Retek® Merchandising System
10.1

&
7]

‘1

Operations Guide
Addendum

&

Rete

WWW.RETEK.COM ‘ HELPING THE RETAIL INDUSTRY CREATE, MANAGE AND FULFILL CONSUMER DEMAND™

Retek Merchandising System

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403

888.61.RETEK (toll free US)
+1 612 587 5000

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46
Fax: +44 (0)20 7563 46 10

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek™ Merchandising System™ is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:
Customer Support is available 7x24x365 via e-mail, phone and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: +1 612-587-5800
EMEA: 011 44 1223 703 444
Asia Pacific: 61 425 792 927

Mail Retek Customer Support
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:
Product version and program/module name.

Functional and technical description of the problem (include business
impact).

Detailed step by step instructions to recreate.
Exact error message received.

Screen shots of each step you take.

Contents
Introduction ... —— 1
Volume 1 — Functional overviews.............coooimmmmieeecciinnnnn, 3
Price and POS download.............coooiiiiiiiiiiiiie e 3
21 1) L PRSP UPUPPPPRRP 3
STOCK COUNLS ...ttt et 3
DIfTRIENtIAtOrSecuiiiiiieiiietceeet ettt 3
Promotions (PIICES) ...eeeviieeeiieeeiieeeiieeeieeesieeeseteeesreeestaeeestaeeeaaeessaeesnsaeesnseeenanes 4
Message PUbliISHINGcocuiiiiiiiiiii e 5
RMS 10,1 ChANEES.....eeeceiiiiiiieiieeciee ettt ettt e e sv e e b e eaa e e ssbaeessaeesareean 6
Currency €XChange Tatesc.cccuierieeiiienieeiieeie ettt ettt e eaeens 7
Currency eXchange rates MESSAZEccuverueerueerierieeieeiieeteesieesteeseeeseesneeenseeseenseenseas 7
Currency exchange rates message SUDSCIIPHION.ccoueerueerierierienieeie e eie e 8
Currency exchange rates message SUbSCIIPtION PrOCESS......cvverrerrerrerrerreavensseanses 8
Currency exchange rates message SUMIMIATYc..ce.eeruerreeeerierseeruensereersessesseenseseenees 8
Currency exchange rates tablescociiriiiiiiiiieieeie ettt 9
Frei@ht termsS ...oooviiiiceee e e 10
Freight terms MESSAZEccvvevveeriieiieeie ettt ettt ettt et ebe s eeas 10
Freight terms message SUDSCTIPTION.......c.ciiiiiieiiiiiieieeeeeee et 11
Freight terms message SUDSCIIPLION PrOCESS......ccvievierreerreerreereesresreereesseesseesseessns 11
Freight terms message SUMMATYcccoveeierieriieierieneeiente et et eee e 11
Freight terms table........c.ooiiiiiiie e 12
General ledger chart 0f acCOUNTS........c.coviiiiiiiiiieiee e 13
MESSAZE SUIMITIATY ...uveeeniieeiieeeiieeniieestte ettt esteeeabteesateesabeesssaeesabeeenbeeenateesabeeessneesanes 13
GLCOA message SUDSCIIPIION ..ceuiiiuiiiiiiiiieieeieenieesiteste ettt ettt e e st e saeesieesaeeens 13
System option for financial application..........ccceevverieriirciinciieeee e 14
COSt ChANGES.....c.eeeiiiiiiiieteet ettt 15
COSt ChANZE PIOCESS .oeovvvieeirieeiiieciie ettt et e eteeetteesbeeeteeestteeesbeeessseessseeessseesssesenseeas 15
Multi-channel supplier cost change rules:ccoecvvevvierierienienie e 15
Cost change batch module desCriptions...........ccceeveerieriieeriierieseerieeie e 16
Summary of cost change and related batch modules...........c.cceeveiiiiiiiiniiiincieiis 17
Payment tEIMISceouiiiiiiieiiieecie et 18
Payment terms MESSAZEccvueerurieriieiriiieiiie ettt ettt ettt ettt e et e e e 18
Payment terms message SUDSCIIPLIONcccuvieevieeriiieeieeeiie et e ereeeiee e e eaeeeseaee e 19
MeSSage SUDSCIIPLION PIOCESS.veiveereereerreereestrereresreaseesseesseesseesssesssesssessseessesssens 19
Payment terms mesSage SUMMATYcevueeeruieerieeeriieenieeeeeeesseeesreesseeesseeesseeennnes 19

Payment terms table..........cccuiiiiiiiriiiciie et et 19

ii Retek Merchandising System

Security: location, product, PriCe ZONE..........cceevveeruieriirerieenieeieeeieeiee e e 20
SECUTILY SETUDP PIOCESS -.uverveemreieriieienieetenteeitete st et ettt ete st et et sbeetenbesbeebesbeeaeenee 21
If security 1ules CONTICE.......c.oiiiiiieiiicie e e 21
Security batCh PrOGIAMSc.ecvvierieiiecieeie ettt ettt e v e reesbeebeesbeessaessnenens 22
SLOCRBLD.PC — location security rebuild.........ccccocerienininiieninieninincecneeeene 23
SPRDRBLD.PC — product security rebuild...........ccceeeviiieiiiniieniieieecieeciee e 23
SZONRBLD.PC — zone security rebuild...........cccceevvivciinciiiiieiieieeecie e 23
Prepost functions for security batChcceccvevieriiiciieiieeeeesee e 23
A note about the product rebuildccoeiiiiiiiiiiiiiee e 24
Security programs in the batch schedulecocoiieiiiiiiiiiciie e, 24
Batch modules for location, product, and Zone SECUrity.........cceevvercreecreecreerreereeneen. 25

SUPPIIET ..ttt et et 26
Supplier MeSSage SUDSCIIPLION.cvieriieriieereerieteeieeieeseeeseeereereesseesseessaesssessnenens 26
SUPPLET PUDIICALION.eeiieeiieiiieiieriee e ete et ettt see e s e e e eseeseessaesraessneenseenns 27

Value added tax maintenance............cocueevueerieiniieniienie et 30
SYSEM LIEVEL VAT ..ottt ettt ettt stee s eveseve b e esbeessaesseenens 30
System Class IeVEl VATcc.oovuiiiiiie ettt ba e sa e eens 30
DepartmMent VATc..ooiiiiieii ittt ettt et s e e et eeseb e e e be e e aaeeesseeesseesnns 30
CLasS VAT ..ttt ettt ettt sttt et e bt et e st e e neeneeseeeneens 31
StOre VAT INAICALTOT ...ttt st 31
Send VAT 1ate t0 POSooiiiiieeeee ettt et 31
Special note: retail method stock ledger and VATcooovveeeiiiciieiieeeieeeee, 31
Batch module — VATDLXPL.....cccooiiiiiiiiee e 32

RepleniShmentooiiiiiiiiii e 33
RepleniSNMENt PrOCESSc.viivviiiieiieciecie ettt re e ereesbeestreseaesebeesseesseesseas 33
Summary of replenishment batch modules............cccoevieriiriiiniincieeeeee 33
Primary replenishment tablesccoovieiiiiieiieiieeeeee e 38
INVESTMENT DUY ..vviiiiiieiiecciee ettt et e et e et e e be e e abeeesbeeeneaeesnnes 39

Volume 2 — Message publication and subscription designs

.. 43
Item Message Family Manager Publishing Design...........ccccoeeveviienieniiennnnne 43
FUNCHONAL ATCA ..ottt ettt et e e e eveeenraeeeenas 43
DESIZN OVEIVIEW ..ecevviieiieeiieecieeeite et esieeetteesveeetaeessseeessaeesssaesssesesseesssseensseensses 43
State DIAZIAM ...c.vievieiiiciieciecie ettt et e re b e e b e eb e e b e e bt e steestaessbessbessseessaessaessnenens 45
DeSCription Of ACHIVILIES.viiierierieeieeieesteeste e ste e ereesieesteeseneessessseesseeseessnessnes 46
TTI@EOTS. c..teeetie ettt ettt et e et e e st e e st e e e tbeesatae e abeesssaeessbeeesbeeensaeeessaeensseennnes 56
Message Family Manager Procedures..........ccovevvverierieiieeieenieeneesresre e sve e 62
DeSiZN ASSUMPLIONS ...c.vveeevreieeieesieesreeteeseereesseesseesssesseasseesseesseesssesssesssessseesseessens 65
Outstanding Technical ISSUEScccueviiiiiiiiiiirierieeee ettt 65
Currency Exchange Rates Subscription Design..........ccceevvveeiieniencieenieenveennen. 66
FUNCHONAL ATEA ...ttt s 66
DESIZN OVEIVIEW ..ecevvieeiiieiieeeiiieeiteesteesieeetteesveeetaeesaseeessaeesssaesssesesseessseeesseensses 66

SUDSCIIPHION PrOCEAUIESeeevviiiiieieciieiiecie ettt seve v e e rb e beeeaeens 66

Freight Terms Subscription DeSign........ccceeviieriieeiienieeiieiieeieeiee e 69
FUNCHONAL ATCA ..ottt ettt et e e e taeeearaeeanas 69
DESIZN OVEIVIEW ..ecvvvieeiieeiiieciee ettt esteeeieeetaeesveeestbeesaseeessaeessseeestesesseessseeesseensnes 69
SUDSCIIPHION PrOCEAUIESvecvviiiiieieeiieciiecie ettt ettt re v b e esbe e saesaeens 69

GL Chart of Accounts Subscription Design.........cccceecvveevieeeniieeniieeiee e 72
FUNCHONAL ATCAveevvieiiiciieciie ettt st e teestaestaessbeesbeesbaesssesssessseesseessens 72
DIESIZN OVETVIEW ...eeuviiiiieiiieieerieesieesttesteereeteeseesseesssessseasseesseesseesssesssesssesnsessseessees 72
SubSCIIPtion ProCEAUIEScoeiiiiiiieiieiieciie ettt e 72
PUDbIiC API ProCeaUIES.......cccviieiiieeiie ettt ettt tee e e e eve e eeeae e e 72
Private Internal Functions and Procedures (rmssub_glcoacre.pls):........ccceevvveveennen. 73
Private Internal Functions and Procedures (other):cccoeeeeviiiiiiiniieciie e, 73

Payment Terms Subscription Designcceeeieriieiieniienieeiiecie e 75
FUNCHONAL ATCAveeueieiieieieeie ettt sttt ettt e st eseae et e esbeesbaesseesssesnsesnseensens 75
DESIZN OVETVIEW ...eueiiiiieiiieieeiee ettt ettt ettt et e st e st eeteeteesbeesstesseesnseenseenseenseas 75
SUbSCIIPtion PrOCEAUIEScccuviiiiieeiiieiee ettt et esebeesvee e 75

Supplier Subscription DESIZN.......c.cevuieiiieriiiiiieiieeie ettt ens 78
FUNCHONAL ATCA ..ottt et e eve e e taeeenvaeeenas 78
DESIZN OVEIVIEW ..ecevviieiieeiieecieeeite et esieeetteesveeetaeessseeessaeesssaesssesesseesssseensseensses 78
SUbSCIIPHION PrOCEAUIESoevvviiiiieiieiiesiieeie sttt ereesbe e neenes 78

Volume 4 — Batch designs......c.cccoiimmimcciiiiiiecinirreesn s 81

Deal upload [dealupld]c.oeeeeuiiieiiieeiieeie et 82

Deal item insert [ditinSIt]ccveeeiviieiiiiiceiie et 140

EDI contract information download [edidlcon]..........ccceeeiiiiiiiiiiiiiiiiiinen, 154

EDI purchase order download [edidlord].........cccoecveeiiiniiiniiniiiiiecieeeeee 159

New and Changed Upload from Supplier [ediupcat].......ccccceevvvreriiveencnneenee. 172

On-order extract [ONOTAEXt}cccvieriiieiiieriieeiieiie ettt 189

POS download [posdnld]cccueeeiiieiiiieeie e 200

POS Upload [PoSupld] ...cc.eeeeieiiieiieeiieiiece ettt 212

Complex Deals Management [precostcalc]........ooovvierveeeriieeerieeeiieeecieeeiieens 233

Promotion Price Update [prmpcupd]c.cooveeiiieniieiiieiieiieeieeieeeeee e 244

Stockout Download [soutdnld]............ccoviiiiiiiiiiiiiieee e 251

Item—Location Ticket Output File [tcktdnld].........ccoooieriiiiiiiniiiiieee 256

VAT-Rate Maintenance [VatdIXpl]......ccccoevieeriiiiiiieeeieece e 262

Wastage Adjustment [Wastead]].....c.cocveeviieriiiiiieniieiierie e 265

ReSA RTLOG interface file 1ayout..........cccvveeciiieiciieeniieeciee e 268

Introduction 1

Introduction

This addendum to the RMS 10 Operations Guide presents changes that have
resulted from work completed during RMS 10.1 development. RMS 10
Operations Guide volumes impacted include:

e Volume 1, Functional Overviews

e Volume 2, Message Publication and Subscription Designs
e Volume 4, Batch Designs

There are no changes to Volume 3, Batch Program Overview.

The batch schedule diagram accompanies this addendum. See the filename:
rms-101-batchschedule.pdf. The only change to the batch schedule document is a
correction to the title, which now states “‘Retek Merchandising System 10.1 Batch
Schedule.” No part of the schedule itself is changed from RMS 10.0.

This addendum contains one chapter for each volume. Changes for each volume
are listed either by a note of the changes or by the inclusion of the entire changed
document.

Volume 1 — Functional overviews 3

Volume 1 — Functional overviews
Price and POS download

For RMS 10.1, the following data are written to the POS_MODS table:

e When downloading item information to the POS system, the new unit retail
includes the VAT indicator for the class, VAT code, and VAT rate for the
item.

e Whenever a new item-location record is written to POS_ MODS,
VAT_CODE, VAT RATE, and CLASS_ VAT IND are now included. See
the overview “VAT maintenance” for more information. Also see the
PL/SQL package POSUPDS.

EDI

The EDIUPCAT batch module now accepts up to four supplier differentiators
when uploading items from a supplier.

Stock counts

The STKVAR batch module (Stock Count on Hand Updates) now performs the
following task:

Checks the system VAT indicator, the indicator for stock ledger VAT, the class
level VAT indicator, and the indicator for retail inclusion of VAT indicator for
the class to determine if VAT needs to be added on, stripped off, or neither
before updating the STAKE PROD LOC table. See the “VAT maintenance”
overview for more information.

Differentiators
Differentiators have experienced a number of changes in RMS 10.1, including:

e Four diffs can now be associated with an item. In RMS 10.0, only two diffs
could associate with an item.

e RMS can upload four (4) diffs from a supplier via the EDIUPCAT program.
e A user may not create more than 30 diff types.

o Diff types are now held on the new table DIFF_TYPE and are no longer held
on the CODE_HEAD and CODE_DETAIL tables.

e The diff type maximum field length is six (6) characters, and the description
field is 40 characters.

e A user may only delete a diff type if no diff groups or diff IDs are associated
with that diff type.

e Whenever RMS publishes item messages to the RIB, it can include all four
diffs and their types. See the “Items” functional overview in the operations
guide for more information about RMS item message publication.

4 Retek Merchandising System

Promotions (prices)

The description for the program PCOVRLQ.PC is inaccurate in the RMS 10.0
Operations Guide. The following description replaces it:

PCOVRLQ.PC (Promotion Price Overlap)-This module locates and writes
overlapping promotions to the PRICE_ OVERLAP_LOG table for reporting. It
also updates the promotion status to ‘Submitted’ or ‘Approved’ when no overlap
records are found.

Volume 1 — Functional overviews 5

Message publishing

The publication of a message to the Retek Integration Bus is handled by the table
trigger, the message family manager, and RMS’s eWay (adapter). See the
diagram and the explanations that follow. For RMS 10.1 changes, see the
following page.

Message Family

Manager N
Oracle package's

GETNXT procedure

Message

A
Family Adapter > 5
Queue
;I'riggt;_er ctallz t!’llg: tr:essag? builder a CLOB
unction to bul € event message. Adapter calls GETNXT procedure to
Then the trigger calls the ADDTOQ ublish messages from the queue to the
procedure to populate the message Message Family i%tegration busg(RIB) 9
as a record on the queue. Manager ' N

Oracle package's
ADDTOQ procedure

1 Messages are specific to a ‘family’. For example, the “Supplier” family
includes all suppliers (vendors) and their addressses.

2 Messages are queued as records to a staging table called a Message Family
Queue ([message family name] MFQUEUE).

3 Each message family has a Message Family Manager that is a PL/SQL
package. Two public procedures in the package are ADDTOQ and
GETNXT.

4 An event on an RMS table (that is, an insert, update or delete) ‘triggers’ a
record to be created in the message family queue. The trigger calls the
message building procedure (for example,

WORKORDER _XML.BUILD_MESSAGE) to build the XML as a CLOB.

5 The trigger calls the ADDTOQ procedure that generates sequence numbers
and inserts the event message as a record on the queue.

6 The RIB adapter calls the GETNXT procedure to publish the message from
the message family queue to the integration bus.

6 Retek Merchandising System

RMS 10.1 changes

In RMS 10.0, the BUILD_MESSAGE procedure calls the RIB_ XML procedure
to create the CLOB. RMS 10.1 retains this process but applies a new process
called RIB_ SXW for the following messages:

e ATP (available to promise)

e Items

e Purchase orders

e Stock orders (allocations and transfers)

e Work orders

RIB_SXW concatenates the XML strings in the CLOB. Using RIB_SXW in this
way speeds the creation of CLOB building for these high volume messages.

Volume 1 — Functional overviews 7

Currency exchange rates

Currency exchange rates constitute financial information that is published to the
Retek Integration Bus (RIB). A currency exchange rate is the price of one
country's currency expressed in another country's currency. RMS 10.1 subscribes
to a currency exchange rate message that is held on the RIB. After confirming the
validity of the records enclosed within the message, RMS 10.1 updates its tables
with the information.

This overview describes the following:

e A description of the specific data within the currency exchange rates terms
message.

e A summary of the steps that occur during the processing of the currency
exchange rates message.

e A summary of the currency exchange rates message that shows its
corresponding DTD and mapping document.

o The tables in RMS 10.1 that are affected by the currency exchange rates
subscription message.

Note: When the systems are initially set up, identical currency information (3-
letter codes, exchange rate values) are entered into both the RMS and the
financial system. If a new currency needs to be used, it must be entered into both
the financial system and RMS before a rate change is possible. No functionality
currently exists to bridge this data.

Currency exchange rates message

RMS 10.1 subscribes to a flat currency exchange rates terms message that
consists of a currency exchange rate record. A currency exchange rates record
can only be created or updated. Previous currency exchange rates records are not
deleted.

RMS subscribes to a currency exchange rates message named CurrRateDesc.

Data in the currency rates subscription message that has primary significance to
RMS includes:

o The exchange rate for the specified currency/type/effective date combination.
e The date on which the currency rate became or will become active.
e The type of exchange rate the history exists for. The values include:

= C (Consolidation)

= O (Operational)

= L (Letter of Credit/Bank)

» P (Purchase Order)

= U (Customs Entry)

= G (Logistics)

8 Retek Merchandising System

Currency exc
The

hange rates message subscription

currency exchange rates message subscription process primarily consists of

the two following PL/SQL packages:

RM

SSUB_CURRATECRE and its CONSUME procedure serve as RMS’s

subscription API. A second package, RMSSUB CURRXRATE, holds functions

that
.
.
.
.

performs the following tasks on data contained in the message:
Parse

Process

Insert

Update

Validate

Currency exchange rates message subscription process

From a high-level perspective, the currency exchange rates message subscription
process primarily consists of the following steps:

1

The RMS external currency exchange rates adapter (eWay) recognizes that a
message with a currency exchange rates name exists on the RIB. The RIB
calls the first package, which serves as RMS’ subscription API:
RMSSUB_CURRATECRE.CONSUME. This package initially processes the
message and the XML CLOB contained in the message.

The package, RMSSUB CURRXRATE, accepts an XML file in the form of
an Oracle CLOB data type from the RIB. The procedure validates the XML
file format. If the validation is successful, the XML in the message is parsed
into PL/SQL. Note that in addition to calling other functions, the package
calls CONVERT_TYPE, which converts FIF. EXCHANGE_TYPE to

RMS EXCH_TYPE through the table FIF. CURRENCY_XREF. The
validated currency exchange rates data is inserted into the
CURRENCY_RATES table.

Currency exchange rates message summary

The

following table shows you the CurRateCre message, the document type

definition (DTD) that describes the XML message, and the mapping document

that

describes the data contained in the message. The mapping document contains

information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

CurRateCre

CurrRateDesc.dtd Map_CurrRateDesc.xls

Volume 1 — Functional overviews 9

Currency exchange rates tables

The following description is for the primary tables in RMS 10.1 that hold
currency exchange rates data and are used in message subscription processing:

CURRENCY_RATES

This table contains the exchange rates for every currency used in the system. A
currency can have multiple exchange rates based on a combination of different
exchange types and effective dates.

FIF_CURRENCY_XREF

This cross-reference table is used to translate the financial package’s exchange
type to the Retek-defined exchange type. During message processing, the
CONVERT TYPE function resolves the financial package’s type by referencing
the FIF_CURRENCY _XREF table, which translates the financial type into the
RMS type. The RMS type is then written to the CURRENCY RATES table. The
FIF_CURRENCY_ XREF table is populated at installation and is maintained by
system administration. The table cannot be updated by other users.

10 Retek Merchandising System

Freight terms

Freight terms are supplier-related financial arrangement information that is
published to the Retek Integration Bus (RIB), along with the supplier and the
supplier address, from the financial system. Freight terms are the terms for
shipping (for example, the freight terms could be a certain percentage of the total
cost; they could be free; and so on). RMS 10.1 subscribes to a freight terms
message held on the RIB. After confirming the validity of the records enclosed
within the message, RMS 10.1 updates its tables with the information.

This overview describes the following:
e A description of the specific data within the freight terms message.

e A summary of the steps that occur during the processing of the freight terms
message.

e A summary of the freight terms message that shows its corresponding DTD
and mapping document.

e The table in RMS 10.1 that is affected by the freight terms subscription
message.

Freight terms message

RMS 10.1 subscribes to a flat freight terms message that consists of a freight
terms record. A freight term record can only be created or updated. Previous
freight terms records are neither deleted nor modified; they are rendered
enabled/disabled through a flag associated with the active/inactive date.

RMS 10.1 subscribes to the FrtTermDesc freight terms message .

Data in the freight terms message that has primary significance to RMS 10.1
includes:

e The number that uniquely identifies the freight terms.
e A description of the freight terms used in the system.
o The date for assigning an active date to the freight terms.

o The date for assigning an inactive date to the freight terms.

Volume 1 — Functional overviews 11

Freight terms message subscription

The freight terms message subscription process primarily consists of the three
following PL/SQL packages:

RMSSUB_FRTTERMCRE and its CONSUME procedure serve as RMS’
subscription API.

A second package, RMSSUB_ FTERM, holds functions that perform the
following tasks on data contained in the message:

e Parse
e Process

A third package internal to RMS, FTERM_SQL, holds functions that perform the
following tasks on data contained in the message:

e Insert
e Update
e Validate

Freight terms message subscription process

From a high-level perspective, the freight terms message subscription process
primarily consists of the following steps:

1 The RMS 10.1 external freight terms adapter (eWay) recognizes that a
message with a freight terms name exists on the RIB. The RIB calls the first
package, which serves as RMS’ subscription API:
RMSSUB_FRTTERMCRE.CONSUME. This package initially processes the
message and the XML CLOB contained in the message.

2 The second package, RMSSUB_FTERM, accepts an XML file in the form of
an Oracle CLOB data type from the RIB. The procedure validates the XML
file format, and if the validation is successful, parses the XML in the
message into PL/SQL.

3 The third package, RMSSUB FTERM makes a call to RMS’ FTERM_SQL,
which performs the insert/update to the FREIGHT TERMS table within
RMS 10.1.

Freight terms message summary

The following table shows you the FrtTermCre message, the document type
definition (DTD) that describes the XML message, and the mapping document
that describes the data contained in the message. The mapping document contains
information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

FrtTermCre FreightTermDesc.dtd |Map FreightTermDesc.xls

12 Retek Merchandising System

Freight terms table

The following description is for the primary table in RMS 10.1 that holds freight
terms data:

FREIGHT_TERMS

This table contains one row for each set of freight terms allowed in the company.
The table is populated during installation.

Volume 1 — Functional overviews 13

General ledger chart of accounts

Before RMS can publish stock ledger data to an external financial application, it
must receive that application’s general ledger chart of accounts (GLCOA)
structure. RMS accomplishes this through a subscription process described in this
overview.

A chart of account is essentially the financial application’s debit and credit
account segments (for example, company, cost center, account, and so on) that
apply to the RMS product hierarchy. In some financial applications, this is
known as CCIDs (Code Combination IDs). Upon receipt of GLCOA message
data, RMS populates the data to the FIF. GL_ACCT table. The GL Cross
Reference (glcross.fmb) form is then used to associate the appropriate
department, class, subclass, and location financial data to a chart that allows the
population of that data to the GL_FIF CROSS_REF table.

Message summary

The following table lists the GLCOA message by its message type, the document
type definition (DTD) that describes the XML message, and the mapping
document that describes the data contained in the message. Consult the Retek
10.1 Integration Guide to view these documents.

Message Type Type (DTD) Mapping Document
GLCOACre GLCOADesc.dtd | Map_ GLCOADesc.xls

GLCOA message subscription
The GLCOA message subscription process consists of the following PL/SQL

packages:
e RMSSUB GLCOACRE and its CONSUME procedure serves as RMS’
subscription APIL.

e A second package, RMSSUB GLCACCT, holds functions that performs the
following tasks on data contained in the message:

= Parse the message header
» Process the message header

e PROCESS GLACCT — Accepts the input GL record and places the data into
a local GL record, used in the package to manipulate the data. It calls the
following support functions to perform all business logic on the record:

= insert
= ypdate
= validate

Data is populated on the FIF_GL_ACCT table.

14 Retek Merchandising System

System option for financial application

RMS’ SYSTEM_OPTIONS table holds the column FINANCIAL AP, where the
interface financial application is indicated. Settings in this column are either “O”
or null. “O” indicates an external financial application. A null indicates that no
financial application is interfaced with RMS.

Volume 1 — Functional overviews 15

Cost changes

Cost values serve as a starting point in the creation of a purchase order. RMS
10.0 introduces the multi-channel concept where stores and warehouses can be
‘virtual® as well as physical locations. If RMS is set up to run multi-channel
(meaning the multi-channel indicator on the SYSTEM_OPTIONS table is set to
“Y” (yes)), only virtual locations hold stock. Physical warehouses, while not
being stockholding locations, do hold supplier item cost that is shared across all
virtual warehouses associated with the physical warehouse. This section
describes how supplier cost changes are processed in RMS, with a focus on the
batch modules SCCEXT and CCPRG.

Cost change process

The cost change process begins with the supplier form SUPPSKU. Changes
made on this form impact these tables:

e COST SUSP SUP_HEAD, always populated.

e (COST SUSP SUP_DETAIL, populated if the cost at the country level is
changed. Otherwise COST _SUSP SUP DETAIL LOC is populated if cost
is being maintained at individual locations. Bracket cost data are also stored
on these two tables.

If cost changes are updated directly from the supplier, the batch module
EDIUPCAT indirectly populates the cost tables, using the following process:
EDIUPCAT populates EDI COST _CHG and EDI_COST _LOC. The RMS user
can then accept EDI cost changes through the EDI cost change dialog. Accepted
changes then populate the cost tables.

After updates to the cost tables occur, they are processed into the following tables
by the SCCEXT module:

e ITEM SUP COUNTRY for the country level cost change. The program
distributes the cost to all locations on ITEM_SUP COUNTRY LOC (for the
current unit cost). Note that this table is always updated, regardless of the
multi-channel indicator

e [ITEM SUPP COUNTRY_ BRACKET COST if the supplier is bracket
costing

e [ITEM_LOC SOH for locations

Multi-channel supplier cost change rules:
e Average cost is held on the ITEM_LOC_ SOH table

e Cost changes are managed and stored at the physical warehouse level since
the unit cost must remain consistent across all virtual warehouses within the
same physical warehouse

e Onthe ITEM LOC SOH table, cost is held at the virtual level, to include
physical stores

16 Retek Merchandising System

e A purchase order P.O. cannot be created for non-stockholding locations, like
physical warehouses, and non-stockholding stores, like Web stores and
catalog stores

e Each physical and virtual store has a default virtual warehouse

e Cost changes sent by a supplier and uploaded by the batch module
EDIUPCAT apply to the physical warehouse before quantities are
apportioned to the virtual warehouses in SCCEXT.PC

e When cost changes are received from a supplier via EDI, two outcomes are
possible for updating the system costs. If the item is in a Worksheet or
Submitted status, system costs are updated online when the cost change is
accepted in the EDI dialog. If the item is in Accepted status, the cost change
records are written to the cost change dialog. From there, when the cost
change is approved, SCCEXT processes these cost changes and updates
system costs

Cost change batch module descriptions

EDIUPCAT (Vendor item information upload) — This module uploads a flat file
that originates as the output of a client’s EDI translation software application.
The module then updates the EDI NEW ITEM and EDI_ COST_LOC tables.

SCCEXT (Supplier cost change extract) — This module writes to the price
history (PRICE_HIST) table and transaction-level stock ledger (TRAN_DATA)
from the ITEM_LOC_SOH table. The costs on approved orders may also be
updated if the recalculate order indicator is set to “Yes” for the item-supplier
combination. The PREPOST batch module, with the sccext post function, runs
after SCCEXT to update the status of the cost change to “Extracted.”

CCPRG (Cost event purge) — This module runs after SCCEXT.PC to remove old
cost changes from the system using the following criteria:

o the status of the cost change is “Delete,” “Canceled,” or “Extracted”

o the status of the price change is “Rejected,” and the effective date of the cost
change has met the requirement for the number of days that rejected cost
changes are held

Note: The number of days that rejected price changes are held is determined by
a system option.

Volume 1 — Functional overviews 17

Summary of cost change and related batch modules

Dependencies on
Module name Description other modules
(run before or after)

SCCEXT Selects supplier cost change records, which are set | Run daily in Phase 3 of
to go into effect the next business day, and updates | RMS’ batch schedule.
the following RMS tables with the new cost: Run before
ITEM_SUPP_COUNTRY_BRACKET COST (if | RPLBLD.PC and
the supplier is bracket costing) VRPLLBD.PC
ITEM_SUP COUNTRY_ LOC (holds the current
unit cost)

ITEM_SUP

ITEM_SUP_COUNTRY

See Volume 4 of the RMS 10.0 Operations Guide
for additional information about SCCEXT.

EDIUPCAT Processes supplier cost change data from a flat file | Run daily in Phase 23
supplied by the client from its EDI translation of RMS’ batch
software schedule, or as needed

CCPRG Purges old supplier cost changes Run monthly, or as

needed

18 Retek Merchandising System

Payment terms

Payment terms are supplier-related financial arrangement information that is
published to the Retek Integration Bus (RIB), along with the supplier and the
supplier address, from the financial system. Payment terms are the terms
established for paying a supplier (for example, 2.5% for 30 days, 3.5% for 15
days, 1.5% monthly, and so on). RMS 10.1 subscribes to a payment terms
message that is held on the RIB. After confirming the validity of the records
enclosed within the message, RMS 10.1 updates its tables with the information.

This overview describes the following:
e A description of the specific data within the payment terms message.

e A summary of the steps that occur during the processing of the payment
terms message.

e A summary of the payment terms message that shows its corresponding DTD
and mapping document.

o The table in RMS 10.1 that is affected by the payment terms subscription
message.

Payment terms message

RMS subscribes to a flat payment terms message that consists of a payment
terms record. A payment terms record can only be created or updated. Previous
payment terms records are neither deleted nor modified; they are rendered
enabled/disabled through a flag associated with the active/inactive date.

RMS subscribes to the PayTermDesc payment terms message.

Data in the payment terms message that has primary significance to RMS
includes:

e The number that uniquely identifies the payment terms.

e The alphanumeric representation of the payment terms name that acts as the
payment terms code in the financial system.

e A description of the payment terms (for example, 2.5% 30 days).
o The number of days until payment is due.

o The date for assigning an active date to the payment terms.

o The date for assigning an inactive date to the payment terms.

e The number of days in which payment must be made in order to receive the
discount.

e The percent of discount if payment is made within the specified time frame.

Volume 1 — Functional overviews 19

Payment terms message subscription

The payment terms message subscription process primarily consists of the two
following PL/SQL packages:

RMSSUB_PAYTERMCRE and its CONSUME procedure serve as RMS’
subscription API. A second package, RMSSUB PTRM, holds functions that
performs the following tasks on data contained in the message:

e Parse

e Process
e Insert

e Update
e Validate

Message subscription process

From a high-level perspective, the payment terms message subscription process
primarily consists of the following steps:

1 The RMS external payment terms adapter (eWay) recognizes that a message
with a payment terms name exists on the RIB. The RIB calls the first
package, which serves as RMS’ subscription API:
RMSSUB_PAYTERMCRE.CONSUME. This package initially processes
the message and the XML CLOB contained in the message.

2 Additional functions contained in RMSSUB PTRM are called in order to
parse out the payment terms to memory, process the data, validate the data,
and insert the data into the TERMS table.

Payment terms message summary

The following table shows you the PayTermCre message, the document type
definition (DTD) that describes the XML message, and the mapping document
that describes the data contained in the message. The mapping document contains
information that includes the source table, column, and data types. See the Retek
10.1 Integration Guide for more information regarding these documents.

Message Name Type (DTD) Mapping Document

PayTermCre PayTermDesc.dtd Map_ PayTermDesc.xls

Payment terms table

The following description is for the primary table in RMS that holds payment
terms data:

TERMS

This table contains one row for each set of supplier payment terms allowed
within the company.

20 Retek Merchandising System

Security: location, product, price zone

RMS customers can take advantage of a security feature that defines which users
can select or update location, product, and zone data by function. Because all
users have full access as soon as they are entered into RMS, this security feature
gives the RMS system administrator the ability to disallow access as necessary.
This overview describes the three areas to which user access can be limited, the
process by which this occurs, and the respective batch processes for each area.

Product, location, and zone security exists to supplement the database security
that the database ‘owner’ grants to RMS users. All three areas have functional
subsets to which access is controlled. The following table lists the functional
subsets for each area.

Security Areas and Functions

Location Product Price Zone
Stores, warehouses Items at any level in the Price and cost zones
for... merchandise hierarchy, for locations (stores
e promotion like department, class, and warehouses) for...

subclass, and so on for... -
e stock orders ’ e pricing

(allocations and ¢ pricing e clearances
transfers) e costing

e allocations to and e promotion
from e clearance

e shipments e transfer

e orders e allocations

e stock counts e orders

o ticket requests e stock counts

e inventory
adjustments

e returns to vendors
e store

e Sales Audit store
day

e Sales Audit store
ACH (automated
clearinghouse)

Volume 1 — Functional overviews 21

Security setup process

The process by which you apply security for any of these functional areas is
identical:

e Add users to RMS

e Add a security group

e Associate users to a security group

e Associate location, product, or zone level security to a group
Each area has its own security matrix form. Use the form to:

e Select a group (to which you have already associated users)
e Select the functional area to which security will apply

e Apply the remaining selections required for the specific matrix form and save
it

The security restrictions that you set up at the group level are applied to all users
that are linked to the group. Any changes that you make to the security settings
become effective after the respective batch program runs to rebuild the security
records.

To learn more about setting up security, see the online help and user’s guide. To
learn more about the three batch programs associated with security, see the next
section.

If security rules conflict

Occasionally security rules for a single user may overlap, thereby causing a
conflict. RMS is set up to resolve this by saying that a rule that has a smaller
scope overrules any that has a broader scope. Here is an example of how this
would work.

Suppose that a certain user is assigned to two groups. One group has no update
capability for a given region, but the other group allows updating for a specific
store within that region. For this user there is a rule conflict. RMS resolves the
conflict by granting the user update capability for the store. Thus, the rule that
affects the lowest level in the organization hierarchy (update capability for the
store) is given precedence over the rule that denies access to that same store’s
entire region. For all other stores in the region, that rule would continue to apply
to the user.

22 Retek Merchandising System

Security batch programs

Various forms used in
RMS to set up and
maintain security
groups, link users and
groups, and define
rules in the three
security matrices

Various tables written
to from forms. See
individual batch
design documents for
details.

Batch programs
process
modifications
made to tables by
the forms

New security

Each of the three security areas has its own respective batch program that runs to
update RMS tables whenever you add, modify, or delete a security group, user-
group link, or security matrix form. Data does not become available for use until
these programs have run within the daily batch-processing schedule. The three
batch programs are:

e SLOCRBLD.PC
e SPRDRBLD.PC
e SZONRBLD.PC

The following diagram highlights the security process flow. Descriptions of each
program follow.

Security Process Flow
(including batch programs)

RMS forms for

security
(various)
A
RMS tables
slocrbld.pc sprdrbld.pc szonbld.pc
(locations) (items) (price zones)

Note: prepost.pc

rules and data
appear in forms

(with _pre and
_post functions
for each program)
runs before and
after each
program

RMS security
forms

Volume 1 — Functional overviews 23

SLOCRBLD.PC - location security rebuild

SLOCRBLD handles the maintenance for the location security data. Locations
can have different update and select attributes for a given user that define if the
user can select or update one or more locations as defined by the rules. The RMS
table impacted by this program is SEC_USER _LOC MATRIX.

SPRDRBLD.PC - product security rebuild

This program processes product security data. [tems can have different update or
select attributes for a given user for any of the item functional areas, such as
pricing, orders, and allocations. The RMS table impacted by this program is
SEC_USER_PROD MATRIX.

SZONRBLD.PC - zone security rebuild

SZONRBLD.PC maintains zone security data. Users can have access to various
price zones. The RMS table impacted by this program is
SEC_USER ZONE MATRIX.

Prepost functions for security batch

In addition to the three batch programs that rebuild the security matrix tables,
there is an RMS utility program called PREPOST.PC that runs before and after
each of the security programs. PREPOST.PC is a program that performs a variety
of functions, many of which simply truncate tables in preparation for table
updates or switch an indicator on a table. Such is the case with all of the security
programs. This section describes the pre- and post-functions performed by
PREPOST.PC for the security programs.

‘Pre-’ functions of PREPOST.PC

Before SLOCRBLD.PC, SPRDRBLD.PC, or SZONRBLD.PC run,
PREPOST.PC calls a ‘pre’ function named: truncate user sec_table()

This function truncates the user security matrix tables and prepares for the
security rebuild that is specific to the security batch program that you plan to run.
For example, if you plan to run the product security batch program
SPRDRBLD.PC, the function truncates the table that is affected by
SPRDRBLD.PC, thereby preparing the table for rebuild when SPRDRBLD.PC
itself runs.

Were you planning to run SLOCRBLD.PC instead, then the function would
truncate the table specific to the location security rebuild.

‘Post-’ functions of PREPOST.PC

Similar to the ‘pre’ function, PREPOST.PC also has a ‘post’ function named:
update_security indicator()

This function resets a security update indicator after you run any of the three
security rebuild programs, preparing RMS tables for the next batch run updates
by these programs.

24 Retek Merchandising System

A note about the product rebuild

Unlike the location and zone rebuild processes, the product rebuild uses an
additional step after SPRDRBLD.PC runs and before PREPOST.PC’s post
function. Because of the large amount of data processed by SPRDRBLD.PC, the
program outputs a flat file. The data in the file flat is then loaded into the security
user product matrix by an Oracle SQL*Load process.

Security programs in the batch schedule

Whenever you run the batch schedule, you begin and end the run with two
additional PREPOST.PC functions. At the beginning of the schedule, you run:

btcheycl pre

This function disables all security thus ensuring that the batch programs can
access all required data. Disabling security also speeds performance of the
schedule. At the end of the batch schedule, run this PREPOST.PC function to
again enable security:

btcheyel post

Volume 1 — Functional overviews 25

Batch modules for location, product, and zone security

This table lists all batch modules that are involved in RMS security table updates.

Security Batch Programs
Batch Module What It Does When to Run It Run Before/After Other
Program Name Modules?
slocrbld.pc Updates security tables | Daily, Phase4 After prepost.pc with
for stores and slocrbld_pre function:
warehouses truncate_user sec_table()
Before prepost.pc with
slocrbld post function:
update_security_indicator()
sprdrbld.pc Updates security tables | Daily, Phase 4 After prepost.pc with
for products (items sprdrbld_pre function:
within the merchandise truncate_user_sec_table()
hierarchy) Before a SQL*Load process
runs to load the program’s
flat file data into the security
user product matrix
Before prepost.pc with
sprdrbld_post function:
update security indicator()
szonrbld.pc Updates security tables | Ad Hoc After prepost.pc with
for price and cost data szonrbld_pre function:
for locations truncate_user_sec_table()
Before prepost.pc with
szonrbld post function:
update_security_indicator()

26 Retek Merchandising System

Supplier

RMS 10.1 subscribes to supplier and supplier address data that is published from
an external financial application and publishes supplier and address data to other
external applications. This overview describes:

e The supplier subscription process
e The supplier publication process
o The nature of the subscribed and published messages

o The primary tables that serve as targets and sources of data contained in
messages

e One supplier related batch (Pro*C) module-SUPMTH- that runs within
RMS’ batch processing schedule

Supplier message subscription

The supplier and supplier address message subscription process primarily
consists of the two following PL/SQL packages:

RMSSUB_VENDORCRE and its CONSUME procedure serves as RMS’
subscription API. A second package, RMSSUB SUPPLIERS, holds functions
that performs the following tasks on data contained in the message:

e parse

e process
e insert

e update
e validate

Message subscription process

1 The RMS supplier adapter (eWay) recognizes that a supplier or supplier
address message exists on the RIB.

2 For a new supplier and address message, the adapter calls
RMSSUB_VENDORCRE.CONSUME to initially process the message and
the XML CLOB contained in the message.

3 Additional functions contained in RMSSUB_SUPPLIERS are called in order
to parse out the supplier or address to memory, process the data, validate the
data, and insert the data into the SUPS or ADDR tables, for supplier and
address records respectively. Processing includes a check for the appropriate
financial application in RMS on the SYSTEM_OPTIONS table’s
FINANCIAL AP column.

Volume 1 — Functional overviews 27

Supplier publication

RMS 10.0 publishes supplier and supplier address data messages to subscribing
applications so that those applications are able to keep their vendor tables current
with RMS. This overview focuses on:

e RMS vendor event messages, from their source tables, through message
creation, to final publication, to the Retek Integration Bus (RIB)

e One supplier related batch (Pro*C) program—SUPMTH.PC- that runs within
RMS’ batch processing schedule

Supplier and address tables, event triggers, and messages

The RMS supplier and supplier address tables hold data at the base level within
RMS. One additional message family manager queue table serves as the staging
table for both supplier and address that are produced for publication to the RIB.
An event on a base table causes that data to be populated on the respective queue.
The following are brief descriptions of all three tables:

SUPS — This table contains one row for each supplier.

ADDR - This table contains one row for each supplier or partner address. The
SEQ_NO column is required because multiple addresses can exist for each
address type. Only these valid address types from the table are published:

e Returns
e Order
e Invoice

SUPPLIER_MFQUEUE - This is the message queue that keeps track of all
message events that occur on the supplier (SUPS) and addresses (ADDR) tables.

Detailed descriptions of these tables are in the RMS 10.0 Data Model document.

Event triggers

The SUPS and ADDR tables hold triggers for each row, or record, on the
respective table. Any time that an event occurs on a table—that is, an insertion of
a record, update to an existing record, or deletion of a record—the appropriate
trigger ‘fires’ to begin the message creation process.

e The trigger for the SUPS table is EC_TABLE_SUP_AIUDR.
e The trigger for the ADDR table is EC_TABLE_ADR_AIUDR.

The next section describes each trigger.

28 Retek Merchandising System

Trigger descriptions
EC_TABLE_SUP_AIUDR -

1
2
3

This trigger captures inserts, updates, and deletes to the SUPS table.
The trigger writes data into the SUPPLIER MFQUEUE message queue.

The trigger calls SUPPLIER XML.BUILD SUPPLIER to create the XML
message.

The trigger calls RMSMFM_SUPPLIER.ADDTOQ to insert the message
into the message queue.

EC_TABLE_ADR_AIUDR —

1
2
3

This trigger captures inserts, updates, and deletes to the ADDR table.
The trigger writes data into the supplier mfqueue message queue.

The trigger calls SUPPLIER XML.BUILD SUPPLIER to create the XML
message.

The trigger calls RMSMFM_SUPPLIER.ADDTOQ to insert the message
into the message queue.

Supplier messages

There are six messages that pertain to the supplier message family, three for the
supplier and three for addresses. Here are the supplier message short names:

VendorCre
VendorHdrMod
VendorDel
VendorAddrCre
VendorAddrMod
VendorAddrDel

Volume 1 — Functional overviews 29

Message family manager and queue
This section describes the message family manager (MFM) for suppliers.

RMSMFM_SUPPLIER — This MFM inserts and retrieves messages from the
message queue. It contains the public procedures ADDTOQ, which inserts a
message into the message queue, and GETNXT, which retrieves the next
message on the message queue.

Message summary

The following table lists each supplier message by its message type that appears
on the queue table, the document type definition (DTD) that describes the XML
message, and the mapping document that describes the data contained in the
message. Consult the Retek 10 Integration Guide to view these documents.

Message Type Type (DTD) Mapping Document
VendorCre VendorDesc.dtd Map_VendorDesc.xls
VendorHdrMod VendorHdrDesc.dtd |Map VendorHdrDesc.xls
VendorDel VendorRef.dtd Map VendorRefxls

VendorAddrCre VendorAddrDesc.dtd [Map VendorAddrDesc.xls
VendorAddrMod | VendorAddrDesc.dtd |Map VendorAddrDesc.xls
VendorAddrDel VendorAddrRef.dtd |Map VendorAddrRef xls

Message creation and publishing process

The message family manager inserts messages on the queue and marks each one
with a sequence number. The goal is continue inserting new messages and
replacing lower sequenced number messages of the same type until certain
parameters are met. The private procedure CAN_CREATE determines if a
complete hierarchical supplier message can be created based upon the existence
of correct address types and additional flags that must be set.

Batch module SUPMTH

The Supplier Data Amount Repository (SUPMTH) module is executed based on
multiple transaction types for each department-supplier combination in the
system. Its primary function is to convert daily transaction data to monthly data.
After all data are converted, the daily information is deleted to reset the system
for the next period by the batch module PREPOST and its supmth_post function.

The Supplier Data Amount Repository (supmth) module should be run during
Phase 3 of the RMS batch schedule, on a monthly basis.

30 Retek Merchandising System

Value added tax maintenance

Value-added tax (VAT) functionality is optional in RMS. In several countries,
value added taxes (VAT) must be considered when determining the monetary
value of items. VAT amounts appear in several modules of the system, such as
purchase orders, pricing, contracts, stock ledger, and invoice matching. This
overview describes the RMS system settings that impact VAT, along with the
batch module VATDLXPL that associates items with a given VAT region and
VAT code.

Value added tax rates are identified by VAT code. When VAT codes are
associated with a VAT region, they are assigned a VAT type. The VAT type
indicates that the tax rate is used in one of the following types of calculations:

o Cost: The tax rate is applied to purchase transactions.
o Retail: The tax rate is applied to sales transactions.
e Both: The tax rate is applied to purchase and sales transactions.

Value added taxes are reflected in the stock ledger when 1) the retail method of
accounting is used and 2) the system is set up to include VAT in retail
calculations.

A number of the system settings in RMS, which are described beginning in the
next section, indicate how you wish to implement VAT.

System level VAT

The VAT _IND column on the SYSTEM_OPTIONS table is the primary means
to initiate VAT in RMS. By entering “Y” in this column, you are telling RMS
that you want to include VAT in the system.

System class level VAT

The CLASS LEVEL VAT IND column on the SYSTEM_OPTIONS table
allows you to include or exclude VAT at the class level of the merchandise
hierarchy. Enter “Y” in this column to manage VAT inclusion or exclusion from
retail at the class level. Enter “N” in this column if you do not want to manage
VAT at the class level. Entering “N”” will mean that VAT is included in the retail
price in RMS and in the point-of-sale (POS) download for all classes. The POS
upload process is controlled by the store VAT indicator, which is described later
in this overview.

Department VAT

The department table (DEPS) holds the DEPT VAT INCL IND column that is
used to enable or disable VAT in retail prices for all classes in the department.
This indicator is used only to default to the class level indicator when classes are
initially set up for the department and is only available when the system level
class VAT option is on. When VAT is turned on in the system and not defined at
the class level, this field defaults to “Y”. When VAT is turned off in the system,
this field defaults to “N”.

Volume 1 — Functional overviews 31

Class VAT

The CLASS VAT IND column on the CLASS table determines if retail is
displayed and held with or without VAT. The default setting is inherited from the
class’s department (see the preceding section). You can edit the value in this
column only when VAT is turned on in the system and defined at the class level.

By entering “Y” in this column, you are saying that you want VAT included in
the retail price for all items in that class. Both point-of-sale (POS) download
(POSDNLD) and POS upload (POSUPLD) will include VAT in the retail price.

By entering “N” in this column, you are saying that you want to exclude VAT
from point-of-sale (POS) download (POSDNLD) and POS upload (POSUPLD)
of retail prices for the entire class.

Instructions that are sent to allow the POS to add VAT are contained in these
columns on the POS_MODS table:

e Vat code — code for the VAT rate
e Vat rate — the actual rate referenced by the VAT code

e (lass vat ind

Store VAT indicator

If you select “N” in the CLASS LEVEL VAT IND column on the
SYSTEM_OPTIONS table, you can still choose VAT settings for a store. The
VAT _INCLUDE IND column on the STORE table allows you to include or
exclude VAT at the store for POS upload only.

Enter “Y” in this column to always include VAT in the retail price in the POS
upload process. Enter “N” to exclude VAT from POS uploaded prices.

Send VAT rate to POS

VAT rates are sent through the POS to the store and are contained in these
columns on the POS _MODS table:

e Vat code — code for the VAT rate
e Vat rate — the actual rate referenced by the VAT code

e (lass vat ind

Special note: retail method stock ledger and VAT

If the stock ledger for a department is set to use the retail method of accounting,
an additional setting is required to ensure that VAT is, or is not, included in retail
values. The STKLDGR_VAT INCL RETL _IND column (SYSTEM_OPTIONS
table) value of “Y” results in all retail values in the stock ledger (sales retail,
purchase retail, gross margin, and so on) being VAT inclusive. “N” indicates that
VAT is excluded from retail values.

32 Retek Merchandising System

Batch module — VATDLXPL

The value-added tax rate maintenance module updates VAT information for each
item associated with a given VAT region and VAT code. Run the module as
needed; however, it must be run in Phase 1 of the batch schedule, before any
pricing modules are executed.

Volume 1 — Functional overviews 33

Replenishment

Replenishment batch module components are designed to manage stock levels,
by using stock order allocations. For RMS 10.1, only replenishment and Retek
Allocation can create stock order allocations. This overview describes batch
functionality for replenishment, including investment buy, along with
descriptions of the major tables involved in the replenishment process.

Replenishment process
Replenishment operates in this sequence:
1 Build the purchase order
2 Scale the order
3 Split the order among trucks
4

Compare approved replenishment orders against applicable vendor
minimums and reset back to “W’orksheet status those orders that do not meet
minimum quantities

Summary of replenishment batch modules

Replenishment Dependencies on
batch module Description other modules
name (run before or after)
SOUPLD Processes store order data from an external Run daily in Phase 2
system flat file that are used later in the of RMS’ batch
replenishment process to generate schedule
recommended order quantities. Run before all
Accepts an input file that contains: replenishment and
e item to be ordered investment buy

) : batch modules.
e store requesting the item

e needed quantity in eaches, cases, or
pallets (later converted to standard unit of
measurements)

e need date

Module validates that item and store are on
replenishment with a replenishment method of
“Store Orders”
(REPL_ITEM_LOC.REPL_METHOD).

34 Retek Merchandising System

Replenishment Dependencies on
batch module Description other modules
name (run before or after)
RPLATUPD Maintains replenishment attributes for an item | Run daily in Phase 3
list by calling the package of RMS’ batch
REPL_ATTRIBUTE MAINTENANCE_ SQL | schedule.
(rplattrb/s.pls) to write changes to the tables Run after the batch
REPL_ATTR_UPDATE _ITEM and module PREPOST
REPL_ATTR UPDATE_LOC that are with the
initiated by the replenishment attribute form. | RPLATUPD PRE
argument.
Run before the
replenishment batch
programs, RPLADIJ,
RPLEXT, and
REQEXT.
Run before the batch
module PREPOST
with the argument
RPLATUPD_ POST.
RILMAINT Processes replenishment attributes from the Run in Phase 3 of
REPL_ITEM LOC UPDATES table to the RMS’ batch
REPL_ITEM LOC table. schedule.
Run after RMS
batch modules
STOREADD and
RPLATUPD.
Run before the batch
module PREPOST
using the argument
RILMAINT POST
Run before the batch
module RPLADJ.
RPLAD]J Recalculates the maximum stock levels for all | Run after the batch
item-location combinations with a module
replenishment method of 'F' (floating point) RPLATUPD.
and populates the table REPL_ITEM LOC. Run before the RMS
The floating model stock method will batch modules
. RPLEXT and
dynamically calculate an order-up-to-level. REQEXT
The maximum model stock is calculated using '
the sales history of various periods of time in
order to accommodate seasonality as well as
trend. The sales history is obtained from the
item_loc_hist table

Volume 1 — Functional overviews 35

Replenishment Dependencies on
batch module Description other modules
name (run before or after)
REQEXT Cycles through every item-location Run in Phase 3 of
combination that is set to be reviewed on the RMS’ batch
current day and calculates the quantity of the | schedule.
item that needs to be transferred to the Run after the batch
location. modules,
Transfers are created and records are written RPLATUPD,
to the Replenishment Results RPLADJ (that
(REPL_RESULTS) table depending on how update
the order control parameter is set at the item- | replenishment
location level. calculation
attributes).
Run before
PREPOST with the
REQEXT POST
function.
Run before
RPLEXT.
RPLEXT Calculates item quantities to be ordered fora | Run daily in Phase 3
location. Writes temporary orders to the tables | of RMS’ batch
ORD_TEMP, when automatic order creation | schedule.
is enabled (semi-automatic and automatic Run after PREPOST
order control), and REPL_RESULTS. with the RPL PRE
ORD_TEMP is later reviewed by the module | function.
CNTRPRSS in its evaluation of orders against
contract types A, C, and D. Run before the batch
module
CNTRPRSS.
CNTRPRSS Evaluates contract and supplier information of | Run daily in Phase 3
A, C, and D type contracts against of RMS’ batch
recommended order quantities created by the | schedule.
RPLEXT module on the ORD_TEMP table. Run after RPLEXT.
Suggests the best available contract for each Run before
item. RPLBLD.
Updates the REPL. RESULTS and
ORD_TEMP tables to hold information about
the quantity of the item that is satisfied by the
contract.

36 Retek Merchandising System

Replenishment Dependencies on
batch module Description other modules
name (run before or after)

IBEXPL Determines inventory buy eligibility that is set | Run daily in Phase 3
at one of these levels: of the RMS batch

e Supplier-department-location schedule.
e Supplier-location (warehouse locations Run after RMS
batch modules
only)
Supplier-department RPLEXT.
) -
PP %er cpartmen Run before the
* Supplier module IBCALC.
Applies investment buy values that are
defined on the SUP_INV_MGMT or
WH_DEPT tables as applicable. If no values
exist on the tables, this module accepts the
default values held on the
SYSTEM_OPTIONS table. (See section
“Investment buy system options” later in this
overview.)

IBCALC Calculates investment buy opportunities and Run before the
writes the resulting recommended order module RPLBLD.
quantities (ROQ) to the IB_ RESULTS table.

RPLBLD Builds purchase orders from Recommended Run daily in Phase 3
Order Quantities (ROQ) located on the of RMS’ batch
ORD_TEMP table (populated by the schedule.

RPLEXT module), and on the IB_RESULTS | Run after RMS
table (populated by the IBCALC module). batch modules
Calls the order library (ORDLIB.h) to apply RPLEXT and
order creation logic. CNTPRSS (if
contracts are used).

SUPCNSTR Scales eligible orders during the nightly Run daily in Phase 3
replenishment run. of RMS’ batch

schedule.

Run after RMS
batch modules
RPLBLD.

Run before RMS
batch module
RPLPRG.

Volume 1 — Functional overviews 37

Replenishment

Dependencies on

Values are held for each table in the
SYSTEM_OPTIONS table. The
SYSTEM_OPTIONS column that holds the
number of days value is listed in parentheses:

REPL_RESULTS
(REPL_RESULTS PURGE DAYS)
STORE_ORDERS
(STORE_ORDERS_PURGE _DAYS)

IB_RESULTS
(IB_RESULTS_PURGE_DAYS)

batch module Description other modules
name (run before or after)
RPLSPLIT Calls the order library (ORDLIB.h) to provide | Run daily in Phase 3
truck-splitting processing, and creates new of RMS’ batch
orders. schedule.
Run after RMS
batch module
SUPCNSTR.
Run before the
RPLAPPRV
module.
RPLAPPRV Compares all approved replenishment orders Run in Phase 3 of
created during the nightly batch run with any | RMS’ batch
vendor minimums that may exist. Orders that | schedule.
do not meet the vendor minimums are either Run after the batch
deleted or placed in Worksheet status. module RPLSPLIT.
RPLPRG Purges the following tables of dated rows. Run as needed.

38 Retek Merchandising System

Primary replenishment tables

The following descriptions are for the primary replenishment and investment buy
tables in RMS. It is not a complete list of all tables that are involved in the
replenishment process:

REPL_ITEM_LOC - This table holds item-location replenishment attributes
such as review cycle and activation dates. Note in particular the column
REPL _METHOD that contains the code value that the modules REQEXT and
RPLEXT use to calculate the recommended order quantities for the item-
location. Replenishment method values include the following:

e (C—Constant

e M — Minimum-Maximum

e F —Floating Point

e T —Time Supply (used with forecasting)

e Time Supply Seasonal (used with forecasting)
o Time Supply Issues (used with forecasting)

e D — Dynamic (used with forecasting)

e Dynamic Seasonal (used with forecasting)

e Dynamic Issues (used with forecasting)

e SO — Store Orders.

REPL_ITEM_LOC.LAST_ROQ - This column on the REPL_ITEM_LOC
table contains the last recommended order quantity created by the vendor
replenishment extraction module RPLEXT. The ROQ value is used by the
investment buy opportunity calculation module (IBCALC) to calculate future
available quantity for the item-location combination.

See Also: The RMS 10.0 Data Model for a complete description of the
REPL_ITEM_LOC table.

REPL_ITEM_LOC.REPL _ORDER_CTRL - Determines if the replenishment
process creates an actual order or transfer line item for the item-location if there
is a need for the item-location or if only a record is written to the replenishment
results table. Valid values are:

e ‘M’anual (a record is written to the Replenishment Results table — no
order/transfer line item is created)

e ‘S’emi-Automatic (an order/transfer line item is created - the order line item
will be added to an order in Worksheet status, the transfer line item will be
added to a transfer in ‘S ubmitted status with a freight type of Normal)

e ‘A’utomatic (an order/transfer line item is created - the order line item will
be added to an order in Approved status, the transfer line item will be added
to a transfer in Approved status with a freight type of Normal)

Volume 1 — Functional overviews 39

e ‘B’uyer Worksheet (a record is written to the Replenishment Results table
and can be added to a purchase order on the Buyer Worksheet. A transfer line
item is added to a transfer in ‘S’ubmitted status with a freight type of
Normal.)

REPL_RESULTS - This table is used to store item location level replenishment
results information and the replenishment attributes used to drive the order
quantities for the item location.

ORD_TEMP - This table is used during the automatic replenishment cycle to
temporarily store order line items generated during batch RPLXT. The actual
orders are then created later in the batch run by consolidating these line items by
department/supplier/delivery location (store/warehouse).

IB_RESULTS - This table contains investment buy recommended order
quantities (ROQ) for an item-supplier-country-location (warehouse) along with
the specific factors that lead to the ROQ. It contains the actual order quantity
(AOQ), which may have been modified by the user. If the investment buy
quantity is placed on the purchase order, the order number appears on the table.

ORD_INV_MGMT - Determines whether the stock out comparisons for ‘Due’
order determination should be performed in units (standard unit of measure),
cost, or profit (that is, retail - cost) in the order’s currency. It is only used for
replenishment orders when the Due Order Indicator is set to Yes. Valid values
include:

e U - Unit service basis. Stock out amounts calculated in units (standard unit
of measures).

e (C —Cost service basis. Stock out amounts calculated as the stock out in units
multiplied by the item's cost.

e P — Profit service basis. Stock out amounts calculated as the stock out in units
multiplied by the item's margin (that is, retail - cost).

This table also holds a number of scaling and truck splitting parameters.

Investment buy

Investment buy facilitates the process of purchasing inventory in excess of the
replenishment recommendation in order to take advantage of a supplier deal or to
leverage inventory against a cost increase. The inventory is stored at the
warehouse or in outside storage to be used for future issues to the stores. The
recommended quantity to ‘investment buy’ (that is, to order), is calculated based
on the following:

e Amount of the deal or cost increase
e Upcoming deals for the product

e Cost of money

e Cost of storage

e Forecasted demand for the product, using warehouse issue values calculated
by Retek Demand Forecasting

e Target return on investment (ROI)

40 Retek Merchandising System

The rationale is to purchase as much product as profitable at the lower cost and to
retain this profit rather than passing the discount on to customers and stores. The
determination of how much product is profitable to purchase is based on the cost
savings of the product versus the costs to purchase, store and handle the
additional inventory.

Investment buy eligibility and order control are set at one of these four levels:
e Supplier

e Supplier-department

e Supplier-location (warehouse locations only)

e Supplier-department-location

Warehouses must be enabled for both replenishment and investment buy on
RMS’ WH (warehouse) table. In a multi-channel environment, virtual
warehouses are linked to the physical warehouse.

The investment buy opportunity calculation takes place nightly during the batch
run, after the replenishment need determination, but before the replenishment
order build. The investment buy module IBCALC attempts to purchase
additional inventory beyond the replenishment recommendation in order to
achieve future cost savings. Two distinct events provide the incentive to purchase
investment buy quantities:

e A current supplier deal ends within the look-ahead period.
o A future cost increase becomes active within the look-ahead period.

The calculation determines the future cost for a given item-supplier-country-
location for physical warehouse locations only.

If the order control for a particular line item is ‘buyer worksheet’, it may be
modified in the buyer worksheet dialog, and can be added to either new or
existing purchase orders.

Investment buy system options

The following columns are held on the SYSTEM_ OPTIONS table for investment
buy:

e LOOK AHEAD DAYS — The number of days before a cost event (end of a
deal, or a cost increase) that the investment buy opportunity begins to
calculate an event

e COST WH_STORAGE — Contains the default cost of warehouse storage,
expressed as the weekly cost based on the unit of measure specified in this
table’s COST _WH_STORAGE UOM column. This value is held in the
primary system currency. You can change this value at the warehouse or
warehouse-department level.

e COST OUT STORAGE - Contains the default cost of outside storage,
expressed as the weekly cost base on the unit of measure specified in
COST_OUT_STORAGE UOM. This value is held in the primary system
currency. You can change this value at the warehouse or warehouse-
department level.

Volume 1 — Functional overviews 41

e COST LEVEL - Indicates which cost bucket is used when calculating the
return on investment for investment buy opportunities. Valid values are 'N'
for net cost, 'NN' for net net cost and 'DNN' for dead net net cost.

o STORAGE TYPE — Indicates which type of storage cost should be used as
the default storage cost when calculating investment buy opportunities. Valid
values are 'W'arehouse and 'O'utside. You can change this value at the
warehouse or warehouse-department level.

e MAX WEEKS SUPPLY - Contains the default maximum weeks of supply
to use in the investment buy opportunity calculation. The calculation does
not recommend an order quantity that would stock the associated location
(currently warehouses only) for a period beyond this number of weeks. You
can change this value at the warehouse or warehouse-department level.

e TARGET ROI - Contains the default return on investment that must be met
or exceeded for the investment buy opportunity to recommend an order
quantity. You can change this value at the warehouse or warchouse-
department level.

e B RESULTS PURGE DAYS — Contains the number of days that records
on the investment buy results table (IB_RESULTS) should be kept before
being purged. If an investment buy result record's create _date plus this value
is equal to or beyond the current system date, the record is deleted by the
PREPOST batch module prior to the investment buy opportunity calculation.

See Also: The RMS 10.0 Data Model for a complete description of the
SYSTEM_OPTIONS table and the investment buy columns.

Volume 2 — Message publication and subscription designs 43

Volume 2 — Message publication and
subscription designs

Item Message Family Manager Publishing Design

Functional Area

Items

Design Overview

The item message family manager is a package of procedures that adds item
family messages to the item queue and publishes these messages for the
integration bus to route. Triggers on all the item family tables call a procedure
from this package to add a “create”, “modify” or “delete” message to the queue.
The integration bus calls a procedure in this package to retrieve the next

publishable item message from the queue.

All the components that comprise the creation of an item, the item/supplier for
example, remain in the queue until the item approval modification message has
been published. Any modifications or deletions that occur between item creation
in “W”(worksheet) status and “A”(Approved) status are applied to the “create”
messages or deleted from the queue as required. For example, if an item UDA is
added before item approval and then later deleted before item approval, the item
UDA “create” message would be deleted from the queue before publishing the
item. If an item/supplier record is updated for a new item before the item is
approved, the “create” message for that item/supplier is updated with the new
data before the item is published. When the “modify” message that contains the
“A”(Approved) status is the next record on the queue, the procedure formats a
hierarchical message that contains the item header information and all the child
detail records to pass to the integration bus.

Additions, modifications and deletions to item family records for existing
approved items are published in the order that they are placed on the queue.

Unless otherwise noted, item publishing includes most of the columns from the
item_master table and all of the item family child tables included in the
publishing message. Sometimes only certain columns are published, and
sometimes additional data is published with the column data from the table row.
The item publishing message is built from the following tables:

Family Header
item_master - transaction level items only

descriptions for the code values

names for department, class and subclass
diff types

base retail price

44 Retek Merchandising System

Item Family Child Tables
item_supplier
item_supp_country
item_supp_country dim
descriptions for the code values
item_master - reference items

item, item_number _type, item_parent, primary_ref ind,
format_id, prefix

packitem_breakout
pack no, item, packitem qty
item_image
uda_item_ff
uda_item lov

uda_item date

Volume 2 — Message publication and subscription designs 45

State Diagram

Add/Modify/Delete Supplier

|

Add/Modify/Delete Supplier/Country

Add Supplier
Add Supplier/Country

Create Item Worksheet Item Exists

Modify ltem Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Ref Items
Approve Iltem
Add/Modify/Delete Pack Comp ltel
Delete Item Deleted %@

Approved Item Exists

\(/

<)L
()
o

No

Supplier Exist?

i

3/

L

\

Add/Modify/Delete Image

Add/Modify/Delete UDA

Add/Modify/Delete Ref Item

.

Add/Modify/Delete Pack Comp Item

T
o

Add/Modify/Delete Supplier

|

Add/Modify/Delete Supplier/Country

Py
H/

46 Retek Merchandising System

Description of Activities

Create a Worksheet Item

1

Prerequisites: No prerequisites exist for creating an item except that RMS
foundation data such as departments and suppliers exist first. Items are
created using the RMS online item dialogue.

Activity Detail: The creation of the item is the first step of gathering all the
hierarchical information needed for publishing the item.

Messages: A message for the item creation is placed on the queue for future
publishing. This is a flat message that will be collected with the item detail
messages to comprise the final hierarchical message. It will not be published
until the item is approved. The presence of this message on the queue signals
the publishing process that more detail information for the item is
forthcoming.

Approve an ltem

1
2

Prerequisites: An item must exist and be submitted for approval.

Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.
Once the item is approved, it is of interest to other software systems. It can
be included in orders, transfers, shipments, etc.

Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. The approved item create message is a
hierarchical message containing the item and all the item family detail
records. First an ItemDesc node is created and the ItemHdrDesc message is
added to this message. Next, all the child messages are appended to the
message until there are no more records in the item mfqueue table for this
item. Then the final item message is formatted.

Modify an ltem

1

Prerequisites: An item can have any status to be modified. Once the item is
approved, there are only a few fields that can be modified.

Activity Detail: The item record is updated in the item_master table. An
ItemHdrMod message type record is inserted on the item_mfqueue table.

Messages: ItemHdrDesc message type is created. It is a flat, synchronous
message containing this item record. If a record that has an ItemCre message
type exists on the item mfqueue table for this item, this “modify” message is
never used in publishing. Only the final “modify” item record message with
an ‘A’(Approved) status is published. If no ItemCre record exists on the
item_mfqueue table for this item, it is published as a flat message.

Volume 2 — Message publication and subscription designs 47

Create Item/Supplier

1
2

Prerequisites: The supplier and the item already exist.

Activity Detail: The item/supplier combination is inserted into the
item_supplier table. An ItemSupCre message type record is also inserted on
the item_mfqueue table.

Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Item/Supplier

1
2

Prerequisites: The item/supplier combination already exists.

Activity Detail: The item/supplier record is updated in the item_supplier
table. An ItemSupMod message type record is inserted on the item mfqueue
table.

Messages: ItemSupDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ItemSupCre message type exist on the item_mfqueue table
for this item/supplier, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

Delete Item/Supplier

1

Prerequisites: The item/supplier combination already exists and is not being
used somewhere in the system.

Activity Detail: The item/supplier record is deleted from the item_supplier
table and all child records from the item supp country and

item_supp country dim tables. An ItemSupDel message type record is
inserted on the item_mfqueue table.

Messages: ItemSupRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier record. If records that
have an ItemCre and an ItemSupCre message type exist on the item mfqueue
table for this item/supplier, the ItemSupCre and any ItemSupMod records are
deleted from the item_mfqueue table. Otherwise, it is published as a flat
message.

48 Retek Merchandising System

Create Item/Supplier/Country

1
2

Prerequisites: The supplier, country and the item already exist.

Activity Detail: The item/supplier/country combination is inserted into the
item_supp_country table. An I[temSupCtyCre message type record is also
inserted on the item mfqueue table.

Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country

1
2

Prerequisites: The item/supplier/country combination already exists.

Activity Detail: The item/supplier/country record is updated in the
item_supp_country table. An ItemSupCtyMod message type record is
inserted on the item mfqueue table.

Messages: ItemSupCtyDesc message type is created. It is a flat,
synchronous message containing this item/supplier/country record. If
records that have an I[temCre and an [temSupCtyCre message type exist on
the item_mfqueue table for this item/supplier/country, the message is
updated with the “modify” message and published as part of the item
creation message when the item is approved. Otherwise, it is published as a
flat message.

Delete Item/Supplier/Country

1
2

Prerequisites: The item/supplier/country combination already exists.

Activity Detail: The item/supplier/country record is deleted from the
item_supp_country table and all child records from the

item_supp country dim table. An ItemSupCtyDel message type record is
inserted on the item_mfqueue table.

Messages: ItemSupCtyRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country record. If records
that have an ItemCre and an ItemSupCtyCre message type exist on the
item_mfqueue table for this item/supplier/country, the ItemSupCtyCre and
any ItemSupCtyMod records are deleted from the item mfqueue table.
Otherwise, it is published as a flat message.

Volume 2 — Message publication and subscription designs 49

Create Item/Supplier/Country/Dimension
1 Prerequisites: The item/supplier/country already exists.

2 Activity Detail: The item/supplier/country/dimension combination is
inserted into the item_supp_country dim table. An ISCDimCre message type
record is also inserted on the item mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier/country/dimension record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Modify Item/Supplier/Country/Dimension

1 Prerequisites: The item/supplier/country/dimension combination already
exists.

2 Activity Detail: The item/supplier/country/dimension record is updated in
the item_supp country dim table. An ISCDimMod message type record is
inserted on the item_mfqueue table.

3 Messages: ISCDimDesc message type is created. It is a flat, synchronous
message containing this item/supplier record. If records that have an
ItemCre and an ISCDimCre message type exist on the item mfqueue table
for this item/supplier/country/dimension, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/Supplier/Country/Dimension

1 Prerequisites: The item/supplier/country/dimension combination already
exists.

2 Activity Detail: The item/supplier/country/dimension record is deleted from
the item_supp country dim table and all child records from the
item_supp country and item_supp country dim tables. An ISCDimDel
message type record is inserted on the item_mfqueue table.

3 Messages: ISCDimRef message type is created. It is a flat, synchronous
message containing the keys for this item/supplier/country/dimension record.
If records that have an ItemCre and an ISCDimCre message type exist on the
item_mfqueue table for this item/supplier/country/dimension, the
ISCDimCre and any ISCDimMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

50 Retek Merchandising System

CreateRef Item

1
2

Prerequisites: The parent item exists.

Activity Detail: The item is inserted into the item_master table. An
ItemUPCCre message type record is also inserted on the item_mfqueue table.

Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. It is published as part of the
item creation message when the item is approved, or flat after the original
publication of the item creation.

Modify Ref Item

1
2

Prerequisites: The reference item exists as a child item.

Activity Detail: The item record is updated in the item_master table. An
ItemUPCMod message type record is inserted on the item mfqueue table.

Messages: ItemUPCDesc message type is created. It is a flat, synchronous
message containing this reference item record. If records that have an
ItemCre and an ItemUPCCre message type exist on the item_mfqueue table
for this reference item, the message is updated with the “modify” message
and published as part of the item creation message when the item is
approved. Otherwise, it is published as a flat message.

Delete Ref Item

1
2

Prerequisites: The reference item already exists as a child item.

Activity Detail: The reference item record is deleted from the item_master
table. An ItemUPCDel message type record is inserted on the item_mfqueue
table.

Messages: ItemUPCRef message type is created. It is a flat, synchronous
message containing the keys for this reference item record. If records that
have an ItemCre and an ItemUPCCre message type exist on the
item_mfqueue table for this reference item, the [temUPCCre and any
ItemUPCMod records are deleted from the item mfqueue table. Otherwise,
it is published as a flat message.

Create Pack Comp

1
2

Prerequisites: The pack item exists.

Activity Detail: The pack comp is inserted into the packitem breakout
table. An [temBOMCre message type record is also inserted on the
item_mfqueue table.

Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

Volume 2 — Message publication and subscription designs 51

Modify Pack Comp

1
2

Prerequisites: The pack comp exists for the pack.

Activity Detail: The pack comp record is updated in the packitem breakout
table. An ItemBOMMod message type record is inserted on the
item_mfqueue table.

Messages: ItemBOMDesc message type is created. It is a flat, synchronous
message containing this pack comp record. If records that have an [temCre
and an ItemBOMCre message type exist on the item_mfqueue table for this
pack comp, the message is updated with the “modify”” message and published
as part of the item creation message when the item is approved. Otherwise, it

is published as a flat message.

Delete Pack Comp

1
2

Prerequisites: The pack comp already exists for the pack.

Activity Detail: The pack comp record is deleted from the
packitem_breakout table. The packitem_qty is retrieved from the
v_packitem_qty view. If the quantity for the pack comp is 0, an
ItemBOMDel message type record is inserted on the item mfqueue table. If
the quantity for the pack comp greater than 0, an temBOMMod message
type record is inserted on the item_mfqueue table.

Messages: If the message type is [temBOMDel, a temBOMRef message
type is created. It is a flat, synchronous message containing the keys for this
pack comp record. If records that have an ItemCre and an [temBOMCre
message type exist on the item_mfqueue table for this pack comp, the
ItemBOMCre and any ItemBOMMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message. If the
message type is temBOMMod, a message is create and processed as
described in the Modify Pack Comp Messages section.

Create Iltem/Image

1
2

Prerequisites: The item already exists.

Activity Detail: The item/image combination is inserted into the
item_image table. An ItemImageCre message type record is also inserted on
the item_mfqueue table.

Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. It is published as part of the item
creation message when the item is approved, or flat after the original
publication of the item creation.

52 Retek Merchandising System

Modify ltem/Image

1
2

Prerequisites: The item/image combination already exists.

Activity Detail: The item/image record is updated in the item_image table.
An ItemImageMod message type record is inserted on the item mfqueue
table.

Messages: ItemImageDesc message type is created. It is a flat, synchronous
message containing this item/image record. If records that have an ItemCre
and an ItemImageCre message type exist on the item_mfqueue table for this
item/image, the message is updated with the “modify” message and
published as part of the item creation message when the item is approved.
Otherwise, it is published as a flat message.

Delete Item/Image

1
2

Prerequisites: The item/image combination already exists.

Activity Detail: The item/image record is deleted from the item image
table. An ItemImageDel message type record is inserted on the
item_mfqueue table.

Messages: ItemlmageRef message type is created. It is a flat, synchronous
message containing the keys for this item/image record. If records that have
an ItemCre and an ItemIlmageCre message type exist on the item mfqueue
table for this item/image, the ItemImageCre and any ItemImageMod records
are deleted from the item mfqueue table. Otherwise, it is published as a flat
message.

Create Iltem/UDA/FreeFormat

Prerequisites: The item already exists.

Activity Detail: The item/uda/freeformat combination is inserted into the
uda_item_ff table. An ItemUDAFFCre message type record is also inserted
on the item_mfqueue table.

Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. It is
published as part of the item creation message when the item is approved, or
flat after the original publication of the item creation.

Volume 2 — Message publication and subscription designs 53

Modify Item/UDA/FreeFormat

1
2

Prerequisites: The item/uda/freeformat combination already exists.

Activity Detail: The item/uda/freeformat record is updated in the
uda_item fftable. An [temUDAFFMod message type record is inserted on
the item_mfqueue table.

Messages: ItemUDAFFDesc message type is created. It is a flat,
synchronous message containing this item/uda/freeformat record. If records
that have an ItemCre and an ItemUDAFFCre message type exist on the
item_mfqueue table for this item/uda/freeformat, the message is updated with
the “modify” message and published as part of the item creation message
when the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/FreeFormat

Prerequisites: The item/uda/freeformat combination already exists.

Activity Detail: The item/uda/freeformat record is deleted from the
uda_item_fftable. An ItemUDAFFDel message type record is inserted on
the item_mfqueue table.

Messages: ItemUDAFFRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/freeformat
record. If records that have an [temCre and an ItemUDAFFCre message type
exist on the item_mfqueue table for this item/uda/freeformat, the
ItemUDAFFCre and any ItemUDAFFMod records are deleted from the
item_mfqueue table. Otherwise, it is published as a flat message.

Create Iltem/UDA/LOV

Prerequisites: The item already exists.

Activity Detail: The item/uda/lov combination is inserted into the
uda_item_lov table. An [temUDALOVCre message type record is also
inserted on the item_mfqueue table.

Messages: [temUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

54 Retek Merchandising System

Modify Item/UDA/LOV

1
2

Prerequisites: The item/uda/lov combination already exists.

Activity Detail: The item/uda/lov record is updated in the uda_item lov
table. An ItemUDALOVMod message type record is inserted on the
item_mfqueue table.

Messages: [temUDALOVDesc message type is created. It is a flat,
synchronous message containing this item/uda/lov record. If records that
have an ItemCre and an [temUDALOV Cre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/LOV

Prerequisites: The item/uda/lov combination already exists.

Activity Detail: The item/uda/lov record is deleted from the uda_item lov
table. An ItemUDALOVDel message type record is inserted on the
item_mfqueue table.

Messages: ItemUDALOVRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/lov record. If
records that have an ItemCre and an I[temUDALOV Cre message type exist
on the item_mfqueue table for this item/uda/lov, the ItemUDALOVCre and
any ItemUDALOVMod records are deleted from the item mfqueue table.
Otherwise, it is published as a flat message.

Create Iltem/UDA/Date

Prerequisites: The item already exists.

Activity Detail: The item/uda/date combination is inserted into the
uda_item_date table. An ItemUDADateCre message type record is also
inserted on the item_mfqueue table.

Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. It is published as
part of the item creation message when the item is approved, or flat after the
original publication of the item creation.

Volume 2 — Message publication and subscription designs 55

Modify Item/UDA/Date

1
2

Prerequisites: The item/uda/date combination already exists.

Activity Detail: The item/uda/date record is updated in the uda_item date
table. An [temUDADateMod message type record is inserted on the
item_mfqueue table.

Messages: ItemUDADateDesc message type is created. It is a flat,
synchronous message containing this item/uda/date record. If records that
have an ItemCre and an ltemUDADateCre message type exist on the
item_mfqueue table for this item/uda/lov, the message is updated with the
“modify” message and published as part of the item creation message when
the item is approved. Otherwise, it is published as a flat message.

Delete Item/UDA/Date

Prerequisites: The item/uda/date combination already exists.

Activity Detail: The item/uda/date record is deleted from the uda item lov
table. An ItemUDADateDel message type record is inserted on the
item_mfqueue table.

Messages: ItemUDADateRef message type is created. It is a flat,
synchronous message containing the keys for this item/uda/date record. If
records that have an ItemCre and an ItemUDADateCre message type exist on
the item_mfqueue table for this item/uda/date, the ltemUDADateCre and any
ItemUDADateMod records are deleted from the item mfqueue table.
Otherwise, it is published as a flat message.

Delete an Item

1

Prerequisites: The item exists. An ‘A’(Approved) item can be deleted
when the user presses the “Cancel” button in the RMS dialogue after creating
and approving the item.

Activity Detail: The item record is deleted from the item_master table and
any child records that exist are deleted from the child tables. An ItemDel
message type record is inserted on the item_mfqueue table.

Message: ItemRef message type is created. It is a flat, synchronous
message containing the key for this item record. If a record that has an
ItemCre message type exists on the item_mfqueue table for this item, all
records for this item are deleted from the item mfqueue table. Otherwise, it
is published as a flat message.

56 Retek Merchandising System

Triggers

Trigger Description (EC_TABLE_IEM_AIUDR): This trigger fires on any
insert, update or delete on the item_master table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ITEM_XML.BUILD _MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

For transaction level items, sets action_type to ‘A’dd and message type to
‘ItemHdrCre’.

For reference level items (below the transaction level), sets action_type to ‘A’dd
and message_type to ‘ItemUPCCre’.

Parent and grandparent items are not published.
On Update:

For transaction level items, sets action_type to ‘M’odify and message type to
‘ItemHdrMod’.

For reference level items (below the transaction level), sets action_type to
‘M’odify and message type to ‘ItemUPCMod’.

On Delete:
For transaction level items, sends only the item column value for the message.

For reference level items (below the transaction level), sends only the item and
item_parent column values for the message.

For transaction level items, sets action_type to ‘D’elete and message type to
‘ItemHdrDel’.

For reference level items (below the transaction level), sets action_type to
‘D’elete and message type to ‘ItemUPCDel’.

ITEM XML.BUILD MESSAGE(O_status, O_text, O_message, I_record,
I_action_type)- This function is called by the trigger

EC TABLE ITEM_AIUDR on insert, update and delete of the item master
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type and the item type (transactional or reference) that is set
in the trigger. For transaction level items, it builds ItemRef xml messages for
delete statements, or ItemDesc xml messages for updates or inserts. For
reference items, it builds IltemUPCRef xml messages for delete statements, or
ItemUPCDesc xml messages for updates or inserts.

Volume 2 — Message publication and subscription designs 57

Trigger Description (EC_TABLE ISP_AIUDR): This trigger fires on any insert,
update or delete on the item_supplier table. It captures the data in the “new” bind
variables for inserts and updates. It captures the “old” data on deletes. It sets the
action type and message type and calls the

ITEMSUPPLIER XML.BUILD MESSAGE procedure to build the message.
The record is inserted into the ITEM_MFQUEUE table by calling the

RMSMFM ITEMS.ADDTOQ procedure.

On Insert:
Sets action_type to ‘A’dd and message type to ‘[temSupCre’.

On Update:
Sets action_type to ‘M’odify and message type to ‘ItemSupMod’.

On Delete:
Sends only the item and supplier column values for the message.
Sets action_type to ‘D’elete and message type to ‘ItemSupDel’.

ITEMSUPPLIER XML.BUILD MESSAGE(O_status, O_text, O_message,
I_record, I action_type)— This function is called by the trigger

EC TABLE ISP AIUDR on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemSupRef xml
messages for delete statements, or ItemSupDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_ISC_AIUDR): This trigger fires on any
insert, update or delete on the item supp_ country table. It captures the data in
the “new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISC_XML.BUILD MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message type to ‘ItemSupCtyCre’.
On Update:

Sets action_type to ‘M’odify and message_type to ‘ItemSupCtyMod’.
On Delete:

Sends only the item, supplier and origin_country id column values for the
message.

Sets action_type to ‘D’elete and message type to ‘ItemSupCtyDel’.

58 Retek Merchandising System

ISC_ XML.BUILD MESSAGE(O status, O_text, O _message, I record,
I_action_type)- This function is called by the trigger EC_ TABLE ISC_AIUDR
on insert, update and delete of the item_supp country table. This function gathers
all the data necessary to build the message that needs to be sent to the Retek
Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ItemSupCtyRef xml messages for
delete statements, or I[temSupCtyDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_ISD_AIUDR): This trigger fires on any
insert, update or delete on the item_supp_country dim table. It captures the data
in the “new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
ISCD_XML.BUILD MESSAGE procedure to build the message. The record is
inserted into the ITEM_MFQUEUE table by calling the

RMSMFM ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message type to ‘ISCDimCre’.

On Update:
Sets action_type to ‘M’odify and message type to ‘ISCDimMod’.

On Delete:

Sends only the item, supplier, origin country id and dim_object column values
for the message.

Sets action_type to ‘D’elete and message type to ‘ISCDimDel’.

ISC_ XML.BUILD MESSAGE(O status, O_text, O _message, I record,
I_action_type)— This function is called by the trigger EC_ TABLE ISC_AIUDR
on insert, update and delete of the item_supp_country dim table. This function
gathers all the data necessary to build the message that needs to be sent to the
Retek Integration Bus. It determines the proper message to build based on the
action_type that is set in the trigger. It builds ISCDimRef xml messages for
delete statements, or ISCDimDesc xml messages for updates or inserts.

Trigger Description (EC_TABLE_PKS AIUDR: This trigger fires on any

insert, update or delete on the packitem breakout table. It captures the data in
the “new” bind variables for inserts and updates. It captures the “old” data on

deletes. It populates a PL/SQL table with this data.

Trigger Description (EC_TABLE PKS IUDS: This trigger fires on any
insert, update or delete on the packitem breakout table. It loops through the
PL/SQL table that was populated in the row trigger and determines the value for
the packitem quantity in the message based on what is retrieved from the
v_packsku qty view and the DML event. It calls the
ITEMBOM_XML.BUILD MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the

RMSMFM ITEMS.ADDTOQ procedure.

On Insert:

If the v_packsku qty quantity is equal to the record just added, it sets action_type
to ‘A’dd and message type to ‘ItemBOMCre’. If not, it sets action_type to
‘M’odify and message type to ‘ItemBOMMod’.

Volume 2 — Message publication and subscription designs 59

On Update:
Sets action_type to ‘M’odify and message type to ‘[temBOMMod’.

On Delete:
Sends only the pack no and item column values for the message.

If the packitem quantity is 0, it sets action_type to ‘D’elete and message type to
‘ItemBOMDel’.

If the absolute value of packitem quantity is greater than 0, it sets action_type to
‘M’odify and message type to ‘ItemBOMMod’.

ITEMBOM XML.BUILD MESSAGE(O status, O_text, O message,

I _record, I action_type)- This function is called by the trigger

EC TABLE PKS IUDS on insert, update and delete of the item_supplier table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds temBOMRef xml
messages for delete statements, or temBOMDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE IIM_AIUDR): This trigger fires on any
insert, update or delete on the item_image table. It captures the data in the “new”
bind variables for inserts and updates. It captures the “old” data on deletes. It
sets the action type and message type and calls the

ITEMIMAGE_XML.BUILD MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the

RMSMFM _ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message type to ‘ItemImageCre’.

On Update:
Sets action_type to ‘M’odify and message type to ‘ItemImageMod’.

On Delete:
Sends only the item and image name column values for the message.
Sets action_type to ‘D’elete and message type to ‘ItemImageDel’.

ITEMIMAGE XML.BUILD MESSAGE(O_status, O _text, O message,
I_record, I_action_type)— This function is called by the trigger

EC TABLE IIM_AIUDR on insert, update and delete of the item_image table.
This function gathers all the data necessary to build the message that needs to be
sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds [temIlmageRef xml
messages for delete statements, or I[temImageDesc xml messages for updates or
inserts.

60 Retek Merchandising System

Trigger Description (EC_TABLE_UIF_AIUDR): This trigger fires on any
insert, update or delete on the uda_item_f{f table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the

UDA_ITEM XML.BUILD MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the

RMSMFM ITEMS.ADDTOQ procedure.

On Insert:
Sets action_type to ‘A’dd and message type to ‘ItemUDAFFCre’.

On Update:
Sets action_type to ‘M’odify and message type to ‘ItemUDAFFMod’.

On Delete:
Sends only the item and uda_id column values for the message.
Sets action_type to ‘D’elete and message type to ‘ItemUDAFFDel’.

UDA_ITEM XML.BUILD MESSAGE(O status, O_text, O _message,
I_record, I action_type)— This function is called by the trigger

EC TABLE UIF AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ItemUDAFFRef xml
messages for delete statements, or temUDAFFDesc xml messages for updates or
inserts.

Trigger Description (EC_TABLE_UIL_AIUDR): This trigger fires on any
insert, update or delete on the uda_item lov table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the
UDA_ITEM_XML.BUILD MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message type to ‘IltemUDALOVCre’.

On Update:

Sets action_type to ‘M’odify and message type to ‘IltemUDALOVMod’.
On Delete:

Sends only the item, uda id and uda_value column values for the message.

Sets action_type to ‘D’elete and message type to ‘ItemUDALOVDel’.

Volume 2 — Message publication and subscription designs 61

UDA ITEM XML.BUILD MESSAGE(O status, O text, O message,
I_record, I_action_type)— This function is called by the trigger

EC TABLE UIL_AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds temUDALOVRef
xml messages for delete statements, or [temUDALOVDesc xml messages for
updates or inserts.

Trigger Description (EC_TABLE_UID_AIUDR): This trigger fires on any
insert, update or delete on the uda_item_date table. It captures the data in the
“new” bind variables for inserts and updates. It captures the “old” data on
deletes. It sets the action type and message type and calls the

UDA_ITEM XML.BUILD MESSAGE procedure to build the message. The
record is inserted into the ITEM_MFQUEUE table by calling the
RMSMFM_ITEMS.ADDTOQ procedure.

On Insert:

Sets action_type to ‘A’dd and message type to ‘ItemUDADateCre’.

On Update:
Sets action_type to ‘M’odify and message type to ‘ItemUDADateMod’.

On Delete:
Sends only the item and uda_id column values for the message.
Sets action_type to ‘D’elete and message type to ‘ItemUDADateDel’.

UDA _ITEM XML.BUILD MESSAGE(O status, O_text, O _message,

I _record, I action_type)— This function is called by the trigger

EC TABLE UID AIUDR on insert, update and delete of the item_supplier
table. This function gathers all the data necessary to build the message that needs
to be sent to the Retek Integration Bus. It determines the proper message to build
based on the action_type that is set in the trigger. It builds ltemUDADateRef
xml messages for delete statements, or [temUDADateDesc xml messages for
updates or inserts.

62 Retek Merchandising System

Message Family Manager Procedures

Public Procedures:

ADDTOQ(O_status, O _text, I queue rec, I message) — This procedure is
called by a DML event capture trigger, and takes the message type, family key
values and, for synchronously captured messages, the message itself.

First it checks the input parameter for the item status that is part of the

I_queue rec input record. This input record is defined the package specification.
If the item status is ‘A’(approved), it sets a local variable to “Y’(yes) and uses
this local variable as the value for the approve_ind column in the insert
statement. It inserts a record into the item_mfqueue table using the sequence for
the table, the values from the input record parameter, the local variable for the
approve_ind and the input CLOB parameter that contains the data in XML
format.

GETNXT (O_status_code, O _error_msg, O message type, O message,
O_item, O_supplier, O_country_id, O_dim_object, O upc, O_bom_comp,
O_image name, O_uda_id, O_uda_value, O_sellable_ind, I num_threads,
I_thread_val)- This publicly exposed procedure is typically called by a RIB
publication adaptor. Its parameters are well defined and arranged in a specific
order. The message type is the RIB defined short message name, the message is
the xml message, and the family key(s) are the key for the message as pertains to
the family, not all of which will necessarily be populated for all message types.

The procedure produces a message through the following steps:

It loops through the item mfqueue table records that have a pub_status of
‘U’(Unpublished).

If the return from the CREATE_PREVIOUS function is TRUE
e calls the CLEAN QUEUE procedure.
e ifthe approve ind column equals ‘Y’(Yes)

= calls the MAKE CREATE procedure

= assigns all the output parameters with the values from the current
item_mfqueue row except for O_message which is returned from the
MAKE CREATE procedure and sets O_status to
API _CODES.SUCCESS.

o ifthe CAN CREATE returns FALSE, sets the pub_status field of the current
item_mfqueue row to ‘N’ and updates the row.

e If the return from the CREATE PREVIOUS function is FALSE

e assigns all the output parameters with the values from the current
item_mfqueue row and set O_status to API CODES.SUCCESS.

e call the DELETE QUEUE REC to delete the row from the item mfqueue
table.

Volume 2 — Message publication and subscription designs 63

If no “publishable” messages are retrieved from the above steps the procedure
returns a status of ‘N’(No message).

Status code is one of five values, as shown in the following table. For more
discussion of the status codes, refer to the Error Handling Guidelines document
or the process flow in the following section. These codes come from an EAI team
defined RIB_ CODES package.

Private Procedures:

These private procedures are only necessary when the initial create message is
hierarchical. If all messages in the family are flat, there is no need for these
procedures.

CREATE_PREVIOUS(O_status, O_text, I_queue_rec) — This function
determines if a header level create already exists on the queue table for the same
key value and with a sequence number less than the current records sequence
number.

It checks the item_mfqueue table for the existence of a row for that has an item
equal to the passed in value for item, a message type equal to the value of
ItemCre and a seq_no that is less than or equal to the passed in value for seq_no.
If such a row exists in the table, it returns TRUE.

CLEAN_ QUEUE(O_status, O_text, I queue rec) — This procedure cleans up
the queue by eliminating modification messages. It is only called if

CREATE PREVIOUS returns true. For each modification message type, it finds
the previous corresponding create message type. It then calls
REPLACE_QUEUE to copy the modify message into the create message and
calls DELETE _QUEUE_REC to delete the modify record. For each delete
message type, it finds the previous corresponding messages. It then calls
DELETE QUEUE REC to delete the create message record.

The following examples illustrate the flow of the logic in this procedure for the
item family:

First it checks the message type passed to procedure for the value of any of the
item delete message types, i.e. [temSupCtyDel, ItemUPCDel, etc. If the
message_type is a “delete” message, it deletes records from the item_mfqueue
table for the appropriate key values and for the seq_no less than or equal to the
passed in value for seq_no.

Example for the message type ItemSupCtyDel:

delete from item mfqueue

where supplier = I queue rec.supplier
and item = I queue rec.item
and country = I queue rec.country

and seq no <= I queue rec.seq no;

64 Retek Merchandising System

If the message type is an “update” message such as ItemSupMod, it assigns the
corresponding “Add” message type to a local variable.

Example for the message type ISCDimMod:
L create type := ISCDimAdd;

If this local variable is not null and if the call to REPLACE QUEUE returns
TRUE, it calls DELETE QUEUE_REC to delete the row from item mfqueue.

REPLACE_QUEUE(O_status, O_text, I_rec, I_message_type) — This
procedure replaces the message in the “create” message type record with the
message from a “Modify” message type record.

It locks the item mfqueue table for all rows that have a seq_no less than the
passed in value for seq no. It updates the message column with the passed in
value for message for the row that matches the key values passed in the record to
the function and that matches the message type passed as a parameter. It uses
the nvl function for all key columns except item because these key values are
optional and dependent on the message_type.

DELETE_QUEUE_REC(O_status, O_text, I seq no) — This procedure
deletes from the item_mfqueue table the row that has the seq_no column value
equal to the sequence value passed to the procedure.

MAKE CREATE(O_ status, O text, O msg, I queue rec) — This procedure
combines the current message and all previous messages with the same key in the
queue table to create the complete hierarchical message. It first copies the header
clob into a local variable. It then creates a new message clob and appends the
clob in the local variable to the new clob. The remainder of this procedure gets
each of the details grouped by their document type and adds them to the new
message. When it is finished creating the new message, it deletes all the records
from the queue for that item with a sequence number less than or equal to the
current records sequence number. This new message is passed back to the bus.

For the Item this procedure is implemented as follows:

Two cursors are used. One cursor cursor retrieves the row from the
item_mfqueue table for the item master message, the item is equal to the value
of the passed in item, the seq_no is less than the passed in seq_no and the
message type is equal to ‘ItemCre’. The other cursor retrieves all the item
related messages for the item details, the item is equal to the value of the passed
in item, the seq_no is less than or equal to the sequence value passed to the
procedure and the message type is equal message type value passed to the
cursor. Order the second cursor by seq no. A local procedure with parameters
for message type and message name, adds the detail message to the header
message. It loops through the second cursor with the value of the message type
parameter and do the following:

e It appends the message read in to the new message being created.

It adds all the item related detail messages by calling the local procedure
described above for each item detail and passing the message type and the
message name unique to the item detail. It uses the constants define in the
package spec for these values. The order for adding an item detail to the XML
message is specified in the item DTD.

Volume 2 — Message publication and subscription designs 65

Finally, it closes the new clob message and deletes all rows that comprise this
message from the item_mfqueue table.

Design Assumptions

e One of the primary assumptions in the current approach is that ease of code
will outweigh performance considerations. It is hoped that the ‘trickle’ nature
of the flow of data will decrease the need to dwell on performance issues and
instead allow developers to code in the easiest and most straight forward
manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.

Outstanding Technical Issues

e Seebeyond can only handle 30 character procedure names. So, the entire
name of the call, package.procedure has to be within 30 characters. This only
applies to public procedures, not internal, private functions and procedures.

e Seebeyond insists, for some unknown reason, on unique parameter names for
functions. Therefore, each O_status must be unique for the public procedures
thus the AR, GR, etc, appending the parameter names. This only applies to
public procedures, not internal, private functions and procedures. Also
Seebeyond is expecting to map to certain output parameter names in the
GETNXT function.

66 Retek Merchandising System

Currency Exchange Rates Subscription Design

Functional Area

RMS subscribing to Currency Exchange Rates.

Design Overview

Data Flow

An external system will publish a currency exchange rate, thereby placing the
currency exchange rate information onto the RIB (Retek Information Bus). RMS
will subscribe to the currency exchange rate information as published from the
RIB and place the information onto RMS tables depending upon the validity of
the records enclosed within the message.

Message Structure

The currency exchange rate message is a flat message that will consist of a
currency exchange rate record.

The record will contain information about the currency exchange rate as a whole.

Subscription Procedures

Subscribing to a currency exchange rate message entails the use of one public
consume procedure. This procedure corresponds to the type of activity that can
be done to currency exchange rate record (in this case create/update).

Public API Procedures:

RMSSUB_CURRATECRE.CONSUME (O_STATUS_CODE,

O_ERROR _MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a currency exchange rate message consisting of the aforementioned
record. The procedure will then place a call to the main
RMSSUB_CURRXRATE.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_ XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the
currency exchange rate table depending upon the success of the validation.

Volume 2 — Message publication and subscription designs 67

Private Internal Functions and Procedures
(rmssub_curratecre.pls):

Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, I0_text, I cause, I _program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_CURRXRATE package and all errors that occur during subscription
in the RMSSUB_CURRATECRE package (and whatever packages it calls) will
flow through this function.

The function consists of a call to APl LIBRARY.HANDLE ERRORS.
API_LIBRARY.HANDLE ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL LIB.CREATE MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_CURRXRATE.

Main Consume Function:

RMSSUB_CURRXRATE.CONSUME (O_ERROR_MESSAGE,
I_MESSAGE) - This procedure accepts a XML file in the form of an Oracle
CLOB data type from the RIB (I_message) from the aforementioned public
curratecre procedure whenever a message is made available by the RIB. This
message will consist of the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_ XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate currency exchange rate
database table depending upon the success of the validation.

68 Retek Merchandising System

XML Parsing:

PARSE_HEADER(O_ERROR_MESSAGE, O CURR_RECORD,
I_CURR_ROOT) — This function will used to extract the currency exchange
rate level information from the Currency Exchange Rate XML file and place that
information onto an internal Currency Exchange Rate record.

Record is based upon the record type curr_rectype.

Validation:

PROCESS_HEADER(O_ERROR_MESSAGE, I _CURR_RECORD) — After
the values are parsed for a particular currency exchange rate record,
RMSSUB_CURRXRATE.CONSUME will call this function, which will in turn
call various functions inside RMSSUB CURRXRATE in order to validate the
values and place them on the appropriate currency exchange rate table depending
upon the success of the validation. PROCESS TERMS is called to actually
insert or update the currency exchange rate table.

Design Assumptions

e One of the primary assumptions in the current API approach is that ease of
code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most straight
forward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.
Outstanding Technical Issues

Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 2 — Message publication and subscription designs 69

Freight Terms Subscription Design

Functional Area
RMS subscribing to Freight Terms.

Design Overview

Data Flow

An external system will publish a freight term, thereby placing the freight term
information onto the RIB (Retek Information Bus). RMS will subscribe to the
freight term information as published from the RIB and place the information
onto RMS tables depending upon the validity of the records enclosed within the
message.

Message Structure

The freight term message is a flat message that will consist of a freight term
record.

The record will contain information about the freight term as a whole.

Subscription Procedures

Subscribing to a freight term message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a freight term record (in this case create/update).

Public API Procedures

RMSSUB_FRTTERMCRE.CONSUME (O_STATUS_CODE,

O_ERROR _MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a freight term message consisting of the aforementioned record. The
procedure will then place a call to the main RMSSUB_FTERM.CONSUME
function in order to validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_ XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the freight term table depending upon
the success of the validation.

70 Retek Merchandising System

Private Internal Functions and Procedures
(rmssub_frttermcre.pls):

Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, I0_text, I cause, I _program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_FTERM package and all errors that occur during subscription in the
RMSSUB_FRTTERMCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to APl LIBRARY.HANDLE ERRORS.
API_LIBRARY.HANDLE ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL LIB.CREATE MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_FTERM:

Main Consume Function

RMSSUB_FTERM.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message) from the
aforementioned public frttermcre procedure whenever a message is made
available by the RIB. This message will consist of the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_ XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate freight term database
table depending upon the success of the validation.

XML Parsing:

PARSE_FTERM (O_ERROR_MESSAGE, O_FTERM_RECORD,
I_FTERM_ROQOT) — This function will used to extract the freight term level
information from the Freight Term XML file and place that information onto an
internal Freight Term record.

Record is based upon the fterm_sql package record: fterm record.

Volume 2 — Message publication and subscription designs 71

Validation:

PROCESS_FTERM(O_ERROR_MESSAGE, I FTERM_RECORD) — After
the values are parsed for a particular freight term record,
RMSSUB_FTERM.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_FTERM in order to validate the values and
place them on the appropriate freight terms table depending upon the success of
the validation. FTERM_SQL.PROCESS TERMS is called to actually insert or
update the freight terms table.

Design Assumptions

e One of the primary assumptions in the current API approach is that ease of
code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most straight
forward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.
Outstanding Technical Issues

Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

72 Retek Merchandising System

GL Chart of Accounts Subscription Design

Functional Area

General ledger chart of accounts

Design Overview

Data Flow

An external system will publish GL Chart of Accounts, thereby placing the GL
chart of accounts information onto the RIB (Retek Information Bus). RMS will
subscribe to the GL chart of accounts information as published from the RIB and
place the information onto RMS tables depending upon the validity of the records
enclosed within the message.

Message Structure

The GL chart of accounts message is a flat message that will consist of a GL
chart of accounts record.

The record will contain information about the GL chart of accounts as a whole.

Subscription Procedures

Subscribing to a GL chart of accounts message entails the use of one public
consume procedure. This procedure corresponds to the type of activity that can
be done to currency exchange rate record (in this case create/update).

Public APl Procedures

RMSSUB_GLCOACRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a GL chart of accounts message consisting of the aforementioned
record. The procedure will then place a call to the main
RMSSUB_GLCACCT.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the gl
chart of accounts table depending upon the success of the validation.

Volume 2 — Message publication and subscription designs 73

Private Internal Functions and Procedures
(rmssub_glcoacre.pls):

Error Handling:

If an error occurs in this procedure, a call will be placed to HANDLE _ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, I0_text, I_cause, I_program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_GLCACCT package and all errors that occur during subscription in
the RMSSUB GLCOACRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to API LIBRARY.HANDLE ERRORS.

API LIBRARY.HANDLE ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL_LIB.CREATE MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_GLCACCT.

Main Consume Function

RMSSUB_GLCACCT.CONSUME (O_ERROR_MESSAGE, I_ MESSAGE)
- This procedure accepts a XML file in the form of an Oracle CLOB data type
from the RIB (I_message) from the aforementioned public glcoa procedure
whenever a message is made available by the RIB. This message will consist of
the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate gl chart of accounts
database table depending upon the success of the validation.

XML Parsing:

PARSE_HEADER(O_ERROR_MESSAGE, O GLACCT_RECORD,

I_ GLACCT_ROOT) — This function will used to extract the GL chart of
accounts level information from the GL Chart of Accounts XML file and place
that information onto an internal GL Chart of Accounts record.

Record is based upon the record type glacct rectype.

74 Retek Merchandising System

Validation:

PROCESS_HEADER(O_ERROR_MESSAGE, I_GLACCT_RECORD) -
After the values are parsed for a particular GL chart of accounts record,
RMSSUB_GLCACCT.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_ GLCACCT in order to validate the values
and place them on the appropriate GL chart of accounts table depending upon the
success of the validation. PROCESS GLACCT is called to actually insert or
update the GL chart of accounts table.

Design Assumptions

e One of the primary assumptions in the current API approach is that ease of
code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.
Outstanding Technical Issues

Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 2 — Message publication and subscription designs 75

Payment Terms Subscription Design

Functional Area
RMS subscribing to Payment Terms.

Design Overview

Data Flow

An external system will publish a payment term, thereby placing the payment
term information onto the RIB (Retek Information Bus). RMS will subscribe to
the payment term information as published from the RIB and place the
information onto RMS tables depending upon the validity of the records enclosed
within the message.

Message Structure

The payment term message is a flat message that will consist of a payment term
record.

The record will contain information about the payment term as a whole.

Subscription Procedures

Subscribing to a payment term message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a payment term record (in this case create/update).

Public API Procedures:

RMSSUB_PAYTERMCRE.CONSUME (O_STATUS_CODE,

O_ERROR _MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message). This message
will contain a payment term message consisting of the aforementioned record.
The procedure will then place a call to the main RMSSUB_PTRM.CONSUME
function in order to validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_ XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the payment term table depending
upon the success of the validation.

76 Retek Merchandising System

Private Internal Functions and Procedures
(rmssub_paytermcre.pls):

Error Handling

If an error occurs in this procedure, a call will be placed to HANDLE ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, I0_text, I cause, I _program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_PTRM package and all errors that occur during subscription in the
RMSSUB_PAYTERMCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to APl LIBRARY.HANDLE ERRORS.
API_LIBRARY.HANDLE ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL LIB.CREATE MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB PTRM.

Main Consume Function:

RMSSUB_PTRM.CONSUME (O_ERROR_MESSAGE, I_MESSAGE) -
This procedure accepts a XML file in the form of an Oracle CLOB data type
from the RIB (I_message) from the aforementioned public paytermcre procedure
whenever a message is made available by the RIB. This message will consist of
the aforementioned record.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB_XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate payment term database
table depending upon the success of the validation.

XML Parsing:

PARSE_HEADER(O_ERROR_MESSAGE, O_TERM_RECORD,
I_TERM_ROOT) — This function will used to extract the payment term level
information from the Payment Term XML file and place that information onto an
internal Payment Term record.

Record is based upon the record type pay_rectype.

Volume 2 — Message publication and subscription designs 77

Validation:

PROCESS_HEADER(O_ERROR_MESSAGE, 1 TERM_RECORD) — After
the values are parsed for a particular payment term record,
RMSSUB_PTRM.CONSUME will call this function, which will in turn call
various functions inside RMSSUB_PTRM in order to validate the values and
place them on the appropriate terms table depending upon the success of the
validation. PROCESS TERMS is called to actually insert or update the payment
terms table.

Design Assumptions

e One of the primary assumptions in the current API approach is that ease of
code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.
Outstanding Technical Issues

Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

78 Retek Merchandising System

Supplier Subscription Design

Functional Area

RMS Subscribing to Supplier data.

Design Overview

Data Flow

An external system will publish a supplier, thereby placing the supplier
information onto the RIB (Retek Information Bus). RMS will subscribe to the
supplier information as published from the RIB and place the information onto
RMS tables depending upon the validity of the records enclosed within the
message.

Message Structure

The Supplier message is a hierarchical message that will consist of a supplier
header record, a series of address records under the header record.

The header record will contain information about the supplier as a whole. The
address records will identify the addresses associated with the supplier.

Subscription Procedures

Subscribing to a supplier message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
a supplier record (in this case create/update).

Public API Procedures:

RMSSUB_VENDORCRE.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I _message). This message
will contain a supplier message consisting of the aforementioned header and
detail records. The procedure will then place a call to the main
RMSSUB_SUPPLIER.CONSUME function in order to validate the XML file
format and, if successful, parse the values within the file through a series of calls
to RIB_ XML. The values extracted from the file will then be passed on to
private internal functions, which will validate the values and place them on the
supplier and address tables depending upon the success of the validation.

Volume 2 — Message publication and subscription designs 79

Private Internal Functions and Procedures
(rmssub_vendorcre.pls):

Error Handling

If an error occurs in this procedure, a call will be placed to HANDLE ERRORS
in order to parse a complete error message and pass back a status to the RIB.

HANDLE_ERRORS (O_status, IO_text, I _cause, I _program)- This function
is used to put error handling in one place in order to make future error handling
enhancements easier to implement. All error handling in the internal
RMSSUB_SUPPLIER package and all errors that occur during subscription in
the RMSSUB_VENDORCRE package (and whatever packages it calls) will flow
through this function.

The function consists of a call to APl LIBRARY.HANDLE ERRORS.
API_LIBRARY.HANDLE ERRORS accepts a program name, the cause of the
error and potentially an unparsed error message if one has been created through a
call to SQL LIB.CREATE MESSAGE. The function uses these input variables
to parse a complete error message and pass back a status, depending upon the
message and error type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_SUPPLIER.

Main Consume Function:

RMSSUB_SUPPLIER.CONSUME (O_STATUS_CODE,
O_ERROR_MESSAGE, I MESSAGE) - This procedure accepts a XML file in
the form of an Oracle CLOB data type from the RIB (I_message) from the
aforementioned public vendor procedure whenever a message is made available
by the RIB. This message will consist of the aforementioned header and detail
records.

The procedure will then validate the XML file format and, if successful, parse the
values within the file through a series of calls to RIB XML. The values
extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the appropriate supplier and address
database tables depending upon the success of the validation.

XML Parsing:

PARSE_SUPPLIER (O_ERROR_MESSAGE, O TABLE_LOCKED,
O_SUPPLIER_RECORD, I_SUPPLIER _ROOT) — This function will used to
extract the header level information from the Supplier XML file and place that
information onto an internal Supplier header record.

Record is based upon the supplier table:
SUPS%ROWTYPE;

80 Retek Merchandising System

PARSE_ADDRESS (O_ERROR_MESSAGE, O_TABLE_LOCKED,
O_ADDRESS_RECORD, I_ADDR_NODE) - This function will used to
extract the address level information from the Supplier XML file and place that
information onto an internal address record.

Record is based upon the address table:

ADDR%ROWTYPE,

Validation

PROCESS_SUPPLIER(O_ERROR_MESSAGE, O_ TABLE_LOCKED,
10_SUPPLIER_RECORD) — After the values are parsed for a particular
supplier record, RMSSUB_SUPPLIER.CONSUME will call this function, which
will in turn call various functions inside RMSSUB_SUPPLIER in order to
validate the values and place them on the appropriate supplier table depending
upon the success of the validation. Either INSERT SUPPLIER or

UPDATE SUPPLIER is called to actually insert or update the supplier table.

PROCESS_ADDRESS(O_ERROR_MESSAGE, O_TABLE_LOCKED,
I_SUPPLIER_NO, I _ADDRESS RECORD) — After the values are parsed for
a particular address record, RMSSUB_SUPPLIER.CONSUME will call this
function, which will in turn call various functions inside RMSSUB_SUPPLIER
in order to validate the values and place them on the appropriate address table
depending upon the success of the validation. Either INSERT ADDRESS or
UPDATE ADDRESS is called to actually insert or update the address table.

Design Assumptions

e One of the primary assumptions in the current API approach is that ease of
code will outweigh performance considerations. It is hoped that the ‘trickle’
nature of the flow of data will decrease the need to dwell on performance
issues and instead allow developers to code in the easiest and most
straightforward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any
public program then needs to be a procedure.
Outstanding Technical Issues

Seebeyond can only handle 30 character procedure names. So, the entire name of
the call, package.procedure has to be within 30 characters. This only applies to
public procedures, not internal, private functions and procedures.

Volume 4 — Batch designs 81

Volume 4 — Batch designs

The following batch program designs have been updated for RMS 10.1 and are
included in this section:

e DEALUPLD
e DITINSRT

e EDIDLCON
e EDIDLORD
e EDIUPCAT
e ONORDEXT
e POSDNLD

e POSUPLD

e PRECOSTCALC
e PRMPCUPD
e SOUTDNLD
e TCKTDNLD
e VATDLXPL
e WASTEADJ

82 Retek Merchandising System

Deal upload [dealupld]

Design Overview

This program will read a Retek flat file, which was created by an external
program and will upload information from this file to the following Deals
Management tables in RMS: DEAL _HEAD, DEAL _DETAIL,

DEAL THRESHOLD, DEAL ITEMLOC, POP_TERMS DEF.

The external program will translate the standard EDI upload file into the RMS
format specified below and will also translate the content of the EDI input file
into RMS values (that is: a location’s DUNS number to its RMS number) using
the RMS database.

Dealupld.pc will take the above output file and use it as an input file to upload
data into the Deals Management RMS database. The LUW is a single Deal Head
Detail record and its associated component records in the input file. Therefore in
each loop of the program one deal is uploaded at a time.

The program will verify that check constraints are not violated before the inserts
actually take place. If a validation fails, a warning is written to the batch error file
and the program resumes processing. Once the deal is processed, a check is made
whether any warnings occurred. If yes, no insert occurs to the database but the
entire deal is written to the reject file. This allows the user to see not only the first
validation failure, but all of them before the deal was written out to the reject file.

See Section XIII Design Assumptions for more information on how records in
the input file should be formatted and looped.

Stored Procedures / Shared Modules (Maintainability)

DEAL SEQUENCE — This sequence is used to get the next deal id for the deal
being uploaded.

Input Specifications

‘File-To-Table’

All fields that are of type Char in the input file format description above should
be left justified and padded with the space character. If the field is not required
and no value is being uploaded, the entire field should be padded with the space
character.

Date fields are always formatted ‘YYYYMMDDHH24MISS’ (Char(14)).

All fields that are of type Number in the input file format description above
should be right justified and padded with Os. If the field is not required and no
value is being uploaded, the entire field should be padded with 0s. All Number
fields which have an implied decimal (for example: Number(10,4), but not
Number(8)) are in effect the length of the number PLUS its decimal places. (for
example: 14 byte wide field to hold a Number(10,4).) The program will upload
the value formatted to include the 4 decimal digits (for example: Number(10,4):
01234567891234 -> 123456789.1234, Number(6,2): 12345600 -> 123456.00).
Therefore if a number of size Number(20,4) is uploaded, this number will take up
24 bytes in the input file.

Volume 4 — Batch designs

The input file must have the following structure:

FHEAD
{
THEAD of DHDTL REQUIRED for deal head record
TDETL REQUIRED 1 deal head record
TTAIL REQUIRED end of deal head record
THEAD of DCDTL REQUIRED for deal component records
[
TDETL OPTIONAL for deal component records
]
TTAIL REQUIRED end of deal component records
THEAD of DIDTL REQUIRED for item-loc records
[
TDETL OPTIONAL for item-loc records
]
TTAIL REQUIRED end of item-loc records
THEAD of PPDTL REQUIRED for proof of performance records
[
TDETL OPTIONAL for proof of performance records
]
TTAIL REQUIRED end of proof of performance records
THEAD of DTDTL REQUIRED for threshold records
[
TDETL OPTIONAL for threshold records
]
TTAIL REQUIRED end of threshold records
}
FTAIL
The set between the curly brackets may be looped to upload multiple deals from
the same file. Within each set, the TDETL records in angle brackets may be sub-
looped as a sub-set of the main set.
See Section XIII Design Assumptions for more information on how records in
the input file should be formatted and looped.
Input File
Record Field Name Field Type | Default Value Description/Constraints
Name
File File Type Char(5) FHEAD Identifies file record type (the
Header Record beginning of the input file).
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
File Type Char(5) EDIDU Identifies file as ‘EDI Deals
Definition Upload’
File Create Char(14) Create date current date, formatted to
Date YYYYMMDDHH24MISS’.

84 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Transacti File Type Char(5) THEAD Identifies file record type to
on Record upload a new deal header.
Header Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DHDTL Identifies file record type Deal
Detail Record Header. This record MUST BE
Type FOLLOWED BY ONE AND
ONLY ONE REQUIRED TDETL
RECORD that holds the deal head
information.
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record a new deal.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Partner Type | Char(6) REQUIRED Type of the partner the deal applies

to. Valid values are ‘S’ for a
supplier, 'S1' for supplier hierarchy
level 1 (e.g. manufacturer), 'S2' for
supplier hierarchy level 2 (e.g.
distributor) and 'S3' for supplier
hierarchy level 3 (e.g. wholesaler).
Descriptions of these codes will be
held on the codes table under a
code_type of 'SUHL'.

Information pertaining to a single
deal has to belong to the same
supplier, since a deal may have only
one supplier hierarchy associated
with it. Only items with the same
supplier hierarchy can be on the
same deal. Supplier hierarchy is
stored at an item / supplier / country
/ location level.

Volume 4 — Batch designs 85

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Partner Id

Char(10)

Blank (space
character
string)

Level of supplier hierarchy (e.g.
manufacturer, distributor or
wholesaler), set up as a partner in
the PARTNER table, used for
assigning rebates by a level other
than supplier. Rebates at this level
will include all eligible
supplier/item/country records
assigned to this supplier hierarchy
level.

This field is required if the Partner
Type field was set to ‘S1°, “‘S2’ or
‘S3°. This field must be blank if the
Partner Type field was set to ‘S’.

Supplier

Number(10)

Blank (space
character
string)

Deal supplier's number. This
supplier can be at any level of
supplier hierarchy.

This field is required if the Partner
Type field was set to ‘S’. This field
must be blank if the Partner Type
field was set to ‘S1°, ‘S2’ or ‘S3°.

Type

Char(6)

REQUIRED

Type of the deal. Valid values are
A for annual deal, P for promotional
deal, O for PO-specific deal or M
for vendor-funded markdown. Deal
types will be held on the codes table
under a code type of 'DLHT".

Currency
Code

Char(3)

Blank (space
character
string)

Currency code of the deal's
currency. All costs on the deal will
be held in this currency.

If Type is 'O', 'P' or 'A', then
Currency Code may not be blank.
Currency Code has to be blank if
Type is 'M'".

Active Date

Char(14)

REQUIRED

Date the deal will become active.
This date will determine when deal
components begin to be factored
into item costs. For a PO-specific
deal, the active date will be the
order's written date.

86 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Close Date Char(14) Blank (space | Date the deal will/did end. This
character date determines when deal
string) components are no longer factored
into item costs. It is optional for
annual deals, required for
promotional deals. It will be left
NULL for PO-specific deals.
Close Date must not be blank if
Type is 'P' or ‘M’. Close Date has to
be blank if Type is 'O".
External Char(30) Blank (space | Any given external reference
Reference character number that is associated with the
Number string) deal.
Order Number | Number(8) Blank (space | Order the deal applies to, if the deal
character is PO-specific.
string)
Recalculate Char(1) REQUIRED Indicates if approved orders should
Approved be recalculated based on this deal
Orders once the deal is approved. Valid
values are Y for yes or N for no.
Valid values are ‘Y’ and ‘N’.
Comments Char(2000) Blank (space | Free-form comments entered with
character the deal.
string)
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail). For DHDTL
program. TDETL records this will always be
1!
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.

Descriptor

Volume 4 — Batch designs 87

Record Field Name Field Type Default Value Description/Constraints
Name
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DCDTL Identifies file record type of sub
Detail Record loop as Deal Component Detail.
Type
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal components.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Deal Char(6) REQUIRED Type of the deal component, user-
Component defined and stored on the
Type DEAL_COMP_TYPE table.
Application Number(10) Blank (space | Number indicating the order in
Order character which the deal component should be
string) applied with respect to any other
deal components applicable to the
item within the deal. This number
will be unique across all deal
components within the deal. It must
be NULL for an M-type deal
(vendor funded markdown).
Billing Type Char(6) REQUIRED Billing type of the deal component.

Valid values are 'Ol' for off-invoice,
'BD' for bill-back with debit memo
or 'BC' for bill-back with credit note
request. Billing types will be held
on the codes table under a code type
of 'DLBT".

88 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Bill Back Char(6) Blank (space | Code that identifies the bill-back
Period character period for the deal component. This
string) field will only be populated for
billing types of 'BD' or 'BC'. Bill
back period codes will be user-
defined and stored on the
BILL BACK PERIOD table.
If Billing Type is 'BD' or 'BC' then
Bill Back Period must not be blank,
otherwise it has to be blank.
Collect Start Char(14) Blank (space | Date that collection of the bill-back
Date character should begin.
string)
If Billing Type is 'BD' or 'BC' then
Collect Start Date must not be
blank, otherwise it has to be blank.
Collect End Char(14) Blank (space | Date that collection of the bill-back
Date character should end.
string)
If Billing Type is 'BD' or 'BC' then
Collect End Date must not be blank,
otherwise it has to be blank.
Deal Char(6) Blank (space | Indicates when the deal component
Application character should be applied - at PO approval
Timing string) or time of receiving. Valid values
are 'O’ for PO approval, 'R' for
receiving. These values will be held
on the codes tables under a code
type of 'AALC'. It must be NULL
for an M-type deal (vendor funded
markdown).
Cost Char(6) Blank (space | Indicates what cost bucket the deal
Application character component should affect. Valid
Level string) values are 'N' for net cost, NN' for
Indicator net net cost and 'DNN' for dead net

net cost. These values will be held
on the codes tables under a code
type of 'DLCA'". It must be NULL
for an M-type deal (vendor funded
markdown).

Volume 4 — Batch designs 89

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Pricing Cost
Indicator

Char(1)

REQUIRED

Identifies deal components that
should be included when calculating
a pricing cost.

Valid values are ‘Y’es and ‘N’o.

Deal Class

Char(6)

Blank (space
character
string)

Identifies the calculation class of the
deal component. Valid values are
'CU' for cumulative (discounts are
added together and taken off as one
lump sum), 'CS' for cascade
(discounts are taken one at a time
with subsequent discounts taken off
the result of the previous discount)
and 'EX' for exclusive (overrides all
other discounts). 'EX' type deal
components are only valid for
promotional deals. Deal classes will
be held on the codes table under a
code type of 'DLCL'". It must be
NULL for an M-type deal (vendor
funded markdown).

Threshold
Limit Type

Char(6)

Blank (space
character
string)

Identifies whether thresholds will be
set up as qty values, currency
amount values or percentages
(growth rebates only). Valid values
are 'Q' for qty, 'A' for currency
amount or 'P' for percentage.
Threshold limit types will be held
on the codes table under a code type
of 'DLLT'". It must be NULL for an
M-type deal (vendor funded
markdown) or if the threshold value
type is ‘Q’ (buy/get deals).

If Growth Rebate Indicator is 'Y",
then the Threshold Limit Type has
to be 'P', otherwise 'Q', 'A' or NULL.

90 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Threshold
Limit Unit of
Measure

Char(4)

Blank (space
character
string)

Unit of measure of the threshold
limits, if the limit type is quantity.
Only Unit of Measures with a UOM
class of 'VOL' (volume), 'MASS' or
'QTY" (quantity) can be used in this
field. Valid Unit of Measures can be
found on the UOM_CLASS table.

If the Threshold Limit Type is 'A' or
'P', then Threshold Limit Unit of
Measure has to be blank. If the
Threshold Limit Type is 'Q',
Threshold Limit Unit of Measure
must not be blank. If Threshold
Limit Type is blank, Threshold
Limit Unit of Measure must be
blank.

Threshold
Value Type

Char(6)

Blank (space
character
string)

Identifies whether the discount
values associated with the
thresholds will be set up as qty
values, currency amount values,
percentages or fixed amounts. Valid
values are 'Q' for qty, 'A' for
currency amount, 'P' for percentage
or 'F' for fixed amount. Qty
threshold value (buy/get) deals are
only allowed on off-invoice
discounts. Deal threshold value
types will be held on the codes table
under a code type of 'DLL2'. It
must be NULL for an M-type deal
(vendor funded markdown).

If Billing Type is 'BD' or 'BC', then
the Threshold Value Type must not
be 'Q'.

Buy Item

Char(25)

Blank (space
character
string)

Identifies the item that must be
purchased for a quantity threshold-
type discount. This value is
required for quantity threshold value
type discounts. Otherwise it has to
be blank.

Volume 4 — Batch designs 91

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Get Type

Char(6)

Blank (space
character
string)

Identifies the type of the 'get'
discount for a quantity threshold-
type (buy/get) discount. Valid
values include 'X' (free), 'P'
(percent), 'A' (amount) and 'F' (fixed
amount). They are held on the
codes table under a code type of
'DQGT". This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

Get Value

Number(20,4)

All 0Os.

Identifies the value of the 'get’
discount for a quantity threshold-
type (buy/get) discount that is not a
'free goods' deal. The Get Type
above identifies the type of this
value. This value is required for
quantity threshold value type deals
that are not a Get Type of free.
Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’ or ‘F’, then

Get Value must not be blank. If the
Get Type is ‘X’ or blank, then Get

Value has to be blank.

Buy Item
Quantity

Number(12,4)

All 0s.

Identifies the quantity of the
threshold 'buy' item that must be
ordered to qualify for the 'free' item.
This value is required for quantity
threshold value type discounts.
Otherwise it has to be 0.

Recursive
Indicator

Char(1)

REQUIRED

For 'buy/get free' discounts,
indicates if the quantity threshold
discount is only for the first 'buy
amt.' purchased (e.g. for the first 10
purchased, get 1 free), or if a free
item will be given for every multiple
of the 'buy amt' purchased on the
order (e.g. for each 10 purchased,
get 1 free). Valid values are 'Y" for
yes or 'N' for no.

If the Get Type is blank, then
Recursive Indicator has to be ‘N’.

92 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name

Buy Item Number(12,4) | All 0s. Indicates the targeted purchase level

Order Target for all locations on a purchase order.

Quantity This is the target level that will be

used for future calculation of net
cost. This value is required for
quantity threshold value type deals.
Otherwise it has to be 0.

Average Buy | Number(12,4) | All 0s. Indicates the average targeted

Item Order purchase level per location on the

Target deal. This value will be used in

Quantity Per future cost calculations. This value

Location is required for quantity threshold

value type deals. Otherwise it has to
be 0.

Get Item Char(25) Blank (space | Identifies the 'get' item for a
character quantity threshold-type (buy/get)
string) discount. This value is required for

quantity threshold value deals.
Otherwise it has to be blank.

If Get Type is ‘P’, “‘A’, ‘F’ or ‘X,
then Get Item must not be blank. If
the Get Type is blank, then Get Item
has to be blank.

Get Quantity | Number(12,4) | All Os. Identifies the quantity of the

identified 'get' item that will be
given at the specified 'get' discount
if the 'buy amt' of the buy item is
purchased. This value is required
for quantity threshold value type
discounts. Otherwise it has to be 0.

If Get Type is ‘P, ‘A’, ‘F’ or ‘X,
then Get Quantity must not be 0. If
the Get Type is blank, then Get
Quantity has to be 0.

Volume 4 — Batch designs 93

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Free Item Unit
Cost

Number(20,4)

All Os.

For 'buy/get free' discounts,
identifies the unit cost of the
threshold 'free' item that will be
used in calculating the prorated qty.
discount. It will default to the
item/supplier cost, but can be
modified based on the agreement
with the supplier. It must be greater
than zero as this is the cost that
would normally be charged for the
goods if no deal applied.

If Get Type is ‘P’, ‘A’, ‘F’ or blank,
then Free Item Unit Cost must be 0.
If the Get Type is ‘X’, then Free
Item Unit Cost must not be 0.

Transaction
Level
Discount
Indicator

Char(1)

REQUIRED

Indicates if the discount is a
transaction-level discount (e.g. 10%
across an entire PO).

Valid Values are 'Y' or 'N'. If set to
‘Y’, Deal Class has to be ‘CU’ and
Billing Type has to be ‘OI’. No
DIDTL or PPDTL records may be
present for a Transaction Level
Discount DCDTL record.

Rebate
Indicator

Char(1)

REQUIRED

Indicates if the deal component is a
rebate. Deal components can only
be rebates for bill-back billing types.
Valid values are 'Y"' for yes or 'N' for
no.

If Billing Type is 'OI', then Rebate
Indicator must be 'N'.

Rebate Active
Date

Char(14)

Blank (space
character
string)

If the rebate becomes active on a
different date than the deal active
date, this field will hold that date. If
this field is NULL for a rebate line,
it will be assumed that the rebate
becomes active on the deal active
date.

94 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Rebate
Calculation

Type

Char(6)

Blank (space
character
string)

Indicates if the rebate should be
calculated using linear or scalar
calculation methods. Valid values
are 'L' for linear or 'S' for scalar.
This field will be required if the
rebate indicator is 'Y'. Rebate
calculation types will be held on the
codes table under a code type of
'DLCT".

If Rebate Indicator is 'Y", then
Rebate Calculation Type must not
be blank. Otherwise it has to be
blank.

Growth
Rebate
Indicator

Char(1)

REQUIRED

Indicates if the rebate is a growth
rebate, meaning it is calculated and
applied based on an increase in
purchases or sales over a specified
period of time. Valid values are 'Y"
for yes or 'N' for no.

If Rebate Indicator is 'N', then
Growth Rebate Indicator must be
‘N°.

Historical
Comparison
Start Date

Char(14)

Blank (space
character
string)

The first date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is "Y',
then Historical Comparison Start
Date must not be blank. Otherwise it
must be blank.

Volume 4 — Batch designs 95

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Historical
Comparison
End Date

Char(14)

Blank (space
character
string)

The last date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y",
then Historical Comparison End
Date must not be blank. Otherwise it
must be blank.

Current
Comparison
Start Date

Char(14)

Blank (space
character
string)

The first date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y",
then Current Comparison Start Date
must not be blank. Otherwise it
must be blank.

Current
Comparison
End Date

Char(14)

Blank (space
character
string)

The last date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is "Y',
then Current Comparison End Date
must not be blank. Otherwise it
must be blank.

96 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Rebate Char(6) Blank (space | Indicates if the rebate should be
Purchases or character applied to purchases or sales. Valid
Sales string) values are 'P' for purchases or 'S' for
Application sales. It will be required if the
Indicator rebate indicator is 'Y'. Rebate
purchase/sales indicators will be
held on the codes table under a code
type of 'DLRP".
If the Rebate Indicator is 'Y', then
the Rebate Purchases or Sales
Application Indicator must not be
blank. Otherwise it has to be blank.
Comments Char(2000) Blank (space | Free-form comments entered with
character the deal component.
string)
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DIDTL Identifies file record type of sub
Detail Record loop as Deal Component Item-

Type

location Detail.

Volume 4 — Batch designs 97

Record Field Name Field Type Default Value Description/Constraints
Name
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal item-location details.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Merchandise | Char(6) REQUIRED Indicates what level of the
Level merchandise hierarchy the record is
at. Valid values include '1' for
company-wide (all items), '2' for
division, '3' for group, '4' for dept, 'S’
for class, '6' for subclass, '7' for line,
'8' for line/diff 1, '9' for line/diff 2,
’10 for line/diff 3, ’11 for line/diff
4, and '12' for item. These level
types will be held on the codes table
under a code type of 'DIML".
Company Char(1) REQUIRED | Indicates if the deal component is
Indicator applied company-wide (e.g. all
items in the system will be included
in the discount or rebate). Valid
values are 'Y' for yes and 'N' for no.
Division Number(4) Blank (space | ID of the division included in or
character excluded from the deal component.
string). Valid values are on the DIVISION
table.
If Group is not blank, then Division
must not be blank. If Merchandise
Level is 2, then Division must not
be blank and Group, Department,
Class and Subclass must be blank.
Group Number(4) Blank (space | ID of the group included in or
character excluded from the deal component.
string). Valid values are on the GROUPS

table.

If Department is not blank, then
Group must not be blank. If
Merchandise Level is 3, then Group
must not be blank and Department,
Class and Subclass must be blank.

98 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Department Number(4) Blank (space | ID of the department included in or
character excluded from the deal component.
string). Valid values are on the DEPS table.
If Class is not blank, then
Department must not be blank. If
Merchandise Level is 4, then
Department must not be blank and
Class and Subclass must be blank.
Class Number(4) Blank (space ID of the class included in or
character excluded from the deal component.
string). Valid values are on the CLASS
table.
If Subclass is not blank, then Class
must not be blank. If Merchandise
Level is 5, then Class must not be
blank and Subclass must be blank.
Subclass Number(4) Blank (space | ID of the subclass included in or
character excluded from the deal component.
string). Valid values are on the SUBCLASS
table.
If Merchandise Level is 6 or more
than 6, then Subclass must not be
blank.
Item Parent Char(25) Blank (space Alphanumeric value that uniquely
character identifies the item/group at the level
string) above the item. This value must

exist as an item in another row on
the item master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

Volume 4 — Batch designs 99

Record Field Name Field Type Default Value Description/Constraints
Name
Item Char(25) Blank (space | Alphanumeric value that uniquely
Grandparent character identifies the item/group two levels
string) above the item. This value must
exist as both an item and an item
parent in another row on the
item_master table.
If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).
Diff 1 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 1 must be blank.
If Merchandise Level is 8, then Diff
1 must not be blank.
Diff 2 Char(10) Blank (space Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 2 must be blank.
If Merchandise Level is 9, then Diff
2 must not be blank.
Diff 3 Char(10) Blank (space Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 3 must be blank.
If Merchandise Level is 10, then
Diff 3 must not be blank.
Diff 4 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 4 must be blank.
If Merchandise Level is 11, then
Diff 4 must not be blank.

100 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name

Organizationa | Char(6) Blank (space | Indicates what level of the

I Level character organizational hierarchy the record
string) is at. Valid values include '1' for

chain, '2' for area, '3' for region, '4'
for district and '5' for location.
These level types will be held on the
codes table under a code type of
'DIOL".

If company indicator is N, this must
not be blank. If location type is
warehouse or location list, this must
be 5.

Chain Number(4) Blank (space ID of the chain included in or
character excluded from the deal component.
string). Valid values are on the CHAIN

table.
If org. level is 1, this field must not
be blank.

Area Number(4) Blank (space ID of the area included in or
character excluded from the deal component.
string). Valid values are on the AREA table.

If org. level is 2, this field and chain
must not be blank.

Region Number(4) Blank (space ID of the region included in or
character excluded from the deal component.
string). Valid values are on the REGION

table.
If org. level is 3, this field, area, and
chain must not be blank.

District Number(4) Blank (space ID of the district included in or
character excluded from the deal component.
string). Valid values are on the DISTRICT

table.

If org. level is 4, then this field,
region, area, and chain must not be
blank.

Volume 4 — Batch designs 101

Record Field Name Field Type Default Value Description/Constraints
Name

Location Number(10) Blank (space | ID of the location included in or
character excluded from the deal component.
string). Valid values are on the STORE,

WH, or LOC_LIST HEAD table.
If org. level is 5, this field must not
be blank. Chain, area, region, and
district should be blank if the
loc_type is L or W. If'the loc_type
is S, then they all must not be blank.
If Location Type is not blank, then
Location must not be blank.
Otherwise it has to be blank.

Origin Char(3) Blank (space | Origin country of the item that the

Country character deal component should apply to.

Identifier string)

Location Type | Char(1) Blank (space | Type of the location referenced in
character the location field. Valid values are
string) 'S"and 'W'. Location types will be

held on the codes table under the
code type 'LOC3'.

If location is blank then this field
has to be blank also.

Item Char(25) Blank (space | Unique alphanumeric value that
character identifies the item.
string)

If Merchandise Level is 12, then
Item must not be blank.
Exclusion Char(1) REQUIRED Indicates if the deal component
Indicator item/location line is included in the
deal component or excluded from it.
Valid values are 'Y' for yes or 'N' for
no.
Reference Number(10) REQUIRED This value determines which line in
Line the input file this item-loc record

belongs to. See the section XIII
Design Assumptions for more
explanation on how this field should
be populated.

102 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).

File Line Numeric Sequential ID of current line being read from

Identifier ID(10) number input file.

Created by
program.

Transaction Numeric Sequential Number of records/transactions in

Record ID(6) number current transaction set (only records

Counter Created by between thead & ttail)

program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.

Descriptor

File Line Numeric Sequential ID of current line being read from

Identifier ID(10) number input file.

Created by
program.

Transaction Char(5) PPDTL Identifies file record type of sub

Detail Record loop as Proof of Performance Detail.

Type

Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal proof of performance details.

Descriptor

File Line Numeric Sequential ID of current line being read from

Identifier ID(10) number input file.

Created by
program.

Deal Sub Item | Char(25) Specific transaction level (or below)
item that’s proof of performance is
being measured. This can be
populated when the deal itself is on
a case UPC but the proof of
performance is on an individual
selling unit.

Proof of Char(6) REQUIRED Code that identifies the proof of

Performance performance type (i.e. term is that

Type the item must be displayed on an

end cap for 28 days - the pop_type
is code 'E' for end cap display).
Valid values for this field are stored
in the code type = 'PPT'. This field
is required by the database.

Volume 4 — Batch designs 103

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Proof of
Performance
Value

Number(20,4)

All Os.

Value that describes the term of the
proof of performance type (i.e. term
is that the item must be displayed on
an end cap for 28 days - the
pop_value is 28). This field is
required by the database if the
record has a pop value type.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

Proof of
Performance
Value Type

Char(6)

Blank (space
character
string)

Value that describes the type of the
pop_value (i.e. term is that the item
must be displayed on an end cap for
28 days - the pop_value type is the
code 'D' for days). Valid values for
this field are stored in the code type
='PPVT'". This field is required by
the database if the record has a
pop_value.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

Vendor
Recommende
d Start Date

Char(14)

Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
begin.

Vendor
Recommende
d End Date

Char(14)

Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
end.

Planned Start
Date

Char(14)

Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to begin the POP.

Planned End
Date

Char(14)

Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to end the POP.

104 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Comment Char(255) Blank (space | Free-form comments.
character
string)
Reference Number(10) REQUIRED This value determines which line in
Line the input file this Proof of
Performance record belongs to. See
the Assumptions section for more
explanation on how this field should
be populated.
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DTDTL Identifies file record type of sub
Detail Record loop as Deal Component Threshold
Type Detail.
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal threshold details.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by

program.

Volume 4 — Batch designs 105

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Lower Limit

Number(20,4)

REQUIRED

Lower limit of the deal component.
This is the minimum value that must
be met in order to get the specified
discount. This value will be either a
currency amount or quantity value,
depending on the value in the

deal detail.threshold limit type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Upper Limit

Number(20,4)

REQUIRED

Upper limit of the deal component.
This is the maximum value for
which the specified discount will
apply. This value will be either a
currency amount or quantity value,
depending on the value in the

deal detail.threshold limit type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Value

Number(20,4)

REQUIRED

Value of the discount that will be
given for meeting the specified
thresholds for this deal component.
This value will be either a currency
amount or quantity value, depending
on the value in the

deal detail.threshold value type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Target Level
Indicator

Char(1)

REQUIRED

Indicates if a threshold level is the
targeted purchase or sales level for a
deal component. This indicator will
be used for cost calculations. Valid
values are 'Y' for yes and 'N' for no.

Reference
Line

Number(10)

REQUIRED

This value determines which line in
the input file this Threshold record
belongs to. See the Assumptions
section for more explanation on how
this field should be populated.

106 Retek Merchandising System

Record Field Name Field Type Default Value Description/Constraints
Name
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
File File Line Char(5) FTAIL Identifies file record type (the end of
Trailer Identifier the input file).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
File Record Numeric Sequential Number of records/transactions in
Counter ID(10) number current file (only records between
Created by head & tail)
program.
Output Specifications
‘Table-To-Table’
Reject File
Record Field Name | Field Type | Default Value Description/Constraints
Name
File File Type Char(5) FHEAD Identifies file record type (the
Header Record beginning of the input file).
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
File Type Char(5) EDIDU Identifies file as ‘EDI Deals
Definition Upload’

File Create
Date

Char(14)

Create date

current date, formatted to
“YYYYMMDDHH24MISS.

Volume 4 — Batch designs 107

Record Field Name | Field Type | Default Value Description/Constraints
Name
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal header.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DHDTL Identifies file record type Deal
Detail Record Header. This record MUST BE
Type FOLLOWED BY ONE AND
ONLY ONE REQUIRED TDETL
RECORD that holds the deal head
information.
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record a new deal.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Partner Type Char(6) REQUIRED Type of the partner the deal applies

to. Valid values are ‘S’ for a
supplier, 'S1' for supplier hierarchy
level 1 (e.g. manufacturer), 'S2' for
supplier hierarchy level 2 (e.g.
distributor) and 'S3' for supplier
hierarchy level 3 (e.g. wholesaler).
Descriptions of these codes will be
held on the codes table under a
code type of 'SUHL'.

Information pertaining to a single
deal has to belong to the same
supplier, since a deal may have only
one supplier hierarchy associated
with it. Only items with the same
supplier hierarchy can be on the
same deal. Supplier hierarchy is
stored at an item / supplier / country
/ location level.

108 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Partner Id

Char(10)

Blank (space
character
string)

Level of supplier hierarchy (e.g.
manufacturer, distributor or
wholesaler), set up as a partner in
the PARTNER table, used for
assigning rebates by a level other
than supplier. Rebates at this level
will include all eligible
supplier/item/country records
assigned to this supplier hierarchy
level.

This field is required if the Partner
Type field was set to ‘S1°, “S2’ or
‘S3°. This field must be blank if the
Partner Type field was set to ‘S’.

Supplier

Number(10
)

Blank (space
character
string)

Deal supplier's number. This
supplier can be at any level of
supplier hierarchy.

This field is required if the Partner
Type field was set to ‘S’. This field
must be blank if the Partner Type
field was set to ‘S1°, ‘S2’ or ‘S3°.

Type

Char(6)

REQUIRED

Type of the deal. Valid values are
A for annual deal, P for promotional
deal, O for PO-specific deal or M
for vendor-funded markdown. Deal
types will be held on the codes table
under a code type of 'DLHT".

Currency
Code

Char(3)

Blank (space
character
string)

Currency code of the deal's
currency. All costs on the deal will
be held in this currency.

If Type is 'O', 'P' or 'A', then
Currency Code may not be blank.
Currency Code has to be blank if
Type is 'M'".

Active Date

Char(14)

REQUIRED

Date the deal will become active.
This date will determine when deal
components begin to be factored
into item costs. For a PO-specific
deal, the active date will be the
order's written date.

Volume 4 — Batch designs 109

Record Field Name | Field Type | Default Value Description/Constraints
Name
Close Date Char(14) Blank (space | Date the deal will/did end. This
character date determines when deal
string) components are no longer factored
into item costs. It is optional for
annual deals, required for
promotional deals. It will be left
NULL for PO-specific deals.
Close Date must not be blank if
Type is 'P' or ‘M’. Close Date has to
be blank if Type is 'O".
External Char(30) Blank (space | Any given external reference
Reference character number that is associated with the
Number string) deal.
Order Number | Number(8) | Blank (space | Order the deal applies to, if the deal
character is PO-specific.
string)
Recalculate Char(1) REQUIRED Indicates if approved orders should
Approved be recalculated based on this deal
Orders once the deal is approved. Valid
values are Y for yes or N for no.
Valid values are ‘Y’ and ‘N’.
Comments Char(2000) | Blank (space | Free-form comments entered with
character the deal.
string)
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail). For DHDTL
program. TDETL records this will always be
1!
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.
Descriptor

110 Retek Merchandising System

Record Field Name | Field Type | Default Value Description/Constraints
Name
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DCDTL Identifies file record type of sub
Detail Record loop as Deal Component Detail.
Type
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal components.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Deal Char(6) REQUIRED Type of the deal component, user-
Component defined and stored on the
Type DEAL_COMP_TYPE table.
Application Number(10 | Blank (space | Number indicating the order in
Order) character which the deal component should be
string) applied with respect to any other
deal components applicable to the
item within the deal. This number
will be unique across all deal
components within the deal. It must
be NULL for an M-type deal
(vendor funded markdown).
Billing Type Char(6) REQUIRED Billing type of the deal component.

Valid values are 'Ol' for off-invoice,
'BD' for bill-back with debit memo
or 'BC' for bill-back with credit note
request. Billing types will be held
on the codes table under a code type
of 'DLBT".

Volume 4 — Batch designs 111

Record Field Name | Field Type | Default Value Description/Constraints
Name
Bill Back Char(6) Blank (space | Code that identifies the bill-back
Period character period for the deal component. This
string) field will only be populated for
billing types of 'BD' or 'BC'. Bill
back period codes will be user-
defined and stored on the
BILL BACK PERIOD table.
If Billing Type is 'BD' or 'BC' then
Bill Back Period must not be blank,
otherwise it has to be blank.
Collect Start Char(14) Blank (space | Date that collection of the bill-back
Date character should begin.
string)
If Billing Type is 'BD' or 'BC' then
Collect Start Date must not be
blank, otherwise it has to be blank.
Collect End Char(14) Blank (space | Date that collection of the bill-back
Date character should end.
string)
If Billing Type is 'BD' or 'BC' then
Collect End Date must not be blank,
otherwise it has to be blank.
Deal Char(6) Blank (space | Indicates when the deal component
Application character should be applied - at PO approval
Timing string) or time of receiving. Valid values
are 'O’ for PO approval, 'R' for
receiving. These values will be held
on the codes tables under a code
type of 'AALC'. It must be NULL
for an M-type deal (vendor funded
markdown).
Cost Char(6) Blank (space | Indicates what cost bucket the deal
Application character component should affect. Valid
Level string) values are 'N' for net cost, NN' for
Indicator net net cost and 'DNN' for dead net

net cost. These values will be held
on the codes tables under a code
type of 'DLCA'". It must be NULL
for an M-type deal (vendor funded
markdown).

112 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Pricing Cost
Indicator

Char(1)

REQUIRED

Identifies deal components that
should be included when calculating
a pricing cost.

Valid values are ‘Y’es and ‘N’o.

Deal Class

Char(6)

Blank (space
character
string)

Identifies the calculation class of the
deal component. Valid values are
'CU' for cumulative (discounts are
added together and taken off as one
lump sum), 'CS' for cascade
(discounts are taken one at a time
with subsequent discounts taken off
the result of the previous discount)
and 'EX' for exclusive (overrides all
other discounts). 'EX' type deal
components are only valid for
promotional deals. Deal classes will
be held on the codes table under a
code type of 'DLCL'". It must be
NULL for an M-type deal (vendor
funded markdown).

Threshold
Limit Type

Char(6)

Blank (space
character
string)

Identifies whether thresholds will be
set up as qty values, currency
amount values or percentages
(growth rebates only). Valid values
are 'Q' for qty, 'A' for currency
amount or 'P' for percentage.
Threshold limit types will be held
on the codes table under a code type
of 'DLLT'". It must be NULL for an
M-type deal (vendor funded
markdown) or if the threshold value
type is ‘Q’ (buy/get deals).

If Growth Rebate Indicator is 'Y",
then the Threshold Limit Type has
to be 'P', otherwise 'Q', 'A' or NULL.

Volume 4 — Batch designs 113

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Threshold
Limit Unit of
Measure

Char(4)

Blank (space
character
string)

Unit of measure of the threshold
limits, if the limit type is quantity.
Only Unit of Measures with a UOM
class of 'VOL' (volume), 'MASS' or
'QTY" (quantity) can be used in this
field. Valid Unit of Measures can be
found on the UOM_CLASS table.

If the Threshold Limit Type is 'A' or
'P', then Threshold Limit Unit of
Measure has to be blank. If the
Threshold Limit Type is 'Q',
Threshold Limit Unit of Measure
must not be blank. If Threshold
Limit Type is blank, Threshold
Limit Unit of Measure must be
blank.

Threshold
Value Type

Char(6)

Blank (space
character
string)

Identifies whether the discount
values associated with the
thresholds will be set up as qty
values, currency amount values,
percentages or fixed amounts. Valid
values are 'Q' for qty, 'A' for
currency amount, 'P' for percentage
or 'F' for fixed amount. Qty
threshold value (buy/get) deals are
only allowed on off-invoice
discounts. Deal threshold value
types will be held on the codes table
under a code type of 'DLL2'". It
must be NULL for an M-type deal
(vendor funded markdown).

If Billing Type is 'BD' or 'BC', then
the Threshold Value Type must not
be 'Q'.

Buy Item

Char(25)

Blank (space
character
string)

Identifies the item that must be
purchased for a quantity threshold-
type discount. This value is
required for quantity threshold value
type discounts. Otherwise it has to
be blank.

114 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Get Type

Char(6)

Blank (space
character
string)

Identifies the type of the 'get'
discount for a quantity threshold-
type (buy/get) discount. Valid
values include 'X' (free), 'P'
(percent), 'A' (amount) and 'F' (fixed
amount). They are held on the
codes table under a code type of
'DQGT". This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

Get Value

Number(20
4)

All 0s.

Identifies the value of the 'get’
discount for a quantity threshold-
type (buy/get) discount that is not a
'free goods' deal. The Get Type
above identifies the type of this
value. This value is required for
quantity threshold value type deals
that are not a Get Type of free.
Otherwise it has to be 0.

If Get Type is ‘P’, ‘A’ or ‘F’, then

Get Value must not be blank. If the
Get Type is ‘X’ or blank, then Get

Value has to be blank.

Buy Item
Quantity

Number(12
4)

All 0s.

Identifies the quantity of the
threshold 'buy' item that must be
ordered to qualify for the 'free' item.
This value is required for quantity
threshold value type discounts.
Otherwise it has to be 0.

Recursive
Indicator

Char(1)

REQUIRED

For 'buy/get free' discounts,
indicates if the quantity threshold
discount is only for the first 'buy
amt.' purchased (e.g. for the first 10
purchased, get 1 free), or if a free
item will be given for every multiple
of the 'buy amt' purchased on the
order (e.g. for each 10 purchased,
get 1 free). Valid values are 'Y' for
yes or 'N' for no.

If the Get Type is blank, then
Recursive Indicator has to be ‘N’.

Volume 4 — Batch designs 115

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Buy Item
Order Target
Quantity

Number(12
4)

All 0s.

Indicates the targeted purchase level
for all locations on a purchase order.
This is the target level that will be
used for future calculation of net
cost. This value is required for
quantity threshold value type deals.
Otherwise it has to be 0.

Average Buy
Item Order
Target
Quantity Per
Location

Number(12
4)

All 0s.

Indicates the average targeted
purchase level per location on the
deal. This value will be used in
future cost calculations. This value
is required for quantity threshold
value type deals. Otherwise it has to
be 0.

Get Item

Char(25)

Blank (space
character
string)

Identifies the 'get' item for a
quantity threshold-type (buy/get)
discount. This value is required for
quantity threshold value deals.
Otherwise it has to be blank.

If Get Type is ‘P’, “‘A’, ‘F’ or ‘X,
then Get Item must not be blank. If
the Get Type is blank, then Get Item
has to be blank.

Get Quantity

Number(12
4)

All Os.

Identifies the quantity of the
identified 'get' item that will be
given at the specified 'get' discount
if the 'buy amt' of the buy item is
purchased. This value is required
for quantity threshold value type
discounts. Otherwise it has to be 0.

If Get Type is ‘P, ‘A’, ‘F’ or ‘X,
then Get Quantity must not be 0. If
the Get Type is blank, then Get
Quantity has to be 0.

116 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Free Item Unit
Cost

Number(20
4)

All 0s.

For 'buy/get free' discounts,
identifies the unit cost of the
threshold 'free' item that will be
used in calculating the prorated qty.
discount. It will default to the
item/supplier cost, but can be
modified based on the agreement
with the supplier. It must be greater
than zero as this is the cost that
would normally be charged for the
goods if no deal applied.

If Get Type is ‘P’, ‘A’, ‘F’ or blank,
then Free Item Unit Cost must be 0.
If the Get Type is ‘X’, then Free
Item Unit Cost must not be 0.

Transaction
Level
Discount
Indicator

Char(1)

REQUIRED

Indicates if the discount is a
transaction-level discount (e.g. 10%
across an entire PO).

Valid Values are 'Y' or 'N'. If set to
‘Y’, Deal Class has to be ‘CU’ and
Billing Type has to be ‘OI’. No
DIDTL or PPDTL records may be
present for a Transaction Level
Discount DCDTL record.

Rebate
Indicator

Char(1)

REQUIRED

Indicates if the deal component is a
rebate. Deal components can only
be rebates for bill-back billing types.
Valid values are "Y' for yes or 'N' for
no.

If Billing Type is 'OI', then Rebate
Indicator must be 'N'.

Rebate Active
Date

Char(14)

Blank (space
character
string)

If the rebate becomes active on a
different date than the deal active
date, this field will hold that date. If
this field is NULL for a rebate line,
it will be assumed that the rebate
becomes active on the deal active
date.

Volume 4 — Batch designs 117

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Rebate
Calculation

Type

Char(6)

Blank (space
character
string)

Indicates if the rebate should be
calculated using linear or scalar
calculation methods. Valid values
are 'L' for linear or 'S' for scalar.
This field will be required if the
rebate indicator is 'Y'. Rebate
calculation types will be held on the
codes table under a code type of
'DLCT".

If Rebate Indicator is 'Y", then
Rebate Calculation Type must not
be blank. Otherwise it has to be
blank.

Growth
Rebate
Indicator

Char(1)

REQUIRED

Indicates if the rebate is a growth
rebate, meaning it is calculated and
applied based on an increase in
purchases or sales over a specified
period of time. Valid values are 'Y"
for yes or 'N' for no.

If Rebate Indicator is 'N', then
Growth Rebate Indicator must be
‘N°.

Historical
Comparison
Start Date

Char(14)

Blank (space
character
string)

The first date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is "Y',
then Historical Comparison Start
Date must not be blank. Otherwise it
must be blank.

118 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Historical
Comparison
End Date

Char(14)

Blank (space
character
string)

The last date of the historical period
against which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y",
then Historical Comparison End
Date must not be blank. Otherwise it
must be blank.

Current
Comparison
Start Date

Char(14)

Blank (space
character
string)

The first date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is 'Y",
then Current Comparison Start Date
must not be blank. Otherwise it
must be blank.

Current
Comparison
End Date

Char(14)

Blank (space
character
string)

The last date of the current/future
period during which growth will be
measured in this growth rebate.
Note performance and the rebate
amount are not calculated - this field
is for informational/reporting
purposes only.

If Growth Rebate Indicator is "Y',
then Current Comparison End Date
must not be blank. Otherwise it
must be blank.

Volume 4 — Batch designs 119

Record Field Name | Field Type | Default Value Description/Constraints
Name
Rebate Char(6) Blank (space | Indicates if the rebate should be
Purchases or character applied to purchases or sales. Valid
Sales string) values are 'P' for purchases or 'S' for
Application sales. It will be required if the
Indicator rebate indicator is 'Y'. Rebate
purchase/sales indicators will be
held on the codes table under a code
type of 'DLRP".
If the Rebate Indicator is 'Y', then
the Rebate Purchases or Sales
Application Indicator must not be
blank. Otherwise it has to be blank.
Comments Char(2000) | Blank (space | Free-form comments entered with
character the deal component.
string)
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DIDTL Identifies file record type of sub
Detail Record loop as Deal Component Item-
Type location Detail.
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal item-location details.
Descriptor

120 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

File Line
Identifier

Numeric
ID(10)

Sequential
number

Created by
program.

ID of current line being read from
input file.

Merchandise
Level

Char(6)

REQUIRED

Indicates what level of the
merchandise hierarchy the record is
at. Valid values include '1' for
company-wide (all items), 2' for
division, '3' for group, '4' for dept, '5'
for class, '6' for subclass, '7' for line,
'8' for line/diff 1, '9' for line/diff 2,
'10" for line/diff 3, '11' for line/diff
4 and '12' for item. These level
types will be held on the codes table
under a code type of 'DIML".

Company
Indicator

Char(1)

REQUIRED

Indicates if the deal component is
applied company-wide (e.g. all
items in the system will be included
in the discount or rebate). Valid
values are 'Y" for yes and 'N' for no.

Division

Number(4)

Blank (space
character
string).

ID of the division included in or
excluded from the deal component.
Valid values are on the DIVISION
table.

If Group is not blank, then Division
must not be blank. If Merchandise
Level is 2, then Division must not
be blank and Group, Department,
Class and Subclass must be blank.

Group

Number(4)

Blank (space
character
string).

ID of the group included in or
excluded from the deal component.
Valid values are on the GROUPS
table.

If Department is not blank, then
Group must not be blank. If
Merchandise Level is 3, then Group
must not be blank and Department,
Class and Subclass must be blank.

Volume 4 — Batch designs 121

Record Field Name | Field Type | Default Value Description/Constraints
Name
Department Number(4) | Blank (space | ID of the department included in or
character excluded from the deal component.
string). Valid values are on the DEPS table.
If Class is not blank, then
Department must not be blank. If
Merchandise Level is 4, then
Department must not be blank and
Class and Subclass must be blank.
Class Number(4) | Blank (space ID of the class included in or
character excluded from the deal component.
string). Valid values are on the CLASS
table.
If Subclass is not blank, then Class
must not be blank. If Merchandise
Level is 5, then Class must not be
blank and Subclass must be blank.
Subclass Number(4) | Blank (space ID of the subclass included in or
character excluded from the deal component.
string). Valid values are on the SUBCLASS
table.
If Merchandise Level is 6 or more
than 6, then Subclass must not be
blank.
Item Parent Char(25) Blank (space Alphanumeric value that uniquely
character identifies the item/group at the level
string) above the item. This value must

exist as an item in another row on
the item master table.

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).

122 Retek Merchandising System

Record Field Name | Field Type | Default Value Description/Constraints
Name
Item Char(25) Blank (space | Alphanumeric value that uniquely
Grandparent character identifies the item/group two levels
string) above the item. This value must
exist as both an item and an item
parent in another row on the
item_master table.
If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to
be given).
Diff 1 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 1 must be blank.
If Merchandise Level is 8, then Diff
1 must not be blank.
Diff 2 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 2 must be blank.
If Merchandise Level is 9, then Diff
2 must not be blank.
Diff 3 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.
If Item Grandparent and Item Parent
are blank, then Diff 3 must be blank.
If Merchandise Level is 10, then
Diff 3 must not be blank.
Diff 4 Char(10) Blank (space | Diff group or diff id that
character differentiates the current item from
string) its item_parent.

If Item Grandparent and Item Parent
are blank, then Diff 4 must be blank.
If Merchandise Level is 11, then
Diff 4 must not be blank.

Volume 4 — Batch designs 123

Record Field Name | Field Type | Default Value Description/Constraints
Name

Organizationa | Char(6) Blank (space | Indicates what level of the

1 Level character organizational hierarchy the record
string) is at. Valid values include 'l' for

chain, '2' for area, '3' for region, '4'
for district and '5' for location.
These level types will be held on the
codes table under a code type of
'DIOL'.

If company indicator is N, this must
not be blank. Iflocation type is
warehouse or location list, this must
be 5.

Chain Number(4) | Blank (space | ID of the chain included in or
character excluded from the deal component.
string). Valid values are on the CHAIN

table.
If org. level is 1, this field must not
be blank.

Area Number(4) | Blank (space | ID of the area included in or
character excluded from the deal component.
string). Valid values are on the AREA table.

If org. level is 2, this field and chain
must not be blank.

Region Number(4) | Blank (space | ID of the region included in or
character excluded from the deal component.
string). Valid values are on the REGION

table.
If org. level is 3, this field, area, and
chain must not be blank.

District Number(4) | Blank (space | ID of the district included in or
character excluded from the deal component.
string). Valid values are on the DISTRICT

table.

If org. level is 4, then this field,
region, area, and chain must not be
blank.

124 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Location

Number(10
)

Blank (space
character
string).

ID of the location included in or
excluded from the deal component.
Valid values are on the STORE,
WH, or LOC_LIST HEAD table.

If org. level is 5, this field must not
be blank. Chain, area, region, and
district should be blank if the
loc_type is L or W. Ifthe loc_type
is S, then they all must not be blank.

If Location Type is not blank, then
Location must not be blank.
Otherwise it has to be blank.

Origin
Country
Identifier

Char(3)

Blank (space
character
string)

Origin country of the item that the
deal component should apply to.

Location Type

Char(1)

Blank (space
character
string)

Type of the location referenced in
the location field. Valid values are
'S"and 'W'. Location types will be
held on the codes table under the
code type 'LOC3'.

If location is blank then this field
has to be blank also.

Item

Char(25)

Blank (space
character
string)

Unique alphanumeric value that
identifies the item.

If Merchandise Level is 12, then
Item must not be blank.

Exclusion
Indicator

Char(1)

REQUIRED

Indicates if the deal component
item/location line is included in the
deal component or excluded from it.
Valid values are 'Y' for yes or 'N' for
no.

Reference
Line

Number(10
)

REQUIRED

This value determines which line in
the input file this item-loc record
belongs to. See the section XIII
Design Assumptions for more
explanation on how this field should
be populated.

Transacti
on Trailer

File Line
Identifier

Char(5)

TTAIL

Identifies file record type (the end of
the transaction detail).

Volume 4 — Batch designs 125

Record Field Name | Field Type | Default Value Description/Constraints
Name
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.

Transaction Numeric Sequential Number of records/transactions in

Record ID(6) number current transaction set (only records

Counter Created by between thead & ttail)

program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.

Descriptor

File Line Numeric Sequential ID of current line being read from

Identifier ID(10) number input file.

Created by
program.

Transaction Char(5) PPDTL Identifies file record type of sub

Detail Record loop as Proof of Performance Detail.

Type

Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal proof of performance details.

Descriptor

File Line Numeric Sequential ID of current line being read from

Identifier ID(10) number input file.

Created by
program.

Deal Sub Item | Char(25) Specific transaction level (or below)
item that’s proof of performance is
being measured. This can be
populated when the deal itself is on
a case UPC but the proof of
performance is on an individual
selling unit.

Proof of Char(6) REQUIRED Code that identifies the proof of

Performance performance type (i.e. term is that

Type the item must be displayed on an

end cap for 28 days - the pop_type
is code 'E' for end cap display).
Valid values for this field are stored
in the code_type = 'PPT'. This field
is required by the database.

126 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Proof of
Performance
Value

Number(20
4)

All 0s.

Value that describes the term of the
proof of performance type (i.e. term
is that the item must be displayed on
an end cap for 28 days - the
pop_value is 28). This field is
required by the database if the
record has a pop value type.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

Proof of
Performance
Value Type

Char(6)

Blank (space
character
string)

Value that describes the type of the
pop_value (i.e. term is that the item
must be displayed on an end cap for
28 days - the pop_value type is the
code 'D' for days). Valid values for
this field are stored in the code type
='PPVT'". This field is required by
the database if the record has a
pop_value.

If Proof of Performance Value is not
blank, then Proof of Performance
Value Type must not be blank. If
Proof of Performance Value is
blank, then Proof of Performance
Value Type must be blank.

Vendor
Recommende
d Start Date

Char(14)

Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
begin.

Vendor
Recommende
d End Date

Char(14)

Blank (space
character
string)

This column holds the date that the
vendor recommends that the POP
end.

Planned Start
Date

Char(14)

Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to begin the POP.

Planned End
Date

Char(14)

Blank (space
character
string)

This column holds the date that the
merchandiser/category manager
plans to end the POP.

Volume 4 — Batch designs 127

Record Field Name | Field Type | Default Value Description/Constraints
Name
Comment Char(255) | Blank (space | Free-form comments.
character
string)
Reference Number(10 | REQUIRED This value determines which line in
Line) the input file this Proof of
Performance record belongs to. See
the Assumptions section for more
explanation on how this field should
be populated.
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
Transacti | File Type Char(5) THEAD Identifies file record type to upload
on Header | Record a new deal sub loop.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Char(5) DTDTL Identifies file record type of sub
Detail Record loop as Deal Component Threshold
Type Detail.
Transacti | File Type Char(5) TDETL Identifies file record type to upload
on Detail | Record deal threshold details.
Descriptor
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.

128 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description/Constraints

Lower Limit

Number(20
4)

REQUIRED

Lower limit of the deal component.
This is the minimum value that must
be met in order to get the specified
discount. This value will be either a
currency amount or quantity value,
depending on the value in the

deal detail.threshold limit type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Upper Limit

Number(20
4)

REQUIRED

Upper limit of the deal component.
This is the maximum value for
which the specified discount will
apply. This value will be either a
currency amount or quantity value,
depending on the value in the

deal detail.threshold limit type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Value

Number(20
4)

REQUIRED

Value of the discount that will be
given for meeting the specified
thresholds for this deal component.
This value will be either a currency
amount or quantity value, depending
on the value in the

deal detail.threshold value type
field of this deal component
(Threshold Value Type field of the
DCDTL record that this DTDTL
record belongs to as specified in the
reference line field).

Target Level
Indicator

Char(1)

REQUIRED

Indicates if a threshold level is the
targeted purchase or sales level for a
deal component. This indicator will
be used for cost calculations. Valid
values are 'Y' for yes and 'N' for no.

Reference
Line

Number(10
)

REQUIRED

This value determines which line in
the input file this Threshold record
belongs to. See the Assumptions
section for more explanation on how
this field should be populated.

Volume 4 — Batch designs 129

Record Field Name | Field Type | Default Value Description/Constraints
Name
Transacti | File Line Char(5) TTAIL Identifies file record type (the end of
on Trailer | Identifier the transaction detail).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead & ttail)
program.
File File Line Char(5) FTAIL Identifies file record type (the end of
Trailer Identifier the input file).
File Line Numeric Sequential ID of current line being read from
Identifier ID(10) number input file.
Created by
program.
File Record Numeric Sequential Number of records/transactions in
Counter ID(10) number current file (only records between
Created by head & tail)
program.

Information from the input file is uploaded into the following Deals Management

tables:

e DEAL HEAD
e DEAL DETAIL

e DEAL THRESHOLD

e DEAL ITEMLOC
e POP TERMS_DEF

130 Retek Merchandising System

Function Level Description

main()
\ ¢ v
nit() file proces final()
|

—®» Process DHDTL() [—® Validate DHDTL()

—®» Process DCDTL() [—® Validate DCDTL()

—®| Process DIDTLY() Validate DIDTL()

—® Process PPDTL() Validate PPDTL()

—» Process DTDTL() [Validate DTDTL()

—» Verify DCDTL() Validate item()

Validate item supplie <€—
v ~ 47

—» Insert_data()
—>

Write_reject()

Find line number()

Validate item_hier()

Validate loc_hier()

4.

Volume 4 — Batch designs 131

Declare reject file line number counter(s) and structs to hold data fetched from
input file until one deal is complete and to process validation. Declare global
variables as needed. The following single record structs are needed:

e A struct to hold the FHEAD record.
e A struct to hold the THEAD record.

e A struct to hold the DHDTL record + system fields for the insert into RMS
(eg: deal id, line-number).

Declare sizeable structs to hold the potentially multi-line sub loops of a DHDTL
record from the input file:

e A struct to hold TDETL of DCDTL records + system fields for the insert into
RMS (eg: deal id, line-number).

e A struct to hold TDETL of DIDTL records + system fields for the insert into
RMS (eg: deal id, line-number).

e A struct to hold TDETL of DTDTL records + system fields for the insert into
RMS (eg: deal_id).

e A struct to hold TDETL of PPDTL records + system fields for the insert into
RMS (eg: deal id).

Main(): Standard RETEK main function.

e Logonto DATABASE.

e (Calls init(), process() and final().

e Log appropriate messages for batch run based on return from above calls.

Init(): Handles restart/recovery initialization, populates global system variables
for batch run. Opens input file, and reject output file.

Size_structs(): This function will size the four sizeable structs:

e A struct to hold TDETL of DCDTL records.

e A struct to hold TDETL of DIDTL records.

e A struct to hold TDETL of DTDTL records.

e A struct to hold TDETL of PPDTLrecords.

Resize DCDTL _array(): grows the struct to hold TDETL of DCDTL records.
Resize DIDTL array(): grows the struct to hold TDETL of DDTL records.
Resize DTDTL array(): grows the struct to hold TDETL of DTDTL records.
Resize PPDTL _array(): grows the struct to hold TDETL of PPDTL records.

File process(): This function will call the rest of the functions necessary to
process the input file while it loops through the input file.

e Call size structs().

e Loop-get records from input file:

132 Retek Merchandising System

= Save current file position of this record into a local variable in case
something in the deal gets rejected and we need to write the entire
deal and its sub-records to the reject file.

= When FTAIL record is reached, break out of loop.

» Get THEAD record, make sure it signals a DHDTL record to follow.
» Call process DHDTLY().

= Get THEAD record, make sure it signals a DCDTL record to follow.
= Call process DCDTL().

» Get THEAD record, make sure it signals a DIDTL record to follow.
= (all process DIDTL().

= Get THEAD record, make sure it signals a PPDTL record to follow.
= Call process PPDTL().

* Get THEAD record, make sure it signals a DTDTL record to follow.
= (Call process DTDTL().

= If sub function returned code to signal a failed validation, set a local
variable to reflect a non-fatal error.

= (Call insert_data() or write reject() depending on whether any non-
fatal errors have been recorded.

= Set restart variables and force a commit.
e Return.
Process DHDTL(): This function manages the processing of a DHDTL record.
e Fetch new deal id.
e Get next line from input file, verify that it holds a TDETL.

e Insert DHDTL record from generic file-read buffer to the DHDTL struct,
perform any nullpad or zeropad as necessary. Also insert line number of
record into struct.

e Validate the DHDTL record by calling validate DHDTL().

e Ifvalidation failed, write a non-fatal error and set return code so that
file process() knows it needs to dump records into the reject file.

e Ifvalidation of the DHDTL record passed, return code representing this
status.

Validate. DHDTL(): Check information fetched from file to make sure it is
complete and accurate.

e Make sure all required fields have a value other than the default.

e Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

e If an order number is given, verify it exists in RMS.

Volume 4 — Batch designs 133

e Ifasupplier is given, verify it exists in RMS.

Process DCDTL(): This function manages the processing of DCDTL records.
e Create deal detail id.

e Loop process:

* Get next line from input file, verify that it holds a TDETL. Ifitis a
TTAIL, break.

* Insert DCDTL record from generic file-read buffer to the DCDTL
struct, perform any nullpad or zeropad as necessary. Also insert line
number of record, deal id and deal detail id into struct.

= Validate DCDTL record by calling validate DCDTL().

= [fvalidation failed, write a non-fatal error and set return code so that
file process() knows it needs to dump records into the reject file.

= [fwvalidation passed, go on processing the next record after
incrementing counters and variables as necessary.

Validate DCDTL(): Check information fetched from file to make sure it is
complete and accurate.

e Make sure all required fields have a value other than the default.

e Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Process DIDTL(): This function manages the processing of DIDTL records.
e (Create seq_no.
e Loop process:

= Get next line from input file, verify that it holds a TDETL. If itis a
TTAIL, break.

* Insert DIDTL record from generic file-read buffer to the DIDTL struct,
perform any nullpad or zeropad as necessary. Also insert line number of
record and seq_no into struct.

* Validate DIDTL record by calling validate DIDTLY().

* Call find line number() to get the index of the record and which struct
the record is in that this DIDTL record belongs to. At this level, verify
that the line number was found in the DCDTL struct and copy over the
deal id and deal detail id into this struct. If the referenced DCDTL
record that this DIDTL record belongs to has a type ‘M’ (vendor-funded
markdown), there must be no DIDTL records. If the DCDTL record this
DIDTL record is associated with is a Transaction Level Discount, write
an error message.

= [fvalidation failed, write a non-fatal error and set return code so that
file process() knows it needs to dump records into the reject file.

= Ifvalidation passed, go on processing the next record after incrementing
counters and variables as necessary.

134 Retek Merchandising System

Validate DIDTL(): Check information fetched from file to make sure it is
complete and accurate.

Make sure all required fields have a value other than the default.

Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Process PPDTL(): This function manages the processing of PPDTL records.

Create pop_def seq no.
Loop process:

* Get next line from input file, verify that it holds a TDETL. Ifitis a
TTAIL, break.

» Insert PPDTL record from generic file-read buffer to the PPDTL struct,
perform any nullpad or zeropad as necessary. Also insert
pop_def seq no into struct.

» Validate PPDTL record by calling validate PPDTL().

» Call find line number() to get the index of the record and which struct
the record is in that this PPDTL record belongs to. Copy over the
deal id, and deal detail id, and seq_no if available into this struct. If the
referenced DCDTL record that this PPDTL record belongs to is a
Transaction Level Deal, there must be no PPDTL records.

= Validate deal sub_item, which needs to be blank unless referenced
record for this PPDTL record is a DIDTL record, in which case
deal sub item must be a child or component item of the item in the
referenced DIDTL record.

= [fvalidation failed, write a non-fatal error and set return code so that
file process() knows it needs to dump records into the reject file.

= Ifvalidation passed, go on processing the next record after incrementing
counters and variables as necessary.

Validate PPDTL(): Check information fetched from file to make sure it is
complete and accurate.

Make sure all required fields have a value other than the default.

Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Make sure that if both Vendor Recommended Start Date and Vendor
Recommended End Date are given, then the start date is before the end date.

Make sure that if both Planned Start Date and Planned End Date are given,
then the start date is before the end date.

Make sure that the current deal is not of type M (Vendor Funded
Markdown). Such deals should have no PPDTL records.

Process DTDTL(): This function manages the processing of DTDTL records.

Volume 4 — Batch designs 135

e Loop process:

» Get next line from input file, verify that it holds a TDETL. If it is a
TTAIL, break.

= Insert DTDTL record from generic file-read buffer to the DTDTL struct,
perform any nullpad or zeropad as necessary.

= Validate DTDTL record by calling validate DTDTL().

= Call find_line_number() to get the index of the record and which struct
the record is in that this DTDTL record belongs to. At this level, verify
that the line number was found in the DCDTL struct and copy over the
deal id, and deal detail id into this struct. If the referenced DCDTL
record that this DTDTL record belongs to has a type ‘M’ (vendor-funded
markdown), there must be no DTDTL records.

= [Ifvalidation failed, write a non-fatal error and set return code so that
file process() knows it needs to dump records into the reject file.

= [fwvalidation passed, go on processing the next record after incrementing
counters and variables as necessary.

Validate DTDTL(): Check information fetched from file to make sure it is
complete and accurate.

e Make sure all required fields have a value other than the default.

e Make sure number fields are all numeric. (For details on what exactly has to
appear and how, refer to the input file specification above. For field
formatting, refer to the Assumptions section.)

Validate item(): Check if item is a valid item in RMS. Item has to be in approved
status, may not be a buyer pack and has to be at or above transaction level.

e Fetch from item_master in RMS to verify the item identifier to be validated
exists in RMS.

Validate item_hier(): Check if item and its merchandise hierarchy is valid in
RMS. Item has to be in approved status, may not be a buyer pack and has to be at
or above transaction level.

e Fetch from item_master, deps, and groups in RMS to verify the item
identifier and its merchandise hierarchy to be validated exists in RMS.

Validate item supplier(): Check if item and supplier relationship is valid in
RMS.

Fetch from item_supplier in RMS to verify the item and supplier relationship is
valid in RMS.

Validate loc_hier(): Check if location and its organizational hierarchy is valid in
RMS. Location may be a store or a physical warehouse only.

e Fetch a union from wh, store, district, region, and area in RMS to verify the
location identifier and its organizational hierarchy to be validated exists in
RMS.

136 Retek Merchandising System

Verify DCDTL(): Check every DCDTL record and verify that:

e If DCDTL record has a billing type of OI (off-invoice) then there are at least
one or more DIDTL records for this DCDTL record.

e IfDCDTL record is a rebate then there are at least one or more DIDTL
records for this DCDTL record.

Find line_number(): Look in DHDTL then loop through the DCDTL and DIDTL
arrays and look for the sequence number given in the argument of this function.
Return the index and which array the line number was found in, or return an error
message if the argument line number was not found in any of the arrays.

Insert_data(): Does a SQL looped insert from all the data structs with the loop
count equaling the struct’s record count. Inserts are performed in the following
order: DHDTL, DCDTL, DIDTL, PPDTL, DTDTL.

Write_reject(): Writes to the reject file one deal record set with all its sub loop
records from the input file.
Scheduling Considerations

This program should run as the first batch of the Deals batch cycle.

Locking Strategy
N/A.

Restart/Recovery
File based.

Performance Considerations
N/A.

Security Considerations
N/A.

Design Assumptions

All fields that are of type Char in the input file format description above should
be left justified and padded with the space character. If the field is not required
and no value is being uploaded, the entire field should be padded with the space
character.

Date fields are always formatted ‘YYYYMMDDHH24MISS’ (Char(14)).

All fields that are of type Number in the input file format description above
should be right justified and padded with Os. If the field is not required and no
value is being uploaded, the entire field should be padded with Os.

Regarding the ordering of records in the input file, we require records to be
looped in the same hierarchy as their corresponding RMS tables are in relation to
each other:

Volume 4 — Batch designs 137

DEAT. HEFA DEAT. DETAT DEAT. TTEMT O

A

DEAT. THRESHOI D

POP TERMS DEF

Or in terms of the input file:

DHDTT. DCDTT. DIDTT.

DTDTT.

PPDTT.

Note: Pop terms def may be associated with a single deal (FDETL), a deal
component (TDETL of DCDTL) or a deal-item-location (TDETL of DIDTL)
record. This ‘or’ type relationship is symbolized by a dashed ‘one-to-one’ line
above.

Note: Buy/Get deals must have only the Buy and Get item(s) on the
DEAL _ITEMLOC table, not more, nor less records.

138 Retek Merchandising System

FHEAD

FTAIL

THEAD

TTAIL
THEAD
[

]
TTAIL
THEAD

[

]
TTAIL
THEAD

[

]
TTAIL
THEAD

[

]
TTAIL

The input file must have the following structure:

of DHDTL REQUIRED for deal head record
TDETL REQUIRED 1 deal head record
REQUIRED end of deal head record
of DCDTL REQUIRED for deal component records
TDETL OPTIONAL for deal component records
REQUIRED end of deal component records
of DIDTL REQUIRED for item-loc records
TDETL OPTIONAL for item-loc records
REQUIRED end of item-loc records
of PPDTL REQUIRED for proof of performance records
TDETL OPTIONAL for proof of performance records
REQUIRED end of proof of performance records
of DTDTL REQUIRED for threshold records
TDETL OPTIONAL for threshold records
REQUIRED end of threshold records

The set between the curly brackets may be looped to upload multiple deals from
the same file. Within each set, the TDETL records in angle brackets may be sub-
looped as a sub-set of the main set.

One set equals one deal. For each set, the first TDETL record is used to upload
the DEAL HEAD (RMS table) table record into RMS. This record is required
and maximum one may exist in each set, and it has to be the first THEAD-
TDETL-TTAIL record group in the set.

The next THEAD-TDETL-TTAIL group holds the DEAL DETAIL (RMS table
for storing deal component records) records of the deal. Multiple TDETL records
may be used between the THEAD and TTAIL records to upload multiple

DEAL DETAIL records for the same deal.

The next THEAD-TDETL-TTAIL group holds the DEAL ITEMLOC (RMS
table) records of the deal. Multiple TDETL records may be used between the
THEAD and TTAIL records to upload multiple DEAL _ITEMLOC records for
the same deal. Note that the line number field in these TDETL records refers to
the input file line number of the DEAL DETAIL record (DCDTL type, as
signaled by preceding THEAD record,) to which this DEAL _ITEMLOC record
belongs. This referenced line must be before current line and after current deal’s
DHDTL record (current deal is most recent DHDTL record in input file).

Volume 4 — Batch designs 139

The next THEAD-TDETL-TTAIL group holds the POP_TERMS DEF (RMS
table for storing proof of performance records) records of the deal. Multiple
TDETL records may be used between the THEAD and TTAIL records to upload
multiple POP_TERMS_DEF records for the same deal. Note that the line number
field in these TDETL records refers to the input file line number of the

DEAL HEAD, DEAL DETAIL, or DEAL _ITEMLOC record (DHDTL,
DCDTL, or DIDTL type, as signaled by preceding THEAD record,) to which this
POP_TERMS_DEF record belongs. Note that a proof of performance record may
belong to a DEAL HEAD, DEAL DETAIL, or DEAL_ITEMLOC record, not
just the DEAL DETAIL record. This referenced line must be before current line
and at or after current deal’s DHDTL record (current deal is most recent DHDTL
record in input file).

The next THEAD-TDETL-TTAIL group holds the DEAL_THRESHOLD (RMS
table) records of the deal. Multiple TDETL records may be used between the
THEAD and TTAIL records to upload multiple DEAL_THRESHOLD records
for the same deal. Note that the line number field in these TDETL records refers
to the input file line number of the DEAL DETAIL record (DCDTL type, as
signaled by preceding THEAD record,) to which this DEAL. THRESHOLD
record belongs. This referenced line must be before current line and after current
deal’s DHDTL record (current deal is most recent DHDTL record in input file).

Note that if a THEAD-TDETL-TTAIL group has no TDETL records, the
THEAD-TTAIL records are still required in the input file, simply no TDETL
records will appear between them. This is for explicitly signaling the fact that no
such sub-records exist for the set.

Note: for an M type deal, no TDETL records of DIDTL, DTDTL or PPDTL type
are allowed. (Vendor-funded markdowns have no records on the
DEAL ITEMLOC, DEAL_THRESHOLD or POP_TERMS_ DEF RMS tables.)

140 Retek Merchandising System

Deal item insert [ditinsrt]

Functional Area

Complex Deals Management

Module Affected
Ditinsrt.pc — Deal Item Insert

Design Overview

This new batch program will populate the DEAL SKU TEMP table with all
items that are on non vendor-funded, non PO-specific deals listed on the

DEAL QUEUE table and all items that fall within a hierarchy from these deals.
It will get values for the entire merchandise and organizational hierarchies to
populate DEAL SKU TEMP. The DEAL SKU TEMP table will then be used
by precostcalc.pc and costcalc.pc to (re)calculate future costs for all listed items.

In addition, this program will populate the DEAL CALC_QUEUE table with
orders that may be affected by non vendor-funded, non PO-specific deals that are
on the DEAL QUEUE table (for future processing by orddscnt.pc). Orders that
had been applied to deals that no longer apply will also be inserted into the
DEAL CALC_QUEUE table.

The LUW of this module is a single record from the DEAL QUEUE table and
deal definition information that belongs to the DEAL ID from the
DEAL QUEUE table.

Stored Procedures / Shared Modules (Maintainability)
NONE

Volume 4 — Batch designs

Program Flow

mairy
iit() process() final()

1 size arrayl) ‘ | inzert approved?) }»

 EETy ? f :
initialize deal infoi ‘ inzert unapproved) }»
- check loc and duph |] et orders() inzert closed) }»
*P! insert into dst start datel) | *P! clean up dgl ‘ 1 get orders with altered deals) }»
—FI delete do ‘ I initialize ord Lst H
* el
[[Bl
—FI explode merch }7 | insert deal cale queue }»
—H explode orgl) | inn deal cale gueue() H
=| -+
| ingert items() ‘ ‘ copy ord rmmbers() }—
ﬁ get otigin cowityr) |‘1— ‘ ord exista() }1‘

sate org infol) ‘ Resize ord lst))

get stores districts repions areas chains() |‘1— et origin countryr)

get stores districts regions areas() get item infol)

et stores districts regions() et dept infol)

et stores districts regions() et group infol)

get stores districts() et division infol)

] e e wm] o e wm] oon e

et stores() et company terch itfol)

R O R R

L
L
L
L
L
L

_"':l |
et wirtuals() | copy merch infol) |1‘-
F'! copy deal arrayr) ‘
F

resize deal atraw)) copy org to final) ‘
F &

142 Retek Merchandising System

Function Level Description

Main(): Standard Retek main function. Validates input parameters, calls init,
process and final. Logs appropriate message.

Init(): Standard Retek init function. Calls retek init().
Process(): Drives the rest of the program:
e (Call size array() and initialize_deal info().
e Array-fetch the driving cursor. For each fetched record:
= Ifnew deal, call delete_dq() and retek force commit().
* Ifnew deal, call get orders() to populate DEAL CALC QUEUE.
= Call explode merch().
= Call explode org().

= Call insert_items() to populate exploded merchandise and
organizational records into DEAL SKU TEMP.

= Save this deal id so next record’s deal id can be compared to
previous one.

e C(Callclean _up dq().
Explode merch():

. For each record from the deal itemloc arrays, we need to obtain all
missing merchandise hierarchy and origin country and supplier information,
as follows:

. (Only vendor pack items should be used—skip buyer packs and non-

approved, non-transaction level items.)

= [fmerch level = 12 get all origin countries for this item/supplier
from the ITEM_SUPP_COUNTRY table if an origin country was
not given. (We should already have all necessary merchandise
hierarchy information). If no supplier was given, we must get all
suppliers from the ITEM_SUPP_COUNTRY table that have the
same partner as the deal (if the partner_id on deal head is ‘S1°, get
all suppliers from ITEM_SUPP_COUNTRY where supp hier 1vl 1
matches the partner id; if it’s ‘S2’°, where supp _hier 1vl 2 matches,
if ‘S3’°, where supp_hier_Ivl 3 matches. If the partner id is ‘S’, a
supplier is given on DEAL_HEAD; just match to that supplier. This
supplier match must be done for all merch levels.

* Ifmerch level =11 (have info down to line/diff 4), need to get all
items for the supplier/item parent/item grandparent/diff 4 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, diff
2, or diff 3 could be NULL).

Volume 4 — Batch designs 143

* Ifmerch level = 10 (have info down to line/diff 3), need to get all
items for the supplier/item parent/item grandparent/diff 3 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, or
diff 2 could be NULL).

= Ifmerch level =9 (have info down to line/diff 2), need to get all
items for the supplier/item parent/item grandparent/diff 2 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries from ITEM_SUPP_COUNTRY if the origin country was
not given. (Remember that item parent, item grandparent, diff 1, or
diff 2 could be NULL).

» Ifmerch level =8 (info down to line/diff 1), need to get all items
(and diff 1 information) for this supplier/style/diff 1 from
ITEM_MASTER and ITEM_SUPP_COUNTRY, and all origin
countries (if the origin country was not given) from
ITEM_SUPP_COUNTRY.

» Ifmerch level =7 (info down to line), get all items for this supplier
and line, along with all diff information and origin countries (if the
origin country was not given) from ITEM_MASTER and
ITEM_SUPP_COUNTRY.

* Ifmerch level = 6 (info down to subclass level), get all item and
line/diff info for this supplier from ITEM_SUPP_COUNTRY, and
ITEM_MASTER and all origin countries (if the origin country was
not given) from ITEM_SUPP_COUNTRY.

= Ifmerch level =5 (info down to class level), get all
subclass/items/line/diff information info for this supplier from
ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

» Ifmerch level =4 (info to dept level), get all
class/subclass/item/line/diff information info for this supplier from
ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

= Ifmerch level =3 (info to group level), get all departments for the
group from DEPS, get classes/subclasses/items/lines/diffs for each
department info for this supplier from ITEM_SUPP COUNTRY,
and ITEM_MASTER and all origin countries (if the origin country
was not given) from item_supp_country.

= Ifmerch level =2 (info to division level) get all groups under that
division from GROUPS, and all departments under each group from
DEPS. Then get classes/subclasses/items/lines/diffs for this supplier
from ITEM_SUPP_COUNTRY, and ITEM_MASTER and all origin
countries (if the origin country was not given) from
item_supp_country.

144 Retek Merchandising System

If merch_level = 1 (Company level--ALL items for a supplier), get
all divisions from the DIVISION table, get all groups for each
division from the GROUPS table, and all departments under each
group from the DEPS table. Then get all items and their line and diff
info for this supplier from ITEM_SUPP_COUNTRY, and
ITEM_MASTER and all origin countries (if the origin country was
not given) from ITEM_SUPP COUNTRY.

Set up as a case statement; each merchandise level value calls a different

function:

Case 10: Call get origin_country().

Case 9, 8, or 7: Call get_item_info().
Case 6, 5, or 4: Call get dept_info().

Case 3: Call get_group_info().

Case 2: Call get_division_info().

Case 1: Call get_company_merch_info().

Explode org():

. For each record from the merchandise arrays (containing
merchandise/country information and all organization information that was
present on DEAL ITEMLOC), get any additional organizational hierarchy
information as follows:

If the org_level = 5 (location) and the given location is a warechouse,
the chain, area, region, and district fields should be left as NULL
when inserted into DEAL_SKU TEMP-warehouses aren’t part of a
district (no additional information needs to be fetched). If
multichannel is on, remember to blow out warehouse from

DEAL _ITEMLOC (which always holds physical warehouses) to
member virtual warehouses.

If org_level = 5 (location) and the given location is a store, all the
necessary information should already be present; no additional
information needs to be fetched.

If org_level = 4 (district), get all stores in this district from the store
table. Again, the organizational hierarchy above the district should
already have been copied from DEAL ITEMLOC, so that does not
need to be looked up.

If org_level = 3 (region), get all districts and stores in this region
from the district and store tables. Again, the organizational hierarchy
above the region should already have been copied from

DEAL ITEMLOC, so that does not need to be looked up.

If org_level =2 (area), get all regions, districts, stores for this area
from region, district, and store tables. Again, the organizational
hierarchy above the area should already have been copied from
DEAL ITEMLOC, so that does not need to be looked up.

If org_level = 1 (chain), get all areas, all regions, all districts, all
stores for this chain from the area, region, district, and store tables.

Volume 4 — Batch designs 145

» Ifnothing is given in the organizational hierarchy (org level is null
or 0), call get stores_districts regions areas chains() which will
blow out the entire organizational hierarchy as it exists in RMS.

Keep track of how many organizational hierarchy combinations were fetched and
for what level so that if the next record has the same organization level for the
same organization hierarchy element (say, it’s org level 4 and the current district
is the same as the last district) the organization values can just be copied from the
ones previously obtained instead of having to get them from the database again.
This check is done by calling same_org_info().

As the information is obtained, it should be inserted into the final array (use
copy_deal_array()) for insert to DEAL SKU TEMP (be sure to resize this array
as necessary).

Set up as a case statement; each organizational level value calls a different
function:

Case 5: If location is a store, or the location is a warehouse and the multichannel
is turned off in the system, simply copy record, no lookup or blowout is needed.
(Call copy_deal array().) If the location is a warehouse and the multichannel
option is turned on in the system, call get virtuals() to blow out the physical
warehouse from DEAL ITEMLOC (which always only holds physical
warehouses) to its virtual members.

Case 4: Call get_stores().

Case 3: Call get_stores_districts().

Case 2: Call get_stores_districts_regions().

Case 1: Call get_stores districts regions_areas().

Case 0: Call get_stores_districts regions areas chains().
Same_org_info():

. This function will check if the previous record whose organizational
hierarchy was blown out contains the same organizational level and
parameters.

Get_origin_country():

. Given an array containing the records retrieved by the driving cursor,
find all countries and suppliers for the given item, plus any line and diff
information given, and copy the info into the passed output array. This
function should only be called if all merchandise info is already known
(merchandise level 12), except for the country.

Get _item_info():

. Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information, and copy the info into the passed
output array. This function should only be called if some line and optionally
diff information is given, but no item exists (merchandise levels 7-11).

146 Retek Merchandising System

Get_dept_info():

. Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if dept is given, but line,
diff and item is not given (merchandise levels 4-6).

Get_group_info():

. Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if group number is given
but dept and everything below is not given (merchandise level 3).

Get_division_info():

. Given an array containing the records retrieved by the driving cursor,
find all missing merchandise information and copy the info into the passed
output array. This function should only be called if division is given, but
group number and everything below is not (merchandise level 2).

Get_company_merch_info():

. Given an array containing the records retrieved by the driving cursor,
find all merchandise information and copy the info into the passed output
array. This function should only be called if no merchandise information is
given (merchandise level 1).

Get_stores_districts regions_areas chains():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing in the company and copy them to
the output array. Function also takes in another deal array and an indicator
variable. If the indicator is true, then use organizational information
contained in this third array rather than running queries.

Get_stores_districts regions_areas():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given chain and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_stores_districts regions():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given area and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Volume 4 — Batch designs 147

Get_stores_districts():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given region and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_stores():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
and their organizational hierarchy existing under the given district and copy
them to the output array. Function also takes in another deal array and an
indicator variable. If the indicator is true, then use org information contained
in this third array rather than running queries.

Get_virtuals():

. Given a specific deal in an array containing all items from the driving
cursor with all merchandise information already filled in, find all locations
existing under the given district and copy them to the output array. (Note that
warehouses have no organizational hierarchy.) Function also takes in another
deal array and an indicator variable. If the indicator is true, then use org
information contained in this third array rather than running queries.

Copy_merch_info():

. This function takes three deal record arrays and an index. The first array
contains the information gathered from the driving cursor. The second
contains the information gathered from the preceding get <level>_info
functions. For each record in the second array, copy all merchandise related
information from the second array to the first array. Then insert the
combined record into the third array using copy deal array().

Initialize deal info():

. Initializes all indicator variables in every record and sets deal record
count to O for a passed deal struct.

Insert_items():

. Array insert records into the DEAL SKU TEMP table, first checking
for duplicates (check to make sure that each record does not yet exist in
DEAL SKU TEMP and that the item-location combinations exist in
ITEM_LOC; if check was OK, put it into an array for insert; insert once all
have been checked).

148 Retek Merchandising System

To perform the above task:

e (Call necessary sizing and initialization functions to allocate final insert array.
(Call size_array(), initialize array().)

e For each record call check loc and dup().

e Ifprevious function call indicated that the record is good to go for the insert,
call copy_deal array() to insert that record into the final insert array.

e Check to see if the current record has a reset date. If it does, copy that reset
date into the active date and call check loc_and_dup() again. If current
record is ok to insert, call copy_deal array() to copy this record into the final
insert array. This way we insert the deal’s close date for its items into
DEAL SKU TEMP.

e When records are checked and the final insert array’s size is greater than 0,
call insert_into_dst start date() to array insert the final records.

Check loc_and dup():

. Check to make sure insert record does not exist in DEAL SKU TEMP
and check to make sure insert record’s item-location relationship does exist
in ITEM_LOC. When checking the item-location relationship from the
ITEM_LOC table, also verify that the item is not the component of a primary
costing pack. Such records are not inserted, only the component’s case UPC.

Insert_into dst start date():

. Insert passed record into DEAL _SKU TEMP.

Ord_exists():

. Sets return_flag to true if passed ord is already in passed ord_list.
Copy_ord to_final():

. This function takes an output array, an array containing all merch
information, and an array containing org information. For each record in the
org array, copy information to given record in the merch array, and place this
combined record into the output array.

Copy_ord numbers():

. Given to ord_lists and an index, copy value at index from start array to
final array if the value does not already exists in the final array.

In_deal calc queue():

. Set return flag to true if passed ord num is already in
DEAL CALC QUEUE.

Insert_deal calc_queue():
° Insert values contained in given ord_list into DEAL. CALC_QUEUE.
Size ord list():

. Allocate memory for ord_list, and set ord_list count to 0.

Volume 4 — Batch designs 149

Resize ord list():

. Allocate additional memory for deal array. Allocation is incremented by
commit max_ctr.

Get_orders():

. Given a deal id, a deal status, the deal’s recalculate approved orders
indicator, and the deal start (active) and close dates, do the following:

= If'the deal’s recalculate approved orders indicator is ‘Y’ and the
status is ‘A’pproved, call insert_approved().

= (Call insert_unapproved() if the status is ‘W’ orksheet (it was
unapproved and just got set back to worksheet status).

= Call insert_closed() if the status is ‘C’losed.

= (Call get orders with altered deals() if the status is ‘A’pproved.
(This is done for approved deals that had no close date and just got
closed, which could disqualify some orders that have already been
calculated with this deal from using this deal.)

This will populate the DEAL CALC QUEUE table with orders that may be
affected by the deal.

Get_orders_with_altered deals():

. Select all approved orders from the ORDHEAD and
ORDLOC DISCOUNT tables whose not before date is higher than the deal
close date. Also make sure the contract no field on ORDHEAD is null.
Insert these orders into the DEAL _CALC_QUEUE table (recalc_all ind,
order appr _ind, and override manual ind should be inserted as ‘N”).

Insert_approved():

. Select all approved orders from the ORDHEAD table whose not before
date is between the deal start date and the deal close date (or just after the
deal start date, if the deal close date is NULL). Also make sure the
contract no field on ORDHEAD is null. Insert these orders into the
DEAL CALC _QUEUE table (recalc_all ind, order appr ind , and
override manual ind should be inserted as ‘N”).

Insert_unapproved():

. Select all orders from the ORDLOC DISCOUNT table for the given
deal that do not have a status (on ORDHEAD) of ‘C’losed, and insert these
orders into the DEAL CALC_QUEUE table (recalc_all ind, order appr_ind
, and override manual ind should be inserted as ‘N”). Also make sure the
contract_no field on ORDHEAD is null.

Insert_closed():

. Select all orders from the ORDLOC_DISCOUNT table for the given
deal whose not before date is after the deal’s close date (all closed deals must
have a close date) and whose status (from ORDHEAD) is not ‘C’losed. Also
make sure the contract no field on ORDHEAD is null. Insert these orders
into the DEAL _CALC_QUEUE table (recalc all ind, order appr ind , and
override manual ind should be inserted as ‘N”).

150 Retek Merchandising System

Size array():
. Allocate memory for passed array.
Resize deal array():

e Allocate additional memory for deal array. Allocation is incremented by
commit_max_ctr.

Copy_deal array():

. Given two deal arrays and an index, copy deal at index from I deal info
to o_unique_records. This function will resize o_unique_records if
necessary, but it will not check if deal already exists in the final array.

Delete_dq():
. Delete processed records from the DEAL QUEUE table.

Clean_up dq():

. Delete all records left on the DEAL QUEUE table.
Final():
. Performs restart/recovery close logic. Calls retek close().

Input Specifications

‘Table-To-Table’

Select data from:

Table Name Column Name Column Type | Transformation
DEAL HEAD SUPPLIER NUMBER(10) NONE
DEAL HEAD PARTNER TYPE VARCHAR2(6) | NONE
DEAL HEAD PARTNER ID VARCHAR2(10) | NONE
DEAL HEAD ACTIVE _DATE DATE NONE
DEAL HEAD CLOSE DATE DATE NONE
DEAL HEAD STATUS VARCHAR2(1) | NONE
DEAL HEAD RECALC _APPROVED ORDERS | VARCHAR2(1) | NONE
DEAL QUEUE DEAL ID NUMBER(10) NONE
DEAL _ITEMLOC DEAL DETAIL ID NUMBER(10) NONE
ITEM_MASTER ITEM VARCHAR2(25) | NONE
ITEM_MASTER ITEM_PARENT VARCHAR2(25) | NONE
ITEM_MASTER ITEM_GRANDPARENT VARCHAR2(25) | NONE
ITEM_MASTER DIFF 1 VARCHAR2(10) | NONE

Volume 4 — Batch designs 151

Table Name Column Name Column Type | Transformation
ITEM_MASTER DIFF 2 VARCHAR2(10) | NONE
ITEM_MASTER DIFF 3 VARCHAR2(10) | NONE
ITEM_MASTER DIFF 4 VARCHAR2(10) | NONE
ITEM_MASTER SUBCLASS NUMBER(4) NONE
ITEM_MASTER CLASS NUMBER(4) NONE
DEPS DEPT NUMBER(4) NONE
GROUPS GROUP_NO NUMBER(4) NONE
DIVISION DIVISION NUMBER(4) NONE
STORE STORE NUMBER(4) NONE
DISTRICT DISTRICT NUMBER(4) NONE
REGION REGION NUMBER(4) NONE
AREA AREA NUMBER(4) NONE
CHAIN CHAIN NUMBER(4) NONE
ORDHEAD ORDER NO NUMBER(S8) NONE
ORDLOC_DISCOUNT | ORDER_NO NUMBER(8) NONE
SYSTEM_OPTIONS MULTICHANNEL IND VARCHAR2(1) | NONE

Output Specifications
‘Table-To-Table’
Delete data from

Table Name Column Name Column Type Transformation

DEAL QUEUE DEAL ID NUMBER(10) N/A
The following table will be inserted:

Table Name Column Name Column Type Transformation
DEAL SKU TEMP ITEM VARCHAR2(25) | NONE
DEAL SKU TEMP SUPPLIER NUMBER(10) NONE
DEAL SKU TEMP ORIGIN_COUNTRY_ID VARCHAR2(3) | NONE
DEAL SKU TEMP START DATE DATE NONE
DEAL SKU TEMP DIVISION NUMBER(4) NONE
DEAL SKU TEMP GROUP_NO NUMBER(4) NONE
DEAL SKU TEMP DEPT NUMBER(4) NONE

152 Retek Merchandising System

Table Name Column Name Column Type Transformation

DEAL SKU TEMP CLASS NUMBER(4) NONE

DEAL SKU TEMP SUBCLASS NUMBER(4) NONE

DEAL SKU TEMP ITEM PARENT VARCHAR2(25) | NONE

DEAL SKU TEMP ITEM_GRANDPARENT VARCHAR2(25) | NONE

DEAL _SKU TEMP DIFF 1 VARCHAR2(10) | NONE

DEAL _SKU TEMP DIFF 2 VARCHAR2(10) | NONE

DEAL SKU TEMP DIFF 3 VARCHAR2(10) | NONE

DEAL SKU TEMP DIFF 4 VARCHAR2(10) | NONE

DEAL SKU TEMP CHAIN NUMBER(4) NONE

DEAL SKU TEMP AREA NUMBER(4) NONE

DEAL _SKU TEMP REGION NUMBER(4) NONE

DEAL _SKU TEMP DISTRICT NUMBER(4) NONE

DEAL SKU TEMP LOCATION NUMBER(10) NONE

DEAL SKU TEMP LOC TYPE VARCHAR2(1) | NONE

DEAL CALC QUEUE | ORDER NO NUMBER(S) NONE

DEAL CALC QUEUE | RECALC ALL IND VARCHAR2(1) | Will always be
‘N°.

DEAL CALC QUEUE | OVERRIDE MANUAL IND | VARCHAR2(1) | Will always be
‘N,

DEAL CALC QUEUE | ORDER _APPR IND VARCHAR2(1) | Will always be
‘N°.

Scheduling Considerations

This program should run as the first batch program in the deals batch cycle.

Locking Strategy

N/A

Restart/Recovery

The module has restart/recovery built in based on DEAL _ID from the
DEAL QUEUE table.

Performance Considerations

N/A

Security Considerations

N/A

Volume 4 — Batch designs 153

Design Assumptions

Primary cost pack component items do not get inserted into DEAL SKU TEMP,
only their case UPC items. An item must be in ‘A’pproved status and at the
transaction level, it must not be a buyer pack. Orders may have no contracts in
order for them to be inserted into DEAL CALC_QUEUE.

Outstanding Design Issues
N/A

154 Retek Merchandising System

EDI contract information download [edidlcon]

Design Overview

This program downloads a file of EDI contract information. Contracts are only
processed if they are in approved status and have an edi_contract_ind of ‘Y.

Changes to make: add restart recovery and make output ONE file instead of one
per supplier. Minor changes to file format (add Gentran ID in FHEAD line and
move supplier from FHEAD to THEAD; include transaction number on
transaction lines). Let the user enter an output file name.

Scheduling Constraints

Processing Cycle: Daily, Phase 4
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A —file based processing

Restart Recovery
SELECT ch.contract no,
ch.contract type,
ch.dept,
TO CHAR (ch.supplier),
TO CHAR(NVL (ch.total cost*1000,0)),
ch.edi contract ind,
ch.currency code,
ROWIDTOCHAR (ch.rowid)
FROM contract header ch
WHERE ch.status = "A’
AND ch.edi contract ind = ‘Y’
AND ch.edi sent ind = ‘N’

ORDER BY ch.supplier

Program Flow
N/A

Shared Modules
CONTRACT SQL.GET UNIT COST - get the cost of a contract-item.

Volume 4 — Batch designs 155

Function Level Description

Include the std rest.h library.

Init:

Get period.vdate.

Call restart_file init

Make the format strings for output file lines

Open output file and write thead line with the write_head function
Process:

Fetch contract header cursor

Update contract_header.edi_sent ind to Y’

write information out to file (call write_detail and write summary)
use restart commit for commits

write_head

write FHEAD line to file

write detail

For contract types C and D (no production plans): Get item contract info from the
contract_detail table. Get ref item and ref item type info from the item_master
table. Write TDETL lines to file. For contract types A and B (production plans):
Get item contract info from the contract_detail table. Get ref item info from the
item_master table. Write TDETL lines to file. (Note: ready_date,

ready quantity, location_type, and location_number will only have values for
contract types A and B. Furthermore, in a multi-channel environment, all
TDETL records need to be written at the physical location level.)

write summary:

write TTAIL string to file

write trailer

write FTAIL string to file

Final:
Write output to final file and close files.

Call restart close.

156 Retek Merchandising System

1/0 Specification

Output File layout:

FHEAD File identification and date

THEAD Supplier and contract header info

TDETL Item information

TTAIL Transaction trailer

FTAIL File trailer; total number of transactions written

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified. All
dates should be in YYYYMMDDHH24MISS format.

Record Name Field Name Field Type Default Value Description
FHEAD Record Char(5) FHEAD Describes file line type
descriptor
Line number | Number(10) 0000000001 Sequential file line number
Gentran ID Char(5) DNCN Identifies transaction type for
Gentran
Current date Char(14) Current date period.vdate
THEAD Record Char(5) THEAD Describes file line type
descriptor
Line number | Number(10) Sequential file line number
Transaction Number(10) Sequential transaction
number number
Supplier Char(10) Contract_header.supplier
Contract No number Contract_header.contract no
(6)
Contract type | Char(1) Contract_header.contract_typ
e
Department Number(4) Contract_header.dept
Currency Char(3) Contract_header.currency co
code de
Total contract | Char(20) Contract_header.total-
cost cost*10000
TDETL Record Char(5) TDETL Describes file line type
descriptor
Line number | Number(10) Sequential file line number
Transaction Number(10) Sequential transaction
number number

Volume 4 — Batch designs 157

Record Name Field Name Field Type Default Value Description

Item Number | Char(6) Item type for item from

Type item_master table.

Item Number | Char(25) item

Ref Item Char(6) Reference item number type

Number Type retrieved from
item_master.item_number _ty
pe.

Ref Item Char(25) Primary reference item

number retrieved from Item Master
table.

Diffl Desc Char(40) Diff 1 Description

Diff2 Desc Char(40) Diff 2 Description

Diff3 Desc Char(40) Diff 3 Description

Diff4 Desc Char(40) Diff 4 Description

VPN Char(30) Vendor Product Number for
an item

Unit cost Char(2) Contract_sku.unit_cost*1000

0 (4 implied decimal places)

The following variables will only h

ave values for co

ntract types of ‘A’ or ‘B’;

count

Ready date Char(14) Contract prod plan.ready da
te
Ready Char(20) Contract_prod plan.qty read
quantity y*10000 (4 implied decimal
places)
Location type | Char(2) ‘ST’ or “WH’
Location Char(10) Contract_prod_plan.store or
number .wh
FTAIL Record Char(5) TTAIL Describes file line type
descriptor
Line number | Number(10) Sequential file line number
Transaction Number(10) Sequential transaction
number number
FTAIL Record Char(5) FTAIL Describes file line type
descriptor
Line number | Number(10) Sequential file line number
(total # lines in file)
Contract Number(10) Total number of transactions

in file

158 Retek Merchandising System

Technical Issues
N/A

Volume 4 — Batch designs 159

EDI purchase order download [edidlord]

Functional Area

Purchase Orders

Design Overview

Orders generated within the Retek system are written to a flat file if they are
approved and specified as EDI orders. If shipments are to be pre-marked for
cross-dock allocation by the supplier, allocation location and quantities will be
sent along with the order information. If the order contains pack items,
hierarchical pack information will be sent (this may include outer packs, inner
packs, and fashion styles with associated pack templates, as well as component
item information). File output is to a Retek standard format file, with the
translation to EDI format taking place via an outside translator such as Gentran.

In the past, edidlnew downloaded new orders to an output file, while edidichg
downloaded changed orders. These programs were combined and modified to
work with changes that have been made to the ordering tables. The order revision
tables and allocation revision table will also be used, to ensure that the latest
changes are being sent and to allow both original and modified values to be sent.
These revision tables are populated during the online ordering process and the
batch replenishment process whenever an order has been approved, and
constitute a history of all revisions to the order.

If multi-channel is turned on in the system, the program will sum all quantities to
the physical warehouse level for an order before writing the output file.

TABLE INDEX SELECT INSERT UPDATE DELETE
ORDHEAD REV Yes Yes No No No
ORDHEAD Yes No No Yes No
ORDSKU Yes Yes No No No
ORDLOC Yes Yes No No No
ORDSKU REV Yes Yes No No No
ORDLOC REV Yes Yes No No No
ITEM_SUPPLIER No Yes No No No
ITEM_MASTER Yes Yes No No No
WH Yes Yes No No No
ALLOC HEADER Yes No No No No
ALLOC DETAIL Yes No No No
ALLOC DETAIL REV Yes No No No
DESC LOOK Yes No No No
PACKITEM BREAKOUT Yes No No No

160 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE
SUPS PACK TEMPL DES Yes No No No
C
Stored Procedures / Shared Modules (Maintainability)
ELC_CALC_SQL.CALC_BACKHAUL_TOTAL - Calculates the backhaul
allowance for an order.
Program Flow
Orders that are in approved status and that are new or have had changes made are
fetched from the system tables. Additional information about the items on the
order and their destination is gathered. Order, item, pack, and shipment
information is written to an output file. The system tables are then updated to
show that the orders have been sent.
main ()
|
+-init ()

-LOOP for each p.o.

-if backhaul type = C then
|
+-calc_backhaul ()

I
+-ELC_CALC SQL.CALC BACKHAUL TOTAL()

-get terms des ()

o]

I

+

|

I

|

|

|

+

|
+-write TORDR
[
| +print TORDR to output file
|
+-write items
I

|

I

|

I

|

|

|

I

|

|

|

I

|

I

|

|

|

I

I

I

|

|

I

r

I

+LOOP for each item in p.o.
[

| +-get _item type()
[

| +-get supp item()
[

| +-get ref item()
[

| +-write TITEM()

| |

| +print TITEM to output file
I

|

|

I

I

|

|

|

I

I

|

|

get_pack()

I

+get supp_item()
|
+get ref item()
I

+write TPACK()
[

I
|
I
.
|
I
I
|
|
|
|
I
|
| | +print TPACK to output file

e
|
+LOOP for each item in pack
|
|
|
|
|
|
|
|

Volume 4 — Batch designs

| |
| --< end LOOP

write shipto()

|

+get item dims ()

|

+write TSHIP ()

| |

| +print TSHIP to output file
|

r
I
+LOOP for each item/location on p.o.
|
|
|
I
|
|
|
I

--< end LOOP

write alloc()

[

+get item dims ()
I

+write TSHIP ()

(.
| +print TSHIP to output file

r
|
+LOOP for each allocation record on p.o.
I
|
|
|
I
|
|
|

|

I

|
+ -_
|

|

|

|

|

I

|

|

|

|

I
.
|

|

|

|

|

|

|

|

|

| --< end LOOP
|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

I

I

I

|

|

I

I

| --< end loop

I

+-write TTAIL

(.

| +print TTAIL to output file
I
+-update ordhead

I
+-restart commit ()

I
+-restart file write()

I

<

end loop
—-final ()

I
+print FTAIL to output file

Function Level Description
init()
Get current date. Set up format strings for output file, open output file, and write

file header. Set up restart/recovery. Call init terms_array to fetch terms and
descriptions from terms table.

162 Retek Merchandising System

process()

Select the new or changed orders in approved status for EDI download by
fetching the driving cursor. Eligible orders are approved and have an EDI
indicator set. The cursor selects “new” values from ordhead and “old” values
from ordhead_rev for the next to last version (the last version is the current one,
with the same information that is now on ordhead). For a new order, no earlier
version will exist on the ordhead rev table, so no “old” values will be fetched. If
old values are null, this must mean that we have a new order. Information from
different suppliers can be sent in the same file, but the file will be sorted by
supplier. If the backhaul type = C (calculated) then call calc_backhaul function to
calculate the backhaul totals. Call get terms_des to fetch the description of the
terms code. Call write. TORDR to write order header level information to file.
Call write_items to fetch additional item-level information and write it to output
file. Update the ordhead table to show that an EDI transaction has been sent and
an acknowledgment has not yet been received.

write. TORDR()
Write the TORDR line (order header level information) to the output file.
write_items()

Get item information (from the ordsku and ordsku rev tables--quantity ordered,
outstanding quantity, description). Get item cost information and supplier
information (by calling get supp_item). If reference item information does not
exist on ordsku, call get ref item to fetch the ref item information (if any). Call
write TITEM to write item information line to file. If the item is a pack
identifier (pack ind =Y’ on item_master), call get pack to get information on
component items within the pack. If the order is to be pre-marked, call

write alloc to write allocation information to file; otherwise write shipment
information to file by calling write shipto.

write TITEM()
Write item information line to file.
write_shipto()

Fetch shipment location and quantity information for a particular item on the
order from the ordloc and ordloc rev tables. Call get item dims to get the case
dimensions then call write TSHIP to write it out to output file.

write_alloc()

This function is called only for cross-docked allocations that will be pre-marked
by the supplier. Fetch allocation information from the alloc_header, alloc_detail,
and alloc_rev tables, call get item dims, then call write TSHIP to write it to
output file.

get_pack()

Get information on items contained within a pack (from the packitem breakout
table). If the item is part of a pack template, fetch the template description from
the supps_pack tmpl desc table. Call get supp item() to get the item_supplier
for each of the items. Use get ref item to fetch ref item information for these
items. Call write TPACK to write pack item information lines to file.

Volume 4 — Batch designs 163

write_ TPACK()
Write pack component information lines to file.
get_supp_item()

Get supplier VPN, supplier’s color code and supplier’s size code from the
item_supplier table.

get_ref_item()
Get ref item info (either primary or preferred for supplier)
write_TSHIP()

Write TSHIP line to file—shipment location and quantity info. Also used to write
allocation information

write TTAIL()
Write order trailer line to file.
calc_backhaul()

Call ELC_CALC SQL.CALC BACKHAUL TOTAL to get the backhaul
allowance for this order.

init_terms-array()

Fetches all terms and descriptions from terms table so the terms table doesn’t
have to be joined for each TORDR record.

get terms_des()

Searches the terms array for a desciption.

get_item_dims()

Gets case dimensions from item_supp_country dim.

final()

Write file trailer, copy temporary file to final file (restart/recovery close), close
files.

Input Specifications

Command Line Parameters:

edidlord userid/password input_file

For a new order, the “old” fields should be blank. For a changed order, both old
and new fields should hold values, if value has changed. “Old” values come from
the revision tables for the latest revision before the current one (the last one sent),
while new orders come from the ordering tables.

FHEAD — REQUIRED. File identification, one line per file.
TORDR - REQUIRED. Order level info, one line per order.

TITEM — REQUIRED. Item description, multiple lines per order possible.

TPACK — OPTIONAL. Pack contents, multiple lines per order possible. This
line will be written only for pack items.

164 Retek Merchandising System

TSHIP — REQUIRED. Ship to location and quantity, allocation location,
multiple lines per item possible. Allocation information is optional on this line—
will exist if premark ind is Y’.

TTAIL — REQUIRED. Order end, one line per order.
FTAIL - REQUIRED. End of file marker, one line per file.

Record Field Name Field Default Description
Name Type Value
FHEAD Record descriptor Char(5) FHEAD File head marker
Line id Char(10) | 00000000 | Unique line id
01
Translator id Char(5) | DLORD Identifies transaction type
File create date Char(14) | Current YYYYMMDDHH24MISS
date format
TORDR Record descriptor Char(5) TORDR Order header info
Line id Char(10) Unique file line id
Transaction id Char(10) Unique transaction id
Order change type Char(2) ‘CH’ (changed) or ‘NW’ (new)
Order number Number(Internal Retek order no
8)
Supplier Number(Internal Retek supplier id
10)
Vendor order id Char(15) External vendor_order no (if
available)
Old order written date | Char(14) Old date order created
YYYYMMDDHH24MISS
New order written date | Char(14) Changed date order created
YYYYMMDDHH24MISS
Old Currency Code Char(3) Old order currency code (ISO
standard)
New Currency Code Char(3) Changed order currency code
(ISO standard)
Old Shipment Method | Char(2) Old ship_pay_ method
of payment
New Shipment Method | Char(2) Changed ship _pay method
of Payment
Old Transportation Char(2) Old fob_trans res
Responsibility

Volume 4 — Batch designs 165

Record Field Name Field Default Description
Name Type Value
New Transportation Char(2) Changed fob_trans_res
Responsibility
Old Trans. Resp. Char(45) Old fob_trans res desc
Description
New Trans. Resp. Char(45) New fob_trans_res desc
Description
Old Title Passage Char(2) Old fob _title pass
Location
New Title Passage Char(2) Changed fob title pass
Location
Old Title Passage Char(45) Old fob _title pass desc
Description
New Title Passage Char(45) Changed fob _title pass_desc
Description
Old not before date Char(14) Old not_before date
YYYYMMDDHH24MISS
New not before date Char(14) Changed not_before date
YYYYMMDDHH24MISS
Old not after date Char(14) Old not_after date
YYYYMMDDHH24MISS
New not after date Char(14) Changed not_after date
YYYYMMDDHH24MISS
Old Purchase type Char(6) Old Purchase type
New Purchase type Char(6) New Purchase type
Backhaul allowance Number(Backhaul allowance
20)
Old terms description | Char(240 Old terms description from
) terms table
New terms description | Char(240 New terms description from
) terms table
Old pickup date Char(14) Old pickup date
YYYYMMDDHH24MISS
New pickup date Char(14) New pickup date
YYYYMMDDHH24MISS
Old ship method Char(6) Old ship method
New ship method Char(6) New ship method

166 Retek Merchandising System

Record Field Name Field Default Description
Name Type Value
Old comment Char(250 Old comment description
description)
New comment Char(250 New comment description
description)
Supplier DUNS Number(Supplier DUNS number
number 9)
Supplier DUNS Number(Supplier DUNS location
location 4)
File record descriptor | Char(5) Item info
Line id Char(10) Unique line id
Transaction id Char(10) Unique transaction id
Item Number Type Char(6) Item number_type
Item Char(25) Item (If a pack item, this will be
the pack number)
Old Ref Item Number | Char(6) Item number type for old
type ref_item
Old Ref Item Char(25) Old Ref Item
New Ref Item Number | Char(6) Item number _type for new
type ref item
New Ref Item Char(25) Changed Ref Item
Vendor catalog number | Char(30) Supplier_item (VPN)
Free Form Description | Char(100 item_desc
)
Supplier Diff 1 Char(80) Supplier’s diff 1
Supplier Diff 2 Char(80) Supplier’s diff 2
Supplier Diff 3 Char(80) Supplier’s diff 3
Supplier Diff 4 Char(80) Supplier’s diff 4
Pack Size Number(Supplier defined pack size
12)
TPACK File record descriptor TPACK Pack component info
Line id Char(10) Unique line id
Transaction id Char(10) Unique transaction id
Pack id Char(25) Packitem_breakout.pack no
(same as item for the pack item)
Inner pack id Char(25) Inner pack identification

Volume 4 — Batch designs 167

Record Field Name Field Default Description
Name Type Value
Pack Quantity Number(Packitem_breakout.pack item q
12) ty (4 implied decimal places)

Component Pack Number(Packitem_breakout.comp pack

Quantity 12) qty (4 implied decimal places)

Item Parent Part Number(Packitem_breakout.item parent

Quantity 12) _pt_qty (4 implied decimal
places)

Item Quantity Number(Packitem_breakout.item_qty (4

12) implied decimal places)

Item Number Type Char(6) Item number type

Item Char(25) Item

Ref Item Number Type | Char(6) Ref item number type

Ref Item Char(25) Ref item

VPN Char(30) Supplier item (vpn)

Supplier Diff 1 Char(80) Supplier’s diff 1

Supplier Diff 2 Char(80) Supplier’s diff 2

Supplier Diff 3 Char(80) Supplier’s diff 3

Supplier Diff 4 Char(80) Supplier’s diff 4

Item Parent Char(25) Required when Pack Template
is not NULL

Pack template Char(8) Pack template associated w/style
(packitem_breakout.pack tmpl
id)

Template description Char(40) Description of pack template (if
present)
sups_pack tmpl desc.supp pac
k desc

TSHIP Record type Char(5) TSHIP Describes file record-
shipment info

Line id Char(10) Unique file line number

Transaction id Char(10) Unique transaction number

Location type Char(2) ‘ST’ store or “WH’ warehouse

Ship to location Number(Location value form ordloc

10) (store or wh)
Old unit cost Number(Old unit cost (4 implied decimal

20)

places)

168 Retek Merchandising System

Record Field Name Field Default Description
Name Type Value
New unit cost Number(New unit cost (4 implied
20) decimal places)
Old quantity Number(Old qty_ordered or
12) qty_allocated (4 implied decimal
places)
New quantity Number(Changed qty_ordered or
12) qty_allocated (4 implied decimal
places)
Old outstanding Number(Old qty ordered-qty received (4
quantity 12) implied decimal places)(or

qty_allocated-qty transferred,
for an allocation)

New outstanding Number(Changed qty ordered-

quantity 12) qty_received (4 implied decimal
places)(or qty_allocated-
qty_transferred, for an

allocation)

Cancel code Char(1)

Old cancelled quantity | Number(Previous quantity cancelled (4
12) implied decimal places)

New cancelled quantity | Number(Changed quantity cancelled (4
12) implied decimal places)

Quantity type flag Char(1) “S’hip to ‘A’llocate

Store or warehouse Char(2) ‘ST’ (store) or “WH”’

indicator (warehouse)

Old x-dock location Number(Alloc_detail location (store or
10) wh)

New x-dock location Number(Alloc_detail location (store or
10) wh)

Case length Number(Case length (4 implied decimal
12) places)

Case width Number(Case width (4 implied decimal
12) places)

Case height Number(Case height (4 implied decimal
12) places)

Case LWH unit of Char(4) Case LWH unit of measure

measure

Case weight Number(Case weight (4 implied decimal

12) places)

Volume 4 — Batch designs 169

Record Field Name Field Default Description
Name Type Value

Case weight unit of Char(4) Case weight unit of measure

measure

Case liquid volume Number(Case liquid volume (4 implied
12) decimal places)

Case liquid volume Char(4) Case liquid volume unit of

unit of measure measure

Location DUNS Number(Location DUNS number

number 9)

Location DUNS loc Number(Location DUNS loc
4)

New unit cost init Number(New unit cost init (4 implied
20) decimal places)

Old unit cost init Number(OId unit cost init (4 implied
20) decimal places)

Item/loc discounts Number(Item/loc discounts (4 implied
20) decimal places)

TTAIL Record type Char(5) TTAIL Describes file record — marks
end of order

Line id Char(10) Unique file line id

Transaction id Char(10) Unique transaction id

#lines in transaction Number(#lines in transaction
10)

FTAIL Record type Char(5) FTAIL Describes file record — marks
end of file

Line id Char(10) Unique file line id

#lines Number(Total number of transaction
10) lines in file (not including

FHEAD and FTAIL)
Output Specifications
N/A

Scheduling Considerations

Processing Cycle: PHASE 4 (may also be schedule ad hoc to run
multiple times per day)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

170 Retek Merchandising System

Threading Scheme: N/A

Locking Strategy
N/A

Restart/Recovery

Driving cursor:

SELECT ROWIDTOCHAR (oh.rowid),
oh.order no,
to char (oh.supplier),
to_char (oh.written date, 'YYYYMMDDHH24MISS'),
to_char (ohr.written date, 'YYYYMMDDHH24MISS'),
to char (ohr.not before date, 'YYYYMMDDHH24MISS'),
to char (oh.not before date, 'YYYYMMDDHH24MISS'),
to_char (ohr.not after date, 'YYYYMMDDHH24MISS'),
to_char (oh.not_after date, 'YYYYMMDDHH24MISS'),
oh.vendor order no,
ohr.currency code,
oh.currency_code,
ohr.ship pay method,
oh.ship pay method,
ohr.fob_trans_res,
oh.fob_ trans_res,
ohr.fob trans_ res desc,
oh.fob trans res_desc,
ohr.fob title pass,
oh.fob title pass,
ohr.fob_title pass desc,
oh.fob title pass desc,
oh.pre mark ind,
oh.last sent rev no,
ohr.purchase type,
oh.purchase_type,
oh.backhaul type,
NVL (oh.backhaul allowance,0) * POWER(10,:pi gty dec),
oh.exchange rate,
ohr.terms,
oh.terms,
to char (ohr.pickup date, 'YYYYMMDDHH24MISS'),
to_char (oh.pickup_ date, 'YYYYMMDDHH24MISS'),
ohr.ship method,
oh.ship method,
ohr.comment desc,
oh.comment desc,
s.duns_number,
s.duns_loc

FROM ordhead oh,

ordhead_rev ohr,

sups s,
v_restart supplier v
WHERE ohr.order no (+) = oh.order no
AND oh.status = 'A'
AND oh.edi sent ind = 'N'

AND oh.edi po_ind = 'Y'
AND oh.supplier = s.supplier

AND (s.edi_po_chg = 'Y'
OR (s.edi po _chg = 'N'

AND oh.last_sent rev_no IS NULL))
AND ohr.origin type (+) = 'V'
AND ohr.rev _no(+) = oh.last sent rev no
and v.driver name = :ps_restart driver name
and v.driver value = oh.supplier
and v.num threads = :pi restart num threads
and v.thread val = :pi_restart_thread val

ORDER BY 2 , 3;

Volume 4 — Batch designs 171

Restart/recovery capability will be used in this program to provide restart
capability. Restartability is implied because the program updates
ordhead.edi_sent ind as records are written out.

Performance Considerations
N/A

Security Considerations
N/A

Design Assumptions
N/A

Outstanding Design Issues
N/A

Appendix
N/A

172 Retek Merchandising System

New and Changed Upload from Supplier [ediupcat]

Design Overview

The purpose of the ediupcat batch program is to update the edi_new_item and
edi_cost change tables. This will allow the users to view and implement the
vendor changes online instead of manually viewing and inserting information.

EDIUPCAT will read in a file and strip out the appropriate information. For
each line item, the supplier has the option of sending one or all of the following
as an item identifier: item, ref item, and VPN. If an item is sent, this implies that
the item exists in Retek. This value is validated against the item tables. Ref item
and VPN are also validated if present. If the item is not present in the file, the
program searches Retek for the item. If no item is found, the line item is
considered a new item. If either Reference Item or Case Reference Item is
provided, its Reference Item Type must be presented as well. To update an
existing item in the Retek, the Retek item number or VPN of the item must be
presented. The only exception for updating an item using Reference Item
number is that the Reference Item number exists in RMS tables.

The supplier can also provide item parent information including Item Parent or
Parent VPN to specify the relationship of the new item to the existing Retek item.
The item parent’s item description and item parent number type are then
retrieved from the internal Retek system and inserted to the edi_new _item table.

A new parent VPN may be sent as a regular VPN record. After validating the
parent VPN information, it is updated or inserted to the edi_new _item table
based on the data processed. In the online form, this record can then be created
as a parent item. It is permissible for new items to be sent with parent VPNs that
are new to the system, but only if the new parent VPN is also present in the file
as a separate VPN record (this constraint is for the purposes of creating a Retek
item parent in the EDI Item online form, which will then be applied to all items
with the associated parent VPN).

A case pack will be created or updated in the online form, if the supplier provides
the Case Reference Item and its associate case information in the EDI file in
addition to the item information. For a new item and case pack input, if case cost
is not in the input file, it will be calculated by multiplying the item unit cost and
the case pack quantity. Otherwise, if item unit cost is not presented in the input
file while case cost is provided, the item unit cost will be calculated by dividing
the case cost by case pack quantity.

To increase the flexibility of input new items, it is permissible to upload new
item information without the unit cost. However, these items will stay at the EDI
new item staging table — edi_new_item until the unit_cost is available. The
unit_cost can be provided later by the next EDI input file or inserted in the online
EDI item form.

All input file information is validated. Any erroneous data will cause the entire
transaction to be written to a run-time rejection file that can be reprocessed once
the appropriate adjustments are made.

The batch program will have the ability to process multiple transactions per file.

Volume 4 — Batch designs 173

The input file format will be in a Retek standard file format, rather than EDI
format. The translation from EDI 888 and EDI 879 (unit cost and case cost) to
this standard format will be done by customers using an EDI translation product
such as the Gentran translator.

Note: The following text of this design specific to cost change functionality in
this program is not included in the March 31, 2001, pre release of RMS10.0, EDI
New Item:

For an item that exists in the Retek System (item_supp_country table), the Cost
Change of the item will be updated in the edi_cost change table and then further
processed in the online Cost Change Form. Otherwise, no cost information will
be updated.

Scheduling Constraints

Processing Cycle: Daily, Phase 2

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: File-based processing, multithreading not used

Restart Recovery

The batch program will use restart/recovery initialization, close, and intermittent
commits (restart commit)

Program Flow

N/A

Shared Modules
SQL_LIB.BATCH_MSG—to write error messages

CURRENCY_ SQL.CONVERT BY LOCATION—convert unit cost and unit
retail

COUNTRY_VALIDATE SQL.EXISTS ON_TABLE—validates
origin_country_id

SYSTEM_ OPTIONS SQL.GET_ALL DEFAULTS—retrieves default
standard uom, dimension_uom, weight uom and packing method.

UOM_SQL.GET_CLASS—retrieves the class that the UOM exists in

Function Level Description

init()

e getvdate

e Restart/recovery initialization

e open input file and read file header

e open output file (run-time reject file)

174 Retek Merchandising System

process()

Read transaction header Loop:
= Read transaction detail

» Call validate fdetl to validate each detail record provided by the input
file

» Call process_item:
o If new item or change to existing item, insert into edi_new_item

o If cost change, update edi_cost change

format FDETL():

This function will be modified to format additional columns that are added to
the input file (reference the input file for details).

validate FDETL()

Validate that the input file has at least one of the item, VPN and ref item
fields populated. If none of the above fields exists, issue an error message
and return NON_FATAL.

Validate supplier by calling validate supplier.

When item parent passed in from the input file is not null, call
validate item parent.

Call validate parent VPN to validate that the parent VPN exists in the
system and find the parent_item according to the parent_vpn.

If both item parent and parent VPN are not null, compare the input item
parent with the item parent retrieved from function validate parent VPN, if
they are differnt, log an error and return NON_FATAL. Otherwise, if the
input item parent is null, the item parent retrieved from function

validate parent VPN should be used.

Call functions validate origin_country id and validate uom.

When both ref _item_type and ref item are presented, call function
check ref item and passing the ref item and ref item_type to the function.

If the item field has value,
= call function validate item;
= ifthe item does not equal ref item, call function validate ref item;
= if the item VPN is not null, call validate vpn.
= Ifthe record’s item field does not have a value, process as follows:
Call get_item

» [Ifitem parent is not null, item parent description or item parent number
type is null, call function get item_info(). Pass in item parent number
and variables to hold the item parent_desc and
item_parent number type. Note dummy variables are needed to hold
other parameters.

Volume 4 — Batch designs 175

= Ifboth VPN and ref item are not null and their corresponding item exists
in RMS, call function validate VPN _vs ref item to make sure that the
item is not above the transaction level. Since an item that is above the
transaction level could not have a ref item. (Similar to the scenario in
RMS9.0 that a style could not have a UPC). If the function call doesn’t
return true, return whatever the function returns.

= [fthe case ref item field is not null, call function process case.
validate supplier():
o First check if the supplier number has value.

= Ifit has value, open the cursor c_val supp to validate the supplier as the
current code does. If the supplier is found successfully, return true.

= Ifit doesn’t have value, and there are duns number and duns loc in the
input, create a cursor ¢_val_supp_duns to select the supplier number
from the SUPS table according to the duns number and the duns_loc. If
the supplier number is found, return true. If no supplier number is found,
log an error message to state so and return NON-FATAL. This record
will then be rejected. If an error happened, return fatal.

= QOtherwise, return NON-FATAL to reject the record. An error message
should be written to the error file to state the reject reason.

validate item()
Check to see if the item is in the system. If it is not, non-fatal error.

e Create a cursor to validate that the item exists in the item master table, and is
not a sub-transaction item. Ifitem parent is not null, it needs to be added as
a validation criteria. At the same time, retrieve item_parent,
item_grandparent, item_number_type, item_level, tran_level and pack ind in
the cursor. If the validation returns No Data Found, issue an error message
stating that either the item, or the item/item_parent relation doesn’t exist in
the system. Return a NON_FATAL error. If the item is a valid Retek item,
set the item exists indicator to 1.

validate ref item()

e Since we know that the ref item does not equal the item, then the ref item
could either be a sub-transaction item or not exist in the Retek system.

e Ifthe ref item is a sub_transaction level item, the item_parent found for the
ref item from the item master table should equal the item that passed in
from the input file.

e Create a cursor to perform the above validation. The cursor should select
item_parent from item_master table where the item equals the ref item. If
NO DATA FOUND, return true. This means the ref item might not be
stored in RMS. If the item_parent retrieved from the cursor equals the item
passed in from the input file, return true. Otherwise, log and error stating
that the transaction level item found for the ref item does not match the item
in the record, return NON_FATAL error.

176 Retek Merchandising System

check_ref item()

e Validate for reference item type of UPC-A, UPC-E, EANS, EAN13 and
ISBN.

= If the reference item type is other than listed above, no validations will
be given and function should return success.

validate_parent VPN()
Validate the parent VPN against the item_supplier and edi_new_item tables.

e Ifitem is found in the item_supplier table, store the value in item_parent and
return successfully. Make sure the item_parent returned is unique.

e Ifitem doesn’t found in the item_supplier table, further check the parent vpn
against the edi_new_item table where supplier equals ps_supplier and VPN
equals the record’s parent_vpn. If data is found, return true. Otherwise,
issue an error message stating that the parent VPN does not exist in the
system, therefore, the item/item_parent relationship can’t be established.
Return NON_FATAL.

validate origin_country id()

e If origin country id on file, call country validate sql.exists on_table to
validate the origin country. If origin country does not exist, return
NON_FATAL error.

validate_uom()

e (all function validate_each uom() to validate the following unit of measures
when they have values:

= Standard UOM,;

= Dimension UOMs of case, pallet and item unit;
= Weight UOMs of case, pallet and item unit;

= Volume UOMs of case, pallet and item unit.

Passing UOM object (example: case, pallet, etc.),UOM type (standard,
dimension, weight, volume) and UOM value to the function. If the call to
function validate each uom() returns fatal or non fatal error, return so.

e Otherwise, if the standard UOM is null, or any of the case, pallet or unit’s
dimension or weight has value, while their unit of measures are null, default
them to the Retek system default UOMs. Call
SYSTEM OPTIONS SQL.GET ALL DEFAULT UOM to get the default
unit of measures.

o If the case liquid volume or unit liquid volume has a value, but their unit of
measure is null, return NON-FATAL error.

validate each uom()

This function will accept UOM object, UOM type and UOM value as input
parameters. It will call package function UOM_SQL.GET CLASS to validate
the passed in UOM value. Check the following conditions:

Volume 4 — Batch designs 177

e Ifthe passed in UOM type is standard, the UOM class is ‘PACK’ or
‘MISC’, issue an error message and return a NON-FATAL error.

e Ifthe passed in UOM type is dimension, make sure the UOM class is
‘DIMEN”. Ifitis not ‘DIMEN’, issue an error message and return a NON-
FATAL error.

e Ifthe passed in UOM type is weight and the UOM class found is not
‘MASS?’, issue an error message and return a NON-FATAL error.

o Ifthe passed in UOM type is volume and the UOM class found is not ‘VOL’
or ‘LVOL’, issue an error message and return a NON-FATAL error.

validate vpn()

e Validate the vpn against the item_supplier table. If the inputted vpn is not
found on the table with the item and supplier, return a NON-FATAL error.

Validate item_parent()

e This function will valid the input record’s item_parent exists in the
item_master table. It will select item_desc, item_number_type from
item_master table where item equals the item parent that passed in from the
input file.

e Ifthe item parent doesn’t exist, log an error and return NON_FATAL.
Otherwise, return true.

Find_item by ref item()

e The function will find the transaction level item that corresponding to the
ref item(item ref item or case ref item) passed in. It will take ref item,
item and item_exists as parameters.

e Since aref item could actually be a transaction level item or be a
sub_transaction level item, crease a cursor ¢c_item by ref item, do a decode
selection from item master table to select item from item master table if an
item equals the passed in ref item and item_level equals tran_level, or to
select item_parent if the item equals the ref item and the item level =
tran_level +1.

e Ifdata is found set the item_exist to 1 and store the found item in the passed
in variable. Otherwise, set the item_exist to 0. If no error occurred, return
true. Otherwise, return fatal.

get_item()
e Ifitem has a diff, we must have the ref item — if not, non-fatal error

e Passref item to the function find item by ref item() and also pass in
variables to hold the item and the item exists indicator that will be retrieved
from the function.

178 Retek Merchandising System

e [If the item is not found and VPN is on file, validate the VPN on the
item_supplier table

e Ifthe item was retrieved

» Call get_item_info() to retrieve the item’s parent, grandparent, type,
description, item level, tran level, and pack indicator.

e Ifthe item was not retrieved, check the edi new_item table

e [If the item was not retrieved, it is a new item

Get_item_info()

o This function will accept an item as input parameter. It’ll retrieve the
item_parent, item_grandparent, item number type, item_desc, item_level,
tran_level and pack _ind from the item_master table for the item.

convert_currency()

e Call currency_sql.convert by location to convert unit_cost and case_cost
into primary currency.

process_item()

o Check the edi_new_item table for the existence of
item/supplier/origin_country combo.

e Call convert_currency() to convert currency into primary currency for
edi_new_item table.

e Ifitem is not on edi_new_item table
= If item exists
= Call process_cost_change() to update/insert edi_cost chg table.

» Call insert new_item() to insert into edi_new_item table — do not insert
if item is a pack item.

e Ifitemis on edi new item table
= If item exists
= Call process_cost_change() to update/insert edi_cost chg table.

» Call update item_info() to update edi_new_item table — do not insert if
item is a pack item.
insert_ new_item()

The function inserts the item into the edi_ new_item table, using the values in the
transaction detail record. Unit cost and case cost should only be inserted for
items not in RMS.

update item_info()

The function updates the edi_new _item table when a record has not been
approved and still in the edi_new_item table. The function updates the following
columns:

Volume 4 — Batch designs 179

vdate — processed date

NVL(item_desc, edi new_item.item_desc)

NVL(short_desc, edi_new_item.short desc)

NVL(case cost, edi_ new_item.case_cost) — for new items only
NVL(unit_cost, edi new_item.unit_cost) — for new items only
NVL(packing_method, edi new_item.packing method)
NVL(gross unit weight, edi_ new_item.gross unit weight)
NVL(net_unit weight, edi_new_item.net_unit weight)
NVL(unit_weight uom, edi_new_item.unit weight uom)
NVL(unit_length, edi new_item.unit length)

NVL(unit width, edi_new_item.unit width)
NVL(unit_height, edi new_item.unit_height)
NVL(unit_Iwh uom, edi_new_item.unit lwh uom)
NVL(unit_liquid volume, edi_new_item.unit liquid volume)
NVL(unit_liquid volume uom, edi new_item.unit liquid volume uom)
NVL(gross_case_weight, edi_ new_item.gross_case weight)
NVL(net case weight, edi new item.net unit weight)
NVL(case weight uom, edi_ new_item.case weight uom)
NVL(case length, edi new item.case length)

NVL(case width, edi new_item.case width)

NVL(case height, edi new_item.case height)
NVL(case Iwh uom, edi new item.case Iwh uom)
NVL(case_liquid volume, edi new_item.case liquid volume)
NVL(case liquid volume uom, edi new item.case liquid volume uom)
NVL(gross pallet weight, edi_new_item.gross pallet weight)
NVL(net pallet weight, edi_new_item.net pallet weight)
NVL(pallet weight uom, edi_new_item.pallet weight uom)
NVL(pallet_length, edi_new_item.pallet length)

NVL(pallet width, edi_new_item.pallet width)
NVL(pallet_height, edi new_item.pallet height)

NVL(pallet lwh_uom, edi_new_item.pallet lwh _uom)
NVL(lead time, edi new_item.lead_time)

NVL(min_ord qty, edi new_item.min_ord_qty)
NVL(max_ord qty, edi new item.max ord qty)

NVL(uom_conversion_factor, edi new_item.uom_conversion_factor)

180 Retek Merchandising System

NVL(standard uom, edi new_item.standard uom)
NVL(supp_diff 1, edi new_item.supp_diff 1)
NVL(supp_diff 2, edi new_item.supp_diff 2)
NVL(supp_diff 3, edi new item.supp diff 3)
NVL(supp_diff 4, edi new_item.supp_diff 4)

NVL(supp_pack size, edi_new_item.supp pack size)

NVL(inner_pack size, edi_new_item.inner_pack_size)

Validate VPN vs ref item():

This function will validate that the VPN doesn’t correspond to an item that is
above the transaction level. Compare the item_level with the tran_level (the
item tran_level and item_level should have been retrieved in the previous
processes), if the item_level is less than the tran_level (item_level above the
tran_level), log an error stating that an item above transaction level can’t
have a ref item, return NON_FATAL. Otherwise, return true.

process_casel()

First, check if this is a new case pack. Call function find item by ref item
to find the pack no that corresponding to the case ref item. Note this
indicator will be used to populate the edi_new_item table’s

new_case pack ind field if the case ref item is valid. Pass in the
case ref item to the function and also the variables to hold the pack no and
the pack exists indicator. If the pack no is not found in RMS, check to make
sure a type for the case ref item was specified in the input file. If not, log an
error and return NON_FATAL. If pack no is found in the RMS, find the
component item from the packitem table for the pack no. Compare the pack
component item found from the cursor with the item that from the input file,
if they are different, log an error and return NON_FATAL.

Next, compare the case pack exist indicator and the item exist indicator:

= Ifboth case pack and item are new to RMS, if case cost is null and
unit_cost is provided by the input file, calculate the case cost by
multiplying the unit_cost and the pack size. Otherwise, if unit cost is
null and the case cost is presented in the input file, divided the cast cost
by the pack_size to populate the unit_cost field.

Finally, if both of the case_ref item and case ref item_type are not null, call
function check ref item and pass in the case ref item and

case ref item type. If the function doesn’t return successfully, return
whatever is returned from the function. Otherwise, return true.

final()

restart/recovery close, close files

Volume 4 — Batch designs 181

1/0 Specification

Input file structure: (reject file will have same file structure)

FHEAD file header
FDETL item info
FTAIL file trailer
Input Files
Record Field Name Field Type Default Value Description
Name
File Header File Type Record Char(5) FHEAD Identifies file record type
Descriptor
File Line Identifier Numeric Sequential ID of current line being created for
ID(10) number output file.
Created by
program.
File Type Definition | Char(4) UCAT Identifies program to use
File Create Date Char(14) create date current date, formatted to
‘“YYYYMMDDHH24MISS’.
File Detail File Type Record Char(5) FDETL Identifies file record type
Descriptor
File Line Identifier Numeric Sequential ID of current line being created for
ID(10) number output file.
Created by
program.
Transaction sequence | Number(10) Sequential transaction #
Supplier Number(10) Supplier id#
Sup Name Char(32) Supplier name
Duns Number Number(9) Dun and Bradstreet number identifies
the supplier. Note the Duns Number
and Duns Loc together, uniquely
identifies a supplier.
Duns Loc Number(4) Dun and Bradstreet number identifies
the location of the supplier.
item Char(25) Retek item (blank if none)
Ref item Char(25) Reference Item. For example, UPC

(blank if none).

182 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description

Refitem type

Char(6)

Reference item type. Valid reference
types are stored in the code detail
table under Code Type of ‘UPCT’ and
listed as follows:

ITEM - Retek Item Number
UPC-A - UPC-A

UPC-AS - UPC-A with
Supplement

UPC-E - UPC-E

UPC-ES - UPC-E with
Supplement

EAN8 - EANS

EAN13 - EANI3

EANI13S - EANI3 with
Supplement

ISBN - ISBN

NDC - NDC/NHRIC -
National Drug Code

PLU - PLU

VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCCl14 - SCC-14

(blank if none).

Item Parent

Char (25)

Retek Item Parent which uniquely
identifies the item/group at the level
above the item.

Parent VPN

Char(30)

Vendor style id

VPN

Char(30)

Vendor product number (blank if
none) Must be in all capitals

Supplier item
differentiator 1

Char(80)

Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

Supplier item
differentiator 2

Char(80)

Item differentiator description. For
example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

Volume 4 — Batch designs 183

Record Field Name Field Type Default Value Description
Name

Supplier item Char(80) Item differentiator description. For

differentiator 3 example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

Supplier item Char(80) Item differentiator description. For

differentiator 4 example, color, size, descriptions.
This field is displayed later when
entering the item into Retek to use as
a basis for choosing an appropriate
differentiator within Retek.

Item description Char(100) Item description

Short description Char(20) Item short description for point of
sales.

Effective date Char(14) Effective date,
YYYYMMDDHH24MISS

Min order qty Number(12) Minimum order quantity (4 implied
decimal places)

Max order qty Number(12) Maximum order quantity (4 implied
decimal places)

Lead time Number(4) Days from PO receipt to shipment

Unit cost Number(20) Unit cost, 4 implied decimal places

Gross unit weight Number(12) Gross unit weight (4 implied decimal
places). The gross numeric value of
weight per unit.

Net unit weight Number(12) Net unit weight (4 implied decimal
places). The net numeric value of
weight per unit.

Unit weight UOM Char(4) Item unit weight unit of measure

Unit length Number(12) Item unit length (4 implied decimal
places)

Unit width Number(12) Item unit width (4 implied decimal
places)

Unit height Number(12) Item unit height (4 implied decimal
places)

Unit Iwh UOM Char(4) Item unit dimension unit of measure.

Unit liquid volume Number(12) Item unit liquid volume or capacity (4

implied decimal places)

184 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description

Unit liquid volume
UOM

Char(4)

Unit of measure of the item liquid
volume/capacity

Case ref item

Char(25)

Case reference number. For example:
case UPC code.

Case ref item type

Char(6)

Case reference number type. Valid
case reference item types are stored
in the code_detail table under Code
Type of ‘UPCT’ and listed as follows:

ITEM - Retek Item Number
UPC-A - UPC-A

UPC-AS - UPC-A with
Supplement
UPC-E -
UPC-ES -
Supplement
EAN8 -
EANI13 -

EANI13S -
Supplement

ISBN - ISBN

NDC - NDC/NHRIC -
National Drug Code

PLU - PLU

VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCCl14 - SCC-14

(blank if none).

UPC-E
UPC-E with

EANS
EANI13
EAN13 with

Case item desc

Char(100)

Case item description

Case cost

number(20)

Case Cost (4 implied decimal places)

Gross case weight

Number(12)

Gross weight of the case (4 implied
decimal places)

Net case weight

Number(12)

Net weight of the case (4 implied
decimal places)

Case weight UOM

Char(4)

Unit of measure of the case weight

Case length

Number(12)

Case length (4 implied decimal
places)

Case width

Number(12)

Case width (4 implied decimal places)

Case height

Number(12)

Case height (4 implied decimal
places)

Volume 4 — Batch designs 185

Record Field Name Field Type Default Value Description
Name

Case Iwh UOM Char(4) Case dimension unit of measure.

Case liquid volume Number(12) Case liquid volume or capacity (4
implied decimal places)

Case liquid volume Char(4) Unit of measure of the case liquid

UOM volume/capacity

Gross pallet weight Number(12) Gross pallet weight (4 implied
decimal places)

Net pallet weight Number(12) Net pallet weight (4 implied decimal
places)

Pallet weight UOM Char(4) Unit of measure of the pallet weight

Pallet length Number(12) Pallet length (4 implied decimal
places)

Pallet width Number(12) Pallet width (4 implied decimal
places)

Pallet height Number(12) Pallet height (4 implied decimal
places)

Pallet lwh UOM Char(4) Pallet dimension unit of measure.

Ti Number(12) Shipping units (cases) in one tier of a
pallet (4 implied decimal places)

Hi Number(12) Number of tiers in a pallet (height).
(4 implied decimal places)

Pack Size Number(12) Supplied pack size. I.e., Number of
eaches per case pack. This is the
quantity that orders must be placed in
multiples of for the supplier for the
item.

Inner pack size Number(12) Supplied inner pack size. l.e.,
Number of eaches per inner container.

Origin Country ID Char(3) Supplied origin country ID.

Standard UOM Char(4) Unit of measure in which stock of the

item is tracked at a corporate level.

186 Retek Merchandising System

Record Field Name Field Type Default Value Description
Name

UOM Conversion Number(20) Conversion Factor, 10 implied

Factor decimal places. Conversion factor
between an "Each" and the
standard uom when the
standard_uom is not in the quantity
class (e.g. if standard uom = 1lb and 1
Ib = 10 eaches, this factor will be 10).
This factor will be used to convert
sales and stock data when an item is
retailed in eaches but does not have
eaches as its standard unit of measure.

Packing Method Char(6) Packing Method code (HANG,FLAT)

Location Number(10) RETEK location that the supplier
distributes to or this may be a number
used by the supplier to identify a non-
RETEK Ilocation.

Location Type Char(1) This field will contain the type of
location (S’ for store and ‘W’ for
warehouse).

Bracket Value 1 Number This will contain the primary bracket

(12,4) value of the supplier.
Bracket UOM 1 Char(4) This field will contain the unit of
measure of the primary bracket.
Bracket Type 1 Char (6) This field will contain the UOM class.
Bracket Value 2 Number This will contain the secondary
(12,4) bracket value for the supplier.

Unit cost new Number This field will contain the new unit
(20,4) cost of the bracket.

Case Bracket Value 1 | Number This will contain the primary bracket
(12,4) value of the supplier for a case UPC.

Case Bracket UOM 1 | Char(4) This field will contain the unit of
measure of the primary bracket for a
case UPC.

Case Bracket Type 1 | Char (6) This field will contain the UOM class
for a case UPC.

Case Bracket Value 2 | Number This will contain the secondary

(12,4) bracket value for the supplier for a

case UPC.

Volume 4 — Batch designs 187

Record Field Name Field Type Default Value Description
Name
Case Unit cost new Number This field will contain the new unit
(20,4) cost of the bracket for a case UPC.
File Trailer File Type Record Char(5) FTAIL Identifies file record type
Descriptor
File Line Identifier Numeric Sequential ID of current line being created for
ID(10) number output file.
Created by
program.
File Record Counter | Numeric Number of records/transactions
ID(10) processed in current file (only records
between head & tail)

Test Conditions

Conditions Expected Results Programmer
Sign-off
No records no processing
Missing required information write TDETL line to reject file

Process a valid input file:

for a new item Insert edi_new_item record — include the
unit retail and cost

for existing items Insert edi_new_item record, if changes to
other than cost.

Only insert into edi_cost_change if cost
change present

for a new item with existing Update the edi_new_item and
edi_new item and edi_cost_change tables
edi_cost_change records

Input file contains item, ref item,

and VPN:
invalid ref item write TDETL to reject file
invalid vpn write TDETL to reject file

Input file contains ref item
andVPN:

invalid ref item write TDETL to reject file

invalid vpn write TDETL to reject file

188 Retek Merchandising System

Conditions Expected Results Programmer
Sign-off

item with no ref item (in Retek) Insert/update edi_new_item and
but a valid VPN edi_cost_change tables

Technical Issues

1 Unit retail and cost will be inserted into edi_new_item table for new items
only.

2 We are not using permanent substitutions.

3 Itis assumed that currency will be in the supplier’s currency. This currency
must be converted to primary currency for the edi new_item table. No
translation is necessary for the edi_cost_change table since that stores the
supplier’s currency.

4 All input/validation errors will be non-fatal. All Oracle errors will be fatal.

Volume 4 — Batch designs 189

On-order extract [onordext}

Module affected

On-Order Extract — onordext.pc

Design Overview

This program calculates the value in cost and retail of items that are on order for
the department/class/subclass/location level. This program is the first step in the
stock ledger download process to RPP. It calculates the on order cost and retail
for all approved orders that have not before dates less than or equal to the
planning horizon date. Once the program has calculated the costs and retails,
they are inserted into the ON_ORDER TEMP table. This table is used in the
second step of the stock ledger download process -- the Stock Ledger Extract
program (stlgdnld.pc).

Note: The MAX BUFFER NUM #define should be set to a number that will
allow safe buffering of component pack items, allocations, and orders at the
component sku location level. If it is possible for any of these variables to
exceed the value assigned to MAX BUFFER NUM, its value must be increased.
Stored Procedures / Shared Modules (Maintainability)

Convert_to_primary — Pro*c library (utils.h / utils.pc).
Program Flow

Function Level Description

main():

The standard Retek main() function. Calls init(), process(), and final().
init():

Initialize restart recovery by calling retek init(). Opens the input file and reads
the planning horizon end date. Gets the primary currency from the
system_options table.

process():

There are two process loops, one for transaction level items and one for pack
items.

For each record brought back by the item driving cursor:

e Convert the cost from the order currency into the primary currency by calling
the convert_to_primary function.

o Convert the retail from the location currency into the primary currency by
calling the convert_to_primary function.

e (Call the handle alloc function.

After all the record from the item cursor have been processed. The process flag
should be flipped to ‘P’ack. The handle alloc function is called to clean up the
last allocation.

190 Retek Merchandising System

For each record brought back by the pack driving cursor:

e Convert the pack cost from the order currency into the primary currency by
calling the convert_to_primary function.

e Convert the pack retail from the location currency into the primary currency
by calling the convert to primary function.

e Convert the pack component item cost from the supplier currency into the
primary currency by calling the convert_to_primary function.

o Convert the pack component item retail from the zone/zone group currency
into the primary currency by calling the convert_to_primary function.

e (Call the handle pack function.
Handle insert()

This function adds records to arrays that will be inserted into
ON_ORDER_TEMP. First it populated a record into the regular array (non-
allocation). Then if the current record is associated with an allocation, a record is
added to the allocation array.

Add_insert_record()

This function copies records from a driving cursor record into an insert array. It
has two modes, the first if for non-allocation records. The cost and retail are set
to the converted cost and retail from the driving cursor times the item qty from
ordloc. The second mode handles allocation records, it sets the cost and retail to
the converted cost and retail from the driving cursor times the alloc qty from
alloc_detail.

Handle alloc()

This function sums up the quantities allocated to on alloc_header for each
allocation. Once every record associated with an allocation have been summed,
it is possible to determine how much of the qty ordered to the allocation
warehouse should be assigned to it. If all of the items ordered to it have been
allocated, the warehouse is not assigned any of the cost or retail. If items are not
fully allocated, the warehouse is assigned the items that were not allocated. Once
the qty to give to the warehouse it determined, the handle insert is function is
called for each allocation record.

Handle pack()

This function prorates the amount and cost ordered through packs to their
component items. Every component item ordered through a pack has their total
cost and retail summed up. Once all the component items have been summed,
the cost and retail of the pack is prorated. The formula cost is: (the pack’s cost /
the summed component cost) * the individual component item’s cost. The same
formula is used for retail.

When summing up retails, the class vat ind of the pack and its components are
considered. When they are different, the components retail is converted to match
the pack’s. This logic is contained in handle comp_vat().

After the records are prorated they are sent to buffer alloc().

Volume 4 — Batch designs 191

Handle comp_vat()

This function adds or removes vat from pack component’s retail as needed. This
conversion is only needed when vat is defined as the class level in the system
(system_options.class level vat ind).

If the pack’s dept/class does not match the component’s dept/class:

If the pack’s class_vat ind (defined at the class table) does not match the
component’s class vat ind:

Add or remove vat from the component’s retail based on the pack’s
class_vat_ind. The conversion is done using library function defined in
common.h.

Buffer alloc()

This function is used to reorder the records sent to it by handle pack() before
they are sent to handle alloc(). The handle pack() function requires that the
records be ordered by order no, pack no, location, alloc location.

Handle alloc() requires the records to be ordered by order no, pack no, location,
component item. This function build groups of order no/pack no/location and
reorders them by component item. sort for allocation(), get max_indx(),
swap_driv_array(), and copy_info() are utility functions that help sort the driving
cursor records.

Once the buffered records have been ordered, they are sent to the handle alloc()
function.

Copy_fetch()

Utility function used by handle alloc and handle pack. It totals up the allocated
qty for the handle alloc funciton. It totals up the components cost and retail
(times the pack item qty) for handle pack.

Insert_ on_order temp()
This function performs an array insert into the on_order temp table.
Size driv_cur_struct()

Allocates memory for the structure used to fetch the driving cursors and used
when summing up allocations and pack component items.

Size insert_struct()
Allocates memory used to perform bulk inserts into the on_order temp table.
load dept class()

Load an array with every dept/class and their class vat ind. We want to make
sure that all components include or exclude vat depending on whether or not the
pack includes or excludes vat. Vat should be consistent across all the retail
values when prorating the pack’s retail to the components.

To avoid extra-hits database hits, the entire class table is cached with necessary
vat information. That way when we need to get a particular class_vat_ind, we
can search this array rather than hit the database in our driving cursor loop.

192 Retek Merchandising System

size dept class()
Size an array to hold every dept/class/class_vat ind.
get_dept class_ind()

Given a dept/class, this function will perform a binary search on the dept/class
array and return the class_vat _ind for the passed in dept/class.

get_vat_rate()
Wrapper for call to VAT SQL.GET VAT RATE.

Input Specifications
Command Line Parameters:

Onordext will calculate the on order cost and retail for a given planning horizon.
The planning horizon date will be a command line parameter contained in an
input file. The file will also contain information used by stlgdnld.pc.

The file contains 1 line

Field Position: 1 — weekly or historic indicator
2-9 — planning horizon start date

10-17 — planning horizon end date

Onordext userid/passwd input-file

Driving Cursor:

There are two driving cursors in this program. The first deals with items, the
second deals with packs.

/*
The first driving cursor handles on-order amounts for items.
The first part deals with non-allocation ordeers or allocation
orders
that are not pre-marked
*/

EXEC SQL DECLARE c_driver CURSOR FOR
SELECT oh.order_no,

-999 alloc no,

ol.item,

ol.gty ordered - nvl(ol.gty received,0),

ol.unit cost,

ol.unit retail,

ol.location,

ol.loc type,

-999 alloc_loc,

'N' alloc_loc_ type,

0 alloc gty,

im.dept,

Volume 4 — Batch designs 193

im.class,
im.subclass,
oh.exchange rate,
oh.currency code,
oh.otb eow date,
1 comp_item gty
FROM ordhead oh,
ordloc ol,
item master im
WHERE oh.status = 'A'
AND ol.gty ordered > nvl(ol.gty received,0)

AND oh.not before date <= TO DATE (:ps_on order date,
'YYYYMMDD')

AND oh.order no = ol.order no

AND ol.item = im.item

AND im.pack ind = 'N'

AND (oh.pre mark ind = 'N' OR
(oh.pre mark ind = 'Y'

and not exists (select alloc no
from alloc _header ah
where ah.order no = oh.order no
and ol.item = ah.item
and ol.location = ah.wh)))
AND oh.order no > NVL(:ps restart order, -999)

AND MOD (oh.order no, TO NUMBER(:ps restart num threads)) + 1 =
TO_NUMBER (:ps_restart thread val)

UNION ALL

SELECT oh.order no,
NVL (ah.alloc no,-999),
ol.item,
ol.gty ordered - nvl(ol.qty received,0),
ol.unit cost,
ol.unit retail,
ol.location,
ol.loc_type,
ad.to loc,
ad.to_loc type,
nvl (ad.qgty allocated, 0) - nvl(ad.qty transferred,0),
im.dept,
im.class,
im.subclass,
oh.exchange rate,
oh.currency_code,

oh.otb _eow_date,

194 Retek Merchandising System

1 comp_item gty
FROM ordhead oh,
ordloc ol,
item master im,
alloc_header ah,
alloc_detail ad
WHERE oh.status = 'A'
AND ol.gty ordered > nvl(ol.gty received,0)
AND oh.pre mark ind = 'Y'

AND oh.not before date <= TO_DATE (:ps_on_order date,
'YYYYMMDD'")

AND oh.order no = ol.order no

AND ol.item = im.item

AND im.pack ind = 'N'

AND ol.order no = ah.order no

AND ol.location = ah.wh

AND ol.item = ah.item

AND ah.alloc_no = ad.alloc_no

AND oh.order no > NVL(:ps_restart order, -999)

AND MOD (oh.order no, TO NUMBER(:ps restart num threads)) + 1 =
TO NUMBER (:ps_restart thread val)

ORDER BY 1,2,7,9;

/*
The second driving cursor handles on-order amounts for packs.

- The first part deals with packs being ordered directly to a

store.
- The second part deals with packs being directly ordered to a wh
or
allocated from a wh with the pre-mark indicator set to 'N'.
- The third part deals with packs being allocated from a wh with
the
pre-mark indicatory set to "Y'.
*/

EXEC SQL DECLARE c_pack driver CURSOR FOR
SELECT oh.order no,

-999 alloc no,
ol.item pack no,
ol.gty ordered - nvl(ol.qty received,0) pack qgty,
ol.unit cost pack cost,
ol.unit retail pack retail,
vpg.item,
vpg.qty item qgty,
iscl.unit cost comp_cost,

izp.unit_retail comp_retail,

F

WH

'YYYYMMDD

ROM

ERE

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

ol.location,
ol.loc_type,
-999 alloc loc,
'N' alloc_loc_ type,
0 alloc _gty,
im.dept,

im.class,
im.subclass,
iscl.supplier,
izp.zone_ id,
izp.zone group id,
oh.exchange rate,
oh.currency code,
oh.otb eow date,
vpg.qty comp_item gt
to char (imp.dept, '00
to_char (im.dept, '000
ordhead oh,

ordsku os,

ordloc ol,

item master im,

item master imp,
v_packsku_ gty vpqg,
item supp country lo
price zone group sto
item zone price izp
oh.status =
ol.gty ordered > nvl

oh.not_before date <

oh.pre mark ind
oh.order no
oh.order no
ol.loc_type
os.item
os.item
ol.item
im.item
iscl.item

oh.supplier
os.origin country id

pzgs.store

pzgs.zone_ id

Volume 4 — Batch designs 195

Y
00') | |[trim(to_char (imp.class, '0000")),

0") | l[trim(to_char(im.class, '0000"))

c iscl,

re pzgs,

lAl
(ol.gty received,0)

= TO DATE (:ps_on order date,

!
s.order_no
ol.order_no
gt

= imp.item

ol.item

vpg.pack no

vpg.item

im.item

iscl.supplier

iscl.origin country id
ol.location

izp.zone_ id

196 Retek Merchandising System

AND pzgs.zone group_id = izp.zone_group id
AND izp.item = vpg.item
AND oh.order no > NVL(:ps restart order, -999)

AND MOD (oh.order no, TO NUMBER(:ps restart num threads)) + 1 =
TO_NUMBER (:ps_restart thread val)

UNION ALL

SELECT oh.order no,
-999 alloc no,
ol.item pack no,
ol.gty ordered - nvl(ol.qty received,0) pack qgty,
ol.unit cost pack cost,
ol.unit retail pack retail,
vpg.item,
vpg.qty item qgty,
iscl.unit cost comp_cost,
izp.unit retail comp retail,
ol.location,
ol.loc_ type,
-999 alloc_loc,
'N' alloc_loc_ type,
0 alloc gty,
im.dept,
im.class,
im.subclass,
iscl.supplier,
izp.zone_ id,
izp.zone group id,
oh.exchange rate,
oh.currency code,
oh.otb eow date,
vpg.qty comp item gty,
to char (imp.dept, '0000") | [trim(to_char (imp.class, '0000")),
to char (im.dept, '0000") | |[trim(to char (im.class, '0000"))

FROM ordhead oh,

ordsku os,
ordloc ol,
item master im,
item master imp,
v_packsku gty vpqg,
item supp country loc iscl,
item zone price izp

WHERE oh.status = 'A'

AND ol.qgty ordered > nvl(ol.gty received,0)

Volume 4 — Batch designs 197

AND oh.not before date <= TO_DATE (:ps_on_order date,
'YYYYMMDD')

AND oh.order_no = os.order_no

AND oh.order_no ol.order_no

AND os.item = imp.item
AND os.item = ol.item

AND ol.loc type = 'w'

AND ol.item = vpg.pack no
AND im.item = vpg.item
AND iscl.item = im.item

AND oh.supplier = iscl.supplier

AND os.origin_country id = iscl.origin_country_ id

AND izp.item = vpg.item

AND izp.base retail ind = 'Y'

AND (oh.pre mark ind = 'N' OR
(oh.pre_mark_ind = 'Y'

and not exists (select alloc no
from alloc_header ah
where ah.order no = oh.order no
and ol.item = ah.item
and ol.location = ah.wh)))
AND oh.order no > NVL(:ps_restart order, -999)

AND MOD (oh.order no, TO NUMBER(:ps_restart num threads)) + 1 =
TO NUMBER (:ps_restart thread val)

UNION ALL

SELECT oh.order no,
NVL (ah.alloc _no,-999),
ol.item pack no,
ol.gty ordered - nvl(ol.qty received,0) pack qgty,
ol.unit cost pack cost,
ol.unit retail pack retail,
vpg.item,
vpg.qty item qgty,
iscl.unit cost comp cost,
izp.unit retail comp_ retail,
ol.location,
ol.loc type,
ad.to loc,
ad.to_loc_type,
nvl (ad.qgty allocated, 0) - nvl(ad.qty transferred,0),
im.dept,
im.class,
im.subclass,

iscl.supplier,

198 Retek Merchandising System

izp.zone_id,
izp.zone group id,
oh.exchange rate,
oh.currency code,
oh.otb eow date,
vpg.qty comp item gty,
to char (imp.dept, '0000") | [trim(to_char (imp.class, '0000")),
to char (im.dept, '0000") | |[trim(to char (im.class, '0000"))
FROM ordhead oh,
ordsku os,
ordloc ol,
item master im,
item master imp,
v_packsku gty vpqg,
item supp country loc iscl,
item zone price izp,
alloc header ah,
alloc _detail ad
WHERE oh.status = 'A'

AND ol.gty ordered > nvl(ol.gty received,0)

AND oh.pre mark_ ind = 'y’

AND oh.not before date <= TO_DATE (:ps_on_order date,
'YYYYMMDD')

AND oh.order_no = os.order_no

AND oh.order_no = ol.order_no

AND os.item = imp.item

AND os.item = ol.item

AND ol.loc type = 'w'

AND ol.item vpg.pack no

AND im.item = vpg.item
AND iscl.item = im.item
AND oh.supplier = iscl.supplier

AND os.origin_country id = iscl.origin_country_ id

AND izp.item = vpg.item
AND izp.base retail ind = 'Y'

AND ol.order_no = ah.order_no
AND ol.location = ah.wh

AND ol.item = ah.item
AND ah.alloc_no = ad.alloc no

AND oh.order no > NVL(:ps_restart order, -999)

AND MOD (oh.order no, TO NUMBER(:ps restart num threads)) + 1 =
TO NUMBER (:ps_restart thread val)

ORDER BY 1,2,3,13,15;

Volume 4 — Batch designs 199

Output Specifications

ON_ORDER_TEMP will be populated by this program.
ITEM NOT NULL VARCHARZ (25)
DEPT NOT NULL NUMBER (4)
CLASS NOT NULL NUMBER (4)
SUBCLASS NOT NULL NUMBER (4)
OTB_EOW_DATE NOT NULL DATE

STORE NOT NULL NUMBER (10)
WH NOT NULL NUMBER (10)
ON_ORDER_RETAIL NOT NULL NUMBER (20, 4)
ON_ORDER_COST NOT NULL NUMBER (20, 4)
ON_ORDER_UNITS NOT NULL NUMBER (20, 4)

Scheduling Considerations
This program can be run weekly in Phase 4.
Prepost onordext pre must run before this program.

This program should be run before onorddnld.pc.
Locking Strategy

Restart/Recovery

Logical unit of work (LUW) is a unique order number. This is a non-unique
LUW.

It is also split into two sections item and pack. First all items on orders are
processed. When they are done a pack ‘flag’ is turned on and the restart order is
reset. Then all the packs on order are processed. So all orders are considered
twice, once for items and once for packs.

200 Retek Merchandising System

POS download [posdnld]

SN
S

Pos mods > Output File

Design overview

The posdnld program is used to download pos_mods records created in the RMS
to the store POS systems. This program has one output file which contains all
records for all stores in a given run. This program uses the Retek standard file
format FHEAD, FDETL, FTAIL.

Program Flow

\/ \/

Stored Procedures / Shared Modules (Maintainability)

pos_config sql.check item - Updates POS item configuration information that is
downloaded to the stores by poscdnld.pc.

Input Specifications

All input comes from the pos _mods table. All columns of this table can be NULL
with the exception of tran_type and store. Most columns should default to blank
(spaces) with the exception of:

e new_price, new_multi_units, new _multi_units_retail, proportional tare pct
and fixed tare value. These should default to zero (0).

e start date, start time and end time. These should default to period.vdate + 1.

Output Specifications
Output File
Record Field Name Field Default Value Description
Name Type
File File Type Char(5) FHEAD Identifies file record type
Header Record
Descriptor
File Line Number Sequential ID of current line being created
Identifier ID(10) number for output file.
Created by
program.

Volume 4 — Batch designs 201

Record Field Name Field Default Value Description
Name Type

File Type Char(4) POSD Identifies file as ‘POS Download’

Definition

File Create Char(8) Create date Current date, formatted to

Date (vdate). YYYYMMDD’.

File File Type Char(5) FDETL Identifies file record type
Detail Record
Descriptor
File Line Number Sequential ID of current line being created
Identifier ID(10) number. for output file.
Created by
program.

Location Number(1 | Store Contains the store location that

Number 0) has been affected by the

transaction

Update Type | Char(1) Update type. Code used for client specific POS
Created by system.
program. 1 - Transaction Types 1 & 2.

2 - Transaction Types 10 thru 18,
31 & 32, 50 thru 57, 59 thru 64.
3 - Transaction Types 21 & 22

4 - Transaction Types 25 & 26

0 - All other Transaction Types.
These should never exist.

Start Date Char(8) Start_date or The effective date for the action
vdate + 1 if determined by the transaction type
NULL. of the record. Formatted to

YYYYMMDD’.

Time Char(6) Start_time, This field will be used in
End_time or conjunction with starting a
start_date. promotion (Transaction Type =

31). Start time will indicate the
time of day that the promotion is
scheduled to start. This field will
also be used in conjunction with
ending a promotion (Transaction
Type = 32). Any other
Transaction Type will use the time
from the start date column.
Formatted to ‘HH24MISS”.
Transaction Number(2 | Tran_type Indicates the type of transaction to
Type) determine what Retek action is

being sent down to the stores from

202 Retek Merchandising System

Record
Name

Field Name

Field
Type

Default Value

Description

the Retek pos_mods table.

Valid values include:

01 - Add new transaction level
item

02 - Add new lower than
transaction level item

10 - Change Short Description of
existing item

11 - Change Price of an existing
item

12 - Change Description of an
existing item

13 - Change
Department/Class/Subclass of an
existing item

16 - Put Item on Clearance

17 - Change existing item's
Clearance Price

18 - Remove Item from Clearance
and Reset

20 -

21 - Delete existing transaction
level item

22 - Delete existing lower than
transaction level item

25 - Change item's status

26 - Change item's taxable
indicator

31 - Promotional item - Start
maintenance

32 - Promotional item - End
maintenance

50 - Change item's launch date
51 - Change item's quantity key
options

52 - Change item's manual price
entry options

53 - Change item's deposit code

54 - Change item's food stamp
indicator

55 - Change item's WIC indicator
56 - Change item's proportional

Volume 4 — Batch designs 203

Record
Name

Field Name

Field
Type

Default Value

Description

tare percent

57 - Change item's fixed tare
value

58 - Change item's rewards
eligible indicator

59- Change item's electronic
marketing clubs

60 - Change item's return policy

61 - Change item's stop sale
indicator

62 — Change item’s returnable
indicator

Item Number
1D

Char(25)

Item

This field identifies the unique
alphanumeric value for the
transaction level item. The ID
number of a item from the Retek
item_master table.

Item Number
Type

Char(6)

Item number ty
pe

This field identifies the type of the
item number ID.

Format ID

Char(1)

Format id

This field identifies the type of
format used if the
item_number_type is ‘VPLU".

Prefix

Number(2

)

Prefix

This field identifies the prefix
used if the item number type is
‘VPLU". In case of single digit
prefix, the field will be right-
justified with blank padding.

Reference
Item

Char(25)

Ref item

This field identifies the unique
alphanumeric value for an item
one level below the transaction
level item.

Reference
Item Number

Type

Char(6)

Ref Item numbe
r_type

This field identifies the type of the
ref item number ID.

Reference
Item Format
1D

Char(1)

Ref Format id

This field identifies the type of
format used if the ref
item_number_type is ‘VPLU".

Reference
Item Prefix

Number(2

)

Ref Prefix

This field identifies the prefix
used if the ref item number type
is “VPLU’. In case of single digit
prefix, the field will be right-
justified with blank padding.

204 Retek Merchandising System

Record Field Name Field Default Value Description
Name Type
Item Short Char(20) | Item_short_desc | Contains the short description
Description associated with the item.
Item Long Char(100) | Item long desc | Contains the long description
Description associated with the item.
Department Number(4 | Dept Contains the item's associated
ID) department.
Class ID Number(4 | Class Contains the item's associated
) class.
Subclass ID Number(4 | Subclass Contains the item's associated
) subclass.
New Price Number(2 | New price Contains the new effective price
0) in the selling unit of measure for
an item when the transaction type
identifies a change in price.
Otherwise, the current retail price
is used to populate this field. This
field is stored in the local
currency.
New Selling Char(4) New_selling UO | Contains the new selling unit of
UOM M measure for an item's single-unit
retail.
New Multi Number(1 | New_multi units | Contains the new number of units
Units 2) sold together for multi-unit
pricing. This field is only filled
when a multi-unit price change is
being made.
New Multi Number(2 | New_multi units | Contains the new price in the
Units Retail 0) _retail selling unit of measure for units
sold together for multi-unit
pricing. This field is only filled
when a multi-unit price change is
being made. This field is stored in
the local currency.
New Multi Char(4) New_multi_selli | Contains the new selling unit of
Selling UOM ng UOM measure for an item's multi-unit

retail.

Volume 4 — Batch designs 205

Record
Name

Field Name

Field
Type

Default Value

Description

Status

Char(1)

Status

Populates if tran_type for the item
is 1(new item added) or 25
(change item status) or 26 (change
taxable indicator).

Contains the current status of the
item at the store.

Valid values are:
A = Active

I = Inactive

D = Delete

C = Discontinued

Taxable
Indicator

Char(1)

Taxable ind

Populates if tran_type for the item
is 1 (new item added) or 25
(change item status) or 26 (change
taxable indicator).

Indicates whether the item is
taxable at the store. Valid values
are'Y' or 'N".

Promotion
Number

Number(1
0)

Promotion

This field contains the number of
the promotion for which the
discount originated. This field,
along with the Mix Match
Number or Threshold Number is
used to isolate a list of items that
tie together with discount
information.

Mix Match
Number

Number(1
0)

Mix_match no

This field contains the number of
the mix and match in a promotion
for which the discount originated.
This field, along with the
promotion, is used to isolate a list
of items which tie together with
the mix and match discount
information.

206 Retek Merchandising System

Record
Name

Field Name

Field
Type

Default Value

Description

Mix Match
Type

Char(1)

Mix_match_type

This field identifies which types
of mix and match record this item
belongs to. The item can either be
a buy (exists on
PROM_MIX_MATCH_BUY) or
a get (exists on

PROM_MIX MATCH_GET)
item. This field is only populated
when the MIX MATCH_NO is
populated.

Valid values are:
B - Buy
G - Get

Threshold
Number

Number(1

0)

Threshold no

This field contains the number of
the threshold in a promotion for
which the discount originated.
This field, along with the
promotion, is used to isolate a list
of items that tie together with
discount information.

Launch Date

Char(8)

Launch_date

Date that the item should first be
sold at this location, formatted to
YYYYMMDD’.

Quantity Key
Options

Char(6)

Qty_key options

Determines whether the price
can/should be entered manually
on a POS for this item at the
location. Valid values are in the
code type 'RPQO'. Current values
include 'R - required', 'P -
Prohibited.

Manual Price
Entry

Char(6)

Manual price en
try

Determines whether the price
can/should be entered manually
on a POS for this item at the
location. Valid values are in the
code type 'RPQO'. Current values
include 'R - required', 'P -
Prohibited’, and 'O - Optional'.

Volume 4 — Batch designs 207

Record Field Name Field Default Value Description
Name Type
Deposit Code | Char(6) Deposit_code Indicates whether a deposit is

associated with this item at the
location. Valid values are in the
code type 'DEPO'. Additional
values may be added or removed
as needed. Deposits are not
subtracted from the retail of an
item uploaded to RMS, etc. This
kind of processing is the
responsibility of the client and
should occur before sales are sent
to any Retek application.

Food Stamp Char(1) Food stamp_ind | Indicates whether the item is

Indicator approved for food stamps at the
location.

WIC Char(1) Wic_ind Indicates whether the item is

Indicator approved for WIC at the location.

Proportional | Number(1 | Proportional tare | Holds the value associated of the
Tare Percent | 2) _pct packaging in items sold by weight
at the location. The proportional
tare is the proportion of the total
weight of a unit of an item that is
packaging (i.e. if the tare item is
bulk candy, this is the
proportional of the total weight of
one piece of candy that is the
candy wrapper). The only
processing RMS does involving
the proportional tare percent is
downloading it to the POS.

208 Retek Merchandising System

Record
Name

Field Name

Field
Type

Default Value

Description

Fixed Tare
Value

Number(1

2)

Fixed tare value

Holds the value associated of the
packaging in items sold by weight
at the location. Fixed tare is the
tare of the packaging used to (i.e.
if the tare item is bulk candy, this
is weight of the bag and twist tie).
The only processing RMS does
involving the fixed tare value is
downloading it to the POS. Fixed
tare is not subtracted from items
sold by weight when sales are
uploaded to RMS, etc. This kind
of processing is the responsibility
of the client and should occur
before sales are sent to any Retek
application.

Fixed Tare
UOM

Char(4)

Fixed tare uom

Holds the unit of measure value
associated with the tare value. The
only processing RMS does
involving the proportional tare
value and UOM is downloading it
to the POS. This kind of
processing is the responsibility of
the client and should occur before
sales are sent to any Retek
application.

Reward
Eligible
Indicator

Char(1)

Reward_eligible
ind

Holds whether the item is legally
valid for various types of bonus
point/award programs at the
location.

Elective
Marketing
Clubs

Char(6)

Elect mtk clubs

Holds the code that represents the
marketing clubs to which the item
belongs at the location. Valid
values can belong to the

code type 'MTKC'. Additional
values can be added or removed
from the code type as needed

Return Policy

Char(6)

Return_pocily

Holds the return policy for the
item at the location. Valid values
for this field belong to the

code type 'RETP".

Stop Sale
Indicator

Char(1)

Stop_sale ind

Indicates that sale of the item
should be stopped immediately at
the location (i.e. in case of recall
etc).

Volume 4 — Batch designs 209

Record Field Name Field Default Value Description
Name Type
Returnable Char(1) Returnable ind Indicates that the item is
Indicator returnable at the location when
equal to ‘Y’es. Indicates that the
item is not returnable at the
location when equal to ‘N’o.
Refundable Char(1) Refundable ind Indicates that the item is
Indicator refundable at the location when
equal to ‘Y’es. Indicates that the
item is not refundable at the
location when equal to ‘N’o.
Back Order Char(1) Back order ind Indicates that the item is back
Indicator orderable at the location when
equal to “Y’. Indicates that the
item is not back orderable when
equal to ‘N’o.
Vat Code Char(6) Indicates the VAT code used with
this item.
Vat Rate Number(2 Indicates the VAT rate associated
0,10) with this item and VAT code.
Class Vat Char(1) Indicates whether or not the class
Indicator VAT indicator is on or off for the
class that this item exists in.
File File Type Char(5) Identifies file record type
Trailer Record
Descriptor
File Line Number Sequential ID of current line being created
Identifier ID(10) number. for output file.
Created by
program.
File Record Number Number of Number of records/transactions
Counter ID(10) FDETL records. | processed in current file (only
Created by records between head & tail)
program.

210 Retek Merchandising System

Function Level Description

init - This function initializes restart/recovery for this program. It also retrieves
system variables (period.vdate and vdate + 1), opens the output file and write the
FHEAD record.

process - This function drives the processing of the program. It calls size arrays()
function to size the arrays used in this program and also, when done, it calls

free arrays() to release any memory it has been allocated. The driving cursor is
opened and fetched here, which retrieves all the records from pos_mods where
the pos_mods.store value is greater than zero.

If the Transaction Type is 31, then the time field returned by the cursor should be
the start time, else if the Transaction Type is 32, then the time field should be the
end time. If the Transaction Type is something else or if either the start time or
end time is NULL, blanks should be used.

Once the records are fetched, if the Transaction Type of the record fetched is 1 or
21 then pos_config_check() is called. The write_rec() function is called to
perform processing on all records fetched. Restart/Recovery and committing of
records is also performed here.

final - This function will finish restart/recovery logic, write the FTAIL record
and close the output.

size arrays - This function initializes the size of the array used for the driving
cursor fetch the size of the restart max counter on restart control.

free arrays - This function frees the array allocated in size arrays.

write_rec - This function will prepare records for insert into the output file and
write them as FDETL records. The Transaction Type will determine the Update
Type. If the Transaction Type is 1, 25 or 26 then the status and taxable_ind
columns must be outputted, otherwise these should remain blank.

pos_config check - This function will call the package

pos_config sql.check item(). If the Transaction type is 1, then a status of 'A' will
be passed in. If the Transaction Type is 21, then a status of 'D' will be passed in.
This function body should be commented out for A&P Phase 1a.

Scheduling Considerations

Processing Cycle: PHASE 4 (daily)

Scheduling Diagram: This program is run towards the end of the batch run when
all pos_mods records have been created for the transaction day.

Pre-Processing: N/A

Post-Processing: prepost.pc - posdnld_post() — records in POS_MODS are
truncated.

Threading Scheme: v_restart store

Locking Strategy

None.

Volume 4 — Batch designs 211

Restart/Recovery

Restart/recovery for this program is set up at the store/item or item level.
Threading is done by store using the v_restart store view to thread properly.
Performance Considerations

Both table and file restart/recovery must be used.

The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Security Considerations

Price changes for all stores are stored in a Unix file with the processes default
permissions (umask). Care should be exercised so that this file cannot be
tampered with.

Design Assumptions

Data columns required by a particular Transaction Type are filled in and correct.

Outstanding Design Issues

The columns pos_config item.item and pos_merch_criteria.sku are of type
number and have a length of 8. These columns are updated and referenced by the
pos_config sql.check item() package function. These tables are then used by
poscdnld.pc.

Appendix

None.

212 Retek Merchandising System

POS Upload [posupld]

Design Overview

The purpose of this batch module is to process sales and return details from an
external point of sale system. The sales/return transactions will be validated
against Retek item/store relations to ensure the sale is valid, but this validation
process can be eliminated if the sales being passed in have already been screened
by sales auditing. The following common functions will be performed on each
sales/return record read from the input file:

e read sales/return transaction record
e Jock associated record in RMS
e validate item sale

o check if VAT maintenance is required, if so determine the VAT amount for
the sale

e write all financial transactions for the sale and any relevant markdowns to the
stock ledger.

e post item/location/week sales to the relevant sales history tables

e if alate posting occurs in a previous week (i.e. not in the current week), if the
item for which the late posting occurred is forecastable, the
last_hist export date on the item_loc_soh table has to be updated to the end
of week date previous to the week of the late posting. This will result in the
sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the
external forecasting system.

Scheduling Constraints
Processing Cycle: PHASE 2 (daily)
Scheduling Diagram: This program will likely be run at the beginning of

the batch run during the POS polling cycle. It can be scheduled to run multiple
times throughout the day, as POS data becomes available.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid item
sales transaction at a given store location. The location type will be inferred as a
store type and the item can be passed as an item or reference item type. The
logical unit of work will be defined as a number of these transaction records.

The commit_max_ctr field on the restart_control table will determine the number
of transactions that equal a logical unit of work.

Volume 4 — Batch designs 213

The file records will be read in groups of numbers equal to the commit _max_ctr.
After all records in a given read are processed (or rejected either as a reject
record or a lock error record), the restart commit logic and restart file writing
logic will be called, and then the next group of file records will be read and
processed. The commit logic will save the current file pointer position in the
input file and any application image information (e.g. record and reject counters)
and commit all database transactions. The file writing logic will append the
temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success,
non-fatal errors, and fatal errors. Item level validation will occur on all fields
before table processes are initiated. If all field-level validations return
successfully, inserts and updates will be allowed. If a non-fatal error is produced,
the remaining fields will be validated, but the record will be rejected and written
to the reject file or written to the lock file depending on the reject reason. If a
fatal error is returned, then file processing will end immediately. A restart will
be initiated from the file pointer position saved in the restart bookmark string at
the time of the last commit point that was reached during file processing.

Program Flow
N/A

Shared Modules

validate all numeric: intrface library function.
validate all numeric signed: intrface library function.
valid_date: intrface library function.

ORDER_ATTRIB_SQL.DELIVERY_ MONTH: called from
consignment_data(), returns order delivery month into the :invoices variable.

VAT SQL.GET VAT RATE: called from pack check(), returns the composite
vat rate for a packitem.

CURRENCY_SQL.CONVERT: returns the converted monetary amount from
Currency to currency.

NEW_ITEM LOC: called from item_check() and pack check(), creates a new
item if one doesn’t already exist for the item/location passed in.

UPDATE SNAPSHOT SQL.EXECUTE: called from update snapshot(),
updates the stake sku loc and edi_daily sales tables for late transactions. If the
item is a return, edi_daily_sales will not be updated.

NEXT ORDER NO: called from consignment data(), returns the next available
generated order number.

STKLDGR_SQL.TRAN DATA_INSERT: called from consignment data(),
performs tran_data inserts (tran_type 20) for a consignment transaction.

214 Retek Merchandising System

Posupld and VAT:

There are three different data sources in POSUPLD.

1 The input file

2 RMS stock ledger tables (tran_data in this context)

3 RMS base tables (other that stock ledger)

Each of these data sources can be VAT inclusive or VAT exclusive.

There are five different system variables that are used to determine whether of
not the different inputs are vat inclusive or vat exclusive.

1 system options.vat_ind (assume Y for this document)
system_options.class_level vat ind

2
3 system_options.stkldgr vat incl retl ind
4 class.class vat_ind

5

store.vat_include ind (this is retrieved from the table when RESA is on and
read from the input file when RESA is off)

Given the three different data source and all combinations of vat inclusive or vat
exclusive, we are left with the 8 potential combinations of inputs to POSUPLD.

Possible POSUPLD inputs
SCENARIO FILE RMS STOCK LEDGER
1 Y Y Y
2 Y Y N
3% Y N Y
4%* Y N N
5 N Y Y
6 N Y N
7 N N Y
8 N N N

* Scenarios 3 and 4 are not possible — the file will never have vat when RMS
does not.

The combinations of system variables and the resulting scenarios

System_options System_options Class Store Resulting
Class_level_vat_ind | Stkidgr vatind | Class_vat_ind | Vat_include_ind | Scenario

Y Y Y Y - Ignored 1
Y Y Y N - Ignored 1
Y Y N Y - Ignored 7

Volume 4 — Batch designs 215

The combinations of system variables and the resulting scenarios
System_options System_options Class Store Resulting
Class_level_vat_ind | Stkildgr vatind | Class_vat_ind | Vat_include_ind | Scenario
Y Y N N - Ignored 7
Y N Y Y - Ignored 2
Y N Y N - Ignored 2
Y N N Y - Ignored 8
Y N N N - Ignored 8
N Y Y — Ignored Y 1
N Y Y — Ignored N 5
N Y N — Ignored Y 1
N Y N — Ignored N 5
N N Y — Ignored Y 2
N N Y — Ignored N 6
N N N — Ignored Y 2
N N N — Ignored N 6
POSUPLD table writes
Scenario 1:

e tran code 1 from file retail.

e tran code 2 from file retail with vat removed.

o retail from file is compared directly with price hist for off retail check.
Scenario 2:

e tran code 1 from file retail with vat removed.

e tran code 2 not written.

e retail from file is compared directly with price hist for off retail check.
Scenario 5:

e tran code 1 from file retail with vat added.

e tran code 2 from file retail.

o retail from file has vat added for compare with price hist for off retail check.

216 Retek Merchandising System

Scenario 6:

e tran code 1 from file retail.

e tran code 2 not written.

o retail from file has vat added for compare with price hist for off retail check.
Scenario 7:

e tran code 1 from file retail with vat added.

e tran code 2 from file retail.

e retail from file is compared directly with price_hist for off retail check.
Scenario 8:

e tran code 1 from file retail.

e tran code 2 not written.

o retail from file is compared directly with price hist for off retail check.

Function Level Description

Declarations:

declare input structures: file header (only date and type) & detail (all fields)
init()

initialize restart recovery

open input file (posupld) - file should be specified as input parameter to program

fetch system variables, including the
SYSTEM_OPTIONS.CLASS LEVEL VAT IND.

Retrieve all valid promotion types

declare final output filename (used in restart_write file logic)
open reject file (as a temporary file for restart)

file should be specified as input parameter to program

open lock reject file (as a temporary file for restart) - file should be specified as
input parameter to program

call restart_file init logic

assign application image array variables- line counter (g 1 rec_cnt), reject

counter (g_1 rej cnt), lock reject file counters (pl_lock cnt, pl lock dtl cnt),
store, transaction_date

if fresh start (1_file start = 0)
read file header record (get record)
write FHEAD to lock reject file
if (record type < ‘FHEAD’) Fatal Error
validate file type = ‘POSU’

Volume 4 — Batch designs 217

else fseek to 1 file start location

validate location and date are valid
set restart variables to ones from restart image
file process()

This function will perform the primary processing for transaction records
retrieved from the input file. It will first perform validation on the THEAD
record that was fetched. If the transaction was found to be invalid, a record will
be written to the reject file, a non-fatal error will be returned, and the next
transaction will be fetched.

Next, the unit retail from price hist will be fetched by calling the

get _unit_retail() function. The retail retrieved from this function will be
compared with the actual retail sent in from the input file to determine any
discrepencies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being
processed until a TTAIL record is encountered. Perform validation on the
transaction detail records. If a detail record is found to be invalid, the entire
transaction will be written to the reject file, a non-fatal error will be returned, and
the next record will be fetched. If a valid promotion type (code for mix & match,
threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily sales discount table. Ifitis an
employee discount record write an employee discount record to tran_data.
Finally, accumulate the discount amounts for all transaction detail records for the
current transaction, unless the record was an employee discount.

Call the item_process() function to perform item specific processing. Once all
records have been processed, write FTAIL record to lock reject file and call
posting_and_restart to commit the final records processed since the last commit
and exit the function.

item_process()

Check to see if any validation failed for the item before this function was called.
If a lock error was found, call write lock rej() then return. If an other error was
found, call write rej() and process_detail error() then return.

Set the item sales type for the current transaction. Valid sales types are ‘R’egular
sales, ‘C’learance sales, and ‘P’romotional sales. These will be used when
populating the sales types for the item-location history tables. If an item is both
on promotion and clearance, the transaction will be written as a clearance
transaction.

If the system’s VAT indicator is turned to on, VAT processing will be
performed. The function vat calc() will retrieve the vat rate and vat code for the
current item-location. The total sales including and excluding VAT will be
calculated for use in writing transaction data records. If any VAT errors occur,
the entire transaction will be written to the reject file, a non-fatal error will be
returned, and the next record will be fetched. A record will be written to
vat_history for the item, location, transaction date.

218 Retek Merchandising System

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost
sold, etc.). If VAT is turned on in the system, calculate exclusive and inclusive
VAT sales totals.

Calculate any promotional markdowns that may exist by calling the
calc_prom_totals() function. The markdown information calculated here will be
used when writing tran_data (tran_type 15) records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to it’s price hist
record. Since we do not create price_hist records of type 9 (promotional retail
change) when the system options.multi prom_ind = ‘Y’, we do not know what
the promotional retail for this item is. Therefore, we will take the total sales
reported from the header record plus the total of sales discounts reported in the
TDETL records, divided by the total sales quantity for the item to calculate its
unit retail. If the system_options.multi prom_ind = ‘N’, we can do a comparison
of the price hist record and the unit retail (total retail / total sales) inputted from
the POS file. Any difference using either method will write to the

daily sales discount table with a promotion type of ‘in store’ and tran_data
(tran_type 15) If the transaction is a return, no daily sales discount record will
be written, and tran_data records will be written as opposite of what they were
sold as (i.e. if the sale was written as a markup, which would be written as a
negative retail with a tran_data 15, the return would be written as a 15 with a
positive retail).

If the item is a packitem and the transaction is a Sale, the process pack() function
will update the last_hist export date field on the item loc_soh table to the
transaction date and the item_loc_hist table will be updated with the transaction
information.

If the item currently being processed is a packitem, calculate the retail markdown
the item takes for being included in the pack and write a transaction data record
as a promotional markdown. This markdown is calculated by comparing the
retail contribution of the packitem’s component item to the packitem to the
component item’s regular retail found on the price hist table. The retail
contribution for a component item is calculated by taking the component item’s
unit retail from price hist, divided by the total retail of all component items in
the packitem, and multiplying the packitem’s unit retail. So if the retail
contribution of a component item within packitem A is $10, and the same
component item’s price hist record has a retail of $14, and there is only one
packitem sold, and this component item has a quantity of one, a tran_data

Record (tran_type 15) will be written for $4 (assume no vat is used).

Volume 4 — Batch designs 219

Write transaction data records for sales and returns. If the transaction is a sale,
write a tran_data record with a transaction code of 1 with the total sales. If the
system VAT indicator is on and the system_options.stkldgr vat incl retl ind is
on, write a tran_data record with a transaction code of 2 for VAT exclusive sales.
If the transaction is a return, write a tran_data record (tran_type 1) with negative
quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr vat incl retl ind is on, write a tran_data
record (tran_type 2) and negative quantities and retails for the VAT exclusive
return. Also, write a tran_data record with a transaction code of 4 for the total
return. Any tran_data record that is written should be either VAT exclusive or
VAT inclusive, depending on the system_options.stkldgr vat incl retl ind. Ifit
is set to °Y’, all tran_data retails should be VAT inclusive. Ifitis set to ‘N’, all
tran_data retails should be VAT exclusive. When writing tran_data records for
packitems, always break them down to the packitem level, writing the retail as
the packitem multiplied by the component item’s price ratio. The packitem itself
should never be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date) and it is not a
drop shipment, call update snapshot() to update the stake sku loc and
edi_daily_sales tables. If the transaction is current, update the edi_daily sales
table only (stake sku loc will be updated in a batch program later down the
stream). The edi_daily sales table should only be updated if the items supplier
edi sales report frequency = ‘D’.

If VAT is turned on in the system, write a record to the vat_history table to
record the vat amount applied to the transaction. The VAT amount is calculated
by taking the sales including VAT minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are Sale
transactions. Do not update for returns. Also, update stock count on the item-
location table for Sales and Returns unless the item is on consignment.

If an off retail amount was identified for the item/location, call the

write off retail markdowns() function to write tran_data records (tran_type 15)
to record the difference. If the system options.multi prom_ind = ‘N’ and the
item is on promotion, or if the system_options.multi prom_ind = ‘Y’ and the
TDETL total discount amount is greater than zero, write a promotional
markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion
number in order to record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record
with tran_code 60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be
written. This record is used to balance the stock ledger, it accounts for the
amount of the item that was wasted in processing.

process_detail error()

This function writes a record to the load_err table for every non-fatal error that
occurs.

220 Retek Merchandising System

set_counters()

Depending on the action passed into this function, it will either set a savepoint
and store the values of counters or rollback a savepoint and reset the values of
certain counters back to where they were originally set. This function is called
when a non-fatal error occurs in the item_process() function to rollback and
changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding
VAT, depending upon the store.vat_include ind, system options.vat_ind,
system_options.multi prom_ind, and the
system_options.stkldgr vat incl retl ind.

calc_prom_totals()

This function will set promotional markdown values including and excluding
VAT, depending upon the system options.multi prom ind and the
system_options.stkldgr vat incl retl ind. If the multi_prom ind is on, the
promotional markdown is the sum of the TDETL discount amounts. If the
multi_prom_ind is off, the promotional markdown is the difference between the
price_hist record with a tran_code of 0,4,8,11 and the price_hist record with a
tran_code of 9 multiplied by the total sales quantity. Also, the tran_data old and
new retail fields are only written if the multi prom_ind is off.

process_sales and_returns()

If the item is on consignment and not a packitem, the consignment data()
function will be called to perform consignment processing. The function
write_tran will be called to write a tran_data record with a tran_type 1 (always
written), a tran_type 2 (if the system_options.stkldgr vat incl retl ind =Y), and
atran_type 4 (if the transaction was a return). If the transaction is a return, any
tran_data records with tran_types of 1 and 2 will be written with negative retails.
Also the update price hist() function will be called to update the most recent
price_hist record.

posting_and_restart()

Post all array records to their respective tables and call restart file commit to
perform a commit the records to the database and restart file write to append
temporary files to output files.

validate FHEAD()

Do standard string validations on input fields. This includes null padding fields,
checking that numeric fields are all numeric, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true. This function will also validate the store location exists.

If the sales audit indicator is on currency and vat information will be provided in
the file that has already been validated.

Volume 4 — Batch designs 221

validate THEAD()

Do standard string validations on input fields. This includes null padding fields,
left shifting fields, checking that numeric fields are all numeric, placing decimal
in all quantity and value fields, and validating the date field. If any errors arise
out of these validation checks, return non-fatal error then set non-fatal error flag
to true. This function will also validate the reference item exists.

If a reference item is passed in from the input file, retrieve the item for the
reference item. Once the item is an item, retrieve the tranasaction and item level
values, pack indicator, department, class, subclass, waste type, waste pct. Once
this information is retrieved, check that the item/location relationship exists for
the appropriate item type and call check item lock() and/or check pack lock
depending on item type to lock this item’s ITEM_LOC record.

If the sale audit indicator is ‘Y’ on system_options, the item will be a item and
the dept, class, subclass, item level, transaction level and pack ind will be
included in the file. The UOM is assumed to already by have been converted to
the standard UOM by Sales Audit.

If the Sales Audit indicator is 'N' on system_options, the UOM at which the item
was sold will be compared with the items standard UOM value. If they are

different, the quantity will be converted to the standard UOM amount. The ratio
of the difference will also be computed and saved for use by validate. TDETL().

If an item is a wastage item set the wastage qty. The qty sent in the file shows
the weight of the item sold. The wastage qty is the gty that was processed to
come up with the qty sold. So if .99 of an item was sold, and item wastage
percent is 10. The wastage qty is .99 / (1-.10) = 1.1 The wastage qty will be
used through out the program except when writing tran_data records(see
write_wastage markdown) and daily sales_discount records which will uses the
processed qty from the file.

Class-level vat functionality is addressed here. The ¢ get class_vat cursor is
fetched into the pi_vat_store include ind variable if vat is tracked at the class
level in RMS (SYSTEM_OPTIONS.VAT IND = ‘Y’ and
SYSTEM_OPTIONS.CLASS LEVEL VAT IND = Y’). The vat inclusion
indicator passed in the input file is overwritten with the vat indicator for the class
passed in the THEAD record of the input file.

Check _item lock

This function will lock this item/location’s record in the RMS item_loc table.
Returns a lock error if lock failed due to contention, otherwise returns 0 if no
errors occurred, or fatal if other errors occurred.

Check _pack lock

This function will call check item_lock for every component item of the current
pack item.

validate TDETL

222 Retek Merchandising System

This function will perform validation on the TDETL records passed into the
program. The standard string validation on these fields includes null padding
fields, left shifting fields, checking that numeric fields are all numeric, placing
decimal in all quantity and value fields, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true.

The quantity is multiplied by the UOM ratio determined in validate THEAD().

If a promotional transaction type is passed in, verify it is valid. If a promotional
transaction type is passed in, but it is not valid, return non-fatal error then set
non-fatal error flag to true. If a promotion number is passed in, validate it by
checking the promhead table and set the promotional indicator to True.

If the item is a wastage item set the tdetl wastage qty. This is done the same way
as setting the THEAD wastage qty.

New _item_loc

This function creates a new store item relationship for items. It is called by
item_check.

item_store cursors

This function checks the item_loc for the item / store combination. It is called by
the item_check function.

item_check

This function verifies the fashion item/location relationship exists. It is only
called when the item being processed is a fashion item. If the item/location

relationship does not exist, it is created and a record is written to the Invalid
item/location output file.

New_ pack loc

This function creates a new store item relationship for pack items. It is called by
pack check.

pack check

This function verifies the pack item/location relationship exists and retrieves the
component items for the packitem. It is only called when the item being
processed is a packitem. The component item, system indicator, department,
class, subclass, cost, retail, price_hist retail, and component item quantity are
fetched. If the packitem/location relationship does not exist, it is created for the
Packitem and all of its components and a record is written to the Invalid
item/location output file for the packitem.

Volume 4 — Batch designs 223

The component items price ratios are also calculated. This indicates the retail
contribution the component item gives towards the unit retail of the packitem.
This ratio is calculated by taking the price hist unit retail of the component
divided by the total price hist retail of all the component items for the packitem.
Below is an example of how this ratio is calculated:

Unit Retail Qty Retail Calculation
packitem A $60

item 1 $15 2 $30 ($30/$90) * $60 3333
item 2 $10 6 $60 ($60/$90) * $60 6667

224 Retek Merchandising System

get_unit_retail

This function retrieves the current unit retail and the retail price of the item at the
time of the sale from price hist for the item/location being processed. If a
tran_code of 8 is returned, the item is on clearance. The function will always
return retail that are vat inclusive. If retail is stored in RMS with out vat
(system_options.class level vat ind =Y and class.class_vat ind =Y) it will add
vat to the retails.

process_packitems

This function performs processing for the component items of the packitems.
This would include updates/inserts into stake item loc, edi daily sales,
item_loc, item_loc_hist, vat_history data, and tran_data. All of these tables do
not write records at the packitem level, but at the component item level. When
figuring retails to write to these tables, the component items price ratio should
always be applied against the packitems retail to come up with the correct retail
for each component item. If an employee discount TDETL record has been
encountered, an tran_data record with tran_code 60 will be written for each
component item.

process_daily sales discount()

This function will insert/update a record to daily sales_discount for each TDETL
record that has a promotional transaction type except employee discounts.
Employee discount records are not written to daily sales discount, they are put
on tran_data with a tran_code of 60. When employee discount records are
encountered, values are set for the tran_data insert and the discount amount is
added to the total sales value. This is done so employee discounts do figure into
the promotional and in store calculations. When the multi_prom_ind is on all
promotion types except employee discount will be ignored.

write_in_store()

This function will handle record sent in as ‘is store’ discounts amounts. It will
call check daily exist and daily sales insert update.

Remove_stklgdr vat()

This fuction will remove vat from 3 fields after the dailiy sales discount
processing is complete. The variables od_off retail amt, od new_retail, and
od_old retail are stripped of vat by calling vat _convert if the stock ledger does
not contain vat.

Write off retail()

This function will calculate discrepancies between the amount sold for an item,
and the amount it should have sold for (price hist record). If these amounts are
not in balance, a record is written to the daily sales discount table with a
prom_type of ‘in store’ for reporting.

Daily sales_exist()

This function will check the daily sales discount for the existence of a record
matching the input parameters

Volume 4 — Batch designs 225

Daily sales_insert_update()

This function is called by write off retail, write_in_store, and
process_daily sales discount. It performs the actual insert or fills a update array
for the daily sales discount table.

write_off retail markdown()

The write tran_data() function will be called to write the off retail markdown
unless the item is on consignment or the off retail amount is zero.

write_promotional markdown()

The write tran_data() function will be called to write the promotional markdown
unless the item multi_prom_ind is off and the transaction is a return, the item is
on consignment, or the promotional markdown amount is zero. The tran_data
new and old retails are only written if the multi prom_ind is off.

Write wastage markdown()

This function will call to the write tran data() function if the item is a wastage
item. A wastage item is an item that loses some of its weight (value) in
processing. For example, a 1 pound chicken is broiled and loses 10% of its
weight. The item is sold at .9 pounds, but in reality selling that .9 pounds of
chicken removes 1 pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was
lost due to wastage in processing.

vat_convert()
This function will either add or remove vat from a retail value.
process_items()

Update the stock on hand on the item loc soh table for Sales and Returns unless
the item is on consignment. Also, update the item loc hist table for Sale
transactions. Do not update for returns.

process_pack()

Update the stock on hand on the item_loc_soh table for Sales and Returns. Also,
update the item loc_hist table for Sale transactions. Do not update for returns.

write tran_data()

Writes a record to the tran_data insert array.
Write _edi_daily_sales()

Writes a record to edi_daily_sales.

update snapshot()

Calls the UPDATE_SNAPSHOT_ SQL.EXECUTE function to update the
stake sku loc and edi daily_sales tables for late transactions.

write_vat err message()

This function will create and write to the VAT output file when an item does not
have VAT infomation setup when it is expected.

226 Retek Merchandising System

vat_history data()
Writes a record to the vat_history table.
consignment_data()

This function will perform processing for consignment items. Consignment
items are such when the item_supplier table has a consignment rate applied to it.
Consignment is when a retailer will allow a third party to operate under its
umbrella and be paid for what it sells. An example of consignment may be a
mass-merchant who consigns the magazine section of their store to a magazine
vendor. The magazine vendor would have control over keeping the product
stocked within the store. When a magazine is sold, the retailer would get paid for
the magazine, then the retailer would essentially buy the magazine from the
vendor. The consignment cost paid by the retailer to the vendor is the VAT-
inclusive retail multiplied by the consignment rate divided by 100. So if the
VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier
with an orig_ind = 4 (consignment). Consignment type invoices will be created
for all PO’s created for consignments

Also a tran_data record (tran_type 20) will be written to record the consignment
transaction to the stock ledger. The retails should be VAT inclusive or exclusive,
depending on the system_options.stkldgr vat incl retl ind.

This function uses support functions: check order(), order head(), invc_data(), to
handle the order creation-update and the invoice creation-update.

get prom_type info()

This function will retrieve all valid promotional transaction types from the
code detail table. Valid promotional transaction types are those where the
code type = ‘PRMT’.

fill_packitem_array()

This function will retrieve the component items for a packitem with the
appropriate item level information into an array.

Write lock rej

This function will write the current record set from the input file (THEAD-
{TDETL}-TTAIL) that was rejected due to lock error to the lock file.

write_item_store report()

This function will create and write to the Invalid item/location output file when
an item does not exist at a location it was sold/returned at.

ON Fatal Error - Exit Function with -1 return code

ON Non-Fatal Error - write out rejected record to the reject file using
write_to_rej file functionby passing pointer to detail record structure, number of
bytes in structure, and reject file pointer, or use the write lock rej() function to
write to the lock reject file in case the non-fatal error was a lock error,

Volume 4 — Batch designs 227

Input File

The input file should be accepted as a runtime parameter at the command line.
All number fields with the number(x,4) format assume 4 implied decimal
included in the total length of ‘x’.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Vat include indicator, Vat region, Currency
code, and Currency retail decimals. When the sa ind is ‘N’ these values will not

be used and retrieved from the system.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Item Level, Transaction Level, Pack ind, Dept,
Class, and Subclass. When the sa_ind is ‘N’ these values will not be used and
retrieved from the system. Also, the UOM at which the item was sold will been
converted to the standard UOM for the item. When the sa_ind is on, all items are

assumed to be items.

Record Name Field Name Field Type Default Value Description
File Header File Type Record Char(5) FHEAD Identifies file
Descriptor record type
File Line Char(10) specified by ID of current line
Identifier external system | being processed by
input file.
File Type Char(4) POSU Identifies file as
Definition ‘POS Upload’
File Create Date Char(14) create date date file was written
by external system
Location Number | Number(10) specified by Store identifier
external system
Vat include Char(1) Determines whether
indicator or not the store
stores values
including vat. Not
required but
populated by Retek
sales audit
Vat region Number(4) Vat region the given
location is in. Not
required but
populated by Retek
sales audit
Currency code Char(3) Currency of the

given location. Not
required but
populated by Retek
sales audit

228 Retek Merchandising System

Record Name

Field Name

Field Type

Default Value

Description

Currency retail
decimals

Number(1)

Number of decimals
supported by given
currency for retails.
Not required but
populated by Retek
sales audit

Transaction
Header

File Type Record
Descriptor

Char(5)

Identifies
transaction record

type

File Line
Identifier

Char(10)

specified by
external system

ID of current line
being processed by
input file.

Transaction Date

Char(14)

transaction date

date sale/return
transaction was
processed at the
POS

Item Type

Char(3)

REF
I™

item type will be
represented as a
REF or ITM

Item Value

Char(25)

item identifier

the 1d number of an
ITM or REF

Dept

Number(4)

Item’s dept

Dept of item sold or
returned. Not
required but
populated by Retek
sales audit

Class

Number(4)

Item’s class

Class of item sold or
returned. Not
required but
populated by Retek
sales audit

Subclass

Number(4)

Item’s subclass

Subclass of item
sold or returned. Not
required but
populated by Retek
sales audit

Pack Indicator

Char(1)

Item's pack
indicator

Pack indicator of
item sold or
returned. Not
required but
populated by Retek
sales audit

Volume 4 — Batch designs 229

Record Name

Field Name

Field Type

Default Value

Description

Item level

Number(1)

Item's item level

Item level of item
sold or returned. Not
required but
populated by Retek
sales audit

Tran level

Number(1)

Item's tran level

Tran level of item
sold or returned. Not
required but
populated by Retek
sales audit

Wastage Type

Char(6)

Item’s wastage
type

Wastage type of
item sold or
returned. Not
required but
populated by Retek
sales audit

Wastage Percent

Number(12)

Item’s wastage
percent

Wastage percent of
item sold or
returned. Not
required but
populated by Retek
sales audit

Transaction Type

Char(1)

‘S’ —sales
‘R’ - return

Transaction type
code to specify
whether transaction
1s a sale or a return

Drop Shipment
Indicator

Char(1)

Indicates whether
the transaction is a
drop shipment or
not. If it is a drop
shipment, indicator
will be 'Y". This
field is not required,
but will be defaulted
to 'N' if blank.

Total Sales
Quantity

Number(12)

Number of units
sold at a particular
location with 4
implied decimal
places.

Selling UOM

Char(4)

UOM at which this
item was sold.

230 Retek Merchandising System

Record Name Field Name Field Type Default Value Description
Sales Sign Char(1) ‘P’ - positive Determines if the
‘N’ - negative Total Sales Quantity
and Total Sales
Value are positive or
negative.
Total Sales Value | Number(20) Sales value, net
sales value of goods
sold/returned with 4
implied decimal
places.
Last Modified Char(14) For VBO future use
Date
Transaction File Type Record Char(5) TDETL Identifies
Detail Descriptor transaction record
type
File Line Char(10) specified by ID of current line
Identifier external system | being processed by
input file.
Promotional Tran | Char(6) promotion type — | code for
Type valid values see | promotional type
code detail from code detail,
table. code type =
‘PRMT’
Promotion Number(10) promotion promotion number
Number number from the RMS
Sales Quantity Number(12) number of units sold
in this prom type
with 4 implied
decimal places.
Sales Value Number(20) value of units sold
in this prom type
with 4 implied
decimal places.
Discount Value Number(20) Value of discount

given in this prom
type with 4 implied
decimal places.

Volume 4 — Batch designs 231

Record Name Field Name Field Type Default Value Description
Transaction File Type Record Char(5) TTAIL Identifies file
Trailer Descriptor record type
File Line Char(10) specified by ID of current line
Identifier external system | being processed by
input file.
Transaction Count | Number(6) specified by Number of TDETL

external system | records in this
transaction set

File Trailer File Type Record Char(5) FTAIL Identifies file
Descriptor record type
File Line Number(10) specified by ID of current line
Identifier external system | being processed by
input file.
File Record Number(10) Number of
Counter records/transactions

processed in current
file (only records
between head & tail)

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item
that does not exist at the processed location. In the event this happens, the
relationship will be created during the program execution and processing will
continue with the item and store number being written to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate
when one is expected (e.g. the system_options.vat_ind is on). In this event, a
non-fatal error will occur against the transaction and a record will be written to
this file and the Reject file.

Reject File:

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will be created by the interface library routines and the detail records will be
created using the write to rej file function. A reject line counter will be kept in
the program and is required to ensure that the file line count in the trailer record
matches the number of rejected records. A reject file will be created in all cases.
If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

232 Retek Merchandising System

A final reject file name, a temporary reject file name, and a reject file pointer
should be declared. The reject file pointer will identify the temporary reject file.
This is for the purposes of restart recovery. When a commit event takes place,
the restart_write _function should be called (passing the file pointer, the
temporary name and the final name). This will append all of the information that
has been written to the temp file since the last commit to the final file. Therefore,
in the event of a restart, the reject file will be in synch with the input file.

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical Issues

Assumption: Variable weight UPCs are expected to already be converted to a
VPLU with the appropriate quantity.

Volume 4 — Batch designs 233

Complex Deals Management [precostcalic]

Design Overview

This batch module is responsible for data maintenance tasks that are necessary
before running costcalc.

Unprocessed records in RECLASS COST CHG_QUEUE drive this program.
The driving cursor is a set of seven cursors whose goal is to make sure the
DEAL SKU TEMP table is inserted for three scenarios:

a If an unprocessed record exists on RECLASS COST CHG QUEUE,
create record(s) on DEAL_SKU TEMP for the
RECLASS COST _CHG_QUEUE event. For reclassification events no
location is given, therefore these events are blown out to all item-location
locations before inserting to DEAL_SKU TEMP.

b If an unprocessed record exists on RECLASS COST CHG QUEUE,
create record(s) on DEAL SKU TEMP for any events on the
FUTURE COST table that the RECLASS COST CHG_ QUEUE event
affects (make the match using item, supplier, origin country id, location,
and start date). For reclassification events (not cost change) no location is
given and therefore these events are blown out to all item-location
locations before seeking FUTURE_COST matches.

¢ Ifarecord exists on DEAL SKU TEMP that affects one or more
FUTURE COST records insert for those records on FUTURE COST
into DEAL_SKU _TEMP to make sure they are recalculated.

The program will also update RECLASS COST CHG_QUEUE events that it
processed so that the record’s process flag reflects the fact that it has been
processed. To avoid primary key violations in DEAL _SKU TEMP, check if an
item, location, supplier, origin country id, and start date combination exists on
DEAL SKU TEMP in the driving cursors. When the program is done, it should
delete any records from RECLASS COST CHG QUEUE that did not get
processed. (This happens when somebody did a cost change or reclassified a
component item of a case UPC. This record will not be picked up by the driving
cursor and should not remain on RECLASS COST _CHG QUEUE.) Also, all
records that are of type G or N should also be deleted since once they have been
inserted into DEAL_SKU TEMP, There is no reason for them to remain in
RECLASS COST_CHG_QUEUE. This should improve the performance of the
program by keeping the size of RECLASS COST_CHG_QUEUE as small as
possible.

The LUW of this module is a single record from any one of the driving cursors,
which all pick up item/supplier/origin country/location/active date combinations
from RECLASS COST_CHG_QUEUE, and FUTURE_COST.

Stored Procedures / Shared Modules (Maintainability)
N/A

234 Retek Merchandising System

Program Flow

main()

|
v v v

init() process() final()

v v

size_arrays(free arrays(
\ 4
open_cursor()

fetch_cursor()

distinct records()

insert_records()

update rccq()

vy v v v ¥

retek force commit()

v

open_cursor()

Function Level Description
Declare a fetch array struct to hold array-fetched records from driving cursors.

Declare driving cursors The first eight cursors pick up unprocessed events from
RECLASS _COST_CHG_QUEUE that do not exist in DEAL SKU TEMP.
There is eight of them because each handles a different type of record depending
on whether location is given or not, and whether division is given or not. So, the
combinations that are possible and therefore need to be fetched are:

Location given? | Division given?
N N
N Y
Y N

Volume 4 — Batch designs 235

Remember that the driving cursors for every one of the four above described
combinations will be again split into two cursors depending on whether the
location is a warehouse or a store. The reason so many driving cursors exist is
because a single cursor that joined to all the tables at once was so slow that using
such a cursor here was not an option. One more cursor is required: the ninth
cursor will fetch records from the FUTURE COST table that have the same
item/supplier/origin country/location combination as a DEAL SKU TEMP
record with an active date that is greater than the DEAL _SKU TEMP record’s
start date. This cursor is necessary to ensure that when an event is inserted into
DEAL SKU TEMP, later events for this event in the FUTURE COST table
may be affected by the event in DEAL _SKU TEMP and should be re-inserted
into DEAL_SKU TEMP so costcalc can recalculate and reinsert them into
FUTURE COST.

The cursors should not pick up any primary cost pack component items since
those are never inserted into DEAL. SKU TEMP. (See Design Assumptions
below.) Also this cursor should never pick up items that are not approved,
transaction level, or items that are buyer packs. Deals batch programs do not
process those.

Main():
Standard Retek main function. Validates input parameters, calls init, process and
final. Logs appropriate message.

Init():
Standard Retek init function. Calls retek init() and size arrays(). If this is a new
start, set the restart cursor variable to 1.

Process():

This is the main function that does all the work. It will array fetch each of the 9
cursors in the order of their definition above, one at a time until cursor is empty.
For each cursor, fetched records will be array inserted into DEAL_SKU TEMP,
RECLASS _COST_CHG_QUEUE will be updated after every second cursor
fetch to set the process_flag of covered records to ‘Y’ and commit logic will be
executed. After the last cursor has been fetched empty and all records were
processed, delete from RECLASS COST CHG_QUEUE all records that belong
to this thread and have not been picked up by any of the cursors (their
process_flag is still ‘N’). Also delete any records whose rec_type is ‘G’ or ‘N’.

e Call open_cursor to open the first cursor. (Cursors are opened and fetched in
the order that they were declared in, which should be the same order they
were described in above.)

e In a while loop (while the no records found indicator is not set):
= Array fetch records from current driving cursor by calling fetch cursor().

= Call distinct_records() to copy distinct (item/supplier/origin
country/location/start date) records from the fetch array (which has
RECLASS COST_CHG_QUEUE’s level of distinctness:
item/supplier/origin country/location/start date/record type) to the insert
array.

= Call insert_records() to array insert records from the insert array.

236 Retek Merchandising System

= Ifwe fetched empty a cursor with an even number call update rccq() to
update RECLASS COST CHG QUEUE’s process_flags to ‘Y’ for the
records covered by the last two cursors.

» Call retek force commit() with the item, supplier and origin country,
location, start date, and cursor number of the last record as the argument.

= If the no records found indicator was set by fetch_cursor(), increment the
cursor counter. If the cursor counter is under 10, call open_cursor() and
reset the no records found indicator to 0 along with the total fetched
records counter, which should be zeroed since we are about to start
fetching from a new cursor. If the cursor number is 10 or above, we are
done. Do not call open_cursor() and leave the no records found indicator
set. This will drop the process out of the while loop.

e Delete from RECLASS COST CHG QUEUE all records for this thread
where the process flag is ‘N’. (This may happen if the component item of a
case UPC was inserted into RECLASS COST CHG QUEUE. The driving
cursor will not pick these records up.) Also delete for records whose rec_type
is ‘G’ or ‘N’ regardless of their process flag. We do not need to keep those
events around in RECLASS COST _CHG QUEUE.

Insert _records():
This function performs an array insert into DEAL SKU TEMP. Its argument is
the current array size (number of records fetched into array).

Distinct_records():

This function copies records from the fetch array (which has

RECLASS COST_CHG_QUEUE’s level of distinctness: item/supplier/origin
country/location/start date/record type) to the insert array (which has
DEAL SKU TEMP’s level of distinctness: item/supplier/origin
country/location/start date) so that primary key/index violation errors are avoided
on subsequent inserts into DEAL SKU TEMP. This function will need local
static strings to store any previous call’s last copied DEAL _SKU TEMP primary
key so that it can be compared to the next call’s first fetch array element’s
DEAL SKU TEMP primary key fields (item/supplier/origin
country/location/start date). This is necessary if an array fetch cut the return of
two identical item/supplier/origin country/location/start date records into two
array blocks because of the max commit counter. We want to keep track of the
fact that the item/supplier/origin country/location/start date record in question
was already in the previous block. If this block still has that item/supplier/origin
country/location/start date in the first field(s), don’t copy it into the insert array
again.

Open_cursor():

This function consists of a case-switch statement that depending on the argument
of the function (an integer representing the number of the cursor that needs to be
opened) will open the appropriate cursor.

Volume 4 — Batch designs 237

Fetch_cursor():

This function consists of a case-switch statement that depending on the argument
of the function (an integer representing the number of the cursor that needs to be
fetched) will fetch the appropriate cursor and returns the number of records
fetched, along with an indicator if the no data found indicator has been set by the
fetch or not.

Update_rccq():

This function will be called for every other cursor that was fetched empty and it
will update RECLASS COST CHG_QUEUE records’ process_flag to ‘Y’
covered by the last two cursors. This strange method of updating those records
was necessary for restart/recovery reasons. Since two cursors are used to fetch
for a single RECLASS COST_CHG_QUEUE record (i.e.: no location or
division given), one fetching for warehouse locations the other for store
locations, the process flag of such a record can not be updated to Y until both
cursors were fetched for this record. Otherwise the stores would not get picked
up if we update the process flag right after warehouses were fetched. The update
statements cover all records in RECLASS COST CHG QUEUE for which the
most recent two cursors were fetched for, not only the ones for which the cursors
actually returned records. A cursor may not return records, even though the
RECLASS COST CHG QUEUE records were completely valid, simply
because the returned values already exist in DEAL_SKU TEMP and the cursors
have a not exists clause.

Size_arrays():
Sizes the fetch array to the commit size.

Free_arrays():
Frees fetch array.

Final():

Standard Retek final function. Calls free arrays() and retek close().
Input Specifications

‘Table-To-Table’

Select data from:

Table Name Column Name Column Type Transformation
RECLASS COST _CHG QUEUE ITEM VARCHAR2(25) NONE
RECLASS COST _CHG QUEUE SUPPLIER NUMBER(10) NONE
RECLASS COST CHG QUEUE ORIGIN_COUNT | VARCHARZ2(3) NONE
RY ID
RECLASS COST CHG_QUEUE START DATE DATE NONE
RECLASS COST CHG_QUEUE LOCATION NUMBER(10) Only if
REC TYPE is
not R
RECLASS COST CHG_QUEUE DIVISION NUMBER(4) Only if
REC TYPE is
R

238 Retek Merchandising System

Table Name Column Name Column Type Transformation
RECLASS COST CHG QUEUE GROUP NUMBER(4) Only if
REC TYPE is
R
RECLASS COST CHG QUEUE DEPT NUMBER(4) Only if
REC TYPE is
R
RECLASS COST _CHG_QUEUE CLASS NUMBER(4) Only if
REC TYPE is
R
RECLASS COST _CHG QUEUE SUBCLASS NUMBER(4) Only if
REC TYPE is
R
RECLASS COST CHG QUEUE REC TYPE VARCHAR2(1) NONE
GROUPS DIVISION NUMBER(4) Only if
REC TYPE is
not R
DEPS GROUP_NO NUMBER(4) Only if
REC TYPE is
not R
ITEM_MASTER DEPT NUMBER(4) Only if
REC TYPE is
not R
ITEM_MASTER CLASS NUMBER(4) Only if
REC TYPE is
not R
ITEM_MASTER SUBCLASS NUMBER(4) Only if
REC TYPE is
not R
ITEM_MASTER ITEM_PARENT VARCHAR2(25) NONE
ITEM_MASTER ITEM_GRANDP | VARCHAR?2(25) NONE
ARENT
ITEM_MASTER DIFF 1 VARCHAR2(10) NONE
ITEM_MASTER DIFF 2 VARCHAR2(10) NONE
ITEM_MASTER DIFF 3 VARCHAR2(10) NONE
ITEM_MASTER DIFF 4 VARCHAR2(10) NONE
ITEM_LOC LOC NUMBER(10) Only if
REC TYPE is
R
ITEM_LOC LOC TYPE VARCHAR2(1) NONE

Volume 4 — Batch designs 239

Table Name Column Name Column Type Transformation

AREA CHAIN NUMBER(4) Only if
LOC TYPE is
S

REGION AREA NUMBER(4) Only if
LOC TYPE is
S

DISTRICT REGION NUMBER(4) Only if
LOC TYPE is
S

STORE DISTRICT NUMBER(4) Only if
LOC TYPE is
S

FUTURE COST ACTIVE DATE DATE NONE

DEAL SKU TEMP ITEM VARCHAR2(25) NONE

DEAL SKU TEMP SUPPLIER NUMBER(10) NONE

DEAL SKU TEMP ORIGIN_COUNT | VARCHAR2(3) NONE

RY _ID

DEAL SKU TEMP DIVISION NUMBER(4) NONE

DEAL SKU TEMP GROUP_NO NUMBER(4) NONE

DEAL SKU TEMP DEPT NUMBER(4) NONE

DEAL SKU TEMP CLASS NUMBER(4) NONE

DEAL SKU TEMP SUBCLASS NUMBER(4) NONE

DEAL SKU TEMP ITEM_PARENT | VARCHAR2(25) NONE

DEAL SKU TEMP ITEM_GRANDP | VARCHAR2(25) NONE

ARENT

DEAL SKU TEMP DIFF 1 VARCHAR2(10) NONE

DEAL SKU TEMP DIFF 2 VARCHAR2(10) NONE

DEAL SKU TEMP DIFF 3 VARCHAR2(10) NONE

DEAL SKU TEMP DIFF 4 VARCHAR2(10) NONE

DEAL SKU TEMP CHAIN NUMBER(4) NONE

DEAL SKU TEMP AREA NUMBER(4) NONE

DEAL SKU TEMP REGION NUMBER(4) NONE

DEAL SKU TEMP DISTRICT NUMBER(4) NONE

DEAL SKU TEMP LOCATION NUMBER(10) NONE

DEAL SKU TEMP LOC TYPE VARCHAR2(1) NONE

240 Retek Merchandising System

Output Specifications
‘Table-To-Table’
Delete from: RECLASS COST _CHG_QUEUE

Update data on:
Table Name Column Name Column Type Transformation
RECLASS_COST_CHG_QUEUE PROCESS FLAG | VARCHAR2(1) Setto Y.
Insert into:
Table Name Column Name Column Type Transformation
DEAL SKU TEMP ITEM VARCHAR2(25) N/A
DEAL SKU TEMP SUPPLIER NUMBER(10) N/A
DEAL SKU TEMP ORIGIN_COUNT | VARCHAR2(3) N/A
RY ID
DEAL SKU TEMP START DATE DATE N/A
DEAL SKU TEMP DIVISION NUMBER(4) N/A
DEAL SKU TEMP GROUP_NO NUMBER(4) N/A
DEAL SKU TEMP DEPT NUMBER(4) N/A
DEAL SKU TEMP CLASS NUMBER(4) N/A
DEAL SKU TEMP SUBCLASS NUMBER(4) N/A
DEAL SKU TEMP ITEM_PARENT | VARCHAR2(25) N/A
DEAL SKU TEMP ITEM_GRANDP | VARCHAR2(25) N/A
ARENT
DEAL SKU TEMP DIFF 1 VARCHAR2(10) N/A
DEAL SKU TEMP DIFF 2 VARCHAR2(10) N/A
DEAL SKU TEMP DIFF 3 VARCHAR2(10) N/A
DEAL SKU TEMP DIFF 4 VARCHAR2(10) N/A
DEAL SKU TEMP CHAIN NUMBER(4) N/A
DEAL SKU TEMP AREA NUMBER(4) N/A
DEAL SKU TEMP REGION NUMBER(4) N/A
DEAL SKU TEMP DISTRICT NUMBER(4) N/A
DEAL SKU TEMP LOCATION NUMBER(10) N/A
DEAL SKU TEMP LOC TYPE VARCHAR2(1) N/A

Volume 4 — Batch designs 241

Scheduling Considerations

This module must be run after ditinsrt and before costcalc in the deals batch
cycle.

This module is multi-threaded by supplier. See volume-testing documentation for
optimum thread value. (I suggest 15-30 threads.)

Locking Strategy
N/A

Restart/Recovery

This program has restart recovery based on item/supplier/origin
country/location/start date/cursor number and is multi-threaded by supplier.

Performance Considerations

The driving cursors should be small enough to be executed fast. If the
DEAL SKU TEMP table holds too many records as the program runs and the
cursors’ NOT EXISTS statements are slowing things down because of the size of
DEAL SKU TEMP (which may very well happen), the only remaining
performance enhancement that could go into the program is to simply fetch
records from the cursors without checking for duplicates at the time of fetch and
check for duplicates at time of insert or handle primary key violations in the
insert as a non-fatal error. Or fetch all the records from all the cursors and
discretize the fetched records in batch based on DEAL SKU TEMP’s primary
key. These “solutions” may not be a performance enhancement; the second
suggestion simply takes away the load of discretizing [This isn’t English... Do
you know what this word is actually supposed to be? — BES] records from the
database and keeps it in the batch. Therefore other programs will not suffer a
performance loss from the database being slow while precostcalc runs.

Security Considerations
N/A

Unit Test Considerations

When program is tested, tester will probably need to run costcalc and prepost for
complete results. The tables DEAL SKU TEMP and

RECLASS COST _CHG QUEUE should not be modified in any way during and
between the two program runs outside the programs themselves.

See the program’s UTP for further instructions.

242 Retek Merchandising System

Design Assumptions

Background: Costcalc is driven by the DEAL _SKU TEMP table, which holds
item/supplier/origin country/location/active date records that then need to be
moved to the FUTURE COST table with their costs at the date specified on
DEAL SKU TEMP. Costcalc simply takes these item/supplier/origin
country/location/active date records, calculates the cost for this combination and
inserts the result into FUTURE COST, along with a reset date for the
item/supplier/country/location record if it has one. A reset date would be a deal
closing that caused the cost change in the first place. This reset record on
FUTURE_COST is simply the item/supplier/origin country/location/close date
and the cost. This design has a few inherent problems. Some deals have no close
dates and item reclassifications also have no close dates but potentially may
change the cost of the item since different deals may apply due to the new
merchandise hierarchy classification. Therefore a record on DEAL SKU TEMP
with no close date may affect records on FUTURE_COST that have an active
date later than the record on DEAL_SKU_ TEMP. The solution is to move
records from FUTURE COST that are potentially affected by
DEAL SKU TEMP records back to DEAL SKU TEMP, thus guaranteeing that
they get recalculated and the correct price will be set as they are re-inserted into
FUTURE_COST by costcalc. This process of checking for affected records and
moving them into DEAL SKU TEMP is performed by precostcalc. Also a new
table was created called RECLASS COST CHG QUEUE which holds
reclassification, cost change, new item-location events for items along with a
general record that simply holds an item which needs to be inserted into

DEAL SKU_ TEMP (if an item reclassification was cancelled, we still need to
send in a record to DEAL_SKU TEMP to make sure the item’s record on
FUTURE_COST is re-calculated).

Case UPCs: Component items of case UPCs are never inserted into
DEAL SKU TEMP. These items will be processed by costcalc as part of their
case UPCs. Therefore if a case UPC component is inserted into
RECLASS COST CHG QUEUE, the driving cursor should ignore it and the
record should be deleted. Also an item should be approved, transaction level and
not a buyer pack to qualify for insertion into DEAL _SKU TEMP.

Three quick examples of what appears in RECLASS COST CHG_QUEUE for
a re-class, a cost change, a new item-location record or a general record:

Re-classification: I need an ITEM, -1 for LOCATION, SUPPLIER,
ORIGIN_COUNTRY _ID, START DATE, DIVISION, GROUP_NO, DEPT,
CLASS, SUBCLASS, REC TYPE = ‘R’.

Cost change: [need an ITEM, LOCATION, SUPPLIER,
ORIGIN_COUNTRY_ID, START DATE, REC TYPE = ‘C’. (For warehouse
locations, only insert virtual warehouses!)

New item location: I need an ITEM, LOCATION, SUPPLIER,
ORIGIN_COUNTRY_ID, START DATE, REC TYPE = ‘N’. (For warehouse
locations, only insert virtual warehouses!)

Volume 4 — Batch designs 243

General: Primary key fields only. (These records appear as placeholders for
cancelled events. For example, the merchandiser may cancel a future
reclassification event in which case the original event’s record on
RECLASS COST CHG_QUEUE would be updated to have a rec_type of ‘G’
and a process_flag of “N’. This results in precostcalc reinserting this event into
DEAL SKU TEMP, from there costcalc will re-insert the event into

FUTURE COST. Thus external systems that exported the event earlier will see
the event again in FUTURE_ COST with potentially a new cost and can export
again if necessary. Once such a record has been migrated to FUTURE_COST,
there is no need to keep it in RECLASS COST _CHG QUEUE too. It may be
deleted. The same is true for records with a rec_type ‘N’.

Outstanding Design Issues
N/A

244 Retek Merchandising System

Promotion Price Update [prmpcupd]

Design Overview

This new program will update item_loc table with promotion price information.

It will update the promotion fields, promo_retail, promo_selling_retail and
promo_selling uom, in the item_loc table with promotion price information
when a simple promotion applies the item/location combination. It will also
update these promotion fields to null when a promotion ends today. In addition,
it will update the item_loc table with any promotion changes, including add
promotion items to the extracted promotions, delete promotion items from the
extracted promotions and make promotion price changes to the extracted

promotions.

This program will run daily in nightly batch cycle and should be run after the

prmext.pc.

TABLE INDEX SELECT INSERT UPDATE DELETE
promhead No Yes No No No
promstore No Yes No No No
Promsku No Yes No No No
Item_loc No No No Yes No
period No Yes No No No
dual No Yes No No No
Item master | No Yes No No No

Stored Procedures / Shared Modules (Maintainability)

PROMOTION_ATTRIB_SQL.GET PROMO_RETAIL — Returns the
promotion retail price for the item/location.

UOM_SQL.CONVERT - converts the values between two UOMs.
Input Specifications

N/A

Output Specifications

N/A

Function Level Description

e Define a structure that will be used to define the driving cursor array.
e Define another structure to be used to define the update array.
Main():

This function should follow standard Retek main function format. It should call
init(), process() and final() function.

Volume 4 — Batch designs 245

Init():

This function performs preliminary processing and populates global variables. It
will call retek _init function to handle the restart recovery logic and bring back
the bookmark string in case of a restart. It will also retrieve the date of today
(vdate) and tomorrow (vdate + 1) to be used in retrieving the valid promotions to
process.

Process():

This function will select the promotion, promotion store, store promotion start
date, store promotion end date, promotion currency code, promotion item,
standard unit of measure, promotion item status, promotion item price change
type, amount, selling unit of measure, adjust type and the price ends in from the
PROMSTORE, PROMHEAD, PROMSKU and ITEM MASTER table. It will
then call process_prom_item_loc to check the item/location relation and retrieve
the promotion price. It will also call the update item loc function to update the
item_loc table with the promotion price. The driving cursor should be similar as
follows:

SELECT ph.promotion,

ph.currency code,
TO_CHAR(ps.start_date, 'YYYYMMDD"),
TO CHAR(ps.end date, 'YYYYMMDD"),
ps.store,

im.item,

im.standard uom,

psku.status,

psku.change type,

NVL(psku.change amt,0),
NVL(psku.selling_ uom,’’),
psku.adjust_type,

NVL(psku.ends_in,0)

FROM v_restart_store rv,

promstore ps,
promhead ph,

promsku psku,

Item master im

WHERE ph.promotion = ps.promotion
AND ph.status in ('E', 'M") /* all extracted promotions ~ */

AND ps.extract_status in ('E', 'M") /* all extracted promotion stores
*/

AND psku.promotion = ps.promotion

246 Retek Merchandising System

AND ps.start_date <= :tomorrow
AND ps.end_date >= :today
AND ps.promotion = psku.promotion
AND psku.change type !="'EX'
AND im.item_level <= im.tran_level
AND (im.item = psku.item
OR (im.item_parent = psku.item
AND (psku.diff id is null
OR (psku.diff id is not null
And (psku.diff id = im.diff 1
OR psku.diff id = im.diff 2
OR psku.diff id = im.diff 3
OR psku.diff id = im.diff 4))))
OR(im.item_grandparent = psku.item
AND(psku.diff id is null
OR(psku.diff id is not null
AND (psku.diff id = im.diff 1
OR psku.diff id = im.diff 2
OR psku.diff id = im.diff 3
OR psku.diff_id = im.diff 4)))))
AND rv.driver_value = ps.store
AND rv.driver name = :ora_restart driver name
AND rv.num_threads = :ora_restart num_threads
AND rv.thread val =:ora restart thread val
AND (ps.promotion > NVL(:ora restart promotion, -999) OR
((ps.promotion = :ora_restart promotion) AND
(ps.store >= :ora_restart_store)))

ORDER BY 1,5;

Volume 4 — Batch designs 247

The flow of this function should be as follows:

e Define an array, la_prom_store, to hold the data fetched by the driving
Ccursor.

e Define another array, la_item_loc, to hold the promotion data to be updated
to the item_loc table.

e (Call function size_prom_array().
e (all function size item loc_array().
e Open the driving cursor

e Array fetch the driving cursor to the la_prom_store array for
commit_max_ctr records.

e In a for loop, loop through each record in the la_prom_store array

e (Call function process_prom_item loc(). Pass in all the elements in current
record to the function, as well as the item_loc array.

e If the current promotion/store combination is different from last one, and the
count of the item_loc array is greater than zero, call update item loc() to
update the item_loc table. Pass in the item_loc array and the count of the
records in the array. Note the count needs to be reset after the update.

e Commit and restart/recovery logic.

e Remember to update item_loc table with the last set of records in the
item_loc array.

Size_prom_array():

This function will allocate memory for the array la_prom_store to size of
commit max_ctr.

Size_item_loc_array():

This function will allocate memory for the item_loc array to size of
commit max_ctr.

Process_prom_item loc():
This function should process as follows:

e Define local variables to hold the promo _retail, promo_selling_retail,
promo_selling_uom, and rowid Initialize these variables to null.

e Create a cursor c_item_loc to retrieve the promo_retail, promo_selling_retail,
promo_selling uom and rowid from item_loc where status is ‘A’ctive and
the item, location match the passed in item and location.

e Ifno record found, return true. If error found, return fatal.

e Ifthe end of store promotion date is today, call populate item loc array
function. Pass in the item_loc array and the local variables item,location
promo_retail, promo_selling_retail, promo_selling uom and rowid. Return
whatever is returned from the populate item loc function.

e Check the store Promotion start date:

248 Retek Merchandising System

If the start date is less than or equal to tomorrow, and the promsku.status is ‘DI’
(Deleted Item) or ‘DP’ (Delete Processed), check

e ifthe promo_selling unit retail is null. If it is null, stop further processing
and the function should return true.

e ifthe promo_selling unit retail is not null, call populate item loc array
function. Pass in the item_loc array and the local variables item, location,
promo_retail, promo_selling_retail, promo_selling uom and rowid. Return
whatever is returned from the populate item loc function.

Otherwise,

e (all get prom_retail() to retrieve the promotion price. Pass in the current
records in the promo_store array and the local variable promo_selling_retail.
Return false if the function call failed.

e Compare the promo_selling_retail and the promo_selling uom obtained in
the get prom_retail with the promo_selling_retail and promo_uom in the
item_loc table (retrieved from cursor ¢_item loc). If they are same, stop
further processing and return true.

e (Call calc_std retail() to convert the promotion retail to standard retail. Pass
in the selling uom, standard uom, promo_selling_retail, promo_retail, item
and location. Return false if the function call failed.

e (Call populate item loc array(). Pass in the item loc array and the local
variables item, location, promo_retail, promo_selling_retail,
promo_selling uom and rowid. Return whatever is returned from the
populate item loc function.

Populate _item_loc_array():
This function will process as follows:

e Check if the count of the total records in the item_loc array plus 1 is greater
than the size of the item_loc array. If it is exceed the array size, call
resize_item_loc array().

e Copy the promo_retail, promo_selling_retail, promo_selling uom and rowid
to the item_loc array. Populate the item_loc array’s last_update datetime
and last update id with the SYSDATE and UESER, respectively.

e Return ture.
Resize_item_loc_array():

This function will allocate additional max_commit_ctr memory for the item_loc
array.

Get_prom_retail():

This function will call stored procedure

PROMOTION_ATTRIB_SQL.GET PROMO_RETAIL to retrieve the
promo_selling_retail.

Volume 4 — Batch designs 249

Calc_std_retail():

This function will first retrieve the convert factor from a selling uom to
standard uom. Then calculate the promotion retail per standard unit of measure.
It should process as the steps descript below:

e (all stored procedure UOM_SQL.CONVERT to find the convert factor.
Pass 1 to the from_value, pass selling_uom to the from_uom and pass
standard uom to the to_uom.

e Setpromo retail = promo_selling_retail / convert factor.
Update_item_loc():

This function will do an array update against the item_loc table using the
item_loc array passed where the records rowid in the item_loc table equal the
rowids in the item_loc array.

Final():

This function will call retek close to perform the restart/recovery closing logic,
as well as the last commit of the database changes.

Scheduling Considerations

Processing Cycle: Phase 3

Pro-Processing: Prmext.pc

Post-Processing:

Threading Scheme: store

Locking Strategy
N/A

Restart/Recovery

The logic unit of work is promotion/location.

Performance Considerations

N/A.

Security Considerations
N/A.

Design Assumptions

This program will update the item_loc table for simple promotions, no matter if
the system_options.multi_ promo_ind flag is on or off.

When a promotion is changed, for example an item is added to the promotion, the
promotion item status will be updated or removed after the execution of
prmext.pc. In order to catch the promotion changes, this program will do a full
scan for all valid promotions, and update the item_loc table with new promotion
prices and the changed promotion/item/location prices.

250 Retek Merchandising System

Outstanding Design Issues
N/A

Volume 4 — Batch designs 251

Stockout Download [soutdnid]

Design Overview

Retek Demand Forecasting (RDF) requires notification when an item/store’s
stock on hand is at zero or below. This program will loop through the item/store
tables and output any item/store combination that has a stock out condition to an
output file. This output file will then be sent to RDF.

The logical unit of work (LUW) for this program is item/store.

Stored Procedures / Shared Modules (Maintainability)
N/A

Input Specifications

This program outputs three fields: date, item, and store to RDF. The fields
should be sent for each store/item combination that has a stock-on-hand less than
or equal to zero. The date sent will always be the vdate from the PERIOD table.
The item and store come from the ITEM_MASTER table. This program will not
look at packs. All items must be forecastable to be considered by this program.
The forecastable indicator is held on the ITEM_MASTER table.

RDF requires that the output files generated by this program be grouped by
domain number. To accommodate this requirement, soutdnld.pc should be
threaded by domain. Since threads are determined by the value of the domain
ID, the restart_program_status table should contain a row for each domain ID.
The thread value of the domain ID should be used as the thread value on this
table. The total number of domains/number of threads should be equal to the
number of rows on the restart program_status table. This value must be entered
into the restart_control table num_threads field. Note that anytime a new domain
is created that an additional row should be added to the restart program_status
table with the thread value equal to the domain ID and the restart control table
num_threads field must be incremented to equal the total number of domains.

Domains can be held in RMS at the dept, class, or the subclass level. The
SYSTEM_OPTIONS.DOMAIN LEVEL holds the domain level that is being
used. This dictates the program will need three different driving cursors. Which
one will be used depends on the SYSTEM_OPTIONS.DOMAIN LEVEL. The
cursors will all be identical except one will join to DOMAIN_ DEPT, one will
join to DOMAIN_ CLASS, and one will join to DOMAIN SUBCLASS.

When the SYSTEM_OPTIONS.DOMAIN LEVEL is ‘D’, the following should
be used as the driving cursor:

SELECT item loc soh.item,
item_loc_soh.loc
FROM item loc_soh,
item_master,
domain_dept dd
WHERE item_loc_soh.stock on_hand <=0

252 Retek Merchandising System

AND item_loc_soh.loc_type ='S'

AND item_master.forecast_ind ="Y"

AND item_loc_soh.item = item_master.item

AND dd.dept = item_master.dept

AND dd.domain_id = :ps_thread val

AND (item_loc_soh.item > NVL(:ps_restart_item, -999) OR
(item_loc soh.item = :ps_restart_item AND
(item_loc_soh.loc > :ps_restart loc)))

ORDER BY 1,2;

When the SYSTEM_OPTIONS.DOMAIN LEVEL is ‘C’, the following should
be used as the driving cursor:

SELECT item_loc_soh.item,
item_loc_soh.loc
FROM item loc soh,
item_master,
domain_class dc
WHERE item loc soh.stock on hand <=0
AND item_loc_soh.loc_type ="'S'
AND item_master.forecast_ind ="Y"
AND item loc_soh.item = item_master.item
AND dc.dept = item_master.dept
AND dc.class = item_master.class
AND dc.domain_id = :ps_thread val
AND (item_loc_soh.item > NVL(:ps_restart item, -999) OR
(item_loc_soh.item = :ps_restart_item AND
(item_loc_soh.loc > :ps_restart_loc)))
ORDER BY 1,2;

When the SYSTEM_OPTIONS.DOMAIN _LEVEL is ‘S’, the following should
be used as the driving cursor:

SELECT item_loc_soh.item,
item_loc_soh.loc
FROM item loc_soh,
item_master,
domain_subclass ds

WHERE item_loc_soh.stock on hand <=0

Volume 4 — Batch designs 253

AND item_loc_soh.loc_type ='S'

AND item_master.forecast_ind ="Y"

AND item_loc_soh.item = item_master.item

AND ds.dept = item_master.dept

AND ds.class = item_master.class

AND ds.subclass = item_master.subclass

AND ds.domain_id = :ps_thread val

AND (item_loc_soh.item > NVL(:ps_restart item, -999) OR
(item_loc_soh.item = :ps_restart_item AND
(item_loc soh.loc > :ps_restart _loc)))

ORDER BY 1,2;
Output Specifications

soutnn.dat — This is the file that will be created where nn is the thread (domain)
number.

Example record for a date of 20010309, a store of 1000000000, and a item of

101742484.
12345678123456789012345678901234567890123456789012345
200103091000000000 101742484

Record Field Name Field Type Default Description
Name Value

Date Varchar2(8) | Period.vdate | The date of the stockout in
YYYYMMDD format.

Store Varchar2(20) The store at which the sku
encountered the stockout — left
justified with trailing blanks.

Item Varchar2(25) The item that encountered the
stockout — left justified with trailing
blanks.

Function Level Description

Main()

The standard RMS main function. Calls init(), process(), and final().

Init()

The restart recovery is initialized by calling retek init(), and the output file is set
up. The file should be named soutnn.dat, where nn is the thread number. The

C _get vdate_and_domain_level cursor is called to get the vdate from the period
table and the domain_level from system_options.

254 Retek Merchandising System

Create_foremat_strings()
This function populates a format string. The format string is used when writing
lost sales to the output file.

Process()

Initializes the fetch struct, then calls the create format strings() funciton. Uses
the domain_level fetched in Init() to call either Process_dept(), Process_class(),
or Process_subclass(). Finally calls Free array().

Write_lost_sales()

A pointer of the fetch struct and the current number of records to print are input.
The date, item, and store are then written to the output file. The format string
defined by create format string() is used when doing the file write.

Process_dept()

A pointer to the fetch struct is passed in. Contains the C_dept _domain_level
cursor for processing when SYSTEM OPTIONS.DOMAIN LEVEL = ‘D’.
Once the C_dept_domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break flag variable is
set to one if a fetch returns NO DATA_ FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the

Write lost_sales() function. After the Write lost_sales() function is called, the
break flag is checked, and the While(1) loop is broken if the break flag != 0.

Process_class()

A pointer to the fetch struct is passed in. Contains the C class domain_level
cursor for processing when SYSTEM_OPTIONS.DOMAIN_ LEVEL = “C’.
Once the C_class domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break flag variable is
set to one if a fetch returns NO_DATA_FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the

Write lost_sales() function. After the Write lost sales() function is called, the
break flag is checked, and the While(1) loop is broken if the break flag !=0.

Process_subclass()

A pointer to the fetch struct is passed in. Contains the C_subclass domain_level
cursor for processing when SYSTEM_OPTIONS.DOMAIN_LEVEL = “S’.

Once the C_subclass_domain_level cursor is opened, a While(1) loop is entered.
Inside the While(1) loop, an array fetch is performed, and a break flag variable is
set to one if a fetch returns NO DATA FOUND. The number of records fetched
is then passed, along with the struct containing the fetched data, to the
Write lost sales() function. After the Write lost sales() function is called, the
break flag is checked, and the While(1) loop is broken if the break flag != 0.

Init_array()

The initialized fetch struct is passed in. Allocates array space for the fetch struct
arrays, using calloc. The array sizes are set to the value of the
COMMIT MAX COUNTER.

Free_array()
Frees the array space that was allocated in Init_array().

Final()
Calls Retek close().

Volume 4 — Batch designs 255

Scheduling Considerations

Phase 4 daily. Any processing that updates the stock levels should be completed
before this program runs.

Locking Strategy

N/A

Restart/Recovery

This program should use restart recovery. The LUW for this program is each
unique sku store combination.

Performance Considerations

N/A.

Security Considerations
N/A.

Design Assumptions
N/A

Outstanding Design Issues

N/A

References
N/A

Appendix
N/A

256 Retek Merchandising System

Item—Location Ticket Output File [tcktdnld]

Design Overview

This program will create an output file containing all of the information to be
printed on a ticket or label for a particular ITEM/location. This program is
driven by the “requests” for tickets that exist on the TICKET REQUEST table.
Information to be printed on the ticket is then retrieved based on the ITEM,
location and the ticket type requested. The details, which should be printed on
each type of ticket, are kept on the TICKET TYPE_DETAIL table. Specific
details, which will be written to the output file, are taken from the various item
tables (i.e. ITEM short description from ITEM_MASTER, retail price from
ITEM_ZONE PRICE).

Scheduling Contraints

Processing Cycle: Ad Hoc (Daily)
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A

Restart Recovery

Restartability will exist implicitly within this program. Because records will be
deleted after they are selected, no explicit code is needed to restart in the event of
a failure.

The lack volume of data processed by this program, in addition to the lack of an
appropriate threading mechanism, negates the need for Retek multi-threading
capabilities.

Driving Cursor:

SELECT tr.ticket type id,
tr.item,
tr.quantity,
tr.loc_type,
tr.location,
tr.country_of origin,
tr.unit_retail,
tr.multi_units,
tr.multi_unit_retail,
ROWIDTOCHAR(tr.rowid)

FROM ticket request tr
ORDERBY 1, 2, 5;

Volume 4 — Batch designs 257

Program Flow
N/A

Shared Modules
N/A

Function Level Description
init() —
Functional details:

This function should initialize the restart/recovery process. The output file
should be opened, and if it is not a “restart”, then file header information should
be written. The system vdate is selected for the file create date used in the
output file header. The format buffer function should be called to format output
strings. The size arrays function should be called to size the fetch and delete
arrays.

Technical details:

The output file should be written in the style necessary for Retek restart/recovery.
That is, a temp file should be opened and initialized, and the final file should
only be written to when the restart/recovery commit logic is called (using
restart_file write).

process() —
Functional Details:

This function should write transaction records to the output file for each
item/ticket type/location combination on the ticket request table. For each
record a transaction header should be written to the output file and the
ticket_item function should be called to write the detail items for the details
associated with the ticket type. If the item is a pack item, however, the

ticket pack function should be called to first write component item records (the
ticket item function will be called within the ticket pack function for each
component item.). After each record from the driving cursor is processed, it will
be deleted from the ticket request table. Finally, when all of the records have
been processed from the table, a file trailer should be written to the output file.

Technical Details:

The function should fetch records from the driving cursor into arrays. The arrays
should be sized to match the value of the maximum commit counter on the
restart_control table. Once the records are fetched, each record should be
processed in a for-loop. After all of the records have been processed in the for
loop, the records should be array deleted from the ticket request table by rowid,
and the restart commit logic should be called. Output file line counters,
transaction counters, etc. should be saved into the application image array string
that is passed to the restart control function.

ticket pack()

258 Retek Merchandising System

This function will be called from process if the item on the ticket request table is
a pack item. This function should fetch all of the component items in the pack,
along with pack quantity information, and write a pack record for each
component. Further the ticket item function should be called for each
component.

ticket _item()

This function should select all of the records from the ticket type detail table
with the ticket type from the ticket request record. Detail records should be
written out to the output file for each detail record retrieved. Either item
information or attribute information should be written to the output file. If the
ticket item is to be written (fetched ticket item is not null) get ticket item is
called to retrieve this appropriate intormation. If the attribute information is to be
written (fetched attribute column is not null) then a function should be called to
get the appropriate attribute information (get UDA).

get_ticket item()—

This function retrieves the database information which corresponds to the
requested ticket item, according to the table below.

TICKET ITEM OUTPUT FILE VALUE

UuoM Price per unit of measure from item_master.

ITEM Retek ITEM value

ITDS ITEM description (from item_master)

ITSD ITEM short description from the item master table

VAR The primary variant (ref item) from the item master table

DIF1 Diff 1 value from item master

DIF2 Diff 2 value from item_master

DIF3 Diff 3 value from item_master

DIF4 Diff 4 value from item_master

WGHT Case weight from item_supp_country dim table

DEPT Department from item_master & department name from deps table

CLAS Class value from item_master table & class name from class table

SBCL Subclass from item_master table & subclass name from subclass table

RTPC Selling retail price from driving cursor (if available), otherwise from
item_zone price for item/store (use base zone value for warehouses).

SRTP Suggested retail price (mfg_rec retail) from item_ master

MUPC Multi-units and multi-unit retail from driving cursor (if available),
otherwise from item_zone price for item/store (use base zone value for
warehouses)

SUPR Supplier from ordhead for most recent PO for the SKU.

Volume 4 — Batch designs 259

TICKET ITEM OUTPUT FILE VALUE
SUP1 Supplier diff 1, from item_supplier
SUP2 Supplier diff 2, from item_supplier.
SUP3 Supplier diff 3, from item_supplier
SUP4 Supplier diff 4, from item_supplier
STRE Store from driving cursor
WHSE Warehouse from driving cursor
COO0G Country of origin from driving cursor if available, else from the last PO (see
supplier).
get UDA()

This function should fetch the user defined attribute (UDA) value and description
assocated with the attribute value selected from the ticket detail table. The UDA
description will be selected for the UDA and the ITEM from either the

UDA item lov and the UDA _value tables, the UDA item ff table or the

UDA _item_date table. The UDA value will be written to the output file in the

“value” location of the detail line.

final()

Retek restart/recovery process will be closed by calling the internal API function,
and all appropriate output files will be close and temp files will be removed.

/0 Specification

Output File:
Record Name Field Name Field Type Default Description
Value
File Header File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current
Sequence file
File Type Char(4) TCKT Identifies file as ‘Print
Definition Ticket Requests’
File Create Date create date date file was written by
Date external system
Transaction File Type Char(5) THEAD Identifies file record type
Header Record
Descriptor
File Line Number(10) Line number of the current

Sequence

file

260 Retek Merchandising System

Record Name Field Name Field Type Default Description
Value
ITEM Char(25) ID number of the
transaction level, non-pack
item or the pack item
Ticket Type Char(4) ID which indicates the
ticket type to be printed
Location Type | Char(1) S - Store Identifies the type of
W — location for which tickets
Warehouse will be printed
Location Char (10) number of the store or
warehouse for which
tickets will be printed
Quantity Number(12,4) the quantity of tickets to be
printed
Transaction File Type Char(5) TCOMP Identifies file record type
Component Record
Descriptor
File Line Number(10) Line number of the current
Sequence file
ITEM Char(25) ID number of the ITEM
Quantity Number(12,4) Quantity of the component
ITEM as part of the whole;
if ITEM on the header
record is a transaction
level ITEM, the value in
this field will be 1.
Transaction File Type Char(5) TDETL Identifies file record type
Detail Record
Descriptor
File Line Number(10) Line number of the current
Sequence file
Detail Number(10) Sequential number
Sequence assigned to the detail
Number records
Ticket Item Char(4) ID indicating the detail to
be printed on the ticket
Attribute Char(40) Description of the attribute

Description

(from the UDA Table)

Volume 4 — Batch designs 261

Record Name Field Name Field Type Default Description
Value
Value Char(100) Detail to be printed on the
ticket (i.e. REF_ITEM,
Department Number,
ITEM description)
Supplement Char(300) Supplemental description
to the Value (i.e.
Department Name)
Transaction File Type Char(5) TTAIL Identifies file record type
Trailer Record
Descriptor
File Line Number(10) Line number of the current
Sequence file
Transaction Number(6) sum of detail | sum of the detail lines
Detail Line lines within a transaction
Count
File Trailer File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current
Sequence file

Technical Issues

The program could be sped up by outer joining ticket type detail into the driving
cursor, and avoiding the ¢_ttd cursor which must be opened for each record in

our fetch array.

262 Retek Merchandising System

VAT-Rate Maintenance [vatdixpl]

Design Overview

Value Added Tax (VAT) is a tax imposed by some governments on goods that
have realized an increase in value.

As with price zones and cost zones, individual stores belong to a particular VAT
region. VAT regions are areas that contain VAT code and VAT rates
information that applies to stores in that region and are based on VAT rates
defined by the government. VAT codes can be set up by Retek users to identify
a particular VAT rate percentage. Only one VAT rate can be active for any one
VAT code.

VAT rates are stored at the ITEM level in Retek on the VAT ITEM table. On
this table, records with a past active date serve as an audit trail to track what
VAT code and VAT rate a particular ITEM has had or currently has. The
VAT ITEM record with the most recent active date holds the ITEM’s current
VAT code. The VAT rate related to a particular VAT code is found on the
VAT _CODE RATES table. Records on VAT ITEM with a future active date
functionally represent a pending change in the VAT code for that particular
ITEM, effective on that date and reflecting the corresponding VAT rate
associated with that VAT code on the VAT CODE_RATES table.

Records on the VAT CODE_ RATES table functionally represent a change in the
VAT rate for a particular VAT code. When a record exists on this table with an
active date of tomorrow, this program updates the VAT rate on any future

VAT _ITEM records associated with that VAT code to the new VAT rate defined
inthe VAT CODE RATES table. Also, if the latest VAT ITEM record for any
ITEM contains the VAT code that is changing, a new VAT ITEM record is
inserted for that ITEM with an active date of tomorrow and the new VAT rate
associated with the VAT code.

Tables Affected:
TABLE INDEX SELECT INSERT UPDATE DELETE
VAT _CODE RATES Yes Yes No No No
VAT ITEM Yes Yes Yes Yes No

Scheduling Contraints

Processing Cycle: Phase I
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Volume 4 — Batch designs 263

Restart Recovery

The logical unit of work will be based on VAT code. Restart/recovery will be
based on VAT code. It is recommended that records be committed after a set of
10,000 rows has been processed.

Program Flow

init() = Retrieve today’s date (VDATE) off database
table.
- process() — Retrieve the vat rate

records from the vat code rates table
where the active date is equal to today.
main()
For all SKUs on the vat_sku table that

are associated with the vat code whose vat rate
changed, insert/update the record in the

vat_sku table with new vat rate.

— final() —— Commit changes to the database.

Shared Modules
N/A

Function Level Description

init():

Retrieve tomorrow’s date off the period table.
process():

This function will retrieve all records off of the VAT CODE_RATES table with
an active date of tomorrow. Ifany records exist on the VAT ITEM table with an
active date on or after tomorrow for the VAT code fetched off of the

VAT _CODE_RATES table, their VAT rate is updated with the VAT rate fetched
off of the VAT CODE_RATES table. Also, if an ITEM is currently assigned the
VAT code with the changing VAT rate, a new record is inserted into VAT ITEM
for the new VAT code/VAT rate combination with an active date of tomorrow.

update vat_item():

This function updates any future VAT ITEM records with the new VAT rate
fetched off the VAT CODE RATES table. It utilizes array processing to handle
the update.

insert_vat_item():

Inserts a new record into the VAT ITEM table for any ITEMs that are currently
associated with the VAT code fetched from the VAT CODE_RATES table. A
new record is inserted into VAT _ITEM for the new VAT code/VAT rate
combination with an active date of tomorrow.

264 Retek Merchandising System

Insert pos_mods()

This function is called after the update vat item function. It inserts a new record
with a tran type of 20 into the POS_MODS table. The item, store, dept, class,
subclass, vat code, vat rate, and class_vat_ind fields are populated for all
approved, transaction-level items found on the VAT _ITEM table and their
children with tomorrows date and vat code, at active stores.

Technical Issues

This program implements the use of array processing to handle the
inserts/updates of the VAT ITEM table.

Volume 4 — Batch designs 265

Wastage Adjustment [wastead;j]

Design Overview

This program will reduce inventory of spoilage type wastage items to account for
natural wastage that occurs over the shelf life of the product. Only items with
spoilage type wastage will be affected by this program. Sales type wastage will
be accounted for at the time of sale.

Spoilage type wastage is due to the natural loss of a product over its shelf life.
For example, as sausage sits on the shelf it loses a certain percentage of its
weight each day due to evaporation of the water that is in the sausage. Therefore,
a sausage that weighs one pound today may only weight .9 pounds tomorrow due
to the loss of water from the sausage. This new batch program will reduce the
physical on hand inventory for a store based on the daily wastage percentage
which will be entered by the retailer at the item location level:

New Stock on Hand = Actual Stock on Hand * (1 — Daily Wastage %)

When stock is reduced, Merchandising will process these records just as any
other stock adjustment.

By automatically reducing stock on hand based on the wastage percentage and
the shelf life of an item, the on hand inventory in Merchandising will be more
accurate than if these adjustments were not made.

TABLE INDEX SELECT INSERT UPDATE DELETE
ITEM_MASTER No Yes No No No
ITEM_LOC_SOH No Yes No Yes No
ITEM_LOC No Yes No No No
INV_ADJ No No Yes No No
TRAN DATA No No Yes No No
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No Yes No
CLASS No Yes No No No

Scheduling Contraints

Processing Cycle: Phase 111 (Before stock ledger processing)
Scheduling Diagram:
Pre-Processing: Run this program before the stock ledger roll up

programs to make sure that the stock adjustments taken during the current day
are credited to the appropriate day.

Post-Processing: N/A
Threading Scheme: N/A

266 Retek Merchandising System

Restart Recovery

Restart recovery is based on last item processed. The program will commit only
when the commit max counter is reached.

Program Flow
N/A

Shared Modules
N/A

Function Level Description

init

- Initialize restart variables.

- Allocate memory to arrays for array processing
- Collect system information

process

- Fetch ITEMs with wastage type spoilage (‘SP”)
- Retrieve single ITEM from fetch array for processing
- If athe ITEM is a transaction level item:

- retrieve appropriate information from ITEM_LOC and
ITEM_LOC_SOH

- add information to insert/update arrays
create inv_adj

- Adds a record to the inv_adj insert array
create_tran data

- Adds a record to the tran_data insert array

get vat rate

- gets vat rate based on item, dept and location
set_tran data retail

- determines whether vat needs to be added, stripped or neither to total retail
(Calls library function ADD VAT or REMOVE VAT in common.h)

update stock

- Performs array updates of ITEM_LOC_SOH records
write arrays

- Performs array inserts to inv_adj and tran_data

final

- Closes restart recovery

Volume 4 — Batch designs 267

1/0 Specification
N/A

Technical Issues
N/A

Customization Issues
N/A

268 Retek Merchandising System

ReSA RTLOG interface file layout

The following table shows the layout of the Retek Sales Audit RTLOG interface

decimals

decimals supported
by given currency
for retails. Not
required but
populated by Retek
sales audit

file for RMS.
Record Field Name Field Type Default Description Required
Name Value
File Header | File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Char(10) specified by ID of current line Yes
Identifier external being processed by
system input file.
File Type Char(4) POSU Identifies file as Yes
Definition ‘POS Upload’
File Create Char(14) create date date file was Yes
Date written by external
system
Location Number(10) | specified by Store or warehouse | Yes
Number external identifier
system
Vat include Char(1) Determines Yes
indicator whether or not the
store stores values
including vat. Not
required but
populated by Retek
sales audit
Vat region Number(4) Vat region the Yes
given location is in.
Not required but
populated by Retek
sales audit
Currency code | Char(3) Currency of the Yes
given location. Not
required but
populated by Retek
sales audit
Currency retail | Number(1) Number of Yes

Volume 4 — Batch designs 269

item parent
Level 1 - item

Record Field Name Field Type Default Description Required
Name Value
Transaction | File Type Char(5) THEAD Identifies
Header Record transaction record
Descriptor type
File Line Char(10) specified by ID of current line Yes
Identifier external being processed by
system input file.
Business Date | Char(14) business date | Business date that | Yes
of Transaction the sale/return
transaction was
processed at the
POS
Item Type Char(3) ‘ITM” or item type will be Yes
‘REF’ represented as an
ITEM or
REF ITEM
Item Char(25) item identifier Yes
Dept Number(4) | Item’s dept Dept of item sold Yes
or returned. Not
required but
populated by Retek
sales audit
Class Number(4) | Item’s class Class of item sold Yes
or returned. Not
required but
populated by Retek
sales audit
Subclass Number(4) | Item’s Subclass of item Yes
subclass sold or returned.
Not required but
populated by Retek
sales audit
Pack Indicator | Char(1) Y’ — Indicates if the Yes
pack item item is a pack.
EN’ _
non_pack
Item level Char(1) Level 3-item | Indicates which of | Yes
grandparent the three levels the
Level 2 — item resides.

270 Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

Required

Transaction
level

Char(1)

Level 1,2, or
3

Indicates which
level that
transactions occur
for the item’s

group.

Yes

Wastage Type

Char(6)

Item’s
wastage type

Wastage type of
item sold or
returned. Not
required but
populated by Retek
sales audit

Yes

Wastage
Percent

Number(12)

Item’s
wastage
percent

Wastage percent of
item sold or
returned with 4
implied decimal
places. Not
required but
populated by Retek
sales audit

Yes

Transaction
Type

Char(1)

‘S’ — sales
‘R’ - return

Transaction type
code to specify
whether transaction
is a sale or a return

Yes

Drop Ship Ind

Char(1)

‘Y’ or ‘N’

Indicates whether
item is part of a
drop shipment

Total Sales
Quantity

Number(12)

Number of units
sold at a particular
location with 4
implied decimal
places.

Yes

Selling UOM

Char(4)

UOM at which this
item was sold

Sales Sign

Char(1)

‘P’ - positive
‘N’ - negative

Determines if the
Total Sales
Quantity and Total
Sales Value are
positive or
negative.

Yes

Volume 4 — Batch designs 271

Record Field Name Field Type Default Description Required
Name Value
Total Sales Number(20) Sales value, net Yes
Value sales value of
goods sold/returned
with 4 implied
decimal places.
Last Modified | Char(14) For VBO future use
Date
Transaction | File Type Char(5) TDETL Identifies
Detail Record transaction record
Descriptor type
File Line Char(10) specified by ID of current line Yes
Identifier external being processed by
system input file.
Promotional Char(6) promotion code for Yes
Tran Type type — valid promotional type
values see from code_detail,
code detail code type =
table. ‘PRMT’
Promotion Number(10) | promotion promotion number | No
Number number from the RMS
Sales Quantity | Number(12) number of units Yes
sold in this prom
type with 4 implied
decimal places.
Sales Value Number(20) value of units sold | Yes
in this prom type
with 4 implied
decimal places.
Discount Number(20) Value of discount Yes
Value given in this prom
type with 4 implied
decimal places.
Transaction | File Type Char(5) TTAIL Identifies file
Trailer Record record type
Descriptor
File Line Char(10) specified by ID of current line Yes
Identifier external being processed by
system input file.
Transaction Number(6) | specified by Number of TDETL | Yes
Count external records in this
system transaction set

272 Retek Merchandising System

s processed in
current file (only
records between
head & tail)

Record Field Name Field Type Default Description Required
Name Value
File Trailer File Type Char(5) FTAIL Identifies file
Record record type
Descriptor
File Line Number(10) | specified by ID of current line Yes
Identifier external being processed by
system input file.
File Record Number(10) Number of Yes
Counter records/transaction

	Contents
	Introduction
	Volume 1 – Functional overviews
	Price and POS download
	EDI
	Stock counts
	Differentiators
	Promotions (prices)
	Message publishing
	RMS 10.1 changes

	Currency exchange rates
	Currency exchange rates message
	Currency exchange rates message subscription
	Currency exchange rates message subscription process
	Currency exchange rates message summary
	Currency exchange rates tables

	Freight terms
	Freight terms message
	Freight terms message subscription
	Freight terms message subscription process
	Freight terms message summary
	Freight terms table

	General ledger chart of accounts
	Message summary
	GLCOA message subscription
	System option for financial application

	Cost changes
	Cost change process
	Multi-channel supplier cost change rules:
	Cost change batch module descriptions
	Summary of cost change and related batch modules

	Payment terms
	Payment terms message
	Payment terms message subscription
	Message subscription process
	Payment terms message summary
	Payment terms table

	Security: location, product, price zone
	Security setup process
	If security rules conflict
	Security batch programs
	SLOCRBLD.PC – location security rebuild
	SPRDRBLD.PC – product security rebuild
	SZONRBLD.PC – zone security rebuild
	Prepost functions for security batch
	A note about the product rebuild
	Security programs in the batch schedule
	Batch modules for location, product, and zone security

	Supplier
	Supplier message subscription
	Supplier publication

	Value added tax maintenance
	System level VAT
	System class level VAT
	Department VAT
	Class VAT
	Store VAT indicator
	Send VAT rate to POS
	Special note: retail method stock ledger and VAT
	Batch module – VATDLXPL

	Replenishment
	Replenishment process
	Summary of replenishment batch modules
	Primary replenishment tables
	Investment buy

	Volume 2 – Message publication and�subscription �
	Item Message Family Manager Publishing Design
	Functional Area
	Design Overview
	State Diagram
	Description of Activities
	Triggers
	Message Family Manager Procedures
	Design Assumptions
	Outstanding Technical Issues

	Currency Exchange Rates Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Freight Terms Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	GL Chart of Accounts Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_glcoacre.pls):
	Private Internal Functions and Procedures (other):

	Payment Terms Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Supplier Subscription Design
	Functional Area
	Design Overview
	Subscription Procedures

	Volume 4 – Batch designs
	Deal upload [dealupld]
	Deal item insert [ditinsrt]
	EDI contract information download [edidlcon]
	EDI purchase order download [edidlord]
	New and Changed Upload from Supplier [ediupcat]
	On-order extract [onordext}
	POS download [posdnld]
	POS Upload [posupld]
	Complex Deals Management [precostcalc]
	Promotion Price Update [prmpcupd]
	Stockout Download [soutdnld]
	Item–Location Ticket Output File [tcktdnld]
	VAT–Rate Maintenance [vatdlxpl]
	Wastage Adjustment [wasteadj]
	ReSA RTLOG interface file layout

