

 RMS ETL10.1

Operations Guide

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Technical architecture ... 1
Extract Transform and Load (ETL) processing.. 1

Chapter 2 – Program overview... 5

Installation... 5

Configuration .. 5

Program features ... 6
Program return code ... 6
Program status control files .. 7
Restart and recovery ... 8
Message logging... 9
Program error file ... 10
RMSE reject files ... 10
Schema files.. 11
Command line parameters .. 11

Typical run and debugging situations ... 11

Chapter 3 – Batch processing.. 15

Setting up the batch schedule .. 15

rmse_config.env settings... 15

RMS and Destination batch schedule.. 16

Chapter 4 – Program reference lists.................................... 17

Extraction programs .. 17
Ftmednld.pc - Calendar Hierarchy Download.. 20

Load programs... 21
Weekly Forecasted Demand... 21
Daily Forecasted Demand .. 22
rmsl_forecast.ksh.. 23

Maintenance programs .. 23

Appendix A – Application programming interface (API) flat
file specifications .. 25

API format... 25
File layout... 25
General business rules and standards common to all APIs 26

Chapter 1 – Introduction 1

Chapter 1 – Introduction
The Retek Merchandising System (RMS) is the retail client’s central
merchandising transactional processing system. RMS is the principle source of
the foundation or dimensional data needed in some of the Retek 10 suite of
products.

RMS supplied dimensions for these extracts include the following: Company,
Organizational hierarchy, Merchandise hierarchy (including Product), Calendar
hierarchy, and Weekly and Daily Sales information.

RMS supplied loads include the following: daily forecast demand and weekly
forecast demand.

A program overview of standard programming features is described as well as
the program reference lists of these shared extracts. The application-
programming interface (API) describes the flat file specifications in Appendix A.

Technical architecture
The modules work in conjunction with the Retek Extract Transform and Load
(RETL) framework. This architecture optimizes a high performance data
processing tool that allows database batch processes to take advantage of parallel
processing capabilities.

The RETL framework runs and parses through the valid operators composed in
XML scripts.

Extract Transform and Load (ETL) processing
The following diagram illustrates the extraction processing architecture. Instead
of managing the change captures as they occur in the source system during the
day, the process involves extracting the current data from the source system. The
extracted data is output to flat files. These flat files are then available for
consumption by products such as Retek Data Warehouse (RDW) and Retek
Demand Forecasting (RDF).

The target system, (RDW or RDF, for example), has its own way of completing
the transformations and loading the necessary data into its system, where it can
be used for further processing in the environment.

2 RMS ETL

Source
extraction

Data extraction
(RETL)

Extracted data
file

Extracted data
file

File transfer
(FTP, and so on)

Destination
tables

Transformation
(RETL)

New records and
updates

RMS Source
System Destination

(e.g. RMS/RDF)

RETL Component

Data Movement Architecture

Chapter 1 – Introduction 3

Design

The components for this solution will adhere to the following general architecture:

RMS DB

RMS Extraction
Flows and Output
Schemas

RMS Extraction Files
(in Output Schema Format)

Stage 1
RMS Extraction

Process.

optional FTP, etc.

Transformation
Flows

Integration Data Files
and Schemas

Destination

DB

Stage 2
Transformation

Process

In short, the architecture relies upon two distinct stages. Stage 1 is extraction from the
RMS database using well-defined flows specific to the RMS database. The resulting
output will be data files written in a well-defined schema file format. This stage includes
no destination specific code.

4 RMS ETL

Stage 2 introduces a flow specific to the destination. In this case flows for the
RDF/RPAS product designed to transform the data such that RDF can import the data
properly.

Chapter 2 –Program overview 5

Chapter 2 – Program overview
This chapter summarizes the RETL program features utilized in the RMS
Extractions (RMSE). More information about the RETL tool is available in the
latest RETL Programmer’s Guide.

Installation
Select a directory where you would like to install RMS ETL. This directory (also
called MMHOME) is where all of the RMS ETL files will be extracted.

The following code tree is utilized for the RETL framework during the
extractions, transformations and loads and is referred to in this documentation.
<base directory (MMHOME)>

 /data

 /error

 /log

 /rfx

 /bookmark

 /etc

 /lib

 /schema

 /src

Configuration
RETL

Before trying to configure and run RMS ETL, install RETL version 10.3 or later,
which is required to run RMS ETL. Run the “verify_retl” script (included as part
of the RETL installation) to ensure that RETL is working properly before
proceeding.

RETL User and Permissions
RMS ETL should be installed and run as the RETL user. Additionally, the
permissions should be setup as per the RETL Programmer’s Guide. RMS ETL
will read data, create, delete and update tables. (This is done for example to
ensure that weekly sales data is not pulled multiple times on subsequent
extractions.) If these permissions are not setup properly – extractions will fail.

6 RMS ETL

Environment Variables
In addition to the RETL environment variables see the Programmer’s Guide for
your version of RETL. You will need to set MMHOME to your base directory
for RMS ETL. This is the top level directory that you selected during the
installation process (see Installation above). So in your .kshrc you should add a
line like the following:
export MMHOME=<base directory for RMS ETL>

rmse_config.env
There are a couple variables you will need to change depending upon your local
settings:
export DBNAME=int9i

export RMS_OWNER=steffej_rms1011

export BA_OWNER=rmsint1011

Also, you will need to set the environment variable PASSWORD in either the
rmse_config.env, .kshrc or some other location that can be included via one of
those two means. For example, adding this line to the rmse_config.env will
cause the password “bogus” to be used to log into the database:
export PASSWORD=retek

Program features
The extraction programs are written in the RETL framework and include the
following features:

• Program return code

• Program status control files

• Restart and recovery

• Message logging

• Program error file

• Reject files

• Schema files

• Command line parameters

Program return code
RETL programs use one return code to indicate successful completion. If the
program successfully runs, a zero (0) is returned. If the program fails, a non-zero
is returned.

Chapter 2 –Program overview 7

Program status control files
To prevent a program from running while the same program is already running
against the same set of data, the RMSE code utilizes a program status control file.
At the beginning of each module, rmse_config.env is run. It checks for the
existence of the program status control file. If the file exists, then a message
stating, ‘${PROGRAM_NAME} has already started’, is logged and the module
exits. If the file does not exist, a program status control file is created and the
module executes.

If the module fails at any point, the program status control file is not removed,
and the user is responsible for removing the control file before re-running the
module.

File Naming conventions
The naming convention of the program status control file allows a program
whose input is a text file to be run multiple times at the same time against
different files.

The name and directory of the program status control file is set in the
configuration file (rmse_config.env). The directory defaults to
$MMHOME/error. The naming convention for the program status control file
itself defaults to the following dot separated file name:

• The program name

• The output filename, if one is specified on the command line

• ‘status’

• The business virtual date for which the module was run

For example, the program status control file for the invildex program would be
named as follows for the batch run of January 5, 2001:

$MMHOME/error/invildex.invilddm.txt.status.20010105

8 RMS ETL

Restart and recovery
Because RETL processes all records as a set, as opposed to one record at a time,
the method for restart and recovery must be different from the method that was
used for Pro*C. The restart and recovery process serves the following two
purposes:

1 It prevents the loss of data due to program or database failure.

2 It increases performance when restarting after a program or database failure
by limiting the amount of reprocessing that needs to occur.

RMS ETL restart and recovery
The RMS Extract (RMSE) modules extract from a source transaction database or
text file and write to a text file. The RMS Load (RMSL) modules import data
from flat files, perform transformations if necessary and then load the data into
the appropriate RMS Tables.

Most modules use a single RETL flow and do not require the use of restart and
recovery. If the extraction process fails for any reason, the problem can be fixed,
and the entire process can be run from the beginning without the loss of data. For
a module that takes a text file as its input, the following two choices are available
that enable the module to be re-run from the beginning:

1 Re-run the module with the entire input file.

2 Re-run the module with only the records that were not processed successfully
the first time and concatenate the resulting file with the output file from the
first time.

To limit the amount of data that needs to be re-processed, more complicated
modules that require the use of multiple RETL flows utilize a bookmark method
for restart and recovery. This method allows the module to be restarted at the
point of last success and run to completion. The bookmark restart/recovery
method incorporates the use of a bookmark flag to indicate which step of the
process should be run next. For each step in the process, the bookmark flag is
written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires changing data in the
source table or file, then the bookmark file must be removed and the process
must be re-run from the beginning in order to extract the changed data.

Bookmark file
The name and directory of the restart and recovery bookmark file is set in the
configuration file (rmse_config.env). The directory defaults to
$MMHOME/rfx/bookmark. The naming convention for the bookmark file itself
defaults to the following “dot” separate file name:

• The program name

• The first filename, if one is specified on the command line

• ‘bkm’

• The business virtual date for which the module was run

Chapter 2 –Program overview 9

For example, the bookmark flag for the invildex program would be written to
the following file for the batch run of January 5, 2001:

$MMHOME/rfx/bookmark/invildex.invilddm.txt.bkm.20010105

Message logging
Message logs are written daily in a format described in this section.

Daily log file
Every RETL program writes a message to the daily log file when it starts and
when it finishes. The name and directory of the daily log file is set in the
configuration file (rmse_config.env). The directory defaults to $MMHOME/log.
All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following “dot”
separated file name:

• The business virtual date for which the modules are run

• ‘.log’

For example, the location and the name of the log file for the business virtual
date of January 5, 2001 would be the following:

$MMHOME/log/20010105.log

Format
As the following examples illustrate, every message written to a log file has the
name of the program, a timestamp, and either an informational or error message:

cusdemogdm 13:20:01: Program Starting...

cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table
rdw10dev.cust_demog_dm_upd

cusdemogdm 13:20:14: Insert/Update target table.

cusdemogdm 13:20:23: Analyze table rdw10dm.cust_demog_dm

cusdemogdm 13:20:27: Program Completed...

If a program finishes unsuccessfully, an error file is usually written that indicates
where the problem occurred in the process. There are some error messages
written to the log file, such as ‘No output file specified’, that require no further
explanation written to the error file.

10 RMS ETL

Program error file
In addition to the daily log file, each program also writes its own detail flow and
error messages. Rather than clutter the daily log file with these messages, each
program writes out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file
(RMSE_config.env). The directory defaults to $MMHOME/error. All errors and
all routine processing messages for a given program on a given day go into this
error file (for example, it will contain both the stderr and stdout from the call to
RETL). All error files are encoded UTF-8.

The naming convention for the program’s error file defaults to the following
“dot” separated file name:

• The program name

• The first filename, if one is specified on the command line

• The business virtual date for which the module was run

For example, all errors and detail log information for the slsilddm program
would be placed in the following file for the batch run of January 5, 2001:

$MMHOME/error/slsildmdm.slsildmdm.txt.20010105

RMSE reject files
RMSE fact extract modules, may produce a reject file if they encounter data
related problems, such as the inability to find data on required lookup tables. The
module tries to process all data and then indicates that records were rejected so
that all data problems can be identified in one pass and corrected; then, the
module can be re-run to successful completion. If a module does reject records,
the reject file is not removed, and the user is responsible for removing the reject
file before re-running the module.

Note: See documentation on individual flows to determine whether reject files
will cause the flow as a whole to fail. Sometimes rejections are considered
failures sometimes they are considered normal from an operational standpoint.

The records in the reject file contain an error message and key information from
the rejected record. The following example illustrates a record that is rejected due
to problems within the currency conversion library:

Currency Conversion Failed|101721472|20010309

The following example illustrates a record that is rejected due to problems
looking up information on a source table:

Unable to find item_master record for Item|101721472

The name and directory of the reject file is set in the configuration file
(rmse_config.env). The directory defaults to $MMHOME/data.

Note: A directory specific to reject files can be created. The rmse_config.env file
would need to be changed to point to that directory.

Chapter 2 –Program overview 11

The naming convention for the reject file defaults to the following “dot”
separated file name:

• The program name

• The first filename, if one is specified on the command line

• ‘rej’

• The business virtual date for which the module was run

For example, all rejected records for the slsildmex program would be placed in
the following file for the batch run of January 5, 2001:

$MMHOME/data/slsildmex.slsildmdm.txt.rej.20010105

Schema files
• RETL uses schema files to specify the format of incoming or outgoing

datasets. The schema file defines each column’s data type and format, which
is then used within RETL to format/handle the data. For more information
about schema files, see the latest RETL Programmer’s Guide. Schema file
names are hard-coded within each module since they do not change on a day-
to-day basis. All schema files end with “.schema” and are placed in the
“rfx/schema” directory.

Command line parameters
In order for each RETL module to run, the input/output data file paths and names
may need to be passed in at the Unix command line.

RMSE
RMSE extraction modules do not require passing in any parameters. The output
path/filename defaults to $DATA_DIR/(RMSE program name).dat.
Likewise, the schema format for the records in these files are specified in the file
- $SCHEMA_DIR/(RMSE program name).schema

See “Program reference lists” for a detailed listing of all programs and their
command line parameters.

Typical run and debugging situations
The following examples illustrate typical run and debugging situations for each
type of program. The log, error, and so on file names referenced below assume
that the module is run on the business virtual date of March 9, 2001. See the
previously described naming conventions for the location of each file.

Example
To run rmse_stores.ksh:

1 Change directories to $MMHOME/rfx/src.

2 At a Unix prompt enter:
%rmse_stores.ksh

12 RMS ETL

If the module runs successfully, the following results:

1 Log file: Today’s log file, 20010309.log, contains the messages “Program
started …” and “Program completed successfully” for rmse_stores.

2 Data: The rmse_stores.dat file exists in the data directory and contains the
extracted records.

3 Schema: The rmse_stores.schema file exists in the schema directory and
contains the definition of the data file in #2 above.

4 Error file: The program’s error file, rmse_stores.20010309, contains the
standard RETL flow (ending with “All threads complete” and “Flow ran
successfully”) and no additional error messages.

5 Program status control: The program status control file,
rmse_stores.status.20010309, does not exist.

6 Reject file: The reject file, rmse_stores.rej.20010309, does not exist.

If the module does not run successfully, the following results:

1 Log file: Today’s log file, 20010309.log, does not contain the “Program
completed successfully” message for rmse_stores.

2 Data: The rmse_stores.dat file may exist in the data directory but may not
contain all the extracted records.

3 Schema: The rmse_stores.schema file exists in the schema directory and
contains the definition of the data file in #2 above.

4 Error file: The program’s error file, rmse_stores.20010309, may contain an
error message.

5 Program status control: The program status control file,
rmse_stores.status.20010309, exists.

6 Reject file: The reject file, rmse_stores.status.20010309, does not exist
because this module does not reject records.

7 Bookmark file: The bookmark file, rmse_stores.bkm.20010309, does not
exist because this module does not utilize restart and recovery.

Chapter 2 –Program overview 13

To re-run the module, perform the following actions:

1 Determine and fix the problem causing the error.

2 Remove the program’s status control file.

3 Change directories to $MMHOME/rfx/src. At a Unix prompt, enter:
%rmse_stores.ksh

Chapter 3 –Batch processing 15

Chapter 3 – Batch processing
The following explains the order constraints of the batch schedule. This section
includes:

• The overall batch schedule;

The module inter-dependencies between the RMS batch and the RMSE batch.

Setting up the batch schedule
Note: The number of modules that can be run in parallel at any given time is
dependent upon the client’s hardware capacity.

On a typical batch production run, the pre-batch maintenance modules must
always run first. What runs next, as long as the client follows the batch
dependencies in the flow diagrams, is up to the client.

In short, “pre_rmse.ksh” must be run prior to running other scripts (see detailed
notes below). All other extract modules can be run in parallel. (Note, however,
that some RMSE modules have RMS pre-dependencies, and some RMS modules
are dependent upon RMSE modules.) In other words, product extract modules
can be run in parallel with organization extract modules. Because of the extract
modules’ ability to be run in parallel, it does not matter which module goes first
(assuming no interdependencies are noted on the batch flows below).

The batch flows on the following pages are best read from top to bottom. Such a
review of the RMSE batch schedule allows clients to both setup module
dependencies and to optimize their batch window through the concurrent running
of unrelated modules.

rmse_config.env settings
On the RMSE side, make sure to review the environmental parameters in the
rmse_config.env file before executing batch modules.

Steps to configure RETL

1 Log in to the Unix server with a Unix account that will run the RETL scripts.
For instance, the rmsedev account is used in RDW.

2 Change directories to <base_directory>/rmse10.1/dev/rfx/etc.

3 Modify the rmse_config.env script:

a Change the DBNAME variable to the name of the RMS database.

b Change the RMS_OWNER variable to the username of the RMS schema
owner.

c Change the BA_OWNER variable to the username of the RMSE batch
user.

16 RMS ETL

RMS and Destination batch schedule
The (RMSE) extraction modules run in the RMS batch cycle and are dependent
on some RMS modules to provide data for processing (see the descriptions of the
individual modules for details). Some RMS modules are dependent on RMSE
modules. Most RMSE extraction programs run after Phase 2 of the RMS batch
cycle is completed. All RMSE modules must run before the RMS vdate is
incremented.

Refer to the destination (e.g. RDW/RDF) transformation and load modules for
the product of interest to see how batch jobs should be setup to work
appropriately with RMSE.

 Chapter 4 – Program reference lists 17

Chapter 4 – Program reference lists
This chapter serves as a reference to the following RMSE programs and reference information:

• Extraction (RETL Korn shell scripts)

• Maintenance (RETL Korn shell scripts)

By reviewing Chapter 3, “Program flow diagrams”, along with this chapter and Appendix A, “API flat file specifications”, the client
should be able to track, down to the table and column level, all the extraction data that flows out of RMS.

Extraction programs

Extraction Name Tables
Extracted

Fields Extracted Target File or
Table

Target Field Field Type Field
Length

Notes

rmse_store.ksh store store rmse_store.dat store Number(10) 11
 store_name store_name Varchar2(20) 20
 district district Number(4) 5
 store_close_date store_close_date Date 8
 store_open_date store_open_date Date 8
 store_class store_class Varchar2(1) 1

 code_detail store_class_description store_class_description
Varchar2(40) 40 joined with store.store_class,

code type ‘CSTR’
 store_format store_format Number(4) 5
 store_format format_name format_name Varchar2(20) 20 joined with store.store_format
rmse_wh.ksh wh wh rmse_wh.dat wh Number(10) 11
 wh_name wh_name Varchar2(20) 20
 forecast_wh_ind forecast_wh_ind Varchar2(1) 1
 stockholding_ind stockholding_ind Varchar2(1) 1

18 RMS ETL

Extraction Name Tables Extracted Fields

Extracted
Target File or Table Target Field Field Type Field

Length
Notes

Rmse_orghier.ksh district district rmse_orghier.dat district Number(4) 5
 district_name district_name Varchar2(20) 20
 region region Number(4) 5
 region region_name region_name Varchar2(20) 20 joined with district.region
 area area Number(4) 5
 area area_name area_name Varchar2(20) 20 joined with region.area
 chain chain Number(4) 5
 chain chain_name chain_name Varchar2(20) 20 joined with area.chain

 comphead company company
Number(4) 5 merged (should be a single

row)
 co_name co_name Varchar2(20) 20
Rmse_merchhier.ks
h subclass subclass rmse_merchhier.dat subclass

Number(4) 5

 sub_name sub_name Varchar2(20) 20
 class class class Number(4) 5 joined with subclass.class
 class_name class_name Varchar2(20) 20
 deps dept dept Number(4) 5 joined with class.dept
 dept_name dept_name Varchar2(20) 20
 groups group_no group_no Number(4) 5 joined with dept.group_no
 group_name group_name Varchar2(20) 20
 division division division Number(4) 5 joined with groups.division
 div_name div_name Varchar2(20) 20
Rmse_sups.ksh sups supplier rmse_supplier.dat supplier Number(10) 11
 sup_name sup_name Varchar2(32) 32
Rmse_domain.ksh domain domain rmse_domain.dat domain Number(2) 3
 domain_dept dept dept Number(4) 5
 domain_class class class Number(4) 5 Also domain_class.dept

 domain_subclass subclass subclass

Number(4) 5 Also domain_subclass.dept
and
Domain_subclass.class

Domain_dept\
class\ subclass load_sales_ind load_sales_ind

Varchar2(1) 1

 Chapter 4 – Program reference lists 19

Extraction Name Tables

Extracted
Fields Extracted Target File or Table Target Field Field Type Field

Length
Notes

rmse_item_master.ksh item_master item rmse_item_master.dat item Varchar2(25) 25 This is the item master extract
 item_desc item_desc Varchar2(100) 100
 item_parent item_parent Varchar2(25) 25
 item_grandparent item_grandparentVarchar2(25) 25
 subclass subclass Number(4) 5
 class class Number(4) 5
 dept dept Number(4) 5
 forecast_ind forecast_ind Varchar2(1) 1
 item_supplier supplier supplier Number(10) 11
rmse_item_loc_hist.ksh item_loc_hist item rmse_item_loc_hist.dat item Varchar2(25) 25
 loc loc Number(10) 11
 eow_date eow_date Date 8
 sales_issues sales_issues Number(12, 4) 14
rmse_tran_data_history.ksh tran_data_history item rmse_tran_data_history.dat item Varchar2(25) 25
 store store Number(10) 11
 wh wh Number(10) 11
 tran_date tran_date Date 8
 units units Number(12, 4) 14
rmse_item_loc_soh.ksh item_loc_soh item rmse_item_loc_soh.dat item Varchar2(25) 25
 loc Loc Number(10) 11

 stock_on_hand stock_on_hand Number(12, 4) 14

 Period vdate extract_date
Date 8 Vdate global variable - date of

extraction

20 RMS ETL

Extraction Name Tables

Extracted
Fields Extracted Target File or Table Target Field Field

Type\Length
Field

Length
Notes

rmse_weekly_sales.ksh item_master item rmse_weekly_sales.dat item Varchar2(25) 25 This is the item master extract
 item_loc_soh loc loc Number(10) 11
 item_loc_hist eow_date eow_date Date 8
 sales_issues sales_issues Number(12, 4) 14
 sales_type sales_type Varchar2(1) 1
 item_loc_soh rowid row_id Varchar2(18) 18

domain_subclass
domain_class
domain_dept domain_id* domain_id

Number(2) 3
Table will depend on domain le
Class, Subclass)

rmse_daily_sales.ksh
tran_data_history/
if_tran_data loc rmse_daily_sales.dat Loc

Number(10) 11
 This is the item master extract

item_loc_soh/
if_tran_data item Item

Varchar2(25) 25

tran_data_history/
if_tran_data tran_date tran_date

Date 8

 sum(units) sum_units Number(12, 4) 14
 sales_type sales_type Varchar2(1) 1
 tran_code tran_code Number(2) 3

domain_subclass
domain_class
domain_dept domain_id* domain_id

Number(2) 3
Table will depend on domain le
Class, Subclass)

rmse_stock_on_hand.ksh item_loc_soh item rmse_stock_on_hand.dat item Varchar2(25) 25
 loc loc Number(10) 11
 stock_on_hand stock_on_hand Number(12,4) 14

Ftmednld.pc - Calendar Hierarchy Download
The Calendar Hierarchy download will continue to be a Pro*C batch extract. Please reference the detailed design for further information.
The file produced by this extract will need to be transferred to a location where the RDF Transform scripts can access it.

 Chapter 4 – Program reference lists 21

Load programs

Weekly Forecasted Demand

RDF Batch Name: export_fcst.sh

File Location: from_rpas

File Names: wfdemand.##

Example: wfdemand .01

Field Name Start
Position

Width Format RMS Table Load Schema
Field

End-of-week Date 1 8 char yyyymmdd Item_forecast.eow_date weekly_forecast eow_date
Item ID 9 20 char Alpha Item_forecast.item weekly_forecast item
Store/Warehouse ID 29 20 char Alpha Item_forecast.loc weekly_forecast location
Quantity 49 12 char Numeric Item_forecast.forecast_sales weekly_forecast fcst_sales
Standard Deviation 61 12 char Numeric Item_forecast.forecast_std_dev weekly_forecast forecast_std_dev

• The numeric fields are zero-padded and the decimal point is omitted, but the quantities have a 4-digit decimal part.
Example:
200211190000000000001234567800000000000000001234000000121234000000345678
This indicates:
Date: 19 November 2002
Item: 12345678
Store: 1234
Quantity: 12.1234
Std. Dev.: 34.5678
• The format of the export can be modified through the RDF client in the Forecast Export Administration workbook – which means that

we can modify the format of the file for easier import.

• The Item and Store/Warehouse fields are left justified.

22 RMS ETL

Daily Forecasted Demand

RDF Batch Name: export_fcst.sh

File Location: from_rpas

File Names: dfdemand.##

Example: dfdemand.01

Field Name Start

Position
Width Format RMS Tables Load Schema.Field

Date 1 8 char yyyymmdd Daily_item_forecast.data_date weekly_forecast data_date
Item ID 9 20 char Alpha Daily_item_forecast.item weekly_forecast item
Store/Warehouse ID 29 20 char Alpha Daily_item_forecast.loc weekly_forecast location
Quantity 49 12 char Numeric Daily_item_forecast.forecast_sales weekly_forecast forecast_sales
Standard Deviation 61 12 char Numeric Daily_item_forecast.forecast_std_dev weekly_forecast forecast_std_dev

• The numeric fields are zero-padded and the decimal point is omitted, but the quantities have a 4-digit decimal part.

Example:

200211190000000000001234567800000000000000001234000000121234000000345678

This indicates:

Date: 19 November 2002
Item: 12345678
Store: 1234
Quantity: 12.1234
Std. Dev.: 34.5678

• The format of the export can be modified through the RDF client in the Forecast Export Administration workbook – which means that
we can modify the format of the file for easier import.

• The Item and Store/Warehouse fields are left justified.

 Chapter 4 – Program reference lists 23

Load Name Fields Extracted Target File or Table Tables Loaded Target Field Field Length Notes

rmsl_forecast.ksh item rmsl_item_forecast.dat
itemforecast
(daily_item_forecast) item

Varchar2(25)
 This is the first load.

 loc loc Number(10)

eow_date
(data_date) eow_date

Date

 forecast_sales forecast_sales Number(12, 4)
 forecast_std_dev forecast_std_dev Number(12, 4)

rmsl_forecast.ksh
This script can be run for either weekly or daily forecasting.

Maintenance programs
Program Functional

Area
Module
Type

External
Data
Source

Source Table or File Schema
File

Target File or Table Arguments Notes

pre_rmse.ksh Pre-RMS
Extraction
Maintenance

Maintenance RMS PERIOD,
SYSTEM_OPTIONS,
SYSTEM_VARIABLES,
CURRENCY_RATES

 class_level_vat_ind.txt,
consolidation_code.txt,
domain_level.txt,
last_eom_date.txt,
max_backpost_days.txt,
multi_currency_ind.txt,
prime_currency_code.txt,
prime_exchng_rate.txt,
stkldgr_vat_incl_retl_ind.txt,
vat_ind.txt,
vdate.txt

This module
expects these text
files to exist in
$MMHOME/rfx/etc
when it runs. Text
files containing
default values for
the very first run
are included in the
installation process.

Appendix A – Application programming interface (API) flat file specifications 25

Appendix A – Application programming interface
(API) flat file specifications

This appendix contains APIs that describe the file format specifications for all
text files that serve as the interface between source systems and target systems.
For example, these APIs control the formatting of the following:

• The dimension data extracted by the DWI code

In addition to providing individual field description and formatting information,
the APIs provide basic business rules for the incoming data.

API format
Each API contains a business rules section and a file layout. Some general
business rules and standards are common to all APIs. The business rules are used
to ensure the integrity of the information held within the target system. In
addition, each API contains a list of rules that are specific to that particular API.

File layout
• Field Name: Provides the name of the field in the text file.

• Description: Provides a brief explanation of the information held in the field.

• Max Column Length: Identifies the maximum length possible for a field. A
field may not exceed this length.

• Data Type/Format: Data type identifies one of three valid data types:
character, number, or date:

� Character: Can hold letters (a,b,c…), numbers (1,2,3…), and special
characters ($,#,&…)

� Numbers: Can hold only numbers (1,2,3…)

� Date: Holds a specific year, month, day combination

Any required formatting for a field is conveyed in the Format section. For
example, Number(18,4) refers to number precision and scale. The first value is
the precision and always matches the maximum column length; the second value
is the scale and specifies how many digits exist to the right of the decimal point.

• Required Field: Identifies whether the field can hold a null value. This
section holds either a ‘yes’ or a ‘no’. A ‘yes’ signifies the field may not hold
a null value. A ‘no’ signifies the field may, but is not required to, hold a null
value.

26 RMS ETL

General business rules and standards common to all APIs
• Complete ‘snapshot’ of dimension data:

A majority of RDW’s dimension code requires a complete view of all current
dimensional data (irregardless of whether the dimension information has
changed) in order to successfully capture the correct data on the target table.
If a complete view of the dimensional data is not provided in the text file,
invalid or incorrect dimensional data can result. For instance, not including
an active item in the prditmdm.txt file causes that item to be closed (as of the
extract date) in the data warehouse. When a sale for the item is processed, the
fact program will not find a matching ‘active’ dimension record. Therefore, it
is essential, unless otherwise noted in each API’s specific business rules
section, that a complete snapshot of the dimensional data be provided in each
text file.

• Leading/trailing values:
Values entered into the text files are the exact values processed and loaded
into the datamart tables. Therefore, the values with leading and/or trailing
zeros, characters, or nulls are processed as such. RDW does not strip any of
these leading or trailing values, unless otherwise noted in the individual
API’s business rules section.

• Delimiters:

Note: Make sure the delimiter is never part of your data.

� Within dimension text files, each field must be separated by a pipe (|)
character, for example a record from prddivdm.txt may look like the
following:
1000|1|Homewares|2006|Henry Stubbs|2302|Craig Swanson

� Within facts text files, each field must be separated by a semi-colon
character (;). For example a record from exchngratedm.txt may look like
the following:
WIS;20010311;1.73527820592648544918

See the latest RETL Programmer’s Guide for additional information.

• End of Record Carriage Return:
Each record in the text file must be separated by an end of line carriage
return. For example, the three records below, in which each record holds four
values, should be entered as:
1|2|3|4

5|6|7|8

9|10|11|12

and not as a continuous string of data, such as:
1|2|3|4|5|6|7|8|9|10|11|12

• Character format:
All API’s should contain ASCII text characters only.

	Chapter 1 – Introduction
	Technical architecture
	Extract Transform and Load (ETL) processing

	Chapter 2 – Program overview
	Installation
	Configuration
	Program features
	Program return code
	Program status control files
	Restart and recovery
	Message logging
	Program error file
	RMSE reject files
	Schema files
	Command line parameters

	Typical run and debugging situations

	Chapter 3 – Batch processing
	Setting up the batch schedule
	rmse_config.env settings
	RMS and Destination batch schedule

	Chapter 4 – Program reference lists
	Extraction programs
	Ftmednld.pc - Calendar Hierarchy Download

	Load programs
	Weekly Forecasted Demand
	Daily Forecasted Demand
	rmsl_forecast.ksh

	Maintenance programs

	Appendix A – Application programming interface \�
	API format
	File layout
	General business rules and standards common to all APIs

