

Retek® Merchandising System
10.0

Operations Guide – Volume 2:
Message Publication

and Subscription Designs

Retek Merchandising System

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Corporate Headquarters:
Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Customer Support

Customer Support hours:

8AM to 5PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2002: Jan. 1, May 27, July 4,
July 5, Sept. 2, Nov. 28, Nov. 29, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5000

Fax (+1) 612-587-5100

E-mail support@retek.com

Internet www.retek.com/support
 Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://www.retek.com/support

Contents i

Contents
Chapter 1 - Publishing designs.. 1

Allocations Message Family Manager Publishing Design 1
Functional Area .. 1
Design Overview .. 1
State Diagram ... 2
Description of Activities... 2
Triggers... 5
Message Family Manager Procedures .. 7

ATP Message Family Manager Publishing Design... 9
Functional Area .. 9
Design Overview .. 9
State Diagram ... 10
Triggers... 11
Message Family Manager Procedures .. 11

Banner Message Family Manager Publishing Design 13
Functional Area .. 13
Design Overview .. 13
State Diagram ... 13
Description of Activities... 14
Triggers... 14
Message Family Manager Procedures .. 15

Differentiator Group Message Family Manager Publishing Design................. 16
Functional Area .. 16
Design Overview .. 16
State Diagram ... 16
Description of Activities... 17
Triggers... 18
Message Family Manager Procedures .. 19

Differentiatior ID Message Family Manager Publishing Design...................... 21
Functional Area .. 21
Design Overview .. 21
State Diagram ... 21
Description of Activities... 21
Triggers... 22
Message Family Manager Procedures .. 23

ii Retek Merchandising System

Item Message Family Manager Publishing Design... 24
Functional Area .. 24
Design Overview .. 24
State Diagram ... 26
Description of Activities... 27
Triggers... 38
Message Family Manager Procedures .. 43

Ordering Message Family Manager Publishing Design 47
Functional Area .. 47
Design Overview .. 47
State Diagram ... 48
Description of Activities... 49
Triggers... 52
Message Family Manager Procedures .. 53

Ordering Physical Message Family Manager Publishing Design..................... 55
Functional Area .. 55
Design Overview .. 55
State Diagram ... 55
Description of Activities... 55
Triggers... 55
Message Family Manager Procedures .. 57

Store Message Family Manager Publishing Design ... 58
Functional Area .. 58
Design Overview .. 58
State Diagram ... 58
Description of Activities... 59
Triggers... 59
Message Family Manager Procedures .. 60

Supplier Message Family Manager Publishing Design 61
Functional Area .. 61
Design Overview .. 61
State Diagram ... 61
Description of Activities... 62
Triggers... 63
Message Family Manager Procedures .. 64

Transfers Message Family Manager Publishing Design................................... 67
Functional Area .. 67
Design Overview .. 67
State Diagram ... 67
Description of Activities... 68
Triggers... 70
Message Family Manager Procedures .. 71

Contents iii

UDA Message Family Manager Publishing Design ... 73
Functional Area .. 73
Design Overview .. 73
State Diagram ... 73
Description of Activities... 74
Triggers... 75
Message Family Manager Procedures .. 76

WH Message Family Manager Publishing Design ... 78
Functional Area .. 78
Design Overview .. 78
State Diagram ... 78
Triggers... 79
Message Family Manager Procedures .. 80

Work Order Message Family Manager Publishing Design 81
Functional Area .. 81
Design Overview .. 81
State Diagram ... 81
Triggers... 83
Message Family Manager Procedures .. 83

Chapter 2 – Subscription designs 85

Appointments Subscription Design... 85
Functional Area .. 85
Design Overview .. 85
Subscription Procedures ... 85

ASN Subscription Design ... 91
Functional Area .. 91
Design Overview .. 91
Subscription Procedures ... 91
Public API Procedures:... 92

BOL Subscription Design ... 95
Functional Area .. 95
Design Overview .. 95
Subscription Procedures ... 95

Customer Reserve Subscription Design.. 98
Functional Area .. 98
Design Overview .. 98
Subscription Procedures ... 100

Inventory Adjustment Subscription Design .. 102
Functional Area .. 102
Design Overview .. 102
Subscription Procedures ... 102

iv Retek Merchandising System

Receipts Subscription Design.. 104
Functional Area .. 104
Design Overview .. 104
Subscription Procedures ... 104

RMS SOStatus Subscription Design ... 107
Functional Area .. 107
Design Overview .. 107
Subscription Procedures ... 107

RTV Subscription Design ... 109
Functional Area .. 109
Design Overview .. 109
Subscription Procedures ... 109

 Chapter 1 - Publishing designs 1

Chapter 1 - Publishing designs
Allocations Message Family Manager Publishing Design

Functional Area
Stock Order Publication – Allocations

Design Overview
RMS is responsible for communicating allocation information with external
systems such as RDM. There are three different ways in which allocations can be
entered into RMS. The first method is through the Allocations stand-alone
product. These allocations will be written to the alloc_header and alloc_detail
tables in ‘R’eserved or ‘A’pproved status. Once a detail and a header message
have been queued and approved, a message will be sent to the integration bus.
Detail modification messages for allocations will not be sent to the bus. The
second way allocations can be created is through the Semi-automatic ordering
option. Via this replenishment method, allocations and orders will be inserted
into the alloc_header and alloc_detail tables in worksheet status and will have to
be manually approved. In order for allocation messages to be sent to the bus the
allocation must at least be in ‘A’pproved status. Worksheet messages will remain
on the queue and combined until they are approved. Once this occurs one large
create message is sent to the bus. The final way which allocations are entered
into RMS is via automatic replenishment allocations. These allocations are
initially set in worksheet status and are approved by the rplapprv.pc batch
program. Once again only messages for approved allocations will be sent to the
bus.

Modified and deleted allocation information will also be sent to the bus.
Allocation header modification messages will be sent if the status of the
allocation is changed to ‘C’losed. Allocation detail modification messages will
be sent for those allocations that were created via replenishment. Delete
messages will be ignored at the detail level. A header delete message will signify
that the complete allocation can be deleted.

2 Retek Merchandising System

State Diagram

Description of Activities

Create Header
1 Prerequisites: Allocation can be created in one of three manners: via the

stand-alone allocations product, semi-manual ordering, or automatic
replenishment.

2 Activity Detail: Once an allocation exists in RMS it can be modified or
details can be attached.

3 Messages: When an allocation is created an “Allocation Create” message
request is queued. The Allocation Created message is a flat message
containing a full snapshot of the allocation at the time the message is
published (asynchronously from the modification). The message will not be
sent till detail records have been queued and the allocation has been
approved.

Create Detail

Delete Alloc

Create Header
Alloc Exist w/o Dtls

Deleted

Alloc Exist w/ dtls
Approve

Modify Detail

Approved Alloc

Add Detail

Delete Detail

Details exist

No details exist

Modify Detail

Delete Detail

Close Alloc Closed Alloc

Add Detail

Created in Approved Status

Created in Worksheet
or Reserved status

 Chapter 1 - Publishing designs 3

Modify Header
1 Prerequisites: An allocation must exist before it can be modified.

2 Activity Detail: The user is allowed to change the status of the allocation to
‘A’pproved or ‘C’losed. This change is of interest to other systems and so
this activity results in the publication a message. Messages are only written
for changes created by replenishment.

3 Messages: When an allocation is modified an “Allocation Header Modified
message” request is queued. The Allocation Header Modified message is a
flat message containing a full snapshot of the allocation header at the time
the message is published (asynchronously from the modification).

Create Detail
1 Prerequisites: An allocation header must exist before and allocation detail

can be created and it can be loaded into RMS. Once in RMS, the allocation
can only be modified my having its allocated quantity changed.

2 Activity Detail: When an “Allocation Detail Create” message is queued it
could be the first time systems external to Allocations and RMS might have
any interest at all in the existence of the allocation, so this is the first part of
the life cycle of an allocation that is published if a “Create Header” message
is also on the queue for the same allocation.

3 Messages: When an allocation detail is created an "Allocation Detail Created
message" request is queued. The Allocation Created message is a flat
message containing a full snapshot of the allocation at the time the message
is published (asynchronously from the modification). If an Allocation Create
message is also in the queue for the same allocation the two messages will be
combined and sent as one message.

Modify Detail
1 Prerequisites: An allocation detail must exist to be modified.

2 Activity Detail: The user is allowed to change allocation quantities provided
they are not reduced below those already recorded as received. This change
is of interest to other systems and so this activity results in the publication of
a message. Messages are only written for changes created by replenishment.

3 Messages: When an allocation is modified an “Allocation Detail Modified
message” request is queued. The Allocation Detail Modified message is a flat
message containing a full snapshot of the allocation detail at the time the
message is published (asynchronously from the modification).

4 Retek Merchandising System

Approve
1 Prerequisites: An allocation must exist in RMS before it can be approved

for replenishment allocations. Those direct from the allocations product can
be entered into RMS in approved status.

2 Activity Detail: Once an allocation as been approved, it will be the first time
systems external to Allocations and RMS might have any interest at all in the
existence of the allocation, so this is the first part of the life cycle of an
allocation that is published if a “Create Header” message is also on the queue
for the same allocation.

3 Messages: When the allocation is approved an “Allocation Header
Modification” message is queued. This message will be combined with any
Allocation Create and Allocation Detail Create message to form the message
that is sent to the bus.

Close
1 Prerequisites: An allocation must be approved before it can be closed.

2 Activity Detail: Closing an allocation changes the status, which prevents
further receiving or modification of the allocation. When an allocation is
closed a message is published to update other systems regarding the status
change.

3 Messages: Closing an allocation queues a “Allocation Header Modified
message” request. This is a flat message containing a full snapshot of the
allocation at the time that the message is published (asynchronously from the
activity).

Delete
1 Prerequisites: An allocation can only be deleted when it is still in approved

status or when it has been closed. Note that if the allocation is in closed
status it still cannot be deleted if either a create or modify message, which
need to take full snapshots, are pending for the allocation.

2 Activity Detail: Deleting an allocation removes it from the system. External
systems are notified by a published message.

3 Message: When an allocation is deleted an Allocation Header Deleted
message, which is a flat notification message, is queued.

 Chapter 1 - Publishing designs 5

Triggers
Trigger Description (EC_TABLE_ALH_AIUDR):

This trigger fires on any insert, update or delete for the alloc_header table.

On Insert: This trigger will call the ALLOC_XML.BUILD_MESSAGE function
to determine the necessary values to be included in the published message as well
as build the message itself. This trigger also calls the
RMSMFM_ALLOC.ADDTOQ function to add the appropriate values to the
queue.

action_type: A

message_type : AllocCre

wh: :new.wh

alloc_no: :new.alloc_no

order_no: :new.order_no,

item: :new.item

order_type :new.order_type

status :new.status

On Update: This trigger will call the ALLOC_XML.BUILD_MESSAGE
function to determine the necessary values to be included in the published
message as well as build the message itself. This trigger also calls the
RMSMFM_ALLOC.ADDTOQ function to add the appropriate values to the
queue.

action_type: M

message_type : AllocHdrMod

wh: :new.wh

alloc_no: :new.alloc_no

order_no: :new.order_no

item: :new.item

order_type :new.order_type

status :new.status

6 Retek Merchandising System

On Delete: This trigger will call the ALLOC_XML.BUILD_MESSAGE function
to determine the necessary values to be included in the published message as well
as build the message itself. This trigger also calls the
RMSMFM_ALLOC.ADDTOQ function to add the appropriate values to the
queue. See specifics on these two functions below. The AllocDesc.dtd should be
used to create this message. These variables will need to be set to the following
values:

action_type := 'D';

message_type := 'AllocDel';

alloc_no := :old.alloc_no;

L_record_alc.ORDER_NO := :old.order_no;

item := :old.item;

alloc_status := :old.status;

wh_id := :old.wh;

order_type := :old.order_type;

Public Functions:

ALLOC_XML. BUILD_MESSAGE (O_status, O_text, O_message,
IO_alloc_msg, I_action_type)– This function is called by the trigger
EC_TABLE_ALH_AIUDR on insert, update and delete of the
ALLOC_HEADER table. This function gathers all the data necessary to build
the message that needs to be sent to the Retek Integration Bus.

Trigger Description (EC_TABLE_ALD_AIUDR): Calls
ALLOC_XML.BUILD_MESSAGE on insert, update, and delete of table
ALLOC_DETAIL and then calls RMSMFM_ALLOC.ADDTOQ to populate the
staging table ALLOC_MFQUEUE.

On Insert:

action_type: ‘A’

message_type: ‘AllocDtlCre’

alloc_no: :new.alloc_no

to_loc: :new.to_loc

qty_allocated: :new.qty_allocated

to_loc_type: :new.to_loc_type

 Chapter 1 - Publishing designs 7

On Update:

action_type: ‘M’

message_type: ‘AllocDtlMod’

alloc_no: :new.alloc_no

to_loc: :new.to_loc

qty_allocated: :new.qty_allocated

to_loc_type: :new.to_loc_type

On Delete:

action_type: ‘D’

message_type: ‘AllocDtlCre’

alloc_no: :old.alloc_no

to_loc: :old.to_loc

Public Functions:

ALLOCDTL_XML.BUILD_MESSAGE (L_status, L_text, L_message,
L_orig_ind, L_record_alc, L_action_type) – This function is called by the trigger
EC_TABLE_ALD_AIUDR.

Message Family Manager Procedures
Public Procedures:

ADDTOQ (O_status_code, O_error_msg, I_message_type, I_alloc_no,
I_virtual_from_loc, I_physical_from_loc I_to_loc_type, I_to_loc, I_alloc_status,
I_orig_ind, I_message) – This procedure is called by the capture triggers,
ec_table_adr_aiudr.trg and ec_table_alh_aiudr.trg, and takes the message type,
family key values (I_alloc_no, I_virtual_from_loc, I_physical_from_loc,
I_to_loc_type, I_to_loc) and, the message itself. It inserts a row into the
allocation message family queue along with the passed in values (I_alloc_status
and I_orig_ind) and the next sequence number from the allocation message
family sequence, setting the status to unpublished. It returns error codes and an
error message.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_alloc_no, O_virtual_from_loc, O_physical_from_loc, O_loc_type,
O_to_loc_type, O_to_loc) – This publicly exposed procedure is typically called
by a RIB publication adaptor. Its parameters are well defined and arranged in a
specific order. The message type is the RIB defined short message name, the
message is the xml message, and the family keys (O_alloc_no,
O_virtual_from_loc, O_physical_from_loc, O_loc_type, O_to_loc_type,
O_to_loc) are the key for the message as pertains to the family, not all of which
will necessarily be populated for all message types. Status code is one of five
values; these codes come from an EAI team defined RIB_CODES package. For
more discussion of the status codes, refer to the Error Handling Guidelines
document.

8 Retek Merchandising System

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

Private Procedures:

CREATE_PREVIOUS (I_queue_rec) – This procedure determines if a header
level create already exists on the queue table for the same key value and with a
sequence number less than the current records sequence number.

CLEAN_QUEUE (I_queue_rec) – This procedure cleans up the queue by
eliminating modification messages. It is only called if CREATE_PREVIOUS
returns true. For each modification message type, it finds the previous
corresponding create message type. If the message type is AllocDtlMod it then
calls REPLACE_QUE_ALLOC_DETAIL to copy the modify detail message
into the create message and calls DELETE_QUEUE_REC to delete the modify
record. Else if the message type is AllocHdrMod it then calls
REPLACE_QUE_ALLOC_HEADER to copy the modify header message into
the create message and calls DELETE_QUEUE_REC to delete the modify
record. For each delete message type, it finds the previous corresponding create
message type.

MAKE_CREATE (O_msg, I_queue_rec) – This procedure combines the
current message and all previous messages with the same key in the queue table
to create the complete hierarchical message. It first creates a new message with
the hierarchical document type. It then gets the header create message and adds
it to the new message. The remainder of this procedure gets each of the details
grouped by their document type and adds them to the new message. When it is
finished creating the new message, it deletes all the records from the queue with
a sequence number less than or equal to the current records sequence number.
This new message is passed back to the bus.

DELETE_QUEUE_REC (I_seq_no) – This procedure deletes a specific record
from the queue. It deletes based on the sequence number passed in.

REPLACE_QUEUE_ALLOC_HEADER (I_rec, I_data) – This procedure
replaces the message in the create header record with the message from the
modify header record.

REPLACE_QUEUE_ALLOC_DETAIL (I_rec, I_data) – This procedure
replaces the message in the create detail record with the message from the
modify detail record. There will be one of these procedures for each detail level.

REPLACE_QUEUE_MESSAGE (I_rec, I_data) – This procedure replaces the
message in the message in the create header record with the complete
hierarchical message.

 Chapter 1 - Publishing designs 9

ATP Message Family Manager Publishing Design

Functional Area
Available to Promise

Design Overview
ATP publication consists of a single flat message containing item/location stock
data from the table ITEM_LOC_SOH. A snapshot of the table will be placed in
the message queue each time a record is created or modified. The message
family manager will create messages from these snapshots, which will be
retrieved in the order they were put in the queue. The messages will then be sent
to the bus. No delete messages will be sent to the bus. ITEM_LOC_SOH
records are deleted if and only if the item is deleted from the system, so
publication of deletes will be handled by the Item MFM.

ATP information will not be published until the item on the ATP record has been
published. The ATP MFM checks to see if the item has been published by
looking at the Item Publishing Queue, ITEM_MFQUEUE. If the queue contains
an Item Create message, the item has not been published yet. If the queue does
not contain an Item Create message, the item has either been published or
deleted. If the item has been deleted, the ITEM_LOC_SOH records for the item
will also have been deleted, and no ATP information for the item will be
published. If the item has been published, the ITEM_LOC_SOH records for the
item will still exist in the system, and the ATP information for the item will be
published. ATP records will stay on the queue until the item is published or
deleted.

If a record on the ITEM_LOC_SOH table is deleted, a record is added to the
ATP queue. The record will contain the ATP’s primary key (item and location)
along with the message type “ATPDel.” This record will never be published. It
is used by the ATP MFM to keep track of which ATP records have been deleted.
When the ATP MFM has an ATP Create message that it is ready to publish, after
checking to see if the item has been published, there will be a second check to
see if there is an ATP Delete message further down the queue. If it finds an ATP
Delete message, all of the ATP records for that item/location combination on the
queue between the Create and Delete are removed, including the Create and
Delete. If the ATP MFM does not find any ATP Delete messages, the ATP
Create message is published.

10 Retek Merchandising System

State Diagram

Insert
Item_Loc_Soh

Delete
Queue

Queue
Exists

Update
Item_Loc_Soh

Item_Loc_Soh
Exists

Insert
Queue

Delete
Item_Loc_Soh

Description of Activities

Insert ILS
1 Prerequisites: A relationship exists between the item and location.

2 Activity Detail: Once an ITEM_LOC_SOH record has been created, ATP
information is ready to be inserted into the queue, along with a message type
of “ATPCre.”

Messages: None.

Insert Queue
1 Prerequisites: An ITEM_LOC_SOH record has been created.

2 Activity Detail: ATP information is inserted into the queue. The ATP
information includes a snapshot of the ITEM_LOC_SOH record and the
message type.

3 Messages: None.

Update ILS
1 Prerequisites: An ITEM_LOC_SOH record has been created.

2 Activity Detail: Once an ITEM_LOC_SOH record has been modified, ATP
information is ready to be inserted into the queue, along with a message type
of “ATPMod.”

3 Messages: None.

 Chapter 1 - Publishing designs 11

Delete ILS
1 Prerequisites: An ITEM_LOC_SOH record has been created.

2 Activity Detail: Once an ITEM_LOC_SOH record has been deleted, a
message type of “ATPDel” is inserted into the queue, along with the record’s
primary key (item and location fields.) No other ATP information is inserted
into the queue since the “ATPDel” message will not be published.

3 Messages: None.

Delete Queue
1 Prerequisites: ATP information has been inserted into the queue.

2 Activity Detail: If the ITEM_LOC_SOH record has been deleted, all of the
ATP messages for that item/location combination are removed from the
queue without being published. Otherwise, if the ATP’s item has been
published, a message is created from the information in the queue. The
message and message type are sent to a RIB publication adaptor, and the
information in the queue is then deleted.

3 Messages: The message is an XML message that contains all of the
information from the ITEM_LOC_SOH table.

Triggers
Trigger Description (EC_TABLE_ILI_AIUDR):

This trigger will capture inserts, updates and deletes to the ITEM_LOC_SOH
table and write data into the ATP_MFQUEUE message queue. It will call
RMSMFM_ATP.ADDTOQ to insert a snapshot of ITEM_LOC_SOH into the
message queue.

On Insert: A message type of “ATPCre” is inserted into the message queue,
along with a snapshot of the ITEM_LOC_SOH record.

On Update: A message type of “ATPMod” is inserted into the message queue,
along with a snapshot of the ITEM_LOC_SOH record.

On Delete: A message type of “ATPDel” is inserted into the message queue,
along with the record’s primary key (item and location fields.)

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_record) – This
procedure is called by EC_TABLE_ILI_AIUDR, and takes the message type and
a record that contains all of the values in the ITEM_LOC_SOH table. It inserts a
row into the message family queue ATP_MFQUEUE along with the passed in
values and the next sequence number from the message family sequence, setting
the status to unpublished. It returns a status code of API_CODES.SUCCESS if
successful, API_CODES.UNHANDLED_ERROR if not.

12 Retek Merchandising System

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_item, O_loc) – This publicly exposed procedure is typically called by a RIB
publication adaptor. Its parameters are well defined and arranged in a specific
order. The message type is the RIB defined short message name, the message is
the xml message, and the family key is the item and location, which will be
populated for all message types. The program creates the xml message
internally, using values in the message queue. Status code is one of five values,
as shown in the following table. For more discussion of the status codes, refer to
the Error Handling Guidelines document or the process flow in the following
section. These codes come from an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

 Chapter 1 - Publishing designs 13

Banner Message Family Manager Publishing Design

Functional Area
Banner/Channel

Design Overview
Banner/Channel publication consists of a single flat message containing
information from the tables BANNER and CHANNELS. One message will be
synchronously created and placed in the message queue each time a record is
created, modified, or deleted. When a record is created or modified, the flat
message will contain several attributes of the banner/channel. When a record is
deleted, the message will simply contain the unique identifier of the
banner/channel. Messages are retrieved from the message queue in the order
they were created.

State Diagram

Create Banner Banner Exists Deleted

Modify Banner

Delete Banner

Create Channel Channel Exists Deleted

Modify Channel

Delete Channel

14 Retek Merchandising System

Description of Activities

Create
1 Prerequisites: For channel creation, the associated banner must have been

created.

2 Activity Detail: Once a banner/channel has been created, it is ready to be
published. An initial publication message is made.

3 Messages: A “Banner Create”/”Channel Create” message is queued. This
message is a flat message that contains a full snapshot of the attributes on the
BANNER or CHANNEL table.

Modify
1 Prerequisites: Banner/Channel has been created.

2 Activity Detail: The user is allowed to change attributes of the
banner/channel. These changes are of interest to other systems and so this
activity results in the publication of a message.

3 Messages: Any modifications will cause a “Banner Modify”/”Channel
Modify” message to be queued. This message contains the same attributes as
the “Banner Create”/”Channel Create” message.

Delete
1 Prerequisites: Banner/Channel has been created.

2 Activity Detail: Deleting a banner/channel removes it from the system.
External systems are notified by a published message.

3 Messages: When a banner/channel is deleted a “Banner Delete”/”Channel
Delete” message, which is a flat notification message, is queued. The
message contains the banner/channel identifier.

Triggers
Trigger Description (EC_TABLE_BAN_AIUDR):

This trigger will capture inserts/updates/deletes to the BANNER table and write
data into the banner_mfqueue message queue. It will call
BANNER_XML.BUILD_MESSAGE to create the XML message, then call
RMSMFM_BANNER.ADDTOQ to insert this message into the message queue.

On Insert: A BannerDesc message containing information from the BANNER
table is created.

On Update: A BannerDesc message containing information from the BANNER
table is created.

On Delete: A BannerRef message containing the banner id is created.

Trigger Description (EC_TABLE_CHN_AIUDR):

 Chapter 1 - Publishing designs 15

This trigger will capture inserts/updates/deletes to the CHANNELS table and
write data into the banner_mfqueue message queue. It will call
CHANNEL_XML.BUILD_MESSAGE to create the XML message, then call
RMSMFM_BANNER.ADDTOQ to insert this message into the message queue.

On Insert: A ChannelDesc message containing information from the
CHANNELS table is created.

On Update: A ChannelDesc message containing information from the
CHANNELS table is created.

On Delete: A ChannelRef message containing the channel id is created.

Message Family Manager Procedures
Public Procedures for Banner MFM:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_banner_id,
I_channel_id, I_message) – This procedure is called by
EC_TABLE_BAN_AIUDR and EC_TABLE_CHN_AIUDR, and takes the
message type, banner id, channel id (NULL if called from
EC_TABLE_BAN_AIUDR) and the message itself. It inserts a row into the
message family queue BANNER_MFQUEUE along with the passed in values
and the next sequence number from the message family sequence, setting the
status to unpublished. It returns a status code of API_CODES.SUCCESS if
successful, API_CODES.UNHANDLED_ERROR if not.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_banner_id, O_channel_id) – This publicly exposed procedure is typically
called by a RIB publication adaptor. Its parameters are well defined and arranged
in a specific order. The message type is the RIB defined short message name, the
message is the xml message, and the family key consists the banner id), which
will be populated for all message types, and the channel id, which can be NULL.
Status code is one of five values, as shown in the following table. For more
discussion of the status codes, refer to the Error Handling Guidelines document
or the process flow in the following section. These codes come from an EAI team
defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

16 Retek Merchandising System

Differentiator Group Message Family Manager
Publishing Design

Functional Area
Differentiator Groups

Design Overview
Differential group publication consists of a single flat message containing
differential group attributes from the tables diff_group_head and
diff_group_detail. One message will be synchronously created and placed in the
message queue each time a differential group(diff_group_head) is created,
modified, or deleted or when a differentiator (diff_group_detail) is created,
modified, or deleted from a differential group . When a differential group
(diff_group_head) is created or modified, the flat message will contain numerous
attributes of the group. When a differential group is deleted, the message will
simply contain the unique identifier of the group, diff_group_id. When a
differentiator (diff_group_detail) is created or modified, the flat message will
contain numerous attributes of the differentiator. When a differentiator is
deleted, the message will simply contain the unique identifier of the differential
group and the differentiator, diff_group_id and diff_id. Messages are retrieved
from the message queue in the order they were created.

State Diagram

Create Diff_Group

Diff_Group Exists

Delete Diff_Group_Detail

Modify Diff_Group Modify
Diff_Group_Detail Diff_Group_Detail Exists

Add Diff_Group_Detail

Delete Diff_Group

 Chapter 1 - Publishing designs 17

Description of Activities

Create Diff_Group
1 Prerequisites: Diff_Group doesn’t already exist.

2 Activity Detail: Any change to the Diff_Group_Head table inserts a
DiffGrpHdrCre message_type record on the DIFFGRP_MFQUEUE table.

3 Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous
message containing a full snapshot of the diff_group at the time the message
is published.

Modify Diff_Group
1 Prerequisites: Diff_Group exists.

2 Activity Detail: Any change to the diff_group_head table inserts a
DiffGrpHdrMod message_type record on the DIFFGRP_MFQUEUE table.

3 Messages: The DiffGrpHdrDesc message is created. It is a flat,
synchronous message containing a full snapshot of the uda at the time the
message is published.

Create Diff_Group_Detail
1 Prerequisites: A Diff_Group already exists, and the diff_id exists on

diff_ids, but the diff_id does not exist within the diff_group.

2 Activity Detail: Any Differentiators added to a diff_group inserts a record to
the DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is
also inserted on the DIFFGRP_MFQUEUE table. A foreign key to the
Diff_Group_Head table checks the existence of the diff_group the value is
created to supplement.

3 Messages: DiffGrpDtlDesc message type is is created. It is a hierarchical,
synchronous message containing a snapshot of the Diff_Group_Detail table
at the time the message is published.

Modify Diff_Group_Detail
1 Prerequisites: Diff_Group and the Diff_id within the diff_group

(diff_group_detail record) exists.

2 Activity Detail: Any change to the Differentiators within a diff_group
modifies a record to the DIFF_GROUP_HEAD table. A DiffGrpDtlMod
message type record is also inserted on the DIFFGRP_MFQUEUE table. A
foreign key to the Diff_Group_Head table checks the existence of the
diff_group the value is created to supplement

3 Messages DiffGrpDtlDesc message is created. It is a flat, synchronous
message containing a snapshot of the Diff_Group_Detail table at the time the
message is published.

18 Retek Merchandising System

Delete Diff_Group_Detail
1 Prerequisites: Diff_Group and the Diff_id within the

diff_group(diff_group_detail record) exists.

2 Activity Detail: Deleting a Differentiator from a Diff_Group removes it
from the diff_group_detail table and inserts a DiffGrpDtlDel row to the
DIFFGRP_MFQUEUE table.

3 Message: A DiffGrpDtlRef message is created. It is a flat, synchronous
message containing the primary key with which the external systems can
remove it from their systems.

Delete Diff_Group
1 Prerequisites: Diff_Group exists and a diff_id within the diff_group

(diff_group_detail record) may or may not exist.

2 Activity Detail: Deleting a Diff_Group removes it from the diff_group_head
table and inserts a DiffGrpDel row to the DIFFGRP_MFQUEUE table.
Since the differentiator_group_maintenance.fmb form in RMS automatically
removes any child records on the diff_group_detail table when the
diff_group is removed, there will be a row inserted to the
DIFFGRP_MFQUEUE table for each diff_group_detail record associated
with the deleted diff_group as well. These will receive the lower sequence
numbers so that these will be acted upon first in the message queue. They
will look like the DELETE DIFF_GROUP_DETAIL message detailed in the
section above.

3 Message: A DiffGrpRef message is created for the diff_group only. It is a
flat, synchronous message containing the primary key with which the
external systems can remove it from their systems.

Triggers
Triggers should only insert records onto the staging table if no record already
exists or if a record does exist but is locked.

Trigger Description (EC_TABLE_DGH_AIUDR): This trigger fires on any
insert, update or delete on the Diff_Group_Head table. It captures the new data
for inserts and updates. It captures the old data on deletes. It sets the action type
and message type and calls the DIFFGRPHDR_XML.BUILD_MESSAGE
procedure to build the message. The record is inserted into the
DIFFGRP_MFQUEUE table by calling the RMSMFM_DIFFGRP.ADDTOQ
procedure (I_diff_id is passed in as NULL).

On Insert:

Sets action_type to ‘A’dd and message_type to ‘DiffGrpHdrCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘DiffGrpHdrMod’.

On Delete:

Sets action_type to ‘D’elete and message_type to ‘DiffGrpDel’.

 Chapter 1 - Publishing designs 19

DIFFGRPHDR_XML. BUILD_MESSAGE (O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_DGH_AIUDR on insert, update and delete of the Diff_Group_Head
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is sent in the trigger. It builds DiffGrpRef xml
messages for delete statements, or DiffGrpHdrDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_DGD_AIUDR): This trigger fires on any
insert, update or delete on the Diff_Group_Detail table. It captures the new data
for inserts and updates. It captures the old data on deletes. It sets the action type
and message type and calls the DIFFGRPDTL_XML.BUILD_MESSAGE
procedure to build the message. The record is inserted into the
DIFFGRP_MFQUEUE table by calling the RMSMFM_DIFFGRP.ADDTOQ
procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘DiffGrpDtlCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘DiffGrpDtlMod’.

On Delete:

Sets action_type to ‘D’elete and message_type to ‘DiffGrpDtlDel’.

DIFFGRPDTL_XML. BUILD_MESSAGE (O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_DGD_AIUDR on insert, update and delete of the
Diff_Group_Detail table. This function gathers all the data necessary to build the
message that needs to be sent to the Retek Integration Bus. It determines the
proper message to build based on the action_type that is sent in the trigger. It
builds DiffGrpDtlRef xml messages for delete statements, or DiffGrpDtlDesc
xml messages for updates or inserts.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_message,
I_diff_group_id, I_diff_id, I_message) – This procedure is called by an event
capture trigger, and takes the message type, family key values and, for
synchronously captured messages, the message itself. It inserts a row into the
message family queue along with the passed in values and the next sequence
number from the message family sequence, setting the status to unpublished, or
skip in the case of consolidation messages (for more information on
consolidation messages refer to the Integration Design Patterns document). It
returns error codes and strings according to the standards of the application in
which it is being implemented.

20 Retek Merchandising System

GETNXT (O_status_code, O_error_msg, I_diff_group_id, I_diff_id,
O_message_type, O_message) – This publicly exposed procedure is typically
called by a RIB publication adaptor. It’s parameters are well defined and
arranged in a specific order. The message type is the RIB defined short message
name, the message is the xml message, and the family key(s) are the key for the
message as pertains to the family, not all of which will necessarily be populated
for all message types. Status code is one of five values, as shown in the following
table. For more discussion of the status codes, refer to the Error Handling
Guidelines document or the process flow in the following section. These codes
come from an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed. The facility id is only included in
messages coming from RDM.

 Chapter 1 - Publishing designs 21

Differentiatior ID Message Family Manager Publishing
Design

Functional Area
Differentiator Ids

Design Overview
Differentiator ID publication consists of a single flat message containing
differentiator attributes from the table diff_ids. One message will be
synchronously created and placed in the message queue each time a differentiator
(diff_ids) is created, modified, or deleted. When a differentiator (diff_ids) is
created or modified, the flat message will contain numerous attributes of the
differentiator. When a differentiator is deleted, the message will simply contain
the unique identifier of the differentiator, diff_id. Messages are retrieved from
the message queue in the order they were created.

State Diagram

Create Diff_Id

Diff_Id Exists Delete Diff_IdModify Diff_Id

Description of Activities

Create Diff_Id
1 Prerequisites: Diff_Id doesn’t already exist.

2 Activity Detail: Any change to the Diff_Ids table inserts a DiffCre
message_type record on the DIFFID_MFQUEUE table.

3 Messages: The DiffDesc message is created. It is a flat, synchronous
message containing a full snapshot of the diff_group at the time the message
is published.

22 Retek Merchandising System

Modify Diff_Id
1 Prerequisites: Diff_Id exists.

2 Activity Detail: Any change to the diff_ids table inserts a DiffMod
message_type record on the DIFFID_MFQUEUE table.

3 Messages: The DiffDesc message is created. It is a flat, synchronous
message containing a full snapshot of the uda at the time the message is
published.

Delete Diff_Id
1 Prerequisites: Diff_Id exists.

2 Activity Detail: Deleting a Diff_Id removes it from the diff_ids table and
inserts a DiffDel row to the DIFFID_MFQUEUE table.

3 Message: A DiffRef message is created. It is a flat, synchronous message
containing the primary key with which the external systems can remove it
from their systems.

Triggers
Triggers should only insert records onto the staging table if no record already
exists or if a record does exist but is locked.

Trigger Description (EC_TABLE_DID_AIUDR): This trigger fires on any insert,
update or delete on the Diff_Ids table. It captures the new data for inserts and
updates. It captures the old data on deletes. It sets the action type and message
type and calls the DIFFID_XML.BUILD_MESSAGE procedure to build the
message. The record is inserted into the DIFFID_MFQUEUE table by calling
the RMSMFM_DIFFID.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘DiffCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘DiffMod’.

On Delete:

Sets action_type to ‘D’elete and message_type to ‘DiffDel’.

DIFFID_XML. BUILD_MESSAGE (O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_DID_AIUDR on insert, update and delete of the Diff_Ids table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is sent in the trigger. It builds DiffRef xml
messages for delete statements, or DiffDesc xml messages for updates or inserts.

 Chapter 1 - Publishing designs 23

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_diff_id,
I_message) – This procedure is called by an event capture trigger, and takes the
message type, family key values and, for synchronously captured messages, the
message itself. It inserts a row into the message family queue along with the
passed in values and the next sequence number from the message family
sequence, setting the status to unpublished, or skip in the case of consolidation
messages (for more information on consolidation messages refer to the
Integration Design Patterns document). It returns error codes and strings
according to the standards of the application in which it is being implemented.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_diff_id) – This publicly exposed procedure is typically called by a RIB
publication adaptor. It’s parameters are well defined and arranged in a specific
order. The message type is the RIB defined short message name, the message is
the xml message, and the family key(s) are the key for the message as pertains to
the family, not all of which will necessarily be populated for all message types.
Status code is one of five values, as shown in the following table. For more
discussion of the status codes, refer to the Error Handling Guidelines document
or the process flow in the following section. These codes come from an EAI team
defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed. The facility id is only included in
messages coming from RDM.

24 Retek Merchandising System

Item Message Family Manager Publishing Design

Functional Area
Items

Design Overview
The item message family manager is a package of procedures that adds item
family messages to the item queue and publishes these messages for the
integration bus to route. Triggers on all the item family tables call a procedure
from this package to add a “create”, “modify” or “delete” message to the queue.
The integration bus calls a procedure in this package to retrieve the next
publishable item message from the queue.

All the components that comprise the creation of an item, the item/supplier for
example, remain in the queue until the item approval modification message has
been published. Any modifications or deletions that occur between item creation
in “W”(worksheet) status and “A”(Approved) status are applied to the “create”
messages or deleted from the queue as required. For example, if an item UDA is
added before item approval and then later deleted before item approval, the item
UDA “create” message would be deleted from the queue before publishing the
item. If an item/supplier record is updated for a new item before the item is
approved, the “create” message for that item/supplier is updated with the new
data before the item is published. When the “modify” message that contains the
“A”(Approved) status is the next record on the queue, the procedure formats a
hierarchical message that contains the item header information and all the child
detail records to pass to the integration bus.

Additions, modifications and deletions to item family records for existing
approved items are published in the order that they are placed on the queue.

Unless otherwise noted, item publishing includes most of the columns from the
item_master table and all of the item family child tables included in the
publishing message. Sometimes only certain columns are published, and
sometimes additional data is published with the column data from the table row.
The item publishing message is built from the following tables:

Family Header

item_master - transaction level items only

descriptions for the code values

names for department, class and subclass

diff types

base retail price

Item Family Child Tables

item_supplier

item_supp_country

item_supp_country_dim

 Chapter 1 - Publishing designs 25

 descriptions for the code values

item_master - reference items

 item, item_number_type, item_parent, primary_ref_ind, format_id,
prefix

packitem_breakout

 pack_no, item, packitem_qty

item_image

uda_item_ff

uda_item_lov

uda_item_date

26 Retek Merchandising System

State Diagram

Create Item Worksheet Item Exists

Deleted

Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Pack Comp Item

Supplier Exist?

No Yes

Modify Item

Add Supplier

Add/Modify/Delete Supplier

Add/Modify/Delete Supplier/Country

Add Supplier/Country

Approve Item

Approved Item Exists

Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Supplier

Add/Modify/Delete Supplier/Country

Delete Item

Add/Modify/Delete Ref Items

Add/Modify/Delete Ref Item

Add/Modify/Delete Pack Comp Item

 Chapter 1 - Publishing designs 27

Description of Activities

Create a Worksheet Item
1 Prerequisites: No prerequisites exist for creating an item except that RMS

foundation data such as departments and suppliers exist first. Items are
created using the RMS online item dialogue.

2 Activity Detail: The creation of the item is the first step of gathering all the
hierarchical information needed for publishing the item.

3 Messages: A message for the item creation is placed on the queue for future
publishing. This is a flat message that will be collected with the item detail
messages to comprise the final hierarchical message. It will not be published
until the item is approved. The presence of this message on the queue signals
the publishing process that more detail information for the item is
forthcoming.

Approve an Item
1 Prerequisites: An item must exist and be submitted for approval.

2 Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.
Once the item is approved, it is of interest to other software systems. It can
be included in orders, transfers, shipments, etc.

3 Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. The approved item create message is a
hierarchical message containing the item and all the item family detail
records. First an ItemDesc node is created and the ItemHdrDesc message is
added to this message. Next, all the child messages are appended to the
message until there are no more records in the item_mfqueue table for this
item. Then the final item message is formatted.

Modify an Item
1 Prerequisites: An item can have any status to be modified. Once the item is

approved, there are only a few fields that can be modified.

2 Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.

3 Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. If a record that has an ItemCre message
type exists on the item_mfqueue table for this item, this “modify” message is
never used in publishing. Only the final “modify” item record message with
an ‘A’(Approved) status is published. If no ItemCre record exists on the
item_mfqueue table for this item, it is published as a flat message.

28 Retek Merchandising System

Create Item/Supplier
1 Prerequisites: The supplier and the item already exist.

2 Activity Detail: The item/supplier combination is inserted into the
item_supplier table. An ItemSupCre message type record is also inserted on
the item_mfqueue table.

3 Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Item/Supplier
1 Prerequisites: The item/supplier combination already exists.

2 Activity Detail: The item/supplier record is updated in the item_supplier
table. An ItemSupMod message type record is inserted on the item_mfqueue
table.

3 Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ItemSupCre message type exist on the item_mfqueue table
for this item/supplier, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

Delete Item/Supplier
1 Prerequisites: The item/supplier combination already exists and is not being

used somewhere in the system.

2 Activity Detail: The item/supplier record is deleted from the item_supplier
table and all child records from the item_supp_country and
item_supp_country_dim tables. An ItemSupDel message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier record. If records that
have an ItemCre and an ItemSupCre message type exist on the item_mfqueue
table for this item/supplier, the ItemSupCre and any ItemSupMod records are
deleted from the item_mfqueue table. Otherwise, it is published as a flat
message.

 Chapter 1 - Publishing designs 29

Create Item/Supplier/Country
1 Prerequisites: The supplier, country and the item already exist.

2 Activity Detail: The item/supplier/country combination is inserted into the
item_supp_country table. An ItemSupCtyCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country
1 Prerequisites: The item/supplier/country combination already exists.

2 Activity Detail: The item/supplier/country record is updated in the
item_supp_country table. An ItemSupCtyMod message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. If
records that have an ItemCre and an ItemSupCtyCre message type exist on
the item_mfqueue table for this item/supplier/country, the message is
updated with the “modify” message and published as part of the item
creation message when the item is approved. Otherwise, it is published as a
flat message.

Delete Item/Supplier/Country
1 Prerequisites: The item/supplier/country combination already exists.

2 Activity Detail: The item/supplier/country record is deleted from the
item_supp_country table and all child records from the
item_supp_country_dim table. An ItemSupCtyDel message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country record. If records
that have an ItemCre and an ItemSupCtyCre message type exist on the
item_mfqueue table for this item/supplier/country, the ItemSupCtyCre and
any ItemSupCtyMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

30 Retek Merchandising System

Create Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country already exists.

2 Activity Detail: The item/supplier/country/dimension combination is
inserted into the item_supp_country_dim table. An ISCDimCre message type
record is also inserted on the item_mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier/country/dimension record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country/dimension combination already

exists.

2 Activity Detail: The item/supplier/country/dimension record is updated in
the item_supp_country_dim table. An ISCDimMod message type record is
inserted on the item_mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ISCDimCre message type exist on the item_mfqueue table
for this item/supplier/country/dimension, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country/dimension combination already

exists.

2 Activity Detail: The item/supplier/country/dimension record is deleted from
the item_supp_country_dim table and all child records from the
item_supp_country and item_supp_country_dim tables. An ISCDimDel
message type record is inserted on the item_mfqueue table.

3 Messages: ISCDimRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country/dimension record.
If records that have an ItemCre and an ISCDimCre message type exist on the
item_mfqueue table for this item/supplier/country/dimension, the
ISCDimCre and any ISCDimMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

 Chapter 1 - Publishing designs 31

CreateRef_Item
1 Prerequisites: The parent item exists.

2 Activity Detail: The item is inserted into the item_master table. An
ItemUPCCre message type record is also inserted on the item_mfqueue table.

3 Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

32 Retek Merchandising System

Modify Ref_Item
1 Prerequisites: The reference item exists as a child item.

2 Activity Detail: The item record is updated in the item_master table. An
ItemUPCMod message type record is inserted on the item_mfqueue table.

3 Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. If records that have an
ItemCre and an ItemUPCCre message type exist on the item_mfqueue table
for this reference item, the message is updated with the “modify” message
and published as part of the item creation message when the item is
approved. Otherwise, it is published as a flat message.

Delete Ref_Item
1 Prerequisites: The reference item already exists as a child item.

2 Activity Detail: The reference item record is deleted from the item_master
table. An ItemUPCDel message type record is inserted on the item_mfqueue
table.

3 Messages: ItemUPCRef message type is created. It is a flat, synchronous
message containing the keys for this reference item record. If records that
have an ItemCre and an ItemUPCCre message type exist on the
item_mfqueue table for this reference item, the ItemUPCCre and any
ItemUPCMod records are deleted from the item_mfqueue table. Otherwise,
it is published as a flat message.

Create Pack Comp
1 Prerequisites: The pack item exists.

2 Activity Detail: The pack comp is inserted into the packitem_breakout
table. An ItemBOMCre message type record is also inserted on the
item_mfqueue table.

3 Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Pack Comp
1 Prerequisites: The pack comp exists for the pack.

2 Activity Detail: The pack comp record is updated in the packitem_breakout
table. An ItemBOMMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. If records that have an ItemCre
and an ItemBOMCre message type exist on the item_mfqueue table for this
pack comp, the message is updated with the “modify” message and published
as part of the item creation message when the item is approved. Otherwise, it
is published as a flat message.

 Chapter 1 - Publishing designs 33

Delete Pack Comp
1 Prerequisites: The pack comp already exists for the pack.

2 Activity Detail: The pack comp record is deleted from the
packitem_breakout table. The packitem_qty is retrieved from the
v_packitem_qty view. If the quantity for the pack comp is 0, an
ItemBOMDel message type record is inserted on the item_mfqueue table. If
the quantity for the pack comp greater than 0, an ItemBOMMod message
type record is inserted on the item_mfqueue table.

3 Messages: If the message type is ItemBOMDel, a ItemBOMRef message
type is created. It is a flat, synchronous message containing the keys for this
pack comp record. If records that have an ItemCre and an ItemBOMCre
message type exist on the item_mfqueue table for this pack comp, the
ItemBOMCre and any ItemBOMMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message. If the
message type is ItemBOMMod, a message is create and processed as
described in the Modify Pack Comp Messages section.

Create Item/Image
1 Prerequisites: The item already exists.

2 Activity Detail: The item/image combination is inserted into the
item_image table. An ItemImageCre message type record is also inserted on
the item_mfqueue table.

3 Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Item/Image
1 Prerequisites: The item/image combination already exists.

2 Activity Detail: The item/image record is updated in the item_image table.
An ItemImageMod message type record is inserted on the item_mfqueue
table.

3 Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. If records that have an ItemCre
and an ItemImageCre message type exist on the item_mfqueue table for this
item/image, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

34 Retek Merchandising System

Delete Item/Image
1 Prerequisites: The item/image combination already exists.

2 Activity Detail: The item/image record is deleted from the item_image
table. An ItemImageDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemImageRef message type is created. It is a flat, synchronous
message containing the keys for this item/image record. If records that have
an ItemCre and an ItemImageCre message type exist on the item_mfqueue
table for this item/image, the ItemImageCre and any ItemImageMod records
are deleted from the item_mfqueue table. Otherwise, it is published as a flat
message.

Create Item/UDA/FreeFormat
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/freeformat combination is inserted into the
uda_item_ff table. An ItemUDAFFCre message type record is also inserted
on the item_mfqueue table.

3 Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/UDA/FreeFormat
1 Prerequisites: The item/uda/freeformat combination already exists.

2 Activity Detail: The item/uda/freeformat record is updated in the
uda_item_ff table. An ItemUDAFFMod message type record is inserted on
the item_mfqueue table.

3 Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. If records
that have an ItemCre and an ItemUDAFFCre message type exist on the
item_mfqueue table for this item/uda/freeformat, the message is updated with
the “modify” message and published as part of the item creation message
when the item is approved. Otherwise, it is published as a flat message.

 Chapter 1 - Publishing designs 35

Delete Item/UDA/FreeFormat
1 Prerequisites: The item/uda/freeformat combination already exists.

2 Activity Detail: The item/uda/freeformat record is deleted from the
uda_item_ff table. An ItemUDAFFDel message type record is inserted on
the item_mfqueue table.

3 Messages: ItemUDAFFRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/freeformat
record. If records that have an ItemCre and an ItemUDAFFCre message type
exist on the item_mfqueue table for this item/uda/freeformat, the
ItemUDAFFCre and any ItemUDAFFMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

Create Item/UDA/LOV
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/lov combination is inserted into the
uda_item_lov table. An ItemUDALOVCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

Modify Item/UDA/LOV
1 Prerequisites: The item/uda/lov combination already exists.

2 Activity Detail: The item/uda/lov record is updated in the uda_item_lov
table. An ItemUDALOVMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. If records that
have an ItemCre and an ItemUDALOVCre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

36 Retek Merchandising System

Delete Item/UDA/LOV
1 Prerequisites: The item/uda/lov combination already exists.

2 Activity Detail: The item/uda/lov record is deleted from the uda_item_lov
table. An ItemUDALOVDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDALOVRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/lov record. If
records that have an ItemCre and an ItemUDALOVCre message type exist
on the item_mfqueue table for this item/uda/lov, the ItemUDALOVCre and
any ItemUDALOVMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

Create Item/UDA/Date
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/date combination is inserted into the
uda_item_date table. An ItemUDADateCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

Modify Item/UDA/Date
1 Prerequisites: The item/uda/date combination already exists.

2 Activity Detail: The item/uda/date record is updated in the uda_item_date
table. An ItemUDADateMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. If records that
have an ItemCre and an ItemUDADateCre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

 Chapter 1 - Publishing designs 37

Delete Item/UDA/Date
1 Prerequisites: The item/uda/date combination already exists.

2 Activity Detail: The item/uda/date record is deleted from the uda_item_lov
table. An ItemUDADateDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDADateRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/date record. If
records that have an ItemCre and an ItemUDADateCre message type exist on
the item_mfqueue table for this item/uda/date, the ItemUDADateCre and any
ItemUDADateMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

Delete an Item
1 Prerequisites: The item exists. An ‘A’(Approved) item can be deleted

when the user presses the “Cancel” button in the RMS dialogue after creating
and approving the item.

2 Activity Detail: The item record is deleted from the item_master table and
any child records that exist are deleted from the child tables. An ItemDel
message type record is inserted on the item_mfqueue table.

3 Message: ItemRef message type is created. It is a flat, synchronous message
containing the key for this item record. If a record that has an ItemCre
message type exists on the item_mfqueue table for this item, all records for
this item are deleted from the item_mfqueue table. Otherwise, it is published
as a flat message.

38 Retek Merchandising System

Triggers
Trigger Description (EC_TABLE_IEM_AIUDR): This trigger fires on any
insert, update or delete on the item_master table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ITEM_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

For transaction level items, sets action_type to ‘A’dd and message_type to
‘ItemHdrCre’.

For reference level items (below the transaction level), sets action_type to ‘A’dd
and message_type to ‘ItemUPCCre’.

Parent and grandparent items are not published.

On Update:

For transaction level items, sets action_type to ‘M’odify and message_type to
‘ItemHdrMod’.

For reference level items (below the transaction level), sets action_type to
‘M’odify and message_type to ‘ItemUPCMod’.

On Delete:

For transaction level items, sends only the item column value for the message.

For reference level items (below the transaction level), sends only the item and
item_parent column values for the message.

For transaction level items, sets action_type to ‘D’elete and message_type to
‘ItemHdrDel’.

For reference level items (below the transaction level), sets action_type to
‘D’elete and message_type to ‘ItemUPCDel’.

ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger
EC_TABLE_ITEM_AIUDR on insert, update and delete of the item_master
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type and the item type (transactional or reference) that is set
in the trigger. For transaction level items, it builds ItemRef xml messages for
delete statements, or ItemDesc xml messages for updates or inserts. For
reference items, it builds ItemUPCRef xml messages for delete statements, or
ItemUPCDesc xml messages for updates or inserts.

 Chapter 1 - Publishing designs 39

Trigger Description (EC_TABLE_ISP_AIUDR): This trigger fires on any insert,
update or delete on the item_supplier table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the
ITEMSUPPLIER_XML.BUILD_MESSAGE procedure to build the message.
The record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemSupCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemSupMod’.

On Delete:

Sends only the item and supplier column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemSupDel’.

ITEMSUPPLIER_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_ISP_AIUDR on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemSupRef xml
messages for delete statements, or ItemSupDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_ISC_AIUDR): This trigger fires on any insert,
update or delete on the item_supp_country table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISC_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemSupCtyCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemSupCtyMod’.

On Delete:

Sends only the item, supplier and origin_country_id column values for the
message.

Sets action_type to ‘D’elete and message_type to ‘ItemSupCtyDel’.

40 Retek Merchandising System

ISC_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger EC_TABLE_ISC_AIUDR
on insert, update and delete of the item_supp_country table. This function gathers
all the data necessary to build the message that needs to be sent to the Retek
Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ItemSupCtyRef xml messages for
delete statements, or ItemSupCtyDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_ISD_AIUDR): This trigger fires on any insert,
update or delete on the item_supp_country_dim table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISCD_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ISCDimCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ISCDimMod’.

On Delete:

Sends only the item, supplier, origin_country_id and dim_object column values
for the message.

Sets action_type to ‘D’elete and message_type to ‘ISCDimDel’.

ISC_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger EC_TABLE_ISC_AIUDR
on insert, update and delete of the item_supp_country_dim table. This function
gathers all the data necessary to build the message that needs to be sent to the
Retek Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ISCDimRef xml messages for
delete statements, or ISCDimDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_PKS_AIUDR: This trigger fires on any insert,
update or delete on the packitem_breakout table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It populates a PL/SQL table with this data.

Trigger Description (EC_TABLE_PKS_IUDS: This trigger fires on any insert,
update or delete on the packitem_breakout table. It loops through the PL/SQL
table that was populated in the row trigger and determines the value for the
packitem quantity in the message based on what is retrieved from the
v_packsku_qty view and the DML event. It calls the
ITEMBOM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

 Chapter 1 - Publishing designs 41

On Insert:

If the v_packsku_qty quantity is equal to the record just added, it sets action_type
to ‘A’dd and message_type to ‘ItemBOMCre’. If not, it sets action_type to
‘M’odify and message_type to ‘ItemBOMMod’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemBOMMod’.

On Delete:

Sends only the pack_no and item column values for the message.

If the packitem quantity is 0, it sets action_type to ‘D’elete and message_type to
‘ItemBOMDel’.

If the absolute value of packitem quantity is greater than 0, it sets action_type to
‘M’odify and message_type to ‘ItemBOMMod’.

ITEMBOM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_PKS_IUDS on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemBOMRef xml
messages for delete statements, or ItemBOMDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_IIM_AIUDR): This trigger fires on any insert,
update or delete on the item_image table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the
ITEMIMAGE_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemImageCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemImageMod’.

On Delete:

Sends only the item and image_name column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemImageDel’.

ITEMIMAGE_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_IIM_AIUDR on insert, update and delete of the item_image table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemImageRef xml
messages for delete statements, or ItemImageDesc xml messages for updates or
inserts.

42 Retek Merchandising System

Trigger Description (EC_TABLE_UIF_AIUDR): This trigger fires on any insert,
update or delete on the uda_item_ff table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDAFFCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDAFFMod’.

On Delete:

Sends only the item and uda_id column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDAFFDel’.

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UIF_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDAFFRef xml
messages for delete statements, or ItemUDAFFDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_UIL_AIUDR): This trigger fires on any insert,
update or delete on the uda_item_lov table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDALOVCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDALOVMod’.

On Delete:

Sends only the item, uda_id and uda_value column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDALOVDel’.

 Chapter 1 - Publishing designs 43

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UIL_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDALOVRef
xml messages for delete statements, or ItemUDALOVDesc xml messages for
updates or inserts.

Trigger Description (EC_TABLE_UID_AIUDR): This trigger fires on any insert,
update or delete on the uda_item_date table. It captures the data in the “new”
bind variables for inserts and updates. It captures the “old” data on deletes. It
sets the action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDADateCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDADateMod’.

On Delete:

Sends only the item and uda_id column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDADateDel’.

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UID_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDADateRef
xml messages for delete statements, or ItemUDADateDesc xml messages for
updates or inserts.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status, O_text, I_queue_rec, I_message) – This procedure is
called by a DML event capture trigger, and takes the message type, family key
values and, for synchronously captured messages, the message itself.

First it checks the input parameter for the item status that is part of the
I_queue_rec input record. This input record is defined the package specification.
If the item status is ‘A’(approved), it sets a local variable to ‘Y’(yes) and uses
this local variable as the value for the approve_ind column in the insert
statement. It inserts a record into the item_mfqueue table using the sequence for
the table, the values from the input record parameter, the local variable for the
approve_ind and the input CLOB parameter that contains the data in XML
format.

44 Retek Merchandising System

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_item, O_supplier, O_country_id, O_dim_object, O_upc, O_bom_comp,
O_image_name, O_uda_id, O_uda_value, O_sellable_ind)– This publicly
exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is
the RIB defined short message name, the message is the xml message, and the
family key(s) are the key for the message as pertains to the family, not all of
which will necessarily be populated for all message types.

The procedure produces a message through the following steps:

It loops through the item_mfqueue table records that have a pub_status of
‘U’(Unpublished).

If the return from the CREATE_PREVIOUS function is TRUE

• calls the CLEAN_QUEUE procedure.

• if the approve_ind column equals ‘Y’(Yes)

� calls the MAKE_CREATE procedure

� assigns all the output parameters with the values from the current
item_mfqueue row except for O_message which is returned from the
MAKE_CREATE procedure and sets O_status to
API_CODES.SUCCESS.

• if the CAN_CREATE returns FALSE, sets the pub_status field of the current
item_mfqueue row to ‘N’ and updates the row.

If the return from the CREATE_PREVIOUS function is FALSE

• assigns all the output parameters with the values from the current
item_mfqueue row and set O_status to API_CODES.SUCCESS.

• call the DELETE_QUEUE_REC to delete the row from the item_mfqueue
table.

If no “publishable” messages are retrieved from the above steps the procedure
returns a status of ‘N’(No message).

Status code is one of five values, as shown in the following table. For more
discussion of the status codes, refer to the Error Handling Guidelines document
or the process flow in the following section. These codes come from an EAI team
defined RIB_CODES package.

Private Procedures:

These private procedures are only necessary when the initial create message is
hierarchical. If all messages in the family are flat, there is no need for these
procedures.

CREATE_PREVIOUS(O_status, O_text, I_queue_rec) – This function
determines if a header level create already exists on the queue table for the same
key value and with a sequence number less than the current records sequence
number.

 Chapter 1 - Publishing designs 45

It checks the item_mfqueue table for the existence of a row for that has an item
equal to the passed in value for item, a message type equal to the value of
ItemCre and a seq_no that is less than or equal to the passed in value for seq_no.
If such a row exists in the table, it returns TRUE.

CLEAN_QUEUE(O_status, O_text, I_queue_rec) – This procedure cleans up
the queue by eliminating modification messages. It is only called if
CREATE_PREVIOUS returns true. For each modification message type, it finds
the previous corresponding create message type. It then calls
REPLACE_QUEUE to copy the modify message into the create message and
calls DELETE_QUEUE_REC to delete the modify record. For each delete
message type, it finds the previous corresponding messages. It then calls
DELETE_QUEUE_REC to delete the create message record.

The following examples illustrate the flow of the logic in this procedure for the
item family:

First it checks the message_type passed to procedure for the value of any of the
item delete message types, i.e. ItemSupCtyDel, ItemUPCDel, etc. If the
message_type is a “delete” message, it deletes records from the item_mfqueue
table for the appropriate key values and for the seq_no less than or equal to the
passed in value for seq_no.

Example for the message type ItemSupCtyDel:
 delete from item_mfqueue

 where supplier = I_queue_rec.supplier

 and item = I_queue_rec.item

 and country = I_queue_rec.country

 and seq_no <= I_queue_rec.seq_no;

If the message_type is an “update” message such as ItemSupMod, it assigns the
corresponding “Add” message_type to a local variable.

Example for the message type ISCDimMod:
 L_create_type := ISCDimAdd;

If this local variable is not null and if the call to REPLACE_QUEUE returns
TRUE, it calls DELETE_QUEUE_REC to delete the row from item_mfqueue.

REPLACE_QUEUE(O_status, O_text, I_rec, I_message_type) – This
procedure replaces the message in the “create” message type record with the
message from a “Modify” message type record.

It locks the item_mfqueue table for all rows that have a seq_no less than the
passed in value for seq_no. It updates the message column with the passed in
value for message for the row that matches the key values passed in the record to
the function and that matches the message_type passed as a parameter. It uses
the nvl function for all key columns except item because these key values are
optional and dependent on the message_type.

DELETE_QUEUE_REC(O_status, O_text, I_seq_no) – This procedure
deletes from the item_mfqueue table the row that has the seq_no column value
equal to the sequence value passed to the procedure.

46 Retek Merchandising System

MAKE_CREATE(O_status, O_text, O_msg, I_queue_rec) – This procedure
combines the current message and all previous messages with the same key in the
queue table to create the complete hierarchical message. It first creates a new
message with the hierarchical document type. It then gets the header create
message and adds it to the new message. The remainder of this procedure gets
each of the details grouped by their document type and adds them to the new
message. When it is finished creating the new message, it deletes all the records
from the queue for that item with a sequence number less than or equal to the
current records sequence number. This new message is passed back to the bus.

For the Item this procedure is implemented as follows:

Two cursors are used. One cursor cursor retrieves the row from the
item_mfqueue table for the item_master message, the item is equal to the value
of the passed in item, the seq_no is less than the passed in seq_no and the
message_type is equal to ‘ItemCre’. The other cursor retrieves all the item
related messages for the item details, the item is equal to the value of the passed
in item, the seq_no is less than or equal to the sequence value passed to the
procedure and the message_type is equal message_type value passed to the
cursor. Order the second cursor by seq_no. A local procedure with parameters
for message_type and message_name, adds the detail message to the header
message. It loops through the second cursor with the value of the message type
parameter and do the following:

• Assigns a local variable to the return of the rib_xml.readRoot function. Pass
the value of the message and message name to this function.

• Assigns a local variable to the return of the rib_xml.addElement function.
Pass the variable that contains the header XML message and the message
name.

• Calls the rib_xml.addElementContents procedure and use these variables as
the parameters.

The procedure starts by fetching the header message from the queue in the first
cursor. It calls API_LIBRARY.CREATE_MESSAGE to create a root message.
Next, it creates the item header root by assigning to the header root variable the
value from the rib_xml.readRoot function. Next, it creates the item header
element by assigning to the header element variable the value from the
rib_xml.addElement function. Finally, it adds the message to the root by calling
the rib_xml.addElementContents procedure and passing the header root and the
header element variables as parameters.

It adds all the item related detail messages by calling the local procedure
described above for each item detail and passing the message type and the
message name unique to the item detail. It uses the constants define in the
package spec for these values. The order for adding an item detail to the XML
message is specified in the item DTD.

Finally, it calls the API_LIBRARY.WRITE_DOCUMENT function to format
the XML document and deletes all rows that comprise this message from the
item_mfqueue table.

 Chapter 1 - Publishing designs 47

Ordering Message Family Manager Publishing Design

Functional Area
Orders

Design Overview
Ordering publication will be primarily based off of the ORDHEAD, ORDSKU,
and ORDLOC tables. ORDHEAD is the parent table containing high level
ordering information such as what supplier is being ordered from, when the order
should take place, etc. ORDSKU is a child of ORDHEAD and contains the
item(s) that are ordered, the size of the pack being ordered, etc. ORDLOC is a
child of ORDSKU and contains the location(s) each item on the order is going to
and how much of each item is ordered. Based on this table hierarchy, two levels
of messages will exist for order publishing. A header message which is primarily
driven off of the ORDHEAD table, and a detail message which is primarily
driven off both the ORDSKU and ORDLOC tables. Each message level will
contain three types of messages; create, modify, and delete. The message types
will create five different document types when published. Each type is discussed
below.

Five different documents types (i.e. published messages) will be published for
orders. Two for the header level, two for the detail level, and one that is a
combination of header and detail create messages. The initial published
message, ‘PODesc’, will only be published once for each order when an order is
initially approved. This message will be a summation of the ‘POHdrDesc’
message and all of the subsequent ‘PODtlDesc’ messages. The ‘POHdrDesc’
message will be created when an insertion or modification to the ORDHEAD
table is made. The ‘PORef’ message will be created when an order is deleted
from the ORDHEAD table. ‘PODtlDesc’ message will be created when a record
is inserted or modified on the ORDLOC table. ‘PODtlRef’ will be created when
an ORDLOC record is deleted.

To facilitate publishing order information at the physical location level, two
additional ORDLOC triggers, EC_TABLE_OLO2_AIUDR,
EC_TABLE_OLO_AIUDS can be installed. In addition, a new family manager,
RMSMFM_ORDERPHYS will then control order publishing. See the ‘Ordering
Physical MFM design.doc’ for a more detailed discussion.

48 Retek Merchandising System

State Diagram

Unapprove

Modify pre approved

Delete

Create Worksheet Order

Worksheet

ReWork

Modify in 'A' status

Approved

Approve

Modify

CloseClosed

Redistribute

Reinstate

 Chapter 1 - Publishing designs 49

Description of Activities

Create a Worksheet Order
1 Prerequisites: Orders can be created through various methods. Orders can

be created manually by a user, through a replenishment process (order can be
created in either worksheet or approved status), uploaded from a vendor, or
through a contract.

2 Activity Detail: At this point, the order is not seen externally from RMS.

3 Messages: When the order is created, a header message ‘POHdrdesc’ is
written to the ordering queue table. Upon detail additions, each will have a
‘PODtlDesc’ message written to the ordering queue. Ordering messages are
added, updated, and removed from the queue as the order is modified prior to
approval.

Modify Pre-Approved
1 Prerequisites: Order is still in worksheet status and has not been approved

and set back to worksheet.

2 Activity Detail: At this point, items can be modified, added or removed from
the order. The order can be split, scaled, and rounded in addition to having
deals, brackets applied.

3 Messages: Each change will cause a ‘POHdrDesc’ or ‘PODtlDesc’ message.
These messages will replace previous create messages if there was a
modification, delete a previous message if there was a delete, or add a new
message to the queue for inserts.

Approve
1 Prerequisites: Line items must exist for the order to be approved. Relevant

dates (not before, not after, pickup) must exist, plus certain other business
validation rules based on system options.

2 Activity Detail: At this point, the order is initially approved which means
external systems will now have constant visibility to all ordering
transactions. The user can no longer delete line items: instead they are
cancelled. Canceling decrements the order quantity by amount already
received.

3 Messages: The approval message sets an indicator signifying the approval
create message should be built. This is a hierarchical snapshot synchronous
message built in the family manager by attaching all of the ‘PODtlDesc’
messages with the ‘POHdrDesc’ message to create a ‘PODesc’ message.

50 Retek Merchandising System

Modify in ‘A’ status
1 Prerequisites: Order must be currently approved.

2 Activity Detail: Numerous fields at the header level (none at the detail level)
can be changed while the order is approved. This change will create a
message.

3 Messages: A ‘POHdrDesc’ message will be created for order at the end of
the session the order was modified. This message will be published
immediately as the order will already have been published. If the order has
not been published, then this message will follow the create message sent
out. This is a flat, synchronous message.

Redistribute
1 Prerequisites: Order must be in approved or worksheet status. Order must

not be a contract order. No shipments/appointments may exist against the
order. Items with allocations cannot be redistributed.

2 Activity Detail: User chooses which items to redistribute. Each chosen
details are removed from the order. This will create delete messages for each
one. A new location is then chosen to redistribute the items to. Each
item/location record will create a message.

Note: If user chooses to redistribute records, then cancels out of
redistribution, delete and create messages for the chosen records will be
inserted into the queue even though no changes were actually made online.

3 Messages: A ‘PODtlRef’ message is created for each item/location removed
from the order. If the order has not yet been approved, then these messages
will remove previous create messages. For already approved orders, then a
flat, synchronous message will be published. For each redistributed item, a
‘PODtlDesc’ message will be created.

Unapprove
1 Prerequisites: Order must currently be in approved status.

Shipments/Appoinments may exist against the order.

2 Activity Detail: This will change the status of the order back to worksheet.
This will create a message. Existing details will be modifiable. New records
may be added to the order. Items may not be deleted from the order.
However, the order quantity of the items can be canceled down to the
received or appointment expected quantity.

3 Messages: A ‘POHdrDesc’ message will be created for order at the end of
the session the order was modified. This message will be published
immediately as the order will already have been published. If the order has
not been published, then this message will follow the create message sent
out. This is a flat, synchronous message.

 Chapter 1 - Publishing designs 51

Modify
1 Prerequisites: Order must be in worksheet status and have already been

approved.

2 Activity Detail: If modifications occur at the header level, a header message
will be created. A detail message will be created for each modified or added
detail record. Detail records cannot be deleted; only their quantities can be
canceled.

3 Message: A ‘POHdrDesc’ message will be created for order at the end of
the session if the header was modified. A ‘PODtlDesc’ message will be
created for each detail record modified or added.

Close
1 Prerequisites: Order must currently be in approved status or in worksheet

status and have been previously approved. No outstanding
shipments/appointments may exist against any line items of the order.

2 Activity Detail: The status will change to closed. This will create a
message. Any outstanding un-received quantities will be canceled out. No
details will be modifiable while the order is in this status.

3 Message: A ‘POHdrDesc’ message will be created for order at the end of
the session the order was modified. A ‘PODtlDesc’ message will be created
for each line item that had outstanding un-received quantity. These messages
will be published immediately as the order will already have been published.
If the order has not been published, then this message will follow the create
message sent out. Each is a flat, synchronous message.

Reinstate
1 Prerequisites: Order must be in closed status. Orders that have been fully

received (closed through receiving dialogue) cannot be reinstated.

2 Activity Detail: The status will change to worksheet. This will create a
header level message. All canceled quantities will be added back to order
quantities. Details will be modifiable.

3 Message: A ‘POHdrDesc’ message will be created for order at the end of
the session the order was modified. A ‘PODtlDesc’ message will be created
for each line item that had outstanding canceled quantity. These messages
will be published immediately as the order will already have been published.
If the order has not been published, then this message will follow the create
message sent out. Each is a flat, synchronous message.

52 Retek Merchandising System

Delete
1 Prerequisites: If the user deletes the order manually, then the order needs to

be in worksheet status and never been approved. Else, for approved orders,
the following explanation details the business validation for deleting orders.
If the import indicator on the SYSTEM OPTIONS table (import_ind) is 'N'
and if invoice matching is not installed, then all details associated with an
order are deleted when the order has been closed for more months than
specified in UNIT_OPTIONS (order_history_months). If invoice matching
is installed, then all details associated with an order are deleted when the
order has been closed for more months than specified in UNIT_OPTIONS
(order_history_months). Orders are deleted only if shipments from the order
have been completely matched to invoices or closed, and all those invoices
have been posted. If the import indicator on the SYSTEM OPTIONS table
(import_ind) is 'Y' and if invoice matching is not installed, then all details
associated with the order are deleted when the order has been closed for more
months than specified in UNIT_OPTIONS (order_history_months) , as long
as all ALC records associated with an order are in 'Processed' status,
specified in ALC_HEAD (status). If invoice matching is installed, then all
details associated with an order are deleted when the order has been closed
for more months than specified in UNIT_OPTIONS (order_history_months),
as long as all ALC records associated with an order are in 'Processed' status,
specified in ALC_HEAD (status), and as long as all shipments from the
order have been completely matched to invoices or closed, and all those
invoices have been posted.

2 Activity Detail: Deleting orders will create a message for each detail
attached to the order plus the header record.

3 Messages: If the order has not been approved. Then the ‘PORef’ and
‘PODtlRef’ messages created will remove all the previous messages on the
ordering queue table. If the order has been approved, then a ‘PODtlRef’
message will be created for each detail record and a ‘PORef’ message for the
header. Each is a flat, synchronous message.

Triggers
Trigger Description (EC_TABLE_OHE_AIUDR): This triggers fires when an
ordhead record has been inserted, updated or deleted on any of the columns
published. Each action is detailed below. In general, this trigger passes the
column information into ORDER_XML.BUILD_HEAD_MSG to create the xml
message, then calls RMSMFM_ORDER.ADDTOQ to place the message and
order onto the ORDER_MFQUEUE table.

On Insert: A ‘POCre’ message type is created, with all of the non-base table
attributes retrieved from ORDER_XML.GET_MSG_HEADER.

On Update: A ‘POHdrMod’ message type is created. If this is the first time the
order has been approved, the approve indicator is set to ‘Y’es to signify that the
order should be published in it’s entirety. In all other instances, the approve
indicator will be set to ‘N’o. Then all of the non-base table attributes will be
retrieved from ORDER_XML.GET_MSG_HEADER.

 Chapter 1 - Publishing designs 53

On Delete: A ‘PODel’ message type is created with only the order number
passed for the xml message.

Trigger Description (EC_TABLE_OLO_AIUDR): This triggers fires when an
ordloc record has been inserted, updated or deleted on the qty_ordered column.
Each action is detailed below. In general, this trigger passes the column
information into ORDER_XML.BUILD_LOC_MSG to create the xml message,
then calls RMSMFM_ORDER.ADDTOQ to place the message and order, item,
location onto the ORDER_MFQUEUE table.

On Insert and Update: A ‘PODtlCre’ or ‘PODtlMod’ message type is created.
All of the non-base table attributes are then retrieved from ORDSKU and
ITEM_SUPP_COUNTRY for the complete message body.

On Delete: A ‘PODtlDel’ message type is created with only the order number,
item, location, location type passed for the xml message.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_pub_status, I_approve_ind,
I_message_type, I_order_no, I_item, I_location, I_message) – This procedure
is called by either the ORDHEAD or ORDLOC row trigger, and takes the
message type, table primary key values (order_no for ORDHEAD table and
order_no, item, location for ORDLOC table) and the message itself. It inserts a
row into the message family queue along with the passed in values and the next
sequence number from the message family sequence. The pub status will always
be ‘U’ except for PO create messages, then it will be ‘N’. The approve indicator
will always be ‘N’ except when the order is approved for the first time, then it
will be ‘Y’. It returns error codes and strings according to the standards of the
application in which it is being implemented.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_order_no, O_item, O_location) – This publicly exposed procedure is
typically called by a RIB publication adaptor. It’s parameters are well defined
and arranged in a specific order. The message type is the RIB defined short
message name, the message is the xml message, and the family key(s) (order_no
for ORDHEAD table and order_no, item, location for ORDLOC table) are the
key for the message as pertains to the family, not all of which will necessarily be
populated for all message types. Status code is one of five values, as defined in
the API_CODES package specification. These codes come from an EAI team
defined RIB_CODES package.

This program loops through each message on the ORDER_MFQUEUE table.
When no messages are found, the program exists returning the ‘N’o message
found API code. If the approve indicator is ‘Y’, then BUILD_CREATE_MSG is
called to group the ‘POHdrDesc’ and all ‘PODtlDesc’ messages for the order into
the ‘PODesc’ message. If the approve indicator is ‘N’, then
CREATE_PREVIOUS is called to determine if the ‘POCre’ message type has
been published. If the ‘POCre’ message type has been published, then the
current message is returned and deleted from the queue in a call to
DELETE_QUEUE_REC. If the ‘POCre’ message type has not been published,
then CLEAN_QUEUE is called.

54 Retek Merchandising System

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

Private Procedures:

These private procedures are only necessary when the initial create message is
hierarchical. If all messages in the family are flat, there is no need for these
procedures.

CREATE_PREVIOUS(I_queue_rec) – This procedure determines if a header
level create already exists on the queue table for the same key value and with a
sequence number less than the current records sequence number.

CLEAN_QUEUE(I_queue_rec) – This procedure cleans up the queue by
eliminating modification messages. It is only called if CREATE_PREVIOUS
returns true (meaning the create message for the order has not been published).
For each delete message type, it finds the previous corresponding create message
type. It then deletes the create message record and the delete message itself. For
each modification message type, it calls REPLACE_QUEUE to copy the modify
message into the create message it is replacing and calls
DELETE_QUEUE_REC to delete the modify record. For create message types,
it updates the pub status to ‘N’ to indicate that the record has been processed and
is ready for publishing when the order is approved.

BUILD_CREATE_MSG(O_msg, I_queue_rec) – This procedure combines the
current message and all previous messages with the same key in the queue table
to create the complete hierarchical message. It first creates a new message with
the ‘PODesc’ document type. It then gets the header create message,
‘POHdrDesc’ and adds it to the new create message. The remainder of this
procedure gets each of the details grouped by their document type, ‘PODtlDesc’
and removes the ‘POHdrMod’ node from the detail message. Then the
‘POHdrDesc’ messages is added to the new create message. When it is finished
creating the new message, it deletes all the records from the queue with a
sequence number less than or equal to the current records sequence number. This
new message is passed back to the bus.

DELETE_QUEUE_REC(I_seq_no) – This procedure deletes a specific record
from the queue. It deletes based on the sequence number passed in.

REPLACE_QUEUE(I_rec, I_data) – This procedure replaces the message in
the create header or detail record with the message from the modify header or
detail record.

OHdrDesc.xls, MAP_PODtlDesc.xls, MAP_PORef.xls, MAP_PODtlRef.xls.

 Chapter 1 - Publishing designs 55

Ordering Physical Message Family Manager Publishing
Design

Functional Area
ORDERING, PHYSICAL

Design Overview
In order to accommodate interfacing warehouse management systems and other
products subscribing to order publishing, ordering information will be rolled up
and stored at a physical level. In general only subscribing to the virtual or
physical level is necessary. In a non-multi channel environment, the ordering
and ordering physical family managers are the same. In a multi channel
environment, if a subscriber requires information at the physical level, then they
will need to use this family manager and the EC_TABLE_OLO2_AIUDR.TRG,
EC_TABLE_OLO_AIUDS.TRG table triggers. If the subscriber requires the
tsf_po_link_no as part of the ordering information, then they will be required to
use the ordering family manager and roll up the total quantities within their
subscribing system.

Document types vary slightly with the ordering DTD’s. They are as follows;
‘POPhyDesc’ for the initial published message, ‘POHdrDesc’ for the header
message, ‘POPhyDtlDesc’ for the detail level message, ‘PORef’ for the header
delete message, “POPhyDtlRef’ for the detail delete message.

State Diagram
See ‘Ordering MFM design.doc’ for this section.

Description of Activities
See ‘Ordering MFM design.doc’ for this section.

Triggers
Triggers should only insert records onto the staging table if no record already
exists or if a record does exist but is locked.

Trigger Description (EC_TABLE_OHE2_AIUDR): This triggers fires when an
ordhead record has been inserted, updated or deleted on any of the columns
published. Each action is detailed below. In general, this trigger passes the
column information into ORDER_XML.BUILD_HEAD_MSG to create the xml
message, then calls RMSMFM_ORDERPHYS.ADDTOQ to place the message
and order onto the ORDERPHYS_MFQUEUE table.

On Insert: A ‘POCre’ message type is created, with all of the non-base table
attributes retrieved from ORDER_XML.GET_MSG_HEADER.

56 Retek Merchandising System

On Update: A ‘POHdrMod’ message type is created. If this is the first time the
order has been approved, the approve indicator is set to ‘Y’es to signify that the
order should be published in it’s entirety. In all other instances, the approve
indicator will be set to ‘N’o. Then all of the non-base table attributes will be
retrieved from ORDER_XML.GET_MSG_HEADER.

On Delete: A ‘PODel’ message type is created with only the order number
passed for the xml message.

Trigger Description (EC_TABLE_OLO2_AIUDR): This triggers fires when an
ordloc record has been inserted, updated or deleted on the qty_ordered column.
Each action is detailed below. This trigger is used to populate a PL/SQL binary
table. This table is eventually used to publish ordloc information at a physical
warehouse/store level.

On Insert or Update: The new order number, item, location, location type,
quantity ordered, and unit cost are inserted into the PL/SQL table. If the location
type is a warehouse, then the physical warehouse is retrieved from the WH table.

On Delete: The old order number, item, location, location type, quantity ordered,
and unit cost are inserted into the PL/SQL table. If the location type is a
warehouse, then the physical warehouse is retrieved from the WH table.

Trigger Description (EC_TABLE_OLO_AIUDS): This triggers fires after the
statement of an inserted, updated or deleted record or group of records. Each
action is detailed below. The purpose of this trigger is to create messages at the
physical level. This trigger loops the records on the PL/SQL table generated in
EC_TABLE_OLO2_AIUDR. The order, item and location are retrieved and
used to retrieve the total quantity ordered and total virtual locations, from
V_ORDLOC_STORES_PHYS_WH, for the physical location. If no virtual
locations exist, then either the last virtual location for a physical was deleted or
all of the virtual locations for a physical were deleted in the same statement. To
avoid publishing numerous delete messages for the same physical location, a
function ALREADY_DELETED loops through the PL/SQL table to determine if
the physical location has already been processed for a delete. If the record hasn’t
been processed for a delete or records were found on
V_ORDLOC_STORES_PHYS_WH for the physical location, then the record is
processed. .In general, this trigger passes the column information into
ORDER_XML.BUILD_PHYS_LOC_MSG to create the xml message, then calls
RMSMFM_ ORDERPHYS.ADDTOQ to place the message and order, item,
location onto the ORDERPHYS _MFQUEUE table.

On Insert: If this is the first record (i.e. counter = 1) on ordloc for this item/phys
location, then a ‘PODtlCre’ message type is created. If this is not the first record
(i.e. counter > 1), then a ‘PODtlMod’ message type is created. All of the non-
base table attributes are then retrieved from ORDSKU and
ITEM_SUPP_COUNTRY for the complete message body.

On Update: A ‘PODtlMod’ message type is created. All of the non-base table
attributes are then retrieved from ORDSKU and ITEM_SUPP_COUNTRY for
the complete message body.

 Chapter 1 - Publishing designs 57

On Delete: If no records exist on the ORDLOC view, then a ‘PODtlDel’
message type is created with only the order number, item, location, location type
passed for the xml message. If records do exist, then the physical location is not
being deleted, and a ‘PODtlMod’ message type is created.

Message Family Manager Procedures
See ‘Ordering MFM design.doc’ for this section.

58 Retek Merchandising System

Store Message Family Manager Publishing Design

Functional Area
Locations

Design Overview
Store publication consists of a single flat message containing store attributes
from the table STORE. One message will be synchronously created and placed
in the message queue each time a store is created, modified, or deleted. When a
store is created or modified, the flat message will contain numerous attributes of
the store. When a store is deleted, the message will simply contain the unique
identifier of the store. Messages are retrieved from the message queue in the
order they were created.

Along with the XML message, the message family manager will also send the
store type, which specifies whether or not the store is physical or virtual (i.e.
stockholding or not.) The store type is used by the RIB publication adaptor for
routing messages, since some parts of the system will only have messages from
physical locations sent to it. The RIB publication adaptor will also combine store
and warehouse messages as location messages for parts of the system that don't
differentiate between stores and warehouses.

State Diagram

Create
Delete

Deleted

Exists

Modify
Attributes

 Chapter 1 - Publishing designs 59

Description of Activities

Create
1 Prerequisites: Every level in the organizational hierarchy above stores must

be established before a store can be created.

2 Activity Detail: Once a store has been created, it is ready to be published.
An initial publication message is made.

3 Messages: A “Store Create” message is queued. This message is a flat
message that contains a partial snapshot of the attributes on the STORE table.

Modify
1 Prerequisites: Store has been created.

2 Activity Detail: The user is allowed to change attributes of the store. These
changes are of interest to other systems and so this activity results in the
publication of a message.

3 Messages: Any modifications will cause a “Store Modify” message to be
queued. This message contains the same attributes as the “Store Create”
message.

Delete
1 Prerequisites: Store has been created.

2 Activity Detail: Deleting a store removes it from the system. External
systems are notified by a published message.

3 Messages: When a store is deleted a “Store Delete” message, which is a flat
notification message, is queued. The message contains the store identifier.

Triggers
Trigger Description (EC_TABLE_STR_AIUDR):

This trigger will capture inserts/updates/deletes to the STORE table and write
data into the store_mfqueue message queue. It will call
STORE_XML.BUILD_MESSAGE to create the XML message, then call
RMSMFM_STORE.ADDTOQ to insert this message into the message queue.

On Insert: A StoreDesc message containing information from the STORE table is
created.

On Update: A StoreDesc message containing information from the STORE table
is created.

On Delete: A StoreRef message containing the store id is created.

60 Retek Merchandising System

Message Family Manager Procedures
Public Procedures for Store MFM:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_store,
I_store_type, I_message) – This procedure is called by
EC_TABLE_STR_AIUDR, and takes the message type, store id, store type and
the message itself. It inserts a row into the message family queue
STORE_MFQUEUE along with the passed in values and the next sequence
number from the message family sequence, setting the status to unpublished. It
returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_store, O_store_type) – This publicly exposed procedure is typically called by
a RIB publication adaptor. Its parameters are well defined and arranged in a
specific order. The message type is the RIB defined short message name, the
message is the xml message, the store type is an indicator specifying whether the
store is physical or virtual, and the family key is the store id, which will be
populated for all message types. Status code is one of five values, as shown in
the following table. For more discussion of the status codes, refer to the Error
Handling Guidelines document or the process flow in the following section.
These codes come from an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

 Chapter 1 - Publishing designs 61

Supplier Message Family Manager Publishing Design

Functional Area
Suppliers and supplier addresses are published.

Design Overview
New or updated supplier information will be sent from RMS to RDM and
RCOM. As suppliers and addresses are added, the event capture trigger creates
an xml message in the xml builder and adds the message to the supplier_mfqueue
table. The supplier create message will consist of two parts the header (sups
table) and the detail (addr table) data. The number of addresses needed is
determined by system options, invoice matching indicator and returns allowed
indicator, with an order address always being required. Once all the criteria are
met for a valid create message the messages will be combined and sent to the
Bus. Messages for supplier and address modifications and deletions will be sent
as they are created, an address modification can be sent without the supplier
information.

The tables involved are sups and addr. Address records are children of suppliers.
All address types of Returns (3), Order (4), and Invoice (5) are published.

State Diagram

CreateSupplier

InvalidSupplier

AddAddress

ModifySupplier

ModifyAddress

DeleteAddress

ValidSupplier

DeletedSupplier

DeleteAddress

ModifyAddress

AddAddress

ModifySupplier
DeleteSupplier

62 Retek Merchandising System

Description of Activities

<Create Supplier>
1 Prerequisites: Supplier doesn’t already exist.

2 Activity Detail: Create Supplier inserts the supplier into the database.

3 Messages: VendorCre message is created but remains in queue until supplier
is valid.

<ModifySupplier>
1 Prerequisites: Supplier exists and is not valid

2 Activity Detail: Update the supplier record in the database.

3 Messages: VendorHdrMod message is created but message data replaces
data in VendorCre and message is deleted from queue.

<AddAddress>
1 Prerequisites: Supplier exists and is not valid

2 Activity Detail: Insert the address into the database.

3 Messages: VendorAddrCre message is created but not published.

<ModifyAddress>
1 Prerequisites: Supplier exists and is not valid. Address exists.

2 Activity Detail: Update the address in the database.

3 Messages: VendorAddrMod message is created but message data replaces
data in VendorAddrCre and message is deleted from queue.

<DeleteAddress>
1 Prerequisites: Supplier exists and is not valid. Address exists.

2 Activity Detail: Delete the address from the database.

3 Messages: VendorAddrDel message is created. Message and corresponding
VendorAddrCre message are deleted from queue.

<DeleteSupplier>
1 Prerequisites: Supplier exists and is not valid.

2 Activity Detail: Delete any existing addresses for the supplier and the
supplier from the database.

3 Messages: VendorDel message is created. Message and corresponding
VendorCre, VendorAddrCre message are deleted from queue.

 Chapter 1 - Publishing designs 63

<ModifySupplier>
1 Prerequisites: Supplier exists and is valid

2 Activity Detail: Update the supplier record in the database.

3 Messages: VendorHdrMod message is created.

<AddAddress>
1 Prerequisites: Supplier exists and is valid

2 Activity Detail: Insert the address into the database.

3 Messages: VendorAddrCre message is created.

<ModifyAddress>
1 Prerequisites: Supplier exists and is valid. Address exists.

2 Activity Detail: Update the address in the database.

3 Messages: VendorAddrMod message is created.

<DeleteAddress>
1 Prerequisites: Supplier exists and is valid. Address exists.

2 Activity Detail: Delete the address from the database.

3 Messages: VendorAddrDel message is created.

<DeleteSupplier>
1 Prerequisites: Supplier exists and is valid.

2 Activity Detail: Delete any existing addresses for the supplier and the
supplier from the database.

3 Messages: VendorDel message is created.

Triggers
Triggers should only insert records onto the staging table.

Trigger Description (EC_TABLE_SUP_AIUDR): This trigger fires on insert,
update, and delete. It captures the data in new. It then sets the event type and
message type and calls the supplier_xml.build_supplier procedure. It calls
supplier_xml.get_keys to get key the returns allowed indicator and the invoice
match indicator. The message is then inserted into the mfqueue table by calling
rmsmfm_supplier.addtoq.

On Insert:

Set event type to ‘A’ and message type to VendorHdrCre.

On Update:

Set event type to ‘D’ and message type to VendorHdrMod.

64 Retek Merchandising System

On Delete:

Set event type to ‘D’ and message type to VendorDel.

Trigger Description (EC_TABLE_ADR_AIUDR): This trigger fires on insert,
update, and delete. It captures the data in new. It then sets the event type and
message type and calls the supplier_xml.build_address procedure. It calls
supplier_xml.get_keys to get key the returns allowed indicator and the invoice
match indicator. The message is then inserted into the mfqueue table by calling
rmsmfm_supplier.addtoq.

On Insert:

Set event type to ‘A’ and message type to VendorAddrCre.

On Update:

Set event type to ‘D’ and message type to VendorAddrMod.

On Delete:

Set event type to ‘D’ and message type to VendorAddrDel.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(I_message_type, I_supplier, I_addr_seq_no, I_addr_type,
I_ret_allow_ind, I_invc_match_ind, I_message, O_status, O_text) – This
procedure is called by the triggers, and takes the message type, supplier,
addr_seq_no, addr_type, ret_allow_ind, and invc_match_ind values and, the
message itself. It inserts a row into the supplier message family queue along with
the passed in values and the next sequence number from the supplier message
family sequence, setting the status to unpublished. It returns error codes and
strings.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_supplier, O_addr_seq_no, O_addr_type) – This publicly exposed procedure
is called by a RIB publication adaptor. It’s parameters are well defined and
arranged in a specific order. The message type is the RIB defined short message
name, the message is the xml message, and the family key(s) are the key for the
message as pertains to the family, not all of which will necessarily be populated
for all message types. The keys for supplier are supplier, adder_seq_no, and
addr_type. Status code is one of 3 values, as shown in the following table. For
more discussion of the status codes, refer to the Error Handling Guidelines
document or the process flow in the following section. These codes come from
an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

 Chapter 1 - Publishing designs 65

NO_MSG ‘N’ No more messages to
process

UNHANDLED_ERROR ‘E’ Unclassified (fatal) Error

SUCCESS ‘S’ Success

Private Procedures:

These private procedures are only used when the initial create message is
hierarchical.

CREATE_PREVIOUS(I_queue_rec) – This procedure determines if a supplier
create already exists on the queue table for the same supplier and with a sequence
number less than the current records sequence number.

CLEAN_QUEUE(I_queue_rec) – This procedure cleans up the queue by
eliminating modification messages. It is only called if CREATE_PREVIOUS
returns true. For each address modification message type, it finds the previous
address create message type. It then calls REPLACE_QUE_ADR to copy the
modify message into the create message and calls DELETE_QUEUE_REC to
delete the modify record. For each delete message type, it finds the previous
corresponding create message type. It then calls DELETE_QUEUE_REC to
delete the create message record. For each supplier modification message type, it
finds the previous supplier create message type. It then calls
REPLACE_QUE_SUP to copy the modify message into the create message and
calls DELETE_QUEUE_REC to delete the modify record.

CAN_CREATE(I_queue_rec) – This procedure determines if a complete
hierarchical supplier message can be created from the current address and prior
address messages in the queue for the same supplier. It checks to see if there is a
type 3, 4, and 5 address already in the queue. If the ret_allow_ind is ‘Y’ and
there is a type 3 address then a ret_flag is set to true. If the invc_match_ind is
‘Y’ and there is a type 5 address then a invc_flag is set to true. If all the flags are
true, then it returns true because the complete hierarchical message can be
created.

MAKE_CREATE(O_msg, I_queue_rec) – This procedure combines the
current message and all previous messages with the same supplier in the queue
table to create the complete hierarchical message. It first creates a new message
with the VendorDesc document type. It then gets the supplier create message
and adds it to the new message. The remainder of this procedure gets each of
the addresses adds them to the new message. When it is finished creating the
new message, it deletes all the records from the queue with a sequence number
less than or equal to the current records sequence number. This new message is
passed back to the bus.

DELETE_QUEUE_REC(I_seq_no) – This procedure deletes a specific record
from the queue. It deletes based on the sequence number passed in.

REPLACE_QUEUE_SUP(I_rec, I_data) – This procedure replaces the
message in the create supplier record with the message from the modify supplier
record.

66 Retek Merchandising System

REPLACE_QUEUE_ADR(I_rec, I_data) – This procedure replaces the
message in the create address record with the message from the modify address
record.

REPLACE_QUEUE_MESSAGE(I_rec, I_data) – This procedure replaces the
message in the create supplier record with the complete hierarchical message.

 Chapter 1 - Publishing designs 67

Transfers Message Family Manager Publishing Design

Functional Area
Transfers

Design Overview
Rather than waiting for a batch cycle to download transfer information to an
external system, transfers will now follow a more real-time process.

Currently, transfers consist of header level information in which source and
destination locations are specified, and detail information regarding what items
and how much of each item is to be transferred. Both of the transfer tables,
tsfhead and tsfdetail, will now have triggers that track inserts, deletes, and
modifications. These triggers will insert into the new transfer queue,
transfer_mfqueue. The transfer family manager will be responsible for pulling
transfer information from this new queue and sending it to the external system(s)
at the appropriate time and in the correct order.

The transfer messages that will be published by the family manager will vary. A
complete message including header information, detail information, and
component ticketing information (if applicable) will be created when a transfer is
approved. This is the first message that will be published. After approval, “flat”
messages will be sent when modifications are made to the header information or
detail information (the transfer quantity is modified or a transfer detail is
deleted).

State Diagram

Create Detail

Modify Header

Delete Transfer

Create Header Tsf Exist w/o Dtls

Deleted

Tsf Exist w/ dtls
Approve

Modify Detail

Approved Tsf

Add Detail

Delete Detail

Details exist

No details exist

Modify Detail Delete Detail

Close Transfer Closed Tsf

68 Retek Merchandising System

Description of Activities

Create Header
1 Prerequisites: None.

2 Activity Detail: The first step to creating a transfer is creating the header
level information.

3 Messages: When a transfer header is created, a “TransferCre” request is
queued. The Transfer Create message is a flat message containing a snapshot
of the header at the time the message is processed.

Approve
1 Prerequisites: A transfer must exist and have at least one detail before it can

be approved.

2 Activity Detail: Approving a transfer changes the status of the transfer. This
change in status signifies the first time systems external to RMS will have an
interest in the existence of the transfer, so this is the first part of the life cycle
of a transfer that is published.

3 Messages: When a transfer is approved, a “TsfHdrMod” message is inserted
into the queue with the appr_ind on the queue set to ‘Y’ signifying that the
transfer was approved. The family manager uses this indicator to create a
hierarchical message containing a full snapshot of the transfer at the time the
message is published.

Modify Header
1 Prerequisites: The transfer header can only be modified when the status is

NOT approved. Once the transfer is approved, the only fields that are
modifiable are the status field and the comments field.

2 Activity Detail: The user is allowed to modify the header but only certain
fields at certain times. If a transfer is in input status the to and from locations
may be modified until details have been added. Once details have been
added, the locations are disabled. The freight code is modifiable until the
transfer has been approved. Comments can be modified at any time.

3 Messages: When the status of the header is either changed to ‘C’losed or
‘A’pproved, a message (TsfHdrMod) is inserted into the queue. (Look above
at Approve activity and below at Close activity for further details).

 Chapter 1 - Publishing designs 69

Create Details
1 Prerequisites: A transfer header record must exist before transfer details can

be created.

2 Activity Detail: The user is allowed to add items to a transfer but only until
it has been approved. Once a transfer has been approved, details can longer
be added.

3 Messages: When a transfer detail is added, a “TsfDtlCre” request is queued.
The Transfer Detail Create message is a hierarchical message containing a
snapshot of the details at the time the message is processed, and its
corresponding ticket component information if applicable.

Modify Details
1 Prerequisites: Only modifications to transfer quantities will be sent to the

queue, and only when the transfer quantity is decreased manually, and not
because of an increase in cancelled quantity will it be sent to the queue.

2 Activity Detail: The user is allowed to change transfer quantities provided
they are not reduced below those already shipped. The transfer quantity can
also be decreased by an increase in the cancelled quantity - which is always
initiated by the external system. This change, then, would be of no interest to
the external system because it was driven by it.

3 Messages: When a transfer quantity is modified a “TsfDtlMod” request is
queued. The Transfer Detail Modified message is a hierarchical message
containing a snapshot of the details at the time the message is published, and
its corresponding ticket component information if applicable.

Delete Details
1 Prerequisites: Only a detail that hasn’t been shipped may be deleted and it

cannot be deleted if it is currently being worked on by an external system. A
user is not allowed to delete details from a closed transfer.

2 Activity Detail: A user is allowed to delete details from a transfer but only if
the item hasn’t been shipped.

3 Messages: When an item is deleted from a transfer, a “TsfDtlDel” Message,
which is a flat notification message containing the transfer number, is
queued.

70 Retek Merchandising System

Close
1 Prerequisites: A transfer must be in shipped status before it can be closed,

and it cannot be in the process of being worked on by an external system.

2 Activity Detail: Closing a transfer changes the status, which prevents any
further modifications to the transfer. When a transfer is closed, a message is
published to update the external system(s) that the transfer has been closed
and no further work (in RMS) will be performed on it.

3 Messages: Closing a transfer queues a “TsfHdrMod” request. This is a flat
message containing a snapshot of the transfer header information at the time
the message is published.

Delete
1 Prerequisites: A transfer can only be deleted when it is still in approved

status or when it has been closed.

2 Activity Detail: Deleting a transfer removes it from the system. External
systems are notified by a published Delete message that contains the number
of the transfer to be deleted.

3 Message: When a transfer is deleted, a “TransferDel”, which is a flat
notification message, is queued.

Triggers
Trigger Description (EC_TABLE_THD_AIUDR): This trigger will fire when a
record is inserted into the TSFHEAD table, when a record is deleted from the
TSFHEAD table, or when the status of the transfer has been modified to either
‘A’pproved, ‘C’losed, or ‘D’eleted. This trigger will ignore book transfers and
non-salable book transfers (these transfer types are internal to RMS and should
not be sent to an external system). The trigger will use the new tsfhead xml
builder to create a clob to place on the queue. Then, the transfer family
manager’s ADDTOQ function will be called so a record is placed on the queue.

On Insert: When a record is inserted into TSFHEAD the trigger will insert a
record into the queue by calling the new ADDTOQ function within the family
manager. The message type for this action is ‘TransferCre’.

On Update: When the status of a transfer is modified, this trigger will fire.
There are only three statuses that the trigger should be concerned with. When a
transfer is placed in ‘A’pproved status , the trigger will insert a record into the
queue by calling the new ADDTOQ function within the family manager. The
message type for this action will be TransferHdrMod and because the new status
is approved, the appr_ind on the queue should be set to ‘Y’. When the new status
is ‘C’losed, the family manager will insert a record into the queue with message
type = TransferHdrMod and the appr_ind = ‘N’. When a transfer’s status is
updated to ‘D’eleted, the family manager will insert a record into the queue with
a message_type = TransferDel.

 Chapter 1 - Publishing designs 71

On Delete: When a record is removed from the TSFHEAD table, the family
manager will insert a record into the queue with a message type = TransferDel.

Trigger Description (EC_TABLE_TDT_AIUDR): This trigger will fire when a
record is inserted into the TSFDETAIL table, when a record is deleted from the
TSFDETAIL table, or when the transfer quantity of one of the items on the
transfer has been modified. The trigger will use the new tsfdetail xml builder to
create a clob to place on the queue. Then, the transfer family manager’s
ADDTOQ function will be called so a record is placed on the queue.

On Insert: When a record is inserted into TSFDETAIL, the trigger will insert a
record into the queue by calling the new ADDTOQ function within the family
manager. The message type for this action is ‘TransferDtlCre’.

On Update: When the transfer quantity for one of the items on the transfer is
modified, this trigger will fire. The trigger will insert a record into the queue by
calling the new ADDTOQ function within the family manager. The message
type for this action will be TransferDtlMod and the item being updated should be
placed on the queue. **Note: when a transfer quantity is reduced because of an
increase in the cancelled quantity, a record should NOT be inserted into the
queue.

On Delete: When a record is removed from the TSFDETAIL table, the family
manager will insert a record into the queue with a message type = TransferDtlDel
for the transfer/item that was deleted.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(I_message_type, I_tsf_no, I_item, I_appr_ind,
I_physical_from_loc, I_virtual_from_loc, I_from_loc_type, I_to_loc_type,
I_message, O_status, O_text) – This procedure is called by both the tsfhead
trigger and the tsfdetail trigger (ec_table_thd_aiudr and ec_table_tdt_aiudr
respectively), and takes the message type, family key values (tsf_no, and item)
and the message itself. It inserts a row into the message family queue along with
the passed in values and the next sequence number from the message family
sequence, setting the status to unpublished. It returns error codes and strings
according to the standards of the application in which it is being implemented.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_tsf_no, O_item, O_physical_from_loc, O_virtual_from_loc,
O_from_loc_type, O_to_loc_type,) – This public procedure is typically called
by a RIB publication adaptor. Its parameters are well defined and arranged in a
specific order. The message type is the RIB defined short message name, the
message is the xml message created by the xml builder when either the tsfhead or
tsfdetail trigger is executed, and the tsf_no/item is the key for the message as
pertains to the transfer family, not all of which will necessarily be populated for
all message types (e.g. item may or may not be NULL depending on which
trigger inserted the record into the queue). Status code is one of five values, as
shown in the following table. For more discussion of the status codes, refer to the
Error Handling Guidelines document or the process flow in the following section.
These codes come from an EAI team defined RIB_CODES package.

72 Retek Merchandising System

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed. The facility id is only included in
messages coming from RDM.

Private Procedures:

These private procedures are only necessary when the initial create message is
hierarchical.

CREATE_PREVIOUS(I_queue_rec) – This procedure determines if a header
level create already exists on the queue table for the tsf_no with a sequence
number less than the current records sequence number.

CLEAN_QUEUE(I_queue_rec) – This procedure cleans up the queue by
eliminating modification messages. It is only called if CREATE_PREVIOUS
returns true. For each modification message type, it finds the previous
corresponding create message type. It then calls
REPLACE_QUEUE_TSFHEAD/TSFDETAIL to copy the modify message into
the create message and calls DELETE_QUEUE_REC to delete the modify
record. For each delete message type, it finds the previous corresponding create
message type. It then calls DELETE_QUEUE_REC to delete the create message
record.

MAKE_CREATE(O_msg, I_queue_rec) – This procedure combines the
current message and all previous messages with the same key in the queue table
to create the complete hierarchical message. It first creates a new message with
the hierarchical document type. It then gets the header create message and adds
it to the new message. The remainder of this procedure gets each of the details
grouped by their document type and adds them to the new message. When it is
finished creating the new message, it deletes all the records from the queue with
a sequence number less than or equal to the current records sequence number.
This new message is passed back to the bus. The MAKE_CREATE function will
not be called unless the appr_ind on the queue is ‘Y’es (meaning the transfer has
been approved, and it’s ready to be published for the first time to the external
system(s)).

DELETE_QUEUE_REC(I_seq_no) – This procedure deletes a specific record
from the queue. It deletes based on the sequence number passed in.

REPLACE_QUEUE_TSFHEAD(I_rec, I_data) – This procedure replaces the
message in the create header record with the message from the modify header
record.

REPLACE_QUEUE_TSFDETAIL(I_rec, I_data) – This procedure replaces
the message in the create detail record with the message from the modify detail
record. There will be one of these procedures for each detail level.

REPLACE_QUEUE_MESSAGE(I_rec, I_data) – This procedure replaces the
message in the message in the create header record with the complete
hierarchical message.

 Chapter 1 - Publishing designs 73

UDA Message Family Manager Publishing Design

Functional Area
UDA

Design Overview
As user defined attributes are added, modified or deleted, the event capture
trigger creates an xml message in the xml builder and adds the message to the
uda_mfqueue table. All the messages on the UDA_MFQUEUE table are
published in the same order as they occur in the RMS database.

All values on the UDA and UDA_VALUES tables are affected.

State Diagram

Create UDA

UDA Exists

Delete UDA Value

Modify UDA Modify
UDA_Values

UDA Value
Exists

Create UDA_Values

Delete UDA

74 Retek Merchandising System

Description of Activities

Create UDA
1 Prerequisites: UDA doesn’t already exist.

2 Activity Detail: Any change to the UDA table inserts a UDAHdrCre
message_type record on the UDA_MFQUEUE table.

3 Messages: The UDADesc message is created. It is a flat, synchronous
message containing a full snapshot of the uda at the time the message is
published.

Modify UDA
1 Prerequisites: UDA exists.

2 Activity Detail: Any change to the UDA table inserts a UDAHdrMod
message_type record on the UDA_MFQUEUE table.

3 Messages: The UDADesc message is created. It is a flat, synchronous
message containing a full snapshot of the uda at the time the message is
published.

Create UDA_Values
1 Prerequisites: A UDA already exists but the uda_value doesn’t exist.

2 Activity Detail: Any change to the UDA_VALUES table inserts a record to
the UDA_VALUES table. A UDAValCre message type record is also
inserted on the UDA_MFQUEUE table. A foreign key to the UDA table
checks the existence of the UDA the value is created to supplement.

3 Messages: UDAValDesc message type is is created. It is a hierarchical,
synchronous message containing a snapshot of the UDA_VALUES table at
the time the message is published.

Modify UDA_Values
1 Prerequisites: UDA and UDA_value exists.

2 Activity Detail: Any change to the UDA_VALUES table updates a record to
the UDA_VALUES table. A UDAValMod message type record is also
inserted on the UDA_MFQUEUE table. A foreign key from the
UDA_VALUES table to the UDA table checks the existence of the UDA the
value is supplements.

3 Messages UDAValDesc message is created. It is a flat, synchronous
message containing a snapshot of the UDA_VALUES table at the time the
message is published.

 Chapter 1 - Publishing designs 75

Delete UDA_Values
1 Prerequisites: UDA_value exists.

Activity Detail: Deleting a UDA_value removes it from the UDA_VALUES
table and inserts a UDAValDel row to the UDA_MFQUEUE table.

 Message: A UDAValRef message is created. It is a flat, synchronous
message containing the primary key with which the external systems can
remove it from their systems.

Delete UDA
1 Prerequisites: UDA exists and a UDA_VALUE may or may not exist.

2 Activity Detail: Deleting a UDA removes it from the UDA table and inserts
a UDAHdrDel row to the UDA_MFQUEUE table. Since the uda.fmb form
in RMS automatically removes any child records on the uda_values table
when the parent uda is removed, there will be a row inserted to the
UDA_MFQUEUE table for each uda_value record associated with the
deleted uda as well. These will receive the lower sequence numbers so that
these will be acted upon first in the message queue. They will look like the
DELETE UDA_VALUES message detailed in the section above.

3 Message: A UDARef message is created for the parent UDA only. It is a flat,
synchronous message containing the primary key with which the external
systems can remove it from their systems.

Triggers
Trigger Description (EC_TABLE_UDA_AIUDR): This trigger fires on any
insert, update or delete on the UDA table. It captures the data in new for inserts
and updates. It captures the old data on deletes. It sets the action type and
message type and calls the UDA_XML.BUILD_UDA_MSG procedure to build
the message. The record is inserted into the UDA_MFQUEUE table by calling
the RMSMFM_UDA.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘UDAHdrCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘UDAHdrMod’.

On Delete:

Sets action_type to ‘D’elete and message_type to ‘UDAHdrDel’.

UDA_XML. BUILD_UDA_MSG (O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger
EC_TABLE_UDA_AIUDR on insert, update and delete of the UDA table. This
function gathers all the data necessary to build the message that needs to be sent
to the Retek Integration Bus. It determines the proper message to build based on
the action_type that is set in the trigger. It builds UDARef xml messages for
delete statements, or UDADesc xml messages for updates or inserts.

76 Retek Merchandising System

Trigger Description (EC_TABLE_UDV_AIUDR): This trigger fires on any
insert, update or delete on the UDA_VALUES table. It captures the data in new
for inserts and updates. It captures the old data on deletes. It sets the action type
and message type and calls the UDA_XML.BUILD_UDAV_MSG procedure to
build the message. The record is inserted into the UDA_MFQUEUE table by
calling the RMSMFM_UDA.ADDTOQ procedure

On Insert:

Sets action_type to ‘A’dd and message_type to ‘UDAValCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘UDAValMod’.

On Delete:

Sets action_type to ‘D’elete and message_type to ‘UDAValDel’.

Public Functions:

UDA_XML. BUILD_UDAV_MSG (O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger
EC_TABLE_UDV_AIUDR on insert, update and delete of the UDA_VALUES
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds UDAValRef xml
messages for delete statements, or UDAValDesc xml messages for updates or
inserts.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_text, I_message_type, I_uda_id, I_uda_value,
I_message) – This procedure is called by the triggers and takes the message type,
uda_id and uda_value if there is one and the message itself. It inserts a row into
the UDA_MFQUEUE along with the passed in values and the next sequence
number from the UDA_MFSEQUENCE, setting the status to ‘U’npublished. It
returns error codes and strings.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_uda_id, O_uda_value) – This publicly exposed procedure is typically called
by a RIB publication adaptor. This procedure’s parameters are well defined and
arranged in a specific order. The message type is the RIB defined short message
name, the message is the xml message, and the uda_id and uda_value are the
keys for the message as pertains to the UDA family, not all of which will
necessarily be populated for all message types. Status code is one of five values,
as shown in the following table. For more discussion of the status codes, refer to
the Error Handling Guidelines. These codes come from an EAI team defined
RIB_CODES package.

 Chapter 1 - Publishing designs 77

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

NO_MSG ‘N’ No more messages to process

UNHANDLED_ERROR ‘E’ Unclassified (fatal) Error

SUCCESS ‘S’ Success

78 Retek Merchandising System

WH Message Family Manager Publishing Design

Functional Area
Locations

Design Overview
Warehouse publication consists of a single flat message containing warehouse
attributes from the table WH. One message will be synchronously created and
placed in the message queue each time a warehouse is created, modified, or
deleted. When a warehouse is created or modified, the flat message will contain
numerous attributes of the warehouse. When a warehouse is deleted, the
message will simply contain the unique identifier of the warehouse. Messages
are retrieved from the message queue in the order they were created.

Along with the XML message, the message family manager will also send the
warehouse type, which specifies whether or not the warehouse is physical or
virtual. The warehouse type is used by the RIB publication adaptor for routing
messages, since some parts of the system will only have messages from physical
locations sent to it. The RIB publication adaptor will also combine store and
warehouse messages as location messages for parts of the system that don't
differentiate between stores and warehouses.

State Diagram

Create
Delete

Deleted

Exists

Modify
Attributes

 Chapter 1 - Publishing designs 79

Description of Activities

Create
1 Prerequisites: None

2 Activity Detail: Once a warehouse has been created, it is ready to be
published. An initial publication message is made.

3 Messages: A “WH Create” message is queued. This message is a flat
message that contains a partial snapshot of the attributes on the WH table.

Modify
1 Prerequisites: Warehouse has been created.

2 Activity Detail: The user is allowed to change attributes of the warehouse.
These changes are of interest to other systems and so this activity results in
the publication of a message.

3 Messages: Any modifications will cause a “WH Modify” message to be
queued. This message contains the same attributes as the “WH Create”
message.

Delete
1 Prerequisites: Warehouse has been created.

2 Activity Detail: Deleting a warehouse removes it from the system. External
systems are notified by a published message.

3 Messages: When a warehouse is deleted a “WH Delete” message, which is a
flat notification message, is queued. The message contains the warehouse
identifier.

Triggers
Trigger Description (EC_TABLE_WH_AIUDR):

This trigger will capture inserts/updates/deletes to the WH table and write data
into the wh_mfqueue message queue. It will call
WH_XML.BUILD_MESSAGE to create the XML message, then call
RMSMFM_WH.ADDTOQ to insert this message into the message queue.

On Insert: A WHDesc message containing information from the wh table is
created.

On Update: A WHDesc message containing information from the wh table is
created.

On Delete: A WHRef message containing the wh id is created.

80 Retek Merchandising System

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_wh, I_wh_type,
I_message) – This procedure is called by EC_TABLE_WH_AIUDR, and takes
the message type, wh id, wh type, and the message itself. It inserts a row into the
message family queue WH_MFQUEUE along with the passed in values and the
next sequence number from the message family sequence, setting the status to
unpublished. It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_wh, O_wh_type) – This publicly exposed procedure is typically called by a
RIB publication adaptor. Its parameters are well defined and arranged in a
specific order. The message type is the RIB defined short message name, the
message is the xml message, the wh type is an indicator specifying whether the
wh is physical or virtual, and the family key is the wh id, which will be populated
for all message types. Status code is one of five values, as shown in the
following table. For more discussion of the status codes, refer to the Error
Handling Guidelines document or the process flow in the following section.
These codes come from an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

 Chapter 1 - Publishing designs 81

Work Order Message Family Manager Publishing Design

Functional Area
Work Orders

Design Overview
Work order publication consists of a single flat message containing attributes
from the table WO_DETAIL. One message will be synchronously created and
placed in the message queue each time a WO_DETAIL record is created,
modified, or deleted. The primary key for the WO_DETAIL consists of the work
order id, item, location, and sequence number. Thus, one work order can have
multiple Work Order Create messages. When a WO_DETAIL record is created
or modified, the flat message will contain a full snapshot of the WO_DETAIL
record. When a WO_DETAIL record is deleted, the message will contain a
partial snapshot of the WO_DETAIL record. Messages are retrieved from the
message queue in the order they were created.

Work orders attached to purchase orders will have their messages published after
the order has been published. Work orders attached to previously published
approved orders will have their messages published immediately.

Work orders are defined at the physical location level. Along with the XML
message, the message family manager will also send the warehouse at which the
work order will be done. This is used by the RIB publication adaptor for routing
messages to the appropriate warehouse.

State Diagram

Create
Delete

Exists

Modify
Attributes

82 Retek Merchandising System

Description of Activities

Create
1 Prerequisites: An order has been distributed by item and location.

2 Activity Detail: A work order is ready to be published as soon as the order it
is attached to has been published. An initial publication message is made.

3 Messages: A “Work Order Create” message is queued. This message is a
flat message that contains a snapshot of the attributes on the WO_DETAIL
table.

Modify
1 Prerequisites: Work order has been created.

2 Activity Detail: The user is allowed to change attributes of the work order
detail record. These changes are of interest to other systems and so this
activity results in the publication of a message. Work orders attached to
purchase orders will have their messages published after the order has been
published. Work orders attached to previously published approved orders
will have their messages published immediately.

3 Messages: Any modifications to a work order detail record will cause a
“Work Order Modify” message to be queued. This message contains the
same attributes as the “Work Order Create” message.

Delete
1 Prerequisites: Work order has been created.

2 Activity Detail: Deleting a work order detail record removes it from the
system. External systems are notified by a published message.

3 Messages: When a work order detail record is deleted a “Work Order
Delete” message, which is a flat notification message, is queued. The
message contains a partial snapshot of the WO_DETAIL table.

 Chapter 1 - Publishing designs 83

Triggers
Trigger Description (EC_TABLE_WDL_AIUDR):

This trigger will capture inserts/updates/deletes to the WO_DETAIL table and
write data into the WORKORDER_MFQUEUE message queue. It will call
WORKORDER_XML.BUILD_MESSAGE to create the XML message, then
call RMSMFM_WORKORDER.ADDTOQ to insert this message into the
message queue.

On Insert: An ‘InBdWOCre’ message containing information from the
WO_DETAIL table is created.

On Update: An ‘InBdWOMod’ message containing information from the
WO_DETAIL table is created.

On Delete: An ‘InBdWODel’ message containing information from the
WO_DETAIL table is created.

‘InBdWO’ stands for Inbound Work Order. This helps RDM keep track of
which work orders are coming into its system.

Message Family Manager Procedures
Public Procedures:

ADDTOQ(O_status_code, O_error_msg, I_message_type, I_wo_id,
I_order_no, I_wh, I_seq_no, I_item, I_location, I_message) – This procedure
is called by EC_TABLE_WDL_AIUDR, and takes the message type, the order
that the work order is attached to, columns from the WO_DETAIL table that
make up its primary key, and the message itself. It inserts a row into the message
family queue WORKORDER_MFQUEUE along with the passed in values and
the next sequence number from the message family sequence, setting the status to
unpublished. It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_wo_id, O_order_no, O_wh, O_seq_no, O_item, O_location) – This
publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is
the RIB defined short message name, the message is the xml message, the
order_no specifies which order the work order is attached to, and the family key
is the wo_id, wh, seq_no, item, and location. All of the columns in the family
key will be populated for all message types. Status code is one of five values, as
shown in the following table. For more discussion of the status codes, refer to the
Error Handling Guidelines document or the process flow in the following section.
These codes come from an EAI team defined RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other
error that occurred when the retrieval failed.

 Chapter 2 – Subscription designs 85

Chapter 2 – Subscription designs
Appointments Subscription Design

Functional Area
Appointments

Design Overview
These APIs are used to organize and process RDM-generated Appointments
messages. Appointments records indicate the quantities of particular Items sent
to various Locations within the system. In addition, the records indicate the
specific document (Purchase Order, Transfer or Allocation) responsible for the
movement of the Item in question.

The basic functional entity is the Appointment record. It consists of a Header
and one or more Detail records. The Header is at the Location level; the Detail
record is at the Item-Location level (with ASN as well, if applicable).
Documents are stored at the Detail level; a unique Appointments ID is stored at
the Header level. In addition, a Receipt Number is stored at the Detail level and
is inserted during the Receiving process within RMS.

Subscription Procedures
RMSSUB_APPOINTCRE

This procedure creates one complete Appointment record, consisting of a single
Header record and one or more Detail records.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_SCH and PROC_SCHDET, which
validate the information and place the data on the database (depending upon the
success of the validation).
Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure
places a call to HANDLE_ERRORS in order to parse a complete error message
and pass back a status to the RIB.

86 Retek Merchandising System

Private Internal Functions and Procedures:

HANDLE_ERRORS (O_status_code, IO_error_message, I_cause,
I_program): This function is used to put error handling in one place in order to
make future error handling enhancements easier to implement. The function
consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

RMSSUB_APPOINTDTLCRE

This procedure adds a single Detail record to an existing Appointments record.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_SCHDET, which validates the
information and places the data on the database (depending upon the success of
the validation).
Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure
places a call to HANDLE_ERRORS in order to parse a complete error message
and pass back a status to the RIB.

Private Internal Functions and Procedures:

HANDLE_ERRORS (O_status_code, IO_error_message, I_cause,
I_program): This function is used to put error handling in one place in order to
make future error handling enhancements easier to implement. The function
consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

 Chapter 2 – Subscription designs 87

RMSSUB_APPOINTHDRMOD

This procedure modifies a single Appointment Header record.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_MODHED, which validates the
information and modifies the data on the database (depending upon the success
of the validation).
Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure
places a call to HANDLE_ERRORS in order to parse a complete error message
and pass back a status to the RIB.

Private Internal Functions and Procedures:

HANDLE_ERRORS (O_status_code, IO_error_message, I_cause,
I_program): This function is used to put error handling in one place in order to
make future error handling enhancements easier to implement. The function
consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

RMSSUB_APPOINTDTLMOD

This procedure modifies a single Appointment Detail record.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_MODDET, which validates the
information and modifies the data on the database (depending upon the success
of the validation).

Private Internal Functions and Procedures:
HANDLE_ERRORS (O_status_code, IO_error_message, I_cause, I_program): This
function is used to put error handling in one place in order to make future error handling
enhancements easier to implement. The function consists of a call to
API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a
program name, the cause of the error and potentially an unparsed error message if one has
been created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these
input variables to parse a complete error message and pass back a status, depending upon
the message and error type, back up through the consume function and up to the RIB.

88 Retek Merchandising System

RMSSUB_APPOINTDEL

This procedure deletes one complete Appointment record, consisting of a single
Header record and one or more Detail records.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_DEL, which validates the
information and deletes the data from the database (depending upon the success
of the validation).
Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure
places a call to HANDLE_ERRORS in order to parse a complete error message
and pass back a status to the RIB.

Private Internal Functions and Procedures:

HANDLE_ERRORS (O_status_code, IO_error_message, I_cause,
I_program): This function is used to put error handling in one place in order to
make future error handling enhancements easier to implement. The function
consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

RMSSUB_APPOINTDTLDEL

This procedure deletes a single Appointment Detail record.

Public API Procedures:

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE):
This procedure accepts an XML file (I_message) in the form of an Oracle CLOB
data type from the RIB. The procedure validates the XML file format and, if
successful, parses the values within the file through a series of calls to
RIB_XML. The values extracted from the file are passed to the function
APPOINTMENT_PROCESS_SQL.PROC_DELDET, which validates the
information and deletes the data from the database (depending upon the success
of the validation).
Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure
places a call to HANDLE_ERRORS in order to parse a complete error message
and pass back a status to the RIB.

 Chapter 2 – Subscription designs 89

Private Internal Functions and Procedures:

HANDLE_ERRORS (O_status_code, IO_error_message, I_cause,
I_program): This function is used to put error handling in one place in order to
make future error handling enhancements easier to implement. The function
consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

APPOINTMENT_PROCESS_SQL

This package is a library of functions that are used to validate, insert, update and
delete Appointments Records. The functions accept data in the form of complete
Records or Table arrays.

Public Procedures:

PROC_SCH (O_error_message, I_appt_head, I_appt_detail): This function
processes Scheduled (i.e. newly-created) Appointments messages. It calls
VAL_LOC and HEAD_EXISTS to validate the data, inserts the Header record if
it doesn’t already exist and then loops through each Detail record passed in,
calling PROC_SCHDET for each.

PROC_SCHDET (O_error_message, O_record_locked, I_appt_head): This
function processes the Detail portion of Scheduled (i.e. newly-created)
Appointments messages. It calls VAL_LOC, VAL_DOC, VAL_ITEM and
DETAIL_EXISTS to validate the data and then inserts the Detail record if it
doesn’t already exist.

PROC_MODHED (O_error_message, O_record_locked, I_appt_head): This
function processes Header Modified Scheduled (i.e. modified) Appointments
messages. It calls VAL_LOC and HEAD_EXISTS to validate the data; it then
modifies the Header record, or inserts the Header record if it doesn’t exist. If a
record cannot be modified becaues it is locked, the O_record_locked indicator is
returned as TRUE.

PROC_MODDET (O_error_message, O_record_locked, I_appt_detail_rec): This
function processes Detail Modified Scheduled (i.e. modified) Appointments
messages. It calls VAL_LOC and DETAIL_EXISTS to validate the data; it then
modifies the Detail record, or inserts the Detail record if it doesn’t exist. If a
record cannot be modified becaues it is locked, the O_record_locked indicator is
returned as TRUE.

PROC_DEL (O_error_message, O_record_locked, I_appt_head): This function
processes Delete Appointments messages. It calls VAL_LOC and
HEAD_EXISTS to validate the data; it then deletes the Header record and all
child Detail records. If a record cannot be modified becaues it is locked, the
O_record_locked indicator is returned as TRUE.

90 Retek Merchandising System

PROC_DELDET (O_error_message, O_record_locked, I_appt_head): This
function processes Delete Detail Appointments messages. It calls VAL_LOC
and HEAD_EXISTS to validate the data; it then deletes the Detail record. If a
record cannot be modified becaues it is locked, the O_record_locked indicator is
returned as TRUE.

Private Internal Functions and Procedures:

VAL_LOC (O_error_message, O_valid_loc, O_loc_type, I_loc): This function
verifies that the passed-in Location exists on either the Store or Warehouse
tables. It returns the Location Type for the passed-in Location.

VAL_DOC (O_error_message, O_valid_doc, I_doc, I_doc_type): This function
verifies that the passed-in Document exists on either the Order, Transfer or
Allocation Header tables.

VAL_ITEM (O_error_message, O_valid_item, I_item): This function verifies
that the passed-in Item exists on the Item Master table.

HEAD_EXISTS (O_error_message, O_head_exists, O_record_locked, O_rowid,
I_appt_head): This function verifies that thepassed-in Appointments Header
record exists. It returns the rowid of the record. If the record is locked, the
O_record_locked indicator is returned as TRUE.

DETAIL_EXISTS (O_error_message, O_detail_exists, O_record_locked,
O_rowid, I_detail_rec): This function verifies that thepassed-in Appointments
Header record exists. It returns the rowid of the record. If the record is locked,
the O_record_locked indicator is returned as TRUE.

 Chapter 2 – Subscription designs 91

ASN Subscription Design

Functional Area
ASN – Advanced Shipping Notice from a supplier.

The structure of the shipment tables will be changed to better show what is being
shipped. Previously there was one order or transfer per shipment. We will be
changing the table structure to allow multiple transfers or allocations per
shipment. This is being done to better mirror what actually happens. A transfer
or allocation shipment is often a group of stock orders together on one truck.
These multiple transfers or allocations will be grouped together using an ASN
number. This number will be stored on the header record for the shipment. All
shipments will be associated with an order or an ASN number now rather than an
order or transfer as it worked previously.

Design Overview
A supplier or consolidator will send an Advanced Shipping Notice (ASN) to
RDM. RDM will publish the information and it will be placed onto the
SEEBEYOND Bus. RMS will subscribe to the ASN information as published
from the Bus and place the information onto RMS tables depending upon the
validity of the records enclosed within the ASN message.

The ASN message will consist of a header record, a series of order records,
carton records and item records. For each message, header, order and item
record(s) will be required. The carton portion of the record is optional. If a
carton record is present, however, then that carton record must contain items in it.

The header record will contain information about the shipment as a whole. The
order records will identify which orders are associated with the merchandise
being shipped. If the shipment is packed in cartons, carton records will identify
which items are in which cartons. The item records will contain the items on the
shipments, along with the quantity shipped. The items on the shipment should be
on the ordloc table for the order and location specified in the header and order
records.

Subscription Procedures
Subscribing to ASN entails the use of three public consume procedures (in three
different packages). These procedures correspond to the types of activities that
can be done to an ASN record: create, modify and delete.

92 Retek Merchandising System

Public API Procedures:
RMSSUB_ASNINCRE.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle CLOB data
type from the RIB (I_message). This message will contain an ASN create message
consisting of the aforementioned header and detail records. The procedure will then
place a call to the main RMSSUB_ASN.CONSUME function, passing on a message type
of ‘C’reate, in order to validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate shipment and ordering database tables depending upon the
success of the validation.

RMSSUB_ASNINMOD.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle CLOB data
type from the RIB (I_message). This message will contain an ASN modify message
consisting of the aforementioned header and detail records. The procedure will then
place a call to the main RMSSUB_ASN.CONSUME function, passing on a message type
of ‘M’odify, in order to validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
update the appropriate shipment and ordering database tables depending upon the success
of the validation.

RMSSUB_ASNINDEL.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle CLOB data
type from the RIB (I_message). This message will contain an ASN modify message
consisting of the aforementioned header and detail records. The procedure will then
place a call to the main RMSSUB_ASN.CONSUME function, passing on a message type
of ‘D’elete, in order to validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to a private internal function, which will validate the values and
delete the ASN record from the appropriate shipment and invoice database tables
depending upon the success of the validation.

Error Handling (in all of the above packages):

If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function is used
to put error handling in one place in order to make future error handling enhancements
easier to implement. . All error handling in the internal RMSSUB_ASN package and
all errors that occur during subscription in the ASN_SQL package (and whatever
packages it calls) will flow through this function.

The function should consist of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

 Chapter 2 – Subscription designs 93

Private Internal Functions and Procedures:

All of the following functions exist within RMSSUB_ASN.
Main Consume Function:

RMSSUB_ASN.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE_TYPE, I_MESSAGE) - This procedure accepts a XML file in the form
of an Oracle CLOB data type from the RIB (I_message) and a message_type (Create,
Modify or Delete) from one of the aforementioned public ASN procedures, depending on
the type of ASN message being subscribed to. This message will consist of the
aforementioned header and detail records.

The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate shipment and ordering database tables depending upon the
success of the validation.

XML Parsing:

PARSE_ASN (O_TEXT, O_VAL, I_XML_VAL) – This function will used to extract
the header level information from the ASN XML file and place that information onto an
internal ASN header record.

TYPE asn_record IS RECORD(asn
SHIPMENT.ASN%TYPE,

destination SHIPMENT.TO_LOC%TYPE,

ship_date SHIPMENT.SHIP_DATE%TYPE,

est_arr_date SHIPMENT.EST_ARR_DATE%TYPE,

carrier SHIPMENT.COURIER%TYPE,

ship_pay_method ORDHEAD.SHIP_PAY_METHOD%TYPE,

inbound_bol SHIPMENT.EXT_REF_NO_IN%TYPE,

supplier ORDHEAD.SUPPLIER%TYPE,

carton_ind VARCHAR2(1));

PARSE_ORDER (O_TEXT, O_VAL, I_XML_VAL) – This function will used to
extract the order level information from the ASN XML file and place that information
onto an internal order record.

TYPE order_record IS RECORD(asn
SHIPMENT.ASN%TYPE,

po_num SHIPMENT.ORDER_NO%TYPE,

not_after_date ORDHEAD.NOT_AFTER_DATE%TYPE);

94 Retek Merchandising System

PARSE_CARTON (O_TEXT, O_VAL, I_XML_VAL) – This function will used to
extract the carton level information (an indicator in the ASN header record will indicate
whether this information exists) from the ASN XML file and place that information onto
an internal arrayed carton record.

TYPE carton_record IS RECORD(asn
SHIPMENT.ASN%TYPE,

po_num SHIPMENT.ORDER_NO%TYPE,

carton_num CARTON.CARTON%TYPE,

location CARTON.LOCATION%TYPE);

PARSE_ITEM (O_TEXT, O_VAL, I_XML_VAL) – This function will used to extract
the item level information from the ASN XML file and place that information onto an
internal arrayed item record.

TYPE item_record IS RECORD(asn
SHIPMENT.ASN%TYPE,

po_num SHIPMENT.ORDER_NO%TYPE,

carton_num CARTON.CARTON%TYPE,

item SHIPSKU.ITEM%TYPE,

ref_item SHIPSKU.REF_ITEM%TYPE,

 vpn
ITEM_SUPPLIER.VPN%TYPE,

alloc_loc CARTON.LOCATION%TYPE,

qty_shipped VARCHAR2(20));

Validation:

PROCESS_ASN(O_TEXT, I_HEADER, I_DETAIL_1, I_DETAIL_2…) – After the
values are parsed for a particular order in an ASN record, RMSSUB_ASN.CONSUME
will call this function, which will in turn call various functions inside ASN_SQL in order
to validate the values and place them on the appropriate shipment and ordering database
tables depending upon the success of the validation.

Only one ASN and order record will be passed in at a time, whereas multiple cartons and
items will be passed in as arrays into this function. If one order, carton or item value is
rejected, then current functionality dictates that the entire ASN message will be rejected.

PROCESS_DELETE(O_TEXT, I_ASN_NO) – In the event of a delete message,
this function will be called rather than PROCESS_ASN. This function will take
the asn_no from the parsing function and pass it into ASN_SQL in order to delete
the ASN record from the appropriate shipment and invoice tables.

 Chapter 2 – Subscription designs 95

BOL Subscription Design

Functional Area
BOL – Bill of Lading

When external locations ship products, they send up a BOL message to let RMS
know that they are shipping the stock and to let the receiving locations know that
the stock is on the way. The external locations can create BOL messages for
three scenarios: a transfer was requested (RMS knows about it), an allocations
was requested (RMS knows about it), and on their own volition (externally
generated - EG). A single BOL message can contain records generated for any
or all of these transactions.

The structure of the shipment tables will be changed to better show what is being
shipped. Previously there was one order or transfer per shipment. We will be
changing the table structure to allow multiple transfers or allocations per
shipment. This is being done to better mirror what actually happens. A transfer
or allocation shipment is often a group of stock orders together on one truck.
These multiple transfers or allocations will be grouped together using a BOL
number (ASN number when coming from a supplier). This number will be
stored on the header record for the shipment. All shipments will be associated
with an order or a BOL number now rather than an order or transfer as it worked
previously.

Design Overview
Data Flow:

An external location (store or warehouse) will publish a Bill of Lading, thereby
placing the BOL information onto the RIB (Retek Information Bus). RMS will
subscribe to the BOL information as published from the RIB and place the
information onto RMS tables depending upon the validity of the records enclosed
within the message.

Message Structure:

The BOL message is a hierarchical message that will consist of a header record, a
series of distro records (transfers or allocations in RMS) inside the header record,
carton records inside the distros and item records inside the cartons.

The header record will contain information about the shipment as a whole. The
distro records will identify which transfers or allocations are associated with the
merchandise being shipped. If the shipment is packed in cartons, carton records
will identify which items are in which cartons. The item records will contain the
items on the shipments, along with the quantity shipped.

Cartons will be required in all BOL (outbound ASN) messages.

Subscription Procedures
Subscribing to a BOL message entails the use of one public consume procedure.
This procedure corresponds to the type of activity that can be done to a BOL
record (in this case create).

96 Retek Merchandising System

Public API Procedures:
RMSSUB_ASNOUTCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in the
form of an Oracle CLOB data type from the RIB (I_message). This message will contain
a BOL create message consisting of the aforementioned header and detail records. The
procedure will then place a call to the main RMSSUB_BOL.CONSUME function in
order to validate the XML file format and, if successful, parse the values within the file
through a series of calls to RIB_XML. The values extracted from the file will then be
passed on to private internal functions, which will validate the values and place them on
the appropriate shipment, transfer or allocation database tables depending upon the
success of the validation.

Private Internal Functions and Procedures (rmssub_asnoutcre.pls):
Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function is used
to put error handling in one place in order to make future error handling enhancements
easier to implement. All error handling in the internal RMSSUB_BOL package and all
errors that occur during subscription in the BOL_SQL package (and whatever packages it
calls) will flow through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_BOL.
Main Consume Function:

RMSSUB_BOL.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle CLOB data
type from the RIB (I_message) from the aforementioned public BOL procedure
whenever a create message is made available by the RIB. This message will consist of
the aforementioned header and detail records.

The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate shipment and ordering database tables depending upon the
success of the validation.

XML Parsing:

PARSE_BOL (O_TEXT, O_VAL, I_XML_VAL) – This function will used to extract
the header level information from the ASN XML file and place that information onto an
internal ASN header record.

Record is based upon the shipment table:

SHIPMENT%ROWTYPE;

 Chapter 2 – Subscription designs 97

PARSE_DISTRO (O_TEXT, O_VAL, I_XML_VAL) – This function will used to
extract the order level information from the ASN XML file and place that information
onto an internal order record.

TYPE distro_record IS RECORD (distro_no
tsfhead.tsf_no%TYPE,

 distro_type
VARCHAR2(2));

PARSE_ITEM (O_TEXT, O_VAL, I_XML_VAL) – This function will used to extract
the item level information from the ASN XML file and place that information onto an
internal arrayed item record.

TYPE item_record IS RECORD (item
item_master.item%TYPE,

 carton
shipsku.carton%TYPE,

 qty
tsfdetail.tsf_qty%TYPE,

 from_disposition
inv_status_codes.inv_status_code%TYPE);

Validation:

PROCESS_BOL(O_TEXT, I_HEADER, I_DISTRO, I_ITEMS) – After the values
are parsed for a particular distro in a BOL record, RMSSUB_BOL.CONSUME will call
this function, which will in turn call various functions inside BOL_SQL in order to
validate the values and place them on the appropriate shipment and transfer or allocation
database tables depending upon the success of the validation.

Only one BOL and distro record will be passed in at a time, whereas multiple items will
be passed in as an array into this function. If one distro, carton or item value is rejected,
then current functionality dictates that the entire BOL message will be rejected.

98 Retek Merchandising System

Customer Reserve Subscription Design

Functional Area
Customer Reserve

Design Overview
RMS receives customer order details from RCOM that must be accounted for in
RMS inventory. RMS will be modified to view the customer reserve and
customer backorder from RCOM. This package will handle the processing for
maintaining inventory at the item location level as well as transaction data
records and history records when a sale occurs. The following diagram shows
the process flow:

1. RCOM looks at inventory levels.

2. Customer Reserve is updated.

3. Customer Order is created.

4a. Success- Shipment Notification is sent

4b. Insufficient Inventory – Shipment discrepancy sent

5a. Sale Transaction to ReSA

5b. Transfer sent from virtual WH to store

6a. Inventory Updated, WH decremented, store incremented.

6b. RMS creates book transfer

6c. POSUPLD decrements inventory from the store

6d. Inventory Updated

 Chapter 2 – Subscription designs 99

100 Retek Merchandising System

Subscription Procedures
RMSSUB_CORESCRE

RMSSUB_CORESCANCRE

RMSSUB_CUSTBOCRE

RMSSUB_CUSTBOCANCRE

RMSSUB_CUSTRESTOBOCRE

RMSSUB_CUSTBOTORESCRE

RMSSUB_CUSTSALECRE

RMSSUB_CUSTRETSALECRE

Public API Procedures (depending upon the format and types of messages being
subscribed to):

CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE) - This
procedure accepts an XML file in the form of an Oracle CLOB data type from the RIB
(I_message). The CONSUME in the main API for customer reserve,
RMSSUB_CORESERVE, is called passing in the CLOB as well as the message type.

Validation: Validation occurs in the RMSSUB_CORESERVE.PROCESS_HEADER
function.

Error Handling:

If an error occurs in this procedure a call to HANDLE_ERRORS is made in order to
parse a complete error message and pass back a status to the RIB.

Private Internal Functions and Procedures:
HANDLE_ERRORS (O_STATUS_CODE, IO_ERROR_MESSAGE, I_CAUSE,
I_PROGRAM)- This function is used to put error handling in one place in order to make
future error handling enhancements easier to implement. The function should consist of
a call to API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS
accepts a program name, the cause of the error and potentially an unparsed error message
if one has been created through a call to SQL_LIB.CREATE_MESSAGE. The function
uses these input variables to parse a complete error message and pass back a status,
depending upon the message and error type, back up through the consume function and
up to the RIB.

RMSSUB_CORESERVE

Public API Procedures (depending upon the format and types of messages
being subscribed to):
CONSUME (O_STATUS_CODE, I_MESSAGE_TYPE, I_MESSAGE) - This
procedure accepts an XML file in the form of an Oracle CLOB data type from the initial
API called by the RIB and a message type depending upon which area of customer
reserve is being effected. The procedure will then validate the XML file format and, if
successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the database depending upon the success of the
validation.

 Chapter 2 – Subscription designs 101

Validation: Validation occurs in the PROCESS_HEADER function to ensure that the
message includes an item, quantity and either stock or sell location. Additional
validation for customer reserve is done within the package custinvmgmts/b, which is the
functional package, associated with customer reserve.

Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure will
pass back FALSE to the calling API.

Private Internal Functions and Procedures:
PARSE_HEADER (O_ERROR_MESSAGE, I_CUSTRESV_ROOT,
I_MESSAGE_TYPE) - Modularity may neccesitate the use of this internal function to
parse the values within the XML file through a series of calls to RIB_XML and pass
those values on to private internal functions for processing depending upon the structure
of the message being subscribed to and the design of ones consume function.

PROCESS_HEADER(O_ERROR_MESSAGE, L_STOCK_LOC, L_SELL_LOC,
L_ITEM, L_QTY, L_DATE, I_MESSAGE_TYPE) – This function handles validation
and calls the main processing function for customer reserve,
CUST_INV_MGMT.CUST_RESV.

102 Retek Merchandising System

Inventory Adjustment Subscription Design

Functional Area
Inventory Adjustment

Design Overview
Inventory adjustments will no longer be handled as a batch operation. RMS will
subscribe to inventory adjustment messages published by RDM. The messages will
primarily contain information about the item, the physical warehouse, the quantity the
specific disposition change, and the reason for the adjustment.

Inventory adjustment messages received will be processed and inventory adjustments will
be made at a stock holding location level. Only disposition changes that alter an
inventory status within RMS will be processed. The disposition changes that alter
inventory status are those in which there is a difference between the INV_STATUS for
each INV_STATUS_CODE on INV_STATUS_CODES. All other messages will
simply be ignored at this time. Also, if either the to or the from disposition is null, this
will indicate a simple addition or subtraction of stock to the non-null disposition’s
inventory status.

Subscription Procedures

RMSSUB_INVADJUSTCRE

Public API Procedures (depending upon the format and types of messages being
subscribed to):
CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE, I_MESSAGE) - This
procedure accepts an XML file in the form of an Oracle CLOB data type from the RIB
(I_message). The procedure will then pass the clob onto the package
RMSSUB_INVADJUST for parsing and processing.

Validation:

 All validation will be done in the INVADJ_SQL.PROCESS_INVADJ function. The
following fields cannot be NULL: item, location, adj_qty, user_id, adj_date. The
location type must be either ‘S’ or ‘W’. The doc_type must be NULL, ‘P’, or ‘T’. And
either the to_disposition or from_dispostion or both fields must be populated, both cannot
be NULL.

Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.

Private Internal Functions and Procedures:
HANDLE_ERRORS (O_status_code, IO_error_message, I_cause, I_program)- This
function is used to put error handling in one place in order to make future error handling
enhancements easier to implement. The function should consist of a call to
API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a
program name, the cause of the error and potentially an unparsed error message if one has
been created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these
input variables to parse a complete error message and pass back a status, depending upon
the message and error type, back up through the consume function and up to the RIB.

 Chapter 2 – Subscription designs 103

RMSSUB_INVADJUST

CONSUME (O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts an
XML file in the form of an Oracle CLOB data type from the package
RMSSUB_INVADJUSTCRE. The procedure will then validate the XML file format
and, if successful, parse the values within the file through a series of calls to RIB_XML.
The values extracted from the file will then be passed on to private internal functions
which will validate the values and place them on the database depending upon the
success of the validation.

PARSE_HEADER (O_error_message OUT VARCHAR2, O_invadj_record
OUT invadj_record, I_invadj_root IN OUT
xmldom.DOMElement) - Modularity may neccesitate the use of this internal function to
parse the values within the XML file through a series of calls to RIB_XML and pass
those values on to private internal functions for processing depending upon the structure
of the message being subscribed to and the design of ones consume function.

FUNCTION PROCESS_HEADER (O_error_message IN OUT VARCHAR2,

 I_invadj_record IN
invadj_record) – This function will call the processing package for inventory
adjustment INVADJ_SQL.PROCESS_INVADJ.

104 Retek Merchandising System

Receipts Subscription Design

Functional Area
Receipts:

Purchase Order Receiving (PO)

Transfer Receiving (TSF)

Allocation Receiving (ALLOC)

Design Overview
When a transfer, PO or allocation is received at a location, the receipt
information will be published by the external location and placed onto the
SEEBEYOND Bus. RMS will subscribe to the receipt information as published
from the Bus and place the information onto RMS tables depending upon the
validity of the records enclosed within the message.

The receipt message is a flat message.

Subscription Procedures
Subscribing to a receipt message entails the use of two public consume
procedures. These procedures correspond to the type of activities that can be
done to a receipt record (in this case create and adjust).

Public API Procedures:
RMSSUB_RECEIPTCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in the
form of an Oracle CLOB data type from the RIB (I_message). This message will contain
a receipt create message consisting of the aforementioned flat receipt record. The
procedure will then place a call to the main RMSSUB_RECEIVE.CONSUME function
in order to validate the XML file format and, if successful, parse the values within the file
through a series of calls to RIB_XML. The values extracted from the file will then be
passed on to private internal functions, which will validate the values and place them on
the appropriate ordering, transfer or allocation database tables depending upon the
success of the validation.

RMSSUB_RECEIPTMOD.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in the
form of an Oracle CLOB data type from the RIB (I_message). This message will contain
a receipt modify message consisting of the aforementioned flat receipt file. The
procedure will then place a call to the main RMSSUB_RECEIVE.CONSUME function
in order to validate the XML file format and, if successful, parse the values within the file
through a series of calls to RIB_XML. The values extracted from the file will then be
passed on to private internal functions, which will validate the values and place them on
the appropriate ordering, transfer or allocation database tables depending upon the
success of the validation.

Private Internal Functions and Procedures (rmssub_receiptcre.pls,
rmssub_receiptmod.pls):
Error Handling:

 Chapter 2 – Subscription designs 105

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function is used
to put error handling in one place in order to make future error handling enhancements
easier to implement. All error handling in the internal RMSSUB_BOL package and all
errors that occur during subscription in the BOL_SQL package (and whatever packages it
calls) will flow through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):

All of the following functions exist within RMSSUB_RECEIVE.

Main Consume Function:

RMSSUB_RECEIVE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message) from one of the
aforementioned public receipt procedures whenever a create or adjustment message
is made available by the RIB. This message will consist of the aforementioned flat
receipt record.

The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate ordering, transfer or allocation database tables depending
upon the success of the validation.

XML Parsing:

PARSE_RECEIPT (O_TEXT, O_VAL, I_XML_VAL) – This function will used to
extract the receipt information from the receipt XML file and place that information onto
an internal receipt record.

TYPE receipt_record IS RECORD (loc
item_loc.loc%TYPE,

 appt_no
appt_head.appt%TYPE,

 order_no
ordhead.order_no%TYPE,

 item
item_master.item%TYPE,

 qty
tran_data.units%TYPE,

 doc_type
VARCHAR2(1),

 tran_type
VARCHAR2(1),

106 Retek Merchandising System

 tran_date
tran_data.tran_date%TYPE,

 receipt_no
NUMBER(12),

 asn_no
shipment.asn%TYPE,

 destination_id
item_loc.loc%TYPE,

 carton
shipsku.carton%TYPE,

 distro_no
alloc_header.alloc_no%TYPE,

 distro_type
VARCHAR2(1),

 disposition
inv_status_codes.inv_status_code%TYPE);

Validation:

PROCESS_RECEIPT(O_TEXT, I_HEADER, I_DETAIL_1) – After the values are
parsed for a particular receipt, RMSSUB_RECEIVE.CONSUME will call this function,
which will in turn call various functions inside STOCK_ORDER_RCV_SQL or
PO_RCV_SQL in order to validate the values and place them on the appropriate
ordering, transfer or allocation database tables depending upon the success of the
validation.

If the doc_type passed into RMSSUB_RECEIVE.CONSUME is ‘A’, then
STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM. If the doc_type passed
into RMSSUB_RECEIVE.CONSUME is ‘T’, then
STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM. And if the doc_type passed
into RMSSUB_RECEIVE.CONSUME is ‘P’, then
PO_RCV_SQL.PO_LINE_ITEM.

 Chapter 2 – Subscription designs 107

RMS SOStatus Subscription Design

Functional Area
The functional area of this design is Stock Order Status. A stock order is an
outbound merchandise request from a warehouse or store. In RMS, a stock order
takes the form of either a transfer or allocation

Design Overview
Stock order status upload will receive a message from the RIB, published from
RDM, communicating the status of a specific stock order. This communication
will allow the synchronization of data between RDM and RMS. The information
from RDM will have only one level, in other words no detail records. This
information will be used to update tsfdetail, alloc_detail and item_loc_soh.

Subscription Procedures
Public API Procedures (depending upon the format and types of messages being
subscribed to):
CONSUME (O_STATUS, O_TEXT, I_MESSAGE_TYPE, I_DOCUMENT) - This
procedure accepts an XML file in the form of an Oracle CLOB data type from the RIB
(I_document) and a message type of update, delete, insert etc, depending upon the types
of messages being subscribed to in a particular functional area. The procedure will then
validate the XML file format and, if successful, parse the values within the file through a
series of calls to RIB_XML. The values extracted from the file will then be passed on to
private internal functions which will validate the values and place them on the database
depending upon the success of the validation.

Validation:

Validate the distro is valid. A distro refers to either a transfer or an allocation.

Error Handling:

If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.

Private Internal Functions and Procedures:
HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function is used
to put error handling in one place in order to make future error handling enhancements
easier to implement. The function should consist of a call to
API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a
program name, the cause of the error and potentially an unparsed error message if one has
been created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these
input variables to parse a complete error message and pass back a status, depending upon
the message and error type, back up through the consume function and up to the RIB.

PARSE_SOS (O_TEXT, O_RECORD_LOCKED, I_XML_VAL) – This function
breaks down the message into its companant parts and sends these parts into
PROCESS_SOS.

PROCESS_SOS (O_error_message, O_record_locked, I_type, I_distro_number,
I_to_location, I_item, I_qty,

108 Retek Merchandising System

I_status) - Based on the status sent from RDM, quantity fields on either tsfdetail
or alloc_detail and item_loc_soh will be updated. A breakdown of what fields
are updated for each status can be found in Stock Order Status Upload Functional
Spec.doc.
UPDATE_TSF(O_error_message, I_distro_number, I_item, I_tsf_qty,
I_selected_qty,

I_distro_qty, I_cancelled_qty) - Updates the record on tsf_detail if the distro is a tsf.

UPDATE_ALLOC(O_error_message, I_distro_number, I_location,
I_qty_allocated, I_selected_qty, I_distro_qty, I_cancelled_qty) – Updates the record
on alloc_detail if the distro is an allocation.

UPD_FROM_ITEM_LOC(O_error_message, I_from_location, I_item,
I_reserved_qty, I_comp_level_upd) – Updates item_loc_soh.tsf_reserved_qty for the
from location if the comp_level_upd indacator is ‘N’. If this ind is ‘Y’ then it will also
update the item_loc_soh.pack_comp_resv field for the item passed in.

UPD_TO_ITEM_LOC(O_error_message, I_to_location, I_item, I_expected_qty,
I_comp_level_upd) – Updates item_loc_soh.tsf_expected_qty for the to location if the
comp_level_upd indacator is ‘N’. If this ind is ‘Y’ then it will also update the
item_loc_soh.pack_comp_exp field for the item passed in.

 Chapter 2 – Subscription designs 109

RTV Subscription Design

Functional Area
RTV – Return to Vendor

Design Overview
When a RTV is shipped out from the warehouse, the RTV information will be published
by the external system and placed on the SEEBEYOND Bus. RMS will subscribe to the
RTV information as published from the Bus and place the information onto RMS tables
depending on the validity of the records enclosed within the message.

The RTV message is a flat message.

Subscription Procedures
Subscribing to a RTV message entails the use of two public consume procedures.
These procedures correspond to the type of activities that can be done to a RTV
record (in this case create and adjust).

Public API Procedures:
RMSSUB_RTVCRE.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle CLOB data
type from the RIB (I_message). This message will contain a RTV create message
consisting of the flat RTV record. The procedure will then place a call to the main
RMSSUB_RTV.CONSUME function in order to validate the XML file format and, if
successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file will then be passed on to private internal functions, which
will validate the values and perform desired functionality depending upon the success of
the validation.

Private Internal Functions and Procedures (rmssub_rtvcre.pls:
Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function is used
to put error handling in one place in order to make future error handling enhancements
easier to implement. All error handling in the internal RMSSUB_BOL package and all
errors that occur during subscription in the BOL_SQL package (and whatever packages it
calls) will flow through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_RTV.

Main Consume Function:

110 Retek Merchandising System

RMSSUB_RTV.CONSUME (O_STATUS_CODE, O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts an XML file in the form of an Oracle CLOB
data type from the RIB (I_message) from one of the public RTV procedures whenever a
create message is made available by the RIB. This message will consist of the flat RTV
record.

The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
perform desired functionality depending upon the success of the validation.

XML Parsing:

PARSE_RTV (O_TEXT, O_VAL, I_XML_VAL) – This function will be used to
extract the RTV information from the RTV XML file and place that information onto an
internal RTV record.

TYPE rtv_record IS RECORD (loc
item_loc.loc%TYPE,

 ext_ref_no
rtv_head.ext_ref_no%TYPE,

 item
rtv_detail.item%TYPE,

 ret_auth_num
rtv_head.ret_auth_num%TYPE,

 unit_qty
rtv_detail.qty_returned%TYPE,

 supplier
rtv_head.supplier%TYPE,

 ship_addr1
rtv_head.ship_to_add_1%TYPE,

 ship_addr2
rtv_head.ship_to_add_2%TYPE,

 ship_addr3
rtv_head.ship_to_add_3%TYPE,

 state
rtv_head.state%TYPE,

 city
rtv_head.ship_to_city%TYPE,

 pcode
rtv_head.ship_to_pcode%TYPE,

 country
rtv_head.ship_to_country_id%TYPE,

 from_disp
inv_status_codes.inv_status_code%TYPE,

 tran_date
tran_data.tran_date%TYPE,

 unit_cost
rtv_detail.unit_cost%TYPE);

 Chapter 2 – Subscription designs 111

Validation:

PROCESS_RTV(O_TEXT, I_HEADER, I_DETAIL_1) – After the values are
parsed for a particular RTV, RMSSUB_RTV.CONSUME will call this function, which
will in turn call various functions inside RTV_SQL.APPLY_PROCESS which will call
several internal functions that will perform desired functionality depending upon the
success of the validation.

	Contents
	Chapter 1 - Publishing designs
	Allocations Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	ATP Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Triggers
	Message Family Manager Procedures

	Banner Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Differentiator Group Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Differentiatior ID Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Item Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Ordering Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Ordering Physical Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Store Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Supplier Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	Transfers Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	UDA Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures

	WH Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Triggers
	Message Family Manager Procedures

	Work Order Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Triggers
	Message Family Manager Procedures

	Chapter 2 – Subscription designs
	Appointments Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	ASN Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures
	Public API Procedures:

	BOL Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Customer Reserve Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Inventory Adjustment Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Receipts Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	RMS SOStatus Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	RTV Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

