
Oracle® Database Express Edition
2 Day Plus .NET Developer Guide

10g Release 2 (10.2)

B25312-01

February 2006

Oracle Database Express Edition 2 Day Plus .NET Developer Guide, 10g Release 2 (10.2)

B25312-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Roza Leyderman

Contributing Authors: John Paul Cook, Mark Williams

Contributors: Alex Keh, Christian Shay

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

List of Examples

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction

What is Microsoft .NET Framework ... 1-1
Introduction to Oracle Data Provider for .NET .. 1-2
Introduction to Oracle Developer Tools for Visual Studio .NET ... 1-2
Introduction to .NET Stored Procedures.. 1-2

2 Installing Oracle Developer Tools

What You Need ... 2-1
Installing Oracle Developer Tools.. 2-2
Unlocking the User Account .. 2-4
Uninstalling Oracle Developer Tools .. 2-4

3 Connecting to the Database

Starting a New Project ... 3-1
Adding a Reference.. 3-2
Adding Initial Programmatic Statements.. 3-4
Adding Connection Elements .. 3-5
Using the Connection Object .. 3-11
Running the Application ... 3-14
Error Handling ... 3-14
Closing the Database Connection .. 3-18

4 Building an Oracle Data Provider for .NET Application

Copying a Project ... 4-1
Using the Command Object ... 4-3
Retrieving Data: a Simple Query .. 4-4
Retrieving Data: Bind Variables ... 4-5

iv

Retrieving Data: Multiple Values ... 4-7
Using the DataSet Class with Oracle Data Provider for .NET .. 4-8
Inserting, Deleting and Updating Data .. 4-13

5 Using Oracle Developer Tools for Visual Studio .NET

Connecting to the Oracle Database... 5-1
Creating a Table and Its Columns .. 5-3
Creating a Table Index .. 5-5
Adding Table Constraints .. 5-6
Adding Data to a Table ... 5-8
Generating Code Automatically.. 5-9
Enabling Database Updates .. 5-13

6 Using PL/SQL Stored Procedures and REF Cursors

Introduction to PL/SQL Packages and Package Bodies .. 6-1
Introduction to PL/SQL Stored Procedures... 6-1
Introduction to Ref Cursors.. 6-1
Creating a PL/SQL Stored Procedure that Uses Ref Cursors ... 6-2
Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET 6-8

7 Deploying .NET Stored Procedures

Starting the Common Language Runtime Service .. 7-1
Creating an Oracle Project .. 7-2
Creating a New Connection ... 7-3
Creating .NET Stored Functions and Procedures... 7-5
Deploying .NET Stored Functions and Procedures... 7-7
Running .NET Stored Functions and Procedures ... 7-11

8 Including Globalization Support

Introduction to Global Applications .. 8-1
Developing Global Applications with the .NET Framework.. 8-1
Presenting Data in the Correct User Local Convention .. 8-2

Oracle Date Formats .. 8-2
Oracle Number Formats.. 8-3
Oracle Linguistic Sorts... 8-4
Oracle Error Messages... 8-5

Synchronizing the .NET and Oracle Database Locale Environments ... 8-6
Client Globalization Support in Oracle Data Provider for .NET ... 8-7

Client Globalization Settings .. 8-7
Session Globalization Settings.. 8-8
Thread-Based Globalization Settings ... 8-12

Index

v

List of Examples

3–1 Adding Initial Programmatic Statements: C#... 3-5
3–2 Adding Initial Programmatic Statements: VB .. 3-5
3–3 Easy Connect Naming Method Syntax for Data Source .. 3-12
3–4 Creating an OracleConnection Object: C#.. 3-12
3–5 Creating an OracleConnection Object: VB ... 3-12
3–6 Building and Opening a Connection: C#.. 3-13
3–7 Building and Opening a Connection: VB ... 3-13
3–8 Disabling the Connect Button: C# ... 3-13
3–9 Disabling the Connect Button: VB... 3-14
3–10 Error Handling with Try-Catch-Finally Syntax: C#.. 3-15
3–11 Error Handling with Try-Catch-Finally Syntax: VB ... 3-15
3–12 Catching Common Database Error Messages: C#... 3-16
3–13 Catching Common Database Error Messages: VB .. 3-16
3–14 Closing and Disposing a Connection: C# ... 3-18
3–15 Closing and Disposing a Connection: VB .. 3-18
3–16 Closing and Disposing a Connection when Out of Scope: C# .. 3-18
4–1 Creating a SQL Statement String: C# ... 4-3
4–2 Creating a SQL Statement String: VB... 4-3
4–3 Using a Command to Query the Database: C#... 4-3
4–4 Using a Command to Query the Database: VB .. 4-3
4–5 Starting the OracleDataReader: C#... 4-4
4–6 Starting the OracleDataReader: VB .. 4-4
4–7 Retrieving a Value: C#.. 4-5
4–8 Retrieving a Value: VB ... 4-5
4–9 SELECT Statement without Bind Variables .. 4-6
4–10 SELECT Statement with Bind Variables .. 4-6
4–11 Using a Bind Variable: C#.. 4-6
4–12 Using a Bind Variable: VB ... 4-7
4–13 UPDATE Statement with Bind Variables .. 4-7
4–14 Querying for a Multiple Column Multiple Row Result .. 4-8
4–15 Looping Through a Multi-Row Query Result: C# ... 4-8
4–16 Looping Through a Multi-Row Query Result: VB... 4-8
4–17 Using DataSet Class: Declaring Variables: C# ... 4-10
4–18 Using DataSet Class: Declaring Variables: VB... 4-10
4–19 Disabling the Save Button: C#.. 4-11
4–20 Disabling the Save Button: VB ... 4-11
4–21 Binding Data to the Grid: C#.. 4-11
4–22 Binding Data to the Grid: VB ... 4-11
4–23 Updating DataSet: C# .. 4-12
4–24 Updating DataSet: VB ... 4-12
5–1 Generated SQL Form of the New Table .. 5-5
5–2 Creating a Table Index in SQL .. 5-6
5–3 Adding Foreign Key and Primary Key Constraints to a Table .. 5-8
5–4 Filling Data into the Form: C#.. 5-12
5–5 Filling Data into the Form: VB ... 5-12
5–6 The save_Click() Method: C# ... 5-13
5–7 The save_Click() Method: VB... 5-14
6–1 PL/SQL Code for Package HR_DATA.. 6-4
6–2 Assigning Reference Cursors .. 6-5
6–3 Changing OracleCommand to Use a Stored Procedure: C#... 6-8
6–4 Changing OracleCommand to Use a Stored Procedure: VB .. 6-8
6–5 Defining and Binding OracleParameter Objects for Stored Procedure: C#........................ 6-8
6–6 Defining and Binding OracleParameter Objects for Stored Procedure: VB 6-9
7–1 Adding getDepartmentno() Method Code: C#... 7-5

vi

7–2 Adding getDepartmentno() Method Code: VB .. 7-6
8–1 Setting NLS_TERRITORY and NLS_LANGUAGE Parameters: United States 8-2
8–2 Testing the NLS Date Format Settings... 8-2
8–3 Setting NLS_TERRITORY and NLS_LANGUAGE Parameters: Germany........................ 8-3
8–4 Setting NLS_TERRITORY Parameter: United States ... 8-3
8–5 Testing NLS Number Format Settings... 8-3
8–6 Setting NLS_TERRITORY Parameter: Germany.. 8-4
8–7 Setting NLS_SORT Parameter: Binary... 8-4
8–8 Testing NLS Sort Order Settings... 8-4
8–9 Setting NLS_SORT Parameter: Spanish... 8-5
8–10 Setting NLS_LANGUAGE Parameter: United States.. 8-5
8–11 Testing NLS Error Messages Settings .. 8-6
8–12 Setting NLS_LANGUAGE Parameter: French ... 8-6
8–13 How to Obtain Oracle Globalization Settings: C#.. 8-7
8–14 How to Obtain Oracle Globalization Settings: VB ... 8-8
8–15 Disabling the Change Button: C# ... 8-9
8–16 Disabling the Change Button: VB... 8-9
8–17 Creating an OracleGlobalization Object: C# .. 8-10
8–18 Creating an OracleGlobalization Object: VB.. 8-10
8–19 Retrieving the Globalization Session Information: C# ... 8-10
8–20 Retrieving the Globalization Session Information: VB... 8-10
8–21 Changing the Date Format and Updating the DataSet: C# ... 8-11
8–22 Changing the Date Format and Updating the DataSet: VB ... 8-11

vii

Preface

Audience
This document is intended as an introduction to application development with Oracle
Database Express Edition in Microsoft .NET. We assume that users of this book have
already read the Oracle Database Express Edition 2 Day DBA and the Oracle Database
Express Edition 2 Day Developer Guide, are familiar with basics of SQL and PL/SQL, and
know how to use Microsoft Visual Studio .NET.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Related Documents
For more information, see the following documents in Oracle Database XE
documentation set:

viii

■ Oracle Data Provider for .NET Developer's Guide

■ Oracle Database Extensions for .NET Developer's Guide

■ Oracle Database Express Edition 2 Day DBA

■ Oracle Database Express Edition 2 Day Developer Guide

■ Dynamic help, which is part of the Oracle Developer Tools for Visual Studio .NET

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction 1-1

1
Introduction

This chapter provides a brief description of Oracle technologies for the Microsoft .NET
Framework.

This chapter contains the following sections:

■ What is Microsoft .NET Framework

■ Introduction to Oracle Data Provider for .NET

■ Introduction to Oracle Developer Tools for Visual Studio .NET

■ Introduction to .NET Stored Procedures

This book is conceived as a quick start guide, to describe the key features of Oracle
Data Provider for .NET and Oracle Developer Tools for Visual Studio .NET. It leads
you through installation and configuration, shows how to build basic applications
using Oracle Data Provider for .NET and Oracle Developer Tools for Visual Studio
.NET, and how to create and use both PL/SQL and .NET stored procedures.

After working through this book, you will be ready to continue with more extensive
information available in the Oracle Database documentation library.

What is Microsoft .NET Framework
The Microsoft .NET Framework, .NET, is a multi-language environment for building,
deploying, and running XML Web services and applications. Its main components are:

Common Language Runtime
Common Language Runtime, or CLR, is a language-neutral development and
run-time environment that provides services that help manage running applications

Framework Class Libraries
The Framework Class Libraries, or FCL, provide a consistent, object-oriented library of
prepackaged functionality.

See Also:

■ Dynamic help available within Visual Studio .NET

■ Oracle Data Provider for .NET Developer's Guide

■ Oracle Database Extensions for .NET Developer's Guide

■ Oracle Database Express Edition 2 Day DBA

■ Oracle Database Express Edition 2 Day Developer Guide

Introduction to Oracle Data Provider for .NET

1-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Introduction to Oracle Data Provider for .NET
Oracle Data Provider for .NET (ODP.NET) provides data access from .NET client
applications to Oracle databases. ODP.NET data access is fast, efficient, and includes
access to other Oracle Database features.

Introduction to Oracle Developer Tools for Visual Studio .NET
Oracle Developer Tools for Visual Studio .NET is a set of application tools that are
integrated with the Visual Studio .NET environment. These tools provide graphical
user interface access to Oracle functionality, enable the user to perform a wide range of
application development tasks, and improve development productivity and ease of
use. Oracle Developer Tools support the programming and implementation of .NET
stored procedures using Visual Basic, C#, and other .NET languages.

Oracle Developer Tools include the Oracle Explorer for browsing the Oracle schema,
designers and wizards to create and alter schema objects, and the ability to drag and
drop schema objects onto a .NET form to automatically generate code. Additional
features include a PL/SQL editor with integrated context-sensitive dynamic help, and
an Oracle Data Window for performing routine database tasks like inserting and
updating data or testing stored procedures in the Visual Studio environment. For
maximum flexibility, there is also an Oracle Query Window for executing SQL
statements or PL/SQL scripts.

Introduction to .NET Stored Procedures
Oracle Database Extensions for .NET has the following features:

Common Language Runtime Host for Oracle Database
The Oracle Database on Windows hosts the Microsoft Common Language Runtime
(CLR). The integration of Oracle Database with CLR enables applications to run .NET
stored procedures or functions on Oracle Database with Microsoft Windows Server
2003, Windows 2000, and Windows XP.

Data Access for .NET Classes through Oracle Data Provider for .NET
Using Microsoft Visual Studio .NET, you can build .NET procedures or functions into
a .NET assembly. All .NET stored procedures and functions use ODP.NET to access
data.

Oracle Deployment Wizard for Visual Studio .NET
After building .NET procedures and functions into a .NET assembly, deploy them in
Oracle Database using the Oracle Deployment Wizard for .NET, a component of the
Oracle Developer Tools for Visual Studio .NET.

Installing Oracle Developer Tools 2-1

2
Installing Oracle Developer Tools

This chapter demonstrates the installation of Oracle Developer Tools.

This chapter contains the following sections:

■ What You Need

■ Installing Oracle Developer Tools

■ Unlocking the User Account

■ Uninstalling Oracle Developer Tools

What You Need

Sample Data
The sample data used in this book ships with Oracle Database XE, and installs out of
the box. The sample data that ships with the product is the HR component of the
Sample Schemas.

Oracle Database XE Server
You should install a copy of Oracle Database XE server on your computer. Oracle
Database XE server is a free Oracle database that is available for download from the
Oracle Database XE Web site, at:

http://www.oracle.com/technology/xe

It has a browser-based user interface, Oracle Application Express, for administering
the database, running scripts and queries, building Web-based applications, and more.

Note that the installation of Oracle Database XE includes Oracle Data Provider for
.NET, .NET Stored Procedures, OLE DB and ODBC. It does not include Oracle
Developer Tools, a set of application tools integrated with the Visual Studio .NET
development environment, which enable you to perform a wide range of application
development tasks.

Oracle Database XE Client
The Oracle Database XE client is installed as part of your Oracle Database XE server.
The Oracle Database XE client can also be installed by itself to access a remote server.
The client includes all the data access drivers that ship with Oracle Database XE, such
as Oracle Data Provider for .NET.

See Also: Oracle Database Sample Schemas for the HR data model and
table descriptions

Installing Oracle Developer Tools

2-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Visual Studio .NET 2003
Before proceeding with instructions in this book, you should have a complete
installation of the Visual Studio .NET 2003. If you wish to deploy an existing .NET
application, you only need the .NET Framework.

Installing Oracle Developer Tools
Before proceeding with these steps to install Oracle Developer Tools for Visual Studio
.NET, you must have a full installation of Oracle Database XE or the Oracle XE client
alone, and Visual Studio .NET:

1. In your Internet browser, navigate to the following software download location:

http://www.oracle.com/technology/software/tech/dotnet/odtxe_
index.html

2. Download the setup.exe file to your desktop.

3. Double-click the Setup icon.

The InstallShield Wizard will be launched.

4. Once the Oracle Developer Tools for Visual Studio .NET InstallShield Wizard
window appears, click Next.

5. On the Destination Folder window, accept the default installation location and
click Next.

Installing Oracle Developer Tools

Installing Oracle Developer Tools 2-3

6. On the Ready to Install the Program window, click Install.

7. The Installing Oracle Developer Tools for Visual Studio .NET (for Oracle Database
Express Edition) window appears.

8. Click Finish to complete the installation.

Unlocking the User Account

2-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Unlocking the User Account
The applications in this book connect to the Oracle Database XE as the hr user. You
may need to unlock the hr account while signed in as a user with database
administrator privileges. To use the Oracle Application Express, see Chapter 6,
"Managing Users and Security" in the Oracle Database Express Edition 2 Day DBA.

Uninstalling Oracle Developer Tools
If you need to remove Oracle Developer Tools from your computer, follow these steps:

1. Open the Windows Control Panel.

2. Double-click the Add or Remove Programs icon.

3. Select Oracle Developer Tools for Visual Studio .NET from the list of programs,
and click the Remove button.

4. On the Add or Remove Programs confirmation dialog box, click Yes.

Connecting to the Database 3-1

3
Connecting to the Database

This chapter explains how to connect to the Oracle database. You will be using the
application you will build in this chapter as a starting point for work in all subsequent
chapters.

This chapter contains the following sections:

■ Starting a New Project

■ Adding a Reference

■ Adding Initial Programmatic Statements

■ Adding Connection Elements

■ Using the Connection Object

■ Running the Application

■ Error Handling

■ Closing the Database Connection

Starting a New Project
Follow these steps to start a project in Visual Studio .NET 2003:

1. Click the New Project button. Alternatively, from the File menu, select New, and
then select Project.

A New Project dialog box appears.

Adding a Reference

3-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

2. On the left side of the New Project dialog box under Project Types, select Visual
C# Projects.

On the right side of the New Project dialog box under Templates, select Windows
Application.

For Name, enter HR_Connect_CS.

For Location, enter C:\HR\Visual Studio Projects.

Check the Create Directory for Solution box.

For New Solution Name, enter HRApplication. A solution can contain several
projects; when it contains only one project, you can use the same name for both.

Click OK.

If you wish to create project in Visual Basic, select Visual Basic Projects in
Project Types instead, and enter HR_Connect_VB under Name.

Adding a Reference
To connect the project to an Oracle database, you must add a reference to the
Oracle.DataAccess.dll, which contains the data provider.

1. If it is not already active, start the Solution Explorer; from the View menu, select
Solution Explorer.

Adding a Reference

Connecting to the Database 3-3

The Solution Explorer appears in the window.

2. In the Solution Explorer, select the References node, right click and select Add
Reference. Alternatively, select Add Reference from the Project menu.

The Add Reference dialog box appears.

3. Scroll down the list of references (under Component Name), and select
Oracle.DataAccess.dll.

Click the Select button.

Adding Initial Programmatic Statements

3-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Click the OK button to add the Oracle Data Provider for .NET to your project.

Note that the Solution Explorer window now shows Oracle.DataAccess in the
References folder.

Close the Solution Explorer.

Adding Initial Programmatic Statements
C# using statements and Visual Basic Imports statements allow you to refer to
database objects without using lengthy, fully qualified names. By convention, these
statements appear at or near the top of a code file, before the namespace or class
declaration.

1. With Form1 active, in View menu select Code, or use the F7 keyboard shortcut.

Adding Connection Elements

Connecting to the Database 3-5

2. Add the statements in Example 3–1 or Example 3–2 to the top of the file.

Example 3–1 Adding Initial Programmatic Statements: C#

using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Example 3–2 Adding Initial Programmatic Statements: VB

Imports Oracle.DataAccess.Client
Imports Oracle.DataAccess.Types

Save the changes using the Save icon near the top of the window. Alternatively,
from the File menu, select Save, or use the Ctrl+S keyboard shortcut.

Adding Connection Elements
To create a connection interface, you must add the necessary data entry elements to the
design form.

1. With Form1 active, change to design view: from the View menu, select Designer.
Alternatively, use the Shift+F7 keyboard shortcut. You may also wish to close the
Solution Explorer at this time.

Adding Connection Elements

3-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

2. From the View menu, select Toolbox.

A Toolbox window appears.

3. From the Toolbox, under Windows Forms, select a Label and drag it onto Form1.

Adding Connection Elements

Connecting to the Database 3-7

A new label, label1, appears on the form.

4. Repeat Step 3 twice, adding two more labels to the form (label2 and label3).

Close the Toolbox.

5. Right-click label1, and select Properties.

6. Change the Text property from label1 to User ID.

Adding Connection Elements

3-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

7. Repeat Steps 5 and 6 for the other two labels, changing the text to Password and
Data Source, respectively.

Close the Properties window.

8. From the View menu, select Toolbox. From the Toolbox, under Windows Forms,
select a Text Box and drag it onto Form1.

A new text box, textBox1, appears on the form.

9. Repeat Step 8 twice, adding two more text boxes (textBox2 and textBox3).

Close the Toolbox.

Adding Connection Elements

Connecting to the Database 3-9

10. Right-click textBox1, and select Properties.

11. In Properties, under Appearance, remove the text in the Text property.

12. In Properties, under Design, change the value of (Name) to userID.

Adding Connection Elements

3-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

13. Repeat Steps 10 through 12 twice, changing textBox2 into password and
textBox2 into dataSource.

For the password text box, under Behavior category, change the value of
PasswordChar property to *. This will hide the password when it is entered.

14. Close the Properties window.

15. From the View menu, select Toolbox. In the Toolbox, under Window Forms, select
Button and drag it onto Form1.

16. Right-click button1, and select Properties. The Properties window appears.

17. In the Properties window, change the Text property to Connect.

Using the Connection Object

Connecting to the Database 3-11

18. Under Design, change the (Name) property to connect.

19. Save the changes using the Ctrl+S keyboard shortcut.

20. Click the lightning icon (Events) at the top of the Properties window.

21. Ensure that the Click event is called connect_Click. Save changes.

Using the Connection Object
The OracleConnection object specifies the Oracle Database used by the application.

Using the Connection Object

3-12 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

1. The Easy Connect naming method enables application clients to connect to a
database without using any configuration files, simply by specifying the data
source attribute through syntax shown in Example 3–3:

Example 3–3 Easy Connect Naming Method Syntax for Data Source

user id=id;password=psswd;data source=host:port/service_name

Where:

■ id is the user id; we will use hr to access the HR schema.

■ psswd is the password; in this book, we use hr password for the HR schema.

■ host is the DNS name of the server machine to which the XE client will make
the connection, such as hr-server in the following example of valid
connections.

■ port [optional], if not specified, uses the default value of 1521, which is the
server port number from which the client connects to the database.

■ service_name [optional], if not specified, the EZ Connect Adapter for XE
client will connect to the default service on the host, preconfigured as XE in the
listener.ora file on the XE server.

Note that the default service is a new feature for Oracle Database XE. If you
used other Oracle client software, such as Instant Client for Oracle Database
Enterprise Edition, you must supply the service name.

Some valid connection strings include:

user id=hr;password=hr;data source=hr-server
user id=hr;password=hr;data source=hr-server:1521
user id=hr;password=hr;data source=hr-server:1521/XE

2. Example 3–4 and Example 3–5 show how to instantiate a database connection
string.

Example 3–4 Creating an OracleConnection Object: C#

Add this class variable after the GUI elements you created in the previous section.

private OracleConnection conn = new OracleConnection();

Example 3–5 Creating an OracleConnection Object: VB

Add this class variable after the line that starts as Inherits, near the top of the file, in
the Form1 class declaration.

Dim conn As New OracleConnection

Using the Connection Object

Connecting to the Database 3-13

3. Before a connection can be open, it must be built from user input for the User ID,
Password, and Data Source. Add the code in Example 3–6 or Example 3–7 to your
application. Note that the Open() method makes the actual connection. Add this
code into the connect_Click() method (for C#) or subroutine (VB).

Example 3–6 Building and Opening a Connection: C#

conn.ConnectionString = "User Id=" + userId.Text + ";Password=" + password.Text +
";Data Source=" + dataSource.Text + ";";

conn.Open();

Example 3–7 Building and Opening a Connection: VB

conn.ConnectionString = "User Id=" + userId.Text + ";Password=" + & _
password.Text + ";Data Source=" + dataSource.Text + ";"

conn.Open()

4. As part of good programming practice, add the code in Example 3–8 and
Example 3–9 after the Open() call of Form1. This will disable the Connect button
after a connection is successfully made.

Example 3–8 Disabling the Connect Button: C#

connect.Enabled = false;

Running the Application

3-14 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 3–9 Disabling the Connect Button: VB

connect.Enabled = false

5. Save the application.

Running the Application
The following steps show how to run the application created in the previous sections.

1. With Form1 active, from the Debug menu, select Start. Alternatively, use the F5
keyboard shortcut.

After the application is built successfully, the Form1 window appears.

2. Enter the user ID, the password, and the data source information, and click
Connect. If you are using a local database, located on the same machine as the
.NET client, you may leave the data source field blank.

3. Note that after a successful connection, the Connect button is disabled.

Error Handling
Oracle Data Provider for .NET contains three classes for error handling and support:

■ The OracleError class represents a warning or an error reported by Oracle.

Error Handling

Connecting to the Database 3-15

■ An OracleErrorCollection class represents a collection of all errors that are
thrown by the Oracle Data Provider for .NET. In fact, it is a simple ArrayList
that holds a list of OracleErrors.

■ The OracleException class represents an exception that is thrown when the
Oracle Data Provider for .NET encounters an error. Each OracleException
object contains at least one OracleError object in the Error property that
describes the error or warning.

1. The .NET languages use Try-Catch-Finally structured error handling. Change the
code in Form1, as indicated in Example 3–10 and Example 3–11, which are simple
implementations of the Try-Catch-Finally syntax.

Example 3–10 Error Handling with Try-Catch-Finally Syntax: C#

try
{
conn.Open();
connect.Enabled = false;

}

catch (Exception ex)
{
MessageBox.Show(ex.Message.ToString());

}

finally
{
 conn.Dispose();
}

Example 3–11 Error Handling with Try-Catch-Finally Syntax: VB

Try
conn.Open()
connect.Enabled = false

Catch ex As Exception
MessageBox.Show(ex.Message.ToString())

Finally
conn.Dispose()

End Try

2. Before testing this code, stop the database. From the Start button, select All
Programs, then select Oracle Database 10g Express Edition, and select Stop
Database.

3. The database will begin to shut down. You should see a Stop Database window.
Do not proceed with the following steps until it indicates that the
"OracleServiceXE service was stopped successfully".

Error Handling

3-16 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

4. Run the application again, as described in section "Running the Application" on
page 3-14, and attempt to connect. The error caught when the database is
unavailable appears as "ORA-12560: TNS:protocol adapter error".

While this approach will capture errors encountered when connecting to the
database, the message is not very informative for the end user.

5. Add another catch statement to trap common database errors and to display these
errors in a more user-friendly manner. Insert Example 3–12 or Example 3–13 code
before the generic catch statement.

Example 3–12 Catching Common Database Error Messages: C#

catch (OracleException ex)
{
switch (ex.Number)
{
case 1:
MessageBox.Show("Error attempting to insert duplicate data.");
break;

case 12560:
MessageBox.Show("The database is unavailable.");
break;

default:
MessageBox.Show("Database error: " + ex.Message.ToString());

break;
}

}

Example 3–13 Catching Common Database Error Messages: VB

Catch ex As OracleException ' catches only Oracle errors
Select Case ex.Number
Case 1
MessageBox.Show("Error attempting to insert duplicate data.")

Case 12560
MessageBox.Show("The database is unavailable.")

Case Else
MessageBox.Show("Database error: " + ex.Message.ToString())

End Select

Error Handling

Connecting to the Database 3-17

The Case statements should be ordered from most specific to most general. If
there are no OracleExceptions, the first Catch statement branch (Example 3–12
or Example 3–13) is skipped. The second Catch statement (in Example 3–10 or
Example 3–11) catches all other Exceptions.

6. Run the application again, as described in section "Running the Application" on
page 3-14. After implementing Example 3–12 or Example 3–13, the ORA-12560
error appears as "The database is unavailable.":

7. The Finally code block is always executed. If the connection object's Dispose()
method call is in the Finally code block, the database connection will always be
closed after the Try-Catch-Finally block is complete. Attempting to close a closed
database connection does not cause an error. If the database is unavailable, the
database connection is not opened, so the Finally code block attempts to close a
connection that does not exist, making these calls irrelevant. However, placing
Dispose() in the Finally code block guarantees that the connection is closed.

8. Before proceeding, restart the database. From the Start button, select All
Programs, then select Oracle Database 10g Express Edition, and select Start
Database.

9. The database services will begin to start. You should see a Start Database window.
Do not proceed with the following steps until it indicates that the
"OracleServiceXE service was started successfully".

Closing the Database Connection

3-18 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Closing the Database Connection
1. A connection Dispose() method closes and disposes the connection, as shown in

Example 3–14 and Example 3–15.

Example 3–14 Closing and Disposing a Connection: C#

conn.Dispose();

Example 3–15 Closing and Disposing a Connection: VB

conn.Dispose()

2. C# has an alternative syntax that disposes of a connection when it goes out of
scope, through the using keyword, as shown in Example 3–16.

Example 3–16 Closing and Disposing a Connection when Out of Scope: C#

using (OracleConnection conn = new OracleConnection())
{
conn.Open();
// application code
...

}

Building an Oracle Data Provider for .NET Application 4-1

4
Building an Oracle Data Provider for .NET

Application

This chapter explains how to use Oracle Data Provider for .NET.

This chapter contains the following sections:

■ Copying a Project

■ Using the Command Object

■ Retrieving Data: a Simple Query

■ Retrieving Data: Bind Variables

■ Retrieving Data: Multiple Values

■ Using the DataSet Class with Oracle Data Provider for .NET

■ Inserting, Deleting and Updating Data

Copying a Project
For this chapter, you need to use the application developed in Chapter 3, "Connecting
to the Database". Follow these steps to copy the project to a new directory.

1. Complete all steps in Chapter 3, "Connecting to the Database".

2. Using the Windows Explorer, navigate to the directory C:\HR\Visual Studio
Projects. Make a copy of the entire folder HR_Connect_CS (HR_Connect_VB
for Visual Basic), and rename the new folder HR_ODP_CS (HR_ODP_VB for Visual
Basic).

Copying a Project

4-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

3. Open the folder HR_ODP_CS. Launch the solution HR_Connect_CS by double
clicking on that icon.

4. In the Solution Explorer, right-click HR_Connect_CS(HR_Connect_VB for Visual
Basic), and select Rename. Change the name to HR_ODP_CS(HR_ODP_VB for
Visual Basic).

5. In the Solution Explorer, right-click Solution ’HR_Connect_CS’ (Solution ’HR_
Connect_VB’ for Visual Basic), and select Rename. Change the name to HR_ODP_
CS (HR_ODP_VB for Visual Basic).

6. Close the window. When prompted whether you want to save changes, click Yes.

7. Launch the HR_ODP_CS(or HR_ODP_VB) solution.

Using the Command Object

Building an Oracle Data Provider for .NET Application 4-3

Using the Command Object
The OracleCommand class specifies a SQL command, stored procedure, or table
name. It creates a database request, sends the request to the database, and returns the
result.

1. Create a string that represents the SQL query, as shown in Example 4–1 and
Example 4–2. Add this code to the body of the try statement.

Example 4–1 Creating a SQL Statement String: C#

string sql = "select department_name from departments where department_id = 10";

Example 4–2 Creating a SQL Statement String: VB

Dim sql As String = "select department_name from departments where department_id = 10"

2. Use the new sql variable to create the OracleCommand object, and set the its
CommandType property to run a text command.

Example 4–3 Using a Command to Query the Database: C#

OracleCommand cmd = new OracleCommand(sql, conn);
cmd.CommandType = CommandType.Text;

Example 4–4 Using a Command to Query the Database: VB

Dim cmd As New OracleCommand(sql, conn)
cmd.CommandType = CommandType.Text

Retrieving Data: a Simple Query

4-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Retrieving Data: a Simple Query
To retrieve data from the database, follow these steps:

1. Run the statement using the ExecuteReader() method of the OracleCommand
to return an OracleDataReader object, as shown in Example 4–5 and
Example 4–6.

Example 4–5 Starting the OracleDataReader: C#

OracleDataReader dr = cmd.ExecuteReader();
dr.Read();

Example 4–6 Starting the OracleDataReader: VB

Dim dr As OracleDataReader = cmd.ExecuteReader()
dr.Read()

2. Switch to Design view.

3. From the View menu, select Toolbox.

4. From the Toolbox, under Window forms, select a Label and drag it onto Form1.

5. From the View menu, select Properties Window.

6. In the Properties window, change its Text to Department.

7. From the Toolbox, under Window forms, select a ListBox and drag it onto Form 1.

8. In the Properties window, under Design, change the (Name) to departments.

Retrieving Data: Bind Variables

Building an Oracle Data Provider for .NET Application 4-5

9. Close the Toolbox and the Properties window.

10. Example 4–7 and Example 4–8 show accessor type methods for retrieving data
from the query result. There are typed accessors for returning .NET native data
types, and others for returning native Oracle data types. Zero-based ordinals are
passed to the accessors to specify which table column should be returned.

Example 4–7 Retrieving a Value: C#

departments.Items.Add(dr.GetString(0));

Example 4–8 Retrieving a Value: VB

departments.Items.Add(dr.GetString(0))

11. Run the application. After you connect, the departments list box shows
Administration, which is the correct name for department number 10.

Retrieving Data: Bind Variables
Bind variables are essentially placeholders in a SQL statement. When a database
receives a SQL statement, it checks if the statement has already been executed and
stored in memory. If the statement exists in memory, Oracle Database can reuse it and
skip the task of parsing and optimizing the statement. When using bind variables, you
make the statement reusable with different input values, improve query performance
in the server, eliminate the need for special handling of literal quotation marks in the
input, and protect against SQL injection attacks.

1. Example 4–9 shows a typical SELECT statement that does not use bind variables,
with the value 10 specified in the WHERE clause of the statement.

Retrieving Data: Bind Variables

4-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 4–9 SELECT Statement without Bind Variables

SELECT department_name
FROM departments
WHERE department_id = 10

2. Example 4–10 replaces the numerical value with a bind variable :department_
id. The bind variable identifier always begins with a single colon, :, in SQL
statements.

Example 4–10 SELECT Statement with Bind Variables

select department_name
from departments
where department_id = :department_id

3. Use the OracleParameter class to represent each bind variable in your .NET
code. The OracleParameterCollection class contains the
OracleParameter objects associated with the OracleCommand object for each
statement. The OracleCommand class passes your SQL statement to the database
and returns the results to your application.

You can bind variables by position or by name. The OracleCommand property
BindByName (which defaults to false) sets the mode.

When binding by position, you must use the Add() method to add the parameters
to the OracleParameterCollection in the same order as they appear in the
SQL statement or stored procedure.

If you want to bind by name, you may add the parameters to the collection in any
order; however, you must set the ParameterName property for the parameter
object to the same name as the bind variable identifier in the stored procedure
declaration.

4. In addition to the binding mode (by position or by name), the following properties
are typically set for each parameter object: Direction, OracleDbType, Size,
and Value.

■ Direction Bind variables may be used as output, input, or input/output
parameters. The Direction property indicates the direction of each
parameter. The default value of the Direction property is Input.

■ OracleDbType property indicates whether the parameter is a number, a
date, a VARCHAR2, and so on.

■ Size indicates the maximum size of the data that the parameter will hold for
parameters with a variable length data type, like VARCHAR2.

■ Value contains the parameter value either before statement execution (for
input parameters), after execution (for output parameters), or both before and
after (for input/output parameters).

5. Example 4–11 and Example 4–12 tie together these concepts and use a bind
variable in a SELECT statement. Note that Direction property uses the default
value Input, and the Size property is not set. Since the object is an input
parameter, you don't need to set the Size property because the data provider can
determine the size from the value. The changed code is in bold typeface.

Example 4–11 Using a Bind Variable: C#

string sql = "select department_name from departments where department_id = " +
":department_id";

Retrieving Data: Multiple Values

Building an Oracle Data Provider for .NET Application 4-7

OracleCommand cmd = new OracleCommand(sql, conn);
cmd.CommandType = CommandType.Text;
OracleParameter p_department_id = new OracleParameter();
p_department_id.OracleDbType = OracleDbType.Decimal;
p_department_id.Value = 20;
cmd.Parameters.Add(p_department_id);

OracleDataReader dr = cmd.ExecuteReader();
dr.Read();

departments.Items.Add(dr.GetString(0));

Example 4–12 Using a Bind Variable: VB

string sql = "select department_name from departments where department_id=" + _ &
":department_id"

Dim cmd As OracleCommand = New OracleCommand(sql, conn)
cmd.CommandType = CommandType.Text
Dim p_department_id as OracleParameter = new OracleParameter()
p_department_id.OracleDbType = OracleDbType.Decimal
p_department_id.Value = 20
cmd.Parameters.Add(p_department_id)

Dim dr As OracleDataReader = cmd.ExecuteReader()
dr.Read()

departments.Items.Add(dr.GetString(0))

6. Run the application. After you connect, the departments list box shows
Marketing, which is the correct name for department number 20.

7. Note that bind variables can also be used with UPDATE, INSERT, and DELETE
statements, and also with stored procedures. Example 4–13 shows how to use bind
variables in an UPDATE statement; "Inserting, Deleting and Updating Data" on
page 4-13 provides more details.

Example 4–13 UPDATE Statement with Bind Variables

UPDATE departments
SET department_name = :department_name
WHERE department_id = :department_id

Retrieving Data: Multiple Values
1. A DataReader object can retrieve values for multiple columns and multiple rows.

Consider a multiple column, multiple row query in Example 4–14:

Using the DataSet Class with Oracle Data Provider for .NET

4-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 4–14 Querying for a Multiple Column Multiple Row Result

SELECT department_id, department_name, manager_id, location_id
FROM departments
WHERE department_id < 100

2. A looping construct is needed to process multiple rows from the DataReader
object. Also, a control that can display multiple rows is very useful. Because
OracleDataReader is a forward-only, read-only cursor, it cannot be bound to an
updatable or backward scrollable control such as Windows Forms DataGrid
control. A DataReader is, however, compatible with a ListBox control, as
shown in Example 4–15 and Example 4–16. The original code is from earlier
examples in this chapter, and the changed code is in bold typeface.

Example 4–15 Looping Through a Multi-Row Query Result: C#

string sql = "select department_name from departments where department_id < 100";
OracleCommand cmd = new OracleCommand(sql, conn);
cmd.CommandType = CommandType.Text;

OracleDataReader dr = cmd.ExecuteReader();

while (dr.Read())
{
departments.Items.Add(dr.GetString(0));

}

Example 4–16 Looping Through a Multi-Row Query Result: VB

string sql = "select department_name from departments where department_id < 100"
Dim cmd As OracleCommand = New OracleCommand(sql, conn)
cmd.CommandType = CommandType.Text
Dim dr As OracleDataReader = cmd.ExecuteReader()

While (dr.Read())
departments.Items.Add(dr.GetString(0))

End While

3. Run the application. After you connect, the departments list box shows
Administration, Marketing, Purchasing, and so on, which is the correct list
of department names where department number is less than 100.

Using the DataSet Class with Oracle Data Provider for .NET
The DataSet class encapsulates a memory-resident representation of data that
provides a consistent relational programming model for multiple data sources. It

Using the DataSet Class with Oracle Data Provider for .NET

Building an Oracle Data Provider for .NET Application 4-9

consists of one or more tables that store relational or XML data. Unlike
OracleDataReader, a DataSet is updatable and backward scrollable.

1. Follow the steps in section "Copying a Project" on page 4-1 to create a new copy of
the HR_Connect_CS project (HR_Connect_VB for Visual Basic). Name the new
project HR_DataSet_ODP_CS (HR_DataSet_ODP_VB for Visual Basic).

2. Switch to design view (use Shift+F7 keyboard shortcut).

3. From the View menu, select Toolbox.

4. From the Toolbox, under Windows Forms, select a Data Grid and drag it onto
Form1.

A data grid appears. Expand the data grid, and close the Toolbox.

5. Right-click the data grid graphical element, and select Properties. In the properties
list, under Design, change (Name) to departments.

Close the Properties window.

6. From the View menu, select Toolbox.

7. From the Toolbox, under Windows Forms, drag and drop a Button onto Form1.

8. Right-click the new button, and select Properties.

9. In the Properties window, under Appearance, change Text to Save.

Using the DataSet Class with Oracle Data Provider for .NET

4-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Under Design, change (Name) to save.

Click the lightning icon (events), and then click the highlighted Click event. From
the drop-down window, select save_Click.

Close the Properties window. Switch to code view using the F7 keyboard shortcut.

10. Add variable declarations in Example 4–17 and Example 4–18 to the class
variables.

Example 4–17 Using DataSet Class: Declaring Variables: C#

private OracleCommand cmd;
private OracleDataAdapter da;
private OracleCommandBuilder cb;
private DataSet ds;

Example 4–18 Using DataSet Class: Declaring Variables: VB

Private cmd As OracleCommand
Private da As OracleDataAdapter
Private cb As OracleCommandBuilder
Private ds As DataSet

11. Within the Form() method, add the code shown in Example 4–19 and
Example 4–20.

Using the DataSet Class with Oracle Data Provider for .NET

Building an Oracle Data Provider for .NET Application 4-11

Example 4–19 Disabling the Save Button: C#

save.Enabled = false;

Example 4–20 Disabling the Save Button: VB

save.Enabled = false

12. Within the connect_Click() method try block, as shown in Example 4–21 and
Example 4–22,

■ query the database

■ fill the DataSet with the result of the command query

■ bind the DataSet to the data grid

■ enable the Save button

The changed code is in bold typeface.

Example 4–21 Binding Data to the Grid: C#

conn.Open();
connect.Enabled = false;

string sql = "select * from departments where department_id < 60";
cmd = new OracleCommand(sql, conn);
cmd.CommandType = CommandType.Text;

da = new OracleDataAdapter(cmd);
cb = new OracleCommandBuilder(da);
ds = new DataSet();

da.Fill(ds);

departments.DataSource = ds.Tables[0];

save.Enabled = true;

Example 4–22 Binding Data to the Grid: VB

conn.Open()
connect.Enabled = false

string sql = "select * from departments where department_id < 60"
cmd = new OracleCommand(sql, conn)
cmd.CommandType = CommandType.Text;

Using the DataSet Class with Oracle Data Provider for .NET

4-12 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

da = new OracleDataAdapter(cmd)
cb = new OracleCommandBuilder(da)
ds = new DataSet()

da.Fill(ds)

departments.DataSource = ds.Tables[0]

save.Enabled = true

13. The finally block in the connect_Click() method contains code for
disposing the connection, a conn.Dispose() call. Move this call to the top of the
general Dispose() method. This is necessary to keep the connection open after
the query result returns, so that data changes made by the end user are propagated
to the database.

14. Your code also contains a new save_Click() method created in Step 9. Add
there the code for updating the data, shown in Example 4–23 and Example 4–24.

Example 4–23 Updating DataSet: C#

da.Update(ds.Tables[0]);

Example 4–24 Updating DataSet: VB

da.Update(ds.Tables[0])

15. Save Form1 using Ctr+S keyboard shortcut.

16. Run the application using the F5 keyboard shortcut.

Inserting, Deleting and Updating Data

Building an Oracle Data Provider for .NET Application 4-13

17. After you successfully connect to the database, the data grid is populated with the
results of the query.

Inserting, Deleting and Updating Data
1. At the bottom of the data grid, enter a new record at the * prompt:

■ For DEPARTMENT_ID, enter 5

■ For DEPARTMENT_NAME, enter Community Outreach

■ Leave MANAGER_ID as null

■ For LOCATION_ID, enter 1700

Click the Save button.

2. To check if the new record is saved, close the application, and start it again using
the F5 keyboard shortcut.

3. Connect to the database, and note that the new department is now part of the
DEPARTMENTS table.

4. Change the name of the department to Community Volunteers, and click the
Save button.

Inserting, Deleting and Updating Data

4-14 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

5. Repeat Step 2, connect to the database, and note that the name of the department
is changed.

6. Select the entire record you just changed (click the cursor icon before it), and delete
it using the Delete key. Click the Save button.

7. Repeat Step 2, connect to the database, and note that the name of the new record is
no longer part of the DEPARTMENTS table.

8. Close the application.

Using Oracle Developer Tools for Visual Studio .NET 5-1

5
Using Oracle Developer Tools for Visual

Studio .NET

This chapter explains how to use Oracle Developer Tools.

This chapter contains the following sections:

■ Connecting to the Oracle Database

■ Creating a Table and Its Columns

■ Creating a Table Index

■ Adding Table Constraints

■ Adding Data to a Table

■ Generating Code Automatically

■ Enabling Database Updates

Connecting to the Oracle Database
To connect to an Oracle Database from Visual Studio .NET, follow these steps:

1. Follow instructions in Section "Starting a New Project" on page 3-1. Name the C#
project HR_ODT_CS. If starting a VB project, name it HR_ODT_VB.

2. From the View menu, select Oracle Explorer.

3. In Oracle Explorer, right-click Data Connections. From the menu, select Add
Connection.

The application opens an Add Connection window.

Connecting to the Oracle Database

5-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

4. In the Add Connection window, enter the following information:

Data source name: Use the Local Database if you are connecting to a database
on the same machine. Otherwise, use the alias of the remote database instance.

Select the Use a specific user name and password option.

For User name, enter hr.

For Password, enter hr, or the password that was set when unlocking and setting
up the hr account.

To save the password for future sessions, check the Save password box.

Ensure that Role is set to Default. This refers to the default roles that have been
granted to the user hr.

The Connection name should be generated automatically from the Data source
name and the User name values.

Click the Apply Filters tab, and check that the HR schema is in the Displayed
schemas column. Only the schema objects (tables, views, and so on) from the
schemas selected in the Apply Filters tab are displayed when you expand the
schema category nodes in the data connection.

Click the Connection Details tab, and then click Test connection.

The test should succeed. Click OK.

Creating a Table and Its Columns

Using Oracle Developer Tools for Visual Studio .NET 5-3

If the test fails, it may be due to one or more of the following issues that you must
address before proceeding with further steps:

■ The database is not started.

■ The database connectivity is not properly configured.

■ You do not have the correct user name, password, and role.

5. Oracle Explorer should now contain the hr.(Local Database) connection.
Expand the connection to show the contents of the hr schema. You should see
Tables, Views, Procedures, Functions, and so on.

Creating a Table and Its Columns
1. In Oracle Explorer, right-click Tables and select New Relational Table.

A table design window appears.

2. In design view, enter DEPENDENTS for Table name.

Creating a Table and Its Columns

5-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

3. Add the LASTNAME column. Click the Add button under the Columns area. Under
Column Properties, enter Name LASTNAME, Data Type VARCHAR2, and Size 30.
Leave all other properties at their default values.

Creating a Table Index

Using Oracle Developer Tools for Visual Studio .NET 5-5

4. Add the FIRSTNAME column. Click the Add button under the Columns area.
Under Column Properties, enter Name FIRSTNAME, Data Type VARCHAR2, and
Size 30. Leave all other properties at their default values.

5. Add the BIRTHDATE column. Click the Add button under the Columns area.
Under Column Properties, enter Name BIRTHDATE, Data Type DATE, and leave
all other properties at their default values.

6. Add the RELATIONSHIP column. Click the Add button under the Columns area.
Under Column Properties, enter Name RELATIONSHIP, Data Type VARCHAR2,
and Size 20. Leave all other properties at their default values.

7. Add the EMPLOYEEID column. Click the Add button under the Columns area.
Under Column Properties, enter Name EMPLOYEEID, Data Type NUMBER, deselect
Allow null, enter Precision 6 and Scale 0.

8. Add the DEPENDENTID column. Click the Add button under the Columns area.
Under Column Properties, enter Name DEPENDENTID, Data Type NUMBER,
deselect Allow null check box, enter Precision 4 and Scale 0.

9. Click Preview SQL. The SQL statement for constructing the table, as shown in
Example 5–1, appears in the Preview SQL window.

Example 5–1 Generated SQL Form of the New Table

CREATE TABLE "HR"."DEPENDENTS" ("LASTNAME" VARCHAR2(30) NULL,
 "FIRSTNAME" VARCHAR2(30) NULL,"BIRTHDATE" DATE NULL,
 "RELATIONSHIP" VARCHAR2(20) NULL,"EMPLOYEEID" NUMBER(6,0) NOT NULL,
 "DEPENDENTID" NUMBER(4,0) NOT NULL);

Click OK to close the Preview SQL window.

10. In the table design view, click Save.

Creating a Table Index
Now you must create an index for the DEPENDENTS table.

1. In the design view, click the Indexes tab.

2. Click the Add button under the Indexes area. Under Index properties, enter Name
DEPENDENTS_INDEX, and leave all other properties in their default state.

Adding Table Constraints

5-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

3. In the Index properties area, click Add.

4. Under Index keys, from the Key column, select DEPENDENTID from the
drop-down list.

5. Click Preview SQL. A Preview SQL window appears, displaying the SQL
statement that constructs the index, as shown in Example 5–2.

Example 5–2 Creating a Table Index in SQL

CREATE INDEX "HR"."DEPENDENTS_INDEX" ON "HR"."DEPENDENTS" ("DEPENDENTID");

Click OK to close the Preview SQL window.

6. In the table design view, click Save.

Adding Table Constraints
Now you must add constraints to the new table.

Adding Table Constraints

Using Oracle Developer Tools for Visual Studio .NET 5-7

1. To create a foreign key to the EMPLOYEES table, click the Constraints tab. Note
that depending on your configuration, there may already be default check
constraints in the list.

Under the Constraints area, click Add.

Under Constraint Properties, enter Name EMPLOYEES_FK, select Type Foreign
Key from the drop-down list, select Table EMPLOYEES and Constraint EMP_EMP_
ID_PK.

Under Association, select EMPLOYEE_ID as Referenced Column and
EMPLOYEEID as Local Column.

Leave all other properties at their default values.

2. To create a primary key for the new table, DEPENDENTS, under the Constraints
area click Add.

Under Constraint Properties, enter Name DEPENDENTS_PK and select Type
Primary Key from the drop-down list.

Under Constraint Properties, click Add.

Adding Data to a Table

5-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Under Primary Key Columns, select DEPENDENTID. Leave all other properties at
their default values.

3. Click Preview SQL. A Preview SQL window appears. Example 5–3 shows the
code generated for constraints on table DEPENDENTS. Note that addition of both
constraints is an ALTER TABLE command, because the constraints change the
definitions of columns DEPENDENTID and EMPLOYEEID.

Example 5–3 Adding Foreign Key and Primary Key Constraints to a Table

ALTER TABLE "HR"."DEPENDENTS" ADD (CONSTRAINT "EMPLOYEES_FK" FOREIGN KEY
 ("EMPLOYEEID") REFERENCES "HR"."EMPLOYEES" (EMPLOYEE_ID) ENABLE VALIDATE);
ALTER TABLE "HR"."DEPENDENTS" ADD (CONSTRAINT "DEPENDENTS_PK" PRIMARY KEY
 ("DEPENDENTID") ENABLE VALIDATE);

Click OK to close the Preview SQL window.

4. In the table design view, click Save.

Notice that if you expand the DEPENDENTS table in the Oracle Explorer, all the
columns, constraints and indexes of the table are visible.

Adding Data to a Table
You must now add data to the new DEPENDENTS table.

1. In Oracle Explorer, right-click the DEPENDENTS table and select Retrieve Data.

Generating Code Automatically

Using Oracle Developer Tools for Visual Studio .NET 5-9

A table grid for DEPENDENTS appears in design view.

2. Enter the four records listed in Table 5–1 into the table grid.

Note that the data is automatically saved as you move between rows.

Generating Code Automatically
To explore the content of table DEPARTMENTS, we will build a form that uses a simple
table query.

Table 5–1 New Data for the DEPENDENTS Table

LASTNAME FIRSTNAME BIRTHDATE RELATIONSHIP EMPLOYEEID DEPENDENTID

Martin Mary 06-MAY-80 daughter 104 1

Littlefield Sue 12-JUL-88 daughter 130 2

Griffiths David 02-APR-97 son 104 3

Young Aaron 31-AUG-99 son 111 4

Generating Code Automatically

5-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

1. Switch to the Form1 design view (Shift+F7 keyboard shortcut).

2. In Oracle Explorer, expand Data Connections, expand hr. (Local Database), and
finally expand the Tables component.

Using your mouse, select the DEPARTMENTS table. Drag and drop the table onto
Form1 in the Designer window.

A Microsoft Development Environment pop-up window will ask if you wish to
save the connection password in the generated code. While it is not advisable to
save connection password within your form in clear text for security reasons, we
will do it in this demonstration. Click Yes.

You will notice that this action creates an OracleConnection object,
departmentsOracleConnection1, and an OracleDataAdapter object,
departmentsOracleDataAdapter1. Both appear under the Design window.

These objects represent automatically generated code for Form1.

3. Right-click the departmentsOracleDataAdapter1, and select Generate
DataSet.

Generating Code Automatically

Using Oracle Developer Tools for Visual Studio .NET 5-11

4. The object departments11 is now added to your Design window.

5. From the Toolbox, under Window Forms, select DataGrid and drag it onto Form1.

Enlarge both Form1 and the DataGrid.

6. Right-click the DataGrid and select Properties.

7. In the Properties window, under Data, set the DataSource parameter to
departments11.Departments from the drop-down list.

Close the Properties window.

The DataGrid now contains the column headings from the table DEPARTMENTS.

Generating Code Automatically

5-12 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

8. Switch to code view by using the F7 keyboard shortcut.

9. Immediately after the InitializeComponent(); command, add the code in
Example 5–4 or Example 5–5.

Example 5–4 Filling Data into the Form: C#

this.departmentsOracleDataAdapter1.Fill(this.departments11.Departments);

Example 5–5 Filling Data into the Form: VB

Me.departmentsOracleDataAdapter1.Fill(Me.departments11.Departments)

10. Run the application (use the F5 keyboard shortcut).

Enabling Database Updates

Using Oracle Developer Tools for Visual Studio .NET 5-13

You may need to increase the width of the columns to see all the data.

11. You can navigate across data returned by the application by clicking the mouse
down the data set; the current record will be marked by the cursor.

You can also sort the records, either in ascending or descending order, on any of
the columns, by clicking on the column heading (notice the direction indicator in
the DEPARTMENT_NAME column).

12. Close the application.

Enabling Database Updates
1. From Section "Using the DataSet Class with Oracle Data Provider for .NET" on

page 4-8, follow Steps 6 through 9 to create a Save button.

2. Double-click Save.

The code view appears, with focus on the new and empty save_Click()
method.

3. Change the code of the save_Click() method to bind the table update event to
the button, as shown in Example 5–6 and Example 5–7.

Example 5–6 The save_Click() Method: C#

private void save_Click(object sender, System.EventArgs e)
{

Enabling Database Updates

5-14 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

 departmentsOracleDataAdapter1.Update(departments11);
}

Example 5–7 The save_Click() Method: VB

Private Sub save_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Save.Click
departmentsOracleDataAdapter1.Update(departments11)

End Sub

4. Run the application (F5 keyboard shortcut).

Your Form1 application window should appear.

5. To use the application, follow the instructions in Section "Inserting, Deleting and
Updating Data" on page 4-13.

Using PL/SQL Stored Procedures and REF Cursors 6-1

6
Using PL/SQL Stored Procedures and REF

Cursors

This chapter contains the following sections:

■ Introduction to PL/SQL Packages and Package Bodies

■ Introduction to PL/SQL Stored Procedures

■ Introduction to Ref Cursors

■ Creating a PL/SQL Stored Procedure that Uses Ref Cursors

■ Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET

Introduction to PL/SQL Packages and Package Bodies
A PL/SQL package stores related items as a single logical entity. A package is
composed of two distinct pieces:

■ The package specification defines what is contained in the package; it is
analogous to a header file in a language such as C++. The specification defines all
public items. The specification is the published interface to a package.

■ The package body contains the code for the procedures and functions defined in
the specification, and the code for private procedures and functions that are not
declared in the specification. This private code is only "visible" within the package
body.

The package specification and body are stored as separate objects in the data
dictionary and can be seen in the user_source view. The specification is stored as
the PACKAGE type, and the body is stored as the PACKAGE BODY type.

While it is possible to have a specification without a body, as when declaring a set of
public constants, it is not possible to have a body with no specification.

Introduction to PL/SQL Stored Procedures
A stored procedure is a named set of PL/SQL statements designed to perform an
action. Stored functions have a single return value parameter. Unlike functions,
procedures may or may not return values.

Introduction to Ref Cursors
Ref cursors are one of the most powerful, flexible, and scalable methods for returning
query results from an Oracle Database to a client application.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

6-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

A ref cursor is a PL/SQL datatype whose value is the address of the memory location
of a query work area on the database server. A query work area can be thought of as
the result set, or a row set, on the server; it is the location where the results of a query
are stored in server memory. In essence, a ref cursor is a handle to a result set on the
server. A ref cursor is represented through the OracleRefCursor ODP.NET class.

Ref cursors have the following characteristics:

1. A ref cursor refers to server memory. The memory address represented by a ref
cursor "lives" on the database server, not on the client machine. Therefore, the
client’s connection to the database must be in place during the lifetime of the ref
cursor. If the underlying connection to the database is closed, the ref cursor will
become inaccessible to the client.

2. A ref cursor involves an additional database round trip. Because a ref cursor is a
pointer to memory on the server that is returned to the client, the actual data
contained in the ref cursor is not initially returned to the client. The client must
request the data contained in the ref cursor after it has opened the ref cursor. Note
that data will not be retrieved until the user attempts to read it.

3. A ref cursor is not updatable. The result set represented by the ref cursor is
read-only. You cannot update the database by using a ref cursor.

4. A ref cursor is not backward scrollable. The data represented by the ref cursor is
accessed in a forward-only, serial manner. You cannot position a record pointer
inside the ref cursor to point to random records in the result set.

5. A ref cursor is a PL/SQL datatype. You create and return a ref cursor inside a
PL/SQL code block.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors
1. Follow the instructions in Section "Copying a Project" on page 4-1 to create a new

copy of the HR_DataSet_ODP_CS project. Name the new project HR_
StoredProcedure_CS. If using VB, name it HR_StoredProcedure_VB.

2. In Oracle Explorer, right-click Packages and select New Package.

The New Package window appears.

3. In the New Package window, change the Package Name to HR_DATA.

4. Click Add.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

Using PL/SQL Stored Procedures and REF Cursors 6-3

 The Add Method window appears.

5. In the Add Method window, enter Method Name GETCURSORS, and change
Method Type to Procedure.

6. Under Parameters, click Add.

In the Add Method window, under Parameter Details, enter DEPARTMENTID for
Name, IN for Direction, and NUMBER for Data Type.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

6-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

7. Under Parameters, click Add.

Enter a second parameter under Parameter Details, with EMPLOYEESCUR for
Name, OUT for Direction, and SYS_REFCURSOR for Data Type.

8. Under Parameters, click Add.

Enter a third parameter under Parameter Details, with DEPENDENTSCUR for
Name, OUT for Direction, and SYS_REFCURSOR for Data Type.

9. Click OK.

The New Package window appears.

10. In the New Package window, click Preview SQL to see the SQL code created.

A Preview SQL window appears, containing code in Example 6–1. Note that this
example has been abbreviated by removing most of the comments.

Example 6–1 PL/SQL Code for Package HR_DATA

CREATE PACKAGE "HR"."HR_DATA" IS

 -- Declare types, variables, constants, exceptions, cursors,
 -- and subprograms that can be referenced from outside the package.

 PROCEDURE "GETCURSORS" (
 "DEPARTMENTID" IN NUMBER,
 "EMPLOYEESCUR" OUT SYS_REFCURSOR,
 "DEPENDENTSCUR" OUT SYS_REFCURSOR);

END "HR_DATA";

CREATE PACKAGE BODY "HR"."HR_DATA" IS

 -- Implement subprograms, initialize variables declared in package
 -- specification.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

Using PL/SQL Stored Procedures and REF Cursors 6-5

 -- Make private declarations of types and items, that are not accessible
 -- outside the package

 PROCEDURE "GETCURSORS" (
 "DEPARTMENTID" IN NUMBER,
 "EMPLOYEESCUR" OUT SYS_REFCURSOR,
 "DEPENDENTSCUR" OUT SYS_REFCURSOR) IS

 -- Declare constants and variables in this section.

 BEGIN -- executable part starts here

 NULL;

 -- EXCEPTION -- exception-handling part starts here

 END "GETCURSORS";

END "HR_DATA";

Click OK to close the window.

11. In the New Package window, click OK.

Note that a new package, HR_DATA, now appears in Oracle Explorer.

12. In Oracle Explorer, right-click package HR_DATA, and select Edit Package Body.

The code for the package is displayed.

13. Scroll down to the body of the GETCURSORS procedure, and replace NULL; with
code in Example 6–2:

Example 6–2 Assigning Reference Cursors

OPEN EMPLOYEESCUR FOR SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID=DEPARTMENTID;
OPEN DEPENDENTSCUR FOR SELECT * FROM DEPENDENTS;

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

6-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

14. Save the changes to the package; use the Ctrl+S keyboard shortcut.

15. To run the stored procedure, in Oracle Explorer, expand package HR_DATA.

 Right-click the GETCURSORS method, and select Run.

A Run Procedure window appears.

16. In the Run Procedure window, enter a Value of 60 for DEPARTMENTID. Click OK.

17. The Output window appears, showing that the run was successful. Close the
Output Window.

18. In the design view, the following message appears:

Procedure <HR.HR_DATA.GETCURSORS@hr.database> was run successfully.

Under this message, note two new parameters (together with DEPARTENTID):
EMPLOYEESCUR and DEPENDENTSCUR.

Creating a PL/SQL Stored Procedure that Uses Ref Cursors

Using PL/SQL Stored Procedures and REF Cursors 6-7

19. In the design view, select the Value column entry for EMPLOYEESCUR.

The Parameter Details area appears, showing the result of the EMPLOYEESCUR for
DEPARTMENTID 60.

20. In the design view, select the Value column entry for DEPENDENTSCUR.

The Parameter Details area appears, showing the result of the DEPENDENTSCUR.

Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET

6-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET
1. With Form1 selected, switch to code view using the F7 keyboard shortcut.

2. In the try block of the connect_Click() method, replace the two command
assignment lines, starting with cmd = New OracleCommand... with code in
Example 6–3 or Example 6–4.

Example 6–3 Changing OracleCommand to Use a Stored Procedure: C#

cmd = new OracleCommand("HR_DATA.GETCURSORS", conn);
cmd.CommandType = CommandType.StoredProcedure;

Example 6–4 Changing OracleCommand to Use a Stored Procedure: VB

cmd = new OracleCommand("HR_DATA.GETCURSORS", conn)
cmd.CommandType = CommandType.StoredProcedure

3. Under the code added in Step 2, add definitions and bindings for the three
parameters of the GETCURSORS stored procedure as OracleParameter objects,
calling them dept_id, emp_cur and dnt_cur.

Example 6–5 Defining and Binding OracleParameter Objects for Stored Procedure: C#

OracleParameter dept_id = new OracleParameter();
dept_id.OracleDbType = OracleDbType.Decimal;
dept_id.Direction = ParameterDirection.Input;
dept_id.Value = 60;
cmd.Parameters.Add(dept_id);

OracleParameter emp_cur = new OracleParameter();
emp_cur.OracleDbType = OracleDbType.RefCursor;
emp_cur.Direction = ParameterDirection.Output;
cmd.Parameters.Add(emp_cur);

Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET

Using PL/SQL Stored Procedures and REF Cursors 6-9

OracleParameter dnt_cur = new OracleParameter();
dnt_cur.OracleDbType = OracleDbType.RefCursor;
dnt_cur.Direction = ParameterDirection.Output;
cmd.Parameters.Add(dnt_cur);

Example 6–6 Defining and Binding OracleParameter Objects for Stored Procedure: VB

Dim dept_id As OracleParameter = New OracleParameter
dept_id.OracleDbType = OracleDbType.Decimal
dept_id.Direction = ParameterDirection.Input
dept_id.Value = 60
cmd.Parameters.Add(dept_id)

Dim emp_cur As OracleParameter = New OracleParameter
emp_cur.OracleDbType = OracleDbType.RefCursor
emp_cur.Direction = ParameterDirection.Output
cmd.Parameters.Add(emp_cur)

Dim dnt_cur As OracleParameter = New OracleParameter
dnt_cur.OracleDbType = OracleDbType.RefCursor
dnt_cur.Direction = ParameterDirection.Output
cmd.Parameters.Add(dnt_cur)

4. Run the application using the F7 keyboard shortcut.

A Form1 window appears.

5. In the Form1 window, enter the connection information, and click Connect.

6. In the DataGrid object, scroll horizontally to note that the last column,
DEPARTMENT_ID, is equal to 60.

Note that the DataGrid contains the first result set from the stored procedure,
which matches the query of the EMPLOYEES table.

7. Close the application.

Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET

6-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Deploying .NET Stored Procedures 7-1

7
Deploying .NET Stored Procedures

This chapter discusses how to use and deploy .NET stored procedures in your
application. You can use custom stored procedures in your ODP.NET code in the same
manner as any other stored procedure.

This chapter contains the following sections:

■ Starting the Common Language Runtime Service

■ Creating an Oracle Project

■ Creating a New Connection

■ Creating .NET Stored Functions and Procedures

■ Deploying .NET Stored Functions and Procedures

■ Running .NET Stored Functions and Procedures

Starting the Common Language Runtime Service
To use .NET Stored Procedures, you must first start the XE Common Language
Runtime agent, represented by the OracleXEClrAgent service. This service may not
start by default. Note that it is located on the Oracle XE database server, not on the
client.

1. From the Start menu, select All Programs, then select Administrative Tools, and
finally, select Services.

2. In the Services window, click the Extended tab.

Scroll down the list of Services, and select OracleXEClrAgent.

Click the Start hyperlink.

Creating an Oracle Project

7-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

3. The Service Control window shows that the OracleXEClrAgent is starting.

4. When the Service Control window closes, note that the status of the
OracleXEClrAgent is changed to Started.

Creating an Oracle Project
Follow these steps to start a new Oracle project in Visual Studio .NET 2003:

Creating a New Connection

Deploying .NET Stored Procedures 7-3

1. From the File menu, select New, and then select Project.

A New Project dialog box appears.

2. On the left side of the New Project dialog box under Project Types, select Visual
C# Projects.

On the right side of the New Project dialog box under Templates, select Oracle
Project.

For Name, enter HR_DeployStored_CS.

For Location, enter C:\HR\Visual Studio Projects.

Click OK.

If you wish to create project in Visual Basic, under Project Types select Visual
Basic Projects instead, and enter HR_DeployStored_VB under Name.

Creating a New Connection
1. In Oracle Explorer, right-click Data Connections. From the menu, select Add

Connection.

Creating a New Connection

7-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

An Add Connection window appears.

2. In the Add Connection window, enter the following information:

Data source name: Use the Local Database if you are connecting to a database
on the same machine. Otherwise, use the alias of the remote database instance.

Select the Use a specific user name and password option.

For User name, enter hr.

For Password, enter hr, or the password that was set when unlocking and setting
up the hr account.

To save the password for future sessions, check the Save password box. While it is
not advisable to save connection password within your application in clear text for
security reasons, we will do it in this demonstration.

Ensure that the Role is set to Default. This refers to the default roles that have
been granted to the user hr.

The Connection name should be generated automatically from the Data source
name and the User name values.

Click the Apply Filters tab and check that the HR schema is in the Displayed
schemas column. Only the schema objects (tables, views, and so on) from the
schemas selected in the Apply Filters tab are displayed when you expand the
schema category nodes in the data connection.

Click the Connection Details tab, and click Test connection.

Creating .NET Stored Functions and Procedures

Deploying .NET Stored Procedures 7-5

The test should succeed. Click OK.

If the test fails, it may be due to one or more of the following issues that you must
address before proceeding with further steps:

■ The database is not started.

■ The database connectivity is not properly configured.

■ You do not have the correct user name, password, and role.

3. Click OK to close the Add Connection window.

The Oracle Explorer window should now contain the hr.(Local Database)
connection.

Creating .NET Stored Functions and Procedures
1. Select Class1.cs tab in your project.

2. Paste the getDepartmentno() method into the Class1 declaration, as shown in
Example 7–1 and Example 7–2.

Example 7–1 Adding getDepartmentno() Method Code: C#

public static int getDepartmentno(int employee_id)
{
int department_id = 0;

// Get a connection to the db
OracleConnection conn = new OracleConnection();
conn.ConnectionString = "context connection=true";
conn.Open();

// Create and execute a command
OracleCommand cmd = conn.CreateCommand();
cmd.CommandText = "select department_id from employees where employee_id = :1";
cmd.Parameters.Add(":1", OracleDbType.Int32, employee_id,
ParameterDirection.Input);
OracleDataReader rdr = cmd.ExecuteReader();

while(rdr.Read())
department_id=rdr.GetInt32(0);

rdr.Close();
cmd.Dispose();

// Return the employee's department number
return department_id;

}

Creating .NET Stored Functions and Procedures

7-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 7–2 Adding getDepartmentno() Method Code: VB

Public Shared Function getDepartmentno(ByVal employee_id As Integer) As Integer
Dim department_id As Integer = 0

' Get a connection to the db
Dim conn As OracleConnection = New OracleConnection
conn.ConnectionString = "context connection=true"
conn.Open()

' Create and execute a command
Dim cmd As OracleCommand = conn.CreateCommand()
cmd.CommandText = "select department_id from employees where employee_id = :1"
cmd.Parameters.Add(":1", OracleDbType.Int32, employee_id,
ParameterDirection.Input)

Dim rdr As OracleDataReader = cmd.ExecuteReader()

While rdr.Read()
department_id = rdr.GetInt32(0)

End While

rdr.Close()
cmd.Dispose()

' Return the employee's department number
getDepartmentno = department_id

End Function

3. Using the Ctrl+S keyboard shortcut, save Class1.

4. From the Build menu, select Build Solution.

Deploying .NET Stored Functions and Procedures

Deploying .NET Stored Procedures 7-7

5. An Output window shows that the build was successful. Close the Output
window.

Deploying .NET Stored Functions and Procedures
Follow these steps to deploy a .NET Stored Procedure:

1. From the Build menu, select Deploy Solution.

An Oracle Deployment Wizard for .NET window appears.

2. In the Oracle Deployment Wizard for .NET window, click Next.

3. On the Configure Your Connection window, click New Connection.

Deploying .NET Stored Functions and Procedures

7-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

4. You must now establish a connection with SYSDBA privileges.

■ For the Data Source Name, use (Local Database).

■ For Username, enter sys.

■ For Password, enter the current sys password.

■ Click Test Connection.

To use the Oracle Application Express to set the sys account password, see
Chapter 6, "Managing Users and Security" in the Oracle Database Express Edition 2
Day DBA.

The test result window appears.

5. Click OK to close the test result window.

6. In the Add Connection window, click OK.

7. In the Oracle Deployment Wizard for .NET window, click Next.

8. On the Specify your deployment option window, ensure that Copy assembly and
generate stored procedures is selected, and click Next.

Deploying .NET Stored Functions and Procedures

Deploying .NET Stored Procedures 7-9

9. On the Specify an assembly and library name window, accept the defaults and
click Next.

10. On the Specify copy options window, accept the defaults and click Next.

Deploying .NET Stored Functions and Procedures

7-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

11. On the Specify methods and security details window, under Available methods,
expand HR_DeployStored_CS (or HR_DeployStored_VB), then expand Class1,
and select the getDepartmentno() method.

Under Method Details, select HR from the Schema drop-down list.

Click Next.

Running .NET Stored Functions and Procedures

Deploying .NET Stored Procedures 7-11

12. On the Summary window, click Finish.

Running .NET Stored Functions and Procedures
Follow these steps to run the .NET Stored procedure you created in Section "Deploying
.NET Stored Functions and Procedures":

1. In Oracle Explorer, expand the hr.(LocalDatabase) connection. Expand
Functions. Right-click GETDEPARTMENTNO and select Run.

The Run Function window appears.

2. In the Run Function window, enter a Value of 100 for EMPLOYEE_ID.

Click OK.

Running .NET Stored Functions and Procedures

7-12 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

3. Note that the return value for department is 90.

Including Globalization Support 8-1

8
Including Globalization Support

This chapter discusses global application development with Oracle Database XE in
.NET. It addresses the basic tasks associated with developing applications that are
ready for global deployment, such as developing locale awareness and presenting data
with cultural conventions of the user's locale. It also discusses globalization support
features available in Oracle Data Provider for .NET.

This chapter contains the following sections:

■ Introduction to Global Applications

■ Developing Global Applications with the .NET Framework

■ Presenting Data in the Correct User Local Convention

■ Synchronizing the .NET and Oracle Database Locale Environments

■ Client Globalization Support in Oracle Data Provider for .NET

Introduction to Global Applications
Building a global- ready application that supports different locales requires good
development practices. A locale refers to a national language and the region in which
the language is spoken. The application itself must be aware of the user's locale
preference and be able to present content following the cultural convention expected
by the user. It is important to present data with appropriate locale characteristics, such
as using the correct date and number formats. Oracle Database Express is fully
internationalized to provide a global platform for developing and deploying global
applications.

Developing Global Applications with the .NET Framework
When planning a global-ready application, you have to consider two main tasks:

■ Globalization is the process of designing applications that can adapt to different
cultures.

See Also:

■ Chapter 8, "Oracle Data Provider for .NET Globalization Classes"
in Oracle Data Provider for .NET Developer's Guide

■ Chapter 8, "Working in a Global Environment" in the Oracle
Database Express Edition 2 Day Developer Guide

■ Microsoft .NET Internationalization Internet site,
http://www.microsoft.com/globaldev/getwr/

Presenting Data in the Correct User Local Convention

8-2 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

■ Localization is the process of translating resources for a specific culture.

In the .NET Framework, the System.Globalization namespace contains classes
that define information related to culture, such as language, country and region,
calendars, format patterns for dates, currency, and numbers, and the sort order for
strings. These classes simplify the process of developing a global-ready application, so
that passing a CultureInfo object that represents the user's culture to methods in
System.Globalization namespace initiates the correct set of rules and data.

The .NET Framework also supports the creation and localization of resources, and
offers a model for packaging and deploying them. Localizing the application's
resources for specific cultures supports development of translated versions of the
application. The .NET Framework's base class library provides several classes in the
System.Resources namespace for building and manipulating application resources.

Presenting Data in the Correct User Local Convention
Data in the application must be presented in a way that meets the user' expectations,
or its meaning can be misinterpreted. For example, '12/11/05' implies 'December 11,
2005' in the United States and 'November 12, 2005' in the United Kingdom. Similar
confusion exists for number and monetary formats. For example, the period (.) is a
decimal separator in the United States and a thousand separator throughout Europe.

Different languages have their own sorting rules: some languages are collated
according to the letter sequence in the alphabet, others according to stroke count in the
letter, still others are ordered by the pronunciation of the words. Presenting data that is
not sorted according to the linguistic sequence to which the user is accustomed can
make searching for information difficult and time-consuming.

Depending on the application logic and the volume of data retrieved from the
database, it may be more appropriate to format the data at the database level rather
than at the application level. Oracle Database XE offers many features that refine the
presentation of data when the user locale preference is known.

Oracle Date Formats
There are three different date presentation formats in Oracle Database XE: standard,
short, and long. The following steps illustrate the difference between the short and
long date formats for United States and Germany.

1. Using SQLPlus, connect to the database and enter the command in Example 8–1 at
the SQL prompt.

Example 8–1 Setting NLS_TERRITORY and NLS_LANGUAGE Parameters: United States

SQL> ALTER SESSION SET NLS_TERRITORY=america NLS_LANGUAGE=american;

This message appears: Session altered.

2. At the SQL prompt, enter the query in Example 8–2.

Example 8–2 Testing the NLS Date Format Settings

SQL> SELECT employee_id "ID",
2 SUBSTR (first_name,1,1)||'. '||last_name "Name",
3 TO_CHAR (hire_date, 'DS') "Short Hire",
4 TO_CHAR (hire_date, 'DL') "Long Hire Date"
5 FROM employees
6 WHERE employee_id < 105;

Presenting Data in the Correct User Local Convention

Including Globalization Support 8-3

3. The result of the query returns in the American format specified in Step 1.

4. Enter the command in Example 8–3 at the SQL prompt.

Example 8–3 Setting NLS_TERRITORY and NLS_LANGUAGE Parameters: Germany

SQL> ALTER SESSION SET NLS_TERRITORY=germany NLS_LANGUAGE=german;

This message appears: Session wurde geändert.

5. At the SQL prompt, enter the query in Example 8–2.

6. The result of the query returns in the German format specified in Step 4.

Oracle Number Formats
There are also differences in the decimal character and group separator. The following
steps illustrate these difference between United States and Germany.

1. Enter the command in Example 8–4 at the SQL prompt.

Example 8–4 Setting NLS_TERRITORY Parameter: United States

SQL> ALTER SESSION SET NLS_TERRITORY=america;

This message appears: Session altered.

2. At the SQL prompt, enter the query in Example 8–5.

Example 8–5 Testing NLS Number Format Settings

SQL> SELECT employee_id "ID",
2 SUBSTR (first_name,1,1)||'. '||last_name "Name",
3 TO_CHAR (salary, '99G999D99') "Salary"
5 FROM employees

Presenting Data in the Correct User Local Convention

8-4 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

6 WHERE employee_id < 105;

3. The result of the query returns in the American format specified in Step 1.

4. Enter the command in Example 8–6 at the SQL prompt.

Example 8–6 Setting NLS_TERRITORY Parameter: Germany

SQL> ALTER SESSION SET NLS_TERRITORY=germany;

This message appears: Session altered.

5. At the SQL prompt, enter the query in Example 8–5.

6. The result of the query returns in the German format specified in Step 4.

Oracle Linguistic Sorts
Spain traditionally treats ch, ll, and ñ as letters of their own, ordered after c, l and n,
respectively. The following steps illustrate the effect of using a Spanish sort against the
employee names Chen and Chung.

1. Enter the command in Example 8–7 at the SQL prompt.

Example 8–7 Setting NLS_SORT Parameter: Binary

SQL> ALTER SESSION SET NLS_SORT=binary;

This message appears: Session altered.

2. At the SQL prompt, enter the query in Example 8–8.

Example 8–8 Testing NLS Sort Order Settings

SQL> SELECT employee_id "ID",
2 last_name "Name",

Presenting Data in the Correct User Local Convention

Including Globalization Support 8-5

3 FROM employees
4 WHERE employee_id < 105;

3. The result of the query returns in the binary sort specified in Step 1.

4. Enter the command in Example 8–9 at the SQL prompt.

Example 8–9 Setting NLS_SORT Parameter: Spanish

SQL> ALTER SESSION SET NLS_SORT=spanish_m;

This message appears: Session altered.

5. At the SQL prompt, enter the query in Example 8–8.

6. The result of the query returns in the Spanish sort specified in Step 4.

Oracle Error Messages
The NLS_LANGUAGE parameter also controls the language of the database error
messages. Setting this parameter prior to submitting a SQL query ensures the return of
local language-specific error messages, as shown in these steps:

1. Enter the command in Example 8–10 at the SQL prompt.

Example 8–10 Setting NLS_LANGUAGE Parameter: United States

SQL> ALTER SESSION SET NLS_LANGUAGE=american;

This message appears: Session altered.

Synchronizing the .NET and Oracle Database Locale Environments

8-6 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

2. At the SQL prompt, enter the query in Example 8–11.

Example 8–11 Testing NLS Error Messages Settings

SQL> SELECT * FROM managers;

3. The result of the query return the error message in the language specified in Step
1.

4. Enter the command in Example 8–9 at the SQL prompt.

Example 8–12 Setting NLS_LANGUAGE Parameter: French

SQL> ALTER SESSION SET NLS_LANGUAGE=french;

This message appears: Session modifée.

5. At the SQL prompt, enter the query in Example 8–11.

6. The result of the query returns the error message in the language specified in Step
4.

Synchronizing the .NET and Oracle Database Locale Environments
When you are developing global applications across different programming
environments, ensure that the user locale settings are always synchronized. Otherwise,
the application may present conflicting culture-sensitive information. For example, a
.NET application must map the application user's Culture ID to the correct NLS_
LANGUAGE and NLS_TERRITORY parameter values before performing SQL operations.

Table shows some of the more common locales, as defined in .NET and Oracle
environments.

Table 8–1 Common NLS_LANGUAGE and NLS_TERRITORY Parameters

Culture Culture ID NLS_LANGUAGE NLS_TERRITORY

Chinese (P.R.C.) zh-CN SIMPLIFIED CHINESE CHINA

Client Globalization Support in Oracle Data Provider for .NET

Including Globalization Support 8-7

Client Globalization Support in Oracle Data Provider for .NET
Oracle Data Provider for .NET enables applications to manipulate culture-sensitive
data, such as ensuring proper string format, date, time, monetary, numeric, sort order,
and calendar support using culture conventions defined in the Oracle Database XE.
The default globalization settings are determined by the client's NLS_LANG parameter,
which is defined in the Windows Registry of the local computer. When the
OracleConnection call Open() establishes a connection, it implicitly opens a
session with globalization parameters specified by the value of the NLS_LANG
parameter.

Client Globalization Settings
Client globalization settings derive from the Oracle globalization setting, NLS_LANG,
in the Windows Registry of the local computer. The client globalization parameter
settings are read-only and remain constant throughout the lifetime of the application.

Example 8–13 and Example 8–14 illustrate how these settings can be obtained by
calling the OracleGlobalization.GetClientInfo() static method. The
properties of the OracleGlobalization object provide the Oracle globalization
value settings.

Example 8–13 How to Obtain Oracle Globalization Settings: C#

using System;
using Oracle.DataAccess.Client;

class ClientGlobalizationSample
{
 static void Main()
 {
 OracleGlobalization ClientGlob = OracleGlobalization.GetClientInfo();
 Console.WriteLine("Client machine language: " + ClientGlob.Language);
 Console.WriteLine("Client characterset: " + ClientGlob.ClientCharacterSet);
 }
}

Chinese (Taiwan) zh-TW TRADITIONAL CHINESE TAIWAN

English (U.S.A.) en-US AMERICAN AMERICA

English (U.K.) en-GB ENGLISH UNITED KINGDOM

French (Canada) fr-CA CANADIAN FRENCH CANADA

French (France) fr-FR FRENCH FRANCE

German de GERMAN GERMANY

Italian it ITALIAN ITALY

Japanese ja JAPANESE JAPAN

Korean ko KOREAN KOREA

Portuguese (Brazil) pt-BR BRAZILIAN PORTUGUESE BRAZIL

Portuguese pt PORTUGUESE PORTUGAL

Spanish es SPANISH SPAIN

Table 8–1 (Cont.) Common NLS_LANGUAGE and NLS_TERRITORY Parameters

Culture Culture ID NLS_LANGUAGE NLS_TERRITORY

Client Globalization Support in Oracle Data Provider for .NET

8-8 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 8–14 How to Obtain Oracle Globalization Settings: VB

Imports System
Imports Oracle.DataAccess.Client

Class ClientGlobalizationSample
Shared Sub Main()
Dim ClientGlob As OracleGlobalization = OracleGlobalization.GetClientInfo()
Console.WriteLine("Client machine language: " + ClientGlob.Language)
Console.WriteLine("Client characterset: " + ClientGlob.ClientCharacterSet)

End Sub
End Class

Session Globalization Settings
Session globalization parameters are initially identical to client globalization settings,
but they can be updated. To obtain session globalization settings, first establish a
connection to the database, and then call the GetSessionInfo() method of an
OracleConnection object. The properties of the resulting OracleGlobalization
object represent the globalization settings of the session.

When the OracleConnection object establishes a connection, it implicitly opens a
session in which globalization parameters are initialized with values specified by the
client's Oracle Globalization (or NLS) Registry settings. The globalization settings of a
session can change during its lifetime.

To change globalization session settings programmatically, follow these steps:

1. Follow the steps in Section "Copying a Project" on page 4-1 to create a new copy of
the HR_DataSet_ODP_CS (or HR_DataSet_ODP_VB) project. Name the new
project HR_Globalization_CS (or HR_Globalization_VB).

2. Open Form1 of the HR_Globalization_CS (or HR_Globalization_VB)
project, and switch to design view (use the Shift+F7 keyboard shortcut).

3. From the View menu, select Toolbox.

4. From the Toolbox, under Windows Forms, drag and drop a Button onto Form1.

5. Right-click the new Button, select Properties. A Properties window appears.

6. In the Properties window, set these properties:

■ Under Appearance, change Text to Change Date Format.

■ Under Design, change (Name) to date.

■ Click the lightning icon (events), and then click the highlighted Click event.
From the drop-down window, select date_Click.

Close the Properties window.

Client Globalization Support in Oracle Data Provider for .NET

Including Globalization Support 8-9

7. Switch to code view using the F7 keyboard shortcut.

8. Within the Form1() method, add the code shown in Example 8–15 and
Example 8–16.

Example 8–15 Disabling the Change Button: C#

date.Enabled = false;

Example 8–16 Disabling the Change Button: VB

date.Enabled = false

9. In the Form1 class declarations, add the code shown in Example 8–17 or
Example 8–18.

Client Globalization Support in Oracle Data Provider for .NET

8-10 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

Example 8–17 Creating an OracleGlobalization Object: C#

private OracleGlobalization si;

Example 8–18 Creating an OracleGlobalization Object: VB

private si As OracleGlobalization

10. Within the connect_Click() method try block, as shown in Example 8–19 and
Example 8–20,

■ retrieve the value of the OracleGlobalization object

■ retrieve data from the EMPLOYEES table (note the new query)

■ enable the Change Date Format button

The changed code is in bold typeface.

Example 8–19 Retrieving the Globalization Session Information: C#

conn.Open();
connect.Enabled = false;

si = conn.GetSessionInfo();

string sql = "select employee_id, first_name, last_name, TO_CHAR(hire_date)

from employees where employee_id < 105";
OracleCommand cmd = new OracleCommand(sql, conn);
cmd.CommandType = CommandType.Text;

da = new OracleDataAdapter(cmd);
cb = new OracleCommandBuilder(da);
ds = new DataSet();

da.Fill(ds);

departments.DataSource = ds.Tables[0];

save.Enabled = true;
date.Enabled = true;

Example 8–20 Retrieving the Globalization Session Information: VB

conn.Open()
connect.Enabled = false

string sql = "select employee_id, first_name, last_name, TO_CHAR(hire date)

from employees where employee_id < 105"

Client Globalization Support in Oracle Data Provider for .NET

Including Globalization Support 8-11

OracleCommand cmd = new OracleCommand(sql, conn)
cmd.CommandType = CommandType.Text;

da = new OracleDataAdapter(cmd)
cb = new OracleCommandBuilder(da)
ds = new DataSet()

da.Fill(ds)

departments.DataSource = ds.Tables[0]

save.Enabled = true
date.Enabled = true

11. Your code also contains a new date_Click() method created in Step 6. Add to
the method the code for changing the date format from the standard DD-MON-RR
to YYYY-MM-DD , and for updating the DataSet, shown in Example 8–21 and
Example 8–22. Note that the ds.Clear() call clears the old results before posting
the changed data.

Example 8–21 Changing the Date Format and Updating the DataSet: C#

si.DateFormat = "YYYY-MM-DD";
conn.SetSessionInfo(si);

ds.Clear();
da.Fill(ds);
departments.DataSource = ds.Tables[0];

Example 8–22 Changing the Date Format and Updating the DataSet: VB

si.DateFormat = "YYYY-MM-DD"
conn.SetSessionInfo(si)

ds.Clear()
da.Fill(ds)
departments.DataSource = ds.Tables[0]

12. Save Form1 using Ctr+S keyboard shortcut.

13. Run the application using the F5 keyboard shortcut.

14. After you successfully connect to the database, the data grid is populated with the
results of the query. Click Change Date Format.

Client Globalization Support in Oracle Data Provider for .NET

8-12 Oracle Database Express Edition 2 Day Plus .NET Developer Guide

15. Note that the date format is changed from the original DD-MON-RR to
YYYY-MM-DD.

16. Close the application.

Thread-Based Globalization Settings
Thread-based globalization parameter settings are specific to each thread. Initially,
these settings are identical to the client globalization parameters, but they can be
changed programmatically. When converting ODP.NET Types are to and from strings,
use the thread-based globalization parameters, if applicable.

Thread-based globalization parameter settings are obtained by calling the
GetThreadInfo() static method of the OracleGlobalization class. A call to
SetThreadInfo() static method sets the thread's globalization settings.

ODP.NET classes and structures rely solely on the OracleGlobalization settings
when manipulating culture-sensitive data. They do not use .NET thread culture
information. If the application uses only .NET types, OracleGlobalization
settings have no effect. However, when conversions are made between ODP.NET
Types and .NET Types, OracleGlobalization settings are used where applicable.

Note: Changes to the System.Threading.Thread.
CurrentThread.CurrentCulture property do not impact the
OracleGlobalization settings of the thread or the session. The
reverse is also true.

Index-1

Index

A
account

unlocking, 5-2, 7-4
Add Connection window, 5-1, 7-4, 7-8
Add Method window, 6-3
add reference, 3-3
Add Reference dialog, 3-3
Add() method, 4-6
adding

reference, 3-2
adding reference, 3-2
alias

database, 5-2
ALTER TABLE, 5-8
application

result, 4-6
run, 3-14, 3-16, 3-17, 4-5, 4-8, 4-12, 5-12, 5-14, 6-9

apply filters, 5-2, 7-4

B
bind variable, 4-5

definition, 4-5
identifier, 4-6
name, 4-6
position, 4-6
update, 4-7

BindByName property, 4-6
binding data, 4-11
build

deploy solution, 7-7
success, 7-7

Build menu, 7-6, 7-7
build solution, 7-6
building connection, 3-13
button, 3-10, 4-9

disable, 3-13, 3-14

C
C

HRVisual Studio Projects directory, 4-1
C# statement

using, 3-4
Case statement, 3-17

class variable, 4-10
Click event, 3-11
click event, 4-10
client globalization settings, 8-7
close connection, 3-18
CLR, 1-1
Code view, 3-4
code view, 5-12, 5-13, 6-8
column

add, 5-4
data type, 5-4
name, 5-4
property, 5-4
size, 5-4

command
database query, 4-3
definition, 4-3
query, 4-3
using, 4-3

CommandType property, 4-3
Common Language Runtime

definition, 1-1
Common Language Runtime Host for Oracle

Database, 1-2
Common Language Runtime Service

starting, 7-1
Configure Your Connection window, 7-7
connect, 5-1
connect project, 3-2
connect_Click() method, 3-11, 3-13, 4-11, 4-12, 6-8
Connection, 3-18
connection

add, 5-1, 7-3, 7-8
building, 3-13
close, 3-18
creating, 7-3
data, 5-1, 5-10, 7-3
data source name, 5-2, 7-4, 7-8
detail, 5-2
details, 7-4
dispose, 4-12
hr. (Local Database), 5-10
hr.(Local Database), 5-3, 7-5
hr.(LocalDatabase), 7-11
name, 5-2, 7-4
new, 7-3, 7-7

Index-2

opening, 3-13
password, 5-2, 7-4, 7-8
role, 5-2
saving password, 5-10
specific user name and password, 5-2
SYSDBA, 7-8
table, 5-10
test, 5-2, 7-4, 7-8
test failure, 5-3, 7-5
test success, 5-2
user name, 5-2, 7-4
user name and password, 7-4
username, 7-8

connection element, 3-5
constraint

add, 5-7, 5-8
constraint properties, 5-7
Constraints tab, 5-7
copy project, 4-1
CREATE TABLE, 5-5
cultural convention, 8-1
cultural conventions, 8-1
culture conventions, 8-7
Culture ID parameter, 8-6
Culture parameter, 8-6
CultureInfo, 8-2
culture-sensitive data, 8-7
CurrentCulture parameter, 8-12

D
data

navigate, 5-13
sort, 5-13

Data Access for .NET Classes, 1-2
data connection, 5-1, 5-10
data entry element, 3-5
Data Grid, 4-9
data grid, 4-11, 4-13, 6-9
data provider, 3-2

Oracle Data Provider for .NET, 1-2
data source name, 5-2, 7-4
database error message, 3-16
DataGrid, 4-8
DataGrid class, 5-11, 6-9

filling, 5-12
properties, 5-11

DataReader class, 4-7, 4-8
DataSet class, 4-8, 4-9, 4-10, 4-11, 4-12

definition, 4-8
generate, 5-10
updating, 8-11

DataSource, 5-11
DataSource parameter, 5-11
date

format, 8-2
date format, 8-2

change, 8-11
long, 8-2
settings, 8-2

short, 8-2
standard, 8-2

Debug menu, 3-14
default role, 5-2, 7-4
DELETE statement, 4-7
deleting data, 4-13
design property, 4-4
Design view, 3-5, 4-4, 4-9, 5-3, 5-5, 5-10, 6-6, 6-7
Design window, 5-10, 5-11
Designer window, 5-10
dialog

New Project, 7-3
new project, 3-1, 3-2

Direction property, 4-6
disable button, 3-13, 3-14
display schema, 5-2, 7-4
Dispose() method, 3-17, 3-18

E
Easy Connect

syntax, 3-12
edit package body, 6-5
error handling, 3-14

Try-Catch-Finally, 3-15
type

exceptions with ODP.NET, 3-15
ODP.NET, 3-15
Oracle, 3-14

error message, 8-5
Error property, 3-15
event

click, 3-11
Events icon, 3-11
Exception class, 3-17
ExecuteReader() method, 4-4
EZ Connect Adapter, 3-12

F
FCL, 1-1
File menu, 3-1, 3-5, 7-3
finally block, 4-12
foreign key, 5-7
Framework Class Libraries

definition, 1-1

G
GetClientInfo() method, 8-7
GETCURSORS method, 6-3
GETCURSORS procedure, 6-5
GETDEPARTMENTNO procedure, 7-11
getDepartmentno(), 7-5, 7-6
getDepartmentno() method, 7-5, 7-10
GetSessionInfo() method, 8-8
GetThreadInfo() method, 8-12
global application

deployment, 8-1
development, 8-1
.NET framework, 8-1

Index-3

planning, 8-1
global applications

introduction, 8-1
globalization

definition, 8-1
globalization session information, 8-10
globalization support, 8-7

client, 8-7
ODP for .NET, 8-7

globalization support features, 8-1

H
handling errors, 3-14
host, 3-12
HR, 4-1, 4-2
HR_Connect_CS folder, 4-1, 4-2
HR_Connect_CS project, 3-2, 4-9
HR_Connect_CS solution, 4-2
HR_Connect_VB folder, 4-1
HR_Connect_VB project, 3-2, 4-9
HR_Connect_VB solution, 4-2
HR_DATA package, 6-4, 6-5, 6-6
HR_DataSet_ODP_CS project, 4-9, 6-2
HR_DataSet_ODP_VB project, 4-9
HR_DeployStored_CS project, 7-3, 7-10
HR_DeployStored_VB project, 7-3, 7-10
HR_Globalization_CS project, 8-8
HR_Globalization_VB project, 8-8
HR_ODP_CS folder, 4-1, 4-2
HR_ODP_CS solution, 4-2
HR_ODP_VB folder, 4-1
HR_ODP_VB solution, 4-2
HR_ODT_CS project, 5-1
HR_ODT_VB project, 5-1
HR_StoredProcedure_CS project, 6-2
HR_StoredProcedure_VB project, 6-2

I
Imports statement, 3-4
index

add, 5-5
add key, 5-6
creating, 5-5
key, 5-6
name, 5-5
property, 5-5

Indexes tab, 5-5
initial programmatic statement, 3-4

C#, 3-5
VB, 3-5

InitializeComponent() method, 5-12
INSERT statement, 4-7
inserting data, 4-13
InstallShield wizard, 2-2

L
Label, 3-6
label, 4-4

language
sorting rules, 8-2

lightning icon, 3-11
linguistic sort, 8-4
list box, 4-5
ListBox, 4-4, 4-8
literal quotation marks, 4-5
local user convention, 8-2
locale

definition, 8-1
synchronizing, 8-6

locale awareness, 8-1
locale characteristics

definition, 8-1
localization

definition, 8-2
resources, 8-2

LTER TABLE, 5-8

M
memory address, 6-2
memory location, 6-2
menu

Build, 7-6
build, 7-7
Debug, 3-14
File, 3-5, 7-3
file, 3-1
Project, 3-3
View, 3-2, 3-4, 3-5, 3-6, 3-8, 3-10, 4-4, 4-9, 5-1

method
add, 6-2
Add(), 4-6
connect_Click(), 3-13, 6-8
detail, 7-10
Dispose(), 3-17, 3-18
GETCURSORS, 6-3
getDepartmentno(), 7-10
name, 6-3
Open(), 3-13
parameter, 6-3
save_Click(), 5-13
type, 6-3

method parameter
add, 6-3
binding, 6-8
data type, 6-3
definition, 6-8
detail, 6-3
direction, 6-3
name, 6-3

Microsoft Development Environment window, 5-10
Microsoft internationalization

URL, 8-1
Microsoft .NET Framework

definition, 1-1

N
Name property, 3-9, 3-11, 4-9

Index-4

name property, 4-4
navigate

data, 5-13
records, 5-13

.NET assembly, 1-2

.NET framework, 8-2

.NET languages, 1-2

.NET stored functions and procedures
creating, 7-5
deploying, 7-7
running, 7-11

.NET Stored Procedures, 2-1

.NET stored procedures, 1-2
deployment, 7-1

.NET Types, 8-12
New Package window, 6-2, 6-4, 6-5
new project, 3-1
New Project dialog, 3-1, 3-2, 7-3
NLS error messages setting, 8-6
NLS number format

settings, 8-3
NLS Registry, 8-8
NLS sort order, 8-4
NLS_LANG, 8-7
NLS_LANG parameter, 8-7
NLS_LANGUAGE parameter, 8-2, 8-3, 8-5, 8-6

common, 8-6
NLS_SORT parameter, 8-4, 8-5
NLS_TERRITORY parameter, 8-2, 8-3, 8-4, 8-6

common, 8-6
number format, 8-3

O
ODBC, 2-1
ODP.NET

definition, 1-2
globalization, 8-1

ODP.NET Types, 8-12
OLE DB, 2-1
onnect, 5-1
OPD.NET

using, 5-1
Open() method, 3-13, 8-7
opening connection, 3-13
Oracle, 2-1, 5-1
Oracle Application Express, 2-1, 7-8
Oracle Data Provider for .NET, 2-1, 3-4

definition, 1-2
using, 4-1

Oracle Database Extensions
features

Common Language Runtime Host for Oracle
Database, 1-2

Data Access for .NET Classes through Oracle
Data Provider for .NET, 1-2

Oracle Deployment Wizard for .NET, 1-2
Oracle Deployment Wizard for Visual Studio

.NET, 1-2
Oracle Database XE, 2-1

client, 2-1
server, 2-1

Oracle date format, 8-2
Oracle Deployment Wizard, 7-7, 7-8
Oracle Deployment Wizard for Visual Studio

.NET, 1-2
Oracle Developer Tools

definition, 1-2
features

designer, 1-2
drag and drop, 1-2
dynamic help, 1-2
Oracle Data Window, 1-2
Oracle Explorer, 1-2
Oracle Query Window, 1-2
PL/SQL editor, 1-2
Solution Explorer, 3-3
wizard, 1-2

installation, 2-2
testing installation, 2-4

Oracle Developer Tools for Visual Studio .NET
using, 5-1

Oracle error message, 8-5
Oracle Explorer, 5-1, 5-3, 5-8, 5-10, 6-2, 6-5, 6-6, 7-3,

7-5, 7-11
Oracle Globalization Registry, 8-8
Oracle globalization setting, 8-7
Oracle globalization settings, 8-8
Oracle linguistic sort, 8-4
Oracle number format, 8-3
Oracle project

creating, 7-2
OracleCommand, 4-6

using stored procedure, 6-8
OracleCommand class, 4-3, 4-4, 4-6
OracleConnection, 3-11
OracleConnection class, 3-12, 5-10, 8-7, 8-8

GetSessionInfo() method, 8-8
Open() method, 8-7

Oracle.DataAccess, 3-4
Oracle.DataAccess.dll, 3-3
OracleDataAccess.dll, 3-2
OracleDataAdapter class, 5-10
OracleDataReader class, 4-4, 4-8, 4-9
OracleDbType property, 4-6
OracleError class, 3-14, 3-15
OracleErrorCollection class, 3-15
OracleException class, 3-15, 3-17
OracleGlobalization, 8-7
OracleGlobalization class, 8-8, 8-12

GetClientInfo() method, 8-7
GetThreadInfo() method, 8-12
SetThreadInfo() method, 8-12

OracleGlobalization.GetClientInfo(), 8-7
OracleGlobalization.GetClientInfo() method, 8-7
OracleParameter class, 4-6, 6-8, 6-9
OracleParameterCollection class, 4-6
OracleRefCursor class, 6-2
OracleServiceXE, 3-15, 3-17
OracleXEClrAgent, 7-2

Index-5

OracleXEClrAgent service, 7-1
order

ascending, 5-13
descending, 5-13

Output window, 6-6, 7-7

P
package

edit body, 6-5
HR_DATA, 6-2, 6-4, 6-5, 6-6
name, 6-2
new, 6-2
save, 6-6

package body, 6-1
PACKAGE BODY type, 6-1
package interface, 6-1
package specification, 6-1
PACKAGE type, 6-1
parameter, 6-6
parameter detail, 6-7
ParameterName property, 4-6
password, 3-12

save, 5-2, 5-10
saving, 7-4
set, 7-8

PasswordChar property, 3-10
PL/SQL package

body, 6-1
definition, 6-1
interface, 6-1
specification, 6-1

PL/SQL package bodies, 6-1
PL/SQL packages

introduction, 6-1
PL/SQL stored procedure

definition, 6-1
in ODP.NET, 6-8
introduction, 6-1
ref cursor, 6-2

PL/SQL stored procedures, 6-1
port, 3-12
preview SQL, 5-5, 5-6, 6-4
Preview SQL window, 5-5, 5-6, 5-8, 6-4
primary key, 5-7

column, 5-8
procedure

GETCURSORS, 6-5
GETDEPARTMENTNO, 7-11
run, 7-11
value, 6-6, 6-7

project
add reference, 3-2
connect, 3-2
connection, 3-2
copy, 4-1
HR_Connect_CS, 3-2, 4-9
HR_Connect_VB, 3-2, 4-9
HR_DataSet_ODP_CS, 4-9, 6-2
HR_DataSet_ODP_VB, 4-9

HR_DeployStored_CS, 7-3, 7-10
HR_DeployStored_VB, 7-3, 7-10
HR_ODT_CS, 5-1
HR_ODT_VB, 5-1
HR_StoredProcedure_CS, 6-2
HR_StoredProcedure_VB, 6-2
location, 3-2, 7-3
name, 3-2, 7-3
new, 3-1, 7-2
solution, 3-2
template, 3-2, 7-3
type, 3-2, 7-3

Visual Basic, 3-2, 7-3
Visual C#, 3-2, 7-3

Project menu, 3-3
propert

text, 4-9
properties

data, 5-11
Properties window, 3-8, 3-10, 3-11, 4-4, 4-5, 4-9, 4-10,

5-11
property, 3-7, 3-9, 3-10, 4-9

appearance, 3-9, 4-9
behavior, 3-10
BindByName, 4-6
design, 3-9, 3-11, 4-4, 4-9, 4-10
Direction, 4-6
Error, 3-15
Name, 3-9, 3-11, 4-9
name, 4-4
OracleDBType, 4-6
OracleDbType, 4-6
ParameterName, 4-6
PasswordChar, 3-10
Size, 4-6
Text, 3-7, 3-9, 3-10, 4-4
Value, 4-6

Q
query performance, 4-5
query work area

definition, 6-2

R
record, 4-13, 5-9

add, 5-9
delete, 4-14
navigate, 5-13
sort, 5-13

REF cursor, 6-1
ref cursor

accessibility, 6-2
assigning, 6-5
database round trip, 6-2
database update, 6-2
definition, 6-2
introduction, 6-1
PL/SQL datatype, 6-2
PL/SQL stored procedure, 6-2

Index-6

reading, 6-2
read-only, 6-2
serial, 6-2

reference
add, 3-3
adding, 3-2
folder, 3-4
list, 3-3

rename solution, 4-2
resources

deploying, 8-2
localization, 8-2
packaging, 8-2

result set, 6-2
Retrieving, 4-5
retrieving data

accessor type methods, 4-5
bind variable, 4-5, 4-6, 4-7
looping, 4-8
multiple column, 4-8
multiple row, 4-8
multiple values, 4-7
native data type, 4-5
native Oracle data type, 4-5
simple query, 4-4
value, 4-5
zero-based ordinal, 4-5

role, 7-4
user, 5-2
user default, 5-2

row, 5-9
row set, 6-2
run

application, 4-8, 5-14
Run application, 3-17
run application, 3-14, 3-16, 4-5, 4-12
Run Function window, 7-11
Run Procedure window, 6-6
running an application, 5-12

S
Sample Data, 2-1
sample data, 2-1
Sample Schema, 2-1
Save button, 5-13
Save icon, 3-5
save_Click() method, 4-10, 4-12, 5-13, 5-14
schema

content, 5-3
display, 5-2, 7-4

schema object, 1-2, 7-4
SELECT statement, 4-5, 4-6

bind variable, 4-6
simple, 4-6

service_name, 3-12
services, 7-1
session globalization parameter, 8-8
session globalization setting, 8-8
SetThreadInfo() method, 8-12

Setup file, 2-2
Setup icon, 2-2
simple query, 4-4
Size, 4-6
Size property, 4-6
software download, 2-2
solution, 3-2

deploy, 7-7
Solution ’HR_Connect_CS’, 4-2
Solution ’HR_Connect_VB’, 4-2
Solution Explorer, 3-2, 3-3, 3-4, 3-5, 4-2
sort

data, 5-13
records, 5-13

Specify an assembly and library name window, 7-9
Specify copy options window, 7-9
Specify methods and security details window, 7-10
Specify your deployment option window, 7-8
SQL

preview, 5-5
SQL injection attack, 4-5
SQL preview, 5-6
SQL query, 4-3
SQL statement, 4-5, 4-6, 5-6
SQL statement string, 4-3
SQLPlus, 8-2
Start Database window, 3-17
statement

Case, 3-17
DELETE, 4-7
Imports, 3-4
INSERT, 4-7
memory, 4-5
optimizing, 4-5
parsing, 4-5
reusing, 4-5
UPDATE, 4-7
using, 3-4

stored procedure, 4-6
definition, 6-1
run, 6-6

stored procedure declaration, 4-6
Summary window

window
Summary, 7-11

System.Globalization, 8-2
System.Resources, 8-2
System.Threading.Thread.CurrentThread.CurrentCul

ture parameter, 8-12

T
table

add constraint, 5-7
add data, 5-8
constraint, 5-6, 5-8

add, 5-7, 5-8
association, 5-7
local column, 5-7
primary key, 5-7

Index-7

referenced column, 5-7
constraint name, 5-7
constraint properties, 5-7
constraint type, 5-7
creating, 5-3
data, 5-8
grid, 5-9
name, 5-3
new, 5-3
new relational, 5-3
query, 5-9
record, 5-9
relational, 5-3
retrieve data, 5-8
row, 5-9
simple query, 5-9
SQL form, 5-5

table design view, 5-6, 5-8
table design window, 5-3
table grid, 5-9
Test, 7-8
test

result, 7-8
test result window, 7-8
Text Box, 3-8
Text property, 3-7, 3-9, 3-10, 4-4, 4-9
thread-based globalization setting, 8-12
Toolbox, 3-6, 3-7, 3-8, 3-10, 4-4, 4-5, 4-9, 5-11
try code block, 4-3, 4-11, 6-8
Try-Catch-Finally, 3-15, 3-17
Try-Catch-Finally error handling, 3-15
type of project, 3-2

U
unlocking account, 5-2, 7-4
unlocking user account, 2-4

Oracle XE Database interface, 2-4, 7-8
update event, 5-13
UPDATE statement, 4-7
updating data, 4-13

bind variable, 4-7
user

default role, 7-4
id, 3-12
locale settings, 8-6
role, 5-2, 7-4

user's locale, 8-1
user_source view, 6-1
using statement, 3-4

V
Value property, 4-6
variable declaration, 4-10
VB statement

Imports, 3-4
View, 4-9
view

Code, 3-4
code, 5-12, 5-13, 6-8

Design, 3-5, 4-4, 4-9, 5-3, 5-5, 5-10, 6-6, 6-7
table design, 5-6, 5-8
user_source, 6-1

View menu, 3-2, 3-4, 3-5, 3-6, 3-8, 3-10, 4-4, 4-9, 5-1
Visual Basic, 3-2, 7-3
Visual C#, 3-2, 7-3
Visual Studio .NET 2003, 2-2

W
warning, 3-15
WHERE statement clause, 4-5
window

Add Connection, 5-1, 7-4, 7-8
Add Method, 6-3
Design, 5-10, 5-11
Designer, 5-10
Microsoft Development Environment, 5-10
New Package, 6-2, 6-4, 6-5
Output, 6-6, 7-7
Preview SQL, 5-5, 5-6, 5-8, 6-4
Properties, 3-8, 3-10, 3-11, 4-4, 4-5, 4-10, 5-11
Run Function, 7-11
Run Procedure, 6-6
Specify an assembly and library name, 7-9
Specify copy options, 7-9
Specify methods and security details, 7-10
Specify your deployment option, 7-8
table design, 5-3
test result, 7-8

Windows Explorer, 4-1
Windows forms, 3-6, 3-8, 3-10, 4-4, 4-8, 4-9, 5-11
Windows Registry, 8-7

X
XE Common Language Runtime agent, 7-1

Z
zero-based ordinal, 4-5

Index-8

	Contents
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	What is Microsoft .NET Framework
	Introduction to Oracle Data Provider for .NET
	Introduction to Oracle Developer Tools for Visual Studio .NET
	Introduction to .NET Stored Procedures

	2 Installing Oracle Developer Tools
	What You Need
	Installing Oracle Developer Tools
	Unlocking the User Account
	Uninstalling Oracle Developer Tools

	3 Connecting to the Database
	Starting a New Project
	Adding a Reference
	Adding Initial Programmatic Statements
	Adding Connection Elements
	Using the Connection Object
	Running the Application
	Error Handling
	Closing the Database Connection

	4 Building an Oracle Data Provider for .NET Application
	Copying a Project
	Using the Command Object
	Retrieving Data: a Simple Query
	Retrieving Data: Bind Variables
	Retrieving Data: Multiple Values
	Using the DataSet Class with Oracle Data Provider for .NET
	Inserting, Deleting and Updating Data

	5 Using Oracle Developer Tools for Visual Studio .NET
	Connecting to the Oracle Database
	Creating a Table and Its Columns
	Creating a Table Index
	Adding Table Constraints
	Adding Data to a Table
	Generating Code Automatically
	Enabling Database Updates

	6 Using PL/SQL Stored Procedures and REF Cursors
	Introduction to PL/SQL Packages and Package Bodies
	Introduction to PL/SQL Stored Procedures
	Introduction to Ref Cursors
	Creating a PL/SQL Stored Procedure that Uses Ref Cursors
	Running a PL/SQL Stored Procedure Using Oracle Data Provider for .NET

	7 Deploying .NET Stored Procedures
	Starting the Common Language Runtime Service
	Creating an Oracle Project
	Creating a New Connection
	Creating .NET Stored Functions and Procedures
	Deploying .NET Stored Functions and Procedures
	Running .NET Stored Functions and Procedures

	8 Including Globalization Support
	Introduction to Global Applications
	Developing Global Applications with the .NET Framework
	Presenting Data in the Correct User Local Convention
	Oracle Date Formats
	Oracle Number Formats
	Oracle Linguistic Sorts
	Oracle Error Messages

	Synchronizing the .NET and Oracle Database Locale Environments
	Client Globalization Support in Oracle Data Provider for .NET
	Client Globalization Settings
	Session Globalization Settings
	Thread-Based Globalization Settings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

