
(Electronic Commerce application API only.)

5 Return Perform areturn or credit on an order that was successfully
authorized and captured online.

6 ECRefund Perform arefund on an electronic cash/coin purchase.

7 VoidA uthCapture Void a previous authorization and capture online.

8 Capture Capture performed by a host-based or a terminal-based (closed
batch) processor system.

9 MarkCapture Transaction that was marked for capture by aterminal-based
processor system.

10 MarkReturn Transaction that was marked for return by aterminal-based
processor system.

13 VoidCapture Void a transaction captured by a host-based or terminal -based
(close batch) processor system.

14 VoidMarkCapture Void atransaction marked for capture by aterminal-based
processor system.

17 VoidReturn Void atransaction that was returned by a host-based or
terminal-based (close batch) processor system.

18 VoidMarkReturn Void atransaction that was marked for return by aterminal-based
system.

101 SplitAuth A subsequent authorization (Electronic Commerce application API

only.)

Back-End APIs for Gateways D-35

OapfTrxnType: SSL Transactions and Commerce Applications

D-36 Oracle iPayment Implementation Guide

E

Extensibility

This appendix explains extensibility and how to implement it.

Extensibility E-1

Overview

Overview

Extensibility allows interaction between iPayment and a back-end payment system to be
customized. Note that extensibility only exists for Gateway-model payment systems. This
can be achieved by implementing the following interface:

i byext end. TxnCust om zer _<BEP SUFFI X>
where <BEP SUFFI X> indicates the 3-letter suffix of the back-end payment system.

Custom parameters may be added to those sent by iPayment before the back end payment
system servlet is contacted. After the back end payment system servlet responds, the
extensibility implementation may take custom parameters that are returned in the response
and store them in the database.

E-2 Oracle iPayment Implementation Guide

Implementation

Implementation

The Extensibility Interface
To implement extensibility, the Java interface
oracl e. apps. i by. ext end. TxnCust oni zer must beimplemented as class

i byext end. TxnQust om zer _<BEP SUFF X>.

<BEP SUFFI X> isthethree letter suffix of the back end payment system.

Theor acl e. apps. i by. ext end. TxnCust om zer interface has the following
methods:

« publicvoid preTxn (String bep, Connection dbconn, AddOnlyHashtable txn_req)
throws PSException;

« publicvoid postTxn (String bep, Connection dbconn, ReadOnlyHashtable txn_resp)
throws PSException;

The parameter bep isthe three letter suffix, whichis specified during registration in the user
interface, of the back end payment system that the request goes to, dbconn is aconnection
open to the APPS schema, and t xn_r eq/ t xn_r esp are collections of name-value pairs
which represent, respectively, the back end payment system request/response.

Note: Both methods can throw aPSExcept i on. Thisalowsa
transaction to be aborted if acritical error, for example, SQLException,
occurs in the extensibility implementation class. Releasing the database
connection passed to both methods is the responsibility of iPayment and
should not be done by the extensibility class.

ReadOnlyHashtable, AddOnlyHashtable Classes

Theclassesor acl e. apps. i by. util.AddOnl yHasht abl e and

oracl e. apps.iby.util.ReadOnl yHasht abl e are passed as parameters to the
preTxn, post Txn methods respectively. ReadOnl yHasht abl e has the following
methods, which are the same in signature and behavior as the corresponding methods of the
Java Hashtable class:

keys, containskey, isBEmpty, size, get

AddOnl yHasht abl e, which is a subclass of ReadOnl yHasht abl e, has the additional
method put . It differs from the corresponding method in the Java Hashtable classin the
way that only keys not already present in the hashtable can be successfully used for

Extensibility E-3

Implementation

insertions. The AddOnl yHasht abl e version of put returns aboolean value which istrue
only if the insertion succeeds.

Both types of hashtables are populated with String name-value pairs from one of the back
end payment system integration model. In the case of pr e Txn, these are input name-value
pairs. In the case of post Txn, these are output name-value pairs. Below is a piece of
sample code illustrating how avalueis retrieved:

String orderld = (String)txn_resp. get("Capf Orderld");

See the Back-End Processing APIs section for a complete listing of all names.

Custom Fields

Custom fields should be prefixed by OapfExtend, which is defined as the constant
CUSTOMFIELD_PREFIX intheor acl e. apps. i by. ext end. TxnCust omi zer
class. This appliesto both fields inserted in the back end payment system request during the
call to pr eTxn, and the custom fields returned by the back end payment system servlet and
processed in post Txn. If custom fields do not follow this convention, there is no guarantee
that custom fields will be successfully passed through.

Development, Deployment

To develop extensibility classes, include the location of the The Oracle Applications Java
classlibrary file containing al of iPayment's classesin the CLASSPATH passed to the
compiler.

An extensibility class is deployed by placing it in iPayment's CLASSPATH. Please refer to
the local JServ configuration to determine this value.

Note: Since extensibility classes are part of the ibyextend package, the
class must be located under a directory called ibyextend.

Exceptions

An exception may be thrown by either the preTxn or postTxn method in the TxnCustomi zer
class. Thisexceptionistheclassor acl e. apps. i by. excepti on. PSExcepti on

It should be thrown whenever acritical error is encountered in the customizer and the
transaction needs to be aborted.

iPayment will take the exception thrown by an extensibility implementation and throw a
new PSEXxception based on it with the following error code:

| BY_0005

E-4 Oracle iPayment Implementation Guide

Implementation

The message in the new PSException will have a prefix appended to it, indicating that the
error occurred within the extensibility class.

Extensibility E-5

Sample Implementation

Sample Implementation

package i byext end;

inport java.sql.*;
inport java.util.Hashtabl e;
inport java.util.Enuneration;

i nport oracl e. apps. i by. ext end. TxnQust oni zer ;

i nport oracl e.apps.iby.util.Addnl yHasht abl e;
i nport oracl e. apps.iby.util.ReadOnl yHasht abl e;
i nport oracl e. apps. i by. excepti on. PSExcepti on;

public class TxnQustonizer_pay inpl enents TxnQust om zer

{

static final String EXTEND QERY="select a, b from
i by.iby extend pre where order_id = ?";

static final String EXTEND | NSERT="i nsert into iby.iby_extend_post
val ues (?2,?2,?)";

public void preTxn(Sring bep, Gonnection dbconn, AddOnl yHasht abl e
i nputs) throws PSException
{ Sring orderld=(Sring)inputs.get("CapfCderld");

try
{ Prepared at enent
st mt =dbconn. pr epar eSt at enent (EXTEND _TESTQUERY) ;
stmt.set Sring(1,orderld);
Resul t Set rset =st mt . execut eQuer y();

for (int count=1; rset.next(); count++)
{
String custl=rset.getSring(l),
cust 2=rset.getSring(2);
i nputs. put (TxnQust om zer . CUSTCMFl ELD PREH X
+
"RegA-"+count, cust 1) ;
i nputs. put (TxnQust om zer . CUSTCMFI ELD PREH X
+
"RegB-"+count, cust 2) ;
}

rset.close();

E-6 Oracle iPayment Implementation Guide

Implementation

stmt. cl ose();
/1 1! do not close the database connection !!
}
catch (SQException sql e)
{ throw new PSExcepti on("|BY_0005", sql e. get Message(),fal se); }

}

public void post Txn(String bep, Connection dbconn,
Readnl yHasht abl e out puts) throws PSException
{ Sring f1=(String)outputs.get("Capf Satus"),

f2=(S ri ng)out put s. get (TxnQust om zer . OSTOMH BLD PREFI X+" Resp"),
f3=(String)out puts. get (" Capf TrxnDat e") ;
try
{ PreparedS at enent

st mt =dbconn. pr epar et at enent (EXTEND_TESTI NSERT) ;

stmmt. set String(1,f1);
stmmt. set String(2,f2);
stmmt. set String(3,f3);
st mt . execut elpdat e() ;
dbconn. commit ();
stmt . cl ose();
/1 !'! do not close the database connection !!

}

catch (SQException sqgl e)
{ throw new PSExcepti on("|BY_0005", sql e. get Message(),fal se); }

Extensibility E-7

Sample Implementation

E-8 Oracle iPayment Implementation Guide

-

Configuring CyberCash Servlet

This appendix explains how to configure the CyberCash servlet.

Configuring CyberCash Servlet F-1

Configuring CyberCash Servlet

Configuring CyberCash Servlet

CyberCash is a Secure Socket Layer (SSL) payment system supporting credit card
transactions using Merchant Connection Kit (M CK) and bank account transfers using
CyberCash’s PayNow services. It supports all Oracle iPayment core operations.

CyberCash Payment System Servlet is only needed if you are planning to process the credit
card and Bank Transfer payments through the CyberCash Service. For more information see
"Payment Systems’ in the latest Oracle iPayment Concepts and Procedures Guide.

Note: CyberCash is no longer accepting new customers. If you are not
an existing CyberCash customer, consider using one of the other
out-of-box integrations or contact Verisign, which has written its own
iPayment integration servlet

Oracle iPayment integrates with MCK version 3 which connects to CyberCash. Use the
parameters in the Oracle iPayment administration user interface while setting up CyberCash
as the payment system.

Thistable lists the parameters for setting up CyberCash as the payment system.

Property Value

Name CyberCash

Suffix cyb (do not use CYB or Cyb)

Base URL http://<machine_name>.com:<port>/servlet

The machine where CyberCash serviet isto be ingtalled, and any
active port, for example:

http://www.merchant.com:9997/servlet

Admin URL http://amps.CyberCash.com

Installing the CyberCash Servlet

Use the following procedure to configure CyberCash Merchant Connection Kit, also known
as MCK to work with Oracle iPayment:

1. Download CyberCash's Merchant Connection Kit (MCK) from
http://www.CyberCash.com. Follow CyberCash's instructions to install the MCK.

F-2 Oracle iPayment Implementation Guide

Configuring CyberCash Servlet

Note: If your MCK islocated inside the firewall and your firewall
requires a proxy for outbound communication, then add the following
parameters to the MCK merchant_conf file. The merchant_conf fileis
located in the:

<M CK_HOM E>/<merchant-name>/mck-cgi/conf directory:
HTTP_PROXY_HOST=<hostname>
HTTP_PROXY_PORT=<port>

Go to the directory where the MCK C libraries are located. The installation directory
should be named mck-<version>-<operating system>. For example, if you installed
MCK version 3.2.0.6 on Solaris under the /usr/oracle directory, you should do the
following:

% cd /usr/oracle/mck-3.2.0.6-sparc-sun-sol aris2.6/c-api/lib
On Windows NT, the command could be:
D:\>cd \mck-3.2.0.6-nt\c-api\lib

Copy the three MCK libraries mentioned below into the $IBY_TOP/lib (or %IBY _
TOP%\lib on Windows NT) directory:

% cp libCCMck.a$IBY_TOP/lib

% cp libmckerypto.a$IBY _TOP/lib

% cp libmd5hash.a $I1BY_TOP/lib

On Windows NT, the commands will be;

D:\> copy CCMck.lib %APPL_TOP%\iby\11.5.0\Mib
D:\> copy mckcrypto.lib %APPL_TOP%\iby\11.5.0\lib
D:\> copy md5hash.lib %0APPL_TOP%\iby\11.5.0\lib

Note: Theversion number 11.5.0 may differ if you have a different
version. Replace 11.5.0 with your specific version number.

Go to the $IBY_TOP/admin/driver directory:
% cd $IBY_TOP/admin/driver

Configuring CyberCash Servlet F-3

Configuring CyberCash Servlet

or
cd %APPL_TOP%\iby\11.5.0\admin\driver (Windows NT/2000)

Note: Edit file ibysub01.drv. Make two lines starting with the comment
character active by removing the comment character.

5. Gotothe$IBY TOP/lib directory:
% cd $IBY_TOPI/lib.
or
cd %APPL_TOP%\iby\11.5.0\lib (on Windows NT/2000).

6. Start AD Administration with its command name.
For UNIX users; $ adadmin
For NT users: C:\>adadmin.

After you answer the AD administration questions, the utility takes you to the main
menu. Select “ Relink Applications programs.”

Log File: the default AD administration log file name is adadmin.log. It islocated in
$APPL_TOP/admin/<db_name> is the value of your ORACLE_SID or TWO_TASK
variable. NT users will find the log file in %APPL_TOP%\admin\<db_name>\log.

7. 1f JServ is set up for automatic startup, set up the wrapper.env variablein thefile
jserv.properties as indicated in the following discussion.

.propertiesfile are generally located in the etc directory of your top Jserv engine
directory (for example, /d1/testcomn/util/apache/1.3.9/Apache/Jserv/etc).

wrapper.env=LD_LIBRARY_PATH=$IBY_TOP/bin

In Windows NT and Windows 2000, set:
wrapper.env=PATH=%APPL_TOP%\iby\11.5.0\bin

If the file already contains aline for wrapper.env (wrapper.env=LD_LIBRARY _
PATH=...), append the location indicated in the preceding instructions as you would
append the LD_LIBRARY_PATH environment variable. For example, assume that you
have the following line already in the .properties file, line
wrapper.env=LD_LIBRARY_PATH=$ABC/lib

In this case, you should add :$IBY _TOP/bin to the end of the line as shown bel ow:
wrapper.env=LD_LIBRARY_PATH=$ABC/ib:$IBY_TOP/bin

For Windows NT and Windows 2000, wrapper.env should be set as:
wrapper.env=PATH=%ABC%\lib;%APPL_TOP%\iby\11.5.0\bin

F-4 Oracle iPayment Implementation Guide

Configuring CyberCash Servlet

If JServ is set up for manual startup, set the appropriate environment variablein your
environment shell. This can be done in the jservctl file, or in any other script used to
start JServ. The jservctl fileis generally located in the bin directory of your top Jserv
engine directory (for example, /d1/testcomn/util/apache/1.3.9/Apache/Jserv/bin):

export LD_LIBRARY_PATH=$IBY_TOP/hin

In some shells, you will need to set LD_LIBRARY _PATH asfollows:
LD_LIBRARY_PATH=$IBY_TOP/bin

In Windows NT and Windows 2000, set it as follows:
PATH=%APPL_TOP%\iby\11.5.0\bin

If there is already aline setting the LD_LIBRARY _PATH (or PATH in Windows) then
append the above location as you would append the

LD_LIBRARY_PATH environment variable, using acolon (:) or, in Windows, a
semicolon (;).

8. Set up avirtual path mapping for the CyberCash servlet.
Insert the following line in the zone.properties file, in the Serviet Aliases section.
servlet.oramipp_cyb.code=oracle.apps.iby.bep.cybercash.CybServlet.

This allowsthe servlet to be invoked as: http://<hosthame>:<port>/servlet/oramipp_
cyb.

9. Setthe servlet init parameters. There are several initiaization parameters that are
recognized by the Oracle iPayment CyberCash Servlet. Set these initialization

parameters by inserting the following line in the zone property file <SERVLET _
ZONE>.propertiesfilein the Aliased Servlet parameters section.

Note: Replace $M CK_HOME with the absolute path of the MCK
installation and replace $IBY_TOP with the absolute path of the Oracle
iPayment installation.

servl et. oram pp_cyb. i ni t Ar gs=ntkhome=$MK_HOME, debug=f al se, | ogfi | e=$l BY_
TCP/ | og/ i bycybserv. | og

In Windows NT, set it to:

servl et. oram pp_cyb. i ni t Ar gs=ntkhone=9%4K HOME2% debug=f al se, | ogfi | e=%APPL_
TCOP%i by\ | og\ i bycybserv. | og

Configuring CyberCash Servlet F-5

Configuring CyberCash Servlet

The following initialization parameters are recognized by the CyberCash Servlet:

« Mckhome: This parameter is mandatory. It's the directory path that pointsto the
location where the CyberCash Merchant Connection Kit isinstaled. For example, if a
merchant named, test-mck has been installed in such away that its associated files can
be found under the directory /usr/oracle/mck/test-mck, then mckhome should be set to
Jusr/oracle/mck. Transaction requests to Oracle iPayment will fail if mckhomeis not set
correctly.

« debug: This parameter is optional. If set to true, then the servlet will print debugging
information to the body of its responses in plain text. Thisinformation includesthe
inputs sent to the servlet during the request, and the outputs the servlet sendsfor its
response. |f an exception is thrown during the processing of the request, then a stack
trace is also printed.

« logfile: Thisparameter isoptional. It'sa string which specifies the fully qualified path
name of the log file location. The input and output values of each transaction are written
to thisfile, and a stack trace if an exception isthrown. If this parameter is not set,
logging will be turned off.

« singlemerch: This parameter is optional, but may only be set up if the servlet always
uses the same CyberCash merchant. The singlemerch parameter helps improve the
performance of the CyberCash servlet by eliminating some of the overhead work that is
done for multiple merchants. Set up the parameter's va ue to the CyberCash merchant
id. For example, if you are only using the merchant test-mck, use the following
initialization argument string:

servl et. oram pp_cyb. i ni t Ar gs=ntkhome=$MK_HOME, debug=f al se, | ogfi | e=$l BY_
TCP/ | og/ i bycybserv. | og, si hgl ener ch=t est - ntk

Performance Considerations for Oracle iPayment CyberCash Servlet

The CyberCash serviet makes calls via INI to CyberCash's C-implemented Merchant
Connection Kit (MCK). The MCK is not thread-safe when multiple Cybercash merchants
are used. The CyberCash servlet must synchronize access to the MCK, in effect serializing
concurrent requests so that each one begins only after a previous one finishes. To improve
performance in the case of a single merchant, i.e. when the servlet always uses the same
CyberCash merchant, it is recommended that you use the singlemerch parameter. To
improve the performance in cases of both the single merchant or multiple merchants, it is
necessary to take advantage of anew featurein JServ called load balancing. Load balancing
allows requests sent to a single servlet zone to be serviced by multiple JServ instances. Since
each JServ instance is a separate process, calls to the MCK occur in distinct memory spaces,
allowing multiple concurrent requests to the CyberCash servlet to be successfully processed.

F-6 Oracle iPayment Implementation Guide

Configuring CyberCash Servlet

Installing a Load Balanced Servlet Zone
To load balance a servlet zone, make the following changes to your jserv.conf file:

1.

For each JServ instance you will reference, include a directive of the form:
ApJServHost <INSTANCE_NAME> <PROTOCOL >://<HOST>:<PORT>
For example: ApJServHost PC1 gjpv12://locahost: 7777

Note: Only one protocol is allowed within a zone. You should choose
the default one, such as gjpvi12.

Group JServ instances into sets with the following directive:

ApJServBalance <SET_NAME> <INSTANCE_NAME>

For example: ApJServBalance setl PC1

ApJServBalance setl SUN1

Define the load-balanced servlet zone with the directive:

ApJServMount <URL> balance://<SET_NAME >/<SERVLET_ZONE_NAME>
For example: ApJServMount /cybserv balance://setl/cybserv

Note: Each JServ instance within the set must have a servlet zone of the
given name defined. Using the example above, each JServ instance must
have a cybserv zone.

Define the shared memory file used by Apache HTTP listeners to keep track of the
status of JServ instances use the directive:
ApJServShmFile<MEM_FILE>

Note: Note that you may wish to over-write the memory file between
Apache restarts to flush old status information.

After jserv.conf ismodified to reflect your installation, restart Apache and make sure
each JServ instance within the load balanced zone is running.

To manually start a JServ instance, do the following steps:

Configuring CyberCash Servlet F-7

Configuring CyberCash Servlet

a. Makeacopy of your jserv.properties file, assumed to be correctly configured for
the CyberCash servlet, for each JServ instance you will run in the new zone.

b. For each propertiesfile, set port to a value correct for that instance.

c. Setyour shell environment variables CLASSPATH and LD_LIBRARY _PATH to
the values the variables have in your jserv.propertiesfile.

d. From the command line run the command:

java -classpath $CLASSPATH org.apache.jserv.JServ <PROPERTY _FILE>
<LOG_FILE>2>&1

The property fileis the jserv.properties file you have configured for that particular
instance.

Load Balancing Recommendations

The maximum number of concurrent requests that the CyberCash servlet will be able to
process without blocking is equal to the number of JServ instances running in its servlet
zone. You should have a number of JServ instances running equal to the average number of
concurrent requests, if not dightly more since, under load balancing, JServ instances are
randomly chosen, making it possible that two concurrent requests could be sent to a JServ
instance when an idle oneis already available.

Running multiple JServ instances within a zone will not add significantly to your CPU load
versus running asingle instance. It will, however, add to your memory load as each instance
requiresits own VM. On Solaris, each VM requires over 6MB of main memory though
less than 4MB are actually used since VMs will share common libraries.

F-8 Oracle iPayment Implementation Guide

G

Configuring Paymentech

This appendix explains how to configure the Paymentech payment system.

Configuring Paymentech G-1

Configuring the Paymentech Servlet

Configuring the Paymentech Servlet

Paymentech is a processor-model payment system which offers online authorization and
batch-based settlement support. Oracle iPayment supports the Online Processing Technical
Specification, Version 7.2, for online transactions and the 120-Byte Technical Specification,
Version 2.1.0, for batch file processing.

Paymentech supports these payment instruments and operations for each payment
instrument:

« Credit Cards
o Online Authorization
o Batch Authorization
» Batch Authorization and Deposit
» Batch Deposit
o Batch Credit
» Batch Query
« Purchase Cards
o Online Authorization
o Batch Authorization
» Batch Authorization and Deposit
» Batch Deposit
o Batch Credit
» Batch Query
= PINless Debit Cards
o Online Authorization
» Batch Deposit
» Batch Query
« Bank Receipts
o Online Verification

» Batch Vaidate and Deposit

G-2 Oracle iPayment Implementation Guide

Configuring the Paymentech Servlet

» Batch Credit
» Batch Query

Prerequisites
Using Paymentech as a payment system has these prerequisites:

« You must have aleased-line connection to Paymentech's payment servers.

« You must have one or more valid Paymentech merchant accounts with support for both
I P socket-based online authorization and FTP-based batch-mode settlement.

Please contact Paymentech for help meeting these prerequisites.

The Oracle iPayment Paymentech servlet requires no database connectivity and can be
installed on a different application server than iPayment.

Toinstall the Oracle iPayment Paymentech servlet on a different application server:
1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/javato the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter” to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.
Servlet Configuration

Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Paymentech servlet are present in the same machine.

To configurethe OracleiPayment Paymentech servlet:

1. Addthisalias statement to the configuration file of the servlet zone that you wish the
Paymentech servlet to runin:

ser vl et. oram pp_pt k. code=or acl e. apps. i by. bep. pr oc. paynent ech. PTSer vl et
2. Inthe same configuration file, provide these servlet parameters:

Table G-1 Zone-wide servlet parameters for All Processor Servlets

Parameter Example Value Description
IBY_XML_BASE /appl_ The location of the XML files needed by
top/iby/11.5.0/xml iPayment's XML framework. This location should
point to a directory with the exact same contents as
$IBY_TOP/xml.

Configuring Paymentech G-3

Configuring the Paymentech Servlet

Table G-1 Zone-wide serviet parameters for All Processor Servlets

Parameter Example Value Description

IBY_JAVA _ /tmp/xml.log Debug file used to write XML documentsin.
XML_LOG

ARCHIVE Ivarlarchive Directory where iPayment response files are

written to. If communication between iPayment
and the servlet failsin the middle of atransaction
and iPayment retriesthat transaction at a later date,
the archive directory lets the servlet know the
original results of the transaction and forward those
to iPayment instead of re-attempting the request,
which avoids double billing or double

authorization.
MAX _ 10 Maximum age (in days) that aresponsefileis
ARCHIVE_AGE saved in the archive. The Paymentech servlet will

remove all responsesin the archive older than this
age every timeiit starts.

Configuring Paymentech in the Oracle iPayment Administrative Interface

Payment System

Paymentech is aready seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

In this parameter... Enter this...

Name Paymentech

Suffix ptk

Payment System Type Processor

Base URL example- http://localhost:8080/servlets
Administration URL http://www.paymentech.net

Supported Payment Instrument Purchase Card, PINless Debit Card, Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

G-4 Oracle iPayment Implementation Guide

Configuring the Paymentech Servlet

Payment System Merchant Identifier

After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the paye€e's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
who will use Paymentech enter a recognizable name for the Paymentech payment system
identifier. If you upgraded iPayment and already have an existing payment system identifier,
you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

Table G-2 Paymentech account parameters

Parameter Description

Merchant Name Assigned by Paymentech. Company name that appears on the
Paymentech account holder's statement.

Division Number Assigned by Paymentech when avalid merchant account is created.
It is also known as the Merchant ID.

Presenter’s ID Assigned by Paymentech.

PID Password Assigned by Paymentech.

Submitter’'s ID Assigned by Paymentech.

SID Password Assigned by Paymentech.

On the same page, enter the connectivity information required to communicate with the
payment system servers.

Paymentech uses the same connectivity parameters for all payment instruments supported.

Table G-3 Paymentech online authorization connectivity parameters

Parameter Example Value Description

Socket IP Address 192.168.0.1 | P address of the Paymentech host used for online
authori zations.

Socket Port 8000 Port number to use a ong with the socket IP

Number address.

Configuring Paymentech G-5

Configuring the Paymentech Servlet

Table G-4 Paymentech settlement connectivity parameters

Description

Parameter Example Value
FTP Server IP 192.168.0.1
Address

FTP Server Port 8000
Number

FTP Account Test
Username

FTP Account Test
Password

Local File /tmp/batch
Directory

Remote File test/12345
Directory

Sent File Name

Active/Passive Active
Mode

| P address of the Paymentech host used for batch
transactions.

Port number to use aong with the FTP server IP
address.

FTP username to login to the Paymentech batch
transaction server.

FTP password to login to the Paymentech batch
transaction server.

Directory where batch filesto Paymentech are
temporarily stored.

Directory on the Paymentech batch transaction
server where batch files should be uploaded to.

Parameter not used by Paymentech.

For new connections, Paymentech does not allow
FTP connection in the passive mode. The
Active/Passive M ode parameter should be set to
"Active" for all new merchant connections to
Paymentech.

Table G-5 Paymentech online authorization connectivity parameters

Description

Parameter Example Value
FTP Server IP 192.168.0.1
Address

FTP Server Port 8000

Number

FTP Account test

Name

FTP Account test

Password

Local File /tmp/batch
Directory

Remote File test/data/12345
Directory

batch Name

| P address of the Paymentech host used for batch
transactions.

Port number to use aong with the FTP server IP
address.

FTP username to login to the Paymentech batch
transaction server.

FTP password to login to the Paymentech batch
transaction server.

Directory where batch filesto Paymentech are
temporarily stored.

Directory where batch filesto Paymentech are
temporarily stored.

Parameter used internally only.

G-6 Oracle iPayment Implementation Guide

Configuring the Paymentech Servlet

Configuring Paymentech Servlet Load Balancing

If you want to load balance the Oracle i Payment Paymentech servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parametersin this XML file for each instance of the servlet:

<xml_base>/data/ TransConfig.xml, where xml_base is a system setup parameter.

The structure of the XM. file is as fol |l ows:
<Tr ansm ssi on(pt i on>
<Schene>PTECH O\LI NE_SAXET_7_2</ Schene>
<Par anet er >
<Nane>SOCKET_| P</ Nane>
<Val ue>10. 140. 10. 150</ Val ue>
</ Par anet er >
<Par anet er >
<Nane>SOCKET_PCORT</ Nane>
<Val ue>80</ Val ue>
</ Par anet er >
</ Transni ssi onQpt i on>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

Thetables list the connectivity parameters that you can set at the serviet level.

Table G-6 Paymentech servlet connectivity parameters

Parameter Example Value Description
Scheme PTECH_ONLINE_ The transmission protocol for the payment instrument.
SOCKET_7_2 Values for Paymentech are: PTECH_ONLINE _
SOCKET_7_2FTP_PUTPTECH_BATCH_2 1 0_
ACK_GET

Table G-7 Paymentech servlet connectivity parameters - parameters for the PTECH_
ONLINE_SOCKET_7_2 scheme

Parameter Example Value Description

SOCKET_IP 192.168.0.1 | P address of the Paymentech host used for online
authorizations.

SOCKET_ 8000 Port number to be used a ong with the socket | P address.

PORT

Configuring Paymentech G-7

Configuring the Paymentech Servlet

Table G-8 Paymentech serviet connectivity parameters - parameters for the FTP_PUT

scheme
Parameter Example Value Description
HOST_IP 192.168.0.1 I P address of the Paymentech host used for batch

HOST_PORT 8000
USERNAME test

PASSWORD test

LOCAL_DIR /tmplbatch
REMOTE_ test/12345
DIR

transactions.
Port number to use along with the host |P address.

FTP username to login to the Paymentech batch
transaction server.

FTP password to login to the Paymentech batch
transaction server.

Directory where batch files to Paymentech are
temporarily stored.

Directory on the Paymentech batch transaction server
where batch files should be uploaded to.

Table G-9 Paymentech servlet connectivity parameters - parameters for the PTECH_

BATCH_3_0_ACK_GET scheme

Parameter Example Value

Description

HOST_IP 192.168.0.1

HOST_PORT 8000
USERNAME test

PASSWORD test

LOCAL_DIR /tmplbatch
REMOTE_ test/data/12345
DIR

I P address of the Paymentech host used for batch
transactions.

Port number to use along with the host |P address.

FTP username to login to the Paymentech batch
transaction server.

FTP password to login to the Paymentech batch
transaction server.

Directory where batch files to Paymentech are
temporarily stored.

Directory on the Paymentech batch transaction server
where batch response files may be picked up from.

Enabling the Scheduler

Paymentech is a processor-model payment system. All transactions except authorizations are
stored in the iPayment schema and sent to Paymentech only during a batch close operation.
Unless you want to manually control the batch close process by implementing callsto the
iPayment batch close APIs, the iPayment scheduler program must be enabled with support

for these tasks:

G-8 Oracle iPayment Implementation Guide

Configuring the Paymentech Servlet

« BATCHCLOSE
« BATCHQUERY
« BATCHRETRY

Configuring Paymentech G-9

Configuring the Paymentech Servlet

G-10 Oracle iPayment Implementation Guide

H

Configuring FDC North

This appendix explains how to configure the FDC North payment system.

Configuring FDC North H-1

Configuring the FDC North Servlet

Configuring the FDC North Servlet

FDC North is a processor-model payment system that offers online authorization and
batch-based settlement support. Oracle iPayment supports the SO 8583 Format
Authorization Network Processing Specification for Leased Line Merchants for online
transactions and the Magnetic Media and Data Communi cation Process Specifications
Version 2003.1 for batch file processing.

FDC North supports these payment instruments and operations for each payment instrument:
= Credit Card
o Online Authorization
» Batch Deposit
o Batch Credit
» Batch Query
« Purchase Card
o Online Authorization
» Batch Deposit
o Batch Credit
» Batch Query

Prerequisites
Using FDC North as a payment system has these prerequisites:

« You must have aleased-line connection to FDC North payment servers.

« You must have one or more valid FDC North merchant accounts with support for both
I P socket-based online authorization and FTP-based batch-mode settlement.

The Oracle iPayment FDC North servlet requires no database connectivity and can be
installed on a different application server than iPayment.

Toinstall the OracleiPayment FDC North servlet on a different application server:
1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/javato the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter” to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

H-2 Oracle iPayment Implementation Guide

Configuring the FDC North Servlet

3. Follow the configuration steps.
Servlet Configuration

Follow these mandatory configuration regardless of whether iPayment and the Oracle
iPayment FDC North servlet are present in the same machine.

To configurethe OracleiPayment FDC North servlet:

1. Addthisalias statement to the configuration file of the servlet zone that you wish the
FDC North servlet torunin:

servl et. oram pp_f dn. code=or acl e. apps. i by. bep. proc. f dcnor t h. FDONor t hSer vl et

2. Inthe same configuration file, provide the servlet parameters.

For setting the zone-wide parameters, see Table G-1.
Configuring FDC North in the Oracle iPayment Administrative Interface

Payment System

FDC North is aready seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

In this parameter... Enter this...

Name FDCNorth

Suffix fdn

Payment System Type Processor

Base URL example- http://localhost:8080/servlets
Administration URL http://www.fdms.com

Supported Payment Instrument Purchase Card, Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

Payment System Merchant Identifier

After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the paye€e's account to the payment

Configuring FDC North H-3

Configuring the FDC North Servlet

system, and let you specify the payee's account and connectivity parameters. For each payee

that will use FDC North enter a recognizable name for the FDC North payment system

identifier. If you upgraded iPayment and already have an existing payment system identifier,

you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

Table H-1 FDC North account parameters

Parameter

Description

Merchant Type

Merchant Account

Merchant Postal Code

Merchant ID

Merchant City
Merchant Country Code

Merchant DBA Name
Merchant Category Code

Terminal ID

RPS Info

Security Code

H-4 Oracle iPayment Implementation Guide

A code to define whether the merchant or supplier is an independent
contractor; has been certified as a small and/or disadvantaged
business entity. Refer First Data specifications for the different
codes to be set for thisfield. Required for Level 2 (MasterCard
only).

Twelve-digit account number assigned to the merchant outletby
FDC North.

Five or nine-digit merchant US Zip code OR Canadian Postal code
in format ANA_NAN (Example A1B 2C3, with aspacein the
fourth position).

Four-digit merchant identification code that is assigned to the
merchant by FDC North.

City where the merchant outlet is|ocated.

For US merchants, this parameter must contain the existing
two-letter state code with ablank in the third position. For Canadian
merchants, this parameter must contain the two-letter province code
with an asterisk in the third position. For al other foreign
merchants, this parameter must contain a three-letter country code.

Merchant DBA (Doing Business As) hame

Four-digit code that identifies the type of business conducted by the
merchant. This parameter, which isfound on the Enriched Deposit
(E) record, must contain the Merchant Category Code (or SIC
Code) identified in the Authorization Request M essage.

Four-character code that identifies a particular terminal at a
merchant location. This parameter isfound on the Enriched Deposit
(E) record.

Requested payment service value for the merchant. EC for
merchants using E-Commerce; DM for Direct Marketing.

Security code assigned by FDC North.

Configuring the FDC North Servlet

Table H-1 FDC North account parameters

Parameter Description

Merchant Customer Service Required for EC transactions. This parameter should contain the

Number customer service telephone number in the format 999-999-9999.

Merchant URL Merchant URL or e-mail address information for EC transactions.
First character cannot be a space. M erchant does not have to include

Merchant Tax ID Federal Tax ID number or Social Security Number for
unincorporated business. Required for Level 2 and MasterCard and
preferred for Visa.

Charge Description The Charge Descriptions that are agreed upon by the client and
American Express at the time the Electronic Submission Addendum
is completed.

On the same page, enter the connectivity information that is required to communicate with
the payment system servers.

FDC North uses the same connectivity parameters for all payment instruments supported.

Table H-2 FDC North online authorization connectivity parameters

Parameter Example Value Description

Socket |P Address 192.168.0.1 IP address of the FDC North host used for
online authorizations.

Socket Port Number 8000 Port number to use along with the socket IP
address.

Table H-3 FDC North settlement connectivity parameters

Parameter Example Value Description

FTP Server IP 192.168.0.1 | P address of the FDC North host used for
Address batch transactions.

FTP Server Port 8000 Port number to use along with the FTP
Number server |P address.

FTP Account test FTP usernameto login to the FDC North
Username batch transaction server.

FTP Account test FTP password to login to the FDC North
Password batch transaction server.

Configuring FDC North H-5

Configuring the FDC North Servlet

Table H-3 FDC North settlement connectivity parameters

Parameter

Example Value

Description

Local File Directory

Remote File
Directory

Submission File
Generation Data
Group

/tmp/batch

test/12345

KPTA00Q.DB.KPTD9999.0
UTPUT

Directory where batch files to FDC North
are temporarily stored.

Directory on the FDC North batch
transaction server where batch files should
be uploaded to.

Generation Data Group used for uploading
the Submission file to the Mainframe
Server. Provided by FDC North.

Table H—-4 FDC North status inquiry connectivity parameters

Parameter Example Value Description

FTP Server IP 192.168.0.1 IP address of the FDC North host used for

Address batch transactions.

FTP Server Port 8000 Port number to use along with the FTP

Number server |P address.

FTP Account test FTP usernameto login to the FDC North

Username batch transaction server.

FTP Account test FTP password to login to the FDC North

Password batch transaction server.

Local File Directory /tmp/batch Directory where batch filesto FDC North
are temporarily stored.

Remote File test/data/12345 Directory on the FDC North batch

Directory transaction server where batch responsefiles

Acknowledgment
Generation Data
Group

Acknowledgment Generation
Data Group

may be picked up from.

AcknowledgmentGDG Generation Data
Group used for retrieving the
Acknowledgment file from the Mainframe
Server. Provided by FDC North.

Configuring FDC North Servlet Load Balancing
The Oracle iPayment FDC North servlet does not support load balancing.

Enabling the Scheduler

FDC North is a processor-model payment system. All transactions except authorizations are
stored in the iPayment schemaand sent to FDC North during a batch close operation. Unless

H-6 Oracle iPayment Implementation Guide

Configuring the FDC North Servlet

you want to manually control the batch close process manually by implementing calls to the
iPayment batch close APIs, the iPayment scheduler program must be enabled with support
for these tasks:

« BATCHCLOSE
« BATCHQUERY
« BATCHRETRY

Configuring FDC North H-7

Configuring the FDC North Servlet

H-8 Oracle iPayment Implementation Guide

Configuring Concord EFSnet

This appendix explains how to configure the Concord EFSnet payment system.

Configuring Concord EFSnet |-1

Implementing Concord EFSnet Servlet

Implementing Concord EFSnet Servlet

Concord EFS is one of the largest electronic payment service providersin the United States,
specializing in credit and debit transaction processing. EFSnet is Concord's I nternet payment
processing platform. Concord EFSnet is a gateway type payment system, which offers
online authorization, settlement, refund and query supports. Oracle iPayment supports the
EFSnet Web Services format, Version 2.4.

Oracle iPayment's Concord EFSnet integration supports these payment instruments and the
online operations for each payment instrument:

« Credit card
» Authorization (CreditCardAuthorize)
» Capture (CreditCardSettle)
» Auth-capture (CreditCardCharge)
» Voice authorization (CreditCardVoiceA uthori ze)
» Refund (CreditCardRefund)
» Credit (CreditCardCredit)
» Void (VoidTransaction)
o Query (QueryTransactions)
» PINIess debit card
> Auth-capture (DebitCardChargePINless)

Prerequisites
Using Concord EFSnet as a payment system has these prerequisites:

« You must be able to access Concord EFSnet’s payment servers using HTTP Protocol.

« You must have one or more valid Concord EFSnet merchant accounts with support for
HTTP based online authorization and settlement.

The Oracle iPayment Concord EFSnet servlet requires no database connectivity and can be
installed on a different application server than iPayment.

Toinstall the Oracle iPayment Concord EFSnet servlet on a different application
server:

1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

I-2 Oracle iPayment Implementation Guide

Implementing Concord EFSnet Servlet

2. Add $APPL_TOP/javato the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter” to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Servlet Configuration

Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Concord EFSnet servlet are present in the same machine.

To configurethe OracleiPayment Concord EFSnet servlet:

1. Addthisalias statement to the configuration file of the servlet zone that you wish the
Oracle iPayment Concord EFSnet servlet to runin:

servl et. oram pp_ef s. code=or acl e. apps. i by. bep. concor d. Goncor dBEPSer vl et

2. Inthe same configuration file, provide these servlet parameters.

For setting the zone-wide parameters, see Table G-1.
Configuring Concord EFSnet in the Oracle iPayment administrative interface

Payment System

Concord EFSnet is aready seeded in iPayment and you do not need to create a new payment
system. Log in to the iPayment administrative user interface as the administrative user to
review and modify these parameters:

In this parameter... Enter this...

Name Concord EFSnet

Suffix efs

Payment System Type Gateway

Base URL example- http://localhost:8080/servlets
Administration URL http://www.concordefsnet.com

Supported Payment Instrument Credit Card, PINless debit Card, Purchase Card,
Electronic Funds Transfer

Configuring Concord EFSnet -3

Implementing Concord EFSnet Servlet

Note: Do not change the suffix parameter for seeded payment systems.

Payment System Merchant Identifier

After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the paye€e's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
that will use Concord EFSnet enter a recognizable name for the Concord EFSnet payment
system identifier. If you upgraded iPayment and already have an existing payment system
identifier, you should not change the identifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

Table -1 Concord EFSNet account parameters

Parameter Description

Store 1D EFSnet store name.

Store key EFSnet store password.

Application ID Originating application identifier and version number.

On the same page, enter the connectivity information required to communicate with the
payment system servers.

Concord EFSnet uses the same connectivity parameters for all payment instrument types.

Table -2 Concord EFSNet connectivity parameters

Parameter Example Value Description

Destination URL https://testefsnet.concordebiz. The URL where the transaction request
com/efsnet.dll should be posted.

User proxy http://www-proxy.us.oracle. The proxy used, if any, to connect to the
com above URL.

Wallet Location lopt/oracle/wallet Absolute location of the wallet.

Wallet Location welcome Password to open the wallet.

I-4 Oracle iPayment Implementation Guide

Implementing Concord EFSnet Servlet

Configuring Concord EFSnet Servlet Load Balancing

If you want to load balance the Oracle iPayment Concord servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parametersin this XML file for each instance of the servlet:

<xml_base>/data/ TransConfig.xml, where xml_base is a system setup parameter.
The structure of the XML fileis asfollows:

<Tr ansm ssi on(pt i on>
<Schene>HTTP_PCST</ Schene>
<Par arret er >
<Nane>HTTP_URL</ Narre>
<Val ue>10. 140. 10. 150</ Val ue>
</ Par anet er >
</ Transni ssi onQpt i on>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

These tables list the connectivity parametersthat you can set at the servlet level.

Table I-3 Concord EFSnet servilet connectivity parameters

Parameter Example Value Description

Scheme HTTP_POST The transmission protocol for the payment
instrument. Values for Concord EFSnet
ae:HTTP_POST

Table -4 Concord EFSnet serviet connectivity parameters - parameters for the
HTTP_POST scheme

Parameter Example Value Description

HTTP_URL https:.//testefsnet.concordebiz. The URL where the transaction request
com/efsnet.dll should be posted.

PROXY http://www-proxy.us.oracle. The proxy used, if any, to connect to the
com above URL.

WALLET_LOC /opt/oracle/wallet Absolute location of the wallet.

WALLET_PASSWD welcome Password to open the wallet.

Configuring Concord EFSnet |-5

Implementing Concord EFSnet Servlet

Enabling the Scheduler

Concord EFSnet is a gateway-model payment system. Transactions are submitted to the
payment system in real time and you do not need to configure the scheduler.

I-6 Oracle iPayment Implementation Guide

J

Configuring Citibank

This appendix explains how to configure the Citibank card for transaction processing.

Configuring Citibank J-1

Configuring the Citibank Card Servlet

Configuring the Citibank Card Servlet

Citibank is a processor-model payment system which supports two types of transmissions:
Online rea-time transactions and Batch file processing. Online rea -time transactions are
used for online real-time authorization request. Batch file processing supports batched credit
card authorizations and settlement processing. Oracle iPayment supports the | SO 8583
format for online transactions and the EPF#1 specification for batch file processing.

Oracle iPayment's Citibank integration supports these payment instruments and the
operations for each payment instrument:

= Credit Card
o Online Authorization
o Online Authorization and Deposit
o Batch Authorization
» Batch Authorization and Deposit
» Batch Deposit
o Batch Credit

» Batch Query (does not require communication with Citibank, as Citibank
automatically uploads acknowledgment responses for batch files)

=« Purchase Card

The support for purchase card is similar to credit cards, without any level 11 or 11l
information. Citibank treats purchase card transactions similar to credit card
transactions.

Prerequisites
Using Citibank as a payment system has these prerequisites:
« Establish a connection to Citibank payment servers.

« Establish one or more valid Citibank merchant IDs with support for both |P
socket-based online authorization and FTP-based batch-mode settlement.

« Configure an FTP server in the machine where you want to set up the Oracle i Payment
Citibank servlet. You must communicate the | P address of this FTP server along with
the user name and password to Citibank. Citibank will upload the acknowledgment files
to the specified directory in this FTP server.

J-2 Oracle iPayment Implementation Guide

Configuring the Citibank Card Servlet

Note: Ensurethat you have write permissions on the directory where
Citibank uploads the files.

The Oracle iPayment Citibank servlet requires no database connectivity and can be installed
on adifferent application server than iPayment.

Toinstall the Oracle iPayment Citibank servlet on a different application server:
1. Copy directory $APPL_TOP/java and directory $IBY_TOP/xml to the new machine.

2. Add $APPL_TOP/javato the CLASSPATH of the Jserv instance the servlet will run
and set the "xmlbase parameter” to the location of the copied $IBY_TOP/xml. For
details on setting the "xmlbase" parameter, see Setting iPayment JVM parameters.

3. Follow the configuration steps.

Servlet Configuration

Follow these mandatory configuration steps regardless of whether iPayment and the Oracle
iPayment Citibank servlet are present in the same machine.

To configurethe OracleiPayment Citibank servlet:

1. Addthisalias statement to the configuration file of the servlet zone that you wish the
Citibank servlet to runin:

servl et. oram pp_ci t. code=or acl e. apps. i by. bep. proc. ci ti bank. dti Servl et

2. Inthe same configuration file, provide the servlet parameters.
For setting the zone-wide parameters, see Table G-1.
Thistable lists parameters particular to the Citibank servlet (set via a statement of the
form servlet.oramipp_cit.initArgs=).

Table J-1 Citibank-specific servlet parameters

Parameter Example Value Description

FILELESS FTP_ENABLED Y/N If this parameter isset to Y, the servlet creates a
batch filein memory only and uses FTP to send
the batch file to the payment system. If this
parameter is set to N, the servlet first stores the
batch filein local batch directory and then sends
the file. We recommend that you set this
parameter to Y for enhanced security of your
payment information.

Configuring Citibank J-3

Configuring the Citibank Card Servlet

Configuring Citibank in the Oracle iPayment Administrative Interface

Payment System

Citibank is seeded in iPayment and you need not create a new payment system. Log in to the
iPayment administrative user interface as the administrative user to review and modify these

parameters:

In this parameter... Enter this...

Name Citibank

Suffix cit

Payment System Type Processor

Base URL example- http://hostname:8080/servlets
Administration URL http://www.citicorp.com

Supported Payment Instrument Credit Card

Note: Do not change the suffix parameter for seeded payment systems.

Payment System Merchant Identifier

After you have created a payee in the iPayment administrative user interface, you must
create a payment system merchant identifier to link the payee's account to the payment
system, and let you specify the payee's account and connectivity parameters. For each payee
using Citibank, enter a recognizable name for the Citibank payment system identifier. If you
upgraded i Payment and already have an existing payment system identifier, you should not
change theidentifier.

Once you have created a Payment System Merchant Identifier, you must enter these
payment system account parameters by clicking on the Enter Parameters icon next to the
appropriate payment system identifier.

Table J-2 Citibank account parameters

Parameter Description

Merchant ID Assigned by Citibank Merchant Services (Citi MS) to identify each
merchant. This parameter provides the correct merchant
information for authorization based upon account type.

J-4 Oracle iPayment Implementation Guide

Configuring the Citibank Card Servlet

Table J-2 Citibank account parameters

Parameter Description

Acquiring ID The Acquiring Ingtitution ID Code identifies Citi MSto the
Interchange.

Presenter ID Four-letter ID assigned and provided to merchants by Citi MSto

Merchant Country Code
Merchant Postal Code

Merchant DBA Name

Merchant DBA City

Merchant DBA State

Card Acceptor Terminal 1D
Terminal Time Offset

Network Destination

XCF Password
XCF Request Code

identify each presenter that services are provided to.
Two-letter Merchant Country Code as specified in SO 3166.

Postal code of the merchant originating the transaction. This code
should be either five or nine digitsin length.

DBA (Doing Business As) Information contains the name of the
merchant that defines the point of servicein both local and
interchange environments.

City where the merchant outlet islocated. For an EC transaction,
this parameter should contain the customer service telephone
number in the format 999-999-9999.

For US merchants, this parameter must contain the existing
two-letter state code. A blank must be placed in the third position.

Theterminal ID at the merchant location.

Terminal time offset in minutes. The first position must be either '+'
or '-'. Example: '+000'

Contains four-letter Citibank Merchant Services network
destination for the transaction.

Assigned by Citi MS during Merchant setup.
Assigned by Citi MS during Merchant setup.

In the same page, enter the appropriate connectivity information to communicate with the

payment system servers.

Citibank uses the same connectivity parameters for all supported payment instrument types.

Table J-3 Citibank online connectivity parameters

Parameter

Example Value Description

Socket |P Address

Socket Port Number

150.110.233.112 IP address of the Citibank host used for online
transactions.
4141 Port number used with the socket | P address.

Configuring Citibank J-5

Configuring the Citibank Card Servlet

Table J-4 Citibank batch connectivity parameters

Parameter Example Value Description
FTP Server |IP Address 163.39.230.33 IP address of the Citibank host that is used for
batch transactions.
FTP Server Port Number 21 Port number used with the FTP | P address.
FTP Account Username Oraclel FTP username to log into Citibank batch
transaction server.
FTP Account Password welcome FTP password to log into Citibank batch
transaction server.
Local File Directory /tmp/batch Directory where batch files are temporarily stored
in the user's system.
DataClass Size SMALL The size of the file transmitted to Citibank's FTP
server (for batch).
Citi Receiving Filename SIAX00Q.GB.SI The name of the file transmitted to Citibank's
AX1011.A010R FTP server (for batch).
CL(+1)

Table J-5 Citibank status inquiry parameters

Parameter Example Value Description

Local File Directory /tmp/query Directory in the user's system where
acknowledgment files are temporarily stored.

Account Merchant Name Oracle Merchant name, assigned by Citibank.

Configuring Citibank Servlet Load Balancing

If you want to load balance the Oracle i Payment Citibank servlet, you may want each
instance of the servlet to have different values for the connectivity parameters based on your
business and technical requirements as well as the payment system's connectivity
requirements. You can override the iPayment engine's connectivity parameters by specifying
the parametersin this XML file for each instance of the servlet:

<xm _base>/ dat a/ TransConfi g. xnh, where xm _base is a systemsetup paraneter.
The structure of the XM. file is as foll ows:
<Tr ansm ssi on(pt i on>
<Schene>A Tl _O\LI NE_3_0_SOXKET</ Schene>
<Par arret er >
<Nane>SOCKET_| P</ Nane>
<Val ue>10. 140. 10. 150</ Val ue>

J-6 Oracle iPayment Implementation Guide

Configuring the Citibank Card Servlet

</ Par anet er >
<Par arret er >
<Nane>SOCKET_PORT</ Nane>
<Val ue>80</ Val ue>
</ Par anet er >
</ Transni ssi onQpt i on>

The XML file should have one TransmissionOption element for each transmission protocol
that you want to set up.

These tables list the connectivity parametersthat you can set at the servlet level.

Table J-6 Citibank servlet connectivity parameters

Parameter Example Value Description

Scheme CITI_ONLINE_ Thetransmission protocol for the payment
3 0_SOCKET instrument. Values for Citibank are:CITI_
ONLINE_3 0 _SOCKETCITI_BATCH_3 0_
PUTCITI_BATCH_3 0 _ACK_GET

Table J-7 Citibank servlet connectivity parameters - parameters for the CITI_
ONLINE_3 _0_SOCKET scheme

Parameter Example Value Description

SOCKET_IP 150.110.233.112 IP address of the Citibank host used for online
transactions.

SOCKET_PORT 4141 Port number to use along with the socket IP
address.

Table J-8 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3 0_PUT scheme

Parameter Example Value Description

HOST_IP 163.39.230.33 IP address of Citibank host used for batch
transactions.

HOST_PORT 21 Port number to use along with the host 1P address.

USERNAME Oraclel FTP username to login to Citibank batch

transaction server.

PASSWORD welcome FTP password to login to Citibank batch
transaction server.

Configuring Citibank J-7

Configuring the Citibank Card Servlet

Table J-8 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3 0 _PUT scheme

Parameter Example Value Description
LOCAL_DIR /tmp/batch Directory in auser's system where batch files are
temporarily stored.
DATA_CLASS SIZE SMALL The size of thefile transmitted to Citibank's FTP
server (for batch).
FILE_NAME SIAX00Q.GB.SI The name of the file transmitted to Citibank's
AX1011.A010R FTP server (for batch).
CL(+1)

Table J-9 Citibank servlet connectivity parameters - parameters for the CITI_BATCH_
3 0 ACK_GET scheme

Parameter Example Value Description

LOCAL_DIR /tmp/query Directory in auser's system where
acknowledgment files are temporarily stored.

MERCHANT_NAME Oracle Merchant name, assigned by Citibank.

Enabling the Scheduler

Because Citibank is a processor-model payment system, all transactions except
authorizations are stored in the iPayment schema and sent to Citibank only during a batch
close operation. Unless you want to manually control the batch close process by
implementing calls to the iPayment batch close APIs, the iPayment scheduler program must
be enabled with support for these tasks:

« BATCHCLOSE
« BATCHQUERY
« BATCHRETRY

J-8 Oracle iPayment Implementation Guide

K

Profile Options

This appendix lists the profile options that affect the operation of iPayment. This appendix
includes a brief description of each profile option that you or your system administrator can
set at the site, application, responsibility, or user levels.

Profile Options K-1

Profile Options

Profile Options

During implementation, your system administrator sets a value for each user profile option
to specify how Oracle Applications controls access to and processes data.

See also:

System Administrator’s Guide

Profile Options Summary

Thistable indicates whether you can view or update profile options and at which System
Administrator levels the profile options can be updated: at the user, responsibility,

application, or site levels.

Overview of Setting User Profiles, Oracle Applications

A Required profile option requires you to provide avaue. An Optional profile option
aready provides adefault value which you can change.

The key for thistableis:
« Update - You can update the profile option

« View Only - You can view the profile option but cannot change it

« NoAccess- You cannot view or change the profile option value

System System System
Admin | System Admin | Admin Admin
User Access: | Access: Access: Access:
Profile Option Value Default Access User Responsibility | Application | Site
IBY: ECAPP URL Required | No Default | No No No Access No Access Update
Access | Access
IBY: HTTP Proxy Optional | No Default | No No No Access No Access Update
Access | Access
IBY: No Proxy Optional | No Default | No No No Access No Access Update
Domain Access | Access
IBY: XML Base Required | No Default | No No No Access No Access Update
Access | Access
IBY: JAVA XML Optional | No Default | No No No Access No Access Update
Log File Access | Access
IBY: XML Temp Optional | No Default | No No No Access No Access Update
Directory Access | Access

K-2 Oracle iPayment Implementation Guide

Profile Options

System System System
Admin | System Admin | Admin Admin
User Access: | Access: Access: Access:

Profile Option Value Default Access User Responsibility | Application | Site
IBY: Outbound Optional | No Default | No No No Access No Access Update
Payment Payer ID Access | Access
IBY: Outbound Optional | No Default | No No No Access No Access Update
Payment System Access | Access
Suffix
IBY: Default Payee | Optional | No Default | No No No Access No Access Update
for BR Remittance Access | Access
IBY: Ul Visibility Optional | No Default | No No No Access No Access Update
Class Access | Access
IBY: Wallet Optional | No Default | No No No Access No Access Update
Location Access | Access
IBY: Wallet Optional | No Default | No No No Access No Access Update
Password Access | Access
IBY: Registered Optional | No No No No Access No Access Update
I nstrument Access | Access
Encryption
IBY: Daily Business | Required | USD Update | Update Updated Update Update
Close Rporting
Currency

Profile Options K-3

iPayment Profile Options

IPayment Profile Options

You can use the System Administrator responsibility to set the iPayment profile options.

IBY: ECAPP URL
This property contains the following URL:

http://machine: port/<jsp>/ecapp?

Replace the machine and port with the names of the actual machine and the actual port
where the iPayment ECServlet isinstaled. Also, make sure that "?" is present at the end of
the URL or append "?" at the end.

Thisinformation is mandatory if your EC applications use iPayment PL/SQL APIsor if
your application is an Oracle 3i client.

IBY: HTTP Proxy
This property specifies the proxy-URL. For example, http://www-proxy.us.oracle.com.

To set up this property with an empty value, insert a string starting with <. For example,
<none>.

IBY: No Proxy Domain

This property specifies the domain name for which no proxy is needed. For example,
us.oracle.com.

To set up this property with an empty value, insert a string starting with <. For example,
<none>.

IBY: XML Base

This property specifies the location of files required by iPayment's XML framework, such as
iPayment DTD files. This property should give the location of the $IBY_TOP/xml directory,
where $IBY_TOP is expanded to itsfully qualified path name. For example, /usr/appl_
top/iby/11.5.0/xml

IBY: JAVA XML Log File

This optional property gives the full-qualified pathname of the debug file where XML
messages should be written. This file is similar in purpose to the iPayment debug file, but
has been separated from it since XML messages are much larger than single debug
statements. If no value is specified for this property, then XML logging is disabled.

K-4 Oracle iPayment Implementation Guide

iPayment Profile Options

IBY: XML Temp Directory

Temporary XML work directory, which must be writable by iPayment's application server.
This parameter is optional, but will reduce iPayment's memory usage if provided.

IBY: Outbound Payment Payer ID

Select from the list of values displayed, the payee in iPayment issuing the payment order to
the bank. You can set thisonly at the site level. You need to define this to send transactions
from Oracle Payables to iPayment.

IBY: Outbound Payment System Suffix

Enter the three-letter suffix of the payment system that will handle your outbound payment
instructions.

IBY: Default Payee for BR Remittance

Select from the list of values displayed, the payee in iPayment remitting the Bills
Receivable. You can set this only at the site level. You need to define thisto send BR
remittance batch from Oracle Receivables to iPayment.

IBY: Ul Visibility Class

You can define the visibility class profile option at different levels. This vaue will
determine what data a user can see in the iPayment Operation Ul and what mask is applied
to the data before displaying it.

IBY: Wallet Location
Location of the Oracle Wallet.

IBY: Wallet Password
Password to open the Oracle Wallet.

IBY: Registered Instrument Encryption

Determines whether registered payment instruments must be stored in encrypted format; if
set to 'Yes, the system security key must have been provided to the iPayment enginein
order to register/modify payment instruments; use encrypted registered payment instruments
as part of atransaction. The default valueis’No'.

Profile Options K-5

iPayment Profile Options

K-6 Oracle iPayment Implementation Guide

A

Account Options, 4-18
seeding, 4-18

ACK, 4-65

acknowledgment parser, 4-63
developing, 4-64
seeding, 4-63

B

BankAccountBatchACK, 4-69
BankAccountTrxnACK, 4-67
BatchACK, 4-68

C

Common Elements, 4-51
address, 4-52
bank account, 4-53
contact information, 4-52
creditcard, 4-55
debit card, 4-56
document line, 4-58
generic, 4-51
party, 4-56

Configuring
Citibank Card Servlet, J2
Concord EFSnet servlet, 1-2
CyberCash servlet, F-2
FDC North servlet, H-2
Paymentech servlet, G-2
sample servlet, 2-16

CreditCardBatchACK, 4-69

Index

CreditCardTrxnACK, 4-67
CyberCash
overview, 2-16,2-18, F-2
parameters, F-2

D

Developing aValidation Set, 4-30
Batch Vaidation Sets, 4-30

Document Level Elements, 4-48
Layout, 4-48

Document Line Level Elements, 4-49
Layout, 4-49

E

Error handling, B-2
Extensibility, E-2
Extract Components, 4-38
Extract Formatter, 4-36
Extract Generator, 4-35
Extract Structure, 4-37

F

Field-installable cartridges, 2-10

Format Validation, 4-29

Formats, 4-27
developing template, 4-27
seeding template, 4-27

Funds Capture Extract, 4-39

Funds Capture Instruction Elements, 4-40
Layout, 4-40

Index-1

I P

inbound batch payment operations response Payee Account Level Elements, 4-41
record/tables, C-106 Layout, 4-41
inbound payment operations related records, C-80 Payment Profile
inbound payment operations response bank account, 4-25
record/tables, C-96 credit card, 4-21
instrument registration related records, C-109 debit card, 4-23
Integration Point Component Types, 4-5 Payment System
iPayment PL/SQL API, C-5 Attributes, 4-16
instrument registration, C-53 definition, 4-16
OralnstrAdd, C-53 Payment system cartridges, 2-10
OralnstrDel, C-62 Payment System Integration
Oralnstring, C-64 developing, 4-6
OralnstrmMod, C-57 developing for bank accounts, 4-12
payment processing, C-7 developing for credit cards, 4-7
OraPmtCanc, C-24 developing for debit cards, 4-10
OraPmtCloseBatch, C-39 Payment System Integration Model, 4-2
OraPmtCredit, C-32 PaymentService APIs, 4-3
OraPmting, C-45 Prerequisites
OraPmtMod, C-17 what to do before you code, 1-2
OraPmtQryTrxn, C-37 Profile options
OraPmtQueryBatch, C-42 setting, K-2
OraPmtReq, C-7
OraPmtReturn, C-28 Q

OraRiskEval, C-48
Questions to answer before you code, 1-2

L
R
Languages and character sets
andNLS, 1-11 risk management records, C-95
Routing Engine, 4-4
N
NLS, 1-11 S
Seeding aValidation Set, 4-33
0 Seeding Data, 4-15
Language-specific data, 4-15
OapfNIsLang, 1-11 WHO columns, 4-15
Oracle Payment System Partner, 2-10 System Payment Profile, 4-20
Order Leve Elements, 4-42
Data Sources, 4-42 T
Layout, 4-43
outbound bank payment batch related records, C-88 transmission function, 4-59

developing, 4-59
transmission protocol

Index-2

seeding, 4-60
TrxnACK, 4-66

Index-3

Index-4

	Send Us Your Comments
	Preface
	Audience for this Guide
	How To Use This Guide
	Documentation Accessibility

	Other Information Sources
	Online Documentation
	Related Documentation
	Guides Related to All Products
	Guides Related to This Product

	Installation and System Administration
	Other Implementation Documentation
	Training and Support
	Do Not Use Database Tools to Modify Oracle Applications Data
	About Oracle
	Your Feedback

	1 Overview
	Planning Your Implementation
	Which Payment System Should You Use?
	Is Your Merchant Terminal Based or Host Based?
	What Electronic Commerce Applications Are You Using?
	Which APIs Should Electronic Commerce Applications Handle?
	Payment Instrument Registration APIs
	Payment Processing APIs
	Risk Management APIs

	Which Bank Account Transfer Operations Should You Implement?
	Which Credit Card and Purchase Card Operations to Implement?
	Which Risk Factors Should You Implement?
	Does Your Application Need to Present Information in Different Languages?

	Installing Oracle iPayment

	2 Configuring iPayment
	Overview of Oracle iPayment Implementation Steps
	Creating an Oracle iPayment User
	Assigning Roles and Responsibilities to an iPayment User

	Overview of iPayment Servlets
	Implementing Field Installable Servlets
	Configuring Oracle iPayment Servlets
	Configuring the ECApp Servlet
	Setting Up SSL Security for the ECApp Servlet
	Configuring iPayment Sample Servlet
	Configuring iPayment Loopback Servlet
	Setting Up SSL Security for Payment System Servlet Communication
	Enabling the Scheduler
	Registering Electronic Commerce Applications
	Loading Risky Instruments
	Enabling the XML Framework
	Setting up Entities in the Oracle iPayment User Interface

	3 Using iPayment with External Front End Applications
	Overview of Oracle iPayment APIs
	Implementing Electronic Commerce Applications APIs
	Payment Instrument Registration APIs
	Payment Processing APIs
	Risk Management APIs
	Credit Card Validation APIs
	Status Update API
	Java APIs for Electronic Commerce Application
	Using Payment Service API

	PL/SQL APIs for Electronic Commerce Applications

	Security Considerations

	4 Using iPayment with External Payment Systems
	Overview of Payment System Integration Model
	PaymentService APIs
	Routing Engine
	Integration Point Component Types
	Developing a Custom Payment System Integration
	Developing a Custom Payment System Integration for Credit Cards
	Developing a Custom Payment System Integration for Debit Cards
	Developing a Custom Payment System Integration for Bank Account Cards
	Seeding Data

	Defining a Payment System
	Account Options

	System Payment Profile
	Credit Card System Payment Profile
	Debit Card System Payment Profile
	Bank Account Payment Profiles

	Formats
	Format Validation
	Developing a Validation Set
	Seeding a Validation Set

	Extract Generator
	Extract Formatter
	Extract Structure
	Extract Components
	Funds Capture Extract
	Common Elements

	Transmission Functions
	Acknowledgment Parser

	A Risk Management
	Utilizing Risk Management
	Risk Factors and Risk Formulas

	Risk Management Test Scenarios
	Merchant Selling Books and Low Priced Goods
	Merchant Selling Electronic Goods
	Business to Business Customer

	B Error Handling
	Error Handling During Payment Processing
	Common Errors
	Errors Due to Invalid or Duplicate Data
	Communication Errors
	Configuration Errors

	C iPayment PL/SQL APIs
	Electronic Commerce PL/SQL APIs
	Architectural Overview
	PL/SQL APIs Procedure Definitions
	Payment Processing APIs
	Payment Instrument Registration APIs

	PL/SQL Record/Table Types Definitions
	Payments Related Generic Record Types
	Inbound Payment Operations Related Record Types
	Outbound Bank Payment Batch Related Record Types
	Risk Management Record Types
	Inbound Payment Operations Response Record/Table Types
	Inbound Batch Payment Operations Response Record/Table Types
	Instrument Registration Related Record Types

	Sample PL/SQL Code

	D Back-End APIs for Gateways
	Gateway Model Payment System Integration Model Overview
	Payment System Servlet Development Prerequisites

	Payment System Servlet Operations
	Authorization API
	Purchase Card Authorization API
	Voice Authorization API
	Authorization API Output Name-Value Pairs
	Capture API
	Void API
	Return/Credit API
	Close Batch API
	Query Transaction Status API
	Query Batch Status API
	Transaction Status and Messages
	OapfStatus
	OapfErrLocation
	OapfVendErrCode
	OapfVendErrmsg
	OapfBatchState
	OapfOrderId

	Transaction Types and Transaction States
	OapfTrxnType: SSL Transactions and Commerce Applications

	E Extensibility
	Overview
	Implementation
	Sample Implementation

	F Configuring CyberCash Servlet
	Configuring CyberCash Servlet

	G Configuring Paymentech
	Configuring the Paymentech Servlet

	H Configuring FDC North
	Configuring the FDC North Servlet

	I Configuring Concord EFSnet
	Implementing Concord EFSnet Servlet

	J Configuring Citibank
	Configuring the Citibank Card Servlet

	K Profile Options
	Profile Options
	Profile Options Summary

	iPayment Profile Options

	Index

