
Oracle® Content Services
Application Developer’s Guide

10g Release 1 (10.1.2.2)

B25277-02

April 2006

Oracle Content Services Application Developer’s Guide, 10g Release 1 (10.1.2.2)

B25277-02

Copyright © 1988, 2006, Oracle. All rights reserved.

Primary Author: Nick Taylor

Contributing Author: Raymond Gallardo

Contributor: Marla Azriel, Simon Azriel, Vasant Kumar, Beth Morgan, Luis Saenz, Matt Shannon, Kenneth
Turnbull

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Connecting to Oracle Content Services

The Oracle Content Services Web Services Development Kit .. 1-1
Connecting to an Oracle Content Services Instance.. 1-2
Initializing Manager Classes ... 1-3

2 Oracle Content Services Container Manager

Creating a Container .. 2-1
Deleting a Container.. 2-3
Running the Code .. 2-3

3 Oracle Content Services Workspaces

Creating a Workspace .. 3-1
Deleting a Workspace .. 3-3
Running the Code .. 3-4

4 Oracle Content Services Group Management

Creating a Group .. 4-1
Adding and Removing Members.. 4-2
Deleting a Group .. 4-6
Running the Code .. 4-6

5 Oracle Content Services Document Operations

Creating Folders and Documents.. 5-1
Copying or Moving a Document... 5-2
Deleting Documents and Folders.. 5-3
Running the Code .. 5-4

iv

6 Attribute Requests

Chaining Attribute Requests ... 6-1
NamedValue and NamedValueSet.. 6-5

7 Uploading and Downloading Using Web Services

Uploading .. 7-1
Downloading... 7-3
Running the Code .. 7-4

8 Oracle Content Services Versioning

Versioning in Oracle Content Services .. 8-1
Versioning Policies... 8-1
Versioning Configuration ... 8-2
Conflict Resolution... 8-2

9 Oracle Content Services Web Services Managers

Reference Material ... 9-2
Document Managers.. 9-2

FileManager ... 9-2
TrashManager.. 9-3
ArchiveManager.. 9-3

Document Processing Managers.. 9-3
SortManager .. 9-3
SearchManager .. 9-4
LockManager ... 9-5
VersionManager.. 9-6
VirusManager.. 9-7
RecordsManager ... 9-8
PagingManager ... 9-9
CategoryManager ... 9-9

User and Group Managers .. 9-10
UserManager .. 9-10
GroupManager ... 9-10
SecurityManager .. 9-11

Collaborative Managers ... 9-11
WorkspaceManager... 9-11
ContainerManager ... 9-11
WorkflowManager... 9-12
DomainManager .. 9-12
QuotaManager.. 9-12

Administrative Managers .. 9-13
RemoteLoginManager... 9-13
SessionManager.. 9-13
RequestManager .. 9-13
ServiceToServiceManager... 9-14

v

A Oracle Content Services Roles

Index

vi

vii

Preface

Audience
This document contains information on developing for Oracle Content Services Web
Services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
Printed documentation is available for sale in the Oracle Store at

viii

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Connecting to Oracle Content Services 1-1

1
Connecting to Oracle Content Services

The Oracle Content Services Web Services Development Kit
This guide should be used in conjunction with the Oracle Content Services Web
Services Development Kit. The Development Kit can be downloaded from:

http://www.oracle.com/technology

Inside you will find the necessary JAR files with which to run the Web Services client.
The examples in this guide are available in full within the Development Kit, along
with additional documentation, the bulk tools, more samples, and the Java API
Reference (Javadoc).

The following JARs from the /lib directory of the Development Kit must be in your
CLASSPATH to run the examples:

■ activation

■ axis

■ commons-discovery-0.2

■ commons-logging-1.0.3

■ content-ws-client

■ http_client

■ jaxrpc

■ mail

■ saaj

■ wsdl4j-1.5.1

■ xmlpaserv2

The examples in this guide are available in the Development Kit in the sample_
code/sample_webservices/src/oracle/ifs/examples/ws directory. The
Development Kit also provides documentation and a number of examples for creating,
configuring, and using custom Business Process Execution Language (BPEL)
workflows with Oracle Content Services. The custom workflow document provides
information about how to get started with custom BPEL workflows.

The Development Kit also contains documentation for the command-line tools, which
provide a way to easily load and modify a large number of Libraries or Groups.

Connecting to an Oracle Content Services Instance

1-2 Oracle Content Services Application Developer’s Guide

Connecting to an Oracle Content Services Instance
The first step for a client is to authenticate with the Oracle Content Services instance.
The instance is accessed at a fixed URL such as
http://servername.com/content/ws. To connect to an instance, you will need a
URL and port, as well as a valid username and password. Authentication uses the
RemoteLoginManager class to pass the username and password to the running
instance.

The RemoteLoginManager object must be retrieved from the server using its
ServiceLocator.

RemoteLoginManagerServiceLocator rlmsl =
new RemoteLoginManagerServiceLocator();

rlmsl.setMaintainSession(true);

// initialize the RemoteLoginManager
s_RLM = rlmsl.getRemoteLoginManager(new URL(serverUrl +

 "/RemoteLoginManager"));

The RemoteLoginManager.login method returns a set of properties about the
login session (namely, the login user, session timeout, and transaction timeout). These
properties are stored in an array of NamedValue pairs, and can be used as needed.

// establish a session
NamedValue[] properties = s_RLM.login(username, password, null, null);

After logging in, get the value of the HEADER_COOKIE property from the
RemoteLoginManager. This cookie will be used to register the session with other
Manager instances. In order to properly store session state, the client must support
HTTP cookies.

// get the cookies
s_Cookie =

(String) ((Stub) s_RLM)._getCall().getMessageContext().getProperty(
HTTPConstants.HEADER_COOKIE);

The examples in this book use the WsConnection utility class to connect to an
instance and retrieve Manager objects.

Note: For the example below, we will assume that your Oracle
Content Services instance can accept authentication requests over an
insecure connection. By default, Oracle Content Services only allows
cleartext authentication over HTTPS. To change this setting, the
CleartextAuthenticationRequiresHttps property of the
Oracle Collaboration Suite domain must be set to false. See Chapter 6
of the Oracle Content Services Administrator’s Guide for more
information.

Initializing Manager Classes

Connecting to Oracle Content Services 1-3

Initializing Manager Classes
Manager classes must be retrieved and initialized individually before a user can
perform actions with them. Each Manager is located at the base URL of the Web
Services instance with /ManagerName appended. To retrieve an object for a Manager,
you will use the corresponding Locator class.

DomainManagerServiceLocator dmsl = new DomainManagerServiceLocator();
dmsl.setMaintainSession(true);

The setMaintainSession method sets a flag to allow the Manager instance to be
used across a persistent user session. This session must be registered with each
Manager individually by passing the session cookie. Registering the session prevents
having to authenticate and register with each Manager every time you want to
perform an operation.

The Manager instance is returned from the Locator class.

DomainManager s_DM = dmsl.getDomainManager(new URL(serverUrl + "/DomainManager"));

Register the session cookie with a Manager instance by setting its HEADER_COOKIE
property (Stub is a JAX-RPC class used to set properties on the Manager instance.).

((Stub) s_DM)._setProperty(HTTPConstants.HEADER_COOKIE, s_Cookie);

Note: Oracle Content Services imposes a limit on the number of
concurrent sessions a user can maintain. This limit protects against
Denial of Service attacks. Because HTTP is a connection-less protocol,
the server has no way of knowing if a client disconnects unless
explicitly alerted to by the client by way of a request (such as calling a
logout method). Many servers, including Oracle Content Services,
impose a session inactivity timeout, whereby if the user has not made
a request in a certain period of time, the server frees (and disconnects)
the client’s inactive session. Should the client not explicitly log out, it
would be possible to flood the server with new connections (and thus
new user sessions) at a higher rate than the server can dispose of the
inactive sessions. Thus, always invoke the RemoteLoginManager
logout operation when appropriate.

Initializing Manager Classes

1-4 Oracle Content Services Application Developer’s Guide

Oracle Content Services Container Manager 2-1

2
Oracle Content Services Container Manager

Oracle Content Services Web Services allow you to create Containers, which are a
special type of folder used to organize Workspaces. Containers cannot contain
documents, only other containers and workspaces. They have no quota and no trash.

The Container Manager is one of the simplest managers in Oracle Content Services. It
allows you to create, delete, and update containers. For this example you will need to
use the Container Manager to create the containers, and the Domain Manager to
retrieve the root directory in which to create the containers.

2.1 Creating a Container
Once authenticated with an Oracle Content Services instance, you can create a
Container using the createContainer() method as follows.

/**
* Creates a Container in the default Domain.
*
* Note: The logged-in user must have the ContainerAdministrator role and the
* logged-in session must be in domain-administration mode.
*/
public static Item createContainer(String containerName, String description)

throws FdkException, RemoteException
{

// get the Manager instances we need
ContainerManager cm = WsConnection.getContainerManager();
DomainManager dm = WsConnection.getDomainManager();

// get default domain
Item defaultDomain = dm.getDefaultDomain(null);

// create the Container definition
NamedValue[] cnDef = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.NAME, containerName },
{ Attributes.DESCRIPTION, description } });

// container attribute request
AttributeRequest[] cont_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH),
WsUtility.newAttributeRequest(Attributes.DESCRIPTION) };

// create the Container
Item container = cm.createContainer(domain.getId(), cnDef, cont_attr);

WsUtility.log("container attributes");
WsUtility.log(WsUtility.INDENT, container);

Creating a Container

2-2 Oracle Content Services Application Developer’s Guide

return container;

}

First, the WsConnection class is used to retrieve the Container and Domain
Managers.

The Domain Manager is used to retrieve a domain, which is a root folder in Oracle
Content Services. Typically, there will be only one domain, unless there are multiple
sites being hosted in a single instance. This example creates a Container in the default
domain (the root, in this case), which is retrieved with the getDefaultDomain call.

To create a container the logged-in user must be in domain administration mode. This
mode is used when you want to perform high-level actions such as adding, deleting,
or modifying a Container. This mode is used throughout Oracle Content Services, and
allows different operations on each Manager. In the case of Containers, all operations
must be made in administrator mode. Switching to this mode will be shown later in
this chapter.

Oracle Content Services returns the domain object in the form of an Item, which is a
type representing any kind of persistent repository object, such as a Document, Folder,
User, Group, or Category. An Item always has 3 default attributes:

1. id (long) - the ID of the object in the repository.

2. name (String) - the name of the item as stored in the repository. This value is null if
the item does not have a name.

3. type (String) - the type of the object. All available type constants are defined in
oracle.ifs.fdk.ItemTypes.

When creating a new container using the
ContainerManager.createContainer() method, you must pass in a set of
attributes describing the properties of the container, such as the name and description.
This set is passed in an array of NamedValue objects.

The cont_attr parameter has special importance. An item may also contain a set of
optional attributes that are filled in when the item object is created only if the caller
requests them. These are called attribute requests. An attribute request is performed by
creating an AttributeRequest array, and populating it with a list of attributes.
Using attribute requests, you can fetch additional attributes about the item by passing
(possibly nested) arrays of attribute requests. This allows for retrieval of entire trees of
related objects and their attributes in one call. When the call containing the attribute
request is made (in this case the createContainer call), it returns the requested
attributes into an Item object (in this case container). The attributes in the item can
then be retrieved using the Item method getRequestedAttributes(). Attribute
requests are used throughout Oracle Content Services, and are discussed in more
detail in Chapter 7.

In the last line before returning, the returned attributes are passed to a log method
belonging to the WsUtility class, which writes a log entry for the action that took
place. Inside the log method, the attributes are retrieved using the
getRequestedAttributes method, which returns an array of NamedValue pairs
(each containing an Attribute and a value).

public static void log(String indent, Item item)
{

if (item == null)
 {
 log(indent, "Item is null ");
 return;

Running the Code

Oracle Content Services Container Manager 2-3

 }
 log(indent, "Item [name = " + item.getName() + "]");

NamedValue[] attributes = item.getRequestedAttributes();
int len = (attributes == null) ? 0 : attributes.length;

if (len > 0)
{

log(indent, "Requested Attributes");
}
for (int i = 0; i < len; i++)
{

log(indent + INDENT, attributes[i]);
}

}

2.2 Deleting a Container
To delete a container, simply call the deleteContainer() method on the
ContainerManager, passing in the Container ID as an argument. Note that this
example assumes the session is still in administrator mode.

/**
* Deletes the specified Container.
*
* Note: The logged-in user must have the ContainerAdministrator role and the
* logged-in session must be in domain administration mode.
*/
public static void deleteContainer(Item container)

throws FdkException, RemoteException
{

// delete Container
ContainerManager cm = WsConnection.getContainerManager();
cm.deleteContainer(container.getId(), null);

}

2.3 Running the Code
Before calling these methods, remember that you must be in domain administration
mode. To switch to this mode, connect to the Session Manager and call the
setSessionMode() method as shown below.

Be sure to log out from the Web Services instance at the end using the
WsConnection.logout() method.

private static WsConnection s_WsCon;

public static void main(String[] args)
{

try
{

try
{

// get property object
Properties prop = WsUtility.getProperty(args[0]);

// URL to content services web services servlet
String serverUrl = "http://" + prop.getProperty("hostname") + ":"

+ prop.getProperty("port") + "/content/ws";

Running the Code

2-4 Oracle Content Services Application Developer’s Guide

// authenticate to content services
s_WsCon = WsConnection.login(serverUrl, prop.getProperty("user"),

prop.getProperty("password"));

// create Container
Item newContainer = createContainer("MyContainer", "This is a example

container");

// delete Container
deleteContainer(newContainer);

}
finally
{

s_WsCon.logout();
}

}
catch (Throwable t)
{

t.printStackTrace();
}

}

Oracle Content Services Workspaces 3-1

3
Oracle Content Services Workspaces

Oracle Content Services Web Services allows creation of Workspaces, which are special
folders that store content, have a trash folder, and can have an associated quota.

For this example you will need (in addition to the Workspace Manager):

■ File Manager - For resolving path names

■ Security Manager - For setting the security policy of a Workspace

■ Session Manager - To access administrator mode

■ User Manager - To fetch user IDs for setting permissions on the manager

Also, you will need a container in which to create the workspace. This must be a
container on which the user has LibraryAdministrator access. You can also create
Workspaces directly inside a Domain.

Creating a Workspace
A Workspace must be created inside a container or domain. You can retrieve the
Container by resolving its path with the resolvePath method of the FileManager.

/**
* Creates a Workspace in the specified Container and assigns the
* WorkspaceAdministrator, WorkspaceManager, and WorkspaceAuthor Roles
* to the specified users.
*
* Note: The logged-in user calling this method must have the
* LibraryAdministrator or WorkspaceCreator Role and the
* logged-in session must be in domain-administration mode.
*/

public static Item createWorkspace(
String containerPath,
String workspaceName,
String workspaceDesc,
String admin,
String author,
String reader) throws FdkException, RemoteException

{
// get the Manager instances
UserManager um = s_WsCon.getUserManager();
FileManager fm = s_WsCon.getFileManager();
SecurityManager scm = s_WsCon.getSecurityManager();

Note: The "Workspaces" referred to in this chapter are called
"Libraries" in the rest of Oracle Content Services.

Creating a Workspace

3-2 Oracle Content Services Application Developer’s Guide

WorkspaceManager wm = s_WsCon.getWorkspaceManager();

// get the user Items
Item adminUser = um.getUser(admin, null);
Item authorUser = um.getUser(author, null);
Item readerUser = um.getUser(reader, null);

// get the Container Item from its path
Item container = fm.resolvePath(containerPath, null);

The roles for each workspace are specified by a security configuration, which is
composed of a set of grants. A grant consists of a grantee user and a set of roles for
that user. Each grant is represented by two name/value pairs (stored in NamedValue
objects). The first pair associates the GRANTEE Attribute with the user ID for the
grantee user. The second pair associates the ROLES Attribute with the set of role IDs
being granted to that user (adminstrator, reader, or author). Note that more than one
role can be granted to each user, so the ROLES Attribute can be associated with an
array of roles.

In this example there are three users being granted access to the workspace. The
administrator role is the least restricted, and allows all workspace actions, such as
creating and deleting, version control, and others. The reader can view items in the
workspace but not change them. The author can do all the tasks associated with
adding and deleting content.

After creating each of the grant definitions, create the security configuration by
forming a set from the grants. This set is stored as an array of NamedValueSet
objects.

Note that when creating the grant definitions, this example uses the
newNamedValueArray and the newNamedValueSet methods of the WsUtility
class. These methods are simple wrappers for object instantiation.

// get the user Items
Item adminUser = um.getUser(admin, null);
Item authorUser = um.getUser(author, null);
Item readerUser = um.getUser(reader, null);

// get the Roles to grant for the Workspace's SecurityConfiguration
Item adminRole = scm.getRoleByName("ADMINISTRATOR", null);
Item authorRole = scm.getRoleByName("AUTHOR", null);
Item readerRole = scm.getRoleByName("READER", null);

// create a Grant definition for the Workspace administrator
// -> notice that a Grant definition is made up of a
// GRANTEE and a set of ROLES (here we use just one Role)
NamedValue[] wsAdminGrant = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.GRANTEE, new Long(adminUser.getId()) },
{ Attributes.ROLES, new long[] { adminRole.getId() } } });

// create a Grant definition for the Workspace author
NamedValue[] wsAuthorGrant = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.GRANTEE, new Long(authorUser.getId()) },
{ Attributes.ROLES, new long[] { authorRole.getId() } } });

// create a Grant definition for the Workspace reader
NamedValue[] wsReaderGrant = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.GRANTEE, new Long(readerUser.getId()) },
{ Attributes.ROLES, new long[] { readerRole.getId() } } });

Deleting a Workspace

Oracle Content Services Workspaces 3-3

// create the Grant array definition
// -> notice that the Grant array definition is made up of three
// NamedValue arrays, one for each Grant definition
// -> each Grant definition (NamedValue[]) is wrapped in a
// NamedValueSet instance to avoid the use of two-dimensional arrays
NamedValueSet[] wsGrants = new NamedValueSet[] {

WsUtility.newNamedValueSet(wsAdminGrant),
WsUtility.newNamedValueSet(wsAuthorGrant),
WsUtility.newNamedValueSet(wsReaderGrant)

};

Once the security configuration is set up, pass it as the parameter for the
Attributes.SECURITY_CONFIGURATION constant, along with the Name and
Description for the workspace, as shown below. Then, create the workspace using the
createWorkspace() method of the WorkspaceManager, as shown.

// create the Workspace definition
// -> notice that the Grant array definition is a nested definition
// passed in as the value of the SECURITY_CONFIGURATION NamedValue
NamedValue[] wsDef = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.NAME, workspaceName },
{ Attributes.DESCRIPTION, workspaceDesc },
{ Attributes.SECURITY_CONFIGURATION,

WsUtility.newNamedValueArray(new Object[][] {
{ Attributes.GRANTS, wsGrants } }) } });

// workspace attribute request
AttributeRequest[] workspace_attr =

WsUtility.newAttributeRequestArray(new String[] {
Attributes.DESCRIPTION,
Attributes.TRASH_FOLDER,
Attributes.JOINABLE,
Attributes.JOINABLE_WORKSPACE_DESCRIPTION });

// create the Workspace using the Workspace definition
// -> no workflow parameters are required (second argument is null)
Item workspace = wm.createWorkspace(container.getId(), null, wsDef, workspace_

attr);

WsUtility.log("workspace attributes");
WsUtility.log(WsUtility.INDENT, workspace);

return workspace;
}

Deleting a Workspace
To delete a workspace, fetch the Workspace ID and call the deleteWorkspace()
method on the WorkspaceManager.

/**
 * Deletes the specified Workspace.
 *
 * Note: The logged-in user calling this method must have the
 * LibraryAdministrator or WorkspaceCreator Role and the
 * logged-in session must be in domain-administration mode.
 */
public static void deleteWorkspace(Item workspace)

Running the Code

3-4 Oracle Content Services Application Developer’s Guide

throws FdkException, RemoteException
{

// delete the Workspace
// -> no definition is required
WorkspaceManager wm = WsConnection.getWorkspaceManager();
wm.deleteWorkspace(workspace.getId(), null);

}

Running the Code
To run the code, connect to an Oracle Content Services instance, and call the create and
delete methods on a Workspace. Remember to switch to domain administrator mode
before performing any operations.

private static WsConnection s_WsCon;

public static void main(String[] args)
{

try
{

try
{

// get property object
Properties prop = WsUtility.getProperty(args[0]);

// authenticate to Oracle Content Services
String serverUrl = "http://" + prop.getProperty("hostname") + ":"

+ prop.getProperty("port") + "/content/ws";

s_WsCon = WsConnection.login(serverUrl, prop.getProperty("user"),
prop.getProperty("password"));

// URL to Oracle Content Services web services servlet
String serverUrl = "http://yourserver.com:7777/content/ws";

// authenticate to content services
s_WsCon = WsConnection.login(serverUrl, "jon", "welcome1");

// switch to admin mode
SessionManager sm = s_WsCon.getSessionManager();
sm.setSessionMode(FdkConstants.SESSION_MODE_DOMAIN_ADMINISTRATION,

null);

// create a Workspace
Item newWorkspace = createWorkspace("/oracle/ifs/dev", "MyWorkspace",

"this is an example Workspace", "ray", "tanya", "ellie");

// delete the Workspace
deleteWorkspace(newWorkspace);

}
finally
{

s_WsCon.logout();
}

}
catch (Throwable t)
{

t.printStackTrace();
}

}

Oracle Content Services Group Management 4-1

4
Oracle Content Services Group Management

Oracle Content Services Web Services offers the ability to organize users into groups
using the GroupManager class. Groups allow user data to be manipulated and
passed around all at once, instead of by selecting individual users. This class allows
you to create new groups and add or remove users to and from those groups. This
chapter illustrates basic group management using the GroupManager class, with an
example that performs simple group operations.

4.1 Creating a Group
To create a group, you will need a GroupManager (for group operations) and a
UserManager (to retrieve user IDs for adding to the group). The process is to generate
member lists for the group, create a group definition based on these member lists (and
the other group parameters), and then create the group based on the group definition.

There are two classes of users for a group: managers and members. A manager is
allowed to perform administrative actions on a group, such as adding and deleting
users, and changing the group properties. A member simply belongs to the group and
cannot edit the group at all.

This example takes a member list and a manager list as parameters, which are
reconstructed as Item arrays and passed to the group definition under the attributes
MEMBER_LIST and MANAGER_LIST.

/**
 * Create a group with specified members and managers
 */
public static Item createGroup(String groupName, String groupDesc,

String[] members, String[] managers) throws RemoteException, FdkException
{

// get the Manager instances we need
GroupManager gm = WsConnection.getGroupManager();
UserManager um = WsConnection.getUserManager();

// get members list length
int len = (members != null) ? members.length : 0;

// initalize member list
long mbrList[] = new long[len];

for (int i = 0; i < len; i++)
{

// get member
Item member = um.getUser(members[i], null);
// get member ID
mbrList[i] = member.getId();

Adding and Removing Members

4-2 Oracle Content Services Application Developer’s Guide

}

// get managers list length
len = (managers != null) ? managers.length : 0;
// initalize manager list
long mgrList[] = new long[len];
for (int i = 0; i < len; i++)
{

// get manager
Item manager = um.getUser(managers[i], null);
// get manager ID
mgrList[i] = manager.getId();

}

For this example, the attributes are two arrays of user IDs, one for the managers you
would like to assign to the group (in this example, mgrList), and another for the
members (mbrList), as well as the name and description of the group.

// create group definition
NamedValue[] createGroupDef =

WsUtility.newNamedValueArray(new Object[][] {
{ Attributes.NAME, groupName },
{ Attributes.DESCRIPTION, groupDesc },
{ Attributes.MANAGER_LIST, mgrList },
{ Attributes.MEMBER_LIST, mbrList } });

// group attribute request
AttributeRequest[] group_attr =
WsUtility.newAttributeRequestArray(new String[] {

Attributes.DESCRIPTION,
Attributes.MEMBER_LIST, Attributes.GROUP_MEMBER_LIST,
Attributes.MANAGER_LIST });

// create group
// -> no AttributeRequest is specified (second argument is null)
Item gp = gm.createGroup(createGroupDef, group_attr);

// log group info
WsUtility.log(WsUtility.INDENT, gp);

return gp;

}

4.2 Adding and Removing Members
In the previous method, you added both a member and a manager when creating the
group. Suppose you want to add more members. The following code demonstrates
how to use the GroupManager.addUsers() method to add a member or list of
members to an existing group.

/**
 * Adds members to an existing Group.
 *
 *
 */
public static Item addMember(Item group, String[] members)

throws FdkException, RemoteException

Adding and Removing Members

Oracle Content Services Group Management 4-3

{
// get the Manager instances we need
GroupManager gm = s_WsCon.getGroupManager();
UserManager um = s_WsCon.getUserManager();

// get members list length
int len = (members != null) ? members.length : 0;
// initalize member list
long mbrList[] = new long[len];
for (int i = 0; i < len; i++)
{

// get member
Item member = um.getUser(members[i], null);
// get member id
mbrList[i] = member.getId();

}

// add members definition
NamedValue[] addMbrDef = WsUtility.newNamedValueArray(new Object[][] { {

Attributes.MEMBER_LIST, mbrList } });

// group attributes request
AttributeRequest[] group_attr =

WsUtility.newAttributeRequestArray(new String[] {
Attributes.MEMBER_LIST });

// add group member
Item gp = gm.addUsers(group.getId(), addMbrDef, group_attr);

// log group info
WsUtility.log(WsUtility.INDENT);
WsUtility.log("Added members");
WsUtility.log(WsUtility.INDENT, gp);

return gp;

}

Just as in the previous example, the first step is to generate a members list by fetching
each user (as Item objects) using a call to the UserManager. Then, generate an array
of NamedValue pairs from the member list, pairing each entry with the
Attributes.MEMBER_LIST attribute with each member you want to add. Also,
create an AttributeRequest to retrieve the member list (using the MEMBER_LIST
attribute). Finally, pass the member list and the attribute request to the addUsers
method in the GroupManager.

The process for removing members from a group is similar, as shown below. Note that
while we do not need to use an attribute request here, we do so in order to log the
attributes of the deleted item.

/**
 * Removes members from an existing Group.
 */
public static Item removeMember(Item group, String[] members)

throws FdkException, RemoteException
{

// get the Manager instances we need
GroupManager gm = s_WsCon.getGroupManager();
UserManager um = s_WsCon.getUserManager();

// get members list length

Adding and Removing Members

4-4 Oracle Content Services Application Developer’s Guide

int len = (members != null) ? members.length : 0;

// initalize members list
long mbrList[] = new long[len];
for (int i = 0; i < len; i++)
{

// get member
Item member = um.getUser(members[i], null);

// get member id
mbrList[i] = member.getId();

}

// remove member definition
NamedValue[] removeMbrDef = WsUtility.newNamedValueArray(new Object[][] { {

Attributes.MEMBER_LIST, mbrList } });

// group attributes request
AttributeRequest[] group_attr =

WsUtility.newAttributeRequestArray(new String[] {
Attributes.MEMBER_LIST });

// remove group member
Item gp = gm.removeUsers(group.getId(), removeMbrDef, group_attr);

// log group info
WsUtility.log("Removed members");
WsUtility.log(WsUtility.INDENT, gp);

return gp;
}

To add and delete managers instead of members, the process is the same. Simply get a
manager user, associate it with an Attributes.MANAGER_LIST attribute in a
NamedValue pair, and pass it in an array to addUsers().

/**
 * Adds managers to an existing Group.
 */
public static Item addManagers(Item group, String[] managers)

throws RemoteException, FdkException
{

// get the Manager instances we need
GroupManager gm = s_WsCon.getGroupManager();
UserManager um = s_WsCon.getUserManager();

// get managers list length
int len = (managers != null) ? managers.length : 0;

// initalize managers list
long mgrList[] = new long[len];
for (int i = 0; i < len; i++)
{

// get manager
Item manager = um.getUser(managers[i], null);

// get manager id
mgrList[i] = manager.getId();

}

Adding and Removing Members

Oracle Content Services Group Management 4-5

// add manager definition
NamedValue[] addMgrDef = WsUtility.newNamedValueArray(new Object[][] { {

Attributes.MANAGER_LIST, mgrList } });

// group attributes request
AttributeRequest[] group_attr =

WsUtility.newAttributeRequestArray(new String[] {
Attributes.MANAGER_LIST });

// add group manager
Item gp = gm.addUsers(group.getId(), addMgrDef, group_attr);

// log group info
WsUtility.log("Adds managers");
WsUtility.log(WsUtility.INDENT, gp);

return gp;

}

/**
 * Removes managers from an existing Group.
 */
public static Item removeManagers(Item group, String[] managers)

throws FdkException, RemoteException
{

// get the Manager instances
GroupManager gm = s_WsCon.getGroupManager();
UserManager um = s_WsCon.getUserManager();

// Get managers list length
int len = (managers != null) ? managers.length : 0;

// initalize manager list
long mgrList[] = new long[len];

for (int i = 0; i < len; i++)
{

// get manager
Item manager = um.getUser(managers[i], null);

// get manager id
mgrList[i] = manager.getId();

}

// remove manager definition
NamedValue[] removeMgrDef = WsUtility.newNamedValueArray(new Object[][] { {

Attributes.MANAGER_LIST, mgrList } });

// group attributes request
AttributeRequest[] group_attr =

WsUtility.newAttributeRequestArray(new String[] {
Attributes.MANAGER_LIST });

// remove group manager
Item gp = gm.removeUsers(group.getId(), removeMgrDef, group_attr);

// log group info
WsUtility.log("Removed managers");
WsUtility.log(WsUtility.INDENT, gp);

Deleting a Group

4-6 Oracle Content Services Application Developer’s Guide

return gp;
}

4.3 Deleting a Group
Deleting a group is as simple as calling a single method, deleteGroup(). Groups
must be deleted by group ID.

/**
 * Delete group
 */
public static void deleteGroup(Item group)

throws FdkException, RemoteException
{

// get the Manager instance
GroupManager gm = WsConnection.getGroupManager();

// delete group
gm.deleteGroup(group.getId());

}

4.4 Running the Code
To run the code, connect to a running Oracle Content Services instance, create a group,
and start performing group operations. Be sure to log out from the Web Services
instance at the end using the WsConnection.logout() method.

private static WsConnection s_WsCon;

public static void main(String[] args)
{

try
{

Properties prop = WsUtility.getProperty(args[0]);

// URL to content services web services servlet
String serverUrl = "http://" + prop.getProperty("hostname") + ":"

+ prop.getProperty("port") + "/content/ws";

// authenticate to content services
s_WsCon = WsConnection.login(serverUrl, prop.getProperty("user"),

prop.getProperty("password"));

try
{

// create group
Item newGroup = createGroup(

"myGroup2",
"This is a example group",
new String[] { prop.getProperty("member") },
 new String[] { prop.getProperty("manager"),

prop.getProperty("user")}
);

// remove member
newGroup = removeMember(newGroup, new String[] {

Running the Code

Oracle Content Services Group Management 4-7

prop.getProperty("member") });

// add member
newGroup = addMember(newGroup, new String[] {

prop.getProperty("member") });

// remove manager
newGroup = removeManagers(newGroup, new String[] {

prop.getProperty("manager") });

// add manager
newGroup = addManagers(newGroup, new String[] {

prop.getProperty("manager") });

// delete group
deleteGroup(newGroup);

}
finally
{

s_WsCon.logout();
}

}
catch (Throwable t)
{

t.printStackTrace();
}

}

Running the Code

4-8 Oracle Content Services Application Developer’s Guide

Oracle Content Services Document Operations 5-1

5
Oracle Content Services Document

Operations

Oracle Content Services provides a set of Managers for document creation, deletion,
and manipulation. Documents are created within workspaces, and can be copied,
moved, deleted, or moved to the trash.

For these examples, you will need:

■ FileManager - for creating files and folders

■ TrashManager - for deleting documents

■ CommonManager - for retrieving common Oracle Content Services items, namely
the Trash

Creating Folders and Documents
To create a folder, you will need a folder name, a description, and the ID of a parent
folder. Pass the ID to the FileManager, along with the folder definition, and call the
createFolder() method.

/**
* Creates a folder in the specified destination folder.
*/
public static Item createFolder(String folderName, String folderDesc,

Item parent) throws RemoteException, FdkException
{

FileManager fm = WsConnection.getFileManager();

// create folder definition
NamedValue[] folderDef =

WsUtility.newNamedValueArray(new Object[][] {
{ Attributes.NAME, folderName },
{ Attributes.DESCRIPTION, folderDesc } });

Item folder = fm.createFolder(parent.getId(), folderDef, null);

// log the created folder
WsUtility.log(WsUtility.INDENT, folder);

return folder;
}

To create a document, the process is nearly identical, except you should call the
createDocument() method. Also, instead of passing the parent folder ID directly to

Copying or Moving a Document

5-2 Oracle Content Services Application Developer’s Guide

the method, you should include it as the value for the Options.DESTFOLDER
constant in the document definition.

/**
 * Creates a document.
 */
public static Item createDocument(String docName, String docDesc, Item folder)

throws RemoteException, FdkException
{

FileManager fm = WsConnection.getFileManager();

// document attribute request
AttributeRequest[] doc_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH),
WsUtility.newAttributeRequest(Attributes.DESCRIPTION),
WsUtility.newAttributeRequest(Attributes.VERSIONS) };

// create document
Item document = fm.createDocument(
WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.NAME, docName },
{ Attributes.DESCRIPTION, docDesc },
{ Options.DESTFOLDER, new Long(folder.getId()) } }), null, doc_attr);

WsUtility.log("document attributes");
WsUtility.log(WsUtility.INDENT, document);

return document;

}

Copying or Moving a Document
To copy a document to another folder, create a "copy definition" by putting the
DESTFOLDER option and its value into a NamedValueArray. Then, use the
FileManager’s copy() method.

/**
 * Copies a Document to a destination folder.
 */
public static void copyDocument(Item document, Item destFolder)

throws RemoteException, FdkException
{

// get the Manager instances
FileManager fm = s_WsCon.getFileManager();
CommonManager cm = s_WsCon.getCommonManager();

// copy document
NamedValue[] copyDef = WsUtility.newNamedValueArray(new Object[][] { {

Options.DESTFOLDER, new Long(destFolder.getId()) } });

NamedValueSet[] copyDefs = new NamedValueSet[] {
WsUtility.newNamedValueSet(copyDef) };

Item[] doc = fm.copy(new long[] { document.getId() }, null, copyDefs);

// document attribute request
AttributeRequest[] doc_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH) };

WsUtility.log("copy document attributes");

Deleting Documents and Folders

Oracle Content Services Document Operations 5-3

WsUtility.log(WsUtility.INDENT, cm.getItem(doc[0].getId(), doc_attr));
}

To move a document the process is identical, except you will need to use the move()
method.

/**
 * Moves a Document to a destination folder.
 */
public static void moveDocument(Item document, Item destFolder)

throws RemoteException, FdkException
{

// get the Manager instances
FileManager fm = s_WsCon.getFileManager();
CommonManager cm = s_WsCon.getCommonManager();

NamedValue[] moveDef = WsUtility.newNamedValueArray(new Object[][] { {

Options.DESTFOLDER, new Long(destFolder.getId()) } });

NamedValueSet[] moveDefs = new NamedValueSet[] {
WsUtility.newNamedValueSet(moveDef) };

Item[] doc = fm.move(new long[] { document.getId() }, null, moveDefs);

// document attribute request
AttributeRequest[] doc_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH) };

WsUtility.log("move document attributes");
WsUtility.log(WsUtility.INDENT, cm.getItem(doc[0].getId(), doc_attr));

}

Deleting Documents and Folders
Deleting documents and folders involves moving them to the trash, and then emptying
the trash. The trash is simply a folder with a special designation as the TRASH_
FOLDER, so moving a document or folder only requires the use of the FileManager.
The trash belongs to the Library containing the folder or document. In order to empty
the trash and thus delete the folders or documents permanently, you will need to use
the TrashManager. To empty the trash, call the emptyTrash() method, and pass in
the ID of the trash folder.

This example also uses the CommonManager, which allows you to retrieve any kind of
item, provided the logged-in user has permission, using the getItem() method.
Using the CommonManager, you can retrieve the Item corresponding to the document
to delete. The getItem() call is also combined with an AttributeRequest to
retrieve the Item corresponding to the trash folder.

/**
 * Deletes a Document and empties the Trash.
 */
public static void deleteDocument(Item document)

throws RemoteException, FdkException
{

// get the Manager instances
CommonManager cm = s_WsCon.getCommonManager();
FileManager fm = s_WsCon.getFileManager();
TrashManager tm = s_WsCon.getTrashManager();

Running the Code

5-4 Oracle Content Services Application Developer’s Guide

// TRASH_FOLDER AttributeRequest array
AttributeRequest[] trash_attr =

WsUtility.newAttributeRequestArray(Attributes.TRASH_FOLDER);

// get TRASH_FOLDER attribute
document = cm.getItem(document.getId(), trash_attr);
NamedValue[] attrs = document.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
Item trashItem = (Item) attrMap.get(Attributes.TRASH_FOLDER);

// delete the Document and empty the Trash
fm.delete(new long[] { document.getId() }, null, null);
tm.emptyTrash(trashItem.getId());

}

Running the Code
To run the code, connect to a Oracle Content Services instance and call the document
and folder methods. Remember to log out of the Web Services instance using the
logout() method of the WsConnection class.

private static WsConnection s_WsCon;

public static void main(String[] args)
{

try
{

// get property object
Properties prop = WsUtility.getProperty(args[0]);

// URL to content services web services servlet
String serverUrl = "http://" + prop.getProperty("hostname") + ":"

+ prop.getProperty("port") + "/content/ws";

// authenticate to content services
s_WsCon = WsConnection.login(serverUrl, prop.getProperty("user"),

prop.getProperty("password"));

try
{

// log-in to user's personal workspace
FileManager fm = s_WsCon.getFileManager();
Item workspace = fm.resolvePath(prop.getProperty("userhome"), null);

// create folders
Item folder1 =

createFolder("firstFolder", "This is the 1st folder", workspace);
Item folder2 =

createFolder("secondFolder", "This is the 2nd folder", workspace);

// create document
Item document =

createDocument("myDoc", "This is an example doc", folder1);

// move document to second folder
moveDocument(document, folder2);

// copy document to first folder
copyDocument(document, folder1);

Running the Code

Oracle Content Services Document Operations 5-5

// delete document
deleteDocument(document);

// delete objects
cleanup(folder1, folder2);

}
finally
{

s_WsCon.logout();
}

}
catch (Throwable t)
{

t.printStackTrace();
}

}

/**
 * Delete created objects
 */
public static void cleanup(Item folder, Item folder1)

throws FdkException, RemoteException
{

// get the Manager instances
CommonManager cm = s_WsCon.getCommonManager();
FileManager fm = s_WsCon.getFileManager();
TrashManager tm = s_WsCon.getTrashManager();

// TRASH_FOLDER AttributeRequest array
AttributeRequest[] trash_attr =

WsUtility.newAttributeRequestArray(Attributes.TRASH_FOLDER);

// get TRASH_FOLDER attribute for folder
folder = cm.getItem(folder.getId(), trash_attr);
NamedValue[] attrs = folder.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
Item trashItem = (Item) attrMap.get(Attributes.TRASH_FOLDER);

// delete the folder and empty the Trash
fm.delete(new long[] { folder.getId() }, null, null);
tm.emptyTrash(trashItem.getId());

// get TRASH_FOLDER attribute for folder1
folder1 = cm.getItem(folder1.getId(), trash_attr);
attrs = folder.getRequestedAttributes();
attrMap = ClientUtils.namedValuesToMap(attrs);
trashItem = (Item) attrMap.get(Attributes.TRASH_FOLDER);

// delete the folder and empty the Trash
fm.delete(new long[] { folder1.getId() }, null, null);
tm.emptyTrash(trashItem.getId());

}

Running the Code

5-6 Oracle Content Services Application Developer’s Guide

Attribute Requests 6-1

6
Attribute Requests

Attribute requests are a commonly used feature when developing for Oracle Content
Services. Attribute requests tell Oracle Content Services to return a set of attributes
about a specific Item in the repository. The request is given when performing an
action on that Item, and is returned in an array of AttributeRequest objects. The
examples in this book have all used basic attribute requests to retrieve simple piece of
data. Attributes, however, can be nested, allowing the creation of more complex data
structures for attribute requests. The following example shows how to request and
retrieve a nested attribute structure.

6.1 Chaining Attribute Requests
In the case where attributes are composed of multiple values, attribute requests must
be nested or chained. Chaining attribute requests allows retrieval of an entire tree of
related objects in one call. Consider the following example, which sets version
numbers on a folder:

/**
* Set manual and auto version on folder
*/
public static void setVersion(Item folder)

throws FdkException, RemoteException
{

// get the Manager instances
CommonManager cm = s_WsCon.getCommonManager();
VersionManager vm = s_WsCon.getVersionManager();

// create auto version configuration definition
NamedValue[] autoVerDef = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.VERSIONING_CONFIGURATION_AUTO_LABEL, Boolean.TRUE },
{ Attributes.VERSIONING_CONFIGURATION_AUTO_VERSION, Boolean.TRUE },
{ Attributes.VERSIONING_CONFIGURATION_MAX_VERSIONS, new Integer(1000) },
{ Attributes.CONFIGURATION_FINAL, Boolean.FALSE },
{ Attributes.CONFIGURATION_ENABLED, Boolean.TRUE } });

// set auto version configuration on the folder
vm.setVersioningConfiguration(folder.getId(), autoVerDef);

// The version attributes request
// This requests the attributes of the folder, and nests
// the attributes to be retrieved from the versioning configuration
// of the folder
AttributeRequest[] fdr_ver_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH),
WsUtility.newAttributeRequest(Attributes.DESCRIPTION),

Chaining Attribute Requests

6-2 Oracle Content Services Application Developer’s Guide

// nest the attributes of the versioning configuration
WsUtility.newAttributeRequest(Attributes.VERSIONING_CONFIGURATION,

WsUtility.newAttributeRequestArray(new String[] {
Attributes.VERSIONING_CONFIGURATION_AUTO_LABEL,
Attributes.VERSIONING_CONFIGURATION_AUTO_VERSION,
Attributes.VERSIONING_CONFIGURATION_MAX_VERSIONS,
Attributes.CONFIGURATION_ENABLED })) };

// requesting folder version attributes
// use the CommonManager to get the attributes of an Item
folder = cm.getItem(folder.getId(), fdr_ver_attr);

// returned item has the requested attributes in a NamedValue[]
// convert it to a map for easy lookup and access to attributes
NamedValue[] attrs = folder.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
WsUtility.log("");

// attributes name and value
WsUtility.log(Attributes.PATH);
// PATH attribute
WsUtility.log(WsUtility.INDENT + (String) attrMap.get(Attributes.PATH));

WsUtility.log(Attributes.DESCRIPTION);
WsUtility.log(WsUtility.INDENT

+ (String) attrMap.get(Attributes.DESCRIPTION));

WsUtility.log(Attributes.VERSIONING_CONFIGURATION);
// VERSIONING_CONFIGURATION is again an Item which will have the nested

attributes
// that we requested for
Item verItem = (Item) attrMap.get(Attributes.VERSIONING_CONFIGURATION);

// again we get these as NamedValue[]
// convert it to a map for easy lookup
attrs = verItem.getRequestedAttributes();
attrMap = ClientUtils.namedValuesToMap(attrs);

WsUtility.log(WsUtility.INDENT

+ Attributes.VERSIONING_CONFIGURATION_AUTO_LABEL);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ (Boolean) attrMap.get(Attributes.VERSIONING_CONFIGURATION_AUTO_LABEL));

WsUtility.log(WsUtility.INDENT
+ Attributes.VERSIONING_CONFIGURATION_AUTO_VERSION);

WsUtility.log(WsUtility.INDENT
+ WsUtility.INDENT
+ (Boolean) attrMap.get(

Attributes.VERSIONING_CONFIGURATION_AUTO_VERSION));

WsUtility.log(WsUtility.INDENT
+ Attributes.VERSIONING_CONFIGURATION_MAX_VERSIONS);

WsUtility.log(WsUtility.INDENT
+ WsUtility.INDENT
+ (Integer) attrMap.get(

Attributes.VERSIONING_CONFIGURATION_MAX_VERSIONS));

WsUtility.log(WsUtility.INDENT + Attributes.CONFIGURATION_ENABLED);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ (Boolean) attrMap.get(Attributes.CONFIGURATION_ENABLED));

Chaining Attribute Requests

Attribute Requests 6-3

}

The attribute request stored in the array fdr_ver_attr is an example of a nested
attribute request. The attribute VERSIONING_CONFIGURATION contains multiple
sub-attributes, all of which are stored in a subarray of the original request. Oracle
Content Services can produce attributes for any level of nesting.

Reading nested attributes follows the same process as regular attributes. Since each
nested attribute is itself a fully formed attribute request, you can use the
getRequestedAttributes method on its Item object.

Note that the examples use the WsUtility class, which is included with the samples.
This class contains many convenient wrappers for simple operations such as object
instantiation and logging. These wrappers are used primarily for the sake of
readability, and are not necessary.

Below is a second example, featuring two levels of nesting. The nested attribute
request extracts attributes for a document, one of which is the nested VERSIONS
attribute. For each version, the request fetches information about that versioned
document, as well as the nested VERSIONED_DOCUMENT attribute. This attribute
contains information about the versioned document itself. The entire structure is
returned in the docs variable, converted to a Map, and extracted.

/**
* Checks in a Document.
*/
public static void checkinDocument(Item workingCopy)

throws FdkException, RemoteException
{

// get the Manager instances
CommonManager cm = s_WsCon.getCommonManager();
VersionManager vm = s_WsCon.getVersionManager();

// create checkin document definition
// set a label and comment while checking in
NamedValue[] checkInDef = WsUtility.newNamedValueArray(new Object[][] {

{ Attributes.VERSION_COMMENT, "a new version" },
{ Attributes.VERSION_LABEL, "2.0" } });

NamedValueSet[] checkInDefs = new NamedValueSet[] {

WsUtility.newNamedValueSet(checkInDef) };

// check in the document
vm.checkin(new long[] { workingCopy.getId() }, null, checkInDefs, null);

// request for the attributes of the document
// we look for the document’s attributes,
// attributes for different versions of this document
// and for each version we get the details of the version
AttributeRequest[] doc_ver_attr = new AttributeRequest[] {

WsUtility.newAttributeRequest(Attributes.PATH),
WsUtility.newAttributeRequest(Attributes.DESCRIPTION),
// request for the version details
WsUtility.newAttributeRequest(Attributes.VERSIONS,

new AttributeRequest[] {
WsUtility.newAttributeRequest(Attributes.VERSION_LABEL),
WsUtility.newAttributeRequest(Attributes.VERSION_COMMENT),
WsUtility.newAttributeRequest(Attributes.VERSIONED_DOCUMENT,

// request for attributes of each version
new AttributeRequest[] {
WsUtility.newAttributeRequest(Attributes.DESCRIPTION),

Chaining Attribute Requests

6-4 Oracle Content Services Application Developer’s Guide

WsUtility.newAttributeRequest(Attributes.DOCUMENT_LANGUAGE),
WsUtility.newAttributeRequest(Attributes.CHARACTER_SET) })

}) };

// fetch the attributes via the CommonManager
Item docs = cm.getItem(workingCopy.getId(), doc_ver_attr);

// the returned item has the requested attributes in a NamedValue[]
// convert it to a map for easy lookup and access to attributes
NamedValue[] attrs = docs.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
WsUtility.log("");

// the document’s attributes
WsUtility.log(Attributes.PATH);
WsUtility.log(WsUtility.INDENT + (String) attrMap.get(Attributes.PATH));

WsUtility.log(Attributes.DESCRIPTION);
WsUtility.log(WsUtility.INDENT

+ (String) attrMap.get(Attributes.DESCRIPTION));

WsUtility.log(Attributes.VERSIONS);
// these are the different versions of the document
Item[] verItem = (Item[]) attrMap.get(Attributes.VERSIONS);
for (int i = 0; i < verItem.length; i++)
{

// get second level of attributes
attrs = verItem[i].getRequestedAttributes();
attrMap = ClientUtils.namedValuesToMap(attrs);

WsUtility.log(WsUtility.INDENT + Attributes.VERSION_LABEL);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ (String) attrMap.get(Attributes.VERSION_LABEL));

WsUtility.log(WsUtility.INDENT + Attributes.VERSION_COMMENT);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ (String) attrMap.get(Attributes.VERSION_COMMENT));

WsUtility.log(WsUtility.INDENT + Attributes.VERSIONED_DOCUMENT);
// for each version the attributes of those documents that were versioned
Item docItem = (Item) attrMap.get(Attributes.VERSIONED_DOCUMENT);

// get third level of attributes
attrs = docItem.getRequestedAttributes();
attrMap = ClientUtils.namedValuesToMap(attrs);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ Attributes.DESCRIPTION);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT + WsUtility.INDENT

+ (String) attrMap.get(Attributes.DESCRIPTION));

WsUtility.log(WsUtility.INDENT + WsUtility.INDENT
+ Attributes.DOCUMENT_LANGUAGE);

WsUtility.log(WsUtility.INDENT + WsUtility.INDENT + WsUtility.INDENT
+ (String) attrMap.get(Attributes.DOCUMENT_LANGUAGE));

WsUtility.log(WsUtility.INDENT + WsUtility.INDENT

+ Attributes.CHARACTER_SET);
WsUtility.log(WsUtility.INDENT + WsUtility.INDENT + WsUtility.INDENT

+ (String) attrMap.get(Attributes.CHARACTER_SET));
}

NamedValue and NamedValueSet

Attribute Requests 6-5

}

6.2 NamedValue and NamedValueSet
Every Item object has a getRequested Attributes method returns the attribute set in
an array of NamedValue objects. The NamedValue class represents a name/value
pair. In Oracle Content Services this class is used to represent attributes, options, and
preferences. When working with a returned NamedValue array, it is often easier to
convert it to a Map to allow lookups by attribute name. The preceding examples use
the namedValuesToMap method (found in the included ClientUtils class), which
returns a Map object comprising all the elements of the NamedValue array, with the
name elements as key. Another option is to use the NamedValueSet class, which
stores arrays of NamedValue objects. This class is used primarily to avoid the need to
manage multi-dimensional arrays of attributes.

NamedValue and NamedValueSet

6-6 Oracle Content Services Application Developer’s Guide

Uploading and Downloading Using Web Services 7-1

7
Uploading and Downloading Using Web

Services

Oracle Content Services allows you to post and retrieve documents between a client
and a Web Services instance using the DAV (Distributed Authoring and Versioning)
protocol.

For this example, you will need the following managers:

■ File Manager - For creating a file on the Web Services instance when uploading,
and resolving folder names

■ Session Manager - for maintaining the Manager sessions

You will also need to use the HTTPConnection class to connect to the DAV server
when uploading and downloading. This class is included as part of the iAS
HTTPClient library.

Uploading
The first step in uploading a document to the server is to create a new
DocumentDefinition Item on the server. To do this, use the
FileManager.createDocumentDefinition() method, which creates a
DOCUMENT_DEFINITION Item on the server. This Item acts as a placeholder for a
Document prior to uploading its contents. Pass an AttributeRequest to the
FileManager method call to retrieve the fully resolved URL (Attributes.URL) of this
Document. This URL is later used to upload the content.

/**
 * Creates a new Document with the specified content.
 */
public static Item uploadDocument(String folderPath, String docName,

byte[] content) throws FdkException, IOException, ModuleException
{

// get the Manager instance
FileManager fm = s_WsCon.getFileManager();

// create an AttributeRequest[] for the URL attribute
AttributeRequest[] urlAR =

WsUtility.newAttributeRequestArray(Attributes.URL);

// create a DOCUMENT_DEFINITION Item
// -> a temporary, persistent document definition into which content
// can be uploaded using HTTP
// -> notice that we request the URL attribute for the Item that is
// returned; we will use the URL to upload contents to the docDef
Item docDef = fm.createDocumentDefinition(

Uploading

7-2 Oracle Content Services Application Developer’s Guide

WsUtility.newNamedValueArray(new Object[][] {
{ Attributes.NAME, docName } }), urlAR);

Now that the placeholder document exists, open an HTTP connection to it using the
URL returned by the AttributeRequest, and transfer the data using the
HTTPConnection.put() method.

For convenience, this section uses the ClientUtils class, which is a set of data type
operators and utility methods for Web Services clients. To extract the URL attribute, a
Map is created from the requested attribute set using the
ClientUtils.namedValuesToMap method, and the URL retrieved using the
Map.get method. This technique offers the advantage of being able to retrieve the
attributes by name, instead of having to iterate over the array.

This example also uses a helper method called createHttpConnection(), which is
explained at the end of this section.

// get the URL attribute from the docDef Item
NamedValue[] attrs = docDef.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
String docUrl = (String) attrMap.get(Attributes.URL);
URL url = new URL(docUrl);

// upload content into docDef using HTTP
HTTPConnection httpCon = createHttpConnection(url);
HTTPResponse rsp = httpCon.Put(url.getFile(), content);

// check the response
if (rsp.getStatusCode() >= 300)
{

System.err.println("Error: " + rsp.getReasonLine());
}

Once the content is uploaded, create the final document using the FileManager by
passing in the destination folder and the document definition. The USE_SAVED_
DEFINITION option instructs the FileManager to use the newly created document
definition (docDef) as the basis for this new document.

// create the Document using the docDef
Item folder = fm.resolvePath(folderPath, null);
Item newDoc = fm.createDocument(
WsUtility.newNamedValueArray(new Object[][] {

{ Options.DESTFOLDER, new Long(folder.getId()) },
{ Options.USE_SAVED_DEFINITION, new Long(docDef.getId()) } }), null,

urlAR);

return newDoc;
}

Now, the helper method:

/**
 * Creates an HttpConnection ready to be used for uploading and downloading.
 */
private static HTTPConnection createHttpConnection(URL url)

throws ProtocolNotSuppException
{

// create the HTTPClient cookie, using the session cookie
// -> we specify "/content" as the cookie path because

Downloading

Uploading and Downloading Using Web Services 7-3

 // it is always first in Oracle Content Services URLs
String[] sessionCookies = s_WsCon.getSessionCookie();
String sessionCookie = sessionCookies[0];
Cookie cookie = new Cookie("c1", sessionCookie, url.getHost(), "/content",

null, false);

// create a context object and add the cookie to it
Object ctx = new Object();
CookieModule.addCookie(cookie, ctx);

// create an HttpConnection to the Document and set its context
HTTPConnection httpCon = new HTTPConnection(url);
httpCon.setContext(ctx);

// turn off interactive mode
httpCon.setAllowUserInteraction(false);

return httpCon;

}

To upload a file, you must create a cookie for the given domain and path in order to
keep the session alive while transferring data. Since you will be using the Java
HTTPConnection library to upload the file, pass the cookie and a new context object
to the CookieModule. This context will be associated with the session, and can then
be passed to the HTTPConnection to maintain session information.

Finally, open a connection to the URL, pass the context to the connection, and turn off
user interaction to prevent any HTTP user prompts. The returned HTTPConnection
is then used to make a PUT call to pass the contents into the remote file.

Downloading
The process for downloading a file is similar to uploading, except that you must use
the HTTPConnection.get() method. Also, there is no need to create a document;
simply download the content into an HTTPResponse object, and pass the
downloaded bytes into a stream.

/**
 * Downloads and prints the document content.
 */
public static void downloadDocument(Item doc)

throws FdkException, IOException, ModuleException
{

// get the URL attribute from the docDef Item
NamedValue[] attrs = doc.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
String docUrl = (String) attrMap.get(Attributes.URL);
URL url = new URL(docUrl);

// download the document content using HTTP
HTTPConnection httpCon = createHttpConnection(url);
HTTPResponse rsp = httpCon.Get(url.getFile());

// check the response
if (rsp.getStatusCode() >= 300)
{

WsUtility.log("Error: " + rsp.getReasonLine());
}

Running the Code

7-4 Oracle Content Services Application Developer’s Guide

// write downloaded content in the file
WsUtility.log("write downloaded content in the file:");
InputStream content = rsp.getInputStream();
FileOutputStream fos = new FileOutputStream(s_Prop.getProperty("outputfile"));
int c = -1;
while ((c = content.read()) != -1)
{

fos.write(c);
}

}

Running the Code
To run the code, connect to an Oracle Content Services instance and call the upload
and download methods. Remember to log out of the Web Services instance using the
logout() method of the WsConnection class.

private static WsConnection s_WsCon;

public static void main(String[] args)
{

try
{

// get property object
s_Prop = WsUtility.getProperty(args[0]);

// URL to content services web services servlet
String serverUrl = "http://" + s_Prop.getProperty("hostname") + ":"

+ s_Prop.getProperty("port") + "/content/ws";

// authenticate to content services
s_WsCon = WsConnection.login(serverUrl, s_Prop.getProperty("user"),

s_Prop.getProperty("password"));

try
{

// read the content from file to upload
FileInputStream fis = new FileInputStream(

s_Prop.getProperty("inputfile"));
int len = fis.available();
byte[] content = new byte[len];
fis.read(content);

// create a document using the content
Item doc = uploadDocument(s_Prop.getProperty("userhome"),

"testDoc.txt",
content);

// download and show the document's contents
downloadDocument(doc);

// delete objects
cleanup(doc);

}
finally
{

s_WsCon.logout();
}

}
catch (Throwable t)

Running the Code

Uploading and Downloading Using Web Services 7-5

{
t.printStackTrace();

}
}

The helper method for cleaning up method is listed below.

/**
 * Deletes created objects.
 */
public static void cleanup(Item document)

throws FdkException, RemoteException
{

// get the Manager instances
CommonManager cm = s_WsCon.getCommonManager();
FileManager fm = s_WsCon.getFileManager();
TrashManager tm = s_WsCon.getTrashManager();

// TRASH_FOLDER AttributeRequest array
AttributeRequest[] trash_attr =

WsUtility.newAttributeRequestArray(Attributes.TRASH_FOLDER);

// get TRASH_FOLDER attribute
document = cm.getItem(document.getId(), trash_attr);
NamedValue[] attrs = document.getRequestedAttributes();
Map attrMap = ClientUtils.namedValuesToMap(attrs);
Item trashItem = (Item) attrMap.get(Attributes.TRASH_FOLDER);

// delete the document and empty the Trash
fm.delete(new long[] { document.getId() }, null, null);
tm.emptyTrash(trashItem.getId());

}

Running the Code

7-6 Oracle Content Services Application Developer’s Guide

Oracle Content Services Versioning 8-1

8
Oracle Content Services Versioning

Oracle Content Services provides a way to version items. Versioning tracks changes
made to the content and metadata of an item throughout its life cycle, and allows users
to see and revert to older versions of the item.

Versioning in Oracle Content Services
Oracle Content Services allows an administrator to choose the right balance between
user requirements, system resources, and performance. Tracking every version of
every document in the system can stress the system’s resources, so it is important for
administrators to be able to control the specifics of the versioning configuration. To
allow better control, Oracle Content Services allows customizing of the versioning
policy at the site, Library, Container, or Folder level.

Versioning Policies
Oracle Content Services can create a new version of a document whenever a
modifying operation is performed on an existing document such as an
FileManager.updateDocument call, upon creation of a new document (with a
FileManager.createDocument call), or as part of a copy or move operation (with
a FileManager.copy or move call).

Versioning policy can be set for the entire site, or it can be set at a lower level, such as
on a Library, Container, or folder. There are three versioning strategies: automatic,
manual, and none.

With automatic versioning enabled, performing an operation that would cause an
existing document to be modified (such as a copy, move, update, or create operation)
will create a new version of that document. If the existing document was not
versioned, two versions of the document will exist. Otherwise, the version count on
the document will increment by 1. Any createDocument call requires write access
on the destination, and the destination cannot be locked (for example, the document
could be locked if explicitly checked out by another user, or it could be locked as part
of a workflow process). With automatic versioning enabled, explicit checking-out of a
document is optional.

With manual versioning enabled, changing a document in the system will fail unless
the document has been explicitly checked out by the calling user. If a different user has
checked out the document, you will have to wait until the document becomes
available. The VersionManager.checkoutDocuments method allows you to check
out one or more documents, providing you have permissions on the folder to do so.

Versioning in Oracle Content Services

8-2 Oracle Content Services Application Developer’s Guide

Versioning can also be disabled entirely. In this case, any operation that would cause
an existing document to be modified (such as a copy, move, update, or create
operation) will overwrite the existing document’s content and metadata.

Versioning Configuration
The default versioning policy for an Oracle Content Services instance is "no
versioning". The versioning policy can be set at the site, Library, Container, or folder
level, and all its descendants will inherit the policy by default. A descendant can
override the inherited versioning policy only if the CONFIGURATION_FINAL attribute
was set to false on the original policy. To prevent descendants from overriding the
versioning policy, set that policy’s CONFIGURATION_FINAL attribute to true.

Setting the versioning policy at the site level must be done in administrator mode,
whereas setting the policy on a Library, Container, or folder only requires the
appropriate permissions on the object.

The versioning policy also dictates the maximum number of versions to store, by
setting the VERSIONING_CONFIGURATION_MAX_VERSIONS attribute. Any updates
to the version count will be checked against this number, and when exceeded, the
oldest stored version will be deleted. However, if a version is set with the DO_NOT_
PURGE flag set to true, it will not count against the maximum version count. In other
words, VERSIONING_CONFIGURATION_MAX_VERSIONS refers to the number of
versions to keep which have DO_NOT_PURGE set to false. These criteria typically refer
to versions created by an automatic versioning policy. The DO_NOT_PURGE flag of a
version can be changed at any time with the updateVersion method of the
VersionManager.

Versions are assigned comments and labels. Comments describe the version, and the
label indicates the version number. The VERSIONING_CONFIGURATION_LABEL_
TYPE attribute determines what kind of label a version gets (numbers, letters, or
Roman numerals). By default, Oracle Content Services will assign the labels
automatically according to the label type. To change how labels are assigned, set the
VERSIONING_CONFIGURATION_AUTO_LABEL attribute to false.

Rolling back to an older version of a document involves copying the older version
onto the latest version using the VersionManager.copyToLatestVersion
method. Similarly, to download a working copy of any version in the item’s version
history, use the copyToWorkingCopy method, and supply the ID of the version.

Conflict Resolution
When uploading new of versions files which have previously been versioned, the
possibility for a naming or versioning conflict arises. Oracle Content Services offers
two ways of handling a conflict.

The first way is to set options on the file describing the resolution policy at the time of
its creation. These options are passed inside the createDocument method of the
FileManager. The options are:

■ Options.NEWVERSION - this option ensures that when uploading to a folder with
manual or automatic versioning configuration, a new version will always be
created on upload. There is no need to explicitly check out the document before
uploading.

■ Options.UNIQUENAME - this option ensures that each upload will produce a
unique name, so that no file will ever be overwritten. Thus, attempting to upload
an existing filename will result in a slightly modified new filename.

Versioning in Oracle Content Services

Oracle Content Services Versioning 8-3

■ Options.OVERWRITE - this option ensures that when uploading to a folder with
no versioning policy, any existing item with the same name will automatically be
overwritten.

The other way of handling a conflict is by allowing the createDocument call to
throw an exception, and processing the conflict based on the returned error. This
strategy allows more user interaction as the application can then defer to the user to
provide the correct action.

A sample exception is listed below, with the relevant error messages highlighted:

FdkException:
Error Code: ORACLE.FDK.AggregateError
Detailed Error Code: ORACLE.FDK.AggregateError
Trace Id: 33-1138800897129
info (NamedValue[]):
FdkExceptionEntry:
Id: 86842
Error Code: ORACLE.FDK.OperationError
Detailed Error Code: ORACLE.FDK.ItemAlreadyExists
Trace Id: 32-1138800897126
info (NamedValue[]):
ECM.EXCEPTIONINFO.ConflictResolutionOptions (String[])=

OPT.NEWVERSION
OPT.UNIQUENAME

ECM.EXCEPTIONINFO.ConflictingObjectId=86836 (Long)

The ConflictResolutionOptions array of the exception returns the names of the
possible conflict resolution options. Retrying the operation with one of these options
set on the transaction will increase the chance of (but not necessarily guarantee) the
success of the transaction.

Tip: Since the conflict resolution takes place at the end of the file
transaction, a user uploading a large file to the server may be forced to
upload the file again if there is a versioning conflict. To avoid this, use
a DocumentDefinition item (created by the
FileManager.createDocumentDefinition method) when
uploading so that the content of the file remains on the server even if
there is a conflict. After the content is uploaded, call
createDocument to create the file object and resolve the conflict.

Versioning in Oracle Content Services

8-4 Oracle Content Services Application Developer’s Guide

Oracle Content Services Web Services Managers 9-1

9
Oracle Content Services Web Services

Managers

Oracle Content Services Web Services consists of about two hundred operations that
can be remotely invoked. Related operations are organized into categories called
managers. A manager has its own WSDL file and Java interface in the Web Service
Java stubs library.

This chapter describes the following Oracle Content Services Web service managers:

■ ArchiveManager

■ CategoryManager

■ ContainerManager

■ DomainManager

■ FileManager

■ GroupManager

■ LockManager

■ PagingManager

■ QuotaManager

■ RecordsManager

■ RemoteLoginManager

■ RequestManager

■ SearchManager

■ SecurityManager

■ ServiceToServiceManager

■ SessionManager

■ SortManager

■ TrashManager

■ UserManager

■ VersionManager

■ VirusManager

■ WorkflowManager

■ WorkspaceManager

Reference Material

9-2 Oracle Content Services Application Developer’s Guide

Reference Material
The complete listing of service managers along with their supported operations can be
found at the URL http://<host>:<port>/content/ws with <host> and <port> values
replaced to reflect that of your own Oracle Content Services 10g instance.

Descriptions of individual operations and the parameters required for each operation
are located in the Oracle Content Services Web Services Java API Reference (Javadoc)
of the interface of the same name or the class that has implemented that interface.

Descriptions of the XML structure of each of a manager’s operations are located in the
WSDL file named after the manager at the URL
http://<host>:<port>/content/wsdl/<name of manager>.wsdl.

Document Managers
These managers provide operations for manipulating files and folders.

FileManager
The FileManager provides core document, folder, and link management capabilities.

The FileManager supports the following operations:

■ Resolve an item based on a supplied path string (the returned Item will be a
Document, Link, or Folder)

■ Resolve an item based on a supplied relative path string and source folder

■ Check to see whether an item exists based on a supplied absolute path

■ Check to see whether an item exists based on a supplied relative path string and
source folder

■ Create and return folders in the supplied destination folders

■ Update a folder

■ Return (list) items in a given folder, with optional sort criteria

■ Check to see whether an object with the given name can be created in the given
folder

■ Copy one or more specified items to a given destination folder

■ Move one or more specified items to a given destination folder

■ Delete one or more specified items (deleting a folder will delete of all its items)

■ Create one or more document definitions. (Note: These definitions are created
with empty content; to load content, perform an HTTP PUT to the WebDAV
Server.)

■ Create one or more documents, potentially using saved document definitions as
source. (Note: These documents are created with empty content; to load content,
perform an HTTP PUT to the WebDAV Server.)

■ Update a document

■ Create a link to a given item in specified destination folder (links can be made to
items of type: Domain, Container, Workspace, Folder, Document, and Family)

■ Update a link

■ Check if a given path string contains any link items

Reference Material

Oracle Content Services Web Services Managers 9-3

■ Get supported languages

■ Get supported character sets

■ Return most recent documents for connected user, with optional sort criteria (the
MostRecentDocAgent is responsible for maintaining users’ most recent document
statistics)

■ Uncompress supplied items

■ Get name conflict resolution options

■ Create documents, document definitions, folders and links

■ Get a list of supported languages or character sets

TrashManager
The TrashManager provides trash folder operations. All workspaces (including
personal workspaces) come with a trash folder that, if enabled, stores deleted items.

The TrashManager supports the following operations:

■ Empty the specified trash folder

■ Configure the specified trash folder. This includes enabling or disabling it,
enabling or disabling the auto-empty feature, and setting the minimum holding
period before the trash folder purges itself (when the auto-empty feature is
enabled).

ArchiveManager
The ArchiveManager provides archive operations. When a trash folder is emptied, its
contents can be moved to a special area in the repository known as an archive. Each
domain has its own archive that is accessible by content administrators.

The ArchiveManager supports the following operations:

■ Empty an archive

■ Restore an item from the archive, or make a request to a content admininstrator to
restore an item

■ Configure an archive. An archive can be enabled or disabled, set to automatically
empty itself, and have a minimum holding period for its contents.

Document Processing Managers
These managers handle how documents are listed, accessed, and categorized.

SortManager
The SortManager sets user’s default sort preferences for the following tables used by
the Oracle Content Services application. These tables are defined in the
FdkConstants class in the Web services Java API. These tables include:

■ fileListingTable

■ versionHistoryTable

■ joinableWorkspacesTable

Note: Content upload/download is handled by standard HTTP
PUT/GET, not Web service attachments.

Reference Material

9-4 Oracle Content Services Application Developer’s Guide

■ lockedFilesTable

■ userSearchResultsTable

■ checkedOutFilesTable

■ workflowReportTable

■ virusNamesTable

■ recentFilesTable

■ groupMemberList

■ groupMembers

■ memberListingTable

■ rolesTable

■ securityConfigTable

■ selectedUsersOrGroupsTable

■ usersOrGroupsTable

In addition, many Web services operations that return item arrays support setting the
sort sequence as part of their operation parameters.

The SortManager supports the following operations:

■ Set the user's sort preference for the specified table

■ Obtain the user's primary or secondary sort attribute for the specified table

■ Obtain the user's primary or secondary sort direction (ascending or decending) for
the specified table

■ Sort an array or a list of items (where the array of items are an attribute of the
specified item)

SearchManager
The SearchManager provides the ability to search for documents, with the use of a
SearchExpression tree. This is a complex type object that consists of two operands, left
operand and right operand, which are associated by a specified operator. Depending
on the type of operator, the left and/or right operands may themselves be
SearchExpression nodes. This enables one to build a complex SearchExpression tree.
The following table describes the operators and supported by SearchExpression:

Table 9–1 Operators Supported by SearchExpression

Operator Syntax Notes and Examples

EQUAL

GREATER_
THAN

GREATER_
THAN_EQUAL

LESS_THAN

LESS_THAN_
EQUAL

NOT_EQUAL

IN

Left operand is the string name of the
attribute being compared. Right
operand is the value being compared,
represented as a String, Integer, Long,
or Date.

Wildcard characters "*" and "?" are
supported only for the EQUAL
comparison operator so long as
comparing an attribute with datatype
String.

Example:

SIZE GREATER_THAN 1048576
NAME EQUAL *.doc

Reference Material

Oracle Content Services Web Services Managers 9-5

A Search is invoked by supplying SearchManager's search operation with a
SearchExpression tree along with zero or more optional search options.

The SearchManager supports the following operations:

■ Restrict search to one or more specified folders (including optionally sub-folders)

■ Include or exclude non-current versions of a versioned document from being
searched

■ Set the start index for the first item in the server's search result array that should
be returned. (Default is 1, which means to return all items from the search result
array starting from the very first search result)

■ Limit the number of items returned back to the client from the server's search
result array

LockManager
The LockManager provides operations for working with Locks, which prevent outside
changes from occurring on an item that is currently being worked on. The repository
will automatically deploy certain types of locks transparently when a caller requests
specific types of operations (for example, a checkout call). Certain client applications
such as Microsoft Office that have native WebDAV support often will also request a
DAV lock during the course of editing a supported document type.

The LockManager supports the following operations:

■ Acquire a manual lock on one or more items

■ Release a manual lock on one or more items

■ Return a list of items locked by the current user that match the specified lock
type(s), for example, manual lock or WebDAV lock.

CONTAINS Left operand must be null, Right
operand specifies words or phrases
to be found in content of a document.

Words are specified by spaces, and
phrases are enclosed in double
quotes (").

Example: <NULL> CONTAINS
"Content Services"

AND Left and Right operands must
themselves be SearchExpressions

(SIZE GREATER_THAN 1048576)
AND (NAME EQUAL *.doc)

OR Left and Right operands must
themselves be SearchExpressions

(SIZE GREATER_THAN 1048576)
AND (NAME EQUAL *.doc)

NOT Left operand must be null, Right
operand must be a SearchExpression

<NULL> NOT (((SIZE GREATER_
THAN 1048576) AND (NAME
EQUAL *.doc))

Lock Type Constants from
oracle.ifs.fdk.FdkConstants Value

LOCKTYPE_MANUAL 1

LOCKTYPE_CHECKOUT 2

LOCKTYPE_FINALIZED 3

LOCKTYPE_WORKFLOW 4

Table 9–1 (Cont.) Operators Supported by SearchExpression

Operator Syntax Notes and Examples

Reference Material

9-6 Oracle Content Services Application Developer’s Guide

VersionManager
The VersionManager tracks changes made to an item's content and metadata
throughout its lifecycle. Tracking every revision of every document in the system is
expensive from a system resources perspective, though potentially a requirement for
certain businesses. However, Oracle Content Services allows an administrator to
choose the right balance between user requirements, system resources, and
performance.

A folder can have the following versioning configuration settings:

■ Whether manual or automatic version should be applied to items in the folder

■ If automatic versioning is being used, whether to enforce a limit on the number of
revisions maintained

■ Whether the versioning configuration is final: subfolders cannot override the
versioning configuration

Oracle Content Services uses a serial versioning model. The server maintains a single
version series for each versioned document. To manually create a new version of a
document, the following steps occur:

1. The author checks out the document.

2. The server makes a working copy of the latest version (including both content and
metadata). This server-resident working copy is accessible only to the user who
checked out the document.

3. A lock is also issued to prevent other authors from checking out the versioned
document.

4. When the author is finished making changes to the working copy, he or she checks
in the document.

5. A new version of the document is created. The new version becomes the latest
version of the document, and like any document version, is immutable and cannot
be further updated.

6. The lock acquired at check-out is then released, allowing other users to check-out
the document and the working copy object is destroyed.

The VersionManager supports the following operations:

■ Check out a set of items

■ Cancel check out for a set of items

■ Copy a specified version to another folder, to the working copy, or as the latest
version

■ Move a specified version to another directory

■ Delete a specified version so that it is no longer part of the version histroy

■ Retrieve an item’s versions

LOCKTYPE_RECORD 5

LOCKTYPE_FAMILYHASRECORD 6

LOCKTYPE_DAV 7

Lock Type Constants from
oracle.ifs.fdk.FdkConstants Value

Reference Material

Oracle Content Services Web Services Managers 9-7

■ Check in a set of items

■ Update a version-controlled item’s attributes (such as version comments, the
version label, and the do_not_purge flag)

■ Make a non version-controlled document versioned

■ Replace or remove the versioning configuration of a folder

VirusManager
The VirusManager scans and potentially repairs documents for viruses. Oracle
Content Services ships a default virus scanning adapter that uses Symantec AntiVirus
Scan Engine (SAVSE) using ICAP 1.0.

An asynchronous background agent, VirusScanAgent, regularly polls the virus
scanning adapter to determine if a new virus definition build is available. When a
new virus definition is detected, the system domain property
IFS.DOMAIN.VIRUSSCANNER.LastVirusDefinitionUpdate is modified
accordingly.

The scanning process is on-demand. The following events occur when a document is
requested:

1. The system looks at the metadata associated with that document to determine
whether a virus scan needs to be performed. Associated with each document is a
LAST_SCANNED_DEFINITION_DATE attribute, which tracks the virus definition
timestamp that was last used to scan the document. If this attribute is null or
older than the LastVirusDefinitionUpdate domain property, then the document's
contents are scanned. (Otherwise, the document contents are immediately
returned.)

2. Depending on the result of the scan, the document’s contents are either returned to
the user if a virus have been detected (or a repair was successful), or else an error
is returned and the document is quarantined. The LAST_SCANNED_DEFINITION_
DATE is also updated to reflect the new virus definitions that were utilized.

The following events occur when a document is quarantined:

1. The document’s IS_QUARANTINED and QUARANTINED_DATE attributes are
updated.

2. VirusScanAgent receives an event alerting it of the infected document.

3. The agent attempts to repair quarantined documents that have a REPAIR_
ATTEMPTS value less than the domain property
IFS.DOMAIN.VIRUSSCANNER.MaxRepairAttempts and LAST_SCAN_
DEFINITION_DATE older than the LastVirusDefinitionUpdate domain property.

4. The agent creates a VirusReport (Category Instance) that is associated with the
quarantined document after the repair attempt.

Documents under quarantine have the following properties and behaviors:

■ Document objects themselves will be unaffected by quarantine status (in
particular, metadata can still be viewed or modified)

■ Contents cannot be opened for read access under any circumstances. Attempts will
result in an exception. Contents will remain unreadable even if the anti-virus
option is disabled.

■ Contents may be overwritten.

■ Documents and their contents may be deleted.

Reference Material

9-8 Oracle Content Services Application Developer’s Guide

■ Documents will not have specific infection information available until the
VirusScanAgent attempts to repair it.

The VirusManager supports the following operations:

■ Scan specified items

■ Attempt to repair specified items

■ Retrieve the virus report for a specified item that was sent for repair

■ Retrieve the currently known timestamp of the last virus definition update

RecordsManager
The RecordsManager provides a way to define the lengh of time certain documents
should be stored, and how to destroy these documents after this length of time, or
retention period, has elasped.

This manager provides the following operations:

■ Create a file plan

■ Create a record series under the specified file plan

■ Create a record category under the specified record series or file plan

■ Create a record folder under a record category

■ Delete a file plan (the delete will fail if there are record series or record categories
under it)

■ Delete a record series (the delete will fail if there are record categories under it)

■ Delete a record category (the delete will fail if there are any record folders or
records under it)

■ Delete a record folder (only empty record folders can be deleted)

■ Update a file plan

■ Update a record series

■ Update a record category

■ Update a record folder

■ List file plans

■ List record series under a specified file plan

■ List record categories under a specified record series or file plan

■ List record folders under a record category

■ Get a file plan that matches a specified name

■ Get a record series that matches a specified name under a specified file plan

■ Get a record category that matches a specified name under a specified file plan or
record series

■ Get a record folder that matches a specified name under a specified record
category

■ Add a record category attribute

■ Modify a record category attribute

■ Return direct children of a record management object

Reference Material

Oracle Content Services Web Services Managers 9-9

■ Make a record

■ Update a record

■ Get a recordized object given a record id

■ Unrecordize a record from a given record category or record folder

■ Set record configuration for a folder

■ Delete record configuration for a folder

■ Get a required record category for a specified folder

The RecordsManager uses the following items:

■ File Plan: Document containing the disposition authority of a set of Records. A
File Plan may contain Record Series and Record Categories.

■ Record Series: Named container for a set of Record Categories.

■ Record Category: Description of a set of Records within a File Plan. Each Record
Category has retention and disposition data associated with it that is applied to all
Record Folders and Records within it.

■ Record Folder: Extension of a Record Category used to aggregate Records by
cut-off date.

■ Record: Information, regardless of medium, controlled by a particular Record
Category.

PagingManager
The PagingManager allows control over pagination of items. When dealing with large
item arrays (such as the result of a search), certain clients may find it is more
convenient to deal with just a single "page" of items at a time. This approach is often
favored by users who have low network bandwidth.

The PagingManager supports the following operations:

■ Store a list of items in a paging list

■ Retrieve a page of items of a specified size from the paging list at a specified start
index

Note that there is only one paging list item array per session.

CategoryManager
The CategoryManager provides functions for configuring categories. Publicly
accessible repository objects such as Document and Folder can store traditional file
system metadata such as description, create_date, created_by, last_
modified_date, and last_modified_by. Custom file system metadata is
represented in Oracle Content Services by category objects.

Attributes hold the data that describes items in Oracle Content Services. Categories
contain and organize attributes, as well as contain other categories, or category
subclasses. When a specified category is applied to a document, for example, that
document will contain the attributes of that category, as well as the attributes of the
parent, or superclass, category.

A category configuration may be applied to a folder. This specifies which categories
are required and allowed for items in that folder. It also specifies whether or not
subfolders may override the configuration, and whether or not versioning is enabled.

Reference Material

9-10 Oracle Content Services Application Developer’s Guide

For example, consider a root category called Project Category. This category contains
an attribute called Project Number and another category called Project Document
Category. This category subclass contains three attributes called Billable Material,
Document Type, and Document Reviewer. For each attribute, you can define its type,
whether or not it is required, a default value, and whether or not its default value can
be overridden. For example, Billable Material can be a boolean value whose value is
required, its default value "true", and whose default value can be overridden.

If an instance of Project Document Category is applied to an item, that item will have
the attributes of Project Document Category as well as the attributes from Project
Category.

The CategoryManager supports the following operations:

■ Create, update, and delete categories and instances of categories

■ Retrieve a list of all categories, or category subclasses of a specified category

■ Retrieve, add, modify, and remove attributes from a category.

■ Retrieve, apply, modify, and remove a category configuration for a specified folder

User and Group Managers
These managers handle users and groups.

UserManager
The UserManager supports the following operations:

■ Get a user with a specified name

■ Get and set user preferences for the current user with the specified preference keys

■ Get and set domain-level (site-level) default user preference values

■ Find provisioned users in the domain matching the specified search criteria

■ Find users in the current user’s Oracle Internet Directory (OID) that match the
specified search criteria

■ Synchronize the preferences of the current or specified user with those found in
Oracle Internet Directory

■ Search for a list of provisioned users in the current domain

■ Search for a specific user by name

GroupManager
The GroupManager allows configuration of groups. A group is a collection of users
and groups that can be managed as a single unit. Groups allow you to conveniently
and quickly assign privileges to a collection of users without having to assign them to
each user individually. Oracle Content Services groups are locally managed
application objects and distinct to OID groups, which are not directly supported in this
release. You can, however, manually provision OID groups as Oracle Content Services
groups by using the GroupManager Web service.

Two distinct lists are maintained within a Oracle Content Services group: the member
list, and the manager list. Managers may add and remove members and other
managers from the group, and rename or delete the group.

The GroupManager supports the following operations:

■ Search for, create, update, and delete groups

Reference Material

Oracle Content Services Web Services Managers 9-11

■ Add and remove members and managers from a group

SecurityManager
The SecurityManager allows granting and revoking of roles to users and groups. A
role is a set of access permissions that provide a user or a group privileges to perform
certain operations. Chapter A, "Oracle Content Services Roles" provides the list of roles
and their explicit permissions that ship out-of-the-box (OOTB) with Oracle Content
Services. Two types of roles exist: core administration roles and standard
(non-administration) roles. Some roles can be granted at a domain level, while other
roles can be granted at the container or workspace level.

The SecurityManager supports the following operations:

■ Retrieve, delete, create, and update roles

■ Retrieve the available roles in the domain that apply to a specified item or item
type

■ Update, add grants to, or remove an item’s security configuration. A security
configuration is the set of all roles granted on a specific item (such as a
workspace).

■ Retrieve the set of users that are granted a specified role on a specified security
configuration.

■ Check whether or not the specified user or group has a specified permission or a
specified role on a specified target item

Collaborative Managers
These managers help organize items in Oracle Content Services.

WorkspaceManager
The WorkspaceManager allows creation and configuration of workspaces, which are
special folders created in a Container folder to store content such as documents and
regular folders. Workspaces differ from containers and regular folders; they have a
trash folder and can have an associated quota. Two types of workspaces are available:
personal workspaces and shared workspaces. Personal workspaces are a special type
of workspace for exclusive use by a user. Shared workspaces can be used by any user
who is granted the appropriate privileges.

Workspaces must be uniquely named only within their parent container, while
workspaces in different containers may have the same name. Therefore, the correct
way to look up a workspace is by its path or unique ID.

The WorkspaceManager supports the following operations:

■ Create or delete a workspace

■ Update a workspace’s name, description, or joinable flag

■ List joinable workspaces

■ Request to join a specified workspace

ContainerManager
The ContainerManager allows creation and configuration of containers, which are
special folders in the system from which workspaces (and sub-containers) can be
created. Containers cannot contain documents, only other containers and workspaces.

Reference Material

9-12 Oracle Content Services Application Developer’s Guide

They have no quota and no trash. Containers can be created either directly under the
domain, or under a parent container object.

The ContainerManager supports creating, deleting, and updating containers.

WorkflowManager
The WorkflowManager allows configuration of workflows. For a given item (such as
an instance of a document or folder), a number of operations appropriate for the item's
type can be configured to be controlled by the workflow. The list of available
operations that can potentially be workflow controlled includes: createDocument,
checkin, copy, delete, move, createWorkspace, joinWorkspace, and increaseQuota.

A workflow configuration is used to associate a particular item instance and operation
type with a workflow item. A workflow configuration can be set to triggered
(non-blocking) or approval-based (blocking). A triggered configuration means that the
registered operation will occur right away (as if it were not workflow-driven), but a
workflow process will still be started. An approval-based configuration means that
the registered operation will not occur until the workflow process is approved.

An example of using a triggered workflow could be to capture all createDocument
(upload) requests on a folder item and use logic in the workflow to respond to this
event, such as calling a Web service, or logging the createDocument request to a file.
An example of using an approval-based workflow could be to capture all delete
requests and require that a particular responder approve the deletion of the particular
item(s).

The WorkflowManager supports the following operations:

■ return all registered workflow instances

■ set a workflow configuration on a given item for the given operation type

■ remove a workflow configuration from a given item for the given operation type

■ retrieve all workflow configurations that exist for the given item

■ retrieve workflow configuration for the given item that matches the given
operation type

■ validate that value of given workflow parameter is valid for the given workflow

DomainManager
The DomainManager allows configuration of Oracle Content Services domains. Every
instance may have one or more domains (or sites). Each domain is an organizational
entity that contains users and their content, metadata, and business rules.

The DomainManager supports obtaining the default domain and updating settings for
a specified domain.

QuotaManager
The QuotaManager limits the amount of content that can reside in a Workspace
(including users' personal workspaces).

The QuotaManager supports the following operations:

■ Update the amount of allocated quota for a specified item

■ Request an update to allocated quota for a specified item

■ Calculate consumed quota for a specified item

Reference Material

Oracle Content Services Web Services Managers 9-13

Administrative Managers
These managers handle connections between clients and Oracle Content Services.

RemoteLoginManager
The RemoteLoginManager provides session creation and logout capabilities.

The RemoteLoginManager supports authenticating a user based on username and
password, and disconnecting the current user session.

SessionManager
The SessionManager manages session information when performing transactions.
When a client performs an operation in Oracle Content Services using Web services,
such as creating, modifying, or deleting an object, the changes are immediately
committed to the repository. However, in some cases the client may need to commit a
set of dependent operations together; the client may need to ensure that if all these
dependent operations cannot be successfully performed, none of these operations will
not be performed. In other words, these operations must be atomically committed or
rolled back. SessionManager provides methods that enable clients to wrap operations
in a transaction block that can be used to control when the changes are committed to
the repository.

The SessionManager supports the following operations:

■ Return the current user connected as an item

■ Switch the current session in and out of administration mode

■ Begin, commit, or rollback a specified transaction during this session

■ Keep alive a session to prevent it from timing out

■ Get supplied session properties (such as LOGIN_USER, SESSION_TIMEOUT,
TRANSACTION_TIMEOUT)

Oracle Oracle Content Services supports nested transactions. Consider the following
example:

1 Begin Outer-Transaction
2 Begin Inner-Transaction
3 perform some operation
4 Begin Inner-Transaction
5 perform some operation
6 Abort (Rollback) Inner-Transaction
7 Commit Inner-Transaction
8 Abort (Rollback) Outer-Transaction

The innermost transaction (lines 4-6) is rolled back. Hence, any changes made in that
particular transaction will never be applied. The encapsulating inner transaction (lines
2-7) is set to be committed, though its changes may be rolled back by the outer
transaction. Because the outer transaction (line 8) is rolled back, any changes set to be
committed in the inner transactions will not be applied. Thus, inner transactions are
essentially save-points. They can be rolled back individually, but in order for them to
be committed, the outer transaction must be committed.

RequestManager
The RequestManager allows operations on an item (such as copy, move, delete, and
check-in) to be configured for control by a workflow. For example, the
FileManager.delete() operation will invoke a DeleteRequest if workflow is

Reference Material

9-14 Oracle Content Services Application Developer’s Guide

enabled on the instance, and the Delete operation is workflow-enabled for the item
being deleted.

The RequestManager supports the following operations:

■ retrieve a list of requests submitted by the given user matching the given request
criteria

■ retrieve a list of requests for which the given user is responder to matching the
given request criteria

■ delete one or more requests with given IDs

■ approve request with given ID for the given user

■ deny request with the given ID for the given user

■ cancel request with the given ID for the given user

■ acknowledge request with the given ID for the given user

■ invoke a "UserRequest" for the given set of target items. If the target item is
controlled by a UserRequestWorkflowConfiguration, the associated custom
workflow will be activated.

■ return whether the given operation/action is workflow-enabled (i.e. request
based) for the given item

ServiceToServiceManager
The ServiceToServiceManager uses the Service to Service (S2S) authentication
framework to allow a trusted partner application to establish user sessions with a
trusting provider application on behalf of its users, without having to supply any
credentials for the users. The partner application instead supplies with each user
session login request a digest credential (or potentially basic credential over HTTPS)
that is used to authenticate the partner as being trusted to the provider service.

Oracle Content Services 10g operates as the trusting provider service, with the partner
service being potentially any application (registered/configured with OID) that is
capable of establishing a client SOAP over HTTP Web Service connection with digest
authentication headers. For this manager to function, the server must be configured
for S2S authentication and the instance property
IFS.DOMAIN.CREDENTIALMANAGER.ServiceToServiceAuthenticationEnabl
ed set to true.

The ServiceToServiceManager provides the ability to:

■ Authenticate a user with given username. The S2S header ORA_S2S_PROXY_
USER must also be set to a non-null value corresponding to a valid OID user (it
can be any user, such as orcladmin)

As an example, consider a custom portlet within Oracle Portal that displays a user’s
most recently accessed documents in Oracle Content Services. The sequence of
operations would be similar to the following:

Note: The AXIS Java client stubs shipped with Oracle Content
Services do not support digest authentication (see
http://ws.apache.org/axis/java/security.html). Clients that use the Java
stubs can authenticate through basic authentication, or by using an
HTTP client and the S2S servlet.

Reference Material

Oracle Content Services Web Services Managers 9-15

1. User "matt" authenticates to Oracle Portal (through the Oracle Login Server)

2. A default portal user home page containing the "most recent documents" portlet is
requested to be displayed.

3. The portlet checks to see if an existing Oracle Content Services session cookie
exists for the user in the user’s HttpSession (or equivalent) object store. If no
existing session exists, proceed with service to service authentication (step 4).
Otherwise, obtain a FileManager (step 7) and make the appropriate call to retrieve
the documents.

4. The portlet obtains the portal service's credentials from a credential store (such as
Oracle Internet Directory).

5. The portlet initiates a Web Service request to the Oracle Content Services
ServiceToServiceLoginManager with digest authentication HTTP headers present
that identify the partner service (Oracle Portal), and HTTP header ORA_S2S_
PROXY_USER set to a non-null value (for example, "matt"). The
ServiceToServiceLoginManager login method is called, supplying the user name of
the portal authenticated user ("matt" [@non-default realm]).

6. A session cookie is returned that identifies the newly created Oracle Content
Services user session, which is then stored in an appropriate location, such as the
user’s HttpSession object.

7. Using the session cookie, obtain a FileManager, and then call the
getMostRecentDocuments() method.

8. Process the returned item array and render portlet results.

Reference Material

9-16 Oracle Content Services Application Developer’s Guide

Oracle Content Services Roles A-1

A
Oracle Content Services Roles

Table A–1

Administrative Role Permissions

Applicable to Domain
(D), Container (C), or
Workspace (W) Propagating?

CategoryAdministrator Discover, AdministerCategory D false

ConfigurationAdministrator Discover,
AdministerConfiguration

D C W true

ContainerAdministrator Discover, AdministerContainer,
CreateContainer

D C true

ContentAdministrator Discover, AddItem, AddVersion,
Copy, CreateFolder, Delete,
GetContent, GetMetadata, Lock,
Move, SetAttribute, SetContent,
SetMetadata

D C W true

DomainAdministrator Discover, AdministerDomain D false

QuotaAdministrator Discover, AdministerQuota D C true

RecordsAdministrator Discover, AdministerRecord D false

RoleAdministrator Discover, AdministerRole D false

SecurityAdministrator Discover, AdministerSecurity D C W true

UserAdministrator Discover, AdministerUser D false

WorkspaceAdministrator Discover, AdministerWorkspace,
CreateWorkspace

D C W true

A-2 Oracle Content Services Application Developer’s Guide

Table A–2

Standard (Non-Administrative)
Role Permissions

Applicable to Domain
(D), Container (C), or
Workspace (W) Propagating?

Administrative Assistant Discover, AddItem,
AdministerConfiguration,
AdministerSecurity, CreateFolder

W false

Administrator Discover, AddItem, AddVersion,
AdministerConfiguration,
AdministerSecurity,
AdministerWorkspace, Copy,
CreateFolder, Delete, GetContent,
GetMetadata, Lock, Move,
SetAttribute, SetContent,
SetMetadata

W true

Approver Discover, Copy, GetContent,
GetMetadata, Lock, SetAttribute,
SetContent, SetMetadata

W false

Author Discover, AddItem, AddVersion,
Copy, CreateFolder, Delete,
GetContent, GetMetadata, Lock,
Move, SetAttribute, SetContent,
SetMetadata

W false

Commentator Discover, Copy, GetContent,
GetMetadata, Lock, SetAttribute,
SetContent, SetMetadata

W false

ContainerViewer Discover D C false

ContentEditor Discover, AddItem, AddVersion,
Copy, CreateFolder, GetContent,
GetMetadata, Lock, SetAttribute,
SetContent, SetMetadata

W false

Custodian Discover, AddItem, AddVersion,
Copy, CreateFolder, GetContent,
GetMetadata, Lock, SetAttribute,
SetContent, SetMetadata

W false

Discoverer Discover W false

LimitedAuthor Discover, AddItem, AddVersion,
Copy, CreateFolder, GetContent,
GetMetadata, Lock, SetAttribute,
SetContent, SetMetadata

W false

Manager AdministerSecurity, CreateFolder W false

None NONE false

Organizer Discover, Copy, Delete,
GetMetadata, Lock, Move,
SetAttribute, SetMetadata

W false

Participant Discover, AddItem, AddVersion,
Copy, CreateFolder, Delete,
GetContent, GetMetadata, Lock,
Move, SetAttribute, SetContent,
SetMetadata

W false

Oracle Content Services Roles A-3

Reader Discover, Copy, GetContent,
GetMetadata

W false

Reviewer Discover, Copy, GetContent,
GetMetadata

W false

WorkspaceCreator Discover, CreateWorkspace D C true

Table A–3 FDK Constants for defined Roles

Role FdkConstant

CategoryAdministrator ECM_ROLEKEY_CATEGORYADMIN

ConfigurationAdministrator ECM_ROLEKEY_CONFIGURATIONADMIN

ContainerAdministrator ECM_ROLEKEY_CONTAINERADMIN

ContentAdministrator ECM_ROLEKEY_CONTENTADMIN

DomainAdministrator ECM_ROLEKEY_DOMAINADMIN

QuotaAdministrator ECM_ROLEKEY_QUOTAADMIN

RecordsAdministrator ECM_ROLEKEY_RECORDSADMIN

RoleAdministrator ECM_ROLEKEY_ROLEADMIN

SecurityAdministrator ECM_ROLEKEY_SECURITYADMIN

UserAdministrator ECM_ROLEKEY_USERADMIN

WorkspaceAdministrator ECM_ROLEKEY_WORKSPACEADMIN

ContainerViewer ECM_ROLEKEY_CONTAINERVIEWER

WorkspaceCreator ECM_ROLEKEY_WORKSPACECREATOR

Administrator ECM_ROLEKEY_ADMIN

Table A–4 Permissions for Oracle Content Services roles

Permission Description FDK Constant

AddItem Add an item to a folder (by create,
or move operation)

CAPABILITY_ADDITEM

AddVersion Add a new version to a version
controlled document item

CAPABILITY_ADDVERSION

AdministerConfiguration Create, modify, or delete
configuration categories on an
item (with the exception of
SecurityConfiguration and
QuotaConfiguration)

CAPABILITY_ADMINISTER_
CONFIGURATION

AdministerContainer Modify or delete a container.
Permission is required on the
parent item of the container being
modified or deleted.

CAPABILITY_ADMINISTER_CONTAINER

Table A–2 (Cont.)

Standard (Non-Administrative)
Role Permissions

Applicable to Domain
(D), Container (C), or
Workspace (W) Propagating?

A-4 Oracle Content Services Application Developer’s Guide

AdministerCategory Create, modify, or delete a
category class object

CAPABILITY_ADMINISTER_CATEGORY

AdministerDomain Modify a domain's properties CAPABILITY_ADMINISTER_DOMAIN

AdministerQuota Modify the quota configuration of
a workspace item

CAPABILITY_ADMINISTER_QUOTA

AdministerRecord Create, modify, or delete a record
file plan. Also allows user to
remove "record" status from an
existing record item and perform
other records management
administration.

CAPABILITY_ADMINISTER_RECORD

AdministerRole Create, modify, or delete a custom
role

CAPABILITY_ADMINISTER_ROLE

AdministerSecurity Create, modify, or delete security
configuration of an item

CAPABILITY_ADMINISTER_SECURITY

AdministerUser Modify or delete a domain's users
and groups. Additionally,
enables user to get and set user
preferences including domain
defaults.

CAPABILITY_ADMINISTER_USER

AdministerWorkspace Modify or delete a workspace CAPABILITY_ADMINISTER_WORKSPACE

Copy Copy an item CAPABILITY_COPY

CreateContainer Create a container CAPABILITY_CREATECONTAINER

CreateFolder Create a folder CAPABILITY_CREATEFOLDER

CreateWorkspace Create a workspace (not needed
for creation of a personal
workspace)

CAPABILITY_CREATEWORKSPACE

Delete Delete an item CAPABILITY_DELETE

Discover Discover an item and view its
basic metadata (such as name,
description, and creation date).
Permission is implicit if the user
is granted any other permission
on the item.

CAPABILITY_DISCOVER

GetContent Get the content of a document
item

CAPABILITY_GET_CONTENT

GetMetadata Get the metadata (category
information) of an item

CAPABILITY_GETMETADATA

Lock Lock a document item CAPABILITY_LOCK

Move Move an item. Requires AddItem
permission on the destination
folder.

CAPABILITY_MOVE

SetAttribute Set basic attributes of an item
(description). Permission is
required to rename Document,
Folder, Family, and Link items.
For link items, this permission
also allows users to change the
object referenced by the link.

CAPABILITY_SET_ATTR

Table A–4 (Cont.) Permissions for Oracle Content Services roles

Permission Description FDK Constant

Oracle Content Services Roles A-5

Notes on permission types:
■ Within a single grant, the same Role may not appear more than once

■ Within a single grant, the "NONE" Role may not be combined with any other role

■ If the grantee belongs to the "World" group, the Domain must be enabled for
world group grants.

■ The SetAttribute permission is required to rename a Document, Folder, Family, or
Link.

■ The AdministerWorkspace permission is required to rename a Workspace.

■ The AdministerContainer permission is required to rename a Container.

■ The System Admin privileges are required to rename a Domain.

■ The SecurityAdministrator role is the most powerful; users granted this role can
grant themselves or anybody else all available access.

■ To delete a Container, a user must have the AdministerContainer permission on
the parent of the container being deleted.

■ When deleting a Container, all recursively contained sub-containers and
sub-workspaces are also deleted. The user must have permission to delete the
sub-containers according to the rule stated above. The user must also have
AdministerWorkspace permission on all of the sub-workspaces that are to be
deleted. If the user does not have these required permissions, the originating
container delete will fail with an ACCESS_DENIED exception. Containers that are
deleted are permanently deleted; deleted workspaces have the workspace's
contents moved to the archive.

SetContent Set the content of a
non-version-controlled document
item

CAPABILITY_SET_CONTENT

SetMetadata Set the metadata (create, modify,
or delete category information) of
an item

CAPABILITY_SETMETADATA

Table A–4 (Cont.) Permissions for Oracle Content Services roles

Permission Description FDK Constant

A-6 Oracle Content Services Application Developer’s Guide

Index-1

Index

A
Administrative Managers, 9-13
ArchiveManager, 9-3
attribute requests, 2-2
Attribute requests, chaining, 6-1
Authentication, 1-2
Automatic versioning policy, 8-1

B
BPEL, 1-1
Business Process Execution Language, 1-1

C
CategoryManager, 9-9
checkoutDocuments, 8-1
CLASSPATH, 1-1
ClientUtils class, 7-2
Collaborative Managers, 9-11
Command-line tools, 1-1
comments, 8-2
CommonManager, 5-3
CONFIGURATION_FINAL, 8-2
conflict resolution, 8-2
conflict resolution, exception handling, 8-3
Connecting, 1-2
ContainerManager, 2-1, 9-11
Containers

creating, 2-1
deleting, 2-3

copyToLatestVersion, 8-2
copyToWorkingCopy, 8-2

D
Development Kit, Content Services Web

Services, 1-1
DO_NOT_PURGE, updateVersion, 8-2
Document definition, 7-1
Document Managers, 9-2
Document Processing Managers, 9-3
DocumentDefinition, 8-3
Documents, 5-1

copying, 5-2
creating, 5-1

deleting, 5-3
moving, 5-2

Domain administration mode, 2-2
DomainManager, 2-2, 9-12
Downloading from a DAV server, 7-3

E
exception handling for conflicts, 8-3

F
FileManager, 9-2
Folder versioning, 9-6
Folders

creating, 5-1

G
grants, 3-2
GroupManager, 9-10
GroupManager class, 4-1
Groups

adding members, 4-2
creating, 4-1
deleting, 4-6
removing members, 4-2

H
HEADER_COOKIE property, 1-2
HTTPClient library, 7-1
HTTPConnection, 7-1

I
Item, 2-2

L
labels, 8-2
Listing of service managers, 9-2
LockManager, 9-5
Logging, 2-2
Logging in, 1-2

Index-2

M
Manager classes, 1-3
Manual versioning policy, 8-1

N
NamedValue, 6-5
NamedValueSet, 6-5
newNamedValueArray, 3-2
newNamedValueSet, 3-2
No versioning policy, 8-2

O
Options.NEWVERSION, 8-2
Options.OVERWRITE, 8-2
Options.UNIQUENAME, 8-2

P
PagingManager, 9-9

Q
QuotaManager, 9-12

R
RecordsManager, 9-8
Reference material, 9-2
RemoteLoginManager, 1-2, 9-13
RequestManager, 9-13
rolling back versions, 8-2

S
SearchManager, 9-4
SearchManager, operations supported by, 9-4
Securing a Connection, 1-2
security configuration, 3-2
SecurityManager, 9-11
Service Locator, 1-2
ServiceToServiceManager, 9-14
SessionManager, 9-13
setMaintainSession, 1-3
SortManager, 9-3

T
TrashManager, 9-3

U
Uploading and downloading, 7-1
Uploading to a DAV server, 7-1
User and Group Managers, 9-10
UserManager, 9-10
using DocumentDefinitions, 8-3

V
version comments, 8-2
version labels, 8-2
versioning policy, 8-1
versioning policy, Automatic, 8-1
versioning policy, Manual, 8-1
versioning policy, None, 8-2
versioning, configuration, 8-2
versioning, introduction, 8-1
VERSIONING_CONFIGURATION_AUTO_

LABEL, 8-2
VERSIONING_CONFIGURATION_LABEL, 8-2
VersionManager, 9-6
VersionManager.checkoutDocuments, 8-1
versions, maximum number of, 8-2
versions, rollback, 8-2
versions, working copy, 8-2
VirusManager, 9-7

W
WorkflowManager, 9-12
WorkspaceManager, 9-11
Workspaces, 3-1

creating, 3-1
deleting, 3-3
roles, 3-2

WsUtility, 6-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Connecting to Oracle Content Services
	The Oracle Content Services Web Services Development Kit
	Connecting to an Oracle Content Services Instance
	Initializing Manager Classes

	2 Oracle Content Services Container Manager
	2.1 Creating a Container
	2.2 Deleting a Container
	2.3 Running the Code

	3 Oracle Content Services Workspaces
	Creating a Workspace
	Deleting a Workspace
	Running the Code

	4 Oracle Content Services Group Management
	4.1 Creating a Group
	4.2 Adding and Removing Members
	4.3 Deleting a Group
	4.4 Running the Code

	5 Oracle Content Services Document Operations
	Creating Folders and Documents
	Copying or Moving a Document
	Deleting Documents and Folders
	Running the Code

	6 Attribute Requests
	6.1 Chaining Attribute Requests
	6.2 NamedValue and NamedValueSet

	7 Uploading and Downloading Using Web Services
	Uploading
	Downloading
	Running the Code

	8 Oracle Content Services Versioning
	Versioning in Oracle Content Services
	Versioning Policies
	Versioning Configuration
	Conflict Resolution

	9 Oracle Content Services Web Services Managers
	Reference Material
	Document Managers
	FileManager
	TrashManager
	ArchiveManager

	Document Processing Managers
	SortManager
	SearchManager
	LockManager
	VersionManager
	VirusManager
	RecordsManager
	PagingManager
	CategoryManager

	User and Group Managers
	UserManager
	GroupManager
	SecurityManager

	Collaborative Managers
	WorkspaceManager
	ContainerManager
	WorkflowManager
	DomainManager
	QuotaManager

	Administrative Managers
	RemoteLoginManager
	SessionManager
	RequestManager
	ServiceToServiceManager

	A Oracle Content Services Roles
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

