

Retek® Allocation™
11.0

Operations Guide

Corporate Headquarters:

Retek Inc.
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403
USA
888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000
Fax:
+1 612 587 5100

European Headquarters:

Retek
110 Wigmore Street
London
W1U 3RW
United Kingdom
Switchboard:
+44 (0)20 7563 4600
Sales Enquiries:
+44 (0)20 7563 46 46
Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.
No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.
Information in this documentation is subject to change
without notice.
Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.
Retek® AllocationTM is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek
Inc.
This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.
All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.
Printed in the United States of America.

Retek Allocation

Customer Support

Customer Support hours

Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information

E-mail support@retek.com

Internet (ROCS) rocs.retek.com
 Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66
United Kingdom 0800 917 2863
United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business impact).

• Detailed step-by-step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://rocs.retek.com/

Contents

i

Contents
Chapter 1 – Introduction .. 1

What does an allocation system do? ... 1
An overview of how need is determined.. 2

Who this guide is written for .. 2

What is not in this guide ... 2

N-tier technical architecture overview.. 3

Where you can find more information.. 3

Chapter 2 – Backend system administration and assumptions .. 5

Supported environments ... 5

Supported version of RMS.. 6

Exception handling ... 6

Allocation.properties file .. 6
Minimum and maximum pool size to maintain.. 6
Logging .. 6
DEBUG mode on off switch .. 7
Start ship date for a purchase order (PO) ... 7
Set the Automatic Update switch ... 7
Date formats for specific locales .. 7
Set the end of week day for the system .. 7
Minutes until a system unlocks from inactivity ... 7
Bulk warehouse setting .. 8
Flexible column definition ... 8
Display future unit retail price values .. 8
Crossing legal entities .. 8

Bayesian sensitivity factor .. 9
A description of Bayesian sensitivity ... 9

Internationalization and localization... 10
Multibyte coding .. 10
Interface text that is separated from executable code... 10
Translation.. 11
Single executable.. 12
Date format preferences ... 12

Retek Allocation

ii

RMS dependencies and assumptions .. 12
RMS differentiator setup .. 12
Staple item.. 14
Pack Item.. 14
Summary of items and how Retek Allocation handles them.. 14

Retek Allocation functional assumptions ... 15

Chapter 3 – Technical architecture... 17

Overview... 17

Component descriptions and standards... 17

GUI tier ... 18
Thin-client standard.. 18
Java server pages (JSP) and HTML ... 18
JavaScript ... 19
JSP tag libraries .. 19

Middle tier... 19
Business object tier... 19
Data access tier... 19

Data storage tier .. 20
Accessing merchandising system data in real time .. 20

A summation of n-tier architecture’s advantages ... 20

Chapter 4 – Functional design .. 21

Overview... 21

A note about the merchandising system interface .. 21

Integration interface allocation-related dataflow.. 22
From the merchandising system to RDF/Grade ... 22
From RDF/Grade to Retek Allocation via the merchandising system 23
From the planning application to Retek Allocation ... 23
From RDF/Curve to Retek Allocation ... 23
From RPM to Retek Allocation.. 23
From the warehouse management system (such as RWMS) to Retek Allocation via the
merchandising system .. 24
From the merchandising system to Retek Allocation... 24
From Retek Allocation to the merchandising system... 24
From the merchandising system to the warehouse management system (such as RWMS)
.. 24
From Active Retail Intelligence to Retek Allocation ... 25

Contents

iii

How need is determined.. 25
The sources of data used by rules to determine gross need.. 25
Quantity limits.. 28
Stop ship... 28
Net need at the store level calculation.. 29

Tables populated by external systems... 29

Planning table in Retek Allocation ... 30

Merchandising interface tables ... 30

RMS 11.0 tables (for retailers with RMS only).. 31

Suggested legacy system tables .. 33

Chapter 5 – Allocation calculations.. 39

Assumptions related to calculations.. 39
Store order multiple assumption... 39
Proportional allocation assumption .. 39

Calculation queue processing ... 39
Calculation queue process description ... 41
Calculation queue scripts.. 41
Plan re-project algorithm.. 43
Guidelines... 45

Satisfying need across multiple locations ... 45

Rounding conditions ... 46

Size profile logic ... 46

The allocation of packs ... 46
The algorithm with packs and singles .. 49

Cascade allocations... 49

Staple cascade and fashion cascade .. 53
Staple cascade... 53
Fashion cascade.. 54

Prepack algorithm ... 55

Closing allocations.. 57

Retek Allocation

iv

Chapter 6 – RETL batch processing... 59

Functional overview.. 59

RETL batch processing architecture... 60
Processing stage 1 .. 60
Processing stage 2 .. 61

Installation... 61

Configuration .. 61
RETL.. 61
RETL user and permissions ... 61
Environment variables.. 62
alc_config.env settings ... 62

Running the module.. 62
Schema file ... 62
Mandatory multi-threading and command line parameters.. 63

Program features ... 63
Program return code ... 63
Program status control files .. 63
Retek Allocation RETL restart and recovery ... 64
Message logging... 64
Program error file ... 65
Retek Allocation reject files ... 65

Typical run and debugging situations ... 66
Example.. 66

Retek Allocation program reference... 68

Application programming interface (API) specification .. 70
File layout... 70
Extract profile file format... 71
Schema file (profile.schema).. 73

Chapter 7 – Java batch process.. 75

Characteristics of the Java batch process.. 75

Java batch name and Java package ... 75

Functional description... 75

Running a Java-based batch process... 76
Scheduler and the command line.. 76
Summary of executable files .. 76

Chapter 1 – Introduction

1

Chapter 1 – Introduction
Welcome to the Retek Allocation Operations Guide. The guide is designed so that you can view
and understand key system administered functions, the flow of data into and out of the
application, and the application’s behind-the-scenes processing of data.

A retailer that acquires Retek Allocation gains the ability to achieve more accurate allocations on
a stable product. Having the right product in the right stores allows for service levels to be raised,
sales to be increased, and inventory costs to be lowered. By accurately determining which stores
should get which product, retailers can meet their turnover goals and have increased profitability.

The Retek Allocation retailer benefits from the following capabilities:

• A Java HTML/JSP technology stack allows straightforward development and facile
deployment. Debugging can be performed more rapidly; maintenance and alteration costs are
kept low.

• Drivers map to different foundation data, enabling the application to be a flexible, stand-alone
allocation system, able to integrate with RMS and retailer legacy systems.

• The application’s interface takes advantage of Java database connectivity (JDBC),
minimizing the number of interface points that need to be maintained.

• The application’s robust algorithm executes rapidly.

• For retailers with other Retek products, integration with the Retek product suite means that
item, purchase order, supplier, sales, and other data are accessed directly from the RMS
tables, with no need for batch modules. Purchase order, item, location, and allocation
information is passed from RMS to a warehouse management system, such as the Retek
Warehouse Management System (RWMS).

What does an allocation system do?
A good allocation application enables retailers to make important decisions as close as possible to
the time the product must be sent to the stores. A critical link in the supply chain process, the
allocation process presents the final chance to distribute products successfully.

Retek Allocation enables retailers to take advantage of the most current, up-to-date sales and
inventory information. Yet, the application also has the flexibility to allow allocations to be
calculated months in advance for vendor commitment purposes.

Retek Allocation was designed to address the following challenges (among others) related to the
correct allocation of product:

• How to put many a variety of merchandise plans into action.

• How to allocate product to support diverse marketing efforts and selling profiles.

• How to effectively and accurately allocate product without increasing head count while
continuing to grow the business.

• How to streamline the training process for allocators, due to the position’s high level of
turnover.

Retek Allocation

2

If these challenges are not met, the wrong product can be sent to the wrong store in the incorrect
quantity at the wrong time. The net result is higher markdowns, lower profits, and unhappy
customers.

An overview of how need is determined
Retek Allocation determines the needs of each individual store at the SKU-location level through
the following capabilities:

• The application sorts through copious quantities of data, such as sales history, current on-
hands, and store volume groups.

• The application applies user-established rules, rule modifiers, and optional quantity limits.

• The application performs complex algorithms that can determine gross need for large
volumes of stores and products, using real time data.

• The application applies constraints to the data, such as on-hands and on order, and determines
the net need.

Who this guide is written for
Anyone who has an interest in better understanding the inner workings of the Retek allocation
system can find valuable information in this guide. There are three audiences in general for whom
this guide is written:

• Business analysts:

 Those who are looking for information about the processes that enable the interface
between Retek Allocation and a merchandising system such as RMS.

 Those who are interested in how allocation data is calculated within Retek Allocation.

• System analysts and database administrators:

 Those who are looking for information about Retek Allocation processes singly or in
relation to the merchandising system.

 Those who need to operate Retek Allocation on a regular basis.

• Integrators and implementation staff: Those who have the overall responsibility for
implementing Retek Allocation.

What is not in this guide
This guide does not show you how to use the front-end of Retek Allocation. Rather, the focus
here is on how data is managed, how it flows, and how it is processed.

This guide does not explain, except at a high level, the allocation-related data flow and processing
that occurs among other applications across an enterprise (for example, the predictive planning
system, the merchandising system, the price management system, the distribution management
system, and so on). If you wish to find further information about how other Retek products handle
allocation-related data, a list of applicable Retek documents is provided later in this chapter.

Chapter 1 – Introduction

3

N-tier technical architecture overview
The following diagram provides a high-level overview of the general structure of the system,
including the various layers of Java code.

The graphical user interface (GUI) is comprised of lightweight Java server pages (JSPs), enabling
the GUI to adhere to today’s ‘thin-client’ standard. JSP tag libraries are used for utility purposes.

The business object tier consists of JavaBeans, which contain all the business logic. The data
access layer tier communicates with the database using a Java Database Connectivity (JDBC)
protocol.

For more information concerning this diagram and Retek Allocation’s technical architecture, see
“Chapter 3 – Technical Architecture”.

GUI/Client tier

JavaBeans with
business logic

Business objects

Database

JDBC

Data access
layer with the

database
version

compatible
driver

JSPs
Javascript

 HTML
JSP tag libraries

Business
object tier Database tierData access

layer tier

Denotes separation of tier

Middle tier

Retek Allocation‘s n-tier architecture

Where you can find more information
• Retek Allocation front-end documentation (for example, the Retek Allocation User Guide)

• Retek Allocation Installation Guide

• Retek Predictive Applications product documentation

• Retek Merchandising System product documentation

• Retek Warehouse Management System product documentation

• Retek Price Management product documentation

• RETL Programmer’s Guide

Chapter 2 – Backend system administration and assumptions

5

Chapter 2 – Backend system
administration and assumptions
This chapter of the operations guide is intended for administrators who provide support and
monitor the running system.

The content in this chapter is not procedural, but is meant to provide descriptive overviews of the
key system parameters.

Supported environments
This version of Retek Allocation has been certified on the following platform, with the following
components:

• Operating system

 AIX 5.2

 HP-UX 11.11

 Solaris 9

• Database version

 Oracle 9.2.x

• Middle tier

 Oracle 10G AS

 OC4J 9.0.4

• Compiler

 Java 1.4.x

• Browser

 Internet Explorer 5.5 or higher

Retek Allocation

6

Supported version of RMS
This version of Retek Allocation is compatible with the following:

• RMS 11.0

Exception handling
Retek Allocation-related exceptions are handled through AllocException. AllocException is
located in the following package:

• com.retek.alloc.utils

The following types of exceptions are wrapped by AllocException:

• SQLException

• Other checked exceptions

Errors are logged to the error log file, error_messages.log. For information about error logging,
see the section, ‘Logging’, later in this chapter.

Allocation.properties file
A system administrator defines configurations for Retek Allocation in the Allocation.properties
file. The key system parameters contained in this file are described in this chapter.

Minimum and maximum pool size to maintain
The pool size pertains to the number of available database connections that the retailer intends to
keep available in the pool. A system administrator is encouraged to adjust these values per
configuration to match the retailer’s anticipated number of users. The default values are intended
to be a mere starting point. For more information, see the passage, ‘Pooling’, in “Chapter 3 –
Technical Architecture”.

Logging
Logging files should be set up to valid directories, so that the retailer can generate logs regarding
errors and messages. (For information about logging associated with RETL, see the section,
‘Message logging’ in “Chapter 6 – RETL batch processing”.) The example below shows the
default Retek settings:

 Note: For more information about the connection pool, see the passage, ‘Minimum and
maximum pool size to maintain’, earlier in this chapter and see the passage, ‘Pooling’, in
“Chapter 3 – Technical Architecture”.

Log file for connection pool: one for Windows, and another for
UNIX

windows.pool.log=c:\\develop\\Alloc11\\oc4j\\j2ee\\home\\log\\connec
tion_pool.log

unix.pool.log=/files0/alloc11/oc4j/logs/connection_pool.log

Chapter 2 – Backend system administration and assumptions

7

Log file for Error messages: one for Windows, and another for UNIX

windows.error.log=c:\\develop\\Alloc11\\oc4j\\j2ee\\home\\log\\error
_messages.log

unix.error.log=/files0/alloc11/oc4j/logs/error_messages.log

DEBUG mode on off switch
In a production environment, this setting should be set to false.

Start ship date for a purchase order (PO)
In a ‘what if’ scenario, the result can be a purchase order created in Retek Allocation (as opposed
to a merchandising system such as RMS). Retek Allocation does not know the start ship date.
Thus, this value has been added behind the scenes. The start ship date is derived from x days
before the release date set in Retek Allocation. This number is pre-set to ‘3’ days before the
release date and can be changed by the system administrator.

Set the Automatic Update switch
Internally, Retek Allocation updates its location groups data based on the most current
definitions. This update plays an important role when many months pass between initial and final
allocations. The system administrator establishes this ‘Yes’ or ‘No’ value to instruct the system
whether to automatically update location groups or not. Note that if a front-end user selects the
‘Never Update’ box, automatic updates do not occur even if the system administrator has
established a ‘Yes’ value for this switch in the Allocation.properties file.

Date formats for specific locales
To provide a user-friendly date format that is understood by users, the system administrator may
select one of four date formats that are available. The formats include the following:

• dd/mm/yyyy

• dd-mm-yyyy

• mm-dd-yyyy

• mm/dd/yyyy

Retek Allocation is sold worldwide and has been modified to meet internationalization and
localization requirements. See the section, ‘Internationalization and localization’, later in this
chapter.

Set the end of week day for the system
The system administrator establishes this value to inform the system what that end of the
weekday is. Sunday is equal to 1, and Saturday is equal to 7. Note that this day must be identical
to that set up in the merchandising system (such as RMS).

Minutes until a system unlocks from inactivity
This security feature is to prevent a user from walking away from the application and leaving
behind an allocation in progress. After five minutes of inactivity, Retek Allocation returns the
user to the Home page and unlocks the specific allocation that he or she was working on. The
system is then available for the use of anyone with security access.

Retek Allocation

8

Bulk warehouse setting
When a user creates a bulk purchase order (PO) during a ‘what if’ scenario, the PO is cut to this
designated warehouse. The retailer should make sure that this bulk warehouse is associated with a
valid warehouse in the merchandising system (such as RMS). The default value is intended to be
a starting point.

Flexible column definition
The system administrator initially establishes the default order and settings of the application’s
columns. When a user customizes his or her windows, the result is saved and will continue to
appear in that configuration until changed again. The default user ID (for flexible columns) is 1,
which means that the user sees the column arrangement that Retek has designed.

Display future unit retail price values
The system allows the retailer to choose whether it wants the future retail price displayed on a
specific screen. If a retailer uses future retail pricing to determine the future value of an
allocation, this parameter should be set to ‘true’.

If a retailer creates or approves allocations without factoring in future retail pricing, the retailer
should set this parameter to ‘false’. Future unit retail prices will not be available to be
displayed on any screens.

Parameter:
Indicate if allow user view future unit retail for item/store/release date in

the allocation. When it is set to true, user can choose whether she/she

wants the future retail price displayed on the allocation summary screen

and allocation detail screen

enable_future_retail=true

Crossing legal entities
Using this parameter, retailers have the option to disallow allocations that cross legal entities.
Legal entities are the locations in an organization grouped together due to legal requirements.
Legal entities can be defined by brand, geography, country or some other grouping defined by the
retailer. Issues in crossing legal entities can arise related to changes in cost and reail pricing,
ownership, bookkeeping, and so on.

If the retailer selects ‘Y’, allocations cannot cross legal entities. Retek Allocation validates
whether a warehouse/location combination is valid before processing. If a warehouse/location
combination is not part of the same legal entity, the combination is skipped for processing. The
system moves to the next combination.

 Note: When a retailer selects ‘Y’, the system allows the user to select invalid
combinations. The system does not process these when calculating need.

If the retailer selects ‘N’, allocations can cross legal entities.

Chapter 2 – Backend system administration and assumptions

9

Parameter:
Indicates whether or not the user can cross legal entities

'Y' indicates Allocations can not cross legal entities

'N' indicates Allocation can cross legal entities

enforce_MLE=N

Bayesian sensitivity factor
Retek Allocation utilizes Bayesian forecasting in its Plan Re-project Rule. The sensitivity factor
is described below and is pre-set at .3. A system administrator can change the setting anywhere
from zero and one.

A higher sensitivity setting makes the forecast more reactive to actual sales, and a lower setting
makes the forecast less reactive to sales.

A description of Bayesian sensitivity
Retek Allocation’s Plan Re-project Rule utilizes a Bayesian method to reproject the future dates
of the plan. The rule takes sales history and compares it with the plan to create a forecast. This
forecasting algorithm thus merges a retailer’s sales plans with any available historical sales in a
Bayesian fashion (that is, the algorithm uses new information to update or revise an existing set of
probabilities). A retailer would use this rule mid-season to allocate products based on actual sales
results to date and planned sales.

Bayesian forecasting assumes that the shape sales will take is known, but the scale is uncertain. In
Bayesian forecasting, when no sales history is available, the sales forecast figures are equal to the
sales plan figures because there is no reason to mistrust the sales plan. As point of sale data
becomes available, the forecast is adjusted and the scale becomes a weighted average between the
initial plan's scale and the scale reflected by known sales history. Confidence in the sales plan is
controlled by the amount of sales data on hand and a Bayesian sensitivity constant (which, as
mentioned earlier, the system administrator can set from zero to one). Unlike standard time series
forecasting, which requires only sales history to produce a forecast, Bayesian forecasting requires
a sales plan and sales history (if available). As sales information arrives during the first few
weeks of the season, the model generates a forecast by merging the information contained in the
sales plan with the information contained in the initial sales data. These forecast updates can be
critical to a company’s success.

For more information, see the section ‘Plan re-project algorithm’ in “Chapter 5 – Allocation
calculations”.

Retek Allocation

10

Internationalization and localization
The technical infrastructure of Retek Allocation supports languages other than English. Retek
Allocation has been subject to the modifications associated with ‘internationalization’, also
known as I18N. (The I18N name stems from the fact that eighteen letters exist between the first
‘i’ and the last ‘n’ in the word ‘internationalization.’) Internationalization is the process of
preparing software in order to ensure that it can efficiently handle multiple languages. In other
words, the software is created so that it can be released into international markets.

Localization, also known as L10N, is the process of adapting software that has been
internationalized so that it can be released into a local market with its own language. (The L10N
name stems from the fact that ten letters separate the letter ‘l’ from the letter ‘n’ in the word
‘localization’.) Software is only internationalized once. However, software must undergo the
localization process for every new language or location into which it is released.

This section describes configuration settings and features of the software that ensure that the base
application can handle multiple languages.

Multibyte coding
Retek Allocation has been developed to be compatible with multibyte languages (such as
Japanese). In multibyte representation, a character may occupy more than one byte.

Interface text that is separated from executable code
An application that can run in various languages must be transformed into somewhat of a
‘generic’ product. That is, the features of the application that could be specific to just one
language or locale (such as text, date formatting, and so on) must not be hard-coded into the
software. Instead, locale-specific information is intentionally placed in files external to the
application.

Much of what is locale specific in Retek Allocation has been pulled out of the code and placed
into files. The content of these files is interface related, as distinct from executable code. The text
in multiple allocation.properties files is translated so that the interface functions in local settings.
These files comprise the interface layer. The allocation_gui.properties file contains the text within
the GUI strings (for example, button names, menu names, title bars, and so on) that is translated.

The two images below, for example, display a small portion of two allocation_gui.properties
files. One has been prepared for the English version of Retek Allocation and one for the Japanese.

Chapter 2 – Backend system administration and assumptions

11

English version of the allocation_gui.properties file

Japanese version of the allocation_gui.properties file

Translation
Translation is the process of interpreting and adapting text from one language into another.
Although the code itself is not translated, components of the application that are translated
include the following, among others:

• Graphical user interface (GUI)

• Online help

• Some print documentation

• Error messages

Retek Allocation

12

Single executable
Because a single executable can handle multiple languages, the application can ship with multiple
languages. Users can choose their preferred language ‘on the fly’ and can even switch languages
when necessary or convenient.

Because only a single executable exists, maintenance efforts are minimized. The retailer does not
have to recompile when switching from language to language. When patches are released, they
only have to be applied once to the code and to the interface.

Date format preferences
To provide a user-friendly date format that is understood by the users, four date formats are
available. See the section, ‘Date formats for specific locales’, earlier in this chapter.

RMS dependencies and assumptions
RMS differentiator setup
The RMS item structure allows multiple item levels and multiple differentiators. To structure
item setup for use with Retek Allocation, the retailer must understand the implications of the Item
Aggregate Indicator and the Aggregate Indicators that exist at the differentiator level.

The following section describes how an item family must be structured to enable the Retek
Allocation product to differentiate the items among fashion, staple and pack items.

Fashion Item
RMS allows for the potential of three item levels. For a customer who allocates based on the
concept of style/color, the ‘style’ can be translated to RMS item setup as being the level one item
in the item family. The ‘SKU’ can be translated to RMS item setup as being the transaction level
item (this could be level one, two or three). There is no requirement within RMS that forces a
‘fashion’ item to be multi-level.

An item is viewed as a fashion item only if the Item Aggregate Indicator in the Attributes section
of the Item Master Window is selected for the style (level one item) in the item family.

Once the item aggregate indicator has been selected, the user needs to indicate which
differentiator should be curved by allocations. Each item may contain up to four differentiators.
The Aggregate check box is enabled when more than one differentiator is being created for an
item where the Item Aggregate Indicator has been selected. The differentiator that the customer
wants to be curved by Retek Allocation must be the only differentiator that is not indicated on the
Item Master Window.

Below is an example of a fashion item, its indicators within RMS, and what is visible.

Item 100011006 has three differentiators associated.

Chapter 2 – Backend system administration and assumptions

13

Color/pattern/width

Retek Item Number
100011006 - 100%
Cotton Sheets

UPC-A
400000152011 - 100%
Cotton Sheets:Dark
Blue:Leopard:N

In order to have this result, the item parent
(100011006) needs to have the following
indicators:

Item Aggregate Indicator = 'Y'

Diff 1 Aggregate Indicator - Color = 'N'
Diff 2 Aggregate Indicator - Pattern = 'Y'
Diff 3 Aggregate Indicator - Width = 'Y'

UPC-A
400000152028 - 100%
Cotton Sheets:Dark
Blue:Leopard:S

UPC-A
400000152035 - 100%
Cotton Sheets:Dark
Blue:Plaid:N

UPC-A
400000152042 - 100%
Cotton Sheets:Dark
Blue:Plaid:S

UPC-A
400000152059 - 100%
Cotton Sheets:Dark
Brown:Leopard:N

UPC-A
400000152066 - 100%
Cotton Sheets:Dark
Brown:Leopard:S

UPC-A
400000152073 - 100%
Cotton Sheets:Dark
Brown:Plaid:N

UPC-A
400000152080 - 100%
Cotton Sheets:Dark
Brown:Plaid:S

The retailer wants to have Retek Allocation apply the curve to Color. Therefore, it sees
information within the Retek Allocation screens based upon the pattern and width differentiators.

All of the transaction level children will have their item and differentiator aggregate indicators =
'N'. These values are only maintained for the level one item. All other items in the system
(including packs) have those indicators defaulted to 'N'.

In this scenario, if the retailer is creating an allocation for the parent item (100011006), it has
visibility to four different levels of the ‘style’.

100011006 - 100% Cotton Sheets Plaid:N

100011006 - 100% Cotton Sheets Plaid:S

100011006 - 100% Cotton Sheets Leopard:N

100011006 - 100% Cotton Sheets Leopard:S

Retek Allocation

14

Staple item
A staple item is every item in the system where the level one item in the item family does not
have the Item Aggregate Indicator selected. In this scenario, the Retek Allocation retailer has
visibility to the transaction level item only. There will be no roll up of item information as there is
behind the scenes when the retailer is looking at fashion items at the style/differentiator level.
The retailer also has visibility to the non-sellable packs that contain the component staple item
and is able to include or exclude those packs from the allocation.

Pack Item
There are multiple types of packs that may be set up within RMS. The key criteria for Retek
Allocation is whether the pack is sellable or non-sellable, whether the pack contains multiple
component items and whether or not those multiple components items are of one type (for
example, fashion as opposed to staple).

When creating your packs, consider the following pack assumptions made by Retek Allocation:

• Retek Allocation does not have the ability to allocate packs that contain fashion and staple
items.

• Retek Allocation does not have the ability to allocate fashion packs that contain multiple item
level one/differentiator (style/color) combinations.

Summary of items and how Retek Allocation handles them
• Single staple item

These items are individually allocated and can be selected from SKU LOV search criterion.

• Single fashion item
These types of items cannot be allocated individually. They are allocated as part of their
style/color.

• Style/color
The transaction level (SKU) items are allocated as visible in the View Assortment Window.
However, the allocation is created at the item level one/differentiator (style/color) level. The
item level one/differentiator (style/color) level is where retailers work with the allocation.

• Simple sellable staple pack and complex sellable staple pack
These types of packs are included in an allocation when they are individually allocated.

• Simple non-sellable staple pack and complex non- sellable staple pack
These types of packs are included in an allocation when the component of the pack item is
allocated or when the non-sellable pack itself is allocated.

• Simple sellable fashion packs and complex sellable fashion packs
These types of packs are included in an allocation when they are individually allocated. They
are not be automatically included in any fashion items allocation.

• Simple non-sellable fashion packs and complex non-sellable fashion pack
An allocation for this pack is performed behind the scenes. The user does not have visibility
to the non-sellable pack allocation.

Chapter 2 – Backend system administration and assumptions

15

Retek Allocation functional assumptions
• The only way to allocate fashion items is by style/color.

• A single allocation cannot have both fashion item(s) and staple item(s).

• Non-sellable fashion packs are never returned as part of any search criterion that is visible to
the user. Rather, they are handled behind the scene by the application at the style/color level.

• The SKU list of values on the search screen displays staple items, sellable/non-sellable staple
packs and sellable simple/complex fashion packs.

• The store order multiple (SOM) for non-sellable staple packs is assumed to be one (1).

• The stop shipment record for a non-sellable staple pack must be at the component item level
for the stop shipment to be recognized by Retek Allocation. A record for the non-sellable
staple pack itself has no effect.

Chapter 3 – Technical architecture

17

Chapter 3 – Technical architecture
This chapter describes the overall software architecture for Retek Allocation. The chapter
provides a high-level discussion of the general structure of the system, including the various
layers of Java code.

Overview
Retek Allocation utilizes a Java platform because it offers the optimum solution to the challenges
presented by the need for database independence. A Java platform solves, for example, RMS
version incompatibility issues.

The n-tier architecture of Retek Allocation allows for the encapsulation of business logic,
shielding the client from the complexity of back-end systems. The following diagram, briefly
discussed in “Chapter 1 – Introduction”, is explained below in detail according to each of the tiers
shown in the diagram.

GUI/Client tier

JavaBeans with
business logic

Business objects

Database

JDBC

Data access
layer with the

database
version

compatible
driver

JSPs
Javascript

 HTML
JSP tag libraries

Business
object tier Database tierData access

layer tier

Denotes separation of tier

Middle tier

Retek Allocation n-tier architecture

Component descriptions and standards
Java Development Kit (JDK)

Standard Java development toolkit from Sun Microsystems.

Java Server Pages (JSP)

JSPs contain embedded Java and JavaScript within an HTML page. To the user, these pages
appear in the Web browser as files with a .jsp extension. JSPs are part of Sun’s J2EE
specification. They compile into servlets and allow for the separation of the user interface from
business logic.

Java Servlet

Java Servlets are used for server side Java development, the Java Servlet is part of Sun’s J2EE
specification.

Retek Allocation

18

JDBC

JDBC is a means for Java-architected applications such as Retek Allocation to execute SQL
statements against an SQL-compliant database, such as Oracle. Part of Sun’s J2EE specification,
most database vendors implement this specification.

Naming conventions in Java

• Packages: The prefix of a unique package name is written in all-lowercase letters.

• Classes: These descriptive names are unabbreviated nouns that have both lower and upper
case letters. The first letter of each internal word is capitalized.

• Interfaces: These descriptive names are unabbreviated nouns that have both lower and upper
case letters. The first letter of each internal word is capitalized.

• Methods: Methods begin with a lowercased verb. The first letter of each internal word is
capitalized.

GUI tier
The GUI is responsible for presenting data to the user and for receiving data directly from the
user through the ‘front end’.

Thin-client standard
The GUI adheres to today’s thin-client standard. Whereas a ‘fat’ client can perform significant
data validations and business processing on the client side itself, a thin client performs very little
processing. Most of the application processing load is handled by the server.

Retek Allocation utilizes a thin client because of its advantages. First, there are no special
requirements for the client-machine except that it can adequately run a browser. Secondly, client
machines require little maintenance. That is, there is no need to install applications on each client
machine because the application itself resides on a central server. Clients need only the browser
to access the application. Finally, because standard HTTP is used, deployment can occur both
inside and outside a firewall.

Java server pages (JSP) and HTML
The GUI is comprised in part of lightweight JSPs. JSP technology is a critical piece of Sun’s
J2EE-initative.

JSPs are compiled into servlets. JSPs also provide access to middle tier objects.

JSPs consist of JavaScript and standard HTML. They make calls to tag-libraries and contain
minimal Java code. This code is located within standard HTML formatting tags. An extension of
Java servlet technology, JSPs allow for the separation of the GUI’s page layout from the
application’s content. The look and feel of the GUI is easy to customize, and dynamic
functionality is easy to create.

As noted earlier, because the JSP/HTML GUI is ‘lightweight’ and uses standard hyper test
transfer protocol (HTTP), the application can be deployed both, inside the firewall or outside the
firewall.

Chapter 3 – Technical architecture

19

JavaScript
JavaScript is used to handle some non-business rule validations. For example, JavaScript is
responsible for the following:

• Date-entry validations

• Field-length validations

• Alphanumeric validations (for example, a US zip code cannot contain characters, and so on)

JSP tag libraries
JSP tag libraries are called for utility purposes. The use of tag libraries enables reusability. In
other words, utility code does not have to be duplicated across all JSPs. For example, a paging tag
allows pagination on any JSP page that refers to the paging tag. In addition, any changes that may
be required can be made in one place.

Middle tier
Broadly speaking, the ‘middle tier’ consists of its own two tiers. The first is comprised of the
JavaBeans that contain all of the business logic. The second is a data-access tier, which interacts
with the code in the database tier and which contains database version-specific drivers.

Business object tier
Business objects implement business rules. A common business object infrastructure allows for
the components to be utilized again and again within an enterprise. The business objects within
Retek Allocation are represented as JavaBeans, which are, in essence, reusable Java classes.

 Note: The ‘JavaBeans’ that Retek Allocation utilizes are not Enterprise JavaBeans (EJB).
Retek Allocation does not use EJBs.

In terms of Retek Allocation, JavaBeans represent the logic of functional entities. Because the
logic is wrapped into a component of software, it may be instantiated repeatedly. For example, in
Retek Allocation, ‘item’ is represented as a JavaBean. Thus, as a JavaBean, any type of ‘item’ in
the merchandising system becomes a reusable component.

Note that there is not necessarily a one-one relationship between a business object and a database
table.

Business rule validations are handled by server-based middle-tier business objects.

Data access tier
This portion of the middle tier allows for business logic to be separated (physically and in the
software) from the application’s presentation and database functions. Thus, the data access tier
keeps the business logic and GUI isolated from any database issues.

Retek Allocation

20

JDBC protocol and drivers
The middle-tier talks with the database via the industry standard Java database connectivity
(JDBC) protocol. JDBC facilitates the communication between a Java application and a relational
database. In essence, JDBC is a set of application programming interfaces (API)s that offer a
database-independent means of extracting and/or inserting data to or from Retek Allocation.

To perform those insertions and extractions, SQL code also resides in this tier facilitating create,
read, update, and delete (CRUD) actions.

‘Drivers’ map to different foundation data, giving Retek Allocation the ability to be a stand-alone
allocation system. These drivers account for differences in the way each database handles
foundation data.

Pooling
When the application ‘disconnects’ a connection, the connection is saved into a pool instead of
being actually disconnected. A standard connection pooling technique, this saved connection
enables Retek Allocation to reuse the existing connection from a pool. In other words, the
application does not have to undergo the connection process for each subsequent connection.
Retek Allocation uses an open source connection pool called PoolMan that allows the maximum
size of the pool to be configured.

Data storage tier
The database tier is the application’s storage platform, containing the physical data (user and
system) used throughout the application. This tier is only intended to deal with the storage and
retrieval of information and is not involved in the manipulation or in the delivery of the data. This
tier responds to queries; it does not initiate them.

Accessing merchandising system data in real time
The data that Retek Allocation utilizes is located in both allocation-specific tables and
merchandising system (RMS, for example) tables. Because Retek Allocation shares the same
schema as the merchandising system (RMS, for example), Retek Allocation is able to interact
with the merchandising system’s data directly, in real time.

A summation of n-tier architecture’s advantages
The following list is a summary of the advantages that accompany the n-tier architecture.

• N-tier architecture has become an industry standard.

• The separation of presentation, business logic, and data makes the software cleaner, more
maintainable, and easier to modify.

• The hardware and software for each of the tiers can be easily scaled.

• The look and feel of the application can be updated more easily because the GUI is not tightly
coupled to the back end.

• Market-proven and industry-standard technology is utilized (for example, JSPs, JDBC, and so
on).

• Component-oriented modeling promotes the reuse of code, saving development time.

Chapter 4 – Functional design

21

Chapter 4 – Functional design
This chapter provides an overview as to how Retek Allocation is functionally integrated with
other systems (including other Retek systems). The discussion primarily concerns the flow of
allocation-related business data across the enterprise.

Overview
The first section in this chapter provides you with a diagram that shows the overall direction of
the dataflow among the products. The accompanying explanations are written from a system-to-
system perspective, illustrating the movement of data.

The second section in this chapter illustrates how need is determined on a functional level. That
is, this section describes the source (at the table level) of the business data that Retek Allocation
utilizes to generate its need calculation and shows the sources of that data.

The third section in this chapter describes the planning table that resides in Retek Allocation.

The fourth section in this chapter lists the merchandising system tables by functional area that
Retek Allocation uses. The RMS 11.0 tables are provided, along with a generic list of legacy
system tables that Retek suggests be made available for retailers who have not implemented
RMS.

A note about the merchandising system interface
Many tables and functions within Retek Allocation are held in common with the Retek
Merchandising System (RMS). This integration provides the following two important benefits:

• The number of interface points that need to be maintained is minimized.

• The amount of redundant data (required if the rest of the Retek product suite is installed) is
limited.

Retek Allocation

22

Integration interface allocation-related dataflow

Retek Warehouse
Management System

(RWMS)

Retek Demand
Forecasting
(RDF)/Grade

JDBC
Connection

Merchandising
system

(RMS 11.0
Legacy systems)

Retek Allocation

Planning
table

Planning application
(Retek Predictive

Applications)
Active
Retail

IntelligenceNote:
Symbol denotes tables
held on the merchandising
table. Retek Allocation
pulls the data from these
merchandising tables
through the use of the
JDBC connection.

Retek Price
Management

(RPM)
 RDF/Curve

Retek Allocation-related dataflow across the enterprise

 Note: To facilitate a discussion of the diagram above, the text below specifically refers to
Retek Demand Forecasting (RDF) and to Retek’s products, Grade and Curve. However, a
retailer without these Retek products can provide the type of data that Retek Allocation
utilizes.

From the merchandising system to RDF/Grade
The merchandising system sends the following information to RDF/Grade:

• History data

Chapter 4 – Functional design

23

From RDF/Grade to Retek Allocation via the merchandising system
Within RDF/Grade, the history data is subjected to processing that yields data that is sent back to
the merchandising system. From there, Retek Allocation pulls the following data:

• Forecasting data
Retek Allocation accesses forecasting data that originates in the Retek Demand Forecasting
(RDF) system. RDF is Retek’s statistical and causal forecasting solution. It uses state-of-the-
art modeling techniques to produce high quality forecasts, with minimal human intervention.
RDF is an application that resides on the Retek Predictive Application Server (RPAS). Retek
Allocation uses forecasting data as a basis for calculating gross need and can access the
following five levels of forecasting data: department, class, subclass, style-color, SKU.

• Store grade groups data
Retek Allocation accesses store grade groups data that originates in Grade. Grade is Retek’s
application that groups store locations together intelligently based on similarities in
performance, customer type, geography, or some other factor that allows the stores within
each group to be treated as one unit. Grade is an application that is part of the Retek
Predictive Application Server (RPAS). Internally, Retek Allocation also updates its store
grade groups data groups based on the most current definitions. This update plays an
important role when many months pass between initial and final allocations.

From the planning application to Retek Allocation
• Plan data

Retek Allocation accesses plan data that originates in the planning application (including
Retek’s planning applications that reside on the RPAS server). The RPAS products are
applications that provide functionality for developing, reconciling, and approving plans.
When interfacing with Retek planning applications, Retek Allocation accesses department,
class, subclass, style-color, or SKU plan data at the store-week level. When interfacing with
legacy planning information, Retek Allocation accesses SKU, style-color, subclass, class, or
department level plan data at the location-week level. Retek Allocation can be used as a tool
to verify the final product-store plans and to initiate a PO to execute the plan. In other words,
Retek Allocation can take the retailer’s plan or forecast and execute it. Both the Retek and the
legacy planning applications populate a planning table, ALC_PLAN, which resides within
Retek Allocation. See the section, ‘Planning table in Retek Allocation’, later in this chapter.

From RDF/Curve to Retek Allocation
• Curve data

Curve data becomes size profile data once it’s integrated into Retek Allocation. If allocations
are made at the style level, Retek Allocation utilizes the Curve data to get to the SKU level.
For more information, see the section, ‘Size profile logic’ in “Chapter 5 – Allocation
calculations” and see “Chapter 6 – RETL batch processing”.

From RPM to Retek Allocation
• Future retail price data

Retek Allocation uses this data to provide the user with the future retail price value of the
entire allocation (based on its quantities). In addition, users can access future retail price
values by location and by item. For information about configuration related to this setting, see
the section, ‘Display future unit retail price values’ in “Chapter 2 – Backend system
administration and assumptions”.

Retek Allocation

24

From the warehouse management system (such as RWMS) to Retek
Allocation via the merchandising system
• Appointment data

Appointment data is one source that identifies item(s) to be allocated.

• Warehouse inventory position data

• ASN information

From the merchandising system to Retek Allocation

 Note for RMS users only:
Item, purchase order, supplier, sales and other data are accessed directly from the RMS
tables, with no need to interface data via batch modules.

Via a Java database connectivity (JDBC) link, Retek Allocation receives the following data:

• Item data
Retek Allocation can allocate at the SKU, style-color, pack, or item list level. Styles, SKUs,
and packs can be mixed on a single allocation.

• PO data

• Hierarchy data

• Sales history data (for items, user-defined attributes [UDA], warehouses, stores, and so on)

• Foundation data (supplier data, shipping tables, and so on)

From Retek Allocation to the merchandising system
Retek Allocation calculates the allocation based on the information it has received from the
merchandising system and/or the planning system. Once the retailer reviews and approves the
allocation, Retek Allocation sends the following information back to the merchandising system:

• Approved allocation data

• Worksheet status POs that contain product, supplier and quantity information (the only
remaining actions to be taken in the merchandising system are to approve the PO and, if
desired, to truck scale the PO.)

From the merchandising system to the warehouse management system
(such as RWMS)

 Note for RMS users only:
Retek Allocation utilizes the existing integration between RMS and RWMS. This
interface currently passes purchase order, item, location, and allocation information from
RMS to RWMS.

Based upon the approved allocation information from Retek Allocation, the merchandising
system sends the following information to the distribution management system:

• Approved allocation data at the warehouse-PO-SKU-store quantity level. This data represents
the store quantity instructions for allocating a specific quantity of stock at the store level.

Chapter 4 – Functional design

25

From Active Retail Intelligence to Retek Allocation
Active Retail Intelligence (ARI) is an exception management and resolution system driven by
custom business rules. Depending upon ARI’s configuration, an ARI user could receive an alert
that includes a link to Retek Allocation in the form of a URL address. The user could then log on
to Retek Allocation in order to address the contents of the ARI alert.

How need is determined
To accurately determine individual store gross need, retailers want the flexibility to choose
forecast data, plan data, sales history data, or combinations of this data.

Through the front end, retailers select a rule based on a portion of this data that accurately gathers
gross need. The source of the data used by each rule is illuminated in this section.

To determine the net need at the store level, the system takes the gross need and subtracts from it
the stock-on-hand at the store level. The equation that Retek Allocation uses to determine the
stock-on-hand at the store is described later in this chapter.

The sources of data used by rules to determine gross need

 Note: For a description of how the following rules use the data to determine gross need,
see the Retek Allocation User Guide.

History data sources
For this rule, data is gathered primarily from the following tables:

RMS 11.0 Legacy system

DEPT_SALES_HIST This table contains one row for each dept-location-
week-sales type combination. Sales history,
forecast and plan information about each
combination is held.

CLASS_SALES_HIST This table contains one row for each class-location-
week-sales type combination. Sales history,
forecast and plan information about each
combination is held.

SUBCLASS_SALES_HIST This table contains one row for each subclass-
location-week-sales type combination. Sales
history, forecast and plan information about each
combination is held.

ITEM_LOC_HIST This table contains one row for each item-location-
week-sales type combination. Sales history,
forecast and plan information about each
combination may be held here.

Retek Allocation

26

Forecast data sources
For this rule, data is gathered primarily from the following tables:

RMS 11.0 Legacy system

DEPT_SALES_FORECAST This table holds the forecast information
summed to the department-location-
eow_date.

CLASS_SALES_FORECAST This table holds the forecast information
summed to the class-location-eow_date
and should be partitioned by domain_id,
as well. Thus, if only a portion of the
domains is forecasted, then the rebuild is
done by domain_id.

SUBCLASS_SALES_FORECAST This table holds the forecast information
summed to the subclass-location-
eow_date and should be partitioned by
domain, as well. Thus, if only a portion
of the domains is forecasted, then the
rebuild is done by domain_id.

ITEM_FORECAST This table holds the item level forecasted
information from the RDF extractions.
This table holds all item types. This table
should be partitioned according to the
domain level.

Plan data sources
For this rule, data is gathered primarily from the following table:

• ALC_PLAN

For a more detailed description of this table, see the section, ‘Planning table in Retek Allocation’,
later in this chapter.

Chapter 4 – Functional design

27

History and Plan data sources
For this rule, some data is gathered from the following plan table in Retek Allocation:

• ALC_PLAN

and some data is gathered from the following tables:

RMS 11.0 Legacy system

DEPT_SALES_HIST This table contains one row for each dept-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination is held.

CLASS_SALES_HIST This table contains one row for each class-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination is held.

SUBCLASS_SALES_HIST This table contains one row for each subclass-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination is held.

ITEM_LOC_HIST This table contains one row for each item-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination may be
held here.

Plan re-project data sources

 Note: For a description of the Bayesian algorithm that is used in this section, see
“Chapter 5 – Allocation calculations”.

For this rule, some data is gathered from the following plan table in Retek Allocation:

• ALC_PLAN

and some data is gathered from the following tables:

RMS 11.0 Legacy system

DEPT_SALES_HIST This table contains one row for each dept-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination is held.

CLASS_SALES_HIST This table contains one row for each class-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination is held.

SUBCLASS_SALES_HIST This table contains one row for each subclass-
location-week-sales type combination. Sales history,
forecast, and plan information about each
combination is held.

Retek Allocation

28

RMS 11.0 Legacy system

ITEM_LOC_HIST This table contains one row for each item-location-
week-sales type combination. Sales history, forecast,
and plan information about each combination may be
held here.

Corporate rules
For this rule, data is gathered from the selected column of the following tables in Retek
Allocation:

• ALC_CORPORATE_RULE_HEAD

• ALC_CORPORATE_RULE_DETAIL

The column selection is based on which corporate rule is picked by the user.

 Note: If the retailer plans ideal weeks of supply (IWOS) by product-location, the
corporate table can be accessed to create different ideal weeks of supply by store. If the
retailer does not plan IWOS, a field can be created that contains the same IWOS for
every store.

Quantity limits
Quantity limits allow the user to set parameters which affect different stages of the allocation for
the product-stores where they are entered. The values for each applicable quantity limits selection
are held on the applicable column of the ALC_QUANTITY_LIMITS table.

Stop ship
A ‘stop ship’ is a product/location combination that prevents an item from shipping to that
location. The system looks at the release dates entered on the product window and compares them
with stop ship records entered via the merchandising system. If the release date is on or between
the stop ship dates, the system inserts ‘0’ into the min and max columns of quantity limits for this
store-item.

The release date is on the ALC_ITEM_LOC table and is represented by the column, release_date.
The STOP_SHIP table contains the stop ship date range: start_date and end_date. In order for a
stop ship record to stop shipment of an allocation, the store, department, class, and subclass of the
allocated item must match the store, department, class, and subclass on the stop_ship record, or
the store and style (for fashion) or SKU (for staple) of the item being allocated must match the
store and item_id on the STOP_SHIP table. See the Retek Allocation User Guide for more
information.

Chapter 4 – Functional design

29

Net need at the store level calculation
On a fundamental level, net need is gross need minus the on-hand at the store.

 Note: Although quantity limits also effect net need, they are not addressed in the
calculation illustrated by this passage.

To determine the gross need, Retek Allocation gathers the information based upon one of the
rules selected by the retailer through the front end. Retek Allocation uses the following equation
to determine the on-hand at the store that is subtracted from the gross need result.

Stock-on-hand at the store+
Stock in transit+
Stock on order [stock that is expected by the on order commit date]+
Transfers of stock expected+
Stock on allocation

–

Outgoing transfers +
Return to vendor stock+
Unavailable stock+
Transfers on reserve

An abbreviated version of this equation would be the following:

(SOH +InTransit+OnOrder+TSF Expected+OnAlloc) –

(TSFOut+RTV+Unavailable+TSF Reserved)

Tables populated by external systems
The following tables are owned by Retek Allocation. The data within them is populated by
external systems. For descriptions of each table and its columns, see the Retek Allocation Data
Model.

• ALC_CORPORATE_RULE_DETAIL

• ALC_CORPORATE_RULE_HEAD

• ALC_IDEAL_WEEKS_OF_SUPPLY

• ALC_PLAN

• ALC_SIZE_PROFILE

 Can also be populated through size profile setup via the front-end of the application.

 Can also be populated through RETL processing from Retek Demand Forecasting (RDF)

• ALC_USERS

• ALC_USER_DEPTS

Retek Allocation

30

Planning table in Retek Allocation
Both the Retek and the legacy planning applications populate a planning table, ALC_PLAN,
which resides within Retek Allocation. This table includes the following columns:

• Plan ID

• Store

• EOW.date

• Department

• Class

• Subclass

• Item

• Diff1

• Quantity

A record can thus exist at any of the following levels by week-store-quantity:

• Department

• Department-class

• Department-class-subclass

• Item-color

• SKU

Merchandising interface tables
This section lists by functional area, the tables that Retek Allocation uses from within the
following merchandising systems:

• RMS 11.0

• Legacy systems

Chapter 4 – Functional design

31

RMS 11.0 tables (for retailers with RMS only)
The following table illustrates the tables from which Retek Allocation 11.0 gets its data from
RMS 11.0.

RMS 11.0 tables

Functional area Associated tables

SUB_ITEMS_HEAD

SUB_ITEMS_DETAIL

ITEM_SUPP_COUNTRY

ITEM_SUPPLIER

ITEM_LOC

ITEM_LOC_HIST

ITEM_LOC_SOH

ITEM DATA

ITEM_PARENT_LOC_HIST

SKULIST_HEAD SKULIST DATA

SKULIST_DETAIL

PACKITEM

ITEM_MASTER

PACK DATA

ITEM_LOC

ORDHEAD

ORDLOC_WKSHT

ORDLOC

ORDSKU

ALLOC_HEADER

ALLOC_DETAIL

ORDER DATA

SHIPMENT

SUPS SUPPLIER DATA

ITEM_SUPPLIER

LOC_LIST_HEAD

LOC_LIST_DETAIL

LOCATION LIST DATA

LOC_LIST_CRITERIA

DEPS MERCHANDISE HIERARCHY DATA

CLASS

Retek Allocation

32

RMS 11.0 tables

Functional area Associated tables

SUBCLASS

STORE

WH

ORGANIZATIONAL HIERARCHY DATA

WH_STORE_ASSIGN

SHIPMENT SHIPMENT DATA

SHIPSKU

STORE_GRADE_GROUP

STORE_GRADE

STORE

BUYER

STORE GRADE DATA

STORE_GRADE_STORE

SEC_USER_LOC_MATRIX SECURITY DATA

SEC_USER_PROD_MATRIX

LOC_TRAITS

LOC_TRAITS_MATRIX

LOC_AREA_TRAITS

LOC_REGION_TRAITS

LOCATION TRAITS DATA

LOC_DISTRICT_TRAITS

TSFHEAD TRANSFER DATA

TSFDETAIL

UDA

UDA_VALUES

UDA DATA

UDA_ITEM_LOV

DEPT_SALES_FORECAST

CLASS_SALES_FORECAST

SUBCLASS_SALES_FORECAST

FORECAST DATA

ITEM_FORECAST

DEPT_SALES_HIST

CLASS_SALES_HIST

SALES DATA

SUBCLASS_SALES_HIST

Chapter 4 – Functional design

33

RMS 11.0 tables

Functional area Associated tables

ITEM_LOC_HIST

ITEM_PARENT_LOC_HIST

APPT_HEAD APPOINTMENT DATA

APPT_DETAIL

Suggested legacy system tables
The following table illustrates the suggested tables from which Retek Allocation gets its data
from a legacy system.

Suggested legacy tables

Functional area Associated tables

A table that holds substitute item header
information by location.

A table that holds substitute item detail
information by location.

A table that holds one record for each origin
country associated with a given item-
supplier.

A table that holds all item supplier
relationships for all items.

A table that contains one row for each item
stocked at each location within the company.

A table that contains one row for each item-
location-week-sales type combination. Sales
history, forecast, and plan information about
each combination may be held here.

A table that contains one row of stock-on-
hand information for each item stocked at a
location within the company.

ITEM DATA

A table that holds the rolled up sales history
for item parents.

A table that contains the header information
for each item list created within the system.
An item list can contain SKUs and styles.

SKULIST DATA

A table that contains one row for each item
or item parent within an item list.

Retek Allocation

34

Suggested legacy tables

Functional area Associated tables

A table that contains one row for each pack
item-item combination that has been created.
Base information about each item in each
pack is held. Because a pack may contain
other packs, some of the component items on
this table may also be packs themselves.

A table that holds all the main attributes and
records for all items and pack items in the
merchandising system. Additionally, this
table has referential integrity on itself which
hold the links between grandparent, parent
and child items.

PACK DATA

A table that contains one row for each item
stocked at each location within the company.

A table that contains one row for each order
that has been placed by the company.

A table that contains worksheet records for
an order. A user is able to place items on the
worksheet table and leave them there until
the item is fully distributed.

A table that contains one row for each order-
SKU-store or warehouse combination that
has been placed by the company.

A table that contains one row for each order-
item combination that has been placed by the
company. Base information about each item
on each order is held.

A table that contains header level
information for the allocation of a SKU from
a warehouse to a group of stores or other
warehouses.

A table that contains one row for every
allocation store-warehouse combination.
Allocations can be attached to a purchase
order or can be created as stand-alone
allocations.

ORDER DATA

A table that contains one row for each
shipment within the system. Base
information about each shipment for each
order is held in this table for as long as its
associated order header is retained.

Chapter 4 – Functional design

35

Suggested legacy tables

Functional area Associated tables

A table that contains one row for each
supplier within the company. Whenever a
supplier name and so on is used by Retek, or
a supplier number is validated, it is always
selected from this table.

SUPPLIER DATA

A table that holds all item supplier
relationships for all items.

A table that contains the header level
information for each location list set up in
the system. A location list can contain store
and warehouse. The information includes the
stored grouping criteria for store and for
warehouse. These criteria are used to rebuild
all lists.

A table that contains one row for each
location (store or warehouse) within a
location list.

LOCATION LIST DATA

A table that contains one row for each step
performed to obtain a store grouping criteria
and a warehouse grouping criteria. For each
step performed, a query where clause is
formed to include/exclude location in/from
the location list. These grouping criteria can
be used to rebuild the location list.

A table that contains one row for each
department within the company. Whenever
Retek uses a department name, and so on, or
a department number is validated, the data is
selected from this table.

A table that contains one row for each class
within the company. Whenever Retek uses a
class name, or a class is validated, it is
always selected from this table.

MERCHANDISE HIERARCHY DATA

A table that contains one row for each
department-subclass combination within the
company. Whenever Retek uses a subclass
name, or a subclass is validated, it is always
selected from this table.

ORGANIZATIONAL HIERARCHY DATA A table that contains one row for each store
within the company.

Retek Allocation

36

Suggested legacy tables

Functional area Associated tables

A table that contains one row for each
warehouse within the company. Whenever
Retek uses a warehouse name or address and
so on, or a warehouse number is validated, it
is always selected from this table.

A table that contains warehouse store
assignment information. Each record
determines on what date a store is supposed
to be assigned to a warehouse.

A table that contains one row for each
shipment within the system. Base
information about each shipment for each
order is held in this table for as long as its
associated order header is retained.

SHIPMENT DATA

A table that contains one row for each
shipment-SKU combination in the system.
When a shipment header is purged all
associated rows in this table are also purged.

A table that contains store grade group
information. It is the header table for store
grades. A store grade group is a mechanism
to group stores together. A store grade group
consists of multiple store grades, each
containing many stores.

A table that contains store grade information.
Each store grade within a group contains one
or more stores.

A table that contains one row for each store
within the company.

A table that contains one row for each person
authorized to create purchase orders.

STORE GRADE DATA

A table that contains a record for each store
grade group.

A table that is used to store user location
security attributes.

SECURITY DATA

A table that is used to store user product
security attributes.

Chapter 4 – Functional design

37

Suggested legacy tables

Functional area Associated tables

A table that contains one row for each
location trait in the system. Location traits
allow stores to be grouped based on common
characteristics.

A table that contains store-location trait
relationships.

A table that contains one row for each area
level location trait defined within Retek.

A table that contains one row for each region
level location trait defined within Retek.

LOCATION TRAITS DATA

A table that contains one row for each
district level location trait defined within
Retek.

A table that contains one row for each
transfer that has been created in the system.

TRANSFER DATA

A table that contains one row for each
transfer-SKU-prepack-inv_status
combination held in the system.

A table that contains one row for each user-
defined attribute (UDA), defined within the
merchandising system. Generally, a UDA is
any attribute that does not have specific
processing in the merchandising system.

This table contains all valid values
associated with a UDA.

UDA DATA

This table contains one row for each item-
attribute combination for UDAs with
display_type of list of values (LV).

This table holds the forecast information
summed to the department-location-
eow_date.

FORECAST DATA

This table holds the forecast information
summed to the class-location-eow_date and
should be partitioned by domain_id. Thus, if
only a portion of the domains is forecasted,
then the rebuild is done by domain_id.

Retek Allocation

38

Suggested legacy tables

Functional area Associated tables

This table holds the forecast information
summed to the subclass-location-eow_date
and should be partitioned by domain. Thus,
if only a portion of the domains is
forecasted, then the rebuild is done by
domain_id.

This table holds the item level forecasted
information from the demand forecasting
application’s extractions. This table holds all
item types.

This table contains one row for each dept-
location-week-sales type combination. Sales
history, forecast, and plan information about
each combination is held.

This table contains one row for each class-
location-week-sales type combination. Sales
history, forecast, and plan information about
each combination is held.

This table contains one row for each
subclass-location-week-sales type
combination. Sales history, forecast, and
plan information about each combination is
held.

This table contains one row for each item-
location-week-sales type combination. Sales
history, forecast, and plan information about
each combination may be held here.

SALES DATA

This table holds the rolled up sales history
for item parents.

This table holds header-level information for
warehouse management system-generated
appointments. The table contains one record
per appointment/location combination.

APPOINTMENT DATA

This table holds detail-level information for
warehouse management system-generated
appointments. The table contains one record
per appointment/location/item/ASN
combination.

Chapter 5 – Allocation calculations

39

Chapter 5 – Allocation calculations
This chapter provides an overview of allocation calculations, including the allocation queue
processes. Because allocation involves the distribution of a set number of items across a number
of different locations, an allocation’s measure of success is how well it solves the overall need for
an item across various locations.

Retek Allocation’s calculation engine is designed to try and fill each store’s predefined need as
closely as possible given a constrained quantity of product.

Assumptions related to calculations
The system is programmed to assume that any given allocation follows these guidelines.

Store order multiple assumption
The store order multiple (SOM) is the default unit of measure by which an item is shipped from
the warehouse to the store (for example, cartons, inner packs, eaches, and so on). Because the
system allocates in groups equal to the SOM, the system may not be able to exactly apply the size
profile.

The system assumes that all of the SKUs under a style have the same SOM as the style. In other
words, the SOM cannot differ by SKU under a style.

Proportional allocation assumption
The system assumes that a proportional allocation will not contain more than 10,000 units going
to one store. The 10,000-unit value is a hard limit, and if exceeded, an infeasible solution arises in
the system’s algorithm.

Calculation queue processing
The following diagram offers an overview of the calculation queue process. Explanations of the
numbered steps follow the diagram. Note that the numbers do not necessarily reflect the system’s
order of operation but are provided to facilitate the discussion of the process.

Retek Allocation

40

Gather need

Merchandising
system

Calculation
queue

Retek
Allocation 11.0

tables

Gather on-hand

Algorithm

1

2

3

4

5

Database

Retek Allocation calculation queue process

Chapter 5 – Allocation calculations

41

Calculation queue process description
1 A continuously running thread pulls an allocation to be calculated into the calculation queue.

2 Need is gathered based upon the applicable rule and the data from the database. For example,
the need gathered could be based upon plan data, sales history data, forecast data, plan re-
project (Bayesian-calculated) data, and so on. These calculations are internal to the Java in
Retek Allocation. For more information about the data that the system uses to generate gross
need, see “Chapter 4 – Functional design”.

3 On-hand is gathered, as necessary, from the database depending upon whether gross need or
net need is desired. These calculations are internal to the Java in Retek Allocation. For more
information about the source of on-hand data and how on-hand is calculated, see “Chapter 4 –
Functional design”.

4 The algorithm, an external library written in C++, is called to make a statistical determination
of the best allocation possible given the parameters and constraints of the problem. Inputs
passed to the algorithm function include the following:

 Available quantity by SKU

 An exact/proportional flag

 SKU-store matrices of need, on-hand, minimum, maximum, and threshold

Cascade mode uses additional vectors for cascade-level targets, minimum, maximum, and
threshold. Pack mode uses a matrix representing the pack component quantities.

Depending upon the mode (for example, simple, cascade, or pack) and the constraints of a
given problem, an algorithm is selected to calculate the allocation, including an ‘objective’
function representing a relative score for the evaluation of different options. In every mode,
the return values represent the SKU (pack)-store amount to be allocated and shipped. In all
modes (for example, simple mode, cascade mode, and so on), optimization is performed
through a heuristic algorithm.

5 The results are retrieved and saved to the database.

Calculation queue scripts
Retek Allocation includes sample scripts for calculation and optimum prepack calculation queue
management. These scripts are examples provided for the retailer’s convenience.

There is no maximum number of calculation and optimum prepack calculation queues that can be
run at any given time. Processor and memory limits (specific to a retailer’s implementation) on a
given Windows or UNIX box determine a maximum number.

Retek Allocation

42

Start (queue_11.sh)
This script is used for calculation queue management. The script calls set10.sh to set variables
that are needed to run the calculation queue. The command syntax is as follows:

queue_11.sh start x

The command starts an instance of the calculation queue. ‘x’ represents an integer which serves
as the ID for the queue being started. This integer should be unique among all instances of the
calculation queue being run.

When the queue is started, the script attempts to create a log for the calculation queue in a
subdirectory of the current directory. Note that this subdirectory is referred to as ‘logs’ in the
script template. Retailers can specify any location they wish for these log files. The referenced
directory should be created prior to running the script. Existing log files are overwritten when a
queue is started.

Stop (queue_11.sh)
The command syntax that stops an instance of the calculation queue specified by the integer ‘x’ is
as follows:

queue_11.sh stop x

Status (queue_11.sh)
The command syntax that provides status information about an instance of the calculation queue
specified by the integer ‘x’. is as follows:

queue_11.sh status x

Restart (queue_11.sh)
The command syntax that stops and restarts an instance of the calculation queue specified by the
integer ‘x’ is shown below. The newly started instance of the queue contains a new PID and
creates a new log file that replaces the existing log file.

queue_11.sh restart x

The operative command used to start a calculation queue is:
java -classic -cp $CLASSPATH com.retek.alloc.calculation.CalcQueue x

where ‘x’ represents the unique integer specifying the ID of the calculation queue.

 Note: Some JDK implementations on UNIX boxes do not have the classic option. The ‘-
classic’ argument can be removed from the script/command or substituted with ‘-server’
(if the server option exists on your JDK implementation).

Chapter 5 – Allocation calculations

43

Optimal prepack queue management (queue_pre11.sh)
This script is used for optimal prepack calculation queue management. The script calls set11.sh to
set variables that are needed to run the optimal prepack calculation queue. The command syntax
is the same as for queue_11.sh, except that ‘queue_11.sh’ is replaced by ‘queue_pre11.sh’.

The operative command used to start a calculation queue is:
java -classic -cp $CLASSPATH com.retek.alloc.calculation.CalcQueue x
-prepack

where ‘x’ represents the unique integer specifying the ID of the calculation queue.

 Note: Some JDK implementations on UNIX boxes do not have the classic option. The ‘-
classic’ argument can be removed from the script/command or substituted with ‘-server’
(if the server option exists on your JDK implementation).

Set environment variable (set11.sh)
This script template is called by queue_11.sh and queue_pre11.sh to set an environment variable
needed for the calculation and prepack calculation queues. It sets a $J2EE_HOME, a
$JAVA_HOME and library path settings specific to the box vendor (Sun, AIX, HP). Note the
comments in this script that specify which settings should be used in your implementation.

Plan re-project algorithm
A Bayesian algorithm is one that is based on a mathematical theorem developed in the eighteenth
century by the Reverend Thomas Bayes. This theorem is a basic starting point for inference
problems that use probability theory as logic.

The forecasting algorithm is provided here only to give the technical reader insight into exactly
how actual sales are combined with a plan to produce a forecast.

Let:

N be the number of periods in the current season (and N = ∞ for staple products),

M be the current period,

()jp be the sales plan for periods j = 1, …, N,

()jx be the achieved sales for period j = 1, …, M, and

α be a constant between 0.0 and 1.0 (This parameter influences the balance between model
sensitivity and robustness, that is, how responsive the model is to new sales data).

Retek Allocation

44

Additionally, define

()∑
=

≡
M

j
jpP

1
' as the sum of the sales plan up to the current period,

()∑
=

≡′′
N

j
jpP

1
 as the sum of the sales plan over the entire season, and

()∑
=

≡′
M

j

jxX
1

 as the sum of the achieved sales up to the current period.

Finally, compute the forecasts as

() () () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

′′
′

−+⎟
⎠
⎞

⎜
⎝
⎛

′′
′

⎟
⎠
⎞

⎜
⎝
⎛

′
′

≡
αα

P
Pjp

P
P

P
Xjpjx 1ˆ for periods j = M+1, …, N.

The motivation for this forecast is relatively clear. The forecast is a convex combination of a
scaled version of the sales plan, () ⎟

⎠
⎞

⎜
⎝
⎛

′
′

P
Xjp , and the original sales plan itself. The scaled

version of the sales plan is scaled based upon the ratio of the achieved historical sales to the
historical sales plan (for example, if the retailer sold twice what it had planned to sell in the
past, then the scaled plan would be twice the original plan). Thus, if the retailer had no
confidence in the magnitude of the original sales plan (but still believed in its time profile or
shape), then the scaled plan would probably be a good forecast on its own. On the other hand,
if the retailer really still believes in the plan and the retailer does not believe that the recent
past performance is indicative of future performance, then it would make sense to stick with
the original sales plan as the forecast.

In the forecasting algorithm, the weights assigned to the scaled and original plans represent
the confidence in the respective portions. As ⎟

⎠
⎞

⎜
⎝
⎛

′′
′

P
P becomes larger (that is, the portion of the

plan that can be compared to historical sales increases), the retailer tends to have more
confidence in the scaled plan. For example, if ⎟

⎠
⎞

⎜
⎝
⎛

′′
′

P
P = 0.01, then the retailer really does not

have much information upon which to base the scaled plan. On the other hand, for example,
as the quantity approaches 0.5 (that is, the season is half way over), then the retailer really
should start seriously considering why the plan was incorrect. The retailer may have greater
belief in the scaled plan. Additionally, the α parameter is used to tweak the sensitivity of the
forecasting method. As α increases, the forecast will tend to stay closer to the original plan.
For small values of α , the forecast will move rapidly towards the scaled plan as historical
sales data becomes available. Retailers should use their own data and judgment to determine
an appropriate α for their particular business problem at hand. For more information, see the
section ‘Bayesian sensitivity factor’ in “Chapter 2 – Backend system administration and
assumptions”.

Chapter 5 – Allocation calculations

45

Guidelines
Bayesian forecasting is primarily designed for use with new product-location positions. The
following guidelines should be followed:

1 No more than one plan should exist for a given product-location position.

2 Any time period with non-zero actuals for a given product-location position should have a
corresponding plan component (otherwise the system will assume a plan exists and equals
zero and will act accordingly).

3 Any non-zero actuals not within the time period of interest should be overridden to zero.

Satisfying need across multiple locations
One way to think of the application’s methodology is by comparing its process to that of water
filling a container.

The fill line of the container represents 100% of need for all the locations, and the quantity of
water available represents the stock available. By pouring all of the water into the container, the
water level naturally reaches the target stock.

Suppose that the bottom of the container is partitioned, and each partition represents a different
store.

The water would naturally level itself to maintain consistent stock across all stores.

Suppose too the following three conditions, as depicted in the accompanying chart:

• Stock is already available at each store.

• The height of each partition in the container represents the amount of that location’s existing
stock.

• The partitions are sorted from left to right in ascending stock percentages.

0%
20%
40%
60%
80%

100%

Stor
e3

Stor
e4

Stor
e5

Stor
e8

Stor
e1

0
Stor

e2

Stor
e9

Stor
e6

Stor
e1

Stor
e7

Stores’ existing stock and need before allocation

When this staircase container fills with water, all locations to the left of the waterline would
receive an allocation quantity that satisfies need. All locations to the right of the waterline would
not receive an allocation because their existing stock satisfies need. The final allocation does not
guarantee that all stores end with the same percentage of need, but instead guarantees that all
locations which receive an allocation has the same percentage of need and that all others are at or
above this percentage of need.

Retek Allocation

46

0%

20%

40%

60%

80%

100%

Store3 Store5 Store10 Store9 Store1

Stores’ stock after allocation

Rounding conditions
Some allocation algorithms use rounding rules to determine when to round fractional components
up or down to whole number answers. However, simple rounding often causes problems if not
handled appropriately, including the allocation of too many or too few items. By using
sophisticated optimization techniques, Retek’s allocation algorithm deals in whole numbers
directly and avoids rounding.

Size profile logic
The system uses historical sales data to create a size profile (a graph) that illustrates how many
units should be allocated by size. The data that answers the question is useful because the size of
people in different regions can differ. For example, a question that could arise during an
allocation might be: how many size 8 red shirts did I sell in Chicago as opposed to Los Angeles?
Retek Allocation calculates that the Los Angeles area needs x percentage more of smaller sized
shirts than Chicago.

The allocation of packs
Retek optimally allocates packs of multiple items based on stores’ need for the individual
component items in the packs. The benefit of this approach is that the system does not follow
arbitrary rules for allocating packs and items. Instead, a consistent holistic approach is used. The
potential answers are evaluated by how well the resulting allocation of component items satisfies
the stores’ need for the individual items. See front-end documentation for a definition of the two
types of packs, sellable and non-sellable.

Note the following conditions that apply to sellable packs:

• A sellable pack is connected to plan data and to forecast data via the pack_no rather than the
component SKUs.

• The ITEM_LOC_HIST table is used to determine the SKU-level history for a sellable pack.

• The on-hand value for a sellable pack is for the pack rather than for the components.

Chapter 5 – Allocation calculations

47

Note the following condition that applies to non-sellable packs:

• When the user selects a style-color to allocate, the system retrieves all non-sellable packs that
contain only that style-color.

• Retrieved non-sellable packs are not displayed for the user, but the contents of the pack are
included in the available quantity.

• The on-hand value for a non-sellable pack is at the component level. The on-hand value can
be generated for the style-color.

• The need value for a non-sellable pack is determined at the component level. The need value
can be generated for the style-color.

• Allocation transactions respect both open stock (SKUs) and the associated pack level.

By considering the entire matrix of available packs against component-store need for
optimization, Retek Allocation provides a sophisticated solution for the distribution of multi-
product packs.

The following example illustrates a relatively simple fashion prepack allocation:

The user selects a style to allocate. The system determines the availability of the style, in the
warehouse or from a PO, and understands the quantity available to allocate and the prepack
matrix (the component makeup of the pack). The user sees the total number of items available
for the style, 420 units in the example below.

 Prepack
Matrix

S M L

Packs
Available

Items
Available

Pack 1 3 3 6 20 240

Pack 2 3 6 3 15 180

The user picks a rule that defines the need for the styles being allocated. Note that this need is
for the style, not for the component items or for the packs.

Need for style

Store 1 150

Store 2 150

Store 3 100

Retek Allocation

48

The allocation system looks up the appropriate size curve for each style-store, based on the
style or subclass. Size curves are not calculated during the allocation process. Retek Curve or
another similar system is used to calculate size profiles.

Size curve

 S M L

Store 1 20% 50% 30%

Store 2 20% 30% 50%

Store 3 20% 30% 50%

Need for each individual item is calculated by multiplying style need by the size curve.

Item need

 S M L Total

Store 1 30 75 45 150

Store 2 30 45 75 150

Store 3 20 30 50 100

Finally the allocation algorithm determines the optimal allocation of packs. Inputs to the
process are the Prepack Matrix, Packs Available, and Item Need above. Other inputs not
shown in this example may be included (for example, minimum, maximum, threshold, store
on-hands, and so on).

Pack allocation

 Pack 1 Pack 2

Store 1 1 12

Store 2 11 2

Store 3 8 1

The user sees the result in terms of number of allocated per style, as shown in the following
table:

Style allocation

 Need Allocation

Store 1 150 156

Store 2 150 156

Store 3 100 108

Chapter 5 – Allocation calculations

49

The user can also view the results by individual item to make sure the size distribution is
correct. If the distribution is poor, action may need to be taken such as the ordering of more
products or the breaking packs before allocation.

Item allocation

 S M L

Store 1 39 75 42

Store 2 39 45 72

Store 3 27 30 51

The objective of the algorithm is to minimize the variance between the actual allocation and
need across all item-store combinations.

The algorithm with packs and singles
The algorithm determines the optimum result based on the overall allocation of every individual
product. Both packs and singles are allocated to stores as needed. Packs, however, are preferred
to singles in order to minimize the total number of units distributed, thereby lowering handling
costs.

Cascade allocations
In many circumstances, merchandise issues that come up at the SKU level can be accommodated
by adjusting allocations at higher levels in the merchandise hierarchy. The Retek Allocation’s
allocation optimization algorithm is applied to cascade allocations.

The following example illustrates a cascade allocation:

The retailer is running an ad for t-shirts, with a picture of the yellow one. All t-shirts are
displayed on a store table all together. The yellow t-shirt has been allocated, and the next step
is to make sure that every store has an adequate stock of all t-shirts to support other customer
choices.

On a per item basis, the simple mode allocation distributes as much quantity as is available,
up to the calculated need. However, the cascade mode allocation exceeds the item need if it is
necessary to meet the category need. The chart, “Total item need vs. allocation”, illustrates
that more of all the t-shirts are distributed by cascade mode, and that two of the t-shirts are
allocated above and beyond their need in order to satisfy the total category demand.

Retek Allocation

50

0

10

20

30

40

50

60

Need Simple Mode Cascade Mode

Total item need vs. allocation

 Note: The overstocking of two items, which takes place in this example, is due to the
fact that constraints (for example, minimum, maximum, threshold, and so on) are not
being used to limit the results. The example is designed to highlight the effects of the
two different modes of calculating.

The chart, “Total category-store need vs. allocation”, illustrates that the category need is
exactly met by cascade mode. This simplistic example illustrates the system’s preference for
stocking the store for category performance rather than for mere item performance.

Chapter 5 – Allocation calculations

51

Store 1
Store 2

Store 3

0

10

20

30

40

50

60

70

80

Need Simple Mode Cascade Mode

Total category-store need vs. allocation

To obtain these results, the user selects the t-shirts to be allocated, using a plan rule, at
subclass (or any appropriate) level, in cascade mode. Remember that selecting cascade means
instructing the allocation to favor the need to fill the t-shirt table, over the need or lack of
available quantity for any specific shirt. Constraints such as minimum and maximum can be
used to ensure the resulting assortment is reasonable.

Behind the scenes, the system determines setup information, including the number of items
available to allocate, the number of items on hand at the stores, and the need by category-
store.

Item available quantity to allocate

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Available 0 0 80 85 16 20 201

Item on hand at stores

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Store 1 50 50 20 20 15 15 170

Retek Allocation

52

Item on hand at stores

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Store 2 30 30 10 5 10 10 95

Store 3 30 30 10 5 10 5 90

Total 110 110 40 30 35 30

Category need and on-hand at stores

 Need On-hand

Store 1 250 170

Store 2 125 95

Store 3 125 90

The next steps involve the examination of the need by category-store in order to determine
the need by item-store. The following results occur when allocating using the Retek
Allocation algorithm in simple and cascade mode. Cascade mode uses exactly the same
information as simple mode, with the addition of the category targets. Constraints such as
minimum, maximum, and threshold could be added to both calculations. Cascade mode can
consider optional constraints at the category level.

Simple mode allocation – not cascade

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Store 1 0 0 0 0 5 5 10

Store 2 0 0 0 3 0 0 3

Store 3 0 0 0 4 0 4 8

Total 0 0 0 7 5 9

Cascade-mode allocation

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Store 1 0 0 35 35 5 5 80

Chapter 5 – Allocation calculations

53

Cascade-mode allocation

Style Solid Striped Solid Striped Logo Logo

Color Yellow Yellow White Blue White Blue Total

Store 2 0 0 7 12 6 5 30

Store 3 0 0 8 12 5 10 35

Total 0 0 50 59 16 20

Staple cascade and fashion cascade
The following diagrams illustrate the system’s approach to a staple cascade calculation and to a
fashion cascade calculation.

Staple cascade
Explanations of Pass 1 and Pass 2 follow the diagram.

NN1 = GN1 – SOH1

NN21 = NN11 – SOH21 NN22 = NN12 – SOH22 NN23 = NN13 – SOH23

Location 1
Pass 1

Pass 2

Staple cascade

Pass 1
GN1 = Gross need at a location
SOH1 = Sum of SOH for all SKUs in ItemList-D-C-SC at that location
NN1 = Net Net (after Pass 1)

NN1 = GN1 = SOH1-

Retek Allocation

54

Pass 2
Divide NN1 among all items (X) at a location [NN1x=NN1/3]
NN11 = Cascaded need for item 1 at the location
NN12 = Cascaded need for item 2 at the location
NN13 = Cascaded need for item 3 at the location

Each item-location still has individual SOH.
SOH21 = SOH for item 1 at the location
SOH22 = SOH for item 2 at the location
SOH23 = SOH for item 3 at the location

Need applied to each individual item at the location
NN21 = NN11– SOH21
NN22 = NN12– SOH22
NN23 = NN13– SOH23

Fashion cascade
Explanations of Pass 1, Pass 2, and Pass 3 (not shown in the diagram) follow the diagram.

2

Location 1

NN11 NN12NN12 NN21 NN23NN22 NN31 NN33NN32

NN2 = GN2 – SOH NN3 = GN3 – SOH3NN1 = GN1 – SOH1

 GNPass 1

Pass 2
Style color level

Fashion cascade
Pass 1
GN=Gross need at a location

Pass 2
Divide GN among all styles at given location to get GN, and subtract SOH, for each style-color to
get NNx
NN1 = GN1– SOH1
NN2 = GN2– SOH2
NN3 = GN3– SOH3

Chapter 5 – Allocation calculations

55

Pass 3
Explode NNx out to sizes to get applied net need NNxy

Style 1 Style 2 Style 3

NN11 NN21 NN31

NN12 NN22 NN32

NN13 NN23 NN33

Prepack algorithm
Retailers sometimes want to configure the number of prepacks and the configuration of prepacks
that are to be used to provide merchandise to stores. The benefit of optimizing prepack definitions
is reduced warehouse handling costs. More efficient packs result in better in-store levels using
packs purchased, and less time and money spent breaking packs at season’s end.

In these instances, a prepack algorithm provides suggested prepack configurations that will most
closely fit store needs. The prepack configuration algorithm is a different algorithm than the one
called out earlier in the diagram, “Retek Allocation calculation queue process”. The prepack
algorithm does not write any transactions inside the merchandising system.

The following example illustrates the prepack algorithm:

The table below shows item-store need, which was calculated as the product of style-store
need and a size curve.

Item need

 S M L Total

Store 1 30 75 45 150

Store 2 30 45 75 150

Store 3 20 30 50 100

The need represents the ideal allocation. Configuring two prepacks allows that need to be
satisfied, assuming that the working environment is pre-season mode and that the supplier
allows for the specification of prepack configurations.

For a given set of items, and a corresponding item-store allocation such as the need above,
the user specifies some values:

 How many prepacks would you like to create?

 What is the minimum and maximum size for these, in total items?

For this example, the values selected are 2, 12, and 12.

Prepack configuration

 # Packs Min Max

Item Set 2 12 12

Retek Allocation

56

Using the same logic that the system utilizes when engaged in a prepack calculation, the
system evaluates the possible prepack combinations to find which allows for the best
allocation for the need defined.

Prepack matrix

 S M L

Pack 1 3 9 0

Pack 2 2 2 8

By running the allocation above with this prepack matrix, the following allocation can be
achieved.

Pack allocation

 Pack 1 Pack 2

Store 1 7 6

Store 2 3 9

Store 3 2 6

At a style level, the following values more closely satisfy the stores’ total need.

Style allocation

 Need Allocation

Store 1 150 156

Store 2 150 144

Store 3 100 96

At an item level, the results for medium and large items are very similar, but for the small
item, the result is much better. Need by store is 30 30 20, and the result, 33 27 18, is better
than 39 39 27.

Item allocation

 S M L

Store 1 33 75 48

Store 2 27 45 72

Store 3 18 30 48

A retailer could now communicate the ideal configuration to the supplier. The configurations
can be set up in the merchandising system and used when creating the purchase order.

Chapter 5 – Allocation calculations

57

Closing allocations
This section addresses the four possible methods of closing allocations. The diagram below
illustrates the dependencies between Retek Allocation and RMS within the context of when and
how allocations are closed. Explanations for the numbers in the diagram follow it. Note that the
closure of the master allocation in Retek Allocation entails ‘all or nothing’ processing logic.

Manual PO
Closure

(2)

Closing received
PO
(3)

Closing Old PO
(1)

Close
Allocation

No Action

Yes

Cancel remaining
RMS quantities for
single allocation
and close single
RMS allocation

Outstanding /
Open Pick Date

 for Master
Allocation

Close Master
allocation

No

Do not close
allocation

Outstanding /
Open

Pick Dates?

No

Yes

Closing
Warehouse
allocation

Cancel quantities
for other related

allocations in RMS

Close all related
RMS allocations

headers

Yes

Allocation

RMS

Fully received
allocation stock

order
(4)

Retek Allocation and RMS in the context of the four methods of allocation closures

Retek Allocation

58

1 For purchase orders closed via batch functionality
Allocations attached to these closed purchase orders are closed if the ‘pick not after’ days is
less than the current date. RMS cancels the associated quantities on the allocation and closes
the single allocation. An attempt is made to delete the master allocation. An allocation trigger
verifies whether the entire master allocation can be closed based on whether there are no
other outstanding / open ‘pick not after’ date records. If the entire master allocation can be
closed, all the quantities remaining for related allocations in RMS are cancelled, and the
allocations are closed if no quantities are in transit. If the master allocation cannot be closed,
there is no further action.

2 For purchase orders closed manually online
If allocations exists when the user attempts to cancel all items, a message offers the user an
option to cancel the associated allocations or not. This message also appears when the user
attempts to ‘delete order’. This action only cancels remaining quantities for the associated
RMS allocation. An attempt is made to delete the master allocation. An allocation trigger
verifies whether the entire master allocation can be closed based on whether there are no
other outstanding / open ‘pick not after’ date records. If the entire master allocation can be
closed, all the quantities remaining for related allocations in RMS are cancelled, and the
allocations are closed if no quantities are in transit. If the master allocation cannot be closed,
there is no further action.

3 For fully received purchase orders
Allocations attached to received purchase orders are closed if the release date and the ‘pick
not after’ days is less than the current date. RMS cancels the associated quantities on the
allocation and closes the single allocation. An allocation trigger verifies whether the entire
master allocation can be closed. If there are no other outstanding / open ‘pick not after’ date
records, the master allocation can be closed (and as such all the quantities remaining for
related allocations in RMS are cancelled and the allocations are closed if no quantities are in
transit). If the master cannot be closed, there is no further action.

4 For fully received allocation stock orders
An allocation trigger verifies whether the entire master allocation can be closed. If the master
cannot be closed, there is no further action.

Chapter 6 – RETL batch processing

59

Chapter 6 – RETL batch processing
The module works in conjunction with the Retek Extract Transform and Load (RETL)
framework. This architecture optimizes a high performance data processing tool that allows
database batch processes to take advantage of parallel processing capabilities.

The RETL framework runs and parses through the valid operators composed in XML scripts.

This chapter provides an overview of Retek Allocation RETL processing and defines the export
file from Curve to Retek Allocation that is used when exporting Curve values. More information
about the RETL tool is available in the latest RETL Programmer’s Guide.

 Note: In this chapter, some examples refer to RETL programs that are not related to
Retek Allocation. References to these programs are included for illustration purposes
only.

Functional overview
The extract from Curve may contain up to four levels of profile. They consist of the department
level, class level, subclass level and item level. All of these levels are contained in a single
normalized file. Each record in the file has a dedicated ‘space’ and distinct position for
department, class, subclass, item, store, diff1, diff2, diff3, diff4 and size profile qty values. It is
crucial that the records are mapped using the correct positions and space/padding rules for each
data value.

Regardless of the level of profile, each record must include a store, diff value in one of the four
diff value fields, and a quantity value.

Department-level profiles include a department data value in the dedicated department field. The
class, subclass and item fields do not contain any values. They remain empty.

Class-level profiles include a department and class data value in the dedicated department and
class fields. The subclass and item fields do not contain any values. They remain empty.

Subclass-level profiles include a department, class and subclass data value in the dedicated
department, class and subclass fields. The item fields do not contain any values. They remain
empty.

All of the department, class and subclass record exports contain only the non-aggregate diff
values mapped from the specific diff value in ITEM_MASTER to the corresponding diff value in
the export file. It is crucial that the non-aggregate diffs are mapped to the correct diff_id in the
export file.

Item-level profiles include transaction level item data values (fashion SKUs) in the dedicated
item field. The department, class and subclass fields do not contain any values. They remain
empty. The item level export records contains both the aggregate and non-aggregate diff values
mapped from the specific diff id in ITEM_MASTER to the associated diff position in the export
file.

All the data values must start in the beginning of the corresponding field, and padding comes
after the data to fill all the dedicated space for that data field.

Retek Allocation

60

RETL batch processing architecture
The diagram below illustrates the extraction processing architecture. The size profile architecture
adheres to what is shown in the diagram:

The architecture relies upon two distinct stages, each of which is described in the passages that
follow.

Temporary/Staging
table

RMS DB
(Item

Master)

Stage 2
Merge/Upsert Process Destination table

(ALC_SIZE_PROFILE)

Stage 1
Allocation

Extract/Transform/Load
Process

Profile Data file
interface and

schemas

RETL processing architecture

Processing stage 1
Stage 1 involves importing profile data and looking up required information in the RMS
ITEM_MASTER table (item-level profiles only). The resulting output from this stage is a
temporary table that contains any item-level and department/class/subclass-level profiles.

The detailed flow is as follows:

1 Insert dept-level profiles directly into the staging table.

2 Insert class-level profiles directly into the staging table.

3 Insert subclass-level profiles directly into the staging table.

4 The item-level profiles require lookups with the ITEM_MASTER table. The processing logic
for transaction-level items is to do a three-way left outerjoin on the ITEM_MASTER table to
retrieve each parent and grandparent item aggregate indicators. The Item file then lookups its
item id in the item master table and uses the STYLE set as the parent or grandparent item id
whose ITEM_AGGREGATE_IND = ‘Y’. These item level profiles are then inserted into the
staging table.

Error handling
Any item records that do not have a parent and grandparent are flagged as warnings. Any items in
the incoming data file that do not match an item in the ITEM_MASTER table are flagged as
errors.

Chapter 6 – RETL batch processing

61

Processing stage 2
Stage 2 involves inserting and updating the profile records into the final destination
ALC_SIZE_PROFILE table.

The detailed processing is as follows:

1 Update quantity when matched department, class, subclass, style, store, size1, size2, size3,
size4.

2 Otherwise, insert record.

Installation
Select a directory where you would like to install Retek Allocation RETL. This directory (also
called MMHOME) is the location from which all of the Retek Allocation RETL files are
extracted.

The following code tree is utilized for the RETL framework during the extractions,
transformations and loads and is referred to in this documentation.

<base directory (MMHOME)>

 /data

 /error

 /log

 /rfx

 /bookmark

 /etc

 /lib

 /schema

 /src

Configuration
RETL
Before trying to configure and run Retek Allocation RETL, install RETL version 11.1 or later,
which is required to run Retek Allocation RETL. Run the ‘verify_retl’ script (included as part of
the RETL installation) to ensure that RETL is working properly before proceeding.

RETL user and permissions
Retek Allocation RETL should be installed and run as the RETL user. Additionally, the
permissions should be set up as per the RETL Programmer’s Guide. Retek Allocation RETL
reads, creates, deletes and updates data for tables. If these permissions are not set up properly,
processing fails.

Retek Allocation

62

Environment variables
See the RETL Programmer’s Guide for RETL environment variables that must be set up for your
version of RETL. You will need to set MMHOME to your base directory for Retek Allocation
RETL. This is the top level directory that you selected during the installation process (see the
section, ‘Installation’, above). In your .kshrc, you should add a line such as the following:

export MMHOME=<base directory for RMS RETL>

alc_config.env settings
On the Retek Allocation side, make sure to review the environmental parameters in the
alc_config.env file before executing the batch module. Depending upon your local settings, the
variables may need to be changed.

Configure RETL

1 Log in to the Unix server with a Unix account that runs the RETL scripts.

2 Change directories to $MMHOME/rfx/etc.

3 Modify the alc_config.env script:

a Change the DBNAME variable to the name of the Retek Allocation database. For
example:
export DBNAME=int9i

b Change the RMS_OWNER variable to the username of the Retek Allocation schema
owner. For example:
export RMS_OWNER=steffej_rms1011

c Change the BA_OWNER variable to the username of the Retek Allocation batch user.
For example:
export BA_OWNER=rmsint1011

Also, you must set up the environment variable PASSWORD in either the alc_config.env, .kshrc
or some other location that can be referenced. In the example below, adding the line to the
alc_config.env causes the password ‘mypasswd’ to be used to log into the database:

export PASSWORD=mypasswd

Running the module
Schema file
RETL uses a schema file to specify the format of an incoming or outgoing dataset. The schema
file defines each column’s data type and format, which is then used within RETL to
format/handle the data. Schema file names are hard-coded within each module because they do
not change on a day-to-day basis. All schema files end with ‘.schema’ and are placed in the
‘rfx/schema’ directory. For more information about schema files, see the latest RETL
Programmer’s Guide.

The schema file for the Retek Allocation module is named profile.schema and is shown later in
this chapter.

Chapter 6 – RETL batch processing

63

Mandatory multi-threading and command line parameters
In contrast to the way in which multi-threading is defined in Unix, Retek Allocation uses ‘multi-
threading’ to refer to the running of a single RETL program multiple times on separate groups of
data simultaneously. Multi-threading can reduce the total amount of processing time.

For this Retek Allocation module, multi-threading is mandatory, and the file-based module has to
be run once for each input file.

The alcl_size_profile module requires the following two input parameters:

• The incoming uniquely named data file(s) from the planning solution.

• The uniquely named thread number. Note that the thread number is used internally and is not
related to any output file or table name.

The following example illustrates a scenario in which the retailer runs the alcl_size_profile.ksh
module three times for three input files:

alcl_size_profile.ksh ${MMHOME}/data/alc_size_profile.dat.1 1

alcl_size_profile.ksh ${MMHOME}/data/alc_size_profile.dat.2 2

alcl_size_profile.ksh ${MMHOME}/data/alc_size_profile.dat.3 3

Program features
The extraction programs are written in the RETL framework and include the following features:

• Program return code

• Program status control files

• Restart and recovery

• Message logging

• Program error file

• Reject files

Program return code
RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program status control files
To prevent a program from running while the same program is already running against the same
set of data, the Retek Allocation RETL code utilizes a program status control file. At the
beginning of each module, alc_config.env is run. It checks for the existence of the program status
control file. If the file exists, then a message stating, ‘${PROGRAM_NAME} has already
started’, is logged and the module exits. If the file does not exist, a program status control file is
created and the module executes.

If the module fails at any point, the program status control file is not removed, and the user is
responsible for removing the control file before re-running the module.

Retek Allocation

64

File naming conventions
The naming convention of the program status control file allows a program whose input is a text
file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(alc_config.env). The directory defaults to $MMHOME/error. The naming convention for the
program status control file itself defaults to the following dot separated file name:

• The program name

• The output filename, if one is specified on the command line

• ‘status’

• The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named as follows
for the batch run of January 5, 2001:

$MMHOME/error/invildex.invilddm.txt.status.20010105

Retek Allocation RETL restart and recovery
The Retek Allocation RETL module imports data from a flat file, performs transformations if
necessary and then loads the data into the applicable Retek Allocation table.

This module uses a single RETL flow and does not require the use of restart and recovery. If the
extraction process fails for any reason, the problem can be fixed, and the entire process can be run
from the beginning without the loss of data. For a module that takes a text file as its input, the
following two choices are available that enable the module to be re-run from the beginning:

1 Re-run the module with the entire input file.

2 Re-run the module with only the records that were not processed successfully the first time
and concatenate the resulting file with the output file from the first time.

Message logging
Message logs are written daily in a format described in this section.

Daily log file
Every RETL program writes a message to the daily log file when it starts and when it finishes.
The name and directory of the daily log file is set in the configuration file (alc_config.env). The
directory defaults to $MMHOME/log. All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following ‘dot’ separated file name:

• The business virtual date for which the module is run

• ‘.log’

For example, the location and the name of the log file for the business virtual date of January 5,
2001 would be the following:

$MMHOME/log/20010105.log

Chapter 6 – RETL batch processing

65

Format
As the following examples illustrate, every message written to a log file has the name of the
program, a timestamp, and either an informational or error message:

cusdemogdm 13:20:01: Program Starting...

cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table rdw10dev.cust_demog_dm_upd

cusdemogdm 13:20:14: Insert/Update target table.

cusdemogdm 13:20:23: Analyze table rdw10dm.cust_demog_dm

cusdemogdm 13:20:27: Program Completed...

If a program finishes unsuccessfully, an error file is usually written that indicates where the
problem occurred in the process. There are some error messages written to the log file, such as
‘No output file specified’, that require no further explanation written to the error file.

Program error file
In addition to the daily log file, each program also writes its own detail flow and error messages.
Rather than clutter the daily log file with these messages, each program writes out its errors to a
separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file (alc_config.env).
The directory defaults to $MMHOME/error. All errors and all routine processing messages for a
given program on a given day go into this error file (for example, it will contain both the stderr
and stdout from the call to RETL). All error files are encoded UTF-8.

The naming convention for the program’s error file defaults to the following ‘dot’ separated file
name:

• The program name

• The first filename, if one is specified on the command line

• The business virtual date for which the module was run

For example, all errors and detail log information for the slsilddm program would be placed in the
following file for the batch run of January 5, 2001:

$MMHOME/error/slsildmdm.slsildmdm.txt.20010105

Retek Allocation reject files
The Retek Allocation module may produce a reject file if it encounters data related problems,
such as the inability to find data on required lookup tables. A given module tries to process all
data and then indicates that records were rejected. All data problems are thus identified in one
pass and corrected. The module can then be re-run to successful completion. If a module does
reject records, the reject file is not removed. The user is responsible for removing the reject file
before re-running the module.

Retek Allocation

66

Typical run and debugging situations
The following examples illustrate typical run and debugging situations for each type of program.
The file names referenced in the example below (log, error, and so on) assume that the module is
run on the business virtual date of March 9, 2001.

Example

Run alcl_size_profile.ksh:

1 Change directories to $MMHOME/rfx/src.

2 At a Unix prompt, enter:
%alcl_size_profile.ksh <input datafile 1> <thread #>

...

If the module runs successfully, the following results:

• Log file: Today’s log file, 20010309.log, contains the messages “Program started …” and
“Program completed successfully” for alcl_size_profile.

• Data: The ALC_SIZE_PROFILE table exists in the Retek Allocation database and contains
the extract records.

• Error file: The program’s error file, alcl_size_profile.20010309, contains the standard RETL
flow (ending with “All threads complete” and “Flow ran successfully”) and no additional
error messages.

• Program status control: The program status control file, alcl_size_profile.status.20010309,
does not exist.

• Reject file: No reject files exist.

If the module does not run successfully, the following results:

• Log file: Today’s log file, 20010309.log, does not contain the “Program completed
successfully…” message.

• Data: The ALC_SIZE_PROFILE table exists in the Retek Allocation database but may not
contain all the records from the profile file interface.

• Error file: The program’s error file, alcl_size_profile.20010309, may contain an error
message.

• Program status control: The program status control file, alcl_size_profile.status.20010309,
exists.

• Reject file: The reject file, alcl_size_profile.status.20010309, does not exist because this
module does not reject records.

• Bookmark file: The bookmark file, alcl_size_profile.bkm.20010309, does not exist because
this module does not utilize restart and recovery.

Chapter 6 – RETL batch processing

67

Re-run the module:

1 Determine and fix the problem causing the error.

2 Remove the program’s status control file.

3 Change directories to $MMHOME/rfx/src. At a Unix prompt, enter:
% alcl_size_profile.ksh <input datafile 1> <thread #>

Retek Allocation

68

Retek Allocation program reference
This section serves as a reference to the Retek Allocation program.

By reviewing this section and the section, ‘API flat file specification’, the retailer should be able to track, down to the table and column level, all
the extraction data that flows into Retek Allocation.

Program Name Tables/Files
Extracted

Fields Extracted Target File
or Table

Target
Field

Field Type Field
Length

Notes

alcl_size_profile.ksh item_master item Alc_size_prof
ile

 item_parent Use item_parent as style
if
Item_parent_aggregate_i
nd
= ‘Y’

 item_grandparent Use item_grandparent as
Style if
item_grandparent_
aggregate_ind = ‘Y’

 item_aggregate_ind

 item_parent_aggreg
ate_ind

 item_grandparent_
aggregate_ind

style VARCHAR2
(25)

25

 profile file dept dept NUMBER(4) 4

 class class NUMBER(4) 4

Chapter 6 – RETL batch processing

69

Program Name Tables/Files
Extracted

Fields Extracted Target File
or Table

Target
Field

Field Type Field
Length

Notes

 subclass subclass NUMBER(4) 4

 store store NUMBER(1
0)

10

 size1 size1 VARCHAR2
(10)

10

 size2 size2 VARCHAR2
(10)

10

 size3 size3 VARCHAR2
(10)

10

 size4 size4 VARCHAR2
(10)

10

 qty qty NUMBER(1
2,4)

17

Retek Allocation

70

Application programming interface (API) specification
File layout
• ABBREVIATION: An abbreviation of the value in the hierarchy (for example, D for department).

• ITEM_MASTER VALUE: Field data on the RMS ITEM_MASTER table.

• ALC_SIZE_PROFILE VALUE: Field data on the Retek Allocation ALC_SIZE_PROFILE table.

• SQL DATA TYPE: SQL data types identifies one of three valid data types and the maximum length possible
for a field. A field may not exceed this length. Data types include the following:

 Character: Can hold letters (a,b,c…), numbers (1,2,3…), and special characters ($,#,&…)

 Numbers: Can hold only numbers (1,2,3…)

 Date: Holds a specific year, month, day combination

• RETL DATA TYPE: The data type identified in the schema file.

• NULLABLE?: Identifies whether the field can hold a null value. This section holds either a ‘yes’ or a ‘no’. A
‘yes’ signifies the field may not hold a null value. A ‘no’ signifies the field may, but is not required to, hold a
null value.

Profile record definitions

ABBREVIATION ITEM_MASTER
VALUE

ALC_SIZE_
PROFILE
VALUE

SQL
DATA
TYPE

RETL
DATA
TYPE

NULLABLE?

D DEPT DEPT NUMBER
(4)

Int16
(len=4)

Yes

C CLASS CLASS NUMBER
(4)

Int16
(len=4)

Yes

S SUBCLASS SUBCLASS NUMBER
(4)

Int16
(len=4)

Yes

I ITEM STYLE VARCHA
R2 (25)

String
(len=25)

Yes

L n/a STORE NUMBER
(10)**

Int64
(len=10)

No

1 DIFF_1 SIZE1 VARCHA
R2 (10)

String
(len=10)

Yes

2 DIFF_2 SIZE2 VARCHA
R2 (10)

String
(len=10)

Yes

3 DIFF_3 SIZE3 VARCHA
R2 (10)

String
(len=10)

Yes

4 DIFF_4 SIZE4 VARCHA
R2 (10)

String
(len=10)

Yes

Chapter 6 – RETL batch processing

71

ABBREVIATION ITEM_MASTER
VALUE

ALC_SIZE_
PROFILE
VALUE

SQL
DATA
TYPE

RETL
DATA
TYPE

NULLABLE?

Q n/a QTY NUMBER
(12,4)

Dfloat
(len=17)

No

“BLANKS” Null values Null values Null values Null
values

Extract profile file format
Record format:
D...C...S...I........................L.........1.........2.........3.........4.........Q..............
1...5...9...13.......................38........48........58........68........78........88..........105

Where D, C, S, I, L, 1, 2, 3, 4, Q are as defined in Table 1, and numbers are the appropriate fixed-width positions of
each field. The ellipses are used to denote field lengths. In the examples below, diff1 is color and is an aggregate
diff. Diff2 is size and size the non-aggregate diff.

Total record length = 104

Example
[dept only]

1001 1000000000 XXL 0.2
1001 1000000000 XL 0.3
1001 1000000000 L 0.2
1001 1000000000 M 0.1
1001 1000000000 S 0.1
1001 1000000000 XS 0.1

[dept, class level]

10012000 1000000000 XXL 0.2
10012000 1000000000 XL 0.3
10012000 1000000000 L 0.2
10012000 1000000000 M 0.1
10012000 1000000000 S 0.1
10012000 1000000000 XS 0.1

[dept, class, subclass level]

100120002050 1000000000 XXL 0.2
100120002050 1000000000 XL 0.3
100120002050 1000000000 L 0.2
100120002050 1000000000 M 0.1
100120002050 1000000000 S 0.1
100120002050 1000000000 XS 0.1

Retek Allocation

72

[item level]

 1000000000 1000000000Color02 XXL 0.2
 1000000000 1000000000Color02 XL 0.3
 1000000000 1000000000Color02 L 0.2
 1000000000 1000000000Color02 M 0.1
 1000000000 1000000000Color02 S 0.1
 1000000000 1000000000Color02 XS 0.1
 1000000100 1000000000Color01 XXL 0.2
 1000000100 1000000000Color01 XL 0.3
 1000000100 1000000000Color01 L 0.2
 1000000100 1000000000Color01 M 0.1
 1000000100 1000000000Color01 S 0.1
 1000000100 1000000000Color01 XS 0.1
 1000000100 1000000000Color02 XXL 0.2
 1000000100 1000000000Color02 XL 0.3
 1000000100 1000000000Color02 L 0.2
 1000000100 1000000000Color02 M 0.1
 1000000100 1000000000Color02 S 0.1
 1000000100 1000000000Color02 XS 0.1

 Note: The text in brackets ([…]) is for illustration/commentary purposes only and should not exist in the
file.

Chapter 6 – RETL batch processing

73

Schema file (profile.schema)
This section describes the RETL schema file (profile.schema) used in the RETL script that loads the Curve export
file into Retek Allocation’s ALC_SIZE_PROFILE table.

<RECORD type="fixed" len="104" final_delimiter="0x0A">

 <!-- start pos 1 --> <FIELD name="DEPT" len="4" datatype="int16"
nullable="true" nullvalue=""/>

 <!-- start pos 5 --> <FIELD name="CLASS" len="4" datatype="int16"
nullable="true" nullvalue=""/>

 <!-- start pos 9 --> <FIELD name="SUBCLASS" len="4" datatype="int16"
nullable="true" nullvalue=""/>

 <!-- start pos 13 --> <FIELD name="ITEM" len="25" datatype="string"
nullable="true" nullvalue=""/>

 <!-- start pos 38 --> <FIELD name="STORE" len="10" datatype="int64"
nullable="false"/>

 <!-- start pos 48 --> <FIELD name="SIZE1" len="10" datatype="string"
nullable="true" nullvalue=""/>

 <!-- start pos 58 --> <FIELD name="SIZE2" len="10" datatype="string"
nullable="true" nullvalue=""/>

 <!-- start pos 68 --> <FIELD name="SIZE3" len="10" datatype="string"
nullable="true" nullvalue=""/>

 <!-- start pos 78 --> <FIELD name="SIZE4" len="10" datatype="string"
nullable="true" nullvalue=""/>

 <!-- start pos 88 --> <FIELD name="QTY" len="17" datatype="dfloat"
nullable="true" nullvalue=""/>

 <!-- end pos 105 -->

</RECORD>

Chapter 7 – Java batch process

75

Chapter 7 – Java batch process
Retek Allocation contains one batch process that is run in Java. This batch process deletes
allocation records that have been marked as ‘delete’ in the database.

Characteristics of the Java batch process
Note the following characteristics of Retek Allocation’s Java batch process:

• It is not accessible through a graphical user interface (GUI).

• It is scheduled by the retailer.

• It is designed to process large volumes of data.

• It should only be executed during ‘off-hours’ (that is, during a time when users are not in the
system such as nights).

Java batch name and Java package
The following table describes Retek Allocation’s batch process and its associated Java package.

Batch name Batch process Package

Batch purge Purge.java com.retek.alloc.batch

Functional description
The following table includes a description of Retek Allocation’s batch process.

Batch processes Details

Batch purge
(Purge.java)

The batch purging process deletes Retek
Allocation records that have been marked as
‘delete’ in the database. This Retek Allocation
deletion process must be run only during ‘off-
hours’ (that is, during a time when users are
not using the online Retek Allocation
application system such as nights).

Retek Allocation

76

Running a Java-based batch process
Scheduler and the command line
If the retailer uses a scheduler, arguments are placed into the scheduler.

If the retailer does not use a scheduler, arguments must be passed in at the command line.

For Unix systems, the Java process is scheduled through an executable shell script (.sh file). For
Windows systems, the Java process is scheduled through an executable batch file (.bat file).

Retek provides sample shell scripts (.sh files) and batch files (.bat files). These sample shell
scripts must be modified according to the retailer’s installation. They perform the following
internally:

• Set up the Java runtime environment before the Java process is run.

• Trigger the Java batch process.

Summary of executable files
To ‘kick off’ the deletion process, use one of the scripts shown in the table below.

Executable shell scripts (UNIX) Executable batch file for windows

setPurge.sh

and

purge.sh

purge.bat (Windows)

	Contents
	Chapter 1 – Introduction
	What does an allocation system do?
	An overview of how need is determined

	Who this guide is written for
	What is not in this guide
	N-tier technical architecture overview
	Where you can find more information

	Chapter 2 – Backend system administration and assumptions
	Supported environments
	Supported version of RMS
	Exception handling
	Allocation.properties file
	Minimum and maximum pool size to maintain
	Logging
	DEBUG mode on off switch
	Start ship date for a purchase order (PO)
	Set the Automatic Update switch
	Date formats for specific locales
	Set the end of week day for the system
	Minutes until a system unlocks from inactivity
	Bulk warehouse setting
	Flexible column definition
	Display future unit retail price values
	Crossing legal entities

	Bayesian sensitivity factor
	A description of Bayesian sensitivity

	Internationalization and localization
	Multibyte coding
	Interface text that is separated from executable code
	Translation
	Single executable
	Date format preferences

	RMS dependencies and assumptions
	RMS differentiator setup
	Staple item
	Pack Item
	Summary of items and how Retek Allocation handles them

	Retek Allocation functional assumptions

	Chapter 3 – Technical architecture
	Overview
	Component descriptions and standards
	GUI tier
	Thin-client standard
	Java server pages (JSP) and HTML
	JavaScript
	JSP tag libraries

	Middle tier
	Business object tier
	Data access tier

	Data storage tier
	Accessing merchandising system data in real time

	A summation of n-tier architecture’s advantages

	Chapter 4 – Functional design
	Overview
	A note about the merchandising system interface
	Integration interface allocation-related dataflow
	From the merchandising system to RDF/Grade
	From RDF/Grade to Retek Allocation via the merchandising system
	From the planning application to Retek Allocation
	From RDF/Curve to Retek Allocation
	From RPM to Retek Allocation
	From the warehouse management system (such as RWMS) to Retek Allocation via the merchandising system
	From the merchandising system to Retek Allocation
	From Retek Allocation to the merchandising system
	From the merchandising system to the warehouse management system (such as RWMS)
	From Active Retail Intelligence to Retek Allocation

	How need is determined
	The sources of data used by rules to determine gross need
	Quantity limits
	Stop ship
	Net need at the store level calculation

	Tables populated by external systems
	Planning table in Retek Allocation
	Merchandising interface tables
	RMS 11.0 tables (for retailers with RMS only)
	Suggested legacy system tables

	Chapter 5 – Allocation calculations
	Assumptions related to calculations
	Store order multiple assumption
	Proportional allocation assumption

	Calculation queue processing
	Calculation queue process description
	Calculation queue scripts
	Plan re-project algorithm
	Guidelines

	Satisfying need across multiple locations
	Rounding conditions
	Size profile logic
	The allocation of packs
	The algorithm with packs and singles

	Cascade allocations
	Staple cascade and fashion cascade
	Staple cascade
	Fashion cascade

	Prepack algorithm
	Closing allocations

	Chapter 6 – RETL batch processing
	Functional overview
	RETL batch processing architecture
	Processing stage 1
	Processing stage 2

	Installation
	Configuration
	RETL
	RETL user and permissions
	Environment variables
	alc_config.env settings

	Running the module
	Schema file
	Mandatory multi-threading and command line parameters

	Program features
	Program return code
	Program status control files
	Retek Allocation RETL restart and recovery
	Message logging
	Program error file
	Retek Allocation reject files

	Typical run and debugging situations
	Example

	Retek Allocation program reference
	Application programming interface (API) specification
	File layout
	Extract profile file format
	Schema file (profile.schema)

	Chapter 7 – Java batch process
	Characteristics of the Java batch process
	Java batch name and Java package
	Functional description
	Running a Java-based batch process
	Scheduler and the command line
	Summary of executable files

