RMS ETL10.1

Operations Guide

&

Rete

WWW.RETEK.COM ‘ HELPING THE RETAIL INDUSTRY CREATE, MANAGE AND FULFILL CONSUMER DEMAND™



Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403

888.61.RETEK (toll free US)
+1 612 587 5000

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46
Fax: +44 (0)20 7563 46 10

The software described in this documentation is furnished under alicense
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential



Customer Support

Customer Support hours:
Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
recel ve continuous attention until resolved, for al clients on active

mai ntenance.

Contact Method Contact I nformation

Internet (ROCS) www.retek.com/support
Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: +1 612-587-5800
EMEA: 011 44 1223 703 444
Asia Pecific: 61 425 792 927

Mail Retek Customer Support
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:
e Product version and program/module name.

e Functional and technical description of the problem (include business
impact).

o Detailed step by step instructions to recreate.
e Exact error message received.

e  Screen shots of each step you take.


http://www.retek.com/support




Contents
Chapter 1 — IntroducCtion........c.ccovviiiiiicieee e, 1
TechniCal arChITECIUNE ........eeiiece et 1
Extract Transform and Load (ETL) PrOCESSING.........crverrerrereeiereresrenreseeseeeeesesneseens 1
Chapter 2 — Program OVEeIrVIEW........ccooevveeiiiiieeeeeiiiiee e 5
INSEAHBEION .....eeeeee bbbttt be e 5
(0001 11018 r= 1 o o NSRS 5
Program fEALUIES ..........eccueiee ettt e e naeeneas 6
Program UM COOE .......c.eeiriiirieriisie sttt n e 6
Program Status CONIOl fIlES........cccoiiiiiiiee e 7
RESEAI QN0 FECOVETY ....eeieiciee ettt te e e e e s e s eesee e be e aeesaeesneenneeas 8
L= SS=To =N oo o 1 1o PR 9
Program eTOr FIlE ... 10
Y S S e =t B 1 = 10
SCHEMATIIES......eceeee bbbt 11
Command [iN€ PAraMELENS........cciiiiiieieee e 11
Typical run and debugging SItUALTIONS ..........cceeveeieeiiereee e 11
Chapter 3 —Batch processing.....ccccoeeeevviiiiiieeieiiiiie e, 15
Setting up the batch schedule............ccoiiie e 15
rMSE_CONFIQ.ENV SEHINGS.....veeiveeieieecie e 15
RMS and Destination batch schedule...........ccccoieiieiiiereceeee e 16
Chapter 4 — Program reference listS......ccccooeevvviiiiinieveennnnnnn. 17
EXIraCtion PrOgraMS.......c.ccveieerieeieseesteesie e ste e e e e sreesteeee e e sseeaesneesreenesneens 17
Ftmednld.pc - Calendar Hierarchy Download.............cccccoeeveiiveccece e 20
(0720l o] £0T0 =0 =TS SP R 21
Weekly Forecasted Demand..........ccceveeiieieeiin it see e e e 21
Daily Forecasted DEmMand ...........ccccueiiiieiiiiieese s 22
FMS_fOrECASE.KSN......eeeee e 23
MaiNtENANCE PrOGIaAIMS.......cuveiueereeteereesteeteseesseeseeeesseesseseesseesseesesseessesssesseens 23

Appendix A — Application programming interface (API) flat

file SPeCIfiCatioNS ......oiiiiiiiie e, 25
N e 0 0 ST 25
FHIE TAYOUL ...t nreas 25

General business rules and standards common to all APIS ......ccovveeeeviiveiciieeeeeeeis 26






Chapter 1 — Introduction 1

Chapter 1 — Introduction

The Retek Merchandising System (RMYS) istheretail client’s central
merchandising transactional processing system. RM S is the principle source of
the foundation or dimensional data needed in some of the Retek 10 suite of
products.

RMS supplied dimensions for these extracts include the following: Company,
Organizational hierarchy, Merchandise hierarchy (including Product), Calendar
hierarchy, and Weekly and Daily Sales information.

RMS supplied loads include the following: daily forecast demand and weekly
forecast demand.

A program overview of standard programming features is described aswell as
the program reference lists of these shared extracts. The application-
programming interface (API) describes the flat file specifications in Appendix A.

Technical architecture

The modules work in conjunction with the Retek Extract Transform and Load
(RETL) framework. This architecture optimizes a high performance data
processing tool that allows database batch processes to take advantage of parallel
processing capabilities.

The RETL framework runs and parses through the valid operators composed in
XML scripts.

Extract Transform and Load (ETL) processing

The following diagram illustrates the extraction processing architecture. Instead
of managing the change captures as they occur in the source system during the
day, the process involves extracting the current data from the source system. The
extracted datais output to flat files. These flat files are then available for
consumption by products such as Retek Data Warehouse (RDW) and Retek
Demand Forecasting (RDF).

Thetarget system, (RDW or RDF, for example), has its own way of completing
the transformations and loading the necessary datainto its system, where it can
be used for further processing in the environment.



2 RMS ETL

RMS Source
System Destination

T .g.
() (e 9 RMS/RDF) New records and
N A updates

Source
extraction

\T”/ Transformation

(RETL)

Destination
tables

Data extraction
(RETL)

I

Extracted data Extracted data
file

\4

file -
File transfer

\_f\ (FTP, and so on)

|:| RETL Component
Data Movement Architecture




Chapter 1 — Introduction 3

Design

The components for this solution will adhere to the following general architecture:

Stage 1 ' :
RMSExtraction  |........ EMS EXt(;aglftJnt
Process. ows and Outpu
RMSDB Schermias

I [
RMS Extraction Files
(in Output Schema Format)

optional FTP, etc.

[
Stage 2 [
Transformation  |€-— .
Process Transformation

Flows
[
Integration Data Files Destination
and Schemas DB

In short, the architecture relies upon two distinct stages. Stage 1 is extraction from the
RMS database using well-defined flows specific to the RMS database. The resulting
output will be datafiles written in awell-defined schemafile format. This stage includes
no destination specific code.



4 RMS ETL

Stage 2 introduces a flow specific to the destination. In this case flows for the
RDF/RPAS product designed to transform the data such that RDF can import the data
properly.



Chapter 2 —Program overview 5

Chapter 2 — Program overview

This chapter summarizesthe RETL program features utilized inthe RMS
Extractions (RM SE). More information about the RETL tool is available in the
latest RETL Programmer’s Guide.

Installation

Select adirectory where you would liketo install RMS ETL. Thisdirectory (also
caled MMHOME) iswhere all of the RMS ETL fileswill be extracted.

The following code tree is utilized for the RETL framework during the
extractions, transformations and loads and is referred to in this documentation.

<base directory (MMHOME)>

/data

/error

/log

/rfx
/bookmark
/etc
/1ib
/schema

/src

Configuration

RETL

Before trying to configure and run RMS ETL, install RETL version 10.3 or later,
which isrequired to run RMS ETL. Run the “verify retl” script (included as part
of the RETL ingtallation) to ensure that RETL isworking properly before
proceeding.

RETL User and Permissions

RMS ETL should beinstalled and run asthe RETL user. Additionally, the
permissions should be setup as per the RETL Programmer’s Guide. RMS ETL
will read data, create, delete and update tables. (Thisis done for exampleto
ensure that weekly sales datais not pulled multiple times on subsequent
extractions.) If these permissions are not setup properly — extractions will fail.



6 RMSETL

Environment Variables

In addition to the RETL environment variables see the Programmer’s Guide for
your version of RETL. You will need to sst MMHOME to your base directory
for RMSETL. Thisisthetop level directory that you selected during the
installation process (see Installation above). Soin your .kshrc you should add a
line like the following:

export MMHOME=<base directory for RMS ETL>

rmse_config.env

There are a couple variables you will need to change depending upon your local
Settings:

export DBNAME=Int9i
export RMS OWNER=steffej rmsl1011
export BA OWNER=rmsintl011

Also, you will need to set the environment variable PASSWORD in either the
rmse_config.env, .kshrc or some other location that can be included via one of
those two means. For example, adding this line to the rmse_config.env will
cause the password “bogus’ to be used to log into the database:

export PASSWORD=retek

Program features

The extraction programs are written in the RETL framework and include the
following features:

e Program return code

e Program status control files

e Restart and recovery

e Messagelogging
e Program error file
e Reject files

e Schemafiles

¢ Command line parameters

Program return code

RETL programs use one return code to indicate successful completion. If the
program successfully runs, a zero (0) isreturned. If the program fails, a non-zero
isreturned.



Chapter 2 —Program overview 7

Program status control files

To prevent a program from running while the same program is aready running
against the same set of data, the RM SE code utilizes a program status control file.
At the beginning of each module, rmse_config.env isrun. It checks for the
existence of the program status control file. If the file exists, then a message
stating, ‘${ PROGRAM_NAME} has aready started’, islogged and the module
exits. If the file does not exist, a program status control file is created and the
module executes.

If the module fails at any point, the program status control fileis not removed,
and the user is responsible for removing the control file before re-running the
module.

File Naming conventions

The naming convention of the program status control file allows a program
whose input is atext file to be run multiple times at the same time against
different files.

The name and directory of the program status control file is set in the
configuration file (rmse_config.env). The directory defaults to
$MMHOME/error. The naming convention for the program status control file
itself defaults to the following dot separated file name:

e Theprogram name

e Theoutput filename, if one is specified on the command line
e ‘status

e Thebusinessvirtual date for which the module was run

For example, the program status control file for the invildex program would be
named as follows for the batch run of January 5, 2001:

$MMHOME/Zerror/invildex. invi lddm. txt.status.20010105



8 RMSETL

Restart and recovery

Because RETL processes al records as a set, as opposed to one record at atime,
the method for restart and recovery must be different from the method that was
used for Pro*C. The restart and recovery process serves the following two
purposes:

1 It preventsthe loss of data due to program or database failure.

2 Itincreases performance when restarting after a program or database failure
by limiting the amount of reprocessing that needs to occur.

RMS ETL restart and recovery

The RMS Extract (RM SE) modules extract from a source transaction database or
text file and write to atext file. The RMS Load (RMSL) modules import data
from flat files, perform transformations if necessary and then load the data into
the appropriate RMS Tables.

Most modules use asingle RETL flow and do not require the use of restart and
recovery. If the extraction process fails for any reason, the problem can be fixed,
and the entire process can be run from the beginning without the loss of data. For
amodule that takes atext file asits input, the following two choices are available
that enable the module to be re-run from the beginning:

1 Re-runthe module with the entire input file.

2 Re-run the module with only the records that were not processed successfully
the first time and concatenate the resulting file with the output file from the
first time.

To limit the amount of data that needs to be re-processed, more complicated
modul es that require the use of multiple RETL flows utilize a bookmark method
for restart and recovery. This method allows the module to be restarted at the
point of last success and run to completion. The bookmark restart/recovery
method incorporates the use of a bookmark flag to indicate which step of the
process should be run next. For each step in the process, the bookmark flag is
written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires changing datain the

source table or file, then the bookmark file must be removed and the process

must be re-run from the beginning in order to extract the changed data.
Bookmark file

The name and directory of the restart and recovery bookmark fileis set in the
configuration file (rmse_config.env). The directory defaultsto

$MMHOM E/rfx/bookmark. The naming convention for the bookmark file itself
defaultsto the following “ dot” separate file name:

e The program name
o Thefirst filename, if oneis specified on the command line
e ‘bkm’

e Thebusinessvirtua date for which the module was run



Chapter 2 —Program overview 9

For example, the bookmark flag for the invi Idex program would be written to
the following file for the batch run of January 5, 2001

$MMHOME/ r Fx/bookmark/Zinvildex. invilddm. txt.bkm.20010105

Message logging
Message logs are written daily in aformat described in this section.

Daily log file

Every RETL program writes a message to the daily log file when it starts and
when it finishes. The name and directory of the daily log fileis set in the
configuration file (rmse_config.env). The directory defaultsto SMMHOME/log.
All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following “dot”
separated file name:

e Thebusinessvirtual date for which the modules are run
e ‘log
For example, the location and the name of the log file for the business virtual
date of January 5, 2001 would be the following:
$MMHOME/ 10g/20010105. log

Format

Asthe following examples illustrate, every message written to alog file has the
name of the program, a timestamp, and either an informational or error message:

cusdemogdm 13:20:01: Program Starting...
cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table
rdwlOdev.cust _demog_dm_upd

cusdemogdm 13:20:14: Insert/Update target table.
cusdemogdm 13:20:23: Analyze table rdwlOdm.cust_demog_dm
cusdemogdm 13:20:27: Program Completed. ..

If a program finishes unsuccessfully, an error file is usually written that indicates
where the problem occurred in the process. There are some error messages
written to the log file, such as ‘No output file specified’, that require no further
explanation written to the error file.



10 RMS ETL

Program error file

In addition to the daily log file, each program also writesits own detail flow and
error messages. Rather than clutter the daily log file with these messages, each
program writes out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file
(RMSE_config.env). The directory defaults to SMMHOME/error. All errors and
all routine processing messages for a given program on a given day go into this
error file (for example, it will contain both the stderr and stdout from the call to
RETL). All error files are encoded UTF-8.

The naming convention for the program’ s error file defaults to the following
“dot” separated file name:

e The program name

o Thefirst filename, if oneis specified on the command line

e Thebusinessvirtua date for which the module was run

For example, all errors and detail log information for the sIsi Iddm program

would be placed in the following file for the batch run of January 5, 2001
$MMHOME/Zerror/slsildmdm.slsildmdm.txt.20010105

RMSE reject files

RM SE fact extract modules, may produce areject file if they encounter data
related problems, such asthe inability to find data on required lookup tables. The
modul e tries to process al data and then indicates that records were rejected so
that all data problems can be identified in one pass and corrected; then, the
modul e can be re-run to successful completion. If a module does reject records,
the rgject file is not removed, and the user is responsible for removing the reject
file before re-running the module.

Note: See documentation on individual flows to determine whether reject files
will cause the flow as awhole to fail. Sometimes rejections are considered
failures sometimes they are considered normal from an operational standpoint.

The records in the reject file contain an error message and key information from
the regjected record. The following exampleillustrates a record that is rejected due
to problems within the currency conversion library:

Currency Conversion Failed]|101721472]20010309

The following exampleillustrates arecord that is rejected due to problems
looking up information on a source table:

Unable to find item_master record for Item]|101721472

The name and directory of the reject file is set in the configuration file
(rmse_config.env). The directory defaultsto SMMHOME/data.

Note: A directory specific to reject files can be created. The rmse_config.env file
would need to be changed to point to that directory.



Chapter 2 —Program overview 11

The naming convention for the reject file defaults to the following “ dot”
separated file name:

e The program name

e Thefirst filename, if oneis specified on the command line
o ! rej’

e Thebusinessvirtual date for which the module was run

For example, all rejected records for the sIsi ldmex program would be placed in
the following file for the batch run of January 5, 2001:

$MMHOME/datas/sIsildmex.slsildmdm.txt.rej.20010105

Schema files

e RETL uses schemafiles to specify the format of incoming or outgoing
datasets. The schema file defines each column’s data type and format, which
isthen used within RETL to format/handle the data. For more information
about schemafiles, see the latest RETL Programmer’s Guide. Schemafile
names are hard-coded within each modul e since they do not change on a day-
to-day basis. All schema files end with “.schema’ and are placed in the
“rfx/schema’ directory.

Command line parameters

In order for each RETL module to run, the input/output datafile paths and names
may need to be passed in at the Unix command line.

RMSE

RM SE extraction modules do not require passing in any parameters. The output
path/filename defaults to $DATA_DIR/(RMSE program name) .dat.
Likewise, the schema format for the recordsin these files are specified in the file
- $SCHEMA_DIR/(RMSE program name) .schema

See “Program reference lists” for a detailed listing of al programs and their
command line parameters.

Typical run and debugging situations

The following examplesillustrate typical run and debugging situations for each
type of program. The log, error, and so on file names referenced below assume
that the module is run on the business virtual date of March 9, 2001. See the
previously described naming conventions for the location of each file.

Example
To run rmse_stores.ksh:

1 Change directoriesto SMMHOME/rfx/src.

2 AtaUnix prompt enter:
%rmse_stores.ksh



12 RMS ETL

If the module runs successfully, the following results:

1

6

Log file: Today’s log file, 20010309.10g, contains the messages “ Program
started ...” and “Program completed successfully” for rmse_stores.

Data: Thermse_stores.dat file exists in the data directory and contains the
extracted records.

Schema: Thermse_stores.schema file exists in the schema directory and
contains the definition of the datafile in #2 above.

Error file: The program’s error file, rmse_stores.20010309, contains the
standard RETL flow (ending with “All threads complete” and “Flow ran
successfully”) and no additional error messages.

Program status control: The program status control file,
rmse_stores.status.20010309, does not exist.

Regect file: Thergject file, rmse_stores.rej.20010309, does not exist.

If the module does not run successfully, the following results:

1

Log file: Today’s log file, 20010309.10g, does not contain the “Program
completed successfully” message for rmse_stores.

Data: Thermse_stores.dat file may exist in the data directory but may not
contain al the extracted records.

Schema: The rmse_stores.schema file exists in the schema directory and
contains the definition of the datafile in #2 above.

Error file: The program’s error file, rmse_stores.20010309, may contain an
error message.

Program status control: The program status control file,
rmse_stores.status.20010309, exists.

Reject file: Thergect file, rmse_stores.status.20010309, does not exist
because this module does not reject records.

Bookmark file: The bookmark file, rmse_stores.bkm.20010309, does not
exist because this module does not utilize restart and recovery.



Chapter 2 —Program overview 13

To re-run the module, perform the following actions:

1 Determine and fix the problem causing the error.

2 Remove the program’s status control file.

3 Change directoriesto SMMHOME/rfx/src. At a Unix prompt, enter:

%rmse_stores.ksh






Chapter 3 —Batch processing 15

Chapter 3 — Batch processing

The following explains the order constraints of the batch schedule. This section
includes:

o Theoveral batch schedule;
The modul e inter-dependencies between the RM S batch and the RM SE batch.

Setting up the batch schedule

Note: The number of modulesthat can be run in parallel at any giventimeis
dependent upon the client’s hardware capacity.

On atypical batch production run, the pre-batch mai ntenance modules must
always run first. What runs next, as long as the client follows the batch
dependenciesin the flow diagrams, is up to the client.

In short, “pre_rmse.ksh” must be run prior to running other scripts (see detailed
notes below). All other extract modules can be run in parallel. (Note, however,
that some RM SE modules have RM S pre-dependencies, and some RM S modules
are dependent upon RM SE modules.) In other words, product extract modules
can berunin parallel with organization extract modules. Because of the extract
modules’ ability to be runin parallel, it does not matter which module goes first
(assuming no interdependencies are noted on the batch flows below).

The batch flows on the following pages are best read from top to bottom. Such a
review of the RM SE batch schedule allows clients to both setup module
dependencies and to optimize their batch window through the concurrent running
of unrelated modules.

rmse_config.env settings

On the RM SE side, make sure to review the environmental parametersin the
rmse_config.env file before executing batch modules.

Stepsto configure RETL

1 Logintothe Unix server with a Unix account that will run the RETL scripts.
For instance, the rmsedev account isused in RDW.

Change directoriesto <base_directory>/rmsel0.1/dev/rfx/etc.
Modify the rmse_config.env script:
a Changethe DBNAME variable to the name of the RM S database.

b Changethe RMS OWNER variable to the username of the RM S schema
owner.

¢ Changethe BA_OWNER variable to the username of the RM SE batch
user.



16 RMS ETL

RMS and Destination batch schedule

The (RM SE) extraction modules run in the RMS batch cycle and are dependent
on some RMS modules to provide data for processing (see the descriptions of the
individual modules for details). Some RM S modules are dependent on RM SE
modules. Most RM SE extraction programs run after Phase 2 of the RM'S batch
cycleis completed. All RMSE modules must run before the RMS vdate is
incremented.

Refer to the destination (e.g. RDW/RDF) transformation and load modules for
the product of interest to see how batch jobs should be setup to work
appropriately with RMSE.



Chapter 4 — Program reference lists 17

Chapter 4 — Program reference lists
This chapter serves as a reference to the following RM SE programs and reference information:
Extraction (RETL Korn shell scripts)

Maintenance (RETL Korn shell scripts)

By reviewing Chapter 3, “Program flow diagrams’, along with this chapter and Appendix A, “API flat file specifications’, the client
should be able to track, down to the table and column level, all the extraction data that flows out of RMS.

Extraction programs

Extraction Name Tables Fields Extracted Target File or Target Field Field Type | Field Notes
Extracted Table Length
rmse store.ksh  |store store rmse store.dat |store Number(10) | 11
store_name store_name \Varchar2(20) 20
district district Number(4) 5
store close date store close date Date 8
store_open_date store_open_date Date 8
store_class store_class \Varchar2(1) | 1
\Varchar2(40), 40 |joined with store.store_class,
code detail store class_description store class_description code type ‘CSTR’
store format store format Number(4) 5
store_format format_name format_name \Varchar2(20)) 20 [joined with store.store format
rmse_wh.ksh wh wh rmse_wh.dat  |wh Number(10) | 11
wh_name wh_name \Varchar2(20) 20
forecast wh ind forecast wh ind \Varchar2(1) | 1
stockholding_ind stockholding_ind \Varchar2(1) 1




18 RMS ETL

Extraction Name [ Tables Extracted Fields Target File or Table| Target Field || Field Type Field Notes
Extracted Length
Rmse_orghier.ksh |district district rmse_orghier.dat district Number(4) 5
district_ name district_name |Varchar2(20) 20
region region Number(4) S
region region_name region_name |Varchar2(20) 20 joined with district.region
area area Number(4) 5
area area_name area_name  |Varchar2(20) 20 joined with region.area
chain chain Number(4) 5
chain chain_name chain_name  |Varchar2(20) 20 joined with area.chain
Number(4) 5 merged (should be a single
comphead company company row)
CO_name co_name \Varchar2(20) 20
Rmse_merchhier.ks Number(4) 5
h subclass subclass rmse_merchhier.dat |subclass
sub_name sub_name \Varchar2(20) 20
class class class Number(4) 5 joined with subclass.class
class_name class name |[Varchar2(20) 20
deps dept dept Number(4) 5 joined with class.dept
dept_name dept_name  |Varchar2(20) 20
groups group_no group_no Number(4) 5 joined with dept.group_no
group_name group_name  |Varchar2(20) 20
division division division Number(4) 5 joined with groups.division
div_name div_name \Varchar2(20) 20
Rmse sups.ksh  |sups supplier rmse_supplier.dat  |supplier Number(10) 11
sup_name sup_name \Varchar2(32) 32
Rmse_domain.ksh |domain domain rmse_domain.dat  |domain Number(2) 3
domain_dept dept dept Number(4) 5
domain_class class class Number(4) 5 Also domain_class.dept
Number(4) 5 Also domain_subclass.dept
and
domain_subclass |subclass subclass Domain_subclass.class
Domain_dept\ \Varchar2(1) 1
class\ subclass load_sales_ind load_sales_ind




Chapter 4 — Program reference lists 19

Extraction Name Tables Fields Extracted| Target File or Table Target Field Field Type Field Notes
Extracted Length
rmse_item master.ksh item master item rmse_item master.dat item \Varchar2(25) 25 This is the item master extrac
item desc item_desc \Varchar2(100)] 100
item_parent item_parent \Varchar2(25) 25
item_grandparent item_grandparent]Varchar2(25) 25
subclass subclass Number(4) 5
class class Number(4) 5
dept dept Number(4) 5
forecast_ind forecast_ind \Varchar2(1) 1
item_supplier  |supplier supplier Number(10) 11
rmse_item loc_histksh  |item loc_hist item rmse_item loc_hist.dat |item \Varchar2(25) 25
loc loc Number(10) (11
eow date eow date Date 8
sales_issues sales issues Number(12,4) 14
rmse_tran_data_history.kshjtran_data_history |item rmse_tran_data_history.dat|item \Varchar2(25) 25
store store Number(10) 11
wh wh Number(10) 11
tran_date tran_date Date 8
units units Number(12,4) 14
rmse_item loc_soh.ksh litem loc_soh |item rmse_item_loc_soh.dat |item \Varchar2(25) 25
loc Loc Number(10) 11
stock _on_hand stock _on_hand Number(12, 4) 14
Date 8 Vdate global variable - date of
Period vdate extract date extraction




20 RMS ETL

stock_on_hand

stock_on_hand

Extraction Name Tables Fields Extracted|| Target File or Table Target Field Field Field Notes
Extracted Type\Length| Length
rmse_weekly sales.ksh |item master item rmse_weekly sales.dat |item \Varchar2(25) 25 This is the item master extract
item_loc_soh loc loc Number(10) 11
item_loc_hist eow_date eow_date Date 8
sales_issues sales_issues Number(12, 4) 14
sales_type sales_type \Varchar2(1) 1
item loc_soh rowid row_id \Varchar2(18) 18
domain_subclass Number(2) 3
domain_class Table will depend on domain le
domain_dept domain_id* domain_id Class, Subclass)
tran_data_history/ Number(10) 11
rmse_daily sales.ksh if tran_data loc rmse_daily sales.dat Loc This is the item master extract
item_loc_soh/ \Varchar2(25) 25
if tran_data item ltem
tran_data_history/ Date 8
if tran_data tran_date tran_date
sum(units) sum_units Number(12, 4) 14
sales_type sales_type \Varchar2(1) 1
tran_code tran_code Number(2) 3
domain_subclass Number(2) 3
domain_class Table will depend on domain le
domain_dept domain_id* domain_id Class, Subclass)
rmse_stock on_hand.ksh |item loc soh item rmse_stock on_hand.dat |item \Varchar2(25) 25
loc loc Number(10) 11
Number(12,4) 14

Ftmednld.pc - Calendar Hierarchy Download

The Calendar Hierarchy download will continue to be a Pro* C batch extract. Please reference the detailed design for further information.
Thefile produced by this extract will need to be transferred to alocation where the RDF Transform scripts can accessiit.



Chapter 4 — Program reference lists 21

Load programs

Weekly Forecasted Demand

RDF Batch Name: export_fcst.sh

File L ocation: from_rpas

File Names: wfdemand.##

Example: wfdemand .01
Field Name Start Width Format RMSTable L oad Schema

Position Field

End-of-week Date 1 8 char yyyymmdd Item_forecast.eow_date weekly forecastjeow_date
Item ID 9 20 char Alpha Item_forecast.item weekly forecastjitem
Store/Warehouse 1D 29 20 char Alpha Item_forecast.loc weekly forecast]location
Quantity 49 12 char Numeric Item_forecast.forecast sales |weekly forecast{fcst sales
Standard Deviation 61 12 char Numeric Item_forecast.forecast_std_devjweekly forecast]forecast std_dev

e Thenumeric fields are zero-padded and the decimal point is omitted, but the quantities have a 4-digit decimal part.

200211190000000000001234567800000000000000001234000000121234000000345678

Example:

Thisindicates:

Date: 19 November 2002
Item: 12345678

Store: 1234

Quantity: 12.1234

Std. Dev.: 34.5678

o Theformat of the export can be modified through the RDF client in the Forecast Export Administration workbook — which means that
we can modify the format of the file for easier import.

e Theltem and Store/Warehouse fields are left justified.




22 RMS ETL

Daily Forecasted Demand

RDF Batch Name: export_fcst.sh

File L ocation: from_rpas

File Names: dfdemand.##

Example: dfdemand.01

Field Name Start Width Format RMS Tables Load Schema.Field
Position

Date 1 8 char | yyyymmdd Daily_item forecast.data date weekly forecast data date
Item ID 9 20 char Alpha Daily_item_forecast.item weekly forecast item
Store/Warehouse 1D 29 20 char Alpha Daily_item_forecast.loc weekly forecast location
Quantity 49 12 char | Numeric | Daily item forecast.forecast sales | weekly forecast forecast_saes
Standard Deviation 61 12 char | Numeric |Daily item forecast.forecast std dev] weekly forecast | forecast std dev

e Thenumeric fields are zero-padded and the decimal point is omitted, but the quantities have a 4-digit decimal part.

Example:
200211190000000000001234567800000000000000001234000000121234000000345678
Thisindicates:

Date: 19 November 2002

Item: 12345678

Store: 1234

Quantity: 12.1234

Std. Dev.: 34.5678

e Theformat of the export can be modified through the RDF client in the Forecast Export Administration workbook —which means that
we can modify the format of the file for easier import.

e Theltem and Store/Warehouse fields are left justified.



Chapter 4 — Program reference lists 23

Load Name |Fields Extracted| Target File or Table Tables Loaded Target Field Field Length Notes
itemforecast \Varchar2(25)
rmsl_forecast.kshl|item rmsl_item_forecast.dat |(daily _item forecast) |item This is the first load.
loc loc Number(10)
eow_date Date
(data_date) eow_date
forecast_sales forecast_sales Number(12, 4)
forecast_std_dev forecast_std dev Number(12, 4)

rmsl_forecast.ksh
This script can be run for either weekly or daily forecasting.

Maintenance programs

max_backpost_days.txt,
multi_currency_ind.txt,
prime_currency_code.txt,
prime_exchng_rate.txt,
stkidgr_vat_incl_retl_ind.txt,
vat_ind.txt,

vdate.txt

Program Functional |Module External [ Source Table or File Schema | Target File or Table Arguments [Notes
Area Type Data File
Source
pre_rmse.ksh|Pre-RMS Maintenance| RMS PERIOD, class level vat_ind.txt, This module
Extraction SYSTEM_OPTIONS, consolidation_code.txt, expects these text
Maintenance SYSTEM_VARIABLES, domain_level.txt, filesto existin
CURRENCY_RATES last_ eom date.txt, SMMHOME/rfx/etc

when it runs. Text
files containing
default values for
the very first run
areincluded in the
installation process.







Appendix A — Application programming interface (API) flat file specifications 25

Appendix A — Application programming interface
(API) flat file specifications

This appendix contains APIs that describe the file format specifications for all
text files that serve as the interface between source systems and target systems.
For example, these APIs control the formatting of the following:

e Thedimension data extracted by the DWI code

In addition to providing individual field description and formatting information,
the APIs provide basic business rules for the incoming data.

API format

Each API contains a business rules section and afile layout. Some general
business rules and standards are common to all APIs. The business rules are used
to ensure the integrity of the information held within the target system. In
addition, each API contains alist of rulesthat are specific to that particular API.

File layout
o Field Name: Provides the name of the field in the text file.
e Description: Provides a brief explanation of the information held in the field.

e Max Column Length: Identifies the maximum length possible for afield. A
field may not exceed this length.

o DataType/Format: Datatype identifies one of three valid data types:
character, number, or date:

= Character: Can hold letters (a,b,c...), numbers (1,2,3...), and specia
characters ($,#,&...)

*  Numbers: Can hold only numbers (1,2,3...)
= Date: Holds a specific year, month, day combination

Any required formatting for afield is conveyed in the Format section. For
example, Number(18,4) refers to number precision and scale. Thefirst valueis
the precision and always matches the maximum column length; the second value
is the scale and specifies how many digits exist to the right of the decimal point.

o Required Field: Identifies whether the field can hold anull value. This
section holds either a‘yes ora‘no’. A ‘yes signifiesthe field may not hold
anull value. A ‘no’ signifiesthe field may, but is not required to, hold a null
value.



26 RMS ETL

General business rules and standards common to all APIs

Complete ‘snapshot’ of dimension data:

A majority of RDW’ s dimension code requires a complete view of all current
dimensional data (irregardless of whether the dimension information has
changed) in order to successfully capture the correct data on the target table.
If acomplete view of the dimensional datais not provided in the text file,
invalid or incorrect dimensional data can result. For instance, not including
an active item in the prditmdm.txt file causes that item to be closed (as of the
extract date) in the data warehouse. When a sale for the item is processed, the
fact program will not find amatching ‘active’ dimension record. Therefore, it
is essential, unless otherwise noted in each API’ s specific business rules
section, that a complete snapshot of the dimensional data be provided in each
text file.

Leading/trailing values:

Values entered into the text files are the exact values processed and |oaded
into the datamart tables. Therefore, the values with leading and/or trailing
zeros, characters, or nulls are processed as such. RDW does not strip any of
these leading or trailing values, unless otherwise noted in the individual
API’ s business rules section.

Delimiters:

Note: Make sure the delimiter is never part of your data.

= Within dimension text files, each field must be separated by apipe (| )

character, for example arecord from prddivdm.txt may look like the
following:

1000] 1 |Homewares] 2006 |Henry Stubbs]2302]Craig Swanson

= Within factstext files, each field must be separated by a semi-colon
character ( ;). For example arecord from exchngratedm.txt may look like
the following:

WIS;20010311;1.73527820592648544918
Seethelatest RETL Programmer’s Guide for additional information.

End of Record Carriage Return:

Each record in the text file must be separated by an end of line carriage
return. For example, the three records below, in which each record holds four
values, should be entered as:

112]3]14

5161718

9]10]11]12

and not as a continuous string of data, such as:
1]12]13]4]516]1718]19]110]11]12

Character format:
All API’s should contain ASCII text characters only.



	Chapter 1 – Introduction
	Technical architecture
	Extract Transform and Load (ETL) processing


	Chapter 2 – Program overview
	Installation
	Configuration
	Program features
	Program return code
	Program status control files
	Restart and recovery
	Message logging
	Program error file
	RMSE reject files
	Schema files
	Command line parameters

	Typical run and debugging situations

	Chapter 3 – Batch processing
	Setting up the batch schedule
	rmse_config.env settings
	RMS and Destination batch schedule

	Chapter 4 – Program reference lists
	Extraction programs
	Ftmednld.pc - Calendar Hierarchy Download

	Load programs
	Weekly Forecasted Demand
	Daily Forecasted Demand
	rmsl_forecast.ksh

	Maintenance programs

	Appendix A – Application programming interface \�
	API format
	File layout
	General business rules and standards common to all APIs



