

Retek® Merchandising System
10.1

Operations Guide
Addendum

Retek Merchandising System

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

European Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Introduction ... 1

Volume 1 – Functional overviews.. 3

Price and POS download... 3

EDI .. 3

Stock counts .. 3

Differentiators ... 3

Promotions (prices) ... 4

Message publishing ... 5
RMS 10.1 changes.. 6

Currency exchange rates ... 7
Currency exchange rates message .. 7
Currency exchange rates message subscription.. 8
Currency exchange rates message subscription process... 8
Currency exchange rates message summary .. 8
Currency exchange rates tables .. 9

Freight terms ... 10
Freight terms message .. 10
Freight terms message subscription.. 11
Freight terms message subscription process... 11
Freight terms message summary .. 11
Freight terms table .. 12

General ledger chart of accounts ... 13
Message summary .. 13
GLCOA message subscription ... 13
System option for financial application.. 14

Cost changes.. 15
Cost change process ... 15
Multi-channel supplier cost change rules: .. 15
Cost change batch module descriptions.. 16
Summary of cost change and related batch modules.. 17

Payment terms ... 18
Payment terms message.. 18
Payment terms message subscription ... 19
Message subscription process... 19
Payment terms message summary.. 19
Payment terms table.. 19

ii Retek Merchandising System

Security: location, product, price zone... 20
Security setup process .. 21
If security rules conflict .. 21
Security batch programs ... 22
SLOCRBLD.PC – location security rebuild... 23
SPRDRBLD.PC – product security rebuild.. 23
SZONRBLD.PC – zone security rebuild.. 23
Prepost functions for security batch ... 23
A note about the product rebuild .. 24
Security programs in the batch schedule .. 24
Batch modules for location, product, and zone security... 25

Supplier ... 26
Supplier message subscription.. 26
Supplier publication.. 27

Value added tax maintenance.. 30
System level VAT .. 30
System class level VAT.. 30
Department VAT .. 30
Class VAT .. 31
Store VAT indicator ... 31
Send VAT rate to POS ... 31
Special note: retail method stock ledger and VAT.. 31
Batch module – VATDLXPL... 32

Replenishment ... 33
Replenishment process ... 33
Summary of replenishment batch modules... 33
Primary replenishment tables ... 38
Investment buy ... 39

Volume 2 – Message publication and subscription designs
.. 43

Item Message Family Manager Publishing Design... 43
Functional Area .. 43
Design Overview .. 43
State Diagram ... 45
Description of Activities... 46
Triggers... 56
Message Family Manager Procedures .. 62
Design Assumptions ... 65
Outstanding Technical Issues ... 65

Currency Exchange Rates Subscription Design.. 66
Functional Area .. 66
Design Overview .. 66
Subscription Procedures ... 66

Contents iii

Freight Terms Subscription Design... 69
Functional Area .. 69
Design Overview .. 69
Subscription Procedures ... 69

GL Chart of Accounts Subscription Design.. 72
Functional Area .. 72
Design Overview .. 72
Subscription Procedures ... 72
Public API Procedures.. 72
Private Internal Functions and Procedures (rmssub_glcoacre.pls):.......................... 73
Private Internal Functions and Procedures (other): .. 73

Payment Terms Subscription Design .. 75
Functional Area .. 75
Design Overview .. 75
Subscription Procedures ... 75

Supplier Subscription Design.. 78
Functional Area .. 78
Design Overview .. 78
Subscription Procedures ... 78

Volume 4 – Batch designs.. 81

Deal upload [dealupld] .. 82

Deal item insert [ditinsrt] .. 140

EDI contract information download [edidlcon] ... 154

EDI purchase order download [edidlord].. 159

New and Changed Upload from Supplier [ediupcat] 172

On-order extract [onordext}... 189

POS download [posdnld] .. 200

POS Upload [posupld] ... 212

Complex Deals Management [precostcalc]... 233

Promotion Price Update [prmpcupd] .. 244

Stockout Download [soutdnld].. 251

Item–Location Ticket Output File [tcktdnld] .. 256

VAT–Rate Maintenance [vatdlxpl] ... 262

Wastage Adjustment [wasteadj].. 265

ReSA RTLOG interface file layout... 268

Introduction 1

Introduction
This addendum to the RMS 10 Operations Guide presents changes that have
resulted from work completed during RMS 10.1 development. RMS 10
Operations Guide volumes impacted include:

• Volume 1, Functional Overviews

• Volume 2, Message Publication and Subscription Designs

• Volume 4, Batch Designs

There are no changes to Volume 3, Batch Program Overview.

The batch schedule diagram accompanies this addendum. See the filename:
rms-101-batchschedule.pdf. The only change to the batch schedule document is a
correction to the title, which now states “Retek Merchandising System 10.1 Batch
Schedule.” No part of the schedule itself is changed from RMS 10.0.

This addendum contains one chapter for each volume. Changes for each volume
are listed either by a note of the changes or by the inclusion of the entire changed
document.

Volume 1 – Functional overviews 3

Volume 1 – Functional overviews
Price and POS download

For RMS 10.1, the following data are written to the POS_MODS table:

• When downloading item information to the POS system, the new unit retail
includes the VAT indicator for the class, VAT code, and VAT rate for the
item.

• Whenever a new item-location record is written to POS_MODS,
VAT_CODE, VAT_RATE, and CLASS_VAT_IND are now included. See
the overview “VAT maintenance” for more information. Also see the
PL/SQL package POSUPDS.

EDI
The EDIUPCAT batch module now accepts up to four supplier differentiators
when uploading items from a supplier.

Stock counts
The STKVAR batch module (Stock Count on Hand Updates) now performs the
following task:

Checks the system VAT indicator, the indicator for stock ledger VAT, the class
level VAT indicator, and the indicator for retail inclusion of VAT indicator for
the class to determine if VAT needs to be added on, stripped off, or neither
before updating the STAKE_PROD_LOC table. See the “VAT maintenance”
overview for more information.

Differentiators
Differentiators have experienced a number of changes in RMS 10.1, including:

• Four diffs can now be associated with an item. In RMS 10.0, only two diffs
could associate with an item.

• RMS can upload four (4) diffs from a supplier via the EDIUPCAT program.

• A user may not create more than 30 diff types.

• Diff types are now held on the new table DIFF_TYPE and are no longer held
on the CODE_HEAD and CODE_DETAIL tables.

• The diff type maximum field length is six (6) characters, and the description
field is 40 characters.

• A user may only delete a diff type if no diff groups or diff IDs are associated
with that diff type.

• Whenever RMS publishes item messages to the RIB, it can include all four
diffs and their types. See the “Items” functional overview in the operations
guide for more information about RMS item message publication.

4 Retek Merchandising System

Promotions (prices)
The description for the program PCOVRLQ.PC is inaccurate in the RMS 10.0
Operations Guide. The following description replaces it:

PCOVRLQ.PC (Promotion Price Overlap)–This module locates and writes
overlapping promotions to the PRICE_OVERLAP_LOG table for reporting. It
also updates the promotion status to ‘Submitted’ or ‘Approved’ when no overlap
records are found.

Volume 1 – Functional overviews 5

Message publishing
The publication of a message to the Retek Integration Bus is handled by the table
trigger, the message family manager, and RMS’s eWay (adapter). See the
diagram and the explanations that follow. For RMS 10.1 changes, see the
following page.

Message Family
Manager

Oracle package's
GETNXT procedure

Message
Family
Queue

RMS
Table

XML as
a CLOB

Adapter

R
IB

Message Family
Manager

Oracle package's
ADDTOQ procedure

Adapter calls GETNXT procedure to
publish messages from the queue to the
integration bus (RIB).

Trigger calls the message builder
function to build the event message.
Then the trigger calls the ADDTOQ
procedure to populate the message
as a record on the queue.

1 Messages are specific to a ‘family’. For example, the “Supplier” family
includes all suppliers (vendors) and their addressses.

2 Messages are queued as records to a staging table called a Message Family
Queue ([message family name]_MFQUEUE).

3 Each message family has a Message Family Manager that is a PL/SQL
package. Two public procedures in the package are ADDTOQ and
GETNXT.

4 An event on an RMS table (that is, an insert, update or delete) ‘triggers’ a
record to be created in the message family queue. The trigger calls the
message building procedure (for example,
WORKORDER_XML.BUILD_MESSAGE) to build the XML as a CLOB.

5 The trigger calls the ADDTOQ procedure that generates sequence numbers
and inserts the event message as a record on the queue.

6 The RIB adapter calls the GETNXT procedure to publish the message from
the message family queue to the integration bus.

6 Retek Merchandising System

RMS 10.1 changes
In RMS 10.0, the BUILD_MESSAGE procedure calls the RIB_XML procedure
to create the CLOB. RMS 10.1 retains this process but applies a new process
called RIB_SXW for the following messages:

• ATP (available to promise)

• Items

• Purchase orders

• Stock orders (allocations and transfers)

• Work orders

RIB_SXW concatenates the XML strings in the CLOB. Using RIB_SXW in this
way speeds the creation of CLOB building for these high volume messages.

Volume 1 – Functional overviews 7

Currency exchange rates
Currency exchange rates constitute financial information that is published to the
Retek Integration Bus (RIB). A currency exchange rate is the price of one
country's currency expressed in another country's currency. RMS 10.1 subscribes
to a currency exchange rate message that is held on the RIB. After confirming the
validity of the records enclosed within the message, RMS 10.1 updates its tables
with the information.

This overview describes the following:

• A description of the specific data within the currency exchange rates terms
message.

• A summary of the steps that occur during the processing of the currency
exchange rates message.

• A summary of the currency exchange rates message that shows its
corresponding DTD and mapping document.

• The tables in RMS 10.1 that are affected by the currency exchange rates
subscription message.

Note: When the systems are initially set up, identical currency information (3-
letter codes, exchange rate values) are entered into both the RMS and the
financial system. If a new currency needs to be used, it must be entered into both
the financial system and RMS before a rate change is possible. No functionality
currently exists to bridge this data.

Currency exchange rates message
RMS 10.1 subscribes to a flat currency exchange rates terms message that
consists of a currency exchange rate record. A currency exchange rates record
can only be created or updated. Previous currency exchange rates records are not
deleted.

RMS subscribes to a currency exchange rates message named CurrRateDesc.

Data in the currency rates subscription message that has primary significance to
RMS includes:

• The exchange rate for the specified currency/type/effective date combination.

• The date on which the currency rate became or will become active.

• The type of exchange rate the history exists for. The values include:

� C (Consolidation)

� O (Operational)

� L (Letter of Credit/Bank)

� P (Purchase Order)

� U (Customs Entry)

� G (Logistics)

8 Retek Merchandising System

Currency exchange rates message subscription
The currency exchange rates message subscription process primarily consists of
the two following PL/SQL packages:

RMSSUB_CURRATECRE and its CONSUME procedure serve as RMS’s
subscription API. A second package, RMSSUB_CURRXRATE, holds functions
that performs the following tasks on data contained in the message:

• Parse

• Process

• Insert

• Update

• Validate

Currency exchange rates message subscription process
From a high-level perspective, the currency exchange rates message subscription
process primarily consists of the following steps:

1 The RMS external currency exchange rates adapter (eWay) recognizes that a
message with a currency exchange rates name exists on the RIB. The RIB
calls the first package, which serves as RMS’ subscription API:
RMSSUB_CURRATECRE.CONSUME. This package initially processes the
message and the XML CLOB contained in the message.

2 The package, RMSSUB_CURRXRATE, accepts an XML file in the form of
an Oracle CLOB data type from the RIB. The procedure validates the XML
file format. If the validation is successful, the XML in the message is parsed
into PL/SQL. Note that in addition to calling other functions, the package
calls CONVERT_TYPE, which converts FIF_EXCHANGE_TYPE to
RMS_EXCH_TYPE through the table FIF_CURRENCY_XREF. The
validated currency exchange rates data is inserted into the
CURRENCY_RATES table.

Currency exchange rates message summary
The following table shows you the CurRateCre message, the document type
definition (DTD) that describes the XML message, and the mapping document
that describes the data contained in the message. The mapping document contains
information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

CurRateCre CurrRateDesc.dtd Map_CurrRateDesc.xls

Volume 1 – Functional overviews 9

Currency exchange rates tables
The following description is for the primary tables in RMS 10.1 that hold
currency exchange rates data and are used in message subscription processing:

CURRENCY_RATES
This table contains the exchange rates for every currency used in the system. A
currency can have multiple exchange rates based on a combination of different
exchange types and effective dates.

FIF_CURRENCY_XREF
This cross-reference table is used to translate the financial package’s exchange
type to the Retek-defined exchange type. During message processing, the
CONVERT_TYPE function resolves the financial package’s type by referencing
the FIF_CURRENCY_XREF table, which translates the financial type into the
RMS type. The RMS type is then written to the CURRENCY_RATES table. The
FIF_CURRENCY_XREF table is populated at installation and is maintained by
system administration. The table cannot be updated by other users.

10 Retek Merchandising System

Freight terms
Freight terms are supplier-related financial arrangement information that is
published to the Retek Integration Bus (RIB), along with the supplier and the
supplier address, from the financial system. Freight terms are the terms for
shipping (for example, the freight terms could be a certain percentage of the total
cost; they could be free; and so on). RMS 10.1 subscribes to a freight terms
message held on the RIB. After confirming the validity of the records enclosed
within the message, RMS 10.1 updates its tables with the information.

This overview describes the following:

• A description of the specific data within the freight terms message.

• A summary of the steps that occur during the processing of the freight terms
message.

• A summary of the freight terms message that shows its corresponding DTD
and mapping document.

• The table in RMS 10.1 that is affected by the freight terms subscription
message.

Freight terms message
RMS 10.1 subscribes to a flat freight terms message that consists of a freight
terms record. A freight term record can only be created or updated. Previous
freight terms records are neither deleted nor modified; they are rendered
enabled/disabled through a flag associated with the active/inactive date.

RMS 10.1 subscribes to the FrtTermDesc freight terms message .

Data in the freight terms message that has primary significance to RMS 10.1
includes:

• The number that uniquely identifies the freight terms.

• A description of the freight terms used in the system.

• The date for assigning an active date to the freight terms.

• The date for assigning an inactive date to the freight terms.

Volume 1 – Functional overviews 11

Freight terms message subscription
The freight terms message subscription process primarily consists of the three
following PL/SQL packages:

RMSSUB_FRTTERMCRE and its CONSUME procedure serve as RMS’
subscription API.

A second package, RMSSUB_FTERM, holds functions that perform the
following tasks on data contained in the message:

• Parse

• Process

A third package internal to RMS, FTERM_SQL, holds functions that perform the
following tasks on data contained in the message:

• Insert

• Update

• Validate

Freight terms message subscription process
From a high-level perspective, the freight terms message subscription process
primarily consists of the following steps:

1 The RMS 10.1 external freight terms adapter (eWay) recognizes that a
message with a freight terms name exists on the RIB. The RIB calls the first
package, which serves as RMS’ subscription API:
RMSSUB_FRTTERMCRE.CONSUME. This package initially processes the
message and the XML CLOB contained in the message.

2 The second package, RMSSUB_FTERM, accepts an XML file in the form of
an Oracle CLOB data type from the RIB. The procedure validates the XML
file format, and if the validation is successful, parses the XML in the
message into PL/SQL.

3 The third package, RMSSUB_FTERM makes a call to RMS’ FTERM_SQL,
which performs the insert/update to the FREIGHT_TERMS table within
RMS 10.1.

Freight terms message summary
The following table shows you the FrtTermCre message, the document type
definition (DTD) that describes the XML message, and the mapping document
that describes the data contained in the message. The mapping document contains
information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

FrtTermCre FreightTermDesc.dtd Map_FreightTermDesc.xls

12 Retek Merchandising System

Freight terms table
The following description is for the primary table in RMS 10.1 that holds freight
terms data:

FREIGHT_TERMS

This table contains one row for each set of freight terms allowed in the company.
The table is populated during installation.

Volume 1 – Functional overviews 13

General ledger chart of accounts
Before RMS can publish stock ledger data to an external financial application, it
must receive that application’s general ledger chart of accounts (GLCOA)
structure. RMS accomplishes this through a subscription process described in this
overview.

A chart of account is essentially the financial application’s debit and credit
account segments (for example, company, cost center, account, and so on) that
apply to the RMS product hierarchy. In some financial applications, this is
known as CCIDs (Code Combination IDs). Upon receipt of GLCOA message
data, RMS populates the data to the FIF_GL_ACCT table. The GL Cross
Reference (glcross.fmb) form is then used to associate the appropriate
department, class, subclass, and location financial data to a chart that allows the
population of that data to the GL_FIF_CROSS_REF table.

Message summary
The following table lists the GLCOA message by its message type, the document
type definition (DTD) that describes the XML message, and the mapping
document that describes the data contained in the message. Consult the Retek
10.1 Integration Guide to view these documents.

Message Type Type (DTD) Mapping Document

GLCOACre GLCOADesc.dtd Map_GLCOADesc.xls

GLCOA message subscription
The GLCOA message subscription process consists of the following PL/SQL
packages:

• RMSSUB_GLCOACRE and its CONSUME procedure serves as RMS’
subscription API.

• A second package, RMSSUB_GLCACCT, holds functions that performs the
following tasks on data contained in the message:

� Parse the message header

� Process the message header

• PROCESS_GLACCT – Accepts the input GL record and places the data into
a local GL record, used in the package to manipulate the data. It calls the
following support functions to perform all business logic on the record:

� insert

� update

� validate

Data is populated on the FIF_GL_ACCT table.

14 Retek Merchandising System

System option for financial application
RMS’ SYSTEM_OPTIONS table holds the column FINANCIAL_AP, where the
interface financial application is indicated. Settings in this column are either “O”
or null. “O” indicates an external financial application. A null indicates that no
financial application is interfaced with RMS.

Volume 1 – Functional overviews 15

Cost changes
Cost values serve as a starting point in the creation of a purchase order. RMS
10.0 introduces the multi-channel concept where stores and warehouses can be
‘virtual’ as well as physical locations. If RMS is set up to run multi-channel
(meaning the multi-channel indicator on the SYSTEM_OPTIONS table is set to
“Y” (yes)), only virtual locations hold stock. Physical warehouses, while not
being stockholding locations, do hold supplier item cost that is shared across all
virtual warehouses associated with the physical warehouse. This section
describes how supplier cost changes are processed in RMS, with a focus on the
batch modules SCCEXT and CCPRG.

Cost change process
The cost change process begins with the supplier form SUPPSKU. Changes
made on this form impact these tables:

• COST_SUSP_SUP_HEAD, always populated.

• COST_SUSP_SUP_DETAIL, populated if the cost at the country level is
changed. Otherwise COST_SUSP_SUP_DETAIL_LOC is populated if cost
is being maintained at individual locations. Bracket cost data are also stored
on these two tables.

If cost changes are updated directly from the supplier, the batch module
EDIUPCAT indirectly populates the cost tables, using the following process:
EDIUPCAT populates EDI_COST_CHG and EDI_COST_LOC. The RMS user
can then accept EDI cost changes through the EDI cost change dialog. Accepted
changes then populate the cost tables.

After updates to the cost tables occur, they are processed into the following tables
by the SCCEXT module:

• ITEM_SUP_COUNTRY for the country level cost change. The program
distributes the cost to all locations on ITEM_SUP_COUNTRY_LOC (for the
current unit cost). Note that this table is always updated, regardless of the
multi-channel indicator

• ITEM_SUPP_COUNTRY_BRACKET_COST if the supplier is bracket
costing

• ITEM_LOC_SOH for locations

Multi-channel supplier cost change rules:
• Average cost is held on the ITEM_LOC_SOH table

• Cost changes are managed and stored at the physical warehouse level since
the unit cost must remain consistent across all virtual warehouses within the
same physical warehouse

• On the ITEM_LOC_SOH table, cost is held at the virtual level, to include
physical stores

16 Retek Merchandising System

• A purchase order P.O. cannot be created for non-stockholding locations, like
physical warehouses, and non-stockholding stores, like Web stores and
catalog stores

• Each physical and virtual store has a default virtual warehouse

• Cost changes sent by a supplier and uploaded by the batch module
EDIUPCAT apply to the physical warehouse before quantities are
apportioned to the virtual warehouses in SCCEXT.PC

• When cost changes are received from a supplier via EDI, two outcomes are
possible for updating the system costs. If the item is in a Worksheet or
Submitted status, system costs are updated online when the cost change is
accepted in the EDI dialog. If the item is in Accepted status, the cost change
records are written to the cost change dialog. From there, when the cost
change is approved, SCCEXT processes these cost changes and updates
system costs

Cost change batch module descriptions
EDIUPCAT (Vendor item information upload) – This module uploads a flat file
that originates as the output of a client’s EDI translation software application.
The module then updates the EDI_NEW_ITEM and EDI_COST_LOC tables.

SCCEXT (Supplier cost change extract) – This module writes to the price
history (PRICE_HIST) table and transaction-level stock ledger (TRAN_DATA)
from the ITEM_LOC_SOH table. The costs on approved orders may also be
updated if the recalculate order indicator is set to “Yes” for the item-supplier
combination. The PREPOST batch module, with the sccext_post function, runs
after SCCEXT to update the status of the cost change to “Extracted.”

CCPRG (Cost event purge) – This module runs after SCCEXT.PC to remove old
cost changes from the system using the following criteria:

• the status of the cost change is “Delete,” “Canceled,” or “Extracted”

• the status of the price change is “Rejected,” and the effective date of the cost
change has met the requirement for the number of days that rejected cost
changes are held

Note: The number of days that rejected price changes are held is determined by
a system option.

Volume 1 – Functional overviews 17

Summary of cost change and related batch modules

Module name Description
Dependencies on

other modules
(run before or after)

SCCEXT Selects supplier cost change records, which are set
to go into effect the next business day, and updates
the following RMS tables with the new cost:
ITEM_SUPP_COUNTRY_BRACKET_COST (if
the supplier is bracket costing)
ITEM_SUP_COUNTRY_LOC (holds the current
unit cost)
ITEM_SUP
ITEM_SUP_COUNTRY
See Volume 4 of the RMS 10.0 Operations Guide
for additional information about SCCEXT.

Run daily in Phase 3 of
RMS’ batch schedule.
Run before
RPLBLD.PC and
VRPLLBD.PC

EDIUPCAT Processes supplier cost change data from a flat file
supplied by the client from its EDI translation
software

Run daily in Phase 23
of RMS’ batch
schedule, or as needed

CCPRG Purges old supplier cost changes Run monthly, or as
needed

18 Retek Merchandising System

Payment terms
Payment terms are supplier-related financial arrangement information that is
published to the Retek Integration Bus (RIB), along with the supplier and the
supplier address, from the financial system. Payment terms are the terms
established for paying a supplier (for example, 2.5% for 30 days, 3.5% for 15
days, 1.5% monthly, and so on). RMS 10.1 subscribes to a payment terms
message that is held on the RIB. After confirming the validity of the records
enclosed within the message, RMS 10.1 updates its tables with the information.

This overview describes the following:

• A description of the specific data within the payment terms message.

• A summary of the steps that occur during the processing of the payment
terms message.

• A summary of the payment terms message that shows its corresponding DTD
and mapping document.

• The table in RMS 10.1 that is affected by the payment terms subscription
message.

Payment terms message
RMS subscribes to a flat payment terms message that consists of a payment
terms record. A payment terms record can only be created or updated. Previous
payment terms records are neither deleted nor modified; they are rendered
enabled/disabled through a flag associated with the active/inactive date.

RMS subscribes to the PayTermDesc payment terms message.

Data in the payment terms message that has primary significance to RMS
includes:

• The number that uniquely identifies the payment terms.

• The alphanumeric representation of the payment terms name that acts as the
payment terms code in the financial system.

• A description of the payment terms (for example, 2.5% 30 days).

• The number of days until payment is due.

• The date for assigning an active date to the payment terms.

• The date for assigning an inactive date to the payment terms.

• The number of days in which payment must be made in order to receive the
discount.

• The percent of discount if payment is made within the specified time frame.

Volume 1 – Functional overviews 19

Payment terms message subscription
The payment terms message subscription process primarily consists of the two
following PL/SQL packages:

RMSSUB_PAYTERMCRE and its CONSUME procedure serve as RMS’
subscription API. A second package, RMSSUB_PTRM, holds functions that
performs the following tasks on data contained in the message:

• Parse

• Process

• Insert

• Update

• Validate

Message subscription process
From a high-level perspective, the payment terms message subscription process
primarily consists of the following steps:

1 The RMS external payment terms adapter (eWay) recognizes that a message
with a payment terms name exists on the RIB. The RIB calls the first
package, which serves as RMS’ subscription API:
RMSSUB_PAYTERMCRE.CONSUME. This package initially processes
the message and the XML CLOB contained in the message.

2 Additional functions contained in RMSSUB_PTRM are called in order to
parse out the payment terms to memory, process the data, validate the data,
and insert the data into the TERMS table.

Payment terms message summary
The following table shows you the PayTermCre message, the document type
definition (DTD) that describes the XML message, and the mapping document
that describes the data contained in the message. The mapping document contains
information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

PayTermCre PayTermDesc.dtd Map_PayTermDesc.xls

Payment terms table
The following description is for the primary table in RMS that holds payment
terms data:

TERMS

This table contains one row for each set of supplier payment terms allowed
within the company.

20 Retek Merchandising System

Security: location, product, price zone
RMS customers can take advantage of a security feature that defines which users
can select or update location, product, and zone data by function. Because all
users have full access as soon as they are entered into RMS, this security feature
gives the RMS system administrator the ability to disallow access as necessary.
This overview describes the three areas to which user access can be limited, the
process by which this occurs, and the respective batch processes for each area.

Product, location, and zone security exists to supplement the database security
that the database ‘owner’ grants to RMS users. All three areas have functional
subsets to which access is controlled. The following table lists the functional
subsets for each area.

Security Areas and Functions

Location Product Price Zone

Stores, warehouses
for…

• promotion
• stock orders

(allocations and
transfers)

• allocations to and
from

• shipments
• orders
• stock counts
• ticket requests
• inventory

adjustments
• returns to vendors
• store
• Sales Audit store

day
• Sales Audit store

ACH (automated
clearinghouse)

Items at any level in the
merchandise hierarchy,
like department, class,
subclass, and so on for…

• pricing
• costing
• promotion
• clearance
• transfer
• allocations
• orders
• stock counts

Price and cost zones
for locations (stores
and warehouses) for…

• pricing
• clearances

Volume 1 – Functional overviews 21

Security setup process
The process by which you apply security for any of these functional areas is
identical:

• Add users to RMS

• Add a security group

• Associate users to a security group

• Associate location, product, or zone level security to a group

Each area has its own security matrix form. Use the form to:

• Select a group (to which you have already associated users)

• Select the functional area to which security will apply

• Apply the remaining selections required for the specific matrix form and save
it

The security restrictions that you set up at the group level are applied to all users
that are linked to the group. Any changes that you make to the security settings
become effective after the respective batch program runs to rebuild the security
records.

To learn more about setting up security, see the online help and user’s guide. To
learn more about the three batch programs associated with security, see the next
section.

If security rules conflict
Occasionally security rules for a single user may overlap, thereby causing a
conflict. RMS is set up to resolve this by saying that a rule that has a smaller
scope overrules any that has a broader scope. Here is an example of how this
would work.

Suppose that a certain user is assigned to two groups. One group has no update
capability for a given region, but the other group allows updating for a specific
store within that region. For this user there is a rule conflict. RMS resolves the
conflict by granting the user update capability for the store. Thus, the rule that
affects the lowest level in the organization hierarchy (update capability for the
store) is given precedence over the rule that denies access to that same store’s
entire region. For all other stores in the region, that rule would continue to apply
to the user.

22 Retek Merchandising System

Security batch programs
Each of the three security areas has its own respective batch program that runs to
update RMS tables whenever you add, modify, or delete a security group, user-
group link, or security matrix form. Data does not become available for use until
these programs have run within the daily batch-processing schedule. The three
batch programs are:

• SLOCRBLD.PC

• SPRDRBLD.PC

• SZONRBLD.PC

The following diagram highlights the security process flow. Descriptions of each
program follow.

Security Process Flow
(including batch programs)

RMS security
forms

RMS tables

Batch programs
process
modifications
made to tables by
the forms

Various forms used in
RMS to set up and
maintain security
groups, link users and
groups, and define
rules in the three
security matrices

RMS forms for
security
(various)

Various tables written
to from forms. See
individual batch
design documents for
details.

slocrbld.pc
(locations)

sprdrbld.pc
(items)

szonbld.pc
(price zones)

New security
rules and data
appear in forms

Note: prepost.pc
 (with _pre and
_post functions
for each program)
runs before and
after each
program

Volume 1 – Functional overviews 23

SLOCRBLD.PC – location security rebuild
SLOCRBLD handles the maintenance for the location security data. Locations
can have different update and select attributes for a given user that define if the
user can select or update one or more locations as defined by the rules. The RMS
table impacted by this program is SEC_USER_LOC_MATRIX.

SPRDRBLD.PC – product security rebuild
This program processes product security data. Items can have different update or
select attributes for a given user for any of the item functional areas, such as
pricing, orders, and allocations. The RMS table impacted by this program is
SEC_USER_PROD_MATRIX.

SZONRBLD.PC – zone security rebuild
SZONRBLD.PC maintains zone security data. Users can have access to various
price zones. The RMS table impacted by this program is
SEC_USER_ZONE_MATRIX.

Prepost functions for security batch
In addition to the three batch programs that rebuild the security matrix tables,
there is an RMS utility program called PREPOST.PC that runs before and after
each of the security programs. PREPOST.PC is a program that performs a variety
of functions, many of which simply truncate tables in preparation for table
updates or switch an indicator on a table. Such is the case with all of the security
programs. This section describes the pre- and post-functions performed by
PREPOST.PC for the security programs.

‘Pre-’ functions of PREPOST.PC
Before SLOCRBLD.PC, SPRDRBLD.PC, or SZONRBLD.PC run,
PREPOST.PC calls a ‘pre’ function named: truncate_user_sec_table()

This function truncates the user security matrix tables and prepares for the
security rebuild that is specific to the security batch program that you plan to run.
For example, if you plan to run the product security batch program
SPRDRBLD.PC, the function truncates the table that is affected by
SPRDRBLD.PC, thereby preparing the table for rebuild when SPRDRBLD.PC
itself runs.

Were you planning to run SLOCRBLD.PC instead, then the function would
truncate the table specific to the location security rebuild.

‘Post-’ functions of PREPOST.PC
Similar to the ‘pre’ function, PREPOST.PC also has a ‘post’ function named:
update_security_indicator()

This function resets a security update indicator after you run any of the three
security rebuild programs, preparing RMS tables for the next batch run updates
by these programs.

24 Retek Merchandising System

A note about the product rebuild
Unlike the location and zone rebuild processes, the product rebuild uses an
additional step after SPRDRBLD.PC runs and before PREPOST.PC’s post
function. Because of the large amount of data processed by SPRDRBLD.PC, the
program outputs a flat file. The data in the file flat is then loaded into the security
user product matrix by an Oracle SQL*Load process.

Security programs in the batch schedule
Whenever you run the batch schedule, you begin and end the run with two
additional PREPOST.PC functions. At the beginning of the schedule, you run:

btchcycl pre

This function disables all security thus ensuring that the batch programs can
access all required data. Disabling security also speeds performance of the
schedule. At the end of the batch schedule, run this PREPOST.PC function to
again enable security:

btchcycl post

Volume 1 – Functional overviews 25

Batch modules for location, product, and zone security
This table lists all batch modules that are involved in RMS security table updates.

Security Batch Programs
Batch Module
Program Name

What It Does When to Run It Run Before/After Other
Modules?

slocrbld.pc Updates security tables
for stores and
warehouses

Daily, Phase4 After prepost.pc with
slocrbld_pre function:
truncate_user_sec_table()
Before prepost.pc with
slocrbld_post function:
update_security_indicator()

sprdrbld.pc Updates security tables
for products (items
within the merchandise
hierarchy)

Daily, Phase 4 After prepost.pc with
sprdrbld_pre function:
truncate_user_sec_table()
Before a SQL*Load process
runs to load the program’s
flat file data into the security
user product matrix
Before prepost.pc with
sprdrbld_post function:
update_security_indicator()

szonrbld.pc Updates security tables
for price and cost data
for locations

Ad Hoc After prepost.pc with
szonrbld_pre function:
truncate_user_sec_table()
Before prepost.pc with
szonrbld_post function:
update_security_indicator()

26 Retek Merchandising System

Supplier
RMS 10.1 subscribes to supplier and supplier address data that is published from
an external financial application and publishes supplier and address data to other
external applications. This overview describes:

• The supplier subscription process

• The supplier publication process

• The nature of the subscribed and published messages

• The primary tables that serve as targets and sources of data contained in
messages

• One supplier related batch (Pro*C) module–SUPMTH– that runs within
RMS’ batch processing schedule

Supplier message subscription
The supplier and supplier address message subscription process primarily
consists of the two following PL/SQL packages:

RMSSUB_VENDORCRE and its CONSUME procedure serves as RMS’
subscription API. A second package, RMSSUB_SUPPLIERS, holds functions
that performs the following tasks on data contained in the message:

• parse

• process

• insert

• update

• validate

Message subscription process
1 The RMS supplier adapter (eWay) recognizes that a supplier or supplier

address message exists on the RIB.

2 For a new supplier and address message, the adapter calls
RMSSUB_VENDORCRE.CONSUME to initially process the message and
the XML CLOB contained in the message.

3 Additional functions contained in RMSSUB_SUPPLIERS are called in order
to parse out the supplier or address to memory, process the data, validate the
data, and insert the data into the SUPS or ADDR tables, for supplier and
address records respectively. Processing includes a check for the appropriate
financial application in RMS on the SYSTEM_OPTIONS table’s
FINANCIAL_AP column.

Volume 1 – Functional overviews 27

Supplier publication
RMS 10.0 publishes supplier and supplier address data messages to subscribing
applications so that those applications are able to keep their vendor tables current
with RMS. This overview focuses on:

• RMS vendor event messages, from their source tables, through message
creation, to final publication, to the Retek Integration Bus (RIB)

• One supplier related batch (Pro*C) program–SUPMTH.PC– that runs within
RMS’ batch processing schedule

Supplier and address tables, event triggers, and messages
The RMS supplier and supplier address tables hold data at the base level within
RMS. One additional message family manager queue table serves as the staging
table for both supplier and address that are produced for publication to the RIB.
An event on a base table causes that data to be populated on the respective queue.
The following are brief descriptions of all three tables:

SUPS – This table contains one row for each supplier.

ADDR – This table contains one row for each supplier or partner address. The
SEQ_NO column is required because multiple addresses can exist for each
address type. Only these valid address types from the table are published:

• Returns

• Order

• Invoice

SUPPLIER_MFQUEUE – This is the message queue that keeps track of all
message events that occur on the supplier (SUPS) and addresses (ADDR) tables.

Detailed descriptions of these tables are in the RMS 10.0 Data Model document.

Event triggers
The SUPS and ADDR tables hold triggers for each row, or record, on the
respective table. Any time that an event occurs on a table–that is, an insertion of
a record, update to an existing record, or deletion of a record–the appropriate
trigger ‘fires’ to begin the message creation process.

• The trigger for the SUPS table is EC_TABLE_SUP_AIUDR.

• The trigger for the ADDR table is EC_TABLE_ADR_AIUDR.

The next section describes each trigger.

28 Retek Merchandising System

Trigger descriptions
EC_TABLE_SUP_AIUDR –

1 This trigger captures inserts, updates, and deletes to the SUPS table.

2 The trigger writes data into the SUPPLIER_MFQUEUE message queue.

3 The trigger calls SUPPLIER_XML.BUILD_SUPPLIER to create the XML
message.

4 The trigger calls RMSMFM_SUPPLIER.ADDTOQ to insert the message
into the message queue.

EC_TABLE_ADR_AIUDR –

1 This trigger captures inserts, updates, and deletes to the ADDR table.

2 The trigger writes data into the supplier_mfqueue message queue.

3 The trigger calls SUPPLIER _XML.BUILD_SUPPLIER to create the XML
message.

4 The trigger calls RMSMFM_SUPPLIER.ADDTOQ to insert the message
into the message queue.

Supplier messages
There are six messages that pertain to the supplier message family, three for the
supplier and three for addresses. Here are the supplier message short names:

• VendorCre

• VendorHdrMod

• VendorDel

• VendorAddrCre

• VendorAddrMod

• VendorAddrDel

Volume 1 – Functional overviews 29

Message family manager and queue
This section describes the message family manager (MFM) for suppliers.

RMSMFM_SUPPLIER – This MFM inserts and retrieves messages from the
message queue. It contains the public procedures ADDTOQ, which inserts a
message into the message queue, and GETNXT, which retrieves the next
message on the message queue.

Message summary

The following table lists each supplier message by its message type that appears
on the queue table, the document type definition (DTD) that describes the XML
message, and the mapping document that describes the data contained in the
message. Consult the Retek 10 Integration Guide to view these documents.

Message Type Type (DTD) Mapping Document

VendorCre VendorDesc.dtd Map_VendorDesc.xls

VendorHdrMod VendorHdrDesc.dtd Map_VendorHdrDesc.xls

VendorDel VendorRef.dtd Map_VendorRef.xls

VendorAddrCre VendorAddrDesc.dtd Map_VendorAddrDesc.xls

VendorAddrMod VendorAddrDesc.dtd Map_VendorAddrDesc.xls

VendorAddrDel VendorAddrRef.dtd Map_VendorAddrRef.xls

Message creation and publishing process
The message family manager inserts messages on the queue and marks each one
with a sequence number. The goal is continue inserting new messages and
replacing lower sequenced number messages of the same type until certain
parameters are met. The private procedure CAN_CREATE determines if a
complete hierarchical supplier message can be created based upon the existence
of correct address types and additional flags that must be set.

Batch module SUPMTH
The Supplier Data Amount Repository (SUPMTH) module is executed based on
multiple transaction types for each department-supplier combination in the
system. Its primary function is to convert daily transaction data to monthly data.
After all data are converted, the daily information is deleted to reset the system
for the next period by the batch module PREPOST and its supmth_post function.

The Supplier Data Amount Repository (supmth) module should be run during
Phase 3 of the RMS batch schedule, on a monthly basis.

30 Retek Merchandising System

Value added tax maintenance
Value-added tax (VAT) functionality is optional in RMS. In several countries,
value added taxes (VAT) must be considered when determining the monetary
value of items. VAT amounts appear in several modules of the system, such as
purchase orders, pricing, contracts, stock ledger, and invoice matching. This
overview describes the RMS system settings that impact VAT, along with the
batch module VATDLXPL that associates items with a given VAT region and
VAT code.

Value added tax rates are identified by VAT code. When VAT codes are
associated with a VAT region, they are assigned a VAT type. The VAT type
indicates that the tax rate is used in one of the following types of calculations:

• Cost: The tax rate is applied to purchase transactions.

• Retail: The tax rate is applied to sales transactions.

• Both: The tax rate is applied to purchase and sales transactions.

Value added taxes are reflected in the stock ledger when 1) the retail method of
accounting is used and 2) the system is set up to include VAT in retail
calculations.

A number of the system settings in RMS, which are described beginning in the
next section, indicate how you wish to implement VAT.

System level VAT
The VAT_IND column on the SYSTEM_OPTIONS table is the primary means
to initiate VAT in RMS. By entering “Y” in this column, you are telling RMS
that you want to include VAT in the system.

System class level VAT
The CLASS_LEVEL_VAT_IND column on the SYSTEM_OPTIONS table
allows you to include or exclude VAT at the class level of the merchandise
hierarchy. Enter “Y” in this column to manage VAT inclusion or exclusion from
retail at the class level. Enter “N” in this column if you do not want to manage
VAT at the class level. Entering “N” will mean that VAT is included in the retail
price in RMS and in the point-of-sale (POS) download for all classes. The POS
upload process is controlled by the store VAT indicator, which is described later
in this overview.

Department VAT
The department table (DEPS) holds the DEPT_VAT_INCL_IND column that is
used to enable or disable VAT in retail prices for all classes in the department.
This indicator is used only to default to the class level indicator when classes are
initially set up for the department and is only available when the system level
class VAT option is on. When VAT is turned on in the system and not defined at
the class level, this field defaults to “Y”. When VAT is turned off in the system,
this field defaults to “N”.

Volume 1 – Functional overviews 31

Class VAT
The CLASS_VAT_IND column on the CLASS table determines if retail is
displayed and held with or without VAT. The default setting is inherited from the
class’s department (see the preceding section). You can edit the value in this
column only when VAT is turned on in the system and defined at the class level.

By entering “Y” in this column, you are saying that you want VAT included in
the retail price for all items in that class. Both point-of-sale (POS) download
(POSDNLD) and POS upload (POSUPLD) will include VAT in the retail price.

By entering “N” in this column, you are saying that you want to exclude VAT
from point-of-sale (POS) download (POSDNLD) and POS upload (POSUPLD)
of retail prices for the entire class.

Instructions that are sent to allow the POS to add VAT are contained in these
columns on the POS_MODS table:

• Vat_code – code for the VAT rate

• Vat_rate – the actual rate referenced by the VAT code

• Class_vat_ind

Store VAT indicator
If you select “N” in the CLASS_LEVEL_VAT_IND column on the
SYSTEM_OPTIONS table, you can still choose VAT settings for a store. The
VAT_INCLUDE_IND column on the STORE table allows you to include or
exclude VAT at the store for POS upload only.

Enter “Y” in this column to always include VAT in the retail price in the POS
upload process. Enter “N” to exclude VAT from POS uploaded prices.

Send VAT rate to POS
VAT rates are sent through the POS to the store and are contained in these
columns on the POS_MODS table:

• Vat_code – code for the VAT rate

• Vat_rate – the actual rate referenced by the VAT code

• Class_vat_ind

Special note: retail method stock ledger and VAT
If the stock ledger for a department is set to use the retail method of accounting,
an additional setting is required to ensure that VAT is, or is not, included in retail
values. The STKLDGR_VAT_INCL_RETL_IND column (SYSTEM_OPTIONS
table) value of “Y” results in all retail values in the stock ledger (sales retail,
purchase retail, gross margin, and so on) being VAT inclusive. “N” indicates that
VAT is excluded from retail values.

32 Retek Merchandising System

Batch module – VATDLXPL
The value-added tax rate maintenance module updates VAT information for each
item associated with a given VAT region and VAT code. Run the module as
needed; however, it must be run in Phase 1 of the batch schedule, before any
pricing modules are executed.

Volume 1 – Functional overviews 33

Replenishment
Replenishment batch module components are designed to manage stock levels,
by using stock order allocations. For RMS 10.1, only replenishment and Retek
Allocation can create stock order allocations. This overview describes batch
functionality for replenishment, including investment buy, along with
descriptions of the major tables involved in the replenishment process.

Replenishment process
Replenishment operates in this sequence:

1 Build the purchase order

2 Scale the order

3 Split the order among trucks

4 Compare approved replenishment orders against applicable vendor
minimums and reset back to ‘W’orksheet status those orders that do not meet
minimum quantities

Summary of replenishment batch modules
Replenishment
batch module

name
Description

Dependencies on
other modules

(run before or after)

SOUPLD Processes store order data from an external
system flat file that are used later in the
replenishment process to generate
recommended order quantities.
Accepts an input file that contains:

• item to be ordered
• store requesting the item
• needed quantity in eaches, cases, or

pallets (later converted to standard unit of
measurements)

• need date
Module validates that item and store are on
replenishment with a replenishment method of
“Store Orders”
(REPL_ITEM_LOC.REPL_METHOD).

Run daily in Phase 2
of RMS’ batch
schedule
Run before all
replenishment and
investment buy
batch modules.

34 Retek Merchandising System

Replenishment
batch module

name
Description

Dependencies on
other modules

(run before or after)

RPLATUPD Maintains replenishment attributes for an item
list by calling the package
REPL_ATTRIBUTE_MAINTENANCE_SQL
(rplattrb/s.pls) to write changes to the tables
REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC that are
initiated by the replenishment attribute form.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after the batch
module PREPOST
with the
RPLATUPD_PRE
argument.
Run before the
replenishment batch
programs, RPLADJ,
RPLEXT, and
REQEXT.
Run before the batch
module PREPOST
with the argument
RPLATUPD_POST.

RILMAINT Processes replenishment attributes from the
REPL_ITEM_LOC_UPDATES table to the
REPL_ITEM_LOC table.

Run in Phase 3 of
RMS’ batch
schedule.
Run after RMS
batch modules
STOREADD and
RPLATUPD.
Run before the batch
module PREPOST
using the argument
RILMAINT_POST
Run before the batch
module RPLADJ.

RPLADJ Recalculates the maximum stock levels for all
item-location combinations with a
replenishment method of 'F' (floating point)
and populates the table REPL_ITEM_LOC.

The floating model stock method will
dynamically calculate an order-up-to-level.
The maximum model stock is calculated using
the sales history of various periods of time in
order to accommodate seasonality as well as
trend. The sales history is obtained from the
item_loc_hist table

Run after the batch
module
RPLATUPD.
Run before the RMS
batch modules
RPLEXT and
REQEXT.

Volume 1 – Functional overviews 35

Replenishment
batch module

name
Description

Dependencies on
other modules

(run before or after)

REQEXT Cycles through every item-location
combination that is set to be reviewed on the
current day and calculates the quantity of the
item that needs to be transferred to the
location.
Transfers are created and records are written
to the Replenishment Results
(REPL_RESULTS) table depending on how
the order control parameter is set at the item-
location level.

Run in Phase 3 of
RMS’ batch
schedule.
Run after the batch
modules,
RPLATUPD,
RPLADJ (that
update
replenishment
calculation
attributes).
Run before
PREPOST with the
REQEXT_POST
function.
Run before
RPLEXT.

RPLEXT Calculates item quantities to be ordered for a
location. Writes temporary orders to the tables
ORD_TEMP, when automatic order creation
is enabled (semi-automatic and automatic
order control), and REPL_RESULTS.
ORD_TEMP is later reviewed by the module
CNTRPRSS in its evaluation of orders against
contract types A, C, and D.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after PREPOST
with the RPL_PRE
function.

Run before the batch
module
CNTRPRSS.

CNTRPRSS Evaluates contract and supplier information of
A, C, and D type contracts against
recommended order quantities created by the
RPLEXT module on the ORD_TEMP table.
Suggests the best available contract for each
item.
Updates the REPL_RESULTS and
ORD_TEMP tables to hold information about
the quantity of the item that is satisfied by the
contract.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after RPLEXT.
Run before
RPLBLD.

36 Retek Merchandising System

Replenishment
batch module

name
Description

Dependencies on
other modules

(run before or after)

IBEXPL Determines inventory buy eligibility that is set
at one of these levels:

• Supplier-department-location
• Supplier-location (warehouse locations

only)
• Supplier-department
• Supplier

Applies investment buy values that are
defined on the SUP_INV_MGMT or
WH_DEPT tables as applicable. If no values
exist on the tables, this module accepts the
default values held on the
SYSTEM_OPTIONS table. (See section
“Investment buy system options” later in this
overview.)

Run daily in Phase 3
of the RMS batch
schedule.
Run after RMS
batch modules
RPLEXT.
Run before the
module IBCALC.

IBCALC Calculates investment buy opportunities and
writes the resulting recommended order
quantities (ROQ) to the IB_RESULTS table.

Run before the
module RPLBLD.

RPLBLD Builds purchase orders from Recommended
Order Quantities (ROQ) located on the
ORD_TEMP table (populated by the
RPLEXT module), and on the IB_RESULTS
table (populated by the IBCALC module).
Calls the order library (ORDLIB.h) to apply
order creation logic.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after RMS
batch modules
RPLEXT and
CNTPRSS (if
contracts are used).

SUPCNSTR Scales eligible orders during the nightly
replenishment run.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after RMS
batch modules
RPLBLD.
Run before RMS
batch module
RPLPRG.

Volume 1 – Functional overviews 37

Replenishment
batch module

name
Description

Dependencies on
other modules

(run before or after)

RPLSPLIT Calls the order library (ORDLIB.h) to provide
truck-splitting processing, and creates new
orders.

Run daily in Phase 3
of RMS’ batch
schedule.
Run after RMS
batch module
SUPCNSTR.
Run before the
RPLAPPRV
module.

RPLAPPRV Compares all approved replenishment orders
created during the nightly batch run with any
vendor minimums that may exist. Orders that
do not meet the vendor minimums are either
deleted or placed in Worksheet status.

Run in Phase 3 of
RMS’ batch
schedule.
Run after the batch
module RPLSPLIT.

RPLPRG Purges the following tables of dated rows.
Values are held for each table in the
SYSTEM_OPTIONS table. The
SYSTEM_OPTIONS column that holds the
number of days value is listed in parentheses:
REPL_RESULTS
(REPL_RESULTS_PURGE_DAYS)
STORE_ORDERS
(STORE_ORDERS_PURGE_DAYS)
IB_RESULTS
(IB_RESULTS_PURGE_DAYS)

Run as needed.

38 Retek Merchandising System

Primary replenishment tables
The following descriptions are for the primary replenishment and investment buy
tables in RMS. It is not a complete list of all tables that are involved in the
replenishment process:

REPL_ITEM_LOC – This table holds item-location replenishment attributes
such as review cycle and activation dates. Note in particular the column
REPL_METHOD that contains the code value that the modules REQEXT and
RPLEXT use to calculate the recommended order quantities for the item-
location. Replenishment method values include the following:

• C – Constant

• M – Minimum-Maximum

• F – Floating Point

• T – Time Supply (used with forecasting)

• Time Supply Seasonal (used with forecasting)

• Time Supply Issues (used with forecasting)

• D – Dynamic (used with forecasting)

• Dynamic Seasonal (used with forecasting)

• Dynamic Issues (used with forecasting)

• SO – Store Orders.

REPL_ITEM_LOC.LAST_ROQ – This column on the REPL_ITEM_LOC
table contains the last recommended order quantity created by the vendor
replenishment extraction module RPLEXT. The ROQ value is used by the
investment buy opportunity calculation module (IBCALC) to calculate future
available quantity for the item-location combination.

See Also: The RMS 10.0 Data Model for a complete description of the
REPL_ITEM_LOC table.

REPL_ITEM_LOC.REPL_ORDER_CTRL – Determines if the replenishment
process creates an actual order or transfer line item for the item-location if there
is a need for the item-location or if only a record is written to the replenishment
results table. Valid values are:

• ‘M’anual (a record is written to the Replenishment Results table – no
order/transfer line item is created)

• ‘S’emi-Automatic (an order/transfer line item is created - the order line item
will be added to an order in Worksheet status, the transfer line item will be
added to a transfer in ‘S’ubmitted status with a freight type of Normal)

• ‘A’utomatic (an order/transfer line item is created - the order line item will
be added to an order in Approved status, the transfer line item will be added
to a transfer in Approved status with a freight type of Normal)

Volume 1 – Functional overviews 39

• ‘B’uyer Worksheet (a record is written to the Replenishment Results table
and can be added to a purchase order on the Buyer Worksheet. A transfer line
item is added to a transfer in ‘S’ubmitted status with a freight type of
Normal.)

REPL_RESULTS – This table is used to store item location level replenishment
results information and the replenishment attributes used to drive the order
quantities for the item location.

ORD_TEMP – This table is used during the automatic replenishment cycle to
temporarily store order line items generated during batch RPLXT. The actual
orders are then created later in the batch run by consolidating these line items by
department/supplier/delivery location (store/warehouse).

IB_RESULTS – This table contains investment buy recommended order
quantities (ROQ) for an item-supplier-country-location (warehouse) along with
the specific factors that lead to the ROQ. It contains the actual order quantity
(AOQ), which may have been modified by the user. If the investment buy
quantity is placed on the purchase order, the order number appears on the table.

ORD_INV_MGMT – Determines whether the stock out comparisons for ‘Due’
order determination should be performed in units (standard unit of measure),
cost, or profit (that is, retail - cost) in the order’s currency. It is only used for
replenishment orders when the Due Order Indicator is set to Yes. Valid values
include:

• U – Unit service basis. Stock out amounts calculated in units (standard unit
of measures).

• C – Cost service basis. Stock out amounts calculated as the stock out in units
multiplied by the item's cost.

• P – Profit service basis. Stock out amounts calculated as the stock out in units
multiplied by the item's margin (that is, retail - cost).

This table also holds a number of scaling and truck splitting parameters.

Investment buy
Investment buy facilitates the process of purchasing inventory in excess of the
replenishment recommendation in order to take advantage of a supplier deal or to
leverage inventory against a cost increase. The inventory is stored at the
warehouse or in outside storage to be used for future issues to the stores. The
recommended quantity to ‘investment buy’ (that is, to order), is calculated based
on the following:

• Amount of the deal or cost increase

• Upcoming deals for the product

• Cost of money

• Cost of storage

• Forecasted demand for the product, using warehouse issue values calculated
by Retek Demand Forecasting

• Target return on investment (ROI)

40 Retek Merchandising System

The rationale is to purchase as much product as profitable at the lower cost and to
retain this profit rather than passing the discount on to customers and stores. The
determination of how much product is profitable to purchase is based on the cost
savings of the product versus the costs to purchase, store and handle the
additional inventory.

Investment buy eligibility and order control are set at one of these four levels:

• Supplier

• Supplier-department

• Supplier-location (warehouse locations only)

• Supplier-department-location

Warehouses must be enabled for both replenishment and investment buy on
RMS’ WH (warehouse) table. In a multi-channel environment, virtual
warehouses are linked to the physical warehouse.

The investment buy opportunity calculation takes place nightly during the batch
run, after the replenishment need determination, but before the replenishment
order build. The investment buy module IBCALC attempts to purchase
additional inventory beyond the replenishment recommendation in order to
achieve future cost savings. Two distinct events provide the incentive to purchase
investment buy quantities:

• A current supplier deal ends within the look-ahead period.

• A future cost increase becomes active within the look-ahead period.

The calculation determines the future cost for a given item-supplier-country-
location for physical warehouse locations only.

If the order control for a particular line item is ‘buyer worksheet’, it may be
modified in the buyer worksheet dialog, and can be added to either new or
existing purchase orders.

Investment buy system options
The following columns are held on the SYSTEM_OPTIONS table for investment
buy:

• LOOK_AHEAD_DAYS – The number of days before a cost event (end of a
deal, or a cost increase) that the investment buy opportunity begins to
calculate an event

• COST_WH_STORAGE – Contains the default cost of warehouse storage,
expressed as the weekly cost based on the unit of measure specified in this
table’s COST_WH_STORAGE_UOM column. This value is held in the
primary system currency. You can change this value at the warehouse or
warehouse-department level.

• COST_OUT_STORAGE – Contains the default cost of outside storage,
expressed as the weekly cost base on the unit of measure specified in
COST_OUT_STORAGE_UOM. This value is held in the primary system
currency. You can change this value at the warehouse or warehouse-
department level.

Volume 1 – Functional overviews 41

• COST_LEVEL – Indicates which cost bucket is used when calculating the
return on investment for investment buy opportunities. Valid values are 'N'
for net cost, 'NN' for net net cost and 'DNN' for dead net net cost.

• STORAGE_TYPE – Indicates which type of storage cost should be used as
the default storage cost when calculating investment buy opportunities. Valid
values are 'W'arehouse and 'O'utside. You can change this value at the
warehouse or warehouse-department level.

• MAX_WEEKS_SUPPLY – Contains the default maximum weeks of supply
to use in the investment buy opportunity calculation. The calculation does
not recommend an order quantity that would stock the associated location
(currently warehouses only) for a period beyond this number of weeks. You
can change this value at the warehouse or warehouse-department level.

• TARGET_ROI – Contains the default return on investment that must be met
or exceeded for the investment buy opportunity to recommend an order
quantity. You can change this value at the warehouse or warehouse-
department level.

• IB_RESULTS_PURGE_DAYS – Contains the number of days that records
on the investment buy results table (IB_RESULTS) should be kept before
being purged. If an investment buy result record's create_date plus this value
is equal to or beyond the current system date, the record is deleted by the
PREPOST batch module prior to the investment buy opportunity calculation.

See Also: The RMS 10.0 Data Model for a complete description of the
SYSTEM_OPTIONS table and the investment buy columns.

Volume 2 – Message publication and subscription designs 43

Volume 2 – Message publication and
subscription designs

Item Message Family Manager Publishing Design

Functional Area
Items

Design Overview
The item message family manager is a package of procedures that adds item
family messages to the item queue and publishes these messages for the
integration bus to route. Triggers on all the item family tables call a procedure
from this package to add a “create”, “modify” or “delete” message to the queue.
The integration bus calls a procedure in this package to retrieve the next
publishable item message from the queue.

All the components that comprise the creation of an item, the item/supplier for
example, remain in the queue until the item approval modification message has
been published. Any modifications or deletions that occur between item creation
in “W”(worksheet) status and “A”(Approved) status are applied to the “create”
messages or deleted from the queue as required. For example, if an item UDA is
added before item approval and then later deleted before item approval, the item
UDA “create” message would be deleted from the queue before publishing the
item. If an item/supplier record is updated for a new item before the item is
approved, the “create” message for that item/supplier is updated with the new
data before the item is published. When the “modify” message that contains the
“A”(Approved) status is the next record on the queue, the procedure formats a
hierarchical message that contains the item header information and all the child
detail records to pass to the integration bus.

Additions, modifications and deletions to item family records for existing
approved items are published in the order that they are placed on the queue.

Unless otherwise noted, item publishing includes most of the columns from the
item_master table and all of the item family child tables included in the
publishing message. Sometimes only certain columns are published, and
sometimes additional data is published with the column data from the table row.
The item publishing message is built from the following tables:

Family Header

item_master - transaction level items only

descriptions for the code values
names for department, class and subclass
diff types
base retail price

44 Retek Merchandising System

Item Family Child Tables

item_supplier

item_supp_country

item_supp_country_dim

descriptions for the code values

item_master - reference items

item, item_number_type, item_parent, primary_ref_ind,
format_id, prefix

packitem_breakout

pack_no, item, packitem_qty

item_image

uda_item_ff

uda_item_lov

uda_item_date

Volume 2 – Message publication and subscription designs 45

State Diagram

Create Item Worksheet Item Exists

Deleted

Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Pack Comp Item

Supplier Exist?

No Yes

Modify Item

Add Supplier

Add/Modify/Delete Supplier

Add/Modify/Delete Supplier/Country

Add Supplier/Country

Approve Item

Approved Item Exists

Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Supplier

Add/Modify/Delete Supplier/Country

Delete Item

Add/Modify/Delete Ref Items

Add/Modify/Delete Ref Item

Add/Modify/Delete Pack Comp Item

46 Retek Merchandising System

Description of Activities

Create a Worksheet Item
1 Prerequisites: No prerequisites exist for creating an item except that RMS

foundation data such as departments and suppliers exist first. Items are
created using the RMS online item dialogue.

2 Activity Detail: The creation of the item is the first step of gathering all the
hierarchical information needed for publishing the item.

3 Messages: A message for the item creation is placed on the queue for future
publishing. This is a flat message that will be collected with the item detail
messages to comprise the final hierarchical message. It will not be published
until the item is approved. The presence of this message on the queue signals
the publishing process that more detail information for the item is
forthcoming.

Approve an Item
1 Prerequisites: An item must exist and be submitted for approval.

2 Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.
Once the item is approved, it is of interest to other software systems. It can
be included in orders, transfers, shipments, etc.

3 Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. The approved item create message is a
hierarchical message containing the item and all the item family detail
records. First an ItemDesc node is created and the ItemHdrDesc message is
added to this message. Next, all the child messages are appended to the
message until there are no more records in the item_mfqueue table for this
item. Then the final item message is formatted.

Modify an Item
1 Prerequisites: An item can have any status to be modified. Once the item is

approved, there are only a few fields that can be modified.

2 Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.

3 Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. If a record that has an ItemCre message
type exists on the item_mfqueue table for this item, this “modify” message is
never used in publishing. Only the final “modify” item record message with
an ‘A’(Approved) status is published. If no ItemCre record exists on the
item_mfqueue table for this item, it is published as a flat message.

Volume 2 – Message publication and subscription designs 47

Create Item/Supplier
1 Prerequisites: The supplier and the item already exist.

2 Activity Detail: The item/supplier combination is inserted into the
item_supplier table. An ItemSupCre message type record is also inserted on
the item_mfqueue table.

3 Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Item/Supplier
1 Prerequisites: The item/supplier combination already exists.

2 Activity Detail: The item/supplier record is updated in the item_supplier
table. An ItemSupMod message type record is inserted on the item_mfqueue
table.

3 Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ItemSupCre message type exist on the item_mfqueue table
for this item/supplier, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

Delete Item/Supplier
1 Prerequisites: The item/supplier combination already exists and is not being

used somewhere in the system.

2 Activity Detail: The item/supplier record is deleted from the item_supplier
table and all child records from the item_supp_country and
item_supp_country_dim tables. An ItemSupDel message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier record. If records that
have an ItemCre and an ItemSupCre message type exist on the item_mfqueue
table for this item/supplier, the ItemSupCre and any ItemSupMod records are
deleted from the item_mfqueue table. Otherwise, it is published as a flat
message.

48 Retek Merchandising System

Create Item/Supplier/Country
1 Prerequisites: The supplier, country and the item already exist.

2 Activity Detail: The item/supplier/country combination is inserted into the
item_supp_country table. An ItemSupCtyCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country
1 Prerequisites: The item/supplier/country combination already exists.

2 Activity Detail: The item/supplier/country record is updated in the
item_supp_country table. An ItemSupCtyMod message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. If
records that have an ItemCre and an ItemSupCtyCre message type exist on
the item_mfqueue table for this item/supplier/country, the message is
updated with the “modify” message and published as part of the item
creation message when the item is approved. Otherwise, it is published as a
flat message.

Delete Item/Supplier/Country
1 Prerequisites: The item/supplier/country combination already exists.

2 Activity Detail: The item/supplier/country record is deleted from the
item_supp_country table and all child records from the
item_supp_country_dim table. An ItemSupCtyDel message type record is
inserted on the item_mfqueue table.

3 Messages: ItemSupCtyRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country record. If records
that have an ItemCre and an ItemSupCtyCre message type exist on the
item_mfqueue table for this item/supplier/country, the ItemSupCtyCre and
any ItemSupCtyMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

Volume 2 – Message publication and subscription designs 49

Create Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country already exists.

2 Activity Detail: The item/supplier/country/dimension combination is
inserted into the item_supp_country_dim table. An ISCDimCre message type
record is also inserted on the item_mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier/country/dimension record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country/dimension combination already

exists.

2 Activity Detail: The item/supplier/country/dimension record is updated in
the item_supp_country_dim table. An ISCDimMod message type record is
inserted on the item_mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ISCDimCre message type exist on the item_mfqueue table
for this item/supplier/country/dimension, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country/dimension combination already

exists.

2 Activity Detail: The item/supplier/country/dimension record is deleted from
the item_supp_country_dim table and all child records from the
item_supp_country and item_supp_country_dim tables. An ISCDimDel
message type record is inserted on the item_mfqueue table.

3 Messages: ISCDimRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country/dimension record.
If records that have an ItemCre and an ISCDimCre message type exist on the
item_mfqueue table for this item/supplier/country/dimension, the
ISCDimCre and any ISCDimMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

50 Retek Merchandising System

CreateRef_Item
1 Prerequisites: The parent item exists.

2 Activity Detail: The item is inserted into the item_master table. An
ItemUPCCre message type record is also inserted on the item_mfqueue table.

3 Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Ref_Item
1 Prerequisites: The reference item exists as a child item.

2 Activity Detail: The item record is updated in the item_master table. An
ItemUPCMod message type record is inserted on the item_mfqueue table.

3 Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. If records that have an
ItemCre and an ItemUPCCre message type exist on the item_mfqueue table
for this reference item, the message is updated with the “modify” message
and published as part of the item creation message when the item is
approved. Otherwise, it is published as a flat message.

Delete Ref_Item
1 Prerequisites: The reference item already exists as a child item.

2 Activity Detail: The reference item record is deleted from the item_master
table. An ItemUPCDel message type record is inserted on the item_mfqueue
table.

3 Messages: ItemUPCRef message type is created. It is a flat, synchronous
message containing the keys for this reference item record. If records that
have an ItemCre and an ItemUPCCre message type exist on the
item_mfqueue table for this reference item, the ItemUPCCre and any
ItemUPCMod records are deleted from the item_mfqueue table. Otherwise,
it is published as a flat message.

Create Pack Comp
1 Prerequisites: The pack item exists.

2 Activity Detail: The pack comp is inserted into the packitem_breakout
table. An ItemBOMCre message type record is also inserted on the
item_mfqueue table.

3 Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

Volume 2 – Message publication and subscription designs 51

Modify Pack Comp
1 Prerequisites: The pack comp exists for the pack.

2 Activity Detail: The pack comp record is updated in the packitem_breakout
table. An ItemBOMMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. If records that have an ItemCre
and an ItemBOMCre message type exist on the item_mfqueue table for this
pack comp, the message is updated with the “modify” message and published
as part of the item creation message when the item is approved. Otherwise, it
is published as a flat message.

Delete Pack Comp
1 Prerequisites: The pack comp already exists for the pack.

2 Activity Detail: The pack comp record is deleted from the
packitem_breakout table. The packitem_qty is retrieved from the
v_packitem_qty view. If the quantity for the pack comp is 0, an
ItemBOMDel message type record is inserted on the item_mfqueue table. If
the quantity for the pack comp greater than 0, an ItemBOMMod message
type record is inserted on the item_mfqueue table.

3 Messages: If the message type is ItemBOMDel, a ItemBOMRef message
type is created. It is a flat, synchronous message containing the keys for this
pack comp record. If records that have an ItemCre and an ItemBOMCre
message type exist on the item_mfqueue table for this pack comp, the
ItemBOMCre and any ItemBOMMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message. If the
message type is ItemBOMMod, a message is create and processed as
described in the Modify Pack Comp Messages section.

Create Item/Image
1 Prerequisites: The item already exists.

2 Activity Detail: The item/image combination is inserted into the
item_image table. An ItemImageCre message type record is also inserted on
the item_mfqueue table.

3 Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

52 Retek Merchandising System

Modify Item/Image
1 Prerequisites: The item/image combination already exists.

2 Activity Detail: The item/image record is updated in the item_image table.
An ItemImageMod message type record is inserted on the item_mfqueue
table.

3 Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. If records that have an ItemCre
and an ItemImageCre message type exist on the item_mfqueue table for this
item/image, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

Delete Item/Image
1 Prerequisites: The item/image combination already exists.

2 Activity Detail: The item/image record is deleted from the item_image
table. An ItemImageDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemImageRef message type is created. It is a flat, synchronous
message containing the keys for this item/image record. If records that have
an ItemCre and an ItemImageCre message type exist on the item_mfqueue
table for this item/image, the ItemImageCre and any ItemImageMod records
are deleted from the item_mfqueue table. Otherwise, it is published as a flat
message.

Create Item/UDA/FreeFormat
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/freeformat combination is inserted into the
uda_item_ff table. An ItemUDAFFCre message type record is also inserted
on the item_mfqueue table.

3 Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Volume 2 – Message publication and subscription designs 53

Modify Item/UDA/FreeFormat
1 Prerequisites: The item/uda/freeformat combination already exists.

2 Activity Detail: The item/uda/freeformat record is updated in the
uda_item_ff table. An ItemUDAFFMod message type record is inserted on
the item_mfqueue table.

3 Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. If records
that have an ItemCre and an ItemUDAFFCre message type exist on the
item_mfqueue table for this item/uda/freeformat, the message is updated with
the “modify” message and published as part of the item creation message
when the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/FreeFormat
1 Prerequisites: The item/uda/freeformat combination already exists.

2 Activity Detail: The item/uda/freeformat record is deleted from the
uda_item_ff table. An ItemUDAFFDel message type record is inserted on
the item_mfqueue table.

3 Messages: ItemUDAFFRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/freeformat
record. If records that have an ItemCre and an ItemUDAFFCre message type
exist on the item_mfqueue table for this item/uda/freeformat, the
ItemUDAFFCre and any ItemUDAFFMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

Create Item/UDA/LOV
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/lov combination is inserted into the
uda_item_lov table. An ItemUDALOVCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

54 Retek Merchandising System

Modify Item/UDA/LOV
1 Prerequisites: The item/uda/lov combination already exists.

2 Activity Detail: The item/uda/lov record is updated in the uda_item_lov
table. An ItemUDALOVMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. If records that
have an ItemCre and an ItemUDALOVCre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/LOV
1 Prerequisites: The item/uda/lov combination already exists.

2 Activity Detail: The item/uda/lov record is deleted from the uda_item_lov
table. An ItemUDALOVDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDALOVRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/lov record. If
records that have an ItemCre and an ItemUDALOVCre message type exist
on the item_mfqueue table for this item/uda/lov, the ItemUDALOVCre and
any ItemUDALOVMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

Create Item/UDA/Date
1 Prerequisites: The item already exists.

2 Activity Detail: The item/uda/date combination is inserted into the
uda_item_date table. An ItemUDADateCre message type record is also
inserted on the item_mfqueue table.

3 Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

Volume 2 – Message publication and subscription designs 55

Modify Item/UDA/Date
1 Prerequisites: The item/uda/date combination already exists.

2 Activity Detail: The item/uda/date record is updated in the uda_item_date
table. An ItemUDADateMod message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. If records that
have an ItemCre and an ItemUDADateCre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/Date
1 Prerequisites: The item/uda/date combination already exists.

2 Activity Detail: The item/uda/date record is deleted from the uda_item_lov
table. An ItemUDADateDel message type record is inserted on the
item_mfqueue table.

3 Messages: ItemUDADateRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/date record. If
records that have an ItemCre and an ItemUDADateCre message type exist on
the item_mfqueue table for this item/uda/date, the ItemUDADateCre and any
ItemUDADateMod records are deleted from the item_mfqueue table.
Otherwise, it is published as a flat message.

Delete an Item
1 Prerequisites: The item exists. An ‘A’(Approved) item can be deleted

when the user presses the “Cancel” button in the RMS dialogue after creating
and approving the item.

2 Activity Detail: The item record is deleted from the item_master table and
any child records that exist are deleted from the child tables. An ItemDel
message type record is inserted on the item_mfqueue table.

3 Message: ItemRef message type is created. It is a flat, synchronous
message containing the key for this item record. If a record that has an
ItemCre message type exists on the item_mfqueue table for this item, all
records for this item are deleted from the item_mfqueue table. Otherwise, it
is published as a flat message.

56 Retek Merchandising System

Triggers
Trigger Description (EC_TABLE_IEM_AIUDR): This trigger fires on any
insert, update or delete on the item_master table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ITEM_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

For transaction level items, sets action_type to ‘A’dd and message_type to
‘ItemHdrCre’.

For reference level items (below the transaction level), sets action_type to ‘A’dd
and message_type to ‘ItemUPCCre’.

Parent and grandparent items are not published.

On Update:

For transaction level items, sets action_type to ‘M’odify and message_type to
‘ItemHdrMod’.

For reference level items (below the transaction level), sets action_type to
‘M’odify and message_type to ‘ItemUPCMod’.

On Delete:

For transaction level items, sends only the item column value for the message.

For reference level items (below the transaction level), sends only the item and
item_parent column values for the message.

For transaction level items, sets action_type to ‘D’elete and message_type to
‘ItemHdrDel’.

For reference level items (below the transaction level), sets action_type to
‘D’elete and message_type to ‘ItemUPCDel’.

ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger
EC_TABLE_ITEM_AIUDR on insert, update and delete of the item_master
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type and the item type (transactional or reference) that is set
in the trigger. For transaction level items, it builds ItemRef xml messages for
delete statements, or ItemDesc xml messages for updates or inserts. For
reference items, it builds ItemUPCRef xml messages for delete statements, or
ItemUPCDesc xml messages for updates or inserts.

Volume 2 – Message publication and subscription designs 57

Trigger Description (EC_TABLE_ISP_AIUDR): This trigger fires on any insert,
update or delete on the item_supplier table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the
ITEMSUPPLIER_XML.BUILD_MESSAGE procedure to build the message.
The record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemSupCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemSupMod’.

On Delete:

Sends only the item and supplier column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemSupDel’.

ITEMSUPPLIER_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_ISP_AIUDR on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemSupRef xml
messages for delete statements, or ItemSupDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_ISC_AIUDR): This trigger fires on any
insert, update or delete on the item_supp_country table. It captures the data in
the “new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISC_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemSupCtyCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemSupCtyMod’.

On Delete:

Sends only the item, supplier and origin_country_id column values for the
message.

Sets action_type to ‘D’elete and message_type to ‘ItemSupCtyDel’.

58 Retek Merchandising System

ISC_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger EC_TABLE_ISC_AIUDR
on insert, update and delete of the item_supp_country table. This function gathers
all the data necessary to build the message that needs to be sent to the Retek
Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ItemSupCtyRef xml messages for
delete statements, or ItemSupCtyDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_ISD_AIUDR): This trigger fires on any
insert, update or delete on the item_supp_country_dim table. It captures the data
in the “new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISCD_XML.BUILD_MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ISCDimCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ISCDimMod’.

On Delete:

Sends only the item, supplier, origin_country_id and dim_object column values
for the message.

Sets action_type to ‘D’elete and message_type to ‘ISCDimDel’.

ISC_XML.BUILD_MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)– This function is called by the trigger EC_TABLE_ISC_AIUDR
on insert, update and delete of the item_supp_country_dim table. This function
gathers all the data necessary to build the message that needs to be sent to the
Retek Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ISCDimRef xml messages for
delete statements, or ISCDimDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_PKS_AIUDR: This trigger fires on any
insert, update or delete on the packitem_breakout table. It captures the data in
the “new” bind variables for inserts and updates. It captures the “old” data on
deletes. It populates a PL/SQL table with this data.

Trigger Description (EC_TABLE_PKS_IUDS: This trigger fires on any
insert, update or delete on the packitem_breakout table. It loops through the
PL/SQL table that was populated in the row trigger and determines the value for
the packitem quantity in the message based on what is retrieved from the
v_packsku_qty view and the DML event. It calls the
ITEMBOM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

If the v_packsku_qty quantity is equal to the record just added, it sets action_type
to ‘A’dd and message_type to ‘ItemBOMCre’. If not, it sets action_type to
‘M’odify and message_type to ‘ItemBOMMod’.

Volume 2 – Message publication and subscription designs 59

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemBOMMod’.

On Delete:

Sends only the pack_no and item column values for the message.

If the packitem quantity is 0, it sets action_type to ‘D’elete and message_type to
‘ItemBOMDel’.

If the absolute value of packitem quantity is greater than 0, it sets action_type to
‘M’odify and message_type to ‘ItemBOMMod’.

ITEMBOM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_PKS_IUDS on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemBOMRef xml
messages for delete statements, or ItemBOMDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_IIM_AIUDR): This trigger fires on any
insert, update or delete on the item_image table. It captures the data in the “new”
bind variables for inserts and updates. It captures the “old” data on deletes. It
sets the action type and message type and calls the
ITEMIMAGE_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemImageCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemImageMod’.

On Delete:

Sends only the item and image_name column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemImageDel’.

ITEMIMAGE_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_IIM_AIUDR on insert, update and delete of the item_image table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemImageRef xml
messages for delete statements, or ItemImageDesc xml messages for updates or
inserts.

60 Retek Merchandising System

Trigger Description (EC_TABLE_UIF_AIUDR): This trigger fires on any
insert, update or delete on the uda_item_ff table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDAFFCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDAFFMod’.

On Delete:

Sends only the item and uda_id column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDAFFDel’.

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UIF_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDAFFRef xml
messages for delete statements, or ItemUDAFFDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_UIL_AIUDR): This trigger fires on any
insert, update or delete on the uda_item_lov table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDALOVCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDALOVMod’.

On Delete:

Sends only the item, uda_id and uda_value column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDALOVDel’.

Volume 2 – Message publication and subscription designs 61

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UIL_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDALOVRef
xml messages for delete statements, or ItemUDALOVDesc xml messages for
updates or inserts.

Trigger Description (EC_TABLE_UID_AIUDR): This trigger fires on any
insert, update or delete on the uda_item_date table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
UDA_ITEM_XML.BUILD_MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message_type to ‘ItemUDADateCre’.

On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemUDADateMod’.

On Delete:

Sends only the item and uda_id column values for the message.

Sets action_type to ‘D’elete and message_type to ‘ItemUDADateDel’.

UDA_ITEM_XML.BUILD_MESSAGE(O_status, O_text, O_message,
I_record, I_action_type)– This function is called by the trigger
EC_TABLE_UID_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDADateRef
xml messages for delete statements, or ItemUDADateDesc xml messages for
updates or inserts.

62 Retek Merchandising System

Message Family Manager Procedures

Public Procedures:
ADDTOQ(O_status, O_text, I_queue_rec, I_message) – This procedure is
called by a DML event capture trigger, and takes the message type, family key
values and, for synchronously captured messages, the message itself.

First it checks the input parameter for the item status that is part of the
I_queue_rec input record. This input record is defined the package specification.
If the item status is ‘A’(approved), it sets a local variable to ‘Y’(yes) and uses
this local variable as the value for the approve_ind column in the insert
statement. It inserts a record into the item_mfqueue table using the sequence for
the table, the values from the input record parameter, the local variable for the
approve_ind and the input CLOB parameter that contains the data in XML
format.

GETNXT (O_status_code, O_error_msg, O_message_type, O_message,
O_item, O_supplier, O_country_id, O_dim_object, O_upc, O_bom_comp,
O_image_name, O_uda_id, O_uda_value, O_sellable_ind, I_num_threads,
I_thread_val)– This publicly exposed procedure is typically called by a RIB
publication adaptor. Its parameters are well defined and arranged in a specific
order. The message type is the RIB defined short message name, the message is
the xml message, and the family key(s) are the key for the message as pertains to
the family, not all of which will necessarily be populated for all message types.

The procedure produces a message through the following steps:

It loops through the item_mfqueue table records that have a pub_status of
‘U’(Unpublished).

If the return from the CREATE_PREVIOUS function is TRUE

• calls the CLEAN_QUEUE procedure.

• if the approve_ind column equals ‘Y’(Yes)

� calls the MAKE_CREATE procedure

� assigns all the output parameters with the values from the current
item_mfqueue row except for O_message which is returned from the
MAKE_CREATE procedure and sets O_status to
API_CODES.SUCCESS.

• if the CAN_CREATE returns FALSE, sets the pub_status field of the current
item_mfqueue row to ‘N’ and updates the row.

• If the return from the CREATE_PREVIOUS function is FALSE

• assigns all the output parameters with the values from the current
item_mfqueue row and set O_status to API_CODES.SUCCESS.

• call the DELETE_QUEUE_REC to delete the row from the item_mfqueue
table.

Volume 2 – Message publication and subscription designs 63

If no “publishable” messages are retrieved from the above steps the procedure
returns a status of ‘N’(No message).

Status code is one of five values, as shown in the following table. For more
discussion of the status codes, refer to the Error Handling Guidelines document
or the process flow in the following section. These codes come from an EAI team
defined RIB_CODES package.

Private Procedures:
These private procedures are only necessary when the initial create message is
hierarchical. If all messages in the family are flat, there is no need for these
procedures.

CREATE_PREVIOUS(O_status, O_text, I_queue_rec) – This function
determines if a header level create already exists on the queue table for the same
key value and with a sequence number less than the current records sequence
number.

It checks the item_mfqueue table for the existence of a row for that has an item
equal to the passed in value for item, a message type equal to the value of
ItemCre and a seq_no that is less than or equal to the passed in value for seq_no.
If such a row exists in the table, it returns TRUE.

CLEAN_QUEUE(O_status, O_text, I_queue_rec) – This procedure cleans up
the queue by eliminating modification messages. It is only called if
CREATE_PREVIOUS returns true. For each modification message type, it finds
the previous corresponding create message type. It then calls
REPLACE_QUEUE to copy the modify message into the create message and
calls DELETE_QUEUE_REC to delete the modify record. For each delete
message type, it finds the previous corresponding messages. It then calls
DELETE_QUEUE_REC to delete the create message record.

The following examples illustrate the flow of the logic in this procedure for the
item family:

First it checks the message_type passed to procedure for the value of any of the
item delete message types, i.e. ItemSupCtyDel, ItemUPCDel, etc. If the
message_type is a “delete” message, it deletes records from the item_mfqueue
table for the appropriate key values and for the seq_no less than or equal to the
passed in value for seq_no.

Example for the message type ItemSupCtyDel:
 delete from item_mfqueue

 where supplier = I_queue_rec.supplier

 and item = I_queue_rec.item

 and country = I_queue_rec.country

 and seq_no <= I_queue_rec.seq_no;

64 Retek Merchandising System

If the message_type is an “update” message such as ItemSupMod, it assigns the
corresponding “Add” message_type to a local variable.

Example for the message type ISCDimMod:
 L_create_type := ISCDimAdd;

If this local variable is not null and if the call to REPLACE_QUEUE returns
TRUE, it calls DELETE_QUEUE_REC to delete the row from item_mfqueue.

REPLACE_QUEUE(O_status, O_text, I_rec, I_message_type) – This
procedure replaces the message in the “create” message type record with the
message from a “Modify” message type record.

It locks the item_mfqueue table for all rows that have a seq_no less than the
passed in value for seq_no. It updates the message column with the passed in
value for message for the row that matches the key values passed in the record to
the function and that matches the message_type passed as a parameter. It uses
the nvl function for all key columns except item because these key values are
optional and dependent on the message_type.

DELETE_QUEUE_REC(O_status, O_text, I_seq_no) – This procedure
deletes from the item_mfqueue table the row that has the seq_no column value
equal to the sequence value passed to the procedure.

MAKE_CREATE(O_status, O_text, O_msg, I_queue_rec) – This procedure
combines the current message and all previous messages with the same key in the
queue table to create the complete hierarchical message. It first copies the header
clob into a local variable. It then creates a new message clob and appends the
clob in the local variable to the new clob. The remainder of this procedure gets
each of the details grouped by their document type and adds them to the new
message. When it is finished creating the new message, it deletes all the records
from the queue for that item with a sequence number less than or equal to the
current records sequence number. This new message is passed back to the bus.

For the Item this procedure is implemented as follows:

Two cursors are used. One cursor cursor retrieves the row from the
item_mfqueue table for the item_master message, the item is equal to the value
of the passed in item, the seq_no is less than the passed in seq_no and the
message_type is equal to ‘ItemCre’. The other cursor retrieves all the item
related messages for the item details, the item is equal to the value of the passed
in item, the seq_no is less than or equal to the sequence value passed to the
procedure and the message_type is equal message_type value passed to the
cursor. Order the second cursor by seq_no. A local procedure with parameters
for message_type and message_name, adds the detail message to the header
message. It loops through the second cursor with the value of the message type
parameter and do the following:

• It appends the message read in to the new message being created.

It adds all the item related detail messages by calling the local procedure
described above for each item detail and passing the message type and the
message name unique to the item detail. It uses the constants define in the
package spec for these values. The order for adding an item detail to the XML
message is specified in the item DTD.

Volume 2 – Message publication and subscription designs 65

Finally, it closes the new clob message and deletes all rows that comprise this
message from the item_mfqueue table.

Design Assumptions
• One of the primary assumptions in the current approach is that ease of code

will outweigh performance considerations. It is hoped that the ‘trickle’ nature
of the flow of data will decrease the need to dwell on performance issues and
instead allow developers to code in the easiest and most straight forward
manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
• Seebeyond can only handle 30 character procedure names. So, the entire

name of the call, package.procedure has to be within 30 characters. This only
applies to public procedures, not internal, private functions and procedures.

• Seebeyond insists, for some unknown reason, on unique parameter names for
functions. Therefore, each O_status must be unique for the public procedures
thus the AR, GR, etc, appending the parameter names. This only applies to
public procedures, not internal, private functions and procedures. Also
Seebeyond is expecting to map to certain output parameter names in the
GETNXT function.

66 Retek Merchandising System

Currency Exchange Rates Subscription Design

Functional Area
RMS subscribing to Currency Exchange Rates.

Design Overview

Data Flow
An external system will publish a currency exchange rate, thereby placing the
currency exchange rate information onto the RIB (Retek Information Bus). RMS
will subscribe to the currency exchange rate information as published from the
RIB and place the information onto RMS tables depending upon the validity of
the records enclosed within the message.

Message Structure
The currency exchange rate message is a flat message that will consist of a
currency exchange rate record.

The record will contain information about the currency exchange rate as a whole.

Subscription Procedures
Subscribing to a currency exchange rate message entails the use of one public
consume procedure. This procedure corresponds to the type of activity that can
be done to currency exchange rate record (in this case create/update).

Public API Procedures:
RMSSUB_CURRATECRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a currency exchange rate message consisting of the aforementioned
record. The procedure will then place a call to the main
RMSSUB_CURRXRATE.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the
currency exchange rate table depending upon the success of the validation.

Volume 2 – Message publication and subscription designs 67

Private Internal Functions and Procedures
(rmssub_curratecre.pls):

Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_CURRXRATE package and all errors that occur during subscription
in the RMSSUB_CURRATECRE package (and whatever packages it calls) will
flow through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_CURRXRATE.

Main Consume Function:

RMSSUB_CURRXRATE.CONSUME (O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle
CLOB data type from the RIB (I_message) from the aforementioned public
curratecre procedure whenever a message is made available by the RIB. This
message will consist of the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate currency exchange rate
database table depending upon the success of the validation.

68 Retek Merchandising System

XML Parsing:

PARSE_HEADER(O_ERROR_MESSAGE, O_CURR_RECORD,
I_CURR_ROOT) – This function will used to extract the currency exchange
rate level information from the Currency Exchange Rate XML file and place that
information onto an internal Currency Exchange Rate record.

Record is based upon the record type curr_rectype.

Validation:

PROCESS_HEADER(O_ERROR_MESSAGE, I_CURR_RECORD) – After
the values are parsed for a particular currency exchange rate record,
RMSSUB_CURRXRATE.CONSUME will call this function, which will in turn
call various functions inside RMSSUB_CURRXRATE in order to validate the
values and place them on the appropriate currency exchange rate table depending
upon the success of the validation. PROCESS_TERMS is called to actually
insert or update the currency exchange rate table.

Design Assumptions
• One of the primary assumptions in the current API approach is that ease of

code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most straight
forward manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 2 – Message publication and subscription designs 69

Freight Terms Subscription Design

Functional Area
RMS subscribing to Freight Terms.

Design Overview

Data Flow
An external system will publish a freight term, thereby placing the freight term
information onto the RIB (Retek Information Bus). RMS will subscribe to the
freight term information as published from the RIB and place the information
onto RMS tables depending upon the validity of the records enclosed within the
message.

Message Structure
The freight term message is a flat message that will consist of a freight term
record.

The record will contain information about the freight term as a whole.

Subscription Procedures
Subscribing to a freight term message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a freight term record (in this case create/update).

Public API Procedures
RMSSUB_FRTTERMCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a freight term message consisting of the aforementioned record. The
procedure will then place a call to the main RMSSUB_FTERM.CONSUME
function in order to validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the freight term table depending upon
the success of the validation.

70 Retek Merchandising System

Private Internal Functions and Procedures
(rmssub_frttermcre.pls):

Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_FTERM package and all errors that occur during subscription in the
RMSSUB_FRTTERMCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_FTERM:

Main Consume Function

RMSSUB_FTERM.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message) from the
aforementioned public frttermcre procedure whenever a message is made
available by the RIB. This message will consist of the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate freight term database
table depending upon the success of the validation.

XML Parsing:

PARSE_FTERM (O_ERROR_MESSAGE, O_FTERM_RECORD,
I_FTERM_ROOT) – This function will used to extract the freight term level
information from the Freight Term XML file and place that information onto an
internal Freight Term record.

Record is based upon the fterm_sql package record: fterm_record.

Volume 2 – Message publication and subscription designs 71

Validation:

PROCESS_FTERM(O_ERROR_MESSAGE, I_FTERM_RECORD) – After
the values are parsed for a particular freight term record,
RMSSUB_FTERM.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_FTERM in order to validate the values and
place them on the appropriate freight_terms table depending upon the success of
the validation. FTERM_SQL.PROCESS_TERMS is called to actually insert or
update the freight terms table.

Design Assumptions
• One of the primary assumptions in the current API approach is that ease of

code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most straight
forward manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

72 Retek Merchandising System

GL Chart of Accounts Subscription Design

Functional Area
General ledger chart of accounts

Design Overview

Data Flow
An external system will publish GL Chart of Accounts, thereby placing the GL
chart of accounts information onto the RIB (Retek Information Bus). RMS will
subscribe to the GL chart of accounts information as published from the RIB and
place the information onto RMS tables depending upon the validity of the records
enclosed within the message.

Message Structure
The GL chart of accounts message is a flat message that will consist of a GL
chart of accounts record.

The record will contain information about the GL chart of accounts as a whole.

Subscription Procedures
Subscribing to a GL chart of accounts message entails the use of one public
consume procedure. This procedure corresponds to the type of activity that can
be done to currency exchange rate record (in this case create/update).

Public API Procedures
RMSSUB_GLCOACRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a GL chart of accounts message consisting of the aforementioned
record. The procedure will then place a call to the main
RMSSUB_GLCACCT.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the gl
chart of accounts table depending upon the success of the validation.

Volume 2 – Message publication and subscription designs 73

Private Internal Functions and Procedures
(rmssub_glcoacre.pls):

Error Handling:
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_GLCACCT package and all errors that occur during subscription in
the RMSSUB_GLCOACRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_GLCACCT.

Main Consume Function
RMSSUB_GLCACCT.CONSUME (O_ERROR_MESSAGE, I_MESSAGE)
- This procedure accepts a XML file in the form of an Oracle CLOB data type
from the RIB (I_message) from the aforementioned public glcoa procedure
whenever a message is made available by the RIB. This message will consist of
the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate gl chart of accounts
database table depending upon the success of the validation.

XML Parsing:
PARSE_HEADER(O_ERROR_MESSAGE, O_GLACCT_RECORD,
I_GLACCT_ROOT) – This function will used to extract the GL chart of
accounts level information from the GL Chart of Accounts XML file and place
that information onto an internal GL Chart of Accounts record.

Record is based upon the record type glacct_rectype.

74 Retek Merchandising System

Validation:
PROCESS_HEADER(O_ERROR_MESSAGE, I_GLACCT_RECORD) –
After the values are parsed for a particular GL chart of accounts record,
RMSSUB_GLCACCT.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_GLCACCT in order to validate the values
and place them on the appropriate GL chart of accounts table depending upon the
success of the validation. PROCESS_GLACCT is called to actually insert or
update the GL chart of accounts table.

Design Assumptions
• One of the primary assumptions in the current API approach is that ease of

code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 2 – Message publication and subscription designs 75

Payment Terms Subscription Design

Functional Area
RMS subscribing to Payment Terms.

Design Overview

Data Flow
An external system will publish a payment term, thereby placing the payment
term information onto the RIB (Retek Information Bus). RMS will subscribe to
the payment term information as published from the RIB and place the
information onto RMS tables depending upon the validity of the records enclosed
within the message.

Message Structure
The payment term message is a flat message that will consist of a payment term
record.

The record will contain information about the payment term as a whole.

Subscription Procedures
Subscribing to a payment term message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a payment term record (in this case create/update).

Public API Procedures:
RMSSUB_PAYTERMCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a payment term message consisting of the aforementioned record.
The procedure will then place a call to the main RMSSUB_PTRM.CONSUME
function in order to validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the payment term table depending
upon the success of the validation.

76 Retek Merchandising System

Private Internal Functions and Procedures
(rmssub_paytermcre.pls):

Error Handling

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_PTRM package and all errors that occur during subscription in the
RMSSUB_PAYTERMCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_PTRM.

Main Consume Function:

RMSSUB_PTRM.CONSUME (O_ERROR_MESSAGE, I_MESSAGE) -
This procedure accepts a XML file in the form of an Oracle CLOB data type
from the RIB (I_message) from the aforementioned public paytermcre procedure
whenever a message is made available by the RIB. This message will consist of
the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate payment term database
table depending upon the success of the validation.

XML Parsing:

PARSE_HEADER(O_ERROR_MESSAGE, O_TERM_RECORD,
I_TERM_ROOT) – This function will used to extract the payment term level
information from the Payment Term XML file and place that information onto an
internal Payment Term record.

Record is based upon the record type pay_rectype.

Volume 2 – Message publication and subscription designs 77

Validation:

PROCESS_HEADER(O_ERROR_MESSAGE, I_TERM_RECORD) – After
the values are parsed for a particular payment term record,
RMSSUB_PTRM.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_PTRM in order to validate the values and
place them on the appropriate terms table depending upon the success of the
validation. PROCESS_TERMS is called to actually insert or update the payment
terms table.

Design Assumptions
• One of the primary assumptions in the current API approach is that ease of

code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

78 Retek Merchandising System

Supplier Subscription Design

Functional Area
RMS Subscribing to Supplier data.

Design Overview

Data Flow
An external system will publish a supplier, thereby placing the supplier
information onto the RIB (Retek Information Bus). RMS will subscribe to the
supplier information as published from the RIB and place the information onto
RMS tables depending upon the validity of the records enclosed within the
message.

Message Structure
The Supplier message is a hierarchical message that will consist of a supplier
header record, a series of address records under the header record.

The header record will contain information about the supplier as a whole. The
address records will identify the addresses associated with the supplier.

Subscription Procedures
Subscribing to a supplier message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a supplier record (in this case create/update).

Public API Procedures:
RMSSUB_VENDORCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a supplier message consisting of the aforementioned header and
detail records. The procedure will then place a call to the main
RMSSUB_SUPPLIER.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the
supplier and address tables depending upon the success of the validation.

Volume 2 – Message publication and subscription designs 79

Private Internal Functions and Procedures
(rmssub_vendorcre.pls):

Error Handling

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_SUPPLIER package and all errors that occur during subscription in
the RMSSUB_VENDORCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE_MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_SUPPLIER.

Main Consume Function:

RMSSUB_SUPPLIER.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I_MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message) from the
aforementioned public vendor procedure whenever a message is made available
by the RIB. This message will consist of the aforementioned header and detail
records.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate supplier and address
database tables depending upon the success of the validation.

XML Parsing:

PARSE_SUPPLIER (O_ERROR_MESSAGE, O_TABLE_LOCKED,
O_SUPPLIER_RECORD, I_SUPPLIER_ROOT) – This function will used to
extract the header level information from the Supplier XML file and place that
information onto an internal Supplier header record.

Record is based upon the supplier table:

SUPS%ROWTYPE;

80 Retek Merchandising System

PARSE_ADDRESS (O_ERROR_MESSAGE, O_TABLE_LOCKED,
O_ADDRESS_RECORD, I_ADDR_NODE) – This function will used to
extract the address level information from the Supplier XML file and place that
information onto an internal address record.

Record is based upon the address table:

ADDR%ROWTYPE;

Validation

PROCESS_SUPPLIER(O_ERROR_MESSAGE, O_TABLE_LOCKED,
IO_SUPPLIER_RECORD) – After the values are parsed for a particular
supplier record, RMSSUB_SUPPLIER.CONSUME will call this function, which
will in turn call various functions inside RMSSUB_SUPPLIER in order to
validate the values and place them on the appropriate supplier table depending
upon the success of the validation. Either INSERT_SUPPLIER or
UPDATE_SUPPLIER is called to actually insert or update the supplier table.

PROCESS_ADDRESS(O_ERROR_MESSAGE, O_TABLE_LOCKED,
I_SUPPLIER_NO, I_ADDRESS_RECORD) – After the values are parsed for
a particular address record, RMSSUB_SUPPLIER.CONSUME will call this
function, which will in turn call various functions inside RMSSUB_SUPPLIER
in order to validate the values and place them on the appropriate address table
depending upon the success of the validation. Either INSERT_ADDRESS or
UPDATE_ADDRESS is called to actually insert or update the address table.

Design Assumptions
• One of the primary assumptions in the current API approach is that ease of

code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

• The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues
Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 4 – Batch designs 81

Volume 4 – Batch designs
The following batch program designs have been updated for RMS 10.1 and are
included in this section:

• DEALUPLD

• DITINSRT

• EDIDLCON

• EDIDLORD

• EDIUPCAT

• ONORDEXT

• POSDNLD

• POSUPLD

• PRECOSTCALC

• PRMPCUPD

• SOUTDNLD

• TCKTDNLD

• VATDLXPL

• WASTEADJ

82 Retek Merchandising System

 Deal upload [dealupld]
Design Overview

This program will read a Retek flat file, which was created by an external
program and will upload information from this file to the following Deals
Management tables in RMS: DEAL_HEAD, DEAL_DETAIL,
DEAL_THRESHOLD, DEAL_ITEMLOC, POP_TERMS_DEF.

The external program will translate the standard EDI upload file into the RMS
format specified below and will also translate the content of the EDI input file
into RMS values (that is: a location’s DUNS number to its RMS number) using
the RMS database.

Dealupld.pc will take the above output file and use it as an input file to upload
data into the Deals Management RMS database. The LUW is a single Deal Head
Detail record and its associated component records in the input file. Therefore in
each loop of the program one deal is uploaded at a time.

The program will verify that check constraints are not violated before the inserts
actually take place. If a validation fails, a warning is written to the batch error file
and the program resumes processing. Once the deal is processed, a check is made
whether any warnings occurred. If yes, no insert occurs to the database but the
entire deal is written to the reject file. This allows the user to see not only the first
validation failure, but all of them before the deal was written out to the reject file.

See Section XIII Design Assumptions for more information on how records in
the input file should be formatted and looped.

Stored Procedures / Shared Modules (Maintainability)

DEAL_SEQUENCE – This sequence is used to get the next deal_id for the deal
being uploaded.

Input Specifications

‘File-To-Table’

All fields that are of type Char in the input file format description above should
be left justified and padded with the space character. If the field is not required
and no value is being uploaded, the entire field should be padded with the space
character.

Date fields are always formatted ‘YYYYMMDDHH24MISS’ (Char(14)).

All fields that are of type Number in the input file format description above
should be right justified and padded with 0s. If the field is not required and no
value is being uploaded, the entire field should be padded with 0s. All Number
fields which have an implied decimal (for example: Number(10,4), but not
Number(8)) are in effect the length of the number PLUS its decimal places. (for
example: 14 byte wide field to hold a Number(10,4).) The program will upload
the value formatted to include the 4 decimal digits (for example: Number(10,4):
01234567891234 -> 123456789.1234, Number(6,2): 12345600 -> 123456.00).
Therefore if a number of size Number(20,4) is uploaded, this number will take up
24 bytes in the input file.

Volume 4 – Batch designs 83

The input file must have the following structure:
FHEAD
{
 THEAD of DHDTL REQUIRED for deal head record
 TDETL REQUIRED 1 deal head record
 TTAIL REQUIRED end of deal head record
 THEAD of DCDTL REQUIRED for deal component records
 [
 TDETL OPTIONAL for deal component records

]
 TTAIL REQUIRED end of deal component records
 THEAD of DIDTL REQUIRED for item-loc records
 [
 TDETL OPTIONAL for item-loc records
]
 TTAIL REQUIRED end of item-loc records
 THEAD of PPDTL REQUIRED for proof of performance records
 [
 TDETL OPTIONAL for proof of performance records
]
 TTAIL REQUIRED end of proof of performance records
 THEAD of DTDTL REQUIRED for threshold records
 [
 TDETL OPTIONAL for threshold records
]
 TTAIL REQUIRED end of threshold records
}
FTAIL

The set between the curly brackets may be looped to upload multiple deals from
the same file. Within each set, the TDETL records in angle brackets may be sub-
looped as a sub-set of the main set.

See Section XIII Design Assumptions for more information on how records in
the input file should be formatted and looped.

Input File

Record
Name

Field Name Field Type Default Value Description/Constraints

File
Header

File Type
Record
Descriptor

Char(5) FHEAD Identifies file record type (the
beginning of the input file).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 File Type
Definition

Char(5) EDIDU Identifies file as ‘EDI Deals
Upload’

 File Create
Date

Char(14) Create date current date, formatted to
‘YYYYMMDDHH24MISS’.

84 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on

Header

File Type
Record

Descriptor

Char(5) THEAD Identifies file record type to
upload a new deal header.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DHDTL Identifies file record type Deal
Header. This record MUST BE
FOLLOWED BY ONE AND
ONLY ONE REQUIRED TDETL
RECORD that holds the deal head
information.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
a new deal.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Partner Type Char(6) REQUIRED Type of the partner the deal applies
to. Valid values are ‘S’ for a
supplier, 'S1' for supplier hierarchy
level 1 (e.g. manufacturer), 'S2' for
supplier hierarchy level 2 (e.g.
distributor) and 'S3' for supplier
hierarchy level 3 (e.g. wholesaler).
Descriptions of these codes will be
held on the codes table under a
code_type of 'SUHL'.

Information pertaining to a single
deal has to belong to the same
supplier, since a deal may have only
one supplier hierarchy associated
with it. Only items with the same
supplier hierarchy can be on the
same deal. Supplier hierarchy is
stored at an item / supplier / country
/ location level.

Volume 4 – Batch designs 85

Record
Name

Field Name Field Type Default Value Description/Constraints

 Partner Id Char(10) Blank (space
character
string)

Level of supplier hierarchy (e.g.
manufacturer, distributor or
wholesaler), set up as a partner in
the PARTNER table, used for
assigning rebates by a level other
than supplier. Rebates at this level
will include all eligible
supplier/item/country records
assigned to this supplier hierarchy
level.

This field is required if the Partner
Type field was set to ‘S1’, ‘S2’ or
‘S3’. This field must be blank if the
Partner Type field was set to ‘S’.

 Supplier Number(10) Blank (space
character
string)

Deal supplier's number. This
supplier can be at any level of
supplier hierarchy.

This field is required if the Partner
Type field was set to ‘S’. This field
must be blank if the Partner Type
field was set to ‘S1’, ‘S2’ or ‘S3’.

 Type Char(6) REQUIRED Type of the deal. Valid values are
A for annual deal, P for promotional
deal, O for PO-specific deal or M
for vendor-funded markdown. Deal
types will be held on the codes table
under a code type of 'DLHT'.

 Currency
Code

Char(3) Blank (space
character
string)

Currency code of the deal's
currency. All costs on the deal will
be held in this currency.

If Type is 'O', 'P' or 'A', then
Currency Code may not be blank.
Currency Code has to be blank if
Type is 'M'.

 Active Date Char(14) REQUIRED Date the deal will become active.
This date will determine when deal
components begin to be factored
into item costs. For a PO-specific
deal, the active_date will be the
order's written date.

86 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Close Date Char(14) Blank (space
character
string)

Date the deal will/did end. This
date determines when deal
components are no longer factored
into item costs. It is optional for
annual deals, required for
promotional deals. It will be left
NULL for PO-specific deals.

Close Date must not be blank if
Type is 'P' or ‘M’. Close Date has to
be blank if Type is 'O'.

 External
Reference
Number

Char(30) Blank (space
character
string)

Any given external reference
number that is associated with the
deal.

 Order Number Number(8) Blank (space
character
string)

Order the deal applies to, if the deal
is PO-specific.

 Recalculate
Approved
Orders

Char(1) REQUIRED Indicates if approved orders should
be recalculated based on this deal
once the deal is approved. Valid
values are Y for yes or N for no.

Valid values are ‘Y’ and ‘N’.

 Comments Char(2000) Blank (space
character
string)

Free-form comments entered with
the deal.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail). For DHDTL
TDETL records this will always be
1!

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

Volume 4 – Batch designs 87

Record
Name

Field Name Field Type Default Value Description/Constraints

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DCDTL Identifies file record type of sub
loop as Deal Component Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal components.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Deal
Component
Type

Char(6) REQUIRED Type of the deal component, user-
defined and stored on the
DEAL_COMP_TYPE table.

 Application
Order

Number(10) Blank (space
character
string)

Number indicating the order in
which the deal component should be
applied with respect to any other
deal components applicable to the
item within the deal. This number
will be unique across all deal
components within the deal. It must
be NULL for an M-type deal
(vendor funded markdown).

 Billing Type Char(6) REQUIRED Billing type of the deal component.
Valid values are 'OI' for off-invoice,
'BD' for bill-back with debit memo
or 'BC' for bill-back with credit note
request. Billing types will be held
on the codes table under a code type
of 'DLBT'.

88 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Bill Back
Period

Char(6) Blank (space
character
string)

Code that identifies the bill-back
period for the deal component. This
field will only be populated for
billing types of 'BD' or 'BC'. Bill
back period codes will be user-
defined and stored on the
BILL_BACK_PERIOD table.

If Billing Type is 'BD' or 'BC' then
Bill Back Period must not be blank,
otherwise it has to be blank.

 Collect Start
Date

Char(14) Blank (space
character
string)

Date that collection of the bill-back
should begin.

If Billing Type is 'BD' or 'BC' then
Collect Start Date must not be
blank, otherwise it has to be blank.

 Collect End
Date

Char(14) Blank (space
character
string)

Date that collection of the bill-back
should end.

If Billing Type is 'BD' or 'BC' then
Collect End Date must not be blank,
otherwise it has to be blank.

 Deal
Application
Timing

Char(6) Blank (space
character
string)

Indicates when the deal component
should be applied - at PO approval
or time of receiving. Valid values
are 'O' for PO approval, 'R' for
receiving. These values will be held
on the codes tables under a code
type of 'AALC'. It must be NULL
for an M-type deal (vendor funded
markdown).

 Cost
Application
Level
Indicator

Char(6) Blank (space
character
string)

Indicates what cost bucket the deal
component should affect. Valid
values are 'N' for net cost, 'NN' for
net net cost and 'DNN' for dead net
net cost. These values will be held
on the codes tables under a code
type of 'DLCA'. It must be NULL
for an M-type deal (vendor funded
markdown).

Volume 4 – Batch designs 89

Record
Name

Field Name Field Type Default Value Description/Constraints

 Pricing Cost
Indicator

Char(1) REQUIRED Identifies deal components that
should be included when calculating
a pricing cost.

Valid values are ‘Y’es and ‘N’o.

 Deal Class Char(6) Blank (space
character
string)

Identifies the calculation class of the
deal component. Valid values are
'CU' for cumulative (discounts are
added together and taken off as one
lump sum), 'CS' for cascade
(discounts are taken one at a time
with subsequent discounts taken off
the result of the previous discount)
and 'EX' for exclusive (overrides all
other discounts). 'EX' type deal
components are only valid for
promotional deals. Deal classes will
be held on the codes table under a
code type of 'DLCL'. It must be
NULL for an M-type deal (vendor
funded markdown).

 Threshold
Limit Type

Char(6) Blank (space
character
string)

Identifies whether thresholds will be
set up as qty values, currency
amount values or percentages
(growth rebates only). Valid values
are 'Q' for qty, 'A' for currency
amount or 'P' for percentage.
Threshold limit types will be held
on the codes table under a code type
of 'DLLT'. It must be NULL for an
M-type deal (vendor funded
markdown) or if the threshold value
type is ‘Q’ (buy/get deals).

If Growth Rebate Indicator is 'Y',
then the Threshold Limit Type has
to be 'P', otherwise 'Q', 'A' or NULL.

90 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Threshold
Limit Unit of
Measure

Char(4) Blank (space
character
string)

Unit of measure of the threshold
limits, if the limit type is quantity.
Only Unit of Measures with a UOM
class of 'VOL' (volume), 'MASS' or
'QTY' (quantity) can be used in this
field. Valid Unit of Measures can be
found on the UOM_CLASS table.

If the Threshold Limit Type is 'A' or
'P', then Threshold Limit Unit of
Measure has to be blank. If the
Threshold Limit Type is 'Q',
Threshold Limit Unit of Measure
must not be blank. If Threshold
Limit Type is blank, Threshold
Limit Unit of Measure must be
blank.

 Threshold
Value Type

Char(6) Blank (space
character
string)

Identifies whether the discount
values associated with the
thresholds will be set up as qty
values, currency amount values,
percentages or fixed amounts. Valid
values are 'Q' for qty, 'A' for
currency amount, 'P' for percentage
or 'F' for fixed amount. Qty
threshold value (buy/get) deals are
only allowed on off-invoice
discounts. Deal threshold value
types will be held on the codes table
under a code type of 'DLL2'. It
must be NULL for an M-type deal
(vendor funded markdown).

If Billing Type is 'BD' or 'BC', then
the Threshold Value Type must not
be 'Q'.

 Buy Item Char(25) Blank (space
character
string)

Identifies the item that must be
purchased for a quantity threshold-
type discount. This value is
required for quantity threshold value
type discounts. Otherwise it has to
be blank.

Volume 4 – Batch designs 91

Record
Name

Field Name Field Type Default Value Description/Constraints

 Get Type Char(6) Blank (space
character
string)

Identifies the type of the 'get'
discount for a quantity threshold-
type (buy/get) discount. Valid
values include 'X' (free), 'P'
(percent), 'A' (amount) and 'F' (fixed
amount). They are held on the
codes table under a code type of
'DQGT'. This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

 Get Value Number(20,4) All 0s. Identifies the value of the 'get'
discount for a quantity threshold-
type (buy/get) discount that is not a
'free goods' deal. The Get Type
above identifies the type of this
value. This value is required for
quantity threshold value type deals
that are not a Get Type of free.
Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’ or ‘F’, then
Get Value must not be blank. If the
Get Type is ‘X’ or blank, then Get
Value has to be blank.

 Buy Item
Quantity

Number(12,4) All 0s. Identifies the quantity of the
threshold 'buy' item that must be
ordered to qualify for the 'free' item.
This value is required for quantity
threshold value type discounts.
Otherwise it has to be 0.

 Recursive
Indicator

Char(1) REQUIRED For 'buy/get free' discounts,
indicates if the quantity threshold
discount is only for the first 'buy
amt.' purchased (e.g. for the first 10
purchased, get 1 free), or if a free
item will be given for every multiple
of the 'buy amt' purchased on the
order (e.g. for each 10 purchased,
get 1 free). Valid values are 'Y' for
yes or 'N' for no.

If the Get Type is blank, then
Recursive Indicator has to be ‘N’.

92 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Buy Item
Order Target
Quantity

Number(12,4) All 0s. Indicates the targeted purchase level
for all locations on a purchase order.
This is the target level that will be
used for future calculation of net
cost. This value is required for
quantity threshold value type deals.
Otherwise it has to be 0.

 Average Buy
Item Order
Target
Quantity Per
Location

Number(12,4) All 0s. Indicates the average targeted
purchase level per location on the
deal. This value will be used in
future cost calculations. This value
is required for quantity threshold
value type deals. Otherwise it has to
be 0.

 Get Item Char(25) Blank (space
character
string)

Identifies the 'get' item for a
quantity threshold-type (buy/get)
discount. This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

If Get Type is ‘P’, ‘A’, ‘F’ or ‘X’,
then Get Item must not be blank. If
the Get Type is blank, then Get Item
has to be blank.

 Get Quantity Number(12,4) All 0s. Identifies the quantity of the
identified 'get' item that will be
given at the specified 'get' discount
if the 'buy amt' of the buy item is
purchased. This value is required
for quantity threshold value type
discounts. Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’, ‘F’ or ‘X’,
then Get Quantity must not be 0. If
the Get Type is blank, then Get
Quantity has to be 0.

Volume 4 – Batch designs 93

Record
Name

Field Name Field Type Default Value Description/Constraints

 Free Item Unit
Cost

Number(20,4) All 0s. For 'buy/get free' discounts,
identifies the unit cost of the
threshold 'free' item that will be
used in calculating the prorated qty.
discount. It will default to the
item/supplier cost, but can be
modified based on the agreement
with the supplier. It must be greater
than zero as this is the cost that
would normally be charged for the
goods if no deal applied.

If Get Type is ‘P’, ‘A’, ‘F’ or blank,
then Free Item Unit Cost must be 0.
If the Get Type is ‘X’, then Free
Item Unit Cost must not be 0.

 Transaction
Level
Discount
Indicator

Char(1) REQUIRED Indicates if the discount is a
transaction-level discount (e.g. 10%
across an entire PO).

Valid Values are 'Y' or 'N'. If set to
‘Y’, Deal Class has to be ‘CU’ and
Billing Type has to be ‘OI’. No
DIDTL or PPDTL records may be
present for a Transaction Level
Discount DCDTL record.

 Rebate
Indicator

Char(1) REQUIRED Indicates if the deal component is a
rebate. Deal components can only
be rebates for bill-back billing types.
Valid values are 'Y' for yes or 'N' for
no.

If Billing Type is 'OI', then Rebate
Indicator must be 'N'.

 Rebate Active
Date

Char(14) Blank (space
character
string)

If the rebate becomes active on a
different date than the deal active
date, this field will hold that date. If
this field is NULL for a rebate line,
it will be assumed that the rebate
becomes active on the deal active
date.

94 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Rebate
Calculation
Type

Char(6) Blank (space
character
string)

Indicates if the rebate should be
calculated using linear or scalar
calculation methods. Valid values
are 'L' for linear or 'S' for scalar.
This field will be required if the
rebate indicator is 'Y'. Rebate
calculation types will be held on the
codes table under a code type of
'DLCT'.

If Rebate Indicator is 'Y', then
Rebate Calculation Type must not
be blank. Otherwise it has to be
blank.

 Growth
Rebate
Indicator

Char(1) REQUIRED Indicates if the rebate is a growth
rebate, meaning it is calculated and
applied based on an increase in
purchases or sales over a specified
period of time. Valid values are 'Y'
for yes or 'N' for no.

If Rebate Indicator is 'N', then
Growth Rebate Indicator must be
‘N’.

 Historical
Comparison
Start Date

Char(14) Blank (space
character
string)

The first date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Historical Comparison Start
Date must not be blank. Otherwise it
must be blank.

Volume 4 – Batch designs 95

Record
Name

Field Name Field Type Default Value Description/Constraints

 Historical
Comparison
End Date

Char(14) Blank (space
character
string)

The last date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Historical Comparison End
Date must not be blank. Otherwise it
must be blank.

 Current
Comparison
Start Date

Char(14) Blank (space
character
string)

The first date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Current Comparison Start Date
must not be blank. Otherwise it
must be blank.

 Current
Comparison
End Date

Char(14) Blank (space
character
string)

The last date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Current Comparison End Date
must not be blank. Otherwise it
must be blank.

96 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Rebate
Purchases or
Sales
Application
Indicator

Char(6) Blank (space
character
string)

Indicates if the rebate should be
applied to purchases or sales. Valid
values are 'P' for purchases or 'S' for
sales. It will be required if the
rebate indicator is 'Y'. Rebate
purchase/sales indicators will be
held on the codes table under a code
type of 'DLRP'.

If the Rebate Indicator is 'Y', then
the Rebate Purchases or Sales
Application Indicator must not be
blank. Otherwise it has to be blank.

 Comments Char(2000) Blank (space
character
string)

Free-form comments entered with
the deal component.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DIDTL Identifies file record type of sub
loop as Deal Component Item-
location Detail.

Volume 4 – Batch designs 97

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal item-location details.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Merchandise
Level

Char(6) REQUIRED Indicates what level of the
merchandise hierarchy the record is
at. Valid values include '1' for
company-wide (all items), '2' for
division, '3' for group, '4' for dept, '5'
for class, '6' for subclass, '7' for line,
'8' for line/diff 1, '9' for line/diff 2,
’10 for line/diff 3, ’11 for line/diff
4, and '12' for item. These level
types will be held on the codes table
under a code type of 'DIML'.

 Company
Indicator

Char(1) REQUIRED Indicates if the deal component is
applied company-wide (e.g. all
items in the system will be included
in the discount or rebate). Valid
values are 'Y' for yes and 'N' for no.

 Division Number(4) Blank (space
character
string).

ID of the division included in or
excluded from the deal component.
Valid values are on the DIVISION
table.

If Group is not blank, then Division
must not be blank. If Merchandise
Level is 2, then Division must not
be blank and Group, Department,
Class and Subclass must be blank.

 Group Number(4) Blank (space
character
string).

ID of the group included in or
excluded from the deal component.
Valid values are on the GROUPS
table.

If Department is not blank, then
Group must not be blank. If
Merchandise Level is 3, then Group
must not be blank and Department,
Class and Subclass must be blank.

98 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Department Number(4) Blank (space
character
string).

ID of the department included in or
excluded from the deal component.
Valid values are on the DEPS table.

If Class is not blank, then
Department must not be blank. If
Merchandise Level is 4, then
Department must not be blank and
Class and Subclass must be blank.

 Class Number(4) Blank (space
character
string).

ID of the class included in or
excluded from the deal component.
Valid values are on the CLASS
table.

If Subclass is not blank, then Class
must not be blank. If Merchandise
Level is 5, then Class must not be
blank and Subclass must be blank.

 Subclass Number(4) Blank (space
character
string).

ID of the subclass included in or
excluded from the deal component.
Valid values are on the SUBCLASS
table.

If Merchandise Level is 6 or more
than 6, then Subclass must not be
blank.

 Item Parent Char(25) Blank (space
character
string)

Alphanumeric value that uniquely
identifies the item/group at the level
above the item. This value must
exist as an item in another row on
the item_master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

Volume 4 – Batch designs 99

Record
Name

Field Name Field Type Default Value Description/Constraints

 Item
Grandparent

Char(25) Blank (space
character
string)

Alphanumeric value that uniquely
identifies the item/group two levels
above the item. This value must
exist as both an item and an item
parent in another row on the
item_master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

 Diff 1 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 1 must be blank.
If Merchandise Level is 8, then Diff
1 must not be blank.

 Diff 2 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 2 must be blank.
If Merchandise Level is 9, then Diff
2 must not be blank.

 Diff 3 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 3 must be blank.
If Merchandise Level is 10, then
Diff 3 must not be blank.

 Diff 4 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 4 must be blank.
If Merchandise Level is 11, then
Diff 4 must not be blank.

100 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Organizationa
l Level

Char(6) Blank (space
character
string)

Indicates what level of the
organizational hierarchy the record
is at. Valid values include '1' for
chain, '2' for area, '3' for region, '4'
for district and '5' for location.
These level types will be held on the
codes table under a code type of
'DIOL'.

If company indicator is N, this must
not be blank. If location type is
warehouse or location list, this must
be 5.

 Chain Number(4) Blank (space
character
string).

ID of the chain included in or
excluded from the deal component.
Valid values are on the CHAIN
table.

If org. level is 1, this field must not
be blank.

 Area Number(4) Blank (space
character
string).

ID of the area included in or
excluded from the deal component.
Valid values are on the AREA table.

If org. level is 2, this field and chain
must not be blank.

 Region Number(4) Blank (space
character
string).

ID of the region included in or
excluded from the deal component.
Valid values are on the REGION
table.

If org. level is 3, this field, area, and
chain must not be blank.

 District Number(4) Blank (space
character
string).

ID of the district included in or
excluded from the deal component.
Valid values are on the DISTRICT
table.

If org. level is 4, then this field,
region, area, and chain must not be
blank.

Volume 4 – Batch designs 101

Record
Name

Field Name Field Type Default Value Description/Constraints

 Location Number(10) Blank (space
character
string).

ID of the location included in or
excluded from the deal component.
Valid values are on the STORE,
WH, or LOC_LIST_HEAD table.

If org. level is 5, this field must not
be blank. Chain, area, region, and
district should be blank if the
loc_type is L or W. If the loc_type
is S, then they all must not be blank.

If Location Type is not blank, then
Location must not be blank.
Otherwise it has to be blank.

 Origin
Country
Identifier

Char(3) Blank (space
character
string)

Origin country of the item that the
deal component should apply to.

 Location Type Char(1) Blank (space
character
string)

Type of the location referenced in
the location field. Valid values are
'S' and 'W'. Location types will be
held on the codes table under the
code type 'LOC3'.

If location is blank then this field
has to be blank also.

 Item Char(25) Blank (space
character
string)

Unique alphanumeric value that
identifies the item.

If Merchandise Level is 12, then
Item must not be blank.

 Exclusion
Indicator

Char(1) REQUIRED Indicates if the deal component
item/location line is included in the
deal component or excluded from it.
Valid values are 'Y' for yes or 'N' for
no.

 Reference
Line

Number(10) REQUIRED This value determines which line in
the input file this item-loc record
belongs to. See the section XIII
Design Assumptions for more
explanation on how this field should
be populated.

102 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) PPDTL Identifies file record type of sub
loop as Proof of Performance Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal proof of performance details.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Deal Sub Item Char(25) Specific transaction level (or below)
item that’s proof of performance is
being measured. This can be
populated when the deal itself is on
a case UPC but the proof of
performance is on an individual
selling unit.

 Proof of
Performance
Type

Char(6) REQUIRED Code that identifies the proof of
performance type (i.e. term is that
the item must be displayed on an
end cap for 28 days - the pop_type
is code 'E' for end cap display).
Valid values for this field are stored
in the code_type = 'PPT'. This field
is required by the database.

Volume 4 – Batch designs 103

Record
Name

Field Name Field Type Default Value Description/Constraints

 Proof of
Performance
Value

Number(20,4) All 0s. Value that describes the term of the
proof of performance type (i.e. term
is that the item must be displayed on
an end cap for 28 days - the
pop_value is 28). This field is
required by the database if the
record has a pop_value_type.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

 Proof of
Performance
Value Type

Char(6) Blank (space
character
string)

Value that describes the type of the
pop_value (i.e. term is that the item
must be displayed on an end cap for
28 days - the pop_value_type is the
code 'D' for days). Valid values for
this field are stored in the code_type
= 'PPVT'. This field is required by
the database if the record has a
pop_value.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

 Vendor
Recommende
d Start Date

Char(14) Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
begin.

 Vendor
Recommende
d End Date

Char(14) Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
end.

 Planned Start
Date

Char(14) Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to begin the POP.

 Planned End
Date

Char(14) Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to end the POP.

104 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Comment Char(255) Blank (space
character
string)

Free-form comments.

 Reference
Line

Number(10) REQUIRED This value determines which line in
the input file this Proof of
Performance record belongs to. See
the Assumptions section for more
explanation on how this field should
be populated.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DTDTL Identifies file record type of sub
loop as Deal Component Threshold
Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal threshold details.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

Volume 4 – Batch designs 105

Record
Name

Field Name Field Type Default Value Description/Constraints

 Lower Limit Number(20,4) REQUIRED Lower limit of the deal component.
This is the minimum value that must
be met in order to get the specified
discount. This value will be either a
currency amount or quantity value,
depending on the value in the
deal_detail.threshold_limit_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Upper Limit Number(20,4) REQUIRED Upper limit of the deal component.
This is the maximum value for
which the specified discount will
apply. This value will be either a
currency amount or quantity value,
depending on the value in the
deal_detail.threshold_limit_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Value Number(20,4) REQUIRED Value of the discount that will be
given for meeting the specified
thresholds for this deal component.
This value will be either a currency
amount or quantity value, depending
on the value in the
deal_detail.threshold_value_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Target Level
Indicator

Char(1) REQUIRED Indicates if a threshold level is the
targeted purchase or sales level for a
deal component. This indicator will
be used for cost calculations. Valid
values are 'Y' for yes and 'N' for no.

 Reference
Line

Number(10) REQUIRED This value determines which line in
the input file this Threshold record
belongs to. See the Assumptions
section for more explanation on how
this field should be populated.

106 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

File
Trailer

File Line
Identifier

Char(5) FTAIL Identifies file record type (the end of
the input file).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 File Record
Counter

Numeric
ID(10)

Sequential
number
Created by
program.

Number of records/transactions in
current file (only records between
head & tail)

Output Specifications

‘Table-To-Table’

Reject File

Record
Name

Field Name Field Type Default Value Description/Constraints

File
Header

File Type
Record
Descriptor

Char(5) FHEAD Identifies file record type (the
beginning of the input file).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 File Type
Definition

Char(5) EDIDU Identifies file as ‘EDI Deals
Upload’

 File Create
Date

Char(14) Create date current date, formatted to
‘YYYYMMDDHH24MISS’.

Volume 4 – Batch designs 107

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal header.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DHDTL Identifies file record type Deal
Header. This record MUST BE
FOLLOWED BY ONE AND
ONLY ONE REQUIRED TDETL
RECORD that holds the deal head
information.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
a new deal.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Partner Type Char(6) REQUIRED Type of the partner the deal applies
to. Valid values are ‘S’ for a
supplier, 'S1' for supplier hierarchy
level 1 (e.g. manufacturer), 'S2' for
supplier hierarchy level 2 (e.g.
distributor) and 'S3' for supplier
hierarchy level 3 (e.g. wholesaler).
Descriptions of these codes will be
held on the codes table under a
code_type of 'SUHL'.

Information pertaining to a single
deal has to belong to the same
supplier, since a deal may have only
one supplier hierarchy associated
with it. Only items with the same
supplier hierarchy can be on the
same deal. Supplier hierarchy is
stored at an item / supplier / country
/ location level.

108 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Partner Id Char(10) Blank (space
character
string)

Level of supplier hierarchy (e.g.
manufacturer, distributor or
wholesaler), set up as a partner in
the PARTNER table, used for
assigning rebates by a level other
than supplier. Rebates at this level
will include all eligible
supplier/item/country records
assigned to this supplier hierarchy
level.

This field is required if the Partner
Type field was set to ‘S1’, ‘S2’ or
‘S3’. This field must be blank if the
Partner Type field was set to ‘S’.

 Supplier Number(10
)

Blank (space
character
string)

Deal supplier's number. This
supplier can be at any level of
supplier hierarchy.

This field is required if the Partner
Type field was set to ‘S’. This field
must be blank if the Partner Type
field was set to ‘S1’, ‘S2’ or ‘S3’.

 Type Char(6) REQUIRED Type of the deal. Valid values are
A for annual deal, P for promotional
deal, O for PO-specific deal or M
for vendor-funded markdown. Deal
types will be held on the codes table
under a code type of 'DLHT'.

 Currency
Code

Char(3) Blank (space
character
string)

Currency code of the deal's
currency. All costs on the deal will
be held in this currency.

If Type is 'O', 'P' or 'A', then
Currency Code may not be blank.
Currency Code has to be blank if
Type is 'M'.

 Active Date Char(14) REQUIRED Date the deal will become active.
This date will determine when deal
components begin to be factored
into item costs. For a PO-specific
deal, the active_date will be the
order's written date.

Volume 4 – Batch designs 109

Record
Name

Field Name Field Type Default Value Description/Constraints

 Close Date Char(14) Blank (space
character
string)

Date the deal will/did end. This
date determines when deal
components are no longer factored
into item costs. It is optional for
annual deals, required for
promotional deals. It will be left
NULL for PO-specific deals.

Close Date must not be blank if
Type is 'P' or ‘M’. Close Date has to
be blank if Type is 'O'.

 External
Reference
Number

Char(30) Blank (space
character
string)

Any given external reference
number that is associated with the
deal.

 Order Number Number(8) Blank (space
character
string)

Order the deal applies to, if the deal
is PO-specific.

 Recalculate
Approved
Orders

Char(1) REQUIRED Indicates if approved orders should
be recalculated based on this deal
once the deal is approved. Valid
values are Y for yes or N for no.

Valid values are ‘Y’ and ‘N’.

 Comments Char(2000) Blank (space
character
string)

Free-form comments entered with
the deal.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail). For DHDTL
TDETL records this will always be
1!

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

110 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DCDTL Identifies file record type of sub
loop as Deal Component Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal components.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Deal
Component
Type

Char(6) REQUIRED Type of the deal component, user-
defined and stored on the
DEAL_COMP_TYPE table.

 Application
Order

Number(10
)

Blank (space
character
string)

Number indicating the order in
which the deal component should be
applied with respect to any other
deal components applicable to the
item within the deal. This number
will be unique across all deal
components within the deal. It must
be NULL for an M-type deal
(vendor funded markdown).

 Billing Type Char(6) REQUIRED Billing type of the deal component.
Valid values are 'OI' for off-invoice,
'BD' for bill-back with debit memo
or 'BC' for bill-back with credit note
request. Billing types will be held
on the codes table under a code type
of 'DLBT'.

Volume 4 – Batch designs 111

Record
Name

Field Name Field Type Default Value Description/Constraints

 Bill Back
Period

Char(6) Blank (space
character
string)

Code that identifies the bill-back
period for the deal component. This
field will only be populated for
billing types of 'BD' or 'BC'. Bill
back period codes will be user-
defined and stored on the
BILL_BACK_PERIOD table.

If Billing Type is 'BD' or 'BC' then
Bill Back Period must not be blank,
otherwise it has to be blank.

 Collect Start
Date

Char(14) Blank (space
character
string)

Date that collection of the bill-back
should begin.

If Billing Type is 'BD' or 'BC' then
Collect Start Date must not be
blank, otherwise it has to be blank.

 Collect End
Date

Char(14) Blank (space
character
string)

Date that collection of the bill-back
should end.

If Billing Type is 'BD' or 'BC' then
Collect End Date must not be blank,
otherwise it has to be blank.

 Deal
Application
Timing

Char(6) Blank (space
character
string)

Indicates when the deal component
should be applied - at PO approval
or time of receiving. Valid values
are 'O' for PO approval, 'R' for
receiving. These values will be held
on the codes tables under a code
type of 'AALC'. It must be NULL
for an M-type deal (vendor funded
markdown).

 Cost
Application
Level
Indicator

Char(6) Blank (space
character
string)

Indicates what cost bucket the deal
component should affect. Valid
values are 'N' for net cost, 'NN' for
net net cost and 'DNN' for dead net
net cost. These values will be held
on the codes tables under a code
type of 'DLCA'. It must be NULL
for an M-type deal (vendor funded
markdown).

112 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Pricing Cost
Indicator

Char(1) REQUIRED Identifies deal components that
should be included when calculating
a pricing cost.

Valid values are ‘Y’es and ‘N’o.

 Deal Class Char(6) Blank (space
character
string)

Identifies the calculation class of the
deal component. Valid values are
'CU' for cumulative (discounts are
added together and taken off as one
lump sum), 'CS' for cascade
(discounts are taken one at a time
with subsequent discounts taken off
the result of the previous discount)
and 'EX' for exclusive (overrides all
other discounts). 'EX' type deal
components are only valid for
promotional deals. Deal classes will
be held on the codes table under a
code type of 'DLCL'. It must be
NULL for an M-type deal (vendor
funded markdown).

 Threshold
Limit Type

Char(6) Blank (space
character
string)

Identifies whether thresholds will be
set up as qty values, currency
amount values or percentages
(growth rebates only). Valid values
are 'Q' for qty, 'A' for currency
amount or 'P' for percentage.
Threshold limit types will be held
on the codes table under a code type
of 'DLLT'. It must be NULL for an
M-type deal (vendor funded
markdown) or if the threshold value
type is ‘Q’ (buy/get deals).

If Growth Rebate Indicator is 'Y',
then the Threshold Limit Type has
to be 'P', otherwise 'Q', 'A' or NULL.

Volume 4 – Batch designs 113

Record
Name

Field Name Field Type Default Value Description/Constraints

 Threshold
Limit Unit of
Measure

Char(4) Blank (space
character
string)

Unit of measure of the threshold
limits, if the limit type is quantity.
Only Unit of Measures with a UOM
class of 'VOL' (volume), 'MASS' or
'QTY' (quantity) can be used in this
field. Valid Unit of Measures can be
found on the UOM_CLASS table.

If the Threshold Limit Type is 'A' or
'P', then Threshold Limit Unit of
Measure has to be blank. If the
Threshold Limit Type is 'Q',
Threshold Limit Unit of Measure
must not be blank. If Threshold
Limit Type is blank, Threshold
Limit Unit of Measure must be
blank.

 Threshold
Value Type

Char(6) Blank (space
character
string)

Identifies whether the discount
values associated with the
thresholds will be set up as qty
values, currency amount values,
percentages or fixed amounts. Valid
values are 'Q' for qty, 'A' for
currency amount, 'P' for percentage
or 'F' for fixed amount. Qty
threshold value (buy/get) deals are
only allowed on off-invoice
discounts. Deal threshold value
types will be held on the codes table
under a code type of 'DLL2'. It
must be NULL for an M-type deal
(vendor funded markdown).

If Billing Type is 'BD' or 'BC', then
the Threshold Value Type must not
be 'Q'.

 Buy Item Char(25) Blank (space
character
string)

Identifies the item that must be
purchased for a quantity threshold-
type discount. This value is
required for quantity threshold value
type discounts. Otherwise it has to
be blank.

114 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Get Type Char(6) Blank (space
character
string)

Identifies the type of the 'get'
discount for a quantity threshold-
type (buy/get) discount. Valid
values include 'X' (free), 'P'
(percent), 'A' (amount) and 'F' (fixed
amount). They are held on the
codes table under a code type of
'DQGT'. This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

 Get Value Number(20
,4)

All 0s. Identifies the value of the 'get'
discount for a quantity threshold-
type (buy/get) discount that is not a
'free goods' deal. The Get Type
above identifies the type of this
value. This value is required for
quantity threshold value type deals
that are not a Get Type of free.
Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’ or ‘F’, then
Get Value must not be blank. If the
Get Type is ‘X’ or blank, then Get
Value has to be blank.

 Buy Item
Quantity

Number(12
,4)

All 0s. Identifies the quantity of the
threshold 'buy' item that must be
ordered to qualify for the 'free' item.
This value is required for quantity
threshold value type discounts.
Otherwise it has to be 0.

 Recursive
Indicator

Char(1) REQUIRED For 'buy/get free' discounts,
indicates if the quantity threshold
discount is only for the first 'buy
amt.' purchased (e.g. for the first 10
purchased, get 1 free), or if a free
item will be given for every multiple
of the 'buy amt' purchased on the
order (e.g. for each 10 purchased,
get 1 free). Valid values are 'Y' for
yes or 'N' for no.

If the Get Type is blank, then
Recursive Indicator has to be ‘N’.

Volume 4 – Batch designs 115

Record
Name

Field Name Field Type Default Value Description/Constraints

 Buy Item
Order Target
Quantity

Number(12
,4)

All 0s. Indicates the targeted purchase level
for all locations on a purchase order.
This is the target level that will be
used for future calculation of net
cost. This value is required for
quantity threshold value type deals.
Otherwise it has to be 0.

 Average Buy
Item Order
Target
Quantity Per
Location

Number(12
,4)

All 0s. Indicates the average targeted
purchase level per location on the
deal. This value will be used in
future cost calculations. This value
is required for quantity threshold
value type deals. Otherwise it has to
be 0.

 Get Item Char(25) Blank (space
character
string)

Identifies the 'get' item for a
quantity threshold-type (buy/get)
discount. This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

If Get Type is ‘P’, ‘A’, ‘F’ or ‘X’,
then Get Item must not be blank. If
the Get Type is blank, then Get Item
has to be blank.

 Get Quantity Number(12
,4)

All 0s. Identifies the quantity of the
identified 'get' item that will be
given at the specified 'get' discount
if the 'buy amt' of the buy item is
purchased. This value is required
for quantity threshold value type
discounts. Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’, ‘F’ or ‘X’,
then Get Quantity must not be 0. If
the Get Type is blank, then Get
Quantity has to be 0.

116 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Free Item Unit
Cost

Number(20
,4)

All 0s. For 'buy/get free' discounts,
identifies the unit cost of the
threshold 'free' item that will be
used in calculating the prorated qty.
discount. It will default to the
item/supplier cost, but can be
modified based on the agreement
with the supplier. It must be greater
than zero as this is the cost that
would normally be charged for the
goods if no deal applied.

If Get Type is ‘P’, ‘A’, ‘F’ or blank,
then Free Item Unit Cost must be 0.
If the Get Type is ‘X’, then Free
Item Unit Cost must not be 0.

 Transaction
Level
Discount
Indicator

Char(1) REQUIRED Indicates if the discount is a
transaction-level discount (e.g. 10%
across an entire PO).

Valid Values are 'Y' or 'N'. If set to
‘Y’, Deal Class has to be ‘CU’ and
Billing Type has to be ‘OI’. No
DIDTL or PPDTL records may be
present for a Transaction Level
Discount DCDTL record.

 Rebate
Indicator

Char(1) REQUIRED Indicates if the deal component is a
rebate. Deal components can only
be rebates for bill-back billing types.
Valid values are 'Y' for yes or 'N' for
no.

If Billing Type is 'OI', then Rebate
Indicator must be 'N'.

 Rebate Active
Date

Char(14) Blank (space
character
string)

If the rebate becomes active on a
different date than the deal active
date, this field will hold that date. If
this field is NULL for a rebate line,
it will be assumed that the rebate
becomes active on the deal active
date.

Volume 4 – Batch designs 117

Record
Name

Field Name Field Type Default Value Description/Constraints

 Rebate
Calculation
Type

Char(6) Blank (space
character
string)

Indicates if the rebate should be
calculated using linear or scalar
calculation methods. Valid values
are 'L' for linear or 'S' for scalar.
This field will be required if the
rebate indicator is 'Y'. Rebate
calculation types will be held on the
codes table under a code type of
'DLCT'.

If Rebate Indicator is 'Y', then
Rebate Calculation Type must not
be blank. Otherwise it has to be
blank.

 Growth
Rebate
Indicator

Char(1) REQUIRED Indicates if the rebate is a growth
rebate, meaning it is calculated and
applied based on an increase in
purchases or sales over a specified
period of time. Valid values are 'Y'
for yes or 'N' for no.

If Rebate Indicator is 'N', then
Growth Rebate Indicator must be
‘N’.

 Historical
Comparison
Start Date

Char(14) Blank (space
character
string)

The first date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Historical Comparison Start
Date must not be blank. Otherwise it
must be blank.

118 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Historical
Comparison
End Date

Char(14) Blank (space
character
string)

The last date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Historical Comparison End
Date must not be blank. Otherwise it
must be blank.

 Current
Comparison
Start Date

Char(14) Blank (space
character
string)

The first date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Current Comparison Start Date
must not be blank. Otherwise it
must be blank.

 Current
Comparison
End Date

Char(14) Blank (space
character
string)

The last date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y',
then Current Comparison End Date
must not be blank. Otherwise it
must be blank.

Volume 4 – Batch designs 119

Record
Name

Field Name Field Type Default Value Description/Constraints

 Rebate
Purchases or
Sales
Application
Indicator

Char(6) Blank (space
character
string)

Indicates if the rebate should be
applied to purchases or sales. Valid
values are 'P' for purchases or 'S' for
sales. It will be required if the
rebate indicator is 'Y'. Rebate
purchase/sales indicators will be
held on the codes table under a code
type of 'DLRP'.

If the Rebate Indicator is 'Y', then
the Rebate Purchases or Sales
Application Indicator must not be
blank. Otherwise it has to be blank.

 Comments Char(2000) Blank (space
character
string)

Free-form comments entered with
the deal component.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DIDTL Identifies file record type of sub
loop as Deal Component Item-
location Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal item-location details.

120 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Merchandise
Level

Char(6) REQUIRED Indicates what level of the
merchandise hierarchy the record is
at. Valid values include '1' for
company-wide (all items), '2' for
division, '3' for group, '4' for dept, '5'
for class, '6' for subclass, '7' for line,
'8' for line/diff 1, '9' for line/diff 2,
'10' for line/diff 3, '11' for line/diff
4 and '12' for item. These level
types will be held on the codes table
under a code type of 'DIML'.

 Company
Indicator

Char(1) REQUIRED Indicates if the deal component is
applied company-wide (e.g. all
items in the system will be included
in the discount or rebate). Valid
values are 'Y' for yes and 'N' for no.

 Division Number(4) Blank (space
character
string).

ID of the division included in or
excluded from the deal component.
Valid values are on the DIVISION
table.

If Group is not blank, then Division
must not be blank. If Merchandise
Level is 2, then Division must not
be blank and Group, Department,
Class and Subclass must be blank.

 Group Number(4) Blank (space
character
string).

ID of the group included in or
excluded from the deal component.
Valid values are on the GROUPS
table.

If Department is not blank, then
Group must not be blank. If
Merchandise Level is 3, then Group
must not be blank and Department,
Class and Subclass must be blank.

Volume 4 – Batch designs 121

Record
Name

Field Name Field Type Default Value Description/Constraints

 Department Number(4) Blank (space
character
string).

ID of the department included in or
excluded from the deal component.
Valid values are on the DEPS table.

If Class is not blank, then
Department must not be blank. If
Merchandise Level is 4, then
Department must not be blank and
Class and Subclass must be blank.

 Class Number(4) Blank (space
character
string).

ID of the class included in or
excluded from the deal component.
Valid values are on the CLASS
table.

If Subclass is not blank, then Class
must not be blank. If Merchandise
Level is 5, then Class must not be
blank and Subclass must be blank.

 Subclass Number(4) Blank (space
character
string).

ID of the subclass included in or
excluded from the deal component.
Valid values are on the SUBCLASS
table.

If Merchandise Level is 6 or more
than 6, then Subclass must not be
blank.

 Item Parent Char(25) Blank (space
character
string)

Alphanumeric value that uniquely
identifies the item/group at the level
above the item. This value must
exist as an item in another row on
the item_master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

122 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Item
Grandparent

Char(25) Blank (space
character
string)

Alphanumeric value that uniquely
identifies the item/group two levels
above the item. This value must
exist as both an item and an item
parent in another row on the
item_master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

 Diff 1 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 1 must be blank.
If Merchandise Level is 8, then Diff
1 must not be blank.

 Diff 2 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 2 must be blank.
If Merchandise Level is 9, then Diff
2 must not be blank.

 Diff 3 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 3 must be blank.
If Merchandise Level is 10, then
Diff 3 must not be blank.

 Diff 4 Char(10) Blank (space
character
string)

Diff_group or diff_id that
differentiates the current item from
its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 4 must be blank.
If Merchandise Level is 11, then
Diff 4 must not be blank.

Volume 4 – Batch designs 123

Record
Name

Field Name Field Type Default Value Description/Constraints

 Organizationa
l Level

Char(6) Blank (space
character
string)

Indicates what level of the
organizational hierarchy the record
is at. Valid values include '1' for
chain, '2' for area, '3' for region, '4'
for district and '5' for location.
These level types will be held on the
codes table under a code type of
'DIOL'.

If company indicator is N, this must
not be blank. If location type is
warehouse or location list, this must
be 5.

 Chain Number(4) Blank (space
character
string).

ID of the chain included in or
excluded from the deal component.
Valid values are on the CHAIN
table.

If org. level is 1, this field must not
be blank.

 Area Number(4) Blank (space
character
string).

ID of the area included in or
excluded from the deal component.
Valid values are on the AREA table.

If org. level is 2, this field and chain
must not be blank.

 Region Number(4) Blank (space
character
string).

ID of the region included in or
excluded from the deal component.
Valid values are on the REGION
table.

If org. level is 3, this field, area, and
chain must not be blank.

 District Number(4) Blank (space
character
string).

ID of the district included in or
excluded from the deal component.
Valid values are on the DISTRICT
table.

If org. level is 4, then this field,
region, area, and chain must not be
blank.

124 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Location Number(10
)

Blank (space
character
string).

ID of the location included in or
excluded from the deal component.
Valid values are on the STORE,
WH, or LOC_LIST_HEAD table.

If org. level is 5, this field must not
be blank. Chain, area, region, and
district should be blank if the
loc_type is L or W. If the loc_type
is S, then they all must not be blank.

If Location Type is not blank, then
Location must not be blank.
Otherwise it has to be blank.

 Origin
Country
Identifier

Char(3) Blank (space
character
string)

Origin country of the item that the
deal component should apply to.

 Location Type Char(1) Blank (space
character
string)

Type of the location referenced in
the location field. Valid values are
'S' and 'W'. Location types will be
held on the codes table under the
code type 'LOC3'.

If location is blank then this field
has to be blank also.

 Item Char(25) Blank (space
character
string)

Unique alphanumeric value that
identifies the item.

If Merchandise Level is 12, then
Item must not be blank.

 Exclusion
Indicator

Char(1) REQUIRED Indicates if the deal component
item/location line is included in the
deal component or excluded from it.
Valid values are 'Y' for yes or 'N' for
no.

 Reference
Line

Number(10
)

REQUIRED This value determines which line in
the input file this item-loc record
belongs to. See the section XIII
Design Assumptions for more
explanation on how this field should
be populated.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

Volume 4 – Batch designs 125

Record
Name

Field Name Field Type Default Value Description/Constraints

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) PPDTL Identifies file record type of sub
loop as Proof of Performance Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal proof of performance details.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Deal Sub Item Char(25) Specific transaction level (or below)
item that’s proof of performance is
being measured. This can be
populated when the deal itself is on
a case UPC but the proof of
performance is on an individual
selling unit.

 Proof of
Performance
Type

Char(6) REQUIRED Code that identifies the proof of
performance type (i.e. term is that
the item must be displayed on an
end cap for 28 days - the pop_type
is code 'E' for end cap display).
Valid values for this field are stored
in the code_type = 'PPT'. This field
is required by the database.

126 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Proof of
Performance
Value

Number(20
,4)

All 0s. Value that describes the term of the
proof of performance type (i.e. term
is that the item must be displayed on
an end cap for 28 days - the
pop_value is 28). This field is
required by the database if the
record has a pop_value_type.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

 Proof of
Performance
Value Type

Char(6) Blank (space
character
string)

Value that describes the type of the
pop_value (i.e. term is that the item
must be displayed on an end cap for
28 days - the pop_value_type is the
code 'D' for days). Valid values for
this field are stored in the code_type
= 'PPVT'. This field is required by
the database if the record has a
pop_value.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

 Vendor
Recommende
d Start Date

Char(14) Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
begin.

 Vendor
Recommende
d End Date

Char(14) Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
end.

 Planned Start
Date

Char(14) Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to begin the POP.

 Planned End
Date

Char(14) Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to end the POP.

Volume 4 – Batch designs 127

Record
Name

Field Name Field Type Default Value Description/Constraints

 Comment Char(255) Blank (space
character
string)

Free-form comments.

 Reference
Line

Number(10
)

REQUIRED This value determines which line in
the input file this Proof of
Performance record belongs to. See
the Assumptions section for more
explanation on how this field should
be populated.

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

Transacti
on Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type to upload
a new deal sub loop.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Detail Record
Type

Char(5) DTDTL Identifies file record type of sub
loop as Deal Component Threshold
Detail.

Transacti
on Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type to upload
deal threshold details.

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

128 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description/Constraints

 Lower Limit Number(20
,4)

REQUIRED Lower limit of the deal component.
This is the minimum value that must
be met in order to get the specified
discount. This value will be either a
currency amount or quantity value,
depending on the value in the
deal_detail.threshold_limit_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Upper Limit Number(20
,4)

REQUIRED Upper limit of the deal component.
This is the maximum value for
which the specified discount will
apply. This value will be either a
currency amount or quantity value,
depending on the value in the
deal_detail.threshold_limit_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Value Number(20
,4)

REQUIRED Value of the discount that will be
given for meeting the specified
thresholds for this deal component.
This value will be either a currency
amount or quantity value, depending
on the value in the
deal_detail.threshold_value_type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

 Target Level
Indicator

Char(1) REQUIRED Indicates if a threshold level is the
targeted purchase or sales level for a
deal component. This indicator will
be used for cost calculations. Valid
values are 'Y' for yes and 'N' for no.

 Reference
Line

Number(10
)

REQUIRED This value determines which line in
the input file this Threshold record
belongs to. See the Assumptions
section for more explanation on how
this field should be populated.

Volume 4 – Batch designs 129

Record
Name

Field Name Field Type Default Value Description/Constraints

Transacti
on Trailer

File Line
Identifier

Char(5) TTAIL Identifies file record type (the end of
the transaction detail).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 Transaction
Record
Counter

Numeric
ID(6)

Sequential
number
Created by
program.

Number of records/transactions in
current transaction set (only records
between thead & ttail)

File
Trailer

File Line
Identifier

Char(5) FTAIL Identifies file record type (the end of
the input file).

 File Line
Identifier

Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being read from
input file.

 File Record
Counter

Numeric
ID(10)

Sequential
number
Created by
program.

Number of records/transactions in
current file (only records between
head & tail)

Information from the input file is uploaded into the following Deals Management
tables:

• DEAL_HEAD

• DEAL_DETAIL

• DEAL_THRESHOLD

• DEAL_ITEMLOC

• POP_TERMS_DEF

130 Retek Merchandising System

Function Level Description

 main()

init() final()file_proces
()

Process_DHDTL()

Process_DCDTL()

Process_DIDTL()

Process_PPDTL()

Process_DTDTL()

Validate_item()

Validate_DHDTL()

Validate_DCDTL()

Validate_DIDTL()

Validate_PPDTL()

Validate_DTDTL()

Write_reject()

Insert_data()

Find_line_number()
Validate_item_hier()

Validate_loc_hier()

Verify_DCDTL()

Validate_item_supplie
()

Volume 4 – Batch designs 131

Declare reject file line number counter(s) and structs to hold data fetched from
input file until one deal is complete and to process validation. Declare global
variables as needed. The following single record structs are needed:

• A struct to hold the FHEAD record.

• A struct to hold the THEAD record.

• A struct to hold the DHDTL record + system fields for the insert into RMS
(eg: deal_id, line-number).

Declare sizeable structs to hold the potentially multi-line sub loops of a DHDTL
record from the input file:

• A struct to hold TDETL of DCDTL records + system fields for the insert into
RMS (eg: deal_id, line-number).

• A struct to hold TDETL of DIDTL records + system fields for the insert into
RMS (eg: deal_id, line-number).

• A struct to hold TDETL of DTDTL records + system fields for the insert into
RMS (eg: deal_id).

• A struct to hold TDETL of PPDTL records + system fields for the insert into
RMS (eg: deal_id).

Main(): Standard RETEK main function.

• Log on to DATABASE.

• Calls init(), process() and final().

• Log appropriate messages for batch run based on return from above calls.

Init(): Handles restart/recovery initialization, populates global system variables
for batch run. Opens input file, and reject output file.

Size_structs(): This function will size the four sizeable structs:

• A struct to hold TDETL of DCDTL records.

• A struct to hold TDETL of DIDTL records.

• A struct to hold TDETL of DTDTL records.

• A struct to hold TDETL of PPDTLrecords.

Resize_DCDTL_array(): grows the struct to hold TDETL of DCDTL records.

Resize_DIDTL_array(): grows the struct to hold TDETL of DDTL records.

Resize_DTDTL_array(): grows the struct to hold TDETL of DTDTL records.

Resize_PPDTL_array(): grows the struct to hold TDETL of PPDTL records.

File_process(): This function will call the rest of the functions necessary to
process the input file while it loops through the input file.

• Call size_structs().

• Loop-get records from input file:

132 Retek Merchandising System

� Save current file position of this record into a local variable in case
something in the deal gets rejected and we need to write the entire
deal and its sub-records to the reject file.

� When FTAIL record is reached, break out of loop.

� Get THEAD record, make sure it signals a DHDTL record to follow.

� Call process_DHDTL().

� Get THEAD record, make sure it signals a DCDTL record to follow.

� Call process_DCDTL().

� Get THEAD record, make sure it signals a DIDTL record to follow.

� Call process_DIDTL().

� Get THEAD record, make sure it signals a PPDTL record to follow.

� Call process_PPDTL().

� Get THEAD record, make sure it signals a DTDTL record to follow.

� Call process_DTDTL().

� If sub function returned code to signal a failed validation, set a local
variable to reflect a non-fatal error.

� Call insert_data() or write_reject() depending on whether any non-
fatal errors have been recorded.

� Set restart variables and force a commit.

• Return.

Process_DHDTL(): This function manages the processing of a DHDTL record.

• Fetch new deal_id.

• Get next line from input file, verify that it holds a TDETL.

• Insert DHDTL record from generic file-read buffer to the DHDTL struct,
perform any nullpad or zeropad as necessary. Also insert line number of
record into struct.

• Validate the DHDTL record by calling validate_DHDTL().

• If validation failed, write a non-fatal error and set return code so that
file_process() knows it needs to dump records into the reject file.

• If validation of the DHDTL record passed, return code representing this
status.

Validate_DHDTL(): Check information fetched from file to make sure it is
complete and accurate.

• Make sure all required fields have a value other than the default.

• Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

• If an order number is given, verify it exists in RMS.

Volume 4 – Batch designs 133

• If a supplier is given, verify it exists in RMS.

Process_DCDTL(): This function manages the processing of DCDTL records.

• Create deal_detail_id.

• Loop process:

� Get next line from input file, verify that it holds a TDETL. If it is a
TTAIL, break.

� Insert DCDTL record from generic file-read buffer to the DCDTL
struct, perform any nullpad or zeropad as necessary. Also insert line
number of record, deal_id and deal_detail_id into struct.

� Validate DCDTL record by calling validate_DCDTL().

� If validation failed, write a non-fatal error and set return code so that
file_process() knows it needs to dump records into the reject file.

� If validation passed, go on processing the next record after
incrementing counters and variables as necessary.

Validate_DCDTL(): Check information fetched from file to make sure it is
complete and accurate.

• Make sure all required fields have a value other than the default.

• Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Process_DIDTL(): This function manages the processing of DIDTL records.

• Create seq_no.

• Loop process:

� Get next line from input file, verify that it holds a TDETL. If it is a
TTAIL, break.

� Insert DIDTL record from generic file-read buffer to the DIDTL struct,
perform any nullpad or zeropad as necessary. Also insert line number of
record and seq_no into struct.

� Validate DIDTL record by calling validate_DIDTL().

� Call find_line_number() to get the index of the record and which struct
the record is in that this DIDTL record belongs to. At this level, verify
that the line number was found in the DCDTL struct and copy over the
deal_id and deal_detail_id into this struct. If the referenced DCDTL
record that this DIDTL record belongs to has a type ‘M’ (vendor-funded
markdown), there must be no DIDTL records. If the DCDTL record this
DIDTL record is associated with is a Transaction Level Discount, write
an error message.

� If validation failed, write a non-fatal error and set return code so that
file_process() knows it needs to dump records into the reject file.

� If validation passed, go on processing the next record after incrementing
counters and variables as necessary.

134 Retek Merchandising System

Validate_DIDTL(): Check information fetched from file to make sure it is
complete and accurate.

• Make sure all required fields have a value other than the default.

• Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Process_PPDTL(): This function manages the processing of PPDTL records.

• Create pop_def_seq_no.

• Loop process:

� Get next line from input file, verify that it holds a TDETL. If it is a
TTAIL, break.

� Insert PPDTL record from generic file-read buffer to the PPDTL struct,
perform any nullpad or zeropad as necessary. Also insert
pop_def_seq_no into struct.

� Validate PPDTL record by calling validate_PPDTL().

� Call find_line_number() to get the index of the record and which struct
the record is in that this PPDTL record belongs to. Copy over the
deal_id, and deal_detail_id, and seq_no if available into this struct. If the
referenced DCDTL record that this PPDTL record belongs to is a
Transaction Level Deal, there must be no PPDTL records.

� Validate deal_sub_item, which needs to be blank unless referenced
record for this PPDTL record is a DIDTL record, in which case
deal_sub_item must be a child or component item of the item in the
referenced DIDTL record.

� If validation failed, write a non-fatal error and set return code so that
file_process() knows it needs to dump records into the reject file.

� If validation passed, go on processing the next record after incrementing
counters and variables as necessary.

Validate_PPDTL(): Check information fetched from file to make sure it is
complete and accurate.

• Make sure all required fields have a value other than the default.

• Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

• Make sure that if both Vendor Recommended Start Date and Vendor
Recommended End Date are given, then the start date is before the end date.

• Make sure that if both Planned Start Date and Planned End Date are given,
then the start date is before the end date.

• Make sure that the current deal is not of type M (Vendor Funded
Markdown). Such deals should have no PPDTL records.

Process_DTDTL(): This function manages the processing of DTDTL records.

Volume 4 – Batch designs 135

• Loop process:

� Get next line from input file, verify that it holds a TDETL. If it is a
TTAIL, break.

� Insert DTDTL record from generic file-read buffer to the DTDTL struct,
perform any nullpad or zeropad as necessary.

� Validate DTDTL record by calling validate_DTDTL().

� Call find_line_number() to get the index of the record and which struct
the record is in that this DTDTL record belongs to. At this level, verify
that the line number was found in the DCDTL struct and copy over the
deal_id, and deal_detail_id into this struct. If the referenced DCDTL
record that this DTDTL record belongs to has a type ‘M’ (vendor-funded
markdown), there must be no DTDTL records.

� If validation failed, write a non-fatal error and set return code so that
file_process() knows it needs to dump records into the reject file.

� If validation passed, go on processing the next record after incrementing
counters and variables as necessary.

Validate_DTDTL(): Check information fetched from file to make sure it is
complete and accurate.

• Make sure all required fields have a value other than the default.

• Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Validate_item(): Check if item is a valid item in RMS. Item has to be in approved
status, may not be a buyer pack and has to be at or above transaction level.

• Fetch from item_master in RMS to verify the item identifier to be validated
exists in RMS.

Validate_item_hier(): Check if item and its merchandise hierarchy is valid in
RMS. Item has to be in approved status, may not be a buyer pack and has to be at
or above transaction level.

• Fetch from item_master, deps, and groups in RMS to verify the item
identifier and its merchandise hierarchy to be validated exists in RMS.

Validate_item_supplier(): Check if item and supplier relationship is valid in
RMS.

Fetch from item_supplier in RMS to verify the item and supplier relationship is
valid in RMS.

Validate_loc_hier(): Check if location and its organizational hierarchy is valid in
RMS. Location may be a store or a physical warehouse only.

• Fetch a union from wh, store, district, region, and area in RMS to verify the
location identifier and its organizational hierarchy to be validated exists in
RMS.

136 Retek Merchandising System

Verify_DCDTL(): Check every DCDTL record and verify that:

• If DCDTL record has a billing type of OI (off-invoice) then there are at least
one or more DIDTL records for this DCDTL record.

• If DCDTL record is a rebate then there are at least one or more DIDTL
records for this DCDTL record.

Find_line_number(): Look in DHDTL then loop through the DCDTL and DIDTL
arrays and look for the sequence number given in the argument of this function.
Return the index and which array the line number was found in, or return an error
message if the argument line number was not found in any of the arrays.

Insert_data(): Does a SQL looped insert from all the data structs with the loop
count equaling the struct’s record count. Inserts are performed in the following
order: DHDTL, DCDTL, DIDTL, PPDTL, DTDTL.

Write_reject(): Writes to the reject file one deal record set with all its sub loop
records from the input file.

Scheduling Considerations

This program should run as the first batch of the Deals batch cycle.

Locking Strategy

N/A.

Restart/Recovery

File based.

Performance Considerations

N/A.

Security Considerations

N/A.

Design Assumptions

All fields that are of type Char in the input file format description above should
be left justified and padded with the space character. If the field is not required
and no value is being uploaded, the entire field should be padded with the space
character.

Date fields are always formatted ‘YYYYMMDDHH24MISS’ (Char(14)).

All fields that are of type Number in the input file format description above
should be right justified and padded with 0s. If the field is not required and no
value is being uploaded, the entire field should be padded with 0s.

Regarding the ordering of records in the input file, we require records to be
looped in the same hierarchy as their corresponding RMS tables are in relation to
each other:

Volume 4 – Batch designs 137

Or in terms of the input file:

DEAL HEA DEAL DETAI DEAL ITEMLO

DEAL THRESHOLD

POP TERMS DEF

DHDTL DCDTL DIDTL

DTDTL

PPDTL

Note: Pop terms def may be associated with a single deal (FDETL), a deal
component (TDETL of DCDTL) or a deal-item-location (TDETL of DIDTL)
record. This ‘or’ type relationship is symbolized by a dashed ‘one-to-one’ line
above.

Note: Buy/Get deals must have only the Buy and Get item(s) on the
DEAL_ITEMLOC table, not more, nor less records.

138 Retek Merchandising System

The input file must have the following structure:

FHEAD
{
 THEAD of DHDTL REQUIRED for deal head record
 TDETL REQUIRED 1 deal head record
 TTAIL REQUIRED end of deal head record
 THEAD of DCDTL REQUIRED for deal component records
 [
 TDETL OPTIONAL for deal component records

]
 TTAIL REQUIRED end of deal component records
 THEAD of DIDTL REQUIRED for item-loc records
 [
 TDETL OPTIONAL for item-loc records
]
 TTAIL REQUIRED end of item-loc records
 THEAD of PPDTL REQUIRED for proof of performance records
 [
 TDETL OPTIONAL for proof of performance records
]
 TTAIL REQUIRED end of proof of performance records
 THEAD of DTDTL REQUIRED for threshold records
 [
 TDETL OPTIONAL for threshold records
]
 TTAIL REQUIRED end of threshold records
}
FTAIL

The set between the curly brackets may be looped to upload multiple deals from
the same file. Within each set, the TDETL records in angle brackets may be sub-
looped as a sub-set of the main set.

One set equals one deal. For each set, the first TDETL record is used to upload
the DEAL_HEAD (RMS table) table record into RMS. This record is required
and maximum one may exist in each set, and it has to be the first THEAD-
TDETL-TTAIL record group in the set.

The next THEAD-TDETL-TTAIL group holds the DEAL_DETAIL (RMS table
for storing deal component records) records of the deal. Multiple TDETL records
may be used between the THEAD and TTAIL records to upload multiple
DEAL_DETAIL records for the same deal.

The next THEAD-TDETL-TTAIL group holds the DEAL_ITEMLOC (RMS
table) records of the deal. Multiple TDETL records may be used between the
THEAD and TTAIL records to upload multiple DEAL_ITEMLOC records for
the same deal. Note that the line number field in these TDETL records refers to
the input file line number of the DEAL_DETAIL record (DCDTL type, as
signaled by preceding THEAD record,) to which this DEAL_ITEMLOC record
belongs. This referenced line must be before current line and after current deal’s
DHDTL record (current deal is most recent DHDTL record in input file).

Volume 4 – Batch designs 139

The next THEAD-TDETL-TTAIL group holds the POP_TERMS_DEF (RMS
table for storing proof of performance records) records of the deal. Multiple
TDETL records may be used between the THEAD and TTAIL records to upload
multiple POP_TERMS_DEF records for the same deal. Note that the line number
field in these TDETL records refers to the input file line number of the
DEAL_HEAD, DEAL_DETAIL, or DEAL_ITEMLOC record (DHDTL,
DCDTL, or DIDTL type, as signaled by preceding THEAD record,) to which this
POP_TERMS_DEF record belongs. Note that a proof of performance record may
belong to a DEAL_HEAD, DEAL_DETAIL, or DEAL_ITEMLOC record, not
just the DEAL_DETAIL record. This referenced line must be before current line
and at or after current deal’s DHDTL record (current deal is most recent DHDTL
record in input file).

The next THEAD-TDETL-TTAIL group holds the DEAL_THRESHOLD (RMS
table) records of the deal. Multiple TDETL records may be used between the
THEAD and TTAIL records to upload multiple DEAL_THRESHOLD records
for the same deal. Note that the line number field in these TDETL records refers
to the input file line number of the DEAL_DETAIL record (DCDTL type, as
signaled by preceding THEAD record,) to which this DEAL_THRESHOLD
record belongs. This referenced line must be before current line and after current
deal’s DHDTL record (current deal is most recent DHDTL record in input file).

Note that if a THEAD-TDETL-TTAIL group has no TDETL records, the
THEAD-TTAIL records are still required in the input file, simply no TDETL
records will appear between them. This is for explicitly signaling the fact that no
such sub-records exist for the set.

Note: for an M type deal, no TDETL records of DIDTL, DTDTL or PPDTL type
are allowed. (Vendor-funded markdowns have no records on the
DEAL_ITEMLOC, DEAL_THRESHOLD or POP_TERMS_DEF RMS tables.)

140 Retek Merchandising System

Deal item insert [ditinsrt]
Functional Area

Complex Deals Management

Module Affected

Ditinsrt.pc – Deal Item Insert

Design Overview

This new batch program will populate the DEAL_SKU_TEMP table with all
items that are on non vendor-funded, non PO-specific deals listed on the
DEAL_QUEUE table and all items that fall within a hierarchy from these deals.
It will get values for the entire merchandise and organizational hierarchies to
populate DEAL_SKU_TEMP. The DEAL_SKU_TEMP table will then be used
by precostcalc.pc and costcalc.pc to (re)calculate future costs for all listed items.

In addition, this program will populate the DEAL_CALC_QUEUE table with
orders that may be affected by non vendor-funded, non PO-specific deals that are
on the DEAL_QUEUE table (for future processing by orddscnt.pc). Orders that
had been applied to deals that no longer apply will also be inserted into the
DEAL_CALC_QUEUE table.

The LUW of this module is a single record from the DEAL_QUEUE table and
deal definition information that belongs to the DEAL_ID from the
DEAL_QUEUE table.

Stored Procedures / Shared Modules (Maintainability)

NONE

Volume 4 – Batch designs 141

Program Flow

142 Retek Merchandising System

Function Level Description

Main(): Standard Retek main function. Validates input parameters, calls init,
process and final. Logs appropriate message.

Init(): Standard Retek init function. Calls retek_init().

Process(): Drives the rest of the program:

• Call size_array() and initialize_deal_info().

• Array-fetch the driving cursor. For each fetched record:

� If new deal, call delete_dq() and retek_force_commit().

� If new deal, call get_orders() to populate DEAL_CALC_QUEUE.

� Call explode_merch().

� Call explode_org().

� Call insert_items() to populate exploded merchandise and
organizational records into DEAL_SKU_TEMP.

� Save this deal id so next record’s deal id can be compared to
previous one.

• Call clean_up_dq().

Explode_merch():

• For each record from the deal_itemloc arrays, we need to obtain all
missing merchandise hierarchy and origin country and supplier information,
as follows:

• (Only vendor pack items should be used—skip buyer packs and non-
approved, non-transaction level items.)

� If merch_level = 12 get all origin countries for this item/supplier
from the ITEM_SUPP_COUNTRY table if an origin country was
not given. (We should already have all necessary merchandise
hierarchy information). If no supplier was given, we must get all
suppliers from the ITEM_SUPP_COUNTRY table that have the
same partner as the deal (if the partner_id on deal_head is ‘S1’, get
all suppliers from ITEM_SUPP_COUNTRY where supp_hier_lvl_1
matches the partner id; if it’s ‘S2’, where supp_hier_lvl_2 matches,
if ‘S3’, where supp_hier_lvl_3 matches. If the partner_id is ‘S’, a
supplier is given on DEAL_HEAD; just match to that supplier. This
supplier match must be done for all merch levels.

� If merch_level = 11 (have info down to line/diff 4), need to get all
items for the supplier/item parent/item grandparent/diff 4 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, diff
2, or diff_3 could be NULL).

Volume 4 – Batch designs 143

� If merch_level = 10 (have info down to line/diff 3), need to get all
items for the supplier/item parent/item grandparent/diff 3 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, or
diff 2 could be NULL).

� If merch_level = 9 (have info down to line/diff 2), need to get all
items for the supplier/item parent/item grandparent/diff 2 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, or
diff 2 could be NULL).

� If merch_level = 8 (info down to line/diff 1), need to get all items
(and diff 1 information) for this supplier/style/diff 1 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries (if the origin country was not given) from
ITEM_SUPP_COUNTRY.

� If merch_level = 7 (info down to line), get all items for this supplier
and line, along with all diff information and origin countries (if the
origin country was not given) from ITEM_MASTER and
ITEM_SUPP_COUNTRY.

� If merch_level = 6 (info down to subclass level), get all item and
line/diff info for this supplier from ITEM_SUPP_COUNTRY, and
ITEM_MASTER and all origin countries (if the origin country was
not given) from ITEM_SUPP_COUNTRY.

� If merch_level = 5 (info down to class level), get all
subclass/items/line/diff information info for this supplier from
ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

� If merch_level = 4 (info to dept level), get all
class/subclass/item/line/diff information info for this supplier from
ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

� If merch_level = 3 (info to group level), get all departments for the
group from DEPS, get classes/subclasses/items/lines/diffs for each
department info for this supplier from ITEM_SUPP_COUNTRY,
and ITEM_MASTER and all origin countries (if the origin country
was not given) from item_supp_country.

� If merch_level = 2 (info to division level) get all groups under that
division from GROUPS, and all departments under each group from
DEPS. Then get classes/subclasses/items/lines/diffs for this supplier
from ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

144 Retek Merchandising System

� If merch_level = 1 (Company level--ALL items for a supplier), get
all divisions from the DIVISION table, get all groups for each
division from the GROUPS table, and all departments under each
group from the DEPS table. Then get all items and their line and diff
info for this supplier from ITEM_SUPP_COUNTRY, and
ITEM_MASTER and all origin countries (if the origin country was
not given) from ITEM_SUPP_COUNTRY.

Set up as a case statement; each merchandise level value calls a different
function:

Case 10: Call get_origin_country().

Case 9, 8, or 7: Call get_item_info().

Case 6, 5, or 4: Call get_dept_info().

Case 3: Call get_group_info().

Case 2: Call get_division_info().

Case 1: Call get_company_merch_info().

Explode_org():

• For each record from the merchandise arrays (containing
merchandise/country information and all organization information that was
present on DEAL_ITEMLOC), get any additional organizational hierarchy
information as follows:

� If the org_level = 5 (location) and the given location is a warehouse,
the chain, area, region, and district fields should be left as NULL
when inserted into DEAL_SKU_TEMP–warehouses aren’t part of a
district (no additional information needs to be fetched). If
multichannel is on, remember to blow out warehouse from
DEAL_ITEMLOC (which always holds physical warehouses) to
member virtual warehouses.

� If org_level = 5 (location) and the given location is a store, all the
necessary information should already be present; no additional
information needs to be fetched.

� If org_level = 4 (district), get all stores in this district from the store
table. Again, the organizational hierarchy above the district should
already have been copied from DEAL_ITEMLOC, so that does not
need to be looked up.

� If org_level = 3 (region), get all districts and stores in this region
from the district and store tables. Again, the organizational hierarchy
above the region should already have been copied from
DEAL_ITEMLOC, so that does not need to be looked up.

� If org_level =2 (area), get all regions, districts, stores for this area
from region, district, and store tables. Again, the organizational
hierarchy above the area should already have been copied from
DEAL_ITEMLOC, so that does not need to be looked up.

� If org_level = 1 (chain), get all areas, all regions, all districts, all
stores for this chain from the area, region, district, and store tables.

Volume 4 – Batch designs 145

� If nothing is given in the organizational hierarchy (org _level is null
or 0), call get_stores_districts_regions_areas_chains() which will
blow out the entire organizational hierarchy as it exists in RMS.

Keep track of how many organizational hierarchy combinations were fetched and
for what level so that if the next record has the same organization level for the
same organization hierarchy element (say, it’s org level 4 and the current district
is the same as the last district) the organization values can just be copied from the
ones previously obtained instead of having to get them from the database again.
This check is done by calling same_org_info().

As the information is obtained, it should be inserted into the final array (use
copy_deal_array()) for insert to DEAL_SKU_TEMP (be sure to resize this array
as necessary).

Set up as a case statement; each organizational level value calls a different
function:

Case 5: If location is a store, or the location is a warehouse and the multichannel
is turned off in the system, simply copy record, no lookup or blowout is needed.
(Call copy_deal_array().) If the location is a warehouse and the multichannel
option is turned on in the system, call get_virtuals() to blow out the physical
warehouse from DEAL_ITEMLOC (which always only holds physical
warehouses) to its virtual members.

Case 4: Call get_stores().

Case 3: Call get_stores_districts().

Case 2: Call get_stores_districts_regions().

Case 1: Call get_stores_districts_regions_areas().

Case 0: Call get_stores_districts_regions_areas_chains().

Same_org_info():

• This function will check if the previous record whose organizational
hierarchy was blown out contains the same organizational level and
parameters.

Get_origin_country():

• Given an array containing the records retrieved by the driving cursor,
find all countries and suppliers for the given item, plus any line and diff
information given, and copy the info into the passed output array. This
function should only be called if all merchandise info is already known
(merchandise level 12), except for the country.

Get_item_info():

• Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information, and copy the info into the passed
output array. This function should only be called if some line and optionally
diff information is given, but no item exists (merchandise levels 7-11).

146 Retek Merchandising System

Get_dept_info():

• Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if dept is given, but line,
diff and item is not given (merchandise levels 4-6).

Get_group_info():

• Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if group number is given
but dept and everything below is not given (merchandise level 3).

Get_division_info():

• Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if division is given, but
group number and everything below is not (merchandise level 2).

Get_company_merch_info():

• Given an array containing the records retrieved by the driving cursor,
find all merchandise information and copy the info into the passed output
array. This function should only be called if no merchandise information is
given (merchandise level 1).

Get_stores_districts_regions_areas_chains():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing in the company and copy them to
the output array. Function also takes in another deal array and an indicator
variable. If the indicator is true, then use organizational information
contained in this third array rather than running queries.

Get_stores_districts_regions_areas():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given chain and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_stores_districts_regions():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given area and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Volume 4 – Batch designs 147

Get_stores_districts():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given region and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_stores():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given district and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_virtuals():

• Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
existing under the given district and copy them to the output array. (Note that
warehouses have no organizational hierarchy.) Function also takes in another
deal array and an indicator variable. If the indicator is true, then use org
information contained in this third array rather than running queries.

Copy_merch_info():

• This function takes three deal record arrays and an index. The first array
contains the information gathered from the driving cursor. The second
contains the information gathered from the preceding get_<level>_info
functions. For each record in the second array, copy all merchandise related
information from the second array to the first array. Then insert the
combined record into the third array using copy_deal_array().

Initialize_deal_info():

• Initializes all indicator variables in every record and sets deal record
count to 0 for a passed deal struct.

Insert_items():

• Array insert records into the DEAL_SKU_TEMP table, first checking
for duplicates (check to make sure that each record does not yet exist in
DEAL_SKU_TEMP and that the item-location combinations exist in
ITEM_LOC; if check was OK, put it into an array for insert; insert once all
have been checked).

148 Retek Merchandising System

To perform the above task:

• Call necessary sizing and initialization functions to allocate final insert array.
(Call size_array(), initialize_array().)

• For each record call check_loc_and_dup().

• If previous function call indicated that the record is good to go for the insert,
call copy_deal_array() to insert that record into the final insert array.

• Check to see if the current record has a reset date. If it does, copy that reset
date into the active date and call check_loc_and_dup() again. If current
record is ok to insert, call copy_deal_array() to copy this record into the final
insert array. This way we insert the deal’s close date for its items into
DEAL_SKU_TEMP.

• When records are checked and the final insert array’s size is greater than 0,
call insert_into_dst_start_date() to array insert the final records.

Check_loc_and_dup():

• Check to make sure insert record does not exist in DEAL_SKU_TEMP
and check to make sure insert record’s item-location relationship does exist
in ITEM_LOC. When checking the item-location relationship from the
ITEM_LOC table, also verify that the item is not the component of a primary
costing pack. Such records are not inserted, only the component’s case UPC.

Insert_into_dst_start_date():

• Insert passed record into DEAL_SKU_TEMP.

Ord_exists():

• Sets return_flag to true if passed ord is already in passed ord_list.

Copy_ord_to_final():

• This function takes an output array, an array containing all merch
information, and an array containing org information. For each record in the
org array, copy information to given record in the merch array, and place this
combined record into the output array.

Copy_ord_numbers():

• Given to ord_lists and an index, copy value at index from start array to
final array if the value does not already exists in the final array.

In_deal_calc_queue():

• Set return flag to true if passed ord_num is already in
DEAL_CALC_QUEUE.

Insert_deal_calc_queue():

• Insert values contained in given ord_list into DEAL_CALC_QUEUE.

Size_ord_list():

• Allocate memory for ord_list, and set ord_list count to 0.

Volume 4 – Batch designs 149

Resize_ord_list():

• Allocate additional memory for deal array. Allocation is incremented by
commit_max_ctr.

Get_orders():

• Given a deal id, a deal status, the deal’s recalculate approved orders
indicator, and the deal start (active) and close dates, do the following:

� If the deal’s recalculate approved orders indicator is ‘Y’ and the
status is ‘A’pproved, call insert_approved().

� Call insert_unapproved() if the status is ‘W’orksheet (it was
unapproved and just got set back to worksheet status).

� Call insert_closed() if the status is ‘C’losed.

� Call get_orders_with_altered_deals() if the status is ‘A’pproved.
(This is done for approved deals that had no close date and just got
closed, which could disqualify some orders that have already been
calculated with this deal from using this deal.)

This will populate the DEAL_CALC_QUEUE table with orders that may be
affected by the deal.

Get_orders_with_altered_deals():

• Select all approved orders from the ORDHEAD and
ORDLOC_DISCOUNT tables whose not before date is higher than the deal
close date. Also make sure the contract_no field on ORDHEAD is null.
Insert these orders into the DEAL_CALC_QUEUE table (recalc_all_ind,
order_appr_ind , and override_manual_ind should be inserted as ‘N’).

Insert_approved():

• Select all approved orders from the ORDHEAD table whose not before
date is between the deal start date and the deal close date (or just after the
deal start date, if the deal close date is NULL). Also make sure the
contract_no field on ORDHEAD is null. Insert these orders into the
DEAL_CALC_QUEUE table (recalc_all_ind, order_appr_ind , and
override_manual_ind should be inserted as ‘N’).

Insert_unapproved():

• Select all orders from the ORDLOC_DISCOUNT table for the given
deal that do not have a status (on ORDHEAD) of ‘C’losed, and insert these
orders into the DEAL_CALC_QUEUE table (recalc_all_ind, order_appr_ind
, and override_manual_ind should be inserted as ‘N’). Also make sure the
contract_no field on ORDHEAD is null.

Insert_closed():

• Select all orders from the ORDLOC_DISCOUNT table for the given
deal whose not before date is after the deal’s close date (all closed deals must
have a close date) and whose status (from ORDHEAD) is not ‘C’losed. Also
make sure the contract_no field on ORDHEAD is null. Insert these orders
into the DEAL_CALC_QUEUE table (recalc_all_ind, order_appr_ind , and
override_manual_ind should be inserted as ‘N’).

150 Retek Merchandising System

Size_array():

• Allocate memory for passed array.

Resize_deal_array():

• Allocate additional memory for deal array. Allocation is incremented by
commit_max_ctr.

Copy_deal_array():

• Given two deal arrays and an index, copy deal at index from I_deal_info
to o_unique_records. This function will resize o_unique_records if
necessary, but it will not check if deal already exists in the final array.

Delete_dq():

• Delete processed records from the DEAL_QUEUE table.

Clean_up_dq():

• Delete all records left on the DEAL_QUEUE table.

Final():

• Performs restart/recovery close logic. Calls retek_close().

Input Specifications

‘Table-To-Table’

Select data from:

Table Name Column Name Column Type Transformation

DEAL_HEAD SUPPLIER NUMBER(10) NONE

DEAL_HEAD PARTNER_TYPE VARCHAR2(6) NONE

DEAL_HEAD PARTNER_ID VARCHAR2(10) NONE

DEAL_HEAD ACTIVE_DATE DATE NONE

DEAL_HEAD CLOSE_DATE DATE NONE

DEAL_HEAD STATUS VARCHAR2(1) NONE

DEAL_HEAD RECALC_APPROVED_ORDERS VARCHAR2(1) NONE

DEAL_QUEUE DEAL_ID NUMBER(10) NONE

DEAL_ITEMLOC DEAL_DETAIL_ID NUMBER(10) NONE

ITEM_MASTER ITEM VARCHAR2(25) NONE

ITEM_MASTER ITEM_PARENT VARCHAR2(25) NONE

ITEM_MASTER ITEM_GRANDPARENT VARCHAR2(25) NONE

ITEM_MASTER DIFF_1 VARCHAR2(10) NONE

Volume 4 – Batch designs 151

Table Name Column Name Column Type Transformation

ITEM_MASTER DIFF_2 VARCHAR2(10) NONE

ITEM_MASTER DIFF_3 VARCHAR2(10) NONE

ITEM_MASTER DIFF_4 VARCHAR2(10) NONE

ITEM_MASTER SUBCLASS NUMBER(4) NONE

ITEM_MASTER CLASS NUMBER(4) NONE

DEPS DEPT NUMBER(4) NONE

GROUPS GROUP_NO NUMBER(4) NONE

DIVISION DIVISION NUMBER(4) NONE

STORE STORE NUMBER(4) NONE

DISTRICT DISTRICT NUMBER(4) NONE

REGION REGION NUMBER(4) NONE

AREA AREA NUMBER(4) NONE

CHAIN CHAIN NUMBER(4) NONE

ORDHEAD ORDER_NO NUMBER(8) NONE

ORDLOC_DISCOUNT ORDER_NO NUMBER(8) NONE

SYSTEM_OPTIONS MULTICHANNEL_IND VARCHAR2(1) NONE

Output Specifications

 ‘Table-To-Table’

Delete data from

Table Name Column Name Column Type Transformation

DEAL_QUEUE DEAL_ID NUMBER(10) N/A

The following table will be inserted:

Table Name Column Name Column Type Transformation

DEAL_SKU_TEMP ITEM VARCHAR2(25) NONE

DEAL_SKU_TEMP SUPPLIER NUMBER(10) NONE

DEAL_SKU_TEMP ORIGIN_COUNTRY_ID VARCHAR2(3) NONE

DEAL_SKU_TEMP START_DATE DATE NONE

DEAL_SKU_TEMP DIVISION NUMBER(4) NONE

DEAL_SKU_TEMP GROUP_NO NUMBER(4) NONE

DEAL_SKU_TEMP DEPT NUMBER(4) NONE

152 Retek Merchandising System

Table Name Column Name Column Type Transformation

DEAL_SKU_TEMP CLASS NUMBER(4) NONE

DEAL_SKU_TEMP SUBCLASS NUMBER(4) NONE

DEAL_SKU_TEMP ITEM_PARENT VARCHAR2(25) NONE

DEAL_SKU_TEMP ITEM_GRANDPARENT VARCHAR2(25) NONE

DEAL_SKU_TEMP DIFF_1 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_2 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_3 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_4 VARCHAR2(10) NONE

DEAL_SKU_TEMP CHAIN NUMBER(4) NONE

DEAL_SKU_TEMP AREA NUMBER(4) NONE

DEAL_SKU_TEMP REGION NUMBER(4) NONE

DEAL_SKU_TEMP DISTRICT NUMBER(4) NONE

DEAL_SKU_TEMP LOCATION NUMBER(10) NONE

DEAL_SKU_TEMP LOC_TYPE VARCHAR2(1) NONE

DEAL_CALC_QUEUE ORDER_NO NUMBER(8) NONE

DEAL_CALC_QUEUE RECALC_ALL_IND VARCHAR2(1) Will always be
‘N’.

DEAL_CALC_QUEUE OVERRIDE_MANUAL_IND VARCHAR2(1) Will always be
‘N’.

DEAL_CALC_QUEUE ORDER_APPR_IND VARCHAR2(1) Will always be
‘N’.

Scheduling Considerations

This program should run as the first batch program in the deals batch cycle.

Locking Strategy

N/A

Restart/Recovery

The module has restart/recovery built in based on DEAL_ID from the
DEAL_QUEUE table.

Performance Considerations

N/A

Security Considerations

N/A

Volume 4 – Batch designs 153

Design Assumptions

Primary cost pack component items do not get inserted into DEAL_SKU_TEMP,
only their case UPC items. An item must be in ‘A’pproved status and at the
transaction level, it must not be a buyer pack. Orders may have no contracts in
order for them to be inserted into DEAL_CALC_QUEUE.

Outstanding Design Issues

N/A

154 Retek Merchandising System

EDI contract information download [edidlcon]
Design Overview

This program downloads a file of EDI contract information. Contracts are only
processed if they are in approved status and have an edi_contract_ind of ‘Y’.

Changes to make: add restart recovery and make output ONE file instead of one
per supplier. Minor changes to file format (add Gentran ID in FHEAD line and
move supplier from FHEAD to THEAD; include transaction number on
transaction lines). Let the user enter an output file name.

Scheduling Constraints

Processing Cycle: Daily, Phase 4

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A –file based processing

Restart Recovery
SELECT ch.contract_no,

 ch.contract_type,

 ch.dept,

 TO_CHAR(ch.supplier),

 TO_CHAR(NVL(ch.total_cost*1000,0)),

 ch.edi_contract_ind,

 ch.currency_code,

 ROWIDTOCHAR(ch.rowid)

 FROM contract_header ch

 WHERE ch.status = ’A’

 AND ch.edi_contract_ind = ‘Y’

 AND ch.edi_sent_ind = ‘N’

 ORDER BY ch.supplier

Program Flow

N/A

Shared Modules

CONTRACT_SQL.GET_UNIT_COST – get the cost of a contract-item.

Volume 4 – Batch designs 155

Function Level Description

Include the std_rest.h library.

Init:

Get period.vdate.

Call restart_file_init

Make the format strings for output file lines

Open output file and write fhead line with the write_head function

Process:

Fetch contract header cursor

Update contract_header.edi_sent_ind to ‘Y’

write information out to file (call write_detail and write_summary)

use restart_commit for commits

write_head

write FHEAD line to file

write_detail

For contract types C and D (no production plans): Get item contract info from the
contract_detail table. Get ref_item and ref_item type info from the item_master
table. Write TDETL lines to file. For contract types A and B (production plans):
Get item contract info from the contract_detail table. Get ref_item info from the
item_master table. Write TDETL lines to file. (Note: ready_date,
ready_quantity, location_type, and location_number will only have values for
contract types A and B. Furthermore, in a multi-channel environment, all
TDETL records need to be written at the physical location level.)

write_summary:

write TTAIL string to file

write_trailer

write FTAIL string to file

 Final:

Write output to final file and close files.

Call restart_close.

156 Retek Merchandising System

I/O Specification

Output File layout:

FHEAD File identification and date

THEAD Supplier and contract header info

TDETL Item information

TTAIL Transaction trailer

FTAIL File trailer; total number of transactions written

All character variables should be right-padded with blanks and left_justified; all
numerical variables should be left-padded with zeroes and right-justified. All
dates should be in YYYYMMDDHH24MISS format.

Record Name Field Name Field Type Default Value Description

FHEAD Record
descriptor

Char(5) FHEAD Describes file line type

 Line number Number(10) 0000000001 Sequential file line number

 Gentran ID Char(5) DNCN Identifies transaction type for
Gentran

 Current date Char(14) Current date period.vdate

THEAD Record
descriptor

Char(5) THEAD Describes file line type

 Line number Number(10) Sequential file line number

 Transaction
number

Number(10) Sequential transaction
number

 Supplier Char(10) Contract_header.supplier

 Contract No number
(6)

 Contract_header.contract_no

 Contract type Char(1) Contract_header.contract_typ
e

 Department Number(4) Contract_header.dept

 Currency
code

Char(3) Contract_header.currency_co
de

 Total contract
cost

Char(20) Contract_header.total-
cost*10000

TDETL Record
descriptor

Char(5) TDETL Describes file line type

 Line number Number(10) Sequential file line number

 Transaction
number

Number(10) Sequential transaction
number

Volume 4 – Batch designs 157

Record Name Field Name Field Type Default Value Description

 Item Number
Type

Char(6) Item type for item from
item_master table.

 Item Number Char(25) item

 Ref Item
Number Type

Char(6) Reference item number type
retrieved from
item_master.item_number_ty
pe.

 Ref Item
number

Char(25) Primary reference item
retrieved from Item Master
table.

 Diff1 Desc Char(40) Diff 1 Description

 Diff2 Desc Char(40) Diff 2 Description

 Diff3 Desc Char(40) Diff 3 Description

 Diff4 Desc Char(40) Diff 4 Description

 VPN Char(30) Vendor Product Number for
an item

 Unit cost Char(2) Contract_sku.unit_cost*1000
0 (4 implied decimal places)

The following variables will only have values for contract types of ‘A’ or ‘B’;

 Ready date Char(14) Contract_prod_plan.ready_da
te

 Ready
quantity

Char(20) Contract_prod_plan.qty_read
y*10000 (4 implied decimal
places)

 Location type Char(2) ‘ST’ or ‘WH’

 Location
number

Char(10) Contract_prod_plan.store or
.wh

FTAIL Record
descriptor

Char(5) TTAIL Describes file line type

 Line number Number(10) Sequential file line number

 Transaction
number

Number(10) Sequential transaction
number

FTAIL Record
descriptor

Char(5) FTAIL Describes file line type

 Line number Number(10) Sequential file line number
(total # lines in file)

 Contract
count

Number(10) Total number of transactions
in file

158 Retek Merchandising System

Technical Issues

N/A

Volume 4 – Batch designs 159

EDI purchase order download [edidlord]
Functional Area

Purchase Orders

Design Overview

Orders generated within the Retek system are written to a flat file if they are
approved and specified as EDI orders. If shipments are to be pre-marked for
cross-dock allocation by the supplier, allocation location and quantities will be
sent along with the order information. If the order contains pack items,
hierarchical pack information will be sent (this may include outer packs, inner
packs, and fashion styles with associated pack templates, as well as component
item information). File output is to a Retek standard format file, with the
translation to EDI format taking place via an outside translator such as Gentran.

In the past, edidlnew downloaded new orders to an output file, while edidlchg
downloaded changed orders. These programs were combined and modified to
work with changes that have been made to the ordering tables. The order revision
tables and allocation revision table will also be used, to ensure that the latest
changes are being sent and to allow both original and modified values to be sent.
These revision tables are populated during the online ordering process and the
batch replenishment process whenever an order has been approved, and
constitute a history of all revisions to the order.

If multi-channel is turned on in the system, the program will sum all quantities to
the physical warehouse level for an order before writing the output file.

TABLE INDEX SELECT INSERT UPDATE DELETE

ORDHEAD_REV Yes Yes No No No

ORDHEAD Yes No No Yes No

ORDSKU Yes Yes No No No

ORDLOC Yes Yes No No No

ORDSKU_REV Yes Yes No No No

ORDLOC_REV Yes Yes No No No

ITEM_SUPPLIER No Yes No No No

ITEM_MASTER Yes Yes No No No

WH Yes Yes No No No

ALLOC_HEADER Yes No No No No

ALLOC_DETAIL Yes No No No

ALLOC_DETAIL_REV Yes No No No

DESC_LOOK Yes No No No

PACKITEM_BREAKOUT Yes No No No

160 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

SUPS_PACK_TEMPL_DES
C

 Yes No No No

Stored Procedures / Shared Modules (Maintainability)

ELC_CALC_SQL.CALC_BACKHAUL_TOTAL – Calculates the backhaul
allowance for an order.

Program Flow

Orders that are in approved status and that are new or have had changes made are
fetched from the system tables. Additional information about the items on the
order and their destination is gathered. Order, item, pack, and shipment
information is written to an output file. The system tables are then updated to
show that the orders have been sent.

main()
 |
 +-init()
 | |
 | +-init_terms_array()
 |
 +-process()
 | |
 | +-LOOP for each p.o.
 | | |
 | | +-if backhaul_type = C then
 | | | |
 | | | +-calc_backhaul()
 | | | |
 | | | +-ELC_CALC_SQL.CALC_BACKHAUL_TOTAL()
 | | |
 | | +-get_terms_des()
 | | |
 | | +-write_TORDR
 | | | |
 | | | +print TORDR to output file
 | | |
 | | +-write_items
 | | | |
 | | | +LOOP for each item in p.o.
 | | | | |
 | | | | +-get_item_type()
 | | | | |
 | | | | +-get_supp_item()
 | | | | |
 | | | | +-get_ref_item()
 | | | | |
 | | | | +-write_TITEM()
 | | | | | |
 | | | | | +print TITEM to output file
 | | | | |
 | | | | +-get_pack()
 | | | | | |
 | | | | | +LOOP for each item in pack
 | | | | | | |
 | | | | | | +get_supp_item()
 | | | | | | |
 | | | | | | +get_ref_item()
 | | | | | | |
 | | | | | | +write_TPACK()
 | | | | | | | |
 | | | | | | | +print TPACK to output file

Volume 4 – Batch designs 161

 | | | | | | |
 | | | | | |--< end LOOP
 | | | | |
 | | | | +-write_shipto()
 | | | | | |
 | | | | | +LOOP for each item/location on p.o.
 | | | | | | |
 | | | | | | +get_item_dims()
 | | | | | | |
 | | | | | | +write_TSHIP()
 | | | | | | | |
 | | | | | | | +print TSHIP to output file
 | | | | | | |
 | | | | | |--< end LOOP
 | | | | |
 | | | | +-write_alloc()
 | | | | | |
 | | | | | +LOOP for each allocation record on p.o.
 | | | | | | |
 | | | | | | +get_item_dims()
 | | | | | | |
 | | | | | | +write_TSHIP()
 | | | | | | | |
 | | | | | | | +print TSHIP to output file
 | | | | | | |
 | | | | | |--< end LOOP
 | | | | |
 | | | |--< end loop
 | | |
 | | +-write_TTAIL
 | | | |
 | | | +print TTAIL to output file
 | | |
 | | +-update ordhead
 | | |
 | | +-restart_commit()
 | | |
 | | +-restart_file_write()
 | | |
 | |--< end loop
 |
 +-final()
 |
 +print FTAIL to output file

Function Level Description

init()

Get current date. Set up format strings for output file, open output file, and write
file header. Set up restart/recovery. Call init_terms_array to fetch terms and
descriptions from terms table.

162 Retek Merchandising System

process()

Select the new or changed orders in approved status for EDI download by
fetching the driving cursor. Eligible orders are approved and have an EDI
indicator set. The cursor selects “new” values from ordhead and “old” values
from ordhead_rev for the next to last version (the last version is the current one,
with the same information that is now on ordhead). For a new order, no earlier
version will exist on the ordhead_rev table, so no “old” values will be fetched. If
old values are null, this must mean that we have a new order. Information from
different suppliers can be sent in the same file, but the file will be sorted by
supplier. If the backhaul type = C (calculated) then call calc_backhaul function to
calculate the backhaul totals. Call get_terms_des to fetch the description of the
terms code. Call write_TORDR to write order header level information to file.
Call write_items to fetch additional item-level information and write it to output
file. Update the ordhead table to show that an EDI transaction has been sent and
an acknowledgment has not yet been received.

write_TORDR()

Write the TORDR line (order header level information) to the output file.

write_items()

Get item information (from the ordsku and ordsku_rev tables--quantity ordered,
outstanding quantity, description). Get item cost information and supplier
information (by calling get_supp_item). If reference item information does not
exist on ordsku, call get_ref_item to fetch the ref item information (if any). Call
write_TITEM to write item information line to file. If the item is a pack
identifier (pack_ind =’Y’ on item_master), call get_pack to get information on
component items within the pack. If the order is to be pre-marked, call
write_alloc to write allocation information to file; otherwise write shipment
information to file by calling write_shipto.

write_TITEM()

Write item information line to file.

write_shipto()

Fetch shipment location and quantity information for a particular item on the
order from the ordloc and ordloc_rev tables. Call get_item_dims to get the case
dimensions then call write_TSHIP to write it out to output file.

write_alloc()

This function is called only for cross-docked allocations that will be pre-marked
by the supplier. Fetch allocation information from the alloc_header, alloc_detail,
and alloc_rev tables, call get_item_dims, then call write_TSHIP to write it to
output file.

get_pack()

Get information on items contained within a pack (from the packitem_breakout
table). If the item is part of a pack template, fetch the template description from
the supps_pack_tmpl_desc table. Call get_supp_item() to get the item_supplier
for each of the items. Use get_ref_item to fetch ref item information for these
items. Call write_TPACK to write pack item information lines to file.

Volume 4 – Batch designs 163

write_TPACK()

Write pack component information lines to file.

get_supp_item()

Get supplier VPN, supplier’s color code and supplier’s size code from the
item_supplier table.

get_ref_item()

Get ref item info (either primary or preferred for supplier)

write_TSHIP()

Write TSHIP line to file—shipment location and quantity info. Also used to write
allocation information

write_TTAIL()

Write order trailer line to file.

calc_backhaul()

Call ELC_CALC_SQL.CALC_BACKHAUL_TOTAL to get the backhaul
allowance for this order.

init_terms-array()

Fetches all terms and descriptions from terms table so the terms table doesn’t
have to be joined for each TORDR record.

get_terms_des()

Searches the terms array for a desciption.

get_item_dims()

Gets case dimensions from item_supp_country_dim.

final()

Write file trailer, copy temporary file to final file (restart/recovery close), close
files.

Input Specifications

Command Line Parameters:

edidlord userid/password input_file

For a new order, the “old” fields should be blank. For a changed order, both old
and new fields should hold values, if value has changed. “Old” values come from
the revision tables for the latest revision before the current one (the last one sent),
while new orders come from the ordering tables.

FHEAD – REQUIRED. File identification, one line per file.
TORDR – REQUIRED. Order level info, one line per order.

TITEM – REQUIRED. Item description, multiple lines per order possible.

TPACK – OPTIONAL. Pack contents, multiple lines per order possible. This
line will be written only for pack items.

164 Retek Merchandising System

TSHIP – REQUIRED. Ship to location and quantity, allocation location,
multiple lines per item possible. Allocation information is optional on this line—
will exist if premark_ind is ‘Y’.

TTAIL – REQUIRED. Order end, one line per order.

FTAIL – REQUIRED. End of file marker, one line per file.

Record
Name

Field Name Field
Type

Default
Value

Description

FHEAD Record descriptor Char(5) FHEAD File head marker

 Line id Char(10) 00000000
01

Unique line id

 Translator id Char(5) DLORD Identifies transaction type

 File create date Char(14) Current
date

YYYYMMDDHH24MISS
format

TORDR Record descriptor Char(5) TORDR Order header info

 Line id Char(10) Unique file line id

 Transaction id Char(10) Unique transaction id

 Order change type Char(2) ‘CH’ (changed) or ‘NW’ (new)

 Order number Number(
8)

 Internal Retek order no

 Supplier Number(
10)

 Internal Retek supplier id

 Vendor order id Char(15) External vendor_order_no (if
available)

 Old order written date Char(14) Old date order created
YYYYMMDDHH24MISS

 New order written date Char(14) Changed date order created
YYYYMMDDHH24MISS

 Old Currency Code Char(3) Old order currency_code (ISO
standard)

 New Currency Code Char(3) Changed order currency_code
(ISO standard)

 Old Shipment Method
of payment

Char(2) Old ship_pay_method

 New Shipment Method
of Payment

Char(2) Changed ship_pay_method

 Old Transportation
Responsibility

Char(2) Old fob_trans_res

Volume 4 – Batch designs 165

Record
Name

Field Name Field
Type

Default
Value

Description

 New Transportation
Responsibility

Char(2) Changed fob_trans_res

 Old Trans. Resp.
Description

Char(45) Old fob_trans_res_desc

 New Trans. Resp.
Description

Char(45) New fob_trans_res_desc

 Old Title Passage
Location

Char(2) Old fob_title_pass

 New Title Passage
Location

Char(2) Changed fob_title_pass

 Old Title Passage
Description

Char(45) Old fob_title_pass_desc

 New Title Passage
Description

Char(45) Changed fob_title_pass_desc

 Old not before date Char(14) Old not_before_date
YYYYMMDDHH24MISS

 New not before date Char(14) Changed not_before_date
YYYYMMDDHH24MISS

 Old not after date Char(14) Old not_after_date
YYYYMMDDHH24MISS

 New not after date Char(14) Changed not_after_date
YYYYMMDDHH24MISS

 Old Purchase type Char(6) Old Purchase type

 New Purchase type Char(6) New Purchase type

 Backhaul allowance Number(
20)

 Backhaul allowance

 Old terms description Char(240
)

 Old terms description from
terms table

 New terms description Char(240
)

 New terms description from
terms table

 Old pickup date Char(14) Old pickup date
YYYYMMDDHH24MISS

 New pickup date Char(14) New pickup date
YYYYMMDDHH24MISS

 Old ship method Char(6) Old ship method

 New ship method Char(6) New ship method

166 Retek Merchandising System

Record
Name

Field Name Field
Type

Default
Value

Description

 Old comment
description

Char(250
)

Old comment description

 New comment
description

Char(250
)

New comment description

 Supplier DUNS
number

Number(
9)

 Supplier DUNS
location

Number(
4)

TITEM File record descriptor Char(5)

 Line id Char(10)

 Transaction id Char(10)

 Item Number Type Char(6)

 Item Char(25)

 Old Ref Item Number
type

Char(6) Item_number_type for old
ref_item

 Old Ref Item Char(25) Old Ref_Item

New Ref Item Number
type

Char(6) Item_number_type for new
ref_item

New Ref Item Char(25) Changed Ref_Item

 Char(30) Supplier_item (VPN)

 Free Form Description

Supplier DUNS number

Supplier DUNS location

Item info

Unique line id

Unique transaction id

Item_number_type

Item (If a pack item, this will be
the pack number)

Vendor catalog number

Char(100
)

 item_desc

 Supplier Diff 1 Char(80) Supplier’s diff 1

 Supplier Diff 2 Char(80) Supplier’s diff 2

Supplier Diff 3 Char(80) Supplier’s diff 3

 Char(80) Supplier’s diff 4

 Number(
12)

 Supplier defined pack size

TPACK Char(5) TPACK Pack component info

 Char(10) Unique line id

 Transaction id Unique transaction id

 Pack id Packitem_breakout.pack_no
(same as item for the pack item)

 Inner pack id Inner pack identification

Supplier Diff 4

Pack Size

File record descriptor

Line id

Char(10)

Char(25)

Char(25)

Volume 4 – Batch designs 167

Record
Name

Field Name Field
Type

Default
Value

Description

 Pack Quantity Number(
12)

 Packitem_breakout.pack_item_q
ty (4 implied decimal places)

 Component Pack
Quantity

Number(
12)

 Packitem_breakout.comp_pack_
qty (4 implied decimal places)

 Item Parent Part
Quantity

Number(
12)

 Packitem_breakout.item_parent
_pt_qty (4 implied decimal
places)

 Item Quantity Number(
12)

 Packitem_breakout.item_qty (4
implied decimal places)

 Item Number Type Char(6) Item number type

 Item Char(25) Item

 Ref Item Number Type Char(6) Ref_item_number_type

 Ref Item Char(25) Ref_item

 VPN Char(30) Supplier item (vpn)

 Supplier Diff 1 Char(80) Supplier’s diff 1

 Supplier Diff 2 Char(80) Supplier’s diff 2

 Supplier Diff 3 Char(80) Supplier’s diff 3

 Supplier Diff 4 Char(80) Supplier’s diff 4

 Item Parent Char(25) Required when Pack Template
is not NULL

 Pack template Char(8) Pack template associated w/style
(packitem_breakout.pack_tmpl_
id)

 Template description Char(40) Description of pack template (if
present)
sups_pack_tmpl_desc.supp_pac
k_desc

TSHIP Record type Char(5) TSHIP Describes file record-
shipment info

 Line id Char(10) Unique file line number

 Transaction id Char(10) Unique transaction number

 Location type Char(2) ‘ST’ store or ‘WH’ warehouse

 Ship to location Number(
10)

 Location value form ordloc
(store or wh)

 Old unit cost Number(
20)

 Old unit cost (4 implied decimal
places)

168 Retek Merchandising System

Record
Name

Field Name Field
Type

Default
Value

Description

 New unit cost Number(
20)

 New unit cost (4 implied
decimal places)

 Old quantity Number(
12)

 Old qty_ordered or
qty_allocated (4 implied decimal
places)

 New quantity Number(
12)

 Changed qty_ordered or
qty_allocated (4 implied decimal
places)

 Old outstanding
quantity

Number(
12)

 Old qty_ordered-qty_received (4
implied decimal places)(or
qty_allocated-qty transferred,
for an allocation)

 New outstanding
quantity

Number(
12)

 Changed qty_ordered-
qty_received (4 implied decimal
places)(or qty_allocated-
qty_transferred, for an
allocation)

 Cancel code Char(1)

 Old cancelled quantity Number(
12)

 Previous quantity cancelled (4
implied decimal places)

 New cancelled quantity Number(
12)

 Changed quantity cancelled (4
implied decimal places)

 Quantity type flag Char(1) ‘S’hip to ‘A’llocate

 Store or warehouse
indicator

Char(2) ‘ST’ (store) or ‘WH’
(warehouse)

 Old x-dock location Number(
10)

 Alloc_detail location (store or
wh)

 New x-dock location Number(
10)

 Alloc_detail location (store or
wh)

 Case length Number(
12)

 Case length (4 implied decimal
places)

 Case width Number(
12)

 Case width (4 implied decimal
places)

 Case height Number(
12)

 Case height (4 implied decimal
places)

 Case LWH unit of
measure

Char(4) Case LWH unit of measure

 Case weight Number(
12)

 Case weight (4 implied decimal
places)

Volume 4 – Batch designs 169

Record
Name

Field Name Field
Type

Default
Value

Description

 Case weight unit of
measure

Char(4) Case weight unit of measure

 Case liquid volume Number(
12)

 Case liquid volume (4 implied
decimal places)

 Case liquid volume
unit of measure

Char(4) Case liquid volume unit of
measure

 Location DUNS
number

Number(
9)

 Location DUNS number

 Location DUNS loc Number(
4)

 Location DUNS loc

 New unit cost init Number(
20)

 New unit cost init (4 implied
decimal places)

 Old unit cost init Number(
20)

 Old unit cost init (4 implied
decimal places)

 Item/loc discounts Number(
20)

 Item/loc discounts (4 implied
decimal places)

TTAIL Record type Char(5) TTAIL Describes file record – marks
end of order

 Line id Char(10) Unique file line id

 Transaction id Char(10) Unique transaction id

 #lines in transaction Number(
10)

 #lines in transaction

FTAIL Record type Char(5) FTAIL Describes file record – marks
end of file

 Line id Char(10) Unique file line id

 #lines Number(
10)

 Total number of transaction
lines in file (not including
FHEAD and FTAIL)

Output Specifications

N/A

Scheduling Considerations

Processing Cycle: PHASE 4 (may also be schedule ad hoc to run

multiple times per day)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

170 Retek Merchandising System

Threading Scheme: N/A

Locking Strategy

N/A

Restart/Recovery
Driving cursor:

 SELECT ROWIDTOCHAR(oh.rowid),
 oh.order_no,
 to_char(oh.supplier),
 to_char(oh.written_date,'YYYYMMDDHH24MISS'),
 to_char(ohr.written_date,'YYYYMMDDHH24MISS'),
 to_char(ohr.not_before_date,'YYYYMMDDHH24MISS'),
 to_char(oh.not_before_date,'YYYYMMDDHH24MISS'),
 to_char(ohr.not_after_date,'YYYYMMDDHH24MISS'),
 to_char(oh.not_after_date,'YYYYMMDDHH24MISS'),
 oh.vendor_order_no,
 ohr.currency_code,
 oh.currency_code,
 ohr.ship_pay_method,
 oh.ship_pay_method,
 ohr.fob_trans_res,
 oh.fob_trans_res,
 ohr.fob_trans_res_desc,
 oh.fob_trans_res_desc,
 ohr.fob_title_pass,
 oh.fob_title_pass,
 ohr.fob_title_pass_desc,
 oh.fob_title_pass_desc,
 oh.pre_mark_ind,
 oh.last_sent_rev_no,
 ohr.purchase_type,
 oh.purchase_type,
 oh.backhaul_type,
 NVL(oh.backhaul_allowance,0) * POWER(10,:pi_qty_dec),
 oh.exchange_rate,
 ohr.terms,
 oh.terms,
 to_char(ohr.pickup_date,'YYYYMMDDHH24MISS'),
 to_char(oh.pickup_date,'YYYYMMDDHH24MISS'),
 ohr.ship_method,
 oh.ship_method,
 ohr.comment_desc,
 oh.comment_desc,
 s.duns_number,
 s.duns_loc
 FROM ordhead oh,
 ordhead_rev ohr,
 sups s,
 v_restart_supplier v
 WHERE ohr.order_no (+) = oh.order_no
 AND oh.status = 'A'
 AND oh.edi_sent_ind = 'N'
 AND oh.edi_po_ind = 'Y'
 AND oh.supplier = s.supplier
 AND (s.edi_po_chg = 'Y'
 OR (s.edi_po_chg = 'N'
 AND oh.last_sent_rev_no IS NULL))
 AND ohr.origin_type (+) = 'V'
 AND ohr.rev_no(+) = oh.last_sent_rev_no
 and v.driver_name = :ps_restart_driver_name
 and v.driver_value = oh.supplier
 and v.num_threads = :pi_restart_num_threads
 and v.thread_val = :pi_restart_thread_val
 ORDER BY 2 , 3;

Volume 4 – Batch designs 171

Restart/recovery capability will be used in this program to provide restart
capability. Restartability is implied because the program updates
ordhead.edi_sent_ind as records are written out.

Performance Considerations

N/A

Security Considerations

N/A

Design Assumptions

N/A

Outstanding Design Issues

N/A

Appendix

N/A

172 Retek Merchandising System

 New and Changed Upload from Supplier [ediupcat]
Design Overview

The purpose of the ediupcat batch program is to update the edi_new_item and
edi_cost_change tables. This will allow the users to view and implement the
vendor changes online instead of manually viewing and inserting information.

EDIUPCAT will read in a file and strip out the appropriate information. For
each line item, the supplier has the option of sending one or all of the following
as an item identifier: item, ref_item, and VPN. If an item is sent, this implies that
the item exists in Retek. This value is validated against the item tables. Ref_item
and VPN are also validated if present. If the item is not present in the file, the
program searches Retek for the item. If no item is found, the line item is
considered a new item. If either Reference Item or Case Reference Item is
provided, its Reference Item Type must be presented as well. To update an
existing item in the Retek, the Retek item number or VPN of the item must be
presented. The only exception for updating an item using Reference Item
number is that the Reference Item number exists in RMS tables.

The supplier can also provide item parent information including Item Parent or
Parent VPN to specify the relationship of the new item to the existing Retek item.
The item parent’s item description and item parent number type are then
retrieved from the internal Retek system and inserted to the edi_new_item table.

A new parent VPN may be sent as a regular VPN record. After validating the
parent VPN information, it is updated or inserted to the edi_new_item table
based on the data processed. In the online form, this record can then be created
as a parent item. It is permissible for new items to be sent with parent VPNs that
are new to the system, but only if the new parent VPN is also present in the file
as a separate VPN record (this constraint is for the purposes of creating a Retek
item parent in the EDI Item online form, which will then be applied to all items
with the associated parent VPN).

A case pack will be created or updated in the online form, if the supplier provides
the Case Reference Item and its associate case information in the EDI file in
addition to the item information. For a new item and case pack input, if case cost
is not in the input file, it will be calculated by multiplying the item unit cost and
the case pack quantity. Otherwise, if item unit cost is not presented in the input
file while case cost is provided, the item unit cost will be calculated by dividing
the case cost by case pack quantity.

To increase the flexibility of input new items, it is permissible to upload new
item information without the unit cost. However, these items will stay at the EDI
new item staging table – edi_new_item until the unit_cost is available. The
unit_cost can be provided later by the next EDI input file or inserted in the online
EDI item form.

All input file information is validated. Any erroneous data will cause the entire
transaction to be written to a run-time rejection file that can be reprocessed once
the appropriate adjustments are made.

The batch program will have the ability to process multiple transactions per file.

Volume 4 – Batch designs 173

The input file format will be in a Retek standard file format, rather than EDI
format. The translation from EDI 888 and EDI 879 (unit cost and case cost) to
this standard format will be done by customers using an EDI translation product
such as the Gentran translator.

Note: The following text of this design specific to cost change functionality in
this program is not included in the March 31, 2001, pre release of RMS10.0, EDI
New Item:

For an item that exists in the Retek System (item_supp_country table), the Cost
Change of the item will be updated in the edi_cost_change table and then further
processed in the online Cost Change Form. Otherwise, no cost information will
be updated.

Scheduling Constraints

Processing Cycle: Daily, Phase 2

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: File-based processing, multithreading not used

Restart Recovery

The batch program will use restart/recovery initialization, close, and intermittent
commits (restart_commit)

Program Flow

N/A

Shared Modules

SQL_LIB.BATCH_MSG—to write error messages

CURRENCY_SQL.CONVERT_BY_LOCATION—convert unit cost and unit
retail

COUNTRY_VALIDATE_SQL.EXISTS_ON_TABLE—validates
origin_country_id

SYSTEM_OPTIONS_SQL.GET_ALL_DEFAULTS—retrieves default
standard_uom, dimension_uom, weight_uom and packing_method.

UOM_SQL.GET_CLASS—retrieves the class that the UOM exists in

Function Level Description

init()

• get vdate

• Restart/recovery initialization

• open input file and read file header

• open output file (run-time reject file)

174 Retek Merchandising System

process()

• Read transaction header Loop:

� Read transaction detail

� Call validate_fdetl to validate each detail record provided by the input
file

� Call process_item:

o If new item or change to existing item, insert into edi_new_item

o If cost change, update edi_cost_change

format_FDETL():

• This function will be modified to format additional columns that are added to
the input file (reference the input file for details).

validate_FDETL()

• Validate that the input file has at least one of the item, VPN and ref_item
fields populated. If none of the above fields exists, issue an error message
and return NON_FATAL.

• Validate supplier by calling validate_supplier.

• When item parent passed in from the input file is not null, call
validate_item_parent.

• Call validate_parent_VPN to validate that the parent VPN exists in the
system and find the parent_item according to the parent_vpn.

• If both item parent and parent VPN are not null, compare the input item
parent with the item parent retrieved from function validate_parent_VPN, if
they are differnt, log an error and return NON_FATAL. Otherwise, if the
input item parent is null, the item parent retrieved from function
validate_parent_VPN should be used.

• Call functions validate_origin_country_id and validate_uom.

• When both ref_item_type and ref_item are presented, call function
check_ref_item and passing the ref_item and ref_item_type to the function.

• If the item field has value,

� call function validate_item;

� if the item does not equal ref_item, call function validate_ref_item;

� if the item VPN is not null, call validate_vpn.

� If the record’s item field does not have a value, process as follows:

• Call get_item

� If item parent is not null, item parent description or item parent number
type is null, call function get_item_info(). Pass in item parent number
and variables to hold the item_parent_desc and
item_parent_number_type. Note dummy variables are needed to hold
other parameters.

Volume 4 – Batch designs 175

� If both VPN and ref_item are not null and their corresponding item exists
in RMS, call function validate_VPN_vs_ref_item to make sure that the
item is not above the transaction level. Since an item that is above the
transaction level could not have a ref_item. (Similar to the scenario in
RMS9.0 that a style could not have a UPC). If the function call doesn’t
return true, return whatever the function returns.

� If the case_ref_item field is not null, call function process_case.

validate_supplier():

• First check if the supplier number has value.

� If it has value, open the cursor c_val_supp to validate the supplier as the
current code does. If the supplier is found successfully, return true.

� If it doesn’t have value, and there are duns number and duns loc in the
input, create a cursor c_val_supp_duns to select the supplier number
from the SUPS table according to the duns_number and the duns_loc. If
the supplier number is found, return true. If no supplier number is found,
log an error message to state so and return NON-FATAL. This record
will then be rejected. If an error happened, return fatal.

� Otherwise, return NON-FATAL to reject the record. An error message
should be written to the error file to state the reject reason.

validate_item()

Check to see if the item is in the system. If it is not, non-fatal error.

• Create a cursor to validate that the item exists in the item_master table, and is
not a sub-transaction item. If item_parent is not null, it needs to be added as
a validation criteria. At the same time, retrieve item_parent,
item_grandparent, item_number_type, item_level, tran_level and pack_ind in
the cursor. If the validation returns No Data Found, issue an error message
stating that either the item, or the item/item_parent relation doesn’t exist in
the system. Return a NON_FATAL error. If the item is a valid Retek item,
set the item exists indicator to 1.

validate_ref_item()

• Since we know that the ref_item does not equal the item, then the ref_item
could either be a sub-transaction item or not exist in the Retek system.

• If the ref_item is a sub_transaction level item, the item_parent found for the
ref_item from the item_master table should equal the item that passed in
from the input file.

• Create a cursor to perform the above validation. The cursor should select
item_parent from item_master table where the item equals the ref_item. If
NO DATA FOUND, return true. This means the ref_item might not be
stored in RMS. If the item_parent retrieved from the cursor equals the item
passed in from the input file, return true. Otherwise, log and error stating
that the transaction level item found for the ref_item does not match the item
in the record, return NON_FATAL error.

176 Retek Merchandising System

check_ref_item()

• Validate for reference item type of UPC-A, UPC-E, EAN8, EAN13 and
ISBN.

� If the reference item type is other than listed above, no validations will
be given and function should return success.

validate_parent_VPN()

Validate the parent_VPN against the item_supplier and edi_new_item tables.

• If item is found in the item_supplier table, store the value in item_parent and
return successfully. Make sure the item_parent returned is unique.

• If item doesn’t found in the item_supplier table, further check the parent_vpn
against the edi_new_item table where supplier equals ps_supplier and VPN
equals the record’s parent_vpn. If data is found, return true. Otherwise,
issue an error message stating that the parent_VPN does not exist in the
system, therefore, the item/item_parent relationship can’t be established.
Return NON_FATAL.

validate_origin_country_id()

• If origin country id on file, call country_validate_sql.exists_on_table to
validate the origin country. If origin country does not exist, return
NON_FATAL error.

validate_uom()

• Call function validate_each_uom() to validate the following unit of measures
when they have values:

� Standard UOM;

� Dimension UOMs of case, pallet and item unit;

� Weight UOMs of case, pallet and item unit;

� Volume UOMs of case, pallet and item unit.

Passing UOM object (example: case, pallet, etc.),UOM type (standard,
dimension, weight, volume) and UOM value to the function. If the call to
function validate_each_uom() returns fatal or non fatal error, return so.

• Otherwise, if the standard UOM is null, or any of the case, pallet or unit’s
dimension or weight has value, while their unit of measures are null, default
them to the Retek system default UOMs. Call
SYSTEM_OPTIONS_SQL.GET_ALL_DEFAULT_UOM to get the default
unit of measures.

• If the case liquid volume or unit liquid volume has a value, but their unit of
measure is null, return NON-FATAL error.

validate_each_uom()

This function will accept UOM object, UOM type and UOM value as input
parameters. It will call package function UOM_SQL.GET_CLASS to validate
the passed in UOM value. Check the following conditions:

Volume 4 – Batch designs 177

• If the passed in UOM type is standard, the UOM class is ‘PACK’ or
‘MISC’, issue an error message and return a NON-FATAL error.

• If the passed in UOM type is dimension, make sure the UOM class is
‘DIMEN’. If it is not ‘DIMEN’, issue an error message and return a NON-
FATAL error.

• If the passed in UOM type is weight and the UOM class found is not
‘MASS’, issue an error message and return a NON-FATAL error.

• If the passed in UOM type is volume and the UOM class found is not ‘VOL’
or ‘LVOL’, issue an error message and return a NON-FATAL error.

validate_vpn()

• Validate the vpn against the item_supplier table. If the inputted vpn is not
found on the table with the item and supplier, return a NON-FATAL error.

Validate_item_parent()

• This function will valid the input record’s item_parent exists in the
item_master table. It will select item_desc, item_number_type from
item_master table where item equals the item parent that passed in from the
input file.

• If the item_parent doesn’t exist, log an error and return NON_FATAL.
Otherwise, return true.

Find_ item_by_ref_item()

• The function will find the transaction level item that corresponding to the
ref_item(item ref_item or case ref_item) passed in. It will take ref_item,
item and item_exists as parameters.

• Since a ref_item could actually be a transaction level item or be a
sub_transaction level item, crease a cursor c_item_by_ref_item, do a decode
selection from item_master table to select item from item_master table if an
item equals the passed in ref_item and item_level equals tran_level, or to
select item_parent if the item equals the ref_item and the item_level =
tran_level +1.

• If data is found set the item_exist to 1 and store the found item in the passed
in variable. Otherwise, set the item_exist to 0. If no error occurred, return
true. Otherwise, return fatal.

get_item()

• If item has a diff, we must have the ref_item – if not, non-fatal error

• Pass ref_item to the function find_item_by_ref_item() and also pass in
variables to hold the item and the item exists indicator that will be retrieved
from the function.

178 Retek Merchandising System

• If the item is not found and VPN is on file, validate the VPN on the
item_supplier table

• If the item was retrieved

� Call get_item_info() to retrieve the item’s parent, grandparent, type,
description, item level, tran level, and pack indicator.

• If the item was not retrieved, check the edi_new_item table

• If the item was not retrieved, it is a new item

Get_item_info()

• This function will accept an item as input parameter. It’ll retrieve the
item_parent, item_grandparent, item_number_type, item_desc, item_level,
tran_level and pack_ind from the item_master table for the item.

convert_currency()

• Call currency_sql.convert_by_location to convert unit_cost and case_cost
into primary currency.

process_item()

• Check the edi_new_item table for the existence of
item/supplier/origin_country combo.

• Call convert_currency() to convert currency into primary currency for
edi_new_item table.

• If item is not on edi_new_item table

� If item exists

� Call process_cost_change() to update/insert edi_cost_chg table.

� Call insert_new_item() to insert into edi_new_item table – do not insert
if item is a pack item.

• If item is on edi_new_item table

� If item exists

� Call process_cost_change() to update/insert edi_cost_chg table.

� Call update_item_info() to update edi_new_item table – do not insert if
item is a pack item.

insert_new_item()

The function inserts the item into the edi_new_item table, using the values in the
transaction detail record. Unit_cost and case_cost should only be inserted for
items not in RMS.

update_item_info()

The function updates the edi_new_item table when a record has not been
approved and still in the edi_new_item table. The function updates the following
columns:

Volume 4 – Batch designs 179

vdate – processed date

NVL(item_desc, edi_new_item.item_desc)

NVL(short_desc, edi_new_item.short_desc)

NVL(case_cost, edi_new_item.case_cost) – for new items only

NVL(unit_cost, edi_new_item.unit_cost) – for new items only

NVL(packing_method, edi_new_item.packing_method)

NVL(gross_unit_weight, edi_new_item.gross_unit_weight)

NVL(net_unit_weight, edi_new_item.net_unit_weight)

NVL(unit_weight_uom, edi_new_item.unit_weight_uom)

NVL(unit_length, edi_new_item.unit_length)

NVL(unit_width, edi_new_item.unit_width)

NVL(unit_height, edi_new_item.unit_height)

NVL(unit_lwh_uom, edi_new_item.unit_lwh_uom)

NVL(unit_liquid_volume, edi_new_item.unit_liquid_volume)

NVL(unit_liquid_volume_uom, edi_new_item.unit_liquid_volume_uom)

NVL(gross_case_weight, edi_new_item.gross_case_weight)

NVL(net_case_weight, edi_new_item.net_unit_weight)

NVL(case_weight_uom, edi_new_item.case_weight_uom)

NVL(case_length, edi_new_item.case_length)

NVL(case_width, edi_new_item.case_width)

NVL(case_height, edi_new_item.case_height)

NVL(case_lwh_uom, edi_new_item.case_lwh_uom)

NVL(case_liquid_volume, edi_new_item.case_liquid_volume)

NVL(case_liquid_volume_uom, edi_new_item.case_liquid_volume_uom)

NVL(gross_pallet_weight, edi_new_item.gross_pallet_weight)

NVL(net_pallet_weight, edi_new_item.net_pallet_weight)

NVL(pallet_weight_uom, edi_new_item.pallet_weight_uom)

NVL(pallet_length, edi_new_item.pallet_length)

NVL(pallet_width, edi_new_item.pallet_width)

NVL(pallet_height, edi_new_item.pallet_height)

NVL(pallet_lwh_uom, edi_new_item.pallet_lwh_uom)

NVL(lead_time, edi_new_item.lead_time)

NVL(min_ord_qty, edi_new_item.min_ord_qty)

NVL(max_ord_qty, edi_new_item.max_ord_qty)

NVL(uom_conversion_factor, edi_new_item.uom_conversion_factor)

180 Retek Merchandising System

NVL(standard_uom, edi_new_item.standard_uom)

NVL(supp_diff_1, edi_new_item.supp_diff_1)

NVL(supp_diff_2, edi_new_item.supp_diff_2)

NVL(supp_diff_3, edi_new_item.supp_diff_3)

NVL(supp_diff_4, edi_new_item.supp_diff_4)

NVL(supp_pack_size, edi_new_item.supp_pack_size)

NVL(inner_pack_size, edi_new_item.inner_pack_size)

Validate_VPN_vs_ref_item():

• This function will validate that the VPN doesn’t correspond to an item that is
above the transaction level. Compare the item_level with the tran_level (the
item tran_level and item_level should have been retrieved in the previous
processes), if the item_level is less than the tran_level (item_level above the
tran_level), log an error stating that an item above transaction level can’t
have a ref_item, return NON_FATAL. Otherwise, return true.

process_case()

• First, check if this is a new case pack. Call function find_item_by_ref_item
to find the pack no that corresponding to the case_ref_item. Note this
indicator will be used to populate the edi_new_item table’s
new_case_pack_ind field if the case_ref_item is valid. Pass in the
case_ref_item to the function and also the variables to hold the pack no and
the pack exists indicator. If the pack no is not found in RMS, check to make
sure a type for the case_ref_item was specified in the input file. If not, log an
error and return NON_FATAL. If pack no is found in the RMS, find the
component item from the packitem table for the pack_no. Compare the pack
component item found from the cursor with the item that from the input file,
if they are different, log an error and return NON_FATAL.

• Next, compare the case pack exist indicator and the item exist indicator:

� If both case pack and item are new to RMS, if case_cost is null and
unit_cost is provided by the input file, calculate the case_cost by
multiplying the unit_cost and the pack_size. Otherwise, if unit_cost is
null and the case_cost is presented in the input file, divided the cast_cost
by the pack_size to populate the unit_cost field.

• Finally, if both of the case_ref_item and case_ref_item_type are not null, call
function check_ref_item and pass in the case_ref_item and
case_ref_item_type. If the function doesn’t return successfully, return
whatever is returned from the function. Otherwise, return true.

final()

• restart/recovery close, close files

Volume 4 – Batch designs 181

I/O Specification

Input file structure: (reject file will have same file structure)

FHEAD file header

FDETL item info

FTAIL file trailer

Input Files
Record
Name

Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file record type

 File Line Identifier Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being created for
output file.

 File Type Definition Char(4) UCAT Identifies program to use

 File Create Date Char(14) create date current date, formatted to
‘YYYYMMDDHH24MISS’.

File Detail File Type Record
Descriptor

Char(5) FDETL Identifies file record type

 File Line Identifier Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being created for
output file.

 Transaction sequence Number(10) Sequential transaction #

 Supplier Number(10) Supplier id#

 Sup Name Char(32) Supplier name

 Duns Number Number(9) Dun and Bradstreet number identifies
the supplier. Note the Duns Number
and Duns Loc together, uniquely
identifies a supplier.

 Duns Loc Number(4) Dun and Bradstreet number identifies
the location of the supplier.

 item Char(25) Retek item (blank if none)

 Ref item Char(25) Reference Item. For example, UPC
(blank if none).

182 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

 Ref item type Char(6) Reference item type. Valid reference
types are stored in the code_detail
table under Code Type of ‘UPCT’ and
listed as follows:
ITEM - Retek Item Number
UPC-A - UPC-A
UPC-AS - UPC-A with
Supplement
UPC-E - UPC-E
UPC-ES - UPC-E with
Supplement
EAN8 - EAN8
EAN13 - EAN13
EAN13S - EAN13 with
Supplement
ISBN - ISBN
NDC - NDC/NHRIC -
National Drug Code
PLU - PLU
VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCC14 - SCC-14
 (blank if none).

 Item Parent Char (25) Retek Item Parent which uniquely
identifies the item/group at the level
above the item.

 Parent VPN Char(30) Vendor style id

 VPN Char(30) Vendor product number (blank if
none) Must be in all capitals

 Supplier item
differentiator 1

Char(80) Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

 Supplier item
differentiator 2

Char(80) Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

Volume 4 – Batch designs 183

Record
Name

Field Name Field Type Default Value Description

 Supplier item
differentiator 3

Char(80) Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

 Supplier item
differentiator 4

Char(80) Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

 Item description Char(100) Item description

 Short description Char(20) Item short description for point of
sales.

 Effective date Char(14) Effective date,
YYYYMMDDHH24MISS

 Min order qty Number(12) Minimum order quantity (4 implied
decimal places)

 Max order qty Number(12) Maximum order quantity (4 implied
decimal places)

 Lead time Number(4) Days from PO receipt to shipment

 Unit cost Number(20) Unit cost, 4 implied decimal places

 Gross unit weight Number(12) Gross unit weight (4 implied decimal
places). The gross numeric value of
weight per unit.

 Net unit weight Number(12) Net unit weight (4 implied decimal
places). The net numeric value of
weight per unit.

 Unit weight UOM Char(4) Item unit weight unit of measure

 Unit length Number(12) Item unit length (4 implied decimal
places)

 Unit width Number(12) Item unit width (4 implied decimal
places)

 Unit height Number(12) Item unit height (4 implied decimal
places)

 Unit lwh UOM Char(4) Item unit dimension unit of measure.

 Unit liquid volume Number(12) Item unit liquid volume or capacity (4
implied decimal places)

184 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

 Unit liquid volume
UOM

Char(4) Unit of measure of the item liquid
volume/capacity

 Case ref item Char(25) Case reference number. For example:
case UPC code.

 Case ref item type Char(6) Case reference number type. Valid
case reference item types are stored
in the code_detail table under Code
Type of ‘UPCT’ and listed as follows:
ITEM - Retek Item Number
UPC-A - UPC-A
UPC-AS - UPC-A with
Supplement
UPC-E - UPC-E
UPC-ES - UPC-E with
Supplement
EAN8 - EAN8
EAN13 - EAN13
EAN13S - EAN13 with
Supplement
ISBN - ISBN
NDC - NDC/NHRIC -
National Drug Code
PLU - PLU
VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCC14 - SCC-14
 (blank if none).

 Case item desc Char(100) Case item description

 Case cost number(20) Case Cost (4 implied decimal places)

 Gross case weight Number(12) Gross weight of the case (4 implied
decimal places)

 Net case weight Number(12) Net weight of the case (4 implied
decimal places)

 Case weight UOM Char(4) Unit of measure of the case weight

 Case length Number(12) Case length (4 implied decimal
places)

 Case width Number(12) Case width (4 implied decimal places)

 Case height Number(12) Case height (4 implied decimal
places)

Volume 4 – Batch designs 185

Record
Name

Field Name Field Type Default Value Description

 Case lwh UOM Char(4) Case dimension unit of measure.

 Case liquid volume Number(12) Case liquid volume or capacity (4
implied decimal places)

 Case liquid volume
UOM

Char(4) Unit of measure of the case liquid
volume/capacity

 Gross pallet weight Number(12) Gross pallet weight (4 implied
decimal places)

 Net pallet weight Number(12) Net pallet weight (4 implied decimal
places)

 Pallet weight UOM Char(4) Unit of measure of the pallet weight

 Pallet length Number(12) Pallet length (4 implied decimal
places)

 Pallet width Number(12) Pallet width (4 implied decimal
places)

 Pallet height Number(12) Pallet height (4 implied decimal
places)

 Pallet lwh UOM Char(4) Pallet dimension unit of measure.

 Ti Number(12) Shipping units (cases) in one tier of a
pallet (4 implied decimal places)

 Hi Number(12) Number of tiers in a pallet (height).
(4 implied decimal places)

 Pack Size Number(12) Supplied pack size. I.e., Number of
eaches per case pack. This is the
quantity that orders must be placed in
multiples of for the supplier for the
item.

 Inner pack size Number(12) Supplied inner pack size. I.e.,
Number of eaches per inner container.

 Origin Country ID Char(3) Supplied origin country ID.

 Standard UOM Char(4) Unit of measure in which stock of the
item is tracked at a corporate level.

186 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

 UOM Conversion
Factor

Number(20) Conversion Factor, 10 implied
decimal places. Conversion factor
between an "Each" and the
standard_uom when the
standard_uom is not in the quantity
class (e.g. if standard_uom = lb and 1
lb = 10 eaches, this factor will be 10).
This factor will be used to convert
sales and stock data when an item is
retailed in eaches but does not have
eaches as its standard unit of measure.

 Packing Method Char(6) Packing Method code (HANG,FLAT)

 Location Number(10) RETEK location that the supplier
distributes to or this may be a number
used by the supplier to identify a non-
RETEK location.

 Location Type Char(1) This field will contain the type of
location (‘S’ for store and ‘W’ for
warehouse).

 Bracket Value 1 Number
(12,4)

 This will contain the primary bracket
value of the supplier.

 Bracket UOM 1 Char(4) This field will contain the unit of
measure of the primary bracket.

 Bracket Type 1 Char (6) This field will contain the UOM class.

 Bracket Value 2 Number
(12,4)

 This will contain the secondary
bracket value for the supplier.

 Unit cost new Number
(20,4)

 This field will contain the new unit
cost of the bracket.

 Case Bracket Value 1 Number
(12,4)

 This will contain the primary bracket
value of the supplier for a case UPC.

 Case Bracket UOM 1 Char(4) This field will contain the unit of
measure of the primary bracket for a
case UPC.

 Case Bracket Type 1 Char (6) This field will contain the UOM class
for a case UPC.

 Case Bracket Value 2 Number
(12,4)

 This will contain the secondary
bracket value for the supplier for a
case UPC.

Volume 4 – Batch designs 187

Record
Name

Field Name Field Type Default Value Description

 Case Unit cost new Number
(20,4)

 This field will contain the new unit
cost of the bracket for a case UPC.

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file record type

 File Line Identifier Numeric
ID(10)

Sequential
number
Created by
program.

ID of current line being created for
output file.

 File Record Counter Numeric
ID(10)

 Number of records/transactions
processed in current file (only records
between head & tail)

Test Conditions

Conditions Expected Results Programmer
Sign-off

No records no processing

Missing required information write TDETL line to reject file

Process a valid input file:

for a new item Insert edi_new_item record – include the
unit retail and cost

for existing items Insert edi_new_item record, if changes to
other than cost.
Only insert into edi_cost_change if cost
change present

for a new item with existing
edi_new_item and
edi_cost_change records

Update the edi_new_item and
edi_cost_change tables

Input file contains item, ref_item,
and VPN:

invalid ref_item write TDETL to reject file

invalid vpn write TDETL to reject file

Input file contains ref_item
andVPN:

invalid ref_item write TDETL to reject file

invalid vpn write TDETL to reject file

188 Retek Merchandising System

Conditions Expected Results Programmer
Sign-off

item with no ref_item (in Retek)
but a valid VPN

Insert/update edi_new_item and
edi_cost_change tables

Technical Issues

1

2

3

4

 Unit retail and cost will be inserted into edi_new_item table for new items
only.

 We are not using permanent substitutions.

 It is assumed that currency will be in the supplier’s currency. This currency
must be converted to primary currency for the edi_new_item table. No
translation is necessary for the edi_cost_change table since that stores the
supplier’s currency.

 All input/validation errors will be non-fatal. All Oracle errors will be fatal.

Volume 4 – Batch designs 189

On-order extract [onordext}
Module affected

On-Order Extract – onordext.pc

Design Overview

This program calculates the value in cost and retail of items that are on order for
the department/class/subclass/location level. This program is the first step in the
stock ledger download process to RPP. It calculates the on order cost and retail
for all approved orders that have not before dates less than or equal to the
planning horizon date. Once the program has calculated the costs and retails,
they are inserted into the ON_ORDER_TEMP table. This table is used in the
second step of the stock ledger download process -- the Stock Ledger Extract
program (stlgdnld.pc).

Note: The MAX_BUFFER_NUM #define should be set to a number that will
allow safe buffering of component pack items, allocations, and orders at the
component sku location level. If it is possible for any of these variables to
exceed the value assigned to MAX_BUFFER_NUM, its value must be increased.

Stored Procedures / Shared Modules (Maintainability)

Convert_to_primary – Pro*c library (utils.h / utils.pc).

Program Flow

Function Level Description

main():

The standard Retek main() function. Calls init(), process(), and final().

init():

Initialize restart recovery by calling retek_init(). Opens the input file and reads
the planning horizon end date. Gets the primary currency from the
system_options table.

process():

There are two process loops, one for transaction level items and one for pack
items.

For each record brought back by the item driving cursor:

• Convert the cost from the order currency into the primary currency by calling
the convert_to_primary function.

• Convert the retail from the location currency into the primary currency by
calling the convert_to_primary function.

• Call the handle_alloc function.

After all the record from the item cursor have been processed. The process flag
should be flipped to ‘P’ack. The handle_alloc function is called to clean up the
last allocation.

190 Retek Merchandising System

For each record brought back by the pack driving cursor:

• Convert the pack cost from the order currency into the primary currency by
calling the convert_to_primary function.

• Convert the pack retail from the location currency into the primary currency
by calling the convert_to_primary function.

• Convert the pack component item cost from the supplier currency into the
primary currency by calling the convert_to_primary function.

• Convert the pack component item retail from the zone/zone_group currency
into the primary currency by calling the convert_to_primary function.

• Call the handle_pack function.

Handle_insert()

This function adds records to arrays that will be inserted into
ON_ORDER_TEMP. First it populated a record into the regular array (non-
allocation). Then if the current record is associated with an allocation, a record is
added to the allocation array.

Add_insert_record()

This function copies records from a driving cursor record into an insert array. It
has two modes, the first if for non-allocation records. The cost and retail are set
to the converted cost and retail from the driving cursor times the item qty from
ordloc. The second mode handles allocation records, it sets the cost and retail to
the converted cost and retail from the driving cursor times the alloc qty from
alloc_detail.

Handle_alloc()

This function sums up the quantities allocated to on alloc_header for each
allocation. Once every record associated with an allocation have been summed,
it is possible to determine how much of the qty ordered to the allocation
warehouse should be assigned to it. If all of the items ordered to it have been
allocated, the warehouse is not assigned any of the cost or retail. If items are not
fully allocated, the warehouse is assigned the items that were not allocated. Once
the qty to give to the warehouse it determined, the handle_insert is function is
called for each allocation record.

Handle_pack()

This function prorates the amount and cost ordered through packs to their
component items. Every component item ordered through a pack has their total
cost and retail summed up. Once all the component items have been summed,
the cost and retail of the pack is prorated. The formula cost is: (the pack’s cost /
the summed component cost) * the individual component item’s cost. The same
formula is used for retail.

When summing up retails, the class_vat_ind of the pack and its components are
considered. When they are different, the components retail is converted to match
the pack’s. This logic is contained in handle_comp_vat().

After the records are prorated they are sent to buffer_alloc().

Volume 4 – Batch designs 191

Handle_comp_vat()

This function adds or removes vat from pack component’s retail as needed. This
conversion is only needed when vat is defined as the class level in the system
(system_options.class_level_vat_ind).

If the pack’s dept/class does not match the component’s dept/class:

If the pack’s class_vat_ind (defined at the class table) does not match the
component’s class_vat_ind:

Add or remove vat from the component’s retail based on the pack’s
class_vat_ind. The conversion is done using library function defined in
common.h.

Buffer_alloc()

This function is used to reorder the records sent to it by handle_pack() before
they are sent to handle_alloc(). The handle_pack() function requires that the
records be ordered by order_no, pack_no, location, alloc location.
Handle_alloc() requires the records to be ordered by order_no, pack_no, location,
component item. This function build groups of order_no/pack_no/location and
reorders them by component item. sort_for_allocation(), get_max_indx(),
swap_driv_array(), and copy_info() are utility functions that help sort the driving
cursor records.

Once the buffered records have been ordered, they are sent to the handle_alloc()
function.

Copy_fetch()

Utility function used by handle_alloc and handle_pack. It totals up the allocated
qty for the handle_alloc funciton. It totals up the components cost and retail
(times the pack item qty) for handle_pack.

Insert_on_order_temp()

This function performs an array insert into the on_order_temp table.

Size_driv_cur_struct()

Allocates memory for the structure used to fetch the driving cursors and used
when summing up allocations and pack component items.

Size_insert_struct()

Allocates memory used to perform bulk inserts into the on_order_temp table.

load_dept_class()

Load an array with every dept/class and their class_vat_ind. We want to make
sure that all components include or exclude vat depending on whether or not the
pack includes or excludes vat. Vat should be consistent across all the retail
values when prorating the pack’s retail to the components.

To avoid extra-hits database hits, the entire class table is cached with necessary
vat information. That way when we need to get a particular class_vat_ind, we
can search this array rather than hit the database in our driving cursor loop.

192 Retek Merchandising System

size_dept_class()

Size an array to hold every dept/class/class_vat_ind.

get_dept_class_ind()

Given a dept/class, this function will perform a binary search on the dept/class
array and return the class_vat_ind for the passed in dept/class.

get_vat_rate()

Wrapper for call to VAT_SQL.GET_VAT_RATE.

Input Specifications

Command Line Parameters:

Onordext will calculate the on order cost and retail for a given planning horizon.
The planning horizon date will be a command line parameter contained in an
input file. The file will also contain information used by stlgdnld.pc.

The file contains 1 line

Field Position: 1 – weekly or historic indicator

2-9 – planning horizon start date

10-17 – planning horizon end date

Onordext userid/passwd input-file

Driving Cursor:

There are two driving cursors in this program. The first deals with items, the
second deals with packs.

 /*

 The first driving cursor handles on-order amounts for items.

 The first part deals with non-allocation ordeers or allocation
orders

 that are not pre-marked

 */

 EXEC SQL DECLARE c_driver CURSOR FOR

 SELECT oh.order_no,

 -999 alloc_no,

 ol.item,

 ol.qty_ordered - nvl(ol.qty_received,0),

 ol.unit_cost,

 ol.unit_retail,

 ol.location,

 ol.loc_type,

 -999 alloc_loc,

 'N' alloc_loc_type,

 0 alloc_qty,

 im.dept,

Volume 4 – Batch designs 193

 im.class,

 im.subclass,

 oh.exchange_rate,

 oh.currency_code,

 oh.otb_eow_date,

 1 comp_item_qty

 FROM ordhead oh,

 ordloc ol,

 item_master im

 WHERE oh.status = 'A'

 AND ol.qty_ordered > nvl(ol.qty_received,0)

 AND oh.not_before_date <= TO_DATE(:ps_on_order_date,
'YYYYMMDD')

 AND oh.order_no = ol.order_no

 AND ol.item = im.item

 AND im.pack_ind = 'N'

 AND (oh.pre_mark_ind = 'N' OR

 (oh.pre_mark_ind = 'Y'

 and not exists (select alloc_no

 from alloc_header ah

 where ah.order_no = oh.order_no

 and ol.item = ah.item

 and ol.location = ah.wh)))

 AND oh.order_no > NVL(:ps_restart_order, -999)

 AND MOD(oh.order_no, TO_NUMBER(:ps_restart_num_threads)) + 1 =
TO_NUMBER(:ps_restart_thread_val)

 UNION ALL

 SELECT oh.order_no,

 NVL(ah.alloc_no,-999),

 ol.item,

 ol.qty_ordered - nvl(ol.qty_received,0),

 ol.unit_cost,

 ol.unit_retail,

 ol.location,

 ol.loc_type,

 ad.to_loc,

 ad.to_loc_type,

 nvl(ad.qty_allocated, 0) - nvl(ad.qty_transferred,0),

 im.dept,

 im.class,

 im.subclass,

 oh.exchange_rate,

 oh.currency_code,

 oh.otb_eow_date,

194 Retek Merchandising System

 1 comp_item_qty

 FROM ordhead oh,

 ordloc ol,

 item_master im,

 alloc_header ah,

 alloc_detail ad

 WHERE oh.status = 'A'

 AND ol.qty_ordered > nvl(ol.qty_received,0)

 AND oh.pre_mark_ind = 'Y'

 AND oh.not_before_date <= TO_DATE(:ps_on_order_date,
'YYYYMMDD')

 AND oh.order_no = ol.order_no

 AND ol.item = im.item

 AND im.pack_ind = 'N'

 AND ol.order_no = ah.order_no

 AND ol.location = ah.wh

 AND ol.item = ah.item

 AND ah.alloc_no = ad.alloc_no

 AND oh.order_no > NVL(:ps_restart_order, -999)

 AND MOD(oh.order_no, TO_NUMBER(:ps_restart_num_threads)) + 1 =
TO_NUMBER(:ps_restart_thread_val)

 ORDER BY 1,2,7,9;

 /*

 The second driving cursor handles on-order amounts for packs.

 - The first part deals with packs being ordered directly to a
store.

 - The second part deals with packs being directly ordered to a wh
or

 allocated from a wh with the pre-mark indicator set to 'N'.

 - The third part deals with packs being allocated from a wh with
the

 pre-mark indicatory set to "Y'.

 */

 EXEC SQL DECLARE c_pack_driver CURSOR FOR

 SELECT oh.order_no,

 -999 alloc_no,

 ol.item pack_no,

 ol.qty_ordered - nvl(ol.qty_received,0) pack_qty,

 ol.unit_cost pack_cost,

 ol.unit_retail pack_retail,

 vpq.item,

 vpq.qty item_qty,

 iscl.unit_cost comp_cost,

 izp.unit_retail comp_retail,

Volume 4 – Batch designs 195

 ol.location,

 ol.loc_type,

 -999 alloc_loc,

 'N' alloc_loc_type,

 0 alloc_qty,

 im.dept,

 im.class,

 im.subclass,

 iscl.supplier,

 izp.zone_id,

 izp.zone_group_id,

 oh.exchange_rate,

 oh.currency_code,

 oh.otb_eow_date,

 vpq.qty comp_item_qty,

 to_char(imp.dept,'0000')||trim(to_char(imp.class,'0000')),

 to_char(im.dept,'0000')||trim(to_char(im.class,'0000'))

 FROM ordhead oh,

 ordsku os,

 ordloc ol,

 item_master im,

 item_master imp,

 v_packsku_qty vpq,

 item_supp_country_loc iscl,

 price_zone_group_store pzgs,

 item_zone_price izp

 WHERE oh.status = 'A'

 AND ol.qty_ordered > nvl(ol.qty_received,0)

 AND oh.not_before_date <= TO_DATE(:ps_on_order_date,
'YYYYMMDD')

 AND oh.pre_mark_ind = 'N'

 AND oh.order_no = os.order_no

 AND oh.order_no = ol.order_no

 AND ol.loc_type = 'S'

 AND os.item = imp.item

 AND os.item = ol.item

 AND ol.item = vpq.pack_no

 AND im.item = vpq.item

 AND iscl.item = im.item

 AND oh.supplier = iscl.supplier

 AND os.origin_country_id = iscl.origin_country_id

 AND pzgs.store = ol.location

 AND pzgs.zone_id = izp.zone_id

196 Retek Merchandising System

 AND pzgs.zone_group_id = izp.zone_group_id

 AND izp.item = vpq.item

 AND oh.order_no > NVL(:ps_restart_order, -999)

 AND MOD(oh.order_no, TO_NUMBER(:ps_restart_num_threads)) + 1 =
TO_NUMBER(:ps_restart_thread_val)

 UNION ALL

 SELECT oh.order_no,

 -999 alloc_no,

 ol.item pack_no,

 ol.qty_ordered - nvl(ol.qty_received,0) pack_qty,

 ol.unit_cost pack_cost,

 ol.unit_retail pack_retail,

 vpq.item,

 vpq.qty item_qty,

 iscl.unit_cost comp_cost,

 izp.unit_retail comp_retail,

 ol.location,

 ol.loc_type,

 -999 alloc_loc,

 'N' alloc_loc_type,

 0 alloc_qty,

 im.dept,

 im.class,

 im.subclass,

 iscl.supplier,

 izp.zone_id,

 izp.zone_group_id,

 oh.exchange_rate,

 oh.currency_code,

 oh.otb_eow_date,

 vpq.qty comp_item_qty,

 to_char(imp.dept,'0000')||trim(to_char(imp.class,'0000')),

 to_char(im.dept,'0000')||trim(to_char(im.class,'0000'))

 FROM ordhead oh,

 ordsku os,

 ordloc ol,

 item_master im,

 item_master imp,

 v_packsku_qty vpq,

 item_supp_country_loc iscl,

 item_zone_price izp

 WHERE oh.status = 'A'

 AND ol.qty_ordered > nvl(ol.qty_received,0)

Volume 4 – Batch designs 197

 AND oh.not_before_date <= TO_DATE(:ps_on_order_date,
'YYYYMMDD')

 AND oh.order_no = os.order_no

 AND oh.order_no = ol.order_no

 AND os.item = imp.item

 AND os.item = ol.item

 AND ol.loc_type = 'W'

 AND ol.item = vpq.pack_no

 AND im.item = vpq.item

 AND iscl.item = im.item

 AND oh.supplier = iscl.supplier

 AND os.origin_country_id = iscl.origin_country_id

 AND izp.item = vpq.item

 AND izp.base_retail_ind = 'Y'

 AND (oh.pre_mark_ind = 'N' OR

 (oh.pre_mark_ind = 'Y'

 and not exists (select alloc_no

 from alloc_header ah

 where ah.order_no = oh.order_no

 and ol.item = ah.item

 and ol.location = ah.wh)))

 AND oh.order_no > NVL(:ps_restart_order, -999)

 AND MOD(oh.order_no, TO_NUMBER(:ps_restart_num_threads)) + 1 =
TO_NUMBER(:ps_restart_thread_val)

 UNION ALL

 SELECT oh.order_no,

 NVL(ah.alloc_no,-999),

 ol.item pack_no,

 ol.qty_ordered - nvl(ol.qty_received,0) pack_qty,

 ol.unit_cost pack_cost,

 ol.unit_retail pack_retail,

 vpq.item,

 vpq.qty item_qty,

 iscl.unit_cost comp_cost,

 izp.unit_retail comp_retail,

 ol.location,

 ol.loc_type,

 ad.to_loc,

 ad.to_loc_type,

 nvl(ad.qty_allocated, 0) - nvl(ad.qty_transferred,0),

 im.dept,

 im.class,

 im.subclass,

 iscl.supplier,

198 Retek Merchandising System

 izp.zone_id,

 izp.zone_group_id,

 oh.exchange_rate,

 oh.currency_code,

 oh.otb_eow_date,

 vpq.qty comp_item_qty,

 to_char(imp.dept,'0000')||trim(to_char(imp.class,'0000')),

 to_char(im.dept,'0000')||trim(to_char(im.class,'0000'))

 FROM ordhead oh,

 ordsku os,

 ordloc ol,

 item_master im,

 item_master imp,

 v_packsku_qty vpq,

 item_supp_country_loc iscl,

 item_zone_price izp,

 alloc_header ah,

 alloc_detail ad

 WHERE oh.status = 'A'

 AND ol.qty_ordered > nvl(ol.qty_received,0)

 AND oh.pre_mark_ind = 'Y'

 AND oh.not_before_date <= TO_DATE(:ps_on_order_date,
'YYYYMMDD')

 AND oh.order_no = os.order_no

 AND oh.order_no = ol.order_no

 AND os.item = imp.item

 AND os.item = ol.item

 AND ol.loc_type = 'W'

 AND ol.item = vpq.pack_no

 AND im.item = vpq.item

 AND iscl.item = im.item

 AND oh.supplier = iscl.supplier

 AND os.origin_country_id = iscl.origin_country_id

 AND izp.item = vpq.item

 AND izp.base_retail_ind = 'Y'

 AND ol.order_no = ah.order_no

 AND ol.location = ah.wh

 AND ol.item = ah.item

 AND ah.alloc_no = ad.alloc_no

 AND oh.order_no > NVL(:ps_restart_order, -999)

 AND MOD(oh.order_no, TO_NUMBER(:ps_restart_num_threads)) + 1 =
TO_NUMBER(:ps_restart_thread_val)

 ORDER BY 1,2,3,13,15;

Volume 4 – Batch designs 199

Output Specifications
ON_ORDER_TEMP will be populated by this program.
ITEM NOT NULL VARCHAR2(25)

DEPT NOT NULL NUMBER(4)

CLASS NOT NULL NUMBER(4)

SUBCLASS NOT NULL NUMBER(4)

OTB_EOW_DATE NOT NULL DATE

STORE NOT NULL NUMBER(10)

Scheduling Considerations

WH NOT NULL NUMBER(10)

ON_ORDER_RETAIL NOT NULL NUMBER(20,4)

ON_ORDER_COST NOT NULL NUMBER(20,4)

ON_ORDER_UNITS NOT NULL NUMBER(20,4)

This program can be run weekly in Phase 4.

Prepost onordext pre must run before this program.

This program should be run before onorddnld.pc.

Locking Strategy

Restart/Recovery

Logical unit of work (LUW) is a unique order number. This is a non-unique
LUW.

It is also split into two sections item and pack. First all items on orders are
processed. When they are done a pack ‘flag’ is turned on and the restart order is
reset. Then all the packs on order are processed. So all orders are considered
twice, once for items and once for packs.

200 Retek Merchandising System

POS download [posdnld]
Design overview

The posdnld program is used to download pos_mods records created in the RMS
to the store POS systems. This program has one output file which contains all
records for all stores in a given run. This program uses the Retek standard file
format FHEAD, FDETL, FTAIL.

Program Flow

Pos_mods Output File

Stored Procedures / Shared Modules (Maintainability)

pos_config_sql.check_item - Updates POS item configuration information that is
downloaded to the stores by poscdnld.pc.

Input Specifications

All input comes from the pos_mods table. All columns of this table can be NULL
with the exception of tran_type and store. Most columns should default to blank
(spaces) with the exception of:

• new_price, new_multi_units, new_multi_units_retail, proportional_tare_pct
and fixed_tare_value. These should default to zero (0).

• start_date, start_time and end_time. These should default to period.vdate + 1.

Output Specifications

Output File

Record
Name

Field Name Field
Type

Default Value Description

File
Header

File Type
Record

Descriptor

Char(5) FHEAD Identifies file record type

 File Line
Identifier

Number
ID(10)

Sequential
number
Created by
program.

ID of current line being created
for output file.

Volume 4 – Batch designs 201

Record
Name

Field Name Field
Type

Default Value Description

 File Type
Definition

Char(4) POSD Identifies file as ‘POS Download’

 File Create
Date

Char(8) Create date
(vdate).

Current date, formatted to
‘YYYYMMDD’.

File
Detail

File Type
Record

Descriptor

Char(5) FDETL Identifies file record type

 File Line
Identifier

Number
ID(10)

Sequential
number.
Created by
program.

ID of current line being created
for output file.

 Location
Number

Number(1
0)

Store Contains the store location that
has been affected by the
transaction

 Update Type Char(1) Update type.
Created by
program.

Code used for client specific POS
system.
1 - Transaction Types 1 & 2.
2 - Transaction Types 10 thru 18,
31 & 32, 50 thru 57, 59 thru 64.
3 - Transaction Types 21 & 22
4 - Transaction Types 25 & 26
0 - All other Transaction Types.
These should never exist.

Start Date Char(8) Start_date or
vdate + 1 if
NULL.

The effective date for the action
determined by the transaction type
of the record. Formatted to
‘YYYYMMDD’.

 Time Char(6) Start_time,
End_time or
start_date.

This field will be used in
conjunction with starting a
promotion (Transaction Type =
31). Start time will indicate the
time of day that the promotion is
scheduled to start. This field will
also be used in conjunction with
ending a promotion (Transaction
Type = 32). Any other
Transaction Type will use the time
from the start_date column.
Formatted to ‘HH24MISS’.

 Transaction
Type

Number(2
)

Tran_type Indicates the type of transaction to
determine what Retek action is
being sent down to the stores from

202 Retek Merchandising System

Record
Name

Field Name Field
Type

Default Value Description

the Retek pos_mods table.
Valid values include:
01 - Add new transaction level
item
02 - Add new lower than
transaction level item

56 - Chan

10 - Change Short Description of
existing item
11 - Change Price of an existing
item
12 - Change Description of an
existing item
13 - Change
Department/Class/Subclass of an
existing item
16 - Put Item on Clearance
17 - Change existing item's
Clearance Price
18 - Remove Item from Clearance
and Reset
20 -
21 - Delete existing transaction
level item
22 - Delete existing lower than
transaction level item
25 - Change item's status
26 - Change item's taxable
indicator
31 - Promotional item - Start
maintenance
32 - Promotional item - End
maintenance
50 - Change item's launch date
51 - Change item's quantity key
options
52 - Change item's manual price
entry options
53 - Change item's deposit code
54 - Change item's food stamp
indicator
55 - Change item's WIC indicator

ge item's proportional

Volume 4 – Batch designs 203

Record
Name

Field Name Field
Type

Default Value Description

tare percent

62 – Change item’s returnable
indicator

57 - Change item's fixed tare
value
58 - Change item's rewards
eligible indicator
59- Change item's electronic
marketing clubs
60 - Change item's return policy
61 - Change item's stop sale
indicator

 Item Number
ID

Char(25) Item This field identifies the unique
alphanumeric value for the
transaction level item. The ID
number of a item from the Retek
item_master table.

 Item Number
Type

Char(6) Item_number_ty
pe

This field identifies the type of the
item number ID.

Format ID Char(1) Format_id This field identifies the type of
format used if the
item_number_type is ‘VPLU’.

Number(2
)

Prefix This field identifies the prefix
used if the item_number_type is
‘VPLU’. In case of single digit
prefix, the field will be right-
justified with blank padding.

Reference
Item

Char(25) Ref_item This field identifies the unique
alphanumeric value for an item
one level below the transaction
level item.

Reference
Item Number
Type

Char(6) Ref_Item_numbe
r_type

This field identifies the type of the
ref item number ID.

 Reference
Item Format
ID

Char(1) Ref_Format_id This field identifies the type of
format used if the ref
item_number_type is ‘VPLU’.

 Reference
Item Prefix

Number(2
)

Ref_Prefix This field identifies the prefix
used if the ref item_number_type
is ‘VPLU’. In case of single digit
prefix, the field will be right-
justified with blank padding.

 Prefix

204 Retek Merchandising System

Record
Name

Field Name Field
Type

Default Value Description

 Item Short
Description

Char(20) Item_short_desc Contains the short description
associated with the item.

 Item Long
Description

Char(100) Item_long_desc Contains the long description
associated with the item.

 Department
ID

Contains the item's associated
department.

Number(4
)

Dept

 Class ID Number(4
)

Class Contains the item's associated
class.

Subclass ID Number(4
)

Subclass Contains the item's associated
subclass.

 New Price Number(2
0)

New_price Contains the new effective price
in the selling unit of measure for
an item when the transaction type
identifies a change in price.
Otherwise, the current retail price
is used to populate this field. This
field is stored in the local
currency.

 New Selling
UOM

Char(4) New_selling_UO
M

Contains the new selling unit of
measure for an item's single-unit
retail.

 New Multi
Units

Number(1
2)

New_multi_units Contains the new number of units
sold together for multi-unit
pricing. This field is only filled
when a multi-unit price change is
being made.

 New Multi
Units Retail

Contains the new price in the
selling unit of measure for units
sold together for multi-unit
pricing. This field is only filled
when a multi-unit price change is
being made. This field is stored in
the local currency.

Number(2
0)

New_multi_units
_retail

 New Multi
Selling UOM

Char(4) New_multi_selli
ng_UOM

Contains the new selling unit of
measure for an item's multi-unit
retail.

Volume 4 – Batch designs 205

Record
Name

Field Name Field
Type

Default Value Description

 Status Char(1) Status

Valid values are:

Populates if tran_type for the item
is 1(new item added) or 25
(change item status) or 26 (change
taxable indicator).
Contains the current status of the
item at the store.

A = Active
I = Inactive
D = Delete
C = Discontinued

 Taxable
Indicator

Char(1) Taxable_ind Populates if tran_type for the item
is 1 (new item added) or 25
(change item status) or 26 (change
taxable indicator).
Indicates whether the item is
taxable at the store. Valid values
are 'Y' or 'N'.

 Promotion
Number

Number(1
0)

Promotion This field contains the number of
the promotion for which the
discount originated. This field,
along with the Mix Match
Number or Threshold Number is
used to isolate a list of items that
tie together with discount
information.

 Mix Match
Number

Number(1
0)

Mix_match_no This field contains the number of
the mix and match in a promotion
for which the discount originated.
This field, along with the
promotion, is used to isolate a list
of items which tie together with
the mix and match discount
information.

206 Retek Merchandising System

Record
Name

Field Name Field
Type

Default Value Description

 Mix Match
Type

Char(1) Mix_match_type This field identifies which types
of mix and match record this item
belongs to. The item can either be
a buy (exists on
PROM_MIX_MATCH_BUY) or
a get (exists on
PROM_MIX_MATCH_GET)
item. This field is only populated
when the MIX_MATCH_NO is
populated.
Valid values are:
B - Buy
G - Get

 Threshold
Number

Number(1
0)

Threshold_no This field contains the number of
the threshold in a promotion for
which the discount originated.
This field, along with the
promotion, is used to isolate a list
of items that tie together with
discount information.

 Launch Date Char(8) Launch_date Date that the item should first be
sold at this location, formatted to
‘YYYYMMDD’.

 Quantity Key
Options

Char(6) Qty_key_options Determines whether the price
can/should be entered manually
on a POS for this item at the
location. Valid values are in the
code_type 'RPO'. Current values
include 'R - required', 'P -
Prohibited.

 Manual Price
Entry

Char(6) Manual_price_en
try

Determines whether the price
can/should be entered manually
on a POS for this item at the
location. Valid values are in the
code_type 'RPO'. Current values
include 'R - required', 'P -
Prohibited', and 'O - Optional'.

Volume 4 – Batch designs 207

Record
Name

Field Name Field
Type

Default Value Description

 Deposit Code Char(6) Deposit_code Indicates whether a deposit is
associated with this item at the
location. Valid values are in the
code_type 'DEPO'. Additional
values may be added or removed
as needed. Deposits are not
subtracted from the retail of an
item uploaded to RMS, etc. This
kind of processing is the
responsibility of the client and
should occur before sales are sent
to any Retek application.

 Food Stamp
Indicator

Char(1) Food_stamp_ind Indicates whether the item is
approved for food stamps at the
location.

 WIC
Indicator

Char(1) Wic_ind Indicates whether the item is
approved for WIC at the location.

 Proportional
Tare Percent

Number(1
2)

Proportional_tare
_pct

Holds the value associated of the
packaging in items sold by weight
at the location. The proportional
tare is the proportion of the total
weight of a unit of an item that is
packaging (i.e. if the tare item is
bulk candy, this is the
proportional of the total weight of
one piece of candy that is the
candy wrapper). The only
processing RMS does involving
the proportional tare percent is
downloading it to the POS.

208 Retek Merchandising System

Record
Name

Field Name Field
Type

Default Value Description

 Fixed Tare
Value

Number(1
2)

Fixed_tare_value Holds the value associated of the
packaging in items sold by weight
at the location. Fixed tare is the
tare of the packaging used to (i.e.
if the tare item is bulk candy, this
is weight of the bag and twist tie).
The only processing RMS does
involving the fixed tare value is
downloading it to the POS. Fixed
tare is not subtracted from items
sold by weight when sales are
uploaded to RMS, etc. This kind
of processing is the responsibility
of the client and should occur
before sales are sent to any Retek
application.

 Fixed Tare
UOM

Char(4) Fixed_tare_uom Holds the unit of measure value
associated with the tare value. The
only processing RMS does
involving the proportional tare
value and UOM is downloading it
to the POS. This kind of
processing is the responsibility of
the client and should occur before
sales are sent to any Retek
application.

 Reward
Eligible
Indicator

Char(1) Reward_eligible_
ind

Holds whether the item is legally
valid for various types of bonus
point/award programs at the
location.

 Elective
Marketing
Clubs

Char(6) Elect_mtk_clubs Holds the code that represents the
marketing clubs to which the item
belongs at the location. Valid
values can belong to the
code_type 'MTKC'. Additional
values can be added or removed
from the code type as needed

 Return Policy Char(6) Return_pocily Holds the return policy for the
item at the location. Valid values
for this field belong to the
code_type 'RETP'.

 Stop Sale
Indicator

Char(1) Stop_sale_ind Indicates that sale of the item
should be stopped immediately at
the location (i.e. in case of recall
etc).

Volume 4 – Batch designs 209

Record
Name

Field Name Field
Type

Default Value Description

 Returnable
Indicator

Char(1) Returnable_ind Indicates that the item is
returnable at the location when
equal to ‘Y’es. Indicates that the
item is not returnable at the
location when equal to ‘N’o.

 Refundable
Indicator

Char(1) Refundable_ind Indicates that the item is
refundable at the location when
equal to ‘Y’es. Indicates that the
item is not refundable at the
location when equal to ‘N’o.

 Back Order
Indicator

Char(1) Back_order_ind Indicates that the item is back
orderable at the location when
equal to ‘Y’. Indicates that the
item is not back orderable when
equal to ‘N’o.

 Vat Code Char(6) Indicates the VAT code used with
this item.

 Vat Rate Number(2
0,10)

 Indicates the VAT rate associated
with this item and VAT code.

 Class Vat
Indicator

Char(1) Indicates whether or not the class
VAT indicator is on or off for the
class that this item exists in.

File
Trailer

File Type
Record

Descriptor

FTAIL Identifies file record type

 File Line
Identifier

Number
ID(10)

Sequential
number.
Created by
program.

ID of current line being created
for output file.

 File Record
Counter

Number
ID(10)

Number of
FDETL records.
Created by
program.

Number of records/transactions
processed in current file (only
records between head & tail)

Char(5)

210 Retek Merchandising System

Function Level Description

init - This function initializes restart/recovery for this program. It also retrieves
system variables (period.vdate and vdate + 1), opens the output file and write the
FHEAD record.

process - This function drives the processing of the program. It calls size_arrays()
function to size the arrays used in this program and also, when done, it calls
free_arrays() to release any memory it has been allocated. The driving cursor is
opened and fetched here, which retrieves all the records from pos_mods where
the pos_mods.store value is greater than zero.

If the Transaction Type is 31, then the time field returned by the cursor should be
the start time, else if the Transaction Type is 32, then the time field should be the
end time. If the Transaction Type is something else or if either the start time or
end time is NULL, blanks should be used.

Once the records are fetched, if the Transaction Type of the record fetched is 1 or
21 then pos_config_check() is called. The write_rec() function is called to
perform processing on all records fetched. Restart/Recovery and committing of
records is also performed here.

final - This function will finish restart/recovery logic, write the FTAIL record
and close the output.

size_arrays - This function initializes the size of the array used for the driving
cursor fetch the size of the restart max counter on restart_control.

free_arrays - This function frees the array allocated in size_arrays.

write_rec - This function will prepare records for insert into the output file and
write them as FDETL records. The Transaction Type will determine the Update
Type. If the Transaction Type is 1, 25 or 26 then the status and taxable_ind
columns must be outputted, otherwise these should remain blank.

pos_config_check - This function will call the package
pos_config_sql.check_item(). If the Transaction type is 1, then a status of 'A' will
be passed in. If the Transaction Type is 21, then a status of 'D' will be passed in.
This function body should be commented out for A&P Phase 1a.

Scheduling Considerations

Processing Cycle: PHASE 4 (daily)

Scheduling Diagram: This program is run towards the end of the batch run when
all pos_mods records have been created for the transaction day.

Pre-Processing: N/A

Post-Processing: prepost.pc - posdnld_post() – records in POS_MODS are
truncated.

Threading Scheme: v_restart_store

Locking Strategy

None.

Volume 4 – Batch designs 211

Restart/Recovery

Restart/recovery for this program is set up at the store/item or item level.
Threading is done by store using the v_restart_store view to thread properly.

Performance Considerations

Both table and file restart/recovery must be used.

The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Security Considerations

Price changes for all stores are stored in a Unix file with the processes default
permissions (umask). Care should be exercised so that this file cannot be
tampered with.

Design Assumptions

Data columns required by a particular Transaction Type are filled in and correct.

Outstanding Design Issues

The columns pos_config_item.item and pos_merch_criteria.sku are of type
number and have a length of 8. These columns are updated and referenced by the
pos_config_sql.check_item() package function. These tables are then used by
poscdnld.pc.

Appendix

None.

212 Retek Merchandising System

POS Upload [posupld]
Design Overview

The purpose of this batch module is to process sales and return details from an
external point of sale system. The sales/return transactions will be validated
against Retek item/store relations to ensure the sale is valid, but this validation
process can be eliminated if the sales being passed in have already been screened
by sales auditing. The following common functions will be performed on each
sales/return record read from the input file:

• read sales/return transaction record

• lock associated record in RMS

• validate item sale

• check if VAT maintenance is required, if so determine the VAT amount for
the sale

• write all financial transactions for the sale and any relevant markdowns to the
stock ledger.

• post item/location/week sales to the relevant sales history tables

• if a late posting occurs in a previous week (i.e. not in the current week), if the
item for which the late posting occurred is forecastable, the
last_hist_export_date on the item_loc_soh table has to be updated to the end
of week date previous to the week of the late posting. This will result in the
sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the
external forecasting system.

Scheduling Constraints

Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of

the batch run during the POS polling cycle. It can be scheduled to run multiple
times throughout the day, as POS data becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid item
sales transaction at a given store location. The location type will be inferred as a
store type and the item can be passed as an item or reference item type. The
logical unit of work will be defined as a number of these transaction records.
The commit_max_ctr field on the restart_control table will determine the number
of transactions that equal a logical unit of work.

Volume 4 – Batch designs 213

The file records will be read in groups of numbers equal to the commit_max_ctr.
After all records in a given read are processed (or rejected either as a reject
record or a lock error record), the restart commit logic and restart file writing
logic will be called, and then the next group of file records will be read and
processed. The commit logic will save the current file pointer position in the
input file and any application image information (e.g. record and reject counters)
and commit all database transactions. The file writing logic will append the
temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success,
non-fatal errors, and fatal errors. Item level validation will occur on all fields
before table processes are initiated. If all field-level validations return
successfully, inserts and updates will be allowed. If a non-fatal error is produced,
the remaining fields will be validated, but the record will be rejected and written
to the reject file or written to the lock file depending on the reject reason. If a
fatal error is returned, then file processing will end immediately. A restart will
be initiated from the file pointer position saved in the restart_bookmark string at
the time of the last commit point that was reached during file processing.

Program Flow

N/A

Shared Modules

validate_all_numeric: intrface library function.

validate_all_numeric_signed: intrface library function.

valid_date: intrface library function.

ORDER_ATTRIB_SQL.DELIVERY_MONTH: called from
consignment_data(), returns order delivery month into the :invoices variable.

VAT_SQL.GET_VAT_RATE: called from pack_check(), returns the composite
vat rate for a packitem.

CURRENCY_SQL.CONVERT: returns the converted monetary amount from

Currency to currency.

NEW_ITEM_LOC: called from item_check() and pack_check(), creates a new
item if one doesn’t already exist for the item/location passed in.

UPDATE_SNAPSHOT_SQL.EXECUTE: called from update_snapshot(),
updates the stake_sku_loc and edi_daily_sales tables for late transactions. If the
item is a return, edi_daily_sales will not be updated.

NEXT_ORDER_NO: called from consignment_data(), returns the next available
generated order number.

STKLDGR_SQL.TRAN_DATA_INSERT: called from consignment_data(),
performs tran_data inserts (tran_type 20) for a consignment transaction.

214 Retek Merchandising System

Posupld and VAT:

There are three different data sources in POSUPLD.

1

2

3

1

2

3

4

5

 The input file

 RMS stock ledger tables (tran_data in this context)

 RMS base tables (other that stock ledger)

Each of these data sources can be VAT inclusive or VAT exclusive.

There are five different system variables that are used to determine whether of
not the different inputs are vat inclusive or vat exclusive.

 system_options.vat_ind (assume Y for this document)

 system_options.class_level_vat_ind

 system_options.stkldgr_vat_incl_retl_ind

 class.class_vat_ind

 store.vat_include_ind (this is retrieved from the table when RESA is on and
read from the input file when RESA is off)

Given the three different data source and all combinations of vat inclusive or vat
exclusive, we are left with the 8 potential combinations of inputs to POSUPLD.

Possible POSUPLD inputs

SCENARIO FILE RMS STOCK LEDGER

1 Y Y Y

2 Y Y N

3* Y N Y

4* Y N N

5 N Y Y

6 N Y N

7 N N Y

8 N N N

* Scenarios 3 and 4 are not possible – the file will never have vat when RMS
does not.

The combinations of system variables and the resulting scenarios

System_options
Class_level_vat_ind

System_options
Stkldgr vat ind

Class
Class_vat_ind

Store
Vat_include_ind

Resulting
Scenario

Y Y Y Y - Ignored 1

Y Y Y N - Ignored 1

Y Y N Y - Ignored 7

Volume 4 – Batch designs 215

The combinations of system variables and the resulting scenarios

System_options
Class_level_vat_ind

System_options
Stkldgr vat ind

Class
Class_vat_ind

Store
Vat_include_ind

Resulting
Scenario

Y Y N N - Ignored 7

Y N Y Y - Ignored 2

Y N Y N - Ignored 2

N N 8

Y N N N - Ignored 8

Y Y – Ignored Y 1

Y Y – Ignored 5

N Y N – Ignored Y 1

N Y N – Ignored N 5

N N Y – Ignored Y 2

N N Y – Ignored N 6

N N – Ignored Y 2

N N – Ignored N 6

Y Y - Ignored

N

N N

N

N

POSUPLD table writes

Scenario 1:

• tran code 1 from file retail.

• tran code 2 from file retail with vat removed.

• retail from file is compared directly with price_hist for off retail check.

Scenario 2:

• tran code 1 from file retail with vat removed.

• tran code 2 not written.

• retail from file is compared directly with price_hist for off retail check.

Scenario 5:

• tran code 1 from file retail with vat added.

• tran code 2 from file retail.

• retail from file has vat added for compare with price_hist for off retail check.

216 Retek Merchandising System

Scenario 6:

• tran code 1 from file retail.

• tran code 2 not written.

• retail from file has vat added for compare with price_hist for off retail check.

Scenario 7:

• tran code 1 from file retail with vat added.

• tran code 2 from file retail.

• retail from file is compared directly with price_hist for off retail check.

Scenario 8:

• tran code 1 from file retail.

• tran code 2 not written.

•

init()

fetch system variables, including the
SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND.

call restart_file_init logic

retail from file is compared directly with price_hist for off retail check.

Function Level Description

Declarations:

declare input structures: file header (only date and type) & detail (all fields)

initialize restart recovery

open input file (posupld) - file should be specified as input parameter to program

Retrieve all valid promotion types

declare final output filename (used in restart_write_file logic)

open reject file (as a temporary file for restart)

file should be specified as input parameter to program

open lock reject file (as a temporary file for restart) - file should be specified as
input parameter to program

assign application image array variables- line counter (g_l_rec_cnt), reject
counter (g_l_rej_cnt), lock reject file counters (pl_lock_cnt, pl_lock_dtl_cnt),
store, transaction_date

if fresh start (l_file_start = 0)

read file header record (get_record)

write FHEAD to lock reject file

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘POSU’

Volume 4 – Batch designs 217

else fseek to l_file_start location

validate location and date are valid

item_process()

set restart variables to ones from restart image

file_process()

This function will perform the primary processing for transaction records
retrieved from the input file. It will first perform validation on the THEAD
record that was fetched. If the transaction was found to be invalid, a record will
be written to the reject file, a non-fatal error will be returned, and the next
transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the
get_unit_retail() function. The retail retrieved from this function will be
compared with the actual retail sent in from the input file to determine any
discrepencies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being
processed until a TTAIL record is encountered. Perform validation on the
transaction detail records. If a detail record is found to be invalid, the entire
transaction will be written to the reject file, a non-fatal error will be returned, and
the next record will be fetched. If a valid promotion type (code for mix & match,
threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily_sales_discount table. If it is an
employee discount record write an employee discount record to tran_data.
Finally, accumulate the discount amounts for all transaction detail records for the
current transaction, unless the record was an employee discount.

Call the item_process() function to perform item specific processing. Once all
records have been processed, write FTAIL record to lock reject file and call
posting_and_restart to commit the final records processed since the last commit
and exit the function.

Check to see if any validation failed for the item before this function was called.
If a lock error was found, call write_lock_rej() then return. If an other error was
found, call write_rej() and process_detail_error() then return.

Set the item sales type for the current transaction. Valid sales types are ‘R’egular
sales, ‘C’learance sales, and ‘P’romotional sales. These will be used when
populating the sales types for the item-location history tables. If an item is both
on promotion and clearance, the transaction will be written as a clearance
transaction.

If the system’s VAT indicator is turned to on, VAT processing will be
performed. The function vat_calc() will retrieve the vat rate and vat code for the
current item-location. The total sales including and excluding VAT will be
calculated for use in writing transaction data records. If any VAT errors occur,
the entire transaction will be written to the reject file, a non-fatal error will be
returned, and the next record will be fetched. A record will be written to
vat_history for the item, location, transaction date.

218 Retek Merchandising System

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost
sold, etc.). If VAT is turned on in the system, calculate exclusive and inclusive
VAT sales totals.

Calculate any promotional markdowns that may exist by calling the
calc_prom_totals() function. The markdown information calculated here will be
used when writing tran_data (tran_type 15) records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to it’s price_hist
record. Since we do not create price_hist records of type 9 (promotional retail
change) when the system_options.multi_prom_ind = ‘Y’, we do not know what
the promotional retail for this item is. Therefore, we will take the total sales
reported from the header record plus the total of sales discounts reported in the
TDETL records, divided by the total sales quantity for the item to calculate its
unit retail. If the system_options.multi_prom_ind = ‘N’, we can do a comparison
of the price_hist record and the unit retail (total retail / total sales) inputted from
the POS file. Any difference using either method will write to the
daily_sales_discount table with a promotion type of ‘in store’ and tran_data
(tran_type 15) If the transaction is a return, no daily_sales_discount record will
be written, and tran_data records will be written as opposite of what they were
sold as (i.e. if the sale was written as a markup, which would be written as a
negative retail with a tran_data 15, the return would be written as a 15 with a
positive retail).

If the item is a packitem and the transaction is a Sale, the process_pack() function
will update the last_hist_export_date field on the item_loc_soh table to the
transaction date and the item_loc_hist table will be updated with the transaction
information.

If the item currently being processed is a packitem, calculate the retail markdown
the item takes for being included in the pack and write a transaction data record
as a promotional markdown. This markdown is calculated by comparing the
retail contribution of the packitem’s component item to the packitem to the
component item’s regular retail found on the price_hist table. The retail
contribution for a component item is calculated by taking the component item’s
unit retail from price_hist, divided by the total retail of all component items in
the packitem, and multiplying the packitem’s unit retail. So if the retail
contribution of a component item within packitem A is $10, and the same
component item’s price_hist record has a retail of $14, and there is only one
packitem sold, and this component item has a quantity of one, a tran_data

Record (tran_type 15) will be written for $4 (assume no vat is used).

Volume 4 – Batch designs 219

Write transaction data records for sales and returns. If the transaction is a sale,
write a tran_data record with a transaction code of 1 with the total sales. If the
system VAT indicator is on and the system_options.stkldgr_vat_incl_retl_ind is
on, write a tran_data record with a transaction code of 2 for VAT exclusive sales.
If the transaction is a return, write a tran_data record (tran_type 1) with negative
quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data
record (tran_type 2) and negative quantities and retails for the VAT exclusive
return. Also, write a tran_data record with a transaction code of 4 for the total
return. Any tran_data record that is written should be either VAT exclusive or
VAT inclusive, depending on the system_options.stkldgr_vat_incl_retl_ind. If it
is set to ‘Y’, all tran_data retails should be VAT inclusive. If it is set to ‘N’, all
tran_data retails should be VAT exclusive. When writing tran_data records for
packitems, always break them down to the packitem level, writing the retail as
the packitem multiplied by the component item’s price ratio. The packitem itself
should never be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date) and it is not a
drop shipment, call update_snapshot() to update the stake_sku_loc and
edi_daily_sales tables. If the transaction is current, update the edi_daily_sales
table only (stake_sku_loc will be updated in a batch program later down the
stream). The edi_daily_sales table should only be updated if the items supplier
edi sales report frequency = ‘D’.

If VAT is turned on in the system, write a record to the vat_history table to
record the vat amount applied to the transaction. The VAT amount is calculated
by taking the sales including VAT minus the sales excluding VAT.

This function writes a record to the load_err table for every non-fatal error that
occurs.

Update the sales history tables for non-consignment items that are Sale
transactions. Do not update for returns. Also, update stock count on the item-
location table for Sales and Returns unless the item is on consignment.

If an off_retail amount was identified for the item/location, call the
write_off_retail_markdowns() function to write tran_data records (tran_type 15)
to record the difference. If the system_options.multi_prom_ind = ‘N’ and the
item is on promotion, or if the system_options.multi_prom_ind = ‘Y’ and the
TDETL total discount amount is greater than zero, write a promotional
markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion
number in order to record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record
with tran_code 60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be
written. This record is used to balance the stock ledger, it accounts for the
amount of the item that was wasted in processing.

process_detail_error()

220 Retek Merchandising System

set_counters()

Depending on the action passed into this function, it will either set a savepoint
and store the values of counters or rollback a savepoint and reset the values of
certain counters back to where they were originally set. This function is called
when a non-fatal error occurs in the item_process() function to rollback and
changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding
VAT, depending upon the store.vat_include_ind, system_options.vat_ind,
system_options.multi_prom_ind, and the
system_options.stkldgr_vat_incl_retl_ind.

calc_prom_totals()

This function will set promotional markdown values including and excluding
VAT, depending upon the system_options.multi_prom_ind and the
system_options.stkldgr_vat_incl_retl_ind. If the multi_prom_ind is on, the
promotional markdown is the sum of the TDETL discount amounts. If the
multi_prom_ind is off, the promotional markdown is the difference between the
price_hist record with a tran_code of 0,4,8,11 and the price_hist record with a
tran_code of 9 multiplied by the total sales quantity. Also, the tran_data old and
new retail fields are only written if the multi_prom_ind is off.

Do standard string validations on input fields. This includes null padding fields,
checking that numeric fields are all numeric, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true. This function will also validate the store location exists.

process_sales_and_returns()

If the item is on consignment and not a packitem, the consignment_data()
function will be called to perform consignment processing. The function
write_tran will be called to write a tran_data record with a tran_type 1 (always
written), a tran_type 2 (if the system_options.stkldgr_vat_incl_retl_ind = Y), and
a tran_type 4 (if the transaction was a return). If the transaction is a return, any
tran_data records with tran_types of 1 and 2 will be written with negative retails.
Also the update_price_hist() function will be called to update the most recent
price_hist record.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to
perform a commit the records to the database and restart_file_write to append
temporary files to output files.

validate_FHEAD()

If the sales audit indicator is on currency and vat information will be provided in
the file that has already been validated.

Volume 4 – Batch designs 221

validate_THEAD()

Do standard string validations on input fields. This includes null padding fields,
left shifting fields, checking that numeric fields are all numeric, placing decimal
in all quantity and value fields, and validating the date field. If any errors arise
out of these validation checks, return non-fatal error then set non-fatal error flag
to true. This function will also validate the reference item exists.

If a reference item is passed in from the input file, retrieve the item for the
reference item. Once the item is an item, retrieve the tranasaction and item level
values, pack indicator, department, class, subclass, waste_type, waste_pct. Once
this information is retrieved, check that the item/location relationship exists for
the appropriate item type and call check_item_lock() and/or check_pack_lock
depending on item type to lock this item’s ITEM_LOC record.

If the sale audit indicator is ‘Y’ on system_options, the item will be a item and
the dept, class, subclass, item level, transaction level and pack_ind will be
included in the file. The UOM is assumed to already by have been converted to
the standard UOM by Sales Audit.

If the Sales Audit indicator is 'N' on system_options, the UOM at which the item
was sold will be compared with the items standard UOM value. If they are
different, the quantity will be converted to the standard UOM amount. The ratio
of the difference will also be computed and saved for use by validate_TDETL().

This function will call check_item_lock for every component item of the current
pack item.

If an item is a wastage item set the wastage qty. The qty sent in the file shows
the weight of the item sold. The wastage qty is the qty that was processed to
come up with the qty sold. So if .99 of an item was sold, and item wastage
percent is 10. The wastage qty is .99 / (1-.10) = 1.1 The wastage qty will be
used through out the program except when writing tran_data records(see
write_wastage_markdown) and daily_sales_discount records which will uses the
processed qty from the file.

Class-level vat functionality is addressed here. The c_ get_class_vat cursor is
fetched into the pi_vat_store_include_ind variable if vat is tracked at the class
level in RMS (SYSTEM_OPTIONS.VAT_IND = ‘Y’ and
SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND = ‘Y’). The vat inclusion
indicator passed in the input file is overwritten with the vat indicator for the class
passed in the THEAD record of the input file.

Check_item_lock

This function will lock this item/location’s record in the RMS item_loc table.
Returns a lock error if lock failed due to contention, otherwise returns 0 if no
errors occurred, or fatal if other errors occurred.

Check_pack_lock

validate_TDETL

222 Retek Merchandising System

This function will perform validation on the TDETL records passed into the
program. The standard string validation on these fields includes null padding
fields, left shifting fields, checking that numeric fields are all numeric, placing
decimal in all quantity and value fields, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true.

The quantity is multiplied by the UOM ratio determined in validate_THEAD().

If a promotional transaction type is passed in, verify it is valid. If a promotional
transaction type is passed in, but it is not valid, return non-fatal error then set
non-fatal error flag to true. If a promotion number is passed in, validate it by
checking the promhead table and set the promotional indicator to True.

If the item is a wastage item set the tdetl wastage qty. This is done the same way
as setting the THEAD wastage qty.

New_item_loc

This function creates a new store item relationship for items. It is called by
item_check.

item_store_cursors

This function checks the item_loc for the item / store combination. It is called by
the item_check function.

item_check

This function verifies the fashion item/location relationship exists. It is only
called when the item being processed is a fashion item. If the item/location
relationship does not exist, it is created and a record is written to the Invalid
item/location output file.

New_pack_loc

This function creates a new store item relationship for pack items. It is called by
pack_check.

pack_check

This function verifies the pack item/location relationship exists and retrieves the
component items for the packitem. It is only called when the item being
processed is a packitem. The component item, system indicator, department,
class, subclass, cost, retail, price_hist retail, and component item quantity are
fetched. If the packitem/location relationship does not exist, it is created for the
Packitem and all of its components and a record is written to the Invalid
item/location output file for the packitem.

Volume 4 – Batch designs 223

The component items price ratios are also calculated. This indicates the retail
contribution the component item gives towards the unit retail of the packitem.
This ratio is calculated by taking the price_hist unit retail of the component
divided by the total price_hist retail of all the component items for the packitem.
Below is an example of how this ratio is calculated:

 Unit Retail Qty Retail Ratio

packitem A $60

item 1 $15 2 $30 ($30/$90) * $60 .3333

item 2 $10 6 $60 ($60/$90) * $60 .6667

Calculation

224 Retek Merchandising System

get_unit_retail

This function retrieves the current unit retail and the retail price of the item at the
time of the sale from price_hist for the item/location being processed. If a
tran_code of 8 is returned, the item is on clearance. The function will always
return retail that are vat inclusive. If retail is stored in RMS with out vat
(system_options.class_level_vat_ind = Y and class.class_vat_ind = Y) it will add
vat to the retails.

This function will handle record sent in as ‘is store’ discounts amounts. It will
call check_daily_exist and daily_sales_insert_update.

This function will check the daily_sales_discount for the existence of a record
matching the input parameters

process_packitems

This function performs processing for the component items of the packitems.
This would include updates/inserts into stake_item_loc, edi_daily_sales,
item_loc, item_loc_hist, vat_history_data, and tran_data. All of these tables do
not write records at the packitem level, but at the component item level. When
figuring retails to write to these tables, the component items price ratio should
always be applied against the packitems retail to come up with the correct retail
for each component item. If an employee discount TDETL record has been
encountered, an tran_data record with tran_code 60 will be written for each
component item.

process_daily_sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL
record that has a promotional transaction type except employee discounts.
Employee discount records are not written to daily_sales_discount, they are put
on tran_data with a tran_code of 60. When employee discount records are
encountered, values are set for the tran_data insert and the discount amount is
added to the total sales value. This is done so employee discounts do figure into
the promotional and in store calculations. When the multi_prom_ind is on all
promotion types except employee discount will be ignored.

write_in_store()

Remove_stklgdr_vat()

This fuction will remove vat from 3 fields after the dailiy_sales_discount
processing is complete. The variables od_off_retail_amt, od_new_retail, and
od_old_retail are stripped of vat by calling vat_convert if the stock ledger does
not contain vat.

Write_off_retail()

This function will calculate discrepancies between the amount sold for an item,
and the amount it should have sold for (price_hist record). If these amounts are
not in balance, a record is written to the daily_sales_discount table with a
prom_type of ‘in store’ for reporting.

Daily_sales_exist()

Volume 4 – Batch designs 225

Daily_sales_insert_update()

This function is called by write_off_retail, write_in_store, and
process_daily_sales_discount. It performs the actual insert or fills a update array
for the daily_sales_discount table.

write_off_retail_markdown()

The write_tran_data() function will be called to write the off_retail markdown
unless the item is on consignment or the off_retail amount is zero.

write_promotional_markdown()

The write_tran_data() function will be called to write the promotional markdown
unless the item multi_prom_ind is off and the transaction is a return, the item is
on consignment, or the promotional markdown amount is zero. The tran_data
new and old retails are only written if the multi_prom_ind is off.

Update the stock on hand on the item_loc_soh table for Sales and Returns unless
the item is on consignment. Also, update the item_loc_hist table for Sale
transactions. Do not update for returns.

Write_wastage_markdown()

This function will call to the write_tran_data() function if the item is a wastage
item. A wastage item is an item that loses some of its weight (value) in
processing. For example, a 1 pound chicken is broiled and loses 10% of its
weight. The item is sold at .9 pounds, but in reality selling that .9 pounds of
chicken removes 1 pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was
lost due to wastage in processing.

vat_convert()

This function will either add or remove vat from a retail value.

process_items()

process_pack()

Update the stock on hand on the item_loc_soh table for Sales and Returns. Also,
update the item_loc_hist table for Sale transactions. Do not update for returns.

write_tran_data()

Writes a record to the tran_data insert array.

Write_edi_daily_sales()

Writes a record to edi_daily_sales.

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the
stake_sku_loc and edi_daily_sales tables for late transactions.

write_vat_err_message()

This function will create and write to the VAT output file when an item does not
have VAT infomation setup when it is expected.

226 Retek Merchandising System

vat_history_data()

Writes a record to the vat_history table.

get_prom_type_info()

This function will retrieve all valid promotional transaction types from the
code_detail table. Valid promotional transaction types are those where the
code_type = ‘PRMT’.

This function will create and write to the Invalid item/location output file when
an item does not exist at a location it was sold/returned at.

consignment_data()

This function will perform processing for consignment items. Consignment
items are such when the item_supplier table has a consignment rate applied to it.
Consignment is when a retailer will allow a third party to operate under its
umbrella and be paid for what it sells. An example of consignment may be a
mass-merchant who consigns the magazine section of their store to a magazine
vendor. The magazine vendor would have control over keeping the product
stocked within the store. When a magazine is sold, the retailer would get paid for
the magazine, then the retailer would essentially buy the magazine from the
vendor. The consignment cost paid by the retailer to the vendor is the VAT-
inclusive retail multiplied by the consignment rate divided by 100. So if the
VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier
with an orig_ind = 4 (consignment). Consignment type invoices will be created
for all PO’s created for consignments

Also a tran_data record (tran_type 20) will be written to record the consignment
transaction to the stock ledger. The retails should be VAT inclusive or exclusive,
depending on the system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions: check_order(), order_head(), invc_data(), to
handle the order creation-update and the invoice creation-update.

fill_packitem_array()

This function will retrieve the component items for a packitem with the
appropriate item level information into an array.

Write_lock_rej

This function will write the current record set from the input file (THEAD-
{TDETL}-TTAIL) that was rejected due to lock error to the lock file.

write_item_store_report()

ON Fatal Error - Exit Function with -1 return code

ON Non-Fatal Error - write out rejected record to the reject file using
write_to_rej_file functionby passing pointer to detail record structure, number of
bytes in structure, and reject file pointer, or use the write_lock_rej() function to
write to the lock reject file in case the non-fatal error was a lock error,

Volume 4 – Batch designs 227

Input File

The input file should be accepted as a runtime parameter at the command line.
All number fields with the number(x,4) format assume 4 implied decimal
included in the total length of ‘x’.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Vat include indicator, Vat region, Currency
code, and Currency retail decimals. When the sa_ind is ‘N’ these values will not
be used and retrieved from the system.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Item Level, Transaction Level, Pack_ind, Dept,
Class, and Subclass. When the sa_ind is ‘N’ these values will not be used and
retrieved from the system. Also, the UOM at which the item was sold will been
converted to the standard UOM for the item. When the sa_ind is on, all items are
assumed to be items.

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Char(10) specified by
external system

ID of current line
being processed by
input file.

 File Type
Definition

Char(4) POSU Identifies file as
‘POS Upload’

 File Create Date Char(14) create date date file was written
by external system

 Location Number Number(10) specified by
external system

Store identifier

 Vat include
indicator

Char(1) Determines whether
or not the store
stores values
including vat. Not
required but
populated by Retek
sales audit

 Vat region Number(4) Vat region the given
location is in. Not
required but
populated by Retek
sales audit

 Currency code Char(3) Currency of the
given location. Not
required but
populated by Retek
sales audit

228 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

 Currency retail
decimals

Number(1) Number of decimals
supported by given
currency for retails.
Not required but
populated by Retek
sales audit

Transaction
Header

File Type Record
Descriptor

THEAD Identifies
transaction record

type

 File Line
Identifier

Char(10) specified by
external system

ID of current line
being processed by
input file.

 Transaction Date Char(14) transaction date date sale/return
transaction was
processed at the
POS

 Item Type Char(3) REF
ITM

item type will be
represented as a
REF or ITM

 Item Value item identifier Char(25) the id number of an
ITM or REF

 Dept Number(4) Item’s dept Dept of item sold or
returned. Not
required but
populated by Retek
sales audit

 Class Number(4) Item’s class Class of item sold or
returned. Not
required but
populated by Retek
sales audit

 Subclass Number(4) Item’s subclass Subclass of item
sold or returned. Not
required but
populated by Retek
sales audit

 Pack Indicator Char(1) Item's pack
indicator

Pack indicator of
item sold or
returned. Not
required but
populated by Retek
sales audit

Char(5)

Volume 4 – Batch designs 229

Record Name Field Name Field Type Default Value Description

 Item level Number(1) Item's item level Item level of item
sold or returned. Not
required but
populated by Retek
sales audit

 Tran level Number(1) Item's tran level Tran level of item
sold or returned. Not
required but
populated by Retek
sales audit

 Wastage Type Char(6) Item’s wastage
type

Wastage type of
item sold or
returned. Not
required but
populated by Retek
sales audit

 Wastage Percent Number(12) Item’s wastage
percent

Wastage percent of
item sold or
returned. Not
required but
populated by Retek
sales audit

 Transaction Type Char(1) ‘S’ – sales
‘R’ - return

Transaction type
code to specify
whether transaction
is a sale or a return

 Drop Shipment
Indicator

Char(1) 'Y'
'N'

Indicates whether
the transaction is a
drop shipment or
not. If it is a drop
shipment, indicator
will be 'Y'. This
field is not required,
but will be defaulted
to 'N' if blank.

 Total Sales
Quantity

Number(12) Number of units
sold at a particular
location with 4
implied decimal
places.

 Selling UOM Char(4) UOM at which this
item was sold.

230 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

 Sales Sign Char(1) ‘P’ - positive
‘N’ - negative

Determines if the
Total Sales Quantity
and Total Sales
Value are positive or
negative.

 Total Sales Value Number(20)

 Sales value, net
sales value of goods
sold/returned with 4
implied decimal
places.

 Last Modified
Date

Char(14) For VBO future use

Transaction
Detail

File Type Record
Descriptor

Char(5) TDETL Identifies
transaction record

type

 File Line
Identifier

Char(10) specified by
external system

ID of current line
being processed by
input file.

 Promotional Tran
Type

Char(6) promotion type –
valid values see
code_detail
table.

code for
promotional type
from code_detail,
code_type =
‘PRMT’

 Promotion
Number

Number(10) promotion
number

promotion number
from the RMS

 Sales Quantity Number(12) number of units sold
in this prom type
with 4 implied
decimal places.

 Sales Value Number(20) value of units sold
in this prom type
with 4 implied
decimal places.

 Discount Value Number(20) Value of discount
given in this prom
type with 4 implied
decimal places.

Volume 4 – Batch designs 231

Record Name Field Name Field Type Default Value Description

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Char(10) specified by
external system

ID of current line
being processed by
input file.

 Transaction Count Number(6) specified by
external system

Number of TDETL
records in this
transaction set

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

ID of current line
being processed by
input file.

 File Record
Counter

Number(10) Number of
records/transactions
processed in current
file (only records
between head & tail)

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item
that does not exist at the processed location. In the event this happens, the
relationship will be created during the program execution and processing will
continue with the item and store number being written to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate
when one is expected (e.g. the system_options.vat_ind is on). In this event, a
non-fatal error will occur against the transaction and a record will be written to
this file and the Reject file.

Reject File:

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will be created by the interface library routines and the detail records will be
created using the write_to_rej_file function. A reject line counter will be kept in
the program and is required to ensure that the file line count in the trailer record
matches the number of rejected records. A reject file will be created in all cases.
If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

232 Retek Merchandising System

A final reject file name, a temporary reject file name, and a reject file pointer
should be declared. The reject file pointer will identify the temporary reject file.
This is for the purposes of restart recovery. When a commit event takes place,
the restart_write_function should be called (passing the file pointer, the
temporary name and the final name). This will append all of the information that
has been written to the temp file since the last commit to the final file. Therefore,
in the event of a restart, the reject file will be in synch with the input file.

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical Issues

Assumption: Variable weight UPCs are expected to already be converted to a
VPLU with the appropriate quantity.

Volume 4 – Batch designs 233

Complex Deals Management [precostcalc]
Design Overview

This batch module is responsible for data maintenance tasks that are necessary
before running costcalc.

Unprocessed records in RECLASS_COST_CHG_QUEUE drive this program.
The driving cursor is a set of seven cursors whose goal is to make sure the
DEAL_SKU_TEMP table is inserted for three scenarios:

a

c

 If an unprocessed record exists on RECLASS_COST_CHG_QUEUE,
create record(s) on DEAL_SKU_TEMP for the
RECLASS_COST_CHG_QUEUE event. For reclassification events no
location is given, therefore these events are blown out to all item-location
locations before inserting to DEAL_SKU_TEMP.

b If an unprocessed record exists on RECLASS_COST_CHG_QUEUE,
create record(s) on DEAL_SKU_TEMP for any events on the
FUTURE_COST table that the RECLASS_COST_CHG_QUEUE event
affects (make the match using item, supplier, origin country id, location,
and start date). For reclassification events (not cost change) no location is
given and therefore these events are blown out to all item-location
locations before seeking FUTURE_COST matches.

 If a record exists on DEAL_SKU_TEMP that affects one or more
FUTURE_COST records insert for those records on FUTURE_COST
into DEAL_SKU_TEMP to make sure they are recalculated.

The program will also update RECLASS_COST_CHG_QUEUE events that it
processed so that the record’s process flag reflects the fact that it has been
processed. To avoid primary key violations in DEAL_SKU_TEMP, check if an
item, location, supplier, origin country id, and start date combination exists on
DEAL_SKU_TEMP in the driving cursors. When the program is done, it should
delete any records from RECLASS_COST_CHG_QUEUE that did not get
processed. (This happens when somebody did a cost change or reclassified a
component item of a case UPC. This record will not be picked up by the driving
cursor and should not remain on RECLASS_COST_CHG_QUEUE.) Also, all
records that are of type G or N should also be deleted since once they have been
inserted into DEAL_SKU_TEMP, There is no reason for them to remain in
RECLASS_COST_CHG_QUEUE. This should improve the performance of the
program by keeping the size of RECLASS_COST_CHG_QUEUE as small as
possible.

The LUW of this module is a single record from any one of the driving cursors,
which all pick up item/supplier/origin country/location/active date combinations
from RECLASS_COST_CHG_QUEUE, and FUTURE_COST.

Stored Procedures / Shared Modules (Maintainability)

N/A

234 Retek Merchandising System

Program Flow

init()

size_arrays(

final() process()

main()

free_arrays(

open_cursor()

insert_records()

open_cursor()

fetch_cursor()

retek_force_commit()

distinct_records()

update_rccq()

Function Level Description

Declare a fetch array struct to hold array-fetched records from driving cursors.

Declare driving cursors The first eight cursors pick up unprocessed events from
RECLASS_COST_CHG_QUEUE that do not exist in DEAL_SKU_TEMP.
There is eight of them because each handles a different type of record depending
on whether location is given or not, and whether division is given or not. So, the
combinations that are possible and therefore need to be fetched are:

Location given? Division given?

N N

N Y

Y N

Volume 4 – Batch designs 235

Remember that the driving cursors for every one of the four above described
combinations will be again split into two cursors depending on whether the
location is a warehouse or a store. The reason so many driving cursors exist is
because a single cursor that joined to all the tables at once was so slow that using
such a cursor here was not an option. One more cursor is required: the ninth
cursor will fetch records from the FUTURE_COST table that have the same
item/supplier/origin country/location combination as a DEAL_SKU_TEMP
record with an active date that is greater than the DEAL_SKU_TEMP record’s
start date. This cursor is necessary to ensure that when an event is inserted into
DEAL_SKU_TEMP, later events for this event in the FUTURE_COST table
may be affected by the event in DEAL_SKU_TEMP and should be re-inserted
into DEAL_SKU_TEMP so costcalc can recalculate and reinsert them into
FUTURE_COST.

The cursors should not pick up any primary cost pack component items since
those are never inserted into DEAL_SKU_TEMP. (See Design Assumptions
below.) Also this cursor should never pick up items that are not approved,
transaction level, or items that are buyer packs. Deals batch programs do not
process those.

Main():
Standard Retek main function. Validates input parameters, calls init, process and
final. Logs appropriate message.

Init():
Standard Retek init function. Calls retek_init() and size_arrays(). If this is a new
start, set the restart cursor variable to 1.

Process():
This is the main function that does all the work. It will array fetch each of the 9
cursors in the order of their definition above, one at a time until cursor is empty.
For each cursor, fetched records will be array inserted into DEAL_SKU_TEMP,
RECLASS_COST_CHG_QUEUE will be updated after every second cursor
fetch to set the process_flag of covered records to ‘Y’ and commit logic will be
executed. After the last cursor has been fetched empty and all records were
processed, delete from RECLASS_COST_CHG_QUEUE all records that belong
to this thread and have not been picked up by any of the cursors (their
process_flag is still ‘N’). Also delete any records whose rec_type is ‘G’ or ‘N’.

• Call open_cursor to open the first cursor. (Cursors are opened and fetched in
the order that they were declared in, which should be the same order they
were described in above.)

• In a while loop (while the no records found indicator is not set):

� Array fetch records from current driving cursor by calling fetch_cursor().

� Call distinct_records() to copy distinct (item/supplier/origin
country/location/start date) records from the fetch array (which has
RECLASS_COST_CHG_QUEUE’s level of distinctness:
item/supplier/origin country/location/start date/record type) to the insert
array.

� Call insert_records() to array insert records from the insert array.

236 Retek Merchandising System

� If we fetched empty a cursor with an even number call update_rccq() to
update RECLASS_COST_CHG_QUEUE’s process_flags to ‘Y’ for the
records covered by the last two cursors.

� Call retek_force_commit() with the item, supplier and origin country,
location, start date, and cursor number of the last record as the argument.

� If the no records found indicator was set by fetch_cursor(), increment the
cursor counter. If the cursor counter is under 10, call open_cursor() and
reset the no records found indicator to 0 along with the total fetched
records counter, which should be zeroed since we are about to start
fetching from a new cursor. If the cursor number is 10 or above, we are
done. Do not call open_cursor() and leave the no records found indicator
set. This will drop the process out of the while loop.

• Delete from RECLASS_COST_CHG_QUEUE all records for this thread
where the process_flag is ‘N’. (This may happen if the component item of a
case UPC was inserted into RECLASS_COST_CHG_QUEUE. The driving
cursor will not pick these records up.) Also delete for records whose rec_type
is ‘G’ or ‘N’ regardless of their process_flag. We do not need to keep those
events around in RECLASS_COST_CHG_QUEUE.

Insert_records():
This function performs an array insert into DEAL_SKU_TEMP. Its argument is
the current array size (number of records fetched into array).

Distinct_records():
This function copies records from the fetch array (which has
RECLASS_COST_CHG_QUEUE’s level of distinctness: item/supplier/origin
country/location/start date/record type) to the insert array (which has
DEAL_SKU_TEMP’s level of distinctness: item/supplier/origin
country/location/start date) so that primary key/index violation errors are avoided
on subsequent inserts into DEAL_SKU_TEMP. This function will need local
static strings to store any previous call’s last copied DEAL_SKU_TEMP primary
key so that it can be compared to the next call’s first fetch array element’s
DEAL_SKU_TEMP primary key fields (item/supplier/origin
country/location/start date). This is necessary if an array fetch cut the return of
two identical item/supplier/origin country/location/start date records into two
array blocks because of the max commit counter. We want to keep track of the
fact that the item/supplier/origin country/location/start date record in question
was already in the previous block. If this block still has that item/supplier/origin
country/location/start date in the first field(s), don’t copy it into the insert array
again.

Open_cursor():
This function consists of a case-switch statement that depending on the argument
of the function (an integer representing the number of the cursor that needs to be
opened) will open the appropriate cursor.

Volume 4 – Batch designs 237

Fetch_cursor():
This function consists of a case-switch statement that depending on the argument
of the function (an integer representing the number of the cursor that needs to be
fetched) will fetch the appropriate cursor and returns the number of records
fetched, along with an indicator if the no data found indicator has been set by the
fetch or not.

Update_rccq():
This function will be called for every other cursor that was fetched empty and it
will update RECLASS_COST_CHG_QUEUE records’ process_flag to ‘Y’
covered by the last two cursors. This strange method of updating those records
was necessary for restart/recovery reasons. Since two cursors are used to fetch
for a single RECLASS_COST_CHG_QUEUE record (i.e.: no location or
division given), one fetching for warehouse locations the other for store
locations, the process flag of such a record can not be updated to Y until both
cursors were fetched for this record. Otherwise the stores would not get picked
up if we update the process flag right after warehouses were fetched. The update
statements cover all records in RECLASS_COST_CHG_QUEUE for which the
most recent two cursors were fetched for, not only the ones for which the cursors
actually returned records. A cursor may not return records, even though the
RECLASS_COST_CHG_QUEUE records were completely valid, simply
because the returned values already exist in DEAL_SKU_TEMP and the cursors
have a not exists clause.

Size_arrays():
Sizes the fetch array to the commit size.

Free_arrays():
Frees fetch array.

Final():
Standard Retek final function. Calls free_arrays() and retek_close().

Input Specifications

‘Table-To-Table’

Select data from:

Table Name Column Name Column Type Transformation

RECLASS_COST_CHG_QUEUE ITEM VARCHAR2(25) NONE

RECLASS_COST_CHG_QUEUE SUPPLIER NUMBER(10) NONE

RECLASS_COST_CHG_QUEUE ORIGIN_COUNT
RY_ID

VARCHAR2(3) NONE

RECLASS_COST_CHG_QUEUE START_DATE DATE NONE

RECLASS_COST_CHG_QUEUE LOCATION NUMBER(10) Only if
REC_TYPE is
not R

RECLASS_COST_CHG_QUEUE DIVISION NUMBER(4) Only if
REC_TYPE is
R

238 Retek Merchandising System

Table Name Column Name Column Type Transformation

RECLASS_COST_CHG_QUEUE GROUP NUMBER(4) Only if
REC_TYPE is
R

RECLASS_COST_CHG_QUEUE DEPT NUMBER(4) Only if
REC_TYPE is
R

RECLASS_COST_CHG_QUEUE CLASS NUMBER(4) Only if
REC_TYPE is
R

RECLASS_COST_CHG_QUEUE SUBCLASS NUMBER(4) Only if
REC_TYPE is
R

RECLASS_COST_CHG_QUEUE REC_TYPE VARCHAR2(1) NONE

GROUPS DIVISION NUMBER(4) Only if
REC_TYPE is
not R

DEPS GROUP_NO NUMBER(4) Only if
REC_TYPE is
not R

ITEM_MASTER DEPT NUMBER(4) Only if
REC_TYPE is
not R

ITEM_MASTER CLASS NUMBER(4) Only if
REC_TYPE is
not R

ITEM_MASTER SUBCLASS NUMBER(4) Only if
REC_TYPE is
not R

ITEM_MASTER ITEM_PARENT VARCHAR2(25) NONE

ITEM_MASTER ITEM_GRANDP
ARENT

VARCHAR2(25) NONE

ITEM_MASTER DIFF_1 VARCHAR2(10) NONE

ITEM_MASTER DIFF_2 VARCHAR2(10) NONE

ITEM_MASTER DIFF_3 VARCHAR2(10) NONE

ITEM_MASTER DIFF_4 VARCHAR2(10) NONE

ITEM_LOC LOC NUMBER(10) Only if
REC_TYPE is
R

ITEM_LOC LOC_TYPE VARCHAR2(1) NONE

Volume 4 – Batch designs 239

Table Name Column Name Column Type Transformation

AREA CHAIN NUMBER(4) Only if
LOC_TYPE is
S

REGION AREA NUMBER(4) Only if
LOC_TYPE is
S

DISTRICT REGION NUMBER(4) Only if
LOC_TYPE is
S

STORE DISTRICT NUMBER(4) Only if
LOC_TYPE is
S

FUTURE_COST ACTIVE_DATE DATE NONE

DEAL_SKU_TEMP ITEM VARCHAR2(25) NONE

DEAL_SKU_TEMP SUPPLIER NUMBER(10) NONE

DEAL_SKU_TEMP ORIGIN_COUNT
RY_ID

VARCHAR2(3) NONE

DEAL_SKU_TEMP DIVISION NUMBER(4) NONE

DEAL_SKU_TEMP GROUP_NO NUMBER(4) NONE

DEAL_SKU_TEMP DEPT NUMBER(4) NONE

DEAL_SKU_TEMP CLASS NUMBER(4) NONE

DEAL_SKU_TEMP SUBCLASS NUMBER(4) NONE

DEAL_SKU_TEMP ITEM_PARENT VARCHAR2(25) NONE

DEAL_SKU_TEMP ITEM_GRANDP
ARENT

VARCHAR2(25) NONE

DEAL_SKU_TEMP DIFF_1 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_2 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_3 VARCHAR2(10) NONE

DEAL_SKU_TEMP DIFF_4 VARCHAR2(10) NONE

DEAL_SKU_TEMP CHAIN NUMBER(4) NONE

DEAL_SKU_TEMP AREA NUMBER(4) NONE

DEAL_SKU_TEMP REGION NUMBER(4) NONE

DEAL_SKU_TEMP DISTRICT NUMBER(4) NONE

DEAL_SKU_TEMP LOCATION NUMBER(10) NONE

DEAL_SKU_TEMP LOC_TYPE VARCHAR2(1) NONE

240 Retek Merchandising System

Output Specifications

‘Table-To-Table’

Delete from: RECLASS_COST_CHG_QUEUE

Update data on:

Table Name Column Name Column Type Transformation

PROCESS_FLAG VARCHAR2(1) Set to Y. RECLASS_COST_CHG_QUEUE

Insert into:

Table Name Column Name Column Type Transformation

DEAL_SKU_TEMP ITEM VARCHAR2(25) N/A

DEAL_SKU_TEMP SUPPLIER NUMBER(10) N/A

DEAL_SKU_TEMP ORIGIN_COUNT
RY_ID

VARCHAR2(3) N/A

DEAL_SKU_TEMP START_DATE DATE N/A

DEAL_SKU_TEMP DIVISION NUMBER(4) N/A

DEAL_SKU_TEMP GROUP_NO NUMBER(4) N/A

DEAL_SKU_TEMP DEPT NUMBER(4) N/A

DEAL_SKU_TEMP CLASS NUMBER(4) N/A

DEAL_SKU_TEMP SUBCLASS NUMBER(4) N/A

DEAL_SKU_TEMP ITEM_PARENT VARCHAR2(25) N/A

DEAL_SKU_TEMP ITEM_GRANDP
ARENT

VARCHAR2(25) N/A

DEAL_SKU_TEMP DIFF_1 VARCHAR2(10) N/A

DEAL_SKU_TEMP DIFF_2 VARCHAR2(10) N/A

DEAL_SKU_TEMP DIFF_3 VARCHAR2(10) N/A

DEAL_SKU_TEMP DIFF_4 VARCHAR2(10) N/A

DEAL_SKU_TEMP CHAIN NUMBER(4) N/A

DEAL_SKU_TEMP AREA NUMBER(4) N/A

DEAL_SKU_TEMP REGION NUMBER(4) N/A

DEAL_SKU_TEMP DISTRICT NUMBER(4) N/A

DEAL_SKU_TEMP LOCATION NUMBER(10) N/A

DEAL_SKU_TEMP LOC_TYPE VARCHAR2(1) N/A

Volume 4 – Batch designs 241

Scheduling Considerations

This module must be run after ditinsrt and before costcalc in the deals batch
cycle.

This module is multi-threaded by supplier. See volume-testing documentation for
optimum thread value. (I suggest 15-30 threads.)

Locking Strategy

N/A

Restart/Recovery

This program has restart recovery based on item/supplier/origin
country/location/start date/cursor number and is multi-threaded by supplier.

Performance Considerations

The driving cursors should be small enough to be executed fast. If the
DEAL_SKU_TEMP table holds too many records as the program runs and the
cursors’ NOT EXISTS statements are slowing things down because of the size of
DEAL_SKU_TEMP (which may very well happen), the only remaining
performance enhancement that could go into the program is to simply fetch
records from the cursors without checking for duplicates at the time of fetch and
check for duplicates at time of insert or handle primary key violations in the
insert as a non-fatal error. Or fetch all the records from all the cursors and
discretize the fetched records in batch based on DEAL_SKU_TEMP’s primary
key. These “solutions” may not be a performance enhancement; the second
suggestion simply takes away the load of discretizing [This isn’t English… Do
you know what this word is actually supposed to be? – BES] records from the
database and keeps it in the batch. Therefore other programs will not suffer a
performance loss from the database being slow while precostcalc runs.

Security Considerations

N/A

Unit Test Considerations

When program is tested, tester will probably need to run costcalc and prepost for
complete results. The tables DEAL_SKU_TEMP and
RECLASS_COST_CHG_QUEUE should not be modified in any way during and
between the two program runs outside the programs themselves.

See the program’s UTP for further instructions.

242 Retek Merchandising System

Design Assumptions

Background: Costcalc is driven by the DEAL_SKU_TEMP table, which holds
item/supplier/origin country/location/active date records that then need to be
moved to the FUTURE_COST table with their costs at the date specified on
DEAL_SKU_TEMP. Costcalc simply takes these item/supplier/origin
country/location/active date records, calculates the cost for this combination and
inserts the result into FUTURE_COST, along with a reset date for the
item/supplier/country/location record if it has one. A reset date would be a deal
closing that caused the cost change in the first place. This reset record on
FUTURE_COST is simply the item/supplier/origin country/location/close date
and the cost. This design has a few inherent problems. Some deals have no close
dates and item reclassifications also have no close dates but potentially may
change the cost of the item since different deals may apply due to the new
merchandise hierarchy classification. Therefore a record on DEAL_SKU_TEMP
with no close date may affect records on FUTURE_COST that have an active
date later than the record on DEAL_SKU_TEMP. The solution is to move
records from FUTURE_COST that are potentially affected by
DEAL_SKU_TEMP records back to DEAL_SKU_TEMP, thus guaranteeing that
they get recalculated and the correct price will be set as they are re-inserted into
FUTURE_COST by costcalc. This process of checking for affected records and
moving them into DEAL_SKU_TEMP is performed by precostcalc. Also a new
table was created called RECLASS_COST_CHG_QUEUE which holds
reclassification, cost change, new item-location events for items along with a
general record that simply holds an item which needs to be inserted into
DEAL_SKU_TEMP (if an item reclassification was cancelled, we still need to
send in a record to DEAL_SKU_TEMP to make sure the item’s record on
FUTURE_COST is re-calculated).

Case UPCs: Component items of case UPCs are never inserted into
DEAL_SKU_TEMP. These items will be processed by costcalc as part of their
case UPCs. Therefore if a case UPC component is inserted into
RECLASS_COST_CHG_QUEUE, the driving cursor should ignore it and the
record should be deleted. Also an item should be approved, transaction level and
not a buyer pack to qualify for insertion into DEAL_SKU_TEMP.

Three quick examples of what appears in RECLASS_COST_CHG_QUEUE for
a re-class, a cost change, a new item-location record or a general record:

Re-classification: I need an ITEM, -1 for LOCATION, SUPPLIER,
ORIGIN_COUNTRY_ID, START_DATE, DIVISION, GROUP_NO, DEPT,
CLASS, SUBCLASS, REC_TYPE = ‘R’.

Cost change: I need an ITEM, LOCATION, SUPPLIER,
ORIGIN_COUNTRY_ID, START_DATE, REC_TYPE = ‘C’. (For warehouse
locations, only insert virtual warehouses!)

New item location: I need an ITEM, LOCATION, SUPPLIER,
ORIGIN_COUNTRY_ID, START_DATE, REC_TYPE = ‘N’. (For warehouse
locations, only insert virtual warehouses!)

Volume 4 – Batch designs 243

General: Primary key fields only. (These records appear as placeholders for
cancelled events. For example, the merchandiser may cancel a future
reclassification event in which case the original event’s record on
RECLASS_COST_CHG_QUEUE would be updated to have a rec_type of ‘G’
and a process_flag of ‘N’. This results in precostcalc reinserting this event into
DEAL_SKU_TEMP, from there costcalc will re-insert the event into
FUTURE_COST. Thus external systems that exported the event earlier will see
the event again in FUTURE_COST with potentially a new cost and can export
again if necessary. Once such a record has been migrated to FUTURE_COST,
there is no need to keep it in RECLASS_COST_CHG_QUEUE too. It may be
deleted. The same is true for records with a rec_type ‘N’.

Outstanding Design Issues

N/A

244 Retek Merchandising System

Promotion Price Update [prmpcupd]
Design Overview

This new program will update item_loc table with promotion price information.
It will update the promotion fields, promo_retail, promo_selling_retail and
promo_selling_uom, in the item_loc table with promotion price information
when a simple promotion applies the item/location combination. It will also
update these promotion fields to null when a promotion ends today. In addition,
it will update the item_loc table with any promotion changes, including add
promotion items to the extracted promotions, delete promotion items from the
extracted promotions and make promotion price changes to the extracted
promotions.

This program will run daily in nightly batch cycle and should be run after the
prmext.pc.

TABLE INDEX SELECT INSERT UPDATE DELETE

promhead No Yes No No No

promstore No Yes No No No

Promsku No Yes No No No

Item_loc No No No Yes No

period No Yes No No No

dual No Yes No No No

Item_master No Yes No No No

Stored Procedures / Shared Modules (Maintainability)

PROMOTION_ATTRIB_SQL.GET_PROMO_RETAIL – Returns the
promotion retail price for the item/location.

UOM_SQL.CONVERT – converts the values between two UOMs.

Input Specifications

N/A

Output Specifications

N/A

Function Level Description

• Define a structure that will be used to define the driving cursor array.

• Define another structure to be used to define the update array.

Main():

This function should follow standard Retek main function format. It should call
init(), process() and final() function.

Volume 4 – Batch designs 245

Init():

This function performs preliminary processing and populates global variables. It
will call retek_init function to handle the restart recovery logic and bring back
the bookmark string in case of a restart. It will also retrieve the date of today
(vdate) and tomorrow (vdate + 1) to be used in retrieving the valid promotions to
process.

Process():

This function will select the promotion, promotion store, store promotion start
date, store promotion end date, promotion currency code, promotion item,
standard unit of measure, promotion item status, promotion item price change
type, amount, selling unit of measure, adjust type and the price ends in from the
PROMSTORE, PROMHEAD, PROMSKU and ITEM_MASTER table. It will
then call process_prom_item_loc to check the item/location relation and retrieve
the promotion price. It will also call the update_item_loc function to update the
item_loc table with the promotion price. The driving cursor should be similar as
follows:

 SELECT ph.promotion,

 ph.currency_code,

 TO_CHAR(ps.start_date, 'YYYYMMDD'),

 TO_CHAR(ps.end_date, 'YYYYMMDD'),

 ps.store,

 im.item,

 im.standard_uom,

 psku.status,

 psku.change_type,

 NVL(psku.change_amt,0),

 NVL(psku.selling_uom,’’),

 psku.adjust_type,

 NVL(psku.ends_in,0)

 FROM v_restart_store rv,

 promstore ps,

 promhead ph,

 promsku psku,

 Item_master im

 WHERE ph.promotion = ps.promotion

 AND ph.status in ('E', 'M') /* all extracted promotions */

 AND ps.extract_status in ('E', 'M') /* all extracted promotion stores
*/

 AND psku.promotion = ps.promotion

246 Retek Merchandising System

 AND ps.start_date <= :tomorrow

 AND ps.end_date >= :today

 AND ps.promotion = psku.promotion

 AND psku.change_type != 'EX'

 AND im.item_level <= im.tran_level

 AND (im.item = psku.item

 OR (im.item_parent = psku.item

 AND (psku.diff_id is null

 OR (psku.diff_id is not null

 And (psku.diff_id = im.diff_1

 OR psku.diff_id = im.diff_2

 OR psku.diff_id = im.diff_3

 OR psku.diff_id = im.diff_4))))

 OR(im.item_grandparent = psku.item

 AND(psku.diff_id is null

 OR(psku.diff_id is not null

 AND (psku.diff_id = im.diff_1

 OR psku.diff_id = im.diff_2

 OR psku.diff_id = im.diff_3

 OR psku.diff_id = im.diff_4)))))

 AND rv.driver_value = ps.store

 AND rv.driver_name = :ora_restart_driver_name

 AND rv.num_threads = :ora_restart_num_threads

 AND rv.thread_val = :ora_restart_thread_val

 AND (ps.promotion > NVL(:ora_restart_promotion, -999) OR

 ((ps.promotion = :ora_restart_promotion) AND

 (ps.store >= :ora_restart_store)))

 ORDER BY 1,5;

Volume 4 – Batch designs 247

The flow of this function should be as follows:

• Define an array, la_prom_store, to hold the data fetched by the driving
cursor.

• Define another array, la_item_loc, to hold the promotion data to be updated
to the item_loc table.

• Call function size_prom_array().

• Call function size_item_loc_array().

• Open the driving cursor

• Array fetch the driving cursor to the la_prom_store array for
commit_max_ctr records.

• In a for loop, loop through each record in the la_prom_store array

• Call function process_prom_item_loc(). Pass in all the elements in current
record to the function, as well as the item_loc array.

• If the current promotion/store combination is different from last one, and the
count of the item_loc array is greater than zero, call update_item_loc() to
update the item_loc table. Pass in the item_loc array and the count of the
records in the array. Note the count needs to be reset after the update.

• Commit and restart/recovery logic.

• Remember to update item_loc table with the last set of records in the
item_loc array.

Size_prom_array():

This function will allocate memory for the array la_prom_store to size of
commit_max_ctr.

Size_item_loc_array():

 This function will allocate memory for the item_loc array to size of
commit_max_ctr.

Process_prom_item_loc():

This function should process as follows:

• Define local variables to hold the promo_retail, promo_selling_retail,
promo_selling_uom, and rowid Initialize these variables to null.

• Create a cursor c_item_loc to retrieve the promo_retail, promo_selling_retail,
promo_selling_uom and rowid from item_loc where status is ‘A’ctive and
the item, location match the passed in item and location.

• If no record found, return true. If error found, return fatal.

• If the end of store promotion date is today, call populate_item_loc_array
function. Pass in the item_loc array and the local variables item,location
promo_retail, promo_selling_retail, promo_selling_uom and rowid. Return
whatever is returned from the populate_item_loc function.

• Check the store Promotion start date:

248 Retek Merchandising System

If the start date is less than or equal to tomorrow, and the promsku.status is ‘DI’
(Deleted Item) or ‘DP’ (Delete Processed), check

• if the promo_selling_unit_retail is null. If it is null, stop further processing
and the function should return true.

• if the promo_selling_unit_retail is not null, call populate_item_loc_array
function. Pass in the item_loc array and the local variables item, location,
promo_retail, promo_selling_retail, promo_selling_uom and rowid. Return
whatever is returned from the populate_item_loc function.

Otherwise,

• Call get_prom_retail() to retrieve the promotion price. Pass in the current
records in the promo_store array and the local variable promo_selling_retail.
Return false if the function call failed.

• Compare the promo_selling_retail and the promo_selling_uom obtained in
the get_prom_retail with the promo_selling_retail and promo_uom in the
item_loc table (retrieved from cursor c_item_loc). If they are same, stop
further processing and return true.

• Call calc_std_retail() to convert the promotion retail to standard retail. Pass
in the selling_uom, standard_uom, promo_selling_retail, promo_retail, item
and location. Return false if the function call failed.

• Call populate_item_loc_array(). Pass in the item_loc array and the local
variables item, location, promo_retail, promo_selling_retail,
promo_selling_uom and rowid. Return whatever is returned from the
populate_item_loc function.

Populate_item_loc_array():

This function will process as follows:

• Check if the count of the total records in the item_loc array plus 1 is greater
than the size of the item_loc array. If it is exceed the array size, call
resize_item_loc array().

• Copy the promo_retail, promo_selling_retail, promo_selling_uom and rowid
to the item_loc array. Populate the item_loc array’s last_update_datetime
and last_update_id with the SYSDATE and UESER, respectively.

• Return ture.

Resize_item_loc_array():

This function will allocate additional max_commit_ctr memory for the item_loc
array.

Get_prom_retail():

This function will call stored procedure
PROMOTION_ATTRIB_SQL.GET_PROMO_RETAIL to retrieve the
promo_selling_retail.

Volume 4 – Batch designs 249

Calc_std_retail():

This function will first retrieve the convert factor from a selling_uom to
standard_uom. Then calculate the promotion retail per standard unit of measure.
It should process as the steps descript below:

• Call stored procedure UOM_SQL.CONVERT to find the convert factor.
Pass 1 to the from_value, pass selling_uom to the from_uom and pass
standard_uom to the to_uom.

• Set promo_retail = promo_selling_retail / convert factor.

Update_item_loc():

This function will do an array update against the item_loc table using the
item_loc array passed where the records rowid in the item_loc table equal the
rowids in the item_loc array.

Final():

This function will call retek_close to perform the restart/recovery closing logic,
as well as the last commit of the database changes.

Scheduling Considerations

Processing Cycle: Phase 3

Pro-Processing: Prmext.pc

Post-Processing:

Threading Scheme: store

Locking Strategy

N/A

Restart/Recovery

The logic unit of work is promotion/location.

Performance Considerations

N/A.

Security Considerations

N/A.

Design Assumptions

This program will update the item_loc table for simple promotions, no matter if
the system_options.multi_promo_ind flag is on or off.

When a promotion is changed, for example an item is added to the promotion, the
promotion item status will be updated or removed after the execution of
prmext.pc. In order to catch the promotion changes, this program will do a full
scan for all valid promotions, and update the item_loc table with new promotion
prices and the changed promotion/item/location prices.

250 Retek Merchandising System

Outstanding Design Issues

N/A

Volume 4 – Batch designs 251

Stockout Download [soutdnld]
Design Overview

Retek Demand Forecasting (RDF) requires notification when an item/store’s
stock on hand is at zero or below. This program will loop through the item/store
tables and output any item/store combination that has a stock out condition to an
output file. This output file will then be sent to RDF.

The logical unit of work (LUW) for this program is item/store.

Stored Procedures / Shared Modules (Maintainability)

N/A

Input Specifications

 item_loc_soh.loc

This program outputs three fields: date, item, and store to RDF. The fields
should be sent for each store/item combination that has a stock-on-hand less than
or equal to zero. The date sent will always be the vdate from the PERIOD table.
The item and store come from the ITEM_MASTER table. This program will not
look at packs. All items must be forecastable to be considered by this program.
The forecastable indicator is held on the ITEM_MASTER table.

RDF requires that the output files generated by this program be grouped by
domain number. To accommodate this requirement, soutdnld.pc should be
threaded by domain. Since threads are determined by the value of the domain
ID, the restart_program_status table should contain a row for each domain ID.
The thread value of the domain ID should be used as the thread value on this
table. The total number of domains/number of threads should be equal to the
number of rows on the restart_program_status table. This value must be entered
into the restart_control table num_threads field. Note that anytime a new domain
is created that an additional row should be added to the restart_program_status
table with the thread value equal to the domain ID and the restart_control table
num_threads field must be incremented to equal the total number of domains.

Domains can be held in RMS at the dept, class, or the subclass level. The
SYSTEM_OPTIONS.DOMAIN_LEVEL holds the domain level that is being
used. This dictates the program will need three different driving cursors. Which
one will be used depends on the SYSTEM_OPTIONS.DOMAIN_LEVEL. The
cursors will all be identical except one will join to DOMAIN_DEPT, one will
join to DOMAIN_CLASS, and one will join to DOMAIN_SUBCLASS.

When the SYSTEM_OPTIONS.DOMAIN_LEVEL is ‘D’, the following should
be used as the driving cursor:

 SELECT item_loc_soh.item,

 FROM item_loc_soh,

 item_master,

 domain_dept dd

 WHERE item_loc_soh.stock_on_hand <= 0

252 Retek Merchandising System

 AND item_loc_soh.loc_type = 'S'

 AND item_master.forecast_ind = 'Y'

 domain_class dc

 AND item_loc_soh.item = item_master.item

 AND dd.dept = item_master.dept

 AND dd.domain_id = :ps_thread_val

 AND (item_loc_soh.item > NVL(:ps_restart_item, -999) OR

 (item_loc_soh.item = :ps_restart_item AND

 (item_loc_soh.loc > :ps_restart_loc)))

 ORDER BY 1,2;

When the SYSTEM_OPTIONS.DOMAIN_LEVEL is ‘C’, the following should
be used as the driving cursor:

 SELECT item_loc_soh.item,

 item_loc_soh.loc

 FROM item_loc_soh,

 item_master,

 WHERE item_loc_soh.stock_on_hand <= 0

 AND item_loc_soh.loc_type = 'S'

 AND item_master.forecast_ind = 'Y'

 AND item_loc_soh.item = item_master.item

 AND dc.dept = item_master.dept

 AND dc.class = item_master.class

 AND dc.domain_id = :ps_thread_val

 AND (item_loc_soh.item > NVL(:ps_restart_item, -999) OR

 (item_loc_soh.item = :ps_restart_item AND

 (item_loc_soh.loc > :ps_restart_loc)))

 ORDER BY 1,2;

When the SYSTEM_OPTIONS.DOMAIN_LEVEL is ‘S’, the following should
be used as the driving cursor:

 SELECT item_loc_soh.item,

 item_loc_soh.loc

 FROM item_loc_soh,

 item_master,

 domain_subclass ds

 WHERE item_loc_soh.stock_on_hand <= 0

Volume 4 – Batch designs 253

 AND item_loc_soh.loc_type = 'S'

 AND item_master.forecast_ind = 'Y'

 AND item_loc_soh.item = item_master.item

 AND ds.dept = item_master.dept

 AND ds.class = item_master.class

 AND ds.subclass = item_master.subclass

 AND ds.domain_id = :ps_thread_val

 AND (item_loc_soh.item > NVL(:ps_restart_item, -999) OR

 (item_loc_soh.item = :ps_restart_item AND

 (item_loc_soh.loc > :ps_restart_loc)))

 ORDER BY 1,2;

Output Specifications

soutnn.dat – This is the file that will be created where nn is the thread (domain)
number.

Example record for a date of 20010309, a store of 1000000000, and a item of
101742484.

12345678123456789012345678901234567890123456789012345

200103091000000000 101742484

Record
Name

Field Name Field Type Default
Value

Description

 Date Varchar2(8) Period.vdate The date of the stockout in
YYYYMMDD format.

Store Varchar2(20) The store at which the sku
encountered the stockout – left
justified with trailing blanks.

Item Varchar2(25) The item that encountered the
stockout – left justified with trailing
blanks.

Function Level Description

Main()
The standard RMS main function. Calls init(), process(), and final().

Init()
The restart recovery is initialized by calling retek_init(), and the output file is set
up. The file should be named soutnn.dat, where nn is the thread number. The
C_get_vdate_and_domain_level cursor is called to get the vdate from the period
table and the domain_level from system_options.

254 Retek Merchandising System

Create_foremat_strings()
This function populates a format string. The format string is used when writing
lost sales to the output file.

Process()
Initializes the fetch struct, then calls the create_format_strings() funciton. Uses
the domain_level fetched in Init() to call either Process_dept(), Process_class(),
or Process_subclass(). Finally calls Free_array().

Write_lost_sales()
A pointer of the fetch struct and the current number of records to print are input.
The date, item, and store are then written to the output file. The format string
defined by create_format_string() is used when doing the file write.

Process_dept()
A pointer to the fetch struct is passed in. Contains the C_dept_domain_level
cursor for processing when SYSTEM_OPTIONS.DOMAIN_LEVEL = ‘D’.
Once the C_dept_domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break_flag variable is
set to one if a fetch returns NO_DATA_FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the
Write_lost_sales() function. After the Write_lost_sales() function is called, the
break_flag is checked, and the While(1) loop is broken if the break_flag != 0.

Process_class()
A pointer to the fetch struct is passed in. Contains the C_class_domain_level
cursor for processing when SYSTEM_OPTIONS.DOMAIN_LEVEL = ‘C’.
Once the C_class_domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break_flag variable is
set to one if a fetch returns NO_DATA_FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the
Write_lost_sales() function. After the Write_lost_sales() function is called, the
break_flag is checked, and the While(1) loop is broken if the break_flag != 0.

Process_subclass()
A pointer to the fetch struct is passed in. Contains the C_subclass_domain_level
cursor for processing when SYSTEM_OPTIONS.DOMAIN_LEVEL = ‘S’.
Once the C_subclass_domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break_flag variable is
set to one if a fetch returns NO_DATA_FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the
Write_lost_sales() function. After the Write_lost_sales() function is called, the
break_flag is checked, and the While(1) loop is broken if the break_flag != 0.

Init_array()
The initialized fetch struct is passed in. Allocates array space for the fetch struct
arrays, using calloc. The array sizes are set to the value of the
COMMIT_MAX_COUNTER.

Free_array()
Frees the array space that was allocated in Init_array().

Final()
Calls Retek_close().

Volume 4 – Batch designs 255

Scheduling Considerations

Phase 4 daily. Any processing that updates the stock levels should be completed
before this program runs.

Locking Strategy

N/A

Restart/Recovery

This program should use restart recovery. The LUW for this program is each
unique sku store combination.

Performance Considerations

N/A.

Security Considerations

N/A.

Design Assumptions

N/A

Outstanding Design Issues

N/A

References

N/A

Appendix

N/A

256 Retek Merchandising System

Item–Location Ticket Output File [tcktdnld]
Design Overview

This program will create an output file containing all of the information to be
printed on a ticket or label for a particular ITEM/location. This program is
driven by the “requests” for tickets that exist on the TICKET_REQUEST table.
Information to be printed on the ticket is then retrieved based on the ITEM,
location and the ticket type requested. The details, which should be printed on
each type of ticket, are kept on the TICKET_TYPE_DETAIL table. Specific
details, which will be written to the output file, are taken from the various item
tables (i.e. ITEM short description from ITEM_MASTER, retail price from
ITEM_ZONE_PRICE).

Scheduling Contraints

Processing Cycle: Ad Hoc (Daily)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart Recovery

Restartability will exist implicitly within this program. Because records will be
deleted after they are selected, no explicit code is needed to restart in the event of
a failure.

The lack volume of data processed by this program, in addition to the lack of an
appropriate threading mechanism, negates the need for Retek multi-threading
capabilities.

Driving Cursor:

SELECT tr.ticket_type_id,

 tr.item,

 tr.quantity,

 tr.loc_type,

 tr.location,

 tr.country_of_origin,

 tr.unit_retail,

 tr.multi_units,

 tr.multi_unit_retail,

 ROWIDTOCHAR(tr.rowid)

 FROM ticket_request tr

ORDER BY 1, 2, 5;

Volume 4 – Batch designs 257

Program Flow

N/A

Shared Modules

N/A

Function Level Description

init() –

Functional details:

This function should initialize the restart/recovery process. The output file
should be opened, and if it is not a “restart”, then file header information should
be written. The system vdate is selected for the file create date used in the
output file header. The format_buffer function should be called to format output
strings. The size_arrays function should be called to size the fetch and delete
arrays.

Technical details:

The output file should be written in the style necessary for Retek restart/recovery.
That is, a temp file should be opened and initialized, and the final file should
only be written to when the restart/recovery commit logic is called (using
restart_file_write).

process() –

Functional Details:

This function should write transaction records to the output file for each
item/ticket type/location combination on the ticket_request table. For each
record a transaction header should be written to the output file and the
ticket_item function should be called to write the detail items for the details
associated with the ticket type. If the item is a pack item, however, the
ticket_pack function should be called to first write component item records (the
ticket_item function will be called within the ticket_pack function for each
component item.). After each record from the driving cursor is processed, it will
be deleted from the ticket_request table. Finally, when all of the records have
been processed from the table, a file trailer should be written to the output file.

Technical Details:

The function should fetch records from the driving cursor into arrays. The arrays
should be sized to match the value of the maximum commit counter on the
restart_control table. Once the records are fetched, each record should be
processed in a for-loop. After all of the records have been processed in the for
loop, the records should be array deleted from the ticket_request table by rowid,
and the restart_commit logic should be called. Output file line counters,
transaction counters, etc. should be saved into the application image array string
that is passed to the restart_control function.

ticket_pack()

258 Retek Merchandising System

This function will be called from process if the item on the ticket_request table is
a pack item. This function should fetch all of the component items in the pack,
along with pack quantity information, and write a pack record for each
component. Further the ticket_item function should be called for each
component.

ticket_item()

This function should select all of the records from the ticket_type_detail table
with the ticket_type from the ticket_request record. Detail records should be
written out to the output file for each detail record retrieved. Either item
information or attribute information should be written to the output file. If the
ticket item is to be written (fetched ticket item is not null) get_ticket_item is
called to retrieve this appropriate intormation. If the attribute information is to be
written (fetched attribute column is not null) then a function should be called to
get the appropriate attribute information (get_UDA).

get_ticket_item()–

This function retrieves the database information which corresponds to the
requested ticket item, according to the table below.

TICKET ITEM OUTPUT FILE VALUE

UOM Price per unit of measure from item_master.

ITEM Retek ITEM value

ITDS ITEM description (from item_master)

ITSD ITEM short description from the item_master table

VAR The primary variant (ref_item) from the item_master table

DIF1 Diff_1 value from item_master

DIF2 Diff_2 value from item_master

DIF3 Diff_3 value from item_master

DIF4 Diff_4 value from item_master

WGHT Case weight from item_supp_country_dim table

DEPT Department from item_master & department name from deps table

CLAS Class value from item_master table & class name from class table

SBCL Subclass from item_master table & subclass name from subclass table

RTPC Selling retail price from driving cursor (if available), otherwise from
item_zone_price for item/store (use base zone value for warehouses).

SRTP Suggested retail price (mfg_rec_retail) from item_master

MUPC Multi-units and multi-unit retail from driving cursor (if available),
otherwise from item_zone_price for item/store (use base zone value for
warehouses)

SUPR Supplier from ordhead for most recent PO for the SKU.

Volume 4 – Batch designs 259

TICKET ITEM OUTPUT FILE VALUE

SUP1 Supplier diff_1, from item_supplier

SUP2 Supplier diff_2, from item_supplier.

SUP3 Supplier diff_3, from item_supplier

SUP4 Supplier diff_4, from item_supplier

STRE Store from driving cursor

WHSE Warehouse from driving cursor

COOG Country of origin from driving cursor if available, else from the last PO (see
supplier).

get_UDA()

This function should fetch the user defined attribute (UDA) value and description
assocated with the attribute value selected from the ticket detail table. The UDA
description will be selected for the UDA and the ITEM from either the
UDA_item_lov and the UDA_value tables, the UDA_item_ff table or the
UDA_item_date table. The UDA value will be written to the output file in the
“value” location of the detail line.

final()

Retek restart/recovery process will be closed by calling the internal API function,
and all appropriate output files will be close and temp files will be removed.

I/O Specification

Output File:

Record Name Field Name Field Type Default
Value

Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

 File Type
Definition

Char(4) TCKT Identifies file as ‘Print
Ticket Requests’

 File Create
Date

Date create date date file was written by
external system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

260 Retek Merchandising System

Record Name Field Name Field Type Default
Value

Description

 ITEM Char(25) ID number of the
transaction level, non-pack
item or the pack item

 Ticket Type Char(4) ID which indicates the
ticket type to be printed

 Location Type Char(1) S - Store
W –
Warehouse

Identifies the type of
location for which tickets
will be printed

 Location Char (10) number of the store or
warehouse for which
tickets will be printed

 Quantity Number(12,4) the quantity of tickets to be
printed

Transaction
Component

File Type
Record
Descriptor

Char(5) TCOMP Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

 ITEM Char(25) ID number of the ITEM

 Quantity Number(12,4) Quantity of the component
ITEM as part of the whole;
if ITEM on the header
record is a transaction
level ITEM, the value in
this field will be 1.

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

 Detail
Sequence
Number

Number(10) Sequential number
assigned to the detail
records

 Ticket Item Char(4) ID indicating the detail to
be printed on the ticket

 Attribute
Description

Char(40) Description of the attribute
(from the UDA Table)

Volume 4 – Batch designs 261

Record Name Field Name Field Type Default
Value

Description

 Value Char(100) Detail to be printed on the
ticket (i.e. REF_ITEM,
Department Number,
ITEM description)

 Supplement Char(300) Supplemental description
to the Value (i.e.
Department Name)

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

 Transaction
Detail Line
Count

Number(6) sum of detail
lines

sum of the detail lines
within a transaction

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file record type

 File Line
Sequence

Number(10) Line number of the current
file

Technical Issues

The program could be sped up by outer joining ticket_type_detail into the driving
cursor, and avoiding the c_ttd cursor which must be opened for each record in
our fetch array.

262 Retek Merchandising System

VAT–Rate Maintenance [vatdlxpl]
Design Overview

Value Added Tax (VAT) is a tax imposed by some governments on goods that
have realized an increase in value.

As with price zones and cost zones, individual stores belong to a particular VAT
region. VAT regions are areas that contain VAT code and VAT rates
information that applies to stores in that region and are based on VAT rates
defined by the government. VAT codes can be set up by Retek users to identify
a particular VAT rate percentage. Only one VAT rate can be active for any one
VAT code.

VAT rates are stored at the ITEM level in Retek on the VAT_ITEM table. On
this table, records with a past active date serve as an audit trail to track what
VAT code and VAT rate a particular ITEM has had or currently has. The
VAT_ITEM record with the most recent active date holds the ITEM’s current
VAT code. The VAT rate related to a particular VAT code is found on the
VAT_CODE_RATES table. Records on VAT_ITEM with a future active date
functionally represent a pending change in the VAT code for that particular
ITEM, effective on that date and reflecting the corresponding VAT rate
associated with that VAT code on the VAT_CODE_RATES table.

Records on the VAT_CODE_RATES table functionally represent a change in the
VAT rate for a particular VAT code. When a record exists on this table with an
active date of tomorrow, this program updates the VAT rate on any future
VAT_ITEM records associated with that VAT code to the new VAT rate defined
in the VAT_CODE_RATES table. Also, if the latest VAT_ITEM record for any
ITEM contains the VAT code that is changing, a new VAT_ITEM record is
inserted for that ITEM with an active date of tomorrow and the new VAT rate
associated with the VAT code.

Tables Affected:

TABLE INDEX SELECT INSERT UPDATE DELETE

VAT_CODE_RATES Yes Yes No No No

VAT_ITEM Yes Yes Yes Yes No

Scheduling Contraints

Processing Cycle: Phase I

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Volume 4 – Batch designs 263

Restart Recovery

The logical unit of work will be based on VAT code. Restart/recovery will be
based on VAT code. It is recommended that records be committed after a set of
10,000 rows has been processed.

Program Flow

 main()

Retrieve today’s date (VDATE) off database
table.

Retrieve the vat_rate
records from the vat_code_rates table
where the active date is equal to today.

For all SKUs on the vat_ sku table that
are associated with the vat_code whose vat_rate
hchanged, insert/update the record in the
vat_ sku table with new vat_rate.

Commit changes to the database.

 init ()

 process()

 final()

Shared Modules

N/A

Function Level Description

init():

Retrieve tomorrow’s date off the period table.

process():

This function will retrieve all records off of the VAT_CODE_RATES table with
an active date of tomorrow. If any records exist on the VAT_ITEM table with an
active date on or after tomorrow for the VAT code fetched off of the
VAT_CODE_RATES table, their VAT rate is updated with the VAT rate fetched
off of the VAT_CODE_RATES table. Also, if an ITEM is currently assigned the
VAT code with the changing VAT rate, a new record is inserted into VAT_ITEM
for the new VAT code/VAT rate combination with an active date of tomorrow.

update_vat_item():

This function updates any future VAT_ITEM records with the new VAT rate
fetched off the VAT_CODE_RATES table. It utilizes array processing to handle
the update.

insert_vat_item():

Inserts a new record into the VAT_ITEM table for any ITEMs that are currently
associated with the VAT code fetched from the VAT_CODE_RATES table. A
new record is inserted into VAT_ITEM for the new VAT code/VAT rate
combination with an active date of tomorrow.

264 Retek Merchandising System

Insert_pos_mods()

This function is called after the update_vat_item function. It inserts a new record
with a tran type of 20 into the POS_MODS table. The item, store, dept, class,
subclass, vat code, vat rate, and class_vat_ind fields are populated for all
approved, transaction-level items found on the VAT_ITEM table and their
children with tomorrows date and vat code, at active stores.

Technical Issues

This program implements the use of array processing to handle the
inserts/updates of the VAT_ITEM table.

Volume 4 – Batch designs 265

Wastage Adjustment [wasteadj]
Design Overview

This program will reduce inventory of spoilage type wastage items to account for
natural wastage that occurs over the shelf life of the product. Only items with
spoilage type wastage will be affected by this program. Sales type wastage will
be accounted for at the time of sale.

Spoilage type wastage is due to the natural loss of a product over its shelf life.
For example, as sausage sits on the shelf it loses a certain percentage of its
weight each day due to evaporation of the water that is in the sausage. Therefore,
a sausage that weighs one pound today may only weight .9 pounds tomorrow due
to the loss of water from the sausage. This new batch program will reduce the
physical on hand inventory for a store based on the daily wastage percentage
which will be entered by the retailer at the item location level:

New Stock on Hand = Actual Stock on Hand * (1 – Daily Wastage %)

When stock is reduced, Merchandising will process these records just as any
other stock adjustment.

By automatically reducing stock on hand based on the wastage percentage and
the shelf life of an item, the on hand inventory in Merchandising will be more
accurate than if these adjustments were not made.

TABLE INDEX SELECT INSERT UPDATE DELETE

ITEM_MASTER No Yes No No No

ITEM_LOC_SOH No Yes No Yes No

ITEM_LOC No Yes No No No

INV_ADJ No No Yes No No

TRAN_DATA No No Yes No No

PERIOD No Yes No No No

SYSTEM_OPTIONS No Yes No Yes No

CLASS No Yes No No No

Scheduling Contraints

Processing Cycle: Phase III (Before stock ledger processing)

Scheduling Diagram:

Pre-Processing: Run this program before the stock ledger roll up
programs to make sure that the stock adjustments taken during the current day
are credited to the appropriate day.

Post-Processing: N/A

Threading Scheme: N/A

266 Retek Merchandising System

Restart Recovery

Restart recovery is based on last item processed. The program will commit only
when the commit max counter is reached.

Program Flow

N/A

Shared Modules

N/A

Function Level Description

init

- Initialize restart variables.

- Allocate memory to arrays for array processing

- Collect system information

process

- Fetch ITEMs with wastage type spoilage (‘SP’)

- Retrieve single ITEM from fetch array for processing

- If a the ITEM is a transaction level item:

- retrieve appropriate information from ITEM_LOC and
ITEM_LOC_SOH

- add information to insert/update arrays

create_inv_adj

- Adds a record to the inv_adj insert array

create_tran_data

- Adds a record to the tran_data insert array

get_vat_rate

- gets vat_rate based on item, dept and location

set_tran_data_retail

- determines whether vat needs to be added, stripped or neither to total_retail
(Calls library function ADD_VAT or REMOVE_VAT in common.h)

update_stock

- Performs array updates of ITEM_LOC_SOH records

write_arrays

- Performs array inserts to inv_adj and tran_data

final

- Closes restart recovery

Volume 4 – Batch designs 267

I/O Specification

N/A

Technical Issues

N/A

Customization Issues

N/A

268 Retek Merchandising System

ReSA RTLOG interface file layout
The following table shows the layout of the Retek Sales Audit RTLOG interface
file for RMS.

Record
Name

Field Name Field Type Default
Value

Description Required

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed by
input file.

Yes

File Type
Definition

Char(4) POSU Identifies file as
‘POS Upload’

Yes

 File Create
Date

Char(14) create date date file was
written by external
system

Yes

 Location
Number

Number(10) specified by
external
system

Store or warehouse
identifier

Yes

 Vat include
indicator

Char(1) Determines
whether or not the
store stores values
including vat. Not
required but
populated by Retek
sales audit

Yes

 Vat region Number(4) Vat region the
given location is in.
Not required but
populated by Retek
sales audit

Yes

 Currency code Char(3) Currency of the
given location. Not
required but
populated by Retek
sales audit

Yes

 Currency retail
decimals

Number(1) Number of
decimals supported
by given currency
for retails. Not
required but
populated by Retek
sales audit

Yes

Volume 4 – Batch designs 269

Record
Name

Field Name Field Type Default
Value

Description Required

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed by
input file.

Yes

 Business Date
of Transaction

Char(14) business date Business date that
the sale/return
transaction was
processed at the
POS

Yes

Item Type Char(3) ‘ITM’ or
‘REF’

item type will be
represented as an
ITEM or
REF_ITEM

Yes

 Item Char(25) item identifier Yes

 Dept Number(4) Item’s dept Dept of item sold
or returned. Not
required but
populated by Retek
sales audit

Yes

 Class Number(4) Item’s class Class of item sold
or returned. Not
required but
populated by Retek
sales audit

Yes

 Subclass Number(4) Item’s
subclass

Subclass of item
sold or returned.
Not required but
populated by Retek
sales audit

Yes

 Pack Indicator Char(1) ‘Y’ –
pack_item
‘N’ –
non_pack

 Indicates if the
item is a pack.

Yes

 Item level Char(1) Level 3- item
grandparent
Level 2 –
item parent
Level 1 - item

Indicates which of
the three levels the
item resides.

Yes

270 Retek Merchandising System

Record
Name

Field Name Field Type Default
Value

Description Required

 Transaction
level

Char(1) Level 1,2, or
3

Indicates which
level that
transactions occur
for the item’s
group.

Yes

 Wastage Type Char(6) Item’s
wastage type

Wastage type of
item sold or
returned. Not
required but
populated by Retek
sales audit

Yes

 Wastage
Percent

Number(12) Item’s
wastage
percent

Wastage percent of
item sold or
returned with 4
implied decimal
places. Not
required but
populated by Retek
sales audit

Yes

 Transaction
Type

Char(1) ‘S’ – sales
‘R’ - return

Transaction type
code to specify
whether transaction
is a sale or a return

Yes

 Drop Ship Ind Char(1) ‘Y’ or ‘N’ Indicates whether
item is part of a
drop shipment

No

 Total Sales
Quantity

Number(12) Number of units
sold at a particular
location with 4
implied decimal
places.

Yes

Selling UOM Char(4) UOM at which this
item was sold

No

 Sales Sign Char(1) ‘P’ - positive
‘N’ - negative

Determines if the
Total Sales
Quantity and Total
Sales Value are
positive or
negative.

Yes

Volume 4 – Batch designs 271

Record
Name

Field Name Field Type Default
Value

Description Required

 Total Sales
Value

Number(20)

 Sales value, net
sales value of
goods sold/returned
with 4 implied
decimal places.

Yes

 Last Modified
Date

Char(14) For VBO future use

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed by
input file.

Yes

 Promotional
Tran Type

Char(6) promotion
type – valid
values see
code_detail
table.

code for
promotional type
from code_detail,
code_type =
‘PRMT’

Yes

 Promotion
Number

Number(10) promotion
number

promotion number
from the RMS

No

 Sales Quantity Number(12) number of units
sold in this prom
type with 4 implied
decimal places.

Yes

Sales Value Number(20) value of units sold
in this prom type
with 4 implied
decimal places.

Yes

Discount
Value

Number(20) Value of discount
given in this prom
type with 4 implied
decimal places.

Yes

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed by
input file.

Yes

 Transaction
Count

Number(6) specified by
external
system

Number of TDETL
records in this
transaction set

Yes

272 Retek Merchandising System

Record
Name

Field Name Field Type Default
Value

Description Required

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external
system

ID of current line
being processed by
input file.

Yes

 File Record
Counter

Number(10) Number of
records/transaction
s processed in
current file (only
records between
head & tail)

Yes

	Contents
	Introduction
	Volume 1 – Functional overviews
	Price and POS download
	EDI
	Stock counts
	Differentiators
	Promotions (prices)
	Message publishing
	RMS 10.1 changes

	Currency exchange rates
	Currency exchange rates message
	Currency exchange rates message subscription
	Currency exchange rates message subscription process
	Currency exchange rates message summary
	Currency exchange rates tables

	Freight terms
	Freight terms message
	Freight terms message subscription
	Freight terms message subscription process
	Freight terms message summary
	Freight terms table

	General ledger chart of accounts
	Message summary
	GLCOA message subscription
	System option for financial application

	Cost changes
	Cost change process
	Multi-channel supplier cost change rules:
	Cost change batch module descriptions
	Summary of cost change and related batch modules

	Payment terms
	Payment terms message
	Payment terms message subscription
	Message subscription process
	Payment terms message summary
	Payment terms table

	Security: location, product, price zone
	Security setup process
	If security rules conflict
	Security batch programs
	SLOCRBLD.PC – location security rebuild
	SPRDRBLD.PC – product security rebuild
	SZONRBLD.PC – zone security rebuild
	Prepost functions for security batch
	A note about the product rebuild
	Security programs in the batch schedule
	Batch modules for location, product, and zone security

	Supplier
	Supplier message subscription
	Supplier publication

	Value added tax maintenance
	System level VAT
	System class level VAT
	Department VAT
	Class VAT
	Store VAT indicator
	Send VAT rate to POS
	Special note: retail method stock ledger and VAT
	Batch module – VATDLXPL

	Replenishment
	Replenishment process
	Summary of replenishment batch modules
	Primary replenishment tables
	Investment buy

	Volume 2 – Message publication and�subscription �
	Item Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures
	Design Assumptions
	Outstanding Technical Issues

	Currency Exchange Rates Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Freight Terms Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	GL Chart of Accounts Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_glcoacre.pls):
	Private Internal Functions and Procedures (other):

	Payment Terms Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Supplier Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Volume 4 – Batch designs
	Deal upload [dealupld]
	Deal item insert [ditinsrt]
	EDI contract information download [edidlcon]
	EDI purchase order download [edidlord]
	New and Changed Upload from Supplier [ediupcat]
	On-order extract [onordext}
	POS download [posdnld]
	POS Upload [posupld]
	Complex Deals Management [precostcalc]
	Promotion Price Update [prmpcupd]
	Stockout Download [soutdnld]
	Item–Location Ticket Output File [tcktdnld]
	VAT–Rate Maintenance [vatdlxpl]
	Wastage Adjustment [wasteadj]
	ReSA RTLOG interface file layout

